mm, CMA: clean-up CMA allocation error path
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202
203 error:
204 final_putname(result);
205 return err;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213
214 /*
215 * The "getname_kernel()" interface doesn't do pathnames longer
216 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
217 */
218 struct filename *
219 getname_kernel(const char * filename)
220 {
221 struct filename *result;
222 char *kname;
223 int len;
224
225 len = strlen(filename);
226 if (len >= EMBEDDED_NAME_MAX)
227 return ERR_PTR(-ENAMETOOLONG);
228
229 result = __getname();
230 if (unlikely(!result))
231 return ERR_PTR(-ENOMEM);
232
233 kname = (char *)result + sizeof(*result);
234 result->name = kname;
235 result->uptr = NULL;
236 result->aname = NULL;
237 result->separate = false;
238
239 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
240 return result;
241 }
242
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
245 {
246 if (unlikely(!audit_dummy_context()))
247 return audit_putname(name);
248 final_putname(name);
249 }
250 #endif
251
252 static int check_acl(struct inode *inode, int mask)
253 {
254 #ifdef CONFIG_FS_POSIX_ACL
255 struct posix_acl *acl;
256
257 if (mask & MAY_NOT_BLOCK) {
258 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
259 if (!acl)
260 return -EAGAIN;
261 /* no ->get_acl() calls in RCU mode... */
262 if (acl == ACL_NOT_CACHED)
263 return -ECHILD;
264 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
265 }
266
267 acl = get_acl(inode, ACL_TYPE_ACCESS);
268 if (IS_ERR(acl))
269 return PTR_ERR(acl);
270 if (acl) {
271 int error = posix_acl_permission(inode, acl, mask);
272 posix_acl_release(acl);
273 return error;
274 }
275 #endif
276
277 return -EAGAIN;
278 }
279
280 /*
281 * This does the basic permission checking
282 */
283 static int acl_permission_check(struct inode *inode, int mask)
284 {
285 unsigned int mode = inode->i_mode;
286
287 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
288 mode >>= 6;
289 else {
290 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 int error = check_acl(inode, mask);
292 if (error != -EAGAIN)
293 return error;
294 }
295
296 if (in_group_p(inode->i_gid))
297 mode >>= 3;
298 }
299
300 /*
301 * If the DACs are ok we don't need any capability check.
302 */
303 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
304 return 0;
305 return -EACCES;
306 }
307
308 /**
309 * generic_permission - check for access rights on a Posix-like filesystem
310 * @inode: inode to check access rights for
311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
312 *
313 * Used to check for read/write/execute permissions on a file.
314 * We use "fsuid" for this, letting us set arbitrary permissions
315 * for filesystem access without changing the "normal" uids which
316 * are used for other things.
317 *
318 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319 * request cannot be satisfied (eg. requires blocking or too much complexity).
320 * It would then be called again in ref-walk mode.
321 */
322 int generic_permission(struct inode *inode, int mask)
323 {
324 int ret;
325
326 /*
327 * Do the basic permission checks.
328 */
329 ret = acl_permission_check(inode, mask);
330 if (ret != -EACCES)
331 return ret;
332
333 if (S_ISDIR(inode->i_mode)) {
334 /* DACs are overridable for directories */
335 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
336 return 0;
337 if (!(mask & MAY_WRITE))
338 if (capable_wrt_inode_uidgid(inode,
339 CAP_DAC_READ_SEARCH))
340 return 0;
341 return -EACCES;
342 }
343 /*
344 * Read/write DACs are always overridable.
345 * Executable DACs are overridable when there is
346 * at least one exec bit set.
347 */
348 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351
352 /*
353 * Searching includes executable on directories, else just read.
354 */
355 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 if (mask == MAY_READ)
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
358 return 0;
359
360 return -EACCES;
361 }
362 EXPORT_SYMBOL(generic_permission);
363
364 /*
365 * We _really_ want to just do "generic_permission()" without
366 * even looking at the inode->i_op values. So we keep a cache
367 * flag in inode->i_opflags, that says "this has not special
368 * permission function, use the fast case".
369 */
370 static inline int do_inode_permission(struct inode *inode, int mask)
371 {
372 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
373 if (likely(inode->i_op->permission))
374 return inode->i_op->permission(inode, mask);
375
376 /* This gets set once for the inode lifetime */
377 spin_lock(&inode->i_lock);
378 inode->i_opflags |= IOP_FASTPERM;
379 spin_unlock(&inode->i_lock);
380 }
381 return generic_permission(inode, mask);
382 }
383
384 /**
385 * __inode_permission - Check for access rights to a given inode
386 * @inode: Inode to check permission on
387 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
388 *
389 * Check for read/write/execute permissions on an inode.
390 *
391 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
392 *
393 * This does not check for a read-only file system. You probably want
394 * inode_permission().
395 */
396 int __inode_permission(struct inode *inode, int mask)
397 {
398 int retval;
399
400 if (unlikely(mask & MAY_WRITE)) {
401 /*
402 * Nobody gets write access to an immutable file.
403 */
404 if (IS_IMMUTABLE(inode))
405 return -EACCES;
406 }
407
408 retval = do_inode_permission(inode, mask);
409 if (retval)
410 return retval;
411
412 retval = devcgroup_inode_permission(inode, mask);
413 if (retval)
414 return retval;
415
416 return security_inode_permission(inode, mask);
417 }
418
419 /**
420 * sb_permission - Check superblock-level permissions
421 * @sb: Superblock of inode to check permission on
422 * @inode: Inode to check permission on
423 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
424 *
425 * Separate out file-system wide checks from inode-specific permission checks.
426 */
427 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
428 {
429 if (unlikely(mask & MAY_WRITE)) {
430 umode_t mode = inode->i_mode;
431
432 /* Nobody gets write access to a read-only fs. */
433 if ((sb->s_flags & MS_RDONLY) &&
434 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
435 return -EROFS;
436 }
437 return 0;
438 }
439
440 /**
441 * inode_permission - Check for access rights to a given inode
442 * @inode: Inode to check permission on
443 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
444 *
445 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
446 * this, letting us set arbitrary permissions for filesystem access without
447 * changing the "normal" UIDs which are used for other things.
448 *
449 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
450 */
451 int inode_permission(struct inode *inode, int mask)
452 {
453 int retval;
454
455 retval = sb_permission(inode->i_sb, inode, mask);
456 if (retval)
457 return retval;
458 return __inode_permission(inode, mask);
459 }
460 EXPORT_SYMBOL(inode_permission);
461
462 /**
463 * path_get - get a reference to a path
464 * @path: path to get the reference to
465 *
466 * Given a path increment the reference count to the dentry and the vfsmount.
467 */
468 void path_get(const struct path *path)
469 {
470 mntget(path->mnt);
471 dget(path->dentry);
472 }
473 EXPORT_SYMBOL(path_get);
474
475 /**
476 * path_put - put a reference to a path
477 * @path: path to put the reference to
478 *
479 * Given a path decrement the reference count to the dentry and the vfsmount.
480 */
481 void path_put(const struct path *path)
482 {
483 dput(path->dentry);
484 mntput(path->mnt);
485 }
486 EXPORT_SYMBOL(path_put);
487
488 /*
489 * Path walking has 2 modes, rcu-walk and ref-walk (see
490 * Documentation/filesystems/path-lookup.txt). In situations when we can't
491 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
492 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
493 * mode. Refcounts are grabbed at the last known good point before rcu-walk
494 * got stuck, so ref-walk may continue from there. If this is not successful
495 * (eg. a seqcount has changed), then failure is returned and it's up to caller
496 * to restart the path walk from the beginning in ref-walk mode.
497 */
498
499 /**
500 * unlazy_walk - try to switch to ref-walk mode.
501 * @nd: nameidata pathwalk data
502 * @dentry: child of nd->path.dentry or NULL
503 * Returns: 0 on success, -ECHILD on failure
504 *
505 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
506 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
507 * @nd or NULL. Must be called from rcu-walk context.
508 */
509 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
510 {
511 struct fs_struct *fs = current->fs;
512 struct dentry *parent = nd->path.dentry;
513
514 BUG_ON(!(nd->flags & LOOKUP_RCU));
515
516 /*
517 * After legitimizing the bastards, terminate_walk()
518 * will do the right thing for non-RCU mode, and all our
519 * subsequent exit cases should rcu_read_unlock()
520 * before returning. Do vfsmount first; if dentry
521 * can't be legitimized, just set nd->path.dentry to NULL
522 * and rely on dput(NULL) being a no-op.
523 */
524 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
525 return -ECHILD;
526 nd->flags &= ~LOOKUP_RCU;
527
528 if (!lockref_get_not_dead(&parent->d_lockref)) {
529 nd->path.dentry = NULL;
530 goto out;
531 }
532
533 /*
534 * For a negative lookup, the lookup sequence point is the parents
535 * sequence point, and it only needs to revalidate the parent dentry.
536 *
537 * For a positive lookup, we need to move both the parent and the
538 * dentry from the RCU domain to be properly refcounted. And the
539 * sequence number in the dentry validates *both* dentry counters,
540 * since we checked the sequence number of the parent after we got
541 * the child sequence number. So we know the parent must still
542 * be valid if the child sequence number is still valid.
543 */
544 if (!dentry) {
545 if (read_seqcount_retry(&parent->d_seq, nd->seq))
546 goto out;
547 BUG_ON(nd->inode != parent->d_inode);
548 } else {
549 if (!lockref_get_not_dead(&dentry->d_lockref))
550 goto out;
551 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
552 goto drop_dentry;
553 }
554
555 /*
556 * Sequence counts matched. Now make sure that the root is
557 * still valid and get it if required.
558 */
559 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
560 spin_lock(&fs->lock);
561 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
562 goto unlock_and_drop_dentry;
563 path_get(&nd->root);
564 spin_unlock(&fs->lock);
565 }
566
567 rcu_read_unlock();
568 return 0;
569
570 unlock_and_drop_dentry:
571 spin_unlock(&fs->lock);
572 drop_dentry:
573 rcu_read_unlock();
574 dput(dentry);
575 goto drop_root_mnt;
576 out:
577 rcu_read_unlock();
578 drop_root_mnt:
579 if (!(nd->flags & LOOKUP_ROOT))
580 nd->root.mnt = NULL;
581 return -ECHILD;
582 }
583
584 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
585 {
586 return dentry->d_op->d_revalidate(dentry, flags);
587 }
588
589 /**
590 * complete_walk - successful completion of path walk
591 * @nd: pointer nameidata
592 *
593 * If we had been in RCU mode, drop out of it and legitimize nd->path.
594 * Revalidate the final result, unless we'd already done that during
595 * the path walk or the filesystem doesn't ask for it. Return 0 on
596 * success, -error on failure. In case of failure caller does not
597 * need to drop nd->path.
598 */
599 static int complete_walk(struct nameidata *nd)
600 {
601 struct dentry *dentry = nd->path.dentry;
602 int status;
603
604 if (nd->flags & LOOKUP_RCU) {
605 nd->flags &= ~LOOKUP_RCU;
606 if (!(nd->flags & LOOKUP_ROOT))
607 nd->root.mnt = NULL;
608
609 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
610 rcu_read_unlock();
611 return -ECHILD;
612 }
613 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
614 rcu_read_unlock();
615 mntput(nd->path.mnt);
616 return -ECHILD;
617 }
618 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
619 rcu_read_unlock();
620 dput(dentry);
621 mntput(nd->path.mnt);
622 return -ECHILD;
623 }
624 rcu_read_unlock();
625 }
626
627 if (likely(!(nd->flags & LOOKUP_JUMPED)))
628 return 0;
629
630 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
631 return 0;
632
633 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
634 if (status > 0)
635 return 0;
636
637 if (!status)
638 status = -ESTALE;
639
640 path_put(&nd->path);
641 return status;
642 }
643
644 static __always_inline void set_root(struct nameidata *nd)
645 {
646 if (!nd->root.mnt)
647 get_fs_root(current->fs, &nd->root);
648 }
649
650 static int link_path_walk(const char *, struct nameidata *);
651
652 static __always_inline void set_root_rcu(struct nameidata *nd)
653 {
654 if (!nd->root.mnt) {
655 struct fs_struct *fs = current->fs;
656 unsigned seq;
657
658 do {
659 seq = read_seqcount_begin(&fs->seq);
660 nd->root = fs->root;
661 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
662 } while (read_seqcount_retry(&fs->seq, seq));
663 }
664 }
665
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 dput(path->dentry);
669 if (path->mnt != nd->path.mnt)
670 mntput(path->mnt);
671 }
672
673 static inline void path_to_nameidata(const struct path *path,
674 struct nameidata *nd)
675 {
676 if (!(nd->flags & LOOKUP_RCU)) {
677 dput(nd->path.dentry);
678 if (nd->path.mnt != path->mnt)
679 mntput(nd->path.mnt);
680 }
681 nd->path.mnt = path->mnt;
682 nd->path.dentry = path->dentry;
683 }
684
685 /*
686 * Helper to directly jump to a known parsed path from ->follow_link,
687 * caller must have taken a reference to path beforehand.
688 */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 path_put(&nd->path);
692
693 nd->path = *path;
694 nd->inode = nd->path.dentry->d_inode;
695 nd->flags |= LOOKUP_JUMPED;
696 }
697
698 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
699 {
700 struct inode *inode = link->dentry->d_inode;
701 if (inode->i_op->put_link)
702 inode->i_op->put_link(link->dentry, nd, cookie);
703 path_put(link);
704 }
705
706 int sysctl_protected_symlinks __read_mostly = 0;
707 int sysctl_protected_hardlinks __read_mostly = 0;
708
709 /**
710 * may_follow_link - Check symlink following for unsafe situations
711 * @link: The path of the symlink
712 * @nd: nameidata pathwalk data
713 *
714 * In the case of the sysctl_protected_symlinks sysctl being enabled,
715 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
716 * in a sticky world-writable directory. This is to protect privileged
717 * processes from failing races against path names that may change out
718 * from under them by way of other users creating malicious symlinks.
719 * It will permit symlinks to be followed only when outside a sticky
720 * world-writable directory, or when the uid of the symlink and follower
721 * match, or when the directory owner matches the symlink's owner.
722 *
723 * Returns 0 if following the symlink is allowed, -ve on error.
724 */
725 static inline int may_follow_link(struct path *link, struct nameidata *nd)
726 {
727 const struct inode *inode;
728 const struct inode *parent;
729
730 if (!sysctl_protected_symlinks)
731 return 0;
732
733 /* Allowed if owner and follower match. */
734 inode = link->dentry->d_inode;
735 if (uid_eq(current_cred()->fsuid, inode->i_uid))
736 return 0;
737
738 /* Allowed if parent directory not sticky and world-writable. */
739 parent = nd->path.dentry->d_inode;
740 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
741 return 0;
742
743 /* Allowed if parent directory and link owner match. */
744 if (uid_eq(parent->i_uid, inode->i_uid))
745 return 0;
746
747 audit_log_link_denied("follow_link", link);
748 path_put_conditional(link, nd);
749 path_put(&nd->path);
750 return -EACCES;
751 }
752
753 /**
754 * safe_hardlink_source - Check for safe hardlink conditions
755 * @inode: the source inode to hardlink from
756 *
757 * Return false if at least one of the following conditions:
758 * - inode is not a regular file
759 * - inode is setuid
760 * - inode is setgid and group-exec
761 * - access failure for read and write
762 *
763 * Otherwise returns true.
