proc: add RLIMIT_RTTIME to /proc/<pid>/limits
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
63 #include <linux/mm.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/resource.h>
67 #include <linux/module.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/cgroup.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include <linux/nsproxy.h>
76 #include <linux/oom.h>
77 #include <linux/elf.h>
78 #include <linux/pid_namespace.h>
79 #include "internal.h"
80
81 /* NOTE:
82 * Implementing inode permission operations in /proc is almost
83 * certainly an error. Permission checks need to happen during
84 * each system call not at open time. The reason is that most of
85 * what we wish to check for permissions in /proc varies at runtime.
86 *
87 * The classic example of a problem is opening file descriptors
88 * in /proc for a task before it execs a suid executable.
89 */
90
91 struct pid_entry {
92 char *name;
93 int len;
94 mode_t mode;
95 const struct inode_operations *iop;
96 const struct file_operations *fop;
97 union proc_op op;
98 };
99
100 #define NOD(NAME, MODE, IOP, FOP, OP) { \
101 .name = (NAME), \
102 .len = sizeof(NAME) - 1, \
103 .mode = MODE, \
104 .iop = IOP, \
105 .fop = FOP, \
106 .op = OP, \
107 }
108
109 #define DIR(NAME, MODE, OTYPE) \
110 NOD(NAME, (S_IFDIR|(MODE)), \
111 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
112 {} )
113 #define LNK(NAME, OTYPE) \
114 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
115 &proc_pid_link_inode_operations, NULL, \
116 { .proc_get_link = &proc_##OTYPE##_link } )
117 #define REG(NAME, MODE, OTYPE) \
118 NOD(NAME, (S_IFREG|(MODE)), NULL, \
119 &proc_##OTYPE##_operations, {})
120 #define INF(NAME, MODE, OTYPE) \
121 NOD(NAME, (S_IFREG|(MODE)), \
122 NULL, &proc_info_file_operations, \
123 { .proc_read = &proc_##OTYPE } )
124 #define ONE(NAME, MODE, OTYPE) \
125 NOD(NAME, (S_IFREG|(MODE)), \
126 NULL, &proc_single_file_operations, \
127 { .proc_show = &proc_##OTYPE } )
128
129 int maps_protect;
130 EXPORT_SYMBOL(maps_protect);
131
132 static struct fs_struct *get_fs_struct(struct task_struct *task)
133 {
134 struct fs_struct *fs;
135 task_lock(task);
136 fs = task->fs;
137 if(fs)
138 atomic_inc(&fs->count);
139 task_unlock(task);
140 return fs;
141 }
142
143 static int get_nr_threads(struct task_struct *tsk)
144 {
145 /* Must be called with the rcu_read_lock held */
146 unsigned long flags;
147 int count = 0;
148
149 if (lock_task_sighand(tsk, &flags)) {
150 count = atomic_read(&tsk->signal->count);
151 unlock_task_sighand(tsk, &flags);
152 }
153 return count;
154 }
155
156 static int proc_cwd_link(struct inode *inode, struct path *path)
157 {
158 struct task_struct *task = get_proc_task(inode);
159 struct fs_struct *fs = NULL;
160 int result = -ENOENT;
161
162 if (task) {
163 fs = get_fs_struct(task);
164 put_task_struct(task);
165 }
166 if (fs) {
167 read_lock(&fs->lock);
168 *path = fs->pwd;
169 path_get(&fs->pwd);
170 read_unlock(&fs->lock);
171 result = 0;
172 put_fs_struct(fs);
173 }
174 return result;
175 }
176
177 static int proc_root_link(struct inode *inode, struct path *path)
178 {
179 struct task_struct *task = get_proc_task(inode);
180 struct fs_struct *fs = NULL;
181 int result = -ENOENT;
182
183 if (task) {
184 fs = get_fs_struct(task);
185 put_task_struct(task);
186 }
187 if (fs) {
188 read_lock(&fs->lock);
189 *path = fs->root;
190 path_get(&fs->root);
191 read_unlock(&fs->lock);
192 result = 0;
193 put_fs_struct(fs);
194 }
195 return result;
196 }
197
198 #define MAY_PTRACE(task) \
199 (task == current || \
200 (task->parent == current && \
201 (task->ptrace & PT_PTRACED) && \
202 (task_is_stopped_or_traced(task)) && \
203 security_ptrace(current,task) == 0))
204
205 struct mm_struct *mm_for_maps(struct task_struct *task)
206 {
207 struct mm_struct *mm = get_task_mm(task);
208 if (!mm)
209 return NULL;
210 down_read(&mm->mmap_sem);
211 task_lock(task);
212 if (task->mm != mm)
213 goto out;
214 if (task->mm != current->mm && __ptrace_may_attach(task) < 0)
215 goto out;
216 task_unlock(task);
217 return mm;
218 out:
219 task_unlock(task);
220 up_read(&mm->mmap_sem);
221 mmput(mm);
222 return NULL;
223 }
224
225 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
226 {
227 int res = 0;
228 unsigned int len;
229 struct mm_struct *mm = get_task_mm(task);
230 if (!mm)
231 goto out;
232 if (!mm->arg_end)
233 goto out_mm; /* Shh! No looking before we're done */
234
235 len = mm->arg_end - mm->arg_start;
236
237 if (len > PAGE_SIZE)
238 len = PAGE_SIZE;
239
240 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
241
242 // If the nul at the end of args has been overwritten, then
243 // assume application is using setproctitle(3).
244 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
245 len = strnlen(buffer, res);
246 if (len < res) {
247 res = len;
248 } else {
249 len = mm->env_end - mm->env_start;
250 if (len > PAGE_SIZE - res)
251 len = PAGE_SIZE - res;
252 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
253 res = strnlen(buffer, res);
254 }
255 }
256 out_mm:
257 mmput(mm);
258 out:
259 return res;
260 }
261
262 static int proc_pid_auxv(struct task_struct *task, char *buffer)
263 {
264 int res = 0;
265 struct mm_struct *mm = get_task_mm(task);
266 if (mm) {
267 unsigned int nwords = 0;
268 do
269 nwords += 2;
270 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
271 res = nwords * sizeof(mm->saved_auxv[0]);
272 if (res > PAGE_SIZE)
273 res = PAGE_SIZE;
274 memcpy(buffer, mm->saved_auxv, res);
275 mmput(mm);
276 }
277 return res;
278 }
279
280
281 #ifdef CONFIG_KALLSYMS
282 /*
283 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
284 * Returns the resolved symbol. If that fails, simply return the address.
285 */
286 static int proc_pid_wchan(struct task_struct *task, char *buffer)
287 {
288 unsigned long wchan;
289 char symname[KSYM_NAME_LEN];
290
291 wchan = get_wchan(task);
292
293 if (lookup_symbol_name(wchan, symname) < 0)
294 return sprintf(buffer, "%lu", wchan);
295 else
296 return sprintf(buffer, "%s", symname);
297 }
298 #endif /* CONFIG_KALLSYMS */
299
300 #ifdef CONFIG_SCHEDSTATS
301 /*
302 * Provides /proc/PID/schedstat
303 */
304 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
305 {
306 return sprintf(buffer, "%llu %llu %lu\n",
307 task->sched_info.cpu_time,
308 task->sched_info.run_delay,
309 task->sched_info.pcount);
310 }
311 #endif
312
313 #ifdef CONFIG_LATENCYTOP
314 static int lstats_show_proc(struct seq_file *m, void *v)
315 {
316 int i;
317 struct task_struct *task = m->private;
318 seq_puts(m, "Latency Top version : v0.1\n");
319
320 for (i = 0; i < 32; i++) {
321 if (task->latency_record[i].backtrace[0]) {
322 int q;
323 seq_printf(m, "%i %li %li ",
324 task->latency_record[i].count,
325 task->latency_record[i].time,
326 task->latency_record[i].max);
327 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
328 char sym[KSYM_NAME_LEN];
329 char *c;
330 if (!task->latency_record[i].backtrace[q])
331 break;
332 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
333 break;
334 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
335 c = strchr(sym, '+');
336 if (c)
337 *c = 0;
338 seq_printf(m, "%s ", sym);
339 }
340 seq_printf(m, "\n");
341 }
342
343 }
344 return 0;
345 }
346
347 static int lstats_open(struct inode *inode, struct file *file)
348 {
349 int ret;
350 struct seq_file *m;
351 struct task_struct *task = get_proc_task(inode);
352
353 ret = single_open(file, lstats_show_proc, NULL);
354 if (!ret) {
355 m = file->private_data;
356 m->private = task;
357 }
358 return ret;
359 }
360
361 static ssize_t lstats_write(struct file *file, const char __user *buf,
362 size_t count, loff_t *offs)
363 {
364 struct seq_file *m;
365 struct task_struct *task;
366
367 m = file->private_data;
368 task = m->private;
369 clear_all_latency_tracing(task);
370
371 return count;
372 }
373
374 static const struct file_operations proc_lstats_operations = {
375 .open = lstats_open,
376 .read = seq_read,
377 .write = lstats_write,
378 .llseek = seq_lseek,
379 .release = single_release,
380 };
381
382 #endif
383
384 /* The badness from the OOM killer */
385 unsigned long badness(struct task_struct *p, unsigned long uptime);
386 static int proc_oom_score(struct task_struct *task, char *buffer)
387 {
388 unsigned long points;
389 struct timespec uptime;
390
391 do_posix_clock_monotonic_gettime(&uptime);
392 read_lock(&tasklist_lock);
393 points = badness(task, uptime.tv_sec);
394 read_unlock(&tasklist_lock);
395 return sprintf(buffer, "%lu\n", points);
396 }
397
398 struct limit_names {
399 char *name;
400 char *unit;
401 };
402
403 static const struct limit_names lnames[RLIM_NLIMITS] = {
404 [RLIMIT_CPU] = {"Max cpu time", "ms"},
405 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
406 [RLIMIT_DATA] = {"Max data size", "bytes"},
407 [RLIMIT_STACK] = {"Max stack size", "bytes"},
408 [RLIMIT_CORE] = {"Max core file size", "bytes"},
409 [RLIMIT_RSS] = {"Max resident set", "bytes"},
410 [RLIMIT_NPROC] = {"Max processes", "processes"},
411 [RLIMIT_NOFILE] = {"Max open files", "files"},
412 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
413 [RLIMIT_AS] = {"Max address space", "bytes"},
414 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
415 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
416 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
417 [RLIMIT_NICE] = {"Max nice priority", NULL},
418 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
419 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
420 };
421
422 /* Display limits for a process */
423 static int proc_pid_limits(struct task_struct *task, char *buffer)
424 {
425 unsigned int i;
426 int count = 0;
427 unsigned long flags;
428 char *bufptr = buffer;
429
430 struct rlimit rlim[RLIM_NLIMITS];
431
432 rcu_read_lock();
433 if (!lock_task_sighand(task,&flags)) {
434 rcu_read_unlock();
435 return 0;
436 }
437 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
438 unlock_task_sighand(task, &flags);
439 rcu_read_unlock();
440
441 /*
442 * print the file header
443 */
444 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
445 "Limit", "Soft Limit", "Hard Limit", "Units");
446
447 for (i = 0; i < RLIM_NLIMITS; i++) {
448 if (rlim[i].rlim_cur == RLIM_INFINITY)
449 count += sprintf(&bufptr[count], "%-25s %-20s ",
450 lnames[i].name, "unlimited");
451 else
452 count += sprintf(&bufptr[count], "%-25s %-20lu ",
453 lnames[i].name, rlim[i].rlim_cur);
454
455 if (rlim[i].rlim_max == RLIM_INFINITY)
456 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
457 else
458 count += sprintf(&bufptr[count], "%-20lu ",
459 rlim[i].rlim_max);
460
461 if (lnames[i].unit)
462 count += sprintf(&bufptr[count], "%-10s\n",
463 lnames[i].unit);
464 else
465 count += sprintf(&bufptr[count], "\n");
466 }
467
468 return count;
469 }
470
471 /************************************************************************/
472 /* Here the fs part begins */
473 /************************************************************************/
474
475 /* permission checks */
476 static int proc_fd_access_allowed(struct inode *inode)
477 {
478 struct task_struct *task;
479 int allowed = 0;
480 /* Allow access to a task's file descriptors if it is us or we
481 * may use ptrace attach to the process and find out that
482 * information.
