kbuild: Fix .text.unlikely placement
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
58 enum wb_reason reason; /* why was writeback initiated? */
59
60 struct list_head list; /* pending work list */
61 struct wb_completion *done; /* set if the caller waits */
62 };
63
64 /*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
77 /*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91 return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
113 return true;
114 }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121 clear_bit(WB_has_dirty_io, &wb->state);
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
124 }
125 }
126
127 /**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140 {
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151 }
152
153 /**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161 static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163 {
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
180 {
181 trace_writeback_queue(wb->bdi, work);
182
183 spin_lock_bh(&wb->work_lock);
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
187 goto out_unlock;
188 }
189 if (work->done)
190 atomic_inc(&work->done->cnt);
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194 spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210 {
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259 }
260
261 /**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273 {
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
288 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289 if (likely(wb == inode->i_wb))
290 return wb; /* @inode already has ref */
291
292 spin_unlock(&wb->list_lock);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296 }
297
298 /**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307 {
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
327 struct bdi_writeback *new_wb = isw->new_wb;
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
341 */
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
349 spin_lock(&inode->i_lock);
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_wb_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_wb_list)) {
394 struct inode *pos;
395
396 inode_wb_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
406
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
411 switched = true;
412 skip_switch:
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419 spin_unlock_irq(&mapping->tree_lock);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
423
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
428 wb_put(new_wb);
429
430 iput(inode);
431 kfree(isw);
432 }
433
434 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435 {
436 struct inode_switch_wbs_context *isw = container_of(rcu_head,
437 struct inode_switch_wbs_context, rcu_head);
438
439 /* needs to grab bh-unsafe locks, bounce to work item */
440 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441 schedule_work(&isw->work);
442 }
443
444 /**
445 * inode_switch_wbs - change the wb association of an inode
446 * @inode: target inode
447 * @new_wb_id: ID of the new wb
448 *
449 * Switch @inode's wb association to the wb identified by @new_wb_id. The
450 * switching is performed asynchronously and may fail silently.
451 */
452 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453 {
454 struct backing_dev_info *bdi = inode_to_bdi(inode);
455 struct cgroup_subsys_state *memcg_css;
456 struct inode_switch_wbs_context *isw;
457
458 /* noop if seems to be already in progress */
459 if (inode->i_state & I_WB_SWITCH)
460 return;
461
462 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463 if (!isw)
464 return;
465
466 /* find and pin the new wb */
467 rcu_read_lock();
468 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469 if (memcg_css)
470 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471 rcu_read_unlock();
472 if (!isw->new_wb)
473 goto out_free;
474
475 /* while holding I_WB_SWITCH, no one else can update the association */
476 spin_lock(&inode->i_lock);
477 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
478 inode_to_wb(inode) == isw->new_wb) {
479 spin_unlock(&inode->i_lock);
480 goto out_free;
481 }
482 inode->i_state |= I_WB_SWITCH;
483 spin_unlock(&inode->i_lock);
484
485 ihold(inode);
486 isw->inode = inode;
487
488 /*
489 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 * the RCU protected stat update paths to grab the mapping's
491 * tree_lock so that stat transfer can synchronize against them.
492 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493 */
494 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495 return;
496
497 out_free:
498 if (isw->new_wb)
499 wb_put(isw->new_wb);
500 kfree(isw);
501 }
502
503 /**
504 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505 * @wbc: writeback_control of interest
506 * @inode: target inode
507 *
508 * @inode is locked and about to be written back under the control of @wbc.
509 * Record @inode's writeback context into @wbc and unlock the i_lock. On
510 * writeback completion, wbc_detach_inode() should be called. This is used
511 * to track the cgroup writeback context.
512 */
513 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
514 struct inode *inode)
515 {
516 if (!inode_cgwb_enabled(inode)) {
517 spin_unlock(&inode->i_lock);
518 return;
519 }
520
521 wbc->wb = inode_to_wb(inode);
522 wbc->inode = inode;
523
524 wbc->wb_id = wbc->wb->memcg_css->id;
525 wbc->wb_lcand_id = inode->i_wb_frn_winner;
526 wbc->wb_tcand_id = 0;
527 wbc->wb_bytes = 0;
528 wbc->wb_lcand_bytes = 0;
529 wbc->wb_tcand_bytes = 0;
530
531 wb_get(wbc->wb);
532 spin_unlock(&inode->i_lock);
533
534 /*
535 * A dying wb indicates that the memcg-blkcg mapping has changed
536 * and a new wb is already serving the memcg. Switch immediately.
537 */
538 if (unlikely(wb_dying(wbc->wb)))
539 inode_switch_wbs(inode, wbc->wb_id);
540 }
541
542 /**
543 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
544 * @wbc: writeback_control of the just finished writeback
545 *
546 * To be called after a writeback attempt of an inode finishes and undoes
547 * wbc_attach_and_unlock_inode(). Can be called under any context.
548 *
549 * As concurrent write sharing of an inode is expected to be very rare and
550 * memcg only tracks page ownership on first-use basis severely confining
551 * the usefulness of such sharing, cgroup writeback tracks ownership
552 * per-inode. While the support for concurrent write sharing of an inode
553 * is deemed unnecessary, an inode being written to by different cgroups at
554 * different points in time is a lot more common, and, more importantly,
555 * charging only by first-use can too readily lead to grossly incorrect
556 * behaviors (single foreign page can lead to gigabytes of writeback to be
557 * incorrectly attributed).
558 *
559 * To resolve this issue, cgroup writeback detects the majority dirtier of
560 * an inode and transfers the ownership to it. To avoid unnnecessary
561 * oscillation, the detection mechanism keeps track of history and gives
562 * out the switch verdict only if the foreign usage pattern is stable over
563 * a certain amount of time and/or writeback attempts.
564 *
565 * On each writeback attempt, @wbc tries to detect the majority writer
566 * using Boyer-Moore majority vote algorithm. In addition to the byte
567 * count from the majority voting, it also counts the bytes written for the
568 * current wb and the last round's winner wb (max of last round's current
569 * wb, the winner from two rounds ago, and the last round's majority
570 * candidate). Keeping track of the historical winner helps the algorithm
571 * to semi-reliably detect the most active writer even when it's not the
572 * absolute majority.
573 *
574 * Once the winner of the round is determined, whether the winner is
575 * foreign or not and how much IO time the round consumed is recorded in
576 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
577 * over a certain threshold, the switch verdict is given.
578 */
579 void wbc_detach_inode(struct writeback_control *wbc)
580 {
581 struct bdi_writeback *wb = wbc->wb;
582 struct inode *inode = wbc->inode;
583 unsigned long avg_time, max_bytes, max_time;
584 u16 history;
585 int max_id;
586
587 if (!wb)
588 return;
589
590 history = inode->i_wb_frn_history;
591 avg_time = inode->i_wb_frn_avg_time;
592
593 /* pick the winner of this round */
594 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
595 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
596 max_id = wbc->wb_id;
597 max_bytes = wbc->wb_bytes;
598 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
599 max_id = wbc->wb_lcand_id;
600 max_bytes = wbc->wb_lcand_bytes;
601 } else {
602 max_id = wbc->wb_tcand_id;
603 max_bytes = wbc->wb_tcand_bytes;
604 }
605
606 /*
607 * Calculate the amount of IO time the winner consumed and fold it
608 * into the running average kept per inode. If the consumed IO
609 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
610 * deciding whether to switch or not. This is to prevent one-off
611 * small dirtiers from skewing the verdict.
612 */
613 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
614 wb->avg_write_bandwidth);
615 if (avg_time)
616 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
617 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
618 else
619 avg_time = max_time; /* immediate catch up on first run */
620
621 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
622 int slots;
623
624 /*
625 * The switch verdict is reached if foreign wb's consume
626 * more than a certain proportion of IO time in a
627 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
628 * history mask where each bit represents one sixteenth of
629 * the period. Determine the number of slots to shift into
630 * history from @max_time.