764 */
765 static bool safe_hardlink_source(struct inode *inode)
766 {
767 umode_t mode = inode->i_mode;
768
769 /* Special files should not get pinned to the filesystem. */
770 if (!S_ISREG(mode))
771 return false;
772
773 /* Setuid files should not get pinned to the filesystem. */
774 if (mode & S_ISUID)
775 return false;
776
777 /* Executable setgid files should not get pinned to the filesystem. */
778 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
779 return false;
780
781 /* Hardlinking to unreadable or unwritable sources is dangerous. */
782 if (inode_permission(inode, MAY_READ | MAY_WRITE))
783 return false;
784
785 return true;
786 }
787
788 /**
789 * may_linkat - Check permissions for creating a hardlink
790 * @link: the source to hardlink from
791 *
792 * Block hardlink when all of:
793 * - sysctl_protected_hardlinks enabled
794 * - fsuid does not match inode
795 * - hardlink source is unsafe (see safe_hardlink_source() above)
796 * - not CAP_FOWNER
797 *
798 * Returns 0 if successful, -ve on error.
799 */
800 static int may_linkat(struct path *link)
801 {
802 const struct cred *cred;
803 struct inode *inode;
804
805 if (!sysctl_protected_hardlinks)
806 return 0;
807
808 cred = current_cred();
809 inode = link->dentry->d_inode;
810
811 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
812 * otherwise, it must be a safe source.
813 */
814 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
815 capable(CAP_FOWNER))
816 return 0;
817
818 audit_log_link_denied("linkat", link);
819 return -EPERM;
820 }
821
822 static __always_inline int
823 follow_link(struct path *link, struct nameidata *nd, void **p)
824 {
825 struct dentry *dentry = link->dentry;
826 int error;
827 char *s;
828
829 BUG_ON(nd->flags & LOOKUP_RCU);
830
831 if (link->mnt == nd->path.mnt)
832 mntget(link->mnt);
833
834 error = -ELOOP;
835 if (unlikely(current->total_link_count >= 40))
836 goto out_put_nd_path;
837
838 cond_resched();
839 current->total_link_count++;
840
841 touch_atime(link);
842 nd_set_link(nd, NULL);
843
844 error = security_inode_follow_link(link->dentry, nd);
845 if (error)
846 goto out_put_nd_path;
847
848 nd->last_type = LAST_BIND;
849 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
850 error = PTR_ERR(*p);
851 if (IS_ERR(*p))
852 goto out_put_nd_path;
853
854 error = 0;
855 s = nd_get_link(nd);
856 if (s) {
857 if (unlikely(IS_ERR(s))) {
858 path_put(&nd->path);
859 put_link(nd, link, *p);
860 return PTR_ERR(s);
861 }
862 if (*s == '/') {
863 set_root(nd);
864 path_put(&nd->path);
865 nd->path = nd->root;
866 path_get(&nd->root);
867 nd->flags |= LOOKUP_JUMPED;
868 }
869 nd->inode = nd->path.dentry->d_inode;
870 error = link_path_walk(s, nd);
871 if (unlikely(error))
872 put_link(nd, link, *p);
873 }
874
875 return error;
876
877 out_put_nd_path:
878 *p = NULL;
879 path_put(&nd->path);
880 path_put(link);
881 return error;
882 }
883
884 static int follow_up_rcu(struct path *path)
885 {
886 struct mount *mnt = real_mount(path->mnt);
887 struct mount *parent;
888 struct dentry *mountpoint;
889
890 parent = mnt->mnt_parent;
891 if (&parent->mnt == path->mnt)
892 return 0;
893 mountpoint = mnt->mnt_mountpoint;
894 path->dentry = mountpoint;
895 path->mnt = &parent->mnt;
896 return 1;
897 }
898
899 /*
900 * follow_up - Find the mountpoint of path's vfsmount
901 *
902 * Given a path, find the mountpoint of its source file system.
903 * Replace @path with the path of the mountpoint in the parent mount.
904 * Up is towards /.
905 *
906 * Return 1 if we went up a level and 0 if we were already at the
907 * root.
908 */
909 int follow_up(struct path *path)
910 {
911 struct mount *mnt = real_mount(path->mnt);
912 struct mount *parent;
913 struct dentry *mountpoint;
914
915 read_seqlock_excl(&mount_lock);
916 parent = mnt->mnt_parent;
917 if (parent == mnt) {
918 read_sequnlock_excl(&mount_lock);
919 return 0;
920 }
921 mntget(&parent->mnt);
922 mountpoint = dget(mnt->mnt_mountpoint);
923 read_sequnlock_excl(&mount_lock);
924 dput(path->dentry);
925 path->dentry = mountpoint;
926 mntput(path->mnt);
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931
932 /*
933 * Perform an automount
934 * - return -EISDIR to tell follow_managed() to stop and return the path we
935 * were called with.
936 */
937 static int follow_automount(struct path *path, unsigned flags,
938 bool *need_mntput)
939 {
940 struct vfsmount *mnt;
941 int err;
942
943 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 return -EREMOTE;
945
946 /* We don't want to mount if someone's just doing a stat -
947 * unless they're stat'ing a directory and appended a '/' to
948 * the name.
949 *
950 * We do, however, want to mount if someone wants to open or
951 * create a file of any type under the mountpoint, wants to
952 * traverse through the mountpoint or wants to open the
953 * mounted directory. Also, autofs may mark negative dentries
954 * as being automount points. These will need the attentions
955 * of the daemon to instantiate them before they can be used.
956 */
957 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 path->dentry->d_inode)
960 return -EISDIR;
961
962 current->total_link_count++;
963 if (current->total_link_count >= 40)
964 return -ELOOP;
965
966 mnt = path->dentry->d_op->d_automount(path);
967 if (IS_ERR(mnt)) {
968 /*
969 * The filesystem is allowed to return -EISDIR here to indicate
970 * it doesn't want to automount. For instance, autofs would do
971 * this so that its userspace daemon can mount on this dentry.
972 *
973 * However, we can only permit this if it's a terminal point in
974 * the path being looked up; if it wasn't then the remainder of
975 * the path is inaccessible and we should say so.
976 */
977 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 return -EREMOTE;
979 return PTR_ERR(mnt);
980 }
981
982 if (!mnt) /* mount collision */
983 return 0;
984
985 if (!*need_mntput) {
986 /* lock_mount() may release path->mnt on error */
987 mntget(path->mnt);
988 *need_mntput = true;
989 }
990 err = finish_automount(mnt, path);
991
992 switch (err) {
993 case -EBUSY:
994 /* Someone else made a mount here whilst we were busy */
995 return 0;
996 case 0:
997 path_put(path);
998 path->mnt = mnt;
999 path->dentry = dget(mnt->mnt_root);
1000 return 0;
1001 default:
1002 return err;
1003 }
1004
1005 }
1006
1007 /*
1008 * Handle a dentry that is managed in some way.
1009 * - Flagged for transit management (autofs)
1010 * - Flagged as mountpoint
1011 * - Flagged as automount point
1012 *
1013 * This may only be called in refwalk mode.
1014 *
1015 * Serialization is taken care of in namespace.c
1016 */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 unsigned managed;
1021 bool need_mntput = false;
1022 int ret = 0;
1023
1024 /* Given that we're not holding a lock here, we retain the value in a
1025 * local variable for each dentry as we look at it so that we don't see
1026 * the components of that value change under us */
1027 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 managed &= DCACHE_MANAGED_DENTRY,
1029 unlikely(managed != 0)) {
1030 /* Allow the filesystem to manage the transit without i_mutex
1031 * being held. */
1032 if (managed & DCACHE_MANAGE_TRANSIT) {
1033 BUG_ON(!path->dentry->d_op);
1034 BUG_ON(!path->dentry->d_op->d_manage);
1035 ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 if (ret < 0)
1037 break;
1038 }
1039
1040 /* Transit to a mounted filesystem. */
1041 if (managed & DCACHE_MOUNTED) {
1042 struct vfsmount *mounted = lookup_mnt(path);
1043 if (mounted) {
1044 dput(path->dentry);
1045 if (need_mntput)
1046 mntput(path->mnt);
1047 path->mnt = mounted;
1048 path->dentry = dget(mounted->mnt_root);
1049 need_mntput = true;
1050 continue;
1051 }
1052
1053 /* Something is mounted on this dentry in another
1054 * namespace and/or whatever was mounted there in this
1055 * namespace got unmounted before lookup_mnt() could
1056 * get it */
1057 }
1058
1059 /* Handle an automount point */
1060 if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 ret = follow_automount(path, flags, &need_mntput);
1062 if (ret < 0)
1063 break;
1064 continue;
1065 }
1066
1067 /* We didn't change the current path point */
1068 break;
1069 }
1070
1071 if (need_mntput && path->mnt == mnt)
1072 mntput(path->mnt);
1073 if (ret == -EISDIR)
1074 ret = 0;
1075 return ret < 0 ? ret : need_mntput;
1076 }
1077
1078 int follow_down_one(struct path *path)
1079 {
1080 struct vfsmount *mounted;
1081
1082 mounted = lookup_mnt(path);
1083 if (mounted) {
1084 dput(path->dentry);
1085 mntput(path->mnt);
1086 path->mnt = mounted;
1087 path->dentry = dget(mounted->mnt_root);
1088 return 1;
1089 }
1090 return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093
1094 static inline bool managed_dentry_might_block(struct dentry *dentry)
1095 {
1096 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1097 dentry->d_op->d_manage(dentry, true) < 0);
1098 }
1099
1100 /*
1101 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1102 * we meet a managed dentry that would need blocking.
1103 */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 struct inode **inode)
1106 {
1107 for (;;) {
1108 struct mount *mounted;
1109 /*
1110 * Don't forget we might have a non-mountpoint managed dentry
1111 * that wants to block transit.
1112 */
1113 if (unlikely(managed_dentry_might_block(path->dentry)))
1114 return false;
1115
1116 if (!d_mountpoint(path->dentry))
1117 return true;
1118
1119 mounted = __lookup_mnt(path->mnt, path->dentry);
1120 if (!mounted)
1121 break;
1122 path->mnt = &mounted->mnt;
1123 path->dentry = mounted->mnt.mnt_root;
1124 nd->flags |= LOOKUP_JUMPED;
1125 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1126 /*
1127 * Update the inode too. We don't need to re-check the
1128 * dentry sequence number here after this d_inode read,
1129 * because a mount-point is always pinned.
1130 */
1131 *inode = path->dentry->d_inode;
1132 }
1133 return read_seqretry(&mount_lock, nd->m_seq);
1134 }
1135
1136 static int follow_dotdot_rcu(struct nameidata *nd)
1137 {
1138 set_root_rcu(nd);
1139
1140 while (1) {
1141 if (nd->path.dentry == nd->root.dentry &&
1142 nd->path.mnt == nd->root.mnt) {
1143 break;
1144 }
1145 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1146 struct dentry *old = nd->path.dentry;
1147 struct dentry *parent = old->d_parent;
1148 unsigned seq;
1149
1150 seq = read_seqcount_begin(&parent->d_seq);
1151 if (read_seqcount_retry(&old->d_seq, nd->seq))
1152 goto failed;
1153 nd->path.dentry = parent;
1154 nd->seq = seq;
1155 break;
1156 }
1157 if (!follow_up_rcu(&nd->path))
1158 break;
1159 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1160 }
1161 while (d_mountpoint(nd->path.dentry)) {
1162 struct mount *mounted;
1163 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1164 if (!mounted)
1165 break;
1166 nd->path.mnt = &mounted->mnt;
1167 nd->path.dentry = mounted->mnt.mnt_root;
1168 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1169 if (!read_seqretry(&mount_lock, nd->m_seq))
1170 goto failed;
1171 }
1172 nd->inode = nd->path.dentry->d_inode;
1173 return 0;
1174
1175 failed:
1176 nd->flags &= ~LOOKUP_RCU;
1177 if (!(nd->flags & LOOKUP_ROOT))
1178 nd->root.mnt = NULL;
1179 rcu_read_unlock();
1180 return -ECHILD;
1181 }
1182
1183 /*
1184 * Follow down to the covering mount currently visible to userspace. At each
1185 * point, the filesystem owning that dentry may be queried as to whether the
1186 * caller is permitted to proceed or not.
1187 */
1188 int follow_down(struct path *path)
1189 {
1190 unsigned managed;
1191 int ret;
1192
1193 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1194 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1195 /* Allow the filesystem to manage the transit without i_mutex
1196 * being held.
1197 *
1198 * We indicate to the filesystem if someone is trying to mount
1199 * something here. This gives autofs the chance to deny anyone
1200 * other than its daemon the right to mount on its
1201 * superstructure.
1202 *
1203 * The filesystem may sleep at this point.
1204 */
1205 if (managed & DCACHE_MANAGE_TRANSIT) {
1206 BUG_ON(!path->dentry->d_op);
1207 BUG_ON(!path->dentry->d_op->d_manage);
1208 ret = path->dentry->d_op->d_manage(
1209 path->dentry, false);
1210 if (ret < 0)
1211 return ret == -EISDIR ? 0 : ret;
1212 }
1213
1214 /* Transit to a mounted filesystem. */
1215 if (managed & DCACHE_MOUNTED) {
1216 struct vfsmount *mounted = lookup_mnt(path);
1217 if (!mounted)
1218 break;
1219 dput(path->dentry);
1220 mntput(path->mnt);
1221 path->mnt = mounted;
1222 path->dentry = dget(mounted->mnt_root);
1223 continue;
1224 }
1225
1226 /* Don't handle automount points here */
1227 break;
1228 }
1229 return 0;
1230 }
1231 EXPORT_SYMBOL(follow_down);
1232
1233 /*
1234 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1235 */
1236 static void follow_mount(struct path *path)
1237 {
1238 while (d_mountpoint(path->dentry)) {
1239 struct vfsmount *mounted = lookup_mnt(path);
1240 if (!mounted)
1241 break;
1242 dput(path->dentry);
1243 mntput(path->mnt);
1244 path->mnt = mounted;
1245 path->dentry = dget(mounted->mnt_root);
1246 }
1247 }
1248
1249 static void follow_dotdot(struct nameidata *nd)
1250 {
1251 set_root(nd);
1252
1253 while(1) {
1254 struct dentry *old = nd->path.dentry;
1255
1256 if (nd->path.dentry == nd->root.dentry &&
1257 nd->path.mnt == nd->root.mnt) {
1258 break;
1259 }
1260 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1261 /* rare case of legitimate dget_parent()... */
1262 nd->path.dentry = dget_parent(nd->path.dentry);
1263 dput(old);
1264 break;
1265 }
1266 if (!follow_up(&nd->path))
1267 break;
1268 }
1269 follow_mount(&nd->path);
1270 nd->inode = nd->path.dentry->d_inode;
1271 }
1272
1273 /*
1274 * This looks up the name in dcache, possibly revalidates the old dentry and
1275 * allocates a new one if not found or not valid. In the need_lookup argument
1276 * returns whether i_op->lookup is necessary.
1277 *
1278 * dir->d_inode->i_mutex must be held
1279 */
1280 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1281 unsigned int flags, bool *need_lookup)
1282 {
1283 struct dentry *dentry;
1284 int error;
1285
1286 *need_lookup = false;
1287 dentry = d_lookup(dir, name);
1288 if (dentry) {
1289 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1290 error = d_revalidate(dentry, flags);
1291 if (unlikely(error <= 0)) {
1292 if (error < 0) {
1293 dput(dentry);
1294 return ERR_PTR(error);
1295 } else if (!d_invalidate(dentry)) {
1296 dput(dentry);
1297 dentry = NULL;
1298 }
1299 }
1300 }
1301 }
1302
1303 if (!dentry) {
1304 dentry = d_alloc(dir, name);
1305 if (unlikely(!dentry))
1306 return ERR_PTR(-ENOMEM);
1307
1308 *need_lookup = true;
1309 }
1310 return dentry;
1311 }
1312
1313 /*
1314 * Call i_op->lookup on the dentry. The dentry must be negative and
1315 * unhashed.
