drm/etnaviv: fix failure path if model is zero
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 trace_writeback_queue(wb, work);
180
181 spin_lock_bh(&wb->work_lock);
182 if (!test_bit(WB_registered, &wb->state))
183 goto out_unlock;
184 if (work->done)
185 atomic_inc(&work->done->cnt);
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205 {
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
226 void __inode_attach_wb(struct inode *inode, struct page *page)
227 {
228 struct backing_dev_info *bdi = inode_to_bdi(inode);
229 struct bdi_writeback *wb = NULL;
230
231 if (inode_cgwb_enabled(inode)) {
232 struct cgroup_subsys_state *memcg_css;
233
234 if (page) {
235 memcg_css = mem_cgroup_css_from_page(page);
236 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237 } else {
238 /* must pin memcg_css, see wb_get_create() */
239 memcg_css = task_get_css(current, memory_cgrp_id);
240 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241 css_put(memcg_css);
242 }
243 }
244
245 if (!wb)
246 wb = &bdi->wb;
247
248 /*
249 * There may be multiple instances of this function racing to
250 * update the same inode. Use cmpxchg() to tell the winner.
251 */
252 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253 wb_put(wb);
254 }
255
256 /**
257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258 * @inode: inode of interest with i_lock held
259 *
260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
261 * held on entry and is released on return. The returned wb is guaranteed
262 * to stay @inode's associated wb until its list_lock is released.
263 */
264 static struct bdi_writeback *
265 locked_inode_to_wb_and_lock_list(struct inode *inode)
266 __releases(&inode->i_lock)
267 __acquires(&wb->list_lock)
268 {
269 while (true) {
270 struct bdi_writeback *wb = inode_to_wb(inode);
271
272 /*
273 * inode_to_wb() association is protected by both
274 * @inode->i_lock and @wb->list_lock but list_lock nests
275 * outside i_lock. Drop i_lock and verify that the
276 * association hasn't changed after acquiring list_lock.
277 */
278 wb_get(wb);
279 spin_unlock(&inode->i_lock);
280 spin_lock(&wb->list_lock);
281 wb_put(wb); /* not gonna deref it anymore */
282
283 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284 if (likely(wb == inode->i_wb))
285 return wb; /* @inode already has ref */
286
287 spin_unlock(&wb->list_lock);
288 cpu_relax();
289 spin_lock(&inode->i_lock);
290 }
291 }
292
293 /**
294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295 * @inode: inode of interest
296 *
297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298 * on entry.
299 */
300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301 __acquires(&wb->list_lock)
302 {
303 spin_lock(&inode->i_lock);
304 return locked_inode_to_wb_and_lock_list(inode);
305 }
306
307 struct inode_switch_wbs_context {
308 struct inode *inode;
309 struct bdi_writeback *new_wb;
310
311 struct rcu_head rcu_head;
312 struct work_struct work;
313 };
314
315 static void inode_switch_wbs_work_fn(struct work_struct *work)
316 {
317 struct inode_switch_wbs_context *isw =
318 container_of(work, struct inode_switch_wbs_context, work);
319 struct inode *inode = isw->inode;
320 struct address_space *mapping = inode->i_mapping;
321 struct bdi_writeback *old_wb = inode->i_wb;
322 struct bdi_writeback *new_wb = isw->new_wb;
323 struct radix_tree_iter iter;
324 bool switched = false;
325 void **slot;
326
327 /*
328 * By the time control reaches here, RCU grace period has passed
329 * since I_WB_SWITCH assertion and all wb stat update transactions
330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 * synchronizing against mapping->tree_lock.
332 *
333 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
334 * gives us exclusion against all wb related operations on @inode
335 * including IO list manipulations and stat updates.
336 */
337 if (old_wb < new_wb) {
338 spin_lock(&old_wb->list_lock);
339 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
340 } else {
341 spin_lock(&new_wb->list_lock);
342 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
343 }
344 spin_lock(&inode->i_lock);
345 spin_lock_irq(&mapping->tree_lock);
346
347 /*
348 * Once I_FREEING is visible under i_lock, the eviction path owns
349 * the inode and we shouldn't modify ->i_io_list.
350 */
351 if (unlikely(inode->i_state & I_FREEING))
352 goto skip_switch;
353
354 /*
355 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
356 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
357 * pages actually under underwriteback.
358 */
359 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
360 PAGECACHE_TAG_DIRTY) {
361 struct page *page = radix_tree_deref_slot_protected(slot,
362 &mapping->tree_lock);
363 if (likely(page) && PageDirty(page)) {
364 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
365 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
366 }
367 }
368
369 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
370 PAGECACHE_TAG_WRITEBACK) {
371 struct page *page = radix_tree_deref_slot_protected(slot,
372 &mapping->tree_lock);
373 if (likely(page)) {
374 WARN_ON_ONCE(!PageWriteback(page));
375 __dec_wb_stat(old_wb, WB_WRITEBACK);
376 __inc_wb_stat(new_wb, WB_WRITEBACK);
377 }
378 }
379
380 wb_get(new_wb);
381
382 /*
383 * Transfer to @new_wb's IO list if necessary. The specific list
384 * @inode was on is ignored and the inode is put on ->b_dirty which
385 * is always correct including from ->b_dirty_time. The transfer
386 * preserves @inode->dirtied_when ordering.
387 */
388 if (!list_empty(&inode->i_io_list)) {
389 struct inode *pos;
390
391 inode_io_list_del_locked(inode, old_wb);
392 inode->i_wb = new_wb;
393 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
394 if (time_after_eq(inode->dirtied_when,
395 pos->dirtied_when))
396 break;
397 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
398 } else {
399 inode->i_wb = new_wb;
400 }
401
402 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
403 inode->i_wb_frn_winner = 0;
404 inode->i_wb_frn_avg_time = 0;
405 inode->i_wb_frn_history = 0;
406 switched = true;
407 skip_switch:
408 /*
409 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
410 * ensures that the new wb is visible if they see !I_WB_SWITCH.
411 */
412 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
413
414 spin_unlock_irq(&mapping->tree_lock);
415 spin_unlock(&inode->i_lock);
416 spin_unlock(&new_wb->list_lock);
417 spin_unlock(&old_wb->list_lock);
418
419 if (switched) {
420 wb_wakeup(new_wb);
421 wb_put(old_wb);
422 }
423 wb_put(new_wb);
424
425 iput(inode);
426 kfree(isw);
427 }
428
429 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
430 {
431 struct inode_switch_wbs_context *isw = container_of(rcu_head,
432 struct inode_switch_wbs_context, rcu_head);
433
434 /* needs to grab bh-unsafe locks, bounce to work item */
435 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
436 schedule_work(&isw->work);
437 }
438
439 /**
440 * inode_switch_wbs - change the wb association of an inode
441 * @inode: target inode
442 * @new_wb_id: ID of the new wb
443 *
444 * Switch @inode's wb association to the wb identified by @new_wb_id. The
445 * switching is performed asynchronously and may fail silently.
446 */
447 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
448 {
449 struct backing_dev_info *bdi = inode_to_bdi(inode);
450 struct cgroup_subsys_state *memcg_css;
451 struct inode_switch_wbs_context *isw;
452
453 /* noop if seems to be already in progress */
454 if (inode->i_state & I_WB_SWITCH)
455 return;
456
457 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
458 if (!isw)
459 return;
460
461 /* find and pin the new wb */
462 rcu_read_lock();
463 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
464 if (memcg_css)
465 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
466 rcu_read_unlock();
467 if (!isw->new_wb)
468 goto out_free;
469
470 /* while holding I_WB_SWITCH, no one else can update the association */
471 spin_lock(&inode->i_lock);
472 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
473 inode_to_wb(inode) == isw->new_wb) {
474 spin_unlock(&inode->i_lock);
475 goto out_free;
476 }
477 inode->i_state |= I_WB_SWITCH;
478 spin_unlock(&inode->i_lock);
479
480 ihold(inode);
481 isw->inode = inode;
482
483 /*
484 * In addition to synchronizing among switchers, I_WB_SWITCH tells
485 * the RCU protected stat update paths to grab the mapping's
486 * tree_lock so that stat transfer can synchronize against them.
487 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
488 */
489 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
490 return;
491
492 out_free:
493 if (isw->new_wb)
494 wb_put(isw->new_wb);
495 kfree(isw);
496 }
497
498 /**
499 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
500 * @wbc: writeback_control of interest
501 * @inode: target inode
502 *
503 * @inode is locked and about to be written back under the control of @wbc.
