Merge remote-tracking branch 'mkp-scsi/4.8/scsi-fixes' into fixes
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 if (nm_i->nat_cnt > DEF_NAT_CACHE_THRESHOLD)
58 res = false;
59 } else if (type == DIRTY_DENTS) {
60 if (sbi->sb->s_bdi->wb.dirty_exceeded)
61 return false;
62 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
64 } else if (type == INO_ENTRIES) {
65 int i;
66
67 for (i = 0; i <= UPDATE_INO; i++)
68 mem_size += (sbi->im[i].ino_num *
69 sizeof(struct ino_entry)) >> PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 } else if (type == EXTENT_CACHE) {
72 mem_size = (atomic_read(&sbi->total_ext_tree) *
73 sizeof(struct extent_tree) +
74 atomic_read(&sbi->total_ext_node) *
75 sizeof(struct extent_node)) >> PAGE_SHIFT;
76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 } else {
78 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
79 return true;
80 }
81 return res;
82 }
83
84 static void clear_node_page_dirty(struct page *page)
85 {
86 struct address_space *mapping = page->mapping;
87 unsigned int long flags;
88
89 if (PageDirty(page)) {
90 spin_lock_irqsave(&mapping->tree_lock, flags);
91 radix_tree_tag_clear(&mapping->page_tree,
92 page_index(page),
93 PAGECACHE_TAG_DIRTY);
94 spin_unlock_irqrestore(&mapping->tree_lock, flags);
95
96 clear_page_dirty_for_io(page);
97 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
98 }
99 ClearPageUptodate(page);
100 }
101
102 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
103 {
104 pgoff_t index = current_nat_addr(sbi, nid);
105 return get_meta_page(sbi, index);
106 }
107
108 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
109 {
110 struct page *src_page;
111 struct page *dst_page;
112 pgoff_t src_off;
113 pgoff_t dst_off;
114 void *src_addr;
115 void *dst_addr;
116 struct f2fs_nm_info *nm_i = NM_I(sbi);
117
118 src_off = current_nat_addr(sbi, nid);
119 dst_off = next_nat_addr(sbi, src_off);
120
121 /* get current nat block page with lock */
122 src_page = get_meta_page(sbi, src_off);
123 dst_page = grab_meta_page(sbi, dst_off);
124 f2fs_bug_on(sbi, PageDirty(src_page));
125
126 src_addr = page_address(src_page);
127 dst_addr = page_address(dst_page);
128 memcpy(dst_addr, src_addr, PAGE_SIZE);
129 set_page_dirty(dst_page);
130 f2fs_put_page(src_page, 1);
131
132 set_to_next_nat(nm_i, nid);
133
134 return dst_page;
135 }
136
137 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
138 {
139 return radix_tree_lookup(&nm_i->nat_root, n);
140 }
141
142 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
143 nid_t start, unsigned int nr, struct nat_entry **ep)
144 {
145 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
146 }
147
148 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
149 {
150 list_del(&e->list);
151 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
152 nm_i->nat_cnt--;
153 kmem_cache_free(nat_entry_slab, e);
154 }
155
156 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
157 struct nat_entry *ne)
158 {
159 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
160 struct nat_entry_set *head;
161
162 if (get_nat_flag(ne, IS_DIRTY))
163 return;
164
165 head = radix_tree_lookup(&nm_i->nat_set_root, set);
166 if (!head) {
167 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
168
169 INIT_LIST_HEAD(&head->entry_list);
170 INIT_LIST_HEAD(&head->set_list);
171 head->set = set;
172 head->entry_cnt = 0;
173 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
174 }
175 list_move_tail(&ne->list, &head->entry_list);
176 nm_i->dirty_nat_cnt++;
177 head->entry_cnt++;
178 set_nat_flag(ne, IS_DIRTY, true);
179 }
180
181 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
182 struct nat_entry *ne)
183 {
184 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
185 struct nat_entry_set *head;
186
187 head = radix_tree_lookup(&nm_i->nat_set_root, set);
188 if (head) {
189 list_move_tail(&ne->list, &nm_i->nat_entries);
190 set_nat_flag(ne, IS_DIRTY, false);
191 head->entry_cnt--;
192 nm_i->dirty_nat_cnt--;
193 }
194 }
195
196 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
197 nid_t start, unsigned int nr, struct nat_entry_set **ep)
198 {
199 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
200 start, nr);
201 }
202
203 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
204 {
205 struct f2fs_nm_info *nm_i = NM_I(sbi);
206 struct nat_entry *e;
207 bool need = false;
208
209 percpu_down_read(&nm_i->nat_tree_lock);
210 e = __lookup_nat_cache(nm_i, nid);
211 if (e) {
212 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
213 !get_nat_flag(e, HAS_FSYNCED_INODE))
214 need = true;
215 }
216 percpu_up_read(&nm_i->nat_tree_lock);
217 return need;
218 }
219
220 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
221 {
222 struct f2fs_nm_info *nm_i = NM_I(sbi);
223 struct nat_entry *e;
224 bool is_cp = true;
225
226 percpu_down_read(&nm_i->nat_tree_lock);
227 e = __lookup_nat_cache(nm_i, nid);
228 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
229 is_cp = false;
230 percpu_up_read(&nm_i->nat_tree_lock);
231 return is_cp;
232 }
233
234 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
235 {
236 struct f2fs_nm_info *nm_i = NM_I(sbi);
237 struct nat_entry *e;
238 bool need_update = true;
239
240 percpu_down_read(&nm_i->nat_tree_lock);
241 e = __lookup_nat_cache(nm_i, ino);
242 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
243 (get_nat_flag(e, IS_CHECKPOINTED) ||
244 get_nat_flag(e, HAS_FSYNCED_INODE)))
245 need_update = false;
246 percpu_up_read(&nm_i->nat_tree_lock);
247 return need_update;
248 }
249
250 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
251 {
252 struct nat_entry *new;
253
254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 memset(new, 0, sizeof(struct nat_entry));
257 nat_set_nid(new, nid);
258 nat_reset_flag(new);
259 list_add_tail(&new->list, &nm_i->nat_entries);
260 nm_i->nat_cnt++;
261 return new;
262 }
263
264 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
265 struct f2fs_nat_entry *ne)
266 {
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct nat_entry *e;
269
270 e = __lookup_nat_cache(nm_i, nid);
271 if (!e) {
272 e = grab_nat_entry(nm_i, nid);
273 node_info_from_raw_nat(&e->ni, ne);
274 } else {
275 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
276 nat_get_blkaddr(e) != ne->block_addr ||
277 nat_get_version(e) != ne->version);
278 }
279 }
280
281 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
282 block_t new_blkaddr, bool fsync_done)
283 {
284 struct f2fs_nm_info *nm_i = NM_I(sbi);
285 struct nat_entry *e;
286
287 percpu_down_write(&nm_i->nat_tree_lock);
288 e = __lookup_nat_cache(nm_i, ni->nid);
289 if (!e) {
290 e = grab_nat_entry(nm_i, ni->nid);
291 copy_node_info(&e->ni, ni);
292 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
293 } else if (new_blkaddr == NEW_ADDR) {
294 /*
295 * when nid is reallocated,
296 * previous nat entry can be remained in nat cache.
297 * So, reinitialize it with new information.
