arch: Mass conversion of smp_mb__*()
[deliverable/linux.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24
25 #include <asm/uaccess.h>
26
27 #include "delegation.h"
28 #include "internal.h"
29 #include "iostat.h"
30 #include "nfs4_fs.h"
31 #include "fscache.h"
32 #include "pnfs.h"
33
34 #include "nfstrace.h"
35
36 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
37
38 #define MIN_POOL_WRITE (32)
39 #define MIN_POOL_COMMIT (4)
40
41 /*
42 * Local function declarations
43 */
44 static void nfs_redirty_request(struct nfs_page *req);
45 static const struct rpc_call_ops nfs_write_common_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
48 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
49
50 static struct kmem_cache *nfs_wdata_cachep;
51 static mempool_t *nfs_wdata_mempool;
52 static struct kmem_cache *nfs_cdata_cachep;
53 static mempool_t *nfs_commit_mempool;
54
55 struct nfs_commit_data *nfs_commitdata_alloc(void)
56 {
57 struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
58
59 if (p) {
60 memset(p, 0, sizeof(*p));
61 INIT_LIST_HEAD(&p->pages);
62 }
63 return p;
64 }
65 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
66
67 void nfs_commit_free(struct nfs_commit_data *p)
68 {
69 mempool_free(p, nfs_commit_mempool);
70 }
71 EXPORT_SYMBOL_GPL(nfs_commit_free);
72
73 struct nfs_write_header *nfs_writehdr_alloc(void)
74 {
75 struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
76
77 if (p) {
78 struct nfs_pgio_header *hdr = &p->header;
79
80 memset(p, 0, sizeof(*p));
81 INIT_LIST_HEAD(&hdr->pages);
82 INIT_LIST_HEAD(&hdr->rpc_list);
83 spin_lock_init(&hdr->lock);
84 atomic_set(&hdr->refcnt, 0);
85 hdr->verf = &p->verf;
86 }
87 return p;
88 }
89 EXPORT_SYMBOL_GPL(nfs_writehdr_alloc);
90
91 static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr,
92 unsigned int pagecount)
93 {
94 struct nfs_write_data *data, *prealloc;
95
96 prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data;
97 if (prealloc->header == NULL)
98 data = prealloc;
99 else
100 data = kzalloc(sizeof(*data), GFP_KERNEL);
101 if (!data)
102 goto out;
103
104 if (nfs_pgarray_set(&data->pages, pagecount)) {
105 data->header = hdr;
106 atomic_inc(&hdr->refcnt);
107 } else {
108 if (data != prealloc)
109 kfree(data);
110 data = NULL;
111 }
112 out:
113 return data;
114 }
115
116 void nfs_writehdr_free(struct nfs_pgio_header *hdr)
117 {
118 struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header);
119 mempool_free(whdr, nfs_wdata_mempool);
120 }
121 EXPORT_SYMBOL_GPL(nfs_writehdr_free);
122
123 void nfs_writedata_release(struct nfs_write_data *wdata)
124 {
125 struct nfs_pgio_header *hdr = wdata->header;
126 struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header);
127
128 put_nfs_open_context(wdata->args.context);
129 if (wdata->pages.pagevec != wdata->pages.page_array)
130 kfree(wdata->pages.pagevec);
131 if (wdata == &write_header->rpc_data) {
132 wdata->header = NULL;
133 wdata = NULL;
134 }
135 if (atomic_dec_and_test(&hdr->refcnt))
136 hdr->completion_ops->completion(hdr);
137 /* Note: we only free the rpc_task after callbacks are done.
138 * See the comment in rpc_free_task() for why
139 */
140 kfree(wdata);
141 }
142 EXPORT_SYMBOL_GPL(nfs_writedata_release);
143
144 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
145 {
146 ctx->error = error;
147 smp_wmb();
148 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
149 }
150
151 static struct nfs_page *
152 nfs_page_find_request_locked(struct nfs_inode *nfsi, struct page *page)
153 {
154 struct nfs_page *req = NULL;
155
156 if (PagePrivate(page))
157 req = (struct nfs_page *)page_private(page);
158 else if (unlikely(PageSwapCache(page))) {
159 struct nfs_page *freq, *t;
160
161 /* Linearly search the commit list for the correct req */
162 list_for_each_entry_safe(freq, t, &nfsi->commit_info.list, wb_list) {
163 if (freq->wb_page == page) {
164 req = freq;
165 break;
166 }
167 }
168 }
169
170 if (req)
171 kref_get(&req->wb_kref);
172
173 return req;
174 }
175
176 static struct nfs_page *nfs_page_find_request(struct page *page)
177 {
178 struct inode *inode = page_file_mapping(page)->host;
179 struct nfs_page *req = NULL;
180
181 spin_lock(&inode->i_lock);
182 req = nfs_page_find_request_locked(NFS_I(inode), page);
183 spin_unlock(&inode->i_lock);
184 return req;
185 }
186
187 /* Adjust the file length if we're writing beyond the end */
188 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
189 {
190 struct inode *inode = page_file_mapping(page)->host;
191 loff_t end, i_size;
192 pgoff_t end_index;
193
194 spin_lock(&inode->i_lock);
195 i_size = i_size_read(inode);
196 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
197 if (i_size > 0 && page_file_index(page) < end_index)
198 goto out;
199 end = page_file_offset(page) + ((loff_t)offset+count);
200 if (i_size >= end)
201 goto out;
202 i_size_write(inode, end);
203 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
204 out:
205 spin_unlock(&inode->i_lock);
206 }
207
208 /* A writeback failed: mark the page as bad, and invalidate the page cache */
209 static void nfs_set_pageerror(struct page *page)
210 {
211 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
212 }
213
214 /* We can set the PG_uptodate flag if we see that a write request
215 * covers the full page.
216 */
217 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
218 {
219 if (PageUptodate(page))
220 return;
221 if (base != 0)
222 return;
223 if (count != nfs_page_length(page))
224 return;
225 SetPageUptodate(page);
226 }
227
228 static int wb_priority(struct writeback_control *wbc)
229 {
230 if (wbc->for_reclaim)
231 return FLUSH_HIGHPRI | FLUSH_STABLE;
232 if (wbc->for_kupdate || wbc->for_background)
233 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
234 return FLUSH_COND_STABLE;
235 }
236
237 /*
238 * NFS congestion control
239 */
240
241 int nfs_congestion_kb;
242
243 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
244 #define NFS_CONGESTION_OFF_THRESH \
245 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
246
247 static void nfs_set_page_writeback(struct page *page)
248 {
249 struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host);
250 int ret = test_set_page_writeback(page);
251
252 WARN_ON_ONCE(ret != 0);
253
254 if (atomic_long_inc_return(&nfss->writeback) >
255 NFS_CONGESTION_ON_THRESH) {
256 set_bdi_congested(&nfss->backing_dev_info,
257 BLK_RW_ASYNC);
258 }
259 }
260
261 static void nfs_end_page_writeback(struct page *page)
262 {
263 struct inode *inode = page_file_mapping(page)->host;
264 struct nfs_server *nfss = NFS_SERVER(inode);
265
266 end_page_writeback(page);
267 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
268 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
269 }
270
271 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
272 {
273 struct inode *inode = page_file_mapping(page)->host;
274 struct nfs_page *req;
275 int ret;
276
277 spin_lock(&inode->i_lock);
278 for (;;) {
279 req = nfs_page_find_request_locked(NFS_I(inode), page);
280 if (req == NULL)
281 break;
282 if (nfs_lock_request(req))
283 break;
284 /* Note: If we hold the page lock, as is the case in nfs_writepage,
285 * then the call to nfs_lock_request() will always
286 * succeed provided that someone hasn't already marked the
287 * request as dirty (in which case we don't care).
