Merge branch 'drm-tda998x-devel' of git://git.armlinux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94 {
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106 * Save get_task_policy() for show_numa_map().
107 */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr);
179 if (vma && (vma = m_next_vma(priv, vma)))
180 return vma;
181 }
182
183 m->version = 0;
184 if (pos < mm->map_count) {
185 for (vma = mm->mmap; pos; pos--) {
186 m->version = vma->vm_start;
187 vma = vma->vm_next;
188 }
189 return vma;
190 }
191
192 /* we do not bother to update m->version in this case */
193 if (pos == mm->map_count && priv->tail_vma)
194 return priv->tail_vma;
195
196 vma_stop(priv);
197 return NULL;
198 }
199
200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 {
202 struct proc_maps_private *priv = m->private;
203 struct vm_area_struct *next;
204
205 (*pos)++;
206 next = m_next_vma(priv, v);
207 if (!next)
208 vma_stop(priv);
209 return next;
210 }
211
212 static void m_stop(struct seq_file *m, void *v)
213 {
214 struct proc_maps_private *priv = m->private;
215
216 if (!IS_ERR_OR_NULL(v))
217 vma_stop(priv);
218 if (priv->task) {
219 put_task_struct(priv->task);
220 priv->task = NULL;
221 }
222 }
223
224 static int proc_maps_open(struct inode *inode, struct file *file,
225 const struct seq_operations *ops, int psize)
226 {
227 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228
229 if (!priv)
230 return -ENOMEM;
231
232 priv->inode = inode;
233 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234 if (IS_ERR(priv->mm)) {
235 int err = PTR_ERR(priv->mm);
236
237 seq_release_private(inode, file);
238 return err;
239 }
240
241 return 0;
242 }
243
244 static int proc_map_release(struct inode *inode, struct file *file)
245 {
246 struct seq_file *seq = file->private_data;
247 struct proc_maps_private *priv = seq->private;
248
249 if (priv->mm)
250 mmdrop(priv->mm);
251
252 return seq_release_private(inode, file);
253 }
254
255 static int do_maps_open(struct inode *inode, struct file *file,
256 const struct seq_operations *ops)
257 {
258 return proc_maps_open(inode, file, ops,
259 sizeof(struct proc_maps_private));
260 }
261
262 /*
263 * Indicate if the VMA is a stack for the given task; for
264 * /proc/PID/maps that is the stack of the main task.
265 */
266 static int is_stack(struct proc_maps_private *priv,
267 struct vm_area_struct *vma, int is_pid)
268 {
269 int stack = 0;
270
271 if (is_pid) {
272 stack = vma->vm_start <= vma->vm_mm->start_stack &&
273 vma->vm_end >= vma->vm_mm->start_stack;
274 } else {
275 struct inode *inode = priv->inode;
276 struct task_struct *task;
277
278 rcu_read_lock();
279 task = pid_task(proc_pid(inode), PIDTYPE_PID);
280 if (task)
281 stack = vma_is_stack_for_task(vma, task);
282 rcu_read_unlock();
283 }
284 return stack;
285 }
286
287 static void
288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
289 {
290 struct mm_struct *mm = vma->vm_mm;
291 struct file *file = vma->vm_file;
292 struct proc_maps_private *priv = m->private;
293 vm_flags_t flags = vma->vm_flags;
294 unsigned long ino = 0;
295 unsigned long long pgoff = 0;
296 unsigned long start, end;
297 dev_t dev = 0;
298 const char *name = NULL;
299
300 if (file) {
301 struct inode *inode = file_inode(vma->vm_file);
302 dev = inode->i_sb->s_dev;
303 ino = inode->i_ino;
304 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
305 }
306
307 /* We don't show the stack guard page in /proc/maps */
308 start = vma->vm_start;
309 if (stack_guard_page_start(vma, start))
310 start += PAGE_SIZE;
311 end = vma->vm_end;
312 if (stack_guard_page_end(vma, end))
313 end -= PAGE_SIZE;
314
315 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
316 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
317 start,
318 end,
319 flags & VM_READ ? 'r' : '-',
320 flags & VM_WRITE ? 'w' : '-',
321 flags & VM_EXEC ? 'x' : '-',
322 flags & VM_MAYSHARE ? 's' : 'p',