483 */
484 task = get_proc_task(inode);
485 if (task) {
486 allowed = ptrace_may_attach(task);
487 put_task_struct(task);
488 }
489 return allowed;
490 }
491
492 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
493 {
494 int error;
495 struct inode *inode = dentry->d_inode;
496
497 if (attr->ia_valid & ATTR_MODE)
498 return -EPERM;
499
500 error = inode_change_ok(inode, attr);
501 if (!error)
502 error = inode_setattr(inode, attr);
503 return error;
504 }
505
506 static const struct inode_operations proc_def_inode_operations = {
507 .setattr = proc_setattr,
508 };
509
510 extern const struct seq_operations mounts_op;
511 struct proc_mounts {
512 struct seq_file m;
513 int event;
514 };
515
516 static int mounts_open(struct inode *inode, struct file *file)
517 {
518 struct task_struct *task = get_proc_task(inode);
519 struct nsproxy *nsp;
520 struct mnt_namespace *ns = NULL;
521 struct proc_mounts *p;
522 int ret = -EINVAL;
523
524 if (task) {
525 rcu_read_lock();
526 nsp = task_nsproxy(task);
527 if (nsp) {
528 ns = nsp->mnt_ns;
529 if (ns)
530 get_mnt_ns(ns);
531 }
532 rcu_read_unlock();
533
534 put_task_struct(task);
535 }
536
537 if (ns) {
538 ret = -ENOMEM;
539 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
540 if (p) {
541 file->private_data = &p->m;
542 ret = seq_open(file, &mounts_op);
543 if (!ret) {
544 p->m.private = ns;
545 p->event = ns->event;
546 return 0;
547 }
548 kfree(p);
549 }
550 put_mnt_ns(ns);
551 }
552 return ret;
553 }
554
555 static int mounts_release(struct inode *inode, struct file *file)
556 {
557 struct seq_file *m = file->private_data;
558 struct mnt_namespace *ns = m->private;
559 put_mnt_ns(ns);
560 return seq_release(inode, file);
561 }
562
563 static unsigned mounts_poll(struct file *file, poll_table *wait)
564 {
565 struct proc_mounts *p = file->private_data;
566 struct mnt_namespace *ns = p->m.private;
567 unsigned res = 0;
568
569 poll_wait(file, &ns->poll, wait);
570
571 spin_lock(&vfsmount_lock);
572 if (p->event != ns->event) {
573 p->event = ns->event;
574 res = POLLERR;
575 }
576 spin_unlock(&vfsmount_lock);
577
578 return res;
579 }
580
581 static const struct file_operations proc_mounts_operations = {
582 .open = mounts_open,
583 .read = seq_read,
584 .llseek = seq_lseek,
585 .release = mounts_release,
586 .poll = mounts_poll,
587 };
588
589 extern const struct seq_operations mountstats_op;
590 static int mountstats_open(struct inode *inode, struct file *file)
591 {
592 int ret = seq_open(file, &mountstats_op);
593
594 if (!ret) {
595 struct seq_file *m = file->private_data;
596 struct nsproxy *nsp;
597 struct mnt_namespace *mnt_ns = NULL;
598 struct task_struct *task = get_proc_task(inode);
599
600 if (task) {
601 rcu_read_lock();
602 nsp = task_nsproxy(task);
603 if (nsp) {
604 mnt_ns = nsp->mnt_ns;
605 if (mnt_ns)
606 get_mnt_ns(mnt_ns);
607 }
608 rcu_read_unlock();
609
610 put_task_struct(task);
611 }
612
613 if (mnt_ns)
614 m->private = mnt_ns;
615 else {
616 seq_release(inode, file);
617 ret = -EINVAL;
618 }
619 }
620 return ret;
621 }
622
623 static const struct file_operations proc_mountstats_operations = {
624 .open = mountstats_open,
625 .read = seq_read,
626 .llseek = seq_lseek,
627 .release = mounts_release,
628 };
629
630 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
631
632 static ssize_t proc_info_read(struct file * file, char __user * buf,
633 size_t count, loff_t *ppos)
634 {
635 struct inode * inode = file->f_path.dentry->d_inode;
636 unsigned long page;
637 ssize_t length;
638 struct task_struct *task = get_proc_task(inode);
639
640 length = -ESRCH;
641 if (!task)
642 goto out_no_task;
643
644 if (count > PROC_BLOCK_SIZE)
645 count = PROC_BLOCK_SIZE;
646
647 length = -ENOMEM;
648 if (!(page = __get_free_page(GFP_TEMPORARY)))
649 goto out;
650
651 length = PROC_I(inode)->op.proc_read(task, (char*)page);
652
653 if (length >= 0)
654 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
655 free_page(page);
656 out:
657 put_task_struct(task);
658 out_no_task:
659 return length;
660 }
661
662 static const struct file_operations proc_info_file_operations = {
663 .read = proc_info_read,
664 };
665
666 static int proc_single_show(struct seq_file *m, void *v)
667 {
668 struct inode *inode = m->private;
669 struct pid_namespace *ns;
670 struct pid *pid;
671 struct task_struct *task;
672 int ret;
673
674 ns = inode->i_sb->s_fs_info;
675 pid = proc_pid(inode);
676 task = get_pid_task(pid, PIDTYPE_PID);
677 if (!task)
678 return -ESRCH;
679
680 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
681
682 put_task_struct(task);
683 return ret;
684 }
685
686 static int proc_single_open(struct inode *inode, struct file *filp)
687 {
688 int ret;
689 ret = single_open(filp, proc_single_show, NULL);
690 if (!ret) {
691 struct seq_file *m = filp->private_data;
692
693 m->private = inode;
694 }
695 return ret;
696 }
697
698 static const struct file_operations proc_single_file_operations = {
699 .open = proc_single_open,
700 .read = seq_read,
701 .llseek = seq_lseek,
702 .release = single_release,
703 };
704
705 static int mem_open(struct inode* inode, struct file* file)
706 {
707 file->private_data = (void*)((long)current->self_exec_id);
708 return 0;
709 }
710
711 static ssize_t mem_read(struct file * file, char __user * buf,
712 size_t count, loff_t *ppos)
713 {
714 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
715 char *page;
716 unsigned long src = *ppos;
717 int ret = -ESRCH;
718 struct mm_struct *mm;
719
720 if (!task)
721 goto out_no_task;
722
723 if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
724 goto out;
725
726 ret = -ENOMEM;
727 page = (char *)__get_free_page(GFP_TEMPORARY);
728 if (!page)
729 goto out;
730
731 ret = 0;
732
733 mm = get_task_mm(task);
734 if (!mm)
735 goto out_free;
736
737 ret = -EIO;
738
739 if (file->private_data != (void*)((long)current->self_exec_id))
740 goto out_put;
741
742 ret = 0;
743
744 while (count > 0) {
745 int this_len, retval;
746
747 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
748 retval = access_process_vm(task, src, page, this_len, 0);
749 if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
750 if (!ret)
751 ret = -EIO;
752 break;
753 }
754
755 if (copy_to_user(buf, page, retval)) {
756 ret = -EFAULT;
757 break;
758 }
759
760 ret += retval;
761 src += retval;
762 buf += retval;
763 count -= retval;
764 }
765 *ppos = src;
766
767 out_put:
768 mmput(mm);
769 out_free:
770 free_page((unsigned long) page);
771 out:
772 put_task_struct(task);
773 out_no_task:
774 return ret;
775 }
776
777 #define mem_write NULL
778
779 #ifndef mem_write
780 /* This is a security hazard */
781 static ssize_t mem_write(struct file * file, const char __user *buf,
782 size_t count, loff_t *ppos)
783 {
784 int copied;
785 char *page;
786 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
787 unsigned long dst = *ppos;
788
789 copied = -ESRCH;
790 if (!task)
791 goto out_no_task;
792
793 if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
794 goto out;
795
796 copied = -ENOMEM;
797 page = (char *)__get_free_page(GFP_TEMPORARY);
798 if (!page)
799 goto out;
800
801 copied = 0;
802 while (count > 0) {
803 int this_len, retval;
804
805 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
806 if (copy_from_user(page, buf, this_len)) {
807 copied = -EFAULT;
808 break;
809 }
810 retval = access_process_vm(task, dst, page, this_len, 1);
811 if (!retval) {
812 if (!copied)
813 copied = -EIO;
814 break;
815 }
816 copied += retval;
817 buf += retval;
818 dst += retval;
819 count -= retval;
820 }
821 *ppos = dst;
822 free_page((unsigned long) page);
823 out:
824 put_task_struct(task);
825 out_no_task:
826 return copied;
827 }
828 #endif
829
830 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
831 {
832 switch (orig) {
833 case 0:
834 file->f_pos = offset;
835 break;
836 case 1:
837 file->f_pos += offset;
838 break;
839 default:
840 return -EINVAL;
841 }
842 force_successful_syscall_return();
843 return file->f_pos;
844 }
845
846 static const struct file_operations proc_mem_operations = {
847 .llseek = mem_lseek,
848 .read = mem_read,
849 .write = mem_write,
850 .open = mem_open,
851 };
852
853 static ssize_t environ_read(struct file *file, char __user *buf,
854 size_t count, loff_t *ppos)
855 {
856 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
857 char *page;
858 unsigned long src = *ppos;
859 int ret = -ESRCH;
860 struct mm_struct *mm;
861
862 if (!task)
863 goto out_no_task;
864
865 if (!ptrace_may_attach(task))
866 goto out;
867
868 ret = -ENOMEM;
869 page = (char *)__get_free_page(GFP_TEMPORARY);
870 if (!page)
871 goto out;
872
873 ret = 0;
874
875 mm = get_task_mm(task);
876 if (!mm)
877 goto out_free;
878
879 while (count > 0) {
880 int this_len, retval, max_len;
881
882 this_len = mm->env_end - (mm->env_start + src);
883
884 if (this_len <= 0)
885 break;
886
887 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
888 this_len = (this_len > max_len) ? max_len : this_len;
889
890 retval = access_process_vm(task, (mm->env_start + src),
891 page, this_len, 0);
892