288 */
289 spin_unlock(&inode->i_lock);
290 if (!nonblock)
291 ret = nfs_wait_on_request(req);
292 else
293 ret = -EAGAIN;
294 nfs_release_request(req);
295 if (ret != 0)
296 return ERR_PTR(ret);
297 spin_lock(&inode->i_lock);
298 }
299 spin_unlock(&inode->i_lock);
300 return req;
301 }
302
303 /*
304 * Find an associated nfs write request, and prepare to flush it out
305 * May return an error if the user signalled nfs_wait_on_request().
306 */
307 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
308 struct page *page, bool nonblock)
309 {
310 struct nfs_page *req;
311 int ret = 0;
312
313 req = nfs_find_and_lock_request(page, nonblock);
314 if (!req)
315 goto out;
316 ret = PTR_ERR(req);
317 if (IS_ERR(req))
318 goto out;
319
320 nfs_set_page_writeback(page);
321 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
322
323 ret = 0;
324 if (!nfs_pageio_add_request(pgio, req)) {
325 nfs_redirty_request(req);
326 ret = pgio->pg_error;
327 }
328 out:
329 return ret;
330 }
331
332 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
333 {
334 struct inode *inode = page_file_mapping(page)->host;
335 int ret;
336
337 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
338 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
339
340 nfs_pageio_cond_complete(pgio, page_file_index(page));
341 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
342 if (ret == -EAGAIN) {
343 redirty_page_for_writepage(wbc, page);
344 ret = 0;
345 }
346 return ret;
347 }
348
349 /*
350 * Write an mmapped page to the server.
351 */
352 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
353 {
354 struct nfs_pageio_descriptor pgio;
355 int err;
356
357 NFS_PROTO(page_file_mapping(page)->host)->write_pageio_init(&pgio,
358 page->mapping->host,
359 wb_priority(wbc),
360 &nfs_async_write_completion_ops);
361 err = nfs_do_writepage(page, wbc, &pgio);
362 nfs_pageio_complete(&pgio);
363 if (err < 0)
364 return err;
365 if (pgio.pg_error < 0)
366 return pgio.pg_error;
367 return 0;
368 }
369
370 int nfs_writepage(struct page *page, struct writeback_control *wbc)
371 {
372 int ret;
373
374 ret = nfs_writepage_locked(page, wbc);
375 unlock_page(page);
376 return ret;
377 }
378
379 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
380 {
381 int ret;
382
383 ret = nfs_do_writepage(page, wbc, data);
384 unlock_page(page);
385 return ret;
386 }
387
388 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
389 {
390 struct inode *inode = mapping->host;
391 unsigned long *bitlock = &NFS_I(inode)->flags;
392 struct nfs_pageio_descriptor pgio;
393 int err;
394
395 /* Stop dirtying of new pages while we sync */
396 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
397 nfs_wait_bit_killable, TASK_KILLABLE);
398 if (err)
399 goto out_err;
400
401 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
402
403 NFS_PROTO(inode)->write_pageio_init(&pgio, inode, wb_priority(wbc), &nfs_async_write_completion_ops);
404 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
405 nfs_pageio_complete(&pgio);
406
407 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
408 smp_mb__after_atomic();
409 wake_up_bit(bitlock, NFS_INO_FLUSHING);
410
411 if (err < 0)
412 goto out_err;
413 err = pgio.pg_error;
414 if (err < 0)
415 goto out_err;
416 return 0;
417 out_err:
418 return err;
419 }
420
421 /*
422 * Insert a write request into an inode
423 */
424 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
425 {
426 struct nfs_inode *nfsi = NFS_I(inode);
427
428 /* Lock the request! */
429 nfs_lock_request(req);
430
431 spin_lock(&inode->i_lock);
432 if (!nfsi->npages && NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
433 inode->i_version++;
434 /*
435 * Swap-space should not get truncated. Hence no need to plug the race
436 * with invalidate/truncate.
437 */
438 if (likely(!PageSwapCache(req->wb_page))) {
439 set_bit(PG_MAPPED, &req->wb_flags);
440 SetPagePrivate(req->wb_page);
441 set_page_private(req->wb_page, (unsigned long)req);
442 }
443 nfsi->npages++;
444 kref_get(&req->wb_kref);
445 spin_unlock(&inode->i_lock);
446 }
447
448 /*
449 * Remove a write request from an inode
450 */
451 static void nfs_inode_remove_request(struct nfs_page *req)
452 {
453 struct inode *inode = req->wb_context->dentry->d_inode;
454 struct nfs_inode *nfsi = NFS_I(inode);
455
456 spin_lock(&inode->i_lock);
457 if (likely(!PageSwapCache(req->wb_page))) {
458 set_page_private(req->wb_page, 0);
459 ClearPagePrivate(req->wb_page);
460 clear_bit(PG_MAPPED, &req->wb_flags);
461 }
462 nfsi->npages--;
463 spin_unlock(&inode->i_lock);
464 nfs_release_request(req);
465 }
466
467 static void
468 nfs_mark_request_dirty(struct nfs_page *req)
469 {
470 __set_page_dirty_nobuffers(req->wb_page);
471 }
472
473 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
474 /**
475 * nfs_request_add_commit_list - add request to a commit list
476 * @req: pointer to a struct nfs_page
477 * @dst: commit list head
478 * @cinfo: holds list lock and accounting info
479 *
480 * This sets the PG_CLEAN bit, updates the cinfo count of
481 * number of outstanding requests requiring a commit as well as
482 * the MM page stats.
483 *
484 * The caller must _not_ hold the cinfo->lock, but must be
485 * holding the nfs_page lock.
486 */
487 void
488 nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst,
489 struct nfs_commit_info *cinfo)
490 {
491 set_bit(PG_CLEAN, &(req)->wb_flags);
492 spin_lock(cinfo->lock);
493 nfs_list_add_request(req, dst);
494 cinfo->mds->ncommit++;
495 spin_unlock(cinfo->lock);
496 if (!cinfo->dreq) {
497 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
498 inc_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
499 BDI_RECLAIMABLE);
500 __mark_inode_dirty(req->wb_context->dentry->d_inode,
501 I_DIRTY_DATASYNC);
502 }
503 }
504 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
505
506 /**
507 * nfs_request_remove_commit_list - Remove request from a commit list
508 * @req: pointer to a nfs_page
509 * @cinfo: holds list lock and accounting info
510 *
511 * This clears the PG_CLEAN bit, and updates the cinfo's count of
512 * number of outstanding requests requiring a commit
513 * It does not update the MM page stats.