504 * Record @inode's writeback context into @wbc and unlock the i_lock. On
505 * writeback completion, wbc_detach_inode() should be called. This is used
506 * to track the cgroup writeback context.
507 */
508 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
509 struct inode *inode)
510 {
511 if (!inode_cgwb_enabled(inode)) {
512 spin_unlock(&inode->i_lock);
513 return;
514 }
515
516 wbc->wb = inode_to_wb(inode);
517 wbc->inode = inode;
518
519 wbc->wb_id = wbc->wb->memcg_css->id;
520 wbc->wb_lcand_id = inode->i_wb_frn_winner;
521 wbc->wb_tcand_id = 0;
522 wbc->wb_bytes = 0;
523 wbc->wb_lcand_bytes = 0;
524 wbc->wb_tcand_bytes = 0;
525
526 wb_get(wbc->wb);
527 spin_unlock(&inode->i_lock);
528
529 /*
530 * A dying wb indicates that the memcg-blkcg mapping has changed
531 * and a new wb is already serving the memcg. Switch immediately.
532 */
533 if (unlikely(wb_dying(wbc->wb)))
534 inode_switch_wbs(inode, wbc->wb_id);
535 }
536
537 /**
538 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539 * @wbc: writeback_control of the just finished writeback
540 *
541 * To be called after a writeback attempt of an inode finishes and undoes
542 * wbc_attach_and_unlock_inode(). Can be called under any context.
543 *
544 * As concurrent write sharing of an inode is expected to be very rare and
545 * memcg only tracks page ownership on first-use basis severely confining
546 * the usefulness of such sharing, cgroup writeback tracks ownership
547 * per-inode. While the support for concurrent write sharing of an inode
548 * is deemed unnecessary, an inode being written to by different cgroups at
549 * different points in time is a lot more common, and, more importantly,
550 * charging only by first-use can too readily lead to grossly incorrect
551 * behaviors (single foreign page can lead to gigabytes of writeback to be
552 * incorrectly attributed).
553 *
554 * To resolve this issue, cgroup writeback detects the majority dirtier of
555 * an inode and transfers the ownership to it. To avoid unnnecessary
556 * oscillation, the detection mechanism keeps track of history and gives
557 * out the switch verdict only if the foreign usage pattern is stable over
558 * a certain amount of time and/or writeback attempts.
559 *
560 * On each writeback attempt, @wbc tries to detect the majority writer
561 * using Boyer-Moore majority vote algorithm. In addition to the byte
562 * count from the majority voting, it also counts the bytes written for the
563 * current wb and the last round's winner wb (max of last round's current
564 * wb, the winner from two rounds ago, and the last round's majority
565 * candidate). Keeping track of the historical winner helps the algorithm
566 * to semi-reliably detect the most active writer even when it's not the
567 * absolute majority.
568 *
569 * Once the winner of the round is determined, whether the winner is
570 * foreign or not and how much IO time the round consumed is recorded in
571 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
572 * over a certain threshold, the switch verdict is given.
573 */
574 void wbc_detach_inode(struct writeback_control *wbc)
575 {
576 struct bdi_writeback *wb = wbc->wb;
577 struct inode *inode = wbc->inode;
578 unsigned long avg_time, max_bytes, max_time;
579 u16 history;
580 int max_id;
581
582 if (!wb)
583 return;
584
585 history = inode->i_wb_frn_history;
586 avg_time = inode->i_wb_frn_avg_time;
587
588 /* pick the winner of this round */
589 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
590 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
591 max_id = wbc->wb_id;
592 max_bytes = wbc->wb_bytes;
593 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
594 max_id = wbc->wb_lcand_id;
595 max_bytes = wbc->wb_lcand_bytes;
596 } else {
597 max_id = wbc->wb_tcand_id;
598 max_bytes = wbc->wb_tcand_bytes;
599 }
600
601 /*
602 * Calculate the amount of IO time the winner consumed and fold it
603 * into the running average kept per inode. If the consumed IO
604 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
605 * deciding whether to switch or not. This is to prevent one-off
606 * small dirtiers from skewing the verdict.
607 */
608 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
609 wb->avg_write_bandwidth);
610 if (avg_time)
611 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
612 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
613 else
614 avg_time = max_time; /* immediate catch up on first run */
615
616 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
617 int slots;
618
619 /*
620 * The switch verdict is reached if foreign wb's consume
621 * more than a certain proportion of IO time in a
622 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
623 * history mask where each bit represents one sixteenth of
624 * the period. Determine the number of slots to shift into
625 * history from @max_time.
626 */
627 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
628 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
629 history <<= slots;
630 if (wbc->wb_id != max_id)
631 history |= (1U << slots) - 1;
632
633 /*
634 * Switch if the current wb isn't the consistent winner.
635 * If there are multiple closely competing dirtiers, the
636 * inode may switch across them repeatedly over time, which
637 * is okay. The main goal is avoiding keeping an inode on
638 * the wrong wb for an extended period of time.
639 */
640 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
641 inode_switch_wbs(inode, max_id);
642 }
643
644 /*
645 * Multiple instances of this function may race to update the
646 * following fields but we don't mind occassional inaccuracies.
647 */
648 inode->i_wb_frn_winner = max_id;
649 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
650 inode->i_wb_frn_history = history;
651
652 wb_put(wbc->wb);
653 wbc->wb = NULL;
654 }
655
656 /**
657 * wbc_account_io - account IO issued during writeback
658 * @wbc: writeback_control of the writeback in progress
659 * @page: page being written out
660 * @bytes: number of bytes being written out
661 *
662 * @bytes from @page are about to written out during the writeback
663 * controlled by @wbc. Keep the book for foreign inode detection. See
664 * wbc_detach_inode().
665 */
666 void wbc_account_io(struct writeback_control *wbc, struct page *page,
667 size_t bytes)
668 {
669 int id;
670
671 /*
672 * pageout() path doesn't attach @wbc to the inode being written
673 * out. This is intentional as we don't want the function to block
674 * behind a slow cgroup. Ultimately, we want pageout() to kick off
675 * regular writeback instead of writing things out itself.
676 */
677 if (!wbc->wb)
678 return;
679
680 id = mem_cgroup_css_from_page(page)->id;
681
682 if (id == wbc->wb_id) {
683 wbc->wb_bytes += bytes;
684 return;
685 }
686
687 if (id == wbc->wb_lcand_id)
688 wbc->wb_lcand_bytes += bytes;
689
690 /* Boyer-Moore majority vote algorithm */
691 if (!wbc->wb_tcand_bytes)
692 wbc->wb_tcand_id = id;
693 if (id == wbc->wb_tcand_id)
694 wbc->wb_tcand_bytes += bytes;
695 else
696 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
697 }
698 EXPORT_SYMBOL_GPL(wbc_account_io);
699
700 /**
701 * inode_congested - test whether an inode is congested
702 * @inode: inode to test for congestion (may be NULL)
703 * @cong_bits: mask of WB_[a]sync_congested bits to test
704 *
705 * Tests whether @inode is congested. @cong_bits is the mask of congestion
706 * bits to test and the return value is the mask of set bits.
707 *
708 * If cgroup writeback is enabled for @inode, the congestion state is
709 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
710 * associated with @inode is congested; otherwise, the root wb's congestion
711 * state is used.
712 *
713 * @inode is allowed to be NULL as this function is often called on
714 * mapping->host which is NULL for the swapper space.
715 */
716 int inode_congested(struct inode *inode, int cong_bits)
717 {
718 /*
719 * Once set, ->i_wb never becomes NULL while the inode is alive.
720 * Start transaction iff ->i_wb is visible.
721 */
722 if (inode && inode_to_wb_is_valid(inode)) {
723 struct bdi_writeback *wb;
724 bool locked, congested;
725
726 wb = unlocked_inode_to_wb_begin(inode, &locked);
727 congested = wb_congested(wb, cong_bits);
728 unlocked_inode_to_wb_end(inode, locked);
729 return congested;
730 }
731
732 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
733 }
734 EXPORT_SYMBOL_GPL(inode_congested);
735
736 /**
737 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
738 * @wb: target bdi_writeback to split @nr_pages to
739 * @nr_pages: number of pages to write for the whole bdi
740 *
741 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
742 * relation to the total write bandwidth of all wb's w/ dirty inodes on
743 * @wb->bdi.
744 */
745 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
746 {
747 unsigned long this_bw = wb->avg_write_bandwidth;
748 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
749
750 if (nr_pages == LONG_MAX)
751 return LONG_MAX;
752
753 /*
754 * This may be called on clean wb's and proportional distribution
755 * may not make sense, just use the original @nr_pages in those
756 * cases. In general, we wanna err on the side of writing more.
