Merge branches 'x86/amd', 'x86/vt-d', 'arm/exynos', 'arm/mediatek' and 'arm/renesas...
[deliverable/linux.git] / fs / nfs / file.c
1 /*
2 * linux/fs/nfs/file.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 * nfs regular file handling functions
17 */
18
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31
32 #include <asm/uaccess.h>
33
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39
40 #include "nfstrace.h"
41
42 #define NFSDBG_FACILITY NFSDBG_FILE
43
44 static const struct vm_operations_struct nfs_file_vm_ops;
45
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode) (0)
49 #endif
50
51 int nfs_check_flags(int flags)
52 {
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 return -EINVAL;
55
56 return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59
60 /*
61 * Open file
62 */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 int res;
67
68 dprintk("NFS: open file(%pD2)\n", filp);
69
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
72 if (res)
73 return res;
74
75 res = nfs_open(inode, filp);
76 return res;
77 }
78
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 dprintk("NFS: release(%pD2)\n", filp);
83
84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 nfs_file_clear_open_context(filp);
86 return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89
90 /**
91 * nfs_revalidate_size - Revalidate the file size
92 * @inode - pointer to inode struct
93 * @file - pointer to struct file
94 *
95 * Revalidates the file length. This is basically a wrapper around
96 * nfs_revalidate_inode() that takes into account the fact that we may
97 * have cached writes (in which case we don't care about the server's
98 * idea of what the file length is), or O_DIRECT (in which case we
99 * shouldn't trust the cache).
100 */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 struct nfs_server *server = NFS_SERVER(inode);
104 struct nfs_inode *nfsi = NFS_I(inode);
105
106 if (nfs_have_delegated_attributes(inode))
107 goto out_noreval;
108
109 if (filp->f_flags & O_DIRECT)
110 goto force_reval;
111 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 goto force_reval;
113 if (nfs_attribute_timeout(inode))
114 goto force_reval;
115 out_noreval:
116 return 0;
117 force_reval:
118 return __nfs_revalidate_inode(server, inode);
119 }
120
121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 {
123 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124 filp, offset, whence);
125
126 /*
127 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128 * the cached file length
129 */
130 if (whence != SEEK_SET && whence != SEEK_CUR) {
131 struct inode *inode = filp->f_mapping->host;
132
133 int retval = nfs_revalidate_file_size(inode, filp);
134 if (retval < 0)
135 return (loff_t)retval;
136 }
137
138 return generic_file_llseek(filp, offset, whence);
139 }
140 EXPORT_SYMBOL_GPL(nfs_file_llseek);
141
142 /*
143 * Flush all dirty pages, and check for write errors.
144 */
145 static int
146 nfs_file_flush(struct file *file, fl_owner_t id)
147 {
148 struct inode *inode = file_inode(file);
149
150 dprintk("NFS: flush(%pD2)\n", file);
151
152 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153 if ((file->f_mode & FMODE_WRITE) == 0)
154 return 0;
155
156 /* Flush writes to the server and return any errors */
157 return vfs_fsync(file, 0);
158 }
159
160 ssize_t
161 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
162 {
163 struct inode *inode = file_inode(iocb->ki_filp);
164 ssize_t result;
165
166 if (iocb->ki_flags & IOCB_DIRECT)
167 return nfs_file_direct_read(iocb, to);
168
169 dprintk("NFS: read(%pD2, %zu@%lu)\n",
170 iocb->ki_filp,
171 iov_iter_count(to), (unsigned long) iocb->ki_pos);
172
173 nfs_start_io_read(inode);
174 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
175 if (!result) {
176 result = generic_file_read_iter(iocb, to);
177 if (result > 0)
178 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
179 }
180 nfs_end_io_read(inode);
181 return result;
182 }
183 EXPORT_SYMBOL_GPL(nfs_file_read);
184
185 ssize_t
186 nfs_file_splice_read(struct file *filp, loff_t *ppos,
187 struct pipe_inode_info *pipe, size_t count,
188 unsigned int flags)
189 {
190 struct inode *inode = file_inode(filp);
191 ssize_t res;
192
193 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
194 filp, (unsigned long) count, (unsigned long long) *ppos);
195
196 nfs_start_io_read(inode);
197 res = nfs_revalidate_mapping(inode, filp->f_mapping);
198 if (!res) {
199 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
200 if (res > 0)
201 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
202 }
203 nfs_end_io_read(inode);
204 return res;
205 }
206 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
207
208 int
209 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
210 {
211 struct inode *inode = file_inode(file);
212 int status;
213
214 dprintk("NFS: mmap(%pD2)\n", file);
215
216 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
217 * so we call that before revalidating the mapping
218 */
219 status = generic_file_mmap(file, vma);
220 if (!status) {
221 vma->vm_ops = &nfs_file_vm_ops;
222 status = nfs_revalidate_mapping(inode, file->f_mapping);
223 }
224 return status;
225 }
226 EXPORT_SYMBOL_GPL(nfs_file_mmap);
227
228 /*
229 * Flush any dirty pages for this process, and check for write errors.
