vfio/pci: Fix typos in comments
[deliverable/linux.git] / fs / kernfs / dir.c
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46
47 /* kernfs_node_depth - compute depth from @from to @to */
48 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
49 {
50 size_t depth = 0;
51
52 while (to->parent && to != from) {
53 depth++;
54 to = to->parent;
55 }
56 return depth;
57 }
58
59 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
60 struct kernfs_node *b)
61 {
62 size_t da, db;
63 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
64
65 if (ra != rb)
66 return NULL;
67
68 da = kernfs_depth(ra->kn, a);
69 db = kernfs_depth(rb->kn, b);
70
71 while (da > db) {
72 a = a->parent;
73 da--;
74 }
75 while (db > da) {
76 b = b->parent;
77 db--;
78 }
79
80 /* worst case b and a will be the same at root */
81 while (b != a) {
82 b = b->parent;
83 a = a->parent;
84 }
85
86 return a;
87 }
88
89 /**
90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91 * where kn_from is treated as root of the path.
92 * @kn_from: kernfs node which should be treated as root for the path
93 * @kn_to: kernfs node to which path is needed
94 * @buf: buffer to copy the path into
95 * @buflen: size of @buf
96 *
97 * We need to handle couple of scenarios here:
98 * [1] when @kn_from is an ancestor of @kn_to at some level
99 * kn_from: /n1/n2/n3
100 * kn_to: /n1/n2/n3/n4/n5
101 * result: /n4/n5
102 *
103 * [2] when @kn_from is on a different hierarchy and we need to find common
104 * ancestor between @kn_from and @kn_to.
105 * kn_from: /n1/n2/n3/n4
106 * kn_to: /n1/n2/n5
107 * result: /../../n5
108 * OR
109 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
110 * kn_to: /n1/n2/n3 [depth=3]
111 * result: /../..
112 *
113 * return value: length of the string. If greater than buflen,
114 * then contents of buf are undefined. On error, -1 is returned.
115 */
116 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
117 struct kernfs_node *kn_from,
118 char *buf, size_t buflen)
119 {
120 struct kernfs_node *kn, *common;
121 const char parent_str[] = "/..";
122 size_t depth_from, depth_to, len = 0, nlen = 0;
123 char *p;
124 int i;
125
126 if (!kn_from)
127 kn_from = kernfs_root(kn_to)->kn;
128
129 if (kn_from == kn_to)
130 return strlcpy(buf, "/", buflen);
131
132 common = kernfs_common_ancestor(kn_from, kn_to);
133 if (WARN_ON(!common))
134 return -1;
135
136 depth_to = kernfs_depth(common, kn_to);
137 depth_from = kernfs_depth(common, kn_from);
138
139 if (buf)
140 buf[0] = '\0';
141
142 for (i = 0; i < depth_from; i++)
143 len += strlcpy(buf + len, parent_str,
144 len < buflen ? buflen - len : 0);
145
146 /* Calculate how many bytes we need for the rest */
147 for (kn = kn_to; kn != common; kn = kn->parent)
148 nlen += strlen(kn->name) + 1;
149
150 if (len + nlen >= buflen)
151 return len + nlen;
152
153 p = buf + len + nlen;
154 *p = '\0';
155 for (kn = kn_to; kn != common; kn = kn->parent) {
156 size_t tmp = strlen(kn->name);
157 p -= tmp;
158 memcpy(p, kn->name, tmp);
159 *(--p) = '/';
160 }
161
162 return len + nlen;
163 }
164
165 /**
166 * kernfs_name - obtain the name of a given node
167 * @kn: kernfs_node of interest
168 * @buf: buffer to copy @kn's name into
169 * @buflen: size of @buf
170 *
171 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
172 * similar to strlcpy(). It returns the length of @kn's name and if @buf
173 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
174 *
175 * This function can be called from any context.
176 */
177 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
178 {
179 unsigned long flags;
180 int ret;
181
182 spin_lock_irqsave(&kernfs_rename_lock, flags);
183 ret = kernfs_name_locked(kn, buf, buflen);
184 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
185 return ret;
186 }
187
188 /**
189 * kernfs_path_len - determine the length of the full path of a given node
190 * @kn: kernfs_node of interest
191 *
192 * The returned length doesn't include the space for the terminating '\0'.
193 */
194 size_t kernfs_path_len(struct kernfs_node *kn)
195 {
196 size_t len = 0;
197 unsigned long flags;
198
199 spin_lock_irqsave(&kernfs_rename_lock, flags);
200
201 do {
202 len += strlen(kn->name) + 1;
203 kn = kn->parent;
204 } while (kn && kn->parent);
205
206 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
207
208 return len;
209 }
210
211 /**
212 * kernfs_path_from_node - build path of node @to relative to @from.
213 * @from: parent kernfs_node relative to which we need to build the path
214 * @to: kernfs_node of interest
215 * @buf: buffer to copy @to's path into
216 * @buflen: size of @buf
217 *
218 * Builds @to's path relative to @from in @buf. @from and @to must
219 * be on the same kernfs-root. If @from is not parent of @to, then a relative
220 * path (which includes '..'s) as needed to reach from @from to @to is
221 * returned.
222 *
223 * If @buf isn't long enough, the return value will be greater than @buflen
224 * and @buf contents are undefined.
225 */
226 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
227 char *buf, size_t buflen)
228 {
229 unsigned long flags;
230 int ret;
231
232 spin_lock_irqsave(&kernfs_rename_lock, flags);
233 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
234 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
235 return ret;
236 }
237 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
238
239 /**
240 * kernfs_path - build full path of a given node
241 * @kn: kernfs_node of interest
242 * @buf: buffer to copy @kn's name into
243 * @buflen: size of @buf
244 *
245 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
246 * path is built from the end of @buf so the returned pointer usually
247 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
248 * and %NULL is returned.