757 */
758 if (!tot_bw || this_bw >= tot_bw)
759 return nr_pages;
760 else
761 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
762 }
763
764 /**
765 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
766 * @bdi: target backing_dev_info
767 * @base_work: wb_writeback_work to issue
768 * @skip_if_busy: skip wb's which already have writeback in progress
769 *
770 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
771 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
772 * distributed to the busy wbs according to each wb's proportion in the
773 * total active write bandwidth of @bdi.
774 */
775 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
776 struct wb_writeback_work *base_work,
777 bool skip_if_busy)
778 {
779 struct bdi_writeback *last_wb = NULL;
780 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
781 struct bdi_writeback, bdi_node);
782
783 might_sleep();
784 restart:
785 rcu_read_lock();
786 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
787 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
788 struct wb_writeback_work fallback_work;
789 struct wb_writeback_work *work;
790 long nr_pages;
791
792 if (last_wb) {
793 wb_put(last_wb);
794 last_wb = NULL;
795 }
796
797 /* SYNC_ALL writes out I_DIRTY_TIME too */
798 if (!wb_has_dirty_io(wb) &&
799 (base_work->sync_mode == WB_SYNC_NONE ||
800 list_empty(&wb->b_dirty_time)))
801 continue;
802 if (skip_if_busy && writeback_in_progress(wb))
803 continue;
804
805 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
806
807 work = kmalloc(sizeof(*work), GFP_ATOMIC);
808 if (work) {
809 *work = *base_work;
810 work->nr_pages = nr_pages;
811 work->auto_free = 1;
812 wb_queue_work(wb, work);
813 continue;
814 }
815
816 /* alloc failed, execute synchronously using on-stack fallback */
817 work = &fallback_work;
818 *work = *base_work;
819 work->nr_pages = nr_pages;
820 work->auto_free = 0;
821 work->done = &fallback_work_done;
822
823 wb_queue_work(wb, work);
824
825 /*
826 * Pin @wb so that it stays on @bdi->wb_list. This allows
827 * continuing iteration from @wb after dropping and
828 * regrabbing rcu read lock.
829 */
830 wb_get(wb);
831 last_wb = wb;
832
833 rcu_read_unlock();
834 wb_wait_for_completion(bdi, &fallback_work_done);
835 goto restart;
836 }
837 rcu_read_unlock();
838
839 if (last_wb)
840 wb_put(last_wb);
841 }
842
843 #else /* CONFIG_CGROUP_WRITEBACK */
844
845 static struct bdi_writeback *
846 locked_inode_to_wb_and_lock_list(struct inode *inode)
847 __releases(&inode->i_lock)
848 __acquires(&wb->list_lock)
849 {
850 struct bdi_writeback *wb = inode_to_wb(inode);
851
852 spin_unlock(&inode->i_lock);
853 spin_lock(&wb->list_lock);
854 return wb;
855 }
856
857 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
858 __acquires(&wb->list_lock)
859 {
860 struct bdi_writeback *wb = inode_to_wb(inode);
861
862 spin_lock(&wb->list_lock);
863 return wb;
864 }
865
866 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
867 {
868 return nr_pages;
869 }
870
871 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
872 struct wb_writeback_work *base_work,
873 bool skip_if_busy)
874 {
875 might_sleep();
876
877 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
878 base_work->auto_free = 0;
879 wb_queue_work(&bdi->wb, base_work);
880 }
881 }
882
883 #endif /* CONFIG_CGROUP_WRITEBACK */
884
885 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
886 bool range_cyclic, enum wb_reason reason)
887 {
888 struct wb_writeback_work *work;
889
890 if (!wb_has_dirty_io(wb))
891 return;
892
893 /*
894 * This is WB_SYNC_NONE writeback, so if allocation fails just
895 * wakeup the thread for old dirty data writeback
896 */
897 work = kzalloc(sizeof(*work), GFP_ATOMIC);
898 if (!work) {
899 trace_writeback_nowork(wb);
900 wb_wakeup(wb);
901 return;
902 }
903
904 work->sync_mode = WB_SYNC_NONE;
905 work->nr_pages = nr_pages;
906 work->range_cyclic = range_cyclic;
907 work->reason = reason;
908 work->auto_free = 1;
909
910 wb_queue_work(wb, work);
911 }
912
913 /**
914 * wb_start_background_writeback - start background writeback
915 * @wb: bdi_writback to write from
916 *
917 * Description:
918 * This makes sure WB_SYNC_NONE background writeback happens. When
919 * this function returns, it is only guaranteed that for given wb
920 * some IO is happening if we are over background dirty threshold.
921 * Caller need not hold sb s_umount semaphore.
922 */
923 void wb_start_background_writeback(struct bdi_writeback *wb)
924 {
925 /*
926 * We just wake up the flusher thread. It will perform background
927 * writeback as soon as there is no other work to do.
928 */
929 trace_writeback_wake_background(wb);
930 wb_wakeup(wb);
931 }
932
933 /*
934 * Remove the inode from the writeback list it is on.
935 */
936 void inode_io_list_del(struct inode *inode)
937 {
938 struct bdi_writeback *wb;
939
940 wb = inode_to_wb_and_lock_list(inode);
941 inode_io_list_del_locked(inode, wb);
942 spin_unlock(&wb->list_lock);
943 }
944
945 /*
946 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
947 * furthest end of its superblock's dirty-inode list.
948 *
949 * Before stamping the inode's ->dirtied_when, we check to see whether it is
950 * already the most-recently-dirtied inode on the b_dirty list. If that is
951 * the case then the inode must have been redirtied while it was being written
952 * out and we don't reset its dirtied_when.
953 */
954 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
955 {
956 if (!list_empty(&wb->b_dirty)) {
957 struct inode *tail;
958
959 tail = wb_inode(wb->b_dirty.next);
960 if (time_before(inode->dirtied_when, tail->dirtied_when))
961 inode->dirtied_when = jiffies;
962 }
963 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
964 }
965
966 /*
967 * requeue inode for re-scanning after bdi->b_io list is exhausted.
968 */
969 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
970 {
971 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
972 }
973
974 static void inode_sync_complete(struct inode *inode)
975 {
976 inode->i_state &= ~I_SYNC;
977 /* If inode is clean an unused, put it into LRU now... */
978 inode_add_lru(inode);
979 /* Waiters must see I_SYNC cleared before being woken up */
980 smp_mb();
981 wake_up_bit(&inode->i_state, __I_SYNC);
982 }
983
984 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
985 {
986 bool ret = time_after(inode->dirtied_when, t);
987 #ifndef CONFIG_64BIT
988 /*
989 * For inodes being constantly redirtied, dirtied_when can get stuck.
990 * It _appears_ to be in the future, but is actually in distant past.
991 * This test is necessary to prevent such wrapped-around relative times
992 * from permanently stopping the whole bdi writeback.
993 */
994 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
995 #endif
996 return ret;
997 }
998
999 #define EXPIRE_DIRTY_ATIME 0x0001
1000
1001 /*
1002 * Move expired (dirtied before work->older_than_this) dirty inodes from
1003 * @delaying_queue to @dispatch_queue.
1004 */
1005 static int move_expired_inodes(struct list_head *delaying_queue,
1006 struct list_head *dispatch_queue,
1007 int flags,
1008 struct wb_writeback_work *work)
1009 {
1010 unsigned long *older_than_this = NULL;
1011 unsigned long expire_time;
1012 LIST_HEAD(tmp);
1013 struct list_head *pos, *node;
1014 struct super_block *sb = NULL;
1015 struct inode *inode;
1016 int do_sb_sort = 0;
1017 int moved = 0;
1018
1019 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1020 older_than_this = work->older_than_this;
1021 else if (!work->for_sync) {
1022 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1023 older_than_this = &expire_time;
1024 }
1025 while (!list_empty(delaying_queue)) {
1026 inode = wb_inode(delaying_queue->prev);
1027 if (older_than_this &&
1028 inode_dirtied_after(inode, *older_than_this))
1029 break;
1030 list_move(&inode->i_io_list, &tmp);
1031 moved++;
1032 if (flags & EXPIRE_DIRTY_ATIME)
1033 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1034 if (sb_is_blkdev_sb(inode->i_sb))
1035 continue;
1036 if (sb && sb != inode->i_sb)
1037 do_sb_sort = 1;
1038 sb = inode->i_sb;
1039 }
1040
1041 /* just one sb in list, splice to dispatch_queue and we're done */
1042 if (!do_sb_sort) {
1043 list_splice(&tmp, dispatch_queue);
1044 goto out;
1045 }
1046
1047 /* Move inodes from one superblock together */
1048 while (!list_empty(&tmp)) {
1049 sb = wb_inode(tmp.prev)->i_sb;
1050 list_for_each_prev_safe(pos, node, &tmp) {
1051 inode = wb_inode(pos);
1052 if (inode->i_sb == sb)
1053 list_move(&inode->i_io_list, dispatch_queue);
1054 }
1055 }
1056 out:
1057 return moved;
1058 }
1059
1060 /*
1061 * Queue all expired dirty inodes for io, eldest first.