298 */
299 copy_node_info(&e->ni, ni);
300 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
301 }
302
303 /* sanity check */
304 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
305 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
306 new_blkaddr == NULL_ADDR);
307 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
308 new_blkaddr == NEW_ADDR);
309 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
310 nat_get_blkaddr(e) != NULL_ADDR &&
311 new_blkaddr == NEW_ADDR);
312
313 /* increment version no as node is removed */
314 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
315 unsigned char version = nat_get_version(e);
316 nat_set_version(e, inc_node_version(version));
317
318 /* in order to reuse the nid */
319 if (nm_i->next_scan_nid > ni->nid)
320 nm_i->next_scan_nid = ni->nid;
321 }
322
323 /* change address */
324 nat_set_blkaddr(e, new_blkaddr);
325 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
326 set_nat_flag(e, IS_CHECKPOINTED, false);
327 __set_nat_cache_dirty(nm_i, e);
328
329 /* update fsync_mark if its inode nat entry is still alive */
330 if (ni->nid != ni->ino)
331 e = __lookup_nat_cache(nm_i, ni->ino);
332 if (e) {
333 if (fsync_done && ni->nid == ni->ino)
334 set_nat_flag(e, HAS_FSYNCED_INODE, true);
335 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
336 }
337 percpu_up_write(&nm_i->nat_tree_lock);
338 }
339
340 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
341 {
342 struct f2fs_nm_info *nm_i = NM_I(sbi);
343 int nr = nr_shrink;
344
345 percpu_down_write(&nm_i->nat_tree_lock);
346
347 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
348 struct nat_entry *ne;
349 ne = list_first_entry(&nm_i->nat_entries,
350 struct nat_entry, list);
351 __del_from_nat_cache(nm_i, ne);
352 nr_shrink--;
353 }
354 percpu_up_write(&nm_i->nat_tree_lock);
355 return nr - nr_shrink;
356 }
357
358 /*
359 * This function always returns success
360 */
361 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
362 {
363 struct f2fs_nm_info *nm_i = NM_I(sbi);
364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
365 struct f2fs_journal *journal = curseg->journal;
366 nid_t start_nid = START_NID(nid);
367 struct f2fs_nat_block *nat_blk;
368 struct page *page = NULL;
369 struct f2fs_nat_entry ne;
370 struct nat_entry *e;
371 int i;
372
373 ni->nid = nid;
374
375 /* Check nat cache */
376 percpu_down_read(&nm_i->nat_tree_lock);
377 e = __lookup_nat_cache(nm_i, nid);
378 if (e) {
379 ni->ino = nat_get_ino(e);
380 ni->blk_addr = nat_get_blkaddr(e);
381 ni->version = nat_get_version(e);
382 percpu_up_read(&nm_i->nat_tree_lock);
383 return;
384 }
385
386 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
387
388 /* Check current segment summary */
389 down_read(&curseg->journal_rwsem);
390 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
391 if (i >= 0) {
392 ne = nat_in_journal(journal, i);
393 node_info_from_raw_nat(ni, &ne);
394 }
395 up_read(&curseg->journal_rwsem);
396 if (i >= 0)
397 goto cache;
398
399 /* Fill node_info from nat page */
400 page = get_current_nat_page(sbi, start_nid);
401 nat_blk = (struct f2fs_nat_block *)page_address(page);
402 ne = nat_blk->entries[nid - start_nid];
403 node_info_from_raw_nat(ni, &ne);
404 f2fs_put_page(page, 1);
405 cache:
406 percpu_up_read(&nm_i->nat_tree_lock);
407 /* cache nat entry */
408 percpu_down_write(&nm_i->nat_tree_lock);
409 cache_nat_entry(sbi, nid, &ne);
410 percpu_up_write(&nm_i->nat_tree_lock);
411 }
412
413 /*
414 * readahead MAX_RA_NODE number of node pages.
415 */
416 static void ra_node_pages(struct page *parent, int start, int n)
417 {
418 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
419 struct blk_plug plug;
420 int i, end;
421 nid_t nid;
422
423 blk_start_plug(&plug);
424
425 /* Then, try readahead for siblings of the desired node */
426 end = start + n;
427 end = min(end, NIDS_PER_BLOCK);
428 for (i = start; i < end; i++) {
429 nid = get_nid(parent, i, false);
430 ra_node_page(sbi, nid);
431 }
432
433 blk_finish_plug(&plug);
434 }
435
436 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
437 {
438 const long direct_index = ADDRS_PER_INODE(dn->inode);
439 const long direct_blks = ADDRS_PER_BLOCK;
440 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
441 unsigned int skipped_unit = ADDRS_PER_BLOCK;
442 int cur_level = dn->cur_level;
443 int max_level = dn->max_level;
444 pgoff_t base = 0;
445
446 if (!dn->max_level)
447 return pgofs + 1;
448
449 while (max_level-- > cur_level)
450 skipped_unit *= NIDS_PER_BLOCK;
451
452 switch (dn->max_level) {
453 case 3:
454 base += 2 * indirect_blks;
455 case 2:
456 base += 2 * direct_blks;
457 case 1:
458 base += direct_index;
459 break;
460 default:
461 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
462 }
463
464 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
465 }
466
467 /*
468 * The maximum depth is four.
469 * Offset[0] will have raw inode offset.
470 */
471 static int get_node_path(struct inode *inode, long block,
472 int offset[4], unsigned int noffset[4])
473 {
474 const long direct_index = ADDRS_PER_INODE(inode);
475 const long direct_blks = ADDRS_PER_BLOCK;
476 const long dptrs_per_blk = NIDS_PER_BLOCK;
477 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
478 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
479 int n = 0;
480 int level = 0;
481
482 noffset[0] = 0;
483
484 if (block < direct_index) {
485 offset[n] = block;
486 goto got;
487 }
488 block -= direct_index;
489 if (block < direct_blks) {
490 offset[n++] = NODE_DIR1_BLOCK;
491 noffset[n] = 1;
492 offset[n] = block;
493 level = 1;
494 goto got;
495 }
496 block -= direct_blks;
497 if (block < direct_blks) {
498 offset[n++] = NODE_DIR2_BLOCK;
499 noffset[n] = 2;
500 offset[n] = block;
501 level = 1;
502 goto got;
503 }
504 block -= direct_blks;
505 if (block < indirect_blks) {
506 offset[n++] = NODE_IND1_BLOCK;
507 noffset[n] = 3;
508 offset[n++] = block / direct_blks;
509 noffset[n] = 4 + offset[n - 1];
510 offset[n] = block % direct_blks;
511 level = 2;
512 goto got;
513 }
514 block -= indirect_blks;
515 if (block < indirect_blks) {
516 offset[n++] = NODE_IND2_BLOCK;
517 noffset[n] = 4 + dptrs_per_blk;
518 offset[n++] = block / direct_blks;
519 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
520 offset[n] = block % direct_blks;
521 level = 2;
522 goto got;
523 }
524 block -= indirect_blks;
525 if (block < dindirect_blks) {
526 offset[n++] = NODE_DIND_BLOCK;
527 noffset[n] = 5 + (dptrs_per_blk * 2);
528 offset[n++] = block / indirect_blks;
529 noffset[n] = 6 + (dptrs_per_blk * 2) +
530 offset[n - 1] * (dptrs_per_blk + 1);
531 offset[n++] = (block / direct_blks) % dptrs_per_blk;
532 noffset[n] = 7 + (dptrs_per_blk * 2) +
533 offset[n - 2] * (dptrs_per_blk + 1) +
534 offset[n - 1];
535 offset[n] = block % direct_blks;
536 level = 3;
537 goto got;
538 } else {
539 BUG();
540 }
541 got:
542 return level;
543 }
544
545 /*
546 * Caller should call f2fs_put_dnode(dn).
547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
549 * In the case of RDONLY_NODE, we don't need to care about mutex.