323 pgoff,
324 MAJOR(dev), MINOR(dev), ino);
325
326 /*
327 * Print the dentry name for named mappings, and a
328 * special [heap] marker for the heap:
329 */
330 if (file) {
331 seq_pad(m, ' ');
332 seq_file_path(m, file, "\n");
333 goto done;
334 }
335
336 if (vma->vm_ops && vma->vm_ops->name) {
337 name = vma->vm_ops->name(vma);
338 if (name)
339 goto done;
340 }
341
342 name = arch_vma_name(vma);
343 if (!name) {
344 if (!mm) {
345 name = "[vdso]";
346 goto done;
347 }
348
349 if (vma->vm_start <= mm->brk &&
350 vma->vm_end >= mm->start_brk) {
351 name = "[heap]";
352 goto done;
353 }
354
355 if (is_stack(priv, vma, is_pid))
356 name = "[stack]";
357 }
358
359 done:
360 if (name) {
361 seq_pad(m, ' ');
362 seq_puts(m, name);
363 }
364 seq_putc(m, '\n');
365 }
366
367 static int show_map(struct seq_file *m, void *v, int is_pid)
368 {
369 show_map_vma(m, v, is_pid);
370 m_cache_vma(m, v);
371 return 0;
372 }
373
374 static int show_pid_map(struct seq_file *m, void *v)
375 {
376 return show_map(m, v, 1);
377 }
378
379 static int show_tid_map(struct seq_file *m, void *v)
380 {
381 return show_map(m, v, 0);
382 }
383
384 static const struct seq_operations proc_pid_maps_op = {
385 .start = m_start,
386 .next = m_next,
387 .stop = m_stop,
388 .show = show_pid_map
389 };
390
391 static const struct seq_operations proc_tid_maps_op = {
392 .start = m_start,
393 .next = m_next,
394 .stop = m_stop,
395 .show = show_tid_map
396 };
397
398 static int pid_maps_open(struct inode *inode, struct file *file)
399 {
400 return do_maps_open(inode, file, &proc_pid_maps_op);
401 }
402
403 static int tid_maps_open(struct inode *inode, struct file *file)
404 {
405 return do_maps_open(inode, file, &proc_tid_maps_op);
406 }
407
408 const struct file_operations proc_pid_maps_operations = {
409 .open = pid_maps_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = proc_map_release,
413 };
414
415 const struct file_operations proc_tid_maps_operations = {
416 .open = tid_maps_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = proc_map_release,
420 };
421
422 /*
423 * Proportional Set Size(PSS): my share of RSS.
424 *
425 * PSS of a process is the count of pages it has in memory, where each
426 * page is divided by the number of processes sharing it. So if a
427 * process has 1000 pages all to itself, and 1000 shared with one other
428 * process, its PSS will be 1500.
429 *
430 * To keep (accumulated) division errors low, we adopt a 64bit
431 * fixed-point pss counter to minimize division errors. So (pss >>
432 * PSS_SHIFT) would be the real byte count.
433 *
434 * A shift of 12 before division means (assuming 4K page size):
435 * - 1M 3-user-pages add up to 8KB errors;
436 * - supports mapcount up to 2^24, or 16M;
437 * - supports PSS up to 2^52 bytes, or 4PB.
438 */
439 #define PSS_SHIFT 12
440
441 #ifdef CONFIG_PROC_PAGE_MONITOR
442 struct mem_size_stats {
443 unsigned long resident;
444 unsigned long shared_clean;
445 unsigned long shared_dirty;
446 unsigned long private_clean;
447 unsigned long private_dirty;
448 unsigned long referenced;
449 unsigned long anonymous;
450 unsigned long anonymous_thp;
451 unsigned long shmem_thp;
452 unsigned long swap;
453 unsigned long shared_hugetlb;
454 unsigned long private_hugetlb;
455 u64 pss;
456 u64 swap_pss;
457 bool check_shmem_swap;
458 };
459
460 static void smaps_account(struct mem_size_stats *mss, struct page *page,
461 bool compound, bool young, bool dirty)
462 {
463 int i, nr = compound ? 1 << compound_order(page) : 1;
464 unsigned long size = nr * PAGE_SIZE;
465
466 if (PageAnon(page))
467 mss->anonymous += size;
468
469 mss->resident += size;
470 /* Accumulate the size in pages that have been accessed. */
471 if (young || page_is_young(page) || PageReferenced(page))
472 mss->referenced += size;
473
474 /*
475 * page_count(page) == 1 guarantees the page is mapped exactly once.
