x86/efi: Add mixed runtime services support
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202
203 error:
204 final_putname(result);
205 return err;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213
214 /*
215 * The "getname_kernel()" interface doesn't do pathnames longer
216 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
217 */
218 struct filename *
219 getname_kernel(const char * filename)
220 {
221 struct filename *result;
222 char *kname;
223 int len;
224
225 len = strlen(filename);
226 if (len >= EMBEDDED_NAME_MAX)
227 return ERR_PTR(-ENAMETOOLONG);
228
229 result = __getname();
230 if (unlikely(!result))
231 return ERR_PTR(-ENOMEM);
232
233 kname = (char *)result + sizeof(*result);
234 result->name = kname;
235 result->uptr = NULL;
236 result->aname = NULL;
237 result->separate = false;
238
239 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
240 return result;
241 }
242
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
245 {
246 if (unlikely(!audit_dummy_context()))
247 return audit_putname(name);
248 final_putname(name);
249 }
250 #endif
251
252 static int check_acl(struct inode *inode, int mask)
253 {
254 #ifdef CONFIG_FS_POSIX_ACL
255 struct posix_acl *acl;
256
257 if (mask & MAY_NOT_BLOCK) {
258 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
259 if (!acl)
260 return -EAGAIN;
261 /* no ->get_acl() calls in RCU mode... */
262 if (acl == ACL_NOT_CACHED)
263 return -ECHILD;
264 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
265 }
266
267 acl = get_acl(inode, ACL_TYPE_ACCESS);
268 if (IS_ERR(acl))
269 return PTR_ERR(acl);
270 if (acl) {
271 int error = posix_acl_permission(inode, acl, mask);
272 posix_acl_release(acl);
273 return error;
274 }
275 #endif
276
277 return -EAGAIN;
278 }
279
280 /*
281 * This does the basic permission checking
282 */
283 static int acl_permission_check(struct inode *inode, int mask)
284 {
285 unsigned int mode = inode->i_mode;
286
287 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
288 mode >>= 6;
289 else {
290 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 int error = check_acl(inode, mask);
292 if (error != -EAGAIN)
293 return error;
294 }
295
296 if (in_group_p(inode->i_gid))
297 mode >>= 3;
298 }
299
300 /*
301 * If the DACs are ok we don't need any capability check.
302 */
303 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
304 return 0;
305 return -EACCES;
306 }
307
308 /**
309 * generic_permission - check for access rights on a Posix-like filesystem
310 * @inode: inode to check access rights for
311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
312 *
313 * Used to check for read/write/execute permissions on a file.
314 * We use "fsuid" for this, letting us set arbitrary permissions
315 * for filesystem access without changing the "normal" uids which
316 * are used for other things.
317 *
318 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319 * request cannot be satisfied (eg. requires blocking or too much complexity).
320 * It would then be called again in ref-walk mode.
321 */
322 int generic_permission(struct inode *inode, int mask)
323 {
324 int ret;
325
326 /*
327 * Do the basic permission checks.
328 */
329 ret = acl_permission_check(inode, mask);
330 if (ret != -EACCES)
331 return ret;
332
333 if (S_ISDIR(inode->i_mode)) {
334 /* DACs are overridable for directories */
335 if (inode_capable(inode, CAP_DAC_OVERRIDE))
336 return 0;
337 if (!(mask & MAY_WRITE))
338 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
339 return 0;
340 return -EACCES;
341 }
342 /*
343 * Read/write DACs are always overridable.
344 * Executable DACs are overridable when there is
345 * at least one exec bit set.
346 */
347 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
348 if (inode_capable(inode, CAP_DAC_OVERRIDE))
349 return 0;
350
351 /*
352 * Searching includes executable on directories, else just read.
353 */
354 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
355 if (mask == MAY_READ)
356 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
357 return 0;
358
359 return -EACCES;
360 }
361
362 /*
363 * We _really_ want to just do "generic_permission()" without
364 * even looking at the inode->i_op values. So we keep a cache
365 * flag in inode->i_opflags, that says "this has not special
366 * permission function, use the fast case".
367 */
368 static inline int do_inode_permission(struct inode *inode, int mask)
369 {
370 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
371 if (likely(inode->i_op->permission))
372 return inode->i_op->permission(inode, mask);
373
374 /* This gets set once for the inode lifetime */
375 spin_lock(&inode->i_lock);
376 inode->i_opflags |= IOP_FASTPERM;
377 spin_unlock(&inode->i_lock);
378 }
379 return generic_permission(inode, mask);
380 }
381
382 /**
383 * __inode_permission - Check for access rights to a given inode
384 * @inode: Inode to check permission on
385 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
386 *
387 * Check for read/write/execute permissions on an inode.
388 *
389 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
390 *
391 * This does not check for a read-only file system. You probably want
392 * inode_permission().
393 */
394 int __inode_permission(struct inode *inode, int mask)
395 {
396 int retval;
397
398 if (unlikely(mask & MAY_WRITE)) {
399 /*
400 * Nobody gets write access to an immutable file.
401 */
402 if (IS_IMMUTABLE(inode))
403 return -EACCES;
404 }
405
406 retval = do_inode_permission(inode, mask);
407 if (retval)
408 return retval;
409
410 retval = devcgroup_inode_permission(inode, mask);
411 if (retval)
412 return retval;
413
414 return security_inode_permission(inode, mask);
415 }
416
417 /**
418 * sb_permission - Check superblock-level permissions
419 * @sb: Superblock of inode to check permission on
420 * @inode: Inode to check permission on
421 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
422 *
423 * Separate out file-system wide checks from inode-specific permission checks.
424 */
425 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
426 {
427 if (unlikely(mask & MAY_WRITE)) {
428 umode_t mode = inode->i_mode;
429
430 /* Nobody gets write access to a read-only fs. */
431 if ((sb->s_flags & MS_RDONLY) &&
432 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
433 return -EROFS;
434 }
435 return 0;
436 }
437
438 /**
439 * inode_permission - Check for access rights to a given inode
440 * @inode: Inode to check permission on
441 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442 *
443 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
444 * this, letting us set arbitrary permissions for filesystem access without
445 * changing the "normal" UIDs which are used for other things.
446 *
447 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
448 */
449 int inode_permission(struct inode *inode, int mask)
450 {
451 int retval;
452
453 retval = sb_permission(inode->i_sb, inode, mask);
454 if (retval)
455 return retval;
456 return __inode_permission(inode, mask);
457 }
458
459 /**
460 * path_get - get a reference to a path
461 * @path: path to get the reference to
462 *
463 * Given a path increment the reference count to the dentry and the vfsmount.
464 */
465 void path_get(const struct path *path)
466 {
467 mntget(path->mnt);
468 dget(path->dentry);
469 }
470 EXPORT_SYMBOL(path_get);
471
472 /**
473 * path_put - put a reference to a path
474 * @path: path to put the reference to
475 *
476 * Given a path decrement the reference count to the dentry and the vfsmount.
477 */
478 void path_put(const struct path *path)
479 {
480 dput(path->dentry);
481 mntput(path->mnt);
482 }
483 EXPORT_SYMBOL(path_put);
484
485 /*
486 * Path walking has 2 modes, rcu-walk and ref-walk (see
487 * Documentation/filesystems/path-lookup.txt). In situations when we can't
488 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
489 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
490 * mode. Refcounts are grabbed at the last known good point before rcu-walk
491 * got stuck, so ref-walk may continue from there. If this is not successful
492 * (eg. a seqcount has changed), then failure is returned and it's up to caller
493 * to restart the path walk from the beginning in ref-walk mode.
494 */
495
496 /**
497 * unlazy_walk - try to switch to ref-walk mode.
498 * @nd: nameidata pathwalk data
499 * @dentry: child of nd->path.dentry or NULL
500 * Returns: 0 on success, -ECHILD on failure
501 *
502 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
503 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
504 * @nd or NULL. Must be called from rcu-walk context.
505 */
506 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
507 {
508 struct fs_struct *fs = current->fs;
509 struct dentry *parent = nd->path.dentry;
510
511 BUG_ON(!(nd->flags & LOOKUP_RCU));
512
513 /*
514 * After legitimizing the bastards, terminate_walk()
515 * will do the right thing for non-RCU mode, and all our
516 * subsequent exit cases should rcu_read_unlock()
517 * before returning. Do vfsmount first; if dentry
518 * can't be legitimized, just set nd->path.dentry to NULL
519 * and rely on dput(NULL) being a no-op.
520 */
521 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
522 return -ECHILD;
523 nd->flags &= ~LOOKUP_RCU;
524
525 if (!lockref_get_not_dead(&parent->d_lockref)) {
526 nd->path.dentry = NULL;
527 goto out;
528 }
529
530 /*
531 * For a negative lookup, the lookup sequence point is the parents
532 * sequence point, and it only needs to revalidate the parent dentry.
533 *
534 * For a positive lookup, we need to move both the parent and the
535 * dentry from the RCU domain to be properly refcounted. And the
536 * sequence number in the dentry validates *both* dentry counters,
537 * since we checked the sequence number of the parent after we got
538 * the child sequence number. So we know the parent must still
539 * be valid if the child sequence number is still valid.
540 */
541 if (!dentry) {
542 if (read_seqcount_retry(&parent->d_seq, nd->seq))
543 goto out;
544 BUG_ON(nd->inode != parent->d_inode);
545 } else {
546 if (!lockref_get_not_dead(&dentry->d_lockref))
547 goto out;
548 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
549 goto drop_dentry;
550 }
551
552 /*
553 * Sequence counts matched. Now make sure that the root is
554 * still valid and get it if required.
555 */
556 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
557 spin_lock(&fs->lock);
558 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
559 goto unlock_and_drop_dentry;
560 path_get(&nd->root);
561 spin_unlock(&fs->lock);
562 }
563
564 rcu_read_unlock();
565 return 0;
566
567 unlock_and_drop_dentry:
568 spin_unlock(&fs->lock);
569 drop_dentry:
570 rcu_read_unlock();
571 dput(dentry);
572 goto drop_root_mnt;
573 out:
574 rcu_read_unlock();
575 drop_root_mnt:
576 if (!(nd->flags & LOOKUP_ROOT))
577 nd->root.mnt = NULL;
578 return -ECHILD;
579 }
580
581 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
582 {
583 return dentry->d_op->d_revalidate(dentry, flags);
584 }
585
586 /**
587 * complete_walk - successful completion of path walk
588 * @nd: pointer nameidata
589 *
590 * If we had been in RCU mode, drop out of it and legitimize nd->path.
591 * Revalidate the final result, unless we'd already done that during
592 * the path walk or the filesystem doesn't ask for it. Return 0 on
593 * success, -error on failure. In case of failure caller does not
594 * need to drop nd->path.
595 */
596 static int complete_walk(struct nameidata *nd)
597 {
598 struct dentry *dentry = nd->path.dentry;
599 int status;
600
601 if (nd->flags & LOOKUP_RCU) {
602 nd->flags &= ~LOOKUP_RCU;
603 if (!(nd->flags & LOOKUP_ROOT))
604 nd->root.mnt = NULL;
605
606 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
607 rcu_read_unlock();
608 return -ECHILD;
609 }
610 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
611 rcu_read_unlock();
612 mntput(nd->path.mnt);
613 return -ECHILD;
614 }
615 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
616 rcu_read_unlock();
617 dput(dentry);
618 mntput(nd->path.mnt);
619 return -ECHILD;
620 }
621 rcu_read_unlock();
622 }
623
624 if (likely(!(nd->flags & LOOKUP_JUMPED)))
625 return 0;
626
627 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
628 return 0;
629
630 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
631 if (status > 0)
632 return 0;
633
634 if (!status)
635 status = -ESTALE;
636
637 path_put(&nd->path);
638 return status;
639 }
640
641 static __always_inline void set_root(struct nameidata *nd)
642 {
643 if (!nd->root.mnt)
644 get_fs_root(current->fs, &nd->root);
645 }
646
647 static int link_path_walk(const char *, struct nameidata *);
648
649 static __always_inline void set_root_rcu(struct nameidata *nd)
650 {
651 if (!nd->root.mnt) {
652 struct fs_struct *fs = current->fs;
653 unsigned seq;
654
655 do {
656 seq = read_seqcount_begin(&fs->seq);
657 nd->root = fs->root;
658 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
659 } while (read_seqcount_retry(&fs->seq, seq));
660 }
661 }
662
663 static void path_put_conditional(struct path *path, struct nameidata *nd)
664 {
665 dput(path->dentry);
666 if (path->mnt != nd->path.mnt)
667 mntput(path->mnt);
668 }
669
670 static inline void path_to_nameidata(const struct path *path,
671 struct nameidata *nd)
672 {
673 if (!(nd->flags & LOOKUP_RCU)) {
674 dput(nd->path.dentry);
675 if (nd->path.mnt != path->mnt)
676 mntput(nd->path.mnt);
677 }
678 nd->path.mnt = path->mnt;
679 nd->path.dentry = path->dentry;
680 }
681
682 /*
683 * Helper to directly jump to a known parsed path from ->follow_link,
684 * caller must have taken a reference to path beforehand.
685 */
686 void nd_jump_link(struct nameidata *nd, struct path *path)
687 {
688 path_put(&nd->path);
689
690 nd->path = *path;
691 nd->inode = nd->path.dentry->d_inode;
692 nd->flags |= LOOKUP_JUMPED;
693 }
694
695 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
696 {
697 struct inode *inode = link->dentry->d_inode;
698 if (inode->i_op->put_link)
699 inode->i_op->put_link(link->dentry, nd, cookie);
700 path_put(link);
701 }
702
703 int sysctl_protected_symlinks __read_mostly = 0;
704 int sysctl_protected_hardlinks __read_mostly = 0;
705
706 /**
707 * may_follow_link - Check symlink following for unsafe situations
708 * @link: The path of the symlink
709 * @nd: nameidata pathwalk data
710 *
711 * In the case of the sysctl_protected_symlinks sysctl being enabled,
712 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
713 * in a sticky world-writable directory. This is to protect privileged
714 * processes from failing races against path names that may change out
715 * from under them by way of other users creating malicious symlinks.
716 * It will permit symlinks to be followed only when outside a sticky
717 * world-writable directory, or when the uid of the symlink and follower
718 * match, or when the directory owner matches the symlink's owner.
719 *
720 * Returns 0 if following the symlink is allowed, -ve on error.
721 */
722 static inline int may_follow_link(struct path *link, struct nameidata *nd)
723 {
724 const struct inode *inode;
725 const struct inode *parent;
726
727 if (!sysctl_protected_symlinks)
728 return 0;
729
730 /* Allowed if owner and follower match. */
731 inode = link->dentry->d_inode;
732 if (uid_eq(current_cred()->fsuid, inode->i_uid))
733 return 0;
734
735 /* Allowed if parent directory not sticky and world-writable. */
736 parent = nd->path.dentry->d_inode;
737 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
738 return 0;
739
740 /* Allowed if parent directory and link owner match. */
741 if (uid_eq(parent->i_uid, inode->i_uid))
742 return 0;
743
744 audit_log_link_denied("follow_link", link);
745 path_put_conditional(link, nd);
746 path_put(&nd->path);
747 return -EACCES;
748 }
749
750 /**
751 * safe_hardlink_source - Check for safe hardlink conditions
752 * @inode: the source inode to hardlink from
753 *
754 * Return false if at least one of the following conditions:
755 * - inode is not a regular file
756 * - inode is setuid
757 * - inode is setgid and group-exec
758 * - access failure for read and write
759 *
760 * Otherwise returns true.