550 */
551 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
552 {
553 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
554 struct page *npage[4];
555 struct page *parent = NULL;
556 int offset[4];
557 unsigned int noffset[4];
558 nid_t nids[4];
559 int level, i = 0;
560 int err = 0;
561
562 level = get_node_path(dn->inode, index, offset, noffset);
563
564 nids[0] = dn->inode->i_ino;
565 npage[0] = dn->inode_page;
566
567 if (!npage[0]) {
568 npage[0] = get_node_page(sbi, nids[0]);
569 if (IS_ERR(npage[0]))
570 return PTR_ERR(npage[0]);
571 }
572
573 /* if inline_data is set, should not report any block indices */
574 if (f2fs_has_inline_data(dn->inode) && index) {
575 err = -ENOENT;
576 f2fs_put_page(npage[0], 1);
577 goto release_out;
578 }
579
580 parent = npage[0];
581 if (level != 0)
582 nids[1] = get_nid(parent, offset[0], true);
583 dn->inode_page = npage[0];
584 dn->inode_page_locked = true;
585
586 /* get indirect or direct nodes */
587 for (i = 1; i <= level; i++) {
588 bool done = false;
589
590 if (!nids[i] && mode == ALLOC_NODE) {
591 /* alloc new node */
592 if (!alloc_nid(sbi, &(nids[i]))) {
593 err = -ENOSPC;
594 goto release_pages;
595 }
596
597 dn->nid = nids[i];
598 npage[i] = new_node_page(dn, noffset[i], NULL);
599 if (IS_ERR(npage[i])) {
600 alloc_nid_failed(sbi, nids[i]);
601 err = PTR_ERR(npage[i]);
602 goto release_pages;
603 }
604
605 set_nid(parent, offset[i - 1], nids[i], i == 1);
606 alloc_nid_done(sbi, nids[i]);
607 done = true;
608 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
609 npage[i] = get_node_page_ra(parent, offset[i - 1]);
610 if (IS_ERR(npage[i])) {
611 err = PTR_ERR(npage[i]);
612 goto release_pages;
613 }
614 done = true;
615 }
616 if (i == 1) {
617 dn->inode_page_locked = false;
618 unlock_page(parent);
619 } else {
620 f2fs_put_page(parent, 1);
621 }
622
623 if (!done) {
624 npage[i] = get_node_page(sbi, nids[i]);
625 if (IS_ERR(npage[i])) {
626 err = PTR_ERR(npage[i]);
627 f2fs_put_page(npage[0], 0);
628 goto release_out;
629 }
630 }
631 if (i < level) {
632 parent = npage[i];
633 nids[i + 1] = get_nid(parent, offset[i], false);
634 }
635 }
636 dn->nid = nids[level];
637 dn->ofs_in_node = offset[level];
638 dn->node_page = npage[level];
639 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
640 return 0;
641
642 release_pages:
643 f2fs_put_page(parent, 1);
644 if (i > 1)
645 f2fs_put_page(npage[0], 0);
646 release_out:
647 dn->inode_page = NULL;
648 dn->node_page = NULL;
649 if (err == -ENOENT) {
650 dn->cur_level = i;
651 dn->max_level = level;
652 dn->ofs_in_node = offset[level];
653 }
654 return err;
655 }
656
657 static void truncate_node(struct dnode_of_data *dn)
658 {
659 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
660 struct node_info ni;
661
662 get_node_info(sbi, dn->nid, &ni);
663 if (dn->inode->i_blocks == 0) {
664 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
665 goto invalidate;
666 }
667 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
668
669 /* Deallocate node address */
670 invalidate_blocks(sbi, ni.blk_addr);
671 dec_valid_node_count(sbi, dn->inode);
672 set_node_addr(sbi, &ni, NULL_ADDR, false);
673
674 if (dn->nid == dn->inode->i_ino) {
675 remove_orphan_inode(sbi, dn->nid);
676 dec_valid_inode_count(sbi);
677 f2fs_inode_synced(dn->inode);
678 }
679 invalidate:
680 clear_node_page_dirty(dn->node_page);
681 set_sbi_flag(sbi, SBI_IS_DIRTY);
682
683 f2fs_put_page(dn->node_page, 1);
684
685 invalidate_mapping_pages(NODE_MAPPING(sbi),
686 dn->node_page->index, dn->node_page->index);
687
688 dn->node_page = NULL;
689 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
690 }
691
692 static int truncate_dnode(struct dnode_of_data *dn)
693 {
694 struct page *page;
695
696 if (dn->nid == 0)
697 return 1;
698
699 /* get direct node */
700 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
701 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
702 return 1;
703 else if (IS_ERR(page))
704 return PTR_ERR(page);
705
706 /* Make dnode_of_data for parameter */
707 dn->node_page = page;
708 dn->ofs_in_node = 0;
709 truncate_data_blocks(dn);
710 truncate_node(dn);
711 return 1;
712 }
713
714 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
715 int ofs, int depth)
716 {
717 struct dnode_of_data rdn = *dn;
718 struct page *page;
719 struct f2fs_node *rn;
720 nid_t child_nid;
721 unsigned int child_nofs;
722 int freed = 0;
723 int i, ret;
724
725 if (dn->nid == 0)
726 return NIDS_PER_BLOCK + 1;
727
728 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
729
730 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
731 if (IS_ERR(page)) {
732 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
733 return PTR_ERR(page);
734 }
735
736 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
737
738 rn = F2FS_NODE(page);
739 if (depth < 3) {
740 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
741 child_nid = le32_to_cpu(rn->in.nid[i]);
742 if (child_nid == 0)
743 continue;
744 rdn.nid = child_nid;
745 ret = truncate_dnode(&rdn);
746 if (ret < 0)
747 goto out_err;
748 if (set_nid(page, i, 0, false))
749 dn->node_changed = true;
750 }
751 } else {
752 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
753 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
754 child_nid = le32_to_cpu(rn->in.nid[i]);
755 if (child_nid == 0) {
756 child_nofs += NIDS_PER_BLOCK + 1;
757 continue;
758 }
759 rdn.nid = child_nid;
760 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
761 if (ret == (NIDS_PER_BLOCK + 1)) {
762 if (set_nid(page, i, 0, false))
763 dn->node_changed = true;
764 child_nofs += ret;
765 } else if (ret < 0 && ret != -ENOENT) {
766 goto out_err;
767 }
768 }
769 freed = child_nofs;
770 }
771
772 if (!ofs) {
773 /* remove current indirect node */
774 dn->node_page = page;
775 truncate_node(dn);
776 freed++;
777 } else {
778 f2fs_put_page(page, 1);
779 }
780 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
781 return freed;
782
783 out_err:
784 f2fs_put_page(page, 1);
785 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
786 return ret;
787 }
788
789 static int truncate_partial_nodes(struct dnode_of_data *dn,
790 struct f2fs_inode *ri, int *offset, int depth)
791 {
792 struct page *pages[2];
793 nid_t nid[3];
794 nid_t child_nid;
795 int err = 0;
796 int i;
797 int idx = depth - 2;
798
799 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
800 if (!nid[0])
801 return 0;
802
803 /* get indirect nodes in the path */
804 for (i = 0; i < idx + 1; i++) {
805 /* reference count'll be increased */
806 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
807 if (IS_ERR(pages[i])) {
808 err = PTR_ERR(pages[i]);
809 idx = i - 1;
810 goto fail;
811 }
812 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
813 }
814
815 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
816
817 /* free direct nodes linked to a partial indirect node */
818 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
819 child_nid = get_nid(pages[idx], i, false);
820 if (!child_nid)
821 continue;
822 dn->nid = child_nid;
823 err = truncate_dnode(dn);
824 if (err < 0)
825 goto fail;
826 if (set_nid(pages[idx], i, 0, false))
827 dn->node_changed = true;
828 }
829
830 if (offset[idx + 1] == 0) {
831 dn->node_page = pages[idx];
832 dn->nid = nid[idx];
833 truncate_node(dn);
834 } else {
835 f2fs_put_page(pages[idx], 1);
836 }
837 offset[idx]++;
838 offset[idx + 1] = 0;
839 idx--;
840 fail:
841 for (i = idx; i >= 0; i--)
842 f2fs_put_page(pages[i], 1);
843
844 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
845
846 return err;
847 }
848
849 /*
850 * All the block addresses of data and nodes should be nullified.
851 */
852 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
853 {
854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 int err = 0, cont = 1;
856 int level, offset[4], noffset[4];
857 unsigned int nofs = 0;
858 struct f2fs_inode *ri;
859 struct dnode_of_data dn;
860 struct page *page;
861
862 trace_f2fs_truncate_inode_blocks_enter(inode, from);
863
864 level = get_node_path(inode, from, offset, noffset);
865
866 page = get_node_page(sbi, inode->i_ino);
867 if (IS_ERR(page)) {
868 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
869 return PTR_ERR(page);
870 }
871
872 set_new_dnode(&dn, inode, page, NULL, 0);
873 unlock_page(page);
874
875 ri = F2FS_INODE(page);
876 switch (level) {
877 case 0:
878 case 1:
879 nofs = noffset[1];
880 break;
881 case 2:
882 nofs = noffset[1];
883 if (!offset[level - 1])
884 goto skip_partial;
885 err = truncate_partial_nodes(&dn, ri, offset, level);
886 if (err < 0 && err != -ENOENT)
887 goto fail;
888 nofs += 1 + NIDS_PER_BLOCK;
889 break;
890 case 3:
891 nofs = 5 + 2 * NIDS_PER_BLOCK;
892 if (!offset[level - 1])
893 goto skip_partial;
894 err = truncate_partial_nodes(&dn, ri, offset, level);
895 if (err < 0 && err != -ENOENT)
896 goto fail;
897 break;
898 default:
899 BUG();
900 }
901
902 skip_partial:
903 while (cont) {
904 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
905 switch (offset[0]) {
906 case NODE_DIR1_BLOCK:
907 case NODE_DIR2_BLOCK:
908 err = truncate_dnode(&dn);
909 break;
910
911 case NODE_IND1_BLOCK:
912 case NODE_IND2_BLOCK:
913 err = truncate_nodes(&dn, nofs, offset[1], 2);
914 break;
915
916 case NODE_DIND_BLOCK:
917 err = truncate_nodes(&dn, nofs, offset[1], 3);
918 cont = 0;
919 break;
920
921 default:
922 BUG();
923 }
924 if (err < 0 && err != -ENOENT)
925 goto fail;
926 if (offset[1] == 0 &&
927 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
928 lock_page(page);
929 BUG_ON(page->mapping != NODE_MAPPING(sbi));
930 f2fs_wait_on_page_writeback(page, NODE, true);
931 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
932 set_page_dirty(page);
933 unlock_page(page);
934 }
935 offset[1] = 0;
936 offset[0]++;
937 nofs += err;
938 }
939 fail:
940 f2fs_put_page(page, 0);
941 trace_f2fs_truncate_inode_blocks_exit(inode, err);
942 return err > 0 ? 0 : err;
943 }
944
945 int truncate_xattr_node(struct inode *inode, struct page *page)
946 {
947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948 nid_t nid = F2FS_I(inode)->i_xattr_nid;
949 struct dnode_of_data dn;
950 struct page *npage;
951
952 if (!nid)
953 return 0;
954
955 npage = get_node_page(sbi, nid);
956 if (IS_ERR(npage))
957 return PTR_ERR(npage);
958
959 f2fs_i_xnid_write(inode, 0);
960
961 /* need to do checkpoint during fsync */
962 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
963
964 set_new_dnode(&dn, inode, page, npage, nid);
965
966 if (page)
967 dn.inode_page_locked = true;
968 truncate_node(&dn);
969 return 0;
970 }
971
972 /*
973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
974 * f2fs_unlock_op().