249 */
250 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
251 {
252 int ret;
253
254 ret = kernfs_path_from_node(kn, NULL, buf, buflen);
255 if (ret < 0 || ret >= buflen)
256 return NULL;
257 return buf;
258 }
259 EXPORT_SYMBOL_GPL(kernfs_path);
260
261 /**
262 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
263 * @kn: kernfs_node of interest
264 *
265 * This function can be called from any context.
266 */
267 void pr_cont_kernfs_name(struct kernfs_node *kn)
268 {
269 unsigned long flags;
270
271 spin_lock_irqsave(&kernfs_rename_lock, flags);
272
273 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
274 pr_cont("%s", kernfs_pr_cont_buf);
275
276 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
277 }
278
279 /**
280 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
281 * @kn: kernfs_node of interest
282 *
283 * This function can be called from any context.
284 */
285 void pr_cont_kernfs_path(struct kernfs_node *kn)
286 {
287 unsigned long flags;
288 int sz;
289
290 spin_lock_irqsave(&kernfs_rename_lock, flags);
291
292 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
293 sizeof(kernfs_pr_cont_buf));
294 if (sz < 0) {
295 pr_cont("(error)");
296 goto out;
297 }
298
299 if (sz >= sizeof(kernfs_pr_cont_buf)) {
300 pr_cont("(name too long)");
301 goto out;
302 }
303
304 pr_cont("%s", kernfs_pr_cont_buf);
305
306 out:
307 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
308 }
309
310 /**
311 * kernfs_get_parent - determine the parent node and pin it
312 * @kn: kernfs_node of interest
313 *
314 * Determines @kn's parent, pins and returns it. This function can be
315 * called from any context.
316 */
317 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
318 {
319 struct kernfs_node *parent;
320 unsigned long flags;
321
322 spin_lock_irqsave(&kernfs_rename_lock, flags);
323 parent = kn->parent;
324 kernfs_get(parent);
325 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
326
327 return parent;
328 }
329
330 /**
331 * kernfs_name_hash
332 * @name: Null terminated string to hash
333 * @ns: Namespace tag to hash
334 *
335 * Returns 31 bit hash of ns + name (so it fits in an off_t )
336 */
337 static unsigned int kernfs_name_hash(const char *name, const void *ns)
338 {
339 unsigned long hash = init_name_hash(ns);
340 unsigned int len = strlen(name);
341 while (len--)
342 hash = partial_name_hash(*name++, hash);
343 hash = end_name_hash(hash);
344 hash &= 0x7fffffffU;
345 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
346 if (hash < 2)
347 hash += 2;
348 if (hash >= INT_MAX)
349 hash = INT_MAX - 1;
350 return hash;
351 }
352
353 static int kernfs_name_compare(unsigned int hash, const char *name,
354 const void *ns, const struct kernfs_node *kn)
355 {
356 if (hash < kn->hash)
357 return -1;
358 if (hash > kn->hash)
359 return 1;
360 if (ns < kn->ns)
361 return -1;
362 if (ns > kn->ns)
363 return 1;
364 return strcmp(name, kn->name);
365 }
366
367 static int kernfs_sd_compare(const struct kernfs_node *left,
368 const struct kernfs_node *right)
369 {
370 return kernfs_name_compare(left->hash, left->name, left->ns, right);
371 }
372
373 /**
374 * kernfs_link_sibling - link kernfs_node into sibling rbtree
375 * @kn: kernfs_node of interest
376 *
377 * Link @kn into its sibling rbtree which starts from
378 * @kn->parent->dir.children.
379 *
380 * Locking:
381 * mutex_lock(kernfs_mutex)
382 *
383 * RETURNS:
384 * 0 on susccess -EEXIST on failure.
385 */
386 static int kernfs_link_sibling(struct kernfs_node *kn)
387 {
388 struct rb_node **node = &kn->parent->dir.children.rb_node;
389 struct rb_node *parent = NULL;
390
391 while (*node) {
392 struct kernfs_node *pos;
393 int result;
394
395 pos = rb_to_kn(*node);
396 parent = *node;
397 result = kernfs_sd_compare(kn, pos);
398 if (result < 0)
399 node = &pos->rb.rb_left;
400 else if (result > 0)
401 node = &pos->rb.rb_right;
402 else
403 return -EEXIST;
404 }
405
406 /* add new node and rebalance the tree */
407 rb_link_node(&kn->rb, parent, node);
408 rb_insert_color(&kn->rb, &kn->parent->dir.children);
409
410 /* successfully added, account subdir number */
411 if (kernfs_type(kn) == KERNFS_DIR)
412 kn->parent->dir.subdirs++;
413
414 return 0;
415 }
416
417 /**
418 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
419 * @kn: kernfs_node of interest
420 *
421 * Try to unlink @kn from its sibling rbtree which starts from
422 * kn->parent->dir.children. Returns %true if @kn was actually
423 * removed, %false if @kn wasn't on the rbtree.
424 *
425 * Locking:
426 * mutex_lock(kernfs_mutex)
427 */
428 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
429 {
430 if (RB_EMPTY_NODE(&kn->rb))
431 return false;
432
433 if (kernfs_type(kn) == KERNFS_DIR)
434 kn->parent->dir.subdirs--;
435
436 rb_erase(&kn->rb, &kn->parent->dir.children);
437 RB_CLEAR_NODE(&kn->rb);
438 return true;
439 }
440
441 /**
442 * kernfs_get_active - get an active reference to kernfs_node
443 * @kn: kernfs_node to get an active reference to
444 *
445 * Get an active reference of @kn. This function is noop if @kn
446 * is NULL.
447 *
448 * RETURNS:
449 * Pointer to @kn on success, NULL on failure.
450 */
451 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
452 {
453 if (unlikely(!kn))
454 return NULL;
455
456 if (!atomic_inc_unless_negative(&kn->active))
457 return NULL;
458
459 if (kernfs_lockdep(kn))
460 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
461 return kn;
462 }
463
464 /**
465 * kernfs_put_active - put an active reference to kernfs_node
466 * @kn: kernfs_node to put an active reference to
467 *
468 * Put an active reference to @kn. This function is noop if @kn
469 * is NULL.