476 * If any subpage of the compound page mapped with PTE it would elevate
477 * page_count().
478 */
479 if (page_count(page) == 1) {
480 if (dirty || PageDirty(page))
481 mss->private_dirty += size;
482 else
483 mss->private_clean += size;
484 mss->pss += (u64)size << PSS_SHIFT;
485 return;
486 }
487
488 for (i = 0; i < nr; i++, page++) {
489 int mapcount = page_mapcount(page);
490
491 if (mapcount >= 2) {
492 if (dirty || PageDirty(page))
493 mss->shared_dirty += PAGE_SIZE;
494 else
495 mss->shared_clean += PAGE_SIZE;
496 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497 } else {
498 if (dirty || PageDirty(page))
499 mss->private_dirty += PAGE_SIZE;
500 else
501 mss->private_clean += PAGE_SIZE;
502 mss->pss += PAGE_SIZE << PSS_SHIFT;
503 }
504 }
505 }
506
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 struct mm_walk *walk)
510 {
511 struct mem_size_stats *mss = walk->private;
512
513 mss->swap += shmem_partial_swap_usage(
514 walk->vma->vm_file->f_mapping, addr, end);
515
516 return 0;
517 }
518 #endif
519
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521 struct mm_walk *walk)
522 {
523 struct mem_size_stats *mss = walk->private;
524 struct vm_area_struct *vma = walk->vma;
525 struct page *page = NULL;
526
527 if (pte_present(*pte)) {
528 page = vm_normal_page(vma, addr, *pte);
529 } else if (is_swap_pte(*pte)) {
530 swp_entry_t swpent = pte_to_swp_entry(*pte);
531
532 if (!non_swap_entry(swpent)) {
533 int mapcount;
534
535 mss->swap += PAGE_SIZE;
536 mapcount = swp_swapcount(swpent);
537 if (mapcount >= 2) {
538 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539
540 do_div(pss_delta, mapcount);
541 mss->swap_pss += pss_delta;
542 } else {
543 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544 }
545 } else if (is_migration_entry(swpent))
546 page = migration_entry_to_page(swpent);
547 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
548 && pte_none(*pte))) {
549 page = find_get_entry(vma->vm_file->f_mapping,
550 linear_page_index(vma, addr));
551 if (!page)
552 return;
553
554 if (radix_tree_exceptional_entry(page))
555 mss->swap += PAGE_SIZE;
556 else
557 put_page(page);
558
559 return;
560 }
561
562 if (!page)
563 return;
564
565 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
566 }
567
568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
569 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
570 struct mm_walk *walk)
571 {
572 struct mem_size_stats *mss = walk->private;
573 struct vm_area_struct *vma = walk->vma;
574 struct page *page;
575
576 /* FOLL_DUMP will return -EFAULT on huge zero page */
577 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
578 if (IS_ERR_OR_NULL(page))
579 return;
580 if (PageAnon(page))
581 mss->anonymous_thp += HPAGE_PMD_SIZE;
582 else if (PageSwapBacked(page))
583 mss->shmem_thp += HPAGE_PMD_SIZE;
584 else
585 VM_BUG_ON_PAGE(1, page);
586 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
587 }
588 #else
589 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
590 struct mm_walk *walk)
591 {
592 }
593 #endif
594
595 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
596 struct mm_walk *walk)
597 {
598 struct vm_area_struct *vma = walk->vma;
599 pte_t *pte;
600 spinlock_t *ptl;
601
602 ptl = pmd_trans_huge_lock(pmd, vma);
603 if (ptl) {
604 smaps_pmd_entry(pmd, addr, walk);
605 spin_unlock(ptl);
606 return 0;
607 }
608
609 if (pmd_trans_unstable(pmd))
610 return 0;
611 /*
612 * The mmap_sem held all the way back in m_start() is what
613 * keeps khugepaged out of here and from collapsing things
614 * in here.
