rapidio: add architecture specific callbacks
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56
57 /*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65 DEFINE_BRLOCK(vfsmount_lock);
66
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73 }
74
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77 /*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 int res;
84
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96 }
97
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106 }
107
108 /*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
127 }
128
129 /*
130 * Release a peer group ID
131 */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
156 {
157 #ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 mnt->mnt_count = n;
161 #endif
162 }
163
164 /*
165 * vfsmount lock must be held for read
166 */
167 static inline void mnt_inc_count(struct vfsmount *mnt)
168 {
169 mnt_add_count(mnt, 1);
170 }
171
172 /*
173 * vfsmount lock must be held for read
174 */
175 static inline void mnt_dec_count(struct vfsmount *mnt)
176 {
177 mnt_add_count(mnt, -1);
178 }
179
180 /*
181 * vfsmount lock must be held for write
182 */
183 unsigned int mnt_get_count(struct vfsmount *mnt)
184 {
185 #ifdef CONFIG_SMP
186 unsigned int count = 0;
187 int cpu;
188
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 }
192
193 return count;
194 #else
195 return mnt->mnt_count;
196 #endif
197 }
198
199 static struct vfsmount *alloc_vfsmnt(const char *name)
200 {
201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 if (mnt) {
203 int err;
204
205 err = mnt_alloc_id(mnt);
206 if (err)
207 goto out_free_cache;
208
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
213 }
214
215 #ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
219
220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 #else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224 #endif
225
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
230 INIT_LIST_HEAD(&mnt->mnt_expire);
231 INIT_LIST_HEAD(&mnt->mnt_share);
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
237 }
238 return mnt;
239
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 mnt_free_id(mnt);
246 out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
249 }
250
251 /*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259 /*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
270 int __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
277 }
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
281 {
282 #ifdef CONFIG_SMP
283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 mnt->mnt_writers++;
286 #endif
287 }
288
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 mnt->mnt_writers--;
295 #endif
296 }
297
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 unsigned int count = 0;
302 int cpu;
303
304 for_each_possible_cpu(cpu) {
305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 }
307
308 return count;
309 #else
310 return mnt->mnt_writers;
311 #endif
312 }
313
314 /*
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
321 */
322 /**
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
331 */
332 int mnt_want_write(struct vfsmount *mnt)
333 {
334 int ret = 0;
335
336 preempt_disable();
337 mnt_inc_writers(mnt);
338 /*
339 * The store to mnt_inc_writers must be visible before we pass
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
342 */
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
346 /*
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
350 */
351 smp_rmb();
352 if (__mnt_is_readonly(mnt)) {
353 mnt_dec_writers(mnt);
354 ret = -EROFS;
355 goto out;
356 }
357 out:
358 preempt_enable();
359 return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362
363 /**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
381 mnt_inc_writers(mnt);
382 preempt_enable();
383 return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387 /**
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
394 int mnt_want_write_file(struct file *file)
395 {
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
401 }
402 EXPORT_SYMBOL_GPL(mnt_want_write_file);
403
404 /**
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
407 *
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
411 */
412 void mnt_drop_write(struct vfsmount *mnt)
413 {
414 preempt_disable();
415 mnt_dec_writers(mnt);
416 preempt_enable();
417 }
418 EXPORT_SYMBOL_GPL(mnt_drop_write);
419
420 static int mnt_make_readonly(struct vfsmount *mnt)
421 {
422 int ret = 0;
423
424 br_write_lock(vfsmount_lock);
425 mnt->mnt_flags |= MNT_WRITE_HOLD;
426 /*
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
429 */
430 smp_mb();
431
432 /*
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
437 *
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
447 */
448 if (mnt_get_writers(mnt) > 0)
449 ret = -EBUSY;
450 else
451 mnt->mnt_flags |= MNT_READONLY;
452 /*
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
455 */
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 br_write_unlock(vfsmount_lock);
459 return ret;
460 }
461
462 static void __mnt_unmake_readonly(struct vfsmount *mnt)
463 {
464 br_write_lock(vfsmount_lock);
465 mnt->mnt_flags &= ~MNT_READONLY;
466 br_write_unlock(vfsmount_lock);
467 }
468
469 static void free_vfsmnt(struct vfsmount *mnt)
470 {
471 kfree(mnt->mnt_devname);
472 mnt_free_id(mnt);
473 #ifdef CONFIG_SMP
474 free_percpu(mnt->mnt_pcp);
475 #endif
476 kmem_cache_free(mnt_cache, mnt);
477 }
478
479 /*
480 * find the first or last mount at @dentry on vfsmount @mnt depending on
481 * @dir. If @dir is set return the first mount else return the last mount.
482 * vfsmount_lock must be held for read or write.
483 */
484 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
485 int dir)
486 {
487 struct list_head *head = mount_hashtable + hash(mnt, dentry);
488 struct list_head *tmp = head;
489 struct vfsmount *p, *found = NULL;
490
491 for (;;) {
492 tmp = dir ? tmp->next : tmp->prev;
493 p = NULL;
494 if (tmp == head)
495 break;
496 p = list_entry(tmp, struct vfsmount, mnt_hash);
497 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
498 found = p;
499 break;
500 }
501 }
502 return found;
503 }
504
505 /*
506 * lookup_mnt increments the ref count before returning
507 * the vfsmount struct.
508 */
509 struct vfsmount *lookup_mnt(struct path *path)
510 {
511 struct vfsmount *child_mnt;
512
513 br_read_lock(vfsmount_lock);
514 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
515 mntget(child_mnt);
516 br_read_unlock(vfsmount_lock);
517 return child_mnt;
518 }
519
520 static inline int check_mnt(struct vfsmount *mnt)
521 {
522 return mnt->mnt_ns == current->nsproxy->mnt_ns;
523 }
524
525 /*
526 * vfsmount lock must be held for write
527 */
528 static void touch_mnt_namespace(struct mnt_namespace *ns)
529 {
530 if (ns) {
531 ns->event = ++event;
532 wake_up_interruptible(&ns->poll);
533 }
534 }
535
536 /*
537 * vfsmount lock must be held for write
538 */
539 static void __touch_mnt_namespace(struct mnt_namespace *ns)
540 {
541 if (ns && ns->event != event) {
542 ns->event = event;
543 wake_up_interruptible(&ns->poll);
544 }
545 }
546
547 /*
548 * Clear dentry's mounted state if it has no remaining mounts.
549 * vfsmount_lock must be held for write.