470 */
471 void kernfs_put_active(struct kernfs_node *kn)
472 {
473 struct kernfs_root *root = kernfs_root(kn);
474 int v;
475
476 if (unlikely(!kn))
477 return;
478
479 if (kernfs_lockdep(kn))
480 rwsem_release(&kn->dep_map, 1, _RET_IP_);
481 v = atomic_dec_return(&kn->active);
482 if (likely(v != KN_DEACTIVATED_BIAS))
483 return;
484
485 wake_up_all(&root->deactivate_waitq);
486 }
487
488 /**
489 * kernfs_drain - drain kernfs_node
490 * @kn: kernfs_node to drain
491 *
492 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
493 * removers may invoke this function concurrently on @kn and all will
494 * return after draining is complete.
495 */
496 static void kernfs_drain(struct kernfs_node *kn)
497 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
498 {
499 struct kernfs_root *root = kernfs_root(kn);
500
501 lockdep_assert_held(&kernfs_mutex);
502 WARN_ON_ONCE(kernfs_active(kn));
503
504 mutex_unlock(&kernfs_mutex);
505
506 if (kernfs_lockdep(kn)) {
507 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
508 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
509 lock_contended(&kn->dep_map, _RET_IP_);
510 }
511
512 /* but everyone should wait for draining */
513 wait_event(root->deactivate_waitq,
514 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
515
516 if (kernfs_lockdep(kn)) {
517 lock_acquired(&kn->dep_map, _RET_IP_);
518 rwsem_release(&kn->dep_map, 1, _RET_IP_);
519 }
520
521 kernfs_unmap_bin_file(kn);
522
523 mutex_lock(&kernfs_mutex);
524 }
525
526 /**
527 * kernfs_get - get a reference count on a kernfs_node
528 * @kn: the target kernfs_node
529 */
530 void kernfs_get(struct kernfs_node *kn)
531 {
532 if (kn) {
533 WARN_ON(!atomic_read(&kn->count));
534 atomic_inc(&kn->count);
535 }
536 }
537 EXPORT_SYMBOL_GPL(kernfs_get);
538
539 /**
540 * kernfs_put - put a reference count on a kernfs_node
541 * @kn: the target kernfs_node
542 *
543 * Put a reference count of @kn and destroy it if it reached zero.
544 */
545 void kernfs_put(struct kernfs_node *kn)
546 {
547 struct kernfs_node *parent;
548 struct kernfs_root *root;
549
550 if (!kn || !atomic_dec_and_test(&kn->count))
551 return;
552 root = kernfs_root(kn);
553 repeat:
554 /*
555 * Moving/renaming is always done while holding reference.
556 * kn->parent won't change beneath us.
557 */
558 parent = kn->parent;
559
560 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
561 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
562 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
563
564 if (kernfs_type(kn) == KERNFS_LINK)
565 kernfs_put(kn->symlink.target_kn);
566
567 kfree_const(kn->name);
568
569 if (kn->iattr) {
570 if (kn->iattr->ia_secdata)
571 security_release_secctx(kn->iattr->ia_secdata,
572 kn->iattr->ia_secdata_len);
573 simple_xattrs_free(&kn->iattr->xattrs);
574 }
575 kfree(kn->iattr);
576 ida_simple_remove(&root->ino_ida, kn->ino);
577 kmem_cache_free(kernfs_node_cache, kn);
578
579 kn = parent;
580 if (kn) {
581 if (atomic_dec_and_test(&kn->count))
582 goto repeat;
583 } else {
584 /* just released the root kn, free @root too */
585 ida_destroy(&root->ino_ida);
586 kfree(root);
587 }
588 }
589 EXPORT_SYMBOL_GPL(kernfs_put);
590
591 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
592 {
593 struct kernfs_node *kn;
594
595 if (flags & LOOKUP_RCU)
596 return -ECHILD;
597
598 /* Always perform fresh lookup for negatives */
599 if (d_really_is_negative(dentry))
600 goto out_bad_unlocked;
601
602 kn = dentry->d_fsdata;
603 mutex_lock(&kernfs_mutex);
604
605 /* The kernfs node has been deactivated */
606 if (!kernfs_active(kn))
607 goto out_bad;
608
609 /* The kernfs node has been moved? */
610 if (dentry->d_parent->d_fsdata != kn->parent)
611 goto out_bad;
612
613 /* The kernfs node has been renamed */
614 if (strcmp(dentry->d_name.name, kn->name) != 0)
615 goto out_bad;
616
617 /* The kernfs node has been moved to a different namespace */
618 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
619 kernfs_info(dentry->d_sb)->ns != kn->ns)
620 goto out_bad;
621
622 mutex_unlock(&kernfs_mutex);
623 return 1;
624 out_bad:
625 mutex_unlock(&kernfs_mutex);
626 out_bad_unlocked:
627 return 0;
628 }
629
630 static void kernfs_dop_release(struct dentry *dentry)
631 {
632 kernfs_put(dentry->d_fsdata);
633 }
634
635 const struct dentry_operations kernfs_dops = {
636 .d_revalidate = kernfs_dop_revalidate,
637 .d_release = kernfs_dop_release,
638 };
639
640 /**
641 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
642 * @dentry: the dentry in question
643 *
644 * Return the kernfs_node associated with @dentry. If @dentry is not a
645 * kernfs one, %NULL is returned.
646 *
647 * While the returned kernfs_node will stay accessible as long as @dentry
648 * is accessible, the returned node can be in any state and the caller is
649 * fully responsible for determining what's accessible.