761 */
762 static bool safe_hardlink_source(struct inode *inode)
763 {
764 umode_t mode = inode->i_mode;
765
766 /* Special files should not get pinned to the filesystem. */
767 if (!S_ISREG(mode))
768 return false;
769
770 /* Setuid files should not get pinned to the filesystem. */
771 if (mode & S_ISUID)
772 return false;
773
774 /* Executable setgid files should not get pinned to the filesystem. */
775 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
776 return false;
777
778 /* Hardlinking to unreadable or unwritable sources is dangerous. */
779 if (inode_permission(inode, MAY_READ | MAY_WRITE))
780 return false;
781
782 return true;
783 }
784
785 /**
786 * may_linkat - Check permissions for creating a hardlink
787 * @link: the source to hardlink from
788 *
789 * Block hardlink when all of:
790 * - sysctl_protected_hardlinks enabled
791 * - fsuid does not match inode
792 * - hardlink source is unsafe (see safe_hardlink_source() above)
793 * - not CAP_FOWNER
794 *
795 * Returns 0 if successful, -ve on error.
796 */
797 static int may_linkat(struct path *link)
798 {
799 const struct cred *cred;
800 struct inode *inode;
801
802 if (!sysctl_protected_hardlinks)
803 return 0;
804
805 cred = current_cred();
806 inode = link->dentry->d_inode;
807
808 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
809 * otherwise, it must be a safe source.
810 */
811 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
812 capable(CAP_FOWNER))
813 return 0;
814
815 audit_log_link_denied("linkat", link);
816 return -EPERM;
817 }
818
819 static __always_inline int
820 follow_link(struct path *link, struct nameidata *nd, void **p)
821 {
822 struct dentry *dentry = link->dentry;
823 int error;
824 char *s;
825
826 BUG_ON(nd->flags & LOOKUP_RCU);
827
828 if (link->mnt == nd->path.mnt)
829 mntget(link->mnt);
830
831 error = -ELOOP;
832 if (unlikely(current->total_link_count >= 40))
833 goto out_put_nd_path;
834
835 cond_resched();
836 current->total_link_count++;
837
838 touch_atime(link);
839 nd_set_link(nd, NULL);
840
841 error = security_inode_follow_link(link->dentry, nd);
842 if (error)
843 goto out_put_nd_path;
844
845 nd->last_type = LAST_BIND;
846 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
847 error = PTR_ERR(*p);
848 if (IS_ERR(*p))
849 goto out_put_nd_path;
850
851 error = 0;
852 s = nd_get_link(nd);
853 if (s) {
854 if (unlikely(IS_ERR(s))) {
855 path_put(&nd->path);
856 put_link(nd, link, *p);
857 return PTR_ERR(s);
858 }
859 if (*s == '/') {
860 set_root(nd);
861 path_put(&nd->path);
862 nd->path = nd->root;
863 path_get(&nd->root);
864 nd->flags |= LOOKUP_JUMPED;
865 }
866 nd->inode = nd->path.dentry->d_inode;
867 error = link_path_walk(s, nd);
868 if (unlikely(error))
869 put_link(nd, link, *p);
870 }
871
872 return error;
873
874 out_put_nd_path:
875 *p = NULL;
876 path_put(&nd->path);
877 path_put(link);
878 return error;
879 }
880
881 static int follow_up_rcu(struct path *path)
882 {
883 struct mount *mnt = real_mount(path->mnt);
884 struct mount *parent;
885 struct dentry *mountpoint;
886
887 parent = mnt->mnt_parent;
888 if (&parent->mnt == path->mnt)
889 return 0;
890 mountpoint = mnt->mnt_mountpoint;
891 path->dentry = mountpoint;
892 path->mnt = &parent->mnt;
893 return 1;
894 }
895
896 /*
897 * follow_up - Find the mountpoint of path's vfsmount
898 *
899 * Given a path, find the mountpoint of its source file system.
900 * Replace @path with the path of the mountpoint in the parent mount.
901 * Up is towards /.
902 *
903 * Return 1 if we went up a level and 0 if we were already at the
904 * root.
905 */
906 int follow_up(struct path *path)
907 {
908 struct mount *mnt = real_mount(path->mnt);
909 struct mount *parent;
910 struct dentry *mountpoint;
911
912 read_seqlock_excl(&mount_lock);
913 parent = mnt->mnt_parent;
914 if (parent == mnt) {
915 read_sequnlock_excl(&mount_lock);
916 return 0;
917 }
918 mntget(&parent->mnt);
919 mountpoint = dget(mnt->mnt_mountpoint);
920 read_sequnlock_excl(&mount_lock);
921 dput(path->dentry);
922 path->dentry = mountpoint;
923 mntput(path->mnt);
924 path->mnt = &parent->mnt;
925 return 1;
926 }
927
928 /*
929 * Perform an automount
930 * - return -EISDIR to tell follow_managed() to stop and return the path we
931 * were called with.
932 */
933 static int follow_automount(struct path *path, unsigned flags,
934 bool *need_mntput)
935 {
936 struct vfsmount *mnt;
937 int err;
938
939 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
940 return -EREMOTE;
941
942 /* We don't want to mount if someone's just doing a stat -
943 * unless they're stat'ing a directory and appended a '/' to
944 * the name.
945 *
946 * We do, however, want to mount if someone wants to open or
947 * create a file of any type under the mountpoint, wants to
948 * traverse through the mountpoint or wants to open the
949 * mounted directory. Also, autofs may mark negative dentries
950 * as being automount points. These will need the attentions
951 * of the daemon to instantiate them before they can be used.
952 */
953 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
954 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
955 path->dentry->d_inode)
956 return -EISDIR;
957
958 current->total_link_count++;
959 if (current->total_link_count >= 40)
960 return -ELOOP;
961
962 mnt = path->dentry->d_op->d_automount(path);
963 if (IS_ERR(mnt)) {
964 /*
965 * The filesystem is allowed to return -EISDIR here to indicate
966 * it doesn't want to automount. For instance, autofs would do
967 * this so that its userspace daemon can mount on this dentry.
968 *
969 * However, we can only permit this if it's a terminal point in
970 * the path being looked up; if it wasn't then the remainder of
971 * the path is inaccessible and we should say so.
972 */
973 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
974 return -EREMOTE;
975 return PTR_ERR(mnt);
976 }
977
978 if (!mnt) /* mount collision */
979 return 0;
980
981 if (!*need_mntput) {
982 /* lock_mount() may release path->mnt on error */
983 mntget(path->mnt);
984 *need_mntput = true;
985 }
986 err = finish_automount(mnt, path);
987
988 switch (err) {
989 case -EBUSY:
990 /* Someone else made a mount here whilst we were busy */
991 return 0;
992 case 0:
993 path_put(path);
994 path->mnt = mnt;
995 path->dentry = dget(mnt->mnt_root);
996 return 0;
997 default:
998 return err;
999 }
1000
1001 }
1002
1003 /*
1004 * Handle a dentry that is managed in some way.
1005 * - Flagged for transit management (autofs)
1006 * - Flagged as mountpoint
1007 * - Flagged as automount point
1008 *
1009 * This may only be called in refwalk mode.
1010 *
1011 * Serialization is taken care of in namespace.c
1012 */
1013 static int follow_managed(struct path *path, unsigned flags)
1014 {
1015 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1016 unsigned managed;
1017 bool need_mntput = false;
1018 int ret = 0;
1019
1020 /* Given that we're not holding a lock here, we retain the value in a
1021 * local variable for each dentry as we look at it so that we don't see
1022 * the components of that value change under us */
1023 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1024 managed &= DCACHE_MANAGED_DENTRY,
1025 unlikely(managed != 0)) {
1026 /* Allow the filesystem to manage the transit without i_mutex
1027 * being held. */
1028 if (managed & DCACHE_MANAGE_TRANSIT) {
1029 BUG_ON(!path->dentry->d_op);
1030 BUG_ON(!path->dentry->d_op->d_manage);
1031 ret = path->dentry->d_op->d_manage(path->dentry, false);
1032 if (ret < 0)
1033 break;
1034 }
1035
1036 /* Transit to a mounted filesystem. */
1037 if (managed & DCACHE_MOUNTED) {
1038 struct vfsmount *mounted = lookup_mnt(path);
1039 if (mounted) {
1040 dput(path->dentry);
1041 if (need_mntput)
1042 mntput(path->mnt);
1043 path->mnt = mounted;
1044 path->dentry = dget(mounted->mnt_root);
1045 need_mntput = true;
1046 continue;
1047 }
1048
1049 /* Something is mounted on this dentry in another
1050 * namespace and/or whatever was mounted there in this
1051 * namespace got unmounted before lookup_mnt() could
1052 * get it */
1053 }
1054
1055 /* Handle an automount point */
1056 if (managed & DCACHE_NEED_AUTOMOUNT) {
1057 ret = follow_automount(path, flags, &need_mntput);
1058 if (ret < 0)
1059 break;
1060 continue;
1061 }
1062
1063 /* We didn't change the current path point */
1064 break;
1065 }
1066
1067 if (need_mntput && path->mnt == mnt)
1068 mntput(path->mnt);
1069 if (ret == -EISDIR)
1070 ret = 0;
1071 return ret < 0 ? ret : need_mntput;
1072 }
1073
1074 int follow_down_one(struct path *path)
1075 {
1076 struct vfsmount *mounted;
1077
1078 mounted = lookup_mnt(path);
1079 if (mounted) {
1080 dput(path->dentry);
1081 mntput(path->mnt);
1082 path->mnt = mounted;
1083 path->dentry = dget(mounted->mnt_root);
1084 return 1;
1085 }
1086 return 0;
1087 }
1088
1089 static inline bool managed_dentry_might_block(struct dentry *dentry)
1090 {
1091 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1092 dentry->d_op->d_manage(dentry, true) < 0);
1093 }
1094
1095 /*
1096 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1097 * we meet a managed dentry that would need blocking.
1098 */
1099 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1100 struct inode **inode)
1101 {
1102 for (;;) {
1103 struct mount *mounted;
1104 /*
1105 * Don't forget we might have a non-mountpoint managed dentry
1106 * that wants to block transit.
1107 */
1108 if (unlikely(managed_dentry_might_block(path->dentry)))
1109 return false;
1110
1111 if (!d_mountpoint(path->dentry))
1112 break;
1113
1114 mounted = __lookup_mnt(path->mnt, path->dentry);
1115 if (!mounted)
1116 break;
1117 path->mnt = &mounted->mnt;
1118 path->dentry = mounted->mnt.mnt_root;
1119 nd->flags |= LOOKUP_JUMPED;
1120 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1121 /*
1122 * Update the inode too. We don't need to re-check the
1123 * dentry sequence number here after this d_inode read,
1124 * because a mount-point is always pinned.
1125 */
1126 *inode = path->dentry->d_inode;
1127 }
1128 return true;
1129 }
1130
1131 static void follow_mount_rcu(struct nameidata *nd)
1132 {
1133 while (d_mountpoint(nd->path.dentry)) {
1134 struct mount *mounted;
1135 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1136 if (!mounted)
1137 break;
1138 nd->path.mnt = &mounted->mnt;
1139 nd->path.dentry = mounted->mnt.mnt_root;
1140 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1141 }
1142 }
1143
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 set_root_rcu(nd);
1147
1148 while (1) {
1149 if (nd->path.dentry == nd->root.dentry &&
1150 nd->path.mnt == nd->root.mnt) {
1151 break;
1152 }
1153 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1154 struct dentry *old = nd->path.dentry;
1155 struct dentry *parent = old->d_parent;
1156 unsigned seq;
1157
1158 seq = read_seqcount_begin(&parent->d_seq);
1159 if (read_seqcount_retry(&old->d_seq, nd->seq))
1160 goto failed;
1161 nd->path.dentry = parent;
1162 nd->seq = seq;
1163 break;
1164 }
1165 if (!follow_up_rcu(&nd->path))
1166 break;
1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1168 }
1169 follow_mount_rcu(nd);
1170 nd->inode = nd->path.dentry->d_inode;
1171 return 0;
1172
1173 failed:
1174 nd->flags &= ~LOOKUP_RCU;
1175 if (!(nd->flags & LOOKUP_ROOT))
1176 nd->root.mnt = NULL;
1177 rcu_read_unlock();
1178 return -ECHILD;
1179 }
1180
1181 /*
1182 * Follow down to the covering mount currently visible to userspace. At each
1183 * point, the filesystem owning that dentry may be queried as to whether the
1184 * caller is permitted to proceed or not.
1185 */
1186 int follow_down(struct path *path)
1187 {
1188 unsigned managed;
1189 int ret;
1190
1191 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1192 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1193 /* Allow the filesystem to manage the transit without i_mutex
1194 * being held.
1195 *
1196 * We indicate to the filesystem if someone is trying to mount
1197 * something here. This gives autofs the chance to deny anyone
1198 * other than its daemon the right to mount on its
1199 * superstructure.
1200 *
1201 * The filesystem may sleep at this point.
1202 */
1203 if (managed & DCACHE_MANAGE_TRANSIT) {
1204 BUG_ON(!path->dentry->d_op);
1205 BUG_ON(!path->dentry->d_op->d_manage);
1206 ret = path->dentry->d_op->d_manage(
1207 path->dentry, false);
1208 if (ret < 0)
1209 return ret == -EISDIR ? 0 : ret;
1210 }
1211
1212 /* Transit to a mounted filesystem. */
1213 if (managed & DCACHE_MOUNTED) {
1214 struct vfsmount *mounted = lookup_mnt(path);
1215 if (!mounted)
1216 break;
1217 dput(path->dentry);
1218 mntput(path->mnt);
1219 path->mnt = mounted;
1220 path->dentry = dget(mounted->mnt_root);
1221 continue;
1222 }
1223
1224 /* Don't handle automount points here */
1225 break;
1226 }
1227 return 0;
1228 }
1229
1230 /*
1231 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1232 */
1233 static void follow_mount(struct path *path)
1234 {
1235 while (d_mountpoint(path->dentry)) {
1236 struct vfsmount *mounted = lookup_mnt(path);
1237 if (!mounted)
1238 break;
1239 dput(path->dentry);
1240 mntput(path->mnt);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1243 }
1244 }
1245
1246 static void follow_dotdot(struct nameidata *nd)
1247 {
1248 set_root(nd);
1249
1250 while(1) {
1251 struct dentry *old = nd->path.dentry;
1252
1253 if (nd->path.dentry == nd->root.dentry &&
1254 nd->path.mnt == nd->root.mnt) {
1255 break;
1256 }
1257 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1258 /* rare case of legitimate dget_parent()... */
1259 nd->path.dentry = dget_parent(nd->path.dentry);
1260 dput(old);
1261 break;
1262 }
1263 if (!follow_up(&nd->path))
1264 break;
1265 }
1266 follow_mount(&nd->path);
1267 nd->inode = nd->path.dentry->d_inode;
1268 }
1269
1270 /*
1271 * This looks up the name in dcache, possibly revalidates the old dentry and
1272 * allocates a new one if not found or not valid. In the need_lookup argument
1273 * returns whether i_op->lookup is necessary.
