sched: Add 'autogroup' scheduling feature: automated per session task groups
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87
88 /* NOTE:
89 * Implementing inode permission operations in /proc is almost
90 * certainly an error. Permission checks need to happen during
91 * each system call not at open time. The reason is that most of
92 * what we wish to check for permissions in /proc varies at runtime.
93 *
94 * The classic example of a problem is opening file descriptors
95 * in /proc for a task before it execs a suid executable.
96 */
97
98 struct pid_entry {
99 char *name;
100 int len;
101 mode_t mode;
102 const struct inode_operations *iop;
103 const struct file_operations *fop;
104 union proc_op op;
105 };
106
107 #define NOD(NAME, MODE, IOP, FOP, OP) { \
108 .name = (NAME), \
109 .len = sizeof(NAME) - 1, \
110 .mode = MODE, \
111 .iop = IOP, \
112 .fop = FOP, \
113 .op = OP, \
114 }
115
116 #define DIR(NAME, MODE, iops, fops) \
117 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link) \
119 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
120 &proc_pid_link_inode_operations, NULL, \
121 { .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops) \
123 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read) \
125 NOD(NAME, (S_IFREG|(MODE)), \
126 NULL, &proc_info_file_operations, \
127 { .proc_read = read } )
128 #define ONE(NAME, MODE, show) \
129 NOD(NAME, (S_IFREG|(MODE)), \
130 NULL, &proc_single_file_operations, \
131 { .proc_show = show } )
132
133 /*
134 * Count the number of hardlinks for the pid_entry table, excluding the .
135 * and .. links.
136 */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 unsigned int n)
139 {
140 unsigned int i;
141 unsigned int count;
142
143 count = 0;
144 for (i = 0; i < n; ++i) {
145 if (S_ISDIR(entries[i].mode))
146 ++count;
147 }
148
149 return count;
150 }
151
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 int result = -ENOENT;
155
156 task_lock(task);
157 if (task->fs) {
158 get_fs_root(task->fs, root);
159 result = 0;
160 }
161 task_unlock(task);
162 return result;
163 }
164
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 struct task_struct *task = get_proc_task(inode);
168 int result = -ENOENT;
169
170 if (task) {
171 task_lock(task);
172 if (task->fs) {
173 get_fs_pwd(task->fs, path);
174 result = 0;
175 }
176 task_unlock(task);
177 put_task_struct(task);
178 }
179 return result;
180 }
181
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 struct task_struct *task = get_proc_task(inode);
185 int result = -ENOENT;
186
187 if (task) {
188 result = get_task_root(task, path);
189 put_task_struct(task);
190 }
191 return result;
192 }
193
194 /*
195 * Return zero if current may access user memory in @task, -error if not.
196 */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 /*
200 * A task can always look at itself, in case it chooses
201 * to use system calls instead of load instructions.
202 */
203 if (task == current)
204 return 0;
205
206 /*
207 * If current is actively ptrace'ing, and would also be
208 * permitted to freshly attach with ptrace now, permit it.
209 */
210 if (task_is_stopped_or_traced(task)) {
211 int match;
212 rcu_read_lock();
213 match = (tracehook_tracer_task(task) == current);
214 rcu_read_unlock();
215 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 return 0;
217 }
218
219 /*
220 * Noone else is allowed.
221 */
222 return -EPERM;
223 }
224
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 struct mm_struct *mm;
228
229 if (mutex_lock_killable(&task->signal->cred_guard_mutex))
230 return NULL;
231
232 mm = get_task_mm(task);
233 if (mm && mm != current->mm &&
234 !ptrace_may_access(task, PTRACE_MODE_READ)) {
235 mmput(mm);
236 mm = NULL;
237 }
238 mutex_unlock(&task->signal->cred_guard_mutex);
239
240 return mm;
241 }
242
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 int res = 0;
246 unsigned int len;
247 struct mm_struct *mm = get_task_mm(task);
248 if (!mm)
249 goto out;
250 if (!mm->arg_end)
251 goto out_mm; /* Shh! No looking before we're done */
252
253 len = mm->arg_end - mm->arg_start;
254
255 if (len > PAGE_SIZE)
256 len = PAGE_SIZE;
257
258 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259
260 // If the nul at the end of args has been overwritten, then
261 // assume application is using setproctitle(3).
262 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 len = strnlen(buffer, res);
264 if (len < res) {
265 res = len;
266 } else {
267 len = mm->env_end - mm->env_start;
268 if (len > PAGE_SIZE - res)
269 len = PAGE_SIZE - res;
270 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 res = strnlen(buffer, res);
272 }
273 }
274 out_mm:
275 mmput(mm);
276 out:
277 return res;
278 }
279
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 int res = 0;
283 struct mm_struct *mm = get_task_mm(task);
284 if (mm) {
285 unsigned int nwords = 0;
286 do {
287 nwords += 2;
288 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 res = nwords * sizeof(mm->saved_auxv[0]);
290 if (res > PAGE_SIZE)
291 res = PAGE_SIZE;
292 memcpy(buffer, mm->saved_auxv, res);
293 mmput(mm);
294 }
295 return res;
296 }
297
298
299 #ifdef CONFIG_KALLSYMS
300 /*
301 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302 * Returns the resolved symbol. If that fails, simply return the address.
303 */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 unsigned long wchan;
307 char symname[KSYM_NAME_LEN];
308
309 wchan = get_wchan(task);
310
311 if (lookup_symbol_name(wchan, symname) < 0)
312 if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 return 0;
314 else
315 return sprintf(buffer, "%lu", wchan);
316 else
317 return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320
321 #ifdef CONFIG_STACKTRACE
322
323 #define MAX_STACK_TRACE_DEPTH 64
324
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 struct pid *pid, struct task_struct *task)
327 {
328 struct stack_trace trace;
329 unsigned long *entries;
330 int i;
331
332 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 if (!entries)
334 return -ENOMEM;
335
336 trace.nr_entries = 0;
337 trace.max_entries = MAX_STACK_TRACE_DEPTH;
338 trace.entries = entries;
339 trace.skip = 0;
340 save_stack_trace_tsk(task, &trace);
341
342 for (i = 0; i < trace.nr_entries; i++) {
343 seq_printf(m, "[<%p>] %pS\n",
344 (void *)entries[i], (void *)entries[i]);
345 }
346 kfree(entries);
347
348 return 0;
349 }
350 #endif
351
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354 * Provides /proc/PID/schedstat
355 */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 return sprintf(buffer, "%llu %llu %lu\n",
359 (unsigned long long)task->se.sum_exec_runtime,
360 (unsigned long long)task->sched_info.run_delay,
361 task->sched_info.pcount);
362 }
363 #endif
364
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 int i;
369 struct inode *inode = m->private;
370 struct task_struct *task = get_proc_task(inode);
371
372 if (!task)
373 return -ESRCH;
374 seq_puts(m, "Latency Top version : v0.1\n");
375 for (i = 0; i < 32; i++) {
376 if (task->latency_record[i].backtrace[0]) {
377 int q;
378 seq_printf(m, "%i %li %li ",
379 task->latency_record[i].count,
380 task->latency_record[i].time,
381 task->latency_record[i].max);
382 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 char sym[KSYM_SYMBOL_LEN];
384 char *c;
385 if (!task->latency_record[i].backtrace[q])
386 break;
387 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 break;
389 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 c = strchr(sym, '+');
391 if (c)
392 *c = 0;
393 seq_printf(m, "%s ", sym);
394 }
395 seq_printf(m, "\n");
396 }
397
398 }
399 put_task_struct(task);
400 return 0;
401 }
402
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 return single_open(file, lstats_show_proc, inode);
406 }
407
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 size_t count, loff_t *offs)
410 {
411 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412
413 if (!task)
414 return -ESRCH;
415 clear_all_latency_tracing(task);
416 put_task_struct(task);
417
418 return count;
419 }
420
421 static const struct file_operations proc_lstats_operations = {
422 .open = lstats_open,
423 .read = seq_read,
424 .write = lstats_write,
425 .llseek = seq_lseek,
426 .release = single_release,
427 };
428
429 #endif
430
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 unsigned long points = 0;
434
435 read_lock(&tasklist_lock);
436 if (pid_alive(task))
437 points = oom_badness(task, NULL, NULL,
438 totalram_pages + total_swap_pages);
439 read_unlock(&tasklist_lock);
440 return sprintf(buffer, "%lu\n", points);
441 }
442
443 struct limit_names {
444 char *name;
445 char *unit;
446 };
447
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 [RLIMIT_DATA] = {"Max data size", "bytes"},
452 [RLIMIT_STACK] = {"Max stack size", "bytes"},
453 [RLIMIT_CORE] = {"Max core file size", "bytes"},
454 [RLIMIT_RSS] = {"Max resident set", "bytes"},
455 [RLIMIT_NPROC] = {"Max processes", "processes"},
456 [RLIMIT_NOFILE] = {"Max open files", "files"},
457 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 [RLIMIT_AS] = {"Max address space", "bytes"},
459 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 [RLIMIT_NICE] = {"Max nice priority", NULL},
463 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 unsigned int i;
471 int count = 0;
472 unsigned long flags;
473 char *bufptr = buffer;
474
475 struct rlimit rlim[RLIM_NLIMITS];
476
477 if (!lock_task_sighand(task, &flags))
478 return 0;
479 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 unlock_task_sighand(task, &flags);
481
482 /*
483 * print the file header
484 */
485 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 "Limit", "Soft Limit", "Hard Limit", "Units");
487
488 for (i = 0; i < RLIM_NLIMITS; i++) {
489 if (rlim[i].rlim_cur == RLIM_INFINITY)
490 count += sprintf(&bufptr[count], "%-25s %-20s ",
491 lnames[i].name, "unlimited");
492 else
493 count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 lnames[i].name, rlim[i].rlim_cur);
495
496 if (rlim[i].rlim_max == RLIM_INFINITY)
497 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 else
499 count += sprintf(&bufptr[count], "%-20lu ",
500 rlim[i].rlim_max);
501
502 if (lnames[i].unit)
503 count += sprintf(&bufptr[count], "%-10s\n",
504 lnames[i].unit);
505 else
506 count += sprintf(&bufptr[count], "\n");
507 }
508
509 return count;
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 long nr;
516 unsigned long args[6], sp, pc;
517
518 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 return sprintf(buffer, "running\n");
520
521 if (nr < 0)
522 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523
524 return sprintf(buffer,
525 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 nr,
527 args[0], args[1], args[2], args[3], args[4], args[5],
528 sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531
532 /************************************************************************/
533 /* Here the fs part begins */
534 /************************************************************************/
535
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 struct task_struct *task;
540 int allowed = 0;
541 /* Allow access to a task's file descriptors if it is us or we
542 * may use ptrace attach to the process and find out that
543 * information.