230 * The return status from this call provides a reliable indication of
231 * whether any write errors occurred for this process.
232 *
233 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
234 * disk, but it retrieves and clears ctx->error after synching, despite
235 * the two being set at the same time in nfs_context_set_write_error().
236 * This is because the former is used to notify the _next_ call to
237 * nfs_file_write() that a write error occurred, and hence cause it to
238 * fall back to doing a synchronous write.
239 */
240 static int
241 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
242 {
243 struct nfs_open_context *ctx = nfs_file_open_context(file);
244 struct inode *inode = file_inode(file);
245 int have_error, do_resend, status;
246 int ret = 0;
247
248 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
249
250 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
251 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
252 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
253 status = nfs_commit_inode(inode, FLUSH_SYNC);
254 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
255 if (have_error) {
256 ret = xchg(&ctx->error, 0);
257 if (ret)
258 goto out;
259 }
260 if (status < 0) {
261 ret = status;
262 goto out;
263 }
264 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
265 if (do_resend)
266 ret = -EAGAIN;
267 out:
268 return ret;
269 }
270
271 int
272 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
273 {
274 int ret;
275 struct inode *inode = file_inode(file);
276
277 trace_nfs_fsync_enter(inode);
278
279 do {
280 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
281 if (ret != 0)
282 break;
283 ret = nfs_file_fsync_commit(file, start, end, datasync);
284 if (!ret)
285 ret = pnfs_sync_inode(inode, !!datasync);
286 /*
287 * If nfs_file_fsync_commit detected a server reboot, then
288 * resend all dirty pages that might have been covered by
289 * the NFS_CONTEXT_RESEND_WRITES flag
290 */
291 start = 0;
292 end = LLONG_MAX;
293 } while (ret == -EAGAIN);
294
295 trace_nfs_fsync_exit(inode, ret);
296 return ret;
297 }
298 EXPORT_SYMBOL_GPL(nfs_file_fsync);
299
300 /*
301 * Decide whether a read/modify/write cycle may be more efficient
302 * then a modify/write/read cycle when writing to a page in the
303 * page cache.
304 *
305 * The modify/write/read cycle may occur if a page is read before
306 * being completely filled by the writer. In this situation, the
307 * page must be completely written to stable storage on the server
308 * before it can be refilled by reading in the page from the server.
309 * This can lead to expensive, small, FILE_SYNC mode writes being
310 * done.
311 *
312 * It may be more efficient to read the page first if the file is
313 * open for reading in addition to writing, the page is not marked
314 * as Uptodate, it is not dirty or waiting to be committed,
315 * indicating that it was previously allocated and then modified,
316 * that there were valid bytes of data in that range of the file,
317 * and that the new data won't completely replace the old data in
318 * that range of the file.