615 */
616 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
617 for (; addr != end; pte++, addr += PAGE_SIZE)
618 smaps_pte_entry(pte, addr, walk);
619 pte_unmap_unlock(pte - 1, ptl);
620 cond_resched();
621 return 0;
622 }
623
624 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
625 {
626 /*
627 * Don't forget to update Documentation/ on changes.
628 */
629 static const char mnemonics[BITS_PER_LONG][2] = {
630 /*
631 * In case if we meet a flag we don't know about.
632 */
633 [0 ... (BITS_PER_LONG-1)] = "??",
634
635 [ilog2(VM_READ)] = "rd",
636 [ilog2(VM_WRITE)] = "wr",
637 [ilog2(VM_EXEC)] = "ex",
638 [ilog2(VM_SHARED)] = "sh",
639 [ilog2(VM_MAYREAD)] = "mr",
640 [ilog2(VM_MAYWRITE)] = "mw",
641 [ilog2(VM_MAYEXEC)] = "me",
642 [ilog2(VM_MAYSHARE)] = "ms",
643 [ilog2(VM_GROWSDOWN)] = "gd",
644 [ilog2(VM_PFNMAP)] = "pf",
645 [ilog2(VM_DENYWRITE)] = "dw",
646 #ifdef CONFIG_X86_INTEL_MPX
647 [ilog2(VM_MPX)] = "mp",
648 #endif
649 [ilog2(VM_LOCKED)] = "lo",
650 [ilog2(VM_IO)] = "io",
651 [ilog2(VM_SEQ_READ)] = "sr",
652 [ilog2(VM_RAND_READ)] = "rr",
653 [ilog2(VM_DONTCOPY)] = "dc",
654 [ilog2(VM_DONTEXPAND)] = "de",
655 [ilog2(VM_ACCOUNT)] = "ac",
656 [ilog2(VM_NORESERVE)] = "nr",
657 [ilog2(VM_HUGETLB)] = "ht",
658 [ilog2(VM_ARCH_1)] = "ar",
659 [ilog2(VM_DONTDUMP)] = "dd",
660 #ifdef CONFIG_MEM_SOFT_DIRTY
661 [ilog2(VM_SOFTDIRTY)] = "sd",
662 #endif
663 [ilog2(VM_MIXEDMAP)] = "mm",
664 [ilog2(VM_HUGEPAGE)] = "hg",
665 [ilog2(VM_NOHUGEPAGE)] = "nh",
666 [ilog2(VM_MERGEABLE)] = "mg",
667 [ilog2(VM_UFFD_MISSING)]= "um",
668 [ilog2(VM_UFFD_WP)] = "uw",
669 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
670 /* These come out via ProtectionKey: */
671 [ilog2(VM_PKEY_BIT0)] = "",
672 [ilog2(VM_PKEY_BIT1)] = "",
673 [ilog2(VM_PKEY_BIT2)] = "",
674 [ilog2(VM_PKEY_BIT3)] = "",
675 #endif
676 };
677 size_t i;
678
679 seq_puts(m, "VmFlags: ");
680 for (i = 0; i < BITS_PER_LONG; i++) {
681 if (!mnemonics[i][0])
682 continue;
683 if (vma->vm_flags & (1UL << i)) {
684 seq_printf(m, "%c%c ",
685 mnemonics[i][0], mnemonics[i][1]);
686 }
687 }
688 seq_putc(m, '\n');
689 }
690
691 #ifdef CONFIG_HUGETLB_PAGE
692 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
693 unsigned long addr, unsigned long end,
694 struct mm_walk *walk)
695 {
696 struct mem_size_stats *mss = walk->private;
697 struct vm_area_struct *vma = walk->vma;
698 struct page *page = NULL;
699
700 if (pte_present(*pte)) {
701 page = vm_normal_page(vma, addr, *pte);
702 } else if (is_swap_pte(*pte)) {
703 swp_entry_t swpent = pte_to_swp_entry(*pte);
704
705 if (is_migration_entry(swpent))
706 page = migration_entry_to_page(swpent);
707 }
708 if (page) {
709 int mapcount = page_mapcount(page);
710
711 if (mapcount >= 2)
712 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
713 else
714 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
715 }
716 return 0;
717 }
718 #endif /* HUGETLB_PAGE */
719
720 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
721 {
722 }
723
724 static int show_smap(struct seq_file *m, void *v, int is_pid)
725 {
726 struct vm_area_struct *vma = v;
727 struct mem_size_stats mss;
728 struct mm_walk smaps_walk = {
729 .pmd_entry = smaps_pte_range,
730 #ifdef CONFIG_HUGETLB_PAGE
731 .hugetlb_entry = smaps_hugetlb_range,
732 #endif
733 .mm = vma->vm_mm,
734 .private = &mss,
735 };
736
737 memset(&mss, 0, sizeof mss);
738
739 #ifdef CONFIG_SHMEM
740 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
741 /*
742 * For shared or readonly shmem mappings we know that all
743 * swapped out pages belong to the shmem object, and we can
744 * obtain the swap value much more efficiently. For private
745 * writable mappings, we might have COW pages that are
746 * not affected by the parent swapped out pages of the shmem
747 * object, so we have to distinguish them during the page walk.