544 */
545 task = get_proc_task(inode);
546 if (task) {
547 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 put_task_struct(task);
549 }
550 return allowed;
551 }
552
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 int error;
556 struct inode *inode = dentry->d_inode;
557
558 if (attr->ia_valid & ATTR_MODE)
559 return -EPERM;
560
561 error = inode_change_ok(inode, attr);
562 if (error)
563 return error;
564
565 if ((attr->ia_valid & ATTR_SIZE) &&
566 attr->ia_size != i_size_read(inode)) {
567 error = vmtruncate(inode, attr->ia_size);
568 if (error)
569 return error;
570 }
571
572 setattr_copy(inode, attr);
573 mark_inode_dirty(inode);
574 return 0;
575 }
576
577 static const struct inode_operations proc_def_inode_operations = {
578 .setattr = proc_setattr,
579 };
580
581 static int mounts_open_common(struct inode *inode, struct file *file,
582 const struct seq_operations *op)
583 {
584 struct task_struct *task = get_proc_task(inode);
585 struct nsproxy *nsp;
586 struct mnt_namespace *ns = NULL;
587 struct path root;
588 struct proc_mounts *p;
589 int ret = -EINVAL;
590
591 if (task) {
592 rcu_read_lock();
593 nsp = task_nsproxy(task);
594 if (nsp) {
595 ns = nsp->mnt_ns;
596 if (ns)
597 get_mnt_ns(ns);
598 }
599 rcu_read_unlock();
600 if (ns && get_task_root(task, &root) == 0)
601 ret = 0;
602 put_task_struct(task);
603 }
604
605 if (!ns)
606 goto err;
607 if (ret)
608 goto err_put_ns;
609
610 ret = -ENOMEM;
611 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 if (!p)
613 goto err_put_path;
614
615 file->private_data = &p->m;
616 ret = seq_open(file, op);
617 if (ret)
618 goto err_free;
619
620 p->m.private = p;
621 p->ns = ns;
622 p->root = root;
623 p->event = ns->event;
624
625 return 0;
626
627 err_free:
628 kfree(p);
629 err_put_path:
630 path_put(&root);
631 err_put_ns:
632 put_mnt_ns(ns);
633 err:
634 return ret;
635 }
636
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639 struct proc_mounts *p = file->private_data;
640 path_put(&p->root);
641 put_mnt_ns(p->ns);
642 return seq_release(inode, file);
643 }
644
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647 struct proc_mounts *p = file->private_data;
648 unsigned res = POLLIN | POLLRDNORM;
649
650 poll_wait(file, &p->ns->poll, wait);
651 if (mnt_had_events(p))
652 res |= POLLERR | POLLPRI;
653
654 return res;
655 }
656
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659 return mounts_open_common(inode, file, &mounts_op);
660 }
661
662 static const struct file_operations proc_mounts_operations = {
663 .open = mounts_open,
664 .read = seq_read,
665 .llseek = seq_lseek,
666 .release = mounts_release,
667 .poll = mounts_poll,
668 };
669
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672 return mounts_open_common(inode, file, &mountinfo_op);
673 }
674
675 static const struct file_operations proc_mountinfo_operations = {
676 .open = mountinfo_open,
677 .read = seq_read,
678 .llseek = seq_lseek,
679 .release = mounts_release,
680 .poll = mounts_poll,
681 };
682
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685 return mounts_open_common(inode, file, &mountstats_op);
686 }
687
688 static const struct file_operations proc_mountstats_operations = {
689 .open = mountstats_open,
690 .read = seq_read,
691 .llseek = seq_lseek,
692 .release = mounts_release,
693 };
694
695 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
696
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698 size_t count, loff_t *ppos)
699 {
700 struct inode * inode = file->f_path.dentry->d_inode;
701 unsigned long page;
702 ssize_t length;
703 struct task_struct *task = get_proc_task(inode);
704
705 length = -ESRCH;
706 if (!task)
707 goto out_no_task;
708
709 if (count > PROC_BLOCK_SIZE)
710 count = PROC_BLOCK_SIZE;
711
712 length = -ENOMEM;
713 if (!(page = __get_free_page(GFP_TEMPORARY)))
714 goto out;
715
716 length = PROC_I(inode)->op.proc_read(task, (char*)page);
717
718 if (length >= 0)
719 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720 free_page(page);
721 out:
722 put_task_struct(task);
723 out_no_task:
724 return length;
725 }
726
727 static const struct file_operations proc_info_file_operations = {
728 .read = proc_info_read,
729 .llseek = generic_file_llseek,
730 };
731
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 struct inode *inode = m->private;
735 struct pid_namespace *ns;
736 struct pid *pid;
737 struct task_struct *task;
738 int ret;
739
740 ns = inode->i_sb->s_fs_info;
741 pid = proc_pid(inode);
742 task = get_pid_task(pid, PIDTYPE_PID);
743 if (!task)
744 return -ESRCH;
745
746 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747
748 put_task_struct(task);
749 return ret;
750 }
751
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754 int ret;
755 ret = single_open(filp, proc_single_show, NULL);
756 if (!ret) {
757 struct seq_file *m = filp->private_data;
758
759 m->private = inode;
760 }
761 return ret;
762 }
763
764 static const struct file_operations proc_single_file_operations = {
765 .open = proc_single_open,
766 .read = seq_read,
767 .llseek = seq_lseek,
768 .release = single_release,
769 };
770
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773 file->private_data = (void*)((long)current->self_exec_id);
774 /* OK to pass negative loff_t, we can catch out-of-range */
775 file->f_mode |= FMODE_UNSIGNED_OFFSET;
776 return 0;
777 }
778
779 static ssize_t mem_read(struct file * file, char __user * buf,
780 size_t count, loff_t *ppos)
781 {
782 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
783 char *page;
784 unsigned long src = *ppos;
785 int ret = -ESRCH;
786 struct mm_struct *mm;
787
788 if (!task)
789 goto out_no_task;
790
791 if (check_mem_permission(task))
792 goto out;
793
794 ret = -ENOMEM;
795 page = (char *)__get_free_page(GFP_TEMPORARY);
796 if (!page)
797 goto out;
798
799 ret = 0;
800
801 mm = get_task_mm(task);
802 if (!mm)
803 goto out_free;
804
805 ret = -EIO;
806
807 if (file->private_data != (void*)((long)current->self_exec_id))
808 goto out_put;
809
810 ret = 0;
811
812 while (count > 0) {
813 int this_len, retval;
814
815 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816 retval = access_process_vm(task, src, page, this_len, 0);
817 if (!retval || check_mem_permission(task)) {
818 if (!ret)
819 ret = -EIO;
820 break;
821 }
822
823 if (copy_to_user(buf, page, retval)) {
824 ret = -EFAULT;
825 break;
826 }
827
828 ret += retval;
829 src += retval;
830 buf += retval;
831 count -= retval;
832 }
833 *ppos = src;
834
835 out_put:
836 mmput(mm);
837 out_free:
838 free_page((unsigned long) page);
839 out:
840 put_task_struct(task);
841 out_no_task:
842 return ret;
843 }
844
845 #define mem_write NULL
846
847 #ifndef mem_write
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850 size_t count, loff_t *ppos)
851 {
852 int copied;
853 char *page;
854 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855 unsigned long dst = *ppos;
856
857 copied = -ESRCH;
858 if (!task)
859 goto out_no_task;
860
861 if (check_mem_permission(task))
862 goto out;
863
864 copied = -ENOMEM;
865 page = (char *)__get_free_page(GFP_TEMPORARY);
866 if (!page)
867 goto out;
868
869 copied = 0;
870 while (count > 0) {
871 int this_len, retval;
872
873 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874 if (copy_from_user(page, buf, this_len)) {
875 copied = -EFAULT;
876 break;
877 }
878 retval = access_process_vm(task, dst, page, this_len, 1);
879 if (!retval) {
880 if (!copied)
881 copied = -EIO;
882 break;
883 }
884 copied += retval;
885 buf += retval;
886 dst += retval;
887 count -= retval;
888 }
889 *ppos = dst;
890 free_page((unsigned long) page);
891 out:
892 put_task_struct(task);
893 out_no_task:
894 return copied;
895 }
896 #endif
897
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900 switch (orig) {
901 case 0:
902 file->f_pos = offset;
903 break;
904 case 1:
905 file->f_pos += offset;
906 break;
907 default:
908 return -EINVAL;
909 }
910 force_successful_syscall_return();
911 return file->f_pos;
912 }
913
914 static const struct file_operations proc_mem_operations = {
915 .llseek = mem_lseek,
916 .read = mem_read,
917 .write = mem_write,
918 .open = mem_open,
919 };
920
921 static ssize_t environ_read(struct file *file, char __user *buf,
922 size_t count, loff_t *ppos)
923 {
924 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
925 char *page;
926 unsigned long src = *ppos;
927 int ret = -ESRCH;
928 struct mm_struct *mm;
929
930 if (!task)
931 goto out_no_task;
932
933 if (!ptrace_may_access(task, PTRACE_MODE_READ))
934 goto out;
935
936 ret = -ENOMEM;
937 page = (char *)__get_free_page(GFP_TEMPORARY);
938 if (!page)
939 goto out;
940
941 ret = 0;
942
943 mm = get_task_mm(task);
944 if (!mm)
945 goto out_free;
946
947 while (count > 0) {
948 int this_len, retval, max_len;
949
950 this_len = mm->env_end - (mm->env_start + src);
951
952 if (this_len <= 0)
953 break;
954
955 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956 this_len = (this_len > max_len) ? max_len : this_len;
957
958 retval = access_process_vm(task, (mm->env_start + src),
959 page, this_len, 0);
960
961 if (retval <= 0) {
962 ret = retval;
963 break;
964 }
965
966 if (copy_to_user(buf, page, retval)) {
967 ret = -EFAULT;
968 break;
969 }
970
971 ret += retval;
972 src += retval;
973 buf += retval;
974 count -= retval;
975 }
976 *ppos = src;
977
978 mmput(mm);
979 out_free:
980 free_page((unsigned long) page);
981 out:
982 put_task_struct(task);
983 out_no_task:
984 return ret;
985 }
986
987 static const struct file_operations proc_environ_operations = {
988 .read = environ_read,
989 .llseek = generic_file_llseek,
990 };
991
992 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
993 size_t count, loff_t *ppos)
994 {
995 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
996 char buffer[PROC_NUMBUF];
997 size_t len;
998 int oom_adjust = OOM_DISABLE;
999 unsigned long flags;
1000
1001 if (!task)
1002 return -ESRCH;
1003
1004 if (lock_task_sighand(task, &flags)) {
1005 oom_adjust = task->signal->oom_adj;
1006 unlock_task_sighand(task, &flags);
1007 }
1008
1009 put_task_struct(task);
1010
1011 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1012
1013 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1014 }
1015
1016 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1017 size_t count, loff_t *ppos)
1018 {
1019 struct task_struct *task;
1020 char buffer[PROC_NUMBUF];
1021 long oom_adjust;
1022 unsigned long flags;
1023 int err;
1024
1025 memset(buffer, 0, sizeof(buffer));
1026 if (count > sizeof(buffer) - 1)
1027 count = sizeof(buffer) - 1;
1028 if (copy_from_user(buffer, buf, count)) {
1029 err = -EFAULT;
1030 goto out;
1031 }
1032
1033 err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1034 if (err)
1035 goto out;
1036 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1037 oom_adjust != OOM_DISABLE) {
1038 err = -EINVAL;
1039 goto out;
1040 }
1041
1042 task = get_proc_task(file->f_path.dentry->d_inode);
1043 if (!task) {
1044 err = -ESRCH;
1045 goto out;
1046 }
1047
1048 task_lock(task);
1049 if (!task->mm) {
1050 err = -EINVAL;
1051 goto err_task_lock;
1052 }
1053
1054 if (!lock_task_sighand(task, &flags)) {
1055 err = -ESRCH;
1056 goto err_task_lock;
1057 }
1058
1059 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1060 err = -EACCES;
1061 goto err_sighand;
1062 }
1063
1064 if (oom_adjust != task->signal->oom_adj) {
1065 if (oom_adjust == OOM_DISABLE)
1066 atomic_inc(&task->mm->oom_disable_count);
1067 if (task->signal->oom_adj == OOM_DISABLE)
1068 atomic_dec(&task->mm->oom_disable_count);
1069 }
1070
1071 /*
1072 * Warn that /proc/pid/oom_adj is deprecated, see
1073 * Documentation/feature-removal-schedule.txt.
1074 */
1075 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1076 "please use /proc/%d/oom_score_adj instead.\n",
1077 current->comm, task_pid_nr(current),
1078 task_pid_nr(task), task_pid_nr(task));
1079 task->signal->oom_adj = oom_adjust;
1080 /*
1081 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1082 * value is always attainable.
