Merge branch 'sh_eth-fixes'
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR)
1224 ret = 0;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 *
1448 * dir->d_inode->i_mutex must be held
1449 */
1450 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1451 unsigned int flags, bool *need_lookup)
1452 {
1453 struct dentry *dentry;
1454 int error;
1455
1456 *need_lookup = false;
1457 dentry = d_lookup(dir, name);
1458 if (dentry) {
1459 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1460 error = d_revalidate(dentry, flags);
1461 if (unlikely(error <= 0)) {
1462 if (error < 0) {
1463 dput(dentry);
1464 return ERR_PTR(error);
1465 } else {
1466 d_invalidate(dentry);
1467 dput(dentry);
1468 dentry = NULL;
1469 }
1470 }
1471 }
1472 }
1473
1474 if (!dentry) {
1475 dentry = d_alloc(dir, name);
1476 if (unlikely(!dentry))
1477 return ERR_PTR(-ENOMEM);
1478
1479 *need_lookup = true;
1480 }
1481 return dentry;
1482 }
1483
1484 /*
1485 * Call i_op->lookup on the dentry. The dentry must be negative and
1486 * unhashed.
1487 *
1488 * dir->d_inode->i_mutex must be held
1489 */
1490 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1491 unsigned int flags)
1492 {
1493 struct dentry *old;
1494
1495 /* Don't create child dentry for a dead directory. */
1496 if (unlikely(IS_DEADDIR(dir))) {
1497 dput(dentry);
1498 return ERR_PTR(-ENOENT);
1499 }
1500
1501 old = dir->i_op->lookup(dir, dentry, flags);
1502 if (unlikely(old)) {
1503 dput(dentry);
1504 dentry = old;
1505 }
1506 return dentry;
1507 }
1508
1509 static struct dentry *__lookup_hash(struct qstr *name,
1510 struct dentry *base, unsigned int flags)
1511 {
1512 bool need_lookup;
1513 struct dentry *dentry;
1514
1515 dentry = lookup_dcache(name, base, flags, &need_lookup);
1516 if (!need_lookup)
1517 return dentry;
1518
1519 return lookup_real(base->d_inode, dentry, flags);
1520 }
1521
1522 /*
1523 * It's more convoluted than I'd like it to be, but... it's still fairly
1524 * small and for now I'd prefer to have fast path as straight as possible.
1525 * It _is_ time-critical.
1526 */
1527 static int lookup_fast(struct nameidata *nd,
1528 struct path *path, struct inode **inode,
1529 unsigned *seqp)
1530 {
1531 struct vfsmount *mnt = nd->path.mnt;
1532 struct dentry *dentry, *parent = nd->path.dentry;
1533 int need_reval = 1;
1534 int status = 1;
1535 int err;
1536
1537 /*
1538 * Rename seqlock is not required here because in the off chance
1539 * of a false negative due to a concurrent rename, we're going to
1540 * do the non-racy lookup, below.
1541 */
1542 if (nd->flags & LOOKUP_RCU) {
1543 unsigned seq;
1544 bool negative;
1545 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1546 if (!dentry)
1547 goto unlazy;
1548
1549 /*
1550 * This sequence count validates that the inode matches
1551 * the dentry name information from lookup.
1552 */
1553 *inode = d_backing_inode(dentry);
1554 negative = d_is_negative(dentry);
1555 if (read_seqcount_retry(&dentry->d_seq, seq))
1556 return -ECHILD;
1557
1558 /*
1559 * This sequence count validates that the parent had no
1560 * changes while we did the lookup of the dentry above.
1561 *
1562 * The memory barrier in read_seqcount_begin of child is
1563 * enough, we can use __read_seqcount_retry here.
1564 */
1565 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1566 return -ECHILD;
1567
1568 *seqp = seq;
1569 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1570 status = d_revalidate(dentry, nd->flags);
1571 if (unlikely(status <= 0)) {
1572 if (status != -ECHILD)
1573 need_reval = 0;
1574 goto unlazy;
1575 }
1576 }
1577 /*
1578 * Note: do negative dentry check after revalidation in
1579 * case that drops it.
1580 */
1581 if (negative)
1582 return -ENOENT;
1583 path->mnt = mnt;
1584 path->dentry = dentry;
1585 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1586 return 0;
1587 unlazy:
1588 if (unlazy_walk(nd, dentry, seq))
1589 return -ECHILD;
1590 } else {
1591 dentry = __d_lookup(parent, &nd->last);
1592 }
1593
1594 if (unlikely(!dentry))
1595 goto need_lookup;
1596
1597 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1598 status = d_revalidate(dentry, nd->flags);
1599 if (unlikely(status <= 0)) {
1600 if (status < 0) {
1601 dput(dentry);
1602 return status;
1603 }
1604 d_invalidate(dentry);
1605 dput(dentry);
1606 goto need_lookup;
1607 }
1608
1609 if (unlikely(d_is_negative(dentry))) {
1610 dput(dentry);
1611 return -ENOENT;
1612 }
1613 path->mnt = mnt;
1614 path->dentry = dentry;
1615 err = follow_managed(path, nd);
1616 if (likely(!err))
1617 *inode = d_backing_inode(path->dentry);
1618 return err;
1619
1620 need_lookup:
1621 return 1;
1622 }
1623
1624 /* Fast lookup failed, do it the slow way */
1625 static int lookup_slow(struct nameidata *nd, struct path *path)
1626 {
1627 struct dentry *dentry, *parent;
1628
1629 parent = nd->path.dentry;
1630 BUG_ON(nd->inode != parent->d_inode);
1631
1632 inode_lock(parent->d_inode);
1633 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1634 inode_unlock(parent->d_inode);
1635 if (IS_ERR(dentry))
1636 return PTR_ERR(dentry);
1637 path->mnt = nd->path.mnt;
1638 path->dentry = dentry;
1639 return follow_managed(path, nd);
1640 }
1641
1642 static inline int may_lookup(struct nameidata *nd)
1643 {
1644 if (nd->flags & LOOKUP_RCU) {
1645 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1646 if (err != -ECHILD)
1647 return err;
1648 if (unlazy_walk(nd, NULL, 0))
1649 return -ECHILD;
1650 }
1651 return inode_permission(nd->inode, MAY_EXEC);
1652 }
1653
1654 static inline int handle_dots(struct nameidata *nd, int type)
1655 {
1656 if (type == LAST_DOTDOT) {
1657 if (!nd->root.mnt)
1658 set_root(nd);
1659 if (nd->flags & LOOKUP_RCU) {
1660 return follow_dotdot_rcu(nd);
1661 } else
1662 return follow_dotdot(nd);
1663 }
1664 return 0;
1665 }
1666
1667 static int pick_link(struct nameidata *nd, struct path *link,
1668 struct inode *inode, unsigned seq)
1669 {
1670 int error;
1671 struct saved *last;
1672 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1673 path_to_nameidata(link, nd);
1674 return -ELOOP;
1675 }
1676 if (!(nd->flags & LOOKUP_RCU)) {
1677 if (link->mnt == nd->path.mnt)
1678 mntget(link->mnt);
1679 }
1680 error = nd_alloc_stack(nd);
1681 if (unlikely(error)) {
1682 if (error == -ECHILD) {
1683 if (unlikely(unlazy_link(nd, link, seq)))
1684 return -ECHILD;
1685 error = nd_alloc_stack(nd);
1686 }
1687 if (error) {
1688 path_put(link);
1689 return error;
1690 }
1691 }
1692
1693 last = nd->stack + nd->depth++;
1694 last->link = *link;
1695 clear_delayed_call(&last->done);
1696 nd->link_inode = inode;
1697 last->seq = seq;
1698 return 1;
1699 }
1700
1701 /*
1702 * Do we need to follow links? We _really_ want to be able
1703 * to do this check without having to look at inode->i_op,
1704 * so we keep a cache of "no, this doesn't need follow_link"
1705 * for the common case.
1706 */
1707 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1708 int follow,
1709 struct inode *inode, unsigned seq)
1710 {
1711 if (likely(!d_is_symlink(link->dentry)))
1712 return 0;
1713 if (!follow)
1714 return 0;
1715 /* make sure that d_is_symlink above matches inode */
1716 if (nd->flags & LOOKUP_RCU) {
1717 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1718 return -ECHILD;
1719 }
1720 return pick_link(nd, link, inode, seq);
1721 }
1722
1723 enum {WALK_GET = 1, WALK_PUT = 2};
1724
1725 static int walk_component(struct nameidata *nd, int flags)
1726 {
1727 struct path path;
1728 struct inode *inode;
1729 unsigned seq;
1730 int err;
1731 /*
1732 * "." and ".." are special - ".." especially so because it has
1733 * to be able to know about the current root directory and
1734 * parent relationships.
1735 */
1736 if (unlikely(nd->last_type != LAST_NORM)) {
1737 err = handle_dots(nd, nd->last_type);
1738 if (flags & WALK_PUT)
1739 put_link(nd);
1740 return err;
1741 }
1742 err = lookup_fast(nd, &path, &inode, &seq);
1743 if (unlikely(err)) {
1744 if (err < 0)
1745 return err;
1746
1747 err = lookup_slow(nd, &path);
1748 if (err < 0)
1749 return err;
1750
1751 seq = 0; /* we are already out of RCU mode */
1752 err = -ENOENT;
1753 if (d_is_negative(path.dentry))
1754 goto out_path_put;
1755 inode = d_backing_inode(path.dentry);
1756 }
1757
1758 if (flags & WALK_PUT)
1759 put_link(nd);
1760 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1761 if (unlikely(err))
1762 return err;
1763 path_to_nameidata(&path, nd);
1764 nd->inode = inode;
1765 nd->seq = seq;
1766 return 0;
1767
1768 out_path_put:
1769 path_to_nameidata(&path, nd);
1770 return err;
1771 }
1772
1773 /*
1774 * We can do the critical dentry name comparison and hashing
1775 * operations one word at a time, but we are limited to:
1776 *
1777 * - Architectures with fast unaligned word accesses. We could
1778 * do a "get_unaligned()" if this helps and is sufficiently
1779 * fast.
1780 *
1781 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1782 * do not trap on the (extremely unlikely) case of a page
1783 * crossing operation.
1784 *
1785 * - Furthermore, we need an efficient 64-bit compile for the
1786 * 64-bit case in order to generate the "number of bytes in
1787 * the final mask". Again, that could be replaced with a
1788 * efficient population count instruction or similar.
1789 */
1790 #ifdef CONFIG_DCACHE_WORD_ACCESS
1791
1792 #include <asm/word-at-a-time.h>
1793
1794 #ifdef CONFIG_64BIT
1795
1796 static inline unsigned int fold_hash(unsigned long hash)
1797 {
1798 return hash_64(hash, 32);
1799 }
1800
1801 #else /* 32-bit case */
1802
1803 #define fold_hash(x) (x)
1804
1805 #endif
1806
1807 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1808 {
1809 unsigned long a, mask;
1810 unsigned long hash = 0;
1811
1812 for (;;) {
1813 a = load_unaligned_zeropad(name);
1814 if (len < sizeof(unsigned long))
1815 break;
1816 hash += a;
1817 hash *= 9;
1818 name += sizeof(unsigned long);
1819 len -= sizeof(unsigned long);
1820 if (!len)
1821 goto done;
1822 }
1823 mask = bytemask_from_count(len);
1824 hash += mask & a;
1825 done:
1826 return fold_hash(hash);
1827 }
1828 EXPORT_SYMBOL(full_name_hash);
1829
1830 /*
1831 * Calculate the length and hash of the path component, and
1832 * return the "hash_len" as the result.