893 if (retval <= 0) {
894 ret = retval;
895 break;
896 }
897
898 if (copy_to_user(buf, page, retval)) {
899 ret = -EFAULT;
900 break;
901 }
902
903 ret += retval;
904 src += retval;
905 buf += retval;
906 count -= retval;
907 }
908 *ppos = src;
909
910 mmput(mm);
911 out_free:
912 free_page((unsigned long) page);
913 out:
914 put_task_struct(task);
915 out_no_task:
916 return ret;
917 }
918
919 static const struct file_operations proc_environ_operations = {
920 .read = environ_read,
921 };
922
923 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
924 size_t count, loff_t *ppos)
925 {
926 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
927 char buffer[PROC_NUMBUF];
928 size_t len;
929 int oom_adjust;
930
931 if (!task)
932 return -ESRCH;
933 oom_adjust = task->oomkilladj;
934 put_task_struct(task);
935
936 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
937
938 return simple_read_from_buffer(buf, count, ppos, buffer, len);
939 }
940
941 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
942 size_t count, loff_t *ppos)
943 {
944 struct task_struct *task;
945 char buffer[PROC_NUMBUF], *end;
946 int oom_adjust;
947
948 memset(buffer, 0, sizeof(buffer));
949 if (count > sizeof(buffer) - 1)
950 count = sizeof(buffer) - 1;
951 if (copy_from_user(buffer, buf, count))
952 return -EFAULT;
953 oom_adjust = simple_strtol(buffer, &end, 0);
954 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
955 oom_adjust != OOM_DISABLE)
956 return -EINVAL;
957 if (*end == '\n')
958 end++;
959 task = get_proc_task(file->f_path.dentry->d_inode);
960 if (!task)
961 return -ESRCH;
962 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
963 put_task_struct(task);
964 return -EACCES;
965 }
966 task->oomkilladj = oom_adjust;
967 put_task_struct(task);
968 if (end - buffer == 0)
969 return -EIO;
970 return end - buffer;
971 }
972
973 static const struct file_operations proc_oom_adjust_operations = {
974 .read = oom_adjust_read,
975 .write = oom_adjust_write,
976 };
977
978 #ifdef CONFIG_AUDITSYSCALL
979 #define TMPBUFLEN 21
980 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
981 size_t count, loff_t *ppos)
982 {
983 struct inode * inode = file->f_path.dentry->d_inode;
984 struct task_struct *task = get_proc_task(inode);
985 ssize_t length;
986 char tmpbuf[TMPBUFLEN];
987
988 if (!task)
989 return -ESRCH;
990 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
991 audit_get_loginuid(task));
992 put_task_struct(task);
993 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
994 }
995
996 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
997 size_t count, loff_t *ppos)
998 {
999 struct inode * inode = file->f_path.dentry->d_inode;
1000 char *page, *tmp;
1001 ssize_t length;
1002 uid_t loginuid;
1003
1004 if (!capable(CAP_AUDIT_CONTROL))
1005 return -EPERM;
1006
1007 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1008 return -EPERM;
1009
1010 if (count >= PAGE_SIZE)
1011 count = PAGE_SIZE - 1;
1012
1013 if (*ppos != 0) {
1014 /* No partial writes. */
1015 return -EINVAL;
1016 }
1017 page = (char*)__get_free_page(GFP_TEMPORARY);
1018 if (!page)
1019 return -ENOMEM;
1020 length = -EFAULT;
1021 if (copy_from_user(page, buf, count))
1022 goto out_free_page;
1023
1024 page[count] = '\0';
1025 loginuid = simple_strtoul(page, &tmp, 10);
1026 if (tmp == page) {
1027 length = -EINVAL;
1028 goto out_free_page;
1029
1030 }
1031 length = audit_set_loginuid(current, loginuid);
1032 if (likely(length == 0))
1033 length = count;
1034
1035 out_free_page:
1036 free_page((unsigned long) page);
1037 return length;
1038 }
1039
1040 static const struct file_operations proc_loginuid_operations = {
1041 .read = proc_loginuid_read,
1042 .write = proc_loginuid_write,
1043 };
1044 #endif
1045
1046 #ifdef CONFIG_FAULT_INJECTION
1047 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1048 size_t count, loff_t *ppos)
1049 {
1050 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1051 char buffer[PROC_NUMBUF];
1052 size_t len;
1053 int make_it_fail;
1054
1055 if (!task)
1056 return -ESRCH;
1057 make_it_fail = task->make_it_fail;
1058 put_task_struct(task);
1059
1060 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1061
1062 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1063 }
1064
1065 static ssize_t proc_fault_inject_write(struct file * file,
1066 const char __user * buf, size_t count, loff_t *ppos)
1067 {
1068 struct task_struct *task;
1069 char buffer[PROC_NUMBUF], *end;
1070 int make_it_fail;
1071
1072 if (!capable(CAP_SYS_RESOURCE))
1073 return -EPERM;
1074 memset(buffer, 0, sizeof(buffer));
1075 if (count > sizeof(buffer) - 1)
1076 count = sizeof(buffer) - 1;
1077 if (copy_from_user(buffer, buf, count))
1078 return -EFAULT;
1079 make_it_fail = simple_strtol(buffer, &end, 0);
1080 if (*end == '\n')
1081 end++;
1082 task = get_proc_task(file->f_dentry->d_inode);
1083 if (!task)
1084 return -ESRCH;
1085 task->make_it_fail = make_it_fail;
1086 put_task_struct(task);
1087 if (end - buffer == 0)
1088 return -EIO;
1089 return end - buffer;
1090 }
1091
1092 static const struct file_operations proc_fault_inject_operations = {
1093 .read = proc_fault_inject_read,
1094 .write = proc_fault_inject_write,
1095 };
1096 #endif
1097
1098
1099 #ifdef CONFIG_SCHED_DEBUG
1100 /*
1101 * Print out various scheduling related per-task fields:
1102 */
1103 static int sched_show(struct seq_file *m, void *v)
1104 {
1105 struct inode *inode = m->private;
1106 struct task_struct *p;
1107
1108 WARN_ON(!inode);
1109
1110 p = get_proc_task(inode);
1111 if (!p)
1112 return -ESRCH;
1113 proc_sched_show_task(p, m);
1114
1115 put_task_struct(p);
1116
1117 return 0;
1118 }
1119
1120 static ssize_t
1121 sched_write(struct file *file, const char __user *buf,
1122 size_t count, loff_t *offset)
1123 {
1124 struct inode *inode = file->f_path.dentry->d_inode;
1125 struct task_struct *p;
1126
1127 WARN_ON(!inode);
1128
1129 p = get_proc_task(inode);
1130 if (!p)
1131 return -ESRCH;
1132 proc_sched_set_task(p);
1133
1134 put_task_struct(p);
1135
1136 return count;
1137 }
1138
1139 static int sched_open(struct inode *inode, struct file *filp)
1140 {
1141 int ret;
1142
1143 ret = single_open(filp, sched_show, NULL);
1144 if (!ret) {
1145 struct seq_file *m = filp->private_data;
1146
1147 m->private = inode;
1148 }
1149 return ret;
1150 }
1151
1152 static const struct file_operations proc_pid_sched_operations = {
1153 .open = sched_open,
1154 .read = seq_read,
1155 .write = sched_write,
1156 .llseek = seq_lseek,
1157 .release = single_release,
1158 };
1159
1160 #endif
1161
1162 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1163 {
1164 struct inode *inode = dentry->d_inode;
1165 int error = -EACCES;
1166
1167 /* We don't need a base pointer in the /proc filesystem */
1168 path_put(&nd->path);
1169
1170 /* Are we allowed to snoop on the tasks file descriptors? */
1171 if (!proc_fd_access_allowed(inode))
1172 goto out;
1173
1174 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1175 nd->last_type = LAST_BIND;
1176 out:
1177 return ERR_PTR(error);
1178 }
1179
1180 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1181 {
1182 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1183 char *pathname;
1184 int len;
1185
1186 if (!tmp)
1187 return -ENOMEM;
1188
1189 pathname = d_path(path, tmp, PAGE_SIZE);
1190 len = PTR_ERR(pathname);
1191 if (IS_ERR(pathname))
1192 goto out;
1193 len = tmp + PAGE_SIZE - 1 - pathname;
1194
1195 if (len > buflen)
1196 len = buflen;
1197 if (copy_to_user(buffer, pathname, len))
1198 len = -EFAULT;
1199 out:
1200 free_page((unsigned long)tmp);
1201 return len;
1202 }
1203
1204 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1205 {
1206 int error = -EACCES;
1207 struct inode *inode = dentry->d_inode;
1208 struct path path;
1209
1210 /* Are we allowed to snoop on the tasks file descriptors? */
1211 if (!proc_fd_access_allowed(inode))
1212 goto out;
1213
1214 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1215 if (error)
1216 goto out;
1217
1218 error = do_proc_readlink(&path, buffer, buflen);
1219 path_put(&path);
1220 out:
1221 return error;
1222 }
1223
1224 static const struct inode_operations proc_pid_link_inode_operations = {
1225 .readlink = proc_pid_readlink,
1226 .follow_link = proc_pid_follow_link,
1227 .setattr = proc_setattr,
1228 };
1229
1230
1231 /* building an inode */
1232
1233 static int task_dumpable(struct task_struct *task)
1234 {
1235 int dumpable = 0;
1236 struct mm_struct *mm;
1237
1238 task_lock(task);
1239 mm = task->mm;
1240 if (mm)
1241 dumpable = get_dumpable(mm);
1242 task_unlock(task);
1243 if(dumpable == 1)
1244 return 1;
1245 return 0;
1246 }
1247
1248
1249 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1250 {
1251 struct inode * inode;
1252 struct proc_inode *ei;
1253
1254 /* We need a new inode */
1255
1256 inode = new_inode(sb);
1257 if (!inode)
1258 goto out;
1259
1260 /* Common stuff */
1261 ei = PROC_I(inode);
1262 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1263 inode->i_op = &proc_def_inode_operations;
1264
1265 /*
1266 * grab the reference to task.