550 */
551 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
552 {
553 unsigned u;
554
555 for (u = 0; u < HASH_SIZE; u++) {
556 struct vfsmount *p;
557
558 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
559 if (p->mnt_mountpoint == dentry)
560 return;
561 }
562 }
563 spin_lock(&dentry->d_lock);
564 dentry->d_flags &= ~DCACHE_MOUNTED;
565 spin_unlock(&dentry->d_lock);
566 }
567
568 /*
569 * vfsmount lock must be held for write
570 */
571 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
572 {
573 old_path->dentry = mnt->mnt_mountpoint;
574 old_path->mnt = mnt->mnt_parent;
575 mnt->mnt_parent = mnt;
576 mnt->mnt_mountpoint = mnt->mnt_root;
577 list_del_init(&mnt->mnt_child);
578 list_del_init(&mnt->mnt_hash);
579 dentry_reset_mounted(old_path->mnt, old_path->dentry);
580 }
581
582 /*
583 * vfsmount lock must be held for write
584 */
585 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
586 struct vfsmount *child_mnt)
587 {
588 child_mnt->mnt_parent = mntget(mnt);
589 child_mnt->mnt_mountpoint = dget(dentry);
590 spin_lock(&dentry->d_lock);
591 dentry->d_flags |= DCACHE_MOUNTED;
592 spin_unlock(&dentry->d_lock);
593 }
594
595 /*
596 * vfsmount lock must be held for write
597 */
598 static void attach_mnt(struct vfsmount *mnt, struct path *path)
599 {
600 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
601 list_add_tail(&mnt->mnt_hash, mount_hashtable +
602 hash(path->mnt, path->dentry));
603 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
604 }
605
606 static inline void __mnt_make_longterm(struct vfsmount *mnt)
607 {
608 #ifdef CONFIG_SMP
609 atomic_inc(&mnt->mnt_longterm);
610 #endif
611 }
612
613 /* needs vfsmount lock for write */
614 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
615 {
616 #ifdef CONFIG_SMP
617 atomic_dec(&mnt->mnt_longterm);
618 #endif
619 }
620
621 /*
622 * vfsmount lock must be held for write
623 */
624 static void commit_tree(struct vfsmount *mnt)
625 {
626 struct vfsmount *parent = mnt->mnt_parent;
627 struct vfsmount *m;
628 LIST_HEAD(head);
629 struct mnt_namespace *n = parent->mnt_ns;
630
631 BUG_ON(parent == mnt);
632
633 list_add_tail(&head, &mnt->mnt_list);
634 list_for_each_entry(m, &head, mnt_list) {
635 m->mnt_ns = n;
636 __mnt_make_longterm(m);
637 }
638
639 list_splice(&head, n->list.prev);
640
641 list_add_tail(&mnt->mnt_hash, mount_hashtable +
642 hash(parent, mnt->mnt_mountpoint));
643 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
644 touch_mnt_namespace(n);
645 }
646
647 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
648 {
649 struct list_head *next = p->mnt_mounts.next;
650 if (next == &p->mnt_mounts) {
651 while (1) {
652 if (p == root)
653 return NULL;
654 next = p->mnt_child.next;
655 if (next != &p->mnt_parent->mnt_mounts)
656 break;
657 p = p->mnt_parent;
658 }
659 }
660 return list_entry(next, struct vfsmount, mnt_child);
661 }
662
663 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
664 {
665 struct list_head *prev = p->mnt_mounts.prev;
666 while (prev != &p->mnt_mounts) {
667 p = list_entry(prev, struct vfsmount, mnt_child);
668 prev = p->mnt_mounts.prev;
669 }
670 return p;
671 }
672
673 struct vfsmount *
674 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
675 {
676 struct vfsmount *mnt;
677 struct dentry *root;
678
679 if (!type)
680 return ERR_PTR(-ENODEV);
681
682 mnt = alloc_vfsmnt(name);
683 if (!mnt)
684 return ERR_PTR(-ENOMEM);
685
686 if (flags & MS_KERNMOUNT)
687 mnt->mnt_flags = MNT_INTERNAL;
688
689 root = mount_fs(type, flags, name, data);
690 if (IS_ERR(root)) {
691 free_vfsmnt(mnt);
692 return ERR_CAST(root);
693 }
694
695 mnt->mnt_root = root;
696 mnt->mnt_sb = root->d_sb;
697 mnt->mnt_mountpoint = mnt->mnt_root;
698 mnt->mnt_parent = mnt;
699 return mnt;
700 }
701 EXPORT_SYMBOL_GPL(vfs_kern_mount);
702
703 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
704 int flag)
705 {
706 struct super_block *sb = old->mnt_sb;
707 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
708
709 if (mnt) {
710 if (flag & (CL_SLAVE | CL_PRIVATE))
711 mnt->mnt_group_id = 0; /* not a peer of original */
712 else
713 mnt->mnt_group_id = old->mnt_group_id;
714
715 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
716 int err = mnt_alloc_group_id(mnt);
717 if (err)
718 goto out_free;
719 }
720
721 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
722 atomic_inc(&sb->s_active);
723 mnt->mnt_sb = sb;
724 mnt->mnt_root = dget(root);
725 mnt->mnt_mountpoint = mnt->mnt_root;
726 mnt->mnt_parent = mnt;
727
728 if (flag & CL_SLAVE) {
729 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
730 mnt->mnt_master = old;
731 CLEAR_MNT_SHARED(mnt);
732 } else if (!(flag & CL_PRIVATE)) {
733 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
734 list_add(&mnt->mnt_share, &old->mnt_share);
735 if (IS_MNT_SLAVE(old))
736 list_add(&mnt->mnt_slave, &old->mnt_slave);
737 mnt->mnt_master = old->mnt_master;
738 }
739 if (flag & CL_MAKE_SHARED)
740 set_mnt_shared(mnt);
741
742 /* stick the duplicate mount on the same expiry list
743 * as the original if that was on one */
744 if (flag & CL_EXPIRE) {
745 if (!list_empty(&old->mnt_expire))
746 list_add(&mnt->mnt_expire, &old->mnt_expire);
747 }
748 }
749 return mnt;
750
751 out_free:
752 free_vfsmnt(mnt);
753 return NULL;
754 }
755
756 static inline void mntfree(struct vfsmount *mnt)
757 {
758 struct super_block *sb = mnt->mnt_sb;
759
760 /*
761 * This probably indicates that somebody messed
762 * up a mnt_want/drop_write() pair. If this
763 * happens, the filesystem was probably unable
764 * to make r/w->r/o transitions.
765 */
766 /*
767 * The locking used to deal with mnt_count decrement provides barriers,
768 * so mnt_get_writers() below is safe.
769 */
770 WARN_ON(mnt_get_writers(mnt));
771 fsnotify_vfsmount_delete(mnt);
772 dput(mnt->mnt_root);
773 free_vfsmnt(mnt);
774 deactivate_super(sb);
775 }
776
777 static void mntput_no_expire(struct vfsmount *mnt)
778 {
779 put_again:
780 #ifdef CONFIG_SMP
781 br_read_lock(vfsmount_lock);
782 if (likely(atomic_read(&mnt->mnt_longterm))) {
783 mnt_dec_count(mnt);
784 br_read_unlock(vfsmount_lock);
785 return;
786 }
787 br_read_unlock(vfsmount_lock);
788
789 br_write_lock(vfsmount_lock);
790 mnt_dec_count(mnt);
791 if (mnt_get_count(mnt)) {
792 br_write_unlock(vfsmount_lock);
793 return;
794 }
795 #else
796 mnt_dec_count(mnt);
797 if (likely(mnt_get_count(mnt)))
798 return;
799 br_write_lock(vfsmount_lock);
800 #endif
801 if (unlikely(mnt->mnt_pinned)) {
802 mnt_add_count(mnt, mnt->mnt_pinned + 1);
803 mnt->mnt_pinned = 0;
804 br_write_unlock(vfsmount_lock);
805 acct_auto_close_mnt(mnt);
806 goto put_again;
807 }
808 br_write_unlock(vfsmount_lock);
809 mntfree(mnt);
810 }
811
812 void mntput(struct vfsmount *mnt)
813 {
814 if (mnt) {
815 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
816 if (unlikely(mnt->mnt_expiry_mark))
817 mnt->mnt_expiry_mark = 0;
818 mntput_no_expire(mnt);
819 }
820 }
821 EXPORT_SYMBOL(mntput);
822
823 struct vfsmount *mntget(struct vfsmount *mnt)
824 {
825 if (mnt)
826 mnt_inc_count(mnt);
827 return mnt;
828 }
829 EXPORT_SYMBOL(mntget);
830
831 void mnt_pin(struct vfsmount *mnt)
832 {
833 br_write_lock(vfsmount_lock);
834 mnt->mnt_pinned++;
835 br_write_unlock(vfsmount_lock);
836 }
837 EXPORT_SYMBOL(mnt_pin);
838
839 void mnt_unpin(struct vfsmount *mnt)
840 {
841 br_write_lock(vfsmount_lock);
842 if (mnt->mnt_pinned) {
843 mnt_inc_count(mnt);
844 mnt->mnt_pinned--;
845 }
846 br_write_unlock(vfsmount_lock);
847 }
848 EXPORT_SYMBOL(mnt_unpin);
849
850 static inline void mangle(struct seq_file *m, const char *s)
851 {
852 seq_escape(m, s, " \t\n\\");
853 }
854
855 /*
856 * Simple .show_options callback for filesystems which don't want to
857 * implement more complex mount option showing.
858 *
859 * See also save_mount_options().
860 */
861 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
862 {
863 const char *options;
864
865 rcu_read_lock();
866 options = rcu_dereference(mnt->mnt_sb->s_options);
867
868 if (options != NULL && options[0]) {
869 seq_putc(m, ',');
870 mangle(m, options);
871 }
872 rcu_read_unlock();
873
874 return 0;
875 }
876 EXPORT_SYMBOL(generic_show_options);
877
878 /*
879 * If filesystem uses generic_show_options(), this function should be
880 * called from the fill_super() callback.
881 *
882 * The .remount_fs callback usually needs to be handled in a special
883 * way, to make sure, that previous options are not overwritten if the
884 * remount fails.
885 *
886 * Also note, that if the filesystem's .remount_fs function doesn't
887 * reset all options to their default value, but changes only newly
888 * given options, then the displayed options will not reflect reality
889 * any more.