514 *
515 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
516 */
517 void
518 nfs_request_remove_commit_list(struct nfs_page *req,
519 struct nfs_commit_info *cinfo)
520 {
521 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
522 return;
523 nfs_list_remove_request(req);
524 cinfo->mds->ncommit--;
525 }
526 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
527
528 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
529 struct inode *inode)
530 {
531 cinfo->lock = &inode->i_lock;
532 cinfo->mds = &NFS_I(inode)->commit_info;
533 cinfo->ds = pnfs_get_ds_info(inode);
534 cinfo->dreq = NULL;
535 cinfo->completion_ops = &nfs_commit_completion_ops;
536 }
537
538 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
539 struct inode *inode,
540 struct nfs_direct_req *dreq)
541 {
542 if (dreq)
543 nfs_init_cinfo_from_dreq(cinfo, dreq);
544 else
545 nfs_init_cinfo_from_inode(cinfo, inode);
546 }
547 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
548
549 /*
550 * Add a request to the inode's commit list.
551 */
552 void
553 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
554 struct nfs_commit_info *cinfo)
555 {
556 if (pnfs_mark_request_commit(req, lseg, cinfo))
557 return;
558 nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo);
559 }
560
561 static void
562 nfs_clear_page_commit(struct page *page)
563 {
564 dec_zone_page_state(page, NR_UNSTABLE_NFS);
565 dec_bdi_stat(page_file_mapping(page)->backing_dev_info, BDI_RECLAIMABLE);
566 }
567
568 static void
569 nfs_clear_request_commit(struct nfs_page *req)
570 {
571 if (test_bit(PG_CLEAN, &req->wb_flags)) {
572 struct inode *inode = req->wb_context->dentry->d_inode;
573 struct nfs_commit_info cinfo;
574
575 nfs_init_cinfo_from_inode(&cinfo, inode);
576 if (!pnfs_clear_request_commit(req, &cinfo)) {
577 spin_lock(cinfo.lock);
578 nfs_request_remove_commit_list(req, &cinfo);
579 spin_unlock(cinfo.lock);
580 }
581 nfs_clear_page_commit(req->wb_page);
582 }
583 }
584
585 static inline
586 int nfs_write_need_commit(struct nfs_write_data *data)
587 {
588 if (data->verf.committed == NFS_DATA_SYNC)
589 return data->header->lseg == NULL;
590 return data->verf.committed != NFS_FILE_SYNC;
591 }
592
593 #else
594 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
595 struct inode *inode)
596 {
597 }
598
599 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
600 struct inode *inode,
601 struct nfs_direct_req *dreq)
602 {
603 }
604
605 void
606 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
607 struct nfs_commit_info *cinfo)
608 {
609 }
610
611 static void
612 nfs_clear_request_commit(struct nfs_page *req)
613 {
614 }
615
616 static inline
617 int nfs_write_need_commit(struct nfs_write_data *data)
618 {
619 return 0;
620 }
621
622 #endif
623
624 static void nfs_write_completion(struct nfs_pgio_header *hdr)
625 {
626 struct nfs_commit_info cinfo;
627 unsigned long bytes = 0;
628
629 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
630 goto out;
631 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
632 while (!list_empty(&hdr->pages)) {
633 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
634
635 bytes += req->wb_bytes;
636 nfs_list_remove_request(req);
637 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
638 (hdr->good_bytes < bytes)) {
639 nfs_set_pageerror(req->wb_page);
640 nfs_context_set_write_error(req->wb_context, hdr->error);
641 goto remove_req;
642 }
643 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
644 nfs_mark_request_dirty(req);
645 goto next;
646 }
647 if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
648 memcpy(&req->wb_verf, &hdr->verf->verifier, sizeof(req->wb_verf));
649 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
650 goto next;
651 }
652 remove_req:
653 nfs_inode_remove_request(req);
654 next:
655 nfs_unlock_request(req);
656 nfs_end_page_writeback(req->wb_page);
657 nfs_release_request(req);
658 }
659 out:
660 hdr->release(hdr);
661 }
662
663 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
664 static unsigned long
665 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
666 {
667 return cinfo->mds->ncommit;
668 }
669
670 /* cinfo->lock held by caller */
671 int
672 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
673 struct nfs_commit_info *cinfo, int max)
674 {
675 struct nfs_page *req, *tmp;
676 int ret = 0;
677
678 list_for_each_entry_safe(req, tmp, src, wb_list) {
679 if (!nfs_lock_request(req))
680 continue;
681 kref_get(&req->wb_kref);
682 if (cond_resched_lock(cinfo->lock))
683 list_safe_reset_next(req, tmp, wb_list);
684 nfs_request_remove_commit_list(req, cinfo);
685 nfs_list_add_request(req, dst);
686 ret++;
687 if ((ret == max) && !cinfo->dreq)
688 break;
689 }
690 return ret;
691 }
692
693 /*
694 * nfs_scan_commit - Scan an inode for commit requests
695 * @inode: NFS inode to scan
696 * @dst: mds destination list
697 * @cinfo: mds and ds lists of reqs ready to commit
698 *
699 * Moves requests from the inode's 'commit' request list.
700 * The requests are *not* checked to ensure that they form a contiguous set.
701 */
702 int
703 nfs_scan_commit(struct inode *inode, struct list_head *dst,
704 struct nfs_commit_info *cinfo)
705 {
706 int ret = 0;
707
708 spin_lock(cinfo->lock);
709 if (cinfo->mds->ncommit > 0) {
710 const int max = INT_MAX;
711
712 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
713 cinfo, max);
714 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
715 }
716 spin_unlock(cinfo->lock);
717 return ret;
718 }
719
720 #else
721 static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
722 {
723 return 0;
724 }
725
726 int nfs_scan_commit(struct inode *inode, struct list_head *dst,
727 struct nfs_commit_info *cinfo)
728 {
729 return 0;
730 }
731 #endif
732
733 /*
734 * Search for an existing write request, and attempt to update
735 * it to reflect a new dirty region on a given page.
736 *
737 * If the attempt fails, then the existing request is flushed out
738 * to disk.
739 */
740 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
741 struct page *page,
742 unsigned int offset,
743 unsigned int bytes)
744 {
745 struct nfs_page *req;
746 unsigned int rqend;
747 unsigned int end;
748 int error;
749
750 if (!PagePrivate(page))
751 return NULL;
752
753 end = offset + bytes;
754 spin_lock(&inode->i_lock);
755
756 for (;;) {
757 req = nfs_page_find_request_locked(NFS_I(inode), page);
758 if (req == NULL)
759 goto out_unlock;
760
761 rqend = req->wb_offset + req->wb_bytes;
762 /*
763 * Tell the caller to flush out the request if
764 * the offsets are non-contiguous.
765 * Note: nfs_flush_incompatible() will already
766 * have flushed out requests having wrong owners.
767 */
768 if (offset > rqend
769 || end < req->wb_offset)
770 goto out_flushme;
771
772 if (nfs_lock_request(req))
773 break;
774
775 /* The request is locked, so wait and then retry */
776 spin_unlock(&inode->i_lock);
777 error = nfs_wait_on_request(req);
778 nfs_release_request(req);
779 if (error != 0)
780 goto out_err;
781 spin_lock(&inode->i_lock);
782 }
783
784 /* Okay, the request matches. Update the region */
785 if (offset < req->wb_offset) {
786 req->wb_offset = offset;
787 req->wb_pgbase = offset;
788 }
789 if (end > rqend)
790 req->wb_bytes = end - req->wb_offset;
791 else
792 req->wb_bytes = rqend - req->wb_offset;
793 out_unlock:
794 spin_unlock(&inode->i_lock);
795 if (req)
796 nfs_clear_request_commit(req);
797 return req;
798 out_flushme:
799 spin_unlock(&inode->i_lock);
800 nfs_release_request(req);
801 error = nfs_wb_page(inode, page);
802 out_err:
803 return ERR_PTR(error);
804 }
805
806 /*
807 * Try to update an existing write request, or create one if there is none.