1833 */
1834 static inline u64 hash_name(const char *name)
1835 {
1836 unsigned long a, b, adata, bdata, mask, hash, len;
1837 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1838
1839 hash = a = 0;
1840 len = -sizeof(unsigned long);
1841 do {
1842 hash = (hash + a) * 9;
1843 len += sizeof(unsigned long);
1844 a = load_unaligned_zeropad(name+len);
1845 b = a ^ REPEAT_BYTE('/');
1846 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1847
1848 adata = prep_zero_mask(a, adata, &constants);
1849 bdata = prep_zero_mask(b, bdata, &constants);
1850
1851 mask = create_zero_mask(adata | bdata);
1852
1853 hash += a & zero_bytemask(mask);
1854 len += find_zero(mask);
1855 return hashlen_create(fold_hash(hash), len);
1856 }
1857
1858 #else
1859
1860 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1861 {
1862 unsigned long hash = init_name_hash();
1863 while (len--)
1864 hash = partial_name_hash(*name++, hash);
1865 return end_name_hash(hash);
1866 }
1867 EXPORT_SYMBOL(full_name_hash);
1868
1869 /*
1870 * We know there's a real path component here of at least
1871 * one character.
1872 */
1873 static inline u64 hash_name(const char *name)
1874 {
1875 unsigned long hash = init_name_hash();
1876 unsigned long len = 0, c;
1877
1878 c = (unsigned char)*name;
1879 do {
1880 len++;
1881 hash = partial_name_hash(c, hash);
1882 c = (unsigned char)name[len];
1883 } while (c && c != '/');
1884 return hashlen_create(end_name_hash(hash), len);
1885 }
1886
1887 #endif
1888
1889 /*
1890 * Name resolution.
1891 * This is the basic name resolution function, turning a pathname into
1892 * the final dentry. We expect 'base' to be positive and a directory.
1893 *
1894 * Returns 0 and nd will have valid dentry and mnt on success.
1895 * Returns error and drops reference to input namei data on failure.
1896 */
1897 static int link_path_walk(const char *name, struct nameidata *nd)
1898 {
1899 int err;
1900
1901 while (*name=='/')
1902 name++;
1903 if (!*name)
1904 return 0;
1905
1906 /* At this point we know we have a real path component. */
1907 for(;;) {
1908 u64 hash_len;
1909 int type;
1910
1911 err = may_lookup(nd);
1912 if (err)
1913 return err;
1914
1915 hash_len = hash_name(name);
1916
1917 type = LAST_NORM;
1918 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1919 case 2:
1920 if (name[1] == '.') {
1921 type = LAST_DOTDOT;
1922 nd->flags |= LOOKUP_JUMPED;
1923 }
1924 break;
1925 case 1:
1926 type = LAST_DOT;
1927 }
1928 if (likely(type == LAST_NORM)) {
1929 struct dentry *parent = nd->path.dentry;
1930 nd->flags &= ~LOOKUP_JUMPED;
1931 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1932 struct qstr this = { { .hash_len = hash_len }, .name = name };
1933 err = parent->d_op->d_hash(parent, &this);
1934 if (err < 0)
1935 return err;
1936 hash_len = this.hash_len;
1937 name = this.name;
1938 }
1939 }
1940
1941 nd->last.hash_len = hash_len;
1942 nd->last.name = name;
1943 nd->last_type = type;
1944
1945 name += hashlen_len(hash_len);
1946 if (!*name)
1947 goto OK;
1948 /*
1949 * If it wasn't NUL, we know it was '/'. Skip that
1950 * slash, and continue until no more slashes.
1951 */
1952 do {
1953 name++;
1954 } while (unlikely(*name == '/'));
1955 if (unlikely(!*name)) {
1956 OK:
1957 /* pathname body, done */
1958 if (!nd->depth)
1959 return 0;
1960 name = nd->stack[nd->depth - 1].name;
1961 /* trailing symlink, done */
1962 if (!name)
1963 return 0;
1964 /* last component of nested symlink */
1965 err = walk_component(nd, WALK_GET | WALK_PUT);
1966 } else {
1967 err = walk_component(nd, WALK_GET);
1968 }
1969 if (err < 0)
1970 return err;
1971
1972 if (err) {
1973 const char *s = get_link(nd);
1974
1975 if (IS_ERR(s))
1976 return PTR_ERR(s);
1977 err = 0;
1978 if (unlikely(!s)) {
1979 /* jumped */
1980 put_link(nd);
1981 } else {
1982 nd->stack[nd->depth - 1].name = name;
1983 name = s;
1984 continue;
1985 }
1986 }
1987 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1988 if (nd->flags & LOOKUP_RCU) {
1989 if (unlazy_walk(nd, NULL, 0))
1990 return -ECHILD;
1991 }
1992 return -ENOTDIR;
1993 }
1994 }
1995 }
1996
1997 static const char *path_init(struct nameidata *nd, unsigned flags)
1998 {
1999 int retval = 0;
2000 const char *s = nd->name->name;
2001
2002 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2003 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2004 nd->depth = 0;
2005 if (flags & LOOKUP_ROOT) {
2006 struct dentry *root = nd->root.dentry;
2007 struct inode *inode = root->d_inode;
2008 if (*s) {
2009 if (!d_can_lookup(root))
2010 return ERR_PTR(-ENOTDIR);
2011 retval = inode_permission(inode, MAY_EXEC);
2012 if (retval)
2013 return ERR_PTR(retval);
2014 }
2015 nd->path = nd->root;
2016 nd->inode = inode;
2017 if (flags & LOOKUP_RCU) {
2018 rcu_read_lock();
2019 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2020 nd->root_seq = nd->seq;
2021 nd->m_seq = read_seqbegin(&mount_lock);
2022 } else {
2023 path_get(&nd->path);
2024 }
2025 return s;
2026 }
2027
2028 nd->root.mnt = NULL;
2029 nd->path.mnt = NULL;
2030 nd->path.dentry = NULL;
2031
2032 nd->m_seq = read_seqbegin(&mount_lock);
2033 if (*s == '/') {
2034 if (flags & LOOKUP_RCU)
2035 rcu_read_lock();
2036 set_root(nd);
2037 if (likely(!nd_jump_root(nd)))
2038 return s;
2039 nd->root.mnt = NULL;
2040 rcu_read_unlock();
2041 return ERR_PTR(-ECHILD);
2042 } else if (nd->dfd == AT_FDCWD) {
2043 if (flags & LOOKUP_RCU) {
2044 struct fs_struct *fs = current->fs;
2045 unsigned seq;
2046
2047 rcu_read_lock();
2048
2049 do {
2050 seq = read_seqcount_begin(&fs->seq);
2051 nd->path = fs->pwd;
2052 nd->inode = nd->path.dentry->d_inode;
2053 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2054 } while (read_seqcount_retry(&fs->seq, seq));
2055 } else {
2056 get_fs_pwd(current->fs, &nd->path);
2057 nd->inode = nd->path.dentry->d_inode;
2058 }
2059 return s;
2060 } else {
2061 /* Caller must check execute permissions on the starting path component */
2062 struct fd f = fdget_raw(nd->dfd);
2063 struct dentry *dentry;
2064
2065 if (!f.file)
2066 return ERR_PTR(-EBADF);
2067
2068 dentry = f.file->f_path.dentry;
2069
2070 if (*s) {
2071 if (!d_can_lookup(dentry)) {
2072 fdput(f);
2073 return ERR_PTR(-ENOTDIR);
2074 }
2075 }
2076
2077 nd->path = f.file->f_path;
2078 if (flags & LOOKUP_RCU) {
2079 rcu_read_lock();
2080 nd->inode = nd->path.dentry->d_inode;
2081 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2082 } else {
2083 path_get(&nd->path);
2084 nd->inode = nd->path.dentry->d_inode;
2085 }
2086 fdput(f);
2087 return s;
2088 }
2089 }
2090
2091 static const char *trailing_symlink(struct nameidata *nd)
2092 {
2093 const char *s;
2094 int error = may_follow_link(nd);
2095 if (unlikely(error))
2096 return ERR_PTR(error);
2097 nd->flags |= LOOKUP_PARENT;
2098 nd->stack[0].name = NULL;
2099 s = get_link(nd);
2100 return s ? s : "";
2101 }
2102
2103 static inline int lookup_last(struct nameidata *nd)
2104 {
2105 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2106 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2107
2108 nd->flags &= ~LOOKUP_PARENT;
2109 return walk_component(nd,
2110 nd->flags & LOOKUP_FOLLOW
2111 ? nd->depth
2112 ? WALK_PUT | WALK_GET
2113 : WALK_GET
2114 : 0);
2115 }
2116
2117 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2118 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2119 {
2120 const char *s = path_init(nd, flags);
2121 int err;
2122
2123 if (IS_ERR(s))
2124 return PTR_ERR(s);
2125 while (!(err = link_path_walk(s, nd))
2126 && ((err = lookup_last(nd)) > 0)) {
2127 s = trailing_symlink(nd);
2128 if (IS_ERR(s)) {
2129 err = PTR_ERR(s);
2130 break;
2131 }
2132 }
2133 if (!err)
2134 err = complete_walk(nd);
2135
2136 if (!err && nd->flags & LOOKUP_DIRECTORY)
2137 if (!d_can_lookup(nd->path.dentry))
2138 err = -ENOTDIR;
2139 if (!err) {
2140 *path = nd->path;
2141 nd->path.mnt = NULL;
2142 nd->path.dentry = NULL;
2143 }
2144 terminate_walk(nd);
2145 return err;
2146 }
2147
2148 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2149 struct path *path, struct path *root)
2150 {
2151 int retval;
2152 struct nameidata nd;
2153 if (IS_ERR(name))
2154 return PTR_ERR(name);
2155 if (unlikely(root)) {
2156 nd.root = *root;
2157 flags |= LOOKUP_ROOT;
2158 }
2159 set_nameidata(&nd, dfd, name);
2160 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2161 if (unlikely(retval == -ECHILD))
2162 retval = path_lookupat(&nd, flags, path);
2163 if (unlikely(retval == -ESTALE))
2164 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2165
2166 if (likely(!retval))
2167 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2168 restore_nameidata();
2169 putname(name);
2170 return retval;
2171 }
2172
2173 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2174 static int path_parentat(struct nameidata *nd, unsigned flags,
2175 struct path *parent)
2176 {
2177 const char *s = path_init(nd, flags);
2178 int err;
2179 if (IS_ERR(s))
2180 return PTR_ERR(s);
2181 err = link_path_walk(s, nd);
2182 if (!err)
2183 err = complete_walk(nd);
2184 if (!err) {
2185 *parent = nd->path;
2186 nd->path.mnt = NULL;
2187 nd->path.dentry = NULL;
2188 }
2189 terminate_walk(nd);
2190 return err;
2191 }
2192
2193 static struct filename *filename_parentat(int dfd, struct filename *name,
2194 unsigned int flags, struct path *parent,
2195 struct qstr *last, int *type)
2196 {
2197 int retval;
2198 struct nameidata nd;
2199
2200 if (IS_ERR(name))
2201 return name;
2202 set_nameidata(&nd, dfd, name);
2203 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2204 if (unlikely(retval == -ECHILD))
2205 retval = path_parentat(&nd, flags, parent);
2206 if (unlikely(retval == -ESTALE))
2207 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2208 if (likely(!retval)) {
2209 *last = nd.last;
2210 *type = nd.last_type;
2211 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2212 } else {
2213 putname(name);
2214 name = ERR_PTR(retval);
2215 }
2216 restore_nameidata();
2217 return name;
2218 }
2219
2220 /* does lookup, returns the object with parent locked */
2221 struct dentry *kern_path_locked(const char *name, struct path *path)
2222 {
2223 struct filename *filename;
2224 struct dentry *d;
2225 struct qstr last;
2226 int type;
2227
2228 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2229 &last, &type);
2230 if (IS_ERR(filename))
2231 return ERR_CAST(filename);
2232 if (unlikely(type != LAST_NORM)) {
2233 path_put(path);
2234 putname(filename);
2235 return ERR_PTR(-EINVAL);
2236 }
2237 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2238 d = __lookup_hash(&last, path->dentry, 0);
2239 if (IS_ERR(d)) {
2240 inode_unlock(path->dentry->d_inode);
2241 path_put(path);
2242 }
2243 putname(filename);
2244 return d;
2245 }
2246
2247 int kern_path(const char *name, unsigned int flags, struct path *path)
2248 {
2249 return filename_lookup(AT_FDCWD, getname_kernel(name),
2250 flags, path, NULL);
2251 }
2252 EXPORT_SYMBOL(kern_path);
2253
2254 /**
2255 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2256 * @dentry: pointer to dentry of the base directory
2257 * @mnt: pointer to vfs mount of the base directory
2258 * @name: pointer to file name
2259 * @flags: lookup flags
2260 * @path: pointer to struct path to fill
2261 */
2262 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2263 const char *name, unsigned int flags,
2264 struct path *path)
2265 {
2266 struct path root = {.mnt = mnt, .dentry = dentry};
2267 /* the first argument of filename_lookup() is ignored with root */
2268 return filename_lookup(AT_FDCWD, getname_kernel(name),
2269 flags , path, &root);
2270 }
2271 EXPORT_SYMBOL(vfs_path_lookup);
2272
2273 /**
2274 * lookup_one_len - filesystem helper to lookup single pathname component
2275 * @name: pathname component to lookup
2276 * @base: base directory to lookup from
2277 * @len: maximum length @len should be interpreted to
2278 *
2279 * Note that this routine is purely a helper for filesystem usage and should
2280 * not be called by generic code.