890 */
891 void save_mount_options(struct super_block *sb, char *options)
892 {
893 BUG_ON(sb->s_options);
894 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
895 }
896 EXPORT_SYMBOL(save_mount_options);
897
898 void replace_mount_options(struct super_block *sb, char *options)
899 {
900 char *old = sb->s_options;
901 rcu_assign_pointer(sb->s_options, options);
902 if (old) {
903 synchronize_rcu();
904 kfree(old);
905 }
906 }
907 EXPORT_SYMBOL(replace_mount_options);
908
909 #ifdef CONFIG_PROC_FS
910 /* iterator */
911 static void *m_start(struct seq_file *m, loff_t *pos)
912 {
913 struct proc_mounts *p = m->private;
914
915 down_read(&namespace_sem);
916 return seq_list_start(&p->ns->list, *pos);
917 }
918
919 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
920 {
921 struct proc_mounts *p = m->private;
922
923 return seq_list_next(v, &p->ns->list, pos);
924 }
925
926 static void m_stop(struct seq_file *m, void *v)
927 {
928 up_read(&namespace_sem);
929 }
930
931 int mnt_had_events(struct proc_mounts *p)
932 {
933 struct mnt_namespace *ns = p->ns;
934 int res = 0;
935
936 br_read_lock(vfsmount_lock);
937 if (p->event != ns->event) {
938 p->event = ns->event;
939 res = 1;
940 }
941 br_read_unlock(vfsmount_lock);
942
943 return res;
944 }
945
946 struct proc_fs_info {
947 int flag;
948 const char *str;
949 };
950
951 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
952 {
953 static const struct proc_fs_info fs_info[] = {
954 { MS_SYNCHRONOUS, ",sync" },
955 { MS_DIRSYNC, ",dirsync" },
956 { MS_MANDLOCK, ",mand" },
957 { 0, NULL }
958 };
959 const struct proc_fs_info *fs_infop;
960
961 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
962 if (sb->s_flags & fs_infop->flag)
963 seq_puts(m, fs_infop->str);
964 }
965
966 return security_sb_show_options(m, sb);
967 }
968
969 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
970 {
971 static const struct proc_fs_info mnt_info[] = {
972 { MNT_NOSUID, ",nosuid" },
973 { MNT_NODEV, ",nodev" },
974 { MNT_NOEXEC, ",noexec" },
975 { MNT_NOATIME, ",noatime" },
976 { MNT_NODIRATIME, ",nodiratime" },
977 { MNT_RELATIME, ",relatime" },
978 { 0, NULL }
979 };
980 const struct proc_fs_info *fs_infop;
981
982 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
983 if (mnt->mnt_flags & fs_infop->flag)
984 seq_puts(m, fs_infop->str);
985 }
986 }
987
988 static void show_type(struct seq_file *m, struct super_block *sb)
989 {
990 mangle(m, sb->s_type->name);
991 if (sb->s_subtype && sb->s_subtype[0]) {
992 seq_putc(m, '.');
993 mangle(m, sb->s_subtype);
994 }
995 }
996
997 static int show_vfsmnt(struct seq_file *m, void *v)
998 {
999 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1000 int err = 0;
1001 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1002
1003 if (mnt->mnt_sb->s_op->show_devname) {
1004 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1005 if (err)
1006 goto out;
1007 } else {
1008 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1009 }
1010 seq_putc(m, ' ');
1011 seq_path(m, &mnt_path, " \t\n\\");
1012 seq_putc(m, ' ');
1013 show_type(m, mnt->mnt_sb);
1014 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1015 err = show_sb_opts(m, mnt->mnt_sb);
1016 if (err)
1017 goto out;
1018 show_mnt_opts(m, mnt);
1019 if (mnt->mnt_sb->s_op->show_options)
1020 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1021 seq_puts(m, " 0 0\n");
1022 out:
1023 return err;
1024 }
1025
1026 const struct seq_operations mounts_op = {
1027 .start = m_start,
1028 .next = m_next,
1029 .stop = m_stop,
1030 .show = show_vfsmnt
1031 };
1032
1033 static int uuid_is_nil(u8 *uuid)
1034 {
1035 int i;
1036 u8 *cp = (u8 *)uuid;
1037
1038 for (i = 0; i < 16; i++) {
1039 if (*cp++)
1040 return 0;
1041 }
1042 return 1;
1043 }
1044
1045 static int show_mountinfo(struct seq_file *m, void *v)
1046 {
1047 struct proc_mounts *p = m->private;
1048 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1049 struct super_block *sb = mnt->mnt_sb;
1050 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1051 struct path root = p->root;
1052 int err = 0;
1053
1054 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1055 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1056 if (sb->s_op->show_path)
1057 err = sb->s_op->show_path(m, mnt);
1058 else
1059 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1060 if (err)
1061 goto out;
1062 seq_putc(m, ' ');
1063 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1064 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1065 /*
1066 * Mountpoint is outside root, discard that one. Ugly,
1067 * but less so than trying to do that in iterator in a
1068 * race-free way (due to renames).
1069 */
1070 return SEQ_SKIP;
1071 }
1072 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1073 show_mnt_opts(m, mnt);
1074
1075 /* Tagged fields ("foo:X" or "bar") */
1076 if (IS_MNT_SHARED(mnt))
1077 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1078 if (IS_MNT_SLAVE(mnt)) {
1079 int master = mnt->mnt_master->mnt_group_id;
1080 int dom = get_dominating_id(mnt, &p->root);
1081 seq_printf(m, " master:%i", master);
1082 if (dom && dom != master)
1083 seq_printf(m, " propagate_from:%i", dom);
1084 }
1085 if (IS_MNT_UNBINDABLE(mnt))
1086 seq_puts(m, " unbindable");
1087
1088 if (!uuid_is_nil(mnt->mnt_sb->s_uuid))
1089 /* print the uuid */
1090 seq_printf(m, " uuid:%pU", mnt->mnt_sb->s_uuid);
1091
1092 /* Filesystem specific data */
1093 seq_puts(m, " - ");
1094 show_type(m, sb);
1095 seq_putc(m, ' ');
1096 if (sb->s_op->show_devname)
1097 err = sb->s_op->show_devname(m, mnt);
1098 else
1099 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1100 if (err)
1101 goto out;
1102 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1103 err = show_sb_opts(m, sb);
1104 if (err)
1105 goto out;
1106 if (sb->s_op->show_options)
1107 err = sb->s_op->show_options(m, mnt);
1108 seq_putc(m, '\n');
1109 out:
1110 return err;
1111 }
1112
1113 const struct seq_operations mountinfo_op = {
1114 .start = m_start,
1115 .next = m_next,
1116 .stop = m_stop,
1117 .show = show_mountinfo,
1118 };
1119
1120 static int show_vfsstat(struct seq_file *m, void *v)
1121 {
1122 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1123 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1124 int err = 0;
1125
1126 /* device */
1127 if (mnt->mnt_sb->s_op->show_devname) {
1128 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1129 } else {
1130 if (mnt->mnt_devname) {
1131 seq_puts(m, "device ");
1132 mangle(m, mnt->mnt_devname);
1133 } else
1134 seq_puts(m, "no device");
1135 }
1136
1137 /* mount point */
1138 seq_puts(m, " mounted on ");
1139 seq_path(m, &mnt_path, " \t\n\\");
1140 seq_putc(m, ' ');
1141
1142 /* file system type */
1143 seq_puts(m, "with fstype ");
1144 show_type(m, mnt->mnt_sb);
1145
1146 /* optional statistics */
1147 if (mnt->mnt_sb->s_op->show_stats) {
1148 seq_putc(m, ' ');
1149 if (!err)
1150 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1151 }
1152
1153 seq_putc(m, '\n');
1154 return err;
1155 }
1156
1157 const struct seq_operations mountstats_op = {
1158 .start = m_start,
1159 .next = m_next,
1160 .stop = m_stop,
1161 .show = show_vfsstat,
1162 };
1163 #endif /* CONFIG_PROC_FS */
1164
1165 /**
1166 * may_umount_tree - check if a mount tree is busy
1167 * @mnt: root of mount tree
1168 *
1169 * This is called to check if a tree of mounts has any
1170 * open files, pwds, chroots or sub mounts that are
1171 * busy.
1172 */
1173 int may_umount_tree(struct vfsmount *mnt)
1174 {
1175 int actual_refs = 0;
1176 int minimum_refs = 0;
1177 struct vfsmount *p;
1178
1179 /* write lock needed for mnt_get_count */
1180 br_write_lock(vfsmount_lock);
1181 for (p = mnt; p; p = next_mnt(p, mnt)) {
1182 actual_refs += mnt_get_count(p);
1183 minimum_refs += 2;
1184 }
1185 br_write_unlock(vfsmount_lock);
1186
1187 if (actual_refs > minimum_refs)
1188 return 0;
1189
1190 return 1;
1191 }
1192
1193 EXPORT_SYMBOL(may_umount_tree);
1194
1195 /**
1196 * may_umount - check if a mount point is busy
1197 * @mnt: root of mount
1198 *
1199 * This is called to check if a mount point has any
1200 * open files, pwds, chroots or sub mounts. If the
1201 * mount has sub mounts this will return busy
1202 * regardless of whether the sub mounts are busy.
1203 *
1204 * Doesn't take quota and stuff into account. IOW, in some cases it will
1205 * give false negatives. The main reason why it's here is that we need
1206 * a non-destructive way to look for easily umountable filesystems.