631 */
632 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
633 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
634 history <<= slots;
635 if (wbc->wb_id != max_id)
636 history |= (1U << slots) - 1;
637
638 /*
639 * Switch if the current wb isn't the consistent winner.
640 * If there are multiple closely competing dirtiers, the
641 * inode may switch across them repeatedly over time, which
642 * is okay. The main goal is avoiding keeping an inode on
643 * the wrong wb for an extended period of time.
644 */
645 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
646 inode_switch_wbs(inode, max_id);
647 }
648
649 /*
650 * Multiple instances of this function may race to update the
651 * following fields but we don't mind occassional inaccuracies.
652 */
653 inode->i_wb_frn_winner = max_id;
654 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
655 inode->i_wb_frn_history = history;
656
657 wb_put(wbc->wb);
658 wbc->wb = NULL;
659 }
660
661 /**
662 * wbc_account_io - account IO issued during writeback
663 * @wbc: writeback_control of the writeback in progress
664 * @page: page being written out
665 * @bytes: number of bytes being written out
666 *
667 * @bytes from @page are about to written out during the writeback
668 * controlled by @wbc. Keep the book for foreign inode detection. See
669 * wbc_detach_inode().
670 */
671 void wbc_account_io(struct writeback_control *wbc, struct page *page,
672 size_t bytes)
673 {
674 int id;
675
676 /*
677 * pageout() path doesn't attach @wbc to the inode being written
678 * out. This is intentional as we don't want the function to block
679 * behind a slow cgroup. Ultimately, we want pageout() to kick off
680 * regular writeback instead of writing things out itself.
681 */
682 if (!wbc->wb)
683 return;
684
685 rcu_read_lock();
686 id = mem_cgroup_css_from_page(page)->id;
687 rcu_read_unlock();
688
689 if (id == wbc->wb_id) {
690 wbc->wb_bytes += bytes;
691 return;
692 }
693
694 if (id == wbc->wb_lcand_id)
695 wbc->wb_lcand_bytes += bytes;
696
697 /* Boyer-Moore majority vote algorithm */
698 if (!wbc->wb_tcand_bytes)
699 wbc->wb_tcand_id = id;
700 if (id == wbc->wb_tcand_id)
701 wbc->wb_tcand_bytes += bytes;
702 else
703 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704 }
705
706 /**
707 * inode_congested - test whether an inode is congested
708 * @inode: inode to test for congestion
709 * @cong_bits: mask of WB_[a]sync_congested bits to test
710 *
711 * Tests whether @inode is congested. @cong_bits is the mask of congestion
712 * bits to test and the return value is the mask of set bits.
713 *
714 * If cgroup writeback is enabled for @inode, the congestion state is
715 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
716 * associated with @inode is congested; otherwise, the root wb's congestion
717 * state is used.
718 */
719 int inode_congested(struct inode *inode, int cong_bits)
720 {
721 /*
722 * Once set, ->i_wb never becomes NULL while the inode is alive.
723 * Start transaction iff ->i_wb is visible.
724 */
725 if (inode && inode_to_wb_is_valid(inode)) {
726 struct bdi_writeback *wb;
727 bool locked, congested;
728
729 wb = unlocked_inode_to_wb_begin(inode, &locked);
730 congested = wb_congested(wb, cong_bits);
731 unlocked_inode_to_wb_end(inode, locked);
732 return congested;
733 }
734
735 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
736 }
737 EXPORT_SYMBOL_GPL(inode_congested);
738
739 /**
740 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
741 * @bdi: bdi the work item was issued to
742 * @work: work item to wait for
743 *
744 * Wait for the completion of @work which was issued to one of @bdi's
745 * bdi_writeback's. The caller must have set @work->single_wait before
746 * issuing it. This wait operates independently fo
747 * wb_wait_for_completion() and also disables automatic freeing of @work.
748 */
749 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
750 struct wb_writeback_work *work)
751 {
752 if (WARN_ON_ONCE(!work->single_wait))
753 return;
754
755 wait_event(bdi->wb_waitq, work->single_done);
756
757 /*
758 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
759 * modifications to @work prior to assertion of ->single_done is
760 * visible to the caller once this function returns.
761 */
762 smp_rmb();
763 }
764
765 /**
766 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
767 * @wb: target bdi_writeback to split @nr_pages to
768 * @nr_pages: number of pages to write for the whole bdi
769 *
770 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
771 * relation to the total write bandwidth of all wb's w/ dirty inodes on
772 * @wb->bdi.
773 */
774 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
775 {
776 unsigned long this_bw = wb->avg_write_bandwidth;
777 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
778
779 if (nr_pages == LONG_MAX)
780 return LONG_MAX;
781
782 /*
783 * This may be called on clean wb's and proportional distribution
784 * may not make sense, just use the original @nr_pages in those
785 * cases. In general, we wanna err on the side of writing more.
786 */
787 if (!tot_bw || this_bw >= tot_bw)
788 return nr_pages;
789 else
790 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
791 }
792
793 /**
794 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
795 * @wb: target bdi_writeback
796 * @base_work: source wb_writeback_work
797 *
798 * Try to make a clone of @base_work and issue it to @wb. If cloning
799 * succeeds, %true is returned; otherwise, @base_work is issued directly
800 * and %false is returned. In the latter case, the caller is required to
801 * wait for @base_work's completion using wb_wait_for_single_work().
802 *
803 * A clone is auto-freed on completion. @base_work never is.
804 */
805 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
806 struct wb_writeback_work *base_work)
807 {
808 struct wb_writeback_work *work;
809
810 work = kmalloc(sizeof(*work), GFP_ATOMIC);
811 if (work) {
812 *work = *base_work;
813 work->auto_free = 1;
814 work->single_wait = 0;
815 } else {
816 work = base_work;
817 work->auto_free = 0;
818 work->single_wait = 1;
819 }
820 work->single_done = 0;
821 wb_queue_work(wb, work);
822 return work != base_work;
823 }
824
825 /**
826 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
827 * @bdi: target backing_dev_info
828 * @base_work: wb_writeback_work to issue
829 * @skip_if_busy: skip wb's which already have writeback in progress
830 *
831 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
832 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
833 * distributed to the busy wbs according to each wb's proportion in the
834 * total active write bandwidth of @bdi.