2281 *
2282 * The caller must hold base->i_mutex.
2283 */
2284 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2285 {
2286 struct qstr this;
2287 unsigned int c;
2288 int err;
2289
2290 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2291
2292 this.name = name;
2293 this.len = len;
2294 this.hash = full_name_hash(name, len);
2295 if (!len)
2296 return ERR_PTR(-EACCES);
2297
2298 if (unlikely(name[0] == '.')) {
2299 if (len < 2 || (len == 2 && name[1] == '.'))
2300 return ERR_PTR(-EACCES);
2301 }
2302
2303 while (len--) {
2304 c = *(const unsigned char *)name++;
2305 if (c == '/' || c == '\0')
2306 return ERR_PTR(-EACCES);
2307 }
2308 /*
2309 * See if the low-level filesystem might want
2310 * to use its own hash..
2311 */
2312 if (base->d_flags & DCACHE_OP_HASH) {
2313 int err = base->d_op->d_hash(base, &this);
2314 if (err < 0)
2315 return ERR_PTR(err);
2316 }
2317
2318 err = inode_permission(base->d_inode, MAY_EXEC);
2319 if (err)
2320 return ERR_PTR(err);
2321
2322 return __lookup_hash(&this, base, 0);
2323 }
2324 EXPORT_SYMBOL(lookup_one_len);
2325
2326 /**
2327 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2328 * @name: pathname component to lookup
2329 * @base: base directory to lookup from
2330 * @len: maximum length @len should be interpreted to
2331 *
2332 * Note that this routine is purely a helper for filesystem usage and should
2333 * not be called by generic code.
2334 *
2335 * Unlike lookup_one_len, it should be called without the parent
2336 * i_mutex held, and will take the i_mutex itself if necessary.
2337 */
2338 struct dentry *lookup_one_len_unlocked(const char *name,
2339 struct dentry *base, int len)
2340 {
2341 struct qstr this;
2342 unsigned int c;
2343 int err;
2344 struct dentry *ret;
2345
2346 this.name = name;
2347 this.len = len;
2348 this.hash = full_name_hash(name, len);
2349 if (!len)
2350 return ERR_PTR(-EACCES);
2351
2352 if (unlikely(name[0] == '.')) {
2353 if (len < 2 || (len == 2 && name[1] == '.'))
2354 return ERR_PTR(-EACCES);
2355 }
2356
2357 while (len--) {
2358 c = *(const unsigned char *)name++;
2359 if (c == '/' || c == '\0')
2360 return ERR_PTR(-EACCES);
2361 }
2362 /*
2363 * See if the low-level filesystem might want
2364 * to use its own hash..
2365 */
2366 if (base->d_flags & DCACHE_OP_HASH) {
2367 int err = base->d_op->d_hash(base, &this);
2368 if (err < 0)
2369 return ERR_PTR(err);
2370 }
2371
2372 err = inode_permission(base->d_inode, MAY_EXEC);
2373 if (err)
2374 return ERR_PTR(err);
2375
2376 /*
2377 * __d_lookup() is used to try to get a quick answer and avoid the
2378 * mutex. A false-negative does no harm.
2379 */
2380 ret = __d_lookup(base, &this);
2381 if (ret && unlikely(ret->d_flags & DCACHE_OP_REVALIDATE)) {
2382 dput(ret);
2383 ret = NULL;
2384 }
2385 if (ret)
2386 return ret;
2387
2388 inode_lock(base->d_inode);
2389 ret = __lookup_hash(&this, base, 0);
2390 inode_unlock(base->d_inode);
2391 return ret;
2392 }
2393 EXPORT_SYMBOL(lookup_one_len_unlocked);
2394
2395 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2396 struct path *path, int *empty)
2397 {
2398 return filename_lookup(dfd, getname_flags(name, flags, empty),
2399 flags, path, NULL);
2400 }
2401 EXPORT_SYMBOL(user_path_at_empty);
2402
2403 /*
2404 * NB: most callers don't do anything directly with the reference to the
2405 * to struct filename, but the nd->last pointer points into the name string
2406 * allocated by getname. So we must hold the reference to it until all
2407 * path-walking is complete.
2408 */
2409 static inline struct filename *
2410 user_path_parent(int dfd, const char __user *path,
2411 struct path *parent,
2412 struct qstr *last,
2413 int *type,
2414 unsigned int flags)
2415 {
2416 /* only LOOKUP_REVAL is allowed in extra flags */
2417 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2418 parent, last, type);
2419 }
2420
2421 /**
2422 * mountpoint_last - look up last component for umount
2423 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2424 * @path: pointer to container for result
2425 *
2426 * This is a special lookup_last function just for umount. In this case, we
2427 * need to resolve the path without doing any revalidation.
2428 *
2429 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2430 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2431 * in almost all cases, this lookup will be served out of the dcache. The only
2432 * cases where it won't are if nd->last refers to a symlink or the path is
2433 * bogus and it doesn't exist.
2434 *
2435 * Returns:
2436 * -error: if there was an error during lookup. This includes -ENOENT if the
2437 * lookup found a negative dentry. The nd->path reference will also be
2438 * put in this case.
2439 *
2440 * 0: if we successfully resolved nd->path and found it to not to be a
2441 * symlink that needs to be followed. "path" will also be populated.
2442 * The nd->path reference will also be put.
2443 *
2444 * 1: if we successfully resolved nd->last and found it to be a symlink
2445 * that needs to be followed. "path" will be populated with the path
2446 * to the link, and nd->path will *not* be put.
2447 */
2448 static int
2449 mountpoint_last(struct nameidata *nd, struct path *path)
2450 {
2451 int error = 0;
2452 struct dentry *dentry;
2453 struct dentry *dir = nd->path.dentry;
2454
2455 /* If we're in rcuwalk, drop out of it to handle last component */
2456 if (nd->flags & LOOKUP_RCU) {
2457 if (unlazy_walk(nd, NULL, 0))
2458 return -ECHILD;
2459 }
2460
2461 nd->flags &= ~LOOKUP_PARENT;
2462
2463 if (unlikely(nd->last_type != LAST_NORM)) {
2464 error = handle_dots(nd, nd->last_type);
2465 if (error)
2466 return error;
2467 dentry = dget(nd->path.dentry);
2468 goto done;
2469 }
2470
2471 inode_lock(dir->d_inode);
2472 dentry = d_lookup(dir, &nd->last);
2473 if (!dentry) {
2474 /*
2475 * No cached dentry. Mounted dentries are pinned in the cache,
2476 * so that means that this dentry is probably a symlink or the
2477 * path doesn't actually point to a mounted dentry.
2478 */
2479 dentry = d_alloc(dir, &nd->last);
2480 if (!dentry) {
2481 inode_unlock(dir->d_inode);
2482 return -ENOMEM;
2483 }
2484 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2485 if (IS_ERR(dentry)) {
2486 inode_unlock(dir->d_inode);
2487 return PTR_ERR(dentry);
2488 }
2489 }
2490 inode_unlock(dir->d_inode);
2491
2492 done:
2493 if (d_is_negative(dentry)) {
2494 dput(dentry);
2495 return -ENOENT;
2496 }
2497 if (nd->depth)
2498 put_link(nd);
2499 path->dentry = dentry;
2500 path->mnt = nd->path.mnt;
2501 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2502 d_backing_inode(dentry), 0);
2503 if (unlikely(error))
2504 return error;
2505 mntget(path->mnt);
2506 follow_mount(path);
2507 return 0;
2508 }
2509
2510 /**
2511 * path_mountpoint - look up a path to be umounted
2512 * @nd: lookup context
2513 * @flags: lookup flags
2514 * @path: pointer to container for result
2515 *
2516 * Look up the given name, but don't attempt to revalidate the last component.
2517 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2518 */
2519 static int
2520 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2521 {
2522 const char *s = path_init(nd, flags);
2523 int err;
2524 if (IS_ERR(s))
2525 return PTR_ERR(s);
2526 while (!(err = link_path_walk(s, nd)) &&
2527 (err = mountpoint_last(nd, path)) > 0) {
2528 s = trailing_symlink(nd);
2529 if (IS_ERR(s)) {
2530 err = PTR_ERR(s);
2531 break;
2532 }
2533 }
2534 terminate_walk(nd);
2535 return err;
2536 }
2537
2538 static int
2539 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2540 unsigned int flags)
2541 {
2542 struct nameidata nd;
2543 int error;
2544 if (IS_ERR(name))
2545 return PTR_ERR(name);
2546 set_nameidata(&nd, dfd, name);
2547 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2548 if (unlikely(error == -ECHILD))
2549 error = path_mountpoint(&nd, flags, path);
2550 if (unlikely(error == -ESTALE))
2551 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2552 if (likely(!error))
2553 audit_inode(name, path->dentry, 0);
2554 restore_nameidata();
2555 putname(name);
2556 return error;
2557 }
2558
2559 /**
2560 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2561 * @dfd: directory file descriptor
2562 * @name: pathname from userland
2563 * @flags: lookup flags
2564 * @path: pointer to container to hold result
2565 *
2566 * A umount is a special case for path walking. We're not actually interested
2567 * in the inode in this situation, and ESTALE errors can be a problem. We
2568 * simply want track down the dentry and vfsmount attached at the mountpoint
2569 * and avoid revalidating the last component.
2570 *
2571 * Returns 0 and populates "path" on success.
2572 */
2573 int
2574 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2575 struct path *path)
2576 {
2577 return filename_mountpoint(dfd, getname(name), path, flags);
2578 }
2579
2580 int
2581 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2582 unsigned int flags)
2583 {
2584 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2585 }
2586 EXPORT_SYMBOL(kern_path_mountpoint);
2587
2588 int __check_sticky(struct inode *dir, struct inode *inode)
2589 {
2590 kuid_t fsuid = current_fsuid();
2591
2592 if (uid_eq(inode->i_uid, fsuid))
2593 return 0;
2594 if (uid_eq(dir->i_uid, fsuid))
2595 return 0;
2596 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2597 }
2598 EXPORT_SYMBOL(__check_sticky);
2599
2600 /*
2601 * Check whether we can remove a link victim from directory dir, check
2602 * whether the type of victim is right.
2603 * 1. We can't do it if dir is read-only (done in permission())
2604 * 2. We should have write and exec permissions on dir
2605 * 3. We can't remove anything from append-only dir
2606 * 4. We can't do anything with immutable dir (done in permission())
2607 * 5. If the sticky bit on dir is set we should either
2608 * a. be owner of dir, or
2609 * b. be owner of victim, or
2610 * c. have CAP_FOWNER capability
2611 * 6. If the victim is append-only or immutable we can't do antyhing with
2612 * links pointing to it.
2613 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2614 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2615 * 9. We can't remove a root or mountpoint.
2616 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2617 * nfs_async_unlink().