808 *
809 * Note: Should always be called with the Page Lock held to prevent races
810 * if we have to add a new request. Also assumes that the caller has
811 * already called nfs_flush_incompatible() if necessary.
812 */
813 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
814 struct page *page, unsigned int offset, unsigned int bytes)
815 {
816 struct inode *inode = page_file_mapping(page)->host;
817 struct nfs_page *req;
818
819 req = nfs_try_to_update_request(inode, page, offset, bytes);
820 if (req != NULL)
821 goto out;
822 req = nfs_create_request(ctx, inode, page, offset, bytes);
823 if (IS_ERR(req))
824 goto out;
825 nfs_inode_add_request(inode, req);
826 out:
827 return req;
828 }
829
830 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
831 unsigned int offset, unsigned int count)
832 {
833 struct nfs_page *req;
834
835 req = nfs_setup_write_request(ctx, page, offset, count);
836 if (IS_ERR(req))
837 return PTR_ERR(req);
838 /* Update file length */
839 nfs_grow_file(page, offset, count);
840 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
841 nfs_mark_request_dirty(req);
842 nfs_unlock_and_release_request(req);
843 return 0;
844 }
845
846 int nfs_flush_incompatible(struct file *file, struct page *page)
847 {
848 struct nfs_open_context *ctx = nfs_file_open_context(file);
849 struct nfs_lock_context *l_ctx;
850 struct nfs_page *req;
851 int do_flush, status;
852 /*
853 * Look for a request corresponding to this page. If there
854 * is one, and it belongs to another file, we flush it out
855 * before we try to copy anything into the page. Do this
856 * due to the lack of an ACCESS-type call in NFSv2.
857 * Also do the same if we find a request from an existing
858 * dropped page.
859 */
860 do {
861 req = nfs_page_find_request(page);
862 if (req == NULL)
863 return 0;
864 l_ctx = req->wb_lock_context;
865 do_flush = req->wb_page != page || req->wb_context != ctx;
866 if (l_ctx && ctx->dentry->d_inode->i_flock != NULL) {
867 do_flush |= l_ctx->lockowner.l_owner != current->files
868 || l_ctx->lockowner.l_pid != current->tgid;
869 }
870 nfs_release_request(req);
871 if (!do_flush)
872 return 0;
873 status = nfs_wb_page(page_file_mapping(page)->host, page);
874 } while (status == 0);
875 return status;
876 }
877
878 /*
879 * Avoid buffered writes when a open context credential's key would
880 * expire soon.
881 *
882 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
883 *
884 * Return 0 and set a credential flag which triggers the inode to flush
885 * and performs NFS_FILE_SYNC writes if the key will expired within
886 * RPC_KEY_EXPIRE_TIMEO.
887 */
888 int
889 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
890 {
891 struct nfs_open_context *ctx = nfs_file_open_context(filp);
892 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
893
894 return rpcauth_key_timeout_notify(auth, ctx->cred);
895 }
896
897 /*
898 * Test if the open context credential key is marked to expire soon.
899 */
900 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx)
901 {
902 return rpcauth_cred_key_to_expire(ctx->cred);
903 }
904
905 /*
906 * If the page cache is marked as unsafe or invalid, then we can't rely on
907 * the PageUptodate() flag. In this case, we will need to turn off
908 * write optimisations that depend on the page contents being correct.
909 */
910 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
911 {
912 struct nfs_inode *nfsi = NFS_I(inode);
913
914 if (nfs_have_delegated_attributes(inode))
915 goto out;
916 if (nfsi->cache_validity & (NFS_INO_INVALID_DATA|NFS_INO_REVAL_PAGECACHE))
917 return false;
918 smp_rmb();
919 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
920 return false;
921 out:
922 return PageUptodate(page) != 0;
923 }
924
925 /* If we know the page is up to date, and we're not using byte range locks (or
926 * if we have the whole file locked for writing), it may be more efficient to
927 * extend the write to cover the entire page in order to avoid fragmentation
928 * inefficiencies.
929 *
930 * If the file is opened for synchronous writes then we can just skip the rest
931 * of the checks.
932 */
933 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
934 {
935 if (file->f_flags & O_DSYNC)
936 return 0;
937 if (!nfs_write_pageuptodate(page, inode))
938 return 0;
939 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
940 return 1;
941 if (inode->i_flock == NULL || (inode->i_flock->fl_start == 0 &&
942 inode->i_flock->fl_end == OFFSET_MAX &&
943 inode->i_flock->fl_type != F_RDLCK))
944 return 1;
945 return 0;
946 }
947
948 /*
949 * Update and possibly write a cached page of an NFS file.
950 *
951 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
952 * things with a page scheduled for an RPC call (e.g. invalidate it).
953 */
954 int nfs_updatepage(struct file *file, struct page *page,
955 unsigned int offset, unsigned int count)
956 {
957 struct nfs_open_context *ctx = nfs_file_open_context(file);
958 struct inode *inode = page_file_mapping(page)->host;
959 int status = 0;
960
961 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
962
963 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
964 file, count, (long long)(page_file_offset(page) + offset));
965
966 if (nfs_can_extend_write(file, page, inode)) {
967 count = max(count + offset, nfs_page_length(page));
968 offset = 0;
969 }
970
971 status = nfs_writepage_setup(ctx, page, offset, count);
972 if (status < 0)
973 nfs_set_pageerror(page);
974 else
975 __set_page_dirty_nobuffers(page);
976
977 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
978 status, (long long)i_size_read(inode));
979 return status;
980 }
981
982 static int flush_task_priority(int how)
983 {
984 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
985 case FLUSH_HIGHPRI:
986 return RPC_PRIORITY_HIGH;
987 case FLUSH_LOWPRI:
988 return RPC_PRIORITY_LOW;
989 }
990 return RPC_PRIORITY_NORMAL;
991 }
992
993 int nfs_initiate_write(struct rpc_clnt *clnt,
994 struct nfs_write_data *data,
995 const struct rpc_call_ops *call_ops,
996 int how, int flags)
997 {
998 struct inode *inode = data->header->inode;
999 int priority = flush_task_priority(how);
1000 struct rpc_task *task;
1001 struct rpc_message msg = {
1002 .rpc_argp = &data->args,
1003 .rpc_resp = &data->res,
1004 .rpc_cred = data->header->cred,
1005 };
1006 struct rpc_task_setup task_setup_data = {
1007 .rpc_client = clnt,
1008 .task = &data->task,
1009 .rpc_message = &msg,
1010 .callback_ops = call_ops,
1011 .callback_data = data,
1012 .workqueue = nfsiod_workqueue,
1013 .flags = RPC_TASK_ASYNC | flags,
1014 .priority = priority,
1015 };
1016 int ret = 0;
1017
1018 /* Set up the initial task struct. */
1019 NFS_PROTO(inode)->write_setup(data, &msg);
1020
1021 dprintk("NFS: %5u initiated write call "
1022 "(req %s/%llu, %u bytes @ offset %llu)\n",
1023 data->task.tk_pid,
1024 inode->i_sb->s_id,
1025 (unsigned long long)NFS_FILEID(inode),
1026 data->args.count,
1027 (unsigned long long)data->args.offset);
1028
1029 nfs4_state_protect_write(NFS_SERVER(inode)->nfs_client,
1030 &task_setup_data.rpc_client, &msg, data);
1031
1032 task = rpc_run_task(&task_setup_data);
1033 if (IS_ERR(task)) {
1034 ret = PTR_ERR(task);
1035 goto out;
1036 }
1037 if (how & FLUSH_SYNC) {
1038 ret = rpc_wait_for_completion_task(task);
1039 if (ret == 0)
1040 ret = task->tk_status;
1041 }
1042 rpc_put_task(task);
1043 out:
1044 return ret;
1045 }
1046 EXPORT_SYMBOL_GPL(nfs_initiate_write);
1047
1048 /*
1049 * Set up the argument/result storage required for the RPC call.