1316 *
1317 * dir->d_inode->i_mutex must be held
1318 */
1319 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1320 unsigned int flags)
1321 {
1322 struct dentry *old;
1323
1324 /* Don't create child dentry for a dead directory. */
1325 if (unlikely(IS_DEADDIR(dir))) {
1326 dput(dentry);
1327 return ERR_PTR(-ENOENT);
1328 }
1329
1330 old = dir->i_op->lookup(dir, dentry, flags);
1331 if (unlikely(old)) {
1332 dput(dentry);
1333 dentry = old;
1334 }
1335 return dentry;
1336 }
1337
1338 static struct dentry *__lookup_hash(struct qstr *name,
1339 struct dentry *base, unsigned int flags)
1340 {
1341 bool need_lookup;
1342 struct dentry *dentry;
1343
1344 dentry = lookup_dcache(name, base, flags, &need_lookup);
1345 if (!need_lookup)
1346 return dentry;
1347
1348 return lookup_real(base->d_inode, dentry, flags);
1349 }
1350
1351 /*
1352 * It's more convoluted than I'd like it to be, but... it's still fairly
1353 * small and for now I'd prefer to have fast path as straight as possible.
1354 * It _is_ time-critical.
1355 */
1356 static int lookup_fast(struct nameidata *nd,
1357 struct path *path, struct inode **inode)
1358 {
1359 struct vfsmount *mnt = nd->path.mnt;
1360 struct dentry *dentry, *parent = nd->path.dentry;
1361 int need_reval = 1;
1362 int status = 1;
1363 int err;
1364
1365 /*
1366 * Rename seqlock is not required here because in the off chance
1367 * of a false negative due to a concurrent rename, we're going to
1368 * do the non-racy lookup, below.
1369 */
1370 if (nd->flags & LOOKUP_RCU) {
1371 unsigned seq;
1372 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1373 if (!dentry)
1374 goto unlazy;
1375
1376 /*
1377 * This sequence count validates that the inode matches
1378 * the dentry name information from lookup.
1379 */
1380 *inode = dentry->d_inode;
1381 if (read_seqcount_retry(&dentry->d_seq, seq))
1382 return -ECHILD;
1383
1384 /*
1385 * This sequence count validates that the parent had no
1386 * changes while we did the lookup of the dentry above.
1387 *
1388 * The memory barrier in read_seqcount_begin of child is
1389 * enough, we can use __read_seqcount_retry here.
1390 */
1391 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1392 return -ECHILD;
1393 nd->seq = seq;
1394
1395 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1396 status = d_revalidate(dentry, nd->flags);
1397 if (unlikely(status <= 0)) {
1398 if (status != -ECHILD)
1399 need_reval = 0;
1400 goto unlazy;
1401 }
1402 }
1403 path->mnt = mnt;
1404 path->dentry = dentry;
1405 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1406 goto unlazy;
1407 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1408 goto unlazy;
1409 return 0;
1410 unlazy:
1411 if (unlazy_walk(nd, dentry))
1412 return -ECHILD;
1413 } else {
1414 dentry = __d_lookup(parent, &nd->last);
1415 }
1416
1417 if (unlikely(!dentry))
1418 goto need_lookup;
1419
1420 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1421 status = d_revalidate(dentry, nd->flags);
1422 if (unlikely(status <= 0)) {
1423 if (status < 0) {
1424 dput(dentry);
1425 return status;
1426 }
1427 if (!d_invalidate(dentry)) {
1428 dput(dentry);
1429 goto need_lookup;
1430 }
1431 }
1432
1433 path->mnt = mnt;
1434 path->dentry = dentry;
1435 err = follow_managed(path, nd->flags);
1436 if (unlikely(err < 0)) {
1437 path_put_conditional(path, nd);
1438 return err;
1439 }
1440 if (err)
1441 nd->flags |= LOOKUP_JUMPED;
1442 *inode = path->dentry->d_inode;
1443 return 0;
1444
1445 need_lookup:
1446 return 1;
1447 }
1448
1449 /* Fast lookup failed, do it the slow way */
1450 static int lookup_slow(struct nameidata *nd, struct path *path)
1451 {
1452 struct dentry *dentry, *parent;
1453 int err;
1454
1455 parent = nd->path.dentry;
1456 BUG_ON(nd->inode != parent->d_inode);
1457
1458 mutex_lock(&parent->d_inode->i_mutex);
1459 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1460 mutex_unlock(&parent->d_inode->i_mutex);
1461 if (IS_ERR(dentry))
1462 return PTR_ERR(dentry);
1463 path->mnt = nd->path.mnt;
1464 path->dentry = dentry;
1465 err = follow_managed(path, nd->flags);
1466 if (unlikely(err < 0)) {
1467 path_put_conditional(path, nd);
1468 return err;
1469 }
1470 if (err)
1471 nd->flags |= LOOKUP_JUMPED;
1472 return 0;
1473 }
1474
1475 static inline int may_lookup(struct nameidata *nd)
1476 {
1477 if (nd->flags & LOOKUP_RCU) {
1478 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1479 if (err != -ECHILD)
1480 return err;
1481 if (unlazy_walk(nd, NULL))
1482 return -ECHILD;
1483 }
1484 return inode_permission(nd->inode, MAY_EXEC);
1485 }
1486
1487 static inline int handle_dots(struct nameidata *nd, int type)
1488 {
1489 if (type == LAST_DOTDOT) {
1490 if (nd->flags & LOOKUP_RCU) {
1491 if (follow_dotdot_rcu(nd))
1492 return -ECHILD;
1493 } else
1494 follow_dotdot(nd);
1495 }
1496 return 0;
1497 }
1498
1499 static void terminate_walk(struct nameidata *nd)
1500 {
1501 if (!(nd->flags & LOOKUP_RCU)) {
1502 path_put(&nd->path);
1503 } else {
1504 nd->flags &= ~LOOKUP_RCU;
1505 if (!(nd->flags & LOOKUP_ROOT))
1506 nd->root.mnt = NULL;
1507 rcu_read_unlock();
1508 }
1509 }
1510
1511 /*
1512 * Do we need to follow links? We _really_ want to be able
1513 * to do this check without having to look at inode->i_op,
1514 * so we keep a cache of "no, this doesn't need follow_link"
1515 * for the common case.
1516 */
1517 static inline int should_follow_link(struct dentry *dentry, int follow)
1518 {
1519 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1520 }
1521
1522 static inline int walk_component(struct nameidata *nd, struct path *path,
1523 int follow)
1524 {
1525 struct inode *inode;
1526 int err;
1527 /*
1528 * "." and ".." are special - ".." especially so because it has
1529 * to be able to know about the current root directory and
1530 * parent relationships.
1531 */
1532 if (unlikely(nd->last_type != LAST_NORM))
1533 return handle_dots(nd, nd->last_type);
1534 err = lookup_fast(nd, path, &inode);
1535 if (unlikely(err)) {
1536 if (err < 0)
1537 goto out_err;
1538
1539 err = lookup_slow(nd, path);
1540 if (err < 0)
1541 goto out_err;
1542
1543 inode = path->dentry->d_inode;
1544 }
1545 err = -ENOENT;
1546 if (!inode || d_is_negative(path->dentry))
1547 goto out_path_put;
1548
1549 if (should_follow_link(path->dentry, follow)) {
1550 if (nd->flags & LOOKUP_RCU) {
1551 if (unlikely(unlazy_walk(nd, path->dentry))) {
1552 err = -ECHILD;
1553 goto out_err;
1554 }
1555 }
1556 BUG_ON(inode != path->dentry->d_inode);
1557 return 1;
1558 }
1559 path_to_nameidata(path, nd);
1560 nd->inode = inode;
1561 return 0;
1562
1563 out_path_put:
1564 path_to_nameidata(path, nd);
1565 out_err:
1566 terminate_walk(nd);
1567 return err;
1568 }
1569
1570 /*
1571 * This limits recursive symlink follows to 8, while
1572 * limiting consecutive symlinks to 40.
1573 *
1574 * Without that kind of total limit, nasty chains of consecutive
1575 * symlinks can cause almost arbitrarily long lookups.
1576 */
1577 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1578 {
1579 int res;
1580
1581 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1582 path_put_conditional(path, nd);
1583 path_put(&nd->path);
1584 return -ELOOP;
1585 }
1586 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1587
1588 nd->depth++;
1589 current->link_count++;
1590
1591 do {
1592 struct path link = *path;
1593 void *cookie;
1594
1595 res = follow_link(&link, nd, &cookie);
1596 if (res)
1597 break;
1598 res = walk_component(nd, path, LOOKUP_FOLLOW);
1599 put_link(nd, &link, cookie);
1600 } while (res > 0);
1601
1602 current->link_count--;
1603 nd->depth--;
1604 return res;
1605 }
1606
1607 /*
1608 * We can do the critical dentry name comparison and hashing
1609 * operations one word at a time, but we are limited to:
1610 *
1611 * - Architectures with fast unaligned word accesses. We could
1612 * do a "get_unaligned()" if this helps and is sufficiently
1613 * fast.
1614 *
1615 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1616 * do not trap on the (extremely unlikely) case of a page
1617 * crossing operation.
1618 *
1619 * - Furthermore, we need an efficient 64-bit compile for the
1620 * 64-bit case in order to generate the "number of bytes in
1621 * the final mask". Again, that could be replaced with a
1622 * efficient population count instruction or similar.
1623 */
1624 #ifdef CONFIG_DCACHE_WORD_ACCESS
1625
1626 #include <asm/word-at-a-time.h>
1627
1628 #ifdef CONFIG_64BIT
1629
1630 static inline unsigned int fold_hash(unsigned long hash)
1631 {
1632 hash += hash >> (8*sizeof(int));
1633 return hash;
1634 }
1635
1636 #else /* 32-bit case */
1637
1638 #define fold_hash(x) (x)
1639
1640 #endif
1641
1642 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1643 {
1644 unsigned long a, mask;
1645 unsigned long hash = 0;
1646
1647 for (;;) {
1648 a = load_unaligned_zeropad(name);
1649 if (len < sizeof(unsigned long))
1650 break;
1651 hash += a;
1652 hash *= 9;
1653 name += sizeof(unsigned long);
1654 len -= sizeof(unsigned long);
1655 if (!len)
1656 goto done;
1657 }
1658 mask = bytemask_from_count(len);
1659 hash += mask & a;
1660 done:
1661 return fold_hash(hash);
1662 }
1663 EXPORT_SYMBOL(full_name_hash);
1664
1665 /*
1666 * Calculate the length and hash of the path component, and
1667 * return the length of the component;
1668 */
1669 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1670 {
1671 unsigned long a, b, adata, bdata, mask, hash, len;
1672 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1673
1674 hash = a = 0;
1675 len = -sizeof(unsigned long);
1676 do {
1677 hash = (hash + a) * 9;
1678 len += sizeof(unsigned long);
1679 a = load_unaligned_zeropad(name+len);
1680 b = a ^ REPEAT_BYTE('/');
1681 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1682
1683 adata = prep_zero_mask(a, adata, &constants);
1684 bdata = prep_zero_mask(b, bdata, &constants);
1685
1686 mask = create_zero_mask(adata | bdata);
1687
1688 hash += a & zero_bytemask(mask);
1689 *hashp = fold_hash(hash);
1690
1691 return len + find_zero(mask);
1692 }
1693
1694 #else
1695
1696 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1697 {
1698 unsigned long hash = init_name_hash();
1699 while (len--)
1700 hash = partial_name_hash(*name++, hash);
1701 return end_name_hash(hash);
1702 }
1703 EXPORT_SYMBOL(full_name_hash);
1704
1705 /*
1706 * We know there's a real path component here of at least
1707 * one character.
1708 */
1709 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1710 {
1711 unsigned long hash = init_name_hash();
1712 unsigned long len = 0, c;
1713
1714 c = (unsigned char)*name;
1715 do {
1716 len++;
1717 hash = partial_name_hash(c, hash);
1718 c = (unsigned char)name[len];
1719 } while (c && c != '/');
1720 *hashp = end_name_hash(hash);
1721 return len;
1722 }
1723
1724 #endif
1725
1726 /*
1727 * Name resolution.
1728 * This is the basic name resolution function, turning a pathname into
1729 * the final dentry. We expect 'base' to be positive and a directory.
1730 *
1731 * Returns 0 and nd will have valid dentry and mnt on success.
1732 * Returns error and drops reference to input namei data on failure.
1733 */
1734 static int link_path_walk(const char *name, struct nameidata *nd)
1735 {
1736 struct path next;
1737 int err;
1738
1739 while (*name=='/')
1740 name++;
1741 if (!*name)
1742 return 0;
1743
1744 /* At this point we know we have a real path component. */
1745 for(;;) {
1746 struct qstr this;
1747 long len;
1748 int type;
1749
1750 err = may_lookup(nd);
1751 if (err)
1752 break;
1753
1754 len = hash_name(name, &this.hash);
1755 this.name = name;
1756 this.len = len;
1757
1758 type = LAST_NORM;
1759 if (name[0] == '.') switch (len) {
1760 case 2:
1761 if (name[1] == '.') {
1762 type = LAST_DOTDOT;
1763 nd->flags |= LOOKUP_JUMPED;
1764 }
1765 break;
1766 case 1:
1767 type = LAST_DOT;
1768 }
1769 if (likely(type == LAST_NORM)) {
1770 struct dentry *parent = nd->path.dentry;
1771 nd->flags &= ~LOOKUP_JUMPED;
1772 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1773 err = parent->d_op->d_hash(parent, &this);
1774 if (err < 0)
1775 break;
1776 }
1777 }
1778
1779 nd->last = this;
1780 nd->last_type = type;
1781
1782 if (!name[len])
1783 return 0;
1784 /*
1785 * If it wasn't NUL, we know it was '/'. Skip that
1786 * slash, and continue until no more slashes.