1083 */
1084 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1085 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1086 else
1087 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1088 -OOM_DISABLE;
1089 err_sighand:
1090 unlock_task_sighand(task, &flags);
1091 err_task_lock:
1092 task_unlock(task);
1093 put_task_struct(task);
1094 out:
1095 return err < 0 ? err : count;
1096 }
1097
1098 static const struct file_operations proc_oom_adjust_operations = {
1099 .read = oom_adjust_read,
1100 .write = oom_adjust_write,
1101 .llseek = generic_file_llseek,
1102 };
1103
1104 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1105 size_t count, loff_t *ppos)
1106 {
1107 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1108 char buffer[PROC_NUMBUF];
1109 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1110 unsigned long flags;
1111 size_t len;
1112
1113 if (!task)
1114 return -ESRCH;
1115 if (lock_task_sighand(task, &flags)) {
1116 oom_score_adj = task->signal->oom_score_adj;
1117 unlock_task_sighand(task, &flags);
1118 }
1119 put_task_struct(task);
1120 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1121 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1122 }
1123
1124 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1125 size_t count, loff_t *ppos)
1126 {
1127 struct task_struct *task;
1128 char buffer[PROC_NUMBUF];
1129 unsigned long flags;
1130 long oom_score_adj;
1131 int err;
1132
1133 memset(buffer, 0, sizeof(buffer));
1134 if (count > sizeof(buffer) - 1)
1135 count = sizeof(buffer) - 1;
1136 if (copy_from_user(buffer, buf, count)) {
1137 err = -EFAULT;
1138 goto out;
1139 }
1140
1141 err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1142 if (err)
1143 goto out;
1144 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1145 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1146 err = -EINVAL;
1147 goto out;
1148 }
1149
1150 task = get_proc_task(file->f_path.dentry->d_inode);
1151 if (!task) {
1152 err = -ESRCH;
1153 goto out;
1154 }
1155
1156 task_lock(task);
1157 if (!task->mm) {
1158 err = -EINVAL;
1159 goto err_task_lock;
1160 }
1161
1162 if (!lock_task_sighand(task, &flags)) {
1163 err = -ESRCH;
1164 goto err_task_lock;
1165 }
1166
1167 if (oom_score_adj < task->signal->oom_score_adj &&
1168 !capable(CAP_SYS_RESOURCE)) {
1169 err = -EACCES;
1170 goto err_sighand;
1171 }
1172
1173 if (oom_score_adj != task->signal->oom_score_adj) {
1174 if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1175 atomic_inc(&task->mm->oom_disable_count);
1176 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1177 atomic_dec(&task->mm->oom_disable_count);
1178 }
1179 task->signal->oom_score_adj = oom_score_adj;
1180 /*
1181 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1182 * always attainable.
1183 */
1184 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1185 task->signal->oom_adj = OOM_DISABLE;
1186 else
1187 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1188 OOM_SCORE_ADJ_MAX;
1189 err_sighand:
1190 unlock_task_sighand(task, &flags);
1191 err_task_lock:
1192 task_unlock(task);
1193 put_task_struct(task);
1194 out:
1195 return err < 0 ? err : count;
1196 }
1197
1198 static const struct file_operations proc_oom_score_adj_operations = {
1199 .read = oom_score_adj_read,
1200 .write = oom_score_adj_write,
1201 .llseek = default_llseek,
1202 };
1203
1204 #ifdef CONFIG_AUDITSYSCALL
1205 #define TMPBUFLEN 21
1206 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1207 size_t count, loff_t *ppos)
1208 {
1209 struct inode * inode = file->f_path.dentry->d_inode;
1210 struct task_struct *task = get_proc_task(inode);
1211 ssize_t length;
1212 char tmpbuf[TMPBUFLEN];
1213
1214 if (!task)
1215 return -ESRCH;
1216 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1217 audit_get_loginuid(task));
1218 put_task_struct(task);
1219 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1220 }
1221
1222 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1223 size_t count, loff_t *ppos)
1224 {
1225 struct inode * inode = file->f_path.dentry->d_inode;
1226 char *page, *tmp;
1227 ssize_t length;
1228 uid_t loginuid;
1229
1230 if (!capable(CAP_AUDIT_CONTROL))
1231 return -EPERM;
1232
1233 rcu_read_lock();
1234 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1235 rcu_read_unlock();
1236 return -EPERM;
1237 }
1238 rcu_read_unlock();
1239
1240 if (count >= PAGE_SIZE)
1241 count = PAGE_SIZE - 1;
1242
1243 if (*ppos != 0) {
1244 /* No partial writes. */
1245 return -EINVAL;
1246 }
1247 page = (char*)__get_free_page(GFP_TEMPORARY);
1248 if (!page)
1249 return -ENOMEM;
1250 length = -EFAULT;
1251 if (copy_from_user(page, buf, count))
1252 goto out_free_page;
1253
1254 page[count] = '\0';
1255 loginuid = simple_strtoul(page, &tmp, 10);
1256 if (tmp == page) {
1257 length = -EINVAL;
1258 goto out_free_page;
1259
1260 }
1261 length = audit_set_loginuid(current, loginuid);
1262 if (likely(length == 0))
1263 length = count;
1264
1265 out_free_page:
1266 free_page((unsigned long) page);
1267 return length;
1268 }
1269
1270 static const struct file_operations proc_loginuid_operations = {
1271 .read = proc_loginuid_read,
1272 .write = proc_loginuid_write,
1273 .llseek = generic_file_llseek,
1274 };
1275
1276 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1277 size_t count, loff_t *ppos)
1278 {
1279 struct inode * inode = file->f_path.dentry->d_inode;
1280 struct task_struct *task = get_proc_task(inode);
1281 ssize_t length;
1282 char tmpbuf[TMPBUFLEN];
1283
1284 if (!task)
1285 return -ESRCH;
1286 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1287 audit_get_sessionid(task));
1288 put_task_struct(task);
1289 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1290 }
1291
1292 static const struct file_operations proc_sessionid_operations = {
1293 .read = proc_sessionid_read,
1294 .llseek = generic_file_llseek,
1295 };
1296 #endif
1297
1298 #ifdef CONFIG_FAULT_INJECTION
1299 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1300 size_t count, loff_t *ppos)
1301 {
1302 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1303 char buffer[PROC_NUMBUF];
1304 size_t len;
1305 int make_it_fail;
1306
1307 if (!task)
1308 return -ESRCH;
1309 make_it_fail = task->make_it_fail;
1310 put_task_struct(task);
1311
1312 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1313
1314 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1315 }
1316
1317 static ssize_t proc_fault_inject_write(struct file * file,
1318 const char __user * buf, size_t count, loff_t *ppos)
1319 {
1320 struct task_struct *task;
1321 char buffer[PROC_NUMBUF], *end;
1322 int make_it_fail;
1323
1324 if (!capable(CAP_SYS_RESOURCE))
1325 return -EPERM;
1326 memset(buffer, 0, sizeof(buffer));
1327 if (count > sizeof(buffer) - 1)
1328 count = sizeof(buffer) - 1;
1329 if (copy_from_user(buffer, buf, count))
1330 return -EFAULT;
1331 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1332 if (*end)
1333 return -EINVAL;
1334 task = get_proc_task(file->f_dentry->d_inode);
1335 if (!task)
1336 return -ESRCH;
1337 task->make_it_fail = make_it_fail;
1338 put_task_struct(task);
1339
1340 return count;
1341 }
1342
1343 static const struct file_operations proc_fault_inject_operations = {
1344 .read = proc_fault_inject_read,
1345 .write = proc_fault_inject_write,
1346 .llseek = generic_file_llseek,
1347 };
1348 #endif
1349
1350
1351 #ifdef CONFIG_SCHED_DEBUG
1352 /*
1353 * Print out various scheduling related per-task fields:
1354 */
1355 static int sched_show(struct seq_file *m, void *v)
1356 {
1357 struct inode *inode = m->private;
1358 struct task_struct *p;
1359
1360 p = get_proc_task(inode);
1361 if (!p)
1362 return -ESRCH;
1363 proc_sched_show_task(p, m);
1364
1365 put_task_struct(p);
1366
1367 return 0;
1368 }
1369
1370 static ssize_t
1371 sched_write(struct file *file, const char __user *buf,
1372 size_t count, loff_t *offset)
1373 {
1374 struct inode *inode = file->f_path.dentry->d_inode;
1375 struct task_struct *p;
1376
1377 p = get_proc_task(inode);
1378 if (!p)
1379 return -ESRCH;
1380 proc_sched_set_task(p);
1381
1382 put_task_struct(p);
1383
1384 return count;
1385 }
1386
1387 static int sched_open(struct inode *inode, struct file *filp)
1388 {
1389 int ret;
1390
1391 ret = single_open(filp, sched_show, NULL);
1392 if (!ret) {
1393 struct seq_file *m = filp->private_data;
1394
1395 m->private = inode;
1396 }
1397 return ret;
1398 }
1399
1400 static const struct file_operations proc_pid_sched_operations = {
1401 .open = sched_open,
1402 .read = seq_read,
1403 .write = sched_write,
1404 .llseek = seq_lseek,
1405 .release = single_release,
1406 };
1407
1408 #endif
1409
1410 #ifdef CONFIG_SCHED_AUTOGROUP
1411 /*
1412 * Print out autogroup related information:
1413 */
1414 static int sched_autogroup_show(struct seq_file *m, void *v)
1415 {
1416 struct inode *inode = m->private;
1417 struct task_struct *p;
1418
1419 p = get_proc_task(inode);
1420 if (!p)
1421 return -ESRCH;
1422 proc_sched_autogroup_show_task(p, m);
1423
1424 put_task_struct(p);
1425
1426 return 0;
1427 }
1428
1429 static ssize_t
1430 sched_autogroup_write(struct file *file, const char __user *buf,
1431 size_t count, loff_t *offset)
1432 {
1433 struct inode *inode = file->f_path.dentry->d_inode;
1434 struct task_struct *p;
1435 char buffer[PROC_NUMBUF];
1436 long nice;
1437 int err;
1438
1439 memset(buffer, 0, sizeof(buffer));
1440 if (count > sizeof(buffer) - 1)
1441 count = sizeof(buffer) - 1;
1442 if (copy_from_user(buffer, buf, count))
1443 return -EFAULT;
1444
1445 err = strict_strtol(strstrip(buffer), 0, &nice);
1446 if (err)
1447 return -EINVAL;
1448
1449 p = get_proc_task(inode);
1450 if (!p)
1451 return -ESRCH;
1452
1453 err = nice;
1454 err = proc_sched_autogroup_set_nice(p, &err);
1455 if (err)
1456 count = err;
1457
1458 put_task_struct(p);
1459
1460 return count;
1461 }
1462
1463 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1464 {
1465 int ret;
1466
1467 ret = single_open(filp, sched_autogroup_show, NULL);
1468 if (!ret) {
1469 struct seq_file *m = filp->private_data;
1470
1471 m->private = inode;
1472 }
1473 return ret;
1474 }
1475
1476 static const struct file_operations proc_pid_sched_autogroup_operations = {
1477 .open = sched_autogroup_open,
1478 .read = seq_read,
1479 .write = sched_autogroup_write,
1480 .llseek = seq_lseek,
1481 .release = single_release,
1482 };
1483
1484 #endif /* CONFIG_SCHED_AUTOGROUP */
1485
1486 static ssize_t comm_write(struct file *file, const char __user *buf,
1487 size_t count, loff_t *offset)
1488 {
1489 struct inode *inode = file->f_path.dentry->d_inode;
1490 struct task_struct *p;
1491 char buffer[TASK_COMM_LEN];
1492
1493 memset(buffer, 0, sizeof(buffer));
1494 if (count > sizeof(buffer) - 1)
1495 count = sizeof(buffer) - 1;
1496 if (copy_from_user(buffer, buf, count))
1497 return -EFAULT;
1498
1499 p = get_proc_task(inode);
1500 if (!p)
1501 return -ESRCH;
1502
1503 if (same_thread_group(current, p))
1504 set_task_comm(p, buffer);
1505 else
1506 count = -EINVAL;
1507
1508 put_task_struct(p);
1509
1510 return count;
1511 }
1512
1513 static int comm_show(struct seq_file *m, void *v)
1514 {
1515 struct inode *inode = m->private;
1516 struct task_struct *p;
1517
1518 p = get_proc_task(inode);
1519 if (!p)
1520 return -ESRCH;
1521
1522 task_lock(p);
1523 seq_printf(m, "%s\n", p->comm);
1524 task_unlock(p);
1525
1526 put_task_struct(p);
1527
1528 return 0;
1529 }
1530
1531 static int comm_open(struct inode *inode, struct file *filp)
1532 {
1533 int ret;
1534
1535 ret = single_open(filp, comm_show, NULL);
1536 if (!ret) {
1537 struct seq_file *m = filp->private_data;
1538
1539 m->private = inode;
1540 }
1541 return ret;
1542 }
1543
1544 static const struct file_operations proc_pid_set_comm_operations = {
1545 .open = comm_open,
1546 .read = seq_read,
1547 .write = comm_write,
1548 .llseek = seq_lseek,
1549 .release = single_release,
1550 };
1551
1552 /*
1553 * We added or removed a vma mapping the executable. The vmas are only mapped
1554 * during exec and are not mapped with the mmap system call.