975 */
976 int remove_inode_page(struct inode *inode)
977 {
978 struct dnode_of_data dn;
979 int err;
980
981 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
982 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
983 if (err)
984 return err;
985
986 err = truncate_xattr_node(inode, dn.inode_page);
987 if (err) {
988 f2fs_put_dnode(&dn);
989 return err;
990 }
991
992 /* remove potential inline_data blocks */
993 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
994 S_ISLNK(inode->i_mode))
995 truncate_data_blocks_range(&dn, 1);
996
997 /* 0 is possible, after f2fs_new_inode() has failed */
998 f2fs_bug_on(F2FS_I_SB(inode),
999 inode->i_blocks != 0 && inode->i_blocks != 1);
1000
1001 /* will put inode & node pages */
1002 truncate_node(&dn);
1003 return 0;
1004 }
1005
1006 struct page *new_inode_page(struct inode *inode)
1007 {
1008 struct dnode_of_data dn;
1009
1010 /* allocate inode page for new inode */
1011 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1012
1013 /* caller should f2fs_put_page(page, 1); */
1014 return new_node_page(&dn, 0, NULL);
1015 }
1016
1017 struct page *new_node_page(struct dnode_of_data *dn,
1018 unsigned int ofs, struct page *ipage)
1019 {
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021 struct node_info old_ni, new_ni;
1022 struct page *page;
1023 int err;
1024
1025 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026 return ERR_PTR(-EPERM);
1027
1028 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029 if (!page)
1030 return ERR_PTR(-ENOMEM);
1031
1032 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033 err = -ENOSPC;
1034 goto fail;
1035 }
1036
1037 get_node_info(sbi, dn->nid, &old_ni);
1038
1039 /* Reinitialize old_ni with new node page */
1040 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041 new_ni = old_ni;
1042 new_ni.ino = dn->inode->i_ino;
1043 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1044
1045 f2fs_wait_on_page_writeback(page, NODE, true);
1046 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047 set_cold_node(dn->inode, page);
1048 if (!PageUptodate(page))
1049 SetPageUptodate(page);
1050 if (set_page_dirty(page))
1051 dn->node_changed = true;
1052
1053 if (f2fs_has_xattr_block(ofs))
1054 f2fs_i_xnid_write(dn->inode, dn->nid);
1055
1056 if (ofs == 0)
1057 inc_valid_inode_count(sbi);
1058 return page;
1059
1060 fail:
1061 clear_node_page_dirty(page);
1062 f2fs_put_page(page, 1);
1063 return ERR_PTR(err);
1064 }
1065
1066 /*
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070 */
1071 static int read_node_page(struct page *page, int op_flags)
1072 {
1073 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074 struct node_info ni;
1075 struct f2fs_io_info fio = {
1076 .sbi = sbi,
1077 .type = NODE,
1078 .op = REQ_OP_READ,
1079 .op_flags = op_flags,
1080 .page = page,
1081 .encrypted_page = NULL,
1082 };
1083
1084 if (PageUptodate(page))
1085 return LOCKED_PAGE;
1086
1087 get_node_info(sbi, page->index, &ni);
1088
1089 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090 ClearPageUptodate(page);
1091 return -ENOENT;
1092 }
1093
1094 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095 return f2fs_submit_page_bio(&fio);
1096 }
1097
1098 /*
1099 * Readahead a node page
1100 */
1101 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1102 {
1103 struct page *apage;
1104 int err;
1105
1106 if (!nid)
1107 return;
1108 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1109
1110 rcu_read_lock();
1111 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112 rcu_read_unlock();
1113 if (apage)
1114 return;
1115
1116 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117 if (!apage)
1118 return;
1119
1120 err = read_node_page(apage, REQ_RAHEAD);
1121 f2fs_put_page(apage, err ? 1 : 0);
1122 }
1123
1124 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125 struct page *parent, int start)
1126 {
1127 struct page *page;
1128 int err;
1129
1130 if (!nid)
1131 return ERR_PTR(-ENOENT);
1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133 repeat:
1134 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135 if (!page)
1136 return ERR_PTR(-ENOMEM);
1137
1138 err = read_node_page(page, READ_SYNC);
1139 if (err < 0) {
1140 f2fs_put_page(page, 1);
1141 return ERR_PTR(err);
1142 } else if (err == LOCKED_PAGE) {
1143 goto page_hit;
1144 }
1145
1146 if (parent)
1147 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1148
1149 lock_page(page);
1150
1151 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152 f2fs_put_page(page, 1);
1153 goto repeat;
1154 }
1155
1156 if (unlikely(!PageUptodate(page)))
1157 goto out_err;
1158 page_hit:
1159 if(unlikely(nid != nid_of_node(page))) {
1160 f2fs_bug_on(sbi, 1);
1161 ClearPageUptodate(page);
1162 out_err:
1163 f2fs_put_page(page, 1);
1164 return ERR_PTR(-EIO);
1165 }
1166 return page;
1167 }
1168
1169 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1170 {
1171 return __get_node_page(sbi, nid, NULL, 0);
1172 }
1173
1174 struct page *get_node_page_ra(struct page *parent, int start)
1175 {
1176 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177 nid_t nid = get_nid(parent, start, false);
1178
1179 return __get_node_page(sbi, nid, parent, start);
1180 }
1181
1182 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1183 {
1184 struct inode *inode;
1185 struct page *page;
1186 int ret;
1187
1188 /* should flush inline_data before evict_inode */
1189 inode = ilookup(sbi->sb, ino);
1190 if (!inode)
1191 return;
1192
1193 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1194 if (!page)
1195 goto iput_out;
1196
1197 if (!PageUptodate(page))
1198 goto page_out;
1199
1200 if (!PageDirty(page))
1201 goto page_out;
1202
1203 if (!clear_page_dirty_for_io(page))
1204 goto page_out;
1205
1206 ret = f2fs_write_inline_data(inode, page);
1207 inode_dec_dirty_pages(inode);
1208 if (ret)
1209 set_page_dirty(page);
1210 page_out:
1211 f2fs_put_page(page, 1);
1212 iput_out:
1213 iput(inode);
1214 }
1215
1216 void move_node_page(struct page *node_page, int gc_type)
1217 {
1218 if (gc_type == FG_GC) {
1219 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1220 struct writeback_control wbc = {
1221 .sync_mode = WB_SYNC_ALL,
1222 .nr_to_write = 1,
1223 .for_reclaim = 0,
1224 };
1225
1226 set_page_dirty(node_page);
1227 f2fs_wait_on_page_writeback(node_page, NODE, true);
1228
1229 f2fs_bug_on(sbi, PageWriteback(node_page));
1230 if (!clear_page_dirty_for_io(node_page))
1231 goto out_page;
1232
1233 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1234 unlock_page(node_page);
1235 goto release_page;
1236 } else {
1237 /* set page dirty and write it */
1238 if (!PageWriteback(node_page))
1239 set_page_dirty(node_page);
1240 }
1241 out_page:
1242 unlock_page(node_page);
1243 release_page:
1244 f2fs_put_page(node_page, 0);
1245 }
1246
1247 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1248 {
1249 pgoff_t index, end;
1250 struct pagevec pvec;
1251 struct page *last_page = NULL;
1252
1253 pagevec_init(&pvec, 0);
1254 index = 0;
1255 end = ULONG_MAX;
1256
1257 while (index <= end) {
1258 int i, nr_pages;
1259 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1260 PAGECACHE_TAG_DIRTY,
1261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1262 if (nr_pages == 0)
1263 break;
1264
1265 for (i = 0; i < nr_pages; i++) {
1266 struct page *page = pvec.pages[i];
1267
1268 if (unlikely(f2fs_cp_error(sbi))) {
1269 f2fs_put_page(last_page, 0);
1270 pagevec_release(&pvec);
1271 return ERR_PTR(-EIO);
1272 }
1273
1274 if (!IS_DNODE(page) || !is_cold_node(page))
1275 continue;
1276 if (ino_of_node(page) != ino)
1277 continue;
1278
1279 lock_page(page);
1280