1787 */
1788 do {
1789 len++;
1790 } while (unlikely(name[len] == '/'));
1791 if (!name[len])
1792 return 0;
1793
1794 name += len;
1795
1796 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1797 if (err < 0)
1798 return err;
1799
1800 if (err) {
1801 err = nested_symlink(&next, nd);
1802 if (err)
1803 return err;
1804 }
1805 if (!d_can_lookup(nd->path.dentry)) {
1806 err = -ENOTDIR;
1807 break;
1808 }
1809 }
1810 terminate_walk(nd);
1811 return err;
1812 }
1813
1814 static int path_init(int dfd, const char *name, unsigned int flags,
1815 struct nameidata *nd, struct file **fp)
1816 {
1817 int retval = 0;
1818
1819 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1820 nd->flags = flags | LOOKUP_JUMPED;
1821 nd->depth = 0;
1822 if (flags & LOOKUP_ROOT) {
1823 struct dentry *root = nd->root.dentry;
1824 struct inode *inode = root->d_inode;
1825 if (*name) {
1826 if (!d_can_lookup(root))
1827 return -ENOTDIR;
1828 retval = inode_permission(inode, MAY_EXEC);
1829 if (retval)
1830 return retval;
1831 }
1832 nd->path = nd->root;
1833 nd->inode = inode;
1834 if (flags & LOOKUP_RCU) {
1835 rcu_read_lock();
1836 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1837 nd->m_seq = read_seqbegin(&mount_lock);
1838 } else {
1839 path_get(&nd->path);
1840 }
1841 return 0;
1842 }
1843
1844 nd->root.mnt = NULL;
1845
1846 nd->m_seq = read_seqbegin(&mount_lock);
1847 if (*name=='/') {
1848 if (flags & LOOKUP_RCU) {
1849 rcu_read_lock();
1850 set_root_rcu(nd);
1851 } else {
1852 set_root(nd);
1853 path_get(&nd->root);
1854 }
1855 nd->path = nd->root;
1856 } else if (dfd == AT_FDCWD) {
1857 if (flags & LOOKUP_RCU) {
1858 struct fs_struct *fs = current->fs;
1859 unsigned seq;
1860
1861 rcu_read_lock();
1862
1863 do {
1864 seq = read_seqcount_begin(&fs->seq);
1865 nd->path = fs->pwd;
1866 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1867 } while (read_seqcount_retry(&fs->seq, seq));
1868 } else {
1869 get_fs_pwd(current->fs, &nd->path);
1870 }
1871 } else {
1872 /* Caller must check execute permissions on the starting path component */
1873 struct fd f = fdget_raw(dfd);
1874 struct dentry *dentry;
1875
1876 if (!f.file)
1877 return -EBADF;
1878
1879 dentry = f.file->f_path.dentry;
1880
1881 if (*name) {
1882 if (!d_can_lookup(dentry)) {
1883 fdput(f);
1884 return -ENOTDIR;
1885 }
1886 }
1887
1888 nd->path = f.file->f_path;
1889 if (flags & LOOKUP_RCU) {
1890 if (f.flags & FDPUT_FPUT)
1891 *fp = f.file;
1892 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1893 rcu_read_lock();
1894 } else {
1895 path_get(&nd->path);
1896 fdput(f);
1897 }
1898 }
1899
1900 nd->inode = nd->path.dentry->d_inode;
1901 return 0;
1902 }
1903
1904 static inline int lookup_last(struct nameidata *nd, struct path *path)
1905 {
1906 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1907 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1908
1909 nd->flags &= ~LOOKUP_PARENT;
1910 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1911 }
1912
1913 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1914 static int path_lookupat(int dfd, const char *name,
1915 unsigned int flags, struct nameidata *nd)
1916 {
1917 struct file *base = NULL;
1918 struct path path;
1919 int err;
1920
1921 /*
1922 * Path walking is largely split up into 2 different synchronisation
1923 * schemes, rcu-walk and ref-walk (explained in
1924 * Documentation/filesystems/path-lookup.txt). These share much of the
1925 * path walk code, but some things particularly setup, cleanup, and
1926 * following mounts are sufficiently divergent that functions are
1927 * duplicated. Typically there is a function foo(), and its RCU
1928 * analogue, foo_rcu().
1929 *
1930 * -ECHILD is the error number of choice (just to avoid clashes) that
1931 * is returned if some aspect of an rcu-walk fails. Such an error must
1932 * be handled by restarting a traditional ref-walk (which will always
1933 * be able to complete).
1934 */
1935 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1936
1937 if (unlikely(err))
1938 return err;
1939
1940 current->total_link_count = 0;
1941 err = link_path_walk(name, nd);
1942
1943 if (!err && !(flags & LOOKUP_PARENT)) {
1944 err = lookup_last(nd, &path);
1945 while (err > 0) {
1946 void *cookie;
1947 struct path link = path;
1948 err = may_follow_link(&link, nd);
1949 if (unlikely(err))
1950 break;
1951 nd->flags |= LOOKUP_PARENT;
1952 err = follow_link(&link, nd, &cookie);
1953 if (err)
1954 break;
1955 err = lookup_last(nd, &path);
1956 put_link(nd, &link, cookie);
1957 }
1958 }
1959
1960 if (!err)
1961 err = complete_walk(nd);
1962
1963 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1964 if (!d_can_lookup(nd->path.dentry)) {
1965 path_put(&nd->path);
1966 err = -ENOTDIR;
1967 }
1968 }
1969
1970 if (base)
1971 fput(base);
1972
1973 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1974 path_put(&nd->root);
1975 nd->root.mnt = NULL;
1976 }
1977 return err;
1978 }
1979
1980 static int filename_lookup(int dfd, struct filename *name,
1981 unsigned int flags, struct nameidata *nd)
1982 {
1983 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1984 if (unlikely(retval == -ECHILD))
1985 retval = path_lookupat(dfd, name->name, flags, nd);
1986 if (unlikely(retval == -ESTALE))
1987 retval = path_lookupat(dfd, name->name,
1988 flags | LOOKUP_REVAL, nd);
1989
1990 if (likely(!retval))
1991 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1992 return retval;
1993 }
1994
1995 static int do_path_lookup(int dfd, const char *name,
1996 unsigned int flags, struct nameidata *nd)
1997 {
1998 struct filename filename = { .name = name };
1999
2000 return filename_lookup(dfd, &filename, flags, nd);
2001 }
2002
2003 /* does lookup, returns the object with parent locked */
2004 struct dentry *kern_path_locked(const char *name, struct path *path)
2005 {
2006 struct nameidata nd;
2007 struct dentry *d;
2008 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2009 if (err)
2010 return ERR_PTR(err);
2011 if (nd.last_type != LAST_NORM) {
2012 path_put(&nd.path);
2013 return ERR_PTR(-EINVAL);
2014 }
2015 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2016 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2017 if (IS_ERR(d)) {
2018 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2019 path_put(&nd.path);
2020 return d;
2021 }
2022 *path = nd.path;
2023 return d;
2024 }
2025
2026 int kern_path(const char *name, unsigned int flags, struct path *path)
2027 {
2028 struct nameidata nd;
2029 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2030 if (!res)
2031 *path = nd.path;
2032 return res;
2033 }
2034 EXPORT_SYMBOL(kern_path);
2035
2036 /**
2037 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2038 * @dentry: pointer to dentry of the base directory
2039 * @mnt: pointer to vfs mount of the base directory
2040 * @name: pointer to file name
2041 * @flags: lookup flags
2042 * @path: pointer to struct path to fill
2043 */
2044 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2045 const char *name, unsigned int flags,
2046 struct path *path)
2047 {
2048 struct nameidata nd;
2049 int err;
2050 nd.root.dentry = dentry;
2051 nd.root.mnt = mnt;
2052 BUG_ON(flags & LOOKUP_PARENT);
2053 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2054 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2055 if (!err)
2056 *path = nd.path;
2057 return err;
2058 }
2059 EXPORT_SYMBOL(vfs_path_lookup);
2060
2061 /*
2062 * Restricted form of lookup. Doesn't follow links, single-component only,
2063 * needs parent already locked. Doesn't follow mounts.
2064 * SMP-safe.
2065 */
2066 static struct dentry *lookup_hash(struct nameidata *nd)
2067 {
2068 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2069 }
2070
2071 /**
2072 * lookup_one_len - filesystem helper to lookup single pathname component
2073 * @name: pathname component to lookup
2074 * @base: base directory to lookup from
2075 * @len: maximum length @len should be interpreted to
2076 *
2077 * Note that this routine is purely a helper for filesystem usage and should
2078 * not be called by generic code. Also note that by using this function the
2079 * nameidata argument is passed to the filesystem methods and a filesystem
2080 * using this helper needs to be prepared for that.
2081 */
2082 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2083 {
2084 struct qstr this;
2085 unsigned int c;
2086 int err;
2087
2088 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2089
2090 this.name = name;
2091 this.len = len;
2092 this.hash = full_name_hash(name, len);
2093 if (!len)
2094 return ERR_PTR(-EACCES);
2095
2096 if (unlikely(name[0] == '.')) {
2097 if (len < 2 || (len == 2 && name[1] == '.'))
2098 return ERR_PTR(-EACCES);
2099 }
2100
2101 while (len--) {
2102 c = *(const unsigned char *)name++;
2103 if (c == '/' || c == '\0')
2104 return ERR_PTR(-EACCES);
2105 }
2106 /*
2107 * See if the low-level filesystem might want
2108 * to use its own hash..
2109 */
2110 if (base->d_flags & DCACHE_OP_HASH) {
2111 int err = base->d_op->d_hash(base, &this);
2112 if (err < 0)
2113 return ERR_PTR(err);
2114 }
2115
2116 err = inode_permission(base->d_inode, MAY_EXEC);
2117 if (err)
2118 return ERR_PTR(err);
2119
2120 return __lookup_hash(&this, base, 0);
2121 }
2122 EXPORT_SYMBOL(lookup_one_len);
2123
2124 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2125 struct path *path, int *empty)
2126 {
2127 struct nameidata nd;
2128 struct filename *tmp = getname_flags(name, flags, empty);
2129 int err = PTR_ERR(tmp);
2130 if (!IS_ERR(tmp)) {
2131
2132 BUG_ON(flags & LOOKUP_PARENT);
2133
2134 err = filename_lookup(dfd, tmp, flags, &nd);
2135 putname(tmp);
2136 if (!err)
2137 *path = nd.path;
2138 }
2139 return err;
2140 }
2141
2142 int user_path_at(int dfd, const char __user *name, unsigned flags,
2143 struct path *path)
2144 {
2145 return user_path_at_empty(dfd, name, flags, path, NULL);
2146 }
2147 EXPORT_SYMBOL(user_path_at);
2148
2149 /*
2150 * NB: most callers don't do anything directly with the reference to the
2151 * to struct filename, but the nd->last pointer points into the name string
2152 * allocated by getname. So we must hold the reference to it until all
2153 * path-walking is complete.
2154 */
2155 static struct filename *
2156 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2157 unsigned int flags)
2158 {
2159 struct filename *s = getname(path);
2160 int error;
2161
2162 /* only LOOKUP_REVAL is allowed in extra flags */
2163 flags &= LOOKUP_REVAL;
2164
2165 if (IS_ERR(s))
2166 return s;
2167
2168 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2169 if (error) {
2170 putname(s);
2171 return ERR_PTR(error);
2172 }
2173
2174 return s;
2175 }
2176
2177 /**
2178 * mountpoint_last - look up last component for umount
2179 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2180 * @path: pointer to container for result
2181 *
2182 * This is a special lookup_last function just for umount. In this case, we
2183 * need to resolve the path without doing any revalidation.
2184 *
2185 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2186 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2187 * in almost all cases, this lookup will be served out of the dcache. The only
2188 * cases where it won't are if nd->last refers to a symlink or the path is
2189 * bogus and it doesn't exist.
2190 *
2191 * Returns:
2192 * -error: if there was an error during lookup. This includes -ENOENT if the
2193 * lookup found a negative dentry. The nd->path reference will also be
2194 * put in this case.
2195 *
2196 * 0: if we successfully resolved nd->path and found it to not to be a
2197 * symlink that needs to be followed. "path" will also be populated.
2198 * The nd->path reference will also be put.
2199 *
2200 * 1: if we successfully resolved nd->last and found it to be a symlink
2201 * that needs to be followed. "path" will be populated with the path
2202 * to the link, and nd->path will *not* be put.
2203 */
2204 static int
2205 mountpoint_last(struct nameidata *nd, struct path *path)
2206 {
2207 int error = 0;
2208 struct dentry *dentry;
2209 struct dentry *dir = nd->path.dentry;
2210
2211 /* If we're in rcuwalk, drop out of it to handle last component */
2212 if (nd->flags & LOOKUP_RCU) {
2213 if (unlazy_walk(nd, NULL)) {
2214 error = -ECHILD;
2215 goto out;
2216 }
2217 }
2218
2219 nd->flags &= ~LOOKUP_PARENT;
2220
2221 if (unlikely(nd->last_type != LAST_NORM)) {
2222 error = handle_dots(nd, nd->last_type);
2223 if (error)
2224 goto out;
2225 dentry = dget(nd->path.dentry);
2226 goto done;
2227 }
2228
2229 mutex_lock(&dir->d_inode->i_mutex);
2230 dentry = d_lookup(dir, &nd->last);
2231 if (!dentry) {
2232 /*
2233 * No cached dentry. Mounted dentries are pinned in the cache,
2234 * so that means that this dentry is probably a symlink or the
2235 * path doesn't actually point to a mounted dentry.
2236 */
2237 dentry = d_alloc(dir, &nd->last);
2238 if (!dentry) {
2239 error = -ENOMEM;
2240 mutex_unlock(&dir->d_inode->i_mutex);
2241 goto out;
2242 }
2243 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2244 error = PTR_ERR(dentry);
2245 if (IS_ERR(dentry)) {
2246 mutex_unlock(&dir->d_inode->i_mutex);
2247 goto out;
2248 }
2249 }
2250 mutex_unlock(&dir->d_inode->i_mutex);
2251
2252 done:
2253 if (!dentry->d_inode || d_is_negative(dentry)) {
2254 error = -ENOENT;
2255 dput(dentry);
2256 goto out;
2257 }
2258 path->dentry = dentry;
2259 path->mnt = nd->path.mnt;
2260 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2261 return 1;
2262 mntget(path->mnt);
2263 follow_mount(path);
2264 error = 0;
2265 out:
2266 terminate_walk(nd);
2267 return error;
2268 }
2269
2270 /**
2271 * path_mountpoint - look up a path to be umounted
2272 * @dfd: directory file descriptor to start walk from
2273 * @name: full pathname to walk
2274 * @path: pointer to container for result
2275 * @flags: lookup flags
2276 *
2277 * Look up the given name, but don't attempt to revalidate the last component.
2278 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2279 */
2280 static int
2281 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2282 {
2283 struct file *base = NULL;
2284 struct nameidata nd;
2285 int err;
2286
2287 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2288 if (unlikely(err))
2289 return err;
2290
2291 current->total_link_count = 0;
2292 err = link_path_walk(name, &nd);
2293 if (err)
2294 goto out;
2295
2296 err = mountpoint_last(&nd, path);
2297 while (err > 0) {
2298 void *cookie;
2299 struct path link = *path;
2300 err = may_follow_link(&link, &nd);
2301 if (unlikely(err))
2302 break;
2303 nd.flags |= LOOKUP_PARENT;
2304 err = follow_link(&link, &nd, &cookie);
2305 if (err)
2306 break;
2307 err = mountpoint_last(&nd, path);
2308 put_link(&nd, &link, cookie);
2309 }
2310 out:
2311 if (base)
2312 fput(base);
2313
2314 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2315 path_put(&nd.root);
2316
2317 return err;
2318 }
2319
2320 static int
2321 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2322 unsigned int flags)
2323 {
2324 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2325 if (unlikely(error == -ECHILD))
2326 error = path_mountpoint(dfd, s->name, path, flags);
2327 if (unlikely(error == -ESTALE))
2328 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2329 if (likely(!error))
2330 audit_inode(s, path->dentry, 0);
2331 return error;
2332 }
2333
2334 /**
2335 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2336 * @dfd: directory file descriptor
2337 * @name: pathname from userland
2338 * @flags: lookup flags
2339 * @path: pointer to container to hold result
2340 *
2341 * A umount is a special case for path walking. We're not actually interested
2342 * in the inode in this situation, and ESTALE errors can be a problem. We
2343 * simply want track down the dentry and vfsmount attached at the mountpoint
2344 * and avoid revalidating the last component.
2345 *
2346 * Returns 0 and populates "path" on success.
2347 */
2348 int
2349 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2350 struct path *path)
2351 {
2352 struct filename *s = getname(name);
2353 int error;
2354 if (IS_ERR(s))
2355 return PTR_ERR(s);
2356 error = filename_mountpoint(dfd, s, path, flags);
2357 putname(s);
2358 return error;
2359 }
2360
2361 int
2362 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2363 unsigned int flags)
2364 {
2365 struct filename s = {.name = name};
2366 return filename_mountpoint(dfd, &s, path, flags);
2367 }
2368 EXPORT_SYMBOL(kern_path_mountpoint);
2369
2370 /*
2371 * It's inline, so penalty for filesystems that don't use sticky bit is
2372 * minimal.