2618 */
2619 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2620 {
2621 struct inode *inode = d_backing_inode(victim);
2622 int error;
2623
2624 if (d_is_negative(victim))
2625 return -ENOENT;
2626 BUG_ON(!inode);
2627
2628 BUG_ON(victim->d_parent->d_inode != dir);
2629 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2630
2631 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2632 if (error)
2633 return error;
2634 if (IS_APPEND(dir))
2635 return -EPERM;
2636
2637 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2638 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2639 return -EPERM;
2640 if (isdir) {
2641 if (!d_is_dir(victim))
2642 return -ENOTDIR;
2643 if (IS_ROOT(victim))
2644 return -EBUSY;
2645 } else if (d_is_dir(victim))
2646 return -EISDIR;
2647 if (IS_DEADDIR(dir))
2648 return -ENOENT;
2649 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2650 return -EBUSY;
2651 return 0;
2652 }
2653
2654 /* Check whether we can create an object with dentry child in directory
2655 * dir.
2656 * 1. We can't do it if child already exists (open has special treatment for
2657 * this case, but since we are inlined it's OK)
2658 * 2. We can't do it if dir is read-only (done in permission())
2659 * 3. We should have write and exec permissions on dir
2660 * 4. We can't do it if dir is immutable (done in permission())
2661 */
2662 static inline int may_create(struct inode *dir, struct dentry *child)
2663 {
2664 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2665 if (child->d_inode)
2666 return -EEXIST;
2667 if (IS_DEADDIR(dir))
2668 return -ENOENT;
2669 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2670 }
2671
2672 /*
2673 * p1 and p2 should be directories on the same fs.
2674 */
2675 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2676 {
2677 struct dentry *p;
2678
2679 if (p1 == p2) {
2680 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2681 return NULL;
2682 }
2683
2684 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2685
2686 p = d_ancestor(p2, p1);
2687 if (p) {
2688 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2689 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2690 return p;
2691 }
2692
2693 p = d_ancestor(p1, p2);
2694 if (p) {
2695 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2696 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2697 return p;
2698 }
2699
2700 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2701 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2702 return NULL;
2703 }
2704 EXPORT_SYMBOL(lock_rename);
2705
2706 void unlock_rename(struct dentry *p1, struct dentry *p2)
2707 {
2708 inode_unlock(p1->d_inode);
2709 if (p1 != p2) {
2710 inode_unlock(p2->d_inode);
2711 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2712 }
2713 }
2714 EXPORT_SYMBOL(unlock_rename);
2715
2716 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2717 bool want_excl)
2718 {
2719 int error = may_create(dir, dentry);
2720 if (error)
2721 return error;
2722
2723 if (!dir->i_op->create)
2724 return -EACCES; /* shouldn't it be ENOSYS? */
2725 mode &= S_IALLUGO;
2726 mode |= S_IFREG;
2727 error = security_inode_create(dir, dentry, mode);
2728 if (error)
2729 return error;
2730 error = dir->i_op->create(dir, dentry, mode, want_excl);
2731 if (!error)
2732 fsnotify_create(dir, dentry);
2733 return error;
2734 }
2735 EXPORT_SYMBOL(vfs_create);
2736
2737 static int may_open(struct path *path, int acc_mode, int flag)
2738 {
2739 struct dentry *dentry = path->dentry;
2740 struct inode *inode = dentry->d_inode;
2741 int error;
2742
2743 if (!inode)
2744 return -ENOENT;
2745
2746 switch (inode->i_mode & S_IFMT) {
2747 case S_IFLNK:
2748 return -ELOOP;
2749 case S_IFDIR:
2750 if (acc_mode & MAY_WRITE)
2751 return -EISDIR;
2752 break;
2753 case S_IFBLK:
2754 case S_IFCHR:
2755 if (path->mnt->mnt_flags & MNT_NODEV)
2756 return -EACCES;
2757 /*FALLTHRU*/
2758 case S_IFIFO:
2759 case S_IFSOCK:
2760 flag &= ~O_TRUNC;
2761 break;
2762 }
2763
2764 error = inode_permission(inode, MAY_OPEN | acc_mode);
2765 if (error)
2766 return error;
2767
2768 /*
2769 * An append-only file must be opened in append mode for writing.
2770 */
2771 if (IS_APPEND(inode)) {
2772 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2773 return -EPERM;
2774 if (flag & O_TRUNC)
2775 return -EPERM;
2776 }
2777
2778 /* O_NOATIME can only be set by the owner or superuser */
2779 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2780 return -EPERM;
2781
2782 return 0;
2783 }
2784
2785 static int handle_truncate(struct file *filp)
2786 {
2787 struct path *path = &filp->f_path;
2788 struct inode *inode = path->dentry->d_inode;
2789 int error = get_write_access(inode);
2790 if (error)
2791 return error;
2792 /*
2793 * Refuse to truncate files with mandatory locks held on them.
2794 */
2795 error = locks_verify_locked(filp);
2796 if (!error)
2797 error = security_path_truncate(path);
2798 if (!error) {
2799 error = do_truncate(path->dentry, 0,
2800 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2801 filp);
2802 }
2803 put_write_access(inode);
2804 return error;
2805 }
2806
2807 static inline int open_to_namei_flags(int flag)
2808 {
2809 if ((flag & O_ACCMODE) == 3)
2810 flag--;
2811 return flag;
2812 }
2813
2814 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2815 {
2816 int error = security_path_mknod(dir, dentry, mode, 0);
2817 if (error)
2818 return error;
2819
2820 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2821 if (error)
2822 return error;
2823
2824 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2825 }
2826
2827 /*
2828 * Attempt to atomically look up, create and open a file from a negative
2829 * dentry.
2830 *
2831 * Returns 0 if successful. The file will have been created and attached to
2832 * @file by the filesystem calling finish_open().
2833 *
2834 * Returns 1 if the file was looked up only or didn't need creating. The
2835 * caller will need to perform the open themselves. @path will have been
2836 * updated to point to the new dentry. This may be negative.
2837 *
2838 * Returns an error code otherwise.
2839 */
2840 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2841 struct path *path, struct file *file,
2842 const struct open_flags *op,
2843 bool got_write, bool need_lookup,
2844 int *opened)
2845 {
2846 struct inode *dir = nd->path.dentry->d_inode;
2847 unsigned open_flag = open_to_namei_flags(op->open_flag);
2848 umode_t mode;
2849 int error;
2850 int acc_mode;
2851 int create_error = 0;
2852 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2853 bool excl;
2854
2855 BUG_ON(dentry->d_inode);
2856
2857 /* Don't create child dentry for a dead directory. */
2858 if (unlikely(IS_DEADDIR(dir))) {
2859 error = -ENOENT;
2860 goto out;
2861 }
2862
2863 mode = op->mode;
2864 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2865 mode &= ~current_umask();
2866
2867 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2868 if (excl)
2869 open_flag &= ~O_TRUNC;
2870
2871 /*
2872 * Checking write permission is tricky, bacuse we don't know if we are
2873 * going to actually need it: O_CREAT opens should work as long as the
2874 * file exists. But checking existence breaks atomicity. The trick is
2875 * to check access and if not granted clear O_CREAT from the flags.
2876 *
2877 * Another problem is returing the "right" error value (e.g. for an
2878 * O_EXCL open we want to return EEXIST not EROFS).
2879 */
2880 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2881 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2882 if (!(open_flag & O_CREAT)) {
2883 /*
2884 * No O_CREATE -> atomicity not a requirement -> fall
2885 * back to lookup + open
2886 */
2887 goto no_open;
2888 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2889 /* Fall back and fail with the right error */
2890 create_error = -EROFS;
2891 goto no_open;
2892 } else {
2893 /* No side effects, safe to clear O_CREAT */
2894 create_error = -EROFS;
2895 open_flag &= ~O_CREAT;
2896 }
2897 }
2898
2899 if (open_flag & O_CREAT) {
2900 error = may_o_create(&nd->path, dentry, mode);
2901 if (error) {
2902 create_error = error;
2903 if (open_flag & O_EXCL)
2904 goto no_open;
2905 open_flag &= ~O_CREAT;
2906 }
2907 }
2908
2909 if (nd->flags & LOOKUP_DIRECTORY)
2910 open_flag |= O_DIRECTORY;
2911
2912 file->f_path.dentry = DENTRY_NOT_SET;
2913 file->f_path.mnt = nd->path.mnt;
2914 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2915 opened);
2916 if (error < 0) {
2917 if (create_error && error == -ENOENT)
2918 error = create_error;
2919 goto out;
2920 }
2921
2922 if (error) { /* returned 1, that is */
2923 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2924 error = -EIO;
2925 goto out;
2926 }
2927 if (file->f_path.dentry) {
2928 dput(dentry);
2929 dentry = file->f_path.dentry;
2930 }
2931 if (*opened & FILE_CREATED)
2932 fsnotify_create(dir, dentry);
2933 if (!dentry->d_inode) {
2934 WARN_ON(*opened & FILE_CREATED);
2935 if (create_error) {
2936 error = create_error;
2937 goto out;
2938 }
2939 } else {
2940 if (excl && !(*opened & FILE_CREATED)) {
2941 error = -EEXIST;
2942 goto out;
2943 }
2944 }
2945 goto looked_up;
2946 }
2947
2948 /*
2949 * We didn't have the inode before the open, so check open permission
2950 * here.
2951 */
2952 acc_mode = op->acc_mode;
2953 if (*opened & FILE_CREATED) {
2954 WARN_ON(!(open_flag & O_CREAT));
2955 fsnotify_create(dir, dentry);
2956 acc_mode = 0;
2957 }
2958 error = may_open(&file->f_path, acc_mode, open_flag);
2959 if (error)
2960 fput(file);
2961
2962 out:
2963 dput(dentry);
2964 return error;
2965
2966 no_open:
2967 if (need_lookup) {
2968 dentry = lookup_real(dir, dentry, nd->flags);
2969 if (IS_ERR(dentry))
2970 return PTR_ERR(dentry);
2971
2972 if (create_error) {
2973 int open_flag = op->open_flag;
2974
2975 error = create_error;
2976 if ((open_flag & O_EXCL)) {
2977 if (!dentry->d_inode)
2978 goto out;
2979 } else if (!dentry->d_inode) {
2980 goto out;
2981 } else if ((open_flag & O_TRUNC) &&
2982 d_is_reg(dentry)) {
2983 goto out;
2984 }
2985 /* will fail later, go on to get the right error */
2986 }
2987 }
2988 looked_up:
2989 path->dentry = dentry;
2990 path->mnt = nd->path.mnt;
2991 return 1;
2992 }
2993
2994 /*
2995 * Look up and maybe create and open the last component.
2996 *
2997 * Must be called with i_mutex held on parent.
2998 *
2999 * Returns 0 if the file was successfully atomically created (if necessary) and
3000 * opened. In this case the file will be returned attached to @file.
3001 *
3002 * Returns 1 if the file was not completely opened at this time, though lookups
3003 * and creations will have been performed and the dentry returned in @path will
3004 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3005 * specified then a negative dentry may be returned.
3006 *
3007 * An error code is returned otherwise.
3008 *
3009 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3010 * cleared otherwise prior to returning.
3011 */
3012 static int lookup_open(struct nameidata *nd, struct path *path,
3013 struct file *file,
3014 const struct open_flags *op,
3015 bool got_write, int *opened)
3016 {
3017 struct dentry *dir = nd->path.dentry;
3018 struct inode *dir_inode = dir->d_inode;
3019 struct dentry *dentry;
3020 int error;
3021 bool need_lookup;
3022
3023 *opened &= ~FILE_CREATED;
3024 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
3025 if (IS_ERR(dentry))
3026 return PTR_ERR(dentry);
3027
3028 /* Cached positive dentry: will open in f_op->open */
3029 if (!need_lookup && dentry->d_inode)
3030 goto out_no_open;
3031
3032 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3033 return atomic_open(nd, dentry, path, file, op, got_write,
3034 need_lookup, opened);
3035 }
3036
3037 if (need_lookup) {
3038 BUG_ON(dentry->d_inode);
3039
3040 dentry = lookup_real(dir_inode, dentry, nd->flags);
3041 if (IS_ERR(dentry))
3042 return PTR_ERR(dentry);
3043 }
3044
3045 /* Negative dentry, just create the file */
3046 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3047 umode_t mode = op->mode;
3048 if (!IS_POSIXACL(dir->d_inode))
3049 mode &= ~current_umask();
3050 /*
3051 * This write is needed to ensure that a
3052 * rw->ro transition does not occur between
3053 * the time when the file is created and when
3054 * a permanent write count is taken through
3055 * the 'struct file' in finish_open().