835 */
836 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
837 struct wb_writeback_work *base_work,
838 bool skip_if_busy)
839 {
840 long nr_pages = base_work->nr_pages;
841 int next_blkcg_id = 0;
842 struct bdi_writeback *wb;
843 struct wb_iter iter;
844
845 might_sleep();
846
847 if (!bdi_has_dirty_io(bdi))
848 return;
849 restart:
850 rcu_read_lock();
851 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
852 if (!wb_has_dirty_io(wb) ||
853 (skip_if_busy && writeback_in_progress(wb)))
854 continue;
855
856 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
857 if (!wb_clone_and_queue_work(wb, base_work)) {
858 next_blkcg_id = wb->blkcg_css->id + 1;
859 rcu_read_unlock();
860 wb_wait_for_single_work(bdi, base_work);
861 goto restart;
862 }
863 }
864 rcu_read_unlock();
865 }
866
867 #else /* CONFIG_CGROUP_WRITEBACK */
868
869 static struct bdi_writeback *
870 locked_inode_to_wb_and_lock_list(struct inode *inode)
871 __releases(&inode->i_lock)
872 __acquires(&wb->list_lock)
873 {
874 struct bdi_writeback *wb = inode_to_wb(inode);
875
876 spin_unlock(&inode->i_lock);
877 spin_lock(&wb->list_lock);
878 return wb;
879 }
880
881 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
882 __acquires(&wb->list_lock)
883 {
884 struct bdi_writeback *wb = inode_to_wb(inode);
885
886 spin_lock(&wb->list_lock);
887 return wb;
888 }
889
890 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
891 {
892 return nr_pages;
893 }
894
895 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
896 struct wb_writeback_work *base_work,
897 bool skip_if_busy)
898 {
899 might_sleep();
900
901 if (bdi_has_dirty_io(bdi) &&
902 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
903 base_work->auto_free = 0;
904 base_work->single_wait = 0;
905 base_work->single_done = 0;
906 wb_queue_work(&bdi->wb, base_work);
907 }
908 }
909
910 #endif /* CONFIG_CGROUP_WRITEBACK */
911
912 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
913 bool range_cyclic, enum wb_reason reason)
914 {
915 struct wb_writeback_work *work;
916
917 if (!wb_has_dirty_io(wb))
918 return;
919
920 /*
921 * This is WB_SYNC_NONE writeback, so if allocation fails just
922 * wakeup the thread for old dirty data writeback
923 */
924 work = kzalloc(sizeof(*work), GFP_ATOMIC);
925 if (!work) {
926 trace_writeback_nowork(wb->bdi);
927 wb_wakeup(wb);
928 return;
929 }
930
931 work->sync_mode = WB_SYNC_NONE;
932 work->nr_pages = nr_pages;
933 work->range_cyclic = range_cyclic;
934 work->reason = reason;
935 work->auto_free = 1;
936
937 wb_queue_work(wb, work);
938 }
939
940 /**
941 * wb_start_background_writeback - start background writeback
942 * @wb: bdi_writback to write from
943 *
944 * Description:
945 * This makes sure WB_SYNC_NONE background writeback happens. When
946 * this function returns, it is only guaranteed that for given wb
947 * some IO is happening if we are over background dirty threshold.
948 * Caller need not hold sb s_umount semaphore.
949 */
950 void wb_start_background_writeback(struct bdi_writeback *wb)
951 {
952 /*
953 * We just wake up the flusher thread. It will perform background
954 * writeback as soon as there is no other work to do.
955 */
956 trace_writeback_wake_background(wb->bdi);
957 wb_wakeup(wb);
958 }
959
960 /*
961 * Remove the inode from the writeback list it is on.
962 */
963 void inode_wb_list_del(struct inode *inode)
964 {
965 struct bdi_writeback *wb;
966
967 wb = inode_to_wb_and_lock_list(inode);
968 inode_wb_list_del_locked(inode, wb);
969 spin_unlock(&wb->list_lock);
970 }
971
972 /*
973 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
974 * furthest end of its superblock's dirty-inode list.
975 *
976 * Before stamping the inode's ->dirtied_when, we check to see whether it is
977 * already the most-recently-dirtied inode on the b_dirty list. If that is
978 * the case then the inode must have been redirtied while it was being written
979 * out and we don't reset its dirtied_when.
980 */
981 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
982 {
983 if (!list_empty(&wb->b_dirty)) {
984 struct inode *tail;
985
986 tail = wb_inode(wb->b_dirty.next);
987 if (time_before(inode->dirtied_when, tail->dirtied_when))
988 inode->dirtied_when = jiffies;
989 }
990 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
991 }
992
993 /*
994 * requeue inode for re-scanning after bdi->b_io list is exhausted.
995 */
996 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
997 {
998 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
999 }
1000
1001 static void inode_sync_complete(struct inode *inode)
1002 {
1003 inode->i_state &= ~I_SYNC;
1004 /* If inode is clean an unused, put it into LRU now... */
1005 inode_add_lru(inode);
1006 /* Waiters must see I_SYNC cleared before being woken up */
1007 smp_mb();
1008 wake_up_bit(&inode->i_state, __I_SYNC);
1009 }
1010
1011 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1012 {
1013 bool ret = time_after(inode->dirtied_when, t);
1014 #ifndef CONFIG_64BIT
1015 /*
1016 * For inodes being constantly redirtied, dirtied_when can get stuck.
1017 * It _appears_ to be in the future, but is actually in distant past.
1018 * This test is necessary to prevent such wrapped-around relative times
1019 * from permanently stopping the whole bdi writeback.
1020 */
1021 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1022 #endif
1023 return ret;
1024 }
1025
1026 #define EXPIRE_DIRTY_ATIME 0x0001
1027
1028 /*
1029 * Move expired (dirtied before work->older_than_this) dirty inodes from
1030 * @delaying_queue to @dispatch_queue.
1031 */
1032 static int move_expired_inodes(struct list_head *delaying_queue,
1033 struct list_head *dispatch_queue,
1034 int flags,
1035 struct wb_writeback_work *work)
1036 {
1037 unsigned long *older_than_this = NULL;
1038 unsigned long expire_time;
1039 LIST_HEAD(tmp);
1040 struct list_head *pos, *node;
1041 struct super_block *sb = NULL;
1042 struct inode *inode;
1043 int do_sb_sort = 0;
1044 int moved = 0;
1045
1046 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1047 older_than_this = work->older_than_this;
1048 else if (!work->for_sync) {
1049 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1050 older_than_this = &expire_time;
1051 }
1052 while (!list_empty(delaying_queue)) {
1053 inode = wb_inode(delaying_queue->prev);
1054 if (older_than_this &&
1055 inode_dirtied_after(inode, *older_than_this))
1056 break;
1057 list_move(&inode->i_wb_list, &tmp);
1058 moved++;
1059 if (flags & EXPIRE_DIRTY_ATIME)
1060 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1061 if (sb_is_blkdev_sb(inode->i_sb))
1062 continue;
1063 if (sb && sb != inode->i_sb)
1064 do_sb_sort = 1;
1065 sb = inode->i_sb;
1066 }
1067
1068 /* just one sb in list, splice to dispatch_queue and we're done */
1069 if (!do_sb_sort) {
1070 list_splice(&tmp, dispatch_queue);
1071 goto out;
1072 }
1073
1074 /* Move inodes from one superblock together */
1075 while (!list_empty(&tmp)) {
1076 sb = wb_inode(tmp.prev)->i_sb;
1077 list_for_each_prev_safe(pos, node, &tmp) {
1078 inode = wb_inode(pos);
1079 if (inode->i_sb == sb)
1080 list_move(&inode->i_wb_list, dispatch_queue);
1081 }
1082 }
1083 out:
1084 return moved;
1085 }
1086
1087 /*
1088 * Queue all expired dirty inodes for io, eldest first.
1089 * Before
1090 * newly dirtied b_dirty b_io b_more_io
1091 * =============> gf edc BA
1092 * After
1093 * newly dirtied b_dirty b_io b_more_io
1094 * =============> g fBAedc
1095 * |
1096 * +--> dequeue for IO
1097 */
1098 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1099 {
1100 int moved;
1101
1102 assert_spin_locked(&wb->list_lock);
1103 list_splice_init(&wb->b_more_io, &wb->b_io);
1104 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1105 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1106 EXPIRE_DIRTY_ATIME, work);
1107 if (moved)
1108 wb_io_lists_populated(wb);
1109 trace_writeback_queue_io(wb, work, moved);
1110 }
1111
1112 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1113 {
1114 int ret;
1115
1116 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1117 trace_writeback_write_inode_start(inode, wbc);
1118 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1119 trace_writeback_write_inode(inode, wbc);
1120 return ret;
1121 }
1122 return 0;
1123 }
1124
1125 /*
1126 * Wait for writeback on an inode to complete. Called with i_lock held.
1127 * Caller must make sure inode cannot go away when we drop i_lock.