2373 */
2374 static inline int check_sticky(struct inode *dir, struct inode *inode)
2375 {
2376 kuid_t fsuid = current_fsuid();
2377
2378 if (!(dir->i_mode & S_ISVTX))
2379 return 0;
2380 if (uid_eq(inode->i_uid, fsuid))
2381 return 0;
2382 if (uid_eq(dir->i_uid, fsuid))
2383 return 0;
2384 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2385 }
2386
2387 /*
2388 * Check whether we can remove a link victim from directory dir, check
2389 * whether the type of victim is right.
2390 * 1. We can't do it if dir is read-only (done in permission())
2391 * 2. We should have write and exec permissions on dir
2392 * 3. We can't remove anything from append-only dir
2393 * 4. We can't do anything with immutable dir (done in permission())
2394 * 5. If the sticky bit on dir is set we should either
2395 * a. be owner of dir, or
2396 * b. be owner of victim, or
2397 * c. have CAP_FOWNER capability
2398 * 6. If the victim is append-only or immutable we can't do antyhing with
2399 * links pointing to it.
2400 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2401 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2402 * 9. We can't remove a root or mountpoint.
2403 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2404 * nfs_async_unlink().
2405 */
2406 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2407 {
2408 struct inode *inode = victim->d_inode;
2409 int error;
2410
2411 if (d_is_negative(victim))
2412 return -ENOENT;
2413 BUG_ON(!inode);
2414
2415 BUG_ON(victim->d_parent->d_inode != dir);
2416 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2417
2418 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2419 if (error)
2420 return error;
2421 if (IS_APPEND(dir))
2422 return -EPERM;
2423
2424 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2425 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2426 return -EPERM;
2427 if (isdir) {
2428 if (!d_is_dir(victim))
2429 return -ENOTDIR;
2430 if (IS_ROOT(victim))
2431 return -EBUSY;
2432 } else if (d_is_dir(victim))
2433 return -EISDIR;
2434 if (IS_DEADDIR(dir))
2435 return -ENOENT;
2436 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2437 return -EBUSY;
2438 return 0;
2439 }
2440
2441 /* Check whether we can create an object with dentry child in directory
2442 * dir.
2443 * 1. We can't do it if child already exists (open has special treatment for
2444 * this case, but since we are inlined it's OK)
2445 * 2. We can't do it if dir is read-only (done in permission())
2446 * 3. We should have write and exec permissions on dir
2447 * 4. We can't do it if dir is immutable (done in permission())
2448 */
2449 static inline int may_create(struct inode *dir, struct dentry *child)
2450 {
2451 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2452 if (child->d_inode)
2453 return -EEXIST;
2454 if (IS_DEADDIR(dir))
2455 return -ENOENT;
2456 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2457 }
2458
2459 /*
2460 * p1 and p2 should be directories on the same fs.
2461 */
2462 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2463 {
2464 struct dentry *p;
2465
2466 if (p1 == p2) {
2467 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2468 return NULL;
2469 }
2470
2471 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2472
2473 p = d_ancestor(p2, p1);
2474 if (p) {
2475 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2476 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2477 return p;
2478 }
2479
2480 p = d_ancestor(p1, p2);
2481 if (p) {
2482 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2483 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2484 return p;
2485 }
2486
2487 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2488 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2489 return NULL;
2490 }
2491 EXPORT_SYMBOL(lock_rename);
2492
2493 void unlock_rename(struct dentry *p1, struct dentry *p2)
2494 {
2495 mutex_unlock(&p1->d_inode->i_mutex);
2496 if (p1 != p2) {
2497 mutex_unlock(&p2->d_inode->i_mutex);
2498 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2499 }
2500 }
2501 EXPORT_SYMBOL(unlock_rename);
2502
2503 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2504 bool want_excl)
2505 {
2506 int error = may_create(dir, dentry);
2507 if (error)
2508 return error;
2509
2510 if (!dir->i_op->create)
2511 return -EACCES; /* shouldn't it be ENOSYS? */
2512 mode &= S_IALLUGO;
2513 mode |= S_IFREG;
2514 error = security_inode_create(dir, dentry, mode);
2515 if (error)
2516 return error;
2517 error = dir->i_op->create(dir, dentry, mode, want_excl);
2518 if (!error)
2519 fsnotify_create(dir, dentry);
2520 return error;
2521 }
2522 EXPORT_SYMBOL(vfs_create);
2523
2524 static int may_open(struct path *path, int acc_mode, int flag)
2525 {
2526 struct dentry *dentry = path->dentry;
2527 struct inode *inode = dentry->d_inode;
2528 int error;
2529
2530 /* O_PATH? */
2531 if (!acc_mode)
2532 return 0;
2533
2534 if (!inode)
2535 return -ENOENT;
2536
2537 switch (inode->i_mode & S_IFMT) {
2538 case S_IFLNK:
2539 return -ELOOP;
2540 case S_IFDIR:
2541 if (acc_mode & MAY_WRITE)
2542 return -EISDIR;
2543 break;
2544 case S_IFBLK:
2545 case S_IFCHR:
2546 if (path->mnt->mnt_flags & MNT_NODEV)
2547 return -EACCES;
2548 /*FALLTHRU*/
2549 case S_IFIFO:
2550 case S_IFSOCK:
2551 flag &= ~O_TRUNC;
2552 break;
2553 }
2554
2555 error = inode_permission(inode, acc_mode);
2556 if (error)
2557 return error;
2558
2559 /*
2560 * An append-only file must be opened in append mode for writing.
2561 */
2562 if (IS_APPEND(inode)) {
2563 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2564 return -EPERM;
2565 if (flag & O_TRUNC)
2566 return -EPERM;
2567 }
2568
2569 /* O_NOATIME can only be set by the owner or superuser */
2570 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2571 return -EPERM;
2572
2573 return 0;
2574 }
2575
2576 static int handle_truncate(struct file *filp)
2577 {
2578 struct path *path = &filp->f_path;
2579 struct inode *inode = path->dentry->d_inode;
2580 int error = get_write_access(inode);
2581 if (error)
2582 return error;
2583 /*
2584 * Refuse to truncate files with mandatory locks held on them.
2585 */
2586 error = locks_verify_locked(filp);
2587 if (!error)
2588 error = security_path_truncate(path);
2589 if (!error) {
2590 error = do_truncate(path->dentry, 0,
2591 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2592 filp);
2593 }
2594 put_write_access(inode);
2595 return error;
2596 }
2597
2598 static inline int open_to_namei_flags(int flag)
2599 {
2600 if ((flag & O_ACCMODE) == 3)
2601 flag--;
2602 return flag;
2603 }
2604
2605 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2606 {
2607 int error = security_path_mknod(dir, dentry, mode, 0);
2608 if (error)
2609 return error;
2610
2611 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2612 if (error)
2613 return error;
2614
2615 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2616 }
2617
2618 /*
2619 * Attempt to atomically look up, create and open a file from a negative
2620 * dentry.
2621 *
2622 * Returns 0 if successful. The file will have been created and attached to
2623 * @file by the filesystem calling finish_open().
2624 *
2625 * Returns 1 if the file was looked up only or didn't need creating. The
2626 * caller will need to perform the open themselves. @path will have been
2627 * updated to point to the new dentry. This may be negative.
2628 *
2629 * Returns an error code otherwise.
2630 */
2631 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2632 struct path *path, struct file *file,
2633 const struct open_flags *op,
2634 bool got_write, bool need_lookup,
2635 int *opened)
2636 {
2637 struct inode *dir = nd->path.dentry->d_inode;
2638 unsigned open_flag = open_to_namei_flags(op->open_flag);
2639 umode_t mode;
2640 int error;
2641 int acc_mode;
2642 int create_error = 0;
2643 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2644 bool excl;
2645
2646 BUG_ON(dentry->d_inode);
2647
2648 /* Don't create child dentry for a dead directory. */
2649 if (unlikely(IS_DEADDIR(dir))) {
2650 error = -ENOENT;
2651 goto out;
2652 }
2653
2654 mode = op->mode;
2655 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2656 mode &= ~current_umask();
2657
2658 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2659 if (excl)
2660 open_flag &= ~O_TRUNC;
2661
2662 /*
2663 * Checking write permission is tricky, bacuse we don't know if we are
2664 * going to actually need it: O_CREAT opens should work as long as the
2665 * file exists. But checking existence breaks atomicity. The trick is
2666 * to check access and if not granted clear O_CREAT from the flags.
2667 *
2668 * Another problem is returing the "right" error value (e.g. for an
2669 * O_EXCL open we want to return EEXIST not EROFS).
2670 */
2671 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2672 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2673 if (!(open_flag & O_CREAT)) {
2674 /*
2675 * No O_CREATE -> atomicity not a requirement -> fall
2676 * back to lookup + open
2677 */
2678 goto no_open;
2679 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2680 /* Fall back and fail with the right error */
2681 create_error = -EROFS;
2682 goto no_open;
2683 } else {
2684 /* No side effects, safe to clear O_CREAT */
2685 create_error = -EROFS;
2686 open_flag &= ~O_CREAT;
2687 }
2688 }
2689
2690 if (open_flag & O_CREAT) {
2691 error = may_o_create(&nd->path, dentry, mode);
2692 if (error) {
2693 create_error = error;
2694 if (open_flag & O_EXCL)
2695 goto no_open;
2696 open_flag &= ~O_CREAT;
2697 }
2698 }
2699
2700 if (nd->flags & LOOKUP_DIRECTORY)
2701 open_flag |= O_DIRECTORY;
2702
2703 file->f_path.dentry = DENTRY_NOT_SET;
2704 file->f_path.mnt = nd->path.mnt;
2705 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2706 opened);
2707 if (error < 0) {
2708 if (create_error && error == -ENOENT)
2709 error = create_error;
2710 goto out;
2711 }
2712
2713 if (error) { /* returned 1, that is */
2714 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2715 error = -EIO;
2716 goto out;
2717 }
2718 if (file->f_path.dentry) {
2719 dput(dentry);
2720 dentry = file->f_path.dentry;
2721 }
2722 if (*opened & FILE_CREATED)
2723 fsnotify_create(dir, dentry);
2724 if (!dentry->d_inode) {
2725 WARN_ON(*opened & FILE_CREATED);
2726 if (create_error) {
2727 error = create_error;
2728 goto out;
2729 }
2730 } else {
2731 if (excl && !(*opened & FILE_CREATED)) {
2732 error = -EEXIST;
2733 goto out;
2734 }
2735 }
2736 goto looked_up;
2737 }
2738
2739 /*
2740 * We didn't have the inode before the open, so check open permission
2741 * here.
2742 */
2743 acc_mode = op->acc_mode;
2744 if (*opened & FILE_CREATED) {
2745 WARN_ON(!(open_flag & O_CREAT));
2746 fsnotify_create(dir, dentry);
2747 acc_mode = MAY_OPEN;
2748 }
2749 error = may_open(&file->f_path, acc_mode, open_flag);
2750 if (error)
2751 fput(file);
2752
2753 out:
2754 dput(dentry);
2755 return error;
2756
2757 no_open:
2758 if (need_lookup) {
2759 dentry = lookup_real(dir, dentry, nd->flags);
2760 if (IS_ERR(dentry))
2761 return PTR_ERR(dentry);
2762
2763 if (create_error) {
2764 int open_flag = op->open_flag;
2765
2766 error = create_error;
2767 if ((open_flag & O_EXCL)) {
2768 if (!dentry->d_inode)
2769 goto out;
2770 } else if (!dentry->d_inode) {
2771 goto out;
2772 } else if ((open_flag & O_TRUNC) &&
2773 S_ISREG(dentry->d_inode->i_mode)) {
2774 goto out;
2775 }
2776 /* will fail later, go on to get the right error */
2777 }
2778 }
2779 looked_up:
2780 path->dentry = dentry;
2781 path->mnt = nd->path.mnt;
2782 return 1;
2783 }
2784
2785 /*
2786 * Look up and maybe create and open the last component.
2787 *
2788 * Must be called with i_mutex held on parent.
2789 *
2790 * Returns 0 if the file was successfully atomically created (if necessary) and
2791 * opened. In this case the file will be returned attached to @file.
2792 *
2793 * Returns 1 if the file was not completely opened at this time, though lookups
2794 * and creations will have been performed and the dentry returned in @path will
2795 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2796 * specified then a negative dentry may be returned.
2797 *
2798 * An error code is returned otherwise.
2799 *
2800 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2801 * cleared otherwise prior to returning.
2802 */
2803 static int lookup_open(struct nameidata *nd, struct path *path,
2804 struct file *file,
2805 const struct open_flags *op,
2806 bool got_write, int *opened)
2807 {
2808 struct dentry *dir = nd->path.dentry;
2809 struct inode *dir_inode = dir->d_inode;
2810 struct dentry *dentry;
2811 int error;
2812 bool need_lookup;
2813
2814 *opened &= ~FILE_CREATED;
2815 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2816 if (IS_ERR(dentry))
2817 return PTR_ERR(dentry);
2818
2819 /* Cached positive dentry: will open in f_op->open */
2820 if (!need_lookup && dentry->d_inode)
2821 goto out_no_open;
2822
2823 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2824 return atomic_open(nd, dentry, path, file, op, got_write,
2825 need_lookup, opened);
2826 }
2827
2828 if (need_lookup) {
2829 BUG_ON(dentry->d_inode);
2830
2831 dentry = lookup_real(dir_inode, dentry, nd->flags);
2832 if (IS_ERR(dentry))
2833 return PTR_ERR(dentry);
2834 }
2835
2836 /* Negative dentry, just create the file */
2837 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2838 umode_t mode = op->mode;
2839 if (!IS_POSIXACL(dir->d_inode))
2840 mode &= ~current_umask();
2841 /*
2842 * This write is needed to ensure that a
2843 * rw->ro transition does not occur between
2844 * the time when the file is created and when
2845 * a permanent write count is taken through
2846 * the 'struct file' in finish_open().
2847 */
2848 if (!got_write) {
2849 error = -EROFS;
2850 goto out_dput;
2851 }
2852 *opened |= FILE_CREATED;
2853 error = security_path_mknod(&nd->path, dentry, mode, 0);
2854 if (error)
2855 goto out_dput;
2856 error = vfs_create(dir->d_inode, dentry, mode,
2857 nd->flags & LOOKUP_EXCL);
2858 if (error)
2859 goto out_dput;
2860 }
2861 out_no_open:
2862 path->dentry = dentry;
2863 path->mnt = nd->path.mnt;
2864 return 1;
2865
2866 out_dput:
2867 dput(dentry);
2868 return error;
2869 }
2870
2871 /*
2872 * Handle the last step of open()
2873 */
2874 static int do_last(struct nameidata *nd, struct path *path,
2875 struct file *file, const struct open_flags *op,
2876 int *opened, struct filename *name)
2877 {
2878 struct dentry *dir = nd->path.dentry;
2879 int open_flag = op->open_flag;
2880 bool will_truncate = (open_flag & O_TRUNC) != 0;
2881 bool got_write = false;
2882 int acc_mode = op->acc_mode;
2883 struct inode *inode;
2884 bool symlink_ok = false;
2885 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2886 bool retried = false;
2887 int error;
2888
2889 nd->flags &= ~LOOKUP_PARENT;
2890 nd->flags |= op->intent;
2891
2892 if (nd->last_type != LAST_NORM) {
2893 error = handle_dots(nd, nd->last_type);
2894 if (error)
2895 return error;
2896 goto finish_open;
2897 }
2898
2899 if (!(open_flag & O_CREAT)) {
2900 if (nd->last.name[nd->last.len])
2901 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2902 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2903 symlink_ok = true;
2904 /* we _can_ be in RCU mode here */
2905 error = lookup_fast(nd, path, &inode);
2906 if (likely(!error))
2907 goto finish_lookup;
2908
2909 if (error < 0)
2910 goto out;
2911
2912 BUG_ON(nd->inode != dir->d_inode);
2913 } else {
2914 /* create side of things */
2915 /*
2916 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2917 * has been cleared when we got to the last component we are
2918 * about to look up
2919 */
2920 error = complete_walk(nd);
2921 if (error)
2922 return error;
2923
2924 audit_inode(name, dir, LOOKUP_PARENT);
2925 error = -EISDIR;
2926 /* trailing slashes? */
2927 if (nd->last.name[nd->last.len])
2928 goto out;
2929 }
2930
2931 retry_lookup:
2932 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2933 error = mnt_want_write(nd->path.mnt);
2934 if (!error)
2935 got_write = true;
2936 /*
2937 * do _not_ fail yet - we might not need that or fail with
2938 * a different error; let lookup_open() decide; we'll be
2939 * dropping this one anyway.