650 */
651 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
652 {
653 if (dentry->d_sb->s_op == &kernfs_sops)
654 return dentry->d_fsdata;
655 return NULL;
656 }
657
658 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
659 const char *name, umode_t mode,
660 unsigned flags)
661 {
662 struct kernfs_node *kn;
663 int ret;
664
665 name = kstrdup_const(name, GFP_KERNEL);
666 if (!name)
667 return NULL;
668
669 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
670 if (!kn)
671 goto err_out1;
672
673 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
674 if (ret < 0)
675 goto err_out2;
676 kn->ino = ret;
677
678 atomic_set(&kn->count, 1);
679 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
680 RB_CLEAR_NODE(&kn->rb);
681
682 kn->name = name;
683 kn->mode = mode;
684 kn->flags = flags;
685
686 return kn;
687
688 err_out2:
689 kmem_cache_free(kernfs_node_cache, kn);
690 err_out1:
691 kfree_const(name);
692 return NULL;
693 }
694
695 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
696 const char *name, umode_t mode,
697 unsigned flags)
698 {
699 struct kernfs_node *kn;
700
701 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
702 if (kn) {
703 kernfs_get(parent);
704 kn->parent = parent;
705 }
706 return kn;
707 }
708
709 /**
710 * kernfs_add_one - add kernfs_node to parent without warning
711 * @kn: kernfs_node to be added
712 *
713 * The caller must already have initialized @kn->parent. This
714 * function increments nlink of the parent's inode if @kn is a
715 * directory and link into the children list of the parent.
716 *
717 * RETURNS:
718 * 0 on success, -EEXIST if entry with the given name already
719 * exists.
720 */
721 int kernfs_add_one(struct kernfs_node *kn)
722 {
723 struct kernfs_node *parent = kn->parent;
724 struct kernfs_iattrs *ps_iattr;
725 bool has_ns;
726 int ret;
727
728 mutex_lock(&kernfs_mutex);
729
730 ret = -EINVAL;
731 has_ns = kernfs_ns_enabled(parent);
732 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
733 has_ns ? "required" : "invalid", parent->name, kn->name))
734 goto out_unlock;
735
736 if (kernfs_type(parent) != KERNFS_DIR)
737 goto out_unlock;
738
739 ret = -ENOENT;
740 if (parent->flags & KERNFS_EMPTY_DIR)
741 goto out_unlock;
742
743 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
744 goto out_unlock;
745
746 kn->hash = kernfs_name_hash(kn->name, kn->ns);
747
748 ret = kernfs_link_sibling(kn);
749 if (ret)
750 goto out_unlock;
751
752 /* Update timestamps on the parent */
753 ps_iattr = parent->iattr;
754 if (ps_iattr) {
755 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
756 ktime_get_real_ts(&ps_iattrs->ia_ctime);
757 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
758 }
759
760 mutex_unlock(&kernfs_mutex);
761
762 /*
763 * Activate the new node unless CREATE_DEACTIVATED is requested.
764 * If not activated here, the kernfs user is responsible for
765 * activating the node with kernfs_activate(). A node which hasn't
766 * been activated is not visible to userland and its removal won't
767 * trigger deactivation.
768 */
769 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
770 kernfs_activate(kn);
771 return 0;
772
773 out_unlock:
774 mutex_unlock(&kernfs_mutex);
775 return ret;
776 }
777
778 /**
779 * kernfs_find_ns - find kernfs_node with the given name
780 * @parent: kernfs_node to search under
781 * @name: name to look for
782 * @ns: the namespace tag to use
783 *
784 * Look for kernfs_node with name @name under @parent. Returns pointer to
785 * the found kernfs_node on success, %NULL on failure.
786 */
787 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
788 const unsigned char *name,
789 const void *ns)
790 {
791 struct rb_node *node = parent->dir.children.rb_node;
792 bool has_ns = kernfs_ns_enabled(parent);
793 unsigned int hash;
794
795 lockdep_assert_held(&kernfs_mutex);
796
797 if (has_ns != (bool)ns) {
798 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
799 has_ns ? "required" : "invalid", parent->name, name);
800 return NULL;
801 }
802
803 hash = kernfs_name_hash(name, ns);
804 while (node) {
805 struct kernfs_node *kn;
806 int result;
807
808 kn = rb_to_kn(node);
809 result = kernfs_name_compare(hash, name, ns, kn);
810 if (result < 0)
811 node = node->rb_left;
812 else if (result > 0)
813 node = node->rb_right;
814 else
815 return kn;
816 }
817 return NULL;
818 }
819
820 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
821 const unsigned char *path,
822 const void *ns)
823 {
824 size_t len;
825 char *p, *name;
826
827 lockdep_assert_held(&kernfs_mutex);
828
829 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
830 spin_lock_irq(&kernfs_rename_lock);
831
832 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
833
834 if (len >= sizeof(kernfs_pr_cont_buf)) {
835 spin_unlock_irq(&kernfs_rename_lock);
836 return NULL;
837 }
838
839 p = kernfs_pr_cont_buf;
840
841 while ((name = strsep(&p, "/")) && parent) {
842 if (*name == '\0')
843 continue;
844 parent = kernfs_find_ns(parent, name, ns);
845 }
846
847 spin_unlock_irq(&kernfs_rename_lock);
848
849 return parent;
850 }
851
852 /**
853 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
854 * @parent: kernfs_node to search under
855 * @name: name to look for
856 * @ns: the namespace tag to use
857 *
858 * Look for kernfs_node with name @name under @parent and get a reference
859 * if found. This function may sleep and returns pointer to the found
860 * kernfs_node on success, %NULL on failure.
861 */
862 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
863 const char *name, const void *ns)
864 {
865 struct kernfs_node *kn;
866
867 mutex_lock(&kernfs_mutex);
868 kn = kernfs_find_ns(parent, name, ns);
869 kernfs_get(kn);
870 mutex_unlock(&kernfs_mutex);
871
872 return kn;
873 }
874 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
875
876 /**
877 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
878 * @parent: kernfs_node to search under
879 * @path: path to look for
880 * @ns: the namespace tag to use
881 *
882 * Look for kernfs_node with path @path under @parent and get a reference
883 * if found. This function may sleep and returns pointer to the found
884 * kernfs_node on success, %NULL on failure.