1274 *
1275 * dir->d_inode->i_mutex must be held
1276 */
1277 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1278 unsigned int flags, bool *need_lookup)
1279 {
1280 struct dentry *dentry;
1281 int error;
1282
1283 *need_lookup = false;
1284 dentry = d_lookup(dir, name);
1285 if (dentry) {
1286 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1287 error = d_revalidate(dentry, flags);
1288 if (unlikely(error <= 0)) {
1289 if (error < 0) {
1290 dput(dentry);
1291 return ERR_PTR(error);
1292 } else if (!d_invalidate(dentry)) {
1293 dput(dentry);
1294 dentry = NULL;
1295 }
1296 }
1297 }
1298 }
1299
1300 if (!dentry) {
1301 dentry = d_alloc(dir, name);
1302 if (unlikely(!dentry))
1303 return ERR_PTR(-ENOMEM);
1304
1305 *need_lookup = true;
1306 }
1307 return dentry;
1308 }
1309
1310 /*
1311 * Call i_op->lookup on the dentry. The dentry must be negative and
1312 * unhashed.
1313 *
1314 * dir->d_inode->i_mutex must be held
1315 */
1316 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1317 unsigned int flags)
1318 {
1319 struct dentry *old;
1320
1321 /* Don't create child dentry for a dead directory. */
1322 if (unlikely(IS_DEADDIR(dir))) {
1323 dput(dentry);
1324 return ERR_PTR(-ENOENT);
1325 }
1326
1327 old = dir->i_op->lookup(dir, dentry, flags);
1328 if (unlikely(old)) {
1329 dput(dentry);
1330 dentry = old;
1331 }
1332 return dentry;
1333 }
1334
1335 static struct dentry *__lookup_hash(struct qstr *name,
1336 struct dentry *base, unsigned int flags)
1337 {
1338 bool need_lookup;
1339 struct dentry *dentry;
1340
1341 dentry = lookup_dcache(name, base, flags, &need_lookup);
1342 if (!need_lookup)
1343 return dentry;
1344
1345 return lookup_real(base->d_inode, dentry, flags);
1346 }
1347
1348 /*
1349 * It's more convoluted than I'd like it to be, but... it's still fairly
1350 * small and for now I'd prefer to have fast path as straight as possible.
1351 * It _is_ time-critical.
1352 */
1353 static int lookup_fast(struct nameidata *nd,
1354 struct path *path, struct inode **inode)
1355 {
1356 struct vfsmount *mnt = nd->path.mnt;
1357 struct dentry *dentry, *parent = nd->path.dentry;
1358 int need_reval = 1;
1359 int status = 1;
1360 int err;
1361
1362 /*
1363 * Rename seqlock is not required here because in the off chance
1364 * of a false negative due to a concurrent rename, we're going to
1365 * do the non-racy lookup, below.
1366 */
1367 if (nd->flags & LOOKUP_RCU) {
1368 unsigned seq;
1369 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1370 if (!dentry)
1371 goto unlazy;
1372
1373 /*
1374 * This sequence count validates that the inode matches
1375 * the dentry name information from lookup.
1376 */
1377 *inode = dentry->d_inode;
1378 if (read_seqcount_retry(&dentry->d_seq, seq))
1379 return -ECHILD;
1380
1381 /*
1382 * This sequence count validates that the parent had no
1383 * changes while we did the lookup of the dentry above.
1384 *
1385 * The memory barrier in read_seqcount_begin of child is
1386 * enough, we can use __read_seqcount_retry here.
1387 */
1388 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1389 return -ECHILD;
1390 nd->seq = seq;
1391
1392 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1393 status = d_revalidate(dentry, nd->flags);
1394 if (unlikely(status <= 0)) {
1395 if (status != -ECHILD)
1396 need_reval = 0;
1397 goto unlazy;
1398 }
1399 }
1400 path->mnt = mnt;
1401 path->dentry = dentry;
1402 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1403 goto unlazy;
1404 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1405 goto unlazy;
1406 return 0;
1407 unlazy:
1408 if (unlazy_walk(nd, dentry))
1409 return -ECHILD;
1410 } else {
1411 dentry = __d_lookup(parent, &nd->last);
1412 }
1413
1414 if (unlikely(!dentry))
1415 goto need_lookup;
1416
1417 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1418 status = d_revalidate(dentry, nd->flags);
1419 if (unlikely(status <= 0)) {
1420 if (status < 0) {
1421 dput(dentry);
1422 return status;
1423 }
1424 if (!d_invalidate(dentry)) {
1425 dput(dentry);
1426 goto need_lookup;
1427 }
1428 }
1429
1430 path->mnt = mnt;
1431 path->dentry = dentry;
1432 err = follow_managed(path, nd->flags);
1433 if (unlikely(err < 0)) {
1434 path_put_conditional(path, nd);
1435 return err;
1436 }
1437 if (err)
1438 nd->flags |= LOOKUP_JUMPED;
1439 *inode = path->dentry->d_inode;
1440 return 0;
1441
1442 need_lookup:
1443 return 1;
1444 }
1445
1446 /* Fast lookup failed, do it the slow way */
1447 static int lookup_slow(struct nameidata *nd, struct path *path)
1448 {
1449 struct dentry *dentry, *parent;
1450 int err;
1451
1452 parent = nd->path.dentry;
1453 BUG_ON(nd->inode != parent->d_inode);
1454
1455 mutex_lock(&parent->d_inode->i_mutex);
1456 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1457 mutex_unlock(&parent->d_inode->i_mutex);
1458 if (IS_ERR(dentry))
1459 return PTR_ERR(dentry);
1460 path->mnt = nd->path.mnt;
1461 path->dentry = dentry;
1462 err = follow_managed(path, nd->flags);
1463 if (unlikely(err < 0)) {
1464 path_put_conditional(path, nd);
1465 return err;
1466 }
1467 if (err)
1468 nd->flags |= LOOKUP_JUMPED;
1469 return 0;
1470 }
1471
1472 static inline int may_lookup(struct nameidata *nd)
1473 {
1474 if (nd->flags & LOOKUP_RCU) {
1475 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1476 if (err != -ECHILD)
1477 return err;
1478 if (unlazy_walk(nd, NULL))
1479 return -ECHILD;
1480 }
1481 return inode_permission(nd->inode, MAY_EXEC);
1482 }
1483
1484 static inline int handle_dots(struct nameidata *nd, int type)
1485 {
1486 if (type == LAST_DOTDOT) {
1487 if (nd->flags & LOOKUP_RCU) {
1488 if (follow_dotdot_rcu(nd))
1489 return -ECHILD;
1490 } else
1491 follow_dotdot(nd);
1492 }
1493 return 0;
1494 }
1495
1496 static void terminate_walk(struct nameidata *nd)
1497 {
1498 if (!(nd->flags & LOOKUP_RCU)) {
1499 path_put(&nd->path);
1500 } else {
1501 nd->flags &= ~LOOKUP_RCU;
1502 if (!(nd->flags & LOOKUP_ROOT))
1503 nd->root.mnt = NULL;
1504 rcu_read_unlock();
1505 }
1506 }
1507
1508 /*
1509 * Do we need to follow links? We _really_ want to be able
1510 * to do this check without having to look at inode->i_op,
1511 * so we keep a cache of "no, this doesn't need follow_link"
1512 * for the common case.
1513 */
1514 static inline int should_follow_link(struct dentry *dentry, int follow)
1515 {
1516 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1517 }
1518
1519 static inline int walk_component(struct nameidata *nd, struct path *path,
1520 int follow)
1521 {
1522 struct inode *inode;
1523 int err;
1524 /*
1525 * "." and ".." are special - ".." especially so because it has
1526 * to be able to know about the current root directory and
1527 * parent relationships.
1528 */
1529 if (unlikely(nd->last_type != LAST_NORM))
1530 return handle_dots(nd, nd->last_type);
1531 err = lookup_fast(nd, path, &inode);
1532 if (unlikely(err)) {
1533 if (err < 0)
1534 goto out_err;
1535
1536 err = lookup_slow(nd, path);
1537 if (err < 0)
1538 goto out_err;
1539
1540 inode = path->dentry->d_inode;
1541 }
1542 err = -ENOENT;
1543 if (!inode)
1544 goto out_path_put;
1545
1546 if (should_follow_link(path->dentry, follow)) {
1547 if (nd->flags & LOOKUP_RCU) {
1548 if (unlikely(unlazy_walk(nd, path->dentry))) {
1549 err = -ECHILD;
1550 goto out_err;
1551 }
1552 }
1553 BUG_ON(inode != path->dentry->d_inode);
1554 return 1;
1555 }
1556 path_to_nameidata(path, nd);
1557 nd->inode = inode;
1558 return 0;
1559
1560 out_path_put:
1561 path_to_nameidata(path, nd);
1562 out_err:
1563 terminate_walk(nd);
1564 return err;
1565 }
1566
1567 /*
1568 * This limits recursive symlink follows to 8, while
1569 * limiting consecutive symlinks to 40.
1570 *
1571 * Without that kind of total limit, nasty chains of consecutive
1572 * symlinks can cause almost arbitrarily long lookups.
1573 */
1574 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1575 {
1576 int res;
1577
1578 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1579 path_put_conditional(path, nd);
1580 path_put(&nd->path);
1581 return -ELOOP;
1582 }
1583 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1584
1585 nd->depth++;
1586 current->link_count++;
1587
1588 do {
1589 struct path link = *path;
1590 void *cookie;
1591
1592 res = follow_link(&link, nd, &cookie);
1593 if (res)
1594 break;
1595 res = walk_component(nd, path, LOOKUP_FOLLOW);
1596 put_link(nd, &link, cookie);
1597 } while (res > 0);
1598
1599 current->link_count--;
1600 nd->depth--;
1601 return res;
1602 }
1603
1604 /*
1605 * We can do the critical dentry name comparison and hashing
1606 * operations one word at a time, but we are limited to:
1607 *
1608 * - Architectures with fast unaligned word accesses. We could
1609 * do a "get_unaligned()" if this helps and is sufficiently
1610 * fast.
1611 *
1612 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1613 * do not trap on the (extremely unlikely) case of a page
1614 * crossing operation.
1615 *
1616 * - Furthermore, we need an efficient 64-bit compile for the
1617 * 64-bit case in order to generate the "number of bytes in
1618 * the final mask". Again, that could be replaced with a
1619 * efficient population count instruction or similar.
1620 */
1621 #ifdef CONFIG_DCACHE_WORD_ACCESS
1622
1623 #include <asm/word-at-a-time.h>
1624
1625 #ifdef CONFIG_64BIT
1626
1627 static inline unsigned int fold_hash(unsigned long hash)
1628 {
1629 hash += hash >> (8*sizeof(int));
1630 return hash;
1631 }
1632
1633 #else /* 32-bit case */
1634
1635 #define fold_hash(x) (x)
1636
1637 #endif
1638
1639 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1640 {
1641 unsigned long a, mask;
1642 unsigned long hash = 0;
1643
1644 for (;;) {
1645 a = load_unaligned_zeropad(name);
1646 if (len < sizeof(unsigned long))
1647 break;
1648 hash += a;
1649 hash *= 9;
1650 name += sizeof(unsigned long);
1651 len -= sizeof(unsigned long);
1652 if (!len)
1653 goto done;
1654 }
1655 mask = bytemask_from_count(len);
1656 hash += mask & a;
1657 done:
1658 return fold_hash(hash);
1659 }
1660 EXPORT_SYMBOL(full_name_hash);
1661
1662 /*
1663 * Calculate the length and hash of the path component, and
1664 * return the length of the component;
1665 */
1666 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1667 {
1668 unsigned long a, b, adata, bdata, mask, hash, len;
1669 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1670
1671 hash = a = 0;
1672 len = -sizeof(unsigned long);
1673 do {
1674 hash = (hash + a) * 9;
1675 len += sizeof(unsigned long);
1676 a = load_unaligned_zeropad(name+len);
1677 b = a ^ REPEAT_BYTE('/');
1678 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1679
1680 adata = prep_zero_mask(a, adata, &constants);
1681 bdata = prep_zero_mask(b, bdata, &constants);
1682
1683 mask = create_zero_mask(adata | bdata);
1684
1685 hash += a & zero_bytemask(mask);
1686 *hashp = fold_hash(hash);
1687
1688 return len + find_zero(mask);
1689 }
1690
1691 #else
1692
1693 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1694 {
1695 unsigned long hash = init_name_hash();
1696 while (len--)
1697 hash = partial_name_hash(*name++, hash);
1698 return end_name_hash(hash);
1699 }
1700 EXPORT_SYMBOL(full_name_hash);
1701
1702 /*
1703 * We know there's a real path component here of at least
1704 * one character.
1705 */
1706 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1707 {
1708 unsigned long hash = init_name_hash();
1709 unsigned long len = 0, c;
1710
1711 c = (unsigned char)*name;
1712 do {
1713 len++;
1714 hash = partial_name_hash(c, hash);
1715 c = (unsigned char)name[len];
1716 } while (c && c != '/');
1717 *hashp = end_name_hash(hash);
1718 return len;
1719 }
1720
1721 #endif
1722
1723 /*
1724 * Name resolution.
1725 * This is the basic name resolution function, turning a pathname into
1726 * the final dentry. We expect 'base' to be positive and a directory.
1727 *
1728 * Returns 0 and nd will have valid dentry and mnt on success.
1729 * Returns error and drops reference to input namei data on failure.
1730 */
1731 static int link_path_walk(const char *name, struct nameidata *nd)
1732 {
1733 struct path next;
1734 int err;
1735
1736 while (*name=='/')
1737 name++;
1738 if (!*name)
1739 return 0;
1740
1741 /* At this point we know we have a real path component. */
1742 for(;;) {
1743 struct qstr this;
1744 long len;
1745 int type;
1746
1747 err = may_lookup(nd);
1748 if (err)
1749 break;
1750
1751 len = hash_name(name, &this.hash);
1752 this.name = name;
1753 this.len = len;
1754
1755 type = LAST_NORM;
1756 if (name[0] == '.') switch (len) {
1757 case 2:
1758 if (name[1] == '.') {
1759 type = LAST_DOTDOT;
1760 nd->flags |= LOOKUP_JUMPED;
1761 }
1762 break;
1763 case 1:
1764 type = LAST_DOT;
1765 }
1766 if (likely(type == LAST_NORM)) {
1767 struct dentry *parent = nd->path.dentry;
1768 nd->flags &= ~LOOKUP_JUMPED;
1769 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1770 err = parent->d_op->d_hash(parent, &this);
1771 if (err < 0)
1772 break;
1773 }
1774 }
1775
1776 nd->last = this;
1777 nd->last_type = type;
1778
1779 if (!name[len])
1780 return 0;
1781 /*
1782 * If it wasn't NUL, we know it was '/'. Skip that
1783 * slash, and continue until no more slashes.