1128 */
1129 static void __inode_wait_for_writeback(struct inode *inode)
1130 __releases(inode->i_lock)
1131 __acquires(inode->i_lock)
1132 {
1133 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1134 wait_queue_head_t *wqh;
1135
1136 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1137 while (inode->i_state & I_SYNC) {
1138 spin_unlock(&inode->i_lock);
1139 __wait_on_bit(wqh, &wq, bit_wait,
1140 TASK_UNINTERRUPTIBLE);
1141 spin_lock(&inode->i_lock);
1142 }
1143 }
1144
1145 /*
1146 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1147 */
1148 void inode_wait_for_writeback(struct inode *inode)
1149 {
1150 spin_lock(&inode->i_lock);
1151 __inode_wait_for_writeback(inode);
1152 spin_unlock(&inode->i_lock);
1153 }
1154
1155 /*
1156 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1157 * held and drops it. It is aimed for callers not holding any inode reference
1158 * so once i_lock is dropped, inode can go away.
1159 */
1160 static void inode_sleep_on_writeback(struct inode *inode)
1161 __releases(inode->i_lock)
1162 {
1163 DEFINE_WAIT(wait);
1164 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1165 int sleep;
1166
1167 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1168 sleep = inode->i_state & I_SYNC;
1169 spin_unlock(&inode->i_lock);
1170 if (sleep)
1171 schedule();
1172 finish_wait(wqh, &wait);
1173 }
1174
1175 /*
1176 * Find proper writeback list for the inode depending on its current state and
1177 * possibly also change of its state while we were doing writeback. Here we
1178 * handle things such as livelock prevention or fairness of writeback among
1179 * inodes. This function can be called only by flusher thread - noone else
1180 * processes all inodes in writeback lists and requeueing inodes behind flusher
1181 * thread's back can have unexpected consequences.
1182 */
1183 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1184 struct writeback_control *wbc)
1185 {
1186 if (inode->i_state & I_FREEING)
1187 return;
1188
1189 /*
1190 * Sync livelock prevention. Each inode is tagged and synced in one
1191 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1192 * the dirty time to prevent enqueue and sync it again.
1193 */
1194 if ((inode->i_state & I_DIRTY) &&
1195 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1196 inode->dirtied_when = jiffies;
1197
1198 if (wbc->pages_skipped) {
1199 /*
1200 * writeback is not making progress due to locked
1201 * buffers. Skip this inode for now.
1202 */
1203 redirty_tail(inode, wb);
1204 return;
1205 }
1206
1207 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1208 /*
1209 * We didn't write back all the pages. nfs_writepages()
1210 * sometimes bales out without doing anything.
1211 */
1212 if (wbc->nr_to_write <= 0) {
1213 /* Slice used up. Queue for next turn. */
1214 requeue_io(inode, wb);
1215 } else {
1216 /*
1217 * Writeback blocked by something other than
1218 * congestion. Delay the inode for some time to
1219 * avoid spinning on the CPU (100% iowait)
1220 * retrying writeback of the dirty page/inode
1221 * that cannot be performed immediately.
1222 */
1223 redirty_tail(inode, wb);
1224 }
1225 } else if (inode->i_state & I_DIRTY) {
1226 /*
1227 * Filesystems can dirty the inode during writeback operations,
1228 * such as delayed allocation during submission or metadata
1229 * updates after data IO completion.
1230 */
1231 redirty_tail(inode, wb);
1232 } else if (inode->i_state & I_DIRTY_TIME) {
1233 inode->dirtied_when = jiffies;
1234 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1235 } else {
1236 /* The inode is clean. Remove from writeback lists. */
1237 inode_wb_list_del_locked(inode, wb);
1238 }
1239 }
1240
1241 /*
1242 * Write out an inode and its dirty pages. Do not update the writeback list
1243 * linkage. That is left to the caller. The caller is also responsible for
1244 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1245 */
1246 static int
1247 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1248 {
1249 struct address_space *mapping = inode->i_mapping;
1250 long nr_to_write = wbc->nr_to_write;
1251 unsigned dirty;
1252 int ret;
1253
1254 WARN_ON(!(inode->i_state & I_SYNC));
1255
1256 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1257
1258 ret = do_writepages(mapping, wbc);
1259
1260 /*
1261 * Make sure to wait on the data before writing out the metadata.
1262 * This is important for filesystems that modify metadata on data
1263 * I/O completion. We don't do it for sync(2) writeback because it has a
1264 * separate, external IO completion path and ->sync_fs for guaranteeing
1265 * inode metadata is written back correctly.
1266 */
1267 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1268 int err = filemap_fdatawait(mapping);
1269 if (ret == 0)
1270 ret = err;
1271 }
1272
1273 /*
1274 * Some filesystems may redirty the inode during the writeback
1275 * due to delalloc, clear dirty metadata flags right before
1276 * write_inode()
1277 */
1278 spin_lock(&inode->i_lock);
1279
1280 dirty = inode->i_state & I_DIRTY;
1281 if (inode->i_state & I_DIRTY_TIME) {
1282 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1283 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1284 unlikely(time_after(jiffies,
1285 (inode->dirtied_time_when +
1286 dirtytime_expire_interval * HZ)))) {
1287 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1288 trace_writeback_lazytime(inode);
1289 }
1290 } else
1291 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1292 inode->i_state &= ~dirty;
1293
1294 /*
1295 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1296 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1297 * either they see the I_DIRTY bits cleared or we see the dirtied
1298 * inode.
1299 *
1300 * I_DIRTY_PAGES is always cleared together above even if @mapping
1301 * still has dirty pages. The flag is reinstated after smp_mb() if
1302 * necessary. This guarantees that either __mark_inode_dirty()
1303 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1304 */
1305 smp_mb();
1306
1307 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1308 inode->i_state |= I_DIRTY_PAGES;
1309
1310 spin_unlock(&inode->i_lock);
1311
1312 if (dirty & I_DIRTY_TIME)
1313 mark_inode_dirty_sync(inode);
1314 /* Don't write the inode if only I_DIRTY_PAGES was set */
1315 if (dirty & ~I_DIRTY_PAGES) {
1316 int err = write_inode(inode, wbc);
1317 if (ret == 0)
1318 ret = err;
1319 }
1320 trace_writeback_single_inode(inode, wbc, nr_to_write);
1321 return ret;
1322 }
1323
1324 /*
1325 * Write out an inode's dirty pages. Either the caller has an active reference
1326 * on the inode or the inode has I_WILL_FREE set.
1327 *
1328 * This function is designed to be called for writing back one inode which
1329 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1330 * and does more profound writeback list handling in writeback_sb_inodes().
1331 */
1332 static int
1333 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1334 struct writeback_control *wbc)
1335 {
1336 int ret = 0;
1337
1338 spin_lock(&inode->i_lock);
1339 if (!atomic_read(&inode->i_count))
1340 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1341 else
1342 WARN_ON(inode->i_state & I_WILL_FREE);
1343
1344 if (inode->i_state & I_SYNC) {
1345 if (wbc->sync_mode != WB_SYNC_ALL)
1346 goto out;
1347 /*
1348 * It's a data-integrity sync. We must wait. Since callers hold
1349 * inode reference or inode has I_WILL_FREE set, it cannot go
1350 * away under us.
1351 */
1352 __inode_wait_for_writeback(inode);
1353 }
1354 WARN_ON(inode->i_state & I_SYNC);
1355 /*
1356 * Skip inode if it is clean and we have no outstanding writeback in
1357 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1358 * function since flusher thread may be doing for example sync in
1359 * parallel and if we move the inode, it could get skipped. So here we
1360 * make sure inode is on some writeback list and leave it there unless
1361 * we have completely cleaned the inode.
1362 */
1363 if (!(inode->i_state & I_DIRTY_ALL) &&
1364 (wbc->sync_mode != WB_SYNC_ALL ||
1365 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1366 goto out;
1367 inode->i_state |= I_SYNC;
1368 wbc_attach_and_unlock_inode(wbc, inode);
1369
1370 ret = __writeback_single_inode(inode, wbc);
1371
1372 wbc_detach_inode(wbc);
1373 spin_lock(&wb->list_lock);
1374 spin_lock(&inode->i_lock);
1375 /*
1376 * If inode is clean, remove it from writeback lists. Otherwise don't
1377 * touch it. See comment above for explanation.