885 */
886 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
887 const char *path, const void *ns)
888 {
889 struct kernfs_node *kn;
890
891 mutex_lock(&kernfs_mutex);
892 kn = kernfs_walk_ns(parent, path, ns);
893 kernfs_get(kn);
894 mutex_unlock(&kernfs_mutex);
895
896 return kn;
897 }
898
899 /**
900 * kernfs_create_root - create a new kernfs hierarchy
901 * @scops: optional syscall operations for the hierarchy
902 * @flags: KERNFS_ROOT_* flags
903 * @priv: opaque data associated with the new directory
904 *
905 * Returns the root of the new hierarchy on success, ERR_PTR() value on
906 * failure.
907 */
908 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
909 unsigned int flags, void *priv)
910 {
911 struct kernfs_root *root;
912 struct kernfs_node *kn;
913
914 root = kzalloc(sizeof(*root), GFP_KERNEL);
915 if (!root)
916 return ERR_PTR(-ENOMEM);
917
918 ida_init(&root->ino_ida);
919 INIT_LIST_HEAD(&root->supers);
920
921 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
922 KERNFS_DIR);
923 if (!kn) {
924 ida_destroy(&root->ino_ida);
925 kfree(root);
926 return ERR_PTR(-ENOMEM);
927 }
928
929 kn->priv = priv;
930 kn->dir.root = root;
931
932 root->syscall_ops = scops;
933 root->flags = flags;
934 root->kn = kn;
935 init_waitqueue_head(&root->deactivate_waitq);
936
937 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
938 kernfs_activate(kn);
939
940 return root;
941 }
942
943 /**
944 * kernfs_destroy_root - destroy a kernfs hierarchy
945 * @root: root of the hierarchy to destroy
946 *
947 * Destroy the hierarchy anchored at @root by removing all existing
948 * directories and destroying @root.
949 */
950 void kernfs_destroy_root(struct kernfs_root *root)
951 {
952 kernfs_remove(root->kn); /* will also free @root */
953 }
954
955 /**
956 * kernfs_create_dir_ns - create a directory
957 * @parent: parent in which to create a new directory
958 * @name: name of the new directory
959 * @mode: mode of the new directory
960 * @priv: opaque data associated with the new directory
961 * @ns: optional namespace tag of the directory
962 *
963 * Returns the created node on success, ERR_PTR() value on failure.
964 */
965 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
966 const char *name, umode_t mode,
967 void *priv, const void *ns)
968 {
969 struct kernfs_node *kn;
970 int rc;
971
972 /* allocate */
973 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
974 if (!kn)
975 return ERR_PTR(-ENOMEM);
976
977 kn->dir.root = parent->dir.root;
978 kn->ns = ns;
979 kn->priv = priv;
980
981 /* link in */
982 rc = kernfs_add_one(kn);
983 if (!rc)
984 return kn;
985
986 kernfs_put(kn);
987 return ERR_PTR(rc);
988 }
989
990 /**
991 * kernfs_create_empty_dir - create an always empty directory
992 * @parent: parent in which to create a new directory
993 * @name: name of the new directory
994 *
995 * Returns the created node on success, ERR_PTR() value on failure.
996 */
997 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
998 const char *name)
999 {
1000 struct kernfs_node *kn;
1001 int rc;
1002
1003 /* allocate */
1004 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1005 if (!kn)
1006 return ERR_PTR(-ENOMEM);
1007
1008 kn->flags |= KERNFS_EMPTY_DIR;
1009 kn->dir.root = parent->dir.root;
1010 kn->ns = NULL;
1011 kn->priv = NULL;
1012
1013 /* link in */
1014 rc = kernfs_add_one(kn);
1015 if (!rc)
1016 return kn;
1017
1018 kernfs_put(kn);
1019 return ERR_PTR(rc);
1020 }
1021
1022 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1023 struct dentry *dentry,
1024 unsigned int flags)
1025 {
1026 struct dentry *ret;
1027 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
1028 struct kernfs_node *kn;
1029 struct inode *inode;
1030 const void *ns = NULL;
1031
1032 mutex_lock(&kernfs_mutex);
1033
1034 if (kernfs_ns_enabled(parent))
1035 ns = kernfs_info(dir->i_sb)->ns;
1036
1037 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1038
1039 /* no such entry */
1040 if (!kn || !kernfs_active(kn)) {
1041 ret = NULL;
1042 goto out_unlock;
1043 }
1044 kernfs_get(kn);
1045 dentry->d_fsdata = kn;
1046
1047 /* attach dentry and inode */
1048 inode = kernfs_get_inode(dir->i_sb, kn);
1049 if (!inode) {
1050 ret = ERR_PTR(-ENOMEM);
1051 goto out_unlock;
1052 }
1053
1054 /* instantiate and hash dentry */
1055 ret = d_splice_alias(inode, dentry);
1056 out_unlock:
1057 mutex_unlock(&kernfs_mutex);
1058 return ret;
1059 }
1060
1061 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1062 umode_t mode)
1063 {
1064 struct kernfs_node *parent = dir->i_private;
1065 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1066 int ret;
1067
1068 if (!scops || !scops->mkdir)
1069 return -EPERM;
1070
1071 if (!kernfs_get_active(parent))
1072 return -ENODEV;
1073
1074 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1075
1076 kernfs_put_active(parent);
1077 return ret;
1078 }
1079
1080 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1081 {
1082 struct kernfs_node *kn = dentry->d_fsdata;
1083 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1084 int ret;
1085
1086 if (!scops || !scops->rmdir)
1087 return -EPERM;
1088
1089 if (!kernfs_get_active(kn))
1090 return -ENODEV;
1091
1092 ret = scops->rmdir(kn);
1093
1094 kernfs_put_active(kn);
1095 return ret;
1096 }
1097
1098 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1099 struct inode *new_dir, struct dentry *new_dentry)
1100 {
1101 struct kernfs_node *kn = old_dentry->d_fsdata;
1102 struct kernfs_node *new_parent = new_dir->i_private;
1103 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1104 int ret;
1105
1106 if (!scops || !scops->rename)
1107 return -EPERM;