1207 */
1208 int may_umount(struct vfsmount *mnt)
1209 {
1210 int ret = 1;
1211 down_read(&namespace_sem);
1212 br_write_lock(vfsmount_lock);
1213 if (propagate_mount_busy(mnt, 2))
1214 ret = 0;
1215 br_write_unlock(vfsmount_lock);
1216 up_read(&namespace_sem);
1217 return ret;
1218 }
1219
1220 EXPORT_SYMBOL(may_umount);
1221
1222 void release_mounts(struct list_head *head)
1223 {
1224 struct vfsmount *mnt;
1225 while (!list_empty(head)) {
1226 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1227 list_del_init(&mnt->mnt_hash);
1228 if (mnt->mnt_parent != mnt) {
1229 struct dentry *dentry;
1230 struct vfsmount *m;
1231
1232 br_write_lock(vfsmount_lock);
1233 dentry = mnt->mnt_mountpoint;
1234 m = mnt->mnt_parent;
1235 mnt->mnt_mountpoint = mnt->mnt_root;
1236 mnt->mnt_parent = mnt;
1237 m->mnt_ghosts--;
1238 br_write_unlock(vfsmount_lock);
1239 dput(dentry);
1240 mntput(m);
1241 }
1242 mntput(mnt);
1243 }
1244 }
1245
1246 /*
1247 * vfsmount lock must be held for write
1248 * namespace_sem must be held for write
1249 */
1250 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1251 {
1252 LIST_HEAD(tmp_list);
1253 struct vfsmount *p;
1254
1255 for (p = mnt; p; p = next_mnt(p, mnt))
1256 list_move(&p->mnt_hash, &tmp_list);
1257
1258 if (propagate)
1259 propagate_umount(&tmp_list);
1260
1261 list_for_each_entry(p, &tmp_list, mnt_hash) {
1262 list_del_init(&p->mnt_expire);
1263 list_del_init(&p->mnt_list);
1264 __touch_mnt_namespace(p->mnt_ns);
1265 p->mnt_ns = NULL;
1266 __mnt_make_shortterm(p);
1267 list_del_init(&p->mnt_child);
1268 if (p->mnt_parent != p) {
1269 p->mnt_parent->mnt_ghosts++;
1270 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1271 }
1272 change_mnt_propagation(p, MS_PRIVATE);
1273 }
1274 list_splice(&tmp_list, kill);
1275 }
1276
1277 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1278
1279 static int do_umount(struct vfsmount *mnt, int flags)
1280 {
1281 struct super_block *sb = mnt->mnt_sb;
1282 int retval;
1283 LIST_HEAD(umount_list);
1284
1285 retval = security_sb_umount(mnt, flags);
1286 if (retval)
1287 return retval;
1288
1289 /*
1290 * Allow userspace to request a mountpoint be expired rather than
1291 * unmounting unconditionally. Unmount only happens if:
1292 * (1) the mark is already set (the mark is cleared by mntput())
1293 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1294 */
1295 if (flags & MNT_EXPIRE) {
1296 if (mnt == current->fs->root.mnt ||
1297 flags & (MNT_FORCE | MNT_DETACH))
1298 return -EINVAL;
1299
1300 /*
1301 * probably don't strictly need the lock here if we examined
1302 * all race cases, but it's a slowpath.
1303 */
1304 br_write_lock(vfsmount_lock);
1305 if (mnt_get_count(mnt) != 2) {
1306 br_write_unlock(vfsmount_lock);
1307 return -EBUSY;
1308 }
1309 br_write_unlock(vfsmount_lock);
1310
1311 if (!xchg(&mnt->mnt_expiry_mark, 1))
1312 return -EAGAIN;
1313 }
1314
1315 /*
1316 * If we may have to abort operations to get out of this
1317 * mount, and they will themselves hold resources we must
1318 * allow the fs to do things. In the Unix tradition of
1319 * 'Gee thats tricky lets do it in userspace' the umount_begin
1320 * might fail to complete on the first run through as other tasks
1321 * must return, and the like. Thats for the mount program to worry
1322 * about for the moment.
1323 */
1324
1325 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1326 sb->s_op->umount_begin(sb);
1327 }
1328
1329 /*
1330 * No sense to grab the lock for this test, but test itself looks
1331 * somewhat bogus. Suggestions for better replacement?
1332 * Ho-hum... In principle, we might treat that as umount + switch
1333 * to rootfs. GC would eventually take care of the old vfsmount.
1334 * Actually it makes sense, especially if rootfs would contain a
1335 * /reboot - static binary that would close all descriptors and
1336 * call reboot(9). Then init(8) could umount root and exec /reboot.
1337 */
1338 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1339 /*
1340 * Special case for "unmounting" root ...
1341 * we just try to remount it readonly.
1342 */
1343 down_write(&sb->s_umount);
1344 if (!(sb->s_flags & MS_RDONLY))
1345 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1346 up_write(&sb->s_umount);
1347 return retval;
1348 }
1349
1350 down_write(&namespace_sem);
1351 br_write_lock(vfsmount_lock);
1352 event++;
1353
1354 if (!(flags & MNT_DETACH))
1355 shrink_submounts(mnt, &umount_list);
1356
1357 retval = -EBUSY;
1358 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1359 if (!list_empty(&mnt->mnt_list))
1360 umount_tree(mnt, 1, &umount_list);
1361 retval = 0;
1362 }
1363 br_write_unlock(vfsmount_lock);
1364 up_write(&namespace_sem);
1365 release_mounts(&umount_list);
1366 return retval;
1367 }
1368
1369 /*
1370 * Now umount can handle mount points as well as block devices.
1371 * This is important for filesystems which use unnamed block devices.
1372 *
1373 * We now support a flag for forced unmount like the other 'big iron'
1374 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1375 */
1376
1377 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1378 {
1379 struct path path;
1380 int retval;
1381 int lookup_flags = 0;
1382
1383 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1384 return -EINVAL;
1385
1386 if (!(flags & UMOUNT_NOFOLLOW))
1387 lookup_flags |= LOOKUP_FOLLOW;
1388
1389 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1390 if (retval)
1391 goto out;
1392 retval = -EINVAL;
1393 if (path.dentry != path.mnt->mnt_root)
1394 goto dput_and_out;
1395 if (!check_mnt(path.mnt))
1396 goto dput_and_out;
1397
1398 retval = -EPERM;
1399 if (!capable(CAP_SYS_ADMIN))
1400 goto dput_and_out;
1401
1402 retval = do_umount(path.mnt, flags);
1403 dput_and_out:
1404 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1405 dput(path.dentry);
1406 mntput_no_expire(path.mnt);
1407 out:
1408 return retval;
1409 }
1410
1411 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1412
1413 /*
1414 * The 2.0 compatible umount. No flags.
1415 */
1416 SYSCALL_DEFINE1(oldumount, char __user *, name)
1417 {
1418 return sys_umount(name, 0);
1419 }
1420
1421 #endif
1422
1423 static int mount_is_safe(struct path *path)
1424 {
1425 if (capable(CAP_SYS_ADMIN))
1426 return 0;
1427 return -EPERM;
1428 #ifdef notyet
1429 if (S_ISLNK(path->dentry->d_inode->i_mode))
1430 return -EPERM;
1431 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1432 if (current_uid() != path->dentry->d_inode->i_uid)
1433 return -EPERM;
1434 }
1435 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1436 return -EPERM;
1437 return 0;
1438 #endif
1439 }
1440
1441 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1442 int flag)
1443 {
1444 struct vfsmount *res, *p, *q, *r, *s;
1445 struct path path;
1446
1447 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1448 return NULL;
1449
1450 res = q = clone_mnt(mnt, dentry, flag);
1451 if (!q)
1452 goto Enomem;
1453 q->mnt_mountpoint = mnt->mnt_mountpoint;
1454
1455 p = mnt;
1456 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1457 if (!is_subdir(r->mnt_mountpoint, dentry))
1458 continue;
1459
1460 for (s = r; s; s = next_mnt(s, r)) {
1461 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1462 s = skip_mnt_tree(s);
1463 continue;
1464 }
1465 while (p != s->mnt_parent) {
1466 p = p->mnt_parent;
1467 q = q->mnt_parent;
1468 }
1469 p = s;
1470 path.mnt = q;
1471 path.dentry = p->mnt_mountpoint;
1472 q = clone_mnt(p, p->mnt_root, flag);
1473 if (!q)
1474 goto Enomem;
1475 br_write_lock(vfsmount_lock);
1476 list_add_tail(&q->mnt_list, &res->mnt_list);
1477 attach_mnt(q, &path);
1478 br_write_unlock(vfsmount_lock);
1479 }
1480 }
1481 return res;
1482 Enomem:
1483 if (res) {
1484 LIST_HEAD(umount_list);
1485 br_write_lock(vfsmount_lock);
1486 umount_tree(res, 0, &umount_list);
1487 br_write_unlock(vfsmount_lock);
1488 release_mounts(&umount_list);
1489 }
1490 return NULL;
1491 }
1492
1493 struct vfsmount *collect_mounts(struct path *path)
1494 {
1495 struct vfsmount *tree;
1496 down_write(&namespace_sem);
1497 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1498 up_write(&namespace_sem);
1499 return tree;
1500 }
1501
1502 void drop_collected_mounts(struct vfsmount *mnt)
1503 {
1504 LIST_HEAD(umount_list);
1505 down_write(&namespace_sem);
1506 br_write_lock(vfsmount_lock);
1507 umount_tree(mnt, 0, &umount_list);
1508 br_write_unlock(vfsmount_lock);
1509 up_write(&namespace_sem);
1510 release_mounts(&umount_list);
1511 }
1512
1513 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1514 struct vfsmount *root)
1515 {
1516 struct vfsmount *mnt;
1517 int res = f(root, arg);
1518 if (res)
1519 return res;
1520 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1521 res = f(mnt, arg);
1522 if (res)
1523 return res;
1524 }
1525 return 0;
1526 }
1527
1528 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1529 {
1530 struct vfsmount *p;
1531
1532 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1533 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1534 mnt_release_group_id(p);
1535 }
1536 }
1537
1538 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1539 {
1540 struct vfsmount *p;
1541
1542 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1543 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1544 int err = mnt_alloc_group_id(p);
1545 if (err) {
1546 cleanup_group_ids(mnt, p);
1547 return err;
1548 }
1549 }
1550 }
1551
1552 return 0;
1553 }
1554
1555 /*
1556 * @source_mnt : mount tree to be attached
1557 * @nd : place the mount tree @source_mnt is attached
1558 * @parent_nd : if non-null, detach the source_mnt from its parent and
1559 * store the parent mount and mountpoint dentry.