1050 */
1051 static void nfs_write_rpcsetup(struct nfs_write_data *data,
1052 unsigned int count, unsigned int offset,
1053 int how, struct nfs_commit_info *cinfo)
1054 {
1055 struct nfs_page *req = data->header->req;
1056
1057 /* Set up the RPC argument and reply structs
1058 * NB: take care not to mess about with data->commit et al. */
1059
1060 data->args.fh = NFS_FH(data->header->inode);
1061 data->args.offset = req_offset(req) + offset;
1062 /* pnfs_set_layoutcommit needs this */
1063 data->mds_offset = data->args.offset;
1064 data->args.pgbase = req->wb_pgbase + offset;
1065 data->args.pages = data->pages.pagevec;
1066 data->args.count = count;
1067 data->args.context = get_nfs_open_context(req->wb_context);
1068 data->args.lock_context = req->wb_lock_context;
1069 data->args.stable = NFS_UNSTABLE;
1070 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
1071 case 0:
1072 break;
1073 case FLUSH_COND_STABLE:
1074 if (nfs_reqs_to_commit(cinfo))
1075 break;
1076 default:
1077 data->args.stable = NFS_FILE_SYNC;
1078 }
1079
1080 data->res.fattr = &data->fattr;
1081 data->res.count = count;
1082 data->res.verf = &data->verf;
1083 nfs_fattr_init(&data->fattr);
1084 }
1085
1086 static int nfs_do_write(struct nfs_write_data *data,
1087 const struct rpc_call_ops *call_ops,
1088 int how)
1089 {
1090 struct inode *inode = data->header->inode;
1091
1092 return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0);
1093 }
1094
1095 static int nfs_do_multiple_writes(struct list_head *head,
1096 const struct rpc_call_ops *call_ops,
1097 int how)
1098 {
1099 struct nfs_write_data *data;
1100 int ret = 0;
1101
1102 while (!list_empty(head)) {
1103 int ret2;
1104
1105 data = list_first_entry(head, struct nfs_write_data, list);
1106 list_del_init(&data->list);
1107
1108 ret2 = nfs_do_write(data, call_ops, how);
1109 if (ret == 0)
1110 ret = ret2;
1111 }
1112 return ret;
1113 }
1114
1115 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1116 * call this on each, which will prepare them to be retried on next
1117 * writeback using standard nfs.
1118 */
1119 static void nfs_redirty_request(struct nfs_page *req)
1120 {
1121 nfs_mark_request_dirty(req);
1122 nfs_unlock_request(req);
1123 nfs_end_page_writeback(req->wb_page);
1124 nfs_release_request(req);
1125 }
1126
1127 static void nfs_async_write_error(struct list_head *head)
1128 {
1129 struct nfs_page *req;
1130
1131 while (!list_empty(head)) {
1132 req = nfs_list_entry(head->next);
1133 nfs_list_remove_request(req);
1134 nfs_redirty_request(req);
1135 }
1136 }
1137
1138 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1139 .error_cleanup = nfs_async_write_error,
1140 .completion = nfs_write_completion,
1141 };
1142
1143 static void nfs_flush_error(struct nfs_pageio_descriptor *desc,
1144 struct nfs_pgio_header *hdr)
1145 {
1146 set_bit(NFS_IOHDR_REDO, &hdr->flags);
1147 while (!list_empty(&hdr->rpc_list)) {
1148 struct nfs_write_data *data = list_first_entry(&hdr->rpc_list,
1149 struct nfs_write_data, list);
1150 list_del(&data->list);
1151 nfs_writedata_release(data);
1152 }
1153 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1154 }
1155
1156 /*
1157 * Generate multiple small requests to write out a single
1158 * contiguous dirty area on one page.
1159 */
1160 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc,
1161 struct nfs_pgio_header *hdr)
1162 {
1163 struct nfs_page *req = hdr->req;
1164 struct page *page = req->wb_page;
1165 struct nfs_write_data *data;
1166 size_t wsize = desc->pg_bsize, nbytes;
1167 unsigned int offset;
1168 int requests = 0;
1169 struct nfs_commit_info cinfo;
1170
1171 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1172
1173 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1174 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) ||
1175 desc->pg_count > wsize))
1176 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1177
1178
1179 offset = 0;
1180 nbytes = desc->pg_count;
1181 do {
1182 size_t len = min(nbytes, wsize);
1183
1184 data = nfs_writedata_alloc(hdr, 1);
1185 if (!data) {
1186 nfs_flush_error(desc, hdr);
1187 return -ENOMEM;
1188 }
1189 data->pages.pagevec[0] = page;
1190 nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo);
1191 list_add(&data->list, &hdr->rpc_list);
1192 requests++;
1193 nbytes -= len;
1194 offset += len;
1195 } while (nbytes != 0);
1196 nfs_list_remove_request(req);
1197 nfs_list_add_request(req, &hdr->pages);
1198 desc->pg_rpc_callops = &nfs_write_common_ops;
1199 return 0;
1200 }
1201
1202 /*
1203 * Create an RPC task for the given write request and kick it.
1204 * The page must have been locked by the caller.
1205 *
1206 * It may happen that the page we're passed is not marked dirty.
1207 * This is the case if nfs_updatepage detects a conflicting request
1208 * that has been written but not committed.