1108
1109 if (!kernfs_get_active(kn))
1110 return -ENODEV;
1111
1112 if (!kernfs_get_active(new_parent)) {
1113 kernfs_put_active(kn);
1114 return -ENODEV;
1115 }
1116
1117 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1118
1119 kernfs_put_active(new_parent);
1120 kernfs_put_active(kn);
1121 return ret;
1122 }
1123
1124 const struct inode_operations kernfs_dir_iops = {
1125 .lookup = kernfs_iop_lookup,
1126 .permission = kernfs_iop_permission,
1127 .setattr = kernfs_iop_setattr,
1128 .getattr = kernfs_iop_getattr,
1129 .setxattr = kernfs_iop_setxattr,
1130 .removexattr = kernfs_iop_removexattr,
1131 .getxattr = kernfs_iop_getxattr,
1132 .listxattr = kernfs_iop_listxattr,
1133
1134 .mkdir = kernfs_iop_mkdir,
1135 .rmdir = kernfs_iop_rmdir,
1136 .rename = kernfs_iop_rename,
1137 };
1138
1139 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1140 {
1141 struct kernfs_node *last;
1142
1143 while (true) {
1144 struct rb_node *rbn;
1145
1146 last = pos;
1147
1148 if (kernfs_type(pos) != KERNFS_DIR)
1149 break;
1150
1151 rbn = rb_first(&pos->dir.children);
1152 if (!rbn)
1153 break;
1154
1155 pos = rb_to_kn(rbn);
1156 }
1157
1158 return last;
1159 }
1160
1161 /**
1162 * kernfs_next_descendant_post - find the next descendant for post-order walk
1163 * @pos: the current position (%NULL to initiate traversal)
1164 * @root: kernfs_node whose descendants to walk
1165 *
1166 * Find the next descendant to visit for post-order traversal of @root's
1167 * descendants. @root is included in the iteration and the last node to be
1168 * visited.
1169 */
1170 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1171 struct kernfs_node *root)
1172 {
1173 struct rb_node *rbn;
1174
1175 lockdep_assert_held(&kernfs_mutex);
1176
1177 /* if first iteration, visit leftmost descendant which may be root */
1178 if (!pos)
1179 return kernfs_leftmost_descendant(root);
1180
1181 /* if we visited @root, we're done */
1182 if (pos == root)
1183 return NULL;
1184
1185 /* if there's an unvisited sibling, visit its leftmost descendant */
1186 rbn = rb_next(&pos->rb);
1187 if (rbn)
1188 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1189
1190 /* no sibling left, visit parent */
1191 return pos->parent;
1192 }
1193
1194 /**
1195 * kernfs_activate - activate a node which started deactivated
1196 * @kn: kernfs_node whose subtree is to be activated
1197 *
1198 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1199 * needs to be explicitly activated. A node which hasn't been activated
1200 * isn't visible to userland and deactivation is skipped during its
1201 * removal. This is useful to construct atomic init sequences where
1202 * creation of multiple nodes should either succeed or fail atomically.
1203 *
1204 * The caller is responsible for ensuring that this function is not called
1205 * after kernfs_remove*() is invoked on @kn.
1206 */
1207 void kernfs_activate(struct kernfs_node *kn)
1208 {
1209 struct kernfs_node *pos;
1210
1211 mutex_lock(&kernfs_mutex);
1212
1213 pos = NULL;
1214 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1215 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1216 continue;
1217
1218 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1219 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1220
1221 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1222 pos->flags |= KERNFS_ACTIVATED;
1223 }
1224
1225 mutex_unlock(&kernfs_mutex);
1226 }
1227
1228 static void __kernfs_remove(struct kernfs_node *kn)
1229 {
1230 struct kernfs_node *pos;
1231
1232 lockdep_assert_held(&kernfs_mutex);
1233
1234 /*
1235 * Short-circuit if non-root @kn has already finished removal.
1236 * This is for kernfs_remove_self() which plays with active ref
1237 * after removal.
1238 */
1239 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1240 return;
1241
1242 pr_debug("kernfs %s: removing\n", kn->name);
1243
1244 /* prevent any new usage under @kn by deactivating all nodes */
1245 pos = NULL;
1246 while ((pos = kernfs_next_descendant_post(pos, kn)))
1247 if (kernfs_active(pos))
1248 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1249
1250 /* deactivate and unlink the subtree node-by-node */
1251 do {
1252 pos = kernfs_leftmost_descendant(kn);
1253
1254 /*
1255 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1256 * base ref could have been put by someone else by the time
1257 * the function returns. Make sure it doesn't go away
1258 * underneath us.
1259 */
1260 kernfs_get(pos);
1261
1262 /*
1263 * Drain iff @kn was activated. This avoids draining and
1264 * its lockdep annotations for nodes which have never been
1265 * activated and allows embedding kernfs_remove() in create
1266 * error paths without worrying about draining.
1267 */
1268 if (kn->flags & KERNFS_ACTIVATED)
1269 kernfs_drain(pos);
1270 else
1271 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1272
1273 /*
1274 * kernfs_unlink_sibling() succeeds once per node. Use it
1275 * to decide who's responsible for cleanups.
1276 */
1277 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1278 struct kernfs_iattrs *ps_iattr =
1279 pos->parent ? pos->parent->iattr : NULL;
1280
1281 /* update timestamps on the parent */
1282 if (ps_iattr) {
1283 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1284 ps_iattr->ia_iattr.ia_mtime =
1285 ps_iattr->ia_iattr.ia_ctime;
1286 }
1287
1288 kernfs_put(pos);
1289 }
1290
1291 kernfs_put(pos);
1292 } while (pos != kn);
1293 }
1294
1295 /**
1296 * kernfs_remove - remove a kernfs_node recursively
1297 * @kn: the kernfs_node to remove
1298 *
1299 * Remove @kn along with all its subdirectories and files.