1555 * Callers must hold down_write() on the mm's mmap_sem for these
1556 */
1557 void added_exe_file_vma(struct mm_struct *mm)
1558 {
1559 mm->num_exe_file_vmas++;
1560 }
1561
1562 void removed_exe_file_vma(struct mm_struct *mm)
1563 {
1564 mm->num_exe_file_vmas--;
1565 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1566 fput(mm->exe_file);
1567 mm->exe_file = NULL;
1568 }
1569
1570 }
1571
1572 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1573 {
1574 if (new_exe_file)
1575 get_file(new_exe_file);
1576 if (mm->exe_file)
1577 fput(mm->exe_file);
1578 mm->exe_file = new_exe_file;
1579 mm->num_exe_file_vmas = 0;
1580 }
1581
1582 struct file *get_mm_exe_file(struct mm_struct *mm)
1583 {
1584 struct file *exe_file;
1585
1586 /* We need mmap_sem to protect against races with removal of
1587 * VM_EXECUTABLE vmas */
1588 down_read(&mm->mmap_sem);
1589 exe_file = mm->exe_file;
1590 if (exe_file)
1591 get_file(exe_file);
1592 up_read(&mm->mmap_sem);
1593 return exe_file;
1594 }
1595
1596 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1597 {
1598 /* It's safe to write the exe_file pointer without exe_file_lock because
1599 * this is called during fork when the task is not yet in /proc */
1600 newmm->exe_file = get_mm_exe_file(oldmm);
1601 }
1602
1603 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1604 {
1605 struct task_struct *task;
1606 struct mm_struct *mm;
1607 struct file *exe_file;
1608
1609 task = get_proc_task(inode);
1610 if (!task)
1611 return -ENOENT;
1612 mm = get_task_mm(task);
1613 put_task_struct(task);
1614 if (!mm)
1615 return -ENOENT;
1616 exe_file = get_mm_exe_file(mm);
1617 mmput(mm);
1618 if (exe_file) {
1619 *exe_path = exe_file->f_path;
1620 path_get(&exe_file->f_path);
1621 fput(exe_file);
1622 return 0;
1623 } else
1624 return -ENOENT;
1625 }
1626
1627 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1628 {
1629 struct inode *inode = dentry->d_inode;
1630 int error = -EACCES;
1631
1632 /* We don't need a base pointer in the /proc filesystem */
1633 path_put(&nd->path);
1634
1635 /* Are we allowed to snoop on the tasks file descriptors? */
1636 if (!proc_fd_access_allowed(inode))
1637 goto out;
1638
1639 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1640 out:
1641 return ERR_PTR(error);
1642 }
1643
1644 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1645 {
1646 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1647 char *pathname;
1648 int len;
1649
1650 if (!tmp)
1651 return -ENOMEM;
1652
1653 pathname = d_path_with_unreachable(path, tmp, PAGE_SIZE);
1654 len = PTR_ERR(pathname);
1655 if (IS_ERR(pathname))
1656 goto out;
1657 len = tmp + PAGE_SIZE - 1 - pathname;
1658
1659 if (len > buflen)
1660 len = buflen;
1661 if (copy_to_user(buffer, pathname, len))
1662 len = -EFAULT;
1663 out:
1664 free_page((unsigned long)tmp);
1665 return len;
1666 }
1667
1668 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1669 {
1670 int error = -EACCES;
1671 struct inode *inode = dentry->d_inode;
1672 struct path path;
1673
1674 /* Are we allowed to snoop on the tasks file descriptors? */
1675 if (!proc_fd_access_allowed(inode))
1676 goto out;
1677
1678 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1679 if (error)
1680 goto out;
1681
1682 error = do_proc_readlink(&path, buffer, buflen);
1683 path_put(&path);
1684 out:
1685 return error;
1686 }
1687
1688 static const struct inode_operations proc_pid_link_inode_operations = {
1689 .readlink = proc_pid_readlink,
1690 .follow_link = proc_pid_follow_link,
1691 .setattr = proc_setattr,
1692 };
1693
1694
1695 /* building an inode */
1696
1697 static int task_dumpable(struct task_struct *task)
1698 {
1699 int dumpable = 0;
1700 struct mm_struct *mm;
1701
1702 task_lock(task);
1703 mm = task->mm;
1704 if (mm)
1705 dumpable = get_dumpable(mm);
1706 task_unlock(task);
1707 if(dumpable == 1)
1708 return 1;
1709 return 0;
1710 }
1711
1712
1713 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1714 {
1715 struct inode * inode;
1716 struct proc_inode *ei;
1717 const struct cred *cred;
1718
1719 /* We need a new inode */
1720
1721 inode = new_inode(sb);
1722 if (!inode)
1723 goto out;
1724
1725 /* Common stuff */
1726 ei = PROC_I(inode);
1727 inode->i_ino = get_next_ino();
1728 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1729 inode->i_op = &proc_def_inode_operations;
1730
1731 /*
1732 * grab the reference to task.
1733 */
1734 ei->pid = get_task_pid(task, PIDTYPE_PID);
1735 if (!ei->pid)
1736 goto out_unlock;
1737
1738 if (task_dumpable(task)) {
1739 rcu_read_lock();
1740 cred = __task_cred(task);
1741 inode->i_uid = cred->euid;
1742 inode->i_gid = cred->egid;
1743 rcu_read_unlock();
1744 }
1745 security_task_to_inode(task, inode);
1746
1747 out:
1748 return inode;
1749
1750 out_unlock:
1751 iput(inode);
1752 return NULL;
1753 }
1754
1755 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1756 {
1757 struct inode *inode = dentry->d_inode;
1758 struct task_struct *task;
1759 const struct cred *cred;
1760
1761 generic_fillattr(inode, stat);
1762
1763 rcu_read_lock();
1764 stat->uid = 0;
1765 stat->gid = 0;
1766 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1767 if (task) {
1768 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1769 task_dumpable(task)) {
1770 cred = __task_cred(task);
1771 stat->uid = cred->euid;
1772 stat->gid = cred->egid;
1773 }
1774 }
1775 rcu_read_unlock();
1776 return 0;
1777 }
1778
1779 /* dentry stuff */
1780
1781 /*
1782 * Exceptional case: normally we are not allowed to unhash a busy
1783 * directory. In this case, however, we can do it - no aliasing problems
1784 * due to the way we treat inodes.
1785 *
1786 * Rewrite the inode's ownerships here because the owning task may have
1787 * performed a setuid(), etc.
1788 *
1789 * Before the /proc/pid/status file was created the only way to read
1790 * the effective uid of a /process was to stat /proc/pid. Reading
1791 * /proc/pid/status is slow enough that procps and other packages
1792 * kept stating /proc/pid. To keep the rules in /proc simple I have
1793 * made this apply to all per process world readable and executable
1794 * directories.
1795 */
1796 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1797 {
1798 struct inode *inode = dentry->d_inode;
1799 struct task_struct *task = get_proc_task(inode);
1800 const struct cred *cred;
1801
1802 if (task) {
1803 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1804 task_dumpable(task)) {
1805 rcu_read_lock();
1806 cred = __task_cred(task);
1807 inode->i_uid = cred->euid;
1808 inode->i_gid = cred->egid;
1809 rcu_read_unlock();
1810 } else {
1811 inode->i_uid = 0;
1812 inode->i_gid = 0;
1813 }
1814 inode->i_mode &= ~(S_ISUID | S_ISGID);
1815 security_task_to_inode(task, inode);
1816 put_task_struct(task);
1817 return 1;
1818 }
1819 d_drop(dentry);
1820 return 0;
1821 }
1822
1823 static int pid_delete_dentry(struct dentry * dentry)
1824 {
1825 /* Is the task we represent dead?
1826 * If so, then don't put the dentry on the lru list,
1827 * kill it immediately.
1828 */
1829 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1830 }
1831
1832 static const struct dentry_operations pid_dentry_operations =
1833 {
1834 .d_revalidate = pid_revalidate,
1835 .d_delete = pid_delete_dentry,
1836 };
1837
1838 /* Lookups */
1839
1840 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1841 struct task_struct *, const void *);
1842
1843 /*
1844 * Fill a directory entry.
1845 *
1846 * If possible create the dcache entry and derive our inode number and
1847 * file type from dcache entry.
1848 *
1849 * Since all of the proc inode numbers are dynamically generated, the inode
1850 * numbers do not exist until the inode is cache. This means creating the
1851 * the dcache entry in readdir is necessary to keep the inode numbers
1852 * reported by readdir in sync with the inode numbers reported
1853 * by stat.
1854 */
1855 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1856 char *name, int len,
1857 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1858 {
1859 struct dentry *child, *dir = filp->f_path.dentry;
1860 struct inode *inode;
1861 struct qstr qname;
1862 ino_t ino = 0;
1863 unsigned type = DT_UNKNOWN;
1864
1865 qname.name = name;
1866 qname.len = len;
1867 qname.hash = full_name_hash(name, len);
1868
1869 child = d_lookup(dir, &qname);
1870 if (!child) {
1871 struct dentry *new;
1872 new = d_alloc(dir, &qname);
1873 if (new) {
1874 child = instantiate(dir->d_inode, new, task, ptr);
1875 if (child)
1876 dput(new);
1877 else
1878 child = new;
1879 }
1880 }
1881 if (!child || IS_ERR(child) || !child->d_inode)
1882 goto end_instantiate;
1883 inode = child->d_inode;
1884 if (inode) {
1885 ino = inode->i_ino;
1886 type = inode->i_mode >> 12;
1887 }
1888 dput(child);
1889 end_instantiate:
1890 if (!ino)
1891 ino = find_inode_number(dir, &qname);
1892 if (!ino)
1893 ino = 1;
1894 return filldir(dirent, name, len, filp->f_pos, ino, type);
1895 }
1896
1897 static unsigned name_to_int(struct dentry *dentry)
1898 {
1899 const char *name = dentry->d_name.name;
1900 int len = dentry->d_name.len;
1901 unsigned n = 0;
1902
1903 if (len > 1 && *name == '0')
1904 goto out;
1905 while (len-- > 0) {
1906 unsigned c = *name++ - '0';
1907 if (c > 9)
1908 goto out;
1909 if (n >= (~0U-9)/10)
1910 goto out;
1911 n *= 10;
1912 n += c;
1913 }
1914 return n;
1915 out:
1916 return ~0U;
1917 }
1918
1919 #define PROC_FDINFO_MAX 64
1920
1921 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1922 {
1923 struct task_struct *task = get_proc_task(inode);
1924 struct files_struct *files = NULL;
1925 struct file *file;
1926 int fd = proc_fd(inode);
1927
1928 if (task) {
1929 files = get_files_struct(task);
1930 put_task_struct(task);
1931 }
1932 if (files) {
1933 /*
1934 * We are not taking a ref to the file structure, so we must
1935 * hold ->file_lock.