1281 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1282 continue_unlock:
1283 unlock_page(page);
1284 continue;
1285 }
1286 if (ino_of_node(page) != ino)
1287 goto continue_unlock;
1288
1289 if (!PageDirty(page)) {
1290 /* someone wrote it for us */
1291 goto continue_unlock;
1292 }
1293
1294 if (last_page)
1295 f2fs_put_page(last_page, 0);
1296
1297 get_page(page);
1298 last_page = page;
1299 unlock_page(page);
1300 }
1301 pagevec_release(&pvec);
1302 cond_resched();
1303 }
1304 return last_page;
1305 }
1306
1307 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1308 struct writeback_control *wbc, bool atomic)
1309 {
1310 pgoff_t index, end;
1311 struct pagevec pvec;
1312 int ret = 0;
1313 struct page *last_page = NULL;
1314 bool marked = false;
1315 nid_t ino = inode->i_ino;
1316
1317 if (atomic) {
1318 last_page = last_fsync_dnode(sbi, ino);
1319 if (IS_ERR_OR_NULL(last_page))
1320 return PTR_ERR_OR_ZERO(last_page);
1321 }
1322 retry:
1323 pagevec_init(&pvec, 0);
1324 index = 0;
1325 end = ULONG_MAX;
1326
1327 while (index <= end) {
1328 int i, nr_pages;
1329 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1330 PAGECACHE_TAG_DIRTY,
1331 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1332 if (nr_pages == 0)
1333 break;
1334
1335 for (i = 0; i < nr_pages; i++) {
1336 struct page *page = pvec.pages[i];
1337
1338 if (unlikely(f2fs_cp_error(sbi))) {
1339 f2fs_put_page(last_page, 0);
1340 pagevec_release(&pvec);
1341 return -EIO;
1342 }
1343
1344 if (!IS_DNODE(page) || !is_cold_node(page))
1345 continue;
1346 if (ino_of_node(page) != ino)
1347 continue;
1348
1349 lock_page(page);
1350
1351 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1352 continue_unlock:
1353 unlock_page(page);
1354 continue;
1355 }
1356 if (ino_of_node(page) != ino)
1357 goto continue_unlock;
1358
1359 if (!PageDirty(page) && page != last_page) {
1360 /* someone wrote it for us */
1361 goto continue_unlock;
1362 }
1363
1364 f2fs_wait_on_page_writeback(page, NODE, true);
1365 BUG_ON(PageWriteback(page));
1366
1367 if (!atomic || page == last_page) {
1368 set_fsync_mark(page, 1);
1369 if (IS_INODE(page)) {
1370 if (is_inode_flag_set(inode,
1371 FI_DIRTY_INODE))
1372 update_inode(inode, page);
1373 set_dentry_mark(page,
1374 need_dentry_mark(sbi, ino));
1375 }
1376 /* may be written by other thread */
1377 if (!PageDirty(page))
1378 set_page_dirty(page);
1379 }
1380
1381 if (!clear_page_dirty_for_io(page))
1382 goto continue_unlock;
1383
1384 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1385 if (ret) {
1386 unlock_page(page);
1387 f2fs_put_page(last_page, 0);
1388 break;
1389 }
1390 if (page == last_page) {
1391 f2fs_put_page(page, 0);
1392 marked = true;
1393 break;
1394 }
1395 }
1396 pagevec_release(&pvec);
1397 cond_resched();
1398
1399 if (ret || marked)
1400 break;
1401 }
1402 if (!ret && atomic && !marked) {
1403 f2fs_msg(sbi->sb, KERN_DEBUG,
1404 "Retry to write fsync mark: ino=%u, idx=%lx",
1405 ino, last_page->index);
1406 lock_page(last_page);
1407 set_page_dirty(last_page);
1408 unlock_page(last_page);
1409 goto retry;
1410 }
1411 return ret ? -EIO: 0;
1412 }
1413
1414 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1415 {
1416 pgoff_t index, end;
1417 struct pagevec pvec;
1418 int step = 0;
1419 int nwritten = 0;
1420
1421 pagevec_init(&pvec, 0);
1422
1423 next_step:
1424 index = 0;
1425 end = ULONG_MAX;
1426
1427 while (index <= end) {
1428 int i, nr_pages;
1429 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1430 PAGECACHE_TAG_DIRTY,
1431 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1432 if (nr_pages == 0)
1433 break;
1434
1435 for (i = 0; i < nr_pages; i++) {
1436 struct page *page = pvec.pages[i];
1437
1438 if (unlikely(f2fs_cp_error(sbi))) {
1439 pagevec_release(&pvec);
1440 return -EIO;
1441 }
1442
1443 /*
1444 * flushing sequence with step:
1445 * 0. indirect nodes
1446 * 1. dentry dnodes
1447 * 2. file dnodes
1448 */
1449 if (step == 0 && IS_DNODE(page))
1450 continue;
1451 if (step == 1 && (!IS_DNODE(page) ||
1452 is_cold_node(page)))
1453 continue;
1454 if (step == 2 && (!IS_DNODE(page) ||
1455 !is_cold_node(page)))
1456 continue;
1457 lock_node:
1458 if (!trylock_page(page))
1459 continue;
1460
1461 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1462 continue_unlock:
1463 unlock_page(page);
1464 continue;
1465 }
1466
1467 if (!PageDirty(page)) {
1468 /* someone wrote it for us */
1469 goto continue_unlock;
1470 }
1471
1472 /* flush inline_data */
1473 if (is_inline_node(page)) {
1474 clear_inline_node(page);
1475 unlock_page(page);
1476 flush_inline_data(sbi, ino_of_node(page));
1477 goto lock_node;
1478 }
1479
1480 f2fs_wait_on_page_writeback(page, NODE, true);
1481
1482 BUG_ON(PageWriteback(page));
1483 if (!clear_page_dirty_for_io(page))
1484 goto continue_unlock;
1485
1486 set_fsync_mark(page, 0);
1487 set_dentry_mark(page, 0);
1488
1489 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1490 unlock_page(page);
1491
1492 if (--wbc->nr_to_write == 0)
1493 break;
1494 }
1495 pagevec_release(&pvec);
1496 cond_resched();
1497
1498 if (wbc->nr_to_write == 0) {
1499 step = 2;
1500 break;
1501 }
1502 }
1503
1504 if (step < 2) {
1505 step++;
1506 goto next_step;
1507 }
1508 return nwritten;
1509 }
1510
1511 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1512 {
1513 pgoff_t index = 0, end = ULONG_MAX;
1514 struct pagevec pvec;
1515 int ret2 = 0, ret = 0;
1516
1517 pagevec_init(&pvec, 0);
1518
1519 while (index <= end) {
1520 int i, nr_pages;
1521 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1522 PAGECACHE_TAG_WRITEBACK,
1523 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1524 if (nr_pages == 0)
1525 break;
1526
1527 for (i = 0; i < nr_pages; i++) {
1528 struct page *page = pvec.pages[i];
1529
1530 /* until radix tree lookup accepts end_index */
1531 if (unlikely(page->index > end))
1532 continue;
1533
1534 if (ino && ino_of_node(page) == ino) {
1535 f2fs_wait_on_page_writeback(page, NODE, true);
1536 if (TestClearPageError(page))
1537 ret = -EIO;
1538 }
1539 }
1540 pagevec_release(&pvec);
1541 cond_resched();
1542 }
1543
1544 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1545 ret2 = -ENOSPC;
1546 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1547 ret2 = -EIO;
1548 if (!ret)
1549 ret = ret2;
1550 return ret;
1551 }
1552
1553 static int f2fs_write_node_page(struct page *page,
1554 struct writeback_control *wbc)
1555 {
1556 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1557 nid_t nid;
1558 struct node_info ni;
1559 struct f2fs_io_info fio = {
1560 .sbi = sbi,
1561 .type = NODE,
1562 .op = REQ_OP_WRITE,
1563 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1564 .page = page,
1565 .encrypted_page = NULL,
1566 };
1567
1568 trace_f2fs_writepage(page, NODE);
1569
1570 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1571 goto redirty_out;
1572 if (unlikely(f2fs_cp_error(sbi)))
1573 goto redirty_out;
1574
1575 /* get old block addr of this node page */
1576 nid = nid_of_node(page);
1577 f2fs_bug_on(sbi, page->index != nid);
1578
1579 if (wbc->for_reclaim) {
1580 if (!down_read_trylock(&sbi->node_write))
1581 goto redirty_out;
1582 } else {
1583 down_read(&sbi->node_write);
1584 }
1585
1586 get_node_info(sbi, nid, &ni);
1587
1588 /* This page is already truncated */
1589 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1590 ClearPageUptodate(page);
1591 dec_page_count(sbi, F2FS_DIRTY_NODES);
1592 up_read(&sbi->node_write);
1593 unlock_page(page);
1594 return 0;
1595 }
1596
1597 set_page_writeback(page);
1598 fio.old_blkaddr = ni.blk_addr;
1599 write_node_page(nid, &fio);
1600 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1601 dec_page_count(sbi, F2FS_DIRTY_NODES);