1062 * Before
1063 * newly dirtied b_dirty b_io b_more_io
1064 * =============> gf edc BA
1065 * After
1066 * newly dirtied b_dirty b_io b_more_io
1067 * =============> g fBAedc
1068 * |
1069 * +--> dequeue for IO
1070 */
1071 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1072 {
1073 int moved;
1074
1075 assert_spin_locked(&wb->list_lock);
1076 list_splice_init(&wb->b_more_io, &wb->b_io);
1077 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1078 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1079 EXPIRE_DIRTY_ATIME, work);
1080 if (moved)
1081 wb_io_lists_populated(wb);
1082 trace_writeback_queue_io(wb, work, moved);
1083 }
1084
1085 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1086 {
1087 int ret;
1088
1089 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1090 trace_writeback_write_inode_start(inode, wbc);
1091 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1092 trace_writeback_write_inode(inode, wbc);
1093 return ret;
1094 }
1095 return 0;
1096 }
1097
1098 /*
1099 * Wait for writeback on an inode to complete. Called with i_lock held.
1100 * Caller must make sure inode cannot go away when we drop i_lock.
1101 */
1102 static void __inode_wait_for_writeback(struct inode *inode)
1103 __releases(inode->i_lock)
1104 __acquires(inode->i_lock)
1105 {
1106 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1107 wait_queue_head_t *wqh;
1108
1109 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1110 while (inode->i_state & I_SYNC) {
1111 spin_unlock(&inode->i_lock);
1112 __wait_on_bit(wqh, &wq, bit_wait,
1113 TASK_UNINTERRUPTIBLE);
1114 spin_lock(&inode->i_lock);
1115 }
1116 }
1117
1118 /*
1119 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1120 */
1121 void inode_wait_for_writeback(struct inode *inode)
1122 {
1123 spin_lock(&inode->i_lock);
1124 __inode_wait_for_writeback(inode);
1125 spin_unlock(&inode->i_lock);
1126 }
1127
1128 /*
1129 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1130 * held and drops it. It is aimed for callers not holding any inode reference
1131 * so once i_lock is dropped, inode can go away.
1132 */
1133 static void inode_sleep_on_writeback(struct inode *inode)
1134 __releases(inode->i_lock)
1135 {
1136 DEFINE_WAIT(wait);
1137 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1138 int sleep;
1139
1140 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1141 sleep = inode->i_state & I_SYNC;
1142 spin_unlock(&inode->i_lock);
1143 if (sleep)
1144 schedule();
1145 finish_wait(wqh, &wait);
1146 }
1147
1148 /*
1149 * Find proper writeback list for the inode depending on its current state and
1150 * possibly also change of its state while we were doing writeback. Here we
1151 * handle things such as livelock prevention or fairness of writeback among
1152 * inodes. This function can be called only by flusher thread - noone else
1153 * processes all inodes in writeback lists and requeueing inodes behind flusher
1154 * thread's back can have unexpected consequences.
1155 */
1156 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1157 struct writeback_control *wbc)
1158 {
1159 if (inode->i_state & I_FREEING)
1160 return;
1161
1162 /*
1163 * Sync livelock prevention. Each inode is tagged and synced in one
1164 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1165 * the dirty time to prevent enqueue and sync it again.
1166 */
1167 if ((inode->i_state & I_DIRTY) &&
1168 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1169 inode->dirtied_when = jiffies;
1170
1171 if (wbc->pages_skipped) {
1172 /*
1173 * writeback is not making progress due to locked
1174 * buffers. Skip this inode for now.
1175 */
1176 redirty_tail(inode, wb);
1177 return;
1178 }
1179
1180 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1181 /*
1182 * We didn't write back all the pages. nfs_writepages()
1183 * sometimes bales out without doing anything.
1184 */
1185 if (wbc->nr_to_write <= 0) {
1186 /* Slice used up. Queue for next turn. */
1187 requeue_io(inode, wb);
1188 } else {
1189 /*
1190 * Writeback blocked by something other than
1191 * congestion. Delay the inode for some time to
1192 * avoid spinning on the CPU (100% iowait)
1193 * retrying writeback of the dirty page/inode
1194 * that cannot be performed immediately.
1195 */
1196 redirty_tail(inode, wb);
1197 }
1198 } else if (inode->i_state & I_DIRTY) {
1199 /*
1200 * Filesystems can dirty the inode during writeback operations,
1201 * such as delayed allocation during submission or metadata
1202 * updates after data IO completion.
1203 */
1204 redirty_tail(inode, wb);
1205 } else if (inode->i_state & I_DIRTY_TIME) {
1206 inode->dirtied_when = jiffies;
1207 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1208 } else {
1209 /* The inode is clean. Remove from writeback lists. */
1210 inode_io_list_del_locked(inode, wb);
1211 }
1212 }
1213
1214 /*
1215 * Write out an inode and its dirty pages. Do not update the writeback list
1216 * linkage. That is left to the caller. The caller is also responsible for
1217 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1218 */
1219 static int
1220 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1221 {
1222 struct address_space *mapping = inode->i_mapping;
1223 long nr_to_write = wbc->nr_to_write;
1224 unsigned dirty;
1225 int ret;
1226
1227 WARN_ON(!(inode->i_state & I_SYNC));
1228
1229 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1230
1231 ret = do_writepages(mapping, wbc);
1232
1233 /*
1234 * Make sure to wait on the data before writing out the metadata.
1235 * This is important for filesystems that modify metadata on data
1236 * I/O completion. We don't do it for sync(2) writeback because it has a
1237 * separate, external IO completion path and ->sync_fs for guaranteeing
1238 * inode metadata is written back correctly.
1239 */
1240 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1241 int err = filemap_fdatawait(mapping);
1242 if (ret == 0)
1243 ret = err;
1244 }
1245
1246 /*
1247 * Some filesystems may redirty the inode during the writeback
1248 * due to delalloc, clear dirty metadata flags right before
1249 * write_inode()
1250 */
1251 spin_lock(&inode->i_lock);
1252
1253 dirty = inode->i_state & I_DIRTY;
1254 if (inode->i_state & I_DIRTY_TIME) {
1255 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1256 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1257 unlikely(time_after(jiffies,
1258 (inode->dirtied_time_when +
1259 dirtytime_expire_interval * HZ)))) {
1260 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1261 trace_writeback_lazytime(inode);
1262 }
1263 } else
1264 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1265 inode->i_state &= ~dirty;
1266
1267 /*
1268 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1269 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1270 * either they see the I_DIRTY bits cleared or we see the dirtied
1271 * inode.
1272 *
1273 * I_DIRTY_PAGES is always cleared together above even if @mapping
1274 * still has dirty pages. The flag is reinstated after smp_mb() if
1275 * necessary. This guarantees that either __mark_inode_dirty()
1276 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1277 */
1278 smp_mb();
1279
1280 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1281 inode->i_state |= I_DIRTY_PAGES;
1282
1283 spin_unlock(&inode->i_lock);
1284
1285 if (dirty & I_DIRTY_TIME)
1286 mark_inode_dirty_sync(inode);
1287 /* Don't write the inode if only I_DIRTY_PAGES was set */
1288 if (dirty & ~I_DIRTY_PAGES) {
1289 int err = write_inode(inode, wbc);
1290 if (ret == 0)
1291 ret = err;
1292 }
1293 trace_writeback_single_inode(inode, wbc, nr_to_write);
1294 return ret;
1295 }
1296
1297 /*
1298 * Write out an inode's dirty pages. Either the caller has an active reference
1299 * on the inode or the inode has I_WILL_FREE set.
1300 *
1301 * This function is designed to be called for writing back one inode which
1302 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1303 * and does more profound writeback list handling in writeback_sb_inodes().