1936 */
1937 spin_lock(&files->file_lock);
1938 file = fcheck_files(files, fd);
1939 if (file) {
1940 if (path) {
1941 *path = file->f_path;
1942 path_get(&file->f_path);
1943 }
1944 if (info)
1945 snprintf(info, PROC_FDINFO_MAX,
1946 "pos:\t%lli\n"
1947 "flags:\t0%o\n",
1948 (long long) file->f_pos,
1949 file->f_flags);
1950 spin_unlock(&files->file_lock);
1951 put_files_struct(files);
1952 return 0;
1953 }
1954 spin_unlock(&files->file_lock);
1955 put_files_struct(files);
1956 }
1957 return -ENOENT;
1958 }
1959
1960 static int proc_fd_link(struct inode *inode, struct path *path)
1961 {
1962 return proc_fd_info(inode, path, NULL);
1963 }
1964
1965 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1966 {
1967 struct inode *inode = dentry->d_inode;
1968 struct task_struct *task = get_proc_task(inode);
1969 int fd = proc_fd(inode);
1970 struct files_struct *files;
1971 const struct cred *cred;
1972
1973 if (task) {
1974 files = get_files_struct(task);
1975 if (files) {
1976 rcu_read_lock();
1977 if (fcheck_files(files, fd)) {
1978 rcu_read_unlock();
1979 put_files_struct(files);
1980 if (task_dumpable(task)) {
1981 rcu_read_lock();
1982 cred = __task_cred(task);
1983 inode->i_uid = cred->euid;
1984 inode->i_gid = cred->egid;
1985 rcu_read_unlock();
1986 } else {
1987 inode->i_uid = 0;
1988 inode->i_gid = 0;
1989 }
1990 inode->i_mode &= ~(S_ISUID | S_ISGID);
1991 security_task_to_inode(task, inode);
1992 put_task_struct(task);
1993 return 1;
1994 }
1995 rcu_read_unlock();
1996 put_files_struct(files);
1997 }
1998 put_task_struct(task);
1999 }
2000 d_drop(dentry);
2001 return 0;
2002 }
2003
2004 static const struct dentry_operations tid_fd_dentry_operations =
2005 {
2006 .d_revalidate = tid_fd_revalidate,
2007 .d_delete = pid_delete_dentry,
2008 };
2009
2010 static struct dentry *proc_fd_instantiate(struct inode *dir,
2011 struct dentry *dentry, struct task_struct *task, const void *ptr)
2012 {
2013 unsigned fd = *(const unsigned *)ptr;
2014 struct file *file;
2015 struct files_struct *files;
2016 struct inode *inode;
2017 struct proc_inode *ei;
2018 struct dentry *error = ERR_PTR(-ENOENT);
2019
2020 inode = proc_pid_make_inode(dir->i_sb, task);
2021 if (!inode)
2022 goto out;
2023 ei = PROC_I(inode);
2024 ei->fd = fd;
2025 files = get_files_struct(task);
2026 if (!files)
2027 goto out_iput;
2028 inode->i_mode = S_IFLNK;
2029
2030 /*
2031 * We are not taking a ref to the file structure, so we must
2032 * hold ->file_lock.
2033 */
2034 spin_lock(&files->file_lock);
2035 file = fcheck_files(files, fd);
2036 if (!file)
2037 goto out_unlock;
2038 if (file->f_mode & FMODE_READ)
2039 inode->i_mode |= S_IRUSR | S_IXUSR;
2040 if (file->f_mode & FMODE_WRITE)
2041 inode->i_mode |= S_IWUSR | S_IXUSR;
2042 spin_unlock(&files->file_lock);
2043 put_files_struct(files);
2044
2045 inode->i_op = &proc_pid_link_inode_operations;
2046 inode->i_size = 64;
2047 ei->op.proc_get_link = proc_fd_link;
2048 dentry->d_op = &tid_fd_dentry_operations;
2049 d_add(dentry, inode);
2050 /* Close the race of the process dying before we return the dentry */
2051 if (tid_fd_revalidate(dentry, NULL))
2052 error = NULL;
2053
2054 out:
2055 return error;
2056 out_unlock:
2057 spin_unlock(&files->file_lock);
2058 put_files_struct(files);
2059 out_iput:
2060 iput(inode);
2061 goto out;
2062 }
2063
2064 static struct dentry *proc_lookupfd_common(struct inode *dir,
2065 struct dentry *dentry,
2066 instantiate_t instantiate)
2067 {
2068 struct task_struct *task = get_proc_task(dir);
2069 unsigned fd = name_to_int(dentry);
2070 struct dentry *result = ERR_PTR(-ENOENT);
2071
2072 if (!task)
2073 goto out_no_task;
2074 if (fd == ~0U)
2075 goto out;
2076
2077 result = instantiate(dir, dentry, task, &fd);
2078 out:
2079 put_task_struct(task);
2080 out_no_task:
2081 return result;
2082 }
2083
2084 static int proc_readfd_common(struct file * filp, void * dirent,
2085 filldir_t filldir, instantiate_t instantiate)
2086 {
2087 struct dentry *dentry = filp->f_path.dentry;
2088 struct inode *inode = dentry->d_inode;
2089 struct task_struct *p = get_proc_task(inode);
2090 unsigned int fd, ino;
2091 int retval;
2092 struct files_struct * files;
2093
2094 retval = -ENOENT;
2095 if (!p)
2096 goto out_no_task;
2097 retval = 0;
2098
2099 fd = filp->f_pos;
2100 switch (fd) {
2101 case 0:
2102 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2103 goto out;
2104 filp->f_pos++;
2105 case 1:
2106 ino = parent_ino(dentry);
2107 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2108 goto out;
2109 filp->f_pos++;
2110 default:
2111 files = get_files_struct(p);
2112 if (!files)
2113 goto out;
2114 rcu_read_lock();
2115 for (fd = filp->f_pos-2;
2116 fd < files_fdtable(files)->max_fds;
2117 fd++, filp->f_pos++) {
2118 char name[PROC_NUMBUF];
2119 int len;
2120
2121 if (!fcheck_files(files, fd))
2122 continue;
2123 rcu_read_unlock();
2124
2125 len = snprintf(name, sizeof(name), "%d", fd);
2126 if (proc_fill_cache(filp, dirent, filldir,
2127 name, len, instantiate,
2128 p, &fd) < 0) {
2129 rcu_read_lock();
2130 break;
2131 }
2132 rcu_read_lock();
2133 }
2134 rcu_read_unlock();
2135 put_files_struct(files);
2136 }
2137 out:
2138 put_task_struct(p);
2139 out_no_task:
2140 return retval;
2141 }
2142
2143 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2144 struct nameidata *nd)
2145 {
2146 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2147 }
2148
2149 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2150 {
2151 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2152 }
2153
2154 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2155 size_t len, loff_t *ppos)
2156 {
2157 char tmp[PROC_FDINFO_MAX];
2158 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2159 if (!err)
2160 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2161 return err;
2162 }
2163
2164 static const struct file_operations proc_fdinfo_file_operations = {
2165 .open = nonseekable_open,
2166 .read = proc_fdinfo_read,
2167 .llseek = no_llseek,
2168 };
2169
2170 static const struct file_operations proc_fd_operations = {
2171 .read = generic_read_dir,
2172 .readdir = proc_readfd,
2173 .llseek = default_llseek,
2174 };
2175
2176 /*
2177 * /proc/pid/fd needs a special permission handler so that a process can still
2178 * access /proc/self/fd after it has executed a setuid().
2179 */
2180 static int proc_fd_permission(struct inode *inode, int mask)
2181 {
2182 int rv;
2183
2184 rv = generic_permission(inode, mask, NULL);
2185 if (rv == 0)
2186 return 0;
2187 if (task_pid(current) == proc_pid(inode))
2188 rv = 0;
2189 return rv;
2190 }
2191
2192 /*
2193 * proc directories can do almost nothing..
2194 */
2195 static const struct inode_operations proc_fd_inode_operations = {
2196 .lookup = proc_lookupfd,
2197 .permission = proc_fd_permission,
2198 .setattr = proc_setattr,
2199 };
2200
2201 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2202 struct dentry *dentry, struct task_struct *task, const void *ptr)
2203 {
2204 unsigned fd = *(unsigned *)ptr;
2205 struct inode *inode;
2206 struct proc_inode *ei;
2207 struct dentry *error = ERR_PTR(-ENOENT);
2208
2209 inode = proc_pid_make_inode(dir->i_sb, task);
2210 if (!inode)
2211 goto out;
2212 ei = PROC_I(inode);
2213 ei->fd = fd;
2214 inode->i_mode = S_IFREG | S_IRUSR;
2215 inode->i_fop = &proc_fdinfo_file_operations;
2216 dentry->d_op = &tid_fd_dentry_operations;
2217 d_add(dentry, inode);
2218 /* Close the race of the process dying before we return the dentry */
2219 if (tid_fd_revalidate(dentry, NULL))
2220 error = NULL;
2221
2222 out:
2223 return error;
2224 }
2225
2226 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2227 struct dentry *dentry,
2228 struct nameidata *nd)
2229 {
2230 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2231 }
2232
2233 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2234 {
2235 return proc_readfd_common(filp, dirent, filldir,
2236 proc_fdinfo_instantiate);
2237 }
2238
2239 static const struct file_operations proc_fdinfo_operations = {
2240 .read = generic_read_dir,
2241 .readdir = proc_readfdinfo,
2242 .llseek = default_llseek,
2243 };
2244
2245 /*
2246 * proc directories can do almost nothing..
2247 */
2248 static const struct inode_operations proc_fdinfo_inode_operations = {
2249 .lookup = proc_lookupfdinfo,
2250 .setattr = proc_setattr,
2251 };
2252
2253
2254 static struct dentry *proc_pident_instantiate(struct inode *dir,
2255 struct dentry *dentry, struct task_struct *task, const void *ptr)
2256 {
2257 const struct pid_entry *p = ptr;
2258 struct inode *inode;
2259 struct proc_inode *ei;
2260 struct dentry *error = ERR_PTR(-ENOENT);
2261
2262 inode = proc_pid_make_inode(dir->i_sb, task);
2263 if (!inode)
2264 goto out;
2265
2266 ei = PROC_I(inode);
2267 inode->i_mode = p->mode;
2268 if (S_ISDIR(inode->i_mode))
2269 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2270 if (p->iop)
2271 inode->i_op = p->iop;
2272 if (p->fop)
2273 inode->i_fop = p->fop;
2274 ei->op = p->op;
2275 dentry->d_op = &pid_dentry_operations;
2276 d_add(dentry, inode);
2277 /* Close the race of the process dying before we return the dentry */
2278 if (pid_revalidate(dentry, NULL))
2279 error = NULL;
2280 out:
2281 return error;
2282 }
2283
2284 static struct dentry *proc_pident_lookup(struct inode *dir,
2285 struct dentry *dentry,
2286 const struct pid_entry *ents,
2287 unsigned int nents)
2288 {
2289 struct dentry *error;
2290 struct task_struct *task = get_proc_task(dir);
2291 const struct pid_entry *p, *last;
2292
2293 error = ERR_PTR(-ENOENT);
2294
2295 if (!task)
2296 goto out_no_task;
2297
2298 /*
2299 * Yes, it does not scale. And it should not. Don't add
2300 * new entries into /proc/<tgid>/ without very good reasons.