1560 * (done when source_mnt is moved)
1561 *
1562 * NOTE: in the table below explains the semantics when a source mount
1563 * of a given type is attached to a destination mount of a given type.
1564 * ---------------------------------------------------------------------------
1565 * | BIND MOUNT OPERATION |
1566 * |**************************************************************************
1567 * | source-->| shared | private | slave | unbindable |
1568 * | dest | | | | |
1569 * | | | | | | |
1570 * | v | | | | |
1571 * |**************************************************************************
1572 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1573 * | | | | | |
1574 * |non-shared| shared (+) | private | slave (*) | invalid |
1575 * ***************************************************************************
1576 * A bind operation clones the source mount and mounts the clone on the
1577 * destination mount.
1578 *
1579 * (++) the cloned mount is propagated to all the mounts in the propagation
1580 * tree of the destination mount and the cloned mount is added to
1581 * the peer group of the source mount.
1582 * (+) the cloned mount is created under the destination mount and is marked
1583 * as shared. The cloned mount is added to the peer group of the source
1584 * mount.
1585 * (+++) the mount is propagated to all the mounts in the propagation tree
1586 * of the destination mount and the cloned mount is made slave
1587 * of the same master as that of the source mount. The cloned mount
1588 * is marked as 'shared and slave'.
1589 * (*) the cloned mount is made a slave of the same master as that of the
1590 * source mount.
1591 *
1592 * ---------------------------------------------------------------------------
1593 * | MOVE MOUNT OPERATION |
1594 * |**************************************************************************
1595 * | source-->| shared | private | slave | unbindable |
1596 * | dest | | | | |
1597 * | | | | | | |
1598 * | v | | | | |
1599 * |**************************************************************************
1600 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1601 * | | | | | |
1602 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1603 * ***************************************************************************
1604 *
1605 * (+) the mount is moved to the destination. And is then propagated to
1606 * all the mounts in the propagation tree of the destination mount.
1607 * (+*) the mount is moved to the destination.
1608 * (+++) the mount is moved to the destination and is then propagated to
1609 * all the mounts belonging to the destination mount's propagation tree.
1610 * the mount is marked as 'shared and slave'.
1611 * (*) the mount continues to be a slave at the new location.
1612 *
1613 * if the source mount is a tree, the operations explained above is
1614 * applied to each mount in the tree.
1615 * Must be called without spinlocks held, since this function can sleep
1616 * in allocations.
1617 */
1618 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1619 struct path *path, struct path *parent_path)
1620 {
1621 LIST_HEAD(tree_list);
1622 struct vfsmount *dest_mnt = path->mnt;
1623 struct dentry *dest_dentry = path->dentry;
1624 struct vfsmount *child, *p;
1625 int err;
1626
1627 if (IS_MNT_SHARED(dest_mnt)) {
1628 err = invent_group_ids(source_mnt, true);
1629 if (err)
1630 goto out;
1631 }
1632 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1633 if (err)
1634 goto out_cleanup_ids;
1635
1636 br_write_lock(vfsmount_lock);
1637
1638 if (IS_MNT_SHARED(dest_mnt)) {
1639 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1640 set_mnt_shared(p);
1641 }
1642 if (parent_path) {
1643 detach_mnt(source_mnt, parent_path);
1644 attach_mnt(source_mnt, path);
1645 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1646 } else {
1647 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1648 commit_tree(source_mnt);
1649 }
1650
1651 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1652 list_del_init(&child->mnt_hash);
1653 commit_tree(child);
1654 }
1655 br_write_unlock(vfsmount_lock);
1656
1657 return 0;
1658
1659 out_cleanup_ids:
1660 if (IS_MNT_SHARED(dest_mnt))
1661 cleanup_group_ids(source_mnt, NULL);
1662 out:
1663 return err;
1664 }
1665
1666 static int lock_mount(struct path *path)
1667 {
1668 struct vfsmount *mnt;
1669 retry:
1670 mutex_lock(&path->dentry->d_inode->i_mutex);
1671 if (unlikely(cant_mount(path->dentry))) {
1672 mutex_unlock(&path->dentry->d_inode->i_mutex);
1673 return -ENOENT;
1674 }
1675 down_write(&namespace_sem);
1676 mnt = lookup_mnt(path);
1677 if (likely(!mnt))
1678 return 0;
1679 up_write(&namespace_sem);
1680 mutex_unlock(&path->dentry->d_inode->i_mutex);
1681 path_put(path);
1682 path->mnt = mnt;
1683 path->dentry = dget(mnt->mnt_root);
1684 goto retry;
1685 }
1686
1687 static void unlock_mount(struct path *path)
1688 {
1689 up_write(&namespace_sem);
1690 mutex_unlock(&path->dentry->d_inode->i_mutex);
1691 }
1692
1693 static int graft_tree(struct vfsmount *mnt, struct path *path)
1694 {
1695 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1696 return -EINVAL;
1697
1698 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1699 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1700 return -ENOTDIR;
1701
1702 if (d_unlinked(path->dentry))
1703 return -ENOENT;
1704
1705 return attach_recursive_mnt(mnt, path, NULL);
1706 }
1707
1708 /*
1709 * Sanity check the flags to change_mnt_propagation.
1710 */
1711
1712 static int flags_to_propagation_type(int flags)
1713 {
1714 int type = flags & ~MS_REC;
1715
1716 /* Fail if any non-propagation flags are set */
1717 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1718 return 0;
1719 /* Only one propagation flag should be set */
1720 if (!is_power_of_2(type))
1721 return 0;
1722 return type;
1723 }
1724
1725 /*
1726 * recursively change the type of the mountpoint.
1727 */
1728 static int do_change_type(struct path *path, int flag)
1729 {
1730 struct vfsmount *m, *mnt = path->mnt;
1731 int recurse = flag & MS_REC;
1732 int type;
1733 int err = 0;
1734
1735 if (!capable(CAP_SYS_ADMIN))
1736 return -EPERM;
1737
1738 if (path->dentry != path->mnt->mnt_root)
1739 return -EINVAL;
1740
1741 type = flags_to_propagation_type(flag);
1742 if (!type)
1743 return -EINVAL;
1744
1745 down_write(&namespace_sem);
1746 if (type == MS_SHARED) {
1747 err = invent_group_ids(mnt, recurse);
1748 if (err)
1749 goto out_unlock;
1750 }
1751
1752 br_write_lock(vfsmount_lock);
1753 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1754 change_mnt_propagation(m, type);
1755 br_write_unlock(vfsmount_lock);
1756
1757 out_unlock:
1758 up_write(&namespace_sem);
1759 return err;
1760 }
1761
1762 /*
1763 * do loopback mount.
1764 */
1765 static int do_loopback(struct path *path, char *old_name,
1766 int recurse)
1767 {
1768 LIST_HEAD(umount_list);
1769 struct path old_path;
1770 struct vfsmount *mnt = NULL;
1771 int err = mount_is_safe(path);
1772 if (err)
1773 return err;
1774 if (!old_name || !*old_name)
1775 return -EINVAL;
1776 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1777 if (err)
1778 return err;
1779
1780 err = lock_mount(path);
1781 if (err)
1782 goto out;
1783
1784 err = -EINVAL;
1785 if (IS_MNT_UNBINDABLE(old_path.mnt))
1786 goto out2;
1787
1788 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1789 goto out2;
1790
1791 err = -ENOMEM;
1792 if (recurse)
1793 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1794 else
1795 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1796
1797 if (!mnt)
1798 goto out2;
1799
1800 err = graft_tree(mnt, path);
1801 if (err) {
1802 br_write_lock(vfsmount_lock);
1803 umount_tree(mnt, 0, &umount_list);
1804 br_write_unlock(vfsmount_lock);
1805 }
1806 out2:
1807 unlock_mount(path);
1808 release_mounts(&umount_list);
1809 out:
1810 path_put(&old_path);
1811 return err;
1812 }
1813
1814 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1815 {
1816 int error = 0;
1817 int readonly_request = 0;
1818
1819 if (ms_flags & MS_RDONLY)
1820 readonly_request = 1;
1821 if (readonly_request == __mnt_is_readonly(mnt))
1822 return 0;
1823
1824 if (readonly_request)
1825 error = mnt_make_readonly(mnt);
1826 else
1827 __mnt_unmake_readonly(mnt);
1828 return error;
1829 }
1830
1831 /*
1832 * change filesystem flags. dir should be a physical root of filesystem.
1833 * If you've mounted a non-root directory somewhere and want to do remount
1834 * on it - tough luck.