1378 */
1379 if (!(inode->i_state & I_DIRTY_ALL))
1380 inode_wb_list_del_locked(inode, wb);
1381 spin_unlock(&wb->list_lock);
1382 inode_sync_complete(inode);
1383 out:
1384 spin_unlock(&inode->i_lock);
1385 return ret;
1386 }
1387
1388 static long writeback_chunk_size(struct bdi_writeback *wb,
1389 struct wb_writeback_work *work)
1390 {
1391 long pages;
1392
1393 /*
1394 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1395 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1396 * here avoids calling into writeback_inodes_wb() more than once.
1397 *
1398 * The intended call sequence for WB_SYNC_ALL writeback is:
1399 *
1400 * wb_writeback()
1401 * writeback_sb_inodes() <== called only once
1402 * write_cache_pages() <== called once for each inode
1403 * (quickly) tag currently dirty pages
1404 * (maybe slowly) sync all tagged pages
1405 */
1406 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1407 pages = LONG_MAX;
1408 else {
1409 pages = min(wb->avg_write_bandwidth / 2,
1410 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1411 pages = min(pages, work->nr_pages);
1412 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1413 MIN_WRITEBACK_PAGES);
1414 }
1415
1416 return pages;
1417 }
1418
1419 /*
1420 * Write a portion of b_io inodes which belong to @sb.
1421 *
1422 * Return the number of pages and/or inodes written.
1423 */
1424 static long writeback_sb_inodes(struct super_block *sb,
1425 struct bdi_writeback *wb,
1426 struct wb_writeback_work *work)
1427 {
1428 struct writeback_control wbc = {
1429 .sync_mode = work->sync_mode,
1430 .tagged_writepages = work->tagged_writepages,
1431 .for_kupdate = work->for_kupdate,
1432 .for_background = work->for_background,
1433 .for_sync = work->for_sync,
1434 .range_cyclic = work->range_cyclic,
1435 .range_start = 0,
1436 .range_end = LLONG_MAX,
1437 };
1438 unsigned long start_time = jiffies;
1439 long write_chunk;
1440 long wrote = 0; /* count both pages and inodes */
1441
1442 while (!list_empty(&wb->b_io)) {
1443 struct inode *inode = wb_inode(wb->b_io.prev);
1444
1445 if (inode->i_sb != sb) {
1446 if (work->sb) {
1447 /*
1448 * We only want to write back data for this
1449 * superblock, move all inodes not belonging
1450 * to it back onto the dirty list.
1451 */
1452 redirty_tail(inode, wb);
1453 continue;
1454 }
1455
1456 /*
1457 * The inode belongs to a different superblock.
1458 * Bounce back to the caller to unpin this and
1459 * pin the next superblock.
1460 */
1461 break;
1462 }
1463
1464 /*
1465 * Don't bother with new inodes or inodes being freed, first
1466 * kind does not need periodic writeout yet, and for the latter
1467 * kind writeout is handled by the freer.
1468 */
1469 spin_lock(&inode->i_lock);
1470 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1471 spin_unlock(&inode->i_lock);
1472 redirty_tail(inode, wb);
1473 continue;
1474 }
1475 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1476 /*
1477 * If this inode is locked for writeback and we are not
1478 * doing writeback-for-data-integrity, move it to
1479 * b_more_io so that writeback can proceed with the
1480 * other inodes on s_io.
1481 *
1482 * We'll have another go at writing back this inode
1483 * when we completed a full scan of b_io.
1484 */
1485 spin_unlock(&inode->i_lock);
1486 requeue_io(inode, wb);
1487 trace_writeback_sb_inodes_requeue(inode);
1488 continue;
1489 }
1490 spin_unlock(&wb->list_lock);
1491
1492 /*
1493 * We already requeued the inode if it had I_SYNC set and we
1494 * are doing WB_SYNC_NONE writeback. So this catches only the
1495 * WB_SYNC_ALL case.
1496 */
1497 if (inode->i_state & I_SYNC) {
1498 /* Wait for I_SYNC. This function drops i_lock... */
1499 inode_sleep_on_writeback(inode);
1500 /* Inode may be gone, start again */
1501 spin_lock(&wb->list_lock);
1502 continue;
1503 }
1504 inode->i_state |= I_SYNC;
1505 wbc_attach_and_unlock_inode(&wbc, inode);
1506
1507 write_chunk = writeback_chunk_size(wb, work);
1508 wbc.nr_to_write = write_chunk;
1509 wbc.pages_skipped = 0;
1510
1511 /*
1512 * We use I_SYNC to pin the inode in memory. While it is set
1513 * evict_inode() will wait so the inode cannot be freed.
1514 */
1515 __writeback_single_inode(inode, &wbc);
1516
1517 wbc_detach_inode(&wbc);
1518 work->nr_pages -= write_chunk - wbc.nr_to_write;
1519 wrote += write_chunk - wbc.nr_to_write;
1520 spin_lock(&wb->list_lock);
1521 spin_lock(&inode->i_lock);
1522 if (!(inode->i_state & I_DIRTY_ALL))
1523 wrote++;
1524 requeue_inode(inode, wb, &wbc);
1525 inode_sync_complete(inode);
1526 spin_unlock(&inode->i_lock);
1527 cond_resched_lock(&wb->list_lock);
1528 /*
1529 * bail out to wb_writeback() often enough to check
1530 * background threshold and other termination conditions.
1531 */
1532 if (wrote) {
1533 if (time_is_before_jiffies(start_time + HZ / 10UL))
1534 break;
1535 if (work->nr_pages <= 0)
1536 break;
1537 }
1538 }
1539 return wrote;
1540 }
1541
1542 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1543 struct wb_writeback_work *work)
1544 {
1545 unsigned long start_time = jiffies;
1546 long wrote = 0;
1547
1548 while (!list_empty(&wb->b_io)) {
1549 struct inode *inode = wb_inode(wb->b_io.prev);
1550 struct super_block *sb = inode->i_sb;
1551
1552 if (!trylock_super(sb)) {
1553 /*
1554 * trylock_super() may fail consistently due to
1555 * s_umount being grabbed by someone else. Don't use
1556 * requeue_io() to avoid busy retrying the inode/sb.
1557 */
1558 redirty_tail(inode, wb);
1559 continue;
1560 }
1561 wrote += writeback_sb_inodes(sb, wb, work);
1562 up_read(&sb->s_umount);
1563
1564 /* refer to the same tests at the end of writeback_sb_inodes */
1565 if (wrote) {
1566 if (time_is_before_jiffies(start_time + HZ / 10UL))
1567 break;
1568 if (work->nr_pages <= 0)
1569 break;
1570 }
1571 }
1572 /* Leave any unwritten inodes on b_io */
1573 return wrote;
1574 }
1575
1576 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1577 enum wb_reason reason)
1578 {
1579 struct wb_writeback_work work = {
1580 .nr_pages = nr_pages,
1581 .sync_mode = WB_SYNC_NONE,
1582 .range_cyclic = 1,
1583 .reason = reason,
1584 };
1585
1586 spin_lock(&wb->list_lock);
1587 if (list_empty(&wb->b_io))
1588 queue_io(wb, &work);
1589 __writeback_inodes_wb(wb, &work);
1590 spin_unlock(&wb->list_lock);
1591
1592 return nr_pages - work.nr_pages;
1593 }
1594
1595 /*
1596 * Explicit flushing or periodic writeback of "old" data.
1597 *
1598 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1599 * dirtying-time in the inode's address_space. So this periodic writeback code
1600 * just walks the superblock inode list, writing back any inodes which are
1601 * older than a specific point in time.
1602 *
1603 * Try to run once per dirty_writeback_interval. But if a writeback event
1604 * takes longer than a dirty_writeback_interval interval, then leave a
1605 * one-second gap.
1606 *
1607 * older_than_this takes precedence over nr_to_write. So we'll only write back
1608 * all dirty pages if they are all attached to "old" mappings.