1267 */
1268 ei->pid = get_task_pid(task, PIDTYPE_PID);
1269 if (!ei->pid)
1270 goto out_unlock;
1271
1272 inode->i_uid = 0;
1273 inode->i_gid = 0;
1274 if (task_dumpable(task)) {
1275 inode->i_uid = task->euid;
1276 inode->i_gid = task->egid;
1277 }
1278 security_task_to_inode(task, inode);
1279
1280 out:
1281 return inode;
1282
1283 out_unlock:
1284 iput(inode);
1285 return NULL;
1286 }
1287
1288 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1289 {
1290 struct inode *inode = dentry->d_inode;
1291 struct task_struct *task;
1292 generic_fillattr(inode, stat);
1293
1294 rcu_read_lock();
1295 stat->uid = 0;
1296 stat->gid = 0;
1297 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1298 if (task) {
1299 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1300 task_dumpable(task)) {
1301 stat->uid = task->euid;
1302 stat->gid = task->egid;
1303 }
1304 }
1305 rcu_read_unlock();
1306 return 0;
1307 }
1308
1309 /* dentry stuff */
1310
1311 /*
1312 * Exceptional case: normally we are not allowed to unhash a busy
1313 * directory. In this case, however, we can do it - no aliasing problems
1314 * due to the way we treat inodes.
1315 *
1316 * Rewrite the inode's ownerships here because the owning task may have
1317 * performed a setuid(), etc.
1318 *
1319 * Before the /proc/pid/status file was created the only way to read
1320 * the effective uid of a /process was to stat /proc/pid. Reading
1321 * /proc/pid/status is slow enough that procps and other packages
1322 * kept stating /proc/pid. To keep the rules in /proc simple I have
1323 * made this apply to all per process world readable and executable
1324 * directories.
1325 */
1326 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1327 {
1328 struct inode *inode = dentry->d_inode;
1329 struct task_struct *task = get_proc_task(inode);
1330 if (task) {
1331 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1332 task_dumpable(task)) {
1333 inode->i_uid = task->euid;
1334 inode->i_gid = task->egid;
1335 } else {
1336 inode->i_uid = 0;
1337 inode->i_gid = 0;
1338 }
1339 inode->i_mode &= ~(S_ISUID | S_ISGID);
1340 security_task_to_inode(task, inode);
1341 put_task_struct(task);
1342 return 1;
1343 }
1344 d_drop(dentry);
1345 return 0;
1346 }
1347
1348 static int pid_delete_dentry(struct dentry * dentry)
1349 {
1350 /* Is the task we represent dead?
1351 * If so, then don't put the dentry on the lru list,
1352 * kill it immediately.
1353 */
1354 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1355 }
1356
1357 static struct dentry_operations pid_dentry_operations =
1358 {
1359 .d_revalidate = pid_revalidate,
1360 .d_delete = pid_delete_dentry,
1361 };
1362
1363 /* Lookups */
1364
1365 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1366 struct task_struct *, const void *);
1367
1368 /*
1369 * Fill a directory entry.
1370 *
1371 * If possible create the dcache entry and derive our inode number and
1372 * file type from dcache entry.
1373 *
1374 * Since all of the proc inode numbers are dynamically generated, the inode
1375 * numbers do not exist until the inode is cache. This means creating the
1376 * the dcache entry in readdir is necessary to keep the inode numbers
1377 * reported by readdir in sync with the inode numbers reported
1378 * by stat.
1379 */
1380 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1381 char *name, int len,
1382 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1383 {
1384 struct dentry *child, *dir = filp->f_path.dentry;
1385 struct inode *inode;
1386 struct qstr qname;
1387 ino_t ino = 0;
1388 unsigned type = DT_UNKNOWN;
1389
1390 qname.name = name;
1391 qname.len = len;
1392 qname.hash = full_name_hash(name, len);
1393
1394 child = d_lookup(dir, &qname);
1395 if (!child) {
1396 struct dentry *new;
1397 new = d_alloc(dir, &qname);
1398 if (new) {
1399 child = instantiate(dir->d_inode, new, task, ptr);
1400 if (child)
1401 dput(new);
1402 else
1403 child = new;
1404 }
1405 }
1406 if (!child || IS_ERR(child) || !child->d_inode)
1407 goto end_instantiate;
1408 inode = child->d_inode;
1409 if (inode) {
1410 ino = inode->i_ino;
1411 type = inode->i_mode >> 12;
1412 }
1413 dput(child);
1414 end_instantiate:
1415 if (!ino)
1416 ino = find_inode_number(dir, &qname);
1417 if (!ino)
1418 ino = 1;
1419 return filldir(dirent, name, len, filp->f_pos, ino, type);
1420 }
1421
1422 static unsigned name_to_int(struct dentry *dentry)
1423 {
1424 const char *name = dentry->d_name.name;
1425 int len = dentry->d_name.len;
1426 unsigned n = 0;
1427
1428 if (len > 1 && *name == '0')
1429 goto out;
1430 while (len-- > 0) {
1431 unsigned c = *name++ - '0';
1432 if (c > 9)
1433 goto out;
1434 if (n >= (~0U-9)/10)
1435 goto out;
1436 n *= 10;
1437 n += c;
1438 }
1439 return n;
1440 out:
1441 return ~0U;
1442 }
1443
1444 #define PROC_FDINFO_MAX 64
1445
1446 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1447 {
1448 struct task_struct *task = get_proc_task(inode);
1449 struct files_struct *files = NULL;
1450 struct file *file;
1451 int fd = proc_fd(inode);
1452
1453 if (task) {
1454 files = get_files_struct(task);
1455 put_task_struct(task);
1456 }
1457 if (files) {
1458 /*
1459 * We are not taking a ref to the file structure, so we must
1460 * hold ->file_lock.
1461 */
1462 spin_lock(&files->file_lock);
1463 file = fcheck_files(files, fd);
1464 if (file) {
1465 if (path) {
1466 *path = file->f_path;
1467 path_get(&file->f_path);
1468 }
1469 if (info)
1470 snprintf(info, PROC_FDINFO_MAX,
1471 "pos:\t%lli\n"
1472 "flags:\t0%o\n",
1473 (long long) file->f_pos,
1474 file->f_flags);
1475 spin_unlock(&files->file_lock);
1476 put_files_struct(files);
1477 return 0;
1478 }
1479 spin_unlock(&files->file_lock);
1480 put_files_struct(files);
1481 }
1482 return -ENOENT;
1483 }
1484
1485 static int proc_fd_link(struct inode *inode, struct path *path)
1486 {
1487 return proc_fd_info(inode, path, NULL);
1488 }
1489
1490 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1491 {
1492 struct inode *inode = dentry->d_inode;
1493 struct task_struct *task = get_proc_task(inode);
1494 int fd = proc_fd(inode);
1495 struct files_struct *files;
1496
1497 if (task) {
1498 files = get_files_struct(task);
1499 if (files) {
1500 rcu_read_lock();
1501 if (fcheck_files(files, fd)) {
1502 rcu_read_unlock();
1503 put_files_struct(files);
1504 if (task_dumpable(task)) {
1505 inode->i_uid = task->euid;
1506 inode->i_gid = task->egid;
1507 } else {
1508 inode->i_uid = 0;
1509 inode->i_gid = 0;
1510 }
1511 inode->i_mode &= ~(S_ISUID | S_ISGID);
1512 security_task_to_inode(task, inode);
1513 put_task_struct(task);
1514 return 1;
1515 }
1516 rcu_read_unlock();
1517 put_files_struct(files);
1518 }
1519 put_task_struct(task);
1520 }
1521 d_drop(dentry);
1522 return 0;
1523 }
1524
1525 static struct dentry_operations tid_fd_dentry_operations =
1526 {
1527 .d_revalidate = tid_fd_revalidate,
1528 .d_delete = pid_delete_dentry,
1529 };
1530
1531 static struct dentry *proc_fd_instantiate(struct inode *dir,
1532 struct dentry *dentry, struct task_struct *task, const void *ptr)
1533 {
1534 unsigned fd = *(const unsigned *)ptr;
1535 struct file *file;
1536 struct files_struct *files;
1537 struct inode *inode;
1538 struct proc_inode *ei;
1539 struct dentry *error = ERR_PTR(-ENOENT);
1540
1541 inode = proc_pid_make_inode(dir->i_sb, task);
1542 if (!inode)
1543 goto out;
1544 ei = PROC_I(inode);
1545 ei->fd = fd;
1546 files = get_files_struct(task);
1547 if (!files)
1548 goto out_iput;
1549 inode->i_mode = S_IFLNK;
1550
1551 /*
1552 * We are not taking a ref to the file structure, so we must
1553 * hold ->file_lock.