1304 */
1305 static int
1306 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1307 struct writeback_control *wbc)
1308 {
1309 int ret = 0;
1310
1311 spin_lock(&inode->i_lock);
1312 if (!atomic_read(&inode->i_count))
1313 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1314 else
1315 WARN_ON(inode->i_state & I_WILL_FREE);
1316
1317 if (inode->i_state & I_SYNC) {
1318 if (wbc->sync_mode != WB_SYNC_ALL)
1319 goto out;
1320 /*
1321 * It's a data-integrity sync. We must wait. Since callers hold
1322 * inode reference or inode has I_WILL_FREE set, it cannot go
1323 * away under us.
1324 */
1325 __inode_wait_for_writeback(inode);
1326 }
1327 WARN_ON(inode->i_state & I_SYNC);
1328 /*
1329 * Skip inode if it is clean and we have no outstanding writeback in
1330 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1331 * function since flusher thread may be doing for example sync in
1332 * parallel and if we move the inode, it could get skipped. So here we
1333 * make sure inode is on some writeback list and leave it there unless
1334 * we have completely cleaned the inode.
1335 */
1336 if (!(inode->i_state & I_DIRTY_ALL) &&
1337 (wbc->sync_mode != WB_SYNC_ALL ||
1338 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1339 goto out;
1340 inode->i_state |= I_SYNC;
1341 wbc_attach_and_unlock_inode(wbc, inode);
1342
1343 ret = __writeback_single_inode(inode, wbc);
1344
1345 wbc_detach_inode(wbc);
1346 spin_lock(&wb->list_lock);
1347 spin_lock(&inode->i_lock);
1348 /*
1349 * If inode is clean, remove it from writeback lists. Otherwise don't
1350 * touch it. See comment above for explanation.
1351 */
1352 if (!(inode->i_state & I_DIRTY_ALL))
1353 inode_io_list_del_locked(inode, wb);
1354 spin_unlock(&wb->list_lock);
1355 inode_sync_complete(inode);
1356 out:
1357 spin_unlock(&inode->i_lock);
1358 return ret;
1359 }
1360
1361 static long writeback_chunk_size(struct bdi_writeback *wb,
1362 struct wb_writeback_work *work)
1363 {
1364 long pages;
1365
1366 /*
1367 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1368 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1369 * here avoids calling into writeback_inodes_wb() more than once.
1370 *
1371 * The intended call sequence for WB_SYNC_ALL writeback is:
1372 *
1373 * wb_writeback()
1374 * writeback_sb_inodes() <== called only once
1375 * write_cache_pages() <== called once for each inode
1376 * (quickly) tag currently dirty pages
1377 * (maybe slowly) sync all tagged pages
1378 */
1379 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1380 pages = LONG_MAX;
1381 else {
1382 pages = min(wb->avg_write_bandwidth / 2,
1383 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1384 pages = min(pages, work->nr_pages);
1385 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1386 MIN_WRITEBACK_PAGES);
1387 }
1388
1389 return pages;
1390 }
1391
1392 /*
1393 * Write a portion of b_io inodes which belong to @sb.
1394 *
1395 * Return the number of pages and/or inodes written.
1396 *
1397 * NOTE! This is called with wb->list_lock held, and will
1398 * unlock and relock that for each inode it ends up doing
1399 * IO for.
1400 */
1401 static long writeback_sb_inodes(struct super_block *sb,
1402 struct bdi_writeback *wb,
1403 struct wb_writeback_work *work)
1404 {
1405 struct writeback_control wbc = {
1406 .sync_mode = work->sync_mode,
1407 .tagged_writepages = work->tagged_writepages,
1408 .for_kupdate = work->for_kupdate,
1409 .for_background = work->for_background,
1410 .for_sync = work->for_sync,
1411 .range_cyclic = work->range_cyclic,
1412 .range_start = 0,
1413 .range_end = LLONG_MAX,
1414 };
1415 unsigned long start_time = jiffies;
1416 long write_chunk;
1417 long wrote = 0; /* count both pages and inodes */
1418
1419 while (!list_empty(&wb->b_io)) {
1420 struct inode *inode = wb_inode(wb->b_io.prev);
1421
1422 if (inode->i_sb != sb) {
1423 if (work->sb) {
1424 /*
1425 * We only want to write back data for this
1426 * superblock, move all inodes not belonging
1427 * to it back onto the dirty list.
1428 */
1429 redirty_tail(inode, wb);
1430 continue;
1431 }
1432
1433 /*
1434 * The inode belongs to a different superblock.
1435 * Bounce back to the caller to unpin this and
1436 * pin the next superblock.
1437 */
1438 break;
1439 }
1440
1441 /*
1442 * Don't bother with new inodes or inodes being freed, first
1443 * kind does not need periodic writeout yet, and for the latter
1444 * kind writeout is handled by the freer.
1445 */
1446 spin_lock(&inode->i_lock);
1447 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1448 spin_unlock(&inode->i_lock);
1449 redirty_tail(inode, wb);
1450 continue;
1451 }
1452 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1453 /*
1454 * If this inode is locked for writeback and we are not
1455 * doing writeback-for-data-integrity, move it to
1456 * b_more_io so that writeback can proceed with the
1457 * other inodes on s_io.
1458 *
1459 * We'll have another go at writing back this inode
1460 * when we completed a full scan of b_io.
1461 */
1462 spin_unlock(&inode->i_lock);
1463 requeue_io(inode, wb);
1464 trace_writeback_sb_inodes_requeue(inode);
1465 continue;
1466 }
1467 spin_unlock(&wb->list_lock);
1468
1469 /*
1470 * We already requeued the inode if it had I_SYNC set and we
1471 * are doing WB_SYNC_NONE writeback. So this catches only the
1472 * WB_SYNC_ALL case.
1473 */
1474 if (inode->i_state & I_SYNC) {
1475 /* Wait for I_SYNC. This function drops i_lock... */
1476 inode_sleep_on_writeback(inode);
1477 /* Inode may be gone, start again */
1478 spin_lock(&wb->list_lock);
1479 continue;
1480 }
1481 inode->i_state |= I_SYNC;
1482 wbc_attach_and_unlock_inode(&wbc, inode);
1483
1484 write_chunk = writeback_chunk_size(wb, work);
1485 wbc.nr_to_write = write_chunk;
1486 wbc.pages_skipped = 0;
1487
1488 /*
1489 * We use I_SYNC to pin the inode in memory. While it is set
1490 * evict_inode() will wait so the inode cannot be freed.
1491 */
1492 __writeback_single_inode(inode, &wbc);
1493
1494 wbc_detach_inode(&wbc);
1495 work->nr_pages -= write_chunk - wbc.nr_to_write;
1496 wrote += write_chunk - wbc.nr_to_write;
1497
1498 if (need_resched()) {
1499 /*
1500 * We're trying to balance between building up a nice
1501 * long list of IOs to improve our merge rate, and
1502 * getting those IOs out quickly for anyone throttling
1503 * in balance_dirty_pages(). cond_resched() doesn't
1504 * unplug, so get our IOs out the door before we
1505 * give up the CPU.
1506 */
1507 blk_flush_plug(current);
1508 cond_resched();
1509 }
1510
1511
1512 spin_lock(&wb->list_lock);
1513 spin_lock(&inode->i_lock);
1514 if (!(inode->i_state & I_DIRTY_ALL))
1515 wrote++;
1516 requeue_inode(inode, wb, &wbc);
1517 inode_sync_complete(inode);
1518 spin_unlock(&inode->i_lock);
1519
1520 /*
1521 * bail out to wb_writeback() often enough to check
1522 * background threshold and other termination conditions.
1523 */
1524 if (wrote) {
1525 if (time_is_before_jiffies(start_time + HZ / 10UL))
1526 break;
1527 if (work->nr_pages <= 0)
1528 break;
1529 }
1530 }
1531 return wrote;
1532 }
1533
1534 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1535 struct wb_writeback_work *work)
1536 {
1537 unsigned long start_time = jiffies;
1538 long wrote = 0;
1539
1540 while (!list_empty(&wb->b_io)) {
1541 struct inode *inode = wb_inode(wb->b_io.prev);
1542 struct super_block *sb = inode->i_sb;
1543
1544 if (!trylock_super(sb)) {
1545 /*
1546 * trylock_super() may fail consistently due to
1547 * s_umount being grabbed by someone else. Don't use
1548 * requeue_io() to avoid busy retrying the inode/sb.