1609 */
1610 static long wb_writeback(struct bdi_writeback *wb,
1611 struct wb_writeback_work *work)
1612 {
1613 unsigned long wb_start = jiffies;
1614 long nr_pages = work->nr_pages;
1615 unsigned long oldest_jif;
1616 struct inode *inode;
1617 long progress;
1618
1619 oldest_jif = jiffies;
1620 work->older_than_this = &oldest_jif;
1621
1622 spin_lock(&wb->list_lock);
1623 for (;;) {
1624 /*
1625 * Stop writeback when nr_pages has been consumed
1626 */
1627 if (work->nr_pages <= 0)
1628 break;
1629
1630 /*
1631 * Background writeout and kupdate-style writeback may
1632 * run forever. Stop them if there is other work to do
1633 * so that e.g. sync can proceed. They'll be restarted
1634 * after the other works are all done.
1635 */
1636 if ((work->for_background || work->for_kupdate) &&
1637 !list_empty(&wb->work_list))
1638 break;
1639
1640 /*
1641 * For background writeout, stop when we are below the
1642 * background dirty threshold
1643 */
1644 if (work->for_background && !wb_over_bg_thresh(wb))
1645 break;
1646
1647 /*
1648 * Kupdate and background works are special and we want to
1649 * include all inodes that need writing. Livelock avoidance is
1650 * handled by these works yielding to any other work so we are
1651 * safe.
1652 */
1653 if (work->for_kupdate) {
1654 oldest_jif = jiffies -
1655 msecs_to_jiffies(dirty_expire_interval * 10);
1656 } else if (work->for_background)
1657 oldest_jif = jiffies;
1658
1659 trace_writeback_start(wb->bdi, work);
1660 if (list_empty(&wb->b_io))
1661 queue_io(wb, work);
1662 if (work->sb)
1663 progress = writeback_sb_inodes(work->sb, wb, work);
1664 else
1665 progress = __writeback_inodes_wb(wb, work);
1666 trace_writeback_written(wb->bdi, work);
1667
1668 wb_update_bandwidth(wb, wb_start);
1669
1670 /*
1671 * Did we write something? Try for more
1672 *
1673 * Dirty inodes are moved to b_io for writeback in batches.
1674 * The completion of the current batch does not necessarily
1675 * mean the overall work is done. So we keep looping as long
1676 * as made some progress on cleaning pages or inodes.
1677 */
1678 if (progress)
1679 continue;
1680 /*
1681 * No more inodes for IO, bail
1682 */
1683 if (list_empty(&wb->b_more_io))
1684 break;
1685 /*
1686 * Nothing written. Wait for some inode to
1687 * become available for writeback. Otherwise
1688 * we'll just busyloop.
1689 */
1690 if (!list_empty(&wb->b_more_io)) {
1691 trace_writeback_wait(wb->bdi, work);
1692 inode = wb_inode(wb->b_more_io.prev);
1693 spin_lock(&inode->i_lock);
1694 spin_unlock(&wb->list_lock);
1695 /* This function drops i_lock... */
1696 inode_sleep_on_writeback(inode);
1697 spin_lock(&wb->list_lock);
1698 }
1699 }
1700 spin_unlock(&wb->list_lock);
1701
1702 return nr_pages - work->nr_pages;
1703 }
1704
1705 /*
1706 * Return the next wb_writeback_work struct that hasn't been processed yet.
1707 */
1708 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1709 {
1710 struct wb_writeback_work *work = NULL;
1711
1712 spin_lock_bh(&wb->work_lock);
1713 if (!list_empty(&wb->work_list)) {
1714 work = list_entry(wb->work_list.next,
1715 struct wb_writeback_work, list);
1716 list_del_init(&work->list);
1717 }
1718 spin_unlock_bh(&wb->work_lock);
1719 return work;
1720 }
1721
1722 /*
1723 * Add in the number of potentially dirty inodes, because each inode
1724 * write can dirty pagecache in the underlying blockdev.
1725 */
1726 static unsigned long get_nr_dirty_pages(void)
1727 {
1728 return global_page_state(NR_FILE_DIRTY) +
1729 global_page_state(NR_UNSTABLE_NFS) +
1730 get_nr_dirty_inodes();
1731 }
1732
1733 static long wb_check_background_flush(struct bdi_writeback *wb)
1734 {
1735 if (wb_over_bg_thresh(wb)) {
1736
1737 struct wb_writeback_work work = {
1738 .nr_pages = LONG_MAX,
1739 .sync_mode = WB_SYNC_NONE,
1740 .for_background = 1,
1741 .range_cyclic = 1,
1742 .reason = WB_REASON_BACKGROUND,
1743 };
1744
1745 return wb_writeback(wb, &work);
1746 }
1747
1748 return 0;
1749 }
1750
1751 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1752 {
1753 unsigned long expired;
1754 long nr_pages;
1755
1756 /*
1757 * When set to zero, disable periodic writeback
1758 */
1759 if (!dirty_writeback_interval)
1760 return 0;
1761
1762 expired = wb->last_old_flush +
1763 msecs_to_jiffies(dirty_writeback_interval * 10);
1764 if (time_before(jiffies, expired))
1765 return 0;
1766
1767 wb->last_old_flush = jiffies;
1768 nr_pages = get_nr_dirty_pages();
1769
1770 if (nr_pages) {
1771 struct wb_writeback_work work = {
1772 .nr_pages = nr_pages,
1773 .sync_mode = WB_SYNC_NONE,
1774 .for_kupdate = 1,
1775 .range_cyclic = 1,
1776 .reason = WB_REASON_PERIODIC,
1777 };
1778
1779 return wb_writeback(wb, &work);
1780 }
1781
1782 return 0;
1783 }
1784
1785 /*
1786 * Retrieve work items and do the writeback they describe
1787 */
1788 static long wb_do_writeback(struct bdi_writeback *wb)
1789 {
1790 struct wb_writeback_work *work;
1791 long wrote = 0;
1792
1793 set_bit(WB_writeback_running, &wb->state);
1794 while ((work = get_next_work_item(wb)) != NULL) {
1795 struct wb_completion *done = work->done;
1796 bool need_wake_up = false;
1797
1798 trace_writeback_exec(wb->bdi, work);
1799
1800 wrote += wb_writeback(wb, work);
1801
1802 if (work->single_wait) {
1803 WARN_ON_ONCE(work->auto_free);
1804 /* paired w/ rmb in wb_wait_for_single_work() */
1805 smp_wmb();
1806 work->single_done = 1;
1807 need_wake_up = true;
1808 } else if (work->auto_free) {
1809 kfree(work);
1810 }
1811
1812 if (done && atomic_dec_and_test(&done->cnt))
1813 need_wake_up = true;
1814
1815 if (need_wake_up)
1816 wake_up_all(&wb->bdi->wb_waitq);
1817 }
1818
1819 /*
1820 * Check for periodic writeback, kupdated() style
1821 */
1822 wrote += wb_check_old_data_flush(wb);
1823 wrote += wb_check_background_flush(wb);
1824 clear_bit(WB_writeback_running, &wb->state);
1825
1826 return wrote;
1827 }
1828
1829 /*
1830 * Handle writeback of dirty data for the device backed by this bdi. Also
1831 * reschedules periodically and does kupdated style flushing.
1832 */
1833 void wb_workfn(struct work_struct *work)
1834 {
1835 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1836 struct bdi_writeback, dwork);
1837 long pages_written;
1838
1839 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1840 current->flags |= PF_SWAPWRITE;
1841
1842 if (likely(!current_is_workqueue_rescuer() ||
1843 !test_bit(WB_registered, &wb->state))) {
1844 /*
1845 * The normal path. Keep writing back @wb until its
1846 * work_list is empty. Note that this path is also taken
1847 * if @wb is shutting down even when we're running off the
1848 * rescuer as work_list needs to be drained.