1835 */
1836 static int do_remount(struct path *path, int flags, int mnt_flags,
1837 void *data)
1838 {
1839 int err;
1840 struct super_block *sb = path->mnt->mnt_sb;
1841
1842 if (!capable(CAP_SYS_ADMIN))
1843 return -EPERM;
1844
1845 if (!check_mnt(path->mnt))
1846 return -EINVAL;
1847
1848 if (path->dentry != path->mnt->mnt_root)
1849 return -EINVAL;
1850
1851 err = security_sb_remount(sb, data);
1852 if (err)
1853 return err;
1854
1855 down_write(&sb->s_umount);
1856 if (flags & MS_BIND)
1857 err = change_mount_flags(path->mnt, flags);
1858 else
1859 err = do_remount_sb(sb, flags, data, 0);
1860 if (!err) {
1861 br_write_lock(vfsmount_lock);
1862 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1863 path->mnt->mnt_flags = mnt_flags;
1864 br_write_unlock(vfsmount_lock);
1865 }
1866 up_write(&sb->s_umount);
1867 if (!err) {
1868 br_write_lock(vfsmount_lock);
1869 touch_mnt_namespace(path->mnt->mnt_ns);
1870 br_write_unlock(vfsmount_lock);
1871 }
1872 return err;
1873 }
1874
1875 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1876 {
1877 struct vfsmount *p;
1878 for (p = mnt; p; p = next_mnt(p, mnt)) {
1879 if (IS_MNT_UNBINDABLE(p))
1880 return 1;
1881 }
1882 return 0;
1883 }
1884
1885 static int do_move_mount(struct path *path, char *old_name)
1886 {
1887 struct path old_path, parent_path;
1888 struct vfsmount *p;
1889 int err = 0;
1890 if (!capable(CAP_SYS_ADMIN))
1891 return -EPERM;
1892 if (!old_name || !*old_name)
1893 return -EINVAL;
1894 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1895 if (err)
1896 return err;
1897
1898 err = lock_mount(path);
1899 if (err < 0)
1900 goto out;
1901
1902 err = -EINVAL;
1903 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1904 goto out1;
1905
1906 if (d_unlinked(path->dentry))
1907 goto out1;
1908
1909 err = -EINVAL;
1910 if (old_path.dentry != old_path.mnt->mnt_root)
1911 goto out1;
1912
1913 if (old_path.mnt == old_path.mnt->mnt_parent)
1914 goto out1;
1915
1916 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1917 S_ISDIR(old_path.dentry->d_inode->i_mode))
1918 goto out1;
1919 /*
1920 * Don't move a mount residing in a shared parent.
1921 */
1922 if (old_path.mnt->mnt_parent &&
1923 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1924 goto out1;
1925 /*
1926 * Don't move a mount tree containing unbindable mounts to a destination
1927 * mount which is shared.
1928 */
1929 if (IS_MNT_SHARED(path->mnt) &&
1930 tree_contains_unbindable(old_path.mnt))
1931 goto out1;
1932 err = -ELOOP;
1933 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1934 if (p == old_path.mnt)
1935 goto out1;
1936
1937 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1938 if (err)
1939 goto out1;
1940
1941 /* if the mount is moved, it should no longer be expire
1942 * automatically */
1943 list_del_init(&old_path.mnt->mnt_expire);
1944 out1:
1945 unlock_mount(path);
1946 out:
1947 if (!err)
1948 path_put(&parent_path);
1949 path_put(&old_path);
1950 return err;
1951 }
1952
1953 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1954 {
1955 int err;
1956 const char *subtype = strchr(fstype, '.');
1957 if (subtype) {
1958 subtype++;
1959 err = -EINVAL;
1960 if (!subtype[0])
1961 goto err;
1962 } else
1963 subtype = "";
1964
1965 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1966 err = -ENOMEM;
1967 if (!mnt->mnt_sb->s_subtype)
1968 goto err;
1969 return mnt;
1970
1971 err:
1972 mntput(mnt);
1973 return ERR_PTR(err);
1974 }
1975
1976 struct vfsmount *
1977 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1978 {
1979 struct file_system_type *type = get_fs_type(fstype);
1980 struct vfsmount *mnt;
1981 if (!type)
1982 return ERR_PTR(-ENODEV);
1983 mnt = vfs_kern_mount(type, flags, name, data);
1984 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1985 !mnt->mnt_sb->s_subtype)
1986 mnt = fs_set_subtype(mnt, fstype);
1987 put_filesystem(type);
1988 return mnt;
1989 }
1990 EXPORT_SYMBOL_GPL(do_kern_mount);
1991
1992 /*
1993 * add a mount into a namespace's mount tree
1994 */
1995 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1996 {
1997 int err;
1998
1999 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
2000
2001 err = lock_mount(path);
2002 if (err)
2003 return err;
2004
2005 err = -EINVAL;
2006 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
2007 goto unlock;
2008
2009 /* Refuse the same filesystem on the same mount point */
2010 err = -EBUSY;
2011 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
2012 path->mnt->mnt_root == path->dentry)
2013 goto unlock;
2014
2015 err = -EINVAL;
2016 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
2017 goto unlock;
2018
2019 newmnt->mnt_flags = mnt_flags;
2020 err = graft_tree(newmnt, path);
2021
2022 unlock:
2023 unlock_mount(path);
2024 return err;
2025 }
2026
2027 /*
2028 * create a new mount for userspace and request it to be added into the
2029 * namespace's tree
2030 */
2031 static int do_new_mount(struct path *path, char *type, int flags,
2032 int mnt_flags, char *name, void *data)
2033 {
2034 struct vfsmount *mnt;
2035 int err;
2036
2037 if (!type)
2038 return -EINVAL;
2039
2040 /* we need capabilities... */
2041 if (!capable(CAP_SYS_ADMIN))
2042 return -EPERM;
2043
2044 mnt = do_kern_mount(type, flags, name, data);
2045 if (IS_ERR(mnt))
2046 return PTR_ERR(mnt);
2047
2048 err = do_add_mount(mnt, path, mnt_flags);
2049 if (err)
2050 mntput(mnt);
2051 return err;
2052 }
2053
2054 int finish_automount(struct vfsmount *m, struct path *path)
2055 {
2056 int err;
2057 /* The new mount record should have at least 2 refs to prevent it being
2058 * expired before we get a chance to add it
2059 */
2060 BUG_ON(mnt_get_count(m) < 2);
2061
2062 if (m->mnt_sb == path->mnt->mnt_sb &&
2063 m->mnt_root == path->dentry) {
2064 err = -ELOOP;
2065 goto fail;
2066 }
2067
2068 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2069 if (!err)
2070 return 0;
2071 fail:
2072 /* remove m from any expiration list it may be on */
2073 if (!list_empty(&m->mnt_expire)) {
2074 down_write(&namespace_sem);
2075 br_write_lock(vfsmount_lock);
2076 list_del_init(&m->mnt_expire);
2077 br_write_unlock(vfsmount_lock);
2078 up_write(&namespace_sem);
2079 }
2080 mntput(m);
2081 mntput(m);
2082 return err;
2083 }
2084
2085 /**
2086 * mnt_set_expiry - Put a mount on an expiration list
2087 * @mnt: The mount to list.
2088 * @expiry_list: The list to add the mount to.
2089 */
2090 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2091 {
2092 down_write(&namespace_sem);
2093 br_write_lock(vfsmount_lock);
2094
2095 list_add_tail(&mnt->mnt_expire, expiry_list);
2096
2097 br_write_unlock(vfsmount_lock);
2098 up_write(&namespace_sem);
2099 }
2100 EXPORT_SYMBOL(mnt_set_expiry);
2101
2102 /*
2103 * process a list of expirable mountpoints with the intent of discarding any
2104 * mountpoints that aren't in use and haven't been touched since last we came
2105 * here
2106 */
2107 void mark_mounts_for_expiry(struct list_head *mounts)
2108 {
2109 struct vfsmount *mnt, *next;
2110 LIST_HEAD(graveyard);
2111 LIST_HEAD(umounts);
2112
2113 if (list_empty(mounts))
2114 return;
2115
2116 down_write(&namespace_sem);
2117 br_write_lock(vfsmount_lock);
2118
2119 /* extract from the expiration list every vfsmount that matches the
2120 * following criteria:
2121 * - only referenced by its parent vfsmount
2122 * - still marked for expiry (marked on the last call here; marks are
2123 * cleared by mntput())
2124 */
2125 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2126 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2127 propagate_mount_busy(mnt, 1))
2128 continue;
2129 list_move(&mnt->mnt_expire, &graveyard);
2130 }
2131 while (!list_empty(&graveyard)) {
2132 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2133 touch_mnt_namespace(mnt->mnt_ns);
2134 umount_tree(mnt, 1, &umounts);
2135 }
2136 br_write_unlock(vfsmount_lock);
2137 up_write(&namespace_sem);
2138
2139 release_mounts(&umounts);
2140 }
2141
2142 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2143
2144 /*
2145 * Ripoff of 'select_parent()'
2146 *
2147 * search the list of submounts for a given mountpoint, and move any
2148 * shrinkable submounts to the 'graveyard' list.