2301 */
2302 last = &ents[nents - 1];
2303 for (p = ents; p <= last; p++) {
2304 if (p->len != dentry->d_name.len)
2305 continue;
2306 if (!memcmp(dentry->d_name.name, p->name, p->len))
2307 break;
2308 }
2309 if (p > last)
2310 goto out;
2311
2312 error = proc_pident_instantiate(dir, dentry, task, p);
2313 out:
2314 put_task_struct(task);
2315 out_no_task:
2316 return error;
2317 }
2318
2319 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2320 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2321 {
2322 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2323 proc_pident_instantiate, task, p);
2324 }
2325
2326 static int proc_pident_readdir(struct file *filp,
2327 void *dirent, filldir_t filldir,
2328 const struct pid_entry *ents, unsigned int nents)
2329 {
2330 int i;
2331 struct dentry *dentry = filp->f_path.dentry;
2332 struct inode *inode = dentry->d_inode;
2333 struct task_struct *task = get_proc_task(inode);
2334 const struct pid_entry *p, *last;
2335 ino_t ino;
2336 int ret;
2337
2338 ret = -ENOENT;
2339 if (!task)
2340 goto out_no_task;
2341
2342 ret = 0;
2343 i = filp->f_pos;
2344 switch (i) {
2345 case 0:
2346 ino = inode->i_ino;
2347 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2348 goto out;
2349 i++;
2350 filp->f_pos++;
2351 /* fall through */
2352 case 1:
2353 ino = parent_ino(dentry);
2354 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2355 goto out;
2356 i++;
2357 filp->f_pos++;
2358 /* fall through */
2359 default:
2360 i -= 2;
2361 if (i >= nents) {
2362 ret = 1;
2363 goto out;
2364 }
2365 p = ents + i;
2366 last = &ents[nents - 1];
2367 while (p <= last) {
2368 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2369 goto out;
2370 filp->f_pos++;
2371 p++;
2372 }
2373 }
2374
2375 ret = 1;
2376 out:
2377 put_task_struct(task);
2378 out_no_task:
2379 return ret;
2380 }
2381
2382 #ifdef CONFIG_SECURITY
2383 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2384 size_t count, loff_t *ppos)
2385 {
2386 struct inode * inode = file->f_path.dentry->d_inode;
2387 char *p = NULL;
2388 ssize_t length;
2389 struct task_struct *task = get_proc_task(inode);
2390
2391 if (!task)
2392 return -ESRCH;
2393
2394 length = security_getprocattr(task,
2395 (char*)file->f_path.dentry->d_name.name,
2396 &p);
2397 put_task_struct(task);
2398 if (length > 0)
2399 length = simple_read_from_buffer(buf, count, ppos, p, length);
2400 kfree(p);
2401 return length;
2402 }
2403
2404 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2405 size_t count, loff_t *ppos)
2406 {
2407 struct inode * inode = file->f_path.dentry->d_inode;
2408 char *page;
2409 ssize_t length;
2410 struct task_struct *task = get_proc_task(inode);
2411
2412 length = -ESRCH;
2413 if (!task)
2414 goto out_no_task;
2415 if (count > PAGE_SIZE)
2416 count = PAGE_SIZE;
2417
2418 /* No partial writes. */
2419 length = -EINVAL;
2420 if (*ppos != 0)
2421 goto out;
2422
2423 length = -ENOMEM;
2424 page = (char*)__get_free_page(GFP_TEMPORARY);
2425 if (!page)
2426 goto out;
2427
2428 length = -EFAULT;
2429 if (copy_from_user(page, buf, count))
2430 goto out_free;
2431
2432 /* Guard against adverse ptrace interaction */
2433 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2434 if (length < 0)
2435 goto out_free;
2436
2437 length = security_setprocattr(task,
2438 (char*)file->f_path.dentry->d_name.name,
2439 (void*)page, count);
2440 mutex_unlock(&task->signal->cred_guard_mutex);
2441 out_free:
2442 free_page((unsigned long) page);
2443 out:
2444 put_task_struct(task);
2445 out_no_task:
2446 return length;
2447 }
2448
2449 static const struct file_operations proc_pid_attr_operations = {
2450 .read = proc_pid_attr_read,
2451 .write = proc_pid_attr_write,
2452 .llseek = generic_file_llseek,
2453 };
2454
2455 static const struct pid_entry attr_dir_stuff[] = {
2456 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457 REG("prev", S_IRUGO, proc_pid_attr_operations),
2458 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2459 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2460 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2461 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2462 };
2463
2464 static int proc_attr_dir_readdir(struct file * filp,
2465 void * dirent, filldir_t filldir)
2466 {
2467 return proc_pident_readdir(filp,dirent,filldir,
2468 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2469 }
2470
2471 static const struct file_operations proc_attr_dir_operations = {
2472 .read = generic_read_dir,
2473 .readdir = proc_attr_dir_readdir,
2474 .llseek = default_llseek,
2475 };
2476
2477 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2478 struct dentry *dentry, struct nameidata *nd)
2479 {
2480 return proc_pident_lookup(dir, dentry,
2481 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2482 }
2483
2484 static const struct inode_operations proc_attr_dir_inode_operations = {
2485 .lookup = proc_attr_dir_lookup,
2486 .getattr = pid_getattr,
2487 .setattr = proc_setattr,
2488 };
2489
2490 #endif
2491
2492 #ifdef CONFIG_ELF_CORE
2493 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2494 size_t count, loff_t *ppos)
2495 {
2496 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2497 struct mm_struct *mm;
2498 char buffer[PROC_NUMBUF];
2499 size_t len;
2500 int ret;
2501
2502 if (!task)
2503 return -ESRCH;
2504
2505 ret = 0;
2506 mm = get_task_mm(task);
2507 if (mm) {
2508 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2509 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2510 MMF_DUMP_FILTER_SHIFT));
2511 mmput(mm);
2512 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2513 }
2514
2515 put_task_struct(task);
2516
2517 return ret;
2518 }
2519
2520 static ssize_t proc_coredump_filter_write(struct file *file,
2521 const char __user *buf,
2522 size_t count,
2523 loff_t *ppos)
2524 {
2525 struct task_struct *task;
2526 struct mm_struct *mm;
2527 char buffer[PROC_NUMBUF], *end;
2528 unsigned int val;
2529 int ret;
2530 int i;
2531 unsigned long mask;
2532
2533 ret = -EFAULT;
2534 memset(buffer, 0, sizeof(buffer));
2535 if (count > sizeof(buffer) - 1)
2536 count = sizeof(buffer) - 1;
2537 if (copy_from_user(buffer, buf, count))
2538 goto out_no_task;
2539
2540 ret = -EINVAL;
2541 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2542 if (*end == '\n')
2543 end++;
2544 if (end - buffer == 0)
2545 goto out_no_task;
2546
2547 ret = -ESRCH;
2548 task = get_proc_task(file->f_dentry->d_inode);
2549 if (!task)
2550 goto out_no_task;
2551
2552 ret = end - buffer;
2553 mm = get_task_mm(task);
2554 if (!mm)
2555 goto out_no_mm;
2556
2557 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2558 if (val & mask)
2559 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2560 else
2561 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2562 }
2563
2564 mmput(mm);
2565 out_no_mm:
2566 put_task_struct(task);
2567 out_no_task:
2568 return ret;
2569 }
2570
2571 static const struct file_operations proc_coredump_filter_operations = {
2572 .read = proc_coredump_filter_read,
2573 .write = proc_coredump_filter_write,
2574 .llseek = generic_file_llseek,
2575 };
2576 #endif
2577
2578 /*
2579 * /proc/self:
2580 */
2581 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2582 int buflen)
2583 {
2584 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2585 pid_t tgid = task_tgid_nr_ns(current, ns);
2586 char tmp[PROC_NUMBUF];
2587 if (!tgid)
2588 return -ENOENT;
2589 sprintf(tmp, "%d", tgid);
2590 return vfs_readlink(dentry,buffer,buflen,tmp);
2591 }
2592
2593 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2594 {
2595 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2596 pid_t tgid = task_tgid_nr_ns(current, ns);
2597 char *name = ERR_PTR(-ENOENT);
2598 if (tgid) {
2599 name = __getname();
2600 if (!name)
2601 name = ERR_PTR(-ENOMEM);
2602 else
2603 sprintf(name, "%d", tgid);
2604 }
2605 nd_set_link(nd, name);
2606 return NULL;
2607 }
2608
2609 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2610 void *cookie)
2611 {
2612 char *s = nd_get_link(nd);
2613 if (!IS_ERR(s))
2614 __putname(s);
2615 }
2616
2617 static const struct inode_operations proc_self_inode_operations = {
2618 .readlink = proc_self_readlink,
2619 .follow_link = proc_self_follow_link,
2620 .put_link = proc_self_put_link,
2621 };
2622
2623 /*
2624 * proc base
2625 *
2626 * These are the directory entries in the root directory of /proc
2627 * that properly belong to the /proc filesystem, as they describe
2628 * describe something that is process related.
2629 */
2630 static const struct pid_entry proc_base_stuff[] = {
2631 NOD("self", S_IFLNK|S_IRWXUGO,
2632 &proc_self_inode_operations, NULL, {}),
2633 };
2634
2635 /*
2636 * Exceptional case: normally we are not allowed to unhash a busy
2637 * directory. In this case, however, we can do it - no aliasing problems
2638 * due to the way we treat inodes.
2639 */
2640 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2641 {
2642 struct inode *inode = dentry->d_inode;
2643 struct task_struct *task = get_proc_task(inode);
2644 if (task) {
2645 put_task_struct(task);
2646 return 1;
2647 }
2648 d_drop(dentry);
2649 return 0;
2650 }
2651
2652 static const struct dentry_operations proc_base_dentry_operations =
2653 {
2654 .d_revalidate = proc_base_revalidate,
2655 .d_delete = pid_delete_dentry,
2656 };
2657
2658 static struct dentry *proc_base_instantiate(struct inode *dir,
2659 struct dentry *dentry, struct task_struct *task, const void *ptr)
2660 {
2661 const struct pid_entry *p = ptr;
2662 struct inode *inode;
2663 struct proc_inode *ei;
2664 struct dentry *error;
2665
2666 /* Allocate the inode */
2667 error = ERR_PTR(-ENOMEM);
2668 inode = new_inode(dir->i_sb);
2669 if (!inode)
2670 goto out;
2671
2672 /* Initialize the inode */
2673 ei = PROC_I(inode);
2674 inode->i_ino = get_next_ino();
2675 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2676
2677 /*
2678 * grab the reference to the task.