1849 */
1850 do {
1851 pages_written = wb_do_writeback(wb);
1852 trace_writeback_pages_written(pages_written);
1853 } while (!list_empty(&wb->work_list));
1854 } else {
1855 /*
1856 * bdi_wq can't get enough workers and we're running off
1857 * the emergency worker. Don't hog it. Hopefully, 1024 is
1858 * enough for efficient IO.
1859 */
1860 pages_written = writeback_inodes_wb(wb, 1024,
1861 WB_REASON_FORKER_THREAD);
1862 trace_writeback_pages_written(pages_written);
1863 }
1864
1865 if (!list_empty(&wb->work_list))
1866 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1867 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1868 wb_wakeup_delayed(wb);
1869
1870 current->flags &= ~PF_SWAPWRITE;
1871 }
1872
1873 /*
1874 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1875 * the whole world.
1876 */
1877 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1878 {
1879 struct backing_dev_info *bdi;
1880
1881 if (!nr_pages)
1882 nr_pages = get_nr_dirty_pages();
1883
1884 rcu_read_lock();
1885 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1886 struct bdi_writeback *wb;
1887 struct wb_iter iter;
1888
1889 if (!bdi_has_dirty_io(bdi))
1890 continue;
1891
1892 bdi_for_each_wb(wb, bdi, &iter, 0)
1893 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1894 false, reason);
1895 }
1896 rcu_read_unlock();
1897 }
1898
1899 /*
1900 * Wake up bdi's periodically to make sure dirtytime inodes gets
1901 * written back periodically. We deliberately do *not* check the
1902 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1903 * kernel to be constantly waking up once there are any dirtytime
1904 * inodes on the system. So instead we define a separate delayed work
1905 * function which gets called much more rarely. (By default, only
1906 * once every 12 hours.)
1907 *
1908 * If there is any other write activity going on in the file system,
1909 * this function won't be necessary. But if the only thing that has
1910 * happened on the file system is a dirtytime inode caused by an atime
1911 * update, we need this infrastructure below to make sure that inode
1912 * eventually gets pushed out to disk.
1913 */
1914 static void wakeup_dirtytime_writeback(struct work_struct *w);
1915 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1916
1917 static void wakeup_dirtytime_writeback(struct work_struct *w)
1918 {
1919 struct backing_dev_info *bdi;
1920
1921 rcu_read_lock();
1922 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1923 struct bdi_writeback *wb;
1924 struct wb_iter iter;
1925
1926 bdi_for_each_wb(wb, bdi, &iter, 0)
1927 if (!list_empty(&bdi->wb.b_dirty_time))
1928 wb_wakeup(&bdi->wb);
1929 }
1930 rcu_read_unlock();
1931 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1932 }
1933
1934 static int __init start_dirtytime_writeback(void)
1935 {
1936 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1937 return 0;
1938 }
1939 __initcall(start_dirtytime_writeback);
1940
1941 int dirtytime_interval_handler(struct ctl_table *table, int write,
1942 void __user *buffer, size_t *lenp, loff_t *ppos)
1943 {
1944 int ret;
1945
1946 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1947 if (ret == 0 && write)
1948 mod_delayed_work(system_wq, &dirtytime_work, 0);
1949 return ret;
1950 }
1951
1952 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1953 {
1954 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1955 struct dentry *dentry;
1956 const char *name = "?";
1957
1958 dentry = d_find_alias(inode);
1959 if (dentry) {
1960 spin_lock(&dentry->d_lock);
1961 name = (const char *) dentry->d_name.name;
1962 }
1963 printk(KERN_DEBUG
1964 "%s(%d): dirtied inode %lu (%s) on %s\n",
1965 current->comm, task_pid_nr(current), inode->i_ino,
1966 name, inode->i_sb->s_id);
1967 if (dentry) {
1968 spin_unlock(&dentry->d_lock);
1969 dput(dentry);
1970 }
1971 }
1972 }
1973
1974 /**
1975 * __mark_inode_dirty - internal function
1976 * @inode: inode to mark
1977 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1978 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1979 * mark_inode_dirty_sync.
1980 *
1981 * Put the inode on the super block's dirty list.
1982 *
1983 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1984 * dirty list only if it is hashed or if it refers to a blockdev.
1985 * If it was not hashed, it will never be added to the dirty list
1986 * even if it is later hashed, as it will have been marked dirty already.
1987 *
1988 * In short, make sure you hash any inodes _before_ you start marking
1989 * them dirty.
1990 *
1991 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1992 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1993 * the kernel-internal blockdev inode represents the dirtying time of the
1994 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1995 * page->mapping->host, so the page-dirtying time is recorded in the internal
1996 * blockdev inode.
1997 */
1998 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1999 void __mark_inode_dirty(struct inode *inode, int flags)
2000 {
2001 struct super_block *sb = inode->i_sb;
2002 int dirtytime;
2003
2004 trace_writeback_mark_inode_dirty(inode, flags);
2005
2006 /*
2007 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2008 * dirty the inode itself
2009 */
2010 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2011 trace_writeback_dirty_inode_start(inode, flags);
2012
2013 if (sb->s_op->dirty_inode)
2014 sb->s_op->dirty_inode(inode, flags);
2015
2016 trace_writeback_dirty_inode(inode, flags);
2017 }
2018 if (flags & I_DIRTY_INODE)
2019 flags &= ~I_DIRTY_TIME;
2020 dirtytime = flags & I_DIRTY_TIME;
2021
2022 /*
2023 * Paired with smp_mb() in __writeback_single_inode() for the
2024 * following lockless i_state test. See there for details.
2025 */
2026 smp_mb();
2027
2028 if (((inode->i_state & flags) == flags) ||
2029 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2030 return;
2031
2032 if (unlikely(block_dump))
2033 block_dump___mark_inode_dirty(inode);
2034
2035 spin_lock(&inode->i_lock);
2036 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2037 goto out_unlock_inode;
2038 if ((inode->i_state & flags) != flags) {
2039 const int was_dirty = inode->i_state & I_DIRTY;
2040
2041 inode_attach_wb(inode, NULL);
2042
2043 if (flags & I_DIRTY_INODE)
2044 inode->i_state &= ~I_DIRTY_TIME;
2045 inode->i_state |= flags;
2046
2047 /*
2048 * If the inode is being synced, just update its dirty state.
2049 * The unlocker will place the inode on the appropriate
2050 * superblock list, based upon its state.
2051 */
2052 if (inode->i_state & I_SYNC)
2053 goto out_unlock_inode;
2054
2055 /*
2056 * Only add valid (hashed) inodes to the superblock's
2057 * dirty list. Add blockdev inodes as well.
2058 */
2059 if (!S_ISBLK(inode->i_mode)) {
2060 if (inode_unhashed(inode))
2061 goto out_unlock_inode;
2062 }
2063 if (inode->i_state & I_FREEING)
2064 goto out_unlock_inode;
2065
2066 /*
2067 * If the inode was already on b_dirty/b_io/b_more_io, don't
2068 * reposition it (that would break b_dirty time-ordering).
2069 */
2070 if (!was_dirty) {
2071 struct bdi_writeback *wb;
2072 struct list_head *dirty_list;
2073 bool wakeup_bdi = false;
2074
2075 wb = locked_inode_to_wb_and_lock_list(inode);
2076
2077 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2078 !test_bit(WB_registered, &wb->state),
2079 "bdi-%s not registered\n", wb->bdi->name);
2080
2081 inode->dirtied_when = jiffies;
2082 if (dirtytime)
2083 inode->dirtied_time_when = jiffies;
2084
2085 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2086 dirty_list = &wb->b_dirty;
2087 else
2088 dirty_list = &wb->b_dirty_time;
2089
2090 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
2091 dirty_list);
2092
2093 spin_unlock(&wb->list_lock);
2094 trace_writeback_dirty_inode_enqueue(inode);
2095
2096 /*
2097 * If this is the first dirty inode for this bdi,
2098 * we have to wake-up the corresponding bdi thread
2099 * to make sure background write-back happens
2100 * later.