1784 */
1785 do {
1786 len++;
1787 } while (unlikely(name[len] == '/'));
1788 if (!name[len])
1789 return 0;
1790
1791 name += len;
1792
1793 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1794 if (err < 0)
1795 return err;
1796
1797 if (err) {
1798 err = nested_symlink(&next, nd);
1799 if (err)
1800 return err;
1801 }
1802 if (!d_is_directory(nd->path.dentry)) {
1803 err = -ENOTDIR;
1804 break;
1805 }
1806 }
1807 terminate_walk(nd);
1808 return err;
1809 }
1810
1811 static int path_init(int dfd, const char *name, unsigned int flags,
1812 struct nameidata *nd, struct file **fp)
1813 {
1814 int retval = 0;
1815
1816 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1817 nd->flags = flags | LOOKUP_JUMPED;
1818 nd->depth = 0;
1819 if (flags & LOOKUP_ROOT) {
1820 struct dentry *root = nd->root.dentry;
1821 struct inode *inode = root->d_inode;
1822 if (*name) {
1823 if (!d_is_directory(root))
1824 return -ENOTDIR;
1825 retval = inode_permission(inode, MAY_EXEC);
1826 if (retval)
1827 return retval;
1828 }
1829 nd->path = nd->root;
1830 nd->inode = inode;
1831 if (flags & LOOKUP_RCU) {
1832 rcu_read_lock();
1833 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1834 nd->m_seq = read_seqbegin(&mount_lock);
1835 } else {
1836 path_get(&nd->path);
1837 }
1838 return 0;
1839 }
1840
1841 nd->root.mnt = NULL;
1842
1843 nd->m_seq = read_seqbegin(&mount_lock);
1844 if (*name=='/') {
1845 if (flags & LOOKUP_RCU) {
1846 rcu_read_lock();
1847 set_root_rcu(nd);
1848 } else {
1849 set_root(nd);
1850 path_get(&nd->root);
1851 }
1852 nd->path = nd->root;
1853 } else if (dfd == AT_FDCWD) {
1854 if (flags & LOOKUP_RCU) {
1855 struct fs_struct *fs = current->fs;
1856 unsigned seq;
1857
1858 rcu_read_lock();
1859
1860 do {
1861 seq = read_seqcount_begin(&fs->seq);
1862 nd->path = fs->pwd;
1863 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1864 } while (read_seqcount_retry(&fs->seq, seq));
1865 } else {
1866 get_fs_pwd(current->fs, &nd->path);
1867 }
1868 } else {
1869 /* Caller must check execute permissions on the starting path component */
1870 struct fd f = fdget_raw(dfd);
1871 struct dentry *dentry;
1872
1873 if (!f.file)
1874 return -EBADF;
1875
1876 dentry = f.file->f_path.dentry;
1877
1878 if (*name) {
1879 if (!d_is_directory(dentry)) {
1880 fdput(f);
1881 return -ENOTDIR;
1882 }
1883 }
1884
1885 nd->path = f.file->f_path;
1886 if (flags & LOOKUP_RCU) {
1887 if (f.need_put)
1888 *fp = f.file;
1889 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1890 rcu_read_lock();
1891 } else {
1892 path_get(&nd->path);
1893 fdput(f);
1894 }
1895 }
1896
1897 nd->inode = nd->path.dentry->d_inode;
1898 return 0;
1899 }
1900
1901 static inline int lookup_last(struct nameidata *nd, struct path *path)
1902 {
1903 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1904 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1905
1906 nd->flags &= ~LOOKUP_PARENT;
1907 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1908 }
1909
1910 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1911 static int path_lookupat(int dfd, const char *name,
1912 unsigned int flags, struct nameidata *nd)
1913 {
1914 struct file *base = NULL;
1915 struct path path;
1916 int err;
1917
1918 /*
1919 * Path walking is largely split up into 2 different synchronisation
1920 * schemes, rcu-walk and ref-walk (explained in
1921 * Documentation/filesystems/path-lookup.txt). These share much of the
1922 * path walk code, but some things particularly setup, cleanup, and
1923 * following mounts are sufficiently divergent that functions are
1924 * duplicated. Typically there is a function foo(), and its RCU
1925 * analogue, foo_rcu().
1926 *
1927 * -ECHILD is the error number of choice (just to avoid clashes) that
1928 * is returned if some aspect of an rcu-walk fails. Such an error must
1929 * be handled by restarting a traditional ref-walk (which will always
1930 * be able to complete).
1931 */
1932 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1933
1934 if (unlikely(err))
1935 return err;
1936
1937 current->total_link_count = 0;
1938 err = link_path_walk(name, nd);
1939
1940 if (!err && !(flags & LOOKUP_PARENT)) {
1941 err = lookup_last(nd, &path);
1942 while (err > 0) {
1943 void *cookie;
1944 struct path link = path;
1945 err = may_follow_link(&link, nd);
1946 if (unlikely(err))
1947 break;
1948 nd->flags |= LOOKUP_PARENT;
1949 err = follow_link(&link, nd, &cookie);
1950 if (err)
1951 break;
1952 err = lookup_last(nd, &path);
1953 put_link(nd, &link, cookie);
1954 }
1955 }
1956
1957 if (!err)
1958 err = complete_walk(nd);
1959
1960 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1961 if (!d_is_directory(nd->path.dentry)) {
1962 path_put(&nd->path);
1963 err = -ENOTDIR;
1964 }
1965 }
1966
1967 if (base)
1968 fput(base);
1969
1970 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1971 path_put(&nd->root);
1972 nd->root.mnt = NULL;
1973 }
1974 return err;
1975 }
1976
1977 static int filename_lookup(int dfd, struct filename *name,
1978 unsigned int flags, struct nameidata *nd)
1979 {
1980 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1981 if (unlikely(retval == -ECHILD))
1982 retval = path_lookupat(dfd, name->name, flags, nd);
1983 if (unlikely(retval == -ESTALE))
1984 retval = path_lookupat(dfd, name->name,
1985 flags | LOOKUP_REVAL, nd);
1986
1987 if (likely(!retval))
1988 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1989 return retval;
1990 }
1991
1992 static int do_path_lookup(int dfd, const char *name,
1993 unsigned int flags, struct nameidata *nd)
1994 {
1995 struct filename filename = { .name = name };
1996
1997 return filename_lookup(dfd, &filename, flags, nd);
1998 }
1999
2000 /* does lookup, returns the object with parent locked */
2001 struct dentry *kern_path_locked(const char *name, struct path *path)
2002 {
2003 struct nameidata nd;
2004 struct dentry *d;
2005 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2006 if (err)
2007 return ERR_PTR(err);
2008 if (nd.last_type != LAST_NORM) {
2009 path_put(&nd.path);
2010 return ERR_PTR(-EINVAL);
2011 }
2012 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2013 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2014 if (IS_ERR(d)) {
2015 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2016 path_put(&nd.path);
2017 return d;
2018 }
2019 *path = nd.path;
2020 return d;
2021 }
2022
2023 int kern_path(const char *name, unsigned int flags, struct path *path)
2024 {
2025 struct nameidata nd;
2026 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2027 if (!res)
2028 *path = nd.path;
2029 return res;
2030 }
2031
2032 /**
2033 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2034 * @dentry: pointer to dentry of the base directory
2035 * @mnt: pointer to vfs mount of the base directory
2036 * @name: pointer to file name
2037 * @flags: lookup flags
2038 * @path: pointer to struct path to fill
2039 */
2040 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2041 const char *name, unsigned int flags,
2042 struct path *path)
2043 {
2044 struct nameidata nd;
2045 int err;
2046 nd.root.dentry = dentry;
2047 nd.root.mnt = mnt;
2048 BUG_ON(flags & LOOKUP_PARENT);
2049 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2050 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2051 if (!err)
2052 *path = nd.path;
2053 return err;
2054 }
2055
2056 /*
2057 * Restricted form of lookup. Doesn't follow links, single-component only,
2058 * needs parent already locked. Doesn't follow mounts.
2059 * SMP-safe.
2060 */
2061 static struct dentry *lookup_hash(struct nameidata *nd)
2062 {
2063 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2064 }
2065
2066 /**
2067 * lookup_one_len - filesystem helper to lookup single pathname component
2068 * @name: pathname component to lookup
2069 * @base: base directory to lookup from
2070 * @len: maximum length @len should be interpreted to
2071 *
2072 * Note that this routine is purely a helper for filesystem usage and should
2073 * not be called by generic code. Also note that by using this function the
2074 * nameidata argument is passed to the filesystem methods and a filesystem
2075 * using this helper needs to be prepared for that.
2076 */
2077 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2078 {
2079 struct qstr this;
2080 unsigned int c;
2081 int err;
2082
2083 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2084
2085 this.name = name;
2086 this.len = len;
2087 this.hash = full_name_hash(name, len);
2088 if (!len)
2089 return ERR_PTR(-EACCES);
2090
2091 if (unlikely(name[0] == '.')) {
2092 if (len < 2 || (len == 2 && name[1] == '.'))
2093 return ERR_PTR(-EACCES);
2094 }
2095
2096 while (len--) {
2097 c = *(const unsigned char *)name++;
2098 if (c == '/' || c == '\0')
2099 return ERR_PTR(-EACCES);
2100 }
2101 /*
2102 * See if the low-level filesystem might want
2103 * to use its own hash..
2104 */
2105 if (base->d_flags & DCACHE_OP_HASH) {
2106 int err = base->d_op->d_hash(base, &this);
2107 if (err < 0)
2108 return ERR_PTR(err);
2109 }
2110
2111 err = inode_permission(base->d_inode, MAY_EXEC);
2112 if (err)
2113 return ERR_PTR(err);
2114
2115 return __lookup_hash(&this, base, 0);
2116 }
2117
2118 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2119 struct path *path, int *empty)
2120 {
2121 struct nameidata nd;
2122 struct filename *tmp = getname_flags(name, flags, empty);
2123 int err = PTR_ERR(tmp);
2124 if (!IS_ERR(tmp)) {
2125
2126 BUG_ON(flags & LOOKUP_PARENT);
2127
2128 err = filename_lookup(dfd, tmp, flags, &nd);
2129 putname(tmp);
2130 if (!err)
2131 *path = nd.path;
2132 }
2133 return err;
2134 }
2135
2136 int user_path_at(int dfd, const char __user *name, unsigned flags,
2137 struct path *path)
2138 {
2139 return user_path_at_empty(dfd, name, flags, path, NULL);
2140 }
2141
2142 /*
2143 * NB: most callers don't do anything directly with the reference to the
2144 * to struct filename, but the nd->last pointer points into the name string
2145 * allocated by getname. So we must hold the reference to it until all
2146 * path-walking is complete.
2147 */
2148 static struct filename *
2149 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2150 unsigned int flags)
2151 {
2152 struct filename *s = getname(path);
2153 int error;
2154
2155 /* only LOOKUP_REVAL is allowed in extra flags */
2156 flags &= LOOKUP_REVAL;
2157
2158 if (IS_ERR(s))
2159 return s;
2160
2161 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2162 if (error) {
2163 putname(s);
2164 return ERR_PTR(error);
2165 }
2166
2167 return s;
2168 }
2169
2170 /**
2171 * mountpoint_last - look up last component for umount
2172 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2173 * @path: pointer to container for result
2174 *
2175 * This is a special lookup_last function just for umount. In this case, we
2176 * need to resolve the path without doing any revalidation.
2177 *
2178 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2179 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2180 * in almost all cases, this lookup will be served out of the dcache. The only
2181 * cases where it won't are if nd->last refers to a symlink or the path is
2182 * bogus and it doesn't exist.
2183 *
2184 * Returns:
2185 * -error: if there was an error during lookup. This includes -ENOENT if the
2186 * lookup found a negative dentry. The nd->path reference will also be
2187 * put in this case.
2188 *
2189 * 0: if we successfully resolved nd->path and found it to not to be a
2190 * symlink that needs to be followed. "path" will also be populated.
2191 * The nd->path reference will also be put.
2192 *
2193 * 1: if we successfully resolved nd->last and found it to be a symlink
2194 * that needs to be followed. "path" will be populated with the path
2195 * to the link, and nd->path will *not* be put.
2196 */
2197 static int
2198 mountpoint_last(struct nameidata *nd, struct path *path)
2199 {
2200 int error = 0;
2201 struct dentry *dentry;
2202 struct dentry *dir = nd->path.dentry;
2203
2204 /* If we're in rcuwalk, drop out of it to handle last component */
2205 if (nd->flags & LOOKUP_RCU) {
2206 if (unlazy_walk(nd, NULL)) {
2207 error = -ECHILD;
2208 goto out;
2209 }
2210 }
2211
2212 nd->flags &= ~LOOKUP_PARENT;
2213
2214 if (unlikely(nd->last_type != LAST_NORM)) {
2215 error = handle_dots(nd, nd->last_type);
2216 if (error)
2217 goto out;
2218 dentry = dget(nd->path.dentry);
2219 goto done;
2220 }
2221
2222 mutex_lock(&dir->d_inode->i_mutex);
2223 dentry = d_lookup(dir, &nd->last);
2224 if (!dentry) {
2225 /*
2226 * No cached dentry. Mounted dentries are pinned in the cache,
2227 * so that means that this dentry is probably a symlink or the
2228 * path doesn't actually point to a mounted dentry.
2229 */
2230 dentry = d_alloc(dir, &nd->last);
2231 if (!dentry) {
2232 error = -ENOMEM;
2233 mutex_unlock(&dir->d_inode->i_mutex);
2234 goto out;
2235 }
2236 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2237 error = PTR_ERR(dentry);
2238 if (IS_ERR(dentry)) {
2239 mutex_unlock(&dir->d_inode->i_mutex);
2240 goto out;
2241 }
2242 }
2243 mutex_unlock(&dir->d_inode->i_mutex);
2244
2245 done:
2246 if (!dentry->d_inode) {
2247 error = -ENOENT;
2248 dput(dentry);
2249 goto out;
2250 }
2251 path->dentry = dentry;
2252 path->mnt = mntget(nd->path.mnt);
2253 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2254 return 1;
2255 follow_mount(path);
2256 error = 0;
2257 out:
2258 terminate_walk(nd);
2259 return error;
2260 }
2261
2262 /**
2263 * path_mountpoint - look up a path to be umounted
2264 * @dfd: directory file descriptor to start walk from
2265 * @name: full pathname to walk
2266 * @path: pointer to container for result
2267 * @flags: lookup flags
2268 *
2269 * Look up the given name, but don't attempt to revalidate the last component.
2270 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2271 */
2272 static int
2273 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2274 {
2275 struct file *base = NULL;
2276 struct nameidata nd;
2277 int err;
2278
2279 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2280 if (unlikely(err))
2281 return err;
2282
2283 current->total_link_count = 0;
2284 err = link_path_walk(name, &nd);
2285 if (err)
2286 goto out;
2287
2288 err = mountpoint_last(&nd, path);
2289 while (err > 0) {
2290 void *cookie;
2291 struct path link = *path;
2292 err = may_follow_link(&link, &nd);
2293 if (unlikely(err))
2294 break;
2295 nd.flags |= LOOKUP_PARENT;
2296 err = follow_link(&link, &nd, &cookie);
2297 if (err)
2298 break;
2299 err = mountpoint_last(&nd, path);
2300 put_link(&nd, &link, cookie);
2301 }
2302 out:
2303 if (base)
2304 fput(base);
2305
2306 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2307 path_put(&nd.root);
2308
2309 return err;
2310 }
2311
2312 static int
2313 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2314 unsigned int flags)
2315 {
2316 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2317 if (unlikely(error == -ECHILD))
2318 error = path_mountpoint(dfd, s->name, path, flags);
2319 if (unlikely(error == -ESTALE))
2320 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2321 if (likely(!error))
2322 audit_inode(s, path->dentry, 0);
2323 return error;
2324 }
2325
2326 /**
2327 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2328 * @dfd: directory file descriptor
2329 * @name: pathname from userland
2330 * @flags: lookup flags
2331 * @path: pointer to container to hold result
2332 *
2333 * A umount is a special case for path walking. We're not actually interested
2334 * in the inode in this situation, and ESTALE errors can be a problem. We
2335 * simply want track down the dentry and vfsmount attached at the mountpoint
2336 * and avoid revalidating the last component.
2337 *
2338 * Returns 0 and populates "path" on success.
2339 */
2340 int
2341 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2342 struct path *path)
2343 {
2344 struct filename *s = getname(name);
2345 int error;
2346 if (IS_ERR(s))
2347 return PTR_ERR(s);
2348 error = filename_mountpoint(dfd, s, path, flags);
2349 putname(s);
2350 return error;
2351 }
2352
2353 int
2354 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2355 unsigned int flags)
2356 {
2357 struct filename s = {.name = name};
2358 return filename_mountpoint(dfd, &s, path, flags);
2359 }
2360 EXPORT_SYMBOL(kern_path_mountpoint);
2361
2362 /*
2363 * It's inline, so penalty for filesystems that don't use sticky bit is
2364 * minimal.