2679 */
2680 ei->pid = get_task_pid(task, PIDTYPE_PID);
2681 if (!ei->pid)
2682 goto out_iput;
2683
2684 inode->i_mode = p->mode;
2685 if (S_ISDIR(inode->i_mode))
2686 inode->i_nlink = 2;
2687 if (S_ISLNK(inode->i_mode))
2688 inode->i_size = 64;
2689 if (p->iop)
2690 inode->i_op = p->iop;
2691 if (p->fop)
2692 inode->i_fop = p->fop;
2693 ei->op = p->op;
2694 dentry->d_op = &proc_base_dentry_operations;
2695 d_add(dentry, inode);
2696 error = NULL;
2697 out:
2698 return error;
2699 out_iput:
2700 iput(inode);
2701 goto out;
2702 }
2703
2704 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2705 {
2706 struct dentry *error;
2707 struct task_struct *task = get_proc_task(dir);
2708 const struct pid_entry *p, *last;
2709
2710 error = ERR_PTR(-ENOENT);
2711
2712 if (!task)
2713 goto out_no_task;
2714
2715 /* Lookup the directory entry */
2716 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2717 for (p = proc_base_stuff; p <= last; p++) {
2718 if (p->len != dentry->d_name.len)
2719 continue;
2720 if (!memcmp(dentry->d_name.name, p->name, p->len))
2721 break;
2722 }
2723 if (p > last)
2724 goto out;
2725
2726 error = proc_base_instantiate(dir, dentry, task, p);
2727
2728 out:
2729 put_task_struct(task);
2730 out_no_task:
2731 return error;
2732 }
2733
2734 static int proc_base_fill_cache(struct file *filp, void *dirent,
2735 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2736 {
2737 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2738 proc_base_instantiate, task, p);
2739 }
2740
2741 #ifdef CONFIG_TASK_IO_ACCOUNTING
2742 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2743 {
2744 struct task_io_accounting acct = task->ioac;
2745 unsigned long flags;
2746
2747 if (whole && lock_task_sighand(task, &flags)) {
2748 struct task_struct *t = task;
2749
2750 task_io_accounting_add(&acct, &task->signal->ioac);
2751 while_each_thread(task, t)
2752 task_io_accounting_add(&acct, &t->ioac);
2753
2754 unlock_task_sighand(task, &flags);
2755 }
2756 return sprintf(buffer,
2757 "rchar: %llu\n"
2758 "wchar: %llu\n"
2759 "syscr: %llu\n"
2760 "syscw: %llu\n"
2761 "read_bytes: %llu\n"
2762 "write_bytes: %llu\n"
2763 "cancelled_write_bytes: %llu\n",
2764 (unsigned long long)acct.rchar,
2765 (unsigned long long)acct.wchar,
2766 (unsigned long long)acct.syscr,
2767 (unsigned long long)acct.syscw,
2768 (unsigned long long)acct.read_bytes,
2769 (unsigned long long)acct.write_bytes,
2770 (unsigned long long)acct.cancelled_write_bytes);
2771 }
2772
2773 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2774 {
2775 return do_io_accounting(task, buffer, 0);
2776 }
2777
2778 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2779 {
2780 return do_io_accounting(task, buffer, 1);
2781 }
2782 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2783
2784 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2785 struct pid *pid, struct task_struct *task)
2786 {
2787 seq_printf(m, "%08x\n", task->personality);
2788 return 0;
2789 }
2790
2791 /*
2792 * Thread groups
2793 */
2794 static const struct file_operations proc_task_operations;
2795 static const struct inode_operations proc_task_inode_operations;
2796
2797 static const struct pid_entry tgid_base_stuff[] = {
2798 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2799 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2800 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2801 #ifdef CONFIG_NET
2802 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2803 #endif
2804 REG("environ", S_IRUSR, proc_environ_operations),
2805 INF("auxv", S_IRUSR, proc_pid_auxv),
2806 ONE("status", S_IRUGO, proc_pid_status),
2807 ONE("personality", S_IRUSR, proc_pid_personality),
2808 INF("limits", S_IRUGO, proc_pid_limits),
2809 #ifdef CONFIG_SCHED_DEBUG
2810 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2811 #endif
2812 #ifdef CONFIG_SCHED_AUTOGROUP
2813 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2814 #endif
2815 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2816 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2817 INF("syscall", S_IRUSR, proc_pid_syscall),
2818 #endif
2819 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2820 ONE("stat", S_IRUGO, proc_tgid_stat),
2821 ONE("statm", S_IRUGO, proc_pid_statm),
2822 REG("maps", S_IRUGO, proc_maps_operations),
2823 #ifdef CONFIG_NUMA
2824 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2825 #endif
2826 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2827 LNK("cwd", proc_cwd_link),
2828 LNK("root", proc_root_link),
2829 LNK("exe", proc_exe_link),
2830 REG("mounts", S_IRUGO, proc_mounts_operations),
2831 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2832 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2833 #ifdef CONFIG_PROC_PAGE_MONITOR
2834 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2835 REG("smaps", S_IRUGO, proc_smaps_operations),
2836 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2837 #endif
2838 #ifdef CONFIG_SECURITY
2839 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2840 #endif
2841 #ifdef CONFIG_KALLSYMS
2842 INF("wchan", S_IRUGO, proc_pid_wchan),
2843 #endif
2844 #ifdef CONFIG_STACKTRACE
2845 ONE("stack", S_IRUSR, proc_pid_stack),
2846 #endif
2847 #ifdef CONFIG_SCHEDSTATS
2848 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2849 #endif
2850 #ifdef CONFIG_LATENCYTOP
2851 REG("latency", S_IRUGO, proc_lstats_operations),
2852 #endif
2853 #ifdef CONFIG_PROC_PID_CPUSET
2854 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2855 #endif
2856 #ifdef CONFIG_CGROUPS
2857 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2858 #endif
2859 INF("oom_score", S_IRUGO, proc_oom_score),
2860 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2861 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2862 #ifdef CONFIG_AUDITSYSCALL
2863 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2864 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2865 #endif
2866 #ifdef CONFIG_FAULT_INJECTION
2867 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2868 #endif
2869 #ifdef CONFIG_ELF_CORE
2870 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2871 #endif
2872 #ifdef CONFIG_TASK_IO_ACCOUNTING
2873 INF("io", S_IRUGO, proc_tgid_io_accounting),
2874 #endif
2875 };
2876
2877 static int proc_tgid_base_readdir(struct file * filp,
2878 void * dirent, filldir_t filldir)
2879 {
2880 return proc_pident_readdir(filp,dirent,filldir,
2881 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2882 }
2883
2884 static const struct file_operations proc_tgid_base_operations = {
2885 .read = generic_read_dir,
2886 .readdir = proc_tgid_base_readdir,
2887 .llseek = default_llseek,
2888 };
2889
2890 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2891 return proc_pident_lookup(dir, dentry,
2892 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2893 }
2894
2895 static const struct inode_operations proc_tgid_base_inode_operations = {
2896 .lookup = proc_tgid_base_lookup,
2897 .getattr = pid_getattr,
2898 .setattr = proc_setattr,
2899 };
2900
2901 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2902 {
2903 struct dentry *dentry, *leader, *dir;
2904 char buf[PROC_NUMBUF];
2905 struct qstr name;
2906
2907 name.name = buf;
2908 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2909 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2910 if (dentry) {
2911 shrink_dcache_parent(dentry);
2912 d_drop(dentry);
2913 dput(dentry);
2914 }
2915
2916 name.name = buf;
2917 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2918 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2919 if (!leader)
2920 goto out;
2921
2922 name.name = "task";
2923 name.len = strlen(name.name);
2924 dir = d_hash_and_lookup(leader, &name);
2925 if (!dir)
2926 goto out_put_leader;
2927
2928 name.name = buf;
2929 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2930 dentry = d_hash_and_lookup(dir, &name);
2931 if (dentry) {
2932 shrink_dcache_parent(dentry);
2933 d_drop(dentry);
2934 dput(dentry);
2935 }
2936
2937 dput(dir);
2938 out_put_leader:
2939 dput(leader);
2940 out:
2941 return;
2942 }
2943
2944 /**
2945 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2946 * @task: task that should be flushed.
2947 *
2948 * When flushing dentries from proc, one needs to flush them from global
2949 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2950 * in. This call is supposed to do all of this job.
2951 *
2952 * Looks in the dcache for
2953 * /proc/@pid
2954 * /proc/@tgid/task/@pid
2955 * if either directory is present flushes it and all of it'ts children
2956 * from the dcache.
2957 *
2958 * It is safe and reasonable to cache /proc entries for a task until
2959 * that task exits. After that they just clog up the dcache with
2960 * useless entries, possibly causing useful dcache entries to be
2961 * flushed instead. This routine is proved to flush those useless
2962 * dcache entries at process exit time.
2963 *
2964 * NOTE: This routine is just an optimization so it does not guarantee
2965 * that no dcache entries will exist at process exit time it
2966 * just makes it very unlikely that any will persist.
2967 */
2968
2969 void proc_flush_task(struct task_struct *task)
2970 {
2971 int i;
2972 struct pid *pid, *tgid;
2973 struct upid *upid;
2974
2975 pid = task_pid(task);
2976 tgid = task_tgid(task);
2977
2978 for (i = 0; i <= pid->level; i++) {
2979 upid = &pid->numbers[i];
2980 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2981 tgid->numbers[i].nr);
2982 }
2983
2984 upid = &pid->numbers[pid->level];
2985 if (upid->nr == 1)
2986 pid_ns_release_proc(upid->ns);
2987 }
2988
2989 static struct dentry *proc_pid_instantiate(struct inode *dir,
2990 struct dentry * dentry,
2991 struct task_struct *task, const void *ptr)
2992 {
2993 struct dentry *error = ERR_PTR(-ENOENT);
2994 struct inode *inode;
2995
2996 inode = proc_pid_make_inode(dir->i_sb, task);
2997 if (!inode)
2998 goto out;
2999
3000 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3001 inode->i_op = &proc_tgid_base_inode_operations;
3002 inode->i_fop = &proc_tgid_base_operations;
3003 inode->i_flags|=S_IMMUTABLE;
3004
3005 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
3006 ARRAY_SIZE(tgid_base_stuff));
3007
3008 dentry->d_op = &pid_dentry_operations;
3009
3010 d_add(dentry, inode);
3011 /* Close the race of the process dying before we return the dentry */
3012 if (pid_revalidate(dentry, NULL))
3013 error = NULL;
3014 out:
3015 return error;
3016 }
3017
3018 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3019 {
3020 struct dentry *result;
3021 struct task_struct *task;
3022 unsigned tgid;
3023 struct pid_namespace *ns;
3024
3025 result = proc_base_lookup(dir, dentry);
3026 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3027 goto out;
3028
3029 tgid = name_to_int(dentry);
3030 if (tgid == ~0U)
3031 goto out;
3032
3033 ns = dentry->d_sb->s_fs_info;
3034 rcu_read_lock();
3035 task = find_task_by_pid_ns(tgid, ns);
3036 if (task)
3037 get_task_struct(task);
3038 rcu_read_unlock();
3039 if (!task)
3040 goto out;
3041
3042 result = proc_pid_instantiate(dir, dentry, task, NULL);
3043 put_task_struct(task);
3044 out:
3045 return result;
3046 }
3047
3048 /*
3049 * Find the first task with tgid >= tgid
3050 *
3051 */
3052 struct tgid_iter {
3053 unsigned int tgid;
3054 struct task_struct *task;
3055 };
3056 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3057 {
3058 struct pid *pid;
3059
3060 if (iter.task)
3061 put_task_struct(iter.task);
3062 rcu_read_lock();
3063 retry:
3064 iter.task = NULL;
3065 pid = find_ge_pid(iter.tgid, ns);
3066 if (pid) {
3067 iter.tgid = pid_nr_ns(pid, ns);
3068 iter.task = pid_task(pid, PIDTYPE_PID);
3069 /* What we to know is if the pid we have find is the
3070 * pid of a thread_group_leader. Testing for task
3071 * being a thread_group_leader is the obvious thing
3072 * todo but there is a window when it fails, due to
3073 * the pid transfer logic in de_thread.
3074 *
3075 * So we perform the straight forward test of seeing
3076 * if the pid we have found is the pid of a thread
3077 * group leader, and don't worry if the task we have
3078 * found doesn't happen to be a thread group leader.
3079 * As we don't care in the case of readdir.