1300 */
1301 void kernfs_remove(struct kernfs_node *kn)
1302 {
1303 mutex_lock(&kernfs_mutex);
1304 __kernfs_remove(kn);
1305 mutex_unlock(&kernfs_mutex);
1306 }
1307
1308 /**
1309 * kernfs_break_active_protection - break out of active protection
1310 * @kn: the self kernfs_node
1311 *
1312 * The caller must be running off of a kernfs operation which is invoked
1313 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1314 * this function must also be matched with an invocation of
1315 * kernfs_unbreak_active_protection().
1316 *
1317 * This function releases the active reference of @kn the caller is
1318 * holding. Once this function is called, @kn may be removed at any point
1319 * and the caller is solely responsible for ensuring that the objects it
1320 * dereferences are accessible.
1321 */
1322 void kernfs_break_active_protection(struct kernfs_node *kn)
1323 {
1324 /*
1325 * Take out ourself out of the active ref dependency chain. If
1326 * we're called without an active ref, lockdep will complain.
1327 */
1328 kernfs_put_active(kn);
1329 }
1330
1331 /**
1332 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1333 * @kn: the self kernfs_node
1334 *
1335 * If kernfs_break_active_protection() was called, this function must be
1336 * invoked before finishing the kernfs operation. Note that while this
1337 * function restores the active reference, it doesn't and can't actually
1338 * restore the active protection - @kn may already or be in the process of
1339 * being removed. Once kernfs_break_active_protection() is invoked, that
1340 * protection is irreversibly gone for the kernfs operation instance.
1341 *
1342 * While this function may be called at any point after
1343 * kernfs_break_active_protection() is invoked, its most useful location
1344 * would be right before the enclosing kernfs operation returns.
1345 */
1346 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1347 {
1348 /*
1349 * @kn->active could be in any state; however, the increment we do
1350 * here will be undone as soon as the enclosing kernfs operation
1351 * finishes and this temporary bump can't break anything. If @kn
1352 * is alive, nothing changes. If @kn is being deactivated, the
1353 * soon-to-follow put will either finish deactivation or restore
1354 * deactivated state. If @kn is already removed, the temporary
1355 * bump is guaranteed to be gone before @kn is released.
1356 */
1357 atomic_inc(&kn->active);
1358 if (kernfs_lockdep(kn))
1359 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1360 }
1361
1362 /**
1363 * kernfs_remove_self - remove a kernfs_node from its own method
1364 * @kn: the self kernfs_node to remove
1365 *
1366 * The caller must be running off of a kernfs operation which is invoked
1367 * with an active reference - e.g. one of kernfs_ops. This can be used to
1368 * implement a file operation which deletes itself.
1369 *
1370 * For example, the "delete" file for a sysfs device directory can be
1371 * implemented by invoking kernfs_remove_self() on the "delete" file
1372 * itself. This function breaks the circular dependency of trying to
1373 * deactivate self while holding an active ref itself. It isn't necessary
1374 * to modify the usual removal path to use kernfs_remove_self(). The
1375 * "delete" implementation can simply invoke kernfs_remove_self() on self
1376 * before proceeding with the usual removal path. kernfs will ignore later
1377 * kernfs_remove() on self.
1378 *
1379 * kernfs_remove_self() can be called multiple times concurrently on the
1380 * same kernfs_node. Only the first one actually performs removal and
1381 * returns %true. All others will wait until the kernfs operation which
1382 * won self-removal finishes and return %false. Note that the losers wait
1383 * for the completion of not only the winning kernfs_remove_self() but also
1384 * the whole kernfs_ops which won the arbitration. This can be used to
1385 * guarantee, for example, all concurrent writes to a "delete" file to
1386 * finish only after the whole operation is complete.
1387 */
1388 bool kernfs_remove_self(struct kernfs_node *kn)
1389 {
1390 bool ret;
1391
1392 mutex_lock(&kernfs_mutex);
1393 kernfs_break_active_protection(kn);
1394
1395 /*
1396 * SUICIDAL is used to arbitrate among competing invocations. Only
1397 * the first one will actually perform removal. When the removal
1398 * is complete, SUICIDED is set and the active ref is restored
1399 * while holding kernfs_mutex. The ones which lost arbitration
1400 * waits for SUICDED && drained which can happen only after the
1401 * enclosing kernfs operation which executed the winning instance
1402 * of kernfs_remove_self() finished.
1403 */
1404 if (!(kn->flags & KERNFS_SUICIDAL)) {
1405 kn->flags |= KERNFS_SUICIDAL;
1406 __kernfs_remove(kn);
1407 kn->flags |= KERNFS_SUICIDED;
1408 ret = true;
1409 } else {
1410 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1411 DEFINE_WAIT(wait);
1412
1413 while (true) {
1414 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1415
1416 if ((kn->flags & KERNFS_SUICIDED) &&
1417 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1418 break;
1419
1420 mutex_unlock(&kernfs_mutex);
1421 schedule();
1422 mutex_lock(&kernfs_mutex);
1423 }
1424 finish_wait(waitq, &wait);
1425 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1426 ret = false;
1427 }
1428
1429 /*
1430 * This must be done while holding kernfs_mutex; otherwise, waiting
1431 * for SUICIDED && deactivated could finish prematurely.