2365 */
2366 static inline int check_sticky(struct inode *dir, struct inode *inode)
2367 {
2368 kuid_t fsuid = current_fsuid();
2369
2370 if (!(dir->i_mode & S_ISVTX))
2371 return 0;
2372 if (uid_eq(inode->i_uid, fsuid))
2373 return 0;
2374 if (uid_eq(dir->i_uid, fsuid))
2375 return 0;
2376 return !inode_capable(inode, CAP_FOWNER);
2377 }
2378
2379 /*
2380 * Check whether we can remove a link victim from directory dir, check
2381 * whether the type of victim is right.
2382 * 1. We can't do it if dir is read-only (done in permission())
2383 * 2. We should have write and exec permissions on dir
2384 * 3. We can't remove anything from append-only dir
2385 * 4. We can't do anything with immutable dir (done in permission())
2386 * 5. If the sticky bit on dir is set we should either
2387 * a. be owner of dir, or
2388 * b. be owner of victim, or
2389 * c. have CAP_FOWNER capability
2390 * 6. If the victim is append-only or immutable we can't do antyhing with
2391 * links pointing to it.
2392 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2393 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2394 * 9. We can't remove a root or mountpoint.
2395 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2396 * nfs_async_unlink().
2397 */
2398 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2399 {
2400 struct inode *inode = victim->d_inode;
2401 int error;
2402
2403 if (d_is_negative(victim))
2404 return -ENOENT;
2405 BUG_ON(!inode);
2406
2407 BUG_ON(victim->d_parent->d_inode != dir);
2408 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2409
2410 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2411 if (error)
2412 return error;
2413 if (IS_APPEND(dir))
2414 return -EPERM;
2415
2416 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2417 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2418 return -EPERM;
2419 if (isdir) {
2420 if (!d_is_directory(victim) && !d_is_autodir(victim))
2421 return -ENOTDIR;
2422 if (IS_ROOT(victim))
2423 return -EBUSY;
2424 } else if (d_is_directory(victim) || d_is_autodir(victim))
2425 return -EISDIR;
2426 if (IS_DEADDIR(dir))
2427 return -ENOENT;
2428 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2429 return -EBUSY;
2430 return 0;
2431 }
2432
2433 /* Check whether we can create an object with dentry child in directory
2434 * dir.
2435 * 1. We can't do it if child already exists (open has special treatment for
2436 * this case, but since we are inlined it's OK)
2437 * 2. We can't do it if dir is read-only (done in permission())
2438 * 3. We should have write and exec permissions on dir
2439 * 4. We can't do it if dir is immutable (done in permission())
2440 */
2441 static inline int may_create(struct inode *dir, struct dentry *child)
2442 {
2443 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2444 if (child->d_inode)
2445 return -EEXIST;
2446 if (IS_DEADDIR(dir))
2447 return -ENOENT;
2448 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2449 }
2450
2451 /*
2452 * p1 and p2 should be directories on the same fs.
2453 */
2454 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2455 {
2456 struct dentry *p;
2457
2458 if (p1 == p2) {
2459 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2460 return NULL;
2461 }
2462
2463 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2464
2465 p = d_ancestor(p2, p1);
2466 if (p) {
2467 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2468 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2469 return p;
2470 }
2471
2472 p = d_ancestor(p1, p2);
2473 if (p) {
2474 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2475 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2476 return p;
2477 }
2478
2479 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2480 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2481 return NULL;
2482 }
2483
2484 void unlock_rename(struct dentry *p1, struct dentry *p2)
2485 {
2486 mutex_unlock(&p1->d_inode->i_mutex);
2487 if (p1 != p2) {
2488 mutex_unlock(&p2->d_inode->i_mutex);
2489 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2490 }
2491 }
2492
2493 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2494 bool want_excl)
2495 {
2496 int error = may_create(dir, dentry);
2497 if (error)
2498 return error;
2499
2500 if (!dir->i_op->create)
2501 return -EACCES; /* shouldn't it be ENOSYS? */
2502 mode &= S_IALLUGO;
2503 mode |= S_IFREG;
2504 error = security_inode_create(dir, dentry, mode);
2505 if (error)
2506 return error;
2507 error = dir->i_op->create(dir, dentry, mode, want_excl);
2508 if (!error)
2509 fsnotify_create(dir, dentry);
2510 return error;
2511 }
2512
2513 static int may_open(struct path *path, int acc_mode, int flag)
2514 {
2515 struct dentry *dentry = path->dentry;
2516 struct inode *inode = dentry->d_inode;
2517 int error;
2518
2519 /* O_PATH? */
2520 if (!acc_mode)
2521 return 0;
2522
2523 if (!inode)
2524 return -ENOENT;
2525
2526 switch (inode->i_mode & S_IFMT) {
2527 case S_IFLNK:
2528 return -ELOOP;
2529 case S_IFDIR:
2530 if (acc_mode & MAY_WRITE)
2531 return -EISDIR;
2532 break;
2533 case S_IFBLK:
2534 case S_IFCHR:
2535 if (path->mnt->mnt_flags & MNT_NODEV)
2536 return -EACCES;
2537 /*FALLTHRU*/
2538 case S_IFIFO:
2539 case S_IFSOCK:
2540 flag &= ~O_TRUNC;
2541 break;
2542 }
2543
2544 error = inode_permission(inode, acc_mode);
2545 if (error)
2546 return error;
2547
2548 /*
2549 * An append-only file must be opened in append mode for writing.
2550 */
2551 if (IS_APPEND(inode)) {
2552 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2553 return -EPERM;
2554 if (flag & O_TRUNC)
2555 return -EPERM;
2556 }
2557
2558 /* O_NOATIME can only be set by the owner or superuser */
2559 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2560 return -EPERM;
2561
2562 return 0;
2563 }
2564
2565 static int handle_truncate(struct file *filp)
2566 {
2567 struct path *path = &filp->f_path;
2568 struct inode *inode = path->dentry->d_inode;
2569 int error = get_write_access(inode);
2570 if (error)
2571 return error;
2572 /*
2573 * Refuse to truncate files with mandatory locks held on them.
2574 */
2575 error = locks_verify_locked(inode);
2576 if (!error)
2577 error = security_path_truncate(path);
2578 if (!error) {
2579 error = do_truncate(path->dentry, 0,
2580 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2581 filp);
2582 }
2583 put_write_access(inode);
2584 return error;
2585 }
2586
2587 static inline int open_to_namei_flags(int flag)
2588 {
2589 if ((flag & O_ACCMODE) == 3)
2590 flag--;
2591 return flag;
2592 }
2593
2594 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2595 {
2596 int error = security_path_mknod(dir, dentry, mode, 0);
2597 if (error)
2598 return error;
2599
2600 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2601 if (error)
2602 return error;
2603
2604 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2605 }
2606
2607 /*
2608 * Attempt to atomically look up, create and open a file from a negative
2609 * dentry.
2610 *
2611 * Returns 0 if successful. The file will have been created and attached to
2612 * @file by the filesystem calling finish_open().
2613 *
2614 * Returns 1 if the file was looked up only or didn't need creating. The
2615 * caller will need to perform the open themselves. @path will have been
2616 * updated to point to the new dentry. This may be negative.
2617 *
2618 * Returns an error code otherwise.
2619 */
2620 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2621 struct path *path, struct file *file,
2622 const struct open_flags *op,
2623 bool got_write, bool need_lookup,
2624 int *opened)
2625 {
2626 struct inode *dir = nd->path.dentry->d_inode;
2627 unsigned open_flag = open_to_namei_flags(op->open_flag);
2628 umode_t mode;
2629 int error;
2630 int acc_mode;
2631 int create_error = 0;
2632 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2633 bool excl;
2634
2635 BUG_ON(dentry->d_inode);
2636
2637 /* Don't create child dentry for a dead directory. */
2638 if (unlikely(IS_DEADDIR(dir))) {
2639 error = -ENOENT;
2640 goto out;
2641 }
2642
2643 mode = op->mode;
2644 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2645 mode &= ~current_umask();
2646
2647 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2648 if (excl)
2649 open_flag &= ~O_TRUNC;
2650
2651 /*
2652 * Checking write permission is tricky, bacuse we don't know if we are
2653 * going to actually need it: O_CREAT opens should work as long as the
2654 * file exists. But checking existence breaks atomicity. The trick is
2655 * to check access and if not granted clear O_CREAT from the flags.
2656 *
2657 * Another problem is returing the "right" error value (e.g. for an
2658 * O_EXCL open we want to return EEXIST not EROFS).
2659 */
2660 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2661 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2662 if (!(open_flag & O_CREAT)) {
2663 /*
2664 * No O_CREATE -> atomicity not a requirement -> fall
2665 * back to lookup + open
2666 */
2667 goto no_open;
2668 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2669 /* Fall back and fail with the right error */
2670 create_error = -EROFS;
2671 goto no_open;
2672 } else {
2673 /* No side effects, safe to clear O_CREAT */
2674 create_error = -EROFS;
2675 open_flag &= ~O_CREAT;
2676 }
2677 }
2678
2679 if (open_flag & O_CREAT) {
2680 error = may_o_create(&nd->path, dentry, mode);
2681 if (error) {
2682 create_error = error;
2683 if (open_flag & O_EXCL)
2684 goto no_open;
2685 open_flag &= ~O_CREAT;
2686 }
2687 }
2688
2689 if (nd->flags & LOOKUP_DIRECTORY)
2690 open_flag |= O_DIRECTORY;
2691
2692 file->f_path.dentry = DENTRY_NOT_SET;
2693 file->f_path.mnt = nd->path.mnt;
2694 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2695 opened);
2696 if (error < 0) {
2697 if (create_error && error == -ENOENT)
2698 error = create_error;
2699 goto out;
2700 }
2701
2702 if (error) { /* returned 1, that is */
2703 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2704 error = -EIO;
2705 goto out;
2706 }
2707 if (file->f_path.dentry) {
2708 dput(dentry);
2709 dentry = file->f_path.dentry;
2710 }
2711 if (*opened & FILE_CREATED)
2712 fsnotify_create(dir, dentry);
2713 if (!dentry->d_inode) {
2714 WARN_ON(*opened & FILE_CREATED);
2715 if (create_error) {
2716 error = create_error;
2717 goto out;
2718 }
2719 } else {
2720 if (excl && !(*opened & FILE_CREATED)) {
2721 error = -EEXIST;
2722 goto out;
2723 }
2724 }
2725 goto looked_up;
2726 }
2727
2728 /*
2729 * We didn't have the inode before the open, so check open permission
2730 * here.
2731 */
2732 acc_mode = op->acc_mode;
2733 if (*opened & FILE_CREATED) {
2734 WARN_ON(!(open_flag & O_CREAT));
2735 fsnotify_create(dir, dentry);
2736 acc_mode = MAY_OPEN;
2737 }
2738 error = may_open(&file->f_path, acc_mode, open_flag);
2739 if (error)
2740 fput(file);
2741
2742 out:
2743 dput(dentry);
2744 return error;
2745
2746 no_open:
2747 if (need_lookup) {
2748 dentry = lookup_real(dir, dentry, nd->flags);
2749 if (IS_ERR(dentry))
2750 return PTR_ERR(dentry);
2751
2752 if (create_error) {
2753 int open_flag = op->open_flag;
2754
2755 error = create_error;
2756 if ((open_flag & O_EXCL)) {
2757 if (!dentry->d_inode)
2758 goto out;
2759 } else if (!dentry->d_inode) {
2760 goto out;
2761 } else if ((open_flag & O_TRUNC) &&
2762 S_ISREG(dentry->d_inode->i_mode)) {
2763 goto out;
2764 }
2765 /* will fail later, go on to get the right error */
2766 }
2767 }
2768 looked_up:
2769 path->dentry = dentry;
2770 path->mnt = nd->path.mnt;
2771 return 1;
2772 }
2773
2774 /*
2775 * Look up and maybe create and open the last component.
2776 *
2777 * Must be called with i_mutex held on parent.
2778 *
2779 * Returns 0 if the file was successfully atomically created (if necessary) and
2780 * opened. In this case the file will be returned attached to @file.
2781 *
2782 * Returns 1 if the file was not completely opened at this time, though lookups
2783 * and creations will have been performed and the dentry returned in @path will
2784 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2785 * specified then a negative dentry may be returned.
2786 *
2787 * An error code is returned otherwise.
2788 *
2789 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2790 * cleared otherwise prior to returning.
2791 */
2792 static int lookup_open(struct nameidata *nd, struct path *path,
2793 struct file *file,
2794 const struct open_flags *op,
2795 bool got_write, int *opened)
2796 {
2797 struct dentry *dir = nd->path.dentry;
2798 struct inode *dir_inode = dir->d_inode;
2799 struct dentry *dentry;
2800 int error;
2801 bool need_lookup;
2802
2803 *opened &= ~FILE_CREATED;
2804 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2805 if (IS_ERR(dentry))
2806 return PTR_ERR(dentry);
2807
2808 /* Cached positive dentry: will open in f_op->open */
2809 if (!need_lookup && dentry->d_inode)
2810 goto out_no_open;
2811
2812 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2813 return atomic_open(nd, dentry, path, file, op, got_write,
2814 need_lookup, opened);
2815 }
2816
2817 if (need_lookup) {
2818 BUG_ON(dentry->d_inode);
2819
2820 dentry = lookup_real(dir_inode, dentry, nd->flags);
2821 if (IS_ERR(dentry))
2822 return PTR_ERR(dentry);
2823 }
2824
2825 /* Negative dentry, just create the file */
2826 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2827 umode_t mode = op->mode;
2828 if (!IS_POSIXACL(dir->d_inode))
2829 mode &= ~current_umask();
2830 /*
2831 * This write is needed to ensure that a
2832 * rw->ro transition does not occur between
2833 * the time when the file is created and when
2834 * a permanent write count is taken through
2835 * the 'struct file' in finish_open().
2836 */
2837 if (!got_write) {
2838 error = -EROFS;
2839 goto out_dput;
2840 }
2841 *opened |= FILE_CREATED;
2842 error = security_path_mknod(&nd->path, dentry, mode, 0);
2843 if (error)
2844 goto out_dput;
2845 error = vfs_create(dir->d_inode, dentry, mode,
2846 nd->flags & LOOKUP_EXCL);
2847 if (error)
2848 goto out_dput;
2849 }
2850 out_no_open:
2851 path->dentry = dentry;
2852 path->mnt = nd->path.mnt;
2853 return 1;
2854
2855 out_dput:
2856 dput(dentry);
2857 return error;
2858 }
2859
2860 /*
2861 * Handle the last step of open()
2862 */
2863 static int do_last(struct nameidata *nd, struct path *path,
2864 struct file *file, const struct open_flags *op,
2865 int *opened, struct filename *name)
2866 {
2867 struct dentry *dir = nd->path.dentry;
2868 int open_flag = op->open_flag;
2869 bool will_truncate = (open_flag & O_TRUNC) != 0;
2870 bool got_write = false;
2871 int acc_mode = op->acc_mode;
2872 struct inode *inode;
2873 bool symlink_ok = false;
2874 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2875 bool retried = false;
2876 int error;
2877
2878 nd->flags &= ~LOOKUP_PARENT;
2879 nd->flags |= op->intent;
2880
2881 if (nd->last_type != LAST_NORM) {
2882 error = handle_dots(nd, nd->last_type);
2883 if (error)
2884 return error;
2885 goto finish_open;
2886 }
2887
2888 if (!(open_flag & O_CREAT)) {
2889 if (nd->last.name[nd->last.len])
2890 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2891 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2892 symlink_ok = true;
2893 /* we _can_ be in RCU mode here */
2894 error = lookup_fast(nd, path, &inode);
2895 if (likely(!error))
2896 goto finish_lookup;
2897
2898 if (error < 0)
2899 goto out;
2900
2901 BUG_ON(nd->inode != dir->d_inode);
2902 } else {
2903 /* create side of things */
2904 /*
2905 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2906 * has been cleared when we got to the last component we are
2907 * about to look up
2908 */
2909 error = complete_walk(nd);
2910 if (error)
2911 return error;
2912
2913 audit_inode(name, dir, LOOKUP_PARENT);
2914 error = -EISDIR;
2915 /* trailing slashes? */
2916 if (nd->last.name[nd->last.len])
2917 goto out;
2918 }
2919
2920 retry_lookup:
2921 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2922 error = mnt_want_write(nd->path.mnt);
2923 if (!error)
2924 got_write = true;
2925 /*
2926 * do _not_ fail yet - we might not need that or fail with
2927 * a different error; let lookup_open() decide; we'll be
2928 * dropping this one anyway.