1602 up_read(&sbi->node_write);
1603
1604 if (wbc->for_reclaim)
1605 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1606
1607 unlock_page(page);
1608
1609 if (unlikely(f2fs_cp_error(sbi)))
1610 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1611
1612 return 0;
1613
1614 redirty_out:
1615 redirty_page_for_writepage(wbc, page);
1616 return AOP_WRITEPAGE_ACTIVATE;
1617 }
1618
1619 static int f2fs_write_node_pages(struct address_space *mapping,
1620 struct writeback_control *wbc)
1621 {
1622 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1623 struct blk_plug plug;
1624 long diff;
1625
1626 /* balancing f2fs's metadata in background */
1627 f2fs_balance_fs_bg(sbi);
1628
1629 /* collect a number of dirty node pages and write together */
1630 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1631 goto skip_write;
1632
1633 trace_f2fs_writepages(mapping->host, wbc, NODE);
1634
1635 diff = nr_pages_to_write(sbi, NODE, wbc);
1636 wbc->sync_mode = WB_SYNC_NONE;
1637 blk_start_plug(&plug);
1638 sync_node_pages(sbi, wbc);
1639 blk_finish_plug(&plug);
1640 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1641 return 0;
1642
1643 skip_write:
1644 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1645 trace_f2fs_writepages(mapping->host, wbc, NODE);
1646 return 0;
1647 }
1648
1649 static int f2fs_set_node_page_dirty(struct page *page)
1650 {
1651 trace_f2fs_set_page_dirty(page, NODE);
1652
1653 if (!PageUptodate(page))
1654 SetPageUptodate(page);
1655 if (!PageDirty(page)) {
1656 f2fs_set_page_dirty_nobuffers(page);
1657 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1658 SetPagePrivate(page);
1659 f2fs_trace_pid(page);
1660 return 1;
1661 }
1662 return 0;
1663 }
1664
1665 /*
1666 * Structure of the f2fs node operations
1667 */
1668 const struct address_space_operations f2fs_node_aops = {
1669 .writepage = f2fs_write_node_page,
1670 .writepages = f2fs_write_node_pages,
1671 .set_page_dirty = f2fs_set_node_page_dirty,
1672 .invalidatepage = f2fs_invalidate_page,
1673 .releasepage = f2fs_release_page,
1674 };
1675
1676 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1677 nid_t n)
1678 {
1679 return radix_tree_lookup(&nm_i->free_nid_root, n);
1680 }
1681
1682 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1683 struct free_nid *i)
1684 {
1685 list_del(&i->list);
1686 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1687 }
1688
1689 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1690 {
1691 struct f2fs_nm_info *nm_i = NM_I(sbi);
1692 struct free_nid *i;
1693 struct nat_entry *ne;
1694
1695 if (!available_free_memory(sbi, FREE_NIDS))
1696 return -1;
1697
1698 /* 0 nid should not be used */
1699 if (unlikely(nid == 0))
1700 return 0;
1701
1702 if (build) {
1703 /* do not add allocated nids */
1704 ne = __lookup_nat_cache(nm_i, nid);
1705 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1706 nat_get_blkaddr(ne) != NULL_ADDR))
1707 return 0;
1708 }
1709
1710 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1711 i->nid = nid;
1712 i->state = NID_NEW;
1713
1714 if (radix_tree_preload(GFP_NOFS)) {
1715 kmem_cache_free(free_nid_slab, i);
1716 return 0;
1717 }
1718
1719 spin_lock(&nm_i->free_nid_list_lock);
1720 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1721 spin_unlock(&nm_i->free_nid_list_lock);
1722 radix_tree_preload_end();
1723 kmem_cache_free(free_nid_slab, i);
1724 return 0;
1725 }
1726 list_add_tail(&i->list, &nm_i->free_nid_list);
1727 nm_i->fcnt++;
1728 spin_unlock(&nm_i->free_nid_list_lock);
1729 radix_tree_preload_end();
1730 return 1;
1731 }
1732
1733 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1734 {
1735 struct free_nid *i;
1736 bool need_free = false;
1737
1738 spin_lock(&nm_i->free_nid_list_lock);
1739 i = __lookup_free_nid_list(nm_i, nid);
1740 if (i && i->state == NID_NEW) {
1741 __del_from_free_nid_list(nm_i, i);
1742 nm_i->fcnt--;
1743 need_free = true;
1744 }
1745 spin_unlock(&nm_i->free_nid_list_lock);
1746
1747 if (need_free)
1748 kmem_cache_free(free_nid_slab, i);
1749 }
1750
1751 static void scan_nat_page(struct f2fs_sb_info *sbi,
1752 struct page *nat_page, nid_t start_nid)
1753 {
1754 struct f2fs_nm_info *nm_i = NM_I(sbi);
1755 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1756 block_t blk_addr;
1757 int i;
1758
1759 i = start_nid % NAT_ENTRY_PER_BLOCK;
1760
1761 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1762
1763 if (unlikely(start_nid >= nm_i->max_nid))
1764 break;
1765
1766 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1767 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1768 if (blk_addr == NULL_ADDR) {
1769 if (add_free_nid(sbi, start_nid, true) < 0)
1770 break;
1771 }
1772 }
1773 }
1774
1775 void build_free_nids(struct f2fs_sb_info *sbi)
1776 {
1777 struct f2fs_nm_info *nm_i = NM_I(sbi);
1778 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1779 struct f2fs_journal *journal = curseg->journal;
1780 int i = 0;
1781 nid_t nid = nm_i->next_scan_nid;
1782
1783 /* Enough entries */
1784 if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK)
1785 return;
1786
1787 /* readahead nat pages to be scanned */
1788 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1789 META_NAT, true);
1790
1791 percpu_down_read(&nm_i->nat_tree_lock);
1792
1793 while (1) {
1794 struct page *page = get_current_nat_page(sbi, nid);
1795
1796 scan_nat_page(sbi, page, nid);
1797 f2fs_put_page(page, 1);
1798
1799 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1800 if (unlikely(nid >= nm_i->max_nid))
1801 nid = 0;
1802
1803 if (++i >= FREE_NID_PAGES)
1804 break;
1805 }
1806
1807 /* go to the next free nat pages to find free nids abundantly */
1808 nm_i->next_scan_nid = nid;
1809
1810 /* find free nids from current sum_pages */
1811 down_read(&curseg->journal_rwsem);
1812 for (i = 0; i < nats_in_cursum(journal); i++) {
1813 block_t addr;
1814
1815 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1816 nid = le32_to_cpu(nid_in_journal(journal, i));
1817 if (addr == NULL_ADDR)
1818 add_free_nid(sbi, nid, true);
1819 else
1820 remove_free_nid(nm_i, nid);
1821 }
1822 up_read(&curseg->journal_rwsem);
1823 percpu_up_read(&nm_i->nat_tree_lock);
1824
1825 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1826 nm_i->ra_nid_pages, META_NAT, false);
1827 }
1828
1829 /*
1830 * If this function returns success, caller can obtain a new nid
1831 * from second parameter of this function.
1832 * The returned nid could be used ino as well as nid when inode is created.
1833 */
1834 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1835 {
1836 struct f2fs_nm_info *nm_i = NM_I(sbi);
1837 struct free_nid *i = NULL;
1838 retry:
1839 #ifdef CONFIG_F2FS_FAULT_INJECTION
1840 if (time_to_inject(FAULT_ALLOC_NID))
1841 return false;
1842 #endif
1843 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1844 return false;
1845
1846 spin_lock(&nm_i->free_nid_list_lock);
1847
1848 /* We should not use stale free nids created by build_free_nids */
1849 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1850 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1851 list_for_each_entry(i, &nm_i->free_nid_list, list)
1852 if (i->state == NID_NEW)
1853 break;
1854
1855 f2fs_bug_on(sbi, i->state != NID_NEW);
1856 *nid = i->nid;
1857 i->state = NID_ALLOC;
1858 nm_i->fcnt--;
1859 spin_unlock(&nm_i->free_nid_list_lock);
1860 return true;
1861 }
1862 spin_unlock(&nm_i->free_nid_list_lock);
1863
1864 /* Let's scan nat pages and its caches to get free nids */
1865 mutex_lock(&nm_i->build_lock);
1866 build_free_nids(sbi);
1867 mutex_unlock(&nm_i->build_lock);
1868 goto retry;
1869 }
1870
1871 /*
1872 * alloc_nid() should be called prior to this function.