2149 */
2150 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2151 {
2152 struct vfsmount *this_parent = parent;
2153 struct list_head *next;
2154 int found = 0;
2155
2156 repeat:
2157 next = this_parent->mnt_mounts.next;
2158 resume:
2159 while (next != &this_parent->mnt_mounts) {
2160 struct list_head *tmp = next;
2161 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2162
2163 next = tmp->next;
2164 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2165 continue;
2166 /*
2167 * Descend a level if the d_mounts list is non-empty.
2168 */
2169 if (!list_empty(&mnt->mnt_mounts)) {
2170 this_parent = mnt;
2171 goto repeat;
2172 }
2173
2174 if (!propagate_mount_busy(mnt, 1)) {
2175 list_move_tail(&mnt->mnt_expire, graveyard);
2176 found++;
2177 }
2178 }
2179 /*
2180 * All done at this level ... ascend and resume the search
2181 */
2182 if (this_parent != parent) {
2183 next = this_parent->mnt_child.next;
2184 this_parent = this_parent->mnt_parent;
2185 goto resume;
2186 }
2187 return found;
2188 }
2189
2190 /*
2191 * process a list of expirable mountpoints with the intent of discarding any
2192 * submounts of a specific parent mountpoint
2193 *
2194 * vfsmount_lock must be held for write
2195 */
2196 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2197 {
2198 LIST_HEAD(graveyard);
2199 struct vfsmount *m;
2200
2201 /* extract submounts of 'mountpoint' from the expiration list */
2202 while (select_submounts(mnt, &graveyard)) {
2203 while (!list_empty(&graveyard)) {
2204 m = list_first_entry(&graveyard, struct vfsmount,
2205 mnt_expire);
2206 touch_mnt_namespace(m->mnt_ns);
2207 umount_tree(m, 1, umounts);
2208 }
2209 }
2210 }
2211
2212 /*
2213 * Some copy_from_user() implementations do not return the exact number of
2214 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2215 * Note that this function differs from copy_from_user() in that it will oops
2216 * on bad values of `to', rather than returning a short copy.
2217 */
2218 static long exact_copy_from_user(void *to, const void __user * from,
2219 unsigned long n)
2220 {
2221 char *t = to;
2222 const char __user *f = from;
2223 char c;
2224
2225 if (!access_ok(VERIFY_READ, from, n))
2226 return n;
2227
2228 while (n) {
2229 if (__get_user(c, f)) {
2230 memset(t, 0, n);
2231 break;
2232 }
2233 *t++ = c;
2234 f++;
2235 n--;
2236 }
2237 return n;
2238 }
2239
2240 int copy_mount_options(const void __user * data, unsigned long *where)
2241 {
2242 int i;
2243 unsigned long page;
2244 unsigned long size;
2245
2246 *where = 0;
2247 if (!data)
2248 return 0;
2249
2250 if (!(page = __get_free_page(GFP_KERNEL)))
2251 return -ENOMEM;
2252
2253 /* We only care that *some* data at the address the user
2254 * gave us is valid. Just in case, we'll zero
2255 * the remainder of the page.
2256 */
2257 /* copy_from_user cannot cross TASK_SIZE ! */
2258 size = TASK_SIZE - (unsigned long)data;
2259 if (size > PAGE_SIZE)
2260 size = PAGE_SIZE;
2261
2262 i = size - exact_copy_from_user((void *)page, data, size);
2263 if (!i) {
2264 free_page(page);
2265 return -EFAULT;
2266 }
2267 if (i != PAGE_SIZE)
2268 memset((char *)page + i, 0, PAGE_SIZE - i);
2269 *where = page;
2270 return 0;
2271 }
2272
2273 int copy_mount_string(const void __user *data, char **where)
2274 {
2275 char *tmp;
2276
2277 if (!data) {
2278 *where = NULL;
2279 return 0;
2280 }
2281
2282 tmp = strndup_user(data, PAGE_SIZE);
2283 if (IS_ERR(tmp))
2284 return PTR_ERR(tmp);
2285
2286 *where = tmp;
2287 return 0;
2288 }
2289
2290 /*
2291 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2292 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2293 *
2294 * data is a (void *) that can point to any structure up to
2295 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2296 * information (or be NULL).
2297 *
2298 * Pre-0.97 versions of mount() didn't have a flags word.
2299 * When the flags word was introduced its top half was required
2300 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2301 * Therefore, if this magic number is present, it carries no information
2302 * and must be discarded.
2303 */
2304 long do_mount(char *dev_name, char *dir_name, char *type_page,
2305 unsigned long flags, void *data_page)
2306 {
2307 struct path path;
2308 int retval = 0;
2309 int mnt_flags = 0;
2310
2311 /* Discard magic */
2312 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2313 flags &= ~MS_MGC_MSK;
2314
2315 /* Basic sanity checks */
2316
2317 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2318 return -EINVAL;
2319
2320 if (data_page)
2321 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2322
2323 /* ... and get the mountpoint */
2324 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2325 if (retval)
2326 return retval;
2327
2328 retval = security_sb_mount(dev_name, &path,
2329 type_page, flags, data_page);
2330 if (retval)
2331 goto dput_out;
2332
2333 /* Default to relatime unless overriden */
2334 if (!(flags & MS_NOATIME))
2335 mnt_flags |= MNT_RELATIME;
2336
2337 /* Separate the per-mountpoint flags */
2338 if (flags & MS_NOSUID)
2339 mnt_flags |= MNT_NOSUID;
2340 if (flags & MS_NODEV)
2341 mnt_flags |= MNT_NODEV;
2342 if (flags & MS_NOEXEC)
2343 mnt_flags |= MNT_NOEXEC;
2344 if (flags & MS_NOATIME)
2345 mnt_flags |= MNT_NOATIME;
2346 if (flags & MS_NODIRATIME)
2347 mnt_flags |= MNT_NODIRATIME;
2348 if (flags & MS_STRICTATIME)
2349 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2350 if (flags & MS_RDONLY)
2351 mnt_flags |= MNT_READONLY;
2352
2353 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2354 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2355 MS_STRICTATIME);
2356
2357 if (flags & MS_REMOUNT)
2358 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2359 data_page);
2360 else if (flags & MS_BIND)
2361 retval = do_loopback(&path, dev_name, flags & MS_REC);
2362 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2363 retval = do_change_type(&path, flags);
2364 else if (flags & MS_MOVE)
2365 retval = do_move_mount(&path, dev_name);
2366 else
2367 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2368 dev_name, data_page);
2369 dput_out:
2370 path_put(&path);
2371 return retval;
2372 }
2373
2374 static struct mnt_namespace *alloc_mnt_ns(void)
2375 {
2376 struct mnt_namespace *new_ns;
2377
2378 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2379 if (!new_ns)
2380 return ERR_PTR(-ENOMEM);
2381 atomic_set(&new_ns->count, 1);
2382 new_ns->root = NULL;
2383 INIT_LIST_HEAD(&new_ns->list);
2384 init_waitqueue_head(&new_ns->poll);
2385 new_ns->event = 0;
2386 return new_ns;
2387 }
2388
2389 void mnt_make_longterm(struct vfsmount *mnt)
2390 {
2391 __mnt_make_longterm(mnt);
2392 }
2393
2394 void mnt_make_shortterm(struct vfsmount *mnt)
2395 {
2396 #ifdef CONFIG_SMP
2397 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2398 return;
2399 br_write_lock(vfsmount_lock);
2400 atomic_dec(&mnt->mnt_longterm);
2401 br_write_unlock(vfsmount_lock);
2402 #endif
2403 }
2404
2405 /*
2406 * Allocate a new namespace structure and populate it with contents
2407 * copied from the namespace of the passed in task structure.
2408 */
2409 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2410 struct fs_struct *fs)
2411 {
2412 struct mnt_namespace *new_ns;
2413 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2414 struct vfsmount *p, *q;
2415
2416 new_ns = alloc_mnt_ns();
2417 if (IS_ERR(new_ns))
2418 return new_ns;
2419
2420 down_write(&namespace_sem);
2421 /* First pass: copy the tree topology */
2422 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2423 CL_COPY_ALL | CL_EXPIRE);
2424 if (!new_ns->root) {
2425 up_write(&namespace_sem);
2426 kfree(new_ns);
2427 return ERR_PTR(-ENOMEM);
2428 }
2429 br_write_lock(vfsmount_lock);
2430 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2431 br_write_unlock(vfsmount_lock);
2432
2433 /*
2434 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2435 * as belonging to new namespace. We have already acquired a private
2436 * fs_struct, so tsk->fs->lock is not needed.