1549 */
1550 redirty_tail(inode, wb);
1551 continue;
1552 }
1553 wrote += writeback_sb_inodes(sb, wb, work);
1554 up_read(&sb->s_umount);
1555
1556 /* refer to the same tests at the end of writeback_sb_inodes */
1557 if (wrote) {
1558 if (time_is_before_jiffies(start_time + HZ / 10UL))
1559 break;
1560 if (work->nr_pages <= 0)
1561 break;
1562 }
1563 }
1564 /* Leave any unwritten inodes on b_io */
1565 return wrote;
1566 }
1567
1568 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1569 enum wb_reason reason)
1570 {
1571 struct wb_writeback_work work = {
1572 .nr_pages = nr_pages,
1573 .sync_mode = WB_SYNC_NONE,
1574 .range_cyclic = 1,
1575 .reason = reason,
1576 };
1577 struct blk_plug plug;
1578
1579 blk_start_plug(&plug);
1580 spin_lock(&wb->list_lock);
1581 if (list_empty(&wb->b_io))
1582 queue_io(wb, &work);
1583 __writeback_inodes_wb(wb, &work);
1584 spin_unlock(&wb->list_lock);
1585 blk_finish_plug(&plug);
1586
1587 return nr_pages - work.nr_pages;
1588 }
1589
1590 /*
1591 * Explicit flushing or periodic writeback of "old" data.
1592 *
1593 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1594 * dirtying-time in the inode's address_space. So this periodic writeback code
1595 * just walks the superblock inode list, writing back any inodes which are
1596 * older than a specific point in time.
1597 *
1598 * Try to run once per dirty_writeback_interval. But if a writeback event
1599 * takes longer than a dirty_writeback_interval interval, then leave a
1600 * one-second gap.
1601 *
1602 * older_than_this takes precedence over nr_to_write. So we'll only write back
1603 * all dirty pages if they are all attached to "old" mappings.
1604 */
1605 static long wb_writeback(struct bdi_writeback *wb,
1606 struct wb_writeback_work *work)
1607 {
1608 unsigned long wb_start = jiffies;
1609 long nr_pages = work->nr_pages;
1610 unsigned long oldest_jif;
1611 struct inode *inode;
1612 long progress;
1613 struct blk_plug plug;
1614
1615 oldest_jif = jiffies;
1616 work->older_than_this = &oldest_jif;
1617
1618 blk_start_plug(&plug);
1619 spin_lock(&wb->list_lock);
1620 for (;;) {
1621 /*
1622 * Stop writeback when nr_pages has been consumed
1623 */
1624 if (work->nr_pages <= 0)
1625 break;
1626
1627 /*
1628 * Background writeout and kupdate-style writeback may
1629 * run forever. Stop them if there is other work to do
1630 * so that e.g. sync can proceed. They'll be restarted
1631 * after the other works are all done.
1632 */
1633 if ((work->for_background || work->for_kupdate) &&
1634 !list_empty(&wb->work_list))
1635 break;
1636
1637 /*
1638 * For background writeout, stop when we are below the
1639 * background dirty threshold
1640 */
1641 if (work->for_background && !wb_over_bg_thresh(wb))
1642 break;
1643
1644 /*
1645 * Kupdate and background works are special and we want to
1646 * include all inodes that need writing. Livelock avoidance is
1647 * handled by these works yielding to any other work so we are
1648 * safe.
1649 */
1650 if (work->for_kupdate) {
1651 oldest_jif = jiffies -
1652 msecs_to_jiffies(dirty_expire_interval * 10);
1653 } else if (work->for_background)
1654 oldest_jif = jiffies;
1655
1656 trace_writeback_start(wb, work);
1657 if (list_empty(&wb->b_io))
1658 queue_io(wb, work);
1659 if (work->sb)
1660 progress = writeback_sb_inodes(work->sb, wb, work);
1661 else
1662 progress = __writeback_inodes_wb(wb, work);
1663 trace_writeback_written(wb, work);
1664
1665 wb_update_bandwidth(wb, wb_start);
1666
1667 /*
1668 * Did we write something? Try for more
1669 *
1670 * Dirty inodes are moved to b_io for writeback in batches.
1671 * The completion of the current batch does not necessarily
1672 * mean the overall work is done. So we keep looping as long
1673 * as made some progress on cleaning pages or inodes.
1674 */
1675 if (progress)
1676 continue;
1677 /*
1678 * No more inodes for IO, bail
1679 */
1680 if (list_empty(&wb->b_more_io))
1681 break;
1682 /*
1683 * Nothing written. Wait for some inode to
1684 * become available for writeback. Otherwise
1685 * we'll just busyloop.
1686 */
1687 if (!list_empty(&wb->b_more_io)) {
1688 trace_writeback_wait(wb, work);
1689 inode = wb_inode(wb->b_more_io.prev);
1690 spin_lock(&inode->i_lock);
1691 spin_unlock(&wb->list_lock);
1692 /* This function drops i_lock... */
1693 inode_sleep_on_writeback(inode);
1694 spin_lock(&wb->list_lock);
1695 }
1696 }
1697 spin_unlock(&wb->list_lock);
1698 blk_finish_plug(&plug);
1699
1700 return nr_pages - work->nr_pages;
1701 }
1702
1703 /*
1704 * Return the next wb_writeback_work struct that hasn't been processed yet.
1705 */
1706 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1707 {
1708 struct wb_writeback_work *work = NULL;
1709
1710 spin_lock_bh(&wb->work_lock);
1711 if (!list_empty(&wb->work_list)) {
1712 work = list_entry(wb->work_list.next,
1713 struct wb_writeback_work, list);
1714 list_del_init(&work->list);
1715 }
1716 spin_unlock_bh(&wb->work_lock);
1717 return work;
1718 }
1719
1720 /*
1721 * Add in the number of potentially dirty inodes, because each inode
1722 * write can dirty pagecache in the underlying blockdev.
1723 */
1724 static unsigned long get_nr_dirty_pages(void)
1725 {
1726 return global_page_state(NR_FILE_DIRTY) +
1727 global_page_state(NR_UNSTABLE_NFS) +
1728 get_nr_dirty_inodes();
1729 }
1730
1731 static long wb_check_background_flush(struct bdi_writeback *wb)
1732 {
1733 if (wb_over_bg_thresh(wb)) {
1734
1735 struct wb_writeback_work work = {
1736 .nr_pages = LONG_MAX,
1737 .sync_mode = WB_SYNC_NONE,
1738 .for_background = 1,
1739 .range_cyclic = 1,
1740 .reason = WB_REASON_BACKGROUND,
1741 };
1742
1743 return wb_writeback(wb, &work);
1744 }
1745
1746 return 0;
1747 }
1748
1749 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1750 {
1751 unsigned long expired;
1752 long nr_pages;
1753
1754 /*
1755 * When set to zero, disable periodic writeback
1756 */
1757 if (!dirty_writeback_interval)
1758 return 0;
1759
1760 expired = wb->last_old_flush +
1761 msecs_to_jiffies(dirty_writeback_interval * 10);
1762 if (time_before(jiffies, expired))
1763 return 0;
1764
1765 wb->last_old_flush = jiffies;
1766 nr_pages = get_nr_dirty_pages();
1767
1768 if (nr_pages) {
1769 struct wb_writeback_work work = {
1770 .nr_pages = nr_pages,
1771 .sync_mode = WB_SYNC_NONE,
1772 .for_kupdate = 1,
1773 .range_cyclic = 1,
1774 .reason = WB_REASON_PERIODIC,
1775 };
1776
1777 return wb_writeback(wb, &work);
1778 }
1779
1780 return 0;
1781 }
1782
1783 /*
1784 * Retrieve work items and do the writeback they describe
1785 */
1786 static long wb_do_writeback(struct bdi_writeback *wb)
1787 {
1788 struct wb_writeback_work *work;
1789 long wrote = 0;
1790
1791 set_bit(WB_writeback_running, &wb->state);
1792 while ((work = get_next_work_item(wb)) != NULL) {
1793 struct wb_completion *done = work->done;
1794
1795 trace_writeback_exec(wb, work);
1796
1797 wrote += wb_writeback(wb, work);
1798
1799 if (work->auto_free)
1800 kfree(work);
1801 if (done && atomic_dec_and_test(&done->cnt))
1802 wake_up_all(&wb->bdi->wb_waitq);
1803 }
1804
1805 /*
1806 * Check for periodic writeback, kupdated() style
1807 */
1808 wrote += wb_check_old_data_flush(wb);
1809 wrote += wb_check_background_flush(wb);
1810 clear_bit(WB_writeback_running, &wb->state);
1811
1812 return wrote;
1813 }
1814
1815 /*
1816 * Handle writeback of dirty data for the device backed by this bdi. Also
1817 * reschedules periodically and does kupdated style flushing.