2101 */
2102 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2103 wb_wakeup_delayed(wb);
2104 return;
2105 }
2106 }
2107 out_unlock_inode:
2108 spin_unlock(&inode->i_lock);
2109
2110 }
2111 EXPORT_SYMBOL(__mark_inode_dirty);
2112
2113 static void wait_sb_inodes(struct super_block *sb)
2114 {
2115 struct inode *inode, *old_inode = NULL;
2116
2117 /*
2118 * We need to be protected against the filesystem going from
2119 * r/o to r/w or vice versa.
2120 */
2121 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2122
2123 spin_lock(&inode_sb_list_lock);
2124
2125 /*
2126 * Data integrity sync. Must wait for all pages under writeback,
2127 * because there may have been pages dirtied before our sync
2128 * call, but which had writeout started before we write it out.
2129 * In which case, the inode may not be on the dirty list, but
2130 * we still have to wait for that writeout.
2131 */
2132 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2133 struct address_space *mapping = inode->i_mapping;
2134
2135 spin_lock(&inode->i_lock);
2136 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2137 (mapping->nrpages == 0)) {
2138 spin_unlock(&inode->i_lock);
2139 continue;
2140 }
2141 __iget(inode);
2142 spin_unlock(&inode->i_lock);
2143 spin_unlock(&inode_sb_list_lock);
2144
2145 /*
2146 * We hold a reference to 'inode' so it couldn't have been
2147 * removed from s_inodes list while we dropped the
2148 * inode_sb_list_lock. We cannot iput the inode now as we can
2149 * be holding the last reference and we cannot iput it under
2150 * inode_sb_list_lock. So we keep the reference and iput it
2151 * later.
2152 */
2153 iput(old_inode);
2154 old_inode = inode;
2155
2156 filemap_fdatawait(mapping);
2157
2158 cond_resched();
2159
2160 spin_lock(&inode_sb_list_lock);
2161 }
2162 spin_unlock(&inode_sb_list_lock);
2163 iput(old_inode);
2164 }
2165
2166 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2167 enum wb_reason reason, bool skip_if_busy)
2168 {
2169 DEFINE_WB_COMPLETION_ONSTACK(done);
2170 struct wb_writeback_work work = {
2171 .sb = sb,
2172 .sync_mode = WB_SYNC_NONE,
2173 .tagged_writepages = 1,
2174 .done = &done,
2175 .nr_pages = nr,
2176 .reason = reason,
2177 };
2178 struct backing_dev_info *bdi = sb->s_bdi;
2179
2180 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2181 return;
2182 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2183
2184 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2185 wb_wait_for_completion(bdi, &done);
2186 }
2187
2188 /**
2189 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2190 * @sb: the superblock
2191 * @nr: the number of pages to write
2192 * @reason: reason why some writeback work initiated
2193 *
2194 * Start writeback on some inodes on this super_block. No guarantees are made
2195 * on how many (if any) will be written, and this function does not wait
2196 * for IO completion of submitted IO.
2197 */
2198 void writeback_inodes_sb_nr(struct super_block *sb,
2199 unsigned long nr,
2200 enum wb_reason reason)
2201 {
2202 __writeback_inodes_sb_nr(sb, nr, reason, false);
2203 }
2204 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2205
2206 /**
2207 * writeback_inodes_sb - writeback dirty inodes from given super_block
2208 * @sb: the superblock
2209 * @reason: reason why some writeback work was initiated
2210 *
2211 * Start writeback on some inodes on this super_block. No guarantees are made
2212 * on how many (if any) will be written, and this function does not wait
2213 * for IO completion of submitted IO.
2214 */
2215 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2216 {
2217 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2218 }
2219 EXPORT_SYMBOL(writeback_inodes_sb);
2220
2221 /**
2222 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2223 * @sb: the superblock
2224 * @nr: the number of pages to write
2225 * @reason: the reason of writeback
2226 *
2227 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2228 * Returns 1 if writeback was started, 0 if not.
2229 */
2230 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2231 enum wb_reason reason)
2232 {
2233 if (!down_read_trylock(&sb->s_umount))
2234 return false;
2235
2236 __writeback_inodes_sb_nr(sb, nr, reason, true);
2237 up_read(&sb->s_umount);
2238 return true;
2239 }
2240 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2241
2242 /**
2243 * try_to_writeback_inodes_sb - try to start writeback if none underway
2244 * @sb: the superblock
2245 * @reason: reason why some writeback work was initiated
2246 *
2247 * Implement by try_to_writeback_inodes_sb_nr()
2248 * Returns 1 if writeback was started, 0 if not.
2249 */
2250 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2251 {
2252 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2253 }
2254 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2255
2256 /**
2257 * sync_inodes_sb - sync sb inode pages
2258 * @sb: the superblock
2259 *
2260 * This function writes and waits on any dirty inode belonging to this
2261 * super_block.
2262 */
2263 void sync_inodes_sb(struct super_block *sb)
2264 {
2265 DEFINE_WB_COMPLETION_ONSTACK(done);
2266 struct wb_writeback_work work = {
2267 .sb = sb,
2268 .sync_mode = WB_SYNC_ALL,
2269 .nr_pages = LONG_MAX,
2270 .range_cyclic = 0,
2271 .done = &done,
2272 .reason = WB_REASON_SYNC,
2273 .for_sync = 1,
2274 };
2275 struct backing_dev_info *bdi = sb->s_bdi;
2276
2277 /* Nothing to do? */
2278 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2279 return;
2280 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2281
2282 bdi_split_work_to_wbs(bdi, &work, false);
2283 wb_wait_for_completion(bdi, &done);
2284
2285 wait_sb_inodes(sb);
2286 }
2287 EXPORT_SYMBOL(sync_inodes_sb);
2288
2289 /**
2290 * write_inode_now - write an inode to disk
2291 * @inode: inode to write to disk
2292 * @sync: whether the write should be synchronous or not
2293 *
2294 * This function commits an inode to disk immediately if it is dirty. This is
2295 * primarily needed by knfsd.
2296 *
2297 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2298 */
2299 int write_inode_now(struct inode *inode, int sync)
2300 {
2301 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2302 struct writeback_control wbc = {
2303 .nr_to_write = LONG_MAX,
2304 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2305 .range_start = 0,
2306 .range_end = LLONG_MAX,
2307 };
2308
2309 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2310 wbc.nr_to_write = 0;
2311
2312 might_sleep();
2313 return writeback_single_inode(inode, wb, &wbc);
2314 }
2315 EXPORT_SYMBOL(write_inode_now);
2316
2317 /**
2318 * sync_inode - write an inode and its pages to disk.
2319 * @inode: the inode to sync
2320 * @wbc: controls the writeback mode
2321 *
2322 * sync_inode() will write an inode and its pages to disk. It will also
2323 * correctly update the inode on its superblock's dirty inode lists and will
2324 * update inode->i_state.
2325 *
2326 * The caller must have a ref on the inode.
2327 */
2328 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2329 {
2330 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2331 }
2332 EXPORT_SYMBOL(sync_inode);
2333
2334 /**
2335 * sync_inode_metadata - write an inode to disk
2336 * @inode: the inode to sync
2337 * @wait: wait for I/O to complete.
2338 *
2339 * Write an inode to disk and adjust its dirty state after completion.
2340 *
2341 * Note: only writes the actual inode, no associated data or other metadata.
2342 */
2343 int sync_inode_metadata(struct inode *inode, int wait)
2344 {
2345 struct writeback_control wbc = {
2346 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2347 .nr_to_write = 0, /* metadata-only */
2348 };
2349
2350 return sync_inode(inode, &wbc);
2351 }
2352 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.117365 seconds and 5 git commands to generate.