3056 */
3057 if (!got_write) {
3058 error = -EROFS;
3059 goto out_dput;
3060 }
3061 *opened |= FILE_CREATED;
3062 error = security_path_mknod(&nd->path, dentry, mode, 0);
3063 if (error)
3064 goto out_dput;
3065 error = vfs_create(dir->d_inode, dentry, mode,
3066 nd->flags & LOOKUP_EXCL);
3067 if (error)
3068 goto out_dput;
3069 }
3070 out_no_open:
3071 path->dentry = dentry;
3072 path->mnt = nd->path.mnt;
3073 return 1;
3074
3075 out_dput:
3076 dput(dentry);
3077 return error;
3078 }
3079
3080 /*
3081 * Handle the last step of open()
3082 */
3083 static int do_last(struct nameidata *nd,
3084 struct file *file, const struct open_flags *op,
3085 int *opened)
3086 {
3087 struct dentry *dir = nd->path.dentry;
3088 int open_flag = op->open_flag;
3089 bool will_truncate = (open_flag & O_TRUNC) != 0;
3090 bool got_write = false;
3091 int acc_mode = op->acc_mode;
3092 unsigned seq;
3093 struct inode *inode;
3094 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3095 struct path path;
3096 bool retried = false;
3097 int error;
3098
3099 nd->flags &= ~LOOKUP_PARENT;
3100 nd->flags |= op->intent;
3101
3102 if (nd->last_type != LAST_NORM) {
3103 error = handle_dots(nd, nd->last_type);
3104 if (unlikely(error))
3105 return error;
3106 goto finish_open;
3107 }
3108
3109 if (!(open_flag & O_CREAT)) {
3110 if (nd->last.name[nd->last.len])
3111 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3112 /* we _can_ be in RCU mode here */
3113 error = lookup_fast(nd, &path, &inode, &seq);
3114 if (likely(!error))
3115 goto finish_lookup;
3116
3117 if (error < 0)
3118 return error;
3119
3120 BUG_ON(nd->inode != dir->d_inode);
3121 } else {
3122 /* create side of things */
3123 /*
3124 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3125 * has been cleared when we got to the last component we are
3126 * about to look up
3127 */
3128 error = complete_walk(nd);
3129 if (error)
3130 return error;
3131
3132 audit_inode(nd->name, dir, LOOKUP_PARENT);
3133 /* trailing slashes? */
3134 if (unlikely(nd->last.name[nd->last.len]))
3135 return -EISDIR;
3136 }
3137
3138 retry_lookup:
3139 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3140 error = mnt_want_write(nd->path.mnt);
3141 if (!error)
3142 got_write = true;
3143 /*
3144 * do _not_ fail yet - we might not need that or fail with
3145 * a different error; let lookup_open() decide; we'll be
3146 * dropping this one anyway.
3147 */
3148 }
3149 inode_lock(dir->d_inode);
3150 error = lookup_open(nd, &path, file, op, got_write, opened);
3151 inode_unlock(dir->d_inode);
3152
3153 if (error <= 0) {
3154 if (error)
3155 goto out;
3156
3157 if ((*opened & FILE_CREATED) ||
3158 !S_ISREG(file_inode(file)->i_mode))
3159 will_truncate = false;
3160
3161 audit_inode(nd->name, file->f_path.dentry, 0);
3162 goto opened;
3163 }
3164
3165 if (*opened & FILE_CREATED) {
3166 /* Don't check for write permission, don't truncate */
3167 open_flag &= ~O_TRUNC;
3168 will_truncate = false;
3169 acc_mode = 0;
3170 path_to_nameidata(&path, nd);
3171 goto finish_open_created;
3172 }
3173
3174 /*
3175 * create/update audit record if it already exists.
3176 */
3177 if (d_is_positive(path.dentry))
3178 audit_inode(nd->name, path.dentry, 0);
3179
3180 /*
3181 * If atomic_open() acquired write access it is dropped now due to
3182 * possible mount and symlink following (this might be optimized away if
3183 * necessary...)
3184 */
3185 if (got_write) {
3186 mnt_drop_write(nd->path.mnt);
3187 got_write = false;
3188 }
3189
3190 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3191 path_to_nameidata(&path, nd);
3192 return -EEXIST;
3193 }
3194
3195 error = follow_managed(&path, nd);
3196 if (unlikely(error < 0))
3197 return error;
3198
3199 BUG_ON(nd->flags & LOOKUP_RCU);
3200 seq = 0; /* out of RCU mode, so the value doesn't matter */
3201 if (unlikely(d_is_negative(path.dentry))) {
3202 path_to_nameidata(&path, nd);
3203 return -ENOENT;
3204 }
3205 inode = d_backing_inode(path.dentry);
3206 finish_lookup:
3207 if (nd->depth)
3208 put_link(nd);
3209 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3210 inode, seq);
3211 if (unlikely(error))
3212 return error;
3213
3214 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3215 path_to_nameidata(&path, nd);
3216 } else {
3217 save_parent.dentry = nd->path.dentry;
3218 save_parent.mnt = mntget(path.mnt);
3219 nd->path.dentry = path.dentry;
3220
3221 }
3222 nd->inode = inode;
3223 nd->seq = seq;
3224 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3225 finish_open:
3226 error = complete_walk(nd);
3227 if (error) {
3228 path_put(&save_parent);
3229 return error;
3230 }
3231 audit_inode(nd->name, nd->path.dentry, 0);
3232 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3233 error = -ELOOP;
3234 goto out;
3235 }
3236 error = -EISDIR;
3237 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3238 goto out;
3239 error = -ENOTDIR;
3240 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3241 goto out;
3242 if (!d_is_reg(nd->path.dentry))
3243 will_truncate = false;
3244
3245 if (will_truncate) {
3246 error = mnt_want_write(nd->path.mnt);
3247 if (error)
3248 goto out;
3249 got_write = true;
3250 }
3251 finish_open_created:
3252 if (likely(!(open_flag & O_PATH))) {
3253 error = may_open(&nd->path, acc_mode, open_flag);
3254 if (error)
3255 goto out;
3256 }
3257 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3258 error = vfs_open(&nd->path, file, current_cred());
3259 if (!error) {
3260 *opened |= FILE_OPENED;
3261 } else {
3262 if (error == -EOPENSTALE)
3263 goto stale_open;
3264 goto out;
3265 }
3266 opened:
3267 error = open_check_o_direct(file);
3268 if (error)
3269 goto exit_fput;
3270 error = ima_file_check(file, op->acc_mode, *opened);
3271 if (error)
3272 goto exit_fput;
3273
3274 if (will_truncate) {
3275 error = handle_truncate(file);
3276 if (error)
3277 goto exit_fput;
3278 }
3279 out:
3280 if (unlikely(error > 0)) {
3281 WARN_ON(1);
3282 error = -EINVAL;
3283 }
3284 if (got_write)
3285 mnt_drop_write(nd->path.mnt);
3286 path_put(&save_parent);
3287 return error;
3288
3289 exit_fput:
3290 fput(file);
3291 goto out;
3292
3293 stale_open:
3294 /* If no saved parent or already retried then can't retry */
3295 if (!save_parent.dentry || retried)
3296 goto out;
3297
3298 BUG_ON(save_parent.dentry != dir);
3299 path_put(&nd->path);
3300 nd->path = save_parent;
3301 nd->inode = dir->d_inode;
3302 save_parent.mnt = NULL;
3303 save_parent.dentry = NULL;
3304 if (got_write) {
3305 mnt_drop_write(nd->path.mnt);
3306 got_write = false;
3307 }
3308 retried = true;
3309 goto retry_lookup;
3310 }
3311
3312 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3313 const struct open_flags *op,
3314 struct file *file, int *opened)
3315 {
3316 static const struct qstr name = QSTR_INIT("/", 1);
3317 struct dentry *child;
3318 struct inode *dir;
3319 struct path path;
3320 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3321 if (unlikely(error))
3322 return error;
3323 error = mnt_want_write(path.mnt);
3324 if (unlikely(error))
3325 goto out;
3326 dir = path.dentry->d_inode;
3327 /* we want directory to be writable */
3328 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3329 if (error)
3330 goto out2;
3331 if (!dir->i_op->tmpfile) {
3332 error = -EOPNOTSUPP;
3333 goto out2;
3334 }
3335 child = d_alloc(path.dentry, &name);
3336 if (unlikely(!child)) {
3337 error = -ENOMEM;
3338 goto out2;
3339 }
3340 dput(path.dentry);
3341 path.dentry = child;
3342 error = dir->i_op->tmpfile(dir, child, op->mode);
3343 if (error)
3344 goto out2;
3345 audit_inode(nd->name, child, 0);
3346 /* Don't check for other permissions, the inode was just created */
3347 error = may_open(&path, 0, op->open_flag);
3348 if (error)
3349 goto out2;
3350 file->f_path.mnt = path.mnt;
3351 error = finish_open(file, child, NULL, opened);
3352 if (error)
3353 goto out2;
3354 error = open_check_o_direct(file);
3355 if (error) {
3356 fput(file);
3357 } else if (!(op->open_flag & O_EXCL)) {
3358 struct inode *inode = file_inode(file);
3359 spin_lock(&inode->i_lock);
3360 inode->i_state |= I_LINKABLE;
3361 spin_unlock(&inode->i_lock);
3362 }
3363 out2:
3364 mnt_drop_write(path.mnt);
3365 out:
3366 path_put(&path);
3367 return error;
3368 }
3369
3370 static struct file *path_openat(struct nameidata *nd,
3371 const struct open_flags *op, unsigned flags)
3372 {
3373 const char *s;
3374 struct file *file;
3375 int opened = 0;
3376 int error;
3377
3378 file = get_empty_filp();
3379 if (IS_ERR(file))
3380 return file;
3381
3382 file->f_flags = op->open_flag;
3383
3384 if (unlikely(file->f_flags & __O_TMPFILE)) {
3385 error = do_tmpfile(nd, flags, op, file, &opened);
3386 goto out2;
3387 }
3388
3389 s = path_init(nd, flags);
3390 if (IS_ERR(s)) {
3391 put_filp(file);
3392 return ERR_CAST(s);
3393 }
3394 while (!(error = link_path_walk(s, nd)) &&
3395 (error = do_last(nd, file, op, &opened)) > 0) {
3396 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3397 s = trailing_symlink(nd);
3398 if (IS_ERR(s)) {
3399 error = PTR_ERR(s);
3400 break;
3401 }
3402 }
3403 terminate_walk(nd);
3404 out2:
3405 if (!(opened & FILE_OPENED)) {
3406 BUG_ON(!error);
3407 put_filp(file);
3408 }
3409 if (unlikely(error)) {
3410 if (error == -EOPENSTALE) {
3411 if (flags & LOOKUP_RCU)
3412 error = -ECHILD;
3413 else
3414 error = -ESTALE;
3415 }
3416 file = ERR_PTR(error);
3417 }
3418 return file;
3419 }
3420
3421 struct file *do_filp_open(int dfd, struct filename *pathname,
3422 const struct open_flags *op)
3423 {
3424 struct nameidata nd;
3425 int flags = op->lookup_flags;
3426 struct file *filp;
3427
3428 set_nameidata(&nd, dfd, pathname);
3429 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3430 if (unlikely(filp == ERR_PTR(-ECHILD)))
3431 filp = path_openat(&nd, op, flags);
3432 if (unlikely(filp == ERR_PTR(-ESTALE)))
3433 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3434 restore_nameidata();
3435 return filp;
3436 }
3437
3438 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3439 const char *name, const struct open_flags *op)
3440 {
3441 struct nameidata nd;
3442 struct file *file;
3443 struct filename *filename;
3444 int flags = op->lookup_flags | LOOKUP_ROOT;
3445
3446 nd.root.mnt = mnt;
3447 nd.root.dentry = dentry;
3448
3449 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3450 return ERR_PTR(-ELOOP);
3451
3452 filename = getname_kernel(name);
3453 if (IS_ERR(filename))
3454 return ERR_CAST(filename);
3455
3456 set_nameidata(&nd, -1, filename);
3457 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3458 if (unlikely(file == ERR_PTR(-ECHILD)))
3459 file = path_openat(&nd, op, flags);
3460 if (unlikely(file == ERR_PTR(-ESTALE)))
3461 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3462 restore_nameidata();
3463 putname(filename);
3464 return file;
3465 }
3466
3467 static struct dentry *filename_create(int dfd, struct filename *name,
3468 struct path *path, unsigned int lookup_flags)
3469 {
3470 struct dentry *dentry = ERR_PTR(-EEXIST);
3471 struct qstr last;
3472 int type;
3473 int err2;
3474 int error;
3475 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3476
3477 /*
3478 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3479 * other flags passed in are ignored!