2940 */
2941 }
2942 mutex_lock(&dir->d_inode->i_mutex);
2943 error = lookup_open(nd, path, file, op, got_write, opened);
2944 mutex_unlock(&dir->d_inode->i_mutex);
2945
2946 if (error <= 0) {
2947 if (error)
2948 goto out;
2949
2950 if ((*opened & FILE_CREATED) ||
2951 !S_ISREG(file_inode(file)->i_mode))
2952 will_truncate = false;
2953
2954 audit_inode(name, file->f_path.dentry, 0);
2955 goto opened;
2956 }
2957
2958 if (*opened & FILE_CREATED) {
2959 /* Don't check for write permission, don't truncate */
2960 open_flag &= ~O_TRUNC;
2961 will_truncate = false;
2962 acc_mode = MAY_OPEN;
2963 path_to_nameidata(path, nd);
2964 goto finish_open_created;
2965 }
2966
2967 /*
2968 * create/update audit record if it already exists.
2969 */
2970 if (d_is_positive(path->dentry))
2971 audit_inode(name, path->dentry, 0);
2972
2973 /*
2974 * If atomic_open() acquired write access it is dropped now due to
2975 * possible mount and symlink following (this might be optimized away if
2976 * necessary...)
2977 */
2978 if (got_write) {
2979 mnt_drop_write(nd->path.mnt);
2980 got_write = false;
2981 }
2982
2983 error = -EEXIST;
2984 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2985 goto exit_dput;
2986
2987 error = follow_managed(path, nd->flags);
2988 if (error < 0)
2989 goto exit_dput;
2990
2991 if (error)
2992 nd->flags |= LOOKUP_JUMPED;
2993
2994 BUG_ON(nd->flags & LOOKUP_RCU);
2995 inode = path->dentry->d_inode;
2996 finish_lookup:
2997 /* we _can_ be in RCU mode here */
2998 error = -ENOENT;
2999 if (!inode || d_is_negative(path->dentry)) {
3000 path_to_nameidata(path, nd);
3001 goto out;
3002 }
3003
3004 if (should_follow_link(path->dentry, !symlink_ok)) {
3005 if (nd->flags & LOOKUP_RCU) {
3006 if (unlikely(unlazy_walk(nd, path->dentry))) {
3007 error = -ECHILD;
3008 goto out;
3009 }
3010 }
3011 BUG_ON(inode != path->dentry->d_inode);
3012 return 1;
3013 }
3014
3015 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3016 path_to_nameidata(path, nd);
3017 } else {
3018 save_parent.dentry = nd->path.dentry;
3019 save_parent.mnt = mntget(path->mnt);
3020 nd->path.dentry = path->dentry;
3021
3022 }
3023 nd->inode = inode;
3024 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3025 finish_open:
3026 error = complete_walk(nd);
3027 if (error) {
3028 path_put(&save_parent);
3029 return error;
3030 }
3031 audit_inode(name, nd->path.dentry, 0);
3032 error = -EISDIR;
3033 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3034 goto out;
3035 error = -ENOTDIR;
3036 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3037 goto out;
3038 if (!S_ISREG(nd->inode->i_mode))
3039 will_truncate = false;
3040
3041 if (will_truncate) {
3042 error = mnt_want_write(nd->path.mnt);
3043 if (error)
3044 goto out;
3045 got_write = true;
3046 }
3047 finish_open_created:
3048 error = may_open(&nd->path, acc_mode, open_flag);
3049 if (error)
3050 goto out;
3051 file->f_path.mnt = nd->path.mnt;
3052 error = finish_open(file, nd->path.dentry, NULL, opened);
3053 if (error) {
3054 if (error == -EOPENSTALE)
3055 goto stale_open;
3056 goto out;
3057 }
3058 opened:
3059 error = open_check_o_direct(file);
3060 if (error)
3061 goto exit_fput;
3062 error = ima_file_check(file, op->acc_mode);
3063 if (error)
3064 goto exit_fput;
3065
3066 if (will_truncate) {
3067 error = handle_truncate(file);
3068 if (error)
3069 goto exit_fput;
3070 }
3071 out:
3072 if (got_write)
3073 mnt_drop_write(nd->path.mnt);
3074 path_put(&save_parent);
3075 terminate_walk(nd);
3076 return error;
3077
3078 exit_dput:
3079 path_put_conditional(path, nd);
3080 goto out;
3081 exit_fput:
3082 fput(file);
3083 goto out;
3084
3085 stale_open:
3086 /* If no saved parent or already retried then can't retry */
3087 if (!save_parent.dentry || retried)
3088 goto out;
3089
3090 BUG_ON(save_parent.dentry != dir);
3091 path_put(&nd->path);
3092 nd->path = save_parent;
3093 nd->inode = dir->d_inode;
3094 save_parent.mnt = NULL;
3095 save_parent.dentry = NULL;
3096 if (got_write) {
3097 mnt_drop_write(nd->path.mnt);
3098 got_write = false;
3099 }
3100 retried = true;
3101 goto retry_lookup;
3102 }
3103
3104 static int do_tmpfile(int dfd, struct filename *pathname,
3105 struct nameidata *nd, int flags,
3106 const struct open_flags *op,
3107 struct file *file, int *opened)
3108 {
3109 static const struct qstr name = QSTR_INIT("/", 1);
3110 struct dentry *dentry, *child;
3111 struct inode *dir;
3112 int error = path_lookupat(dfd, pathname->name,
3113 flags | LOOKUP_DIRECTORY, nd);
3114 if (unlikely(error))
3115 return error;
3116 error = mnt_want_write(nd->path.mnt);
3117 if (unlikely(error))
3118 goto out;
3119 /* we want directory to be writable */
3120 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3121 if (error)
3122 goto out2;
3123 dentry = nd->path.dentry;
3124 dir = dentry->d_inode;
3125 if (!dir->i_op->tmpfile) {
3126 error = -EOPNOTSUPP;
3127 goto out2;
3128 }
3129 child = d_alloc(dentry, &name);
3130 if (unlikely(!child)) {
3131 error = -ENOMEM;
3132 goto out2;
3133 }
3134 nd->flags &= ~LOOKUP_DIRECTORY;
3135 nd->flags |= op->intent;
3136 dput(nd->path.dentry);
3137 nd->path.dentry = child;
3138 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3139 if (error)
3140 goto out2;
3141 audit_inode(pathname, nd->path.dentry, 0);
3142 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3143 if (error)
3144 goto out2;
3145 file->f_path.mnt = nd->path.mnt;
3146 error = finish_open(file, nd->path.dentry, NULL, opened);
3147 if (error)
3148 goto out2;
3149 error = open_check_o_direct(file);
3150 if (error) {
3151 fput(file);
3152 } else if (!(op->open_flag & O_EXCL)) {
3153 struct inode *inode = file_inode(file);
3154 spin_lock(&inode->i_lock);
3155 inode->i_state |= I_LINKABLE;
3156 spin_unlock(&inode->i_lock);
3157 }
3158 out2:
3159 mnt_drop_write(nd->path.mnt);
3160 out:
3161 path_put(&nd->path);
3162 return error;
3163 }
3164
3165 static struct file *path_openat(int dfd, struct filename *pathname,
3166 struct nameidata *nd, const struct open_flags *op, int flags)
3167 {
3168 struct file *base = NULL;
3169 struct file *file;
3170 struct path path;
3171 int opened = 0;
3172 int error;
3173
3174 file = get_empty_filp();
3175 if (IS_ERR(file))
3176 return file;
3177
3178 file->f_flags = op->open_flag;
3179
3180 if (unlikely(file->f_flags & __O_TMPFILE)) {
3181 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3182 goto out;
3183 }
3184
3185 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3186 if (unlikely(error))
3187 goto out;
3188
3189 current->total_link_count = 0;
3190 error = link_path_walk(pathname->name, nd);
3191 if (unlikely(error))
3192 goto out;
3193
3194 error = do_last(nd, &path, file, op, &opened, pathname);
3195 while (unlikely(error > 0)) { /* trailing symlink */
3196 struct path link = path;
3197 void *cookie;
3198 if (!(nd->flags & LOOKUP_FOLLOW)) {
3199 path_put_conditional(&path, nd);
3200 path_put(&nd->path);
3201 error = -ELOOP;
3202 break;
3203 }
3204 error = may_follow_link(&link, nd);
3205 if (unlikely(error))
3206 break;
3207 nd->flags |= LOOKUP_PARENT;
3208 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3209 error = follow_link(&link, nd, &cookie);
3210 if (unlikely(error))
3211 break;
3212 error = do_last(nd, &path, file, op, &opened, pathname);
3213 put_link(nd, &link, cookie);
3214 }
3215 out:
3216 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3217 path_put(&nd->root);
3218 if (base)
3219 fput(base);
3220 if (!(opened & FILE_OPENED)) {
3221 BUG_ON(!error);
3222 put_filp(file);
3223 }
3224 if (unlikely(error)) {
3225 if (error == -EOPENSTALE) {
3226 if (flags & LOOKUP_RCU)
3227 error = -ECHILD;
3228 else
3229 error = -ESTALE;
3230 }
3231 file = ERR_PTR(error);
3232 }
3233 return file;
3234 }
3235
3236 struct file *do_filp_open(int dfd, struct filename *pathname,
3237 const struct open_flags *op)
3238 {
3239 struct nameidata nd;
3240 int flags = op->lookup_flags;
3241 struct file *filp;
3242
3243 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3244 if (unlikely(filp == ERR_PTR(-ECHILD)))
3245 filp = path_openat(dfd, pathname, &nd, op, flags);
3246 if (unlikely(filp == ERR_PTR(-ESTALE)))
3247 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3248 return filp;
3249 }
3250
3251 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3252 const char *name, const struct open_flags *op)
3253 {
3254 struct nameidata nd;
3255 struct file *file;
3256 struct filename filename = { .name = name };
3257 int flags = op->lookup_flags | LOOKUP_ROOT;
3258
3259 nd.root.mnt = mnt;
3260 nd.root.dentry = dentry;
3261
3262 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3263 return ERR_PTR(-ELOOP);
3264
3265 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3266 if (unlikely(file == ERR_PTR(-ECHILD)))
3267 file = path_openat(-1, &filename, &nd, op, flags);
3268 if (unlikely(file == ERR_PTR(-ESTALE)))
3269 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3270 return file;
3271 }
3272
3273 struct dentry *kern_path_create(int dfd, const char *pathname,
3274 struct path *path, unsigned int lookup_flags)
3275 {
3276 struct dentry *dentry = ERR_PTR(-EEXIST);
3277 struct nameidata nd;
3278 int err2;
3279 int error;
3280 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3281
3282 /*
3283 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3284 * other flags passed in are ignored!
3285 */
3286 lookup_flags &= LOOKUP_REVAL;
3287
3288 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3289 if (error)
3290 return ERR_PTR(error);
3291
3292 /*
3293 * Yucky last component or no last component at all?
3294 * (foo/., foo/.., /////)
3295 */
3296 if (nd.last_type != LAST_NORM)
3297 goto out;
3298 nd.flags &= ~LOOKUP_PARENT;
3299 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3300
3301 /* don't fail immediately if it's r/o, at least try to report other errors */
3302 err2 = mnt_want_write(nd.path.mnt);
3303 /*
3304 * Do the final lookup.
3305 */
3306 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3307 dentry = lookup_hash(&nd);
3308 if (IS_ERR(dentry))
3309 goto unlock;
3310
3311 error = -EEXIST;
3312 if (d_is_positive(dentry))
3313 goto fail;
3314
3315 /*
3316 * Special case - lookup gave negative, but... we had foo/bar/
3317 * From the vfs_mknod() POV we just have a negative dentry -
3318 * all is fine. Let's be bastards - you had / on the end, you've
3319 * been asking for (non-existent) directory. -ENOENT for you.
3320 */
3321 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3322 error = -ENOENT;
3323 goto fail;
3324 }
3325 if (unlikely(err2)) {
3326 error = err2;
3327 goto fail;
3328 }
3329 *path = nd.path;
3330 return dentry;
3331 fail:
3332 dput(dentry);
3333 dentry = ERR_PTR(error);
3334 unlock:
3335 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3336 if (!err2)
3337 mnt_drop_write(nd.path.mnt);
3338 out:
3339 path_put(&nd.path);
3340 return dentry;
3341 }
3342 EXPORT_SYMBOL(kern_path_create);
3343
3344 void done_path_create(struct path *path, struct dentry *dentry)
3345 {
3346 dput(dentry);
3347 mutex_unlock(&path->dentry->d_inode->i_mutex);
3348 mnt_drop_write(path->mnt);
3349 path_put(path);
3350 }
3351 EXPORT_SYMBOL(done_path_create);
3352
3353 struct dentry *user_path_create(int dfd, const char __user *pathname,
3354 struct path *path, unsigned int lookup_flags)
3355 {
3356 struct filename *tmp = getname(pathname);
3357 struct dentry *res;
3358 if (IS_ERR(tmp))
3359 return ERR_CAST(tmp);
3360 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3361 putname(tmp);
3362 return res;
3363 }
3364 EXPORT_SYMBOL(user_path_create);
3365
3366 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3367 {
3368 int error = may_create(dir, dentry);
3369
3370 if (error)
3371 return error;
3372
3373 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3374 return -EPERM;
3375
3376 if (!dir->i_op->mknod)
3377 return -EPERM;
3378
3379 error = devcgroup_inode_mknod(mode, dev);
3380 if (error)
3381 return error;
3382
3383 error = security_inode_mknod(dir, dentry, mode, dev);
3384 if (error)
3385 return error;
3386
3387 error = dir->i_op->mknod(dir, dentry, mode, dev);
3388 if (!error)
3389 fsnotify_create(dir, dentry);
3390 return error;
3391 }
3392 EXPORT_SYMBOL(vfs_mknod);
3393
3394 static int may_mknod(umode_t mode)
3395 {
3396 switch (mode & S_IFMT) {
3397 case S_IFREG:
3398 case S_IFCHR:
3399 case S_IFBLK:
3400 case S_IFIFO:
3401 case S_IFSOCK:
3402 case 0: /* zero mode translates to S_IFREG */
3403 return 0;
3404 case S_IFDIR:
3405 return -EPERM;
3406 default:
3407 return -EINVAL;
3408 }
3409 }
3410
3411 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3412 unsigned, dev)
3413 {
3414 struct dentry *dentry;
3415 struct path path;
3416 int error;
3417 unsigned int lookup_flags = 0;
3418
3419 error = may_mknod(mode);
3420 if (error)
3421 return error;
3422 retry:
3423 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3424 if (IS_ERR(dentry))
3425 return PTR_ERR(dentry);
3426
3427 if (!IS_POSIXACL(path.dentry->d_inode))
3428 mode &= ~current_umask();
3429 error = security_path_mknod(&path, dentry, mode, dev);
3430 if (error)
3431 goto out;
3432 switch (mode & S_IFMT) {
3433 case 0: case S_IFREG:
3434 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3435 break;
3436 case S_IFCHR: case S_IFBLK:
3437 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3438 new_decode_dev(dev));
3439 break;
3440 case S_IFIFO: case S_IFSOCK:
3441 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3442 break;
3443 }
3444 out:
3445 done_path_create(&path, dentry);
3446 if (retry_estale(error, lookup_flags)) {
3447 lookup_flags |= LOOKUP_REVAL;
3448 goto retry;
3449 }
3450 return error;
3451 }
3452
3453 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3454 {
3455 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3456 }
3457
3458 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3459 {
3460 int error = may_create(dir, dentry);
3461 unsigned max_links = dir->i_sb->s_max_links;
3462
3463 if (error)
3464 return error;
3465
3466 if (!dir->i_op->mkdir)
3467 return -EPERM;
3468
3469 mode &= (S_IRWXUGO|S_ISVTX);
3470 error = security_inode_mkdir(dir, dentry, mode);
3471 if (error)
3472 return error;
3473
3474 if (max_links && dir->i_nlink >= max_links)
3475 return -EMLINK;
3476
3477 error = dir->i_op->mkdir(dir, dentry, mode);
3478 if (!error)
3479 fsnotify_mkdir(dir, dentry);
3480 return error;
3481 }
3482 EXPORT_SYMBOL(vfs_mkdir);
3483
3484 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3485 {
3486 struct dentry *dentry;
3487 struct path path;
3488 int error;
3489 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3490
3491 retry:
3492 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3493 if (IS_ERR(dentry))
3494 return PTR_ERR(dentry);
3495
3496 if (!IS_POSIXACL(path.dentry->d_inode))
3497 mode &= ~current_umask();
3498 error = security_path_mkdir(&path, dentry, mode);
3499 if (!error)
3500 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3501 done_path_create(&path, dentry);
3502 if (retry_estale(error, lookup_flags)) {
3503 lookup_flags |= LOOKUP_REVAL;
3504 goto retry;
3505 }
3506 return error;
3507 }
3508
3509 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3510 {
3511 return sys_mkdirat(AT_FDCWD, pathname, mode);
3512 }
3513
3514 /*
3515 * The dentry_unhash() helper will try to drop the dentry early: we
3516 * should have a usage count of 1 if we're the only user of this
3517 * dentry, and if that is true (possibly after pruning the dcache),
3518 * then we drop the dentry now.