1554 */
1555 spin_lock(&files->file_lock);
1556 file = fcheck_files(files, fd);
1557 if (!file)
1558 goto out_unlock;
1559 if (file->f_mode & 1)
1560 inode->i_mode |= S_IRUSR | S_IXUSR;
1561 if (file->f_mode & 2)
1562 inode->i_mode |= S_IWUSR | S_IXUSR;
1563 spin_unlock(&files->file_lock);
1564 put_files_struct(files);
1565
1566 inode->i_op = &proc_pid_link_inode_operations;
1567 inode->i_size = 64;
1568 ei->op.proc_get_link = proc_fd_link;
1569 dentry->d_op = &tid_fd_dentry_operations;
1570 d_add(dentry, inode);
1571 /* Close the race of the process dying before we return the dentry */
1572 if (tid_fd_revalidate(dentry, NULL))
1573 error = NULL;
1574
1575 out:
1576 return error;
1577 out_unlock:
1578 spin_unlock(&files->file_lock);
1579 put_files_struct(files);
1580 out_iput:
1581 iput(inode);
1582 goto out;
1583 }
1584
1585 static struct dentry *proc_lookupfd_common(struct inode *dir,
1586 struct dentry *dentry,
1587 instantiate_t instantiate)
1588 {
1589 struct task_struct *task = get_proc_task(dir);
1590 unsigned fd = name_to_int(dentry);
1591 struct dentry *result = ERR_PTR(-ENOENT);
1592
1593 if (!task)
1594 goto out_no_task;
1595 if (fd == ~0U)
1596 goto out;
1597
1598 result = instantiate(dir, dentry, task, &fd);
1599 out:
1600 put_task_struct(task);
1601 out_no_task:
1602 return result;
1603 }
1604
1605 static int proc_readfd_common(struct file * filp, void * dirent,
1606 filldir_t filldir, instantiate_t instantiate)
1607 {
1608 struct dentry *dentry = filp->f_path.dentry;
1609 struct inode *inode = dentry->d_inode;
1610 struct task_struct *p = get_proc_task(inode);
1611 unsigned int fd, ino;
1612 int retval;
1613 struct files_struct * files;
1614 struct fdtable *fdt;
1615
1616 retval = -ENOENT;
1617 if (!p)
1618 goto out_no_task;
1619 retval = 0;
1620
1621 fd = filp->f_pos;
1622 switch (fd) {
1623 case 0:
1624 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1625 goto out;
1626 filp->f_pos++;
1627 case 1:
1628 ino = parent_ino(dentry);
1629 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1630 goto out;
1631 filp->f_pos++;
1632 default:
1633 files = get_files_struct(p);
1634 if (!files)
1635 goto out;
1636 rcu_read_lock();
1637 fdt = files_fdtable(files);
1638 for (fd = filp->f_pos-2;
1639 fd < fdt->max_fds;
1640 fd++, filp->f_pos++) {
1641 char name[PROC_NUMBUF];
1642 int len;
1643
1644 if (!fcheck_files(files, fd))
1645 continue;
1646 rcu_read_unlock();
1647
1648 len = snprintf(name, sizeof(name), "%d", fd);
1649 if (proc_fill_cache(filp, dirent, filldir,
1650 name, len, instantiate,
1651 p, &fd) < 0) {
1652 rcu_read_lock();
1653 break;
1654 }
1655 rcu_read_lock();
1656 }
1657 rcu_read_unlock();
1658 put_files_struct(files);
1659 }
1660 out:
1661 put_task_struct(p);
1662 out_no_task:
1663 return retval;
1664 }
1665
1666 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1667 struct nameidata *nd)
1668 {
1669 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1670 }
1671
1672 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1673 {
1674 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1675 }
1676
1677 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1678 size_t len, loff_t *ppos)
1679 {
1680 char tmp[PROC_FDINFO_MAX];
1681 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1682 if (!err)
1683 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1684 return err;
1685 }
1686
1687 static const struct file_operations proc_fdinfo_file_operations = {
1688 .open = nonseekable_open,
1689 .read = proc_fdinfo_read,
1690 };
1691
1692 static const struct file_operations proc_fd_operations = {
1693 .read = generic_read_dir,
1694 .readdir = proc_readfd,
1695 };
1696
1697 /*
1698 * /proc/pid/fd needs a special permission handler so that a process can still
1699 * access /proc/self/fd after it has executed a setuid().
1700 */
1701 static int proc_fd_permission(struct inode *inode, int mask,
1702 struct nameidata *nd)
1703 {
1704 int rv;
1705
1706 rv = generic_permission(inode, mask, NULL);
1707 if (rv == 0)
1708 return 0;
1709 if (task_pid(current) == proc_pid(inode))
1710 rv = 0;
1711 return rv;
1712 }
1713
1714 /*
1715 * proc directories can do almost nothing..
1716 */
1717 static const struct inode_operations proc_fd_inode_operations = {
1718 .lookup = proc_lookupfd,
1719 .permission = proc_fd_permission,
1720 .setattr = proc_setattr,
1721 };
1722
1723 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1724 struct dentry *dentry, struct task_struct *task, const void *ptr)
1725 {
1726 unsigned fd = *(unsigned *)ptr;
1727 struct inode *inode;
1728 struct proc_inode *ei;
1729 struct dentry *error = ERR_PTR(-ENOENT);
1730
1731 inode = proc_pid_make_inode(dir->i_sb, task);
1732 if (!inode)
1733 goto out;
1734 ei = PROC_I(inode);
1735 ei->fd = fd;
1736 inode->i_mode = S_IFREG | S_IRUSR;
1737 inode->i_fop = &proc_fdinfo_file_operations;
1738 dentry->d_op = &tid_fd_dentry_operations;
1739 d_add(dentry, inode);
1740 /* Close the race of the process dying before we return the dentry */
1741 if (tid_fd_revalidate(dentry, NULL))
1742 error = NULL;
1743
1744 out:
1745 return error;
1746 }
1747
1748 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1749 struct dentry *dentry,
1750 struct nameidata *nd)
1751 {
1752 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1753 }
1754
1755 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1756 {
1757 return proc_readfd_common(filp, dirent, filldir,
1758 proc_fdinfo_instantiate);
1759 }
1760
1761 static const struct file_operations proc_fdinfo_operations = {
1762 .read = generic_read_dir,
1763 .readdir = proc_readfdinfo,
1764 };
1765
1766 /*
1767 * proc directories can do almost nothing..
1768 */
1769 static const struct inode_operations proc_fdinfo_inode_operations = {
1770 .lookup = proc_lookupfdinfo,
1771 .setattr = proc_setattr,
1772 };
1773
1774
1775 static struct dentry *proc_pident_instantiate(struct inode *dir,
1776 struct dentry *dentry, struct task_struct *task, const void *ptr)
1777 {
1778 const struct pid_entry *p = ptr;
1779 struct inode *inode;
1780 struct proc_inode *ei;
1781 struct dentry *error = ERR_PTR(-EINVAL);
1782
1783 inode = proc_pid_make_inode(dir->i_sb, task);
1784 if (!inode)
1785 goto out;
1786
1787 ei = PROC_I(inode);
1788 inode->i_mode = p->mode;
1789 if (S_ISDIR(inode->i_mode))
1790 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1791 if (p->iop)
1792 inode->i_op = p->iop;
1793 if (p->fop)
1794 inode->i_fop = p->fop;
1795 ei->op = p->op;
1796 dentry->d_op = &pid_dentry_operations;
1797 d_add(dentry, inode);
1798 /* Close the race of the process dying before we return the dentry */
1799 if (pid_revalidate(dentry, NULL))
1800 error = NULL;
1801 out:
1802 return error;
1803 }
1804
1805 static struct dentry *proc_pident_lookup(struct inode *dir,
1806 struct dentry *dentry,
1807 const struct pid_entry *ents,
1808 unsigned int nents)
1809 {
1810 struct inode *inode;
1811 struct dentry *error;
1812 struct task_struct *task = get_proc_task(dir);
1813 const struct pid_entry *p, *last;
1814
1815 error = ERR_PTR(-ENOENT);
1816 inode = NULL;
1817
1818 if (!task)
1819 goto out_no_task;
1820
1821 /*
1822 * Yes, it does not scale. And it should not. Don't add
1823 * new entries into /proc/<tgid>/ without very good reasons.