1209 */
1210 static int nfs_flush_one(struct nfs_pageio_descriptor *desc,
1211 struct nfs_pgio_header *hdr)
1212 {
1213 struct nfs_page *req;
1214 struct page **pages;
1215 struct nfs_write_data *data;
1216 struct list_head *head = &desc->pg_list;
1217 struct nfs_commit_info cinfo;
1218
1219 data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base,
1220 desc->pg_count));
1221 if (!data) {
1222 nfs_flush_error(desc, hdr);
1223 return -ENOMEM;
1224 }
1225
1226 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1227 pages = data->pages.pagevec;
1228 while (!list_empty(head)) {
1229 req = nfs_list_entry(head->next);
1230 nfs_list_remove_request(req);
1231 nfs_list_add_request(req, &hdr->pages);
1232 *pages++ = req->wb_page;
1233 }
1234
1235 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1236 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo)))
1237 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1238
1239 /* Set up the argument struct */
1240 nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo);
1241 list_add(&data->list, &hdr->rpc_list);
1242 desc->pg_rpc_callops = &nfs_write_common_ops;
1243 return 0;
1244 }
1245
1246 int nfs_generic_flush(struct nfs_pageio_descriptor *desc,
1247 struct nfs_pgio_header *hdr)
1248 {
1249 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1250 return nfs_flush_multi(desc, hdr);
1251 return nfs_flush_one(desc, hdr);
1252 }
1253 EXPORT_SYMBOL_GPL(nfs_generic_flush);
1254
1255 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1256 {
1257 struct nfs_write_header *whdr;
1258 struct nfs_pgio_header *hdr;
1259 int ret;
1260
1261 whdr = nfs_writehdr_alloc();
1262 if (!whdr) {
1263 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1264 return -ENOMEM;
1265 }
1266 hdr = &whdr->header;
1267 nfs_pgheader_init(desc, hdr, nfs_writehdr_free);
1268 atomic_inc(&hdr->refcnt);
1269 ret = nfs_generic_flush(desc, hdr);
1270 if (ret == 0)
1271 ret = nfs_do_multiple_writes(&hdr->rpc_list,
1272 desc->pg_rpc_callops,
1273 desc->pg_ioflags);
1274 if (atomic_dec_and_test(&hdr->refcnt))
1275 hdr->completion_ops->completion(hdr);
1276 return ret;
1277 }
1278
1279 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1280 .pg_test = nfs_generic_pg_test,
1281 .pg_doio = nfs_generic_pg_writepages,
1282 };
1283
1284 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1285 struct inode *inode, int ioflags,
1286 const struct nfs_pgio_completion_ops *compl_ops)
1287 {
1288 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops,
1289 NFS_SERVER(inode)->wsize, ioflags);
1290 }
1291 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1292
1293 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1294 {
1295 pgio->pg_ops = &nfs_pageio_write_ops;
1296 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1297 }
1298 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1299
1300
1301 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1302 {
1303 struct nfs_write_data *data = calldata;
1304 int err;
1305 err = NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data);
1306 if (err)
1307 rpc_exit(task, err);
1308 }
1309
1310 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1311 {
1312 struct nfs_commit_data *data = calldata;
1313
1314 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1315 }
1316
1317 /*
1318 * Handle a write reply that flushes a whole page.
1319 *
1320 * FIXME: There is an inherent race with invalidate_inode_pages and
1321 * writebacks since the page->count is kept > 1 for as long
1322 * as the page has a write request pending.
1323 */
1324 static void nfs_writeback_done_common(struct rpc_task *task, void *calldata)
1325 {
1326 struct nfs_write_data *data = calldata;
1327
1328 nfs_writeback_done(task, data);
1329 }
1330
1331 static void nfs_writeback_release_common(void *calldata)
1332 {
1333 struct nfs_write_data *data = calldata;
1334 struct nfs_pgio_header *hdr = data->header;
1335 int status = data->task.tk_status;
1336
1337 if ((status >= 0) && nfs_write_need_commit(data)) {
1338 spin_lock(&hdr->lock);
1339 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags))
1340 ; /* Do nothing */
1341 else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags))
1342 memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf));
1343 else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf)))
1344 set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags);
1345 spin_unlock(&hdr->lock);
1346 }
1347 nfs_writedata_release(data);
1348 }
1349
1350 static const struct rpc_call_ops nfs_write_common_ops = {
1351 .rpc_call_prepare = nfs_write_prepare,
1352 .rpc_call_done = nfs_writeback_done_common,
1353 .rpc_release = nfs_writeback_release_common,
1354 };
1355
1356
1357 /*
1358 * This function is called when the WRITE call is complete.
1359 */
1360 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1361 {
1362 struct nfs_writeargs *argp = &data->args;
1363 struct nfs_writeres *resp = &data->res;
1364 struct inode *inode = data->header->inode;
1365 int status;
1366
1367 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1368 task->tk_pid, task->tk_status);
1369
1370 /*
1371 * ->write_done will attempt to use post-op attributes to detect
1372 * conflicting writes by other clients. A strict interpretation
1373 * of close-to-open would allow us to continue caching even if
1374 * another writer had changed the file, but some applications
1375 * depend on tighter cache coherency when writing.
1376 */
1377 status = NFS_PROTO(inode)->write_done(task, data);
1378 if (status != 0)
1379 return;
1380 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1381
1382 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1383 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1384 /* We tried a write call, but the server did not
1385 * commit data to stable storage even though we
1386 * requested it.
1387 * Note: There is a known bug in Tru64 < 5.0 in which
1388 * the server reports NFS_DATA_SYNC, but performs
1389 * NFS_FILE_SYNC. We therefore implement this checking
1390 * as a dprintk() in order to avoid filling syslog.
1391 */
1392 static unsigned long complain;
1393
1394 /* Note this will print the MDS for a DS write */
1395 if (time_before(complain, jiffies)) {
1396 dprintk("NFS: faulty NFS server %s:"
1397 " (committed = %d) != (stable = %d)\n",
1398 NFS_SERVER(inode)->nfs_client->cl_hostname,
1399 resp->verf->committed, argp->stable);
1400 complain = jiffies + 300 * HZ;
1401 }
1402 }
1403 #endif
1404 if (task->tk_status < 0)
1405 nfs_set_pgio_error(data->header, task->tk_status, argp->offset);
1406 else if (resp->count < argp->count) {
1407 static unsigned long complain;
1408
1409 /* This a short write! */
1410 nfs_inc_stats(inode, NFSIOS_SHORTWRITE);
1411
1412 /* Has the server at least made some progress? */
1413 if (resp->count == 0) {
1414 if (time_before(complain, jiffies)) {
1415 printk(KERN_WARNING
1416 "NFS: Server wrote zero bytes, expected %u.\n",
1417 argp->count);
1418 complain = jiffies + 300 * HZ;
1419 }
1420 nfs_set_pgio_error(data->header, -EIO, argp->offset);
1421 task->tk_status = -EIO;
1422 return;
1423 }
1424 /* Was this an NFSv2 write or an NFSv3 stable write? */
1425 if (resp->verf->committed != NFS_UNSTABLE) {
1426 /* Resend from where the server left off */
1427 data->mds_offset += resp->count;
1428 argp->offset += resp->count;
1429 argp->pgbase += resp->count;
1430 argp->count -= resp->count;
1431 } else {
1432 /* Resend as a stable write in order to avoid
1433 * headaches in the case of a server crash.