2929 */
2930 }
2931 mutex_lock(&dir->d_inode->i_mutex);
2932 error = lookup_open(nd, path, file, op, got_write, opened);
2933 mutex_unlock(&dir->d_inode->i_mutex);
2934
2935 if (error <= 0) {
2936 if (error)
2937 goto out;
2938
2939 if ((*opened & FILE_CREATED) ||
2940 !S_ISREG(file_inode(file)->i_mode))
2941 will_truncate = false;
2942
2943 audit_inode(name, file->f_path.dentry, 0);
2944 goto opened;
2945 }
2946
2947 if (*opened & FILE_CREATED) {
2948 /* Don't check for write permission, don't truncate */
2949 open_flag &= ~O_TRUNC;
2950 will_truncate = false;
2951 acc_mode = MAY_OPEN;
2952 path_to_nameidata(path, nd);
2953 goto finish_open_created;
2954 }
2955
2956 /*
2957 * create/update audit record if it already exists.
2958 */
2959 if (d_is_positive(path->dentry))
2960 audit_inode(name, path->dentry, 0);
2961
2962 /*
2963 * If atomic_open() acquired write access it is dropped now due to
2964 * possible mount and symlink following (this might be optimized away if
2965 * necessary...)
2966 */
2967 if (got_write) {
2968 mnt_drop_write(nd->path.mnt);
2969 got_write = false;
2970 }
2971
2972 error = -EEXIST;
2973 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2974 goto exit_dput;
2975
2976 error = follow_managed(path, nd->flags);
2977 if (error < 0)
2978 goto exit_dput;
2979
2980 if (error)
2981 nd->flags |= LOOKUP_JUMPED;
2982
2983 BUG_ON(nd->flags & LOOKUP_RCU);
2984 inode = path->dentry->d_inode;
2985 finish_lookup:
2986 /* we _can_ be in RCU mode here */
2987 error = -ENOENT;
2988 if (d_is_negative(path->dentry)) {
2989 path_to_nameidata(path, nd);
2990 goto out;
2991 }
2992
2993 if (should_follow_link(path->dentry, !symlink_ok)) {
2994 if (nd->flags & LOOKUP_RCU) {
2995 if (unlikely(unlazy_walk(nd, path->dentry))) {
2996 error = -ECHILD;
2997 goto out;
2998 }
2999 }
3000 BUG_ON(inode != path->dentry->d_inode);
3001 return 1;
3002 }
3003
3004 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3005 path_to_nameidata(path, nd);
3006 } else {
3007 save_parent.dentry = nd->path.dentry;
3008 save_parent.mnt = mntget(path->mnt);
3009 nd->path.dentry = path->dentry;
3010
3011 }
3012 nd->inode = inode;
3013 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3014 finish_open:
3015 error = complete_walk(nd);
3016 if (error) {
3017 path_put(&save_parent);
3018 return error;
3019 }
3020 audit_inode(name, nd->path.dentry, 0);
3021 error = -EISDIR;
3022 if ((open_flag & O_CREAT) &&
3023 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
3024 goto out;
3025 error = -ENOTDIR;
3026 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
3027 goto out;
3028 if (!S_ISREG(nd->inode->i_mode))
3029 will_truncate = false;
3030
3031 if (will_truncate) {
3032 error = mnt_want_write(nd->path.mnt);
3033 if (error)
3034 goto out;
3035 got_write = true;
3036 }
3037 finish_open_created:
3038 error = may_open(&nd->path, acc_mode, open_flag);
3039 if (error)
3040 goto out;
3041 file->f_path.mnt = nd->path.mnt;
3042 error = finish_open(file, nd->path.dentry, NULL, opened);
3043 if (error) {
3044 if (error == -EOPENSTALE)
3045 goto stale_open;
3046 goto out;
3047 }
3048 opened:
3049 error = open_check_o_direct(file);
3050 if (error)
3051 goto exit_fput;
3052 error = ima_file_check(file, op->acc_mode);
3053 if (error)
3054 goto exit_fput;
3055
3056 if (will_truncate) {
3057 error = handle_truncate(file);
3058 if (error)
3059 goto exit_fput;
3060 }
3061 out:
3062 if (got_write)
3063 mnt_drop_write(nd->path.mnt);
3064 path_put(&save_parent);
3065 terminate_walk(nd);
3066 return error;
3067
3068 exit_dput:
3069 path_put_conditional(path, nd);
3070 goto out;
3071 exit_fput:
3072 fput(file);
3073 goto out;
3074
3075 stale_open:
3076 /* If no saved parent or already retried then can't retry */
3077 if (!save_parent.dentry || retried)
3078 goto out;
3079
3080 BUG_ON(save_parent.dentry != dir);
3081 path_put(&nd->path);
3082 nd->path = save_parent;
3083 nd->inode = dir->d_inode;
3084 save_parent.mnt = NULL;
3085 save_parent.dentry = NULL;
3086 if (got_write) {
3087 mnt_drop_write(nd->path.mnt);
3088 got_write = false;
3089 }
3090 retried = true;
3091 goto retry_lookup;
3092 }
3093
3094 static int do_tmpfile(int dfd, struct filename *pathname,
3095 struct nameidata *nd, int flags,
3096 const struct open_flags *op,
3097 struct file *file, int *opened)
3098 {
3099 static const struct qstr name = QSTR_INIT("/", 1);
3100 struct dentry *dentry, *child;
3101 struct inode *dir;
3102 int error = path_lookupat(dfd, pathname->name,
3103 flags | LOOKUP_DIRECTORY, nd);
3104 if (unlikely(error))
3105 return error;
3106 error = mnt_want_write(nd->path.mnt);
3107 if (unlikely(error))
3108 goto out;
3109 /* we want directory to be writable */
3110 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3111 if (error)
3112 goto out2;
3113 dentry = nd->path.dentry;
3114 dir = dentry->d_inode;
3115 if (!dir->i_op->tmpfile) {
3116 error = -EOPNOTSUPP;
3117 goto out2;
3118 }
3119 child = d_alloc(dentry, &name);
3120 if (unlikely(!child)) {
3121 error = -ENOMEM;
3122 goto out2;
3123 }
3124 nd->flags &= ~LOOKUP_DIRECTORY;
3125 nd->flags |= op->intent;
3126 dput(nd->path.dentry);
3127 nd->path.dentry = child;
3128 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3129 if (error)
3130 goto out2;
3131 audit_inode(pathname, nd->path.dentry, 0);
3132 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3133 if (error)
3134 goto out2;
3135 file->f_path.mnt = nd->path.mnt;
3136 error = finish_open(file, nd->path.dentry, NULL, opened);
3137 if (error)
3138 goto out2;
3139 error = open_check_o_direct(file);
3140 if (error) {
3141 fput(file);
3142 } else if (!(op->open_flag & O_EXCL)) {
3143 struct inode *inode = file_inode(file);
3144 spin_lock(&inode->i_lock);
3145 inode->i_state |= I_LINKABLE;
3146 spin_unlock(&inode->i_lock);
3147 }
3148 out2:
3149 mnt_drop_write(nd->path.mnt);
3150 out:
3151 path_put(&nd->path);
3152 return error;
3153 }
3154
3155 static struct file *path_openat(int dfd, struct filename *pathname,
3156 struct nameidata *nd, const struct open_flags *op, int flags)
3157 {
3158 struct file *base = NULL;
3159 struct file *file;
3160 struct path path;
3161 int opened = 0;
3162 int error;
3163
3164 file = get_empty_filp();
3165 if (IS_ERR(file))
3166 return file;
3167
3168 file->f_flags = op->open_flag;
3169
3170 if (unlikely(file->f_flags & __O_TMPFILE)) {
3171 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3172 goto out;
3173 }
3174
3175 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3176 if (unlikely(error))
3177 goto out;
3178
3179 current->total_link_count = 0;
3180 error = link_path_walk(pathname->name, nd);
3181 if (unlikely(error))
3182 goto out;
3183
3184 error = do_last(nd, &path, file, op, &opened, pathname);
3185 while (unlikely(error > 0)) { /* trailing symlink */
3186 struct path link = path;
3187 void *cookie;
3188 if (!(nd->flags & LOOKUP_FOLLOW)) {
3189 path_put_conditional(&path, nd);
3190 path_put(&nd->path);
3191 error = -ELOOP;
3192 break;
3193 }
3194 error = may_follow_link(&link, nd);
3195 if (unlikely(error))
3196 break;
3197 nd->flags |= LOOKUP_PARENT;
3198 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3199 error = follow_link(&link, nd, &cookie);
3200 if (unlikely(error))
3201 break;
3202 error = do_last(nd, &path, file, op, &opened, pathname);
3203 put_link(nd, &link, cookie);
3204 }
3205 out:
3206 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3207 path_put(&nd->root);
3208 if (base)
3209 fput(base);
3210 if (!(opened & FILE_OPENED)) {
3211 BUG_ON(!error);
3212 put_filp(file);
3213 }
3214 if (unlikely(error)) {
3215 if (error == -EOPENSTALE) {
3216 if (flags & LOOKUP_RCU)
3217 error = -ECHILD;
3218 else
3219 error = -ESTALE;
3220 }
3221 file = ERR_PTR(error);
3222 }
3223 return file;
3224 }
3225
3226 struct file *do_filp_open(int dfd, struct filename *pathname,
3227 const struct open_flags *op)
3228 {
3229 struct nameidata nd;
3230 int flags = op->lookup_flags;
3231 struct file *filp;
3232
3233 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3234 if (unlikely(filp == ERR_PTR(-ECHILD)))
3235 filp = path_openat(dfd, pathname, &nd, op, flags);
3236 if (unlikely(filp == ERR_PTR(-ESTALE)))
3237 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3238 return filp;
3239 }
3240
3241 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3242 const char *name, const struct open_flags *op)
3243 {
3244 struct nameidata nd;
3245 struct file *file;
3246 struct filename filename = { .name = name };
3247 int flags = op->lookup_flags | LOOKUP_ROOT;
3248
3249 nd.root.mnt = mnt;
3250 nd.root.dentry = dentry;
3251
3252 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3253 return ERR_PTR(-ELOOP);
3254
3255 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3256 if (unlikely(file == ERR_PTR(-ECHILD)))
3257 file = path_openat(-1, &filename, &nd, op, flags);
3258 if (unlikely(file == ERR_PTR(-ESTALE)))
3259 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3260 return file;
3261 }
3262
3263 struct dentry *kern_path_create(int dfd, const char *pathname,
3264 struct path *path, unsigned int lookup_flags)
3265 {
3266 struct dentry *dentry = ERR_PTR(-EEXIST);
3267 struct nameidata nd;
3268 int err2;
3269 int error;
3270 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3271
3272 /*
3273 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3274 * other flags passed in are ignored!
3275 */
3276 lookup_flags &= LOOKUP_REVAL;
3277
3278 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3279 if (error)
3280 return ERR_PTR(error);
3281
3282 /*
3283 * Yucky last component or no last component at all?
3284 * (foo/., foo/.., /////)
3285 */
3286 if (nd.last_type != LAST_NORM)
3287 goto out;
3288 nd.flags &= ~LOOKUP_PARENT;
3289 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3290
3291 /* don't fail immediately if it's r/o, at least try to report other errors */
3292 err2 = mnt_want_write(nd.path.mnt);
3293 /*
3294 * Do the final lookup.
3295 */
3296 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3297 dentry = lookup_hash(&nd);
3298 if (IS_ERR(dentry))
3299 goto unlock;
3300
3301 error = -EEXIST;
3302 if (d_is_positive(dentry))
3303 goto fail;
3304
3305 /*
3306 * Special case - lookup gave negative, but... we had foo/bar/
3307 * From the vfs_mknod() POV we just have a negative dentry -
3308 * all is fine. Let's be bastards - you had / on the end, you've
3309 * been asking for (non-existent) directory. -ENOENT for you.