1432 */
1433 kernfs_unbreak_active_protection(kn);
1434
1435 mutex_unlock(&kernfs_mutex);
1436 return ret;
1437 }
1438
1439 /**
1440 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1441 * @parent: parent of the target
1442 * @name: name of the kernfs_node to remove
1443 * @ns: namespace tag of the kernfs_node to remove
1444 *
1445 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1446 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1447 */
1448 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1449 const void *ns)
1450 {
1451 struct kernfs_node *kn;
1452
1453 if (!parent) {
1454 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1455 name);
1456 return -ENOENT;
1457 }
1458
1459 mutex_lock(&kernfs_mutex);
1460
1461 kn = kernfs_find_ns(parent, name, ns);
1462 if (kn)
1463 __kernfs_remove(kn);
1464
1465 mutex_unlock(&kernfs_mutex);
1466
1467 if (kn)
1468 return 0;
1469 else
1470 return -ENOENT;
1471 }
1472
1473 /**
1474 * kernfs_rename_ns - move and rename a kernfs_node
1475 * @kn: target node
1476 * @new_parent: new parent to put @sd under
1477 * @new_name: new name
1478 * @new_ns: new namespace tag
1479 */
1480 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1481 const char *new_name, const void *new_ns)
1482 {
1483 struct kernfs_node *old_parent;
1484 const char *old_name = NULL;
1485 int error;
1486
1487 /* can't move or rename root */
1488 if (!kn->parent)
1489 return -EINVAL;
1490
1491 mutex_lock(&kernfs_mutex);
1492
1493 error = -ENOENT;
1494 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1495 (new_parent->flags & KERNFS_EMPTY_DIR))
1496 goto out;
1497
1498 error = 0;
1499 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1500 (strcmp(kn->name, new_name) == 0))
1501 goto out; /* nothing to rename */
1502
1503 error = -EEXIST;
1504 if (kernfs_find_ns(new_parent, new_name, new_ns))
1505 goto out;
1506
1507 /* rename kernfs_node */
1508 if (strcmp(kn->name, new_name) != 0) {
1509 error = -ENOMEM;
1510 new_name = kstrdup_const(new_name, GFP_KERNEL);
1511 if (!new_name)
1512 goto out;
1513 } else {
1514 new_name = NULL;
1515 }
1516
1517 /*
1518 * Move to the appropriate place in the appropriate directories rbtree.
1519 */
1520 kernfs_unlink_sibling(kn);
1521 kernfs_get(new_parent);
1522
1523 /* rename_lock protects ->parent and ->name accessors */
1524 spin_lock_irq(&kernfs_rename_lock);
1525
1526 old_parent = kn->parent;
1527 kn->parent = new_parent;
1528
1529 kn->ns = new_ns;
1530 if (new_name) {
1531 old_name = kn->name;
1532 kn->name = new_name;
1533 }
1534
1535 spin_unlock_irq(&kernfs_rename_lock);
1536
1537 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1538 kernfs_link_sibling(kn);
1539
1540 kernfs_put(old_parent);
1541 kfree_const(old_name);
1542
1543 error = 0;
1544 out:
1545 mutex_unlock(&kernfs_mutex);
1546 return error;
1547 }
1548
1549 /* Relationship between s_mode and the DT_xxx types */
1550 static inline unsigned char dt_type(struct kernfs_node *kn)
1551 {
1552 return (kn->mode >> 12) & 15;
1553 }
1554
1555 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1556 {
1557 kernfs_put(filp->private_data);
1558 return 0;
1559 }
1560
1561 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1562 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1563 {
1564 if (pos) {
1565 int valid = kernfs_active(pos) &&
1566 pos->parent == parent && hash == pos->hash;
1567 kernfs_put(pos);
1568 if (!valid)
1569 pos = NULL;
1570 }
1571 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1572 struct rb_node *node = parent->dir.children.rb_node;
1573 while (node) {
1574 pos = rb_to_kn(node);
1575
1576 if (hash < pos->hash)
1577 node = node->rb_left;
1578 else if (hash > pos->hash)
1579 node = node->rb_right;
1580 else
1581 break;
1582 }
1583 }
1584 /* Skip over entries which are dying/dead or in the wrong namespace */
1585 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1586 struct rb_node *node = rb_next(&pos->rb);
1587 if (!node)
1588 pos = NULL;
1589 else
1590 pos = rb_to_kn(node);
1591 }
1592 return pos;
1593 }
1594
1595 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1596 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1597 {
1598 pos = kernfs_dir_pos(ns, parent, ino, pos);
1599 if (pos) {
1600 do {
1601 struct rb_node *node = rb_next(&pos->rb);
1602 if (!node)
1603 pos = NULL;
1604 else
1605 pos = rb_to_kn(node);
1606 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1607 }
1608 return pos;
1609 }
1610
1611 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1612 {
1613 struct dentry *dentry = file->f_path.dentry;
1614 struct kernfs_node *parent = dentry->d_fsdata;
1615 struct kernfs_node *pos = file->private_data;
1616 const void *ns = NULL;
1617
1618 if (!dir_emit_dots(file, ctx))
1619 return 0;
1620 mutex_lock(&kernfs_mutex);
1621
1622 if (kernfs_ns_enabled(parent))
1623 ns = kernfs_info(dentry->d_sb)->ns;
1624
1625 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1626 pos;
1627 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1628 const char *name = pos->name;
1629 unsigned int type = dt_type(pos);
1630 int len = strlen(name);
1631 ino_t ino = pos->ino;
1632
1633 ctx->pos = pos->hash;
1634 file->private_data = pos;
1635 kernfs_get(pos);
1636
1637 mutex_unlock(&kernfs_mutex);
1638 if (!dir_emit(ctx, name, len, ino, type))
1639 return 0;
1640 mutex_lock(&kernfs_mutex);
1641 }
1642 mutex_unlock(&kernfs_mutex);
1643 file->private_data = NULL;
1644 ctx->pos = INT_MAX;
1645 return 0;
1646 }
1647
1648 const struct file_operations kernfs_dir_fops = {
1649 .read = generic_read_dir,
1650 .iterate_shared = kernfs_fop_readdir,
1651 .release = kernfs_dir_fop_release,
1652 .llseek = generic_file_llseek,
1653 };
This page took 0.135788 seconds and 5 git commands to generate.