3480 */
3481 lookup_flags &= LOOKUP_REVAL;
3482
3483 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3484 if (IS_ERR(name))
3485 return ERR_CAST(name);
3486
3487 /*
3488 * Yucky last component or no last component at all?
3489 * (foo/., foo/.., /////)
3490 */
3491 if (unlikely(type != LAST_NORM))
3492 goto out;
3493
3494 /* don't fail immediately if it's r/o, at least try to report other errors */
3495 err2 = mnt_want_write(path->mnt);
3496 /*
3497 * Do the final lookup.
3498 */
3499 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3500 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3501 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3502 if (IS_ERR(dentry))
3503 goto unlock;
3504
3505 error = -EEXIST;
3506 if (d_is_positive(dentry))
3507 goto fail;
3508
3509 /*
3510 * Special case - lookup gave negative, but... we had foo/bar/
3511 * From the vfs_mknod() POV we just have a negative dentry -
3512 * all is fine. Let's be bastards - you had / on the end, you've
3513 * been asking for (non-existent) directory. -ENOENT for you.
3514 */
3515 if (unlikely(!is_dir && last.name[last.len])) {
3516 error = -ENOENT;
3517 goto fail;
3518 }
3519 if (unlikely(err2)) {
3520 error = err2;
3521 goto fail;
3522 }
3523 putname(name);
3524 return dentry;
3525 fail:
3526 dput(dentry);
3527 dentry = ERR_PTR(error);
3528 unlock:
3529 inode_unlock(path->dentry->d_inode);
3530 if (!err2)
3531 mnt_drop_write(path->mnt);
3532 out:
3533 path_put(path);
3534 putname(name);
3535 return dentry;
3536 }
3537
3538 struct dentry *kern_path_create(int dfd, const char *pathname,
3539 struct path *path, unsigned int lookup_flags)
3540 {
3541 return filename_create(dfd, getname_kernel(pathname),
3542 path, lookup_flags);
3543 }
3544 EXPORT_SYMBOL(kern_path_create);
3545
3546 void done_path_create(struct path *path, struct dentry *dentry)
3547 {
3548 dput(dentry);
3549 inode_unlock(path->dentry->d_inode);
3550 mnt_drop_write(path->mnt);
3551 path_put(path);
3552 }
3553 EXPORT_SYMBOL(done_path_create);
3554
3555 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3556 struct path *path, unsigned int lookup_flags)
3557 {
3558 return filename_create(dfd, getname(pathname), path, lookup_flags);
3559 }
3560 EXPORT_SYMBOL(user_path_create);
3561
3562 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3563 {
3564 int error = may_create(dir, dentry);
3565
3566 if (error)
3567 return error;
3568
3569 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3570 return -EPERM;
3571
3572 if (!dir->i_op->mknod)
3573 return -EPERM;
3574
3575 error = devcgroup_inode_mknod(mode, dev);
3576 if (error)
3577 return error;
3578
3579 error = security_inode_mknod(dir, dentry, mode, dev);
3580 if (error)
3581 return error;
3582
3583 error = dir->i_op->mknod(dir, dentry, mode, dev);
3584 if (!error)
3585 fsnotify_create(dir, dentry);
3586 return error;
3587 }
3588 EXPORT_SYMBOL(vfs_mknod);
3589
3590 static int may_mknod(umode_t mode)
3591 {
3592 switch (mode & S_IFMT) {
3593 case S_IFREG:
3594 case S_IFCHR:
3595 case S_IFBLK:
3596 case S_IFIFO:
3597 case S_IFSOCK:
3598 case 0: /* zero mode translates to S_IFREG */
3599 return 0;
3600 case S_IFDIR:
3601 return -EPERM;
3602 default:
3603 return -EINVAL;
3604 }
3605 }
3606
3607 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3608 unsigned, dev)
3609 {
3610 struct dentry *dentry;
3611 struct path path;
3612 int error;
3613 unsigned int lookup_flags = 0;
3614
3615 error = may_mknod(mode);
3616 if (error)
3617 return error;
3618 retry:
3619 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3620 if (IS_ERR(dentry))
3621 return PTR_ERR(dentry);
3622
3623 if (!IS_POSIXACL(path.dentry->d_inode))
3624 mode &= ~current_umask();
3625 error = security_path_mknod(&path, dentry, mode, dev);
3626 if (error)
3627 goto out;
3628 switch (mode & S_IFMT) {
3629 case 0: case S_IFREG:
3630 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3631 break;
3632 case S_IFCHR: case S_IFBLK:
3633 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3634 new_decode_dev(dev));
3635 break;
3636 case S_IFIFO: case S_IFSOCK:
3637 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3638 break;
3639 }
3640 out:
3641 done_path_create(&path, dentry);
3642 if (retry_estale(error, lookup_flags)) {
3643 lookup_flags |= LOOKUP_REVAL;
3644 goto retry;
3645 }
3646 return error;
3647 }
3648
3649 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3650 {
3651 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3652 }
3653
3654 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3655 {
3656 int error = may_create(dir, dentry);
3657 unsigned max_links = dir->i_sb->s_max_links;
3658
3659 if (error)
3660 return error;
3661
3662 if (!dir->i_op->mkdir)
3663 return -EPERM;
3664
3665 mode &= (S_IRWXUGO|S_ISVTX);
3666 error = security_inode_mkdir(dir, dentry, mode);
3667 if (error)
3668 return error;
3669
3670 if (max_links && dir->i_nlink >= max_links)
3671 return -EMLINK;
3672
3673 error = dir->i_op->mkdir(dir, dentry, mode);
3674 if (!error)
3675 fsnotify_mkdir(dir, dentry);
3676 return error;
3677 }
3678 EXPORT_SYMBOL(vfs_mkdir);
3679
3680 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3681 {
3682 struct dentry *dentry;
3683 struct path path;
3684 int error;
3685 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3686
3687 retry:
3688 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3689 if (IS_ERR(dentry))
3690 return PTR_ERR(dentry);
3691
3692 if (!IS_POSIXACL(path.dentry->d_inode))
3693 mode &= ~current_umask();
3694 error = security_path_mkdir(&path, dentry, mode);
3695 if (!error)
3696 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3697 done_path_create(&path, dentry);
3698 if (retry_estale(error, lookup_flags)) {
3699 lookup_flags |= LOOKUP_REVAL;
3700 goto retry;
3701 }
3702 return error;
3703 }
3704
3705 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3706 {
3707 return sys_mkdirat(AT_FDCWD, pathname, mode);
3708 }
3709
3710 /*
3711 * The dentry_unhash() helper will try to drop the dentry early: we
3712 * should have a usage count of 1 if we're the only user of this
3713 * dentry, and if that is true (possibly after pruning the dcache),
3714 * then we drop the dentry now.
3715 *
3716 * A low-level filesystem can, if it choses, legally
3717 * do a
3718 *
3719 * if (!d_unhashed(dentry))
3720 * return -EBUSY;
3721 *
3722 * if it cannot handle the case of removing a directory
3723 * that is still in use by something else..
3724 */
3725 void dentry_unhash(struct dentry *dentry)
3726 {
3727 shrink_dcache_parent(dentry);
3728 spin_lock(&dentry->d_lock);
3729 if (dentry->d_lockref.count == 1)
3730 __d_drop(dentry);
3731 spin_unlock(&dentry->d_lock);
3732 }
3733 EXPORT_SYMBOL(dentry_unhash);
3734
3735 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3736 {
3737 int error = may_delete(dir, dentry, 1);
3738
3739 if (error)
3740 return error;
3741
3742 if (!dir->i_op->rmdir)
3743 return -EPERM;
3744
3745 dget(dentry);
3746 inode_lock(dentry->d_inode);
3747
3748 error = -EBUSY;
3749 if (is_local_mountpoint(dentry))
3750 goto out;
3751
3752 error = security_inode_rmdir(dir, dentry);
3753 if (error)
3754 goto out;
3755
3756 shrink_dcache_parent(dentry);
3757 error = dir->i_op->rmdir(dir, dentry);
3758 if (error)
3759 goto out;
3760
3761 dentry->d_inode->i_flags |= S_DEAD;
3762 dont_mount(dentry);
3763 detach_mounts(dentry);
3764
3765 out:
3766 inode_unlock(dentry->d_inode);
3767 dput(dentry);
3768 if (!error)
3769 d_delete(dentry);
3770 return error;
3771 }
3772 EXPORT_SYMBOL(vfs_rmdir);
3773
3774 static long do_rmdir(int dfd, const char __user *pathname)
3775 {
3776 int error = 0;
3777 struct filename *name;
3778 struct dentry *dentry;
3779 struct path path;
3780 struct qstr last;
3781 int type;
3782 unsigned int lookup_flags = 0;
3783 retry:
3784 name = user_path_parent(dfd, pathname,
3785 &path, &last, &type, lookup_flags);
3786 if (IS_ERR(name))
3787 return PTR_ERR(name);
3788
3789 switch (type) {
3790 case LAST_DOTDOT:
3791 error = -ENOTEMPTY;
3792 goto exit1;
3793 case LAST_DOT:
3794 error = -EINVAL;
3795 goto exit1;
3796 case LAST_ROOT:
3797 error = -EBUSY;
3798 goto exit1;
3799 }
3800
3801 error = mnt_want_write(path.mnt);
3802 if (error)
3803 goto exit1;
3804
3805 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3806 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3807 error = PTR_ERR(dentry);
3808 if (IS_ERR(dentry))
3809 goto exit2;
3810 if (!dentry->d_inode) {
3811 error = -ENOENT;
3812 goto exit3;
3813 }
3814 error = security_path_rmdir(&path, dentry);
3815 if (error)
3816 goto exit3;
3817 error = vfs_rmdir(path.dentry->d_inode, dentry);
3818 exit3:
3819 dput(dentry);
3820 exit2:
3821 inode_unlock(path.dentry->d_inode);
3822 mnt_drop_write(path.mnt);
3823 exit1:
3824 path_put(&path);
3825 putname(name);
3826 if (retry_estale(error, lookup_flags)) {
3827 lookup_flags |= LOOKUP_REVAL;
3828 goto retry;
3829 }
3830 return error;
3831 }
3832
3833 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3834 {
3835 return do_rmdir(AT_FDCWD, pathname);
3836 }
3837
3838 /**
3839 * vfs_unlink - unlink a filesystem object
3840 * @dir: parent directory
3841 * @dentry: victim
3842 * @delegated_inode: returns victim inode, if the inode is delegated.
3843 *
3844 * The caller must hold dir->i_mutex.
3845 *
3846 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3847 * return a reference to the inode in delegated_inode. The caller
3848 * should then break the delegation on that inode and retry. Because
3849 * breaking a delegation may take a long time, the caller should drop
3850 * dir->i_mutex before doing so.
3851 *
3852 * Alternatively, a caller may pass NULL for delegated_inode. This may
3853 * be appropriate for callers that expect the underlying filesystem not
3854 * to be NFS exported.