3310 */
3311 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3312 error = -ENOENT;
3313 goto fail;
3314 }
3315 if (unlikely(err2)) {
3316 error = err2;
3317 goto fail;
3318 }
3319 *path = nd.path;
3320 return dentry;
3321 fail:
3322 dput(dentry);
3323 dentry = ERR_PTR(error);
3324 unlock:
3325 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3326 if (!err2)
3327 mnt_drop_write(nd.path.mnt);
3328 out:
3329 path_put(&nd.path);
3330 return dentry;
3331 }
3332 EXPORT_SYMBOL(kern_path_create);
3333
3334 void done_path_create(struct path *path, struct dentry *dentry)
3335 {
3336 dput(dentry);
3337 mutex_unlock(&path->dentry->d_inode->i_mutex);
3338 mnt_drop_write(path->mnt);
3339 path_put(path);
3340 }
3341 EXPORT_SYMBOL(done_path_create);
3342
3343 struct dentry *user_path_create(int dfd, const char __user *pathname,
3344 struct path *path, unsigned int lookup_flags)
3345 {
3346 struct filename *tmp = getname(pathname);
3347 struct dentry *res;
3348 if (IS_ERR(tmp))
3349 return ERR_CAST(tmp);
3350 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3351 putname(tmp);
3352 return res;
3353 }
3354 EXPORT_SYMBOL(user_path_create);
3355
3356 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3357 {
3358 int error = may_create(dir, dentry);
3359
3360 if (error)
3361 return error;
3362
3363 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3364 return -EPERM;
3365
3366 if (!dir->i_op->mknod)
3367 return -EPERM;
3368
3369 error = devcgroup_inode_mknod(mode, dev);
3370 if (error)
3371 return error;
3372
3373 error = security_inode_mknod(dir, dentry, mode, dev);
3374 if (error)
3375 return error;
3376
3377 error = dir->i_op->mknod(dir, dentry, mode, dev);
3378 if (!error)
3379 fsnotify_create(dir, dentry);
3380 return error;
3381 }
3382
3383 static int may_mknod(umode_t mode)
3384 {
3385 switch (mode & S_IFMT) {
3386 case S_IFREG:
3387 case S_IFCHR:
3388 case S_IFBLK:
3389 case S_IFIFO:
3390 case S_IFSOCK:
3391 case 0: /* zero mode translates to S_IFREG */
3392 return 0;
3393 case S_IFDIR:
3394 return -EPERM;
3395 default:
3396 return -EINVAL;
3397 }
3398 }
3399
3400 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3401 unsigned, dev)
3402 {
3403 struct dentry *dentry;
3404 struct path path;
3405 int error;
3406 unsigned int lookup_flags = 0;
3407
3408 error = may_mknod(mode);
3409 if (error)
3410 return error;
3411 retry:
3412 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3413 if (IS_ERR(dentry))
3414 return PTR_ERR(dentry);
3415
3416 if (!IS_POSIXACL(path.dentry->d_inode))
3417 mode &= ~current_umask();
3418 error = security_path_mknod(&path, dentry, mode, dev);
3419 if (error)
3420 goto out;
3421 switch (mode & S_IFMT) {
3422 case 0: case S_IFREG:
3423 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3424 break;
3425 case S_IFCHR: case S_IFBLK:
3426 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3427 new_decode_dev(dev));
3428 break;
3429 case S_IFIFO: case S_IFSOCK:
3430 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3431 break;
3432 }
3433 out:
3434 done_path_create(&path, dentry);
3435 if (retry_estale(error, lookup_flags)) {
3436 lookup_flags |= LOOKUP_REVAL;
3437 goto retry;
3438 }
3439 return error;
3440 }
3441
3442 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3443 {
3444 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3445 }
3446
3447 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3448 {
3449 int error = may_create(dir, dentry);
3450 unsigned max_links = dir->i_sb->s_max_links;
3451
3452 if (error)
3453 return error;
3454
3455 if (!dir->i_op->mkdir)
3456 return -EPERM;
3457
3458 mode &= (S_IRWXUGO|S_ISVTX);
3459 error = security_inode_mkdir(dir, dentry, mode);
3460 if (error)
3461 return error;
3462
3463 if (max_links && dir->i_nlink >= max_links)
3464 return -EMLINK;
3465
3466 error = dir->i_op->mkdir(dir, dentry, mode);
3467 if (!error)
3468 fsnotify_mkdir(dir, dentry);
3469 return error;
3470 }
3471
3472 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3473 {
3474 struct dentry *dentry;
3475 struct path path;
3476 int error;
3477 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3478
3479 retry:
3480 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3481 if (IS_ERR(dentry))
3482 return PTR_ERR(dentry);
3483
3484 if (!IS_POSIXACL(path.dentry->d_inode))
3485 mode &= ~current_umask();
3486 error = security_path_mkdir(&path, dentry, mode);
3487 if (!error)
3488 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3489 done_path_create(&path, dentry);
3490 if (retry_estale(error, lookup_flags)) {
3491 lookup_flags |= LOOKUP_REVAL;
3492 goto retry;
3493 }
3494 return error;
3495 }
3496
3497 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3498 {
3499 return sys_mkdirat(AT_FDCWD, pathname, mode);
3500 }
3501
3502 /*
3503 * The dentry_unhash() helper will try to drop the dentry early: we
3504 * should have a usage count of 1 if we're the only user of this
3505 * dentry, and if that is true (possibly after pruning the dcache),
3506 * then we drop the dentry now.
3507 *
3508 * A low-level filesystem can, if it choses, legally
3509 * do a
3510 *
3511 * if (!d_unhashed(dentry))
3512 * return -EBUSY;
3513 *
3514 * if it cannot handle the case of removing a directory
3515 * that is still in use by something else..
3516 */
3517 void dentry_unhash(struct dentry *dentry)
3518 {
3519 shrink_dcache_parent(dentry);
3520 spin_lock(&dentry->d_lock);
3521 if (dentry->d_lockref.count == 1)
3522 __d_drop(dentry);
3523 spin_unlock(&dentry->d_lock);
3524 }
3525
3526 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3527 {
3528 int error = may_delete(dir, dentry, 1);
3529
3530 if (error)
3531 return error;
3532
3533 if (!dir->i_op->rmdir)
3534 return -EPERM;
3535
3536 dget(dentry);
3537 mutex_lock(&dentry->d_inode->i_mutex);
3538
3539 error = -EBUSY;
3540 if (d_mountpoint(dentry))
3541 goto out;
3542
3543 error = security_inode_rmdir(dir, dentry);
3544 if (error)
3545 goto out;
3546
3547 shrink_dcache_parent(dentry);
3548 error = dir->i_op->rmdir(dir, dentry);
3549 if (error)
3550 goto out;
3551
3552 dentry->d_inode->i_flags |= S_DEAD;
3553 dont_mount(dentry);
3554
3555 out:
3556 mutex_unlock(&dentry->d_inode->i_mutex);
3557 dput(dentry);
3558 if (!error)
3559 d_delete(dentry);
3560 return error;
3561 }
3562
3563 static long do_rmdir(int dfd, const char __user *pathname)
3564 {
3565 int error = 0;
3566 struct filename *name;
3567 struct dentry *dentry;
3568 struct nameidata nd;
3569 unsigned int lookup_flags = 0;
3570 retry:
3571 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3572 if (IS_ERR(name))
3573 return PTR_ERR(name);
3574
3575 switch(nd.last_type) {
3576 case LAST_DOTDOT:
3577 error = -ENOTEMPTY;
3578 goto exit1;
3579 case LAST_DOT:
3580 error = -EINVAL;
3581 goto exit1;
3582 case LAST_ROOT:
3583 error = -EBUSY;
3584 goto exit1;
3585 }
3586
3587 nd.flags &= ~LOOKUP_PARENT;
3588 error = mnt_want_write(nd.path.mnt);
3589 if (error)
3590 goto exit1;
3591
3592 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3593 dentry = lookup_hash(&nd);
3594 error = PTR_ERR(dentry);
3595 if (IS_ERR(dentry))
3596 goto exit2;
3597 if (!dentry->d_inode) {
3598 error = -ENOENT;
3599 goto exit3;
3600 }
3601 error = security_path_rmdir(&nd.path, dentry);
3602 if (error)
3603 goto exit3;
3604 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3605 exit3:
3606 dput(dentry);
3607 exit2:
3608 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3609 mnt_drop_write(nd.path.mnt);
3610 exit1:
3611 path_put(&nd.path);
3612 putname(name);
3613 if (retry_estale(error, lookup_flags)) {
3614 lookup_flags |= LOOKUP_REVAL;
3615 goto retry;
3616 }
3617 return error;
3618 }
3619
3620 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3621 {
3622 return do_rmdir(AT_FDCWD, pathname);
3623 }
3624
3625 /**
3626 * vfs_unlink - unlink a filesystem object
3627 * @dir: parent directory
3628 * @dentry: victim
3629 * @delegated_inode: returns victim inode, if the inode is delegated.
3630 *
3631 * The caller must hold dir->i_mutex.
3632 *
3633 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3634 * return a reference to the inode in delegated_inode. The caller
3635 * should then break the delegation on that inode and retry. Because
3636 * breaking a delegation may take a long time, the caller should drop
3637 * dir->i_mutex before doing so.
3638 *
3639 * Alternatively, a caller may pass NULL for delegated_inode. This may
3640 * be appropriate for callers that expect the underlying filesystem not
3641 * to be NFS exported.
3642 */
3643 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3644 {
3645 struct inode *target = dentry->d_inode;
3646 int error = may_delete(dir, dentry, 0);
3647
3648 if (error)
3649 return error;
3650
3651 if (!dir->i_op->unlink)
3652 return -EPERM;
3653
3654 mutex_lock(&target->i_mutex);
3655 if (d_mountpoint(dentry))
3656 error = -EBUSY;
3657 else {
3658 error = security_inode_unlink(dir, dentry);
3659 if (!error) {
3660 error = try_break_deleg(target, delegated_inode);
3661 if (error)
3662 goto out;
3663 error = dir->i_op->unlink(dir, dentry);
3664 if (!error)
3665 dont_mount(dentry);
3666 }
3667 }
3668 out:
3669 mutex_unlock(&target->i_mutex);
3670
3671 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3672 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3673 fsnotify_link_count(target);
3674 d_delete(dentry);
3675 }
3676
3677 return error;
3678 }
3679
3680 /*
3681 * Make sure that the actual truncation of the file will occur outside its
3682 * directory's i_mutex. Truncate can take a long time if there is a lot of
3683 * writeout happening, and we don't want to prevent access to the directory
3684 * while waiting on the I/O.
3685 */
3686 static long do_unlinkat(int dfd, const char __user *pathname)
3687 {
3688 int error;
3689 struct filename *name;
3690 struct dentry *dentry;
3691 struct nameidata nd;
3692 struct inode *inode = NULL;
3693 struct inode *delegated_inode = NULL;
3694 unsigned int lookup_flags = 0;
3695 retry:
3696 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3697 if (IS_ERR(name))
3698 return PTR_ERR(name);
3699
3700 error = -EISDIR;
3701 if (nd.last_type != LAST_NORM)
3702 goto exit1;
3703
3704 nd.flags &= ~LOOKUP_PARENT;
3705 error = mnt_want_write(nd.path.mnt);
3706 if (error)
3707 goto exit1;
3708 retry_deleg:
3709 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3710 dentry = lookup_hash(&nd);
3711 error = PTR_ERR(dentry);
3712 if (!IS_ERR(dentry)) {
3713 /* Why not before? Because we want correct error value */
3714 if (nd.last.name[nd.last.len])
3715 goto slashes;
3716 inode = dentry->d_inode;
3717 if (d_is_negative(dentry))
3718 goto slashes;
3719 ihold(inode);
3720 error = security_path_unlink(&nd.path, dentry);
3721 if (error)
3722 goto exit2;
3723 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3724 exit2:
3725 dput(dentry);
3726 }
3727 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3728 if (inode)
3729 iput(inode); /* truncate the inode here */
3730 inode = NULL;
3731 if (delegated_inode) {
3732 error = break_deleg_wait(&delegated_inode);
3733 if (!error)
3734 goto retry_deleg;
3735 }
3736 mnt_drop_write(nd.path.mnt);
3737 exit1:
3738 path_put(&nd.path);
3739 putname(name);
3740 if (retry_estale(error, lookup_flags)) {
3741 lookup_flags |= LOOKUP_REVAL;
3742 inode = NULL;
3743 goto retry;
3744 }
3745 return error;
3746
3747 slashes:
3748 if (d_is_negative(dentry))
3749 error = -ENOENT;
3750 else if (d_is_directory(dentry) || d_is_autodir(dentry))
3751 error = -EISDIR;
3752 else
3753 error = -ENOTDIR;
3754 goto exit2;
3755 }
3756
3757 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3758 {
3759 if ((flag & ~AT_REMOVEDIR) != 0)
3760 return -EINVAL;
3761
3762 if (flag & AT_REMOVEDIR)
3763 return do_rmdir(dfd, pathname);
3764
3765 return do_unlinkat(dfd, pathname);
3766 }
3767
3768 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3769 {
3770 return do_unlinkat(AT_FDCWD, pathname);
3771 }
3772
3773 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3774 {
3775 int error = may_create(dir, dentry);
3776
3777 if (error)
3778 return error;
3779
3780 if (!dir->i_op->symlink)
3781 return -EPERM;
3782
3783 error = security_inode_symlink(dir, dentry, oldname);
3784 if (error)
3785 return error;
3786
3787 error = dir->i_op->symlink(dir, dentry, oldname);
3788 if (!error)
3789 fsnotify_create(dir, dentry);
3790 return error;
3791 }
3792
3793 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3794 int, newdfd, const char __user *, newname)
3795 {
3796 int error;
3797 struct filename *from;
3798 struct dentry *dentry;
3799 struct path path;
3800 unsigned int lookup_flags = 0;
3801
3802 from = getname(oldname);
3803 if (IS_ERR(from))
3804 return PTR_ERR(from);
3805 retry:
3806 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3807 error = PTR_ERR(dentry);
3808 if (IS_ERR(dentry))
3809 goto out_putname;
3810
3811 error = security_path_symlink(&path, dentry, from->name);
3812 if (!error)
3813 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3814 done_path_create(&path, dentry);
3815 if (retry_estale(error, lookup_flags)) {
3816 lookup_flags |= LOOKUP_REVAL;
3817 goto retry;
3818 }
3819 out_putname:
3820 putname(from);
3821 return error;
3822 }
3823
3824 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3825 {
3826 return sys_symlinkat(oldname, AT_FDCWD, newname);
3827 }
3828
3829 /**
3830 * vfs_link - create a new link
3831 * @old_dentry: object to be linked
3832 * @dir: new parent
3833 * @new_dentry: where to create the new link
3834 * @delegated_inode: returns inode needing a delegation break
3835 *
3836 * The caller must hold dir->i_mutex
3837 *
3838 * If vfs_link discovers a delegation on the to-be-linked file in need
3839 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3840 * inode in delegated_inode. The caller should then break the delegation
3841 * and retry. Because breaking a delegation may take a long time, the
3842 * caller should drop the i_mutex before doing so.
3843 *
3844 * Alternatively, a caller may pass NULL for delegated_inode. This may
3845 * be appropriate for callers that expect the underlying filesystem not
3846 * to be NFS exported.
3847 */
3848 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3849 {
3850 struct inode *inode = old_dentry->d_inode;
3851 unsigned max_links = dir->i_sb->s_max_links;
3852 int error;
3853
3854 if (!inode)
3855 return -ENOENT;
3856
3857 error = may_create(dir, new_dentry);
3858 if (error)
3859 return error;
3860
3861 if (dir->i_sb != inode->i_sb)
3862 return -EXDEV;
3863
3864 /*
3865 * A link to an append-only or immutable file cannot be created.
3866 */
3867 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3868 return -EPERM;
3869 if (!dir->i_op->link)
3870 return -EPERM;
3871 if (S_ISDIR(inode->i_mode))
3872 return -EPERM;
3873
3874 error = security_inode_link(old_dentry, dir, new_dentry);
3875 if (error)
3876 return error;
3877
3878 mutex_lock(&inode->i_mutex);
3879 /* Make sure we don't allow creating hardlink to an unlinked file */
3880 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3881 error = -ENOENT;
3882 else if (max_links && inode->i_nlink >= max_links)
3883 error = -EMLINK;
3884 else {
3885 error = try_break_deleg(inode, delegated_inode);
3886 if (!error)
3887 error = dir->i_op->link(old_dentry, dir, new_dentry);
3888 }
3889
3890 if (!error && (inode->i_state & I_LINKABLE)) {
3891 spin_lock(&inode->i_lock);
3892 inode->i_state &= ~I_LINKABLE;
3893 spin_unlock(&inode->i_lock);
3894 }
3895 mutex_unlock(&inode->i_mutex);
3896 if (!error)
3897 fsnotify_link(dir, inode, new_dentry);
3898 return error;
3899 }
3900
3901 /*
3902 * Hardlinks are often used in delicate situations. We avoid
3903 * security-related surprises by not following symlinks on the
3904 * newname. --KAB
3905 *
3906 * We don't follow them on the oldname either to be compatible
3907 * with linux 2.0, and to avoid hard-linking to directories
3908 * and other special files. --ADM
3909 */
3910 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3911 int, newdfd, const char __user *, newname, int, flags)
3912 {
3913 struct dentry *new_dentry;
3914 struct path old_path, new_path;
3915 struct inode *delegated_inode = NULL;
3916 int how = 0;
3917 int error;
3918
3919 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3920 return -EINVAL;
3921 /*
3922 * To use null names we require CAP_DAC_READ_SEARCH
3923 * This ensures that not everyone will be able to create
3924 * handlink using the passed filedescriptor.