1434 */
1435 argp->stable = NFS_FILE_SYNC;
1436 }
1437 rpc_restart_call_prepare(task);
1438 }
1439 }
1440
1441
1442 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1443 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1444 {
1445 int ret;
1446
1447 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1448 return 1;
1449 if (!may_wait)
1450 return 0;
1451 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1452 NFS_INO_COMMIT,
1453 nfs_wait_bit_killable,
1454 TASK_KILLABLE);
1455 return (ret < 0) ? ret : 1;
1456 }
1457
1458 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1459 {
1460 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1461 smp_mb__after_atomic();
1462 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1463 }
1464
1465 void nfs_commitdata_release(struct nfs_commit_data *data)
1466 {
1467 put_nfs_open_context(data->context);
1468 nfs_commit_free(data);
1469 }
1470 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1471
1472 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1473 const struct rpc_call_ops *call_ops,
1474 int how, int flags)
1475 {
1476 struct rpc_task *task;
1477 int priority = flush_task_priority(how);
1478 struct rpc_message msg = {
1479 .rpc_argp = &data->args,
1480 .rpc_resp = &data->res,
1481 .rpc_cred = data->cred,
1482 };
1483 struct rpc_task_setup task_setup_data = {
1484 .task = &data->task,
1485 .rpc_client = clnt,
1486 .rpc_message = &msg,
1487 .callback_ops = call_ops,
1488 .callback_data = data,
1489 .workqueue = nfsiod_workqueue,
1490 .flags = RPC_TASK_ASYNC | flags,
1491 .priority = priority,
1492 };
1493 /* Set up the initial task struct. */
1494 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1495
1496 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1497
1498 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1499 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1500
1501 task = rpc_run_task(&task_setup_data);
1502 if (IS_ERR(task))
1503 return PTR_ERR(task);
1504 if (how & FLUSH_SYNC)
1505 rpc_wait_for_completion_task(task);
1506 rpc_put_task(task);
1507 return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1510
1511 /*
1512 * Set up the argument/result storage required for the RPC call.
1513 */
1514 void nfs_init_commit(struct nfs_commit_data *data,
1515 struct list_head *head,
1516 struct pnfs_layout_segment *lseg,
1517 struct nfs_commit_info *cinfo)
1518 {
1519 struct nfs_page *first = nfs_list_entry(head->next);
1520 struct inode *inode = first->wb_context->dentry->d_inode;
1521
1522 /* Set up the RPC argument and reply structs
1523 * NB: take care not to mess about with data->commit et al. */
1524
1525 list_splice_init(head, &data->pages);
1526
1527 data->inode = inode;
1528 data->cred = first->wb_context->cred;
1529 data->lseg = lseg; /* reference transferred */
1530 data->mds_ops = &nfs_commit_ops;
1531 data->completion_ops = cinfo->completion_ops;
1532 data->dreq = cinfo->dreq;
1533
1534 data->args.fh = NFS_FH(data->inode);
1535 /* Note: we always request a commit of the entire inode */
1536 data->args.offset = 0;
1537 data->args.count = 0;
1538 data->context = get_nfs_open_context(first->wb_context);
1539 data->res.fattr = &data->fattr;
1540 data->res.verf = &data->verf;
1541 nfs_fattr_init(&data->fattr);
1542 }
1543 EXPORT_SYMBOL_GPL(nfs_init_commit);
1544
1545 void nfs_retry_commit(struct list_head *page_list,
1546 struct pnfs_layout_segment *lseg,
1547 struct nfs_commit_info *cinfo)
1548 {
1549 struct nfs_page *req;
1550
1551 while (!list_empty(page_list)) {
1552 req = nfs_list_entry(page_list->next);
1553 nfs_list_remove_request(req);
1554 nfs_mark_request_commit(req, lseg, cinfo);
1555 if (!cinfo->dreq) {
1556 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1557 dec_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
1558 BDI_RECLAIMABLE);
1559 }
1560 nfs_unlock_and_release_request(req);
1561 }
1562 }
1563 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1564
1565 /*
1566 * Commit dirty pages
1567 */
1568 static int
1569 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1570 struct nfs_commit_info *cinfo)
1571 {
1572 struct nfs_commit_data *data;
1573
1574 data = nfs_commitdata_alloc();
1575
1576 if (!data)
1577 goto out_bad;
1578
1579 /* Set up the argument struct */
1580 nfs_init_commit(data, head, NULL, cinfo);
1581 atomic_inc(&cinfo->mds->rpcs_out);
1582 return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops,
1583 how, 0);
1584 out_bad:
1585 nfs_retry_commit(head, NULL, cinfo);
1586 cinfo->completion_ops->error_cleanup(NFS_I(inode));
1587 return -ENOMEM;
1588 }
1589
1590 /*
1591 * COMMIT call returned
1592 */
1593 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1594 {
1595 struct nfs_commit_data *data = calldata;
1596
1597 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1598 task->tk_pid, task->tk_status);
1599
1600 /* Call the NFS version-specific code */
1601 NFS_PROTO(data->inode)->commit_done(task, data);
1602 }
1603
1604 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1605 {
1606 struct nfs_page *req;
1607 int status = data->task.tk_status;
1608 struct nfs_commit_info cinfo;
1609
1610 while (!list_empty(&data->pages)) {
1611 req = nfs_list_entry(data->pages.next);
1612 nfs_list_remove_request(req);
1613 nfs_clear_page_commit(req->wb_page);
1614
1615 dprintk("NFS: commit (%s/%llu %d@%lld)",
1616 req->wb_context->dentry->d_sb->s_id,
1617 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1618 req->wb_bytes,
1619 (long long)req_offset(req));
1620 if (status < 0) {
1621 nfs_context_set_write_error(req->wb_context, status);
1622 nfs_inode_remove_request(req);
1623 dprintk(", error = %d\n", status);
1624 goto next;
1625 }
1626
1627 /* Okay, COMMIT succeeded, apparently. Check the verifier
1628 * returned by the server against all stored verfs. */
1629 if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) {
1630 /* We have a match */
1631 nfs_inode_remove_request(req);
1632 dprintk(" OK\n");
1633 goto next;
1634 }
1635 /* We have a mismatch. Write the page again */
1636 dprintk(" mismatch\n");
1637 nfs_mark_request_dirty(req);
1638 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1639 next:
1640 nfs_unlock_and_release_request(req);
1641 }
1642 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1643 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
1644 nfs_commit_clear_lock(NFS_I(data->inode));
1645 }
1646
1647 static void nfs_commit_release(void *calldata)
1648 {
1649 struct nfs_commit_data *data = calldata;
1650
1651 data->completion_ops->completion(data);
1652 nfs_commitdata_release(calldata);
1653 }
1654
1655 static const struct rpc_call_ops nfs_commit_ops = {
1656 .rpc_call_prepare = nfs_commit_prepare,
1657 .rpc_call_done = nfs_commit_done,
1658 .rpc_release = nfs_commit_release,
1659 };
1660
1661 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1662 .completion = nfs_commit_release_pages,
1663 .error_cleanup = nfs_commit_clear_lock,
1664 };
1665
1666 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1667 int how, struct nfs_commit_info *cinfo)
1668 {
1669 int status;
1670
1671 status = pnfs_commit_list(inode, head, how, cinfo);
1672 if (status == PNFS_NOT_ATTEMPTED)
1673 status = nfs_commit_list(inode, head, how, cinfo);
1674 return status;
1675 }
1676
1677 int nfs_commit_inode(struct inode *inode, int how)
1678 {
1679 LIST_HEAD(head);
1680 struct nfs_commit_info cinfo;
1681 int may_wait = how & FLUSH_SYNC;
1682 int res;
1683
1684 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1685 if (res <= 0)
1686 goto out_mark_dirty;
1687 nfs_init_cinfo_from_inode(&cinfo, inode);
1688 res = nfs_scan_commit(inode, &head, &cinfo);
1689 if (res) {
1690 int error;
1691
1692 error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1693 if (error < 0)
1694 return error;
1695 if (!may_wait)
1696 goto out_mark_dirty;
1697 error = wait_on_bit(&NFS_I(inode)->flags,
1698 NFS_INO_COMMIT,
1699 nfs_wait_bit_killable,
1700 TASK_KILLABLE);
1701 if (error < 0)
1702 return error;
1703 } else
1704 nfs_commit_clear_lock(NFS_I(inode));
1705 return res;
1706 /* Note: If we exit without ensuring that the commit is complete,
1707 * we must mark the inode as dirty. Otherwise, future calls to
1708 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1709 * that the data is on the disk.