319 */
320 static int nfs_want_read_modify_write(struct file *file, struct page *page,
321 loff_t pos, unsigned len)
322 {
323 unsigned int pglen = nfs_page_length(page);
324 unsigned int offset = pos & (PAGE_SIZE - 1);
325 unsigned int end = offset + len;
326
327 if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
328 if (!PageUptodate(page))
329 return 1;
330 return 0;
331 }
332
333 if ((file->f_mode & FMODE_READ) && /* open for read? */
334 !PageUptodate(page) && /* Uptodate? */
335 !PagePrivate(page) && /* i/o request already? */
336 pglen && /* valid bytes of file? */
337 (end < pglen || offset)) /* replace all valid bytes? */
338 return 1;
339 return 0;
340 }
341
342 /*
343 * This does the "real" work of the write. We must allocate and lock the
344 * page to be sent back to the generic routine, which then copies the
345 * data from user space.
346 *
347 * If the writer ends up delaying the write, the writer needs to
348 * increment the page use counts until he is done with the page.
349 */
350 static int nfs_write_begin(struct file *file, struct address_space *mapping,
351 loff_t pos, unsigned len, unsigned flags,
352 struct page **pagep, void **fsdata)
353 {
354 int ret;
355 pgoff_t index = pos >> PAGE_SHIFT;
356 struct page *page;
357 int once_thru = 0;
358
359 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
360 file, mapping->host->i_ino, len, (long long) pos);
361
362 start:
363 page = grab_cache_page_write_begin(mapping, index, flags);
364 if (!page)
365 return -ENOMEM;
366 *pagep = page;
367
368 ret = nfs_flush_incompatible(file, page);
369 if (ret) {
370 unlock_page(page);
371 put_page(page);
372 } else if (!once_thru &&
373 nfs_want_read_modify_write(file, page, pos, len)) {
374 once_thru = 1;
375 ret = nfs_readpage(file, page);
376 put_page(page);
377 if (!ret)
378 goto start;
379 }
380 return ret;
381 }
382
383 static int nfs_write_end(struct file *file, struct address_space *mapping,
384 loff_t pos, unsigned len, unsigned copied,
385 struct page *page, void *fsdata)
386 {
387 unsigned offset = pos & (PAGE_SIZE - 1);
388 struct nfs_open_context *ctx = nfs_file_open_context(file);
389 int status;
390
391 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
392 file, mapping->host->i_ino, len, (long long) pos);
393
394 /*
395 * Zero any uninitialised parts of the page, and then mark the page
396 * as up to date if it turns out that we're extending the file.
397 */
398 if (!PageUptodate(page)) {
399 unsigned pglen = nfs_page_length(page);
400 unsigned end = offset + len;
401
402 if (pglen == 0) {
403 zero_user_segments(page, 0, offset,
404 end, PAGE_SIZE);
405 SetPageUptodate(page);
406 } else if (end >= pglen) {
407 zero_user_segment(page, end, PAGE_SIZE);
408 if (offset == 0)
409 SetPageUptodate(page);
410 } else
411 zero_user_segment(page, pglen, PAGE_SIZE);
412 }
413
414 status = nfs_updatepage(file, page, offset, copied);
415
416 unlock_page(page);
417 put_page(page);
418
419 if (status < 0)
420 return status;
421 NFS_I(mapping->host)->write_io += copied;
422
423 if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
424 status = nfs_wb_all(mapping->host);
425 if (status < 0)
426 return status;
427 }
428
429 return copied;
430 }
431
432 /*
433 * Partially or wholly invalidate a page
434 * - Release the private state associated with a page if undergoing complete
435 * page invalidation
436 * - Called if either PG_private or PG_fscache is set on the page
437 * - Caller holds page lock
438 */
439 static void nfs_invalidate_page(struct page *page, unsigned int offset,
440 unsigned int length)
441 {
442 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
443 page, offset, length);
444
445 if (offset != 0 || length < PAGE_SIZE)
446 return;
447 /* Cancel any unstarted writes on this page */
448 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
449
450 nfs_fscache_invalidate_page(page, page->mapping->host);
451 }
452
453 /*
454 * Attempt to release the private state associated with a page
455 * - Called if either PG_private or PG_fscache is set on the page
456 * - Caller holds page lock
457 * - Return true (may release page) or false (may not)
458 */
459 static int nfs_release_page(struct page *page, gfp_t gfp)
460 {
461 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
462
463 /* If PagePrivate() is set, then the page is not freeable */
464 if (PagePrivate(page))
465 return 0;
466 return nfs_fscache_release_page(page, gfp);
467 }
468
469 static void nfs_check_dirty_writeback(struct page *page,
470 bool *dirty, bool *writeback)
471 {
472 struct nfs_inode *nfsi;
473 struct address_space *mapping = page_file_mapping(page);
474
475 if (!mapping || PageSwapCache(page))
476 return;
477
478 /*
479 * Check if an unstable page is currently being committed and
480 * if so, have the VM treat it as if the page is under writeback
481 * so it will not block due to pages that will shortly be freeable.