3519 *
3520 * A low-level filesystem can, if it choses, legally
3521 * do a
3522 *
3523 * if (!d_unhashed(dentry))
3524 * return -EBUSY;
3525 *
3526 * if it cannot handle the case of removing a directory
3527 * that is still in use by something else..
3528 */
3529 void dentry_unhash(struct dentry *dentry)
3530 {
3531 shrink_dcache_parent(dentry);
3532 spin_lock(&dentry->d_lock);
3533 if (dentry->d_lockref.count == 1)
3534 __d_drop(dentry);
3535 spin_unlock(&dentry->d_lock);
3536 }
3537 EXPORT_SYMBOL(dentry_unhash);
3538
3539 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3540 {
3541 int error = may_delete(dir, dentry, 1);
3542
3543 if (error)
3544 return error;
3545
3546 if (!dir->i_op->rmdir)
3547 return -EPERM;
3548
3549 dget(dentry);
3550 mutex_lock(&dentry->d_inode->i_mutex);
3551
3552 error = -EBUSY;
3553 if (d_mountpoint(dentry))
3554 goto out;
3555
3556 error = security_inode_rmdir(dir, dentry);
3557 if (error)
3558 goto out;
3559
3560 shrink_dcache_parent(dentry);
3561 error = dir->i_op->rmdir(dir, dentry);
3562 if (error)
3563 goto out;
3564
3565 dentry->d_inode->i_flags |= S_DEAD;
3566 dont_mount(dentry);
3567
3568 out:
3569 mutex_unlock(&dentry->d_inode->i_mutex);
3570 dput(dentry);
3571 if (!error)
3572 d_delete(dentry);
3573 return error;
3574 }
3575 EXPORT_SYMBOL(vfs_rmdir);
3576
3577 static long do_rmdir(int dfd, const char __user *pathname)
3578 {
3579 int error = 0;
3580 struct filename *name;
3581 struct dentry *dentry;
3582 struct nameidata nd;
3583 unsigned int lookup_flags = 0;
3584 retry:
3585 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3586 if (IS_ERR(name))
3587 return PTR_ERR(name);
3588
3589 switch(nd.last_type) {
3590 case LAST_DOTDOT:
3591 error = -ENOTEMPTY;
3592 goto exit1;
3593 case LAST_DOT:
3594 error = -EINVAL;
3595 goto exit1;
3596 case LAST_ROOT:
3597 error = -EBUSY;
3598 goto exit1;
3599 }
3600
3601 nd.flags &= ~LOOKUP_PARENT;
3602 error = mnt_want_write(nd.path.mnt);
3603 if (error)
3604 goto exit1;
3605
3606 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3607 dentry = lookup_hash(&nd);
3608 error = PTR_ERR(dentry);
3609 if (IS_ERR(dentry))
3610 goto exit2;
3611 if (!dentry->d_inode) {
3612 error = -ENOENT;
3613 goto exit3;
3614 }
3615 error = security_path_rmdir(&nd.path, dentry);
3616 if (error)
3617 goto exit3;
3618 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3619 exit3:
3620 dput(dentry);
3621 exit2:
3622 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3623 mnt_drop_write(nd.path.mnt);
3624 exit1:
3625 path_put(&nd.path);
3626 putname(name);
3627 if (retry_estale(error, lookup_flags)) {
3628 lookup_flags |= LOOKUP_REVAL;
3629 goto retry;
3630 }
3631 return error;
3632 }
3633
3634 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3635 {
3636 return do_rmdir(AT_FDCWD, pathname);
3637 }
3638
3639 /**
3640 * vfs_unlink - unlink a filesystem object
3641 * @dir: parent directory
3642 * @dentry: victim
3643 * @delegated_inode: returns victim inode, if the inode is delegated.
3644 *
3645 * The caller must hold dir->i_mutex.
3646 *
3647 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3648 * return a reference to the inode in delegated_inode. The caller
3649 * should then break the delegation on that inode and retry. Because
3650 * breaking a delegation may take a long time, the caller should drop
3651 * dir->i_mutex before doing so.
3652 *
3653 * Alternatively, a caller may pass NULL for delegated_inode. This may
3654 * be appropriate for callers that expect the underlying filesystem not
3655 * to be NFS exported.
3656 */
3657 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3658 {
3659 struct inode *target = dentry->d_inode;
3660 int error = may_delete(dir, dentry, 0);
3661
3662 if (error)
3663 return error;
3664
3665 if (!dir->i_op->unlink)
3666 return -EPERM;
3667
3668 mutex_lock(&target->i_mutex);
3669 if (d_mountpoint(dentry))
3670 error = -EBUSY;
3671 else {
3672 error = security_inode_unlink(dir, dentry);
3673 if (!error) {
3674 error = try_break_deleg(target, delegated_inode);
3675 if (error)
3676 goto out;
3677 error = dir->i_op->unlink(dir, dentry);
3678 if (!error)
3679 dont_mount(dentry);
3680 }
3681 }
3682 out:
3683 mutex_unlock(&target->i_mutex);
3684
3685 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3686 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3687 fsnotify_link_count(target);
3688 d_delete(dentry);
3689 }
3690
3691 return error;
3692 }
3693 EXPORT_SYMBOL(vfs_unlink);
3694
3695 /*
3696 * Make sure that the actual truncation of the file will occur outside its
3697 * directory's i_mutex. Truncate can take a long time if there is a lot of
3698 * writeout happening, and we don't want to prevent access to the directory
3699 * while waiting on the I/O.
3700 */
3701 static long do_unlinkat(int dfd, const char __user *pathname)
3702 {
3703 int error;
3704 struct filename *name;
3705 struct dentry *dentry;
3706 struct nameidata nd;
3707 struct inode *inode = NULL;
3708 struct inode *delegated_inode = NULL;
3709 unsigned int lookup_flags = 0;
3710 retry:
3711 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3712 if (IS_ERR(name))
3713 return PTR_ERR(name);
3714
3715 error = -EISDIR;
3716 if (nd.last_type != LAST_NORM)
3717 goto exit1;
3718
3719 nd.flags &= ~LOOKUP_PARENT;
3720 error = mnt_want_write(nd.path.mnt);
3721 if (error)
3722 goto exit1;
3723 retry_deleg:
3724 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3725 dentry = lookup_hash(&nd);
3726 error = PTR_ERR(dentry);
3727 if (!IS_ERR(dentry)) {
3728 /* Why not before? Because we want correct error value */
3729 if (nd.last.name[nd.last.len])
3730 goto slashes;
3731 inode = dentry->d_inode;
3732 if (d_is_negative(dentry))
3733 goto slashes;
3734 ihold(inode);
3735 error = security_path_unlink(&nd.path, dentry);
3736 if (error)
3737 goto exit2;
3738 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3739 exit2:
3740 dput(dentry);
3741 }
3742 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3743 if (inode)
3744 iput(inode); /* truncate the inode here */
3745 inode = NULL;
3746 if (delegated_inode) {
3747 error = break_deleg_wait(&delegated_inode);
3748 if (!error)
3749 goto retry_deleg;
3750 }
3751 mnt_drop_write(nd.path.mnt);
3752 exit1:
3753 path_put(&nd.path);
3754 putname(name);
3755 if (retry_estale(error, lookup_flags)) {
3756 lookup_flags |= LOOKUP_REVAL;
3757 inode = NULL;
3758 goto retry;
3759 }
3760 return error;
3761
3762 slashes:
3763 if (d_is_negative(dentry))
3764 error = -ENOENT;
3765 else if (d_is_dir(dentry))
3766 error = -EISDIR;
3767 else
3768 error = -ENOTDIR;
3769 goto exit2;
3770 }
3771
3772 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3773 {
3774 if ((flag & ~AT_REMOVEDIR) != 0)
3775 return -EINVAL;
3776
3777 if (flag & AT_REMOVEDIR)
3778 return do_rmdir(dfd, pathname);
3779
3780 return do_unlinkat(dfd, pathname);
3781 }
3782
3783 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3784 {
3785 return do_unlinkat(AT_FDCWD, pathname);
3786 }
3787
3788 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3789 {
3790 int error = may_create(dir, dentry);
3791
3792 if (error)
3793 return error;
3794
3795 if (!dir->i_op->symlink)
3796 return -EPERM;
3797
3798 error = security_inode_symlink(dir, dentry, oldname);
3799 if (error)
3800 return error;
3801
3802 error = dir->i_op->symlink(dir, dentry, oldname);
3803 if (!error)
3804 fsnotify_create(dir, dentry);
3805 return error;
3806 }
3807 EXPORT_SYMBOL(vfs_symlink);
3808
3809 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3810 int, newdfd, const char __user *, newname)
3811 {
3812 int error;
3813 struct filename *from;
3814 struct dentry *dentry;
3815 struct path path;
3816 unsigned int lookup_flags = 0;
3817
3818 from = getname(oldname);
3819 if (IS_ERR(from))
3820 return PTR_ERR(from);
3821 retry:
3822 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3823 error = PTR_ERR(dentry);
3824 if (IS_ERR(dentry))
3825 goto out_putname;
3826
3827 error = security_path_symlink(&path, dentry, from->name);
3828 if (!error)
3829 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3830 done_path_create(&path, dentry);
3831 if (retry_estale(error, lookup_flags)) {
3832 lookup_flags |= LOOKUP_REVAL;
3833 goto retry;
3834 }
3835 out_putname:
3836 putname(from);
3837 return error;
3838 }
3839
3840 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3841 {
3842 return sys_symlinkat(oldname, AT_FDCWD, newname);
3843 }
3844
3845 /**
3846 * vfs_link - create a new link
3847 * @old_dentry: object to be linked
3848 * @dir: new parent
3849 * @new_dentry: where to create the new link
3850 * @delegated_inode: returns inode needing a delegation break
3851 *
3852 * The caller must hold dir->i_mutex
3853 *
3854 * If vfs_link discovers a delegation on the to-be-linked file in need
3855 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3856 * inode in delegated_inode. The caller should then break the delegation
3857 * and retry. Because breaking a delegation may take a long time, the
3858 * caller should drop the i_mutex before doing so.
3859 *
3860 * Alternatively, a caller may pass NULL for delegated_inode. This may
3861 * be appropriate for callers that expect the underlying filesystem not
3862 * to be NFS exported.
3863 */
3864 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3865 {
3866 struct inode *inode = old_dentry->d_inode;
3867 unsigned max_links = dir->i_sb->s_max_links;
3868 int error;
3869
3870 if (!inode)
3871 return -ENOENT;
3872
3873 error = may_create(dir, new_dentry);
3874 if (error)
3875 return error;
3876
3877 if (dir->i_sb != inode->i_sb)
3878 return -EXDEV;
3879
3880 /*
3881 * A link to an append-only or immutable file cannot be created.
3882 */
3883 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3884 return -EPERM;
3885 if (!dir->i_op->link)
3886 return -EPERM;
3887 if (S_ISDIR(inode->i_mode))
3888 return -EPERM;
3889
3890 error = security_inode_link(old_dentry, dir, new_dentry);
3891 if (error)
3892 return error;
3893
3894 mutex_lock(&inode->i_mutex);
3895 /* Make sure we don't allow creating hardlink to an unlinked file */
3896 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3897 error = -ENOENT;
3898 else if (max_links && inode->i_nlink >= max_links)
3899 error = -EMLINK;
3900 else {
3901 error = try_break_deleg(inode, delegated_inode);
3902 if (!error)
3903 error = dir->i_op->link(old_dentry, dir, new_dentry);
3904 }
3905
3906 if (!error && (inode->i_state & I_LINKABLE)) {
3907 spin_lock(&inode->i_lock);
3908 inode->i_state &= ~I_LINKABLE;
3909 spin_unlock(&inode->i_lock);
3910 }
3911 mutex_unlock(&inode->i_mutex);
3912 if (!error)
3913 fsnotify_link(dir, inode, new_dentry);
3914 return error;
3915 }
3916 EXPORT_SYMBOL(vfs_link);
3917
3918 /*
3919 * Hardlinks are often used in delicate situations. We avoid
3920 * security-related surprises by not following symlinks on the
3921 * newname. --KAB
3922 *
3923 * We don't follow them on the oldname either to be compatible
3924 * with linux 2.0, and to avoid hard-linking to directories
3925 * and other special files. --ADM
3926 */
3927 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3928 int, newdfd, const char __user *, newname, int, flags)
3929 {
3930 struct dentry *new_dentry;
3931 struct path old_path, new_path;
3932 struct inode *delegated_inode = NULL;
3933 int how = 0;
3934 int error;
3935
3936 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3937 return -EINVAL;
3938 /*
3939 * To use null names we require CAP_DAC_READ_SEARCH
3940 * This ensures that not everyone will be able to create
3941 * handlink using the passed filedescriptor.