1824 */
1825 last = &ents[nents - 1];
1826 for (p = ents; p <= last; p++) {
1827 if (p->len != dentry->d_name.len)
1828 continue;
1829 if (!memcmp(dentry->d_name.name, p->name, p->len))
1830 break;
1831 }
1832 if (p > last)
1833 goto out;
1834
1835 error = proc_pident_instantiate(dir, dentry, task, p);
1836 out:
1837 put_task_struct(task);
1838 out_no_task:
1839 return error;
1840 }
1841
1842 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1843 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1844 {
1845 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1846 proc_pident_instantiate, task, p);
1847 }
1848
1849 static int proc_pident_readdir(struct file *filp,
1850 void *dirent, filldir_t filldir,
1851 const struct pid_entry *ents, unsigned int nents)
1852 {
1853 int i;
1854 struct dentry *dentry = filp->f_path.dentry;
1855 struct inode *inode = dentry->d_inode;
1856 struct task_struct *task = get_proc_task(inode);
1857 const struct pid_entry *p, *last;
1858 ino_t ino;
1859 int ret;
1860
1861 ret = -ENOENT;
1862 if (!task)
1863 goto out_no_task;
1864
1865 ret = 0;
1866 i = filp->f_pos;
1867 switch (i) {
1868 case 0:
1869 ino = inode->i_ino;
1870 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1871 goto out;
1872 i++;
1873 filp->f_pos++;
1874 /* fall through */
1875 case 1:
1876 ino = parent_ino(dentry);
1877 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1878 goto out;
1879 i++;
1880 filp->f_pos++;
1881 /* fall through */
1882 default:
1883 i -= 2;
1884 if (i >= nents) {
1885 ret = 1;
1886 goto out;
1887 }
1888 p = ents + i;
1889 last = &ents[nents - 1];
1890 while (p <= last) {
1891 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
1892 goto out;
1893 filp->f_pos++;
1894 p++;
1895 }
1896 }
1897
1898 ret = 1;
1899 out:
1900 put_task_struct(task);
1901 out_no_task:
1902 return ret;
1903 }
1904
1905 #ifdef CONFIG_SECURITY
1906 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1907 size_t count, loff_t *ppos)
1908 {
1909 struct inode * inode = file->f_path.dentry->d_inode;
1910 char *p = NULL;
1911 ssize_t length;
1912 struct task_struct *task = get_proc_task(inode);
1913
1914 if (!task)
1915 return -ESRCH;
1916
1917 length = security_getprocattr(task,
1918 (char*)file->f_path.dentry->d_name.name,
1919 &p);
1920 put_task_struct(task);
1921 if (length > 0)
1922 length = simple_read_from_buffer(buf, count, ppos, p, length);
1923 kfree(p);
1924 return length;
1925 }
1926
1927 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1928 size_t count, loff_t *ppos)
1929 {
1930 struct inode * inode = file->f_path.dentry->d_inode;
1931 char *page;
1932 ssize_t length;
1933 struct task_struct *task = get_proc_task(inode);
1934
1935 length = -ESRCH;
1936 if (!task)
1937 goto out_no_task;
1938 if (count > PAGE_SIZE)
1939 count = PAGE_SIZE;
1940
1941 /* No partial writes. */
1942 length = -EINVAL;
1943 if (*ppos != 0)
1944 goto out;
1945
1946 length = -ENOMEM;
1947 page = (char*)__get_free_page(GFP_TEMPORARY);
1948 if (!page)
1949 goto out;
1950
1951 length = -EFAULT;
1952 if (copy_from_user(page, buf, count))
1953 goto out_free;
1954
1955 length = security_setprocattr(task,
1956 (char*)file->f_path.dentry->d_name.name,
1957 (void*)page, count);
1958 out_free:
1959 free_page((unsigned long) page);
1960 out:
1961 put_task_struct(task);
1962 out_no_task:
1963 return length;
1964 }
1965
1966 static const struct file_operations proc_pid_attr_operations = {
1967 .read = proc_pid_attr_read,
1968 .write = proc_pid_attr_write,
1969 };
1970
1971 static const struct pid_entry attr_dir_stuff[] = {
1972 REG("current", S_IRUGO|S_IWUGO, pid_attr),
1973 REG("prev", S_IRUGO, pid_attr),
1974 REG("exec", S_IRUGO|S_IWUGO, pid_attr),
1975 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr),
1976 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr),
1977 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
1978 };
1979
1980 static int proc_attr_dir_readdir(struct file * filp,
1981 void * dirent, filldir_t filldir)
1982 {
1983 return proc_pident_readdir(filp,dirent,filldir,
1984 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
1985 }
1986
1987 static const struct file_operations proc_attr_dir_operations = {
1988 .read = generic_read_dir,
1989 .readdir = proc_attr_dir_readdir,
1990 };
1991
1992 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
1993 struct dentry *dentry, struct nameidata *nd)
1994 {
1995 return proc_pident_lookup(dir, dentry,
1996 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
1997 }
1998
1999 static const struct inode_operations proc_attr_dir_inode_operations = {
2000 .lookup = proc_attr_dir_lookup,
2001 .getattr = pid_getattr,
2002 .setattr = proc_setattr,
2003 };
2004
2005 #endif
2006
2007 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2008 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2009 size_t count, loff_t *ppos)
2010 {
2011 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2012 struct mm_struct *mm;
2013 char buffer[PROC_NUMBUF];
2014 size_t len;
2015 int ret;
2016
2017 if (!task)
2018 return -ESRCH;
2019
2020 ret = 0;
2021 mm = get_task_mm(task);
2022 if (mm) {
2023 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2024 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2025 MMF_DUMP_FILTER_SHIFT));
2026 mmput(mm);
2027 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2028 }
2029
2030 put_task_struct(task);
2031
2032 return ret;
2033 }
2034
2035 static ssize_t proc_coredump_filter_write(struct file *file,
2036 const char __user *buf,
2037 size_t count,
2038 loff_t *ppos)
2039 {
2040 struct task_struct *task;
2041 struct mm_struct *mm;
2042 char buffer[PROC_NUMBUF], *end;
2043 unsigned int val;
2044 int ret;
2045 int i;
2046 unsigned long mask;
2047
2048 ret = -EFAULT;
2049 memset(buffer, 0, sizeof(buffer));
2050 if (count > sizeof(buffer) - 1)
2051 count = sizeof(buffer) - 1;
2052 if (copy_from_user(buffer, buf, count))
2053 goto out_no_task;
2054
2055 ret = -EINVAL;
2056 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2057 if (*end == '\n')
2058 end++;
2059 if (end - buffer == 0)
2060 goto out_no_task;
2061
2062 ret = -ESRCH;
2063 task = get_proc_task(file->f_dentry->d_inode);
2064 if (!task)
2065 goto out_no_task;
2066
2067 ret = end - buffer;
2068 mm = get_task_mm(task);
2069 if (!mm)
2070 goto out_no_mm;
2071
2072 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2073 if (val & mask)
2074 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2075 else
2076 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2077 }
2078
2079 mmput(mm);
2080 out_no_mm:
2081 put_task_struct(task);
2082 out_no_task:
2083 return ret;
2084 }
2085
2086 static const struct file_operations proc_coredump_filter_operations = {
2087 .read = proc_coredump_filter_read,
2088 .write = proc_coredump_filter_write,
2089 };
2090 #endif
2091
2092 /*
2093 * /proc/self:
2094 */
2095 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2096 int buflen)
2097 {
2098 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2099 pid_t tgid = task_tgid_nr_ns(current, ns);
2100 char tmp[PROC_NUMBUF];
2101 if (!tgid)
2102 return -ENOENT;
2103 sprintf(tmp, "%d", tgid);
2104 return vfs_readlink(dentry,buffer,buflen,tmp);
2105 }
2106
2107 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2108 {
2109 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2110 pid_t tgid = task_tgid_nr_ns(current, ns);
2111 char tmp[PROC_NUMBUF];
2112 if (!tgid)
2113 return ERR_PTR(-ENOENT);
2114 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2115 return ERR_PTR(vfs_follow_link(nd,tmp));
2116 }
2117
2118 static const struct inode_operations proc_self_inode_operations = {
2119 .readlink = proc_self_readlink,
2120 .follow_link = proc_self_follow_link,
2121 };
2122
2123 /*
2124 * proc base
2125 *
2126 * These are the directory entries in the root directory of /proc
2127 * that properly belong to the /proc filesystem, as they describe
2128 * describe something that is process related.
2129 */
2130 static const struct pid_entry proc_base_stuff[] = {
2131 NOD("self", S_IFLNK|S_IRWXUGO,
2132 &proc_self_inode_operations, NULL, {}),
2133 };
2134
2135 /*
2136 * Exceptional case: normally we are not allowed to unhash a busy
2137 * directory. In this case, however, we can do it - no aliasing problems
2138 * due to the way we treat inodes.
2139 */
2140 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2141 {
2142 struct inode *inode = dentry->d_inode;
2143 struct task_struct *task = get_proc_task(inode);
2144 if (task) {
2145 put_task_struct(task);
2146 return 1;
2147 }
2148 d_drop(dentry);
2149 return 0;
2150 }
2151
2152 static struct dentry_operations proc_base_dentry_operations =
2153 {
2154 .d_revalidate = proc_base_revalidate,
2155 .d_delete = pid_delete_dentry,
2156 };
2157
2158 static struct dentry *proc_base_instantiate(struct inode *dir,
2159 struct dentry *dentry, struct task_struct *task, const void *ptr)
2160 {
2161 const struct pid_entry *p = ptr;
2162 struct inode *inode;
2163 struct proc_inode *ei;
2164 struct dentry *error = ERR_PTR(-EINVAL);
2165
2166 /* Allocate the inode */
2167 error = ERR_PTR(-ENOMEM);
2168 inode = new_inode(dir->i_sb);
2169 if (!inode)
2170 goto out;
2171
2172 /* Initialize the inode */
2173 ei = PROC_I(inode);
2174 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2175
2176 /*
2177 * grab the reference to the task.