482 */
483 nfsi = NFS_I(mapping->host);
484 if (atomic_read(&nfsi->commit_info.rpcs_out)) {
485 *writeback = true;
486 return;
487 }
488
489 /*
490 * If PagePrivate() is set, then the page is not freeable and as the
491 * inode is not being committed, it's not going to be cleaned in the
492 * near future so treat it as dirty
493 */
494 if (PagePrivate(page))
495 *dirty = true;
496 }
497
498 /*
499 * Attempt to clear the private state associated with a page when an error
500 * occurs that requires the cached contents of an inode to be written back or
501 * destroyed
502 * - Called if either PG_private or fscache is set on the page
503 * - Caller holds page lock
504 * - Return 0 if successful, -error otherwise
505 */
506 static int nfs_launder_page(struct page *page)
507 {
508 struct inode *inode = page_file_mapping(page)->host;
509 struct nfs_inode *nfsi = NFS_I(inode);
510
511 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
512 inode->i_ino, (long long)page_offset(page));
513
514 nfs_fscache_wait_on_page_write(nfsi, page);
515 return nfs_wb_launder_page(inode, page);
516 }
517
518 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
519 sector_t *span)
520 {
521 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
522
523 *span = sis->pages;
524
525 return rpc_clnt_swap_activate(clnt);
526 }
527
528 static void nfs_swap_deactivate(struct file *file)
529 {
530 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
531
532 rpc_clnt_swap_deactivate(clnt);
533 }
534
535 const struct address_space_operations nfs_file_aops = {
536 .readpage = nfs_readpage,
537 .readpages = nfs_readpages,
538 .set_page_dirty = __set_page_dirty_nobuffers,
539 .writepage = nfs_writepage,
540 .writepages = nfs_writepages,
541 .write_begin = nfs_write_begin,
542 .write_end = nfs_write_end,
543 .invalidatepage = nfs_invalidate_page,
544 .releasepage = nfs_release_page,
545 .direct_IO = nfs_direct_IO,
546 .migratepage = nfs_migrate_page,
547 .launder_page = nfs_launder_page,
548 .is_dirty_writeback = nfs_check_dirty_writeback,
549 .error_remove_page = generic_error_remove_page,
550 .swap_activate = nfs_swap_activate,
551 .swap_deactivate = nfs_swap_deactivate,
552 };
553
554 /*
555 * Notification that a PTE pointing to an NFS page is about to be made
556 * writable, implying that someone is about to modify the page through a
557 * shared-writable mapping
558 */
559 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
560 {
561 struct page *page = vmf->page;
562 struct file *filp = vma->vm_file;
563 struct inode *inode = file_inode(filp);
564 unsigned pagelen;
565 int ret = VM_FAULT_NOPAGE;
566 struct address_space *mapping;
567
568 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
569 filp, filp->f_mapping->host->i_ino,
570 (long long)page_offset(page));
571
572 sb_start_pagefault(inode->i_sb);
573
574 /* make sure the cache has finished storing the page */
575 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
576
577 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
578 nfs_wait_bit_killable, TASK_KILLABLE);
579
580 lock_page(page);
581 mapping = page_file_mapping(page);
582 if (mapping != inode->i_mapping)
583 goto out_unlock;
584
585 wait_on_page_writeback(page);
586
587 pagelen = nfs_page_length(page);
588 if (pagelen == 0)
589 goto out_unlock;
590
591 ret = VM_FAULT_LOCKED;
592 if (nfs_flush_incompatible(filp, page) == 0 &&
593 nfs_updatepage(filp, page, 0, pagelen) == 0)
594 goto out;
595
596 ret = VM_FAULT_SIGBUS;
597 out_unlock:
598 unlock_page(page);
599 out:
600 sb_end_pagefault(inode->i_sb);
601 return ret;
602 }
603
604 static const struct vm_operations_struct nfs_file_vm_ops = {
605 .fault = filemap_fault,
606 .map_pages = filemap_map_pages,
607 .page_mkwrite = nfs_vm_page_mkwrite,
608 };
609
610 static int nfs_need_check_write(struct file *filp, struct inode *inode)
611 {
612 struct nfs_open_context *ctx;
613
614 ctx = nfs_file_open_context(filp);
615 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
616 nfs_ctx_key_to_expire(ctx, inode))
617 return 1;
618 return 0;
619 }
620
621 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
622 {
623 struct file *file = iocb->ki_filp;
624 struct inode *inode = file_inode(file);
625 unsigned long written = 0;
626 ssize_t result;
627
628 result = nfs_key_timeout_notify(file, inode);
629 if (result)
630 return result;
631
632 if (iocb->ki_flags & IOCB_DIRECT)
633 return nfs_file_direct_write(iocb, from);
634
635 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
636 file, iov_iter_count(from), (long long) iocb->ki_pos);
637
638 if (IS_SWAPFILE(inode))
639 goto out_swapfile;
640 /*
641 * O_APPEND implies that we must revalidate the file length.
642 */
643 if (iocb->ki_flags & IOCB_APPEND) {
644 result = nfs_revalidate_file_size(inode, file);
645 if (result)
646 goto out;
647 }
648
649 nfs_start_io_write(inode);
650 result = generic_write_checks(iocb, from);
651 if (result > 0) {
652 current->backing_dev_info = inode_to_bdi(inode);
653 result = generic_perform_write(file, from, iocb->ki_pos);
654 current->backing_dev_info = NULL;
655 }
656 nfs_end_io_write(inode);
657 if (result <= 0)
658 goto out;
659
660 written = generic_write_sync(iocb, result);
661 iocb->ki_pos += written;
662
663 /* Return error values */
664 if (nfs_need_check_write(file, inode)) {
665 int err = vfs_fsync(file, 0);
666 if (err < 0)
667 result = err;
668 }
669 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
670 out:
671 return result;
672
673 out_swapfile:
674 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
675 return -EBUSY;
676 }
677 EXPORT_SYMBOL_GPL(nfs_file_write);
678
679 static int
680 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
681 {
682 struct inode *inode = filp->f_mapping->host;
683 int status = 0;
684 unsigned int saved_type = fl->fl_type;
685
686 /* Try local locking first */
687 posix_test_lock(filp, fl);
688 if (fl->fl_type != F_UNLCK) {
689 /* found a conflict */
690 goto out;
691 }
692 fl->fl_type = saved_type;
693
694 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
695 goto out_noconflict;
696
697 if (is_local)
698 goto out_noconflict;
699
700 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
701 out:
702 return status;
703 out_noconflict:
704 fl->fl_type = F_UNLCK;
705 goto out;
706 }
707
708 static int do_vfs_lock(struct file *file, struct file_lock *fl)
709 {
710 return locks_lock_file_wait(file, fl);
711 }
712
713 static int
714 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
715 {
716 struct inode *inode = filp->f_mapping->host;
717 struct nfs_lock_context *l_ctx;
718 int status;
719
720 /*
721 * Flush all pending writes before doing anything
722 * with locks..
723 */
724 vfs_fsync(filp, 0);
725
726 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
727 if (!IS_ERR(l_ctx)) {
728 status = nfs_iocounter_wait(l_ctx);
729 nfs_put_lock_context(l_ctx);
730 if (status < 0)
731 return status;
732 }
733
734 /* NOTE: special case
735 * If we're signalled while cleaning up locks on process exit, we
736 * still need to complete the unlock.