2437 */
2438 p = mnt_ns->root;
2439 q = new_ns->root;
2440 while (p) {
2441 q->mnt_ns = new_ns;
2442 __mnt_make_longterm(q);
2443 if (fs) {
2444 if (p == fs->root.mnt) {
2445 fs->root.mnt = mntget(q);
2446 __mnt_make_longterm(q);
2447 mnt_make_shortterm(p);
2448 rootmnt = p;
2449 }
2450 if (p == fs->pwd.mnt) {
2451 fs->pwd.mnt = mntget(q);
2452 __mnt_make_longterm(q);
2453 mnt_make_shortterm(p);
2454 pwdmnt = p;
2455 }
2456 }
2457 p = next_mnt(p, mnt_ns->root);
2458 q = next_mnt(q, new_ns->root);
2459 }
2460 up_write(&namespace_sem);
2461
2462 if (rootmnt)
2463 mntput(rootmnt);
2464 if (pwdmnt)
2465 mntput(pwdmnt);
2466
2467 return new_ns;
2468 }
2469
2470 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2471 struct fs_struct *new_fs)
2472 {
2473 struct mnt_namespace *new_ns;
2474
2475 BUG_ON(!ns);
2476 get_mnt_ns(ns);
2477
2478 if (!(flags & CLONE_NEWNS))
2479 return ns;
2480
2481 new_ns = dup_mnt_ns(ns, new_fs);
2482
2483 put_mnt_ns(ns);
2484 return new_ns;
2485 }
2486
2487 /**
2488 * create_mnt_ns - creates a private namespace and adds a root filesystem
2489 * @mnt: pointer to the new root filesystem mountpoint
2490 */
2491 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2492 {
2493 struct mnt_namespace *new_ns;
2494
2495 new_ns = alloc_mnt_ns();
2496 if (!IS_ERR(new_ns)) {
2497 mnt->mnt_ns = new_ns;
2498 __mnt_make_longterm(mnt);
2499 new_ns->root = mnt;
2500 list_add(&new_ns->list, &new_ns->root->mnt_list);
2501 }
2502 return new_ns;
2503 }
2504 EXPORT_SYMBOL(create_mnt_ns);
2505
2506 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2507 char __user *, type, unsigned long, flags, void __user *, data)
2508 {
2509 int ret;
2510 char *kernel_type;
2511 char *kernel_dir;
2512 char *kernel_dev;
2513 unsigned long data_page;
2514
2515 ret = copy_mount_string(type, &kernel_type);
2516 if (ret < 0)
2517 goto out_type;
2518
2519 kernel_dir = getname(dir_name);
2520 if (IS_ERR(kernel_dir)) {
2521 ret = PTR_ERR(kernel_dir);
2522 goto out_dir;
2523 }
2524
2525 ret = copy_mount_string(dev_name, &kernel_dev);
2526 if (ret < 0)
2527 goto out_dev;
2528
2529 ret = copy_mount_options(data, &data_page);
2530 if (ret < 0)
2531 goto out_data;
2532
2533 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2534 (void *) data_page);
2535
2536 free_page(data_page);
2537 out_data:
2538 kfree(kernel_dev);
2539 out_dev:
2540 putname(kernel_dir);
2541 out_dir:
2542 kfree(kernel_type);
2543 out_type:
2544 return ret;
2545 }
2546
2547 /*
2548 * pivot_root Semantics:
2549 * Moves the root file system of the current process to the directory put_old,
2550 * makes new_root as the new root file system of the current process, and sets
2551 * root/cwd of all processes which had them on the current root to new_root.
2552 *
2553 * Restrictions:
2554 * The new_root and put_old must be directories, and must not be on the
2555 * same file system as the current process root. The put_old must be
2556 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2557 * pointed to by put_old must yield the same directory as new_root. No other
2558 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2559 *
2560 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2561 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2562 * in this situation.
2563 *
2564 * Notes:
2565 * - we don't move root/cwd if they are not at the root (reason: if something
2566 * cared enough to change them, it's probably wrong to force them elsewhere)
2567 * - it's okay to pick a root that isn't the root of a file system, e.g.
2568 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2569 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2570 * first.
2571 */
2572 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2573 const char __user *, put_old)
2574 {
2575 struct vfsmount *tmp;
2576 struct path new, old, parent_path, root_parent, root;
2577 int error;
2578
2579 if (!capable(CAP_SYS_ADMIN))
2580 return -EPERM;
2581
2582 error = user_path_dir(new_root, &new);
2583 if (error)
2584 goto out0;
2585
2586 error = user_path_dir(put_old, &old);
2587 if (error)
2588 goto out1;
2589
2590 error = security_sb_pivotroot(&old, &new);
2591 if (error)
2592 goto out2;
2593
2594 get_fs_root(current->fs, &root);
2595 error = lock_mount(&old);
2596 if (error)
2597 goto out3;
2598
2599 error = -EINVAL;
2600 if (IS_MNT_SHARED(old.mnt) ||
2601 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2602 IS_MNT_SHARED(root.mnt->mnt_parent))
2603 goto out4;
2604 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2605 goto out4;
2606 error = -ENOENT;
2607 if (d_unlinked(new.dentry))
2608 goto out4;
2609 if (d_unlinked(old.dentry))
2610 goto out4;
2611 error = -EBUSY;
2612 if (new.mnt == root.mnt ||
2613 old.mnt == root.mnt)
2614 goto out4; /* loop, on the same file system */
2615 error = -EINVAL;
2616 if (root.mnt->mnt_root != root.dentry)
2617 goto out4; /* not a mountpoint */
2618 if (root.mnt->mnt_parent == root.mnt)
2619 goto out4; /* not attached */
2620 if (new.mnt->mnt_root != new.dentry)
2621 goto out4; /* not a mountpoint */
2622 if (new.mnt->mnt_parent == new.mnt)
2623 goto out4; /* not attached */
2624 /* make sure we can reach put_old from new_root */
2625 tmp = old.mnt;
2626 if (tmp != new.mnt) {
2627 for (;;) {
2628 if (tmp->mnt_parent == tmp)
2629 goto out4; /* already mounted on put_old */
2630 if (tmp->mnt_parent == new.mnt)
2631 break;
2632 tmp = tmp->mnt_parent;
2633 }
2634 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2635 goto out4;
2636 } else if (!is_subdir(old.dentry, new.dentry))
2637 goto out4;
2638 br_write_lock(vfsmount_lock);
2639 detach_mnt(new.mnt, &parent_path);
2640 detach_mnt(root.mnt, &root_parent);
2641 /* mount old root on put_old */
2642 attach_mnt(root.mnt, &old);
2643 /* mount new_root on / */
2644 attach_mnt(new.mnt, &root_parent);
2645 touch_mnt_namespace(current->nsproxy->mnt_ns);
2646 br_write_unlock(vfsmount_lock);
2647 chroot_fs_refs(&root, &new);
2648 error = 0;
2649 out4:
2650 unlock_mount(&old);
2651 if (!error) {
2652 path_put(&root_parent);
2653 path_put(&parent_path);
2654 }
2655 out3:
2656 path_put(&root);
2657 out2:
2658 path_put(&old);
2659 out1:
2660 path_put(&new);
2661 out0:
2662 return error;
2663 }
2664
2665 static void __init init_mount_tree(void)
2666 {
2667 struct vfsmount *mnt;
2668 struct mnt_namespace *ns;
2669 struct path root;
2670
2671 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2672 if (IS_ERR(mnt))
2673 panic("Can't create rootfs");
2674
2675 ns = create_mnt_ns(mnt);
2676 if (IS_ERR(ns))
2677 panic("Can't allocate initial namespace");
2678
2679 init_task.nsproxy->mnt_ns = ns;
2680 get_mnt_ns(ns);
2681
2682 root.mnt = ns->root;
2683 root.dentry = ns->root->mnt_root;
2684
2685 set_fs_pwd(current->fs, &root);
2686 set_fs_root(current->fs, &root);
2687 }
2688
2689 void __init mnt_init(void)
2690 {
2691 unsigned u;
2692 int err;
2693
2694 init_rwsem(&namespace_sem);
2695
2696 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2697 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2698
2699 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2700
2701 if (!mount_hashtable)
2702 panic("Failed to allocate mount hash table\n");
2703
2704 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2705
2706 for (u = 0; u < HASH_SIZE; u++)
2707 INIT_LIST_HEAD(&mount_hashtable[u]);
2708
2709 br_lock_init(vfsmount_lock);
2710
2711 err = sysfs_init();
2712 if (err)
2713 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2714 __func__, err);
2715 fs_kobj = kobject_create_and_add("fs", NULL);
2716 if (!fs_kobj)
2717 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2718 init_rootfs();
2719 init_mount_tree();
2720 }
2721
2722 void put_mnt_ns(struct mnt_namespace *ns)
2723 {
2724 LIST_HEAD(umount_list);
2725
2726 if (!atomic_dec_and_test(&ns->count))
2727 return;
2728 down_write(&namespace_sem);
2729 br_write_lock(vfsmount_lock);
2730 umount_tree(ns->root, 0, &umount_list);
2731 br_write_unlock(vfsmount_lock);
2732 up_write(&namespace_sem);
2733 release_mounts(&umount_list);
2734 kfree(ns);
2735 }
2736 EXPORT_SYMBOL(put_mnt_ns);
2737
2738 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2739 {
2740 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2741 }
2742 EXPORT_SYMBOL_GPL(kern_mount_data);
This page took 0.086915 seconds and 5 git commands to generate.