1710 */
1711 out_mark_dirty:
1712 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1713 return res;
1714 }
1715
1716 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1717 {
1718 struct nfs_inode *nfsi = NFS_I(inode);
1719 int flags = FLUSH_SYNC;
1720 int ret = 0;
1721
1722 /* no commits means nothing needs to be done */
1723 if (!nfsi->commit_info.ncommit)
1724 return ret;
1725
1726 if (wbc->sync_mode == WB_SYNC_NONE) {
1727 /* Don't commit yet if this is a non-blocking flush and there
1728 * are a lot of outstanding writes for this mapping.
1729 */
1730 if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1))
1731 goto out_mark_dirty;
1732
1733 /* don't wait for the COMMIT response */
1734 flags = 0;
1735 }
1736
1737 ret = nfs_commit_inode(inode, flags);
1738 if (ret >= 0) {
1739 if (wbc->sync_mode == WB_SYNC_NONE) {
1740 if (ret < wbc->nr_to_write)
1741 wbc->nr_to_write -= ret;
1742 else
1743 wbc->nr_to_write = 0;
1744 }
1745 return 0;
1746 }
1747 out_mark_dirty:
1748 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1749 return ret;
1750 }
1751 #else
1752 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1753 {
1754 return 0;
1755 }
1756 #endif
1757
1758 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1759 {
1760 return nfs_commit_unstable_pages(inode, wbc);
1761 }
1762 EXPORT_SYMBOL_GPL(nfs_write_inode);
1763
1764 /*
1765 * flush the inode to disk.
1766 */
1767 int nfs_wb_all(struct inode *inode)
1768 {
1769 struct writeback_control wbc = {
1770 .sync_mode = WB_SYNC_ALL,
1771 .nr_to_write = LONG_MAX,
1772 .range_start = 0,
1773 .range_end = LLONG_MAX,
1774 };
1775 int ret;
1776
1777 trace_nfs_writeback_inode_enter(inode);
1778
1779 ret = sync_inode(inode, &wbc);
1780
1781 trace_nfs_writeback_inode_exit(inode, ret);
1782 return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(nfs_wb_all);
1785
1786 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1787 {
1788 struct nfs_page *req;
1789 int ret = 0;
1790
1791 for (;;) {
1792 wait_on_page_writeback(page);
1793 req = nfs_page_find_request(page);
1794 if (req == NULL)
1795 break;
1796 if (nfs_lock_request(req)) {
1797 nfs_clear_request_commit(req);
1798 nfs_inode_remove_request(req);
1799 /*
1800 * In case nfs_inode_remove_request has marked the
1801 * page as being dirty
1802 */
1803 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1804 nfs_unlock_and_release_request(req);
1805 break;
1806 }
1807 ret = nfs_wait_on_request(req);
1808 nfs_release_request(req);
1809 if (ret < 0)
1810 break;
1811 }
1812 return ret;
1813 }
1814
1815 /*
1816 * Write back all requests on one page - we do this before reading it.
1817 */
1818 int nfs_wb_page(struct inode *inode, struct page *page)
1819 {
1820 loff_t range_start = page_file_offset(page);
1821 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1822 struct writeback_control wbc = {
1823 .sync_mode = WB_SYNC_ALL,
1824 .nr_to_write = 0,
1825 .range_start = range_start,
1826 .range_end = range_end,
1827 };
1828 int ret;
1829
1830 trace_nfs_writeback_page_enter(inode);
1831
1832 for (;;) {
1833 wait_on_page_writeback(page);
1834 if (clear_page_dirty_for_io(page)) {
1835 ret = nfs_writepage_locked(page, &wbc);
1836 if (ret < 0)
1837 goto out_error;
1838 continue;
1839 }
1840 ret = 0;
1841 if (!PagePrivate(page))
1842 break;
1843 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1844 if (ret < 0)
1845 goto out_error;
1846 }
1847 out_error:
1848 trace_nfs_writeback_page_exit(inode, ret);
1849 return ret;
1850 }
1851
1852 #ifdef CONFIG_MIGRATION
1853 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1854 struct page *page, enum migrate_mode mode)
1855 {
1856 /*
1857 * If PagePrivate is set, then the page is currently associated with
1858 * an in-progress read or write request. Don't try to migrate it.
1859 *
1860 * FIXME: we could do this in principle, but we'll need a way to ensure
1861 * that we can safely release the inode reference while holding
1862 * the page lock.
1863 */
1864 if (PagePrivate(page))
1865 return -EBUSY;
1866
1867 if (!nfs_fscache_release_page(page, GFP_KERNEL))
1868 return -EBUSY;
1869
1870 return migrate_page(mapping, newpage, page, mode);
1871 }
1872 #endif
1873
1874 int __init nfs_init_writepagecache(void)
1875 {
1876 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1877 sizeof(struct nfs_write_header),
1878 0, SLAB_HWCACHE_ALIGN,
1879 NULL);
1880 if (nfs_wdata_cachep == NULL)
1881 return -ENOMEM;
1882
1883 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1884 nfs_wdata_cachep);
1885 if (nfs_wdata_mempool == NULL)
1886 goto out_destroy_write_cache;
1887
1888 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
1889 sizeof(struct nfs_commit_data),
1890 0, SLAB_HWCACHE_ALIGN,
1891 NULL);
1892 if (nfs_cdata_cachep == NULL)
1893 goto out_destroy_write_mempool;
1894
1895 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1896 nfs_cdata_cachep);
1897 if (nfs_commit_mempool == NULL)
1898 goto out_destroy_commit_cache;
1899
1900 /*
1901 * NFS congestion size, scale with available memory.
1902 *
1903 * 64MB: 8192k
1904 * 128MB: 11585k
1905 * 256MB: 16384k
1906 * 512MB: 23170k
1907 * 1GB: 32768k
1908 * 2GB: 46340k
1909 * 4GB: 65536k
1910 * 8GB: 92681k
1911 * 16GB: 131072k
1912 *
1913 * This allows larger machines to have larger/more transfers.
1914 * Limit the default to 256M
1915 */
1916 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1917 if (nfs_congestion_kb > 256*1024)
1918 nfs_congestion_kb = 256*1024;
1919
1920 return 0;
1921
1922 out_destroy_commit_cache:
1923 kmem_cache_destroy(nfs_cdata_cachep);
1924 out_destroy_write_mempool:
1925 mempool_destroy(nfs_wdata_mempool);
1926 out_destroy_write_cache:
1927 kmem_cache_destroy(nfs_wdata_cachep);
1928 return -ENOMEM;
1929 }
1930
1931 void nfs_destroy_writepagecache(void)
1932 {
1933 mempool_destroy(nfs_commit_mempool);
1934 kmem_cache_destroy(nfs_cdata_cachep);
1935 mempool_destroy(nfs_wdata_mempool);
1936 kmem_cache_destroy(nfs_wdata_cachep);
1937 }
1938
This page took 0.110267 seconds and 5 git commands to generate.