2178 */
2179 ei->pid = get_task_pid(task, PIDTYPE_PID);
2180 if (!ei->pid)
2181 goto out_iput;
2182
2183 inode->i_uid = 0;
2184 inode->i_gid = 0;
2185 inode->i_mode = p->mode;
2186 if (S_ISDIR(inode->i_mode))
2187 inode->i_nlink = 2;
2188 if (S_ISLNK(inode->i_mode))
2189 inode->i_size = 64;
2190 if (p->iop)
2191 inode->i_op = p->iop;
2192 if (p->fop)
2193 inode->i_fop = p->fop;
2194 ei->op = p->op;
2195 dentry->d_op = &proc_base_dentry_operations;
2196 d_add(dentry, inode);
2197 error = NULL;
2198 out:
2199 return error;
2200 out_iput:
2201 iput(inode);
2202 goto out;
2203 }
2204
2205 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2206 {
2207 struct dentry *error;
2208 struct task_struct *task = get_proc_task(dir);
2209 const struct pid_entry *p, *last;
2210
2211 error = ERR_PTR(-ENOENT);
2212
2213 if (!task)
2214 goto out_no_task;
2215
2216 /* Lookup the directory entry */
2217 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2218 for (p = proc_base_stuff; p <= last; p++) {
2219 if (p->len != dentry->d_name.len)
2220 continue;
2221 if (!memcmp(dentry->d_name.name, p->name, p->len))
2222 break;
2223 }
2224 if (p > last)
2225 goto out;
2226
2227 error = proc_base_instantiate(dir, dentry, task, p);
2228
2229 out:
2230 put_task_struct(task);
2231 out_no_task:
2232 return error;
2233 }
2234
2235 static int proc_base_fill_cache(struct file *filp, void *dirent,
2236 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2237 {
2238 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2239 proc_base_instantiate, task, p);
2240 }
2241
2242 #ifdef CONFIG_TASK_IO_ACCOUNTING
2243 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2244 {
2245 return sprintf(buffer,
2246 #ifdef CONFIG_TASK_XACCT
2247 "rchar: %llu\n"
2248 "wchar: %llu\n"
2249 "syscr: %llu\n"
2250 "syscw: %llu\n"
2251 #endif
2252 "read_bytes: %llu\n"
2253 "write_bytes: %llu\n"
2254 "cancelled_write_bytes: %llu\n",
2255 #ifdef CONFIG_TASK_XACCT
2256 (unsigned long long)task->rchar,
2257 (unsigned long long)task->wchar,
2258 (unsigned long long)task->syscr,
2259 (unsigned long long)task->syscw,
2260 #endif
2261 (unsigned long long)task->ioac.read_bytes,
2262 (unsigned long long)task->ioac.write_bytes,
2263 (unsigned long long)task->ioac.cancelled_write_bytes);
2264 }
2265 #endif
2266
2267 /*
2268 * Thread groups
2269 */
2270 static const struct file_operations proc_task_operations;
2271 static const struct inode_operations proc_task_inode_operations;
2272
2273 static const struct pid_entry tgid_base_stuff[] = {
2274 DIR("task", S_IRUGO|S_IXUGO, task),
2275 DIR("fd", S_IRUSR|S_IXUSR, fd),
2276 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2277 REG("environ", S_IRUSR, environ),
2278 INF("auxv", S_IRUSR, pid_auxv),
2279 ONE("status", S_IRUGO, pid_status),
2280 INF("limits", S_IRUSR, pid_limits),
2281 #ifdef CONFIG_SCHED_DEBUG
2282 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2283 #endif
2284 INF("cmdline", S_IRUGO, pid_cmdline),
2285 ONE("stat", S_IRUGO, tgid_stat),
2286 ONE("statm", S_IRUGO, pid_statm),
2287 REG("maps", S_IRUGO, maps),
2288 #ifdef CONFIG_NUMA
2289 REG("numa_maps", S_IRUGO, numa_maps),
2290 #endif
2291 REG("mem", S_IRUSR|S_IWUSR, mem),
2292 LNK("cwd", cwd),
2293 LNK("root", root),
2294 LNK("exe", exe),
2295 REG("mounts", S_IRUGO, mounts),
2296 REG("mountstats", S_IRUSR, mountstats),
2297 #ifdef CONFIG_PROC_PAGE_MONITOR
2298 REG("clear_refs", S_IWUSR, clear_refs),
2299 REG("smaps", S_IRUGO, smaps),
2300 REG("pagemap", S_IRUSR, pagemap),
2301 #endif
2302 #ifdef CONFIG_SECURITY
2303 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2304 #endif
2305 #ifdef CONFIG_KALLSYMS
2306 INF("wchan", S_IRUGO, pid_wchan),
2307 #endif
2308 #ifdef CONFIG_SCHEDSTATS
2309 INF("schedstat", S_IRUGO, pid_schedstat),
2310 #endif
2311 #ifdef CONFIG_LATENCYTOP
2312 REG("latency", S_IRUGO, lstats),
2313 #endif
2314 #ifdef CONFIG_PROC_PID_CPUSET
2315 REG("cpuset", S_IRUGO, cpuset),
2316 #endif
2317 #ifdef CONFIG_CGROUPS
2318 REG("cgroup", S_IRUGO, cgroup),
2319 #endif
2320 INF("oom_score", S_IRUGO, oom_score),
2321 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2322 #ifdef CONFIG_AUDITSYSCALL
2323 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2324 #endif
2325 #ifdef CONFIG_FAULT_INJECTION
2326 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2327 #endif
2328 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2329 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2330 #endif
2331 #ifdef CONFIG_TASK_IO_ACCOUNTING
2332 INF("io", S_IRUGO, pid_io_accounting),
2333 #endif
2334 };
2335
2336 static int proc_tgid_base_readdir(struct file * filp,
2337 void * dirent, filldir_t filldir)
2338 {
2339 return proc_pident_readdir(filp,dirent,filldir,
2340 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2341 }
2342
2343 static const struct file_operations proc_tgid_base_operations = {
2344 .read = generic_read_dir,
2345 .readdir = proc_tgid_base_readdir,
2346 };
2347
2348 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2349 return proc_pident_lookup(dir, dentry,
2350 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2351 }
2352
2353 static const struct inode_operations proc_tgid_base_inode_operations = {
2354 .lookup = proc_tgid_base_lookup,
2355 .getattr = pid_getattr,
2356 .setattr = proc_setattr,
2357 };
2358
2359 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2360 {
2361 struct dentry *dentry, *leader, *dir;
2362 char buf[PROC_NUMBUF];
2363 struct qstr name;
2364
2365 name.name = buf;
2366 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2367 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2368 if (dentry) {
2369 if (!(current->flags & PF_EXITING))
2370 shrink_dcache_parent(dentry);
2371 d_drop(dentry);
2372 dput(dentry);
2373 }
2374
2375 if (tgid == 0)
2376 goto out;
2377
2378 name.name = buf;
2379 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2380 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2381 if (!leader)
2382 goto out;
2383
2384 name.name = "task";
2385 name.len = strlen(name.name);
2386 dir = d_hash_and_lookup(leader, &name);
2387 if (!dir)
2388 goto out_put_leader;
2389
2390 name.name = buf;
2391 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2392 dentry = d_hash_and_lookup(dir, &name);
2393 if (dentry) {
2394 shrink_dcache_parent(dentry);
2395 d_drop(dentry);
2396 dput(dentry);
2397 }
2398
2399 dput(dir);
2400 out_put_leader:
2401 dput(leader);
2402 out:
2403 return;
2404 }
2405
2406 /**
2407 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2408 * @task: task that should be flushed.
2409 *
2410 * When flushing dentries from proc, one needs to flush them from global
2411 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2412 * in. This call is supposed to do all of this job.
2413 *
2414 * Looks in the dcache for
2415 * /proc/@pid
2416 * /proc/@tgid/task/@pid
2417 * if either directory is present flushes it and all of it'ts children
2418 * from the dcache.
2419 *
2420 * It is safe and reasonable to cache /proc entries for a task until
2421 * that task exits. After that they just clog up the dcache with
2422 * useless entries, possibly causing useful dcache entries to be
2423 * flushed instead. This routine is proved to flush those useless
2424 * dcache entries at process exit time.
2425 *
2426 * NOTE: This routine is just an optimization so it does not guarantee
2427 * that no dcache entries will exist at process exit time it
2428 * just makes it very unlikely that any will persist.
2429 */
2430
2431 void proc_flush_task(struct task_struct *task)
2432 {
2433 int i;
2434 struct pid *pid, *tgid = NULL;
2435 struct upid *upid;
2436
2437 pid = task_pid(task);
2438 if (thread_group_leader(task))
2439 tgid = task_tgid(task);
2440
2441 for (i = 0; i <= pid->level; i++) {
2442 upid = &pid->numbers[i];
2443 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2444 tgid ? tgid->numbers[i].nr : 0);
2445 }
2446
2447 upid = &pid->numbers[pid->level];
2448 if (upid->nr == 1)
2449 pid_ns_release_proc(upid->ns);
2450 }
2451
2452 static struct dentry *proc_pid_instantiate(struct inode *dir,
2453 struct dentry * dentry,
2454 struct task_struct *task, const void *ptr)
2455 {
2456 struct dentry *error = ERR_PTR(-ENOENT);
2457 struct inode *inode;
2458
2459 inode = proc_pid_make_inode(dir->i_sb, task);
2460 if (!inode)
2461 goto out;
2462
2463 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2464 inode->i_op = &proc_tgid_base_inode_operations;
2465 inode->i_fop = &proc_tgid_base_operations;
2466 inode->i_flags|=S_IMMUTABLE;
2467 inode->i_nlink = 5;
2468 #ifdef CONFIG_SECURITY
2469 inode->i_nlink += 1;
2470 #endif
2471
2472 dentry->d_op = &pid_dentry_operations;
2473
2474 d_add(dentry, inode);
2475 /* Close the race of the process dying before we return the dentry */
2476 if (pid_revalidate(dentry, NULL))
2477 error = NULL;
2478 out:
2479 return error;
2480 }
2481
2482 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2483 {
2484 struct dentry *result = ERR_PTR(-ENOENT);
2485 struct task_struct *task;
2486 unsigned tgid;
2487 struct pid_namespace *ns;
2488
2489 result = proc_base_lookup(dir, dentry);
2490 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2491 goto out;
2492
2493 tgid = name_to_int(dentry);
2494 if (tgid == ~0U)
2495 goto out;
2496
2497 ns = dentry->d_sb->s_fs_info;
2498 rcu_read_lock();
2499 task = find_task_by_pid_ns(tgid, ns);
2500 if (task)
2501 get_task_struct(task);
2502 rcu_read_unlock();
2503 if (!task)
2504 goto out;
2505
2506 result = proc_pid_instantiate(dir, dentry, task, NULL);
2507 put_task_struct(task);
2508 out:
2509 return result;
2510 }
2511
2512 /*
2513 * Find the first task with tgid >= tgid
2514 *
2515 */
2516 struct tgid_iter {
2517 unsigned int tgid;
2518 struct task_struct *task;
2519 };
2520 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2521 {
2522 struct pid *pid;
2523
2524 if (iter.task)
2525 put_task_struct(iter.task);
2526 rcu_read_lock();
2527 retry:
2528 iter.task = NULL;
2529 pid = find_ge_pid(iter.tgid, ns);
2530 if (pid) {
2531 iter.tgid = pid_nr_ns(pid, ns);
2532 iter.task = pid_task(pid, PIDTYPE_PID);
2533 /* What we to know is if the pid we have find is the
2534 * pid of a thread_group_leader. Testing for task
2535 * being a thread_group_leader is the obvious thing
2536 * todo but there is a window when it fails, due to
2537 * the pid transfer logic in de_thread.
2538 *
2539 * So we perform the straight forward test of seeing
2540 * if the pid we have found is the pid of a thread
2541 * group leader, and don't worry if the task we have
2542 * found doesn't happen to be a thread group leader.
2543 * As we don't care in the case of readdir.