1818 */
1819 void wb_workfn(struct work_struct *work)
1820 {
1821 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1822 struct bdi_writeback, dwork);
1823 long pages_written;
1824
1825 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1826 current->flags |= PF_SWAPWRITE;
1827
1828 if (likely(!current_is_workqueue_rescuer() ||
1829 !test_bit(WB_registered, &wb->state))) {
1830 /*
1831 * The normal path. Keep writing back @wb until its
1832 * work_list is empty. Note that this path is also taken
1833 * if @wb is shutting down even when we're running off the
1834 * rescuer as work_list needs to be drained.
1835 */
1836 do {
1837 pages_written = wb_do_writeback(wb);
1838 trace_writeback_pages_written(pages_written);
1839 } while (!list_empty(&wb->work_list));
1840 } else {
1841 /*
1842 * bdi_wq can't get enough workers and we're running off
1843 * the emergency worker. Don't hog it. Hopefully, 1024 is
1844 * enough for efficient IO.
1845 */
1846 pages_written = writeback_inodes_wb(wb, 1024,
1847 WB_REASON_FORKER_THREAD);
1848 trace_writeback_pages_written(pages_written);
1849 }
1850
1851 if (!list_empty(&wb->work_list))
1852 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1853 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1854 wb_wakeup_delayed(wb);
1855
1856 current->flags &= ~PF_SWAPWRITE;
1857 }
1858
1859 /*
1860 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1861 * the whole world.
1862 */
1863 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1864 {
1865 struct backing_dev_info *bdi;
1866
1867 if (!nr_pages)
1868 nr_pages = get_nr_dirty_pages();
1869
1870 rcu_read_lock();
1871 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1872 struct bdi_writeback *wb;
1873
1874 if (!bdi_has_dirty_io(bdi))
1875 continue;
1876
1877 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1878 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1879 false, reason);
1880 }
1881 rcu_read_unlock();
1882 }
1883
1884 /*
1885 * Wake up bdi's periodically to make sure dirtytime inodes gets
1886 * written back periodically. We deliberately do *not* check the
1887 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1888 * kernel to be constantly waking up once there are any dirtytime
1889 * inodes on the system. So instead we define a separate delayed work
1890 * function which gets called much more rarely. (By default, only
1891 * once every 12 hours.)
1892 *
1893 * If there is any other write activity going on in the file system,
1894 * this function won't be necessary. But if the only thing that has
1895 * happened on the file system is a dirtytime inode caused by an atime
1896 * update, we need this infrastructure below to make sure that inode
1897 * eventually gets pushed out to disk.
1898 */
1899 static void wakeup_dirtytime_writeback(struct work_struct *w);
1900 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1901
1902 static void wakeup_dirtytime_writeback(struct work_struct *w)
1903 {
1904 struct backing_dev_info *bdi;
1905
1906 rcu_read_lock();
1907 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1908 struct bdi_writeback *wb;
1909
1910 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1911 if (!list_empty(&wb->b_dirty_time))
1912 wb_wakeup(wb);
1913 }
1914 rcu_read_unlock();
1915 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1916 }
1917
1918 static int __init start_dirtytime_writeback(void)
1919 {
1920 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1921 return 0;
1922 }
1923 __initcall(start_dirtytime_writeback);
1924
1925 int dirtytime_interval_handler(struct ctl_table *table, int write,
1926 void __user *buffer, size_t *lenp, loff_t *ppos)
1927 {
1928 int ret;
1929
1930 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1931 if (ret == 0 && write)
1932 mod_delayed_work(system_wq, &dirtytime_work, 0);
1933 return ret;
1934 }
1935
1936 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1937 {
1938 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1939 struct dentry *dentry;
1940 const char *name = "?";
1941
1942 dentry = d_find_alias(inode);
1943 if (dentry) {
1944 spin_lock(&dentry->d_lock);
1945 name = (const char *) dentry->d_name.name;
1946 }
1947 printk(KERN_DEBUG
1948 "%s(%d): dirtied inode %lu (%s) on %s\n",
1949 current->comm, task_pid_nr(current), inode->i_ino,
1950 name, inode->i_sb->s_id);
1951 if (dentry) {
1952 spin_unlock(&dentry->d_lock);
1953 dput(dentry);
1954 }
1955 }
1956 }
1957
1958 /**
1959 * __mark_inode_dirty - internal function
1960 * @inode: inode to mark
1961 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1962 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1963 * mark_inode_dirty_sync.
1964 *
1965 * Put the inode on the super block's dirty list.
1966 *
1967 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1968 * dirty list only if it is hashed or if it refers to a blockdev.
1969 * If it was not hashed, it will never be added to the dirty list
1970 * even if it is later hashed, as it will have been marked dirty already.
1971 *
1972 * In short, make sure you hash any inodes _before_ you start marking
1973 * them dirty.
1974 *
1975 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1976 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1977 * the kernel-internal blockdev inode represents the dirtying time of the
1978 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1979 * page->mapping->host, so the page-dirtying time is recorded in the internal
1980 * blockdev inode.
1981 */
1982 void __mark_inode_dirty(struct inode *inode, int flags)
1983 {
1984 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1985 struct super_block *sb = inode->i_sb;
1986 int dirtytime;
1987
1988 trace_writeback_mark_inode_dirty(inode, flags);
1989
1990 /*
1991 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1992 * dirty the inode itself
1993 */
1994 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1995 trace_writeback_dirty_inode_start(inode, flags);
1996
1997 if (sb->s_op->dirty_inode)
1998 sb->s_op->dirty_inode(inode, flags);
1999
2000 trace_writeback_dirty_inode(inode, flags);
2001 }
2002 if (flags & I_DIRTY_INODE)
2003 flags &= ~I_DIRTY_TIME;
2004 dirtytime = flags & I_DIRTY_TIME;
2005
2006 /*
2007 * Paired with smp_mb() in __writeback_single_inode() for the
2008 * following lockless i_state test. See there for details.
2009 */
2010 smp_mb();
2011
2012 if (((inode->i_state & flags) == flags) ||
2013 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2014 return;
2015
2016 if (unlikely(block_dump))
2017 block_dump___mark_inode_dirty(inode);
2018
2019 spin_lock(&inode->i_lock);
2020 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2021 goto out_unlock_inode;
2022 if ((inode->i_state & flags) != flags) {
2023 const int was_dirty = inode->i_state & I_DIRTY;
2024
2025 inode_attach_wb(inode, NULL);
2026
2027 if (flags & I_DIRTY_INODE)
2028 inode->i_state &= ~I_DIRTY_TIME;
2029 inode->i_state |= flags;
2030
2031 /*
2032 * If the inode is being synced, just update its dirty state.
2033 * The unlocker will place the inode on the appropriate
2034 * superblock list, based upon its state.
2035 */
2036 if (inode->i_state & I_SYNC)
2037 goto out_unlock_inode;
2038
2039 /*
2040 * Only add valid (hashed) inodes to the superblock's
2041 * dirty list. Add blockdev inodes as well.
2042 */
2043 if (!S_ISBLK(inode->i_mode)) {
2044 if (inode_unhashed(inode))
2045 goto out_unlock_inode;
2046 }
2047 if (inode->i_state & I_FREEING)
2048 goto out_unlock_inode;
2049
2050 /*
2051 * If the inode was already on b_dirty/b_io/b_more_io, don't
2052 * reposition it (that would break b_dirty time-ordering).
2053 */
2054 if (!was_dirty) {
2055 struct bdi_writeback *wb;
2056 struct list_head *dirty_list;
2057 bool wakeup_bdi = false;
2058
2059 wb = locked_inode_to_wb_and_lock_list(inode);
2060
2061 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2062 !test_bit(WB_registered, &wb->state),
2063 "bdi-%s not registered\n", wb->bdi->name);
2064
2065 inode->dirtied_when = jiffies;
2066 if (dirtytime)
2067 inode->dirtied_time_when = jiffies;
2068
2069 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2070 dirty_list = &wb->b_dirty;
2071 else
2072 dirty_list = &wb->b_dirty_time;
2073
2074 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2075 dirty_list);
2076
2077 spin_unlock(&wb->list_lock);
2078 trace_writeback_dirty_inode_enqueue(inode);
2079
2080 /*
2081 * If this is the first dirty inode for this bdi,
2082 * we have to wake-up the corresponding bdi thread
2083 * to make sure background write-back happens
2084 * later.