1873 */
1874 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1875 {
1876 struct f2fs_nm_info *nm_i = NM_I(sbi);
1877 struct free_nid *i;
1878
1879 spin_lock(&nm_i->free_nid_list_lock);
1880 i = __lookup_free_nid_list(nm_i, nid);
1881 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1882 __del_from_free_nid_list(nm_i, i);
1883 spin_unlock(&nm_i->free_nid_list_lock);
1884
1885 kmem_cache_free(free_nid_slab, i);
1886 }
1887
1888 /*
1889 * alloc_nid() should be called prior to this function.
1890 */
1891 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1892 {
1893 struct f2fs_nm_info *nm_i = NM_I(sbi);
1894 struct free_nid *i;
1895 bool need_free = false;
1896
1897 if (!nid)
1898 return;
1899
1900 spin_lock(&nm_i->free_nid_list_lock);
1901 i = __lookup_free_nid_list(nm_i, nid);
1902 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1903 if (!available_free_memory(sbi, FREE_NIDS)) {
1904 __del_from_free_nid_list(nm_i, i);
1905 need_free = true;
1906 } else {
1907 i->state = NID_NEW;
1908 nm_i->fcnt++;
1909 }
1910 spin_unlock(&nm_i->free_nid_list_lock);
1911
1912 if (need_free)
1913 kmem_cache_free(free_nid_slab, i);
1914 }
1915
1916 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1917 {
1918 struct f2fs_nm_info *nm_i = NM_I(sbi);
1919 struct free_nid *i, *next;
1920 int nr = nr_shrink;
1921
1922 if (nm_i->fcnt <= MAX_FREE_NIDS)
1923 return 0;
1924
1925 if (!mutex_trylock(&nm_i->build_lock))
1926 return 0;
1927
1928 spin_lock(&nm_i->free_nid_list_lock);
1929 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1930 if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS)
1931 break;
1932 if (i->state == NID_ALLOC)
1933 continue;
1934 __del_from_free_nid_list(nm_i, i);
1935 kmem_cache_free(free_nid_slab, i);
1936 nm_i->fcnt--;
1937 nr_shrink--;
1938 }
1939 spin_unlock(&nm_i->free_nid_list_lock);
1940 mutex_unlock(&nm_i->build_lock);
1941
1942 return nr - nr_shrink;
1943 }
1944
1945 void recover_inline_xattr(struct inode *inode, struct page *page)
1946 {
1947 void *src_addr, *dst_addr;
1948 size_t inline_size;
1949 struct page *ipage;
1950 struct f2fs_inode *ri;
1951
1952 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1953 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1954
1955 ri = F2FS_INODE(page);
1956 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1957 clear_inode_flag(inode, FI_INLINE_XATTR);
1958 goto update_inode;
1959 }
1960
1961 dst_addr = inline_xattr_addr(ipage);
1962 src_addr = inline_xattr_addr(page);
1963 inline_size = inline_xattr_size(inode);
1964
1965 f2fs_wait_on_page_writeback(ipage, NODE, true);
1966 memcpy(dst_addr, src_addr, inline_size);
1967 update_inode:
1968 update_inode(inode, ipage);
1969 f2fs_put_page(ipage, 1);
1970 }
1971
1972 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1973 {
1974 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1975 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1976 nid_t new_xnid = nid_of_node(page);
1977 struct node_info ni;
1978
1979 /* 1: invalidate the previous xattr nid */
1980 if (!prev_xnid)
1981 goto recover_xnid;
1982
1983 /* Deallocate node address */
1984 get_node_info(sbi, prev_xnid, &ni);
1985 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1986 invalidate_blocks(sbi, ni.blk_addr);
1987 dec_valid_node_count(sbi, inode);
1988 set_node_addr(sbi, &ni, NULL_ADDR, false);
1989
1990 recover_xnid:
1991 /* 2: allocate new xattr nid */
1992 if (unlikely(!inc_valid_node_count(sbi, inode)))
1993 f2fs_bug_on(sbi, 1);
1994
1995 remove_free_nid(NM_I(sbi), new_xnid);
1996 get_node_info(sbi, new_xnid, &ni);
1997 ni.ino = inode->i_ino;
1998 set_node_addr(sbi, &ni, NEW_ADDR, false);
1999 f2fs_i_xnid_write(inode, new_xnid);
2000
2001 /* 3: update xattr blkaddr */
2002 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2003 set_node_addr(sbi, &ni, blkaddr, false);
2004 }
2005
2006 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2007 {
2008 struct f2fs_inode *src, *dst;
2009 nid_t ino = ino_of_node(page);
2010 struct node_info old_ni, new_ni;
2011 struct page *ipage;
2012
2013 get_node_info(sbi, ino, &old_ni);
2014
2015 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2016 return -EINVAL;
2017
2018 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2019 if (!ipage)
2020 return -ENOMEM;
2021
2022 /* Should not use this inode from free nid list */
2023 remove_free_nid(NM_I(sbi), ino);
2024
2025 if (!PageUptodate(ipage))
2026 SetPageUptodate(ipage);
2027 fill_node_footer(ipage, ino, ino, 0, true);
2028
2029 src = F2FS_INODE(page);
2030 dst = F2FS_INODE(ipage);
2031
2032 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2033 dst->i_size = 0;
2034 dst->i_blocks = cpu_to_le64(1);
2035 dst->i_links = cpu_to_le32(1);
2036 dst->i_xattr_nid = 0;
2037 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2038
2039 new_ni = old_ni;
2040 new_ni.ino = ino;
2041
2042 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2043 WARN_ON(1);
2044 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2045 inc_valid_inode_count(sbi);
2046 set_page_dirty(ipage);
2047 f2fs_put_page(ipage, 1);
2048 return 0;
2049 }
2050
2051 int restore_node_summary(struct f2fs_sb_info *sbi,
2052 unsigned int segno, struct f2fs_summary_block *sum)
2053 {
2054 struct f2fs_node *rn;
2055 struct f2fs_summary *sum_entry;
2056 block_t addr;
2057 int bio_blocks = MAX_BIO_BLOCKS(sbi);
2058 int i, idx, last_offset, nrpages;
2059
2060 /* scan the node segment */
2061 last_offset = sbi->blocks_per_seg;
2062 addr = START_BLOCK(sbi, segno);
2063 sum_entry = &sum->entries[0];
2064
2065 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2066 nrpages = min(last_offset - i, bio_blocks);
2067
2068 /* readahead node pages */
2069 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2070
2071 for (idx = addr; idx < addr + nrpages; idx++) {
2072 struct page *page = get_tmp_page(sbi, idx);
2073
2074 rn = F2FS_NODE(page);
2075 sum_entry->nid = rn->footer.nid;
2076 sum_entry->version = 0;
2077 sum_entry->ofs_in_node = 0;
2078 sum_entry++;
2079 f2fs_put_page(page, 1);
2080 }
2081
2082 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2083 addr + nrpages);
2084 }
2085 return 0;
2086 }
2087
2088 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2089 {
2090 struct f2fs_nm_info *nm_i = NM_I(sbi);
2091 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2092 struct f2fs_journal *journal = curseg->journal;
2093 int i;
2094
2095 down_write(&curseg->journal_rwsem);
2096 for (i = 0; i < nats_in_cursum(journal); i++) {
2097 struct nat_entry *ne;
2098 struct f2fs_nat_entry raw_ne;
2099 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2100
2101 raw_ne = nat_in_journal(journal, i);
2102
2103 ne = __lookup_nat_cache(nm_i, nid);
2104 if (!ne) {
2105 ne = grab_nat_entry(nm_i, nid);
2106 node_info_from_raw_nat(&ne->ni, &raw_ne);
2107 }
2108 __set_nat_cache_dirty(nm_i, ne);
2109 }
2110 update_nats_in_cursum(journal, -i);
2111 up_write(&curseg->journal_rwsem);
2112 }
2113
2114 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2115 struct list_head *head, int max)
2116 {
2117 struct nat_entry_set *cur;
2118
2119 if (nes->entry_cnt >= max)
2120 goto add_out;
2121
2122 list_for_each_entry(cur, head, set_list) {
2123 if (cur->entry_cnt >= nes->entry_cnt) {
2124 list_add(&nes->set_list, cur->set_list.prev);
2125 return;
2126 }
2127 }
2128 add_out:
2129 list_add_tail(&nes->set_list, head);
2130 }
2131
2132 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2133 struct nat_entry_set *set)
2134 {
2135 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2136 struct f2fs_journal *journal = curseg->journal;
2137 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2138 bool to_journal = true;
2139 struct f2fs_nat_block *nat_blk;
2140 struct nat_entry *ne, *cur;
2141 struct page *page = NULL;
2142
2143 /*
2144 * there are two steps to flush nat entries:
2145 * #1, flush nat entries to journal in current hot data summary block.