2544 */
2545 if (!iter.task || !has_group_leader_pid(iter.task)) {
2546 iter.tgid += 1;
2547 goto retry;
2548 }
2549 get_task_struct(iter.task);
2550 }
2551 rcu_read_unlock();
2552 return iter;
2553 }
2554
2555 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2556
2557 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2558 struct tgid_iter iter)
2559 {
2560 char name[PROC_NUMBUF];
2561 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2562 return proc_fill_cache(filp, dirent, filldir, name, len,
2563 proc_pid_instantiate, iter.task, NULL);
2564 }
2565
2566 /* for the /proc/ directory itself, after non-process stuff has been done */
2567 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2568 {
2569 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2570 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2571 struct tgid_iter iter;
2572 struct pid_namespace *ns;
2573
2574 if (!reaper)
2575 goto out_no_task;
2576
2577 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2578 const struct pid_entry *p = &proc_base_stuff[nr];
2579 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2580 goto out;
2581 }
2582
2583 ns = filp->f_dentry->d_sb->s_fs_info;
2584 iter.task = NULL;
2585 iter.tgid = filp->f_pos - TGID_OFFSET;
2586 for (iter = next_tgid(ns, iter);
2587 iter.task;
2588 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2589 filp->f_pos = iter.tgid + TGID_OFFSET;
2590 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2591 put_task_struct(iter.task);
2592 goto out;
2593 }
2594 }
2595 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2596 out:
2597 put_task_struct(reaper);
2598 out_no_task:
2599 return 0;
2600 }
2601
2602 /*
2603 * Tasks
2604 */
2605 static const struct pid_entry tid_base_stuff[] = {
2606 DIR("fd", S_IRUSR|S_IXUSR, fd),
2607 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2608 REG("environ", S_IRUSR, environ),
2609 INF("auxv", S_IRUSR, pid_auxv),
2610 ONE("status", S_IRUGO, pid_status),
2611 INF("limits", S_IRUSR, pid_limits),
2612 #ifdef CONFIG_SCHED_DEBUG
2613 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2614 #endif
2615 INF("cmdline", S_IRUGO, pid_cmdline),
2616 ONE("stat", S_IRUGO, tid_stat),
2617 ONE("statm", S_IRUGO, pid_statm),
2618 REG("maps", S_IRUGO, maps),
2619 #ifdef CONFIG_NUMA
2620 REG("numa_maps", S_IRUGO, numa_maps),
2621 #endif
2622 REG("mem", S_IRUSR|S_IWUSR, mem),
2623 LNK("cwd", cwd),
2624 LNK("root", root),
2625 LNK("exe", exe),
2626 REG("mounts", S_IRUGO, mounts),
2627 #ifdef CONFIG_PROC_PAGE_MONITOR
2628 REG("clear_refs", S_IWUSR, clear_refs),
2629 REG("smaps", S_IRUGO, smaps),
2630 REG("pagemap", S_IRUSR, pagemap),
2631 #endif
2632 #ifdef CONFIG_SECURITY
2633 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2634 #endif
2635 #ifdef CONFIG_KALLSYMS
2636 INF("wchan", S_IRUGO, pid_wchan),
2637 #endif
2638 #ifdef CONFIG_SCHEDSTATS
2639 INF("schedstat", S_IRUGO, pid_schedstat),
2640 #endif
2641 #ifdef CONFIG_LATENCYTOP
2642 REG("latency", S_IRUGO, lstats),
2643 #endif
2644 #ifdef CONFIG_PROC_PID_CPUSET
2645 REG("cpuset", S_IRUGO, cpuset),
2646 #endif
2647 #ifdef CONFIG_CGROUPS
2648 REG("cgroup", S_IRUGO, cgroup),
2649 #endif
2650 INF("oom_score", S_IRUGO, oom_score),
2651 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2652 #ifdef CONFIG_AUDITSYSCALL
2653 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2654 #endif
2655 #ifdef CONFIG_FAULT_INJECTION
2656 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2657 #endif
2658 };
2659
2660 static int proc_tid_base_readdir(struct file * filp,
2661 void * dirent, filldir_t filldir)
2662 {
2663 return proc_pident_readdir(filp,dirent,filldir,
2664 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2665 }
2666
2667 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2668 return proc_pident_lookup(dir, dentry,
2669 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2670 }
2671
2672 static const struct file_operations proc_tid_base_operations = {
2673 .read = generic_read_dir,
2674 .readdir = proc_tid_base_readdir,
2675 };
2676
2677 static const struct inode_operations proc_tid_base_inode_operations = {
2678 .lookup = proc_tid_base_lookup,
2679 .getattr = pid_getattr,
2680 .setattr = proc_setattr,
2681 };
2682
2683 static struct dentry *proc_task_instantiate(struct inode *dir,
2684 struct dentry *dentry, struct task_struct *task, const void *ptr)
2685 {
2686 struct dentry *error = ERR_PTR(-ENOENT);
2687 struct inode *inode;
2688 inode = proc_pid_make_inode(dir->i_sb, task);
2689
2690 if (!inode)
2691 goto out;
2692 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2693 inode->i_op = &proc_tid_base_inode_operations;
2694 inode->i_fop = &proc_tid_base_operations;
2695 inode->i_flags|=S_IMMUTABLE;
2696 inode->i_nlink = 4;
2697 #ifdef CONFIG_SECURITY
2698 inode->i_nlink += 1;
2699 #endif
2700
2701 dentry->d_op = &pid_dentry_operations;
2702
2703 d_add(dentry, inode);
2704 /* Close the race of the process dying before we return the dentry */
2705 if (pid_revalidate(dentry, NULL))
2706 error = NULL;
2707 out:
2708 return error;
2709 }
2710
2711 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2712 {
2713 struct dentry *result = ERR_PTR(-ENOENT);
2714 struct task_struct *task;
2715 struct task_struct *leader = get_proc_task(dir);
2716 unsigned tid;
2717 struct pid_namespace *ns;
2718
2719 if (!leader)
2720 goto out_no_task;
2721
2722 tid = name_to_int(dentry);
2723 if (tid == ~0U)
2724 goto out;
2725
2726 ns = dentry->d_sb->s_fs_info;
2727 rcu_read_lock();
2728 task = find_task_by_pid_ns(tid, ns);
2729 if (task)
2730 get_task_struct(task);
2731 rcu_read_unlock();
2732 if (!task)
2733 goto out;
2734 if (!same_thread_group(leader, task))
2735 goto out_drop_task;
2736
2737 result = proc_task_instantiate(dir, dentry, task, NULL);
2738 out_drop_task:
2739 put_task_struct(task);
2740 out:
2741 put_task_struct(leader);
2742 out_no_task:
2743 return result;
2744 }
2745
2746 /*
2747 * Find the first tid of a thread group to return to user space.
2748 *
2749 * Usually this is just the thread group leader, but if the users
2750 * buffer was too small or there was a seek into the middle of the
2751 * directory we have more work todo.
2752 *
2753 * In the case of a short read we start with find_task_by_pid.
2754 *
2755 * In the case of a seek we start with the leader and walk nr
2756 * threads past it.
2757 */
2758 static struct task_struct *first_tid(struct task_struct *leader,
2759 int tid, int nr, struct pid_namespace *ns)
2760 {
2761 struct task_struct *pos;
2762
2763 rcu_read_lock();
2764 /* Attempt to start with the pid of a thread */
2765 if (tid && (nr > 0)) {
2766 pos = find_task_by_pid_ns(tid, ns);
2767 if (pos && (pos->group_leader == leader))
2768 goto found;
2769 }
2770
2771 /* If nr exceeds the number of threads there is nothing todo */
2772 pos = NULL;
2773 if (nr && nr >= get_nr_threads(leader))
2774 goto out;
2775
2776 /* If we haven't found our starting place yet start
2777 * with the leader and walk nr threads forward.
2778 */
2779 for (pos = leader; nr > 0; --nr) {
2780 pos = next_thread(pos);
2781 if (pos == leader) {
2782 pos = NULL;
2783 goto out;
2784 }
2785 }
2786 found:
2787 get_task_struct(pos);
2788 out:
2789 rcu_read_unlock();
2790 return pos;
2791 }
2792
2793 /*
2794 * Find the next thread in the thread list.
2795 * Return NULL if there is an error or no next thread.
2796 *
2797 * The reference to the input task_struct is released.
2798 */
2799 static struct task_struct *next_tid(struct task_struct *start)
2800 {
2801 struct task_struct *pos = NULL;
2802 rcu_read_lock();
2803 if (pid_alive(start)) {
2804 pos = next_thread(start);
2805 if (thread_group_leader(pos))
2806 pos = NULL;
2807 else
2808 get_task_struct(pos);
2809 }
2810 rcu_read_unlock();
2811 put_task_struct(start);
2812 return pos;
2813 }
2814
2815 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2816 struct task_struct *task, int tid)
2817 {
2818 char name[PROC_NUMBUF];
2819 int len = snprintf(name, sizeof(name), "%d", tid);
2820 return proc_fill_cache(filp, dirent, filldir, name, len,
2821 proc_task_instantiate, task, NULL);
2822 }
2823
2824 /* for the /proc/TGID/task/ directories */
2825 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2826 {
2827 struct dentry *dentry = filp->f_path.dentry;
2828 struct inode *inode = dentry->d_inode;
2829 struct task_struct *leader = NULL;
2830 struct task_struct *task;
2831 int retval = -ENOENT;
2832 ino_t ino;
2833 int tid;
2834 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
2835 struct pid_namespace *ns;
2836
2837 task = get_proc_task(inode);
2838 if (!task)
2839 goto out_no_task;
2840 rcu_read_lock();
2841 if (pid_alive(task)) {
2842 leader = task->group_leader;
2843 get_task_struct(leader);
2844 }
2845 rcu_read_unlock();
2846 put_task_struct(task);
2847 if (!leader)
2848 goto out_no_task;
2849 retval = 0;
2850
2851 switch (pos) {
2852 case 0:
2853 ino = inode->i_ino;
2854 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2855 goto out;
2856 pos++;
2857 /* fall through */
2858 case 1:
2859 ino = parent_ino(dentry);
2860 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2861 goto out;
2862 pos++;
2863 /* fall through */
2864 }
2865
2866 /* f_version caches the tgid value that the last readdir call couldn't
2867 * return. lseek aka telldir automagically resets f_version to 0.
2868 */
2869 ns = filp->f_dentry->d_sb->s_fs_info;
2870 tid = (int)filp->f_version;
2871 filp->f_version = 0;
2872 for (task = first_tid(leader, tid, pos - 2, ns);
2873 task;
2874 task = next_tid(task), pos++) {
2875 tid = task_pid_nr_ns(task, ns);
2876 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2877 /* returning this tgid failed, save it as the first
2878 * pid for the next readir call */
2879 filp->f_version = (u64)tid;
2880 put_task_struct(task);
2881 break;
2882 }
2883 }
2884 out:
2885 filp->f_pos = pos;
2886 put_task_struct(leader);
2887 out_no_task:
2888 return retval;
2889 }
2890
2891 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2892 {
2893 struct inode *inode = dentry->d_inode;
2894 struct task_struct *p = get_proc_task(inode);
2895 generic_fillattr(inode, stat);
2896
2897 if (p) {
2898 rcu_read_lock();
2899 stat->nlink += get_nr_threads(p);
2900 rcu_read_unlock();
2901 put_task_struct(p);
2902 }
2903
2904 return 0;
2905 }
2906
2907 static const struct inode_operations proc_task_inode_operations = {
2908 .lookup = proc_task_lookup,
2909 .getattr = proc_task_getattr,
2910 .setattr = proc_setattr,
2911 };
2912
2913 static const struct file_operations proc_task_operations = {
2914 .read = generic_read_dir,
2915 .readdir = proc_task_readdir,
2916 };
This page took 0.146047 seconds and 5 git commands to generate.