2085 */
2086 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2087 wb_wakeup_delayed(wb);
2088 return;
2089 }
2090 }
2091 out_unlock_inode:
2092 spin_unlock(&inode->i_lock);
2093
2094 #undef I_DIRTY_INODE
2095 }
2096 EXPORT_SYMBOL(__mark_inode_dirty);
2097
2098 /*
2099 * The @s_sync_lock is used to serialise concurrent sync operations
2100 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2101 * Concurrent callers will block on the s_sync_lock rather than doing contending
2102 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2103 * has been issued up to the time this function is enter is guaranteed to be
2104 * completed by the time we have gained the lock and waited for all IO that is
2105 * in progress regardless of the order callers are granted the lock.
2106 */
2107 static void wait_sb_inodes(struct super_block *sb)
2108 {
2109 struct inode *inode, *old_inode = NULL;
2110
2111 /*
2112 * We need to be protected against the filesystem going from
2113 * r/o to r/w or vice versa.
2114 */
2115 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2116
2117 mutex_lock(&sb->s_sync_lock);
2118 spin_lock(&sb->s_inode_list_lock);
2119
2120 /*
2121 * Data integrity sync. Must wait for all pages under writeback,
2122 * because there may have been pages dirtied before our sync
2123 * call, but which had writeout started before we write it out.
2124 * In which case, the inode may not be on the dirty list, but
2125 * we still have to wait for that writeout.
2126 */
2127 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2128 struct address_space *mapping = inode->i_mapping;
2129
2130 spin_lock(&inode->i_lock);
2131 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2132 (mapping->nrpages == 0)) {
2133 spin_unlock(&inode->i_lock);
2134 continue;
2135 }
2136 __iget(inode);
2137 spin_unlock(&inode->i_lock);
2138 spin_unlock(&sb->s_inode_list_lock);
2139
2140 /*
2141 * We hold a reference to 'inode' so it couldn't have been
2142 * removed from s_inodes list while we dropped the
2143 * s_inode_list_lock. We cannot iput the inode now as we can
2144 * be holding the last reference and we cannot iput it under
2145 * s_inode_list_lock. So we keep the reference and iput it
2146 * later.
2147 */
2148 iput(old_inode);
2149 old_inode = inode;
2150
2151 /*
2152 * We keep the error status of individual mapping so that
2153 * applications can catch the writeback error using fsync(2).
2154 * See filemap_fdatawait_keep_errors() for details.
2155 */
2156 filemap_fdatawait_keep_errors(mapping);
2157
2158 cond_resched();
2159
2160 spin_lock(&sb->s_inode_list_lock);
2161 }
2162 spin_unlock(&sb->s_inode_list_lock);
2163 iput(old_inode);
2164 mutex_unlock(&sb->s_sync_lock);
2165 }
2166
2167 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2168 enum wb_reason reason, bool skip_if_busy)
2169 {
2170 DEFINE_WB_COMPLETION_ONSTACK(done);
2171 struct wb_writeback_work work = {
2172 .sb = sb,
2173 .sync_mode = WB_SYNC_NONE,
2174 .tagged_writepages = 1,
2175 .done = &done,
2176 .nr_pages = nr,
2177 .reason = reason,
2178 };
2179 struct backing_dev_info *bdi = sb->s_bdi;
2180
2181 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2182 return;
2183 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2184
2185 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2186 wb_wait_for_completion(bdi, &done);
2187 }
2188
2189 /**
2190 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2191 * @sb: the superblock
2192 * @nr: the number of pages to write
2193 * @reason: reason why some writeback work initiated
2194 *
2195 * Start writeback on some inodes on this super_block. No guarantees are made
2196 * on how many (if any) will be written, and this function does not wait
2197 * for IO completion of submitted IO.
2198 */
2199 void writeback_inodes_sb_nr(struct super_block *sb,
2200 unsigned long nr,
2201 enum wb_reason reason)
2202 {
2203 __writeback_inodes_sb_nr(sb, nr, reason, false);
2204 }
2205 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2206
2207 /**
2208 * writeback_inodes_sb - writeback dirty inodes from given super_block
2209 * @sb: the superblock
2210 * @reason: reason why some writeback work was initiated
2211 *
2212 * Start writeback on some inodes on this super_block. No guarantees are made
2213 * on how many (if any) will be written, and this function does not wait
2214 * for IO completion of submitted IO.
2215 */
2216 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2217 {
2218 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2219 }
2220 EXPORT_SYMBOL(writeback_inodes_sb);
2221
2222 /**
2223 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2224 * @sb: the superblock
2225 * @nr: the number of pages to write
2226 * @reason: the reason of writeback
2227 *
2228 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2229 * Returns 1 if writeback was started, 0 if not.
2230 */
2231 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2232 enum wb_reason reason)
2233 {
2234 if (!down_read_trylock(&sb->s_umount))
2235 return false;
2236
2237 __writeback_inodes_sb_nr(sb, nr, reason, true);
2238 up_read(&sb->s_umount);
2239 return true;
2240 }
2241 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2242
2243 /**
2244 * try_to_writeback_inodes_sb - try to start writeback if none underway
2245 * @sb: the superblock
2246 * @reason: reason why some writeback work was initiated
2247 *
2248 * Implement by try_to_writeback_inodes_sb_nr()
2249 * Returns 1 if writeback was started, 0 if not.
2250 */
2251 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2252 {
2253 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2254 }
2255 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2256
2257 /**
2258 * sync_inodes_sb - sync sb inode pages
2259 * @sb: the superblock
2260 *
2261 * This function writes and waits on any dirty inode belonging to this
2262 * super_block.
2263 */
2264 void sync_inodes_sb(struct super_block *sb)
2265 {
2266 DEFINE_WB_COMPLETION_ONSTACK(done);
2267 struct wb_writeback_work work = {
2268 .sb = sb,
2269 .sync_mode = WB_SYNC_ALL,
2270 .nr_pages = LONG_MAX,
2271 .range_cyclic = 0,
2272 .done = &done,
2273 .reason = WB_REASON_SYNC,
2274 .for_sync = 1,
2275 };
2276 struct backing_dev_info *bdi = sb->s_bdi;
2277
2278 /*
2279 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2280 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2281 * bdi_has_dirty() need to be written out too.
2282 */
2283 if (bdi == &noop_backing_dev_info)
2284 return;
2285 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2286
2287 bdi_split_work_to_wbs(bdi, &work, false);
2288 wb_wait_for_completion(bdi, &done);
2289
2290 wait_sb_inodes(sb);
2291 }
2292 EXPORT_SYMBOL(sync_inodes_sb);
2293
2294 /**
2295 * write_inode_now - write an inode to disk
2296 * @inode: inode to write to disk
2297 * @sync: whether the write should be synchronous or not
2298 *
2299 * This function commits an inode to disk immediately if it is dirty. This is
2300 * primarily needed by knfsd.
2301 *
2302 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2303 */
2304 int write_inode_now(struct inode *inode, int sync)
2305 {
2306 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2307 struct writeback_control wbc = {
2308 .nr_to_write = LONG_MAX,
2309 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2310 .range_start = 0,
2311 .range_end = LLONG_MAX,
2312 };
2313
2314 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2315 wbc.nr_to_write = 0;
2316
2317 might_sleep();
2318 return writeback_single_inode(inode, wb, &wbc);
2319 }
2320 EXPORT_SYMBOL(write_inode_now);
2321
2322 /**
2323 * sync_inode - write an inode and its pages to disk.
2324 * @inode: the inode to sync
2325 * @wbc: controls the writeback mode
2326 *
2327 * sync_inode() will write an inode and its pages to disk. It will also
2328 * correctly update the inode on its superblock's dirty inode lists and will
2329 * update inode->i_state.
2330 *
2331 * The caller must have a ref on the inode.
2332 */
2333 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2334 {
2335 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2336 }
2337 EXPORT_SYMBOL(sync_inode);
2338
2339 /**
2340 * sync_inode_metadata - write an inode to disk
2341 * @inode: the inode to sync
2342 * @wait: wait for I/O to complete.
2343 *
2344 * Write an inode to disk and adjust its dirty state after completion.
2345 *
2346 * Note: only writes the actual inode, no associated data or other metadata.
2347 */
2348 int sync_inode_metadata(struct inode *inode, int wait)
2349 {
2350 struct writeback_control wbc = {
2351 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2352 .nr_to_write = 0, /* metadata-only */
2353 };
2354
2355 return sync_inode(inode, &wbc);
2356 }
2357 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.080598 seconds and 5 git commands to generate.