3855 */
3856 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3857 {
3858 struct inode *target = dentry->d_inode;
3859 int error = may_delete(dir, dentry, 0);
3860
3861 if (error)
3862 return error;
3863
3864 if (!dir->i_op->unlink)
3865 return -EPERM;
3866
3867 inode_lock(target);
3868 if (is_local_mountpoint(dentry))
3869 error = -EBUSY;
3870 else {
3871 error = security_inode_unlink(dir, dentry);
3872 if (!error) {
3873 error = try_break_deleg(target, delegated_inode);
3874 if (error)
3875 goto out;
3876 error = dir->i_op->unlink(dir, dentry);
3877 if (!error) {
3878 dont_mount(dentry);
3879 detach_mounts(dentry);
3880 }
3881 }
3882 }
3883 out:
3884 inode_unlock(target);
3885
3886 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3887 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3888 fsnotify_link_count(target);
3889 d_delete(dentry);
3890 }
3891
3892 return error;
3893 }
3894 EXPORT_SYMBOL(vfs_unlink);
3895
3896 /*
3897 * Make sure that the actual truncation of the file will occur outside its
3898 * directory's i_mutex. Truncate can take a long time if there is a lot of
3899 * writeout happening, and we don't want to prevent access to the directory
3900 * while waiting on the I/O.
3901 */
3902 static long do_unlinkat(int dfd, const char __user *pathname)
3903 {
3904 int error;
3905 struct filename *name;
3906 struct dentry *dentry;
3907 struct path path;
3908 struct qstr last;
3909 int type;
3910 struct inode *inode = NULL;
3911 struct inode *delegated_inode = NULL;
3912 unsigned int lookup_flags = 0;
3913 retry:
3914 name = user_path_parent(dfd, pathname,
3915 &path, &last, &type, lookup_flags);
3916 if (IS_ERR(name))
3917 return PTR_ERR(name);
3918
3919 error = -EISDIR;
3920 if (type != LAST_NORM)
3921 goto exit1;
3922
3923 error = mnt_want_write(path.mnt);
3924 if (error)
3925 goto exit1;
3926 retry_deleg:
3927 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3928 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3929 error = PTR_ERR(dentry);
3930 if (!IS_ERR(dentry)) {
3931 /* Why not before? Because we want correct error value */
3932 if (last.name[last.len])
3933 goto slashes;
3934 inode = dentry->d_inode;
3935 if (d_is_negative(dentry))
3936 goto slashes;
3937 ihold(inode);
3938 error = security_path_unlink(&path, dentry);
3939 if (error)
3940 goto exit2;
3941 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3942 exit2:
3943 dput(dentry);
3944 }
3945 inode_unlock(path.dentry->d_inode);
3946 if (inode)
3947 iput(inode); /* truncate the inode here */
3948 inode = NULL;
3949 if (delegated_inode) {
3950 error = break_deleg_wait(&delegated_inode);
3951 if (!error)
3952 goto retry_deleg;
3953 }
3954 mnt_drop_write(path.mnt);
3955 exit1:
3956 path_put(&path);
3957 putname(name);
3958 if (retry_estale(error, lookup_flags)) {
3959 lookup_flags |= LOOKUP_REVAL;
3960 inode = NULL;
3961 goto retry;
3962 }
3963 return error;
3964
3965 slashes:
3966 if (d_is_negative(dentry))
3967 error = -ENOENT;
3968 else if (d_is_dir(dentry))
3969 error = -EISDIR;
3970 else
3971 error = -ENOTDIR;
3972 goto exit2;
3973 }
3974
3975 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3976 {
3977 if ((flag & ~AT_REMOVEDIR) != 0)
3978 return -EINVAL;
3979
3980 if (flag & AT_REMOVEDIR)
3981 return do_rmdir(dfd, pathname);
3982
3983 return do_unlinkat(dfd, pathname);
3984 }
3985
3986 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3987 {
3988 return do_unlinkat(AT_FDCWD, pathname);
3989 }
3990
3991 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3992 {
3993 int error = may_create(dir, dentry);
3994
3995 if (error)
3996 return error;
3997
3998 if (!dir->i_op->symlink)
3999 return -EPERM;
4000
4001 error = security_inode_symlink(dir, dentry, oldname);
4002 if (error)
4003 return error;
4004
4005 error = dir->i_op->symlink(dir, dentry, oldname);
4006 if (!error)
4007 fsnotify_create(dir, dentry);
4008 return error;
4009 }
4010 EXPORT_SYMBOL(vfs_symlink);
4011
4012 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4013 int, newdfd, const char __user *, newname)
4014 {
4015 int error;
4016 struct filename *from;
4017 struct dentry *dentry;
4018 struct path path;
4019 unsigned int lookup_flags = 0;
4020
4021 from = getname(oldname);
4022 if (IS_ERR(from))
4023 return PTR_ERR(from);
4024 retry:
4025 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4026 error = PTR_ERR(dentry);
4027 if (IS_ERR(dentry))
4028 goto out_putname;
4029
4030 error = security_path_symlink(&path, dentry, from->name);
4031 if (!error)
4032 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4033 done_path_create(&path, dentry);
4034 if (retry_estale(error, lookup_flags)) {
4035 lookup_flags |= LOOKUP_REVAL;
4036 goto retry;
4037 }
4038 out_putname:
4039 putname(from);
4040 return error;
4041 }
4042
4043 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4044 {
4045 return sys_symlinkat(oldname, AT_FDCWD, newname);
4046 }
4047
4048 /**
4049 * vfs_link - create a new link
4050 * @old_dentry: object to be linked
4051 * @dir: new parent
4052 * @new_dentry: where to create the new link
4053 * @delegated_inode: returns inode needing a delegation break
4054 *
4055 * The caller must hold dir->i_mutex
4056 *
4057 * If vfs_link discovers a delegation on the to-be-linked file in need
4058 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4059 * inode in delegated_inode. The caller should then break the delegation
4060 * and retry. Because breaking a delegation may take a long time, the
4061 * caller should drop the i_mutex before doing so.
4062 *
4063 * Alternatively, a caller may pass NULL for delegated_inode. This may
4064 * be appropriate for callers that expect the underlying filesystem not
4065 * to be NFS exported.
4066 */
4067 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4068 {
4069 struct inode *inode = old_dentry->d_inode;
4070 unsigned max_links = dir->i_sb->s_max_links;
4071 int error;
4072
4073 if (!inode)
4074 return -ENOENT;
4075
4076 error = may_create(dir, new_dentry);
4077 if (error)
4078 return error;
4079
4080 if (dir->i_sb != inode->i_sb)
4081 return -EXDEV;
4082
4083 /*
4084 * A link to an append-only or immutable file cannot be created.
4085 */
4086 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4087 return -EPERM;
4088 if (!dir->i_op->link)
4089 return -EPERM;
4090 if (S_ISDIR(inode->i_mode))
4091 return -EPERM;
4092
4093 error = security_inode_link(old_dentry, dir, new_dentry);
4094 if (error)
4095 return error;
4096
4097 inode_lock(inode);
4098 /* Make sure we don't allow creating hardlink to an unlinked file */
4099 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4100 error = -ENOENT;
4101 else if (max_links && inode->i_nlink >= max_links)
4102 error = -EMLINK;
4103 else {
4104 error = try_break_deleg(inode, delegated_inode);
4105 if (!error)
4106 error = dir->i_op->link(old_dentry, dir, new_dentry);
4107 }
4108
4109 if (!error && (inode->i_state & I_LINKABLE)) {
4110 spin_lock(&inode->i_lock);
4111 inode->i_state &= ~I_LINKABLE;
4112 spin_unlock(&inode->i_lock);
4113 }
4114 inode_unlock(inode);
4115 if (!error)
4116 fsnotify_link(dir, inode, new_dentry);
4117 return error;
4118 }
4119 EXPORT_SYMBOL(vfs_link);
4120
4121 /*
4122 * Hardlinks are often used in delicate situations. We avoid
4123 * security-related surprises by not following symlinks on the
4124 * newname. --KAB
4125 *
4126 * We don't follow them on the oldname either to be compatible
4127 * with linux 2.0, and to avoid hard-linking to directories
4128 * and other special files. --ADM
4129 */
4130 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4131 int, newdfd, const char __user *, newname, int, flags)
4132 {
4133 struct dentry *new_dentry;
4134 struct path old_path, new_path;
4135 struct inode *delegated_inode = NULL;
4136 int how = 0;
4137 int error;
4138
4139 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4140 return -EINVAL;
4141 /*
4142 * To use null names we require CAP_DAC_READ_SEARCH
4143 * This ensures that not everyone will be able to create
4144 * handlink using the passed filedescriptor.
4145 */
4146 if (flags & AT_EMPTY_PATH) {
4147 if (!capable(CAP_DAC_READ_SEARCH))
4148 return -ENOENT;
4149 how = LOOKUP_EMPTY;
4150 }
4151
4152 if (flags & AT_SYMLINK_FOLLOW)
4153 how |= LOOKUP_FOLLOW;
4154 retry:
4155 error = user_path_at(olddfd, oldname, how, &old_path);
4156 if (error)
4157 return error;
4158
4159 new_dentry = user_path_create(newdfd, newname, &new_path,
4160 (how & LOOKUP_REVAL));
4161 error = PTR_ERR(new_dentry);
4162 if (IS_ERR(new_dentry))
4163 goto out;
4164
4165 error = -EXDEV;
4166 if (old_path.mnt != new_path.mnt)
4167 goto out_dput;
4168 error = may_linkat(&old_path);
4169 if (unlikely(error))
4170 goto out_dput;
4171 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4172 if (error)
4173 goto out_dput;
4174 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4175 out_dput:
4176 done_path_create(&new_path, new_dentry);
4177 if (delegated_inode) {
4178 error = break_deleg_wait(&delegated_inode);
4179 if (!error) {
4180 path_put(&old_path);
4181 goto retry;
4182 }
4183 }
4184 if (retry_estale(error, how)) {
4185 path_put(&old_path);
4186 how |= LOOKUP_REVAL;
4187 goto retry;
4188 }
4189 out:
4190 path_put(&old_path);
4191
4192 return error;
4193 }
4194
4195 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4196 {
4197 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4198 }
4199
4200 /**
4201 * vfs_rename - rename a filesystem object
4202 * @old_dir: parent of source
4203 * @old_dentry: source
4204 * @new_dir: parent of destination
4205 * @new_dentry: destination
4206 * @delegated_inode: returns an inode needing a delegation break
4207 * @flags: rename flags
4208 *
4209 * The caller must hold multiple mutexes--see lock_rename()).
4210 *
4211 * If vfs_rename discovers a delegation in need of breaking at either
4212 * the source or destination, it will return -EWOULDBLOCK and return a
4213 * reference to the inode in delegated_inode. The caller should then
4214 * break the delegation and retry. Because breaking a delegation may
4215 * take a long time, the caller should drop all locks before doing
4216 * so.
4217 *
4218 * Alternatively, a caller may pass NULL for delegated_inode. This may
4219 * be appropriate for callers that expect the underlying filesystem not
4220 * to be NFS exported.
4221 *
4222 * The worst of all namespace operations - renaming directory. "Perverted"
4223 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4224 * Problems:
4225 * a) we can get into loop creation.
4226 * b) race potential - two innocent renames can create a loop together.
4227 * That's where 4.4 screws up. Current fix: serialization on
4228 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4229 * story.
4230 * c) we have to lock _four_ objects - parents and victim (if it exists),
4231 * and source (if it is not a directory).
4232 * And that - after we got ->i_mutex on parents (until then we don't know
4233 * whether the target exists). Solution: try to be smart with locking
4234 * order for inodes. We rely on the fact that tree topology may change
4235 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4236 * move will be locked. Thus we can rank directories by the tree
4237 * (ancestors first) and rank all non-directories after them.
4238 * That works since everybody except rename does "lock parent, lookup,
4239 * lock child" and rename is under ->s_vfs_rename_mutex.
4240 * HOWEVER, it relies on the assumption that any object with ->lookup()
4241 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4242 * we'd better make sure that there's no link(2) for them.
4243 * d) conversion from fhandle to dentry may come in the wrong moment - when
4244 * we are removing the target. Solution: we will have to grab ->i_mutex
4245 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4246 * ->i_mutex on parents, which works but leads to some truly excessive
4247 * locking].