2146 * #2, flush nat entries to nat page.
2147 */
2148 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2149 to_journal = false;
2150
2151 if (to_journal) {
2152 down_write(&curseg->journal_rwsem);
2153 } else {
2154 page = get_next_nat_page(sbi, start_nid);
2155 nat_blk = page_address(page);
2156 f2fs_bug_on(sbi, !nat_blk);
2157 }
2158
2159 /* flush dirty nats in nat entry set */
2160 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2161 struct f2fs_nat_entry *raw_ne;
2162 nid_t nid = nat_get_nid(ne);
2163 int offset;
2164
2165 if (nat_get_blkaddr(ne) == NEW_ADDR)
2166 continue;
2167
2168 if (to_journal) {
2169 offset = lookup_journal_in_cursum(journal,
2170 NAT_JOURNAL, nid, 1);
2171 f2fs_bug_on(sbi, offset < 0);
2172 raw_ne = &nat_in_journal(journal, offset);
2173 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2174 } else {
2175 raw_ne = &nat_blk->entries[nid - start_nid];
2176 }
2177 raw_nat_from_node_info(raw_ne, &ne->ni);
2178 nat_reset_flag(ne);
2179 __clear_nat_cache_dirty(NM_I(sbi), ne);
2180 if (nat_get_blkaddr(ne) == NULL_ADDR)
2181 add_free_nid(sbi, nid, false);
2182 }
2183
2184 if (to_journal)
2185 up_write(&curseg->journal_rwsem);
2186 else
2187 f2fs_put_page(page, 1);
2188
2189 f2fs_bug_on(sbi, set->entry_cnt);
2190
2191 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2192 kmem_cache_free(nat_entry_set_slab, set);
2193 }
2194
2195 /*
2196 * This function is called during the checkpointing process.
2197 */
2198 void flush_nat_entries(struct f2fs_sb_info *sbi)
2199 {
2200 struct f2fs_nm_info *nm_i = NM_I(sbi);
2201 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2202 struct f2fs_journal *journal = curseg->journal;
2203 struct nat_entry_set *setvec[SETVEC_SIZE];
2204 struct nat_entry_set *set, *tmp;
2205 unsigned int found;
2206 nid_t set_idx = 0;
2207 LIST_HEAD(sets);
2208
2209 if (!nm_i->dirty_nat_cnt)
2210 return;
2211
2212 percpu_down_write(&nm_i->nat_tree_lock);
2213
2214 /*
2215 * if there are no enough space in journal to store dirty nat
2216 * entries, remove all entries from journal and merge them
2217 * into nat entry set.
2218 */
2219 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2220 remove_nats_in_journal(sbi);
2221
2222 while ((found = __gang_lookup_nat_set(nm_i,
2223 set_idx, SETVEC_SIZE, setvec))) {
2224 unsigned idx;
2225 set_idx = setvec[found - 1]->set + 1;
2226 for (idx = 0; idx < found; idx++)
2227 __adjust_nat_entry_set(setvec[idx], &sets,
2228 MAX_NAT_JENTRIES(journal));
2229 }
2230
2231 /* flush dirty nats in nat entry set */
2232 list_for_each_entry_safe(set, tmp, &sets, set_list)
2233 __flush_nat_entry_set(sbi, set);
2234
2235 percpu_up_write(&nm_i->nat_tree_lock);
2236
2237 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2238 }
2239
2240 static int init_node_manager(struct f2fs_sb_info *sbi)
2241 {
2242 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2243 struct f2fs_nm_info *nm_i = NM_I(sbi);
2244 unsigned char *version_bitmap;
2245 unsigned int nat_segs, nat_blocks;
2246
2247 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2248
2249 /* segment_count_nat includes pair segment so divide to 2. */
2250 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2251 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2252
2253 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2254
2255 /* not used nids: 0, node, meta, (and root counted as valid node) */
2256 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2257 nm_i->fcnt = 0;
2258 nm_i->nat_cnt = 0;
2259 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2260 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2261 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2262
2263 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2264 INIT_LIST_HEAD(&nm_i->free_nid_list);
2265 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2266 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2267 INIT_LIST_HEAD(&nm_i->nat_entries);
2268
2269 mutex_init(&nm_i->build_lock);
2270 spin_lock_init(&nm_i->free_nid_list_lock);
2271 if (percpu_init_rwsem(&nm_i->nat_tree_lock))
2272 return -ENOMEM;
2273
2274 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2275 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2276 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2277 if (!version_bitmap)
2278 return -EFAULT;
2279
2280 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2281 GFP_KERNEL);
2282 if (!nm_i->nat_bitmap)
2283 return -ENOMEM;
2284 return 0;
2285 }
2286
2287 int build_node_manager(struct f2fs_sb_info *sbi)
2288 {
2289 int err;
2290
2291 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2292 if (!sbi->nm_info)
2293 return -ENOMEM;
2294
2295 err = init_node_manager(sbi);
2296 if (err)
2297 return err;
2298
2299 build_free_nids(sbi);
2300 return 0;
2301 }
2302
2303 void destroy_node_manager(struct f2fs_sb_info *sbi)
2304 {
2305 struct f2fs_nm_info *nm_i = NM_I(sbi);
2306 struct free_nid *i, *next_i;
2307 struct nat_entry *natvec[NATVEC_SIZE];
2308 struct nat_entry_set *setvec[SETVEC_SIZE];
2309 nid_t nid = 0;
2310 unsigned int found;
2311
2312 if (!nm_i)
2313 return;
2314
2315 /* destroy free nid list */
2316 spin_lock(&nm_i->free_nid_list_lock);
2317 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2318 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2319 __del_from_free_nid_list(nm_i, i);
2320 nm_i->fcnt--;
2321 spin_unlock(&nm_i->free_nid_list_lock);
2322 kmem_cache_free(free_nid_slab, i);
2323 spin_lock(&nm_i->free_nid_list_lock);
2324 }
2325 f2fs_bug_on(sbi, nm_i->fcnt);
2326 spin_unlock(&nm_i->free_nid_list_lock);
2327
2328 /* destroy nat cache */
2329 percpu_down_write(&nm_i->nat_tree_lock);
2330 while ((found = __gang_lookup_nat_cache(nm_i,
2331 nid, NATVEC_SIZE, natvec))) {
2332 unsigned idx;
2333
2334 nid = nat_get_nid(natvec[found - 1]) + 1;
2335 for (idx = 0; idx < found; idx++)
2336 __del_from_nat_cache(nm_i, natvec[idx]);
2337 }
2338 f2fs_bug_on(sbi, nm_i->nat_cnt);
2339
2340 /* destroy nat set cache */
2341 nid = 0;
2342 while ((found = __gang_lookup_nat_set(nm_i,
2343 nid, SETVEC_SIZE, setvec))) {
2344 unsigned idx;
2345
2346 nid = setvec[found - 1]->set + 1;
2347 for (idx = 0; idx < found; idx++) {
2348 /* entry_cnt is not zero, when cp_error was occurred */
2349 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2350 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2351 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2352 }
2353 }
2354 percpu_up_write(&nm_i->nat_tree_lock);
2355
2356 percpu_free_rwsem(&nm_i->nat_tree_lock);
2357 kfree(nm_i->nat_bitmap);
2358 sbi->nm_info = NULL;
2359 kfree(nm_i);
2360 }
2361
2362 int __init create_node_manager_caches(void)
2363 {
2364 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2365 sizeof(struct nat_entry));
2366 if (!nat_entry_slab)
2367 goto fail;
2368
2369 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2370 sizeof(struct free_nid));
2371 if (!free_nid_slab)
2372 goto destroy_nat_entry;
2373
2374 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2375 sizeof(struct nat_entry_set));
2376 if (!nat_entry_set_slab)
2377 goto destroy_free_nid;
2378 return 0;
2379
2380 destroy_free_nid:
2381 kmem_cache_destroy(free_nid_slab);
2382 destroy_nat_entry:
2383 kmem_cache_destroy(nat_entry_slab);
2384 fail:
2385 return -ENOMEM;
2386 }
2387
2388 void destroy_node_manager_caches(void)
2389 {
2390 kmem_cache_destroy(nat_entry_set_slab);
2391 kmem_cache_destroy(free_nid_slab);
2392 kmem_cache_destroy(nat_entry_slab);
2393 }
This page took 0.089331 seconds and 5 git commands to generate.