737 */
738 /*
739 * Use local locking if mounted with "-onolock" or with appropriate
740 * "-olocal_lock="
741 */
742 if (!is_local)
743 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
744 else
745 status = do_vfs_lock(filp, fl);
746 return status;
747 }
748
749 static int
750 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
751 {
752 struct inode *inode = filp->f_mapping->host;
753 int status;
754
755 /*
756 * Flush all pending writes before doing anything
757 * with locks..
758 */
759 status = nfs_sync_mapping(filp->f_mapping);
760 if (status != 0)
761 goto out;
762
763 /*
764 * Use local locking if mounted with "-onolock" or with appropriate
765 * "-olocal_lock="
766 */
767 if (!is_local)
768 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
769 else
770 status = do_vfs_lock(filp, fl);
771 if (status < 0)
772 goto out;
773
774 /*
775 * Revalidate the cache if the server has time stamps granular
776 * enough to detect subsecond changes. Otherwise, clear the
777 * cache to prevent missing any changes.
778 *
779 * This makes locking act as a cache coherency point.
780 */
781 nfs_sync_mapping(filp->f_mapping);
782 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
783 nfs_zap_mapping(inode, filp->f_mapping);
784 out:
785 return status;
786 }
787
788 /*
789 * Lock a (portion of) a file
790 */
791 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
792 {
793 struct inode *inode = filp->f_mapping->host;
794 int ret = -ENOLCK;
795 int is_local = 0;
796
797 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
798 filp, fl->fl_type, fl->fl_flags,
799 (long long)fl->fl_start, (long long)fl->fl_end);
800
801 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
802
803 /* No mandatory locks over NFS */
804 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
805 goto out_err;
806
807 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
808 is_local = 1;
809
810 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
811 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
812 if (ret < 0)
813 goto out_err;
814 }
815
816 if (IS_GETLK(cmd))
817 ret = do_getlk(filp, cmd, fl, is_local);
818 else if (fl->fl_type == F_UNLCK)
819 ret = do_unlk(filp, cmd, fl, is_local);
820 else
821 ret = do_setlk(filp, cmd, fl, is_local);
822 out_err:
823 return ret;
824 }
825 EXPORT_SYMBOL_GPL(nfs_lock);
826
827 /*
828 * Lock a (portion of) a file
829 */
830 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
831 {
832 struct inode *inode = filp->f_mapping->host;
833 int is_local = 0;
834
835 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
836 filp, fl->fl_type, fl->fl_flags);
837
838 if (!(fl->fl_flags & FL_FLOCK))
839 return -ENOLCK;
840
841 /*
842 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
843 * any standard. In principle we might be able to support LOCK_MAND
844 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
845 * NFS code is not set up for it.
846 */
847 if (fl->fl_type & LOCK_MAND)
848 return -EINVAL;
849
850 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
851 is_local = 1;
852
853 /* We're simulating flock() locks using posix locks on the server */
854 if (fl->fl_type == F_UNLCK)
855 return do_unlk(filp, cmd, fl, is_local);
856 return do_setlk(filp, cmd, fl, is_local);
857 }
858 EXPORT_SYMBOL_GPL(nfs_flock);
859
860 const struct file_operations nfs_file_operations = {
861 .llseek = nfs_file_llseek,
862 .read_iter = nfs_file_read,
863 .write_iter = nfs_file_write,
864 .mmap = nfs_file_mmap,
865 .open = nfs_file_open,
866 .flush = nfs_file_flush,
867 .release = nfs_file_release,
868 .fsync = nfs_file_fsync,
869 .lock = nfs_lock,
870 .flock = nfs_flock,
871 .splice_read = nfs_file_splice_read,
872 .splice_write = iter_file_splice_write,
873 .check_flags = nfs_check_flags,
874 .setlease = simple_nosetlease,
875 };
876 EXPORT_SYMBOL_GPL(nfs_file_operations);
This page took 0.050719 seconds and 5 git commands to generate.