4248 */
4249 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4250 struct inode *new_dir, struct dentry *new_dentry,
4251 struct inode **delegated_inode, unsigned int flags)
4252 {
4253 int error;
4254 bool is_dir = d_is_dir(old_dentry);
4255 const unsigned char *old_name;
4256 struct inode *source = old_dentry->d_inode;
4257 struct inode *target = new_dentry->d_inode;
4258 bool new_is_dir = false;
4259 unsigned max_links = new_dir->i_sb->s_max_links;
4260
4261 if (source == target)
4262 return 0;
4263
4264 error = may_delete(old_dir, old_dentry, is_dir);
4265 if (error)
4266 return error;
4267
4268 if (!target) {
4269 error = may_create(new_dir, new_dentry);
4270 } else {
4271 new_is_dir = d_is_dir(new_dentry);
4272
4273 if (!(flags & RENAME_EXCHANGE))
4274 error = may_delete(new_dir, new_dentry, is_dir);
4275 else
4276 error = may_delete(new_dir, new_dentry, new_is_dir);
4277 }
4278 if (error)
4279 return error;
4280
4281 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4282 return -EPERM;
4283
4284 if (flags && !old_dir->i_op->rename2)
4285 return -EINVAL;
4286
4287 /*
4288 * If we are going to change the parent - check write permissions,
4289 * we'll need to flip '..'.
4290 */
4291 if (new_dir != old_dir) {
4292 if (is_dir) {
4293 error = inode_permission(source, MAY_WRITE);
4294 if (error)
4295 return error;
4296 }
4297 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4298 error = inode_permission(target, MAY_WRITE);
4299 if (error)
4300 return error;
4301 }
4302 }
4303
4304 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4305 flags);
4306 if (error)
4307 return error;
4308
4309 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4310 dget(new_dentry);
4311 if (!is_dir || (flags & RENAME_EXCHANGE))
4312 lock_two_nondirectories(source, target);
4313 else if (target)
4314 inode_lock(target);
4315
4316 error = -EBUSY;
4317 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4318 goto out;
4319
4320 if (max_links && new_dir != old_dir) {
4321 error = -EMLINK;
4322 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4323 goto out;
4324 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4325 old_dir->i_nlink >= max_links)
4326 goto out;
4327 }
4328 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4329 shrink_dcache_parent(new_dentry);
4330 if (!is_dir) {
4331 error = try_break_deleg(source, delegated_inode);
4332 if (error)
4333 goto out;
4334 }
4335 if (target && !new_is_dir) {
4336 error = try_break_deleg(target, delegated_inode);
4337 if (error)
4338 goto out;
4339 }
4340 if (!old_dir->i_op->rename2) {
4341 error = old_dir->i_op->rename(old_dir, old_dentry,
4342 new_dir, new_dentry);
4343 } else {
4344 WARN_ON(old_dir->i_op->rename != NULL);
4345 error = old_dir->i_op->rename2(old_dir, old_dentry,
4346 new_dir, new_dentry, flags);
4347 }
4348 if (error)
4349 goto out;
4350
4351 if (!(flags & RENAME_EXCHANGE) && target) {
4352 if (is_dir)
4353 target->i_flags |= S_DEAD;
4354 dont_mount(new_dentry);
4355 detach_mounts(new_dentry);
4356 }
4357 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4358 if (!(flags & RENAME_EXCHANGE))
4359 d_move(old_dentry, new_dentry);
4360 else
4361 d_exchange(old_dentry, new_dentry);
4362 }
4363 out:
4364 if (!is_dir || (flags & RENAME_EXCHANGE))
4365 unlock_two_nondirectories(source, target);
4366 else if (target)
4367 inode_unlock(target);
4368 dput(new_dentry);
4369 if (!error) {
4370 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4371 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4372 if (flags & RENAME_EXCHANGE) {
4373 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4374 new_is_dir, NULL, new_dentry);
4375 }
4376 }
4377 fsnotify_oldname_free(old_name);
4378
4379 return error;
4380 }
4381 EXPORT_SYMBOL(vfs_rename);
4382
4383 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4384 int, newdfd, const char __user *, newname, unsigned int, flags)
4385 {
4386 struct dentry *old_dentry, *new_dentry;
4387 struct dentry *trap;
4388 struct path old_path, new_path;
4389 struct qstr old_last, new_last;
4390 int old_type, new_type;
4391 struct inode *delegated_inode = NULL;
4392 struct filename *from;
4393 struct filename *to;
4394 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4395 bool should_retry = false;
4396 int error;
4397
4398 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4399 return -EINVAL;
4400
4401 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4402 (flags & RENAME_EXCHANGE))
4403 return -EINVAL;
4404
4405 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4406 return -EPERM;
4407
4408 if (flags & RENAME_EXCHANGE)
4409 target_flags = 0;
4410
4411 retry:
4412 from = user_path_parent(olddfd, oldname,
4413 &old_path, &old_last, &old_type, lookup_flags);
4414 if (IS_ERR(from)) {
4415 error = PTR_ERR(from);
4416 goto exit;
4417 }
4418
4419 to = user_path_parent(newdfd, newname,
4420 &new_path, &new_last, &new_type, lookup_flags);
4421 if (IS_ERR(to)) {
4422 error = PTR_ERR(to);
4423 goto exit1;
4424 }
4425
4426 error = -EXDEV;
4427 if (old_path.mnt != new_path.mnt)
4428 goto exit2;
4429
4430 error = -EBUSY;
4431 if (old_type != LAST_NORM)
4432 goto exit2;
4433
4434 if (flags & RENAME_NOREPLACE)
4435 error = -EEXIST;
4436 if (new_type != LAST_NORM)
4437 goto exit2;
4438
4439 error = mnt_want_write(old_path.mnt);
4440 if (error)
4441 goto exit2;
4442
4443 retry_deleg:
4444 trap = lock_rename(new_path.dentry, old_path.dentry);
4445
4446 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4447 error = PTR_ERR(old_dentry);
4448 if (IS_ERR(old_dentry))
4449 goto exit3;
4450 /* source must exist */
4451 error = -ENOENT;
4452 if (d_is_negative(old_dentry))
4453 goto exit4;
4454 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4455 error = PTR_ERR(new_dentry);
4456 if (IS_ERR(new_dentry))
4457 goto exit4;
4458 error = -EEXIST;
4459 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4460 goto exit5;
4461 if (flags & RENAME_EXCHANGE) {
4462 error = -ENOENT;
4463 if (d_is_negative(new_dentry))
4464 goto exit5;
4465
4466 if (!d_is_dir(new_dentry)) {
4467 error = -ENOTDIR;
4468 if (new_last.name[new_last.len])
4469 goto exit5;
4470 }
4471 }
4472 /* unless the source is a directory trailing slashes give -ENOTDIR */
4473 if (!d_is_dir(old_dentry)) {
4474 error = -ENOTDIR;
4475 if (old_last.name[old_last.len])
4476 goto exit5;
4477 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4478 goto exit5;
4479 }
4480 /* source should not be ancestor of target */
4481 error = -EINVAL;
4482 if (old_dentry == trap)
4483 goto exit5;
4484 /* target should not be an ancestor of source */
4485 if (!(flags & RENAME_EXCHANGE))
4486 error = -ENOTEMPTY;
4487 if (new_dentry == trap)
4488 goto exit5;
4489
4490 error = security_path_rename(&old_path, old_dentry,
4491 &new_path, new_dentry, flags);
4492 if (error)
4493 goto exit5;
4494 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4495 new_path.dentry->d_inode, new_dentry,
4496 &delegated_inode, flags);
4497 exit5:
4498 dput(new_dentry);
4499 exit4:
4500 dput(old_dentry);
4501 exit3:
4502 unlock_rename(new_path.dentry, old_path.dentry);
4503 if (delegated_inode) {
4504 error = break_deleg_wait(&delegated_inode);
4505 if (!error)
4506 goto retry_deleg;
4507 }
4508 mnt_drop_write(old_path.mnt);
4509 exit2:
4510 if (retry_estale(error, lookup_flags))
4511 should_retry = true;
4512 path_put(&new_path);
4513 putname(to);
4514 exit1:
4515 path_put(&old_path);
4516 putname(from);
4517 if (should_retry) {
4518 should_retry = false;
4519 lookup_flags |= LOOKUP_REVAL;
4520 goto retry;
4521 }
4522 exit:
4523 return error;
4524 }
4525
4526 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4527 int, newdfd, const char __user *, newname)
4528 {
4529 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4530 }
4531
4532 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4533 {
4534 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4535 }
4536
4537 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4538 {
4539 int error = may_create(dir, dentry);
4540 if (error)
4541 return error;
4542
4543 if (!dir->i_op->mknod)
4544 return -EPERM;
4545
4546 return dir->i_op->mknod(dir, dentry,
4547 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4548 }
4549 EXPORT_SYMBOL(vfs_whiteout);
4550
4551 int readlink_copy(char __user *buffer, int buflen, const char *link)
4552 {
4553 int len = PTR_ERR(link);
4554 if (IS_ERR(link))
4555 goto out;
4556
4557 len = strlen(link);
4558 if (len > (unsigned) buflen)
4559 len = buflen;
4560 if (copy_to_user(buffer, link, len))
4561 len = -EFAULT;
4562 out:
4563 return len;
4564 }
4565 EXPORT_SYMBOL(readlink_copy);
4566
4567 /*
4568 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4569 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4570 * for any given inode is up to filesystem.
4571 */
4572 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4573 {
4574 DEFINE_DELAYED_CALL(done);
4575 struct inode *inode = d_inode(dentry);
4576 const char *link = inode->i_link;
4577 int res;
4578
4579 if (!link) {
4580 link = inode->i_op->get_link(dentry, inode, &done);
4581 if (IS_ERR(link))
4582 return PTR_ERR(link);
4583 }
4584 res = readlink_copy(buffer, buflen, link);
4585 do_delayed_call(&done);
4586 return res;
4587 }
4588 EXPORT_SYMBOL(generic_readlink);
4589
4590 /* get the link contents into pagecache */
4591 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4592 struct delayed_call *callback)
4593 {
4594 char *kaddr;
4595 struct page *page;
4596 struct address_space *mapping = inode->i_mapping;
4597
4598 if (!dentry) {
4599 page = find_get_page(mapping, 0);
4600 if (!page)
4601 return ERR_PTR(-ECHILD);
4602 if (!PageUptodate(page)) {
4603 put_page(page);
4604 return ERR_PTR(-ECHILD);
4605 }
4606 } else {
4607 page = read_mapping_page(mapping, 0, NULL);
4608 if (IS_ERR(page))
4609 return (char*)page;
4610 }
4611 set_delayed_call(callback, page_put_link, page);
4612 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4613 kaddr = page_address(page);
4614 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4615 return kaddr;
4616 }
4617
4618 EXPORT_SYMBOL(page_get_link);
4619
4620 void page_put_link(void *arg)
4621 {
4622 put_page(arg);
4623 }
4624 EXPORT_SYMBOL(page_put_link);
4625
4626 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4627 {
4628 DEFINE_DELAYED_CALL(done);
4629 int res = readlink_copy(buffer, buflen,
4630 page_get_link(dentry, d_inode(dentry),
4631 &done));
4632 do_delayed_call(&done);
4633 return res;
4634 }
4635 EXPORT_SYMBOL(page_readlink);
4636
4637 /*
4638 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4639 */
4640 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4641 {
4642 struct address_space *mapping = inode->i_mapping;
4643 struct page *page;
4644 void *fsdata;
4645 int err;
4646 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4647 if (nofs)
4648 flags |= AOP_FLAG_NOFS;
4649
4650 retry:
4651 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4652 flags, &page, &fsdata);
4653 if (err)
4654 goto fail;
4655
4656 memcpy(page_address(page), symname, len-1);
4657
4658 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4659 page, fsdata);
4660 if (err < 0)
4661 goto fail;
4662 if (err < len-1)
4663 goto retry;
4664
4665 mark_inode_dirty(inode);
4666 return 0;
4667 fail:
4668 return err;
4669 }
4670 EXPORT_SYMBOL(__page_symlink);
4671
4672 int page_symlink(struct inode *inode, const char *symname, int len)
4673 {
4674 return __page_symlink(inode, symname, len,
4675 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4676 }
4677 EXPORT_SYMBOL(page_symlink);
4678
4679 const struct inode_operations page_symlink_inode_operations = {
4680 .readlink = generic_readlink,
4681 .get_link = page_get_link,
4682 };
4683 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.127963 seconds and 5 git commands to generate.