3925 */
3926 if (flags & AT_EMPTY_PATH) {
3927 if (!capable(CAP_DAC_READ_SEARCH))
3928 return -ENOENT;
3929 how = LOOKUP_EMPTY;
3930 }
3931
3932 if (flags & AT_SYMLINK_FOLLOW)
3933 how |= LOOKUP_FOLLOW;
3934 retry:
3935 error = user_path_at(olddfd, oldname, how, &old_path);
3936 if (error)
3937 return error;
3938
3939 new_dentry = user_path_create(newdfd, newname, &new_path,
3940 (how & LOOKUP_REVAL));
3941 error = PTR_ERR(new_dentry);
3942 if (IS_ERR(new_dentry))
3943 goto out;
3944
3945 error = -EXDEV;
3946 if (old_path.mnt != new_path.mnt)
3947 goto out_dput;
3948 error = may_linkat(&old_path);
3949 if (unlikely(error))
3950 goto out_dput;
3951 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3952 if (error)
3953 goto out_dput;
3954 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3955 out_dput:
3956 done_path_create(&new_path, new_dentry);
3957 if (delegated_inode) {
3958 error = break_deleg_wait(&delegated_inode);
3959 if (!error) {
3960 path_put(&old_path);
3961 goto retry;
3962 }
3963 }
3964 if (retry_estale(error, how)) {
3965 path_put(&old_path);
3966 how |= LOOKUP_REVAL;
3967 goto retry;
3968 }
3969 out:
3970 path_put(&old_path);
3971
3972 return error;
3973 }
3974
3975 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3976 {
3977 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3978 }
3979
3980 /*
3981 * The worst of all namespace operations - renaming directory. "Perverted"
3982 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3983 * Problems:
3984 * a) we can get into loop creation. Check is done in is_subdir().
3985 * b) race potential - two innocent renames can create a loop together.
3986 * That's where 4.4 screws up. Current fix: serialization on
3987 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3988 * story.
3989 * c) we have to lock _four_ objects - parents and victim (if it exists),
3990 * and source (if it is not a directory).
3991 * And that - after we got ->i_mutex on parents (until then we don't know
3992 * whether the target exists). Solution: try to be smart with locking
3993 * order for inodes. We rely on the fact that tree topology may change
3994 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3995 * move will be locked. Thus we can rank directories by the tree
3996 * (ancestors first) and rank all non-directories after them.
3997 * That works since everybody except rename does "lock parent, lookup,
3998 * lock child" and rename is under ->s_vfs_rename_mutex.
3999 * HOWEVER, it relies on the assumption that any object with ->lookup()
4000 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4001 * we'd better make sure that there's no link(2) for them.
4002 * d) conversion from fhandle to dentry may come in the wrong moment - when
4003 * we are removing the target. Solution: we will have to grab ->i_mutex
4004 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4005 * ->i_mutex on parents, which works but leads to some truly excessive
4006 * locking].
4007 */
4008 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
4009 struct inode *new_dir, struct dentry *new_dentry)
4010 {
4011 int error = 0;
4012 struct inode *target = new_dentry->d_inode;
4013 unsigned max_links = new_dir->i_sb->s_max_links;
4014
4015 /*
4016 * If we are going to change the parent - check write permissions,
4017 * we'll need to flip '..'.
4018 */
4019 if (new_dir != old_dir) {
4020 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
4021 if (error)
4022 return error;
4023 }
4024
4025 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4026 if (error)
4027 return error;
4028
4029 dget(new_dentry);
4030 if (target)
4031 mutex_lock(&target->i_mutex);
4032
4033 error = -EBUSY;
4034 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4035 goto out;
4036
4037 error = -EMLINK;
4038 if (max_links && !target && new_dir != old_dir &&
4039 new_dir->i_nlink >= max_links)
4040 goto out;
4041
4042 if (target)
4043 shrink_dcache_parent(new_dentry);
4044 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4045 if (error)
4046 goto out;
4047
4048 if (target) {
4049 target->i_flags |= S_DEAD;
4050 dont_mount(new_dentry);
4051 }
4052 out:
4053 if (target)
4054 mutex_unlock(&target->i_mutex);
4055 dput(new_dentry);
4056 if (!error)
4057 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4058 d_move(old_dentry,new_dentry);
4059 return error;
4060 }
4061
4062 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4063 struct inode *new_dir, struct dentry *new_dentry,
4064 struct inode **delegated_inode)
4065 {
4066 struct inode *target = new_dentry->d_inode;
4067 struct inode *source = old_dentry->d_inode;
4068 int error;
4069
4070 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4071 if (error)
4072 return error;
4073
4074 dget(new_dentry);
4075 lock_two_nondirectories(source, target);
4076
4077 error = -EBUSY;
4078 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4079 goto out;
4080
4081 error = try_break_deleg(source, delegated_inode);
4082 if (error)
4083 goto out;
4084 if (target) {
4085 error = try_break_deleg(target, delegated_inode);
4086 if (error)
4087 goto out;
4088 }
4089 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4090 if (error)
4091 goto out;
4092
4093 if (target)
4094 dont_mount(new_dentry);
4095 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4096 d_move(old_dentry, new_dentry);
4097 out:
4098 unlock_two_nondirectories(source, target);
4099 dput(new_dentry);
4100 return error;
4101 }
4102
4103 /**
4104 * vfs_rename - rename a filesystem object
4105 * @old_dir: parent of source
4106 * @old_dentry: source
4107 * @new_dir: parent of destination
4108 * @new_dentry: destination
4109 * @delegated_inode: returns an inode needing a delegation break
4110 *
4111 * The caller must hold multiple mutexes--see lock_rename()).
4112 *
4113 * If vfs_rename discovers a delegation in need of breaking at either
4114 * the source or destination, it will return -EWOULDBLOCK and return a
4115 * reference to the inode in delegated_inode. The caller should then
4116 * break the delegation and retry. Because breaking a delegation may
4117 * take a long time, the caller should drop all locks before doing
4118 * so.
4119 *
4120 * Alternatively, a caller may pass NULL for delegated_inode. This may
4121 * be appropriate for callers that expect the underlying filesystem not
4122 * to be NFS exported.
4123 */
4124 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4125 struct inode *new_dir, struct dentry *new_dentry,
4126 struct inode **delegated_inode)
4127 {
4128 int error;
4129 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4130 const unsigned char *old_name;
4131
4132 if (old_dentry->d_inode == new_dentry->d_inode)
4133 return 0;
4134
4135 error = may_delete(old_dir, old_dentry, is_dir);
4136 if (error)
4137 return error;
4138
4139 if (!new_dentry->d_inode)
4140 error = may_create(new_dir, new_dentry);
4141 else
4142 error = may_delete(new_dir, new_dentry, is_dir);
4143 if (error)
4144 return error;
4145
4146 if (!old_dir->i_op->rename)
4147 return -EPERM;
4148
4149 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4150
4151 if (is_dir)
4152 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4153 else
4154 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4155 if (!error)
4156 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4157 new_dentry->d_inode, old_dentry);
4158 fsnotify_oldname_free(old_name);
4159
4160 return error;
4161 }
4162
4163 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4164 int, newdfd, const char __user *, newname)
4165 {
4166 struct dentry *old_dir, *new_dir;
4167 struct dentry *old_dentry, *new_dentry;
4168 struct dentry *trap;
4169 struct nameidata oldnd, newnd;
4170 struct inode *delegated_inode = NULL;
4171 struct filename *from;
4172 struct filename *to;
4173 unsigned int lookup_flags = 0;
4174 bool should_retry = false;
4175 int error;
4176 retry:
4177 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4178 if (IS_ERR(from)) {
4179 error = PTR_ERR(from);
4180 goto exit;
4181 }
4182
4183 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4184 if (IS_ERR(to)) {
4185 error = PTR_ERR(to);
4186 goto exit1;
4187 }
4188
4189 error = -EXDEV;
4190 if (oldnd.path.mnt != newnd.path.mnt)
4191 goto exit2;
4192
4193 old_dir = oldnd.path.dentry;
4194 error = -EBUSY;
4195 if (oldnd.last_type != LAST_NORM)
4196 goto exit2;
4197
4198 new_dir = newnd.path.dentry;
4199 if (newnd.last_type != LAST_NORM)
4200 goto exit2;
4201
4202 error = mnt_want_write(oldnd.path.mnt);
4203 if (error)
4204 goto exit2;
4205
4206 oldnd.flags &= ~LOOKUP_PARENT;
4207 newnd.flags &= ~LOOKUP_PARENT;
4208 newnd.flags |= LOOKUP_RENAME_TARGET;
4209
4210 retry_deleg:
4211 trap = lock_rename(new_dir, old_dir);
4212
4213 old_dentry = lookup_hash(&oldnd);
4214 error = PTR_ERR(old_dentry);
4215 if (IS_ERR(old_dentry))
4216 goto exit3;
4217 /* source must exist */
4218 error = -ENOENT;
4219 if (d_is_negative(old_dentry))
4220 goto exit4;
4221 /* unless the source is a directory trailing slashes give -ENOTDIR */
4222 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4223 error = -ENOTDIR;
4224 if (oldnd.last.name[oldnd.last.len])
4225 goto exit4;
4226 if (newnd.last.name[newnd.last.len])
4227 goto exit4;
4228 }
4229 /* source should not be ancestor of target */
4230 error = -EINVAL;
4231 if (old_dentry == trap)
4232 goto exit4;
4233 new_dentry = lookup_hash(&newnd);
4234 error = PTR_ERR(new_dentry);
4235 if (IS_ERR(new_dentry))
4236 goto exit4;
4237 /* target should not be an ancestor of source */
4238 error = -ENOTEMPTY;
4239 if (new_dentry == trap)
4240 goto exit5;
4241
4242 error = security_path_rename(&oldnd.path, old_dentry,
4243 &newnd.path, new_dentry);
4244 if (error)
4245 goto exit5;
4246 error = vfs_rename(old_dir->d_inode, old_dentry,
4247 new_dir->d_inode, new_dentry,
4248 &delegated_inode);
4249 exit5:
4250 dput(new_dentry);
4251 exit4:
4252 dput(old_dentry);
4253 exit3:
4254 unlock_rename(new_dir, old_dir);
4255 if (delegated_inode) {
4256 error = break_deleg_wait(&delegated_inode);
4257 if (!error)
4258 goto retry_deleg;
4259 }
4260 mnt_drop_write(oldnd.path.mnt);
4261 exit2:
4262 if (retry_estale(error, lookup_flags))
4263 should_retry = true;
4264 path_put(&newnd.path);
4265 putname(to);
4266 exit1:
4267 path_put(&oldnd.path);
4268 putname(from);
4269 if (should_retry) {
4270 should_retry = false;
4271 lookup_flags |= LOOKUP_REVAL;
4272 goto retry;
4273 }
4274 exit:
4275 return error;
4276 }
4277
4278 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4279 {
4280 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4281 }
4282
4283 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4284 {
4285 int len;
4286
4287 len = PTR_ERR(link);
4288 if (IS_ERR(link))
4289 goto out;
4290
4291 len = strlen(link);
4292 if (len > (unsigned) buflen)
4293 len = buflen;
4294 if (copy_to_user(buffer, link, len))
4295 len = -EFAULT;
4296 out:
4297 return len;
4298 }
4299
4300 /*
4301 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4302 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4303 * using) it for any given inode is up to filesystem.
4304 */
4305 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4306 {
4307 struct nameidata nd;
4308 void *cookie;
4309 int res;
4310
4311 nd.depth = 0;
4312 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4313 if (IS_ERR(cookie))
4314 return PTR_ERR(cookie);
4315
4316 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4317 if (dentry->d_inode->i_op->put_link)
4318 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4319 return res;
4320 }
4321
4322 /* get the link contents into pagecache */
4323 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4324 {
4325 char *kaddr;
4326 struct page *page;
4327 struct address_space *mapping = dentry->d_inode->i_mapping;
4328 page = read_mapping_page(mapping, 0, NULL);
4329 if (IS_ERR(page))
4330 return (char*)page;
4331 *ppage = page;
4332 kaddr = kmap(page);
4333 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4334 return kaddr;
4335 }
4336
4337 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4338 {
4339 struct page *page = NULL;
4340 char *s = page_getlink(dentry, &page);
4341 int res = vfs_readlink(dentry,buffer,buflen,s);
4342 if (page) {
4343 kunmap(page);
4344 page_cache_release(page);
4345 }
4346 return res;
4347 }
4348
4349 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4350 {
4351 struct page *page = NULL;
4352 nd_set_link(nd, page_getlink(dentry, &page));
4353 return page;
4354 }
4355
4356 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4357 {
4358 struct page *page = cookie;
4359
4360 if (page) {
4361 kunmap(page);
4362 page_cache_release(page);
4363 }
4364 }
4365
4366 /*
4367 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4368 */
4369 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4370 {
4371 struct address_space *mapping = inode->i_mapping;
4372 struct page *page;
4373 void *fsdata;
4374 int err;
4375 char *kaddr;
4376 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4377 if (nofs)
4378 flags |= AOP_FLAG_NOFS;
4379
4380 retry:
4381 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4382 flags, &page, &fsdata);
4383 if (err)
4384 goto fail;
4385
4386 kaddr = kmap_atomic(page);
4387 memcpy(kaddr, symname, len-1);
4388 kunmap_atomic(kaddr);
4389
4390 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4391 page, fsdata);
4392 if (err < 0)
4393 goto fail;
4394 if (err < len-1)
4395 goto retry;
4396
4397 mark_inode_dirty(inode);
4398 return 0;
4399 fail:
4400 return err;
4401 }
4402
4403 int page_symlink(struct inode *inode, const char *symname, int len)
4404 {
4405 return __page_symlink(inode, symname, len,
4406 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4407 }
4408
4409 const struct inode_operations page_symlink_inode_operations = {
4410 .readlink = generic_readlink,
4411 .follow_link = page_follow_link_light,
4412 .put_link = page_put_link,
4413 };
4414
4415 EXPORT_SYMBOL(user_path_at);
4416 EXPORT_SYMBOL(follow_down_one);
4417 EXPORT_SYMBOL(follow_down);
4418 EXPORT_SYMBOL(follow_up);
4419 EXPORT_SYMBOL(get_write_access); /* nfsd */
4420 EXPORT_SYMBOL(lock_rename);
4421 EXPORT_SYMBOL(lookup_one_len);
4422 EXPORT_SYMBOL(page_follow_link_light);
4423 EXPORT_SYMBOL(page_put_link);
4424 EXPORT_SYMBOL(page_readlink);
4425 EXPORT_SYMBOL(__page_symlink);
4426 EXPORT_SYMBOL(page_symlink);
4427 EXPORT_SYMBOL(page_symlink_inode_operations);
4428 EXPORT_SYMBOL(kern_path);
4429 EXPORT_SYMBOL(vfs_path_lookup);
4430 EXPORT_SYMBOL(inode_permission);
4431 EXPORT_SYMBOL(unlock_rename);
4432 EXPORT_SYMBOL(vfs_create);
4433 EXPORT_SYMBOL(vfs_link);
4434 EXPORT_SYMBOL(vfs_mkdir);
4435 EXPORT_SYMBOL(vfs_mknod);
4436 EXPORT_SYMBOL(generic_permission);
4437 EXPORT_SYMBOL(vfs_readlink);
4438 EXPORT_SYMBOL(vfs_rename);
4439 EXPORT_SYMBOL(vfs_rmdir);
4440 EXPORT_SYMBOL(vfs_symlink);
4441 EXPORT_SYMBOL(vfs_unlink);
4442 EXPORT_SYMBOL(dentry_unhash);
4443 EXPORT_SYMBOL(generic_readlink);
This page took 0.121185 seconds and 5 git commands to generate.