3942 */
3943 if (flags & AT_EMPTY_PATH) {
3944 if (!capable(CAP_DAC_READ_SEARCH))
3945 return -ENOENT;
3946 how = LOOKUP_EMPTY;
3947 }
3948
3949 if (flags & AT_SYMLINK_FOLLOW)
3950 how |= LOOKUP_FOLLOW;
3951 retry:
3952 error = user_path_at(olddfd, oldname, how, &old_path);
3953 if (error)
3954 return error;
3955
3956 new_dentry = user_path_create(newdfd, newname, &new_path,
3957 (how & LOOKUP_REVAL));
3958 error = PTR_ERR(new_dentry);
3959 if (IS_ERR(new_dentry))
3960 goto out;
3961
3962 error = -EXDEV;
3963 if (old_path.mnt != new_path.mnt)
3964 goto out_dput;
3965 error = may_linkat(&old_path);
3966 if (unlikely(error))
3967 goto out_dput;
3968 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3969 if (error)
3970 goto out_dput;
3971 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3972 out_dput:
3973 done_path_create(&new_path, new_dentry);
3974 if (delegated_inode) {
3975 error = break_deleg_wait(&delegated_inode);
3976 if (!error) {
3977 path_put(&old_path);
3978 goto retry;
3979 }
3980 }
3981 if (retry_estale(error, how)) {
3982 path_put(&old_path);
3983 how |= LOOKUP_REVAL;
3984 goto retry;
3985 }
3986 out:
3987 path_put(&old_path);
3988
3989 return error;
3990 }
3991
3992 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3993 {
3994 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3995 }
3996
3997 /**
3998 * vfs_rename - rename a filesystem object
3999 * @old_dir: parent of source
4000 * @old_dentry: source
4001 * @new_dir: parent of destination
4002 * @new_dentry: destination
4003 * @delegated_inode: returns an inode needing a delegation break
4004 * @flags: rename flags
4005 *
4006 * The caller must hold multiple mutexes--see lock_rename()).
4007 *
4008 * If vfs_rename discovers a delegation in need of breaking at either
4009 * the source or destination, it will return -EWOULDBLOCK and return a
4010 * reference to the inode in delegated_inode. The caller should then
4011 * break the delegation and retry. Because breaking a delegation may
4012 * take a long time, the caller should drop all locks before doing
4013 * so.
4014 *
4015 * Alternatively, a caller may pass NULL for delegated_inode. This may
4016 * be appropriate for callers that expect the underlying filesystem not
4017 * to be NFS exported.
4018 *
4019 * The worst of all namespace operations - renaming directory. "Perverted"
4020 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4021 * Problems:
4022 * a) we can get into loop creation. Check is done in is_subdir().
4023 * b) race potential - two innocent renames can create a loop together.
4024 * That's where 4.4 screws up. Current fix: serialization on
4025 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4026 * story.
4027 * c) we have to lock _four_ objects - parents and victim (if it exists),
4028 * and source (if it is not a directory).
4029 * And that - after we got ->i_mutex on parents (until then we don't know
4030 * whether the target exists). Solution: try to be smart with locking
4031 * order for inodes. We rely on the fact that tree topology may change
4032 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4033 * move will be locked. Thus we can rank directories by the tree
4034 * (ancestors first) and rank all non-directories after them.
4035 * That works since everybody except rename does "lock parent, lookup,
4036 * lock child" and rename is under ->s_vfs_rename_mutex.
4037 * HOWEVER, it relies on the assumption that any object with ->lookup()
4038 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4039 * we'd better make sure that there's no link(2) for them.
4040 * d) conversion from fhandle to dentry may come in the wrong moment - when
4041 * we are removing the target. Solution: we will have to grab ->i_mutex
4042 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4043 * ->i_mutex on parents, which works but leads to some truly excessive
4044 * locking].
4045 */
4046 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4047 struct inode *new_dir, struct dentry *new_dentry,
4048 struct inode **delegated_inode, unsigned int flags)
4049 {
4050 int error;
4051 bool is_dir = d_is_dir(old_dentry);
4052 const unsigned char *old_name;
4053 struct inode *source = old_dentry->d_inode;
4054 struct inode *target = new_dentry->d_inode;
4055 bool new_is_dir = false;
4056 unsigned max_links = new_dir->i_sb->s_max_links;
4057
4058 if (source == target)
4059 return 0;
4060
4061 error = may_delete(old_dir, old_dentry, is_dir);
4062 if (error)
4063 return error;
4064
4065 if (!target) {
4066 error = may_create(new_dir, new_dentry);
4067 } else {
4068 new_is_dir = d_is_dir(new_dentry);
4069
4070 if (!(flags & RENAME_EXCHANGE))
4071 error = may_delete(new_dir, new_dentry, is_dir);
4072 else
4073 error = may_delete(new_dir, new_dentry, new_is_dir);
4074 }
4075 if (error)
4076 return error;
4077
4078 if (!old_dir->i_op->rename)
4079 return -EPERM;
4080
4081 if (flags && !old_dir->i_op->rename2)
4082 return -EINVAL;
4083
4084 /*
4085 * If we are going to change the parent - check write permissions,
4086 * we'll need to flip '..'.
4087 */
4088 if (new_dir != old_dir) {
4089 if (is_dir) {
4090 error = inode_permission(source, MAY_WRITE);
4091 if (error)
4092 return error;
4093 }
4094 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4095 error = inode_permission(target, MAY_WRITE);
4096 if (error)
4097 return error;
4098 }
4099 }
4100
4101 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4102 flags);
4103 if (error)
4104 return error;
4105
4106 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4107 dget(new_dentry);
4108 if (!is_dir || (flags & RENAME_EXCHANGE))
4109 lock_two_nondirectories(source, target);
4110 else if (target)
4111 mutex_lock(&target->i_mutex);
4112
4113 error = -EBUSY;
4114 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4115 goto out;
4116
4117 if (max_links && new_dir != old_dir) {
4118 error = -EMLINK;
4119 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4120 goto out;
4121 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4122 old_dir->i_nlink >= max_links)
4123 goto out;
4124 }
4125 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4126 shrink_dcache_parent(new_dentry);
4127 if (!is_dir) {
4128 error = try_break_deleg(source, delegated_inode);
4129 if (error)
4130 goto out;
4131 }
4132 if (target && !new_is_dir) {
4133 error = try_break_deleg(target, delegated_inode);
4134 if (error)
4135 goto out;
4136 }
4137 if (!flags) {
4138 error = old_dir->i_op->rename(old_dir, old_dentry,
4139 new_dir, new_dentry);
4140 } else {
4141 error = old_dir->i_op->rename2(old_dir, old_dentry,
4142 new_dir, new_dentry, flags);
4143 }
4144 if (error)
4145 goto out;
4146
4147 if (!(flags & RENAME_EXCHANGE) && target) {
4148 if (is_dir)
4149 target->i_flags |= S_DEAD;
4150 dont_mount(new_dentry);
4151 }
4152 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4153 if (!(flags & RENAME_EXCHANGE))
4154 d_move(old_dentry, new_dentry);
4155 else
4156 d_exchange(old_dentry, new_dentry);
4157 }
4158 out:
4159 if (!is_dir || (flags & RENAME_EXCHANGE))
4160 unlock_two_nondirectories(source, target);
4161 else if (target)
4162 mutex_unlock(&target->i_mutex);
4163 dput(new_dentry);
4164 if (!error) {
4165 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4166 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4167 if (flags & RENAME_EXCHANGE) {
4168 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4169 new_is_dir, NULL, new_dentry);
4170 }
4171 }
4172 fsnotify_oldname_free(old_name);
4173
4174 return error;
4175 }
4176 EXPORT_SYMBOL(vfs_rename);
4177
4178 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4179 int, newdfd, const char __user *, newname, unsigned int, flags)
4180 {
4181 struct dentry *old_dir, *new_dir;
4182 struct dentry *old_dentry, *new_dentry;
4183 struct dentry *trap;
4184 struct nameidata oldnd, newnd;
4185 struct inode *delegated_inode = NULL;
4186 struct filename *from;
4187 struct filename *to;
4188 unsigned int lookup_flags = 0;
4189 bool should_retry = false;
4190 int error;
4191
4192 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4193 return -EINVAL;
4194
4195 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4196 return -EINVAL;
4197
4198 retry:
4199 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4200 if (IS_ERR(from)) {
4201 error = PTR_ERR(from);
4202 goto exit;
4203 }
4204
4205 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4206 if (IS_ERR(to)) {
4207 error = PTR_ERR(to);
4208 goto exit1;
4209 }
4210
4211 error = -EXDEV;
4212 if (oldnd.path.mnt != newnd.path.mnt)
4213 goto exit2;
4214
4215 old_dir = oldnd.path.dentry;
4216 error = -EBUSY;
4217 if (oldnd.last_type != LAST_NORM)
4218 goto exit2;
4219
4220 new_dir = newnd.path.dentry;
4221 if (flags & RENAME_NOREPLACE)
4222 error = -EEXIST;
4223 if (newnd.last_type != LAST_NORM)
4224 goto exit2;
4225
4226 error = mnt_want_write(oldnd.path.mnt);
4227 if (error)
4228 goto exit2;
4229
4230 oldnd.flags &= ~LOOKUP_PARENT;
4231 newnd.flags &= ~LOOKUP_PARENT;
4232 if (!(flags & RENAME_EXCHANGE))
4233 newnd.flags |= LOOKUP_RENAME_TARGET;
4234
4235 retry_deleg:
4236 trap = lock_rename(new_dir, old_dir);
4237
4238 old_dentry = lookup_hash(&oldnd);
4239 error = PTR_ERR(old_dentry);
4240 if (IS_ERR(old_dentry))
4241 goto exit3;
4242 /* source must exist */
4243 error = -ENOENT;
4244 if (d_is_negative(old_dentry))
4245 goto exit4;
4246 new_dentry = lookup_hash(&newnd);
4247 error = PTR_ERR(new_dentry);
4248 if (IS_ERR(new_dentry))
4249 goto exit4;
4250 error = -EEXIST;
4251 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4252 goto exit5;
4253 if (flags & RENAME_EXCHANGE) {
4254 error = -ENOENT;
4255 if (d_is_negative(new_dentry))
4256 goto exit5;
4257
4258 if (!d_is_dir(new_dentry)) {
4259 error = -ENOTDIR;
4260 if (newnd.last.name[newnd.last.len])
4261 goto exit5;
4262 }
4263 }
4264 /* unless the source is a directory trailing slashes give -ENOTDIR */
4265 if (!d_is_dir(old_dentry)) {
4266 error = -ENOTDIR;
4267 if (oldnd.last.name[oldnd.last.len])
4268 goto exit5;
4269 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4270 goto exit5;
4271 }
4272 /* source should not be ancestor of target */
4273 error = -EINVAL;
4274 if (old_dentry == trap)
4275 goto exit5;
4276 /* target should not be an ancestor of source */
4277 if (!(flags & RENAME_EXCHANGE))
4278 error = -ENOTEMPTY;
4279 if (new_dentry == trap)
4280 goto exit5;
4281
4282 error = security_path_rename(&oldnd.path, old_dentry,
4283 &newnd.path, new_dentry, flags);
4284 if (error)
4285 goto exit5;
4286 error = vfs_rename(old_dir->d_inode, old_dentry,
4287 new_dir->d_inode, new_dentry,
4288 &delegated_inode, flags);
4289 exit5:
4290 dput(new_dentry);
4291 exit4:
4292 dput(old_dentry);
4293 exit3:
4294 unlock_rename(new_dir, old_dir);
4295 if (delegated_inode) {
4296 error = break_deleg_wait(&delegated_inode);
4297 if (!error)
4298 goto retry_deleg;
4299 }
4300 mnt_drop_write(oldnd.path.mnt);
4301 exit2:
4302 if (retry_estale(error, lookup_flags))
4303 should_retry = true;
4304 path_put(&newnd.path);
4305 putname(to);
4306 exit1:
4307 path_put(&oldnd.path);
4308 putname(from);
4309 if (should_retry) {
4310 should_retry = false;
4311 lookup_flags |= LOOKUP_REVAL;
4312 goto retry;
4313 }
4314 exit:
4315 return error;
4316 }
4317
4318 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4319 int, newdfd, const char __user *, newname)
4320 {
4321 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4322 }
4323
4324 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4325 {
4326 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4327 }
4328
4329 int readlink_copy(char __user *buffer, int buflen, const char *link)
4330 {
4331 int len = PTR_ERR(link);
4332 if (IS_ERR(link))
4333 goto out;
4334
4335 len = strlen(link);
4336 if (len > (unsigned) buflen)
4337 len = buflen;
4338 if (copy_to_user(buffer, link, len))
4339 len = -EFAULT;
4340 out:
4341 return len;
4342 }
4343 EXPORT_SYMBOL(readlink_copy);
4344
4345 /*
4346 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4347 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4348 * using) it for any given inode is up to filesystem.
4349 */
4350 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4351 {
4352 struct nameidata nd;
4353 void *cookie;
4354 int res;
4355
4356 nd.depth = 0;
4357 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4358 if (IS_ERR(cookie))
4359 return PTR_ERR(cookie);
4360
4361 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4362 if (dentry->d_inode->i_op->put_link)
4363 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4364 return res;
4365 }
4366 EXPORT_SYMBOL(generic_readlink);
4367
4368 /* get the link contents into pagecache */
4369 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4370 {
4371 char *kaddr;
4372 struct page *page;
4373 struct address_space *mapping = dentry->d_inode->i_mapping;
4374 page = read_mapping_page(mapping, 0, NULL);
4375 if (IS_ERR(page))
4376 return (char*)page;
4377 *ppage = page;
4378 kaddr = kmap(page);
4379 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4380 return kaddr;
4381 }
4382
4383 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4384 {
4385 struct page *page = NULL;
4386 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4387 if (page) {
4388 kunmap(page);
4389 page_cache_release(page);
4390 }
4391 return res;
4392 }
4393 EXPORT_SYMBOL(page_readlink);
4394
4395 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4396 {
4397 struct page *page = NULL;
4398 nd_set_link(nd, page_getlink(dentry, &page));
4399 return page;
4400 }
4401 EXPORT_SYMBOL(page_follow_link_light);
4402
4403 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4404 {
4405 struct page *page = cookie;
4406
4407 if (page) {
4408 kunmap(page);
4409 page_cache_release(page);
4410 }
4411 }
4412 EXPORT_SYMBOL(page_put_link);
4413
4414 /*
4415 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4416 */
4417 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4418 {
4419 struct address_space *mapping = inode->i_mapping;
4420 struct page *page;
4421 void *fsdata;
4422 int err;
4423 char *kaddr;
4424 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4425 if (nofs)
4426 flags |= AOP_FLAG_NOFS;
4427
4428 retry:
4429 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4430 flags, &page, &fsdata);
4431 if (err)
4432 goto fail;
4433
4434 kaddr = kmap_atomic(page);
4435 memcpy(kaddr, symname, len-1);
4436 kunmap_atomic(kaddr);
4437
4438 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4439 page, fsdata);
4440 if (err < 0)
4441 goto fail;
4442 if (err < len-1)
4443 goto retry;
4444
4445 mark_inode_dirty(inode);
4446 return 0;
4447 fail:
4448 return err;
4449 }
4450 EXPORT_SYMBOL(__page_symlink);
4451
4452 int page_symlink(struct inode *inode, const char *symname, int len)
4453 {
4454 return __page_symlink(inode, symname, len,
4455 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4456 }
4457 EXPORT_SYMBOL(page_symlink);
4458
4459 const struct inode_operations page_symlink_inode_operations = {
4460 .readlink = generic_readlink,
4461 .follow_link = page_follow_link_light,
4462 .put_link = page_put_link,
4463 };
4464 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.126679 seconds and 5 git commands to generate.