3080 */
3081 if (!iter.task || !has_group_leader_pid(iter.task)) {
3082 iter.tgid += 1;
3083 goto retry;
3084 }
3085 get_task_struct(iter.task);
3086 }
3087 rcu_read_unlock();
3088 return iter;
3089 }
3090
3091 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3092
3093 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3094 struct tgid_iter iter)
3095 {
3096 char name[PROC_NUMBUF];
3097 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3098 return proc_fill_cache(filp, dirent, filldir, name, len,
3099 proc_pid_instantiate, iter.task, NULL);
3100 }
3101
3102 /* for the /proc/ directory itself, after non-process stuff has been done */
3103 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3104 {
3105 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3106 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107 struct tgid_iter iter;
3108 struct pid_namespace *ns;
3109
3110 if (!reaper)
3111 goto out_no_task;
3112
3113 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3114 const struct pid_entry *p = &proc_base_stuff[nr];
3115 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3116 goto out;
3117 }
3118
3119 ns = filp->f_dentry->d_sb->s_fs_info;
3120 iter.task = NULL;
3121 iter.tgid = filp->f_pos - TGID_OFFSET;
3122 for (iter = next_tgid(ns, iter);
3123 iter.task;
3124 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3125 filp->f_pos = iter.tgid + TGID_OFFSET;
3126 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3127 put_task_struct(iter.task);
3128 goto out;
3129 }
3130 }
3131 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3132 out:
3133 put_task_struct(reaper);
3134 out_no_task:
3135 return 0;
3136 }
3137
3138 /*
3139 * Tasks
3140 */
3141 static const struct pid_entry tid_base_stuff[] = {
3142 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3143 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3144 REG("environ", S_IRUSR, proc_environ_operations),
3145 INF("auxv", S_IRUSR, proc_pid_auxv),
3146 ONE("status", S_IRUGO, proc_pid_status),
3147 ONE("personality", S_IRUSR, proc_pid_personality),
3148 INF("limits", S_IRUGO, proc_pid_limits),
3149 #ifdef CONFIG_SCHED_DEBUG
3150 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3151 #endif
3152 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3153 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3154 INF("syscall", S_IRUSR, proc_pid_syscall),
3155 #endif
3156 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3157 ONE("stat", S_IRUGO, proc_tid_stat),
3158 ONE("statm", S_IRUGO, proc_pid_statm),
3159 REG("maps", S_IRUGO, proc_maps_operations),
3160 #ifdef CONFIG_NUMA
3161 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3162 #endif
3163 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3164 LNK("cwd", proc_cwd_link),
3165 LNK("root", proc_root_link),
3166 LNK("exe", proc_exe_link),
3167 REG("mounts", S_IRUGO, proc_mounts_operations),
3168 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3169 #ifdef CONFIG_PROC_PAGE_MONITOR
3170 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3171 REG("smaps", S_IRUGO, proc_smaps_operations),
3172 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3173 #endif
3174 #ifdef CONFIG_SECURITY
3175 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3176 #endif
3177 #ifdef CONFIG_KALLSYMS
3178 INF("wchan", S_IRUGO, proc_pid_wchan),
3179 #endif
3180 #ifdef CONFIG_STACKTRACE
3181 ONE("stack", S_IRUSR, proc_pid_stack),
3182 #endif
3183 #ifdef CONFIG_SCHEDSTATS
3184 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3185 #endif
3186 #ifdef CONFIG_LATENCYTOP
3187 REG("latency", S_IRUGO, proc_lstats_operations),
3188 #endif
3189 #ifdef CONFIG_PROC_PID_CPUSET
3190 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3191 #endif
3192 #ifdef CONFIG_CGROUPS
3193 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3194 #endif
3195 INF("oom_score", S_IRUGO, proc_oom_score),
3196 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3197 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3198 #ifdef CONFIG_AUDITSYSCALL
3199 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3200 REG("sessionid", S_IRUSR, proc_sessionid_operations),
3201 #endif
3202 #ifdef CONFIG_FAULT_INJECTION
3203 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3204 #endif
3205 #ifdef CONFIG_TASK_IO_ACCOUNTING
3206 INF("io", S_IRUGO, proc_tid_io_accounting),
3207 #endif
3208 };
3209
3210 static int proc_tid_base_readdir(struct file * filp,
3211 void * dirent, filldir_t filldir)
3212 {
3213 return proc_pident_readdir(filp,dirent,filldir,
3214 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3215 }
3216
3217 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3218 return proc_pident_lookup(dir, dentry,
3219 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3220 }
3221
3222 static const struct file_operations proc_tid_base_operations = {
3223 .read = generic_read_dir,
3224 .readdir = proc_tid_base_readdir,
3225 .llseek = default_llseek,
3226 };
3227
3228 static const struct inode_operations proc_tid_base_inode_operations = {
3229 .lookup = proc_tid_base_lookup,
3230 .getattr = pid_getattr,
3231 .setattr = proc_setattr,
3232 };
3233
3234 static struct dentry *proc_task_instantiate(struct inode *dir,
3235 struct dentry *dentry, struct task_struct *task, const void *ptr)
3236 {
3237 struct dentry *error = ERR_PTR(-ENOENT);
3238 struct inode *inode;
3239 inode = proc_pid_make_inode(dir->i_sb, task);
3240
3241 if (!inode)
3242 goto out;
3243 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3244 inode->i_op = &proc_tid_base_inode_operations;
3245 inode->i_fop = &proc_tid_base_operations;
3246 inode->i_flags|=S_IMMUTABLE;
3247
3248 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3249 ARRAY_SIZE(tid_base_stuff));
3250
3251 dentry->d_op = &pid_dentry_operations;
3252
3253 d_add(dentry, inode);
3254 /* Close the race of the process dying before we return the dentry */
3255 if (pid_revalidate(dentry, NULL))
3256 error = NULL;
3257 out:
3258 return error;
3259 }
3260
3261 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3262 {
3263 struct dentry *result = ERR_PTR(-ENOENT);
3264 struct task_struct *task;
3265 struct task_struct *leader = get_proc_task(dir);
3266 unsigned tid;
3267 struct pid_namespace *ns;
3268
3269 if (!leader)
3270 goto out_no_task;
3271
3272 tid = name_to_int(dentry);
3273 if (tid == ~0U)
3274 goto out;
3275
3276 ns = dentry->d_sb->s_fs_info;
3277 rcu_read_lock();
3278 task = find_task_by_pid_ns(tid, ns);
3279 if (task)
3280 get_task_struct(task);
3281 rcu_read_unlock();
3282 if (!task)
3283 goto out;
3284 if (!same_thread_group(leader, task))
3285 goto out_drop_task;
3286
3287 result = proc_task_instantiate(dir, dentry, task, NULL);
3288 out_drop_task:
3289 put_task_struct(task);
3290 out:
3291 put_task_struct(leader);
3292 out_no_task:
3293 return result;
3294 }
3295
3296 /*
3297 * Find the first tid of a thread group to return to user space.
3298 *
3299 * Usually this is just the thread group leader, but if the users
3300 * buffer was too small or there was a seek into the middle of the
3301 * directory we have more work todo.
3302 *
3303 * In the case of a short read we start with find_task_by_pid.
3304 *
3305 * In the case of a seek we start with the leader and walk nr
3306 * threads past it.
3307 */
3308 static struct task_struct *first_tid(struct task_struct *leader,
3309 int tid, int nr, struct pid_namespace *ns)
3310 {
3311 struct task_struct *pos;
3312
3313 rcu_read_lock();
3314 /* Attempt to start with the pid of a thread */
3315 if (tid && (nr > 0)) {
3316 pos = find_task_by_pid_ns(tid, ns);
3317 if (pos && (pos->group_leader == leader))
3318 goto found;
3319 }
3320
3321 /* If nr exceeds the number of threads there is nothing todo */
3322 pos = NULL;
3323 if (nr && nr >= get_nr_threads(leader))
3324 goto out;
3325
3326 /* If we haven't found our starting place yet start
3327 * with the leader and walk nr threads forward.
3328 */
3329 for (pos = leader; nr > 0; --nr) {
3330 pos = next_thread(pos);
3331 if (pos == leader) {
3332 pos = NULL;
3333 goto out;
3334 }
3335 }
3336 found:
3337 get_task_struct(pos);
3338 out:
3339 rcu_read_unlock();
3340 return pos;
3341 }
3342
3343 /*
3344 * Find the next thread in the thread list.
3345 * Return NULL if there is an error or no next thread.
3346 *
3347 * The reference to the input task_struct is released.
3348 */
3349 static struct task_struct *next_tid(struct task_struct *start)
3350 {
3351 struct task_struct *pos = NULL;
3352 rcu_read_lock();
3353 if (pid_alive(start)) {
3354 pos = next_thread(start);
3355 if (thread_group_leader(pos))
3356 pos = NULL;
3357 else
3358 get_task_struct(pos);
3359 }
3360 rcu_read_unlock();
3361 put_task_struct(start);
3362 return pos;
3363 }
3364
3365 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3366 struct task_struct *task, int tid)
3367 {
3368 char name[PROC_NUMBUF];
3369 int len = snprintf(name, sizeof(name), "%d", tid);
3370 return proc_fill_cache(filp, dirent, filldir, name, len,
3371 proc_task_instantiate, task, NULL);
3372 }
3373
3374 /* for the /proc/TGID/task/ directories */
3375 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3376 {
3377 struct dentry *dentry = filp->f_path.dentry;
3378 struct inode *inode = dentry->d_inode;
3379 struct task_struct *leader = NULL;
3380 struct task_struct *task;
3381 int retval = -ENOENT;
3382 ino_t ino;
3383 int tid;
3384 struct pid_namespace *ns;
3385
3386 task = get_proc_task(inode);
3387 if (!task)
3388 goto out_no_task;
3389 rcu_read_lock();
3390 if (pid_alive(task)) {
3391 leader = task->group_leader;
3392 get_task_struct(leader);
3393 }
3394 rcu_read_unlock();
3395 put_task_struct(task);
3396 if (!leader)
3397 goto out_no_task;
3398 retval = 0;
3399
3400 switch ((unsigned long)filp->f_pos) {
3401 case 0:
3402 ino = inode->i_ino;
3403 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3404 goto out;
3405 filp->f_pos++;
3406 /* fall through */
3407 case 1:
3408 ino = parent_ino(dentry);
3409 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3410 goto out;
3411 filp->f_pos++;
3412 /* fall through */
3413 }
3414
3415 /* f_version caches the tgid value that the last readdir call couldn't
3416 * return. lseek aka telldir automagically resets f_version to 0.
3417 */
3418 ns = filp->f_dentry->d_sb->s_fs_info;
3419 tid = (int)filp->f_version;
3420 filp->f_version = 0;
3421 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3422 task;
3423 task = next_tid(task), filp->f_pos++) {
3424 tid = task_pid_nr_ns(task, ns);
3425 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3426 /* returning this tgid failed, save it as the first
3427 * pid for the next readir call */
3428 filp->f_version = (u64)tid;
3429 put_task_struct(task);
3430 break;
3431 }
3432 }
3433 out:
3434 put_task_struct(leader);
3435 out_no_task:
3436 return retval;
3437 }
3438
3439 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3440 {
3441 struct inode *inode = dentry->d_inode;
3442 struct task_struct *p = get_proc_task(inode);
3443 generic_fillattr(inode, stat);
3444
3445 if (p) {
3446 stat->nlink += get_nr_threads(p);
3447 put_task_struct(p);
3448 }
3449
3450 return 0;
3451 }
3452
3453 static const struct inode_operations proc_task_inode_operations = {
3454 .lookup = proc_task_lookup,
3455 .getattr = proc_task_getattr,
3456 .setattr = proc_setattr,
3457 };
3458
3459 static const struct file_operations proc_task_operations = {
3460 .read = generic_read_dir,
3461 .readdir = proc_task_readdir,
3462 .llseek = default_llseek,
3463 };
This page took 0.099717 seconds and 5 git commands to generate.