748 * Unless we know that the shmem object (or the part mapped by
749 * our VMA) has no swapped out pages at all.
750 */
751 unsigned long shmem_swapped = shmem_swap_usage(vma);
752
753 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
754 !(vma->vm_flags & VM_WRITE)) {
755 mss.swap = shmem_swapped;
756 } else {
757 mss.check_shmem_swap = true;
758 smaps_walk.pte_hole = smaps_pte_hole;
759 }
760 }
761 #endif
762
763 /* mmap_sem is held in m_start */
764 walk_page_vma(vma, &smaps_walk);
765
766 show_map_vma(m, vma, is_pid);
767
768 seq_printf(m,
769 "Size: %8lu kB\n"
770 "Rss: %8lu kB\n"
771 "Pss: %8lu kB\n"
772 "Shared_Clean: %8lu kB\n"
773 "Shared_Dirty: %8lu kB\n"
774 "Private_Clean: %8lu kB\n"
775 "Private_Dirty: %8lu kB\n"
776 "Referenced: %8lu kB\n"
777 "Anonymous: %8lu kB\n"
778 "AnonHugePages: %8lu kB\n"
779 "ShmemPmdMapped: %8lu kB\n"
780 "Shared_Hugetlb: %8lu kB\n"
781 "Private_Hugetlb: %7lu kB\n"
782 "Swap: %8lu kB\n"
783 "SwapPss: %8lu kB\n"
784 "KernelPageSize: %8lu kB\n"
785 "MMUPageSize: %8lu kB\n"
786 "Locked: %8lu kB\n",
787 (vma->vm_end - vma->vm_start) >> 10,
788 mss.resident >> 10,
789 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
790 mss.shared_clean >> 10,
791 mss.shared_dirty >> 10,
792 mss.private_clean >> 10,
793 mss.private_dirty >> 10,
794 mss.referenced >> 10,
795 mss.anonymous >> 10,
796 mss.anonymous_thp >> 10,
797 mss.shmem_thp >> 10,
798 mss.shared_hugetlb >> 10,
799 mss.private_hugetlb >> 10,
800 mss.swap >> 10,
801 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
802 vma_kernel_pagesize(vma) >> 10,
803 vma_mmu_pagesize(vma) >> 10,
804 (vma->vm_flags & VM_LOCKED) ?
805 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
806
807 arch_show_smap(m, vma);
808 show_smap_vma_flags(m, vma);
809 m_cache_vma(m, vma);
810 return 0;
811 }
812
813 static int show_pid_smap(struct seq_file *m, void *v)
814 {
815 return show_smap(m, v, 1);
816 }
817
818 static int show_tid_smap(struct seq_file *m, void *v)
819 {
820 return show_smap(m, v, 0);
821 }
822
823 static const struct seq_operations proc_pid_smaps_op = {
824 .start = m_start,
825 .next = m_next,
826 .stop = m_stop,
827 .show = show_pid_smap
828 };
829
830 static const struct seq_operations proc_tid_smaps_op = {
831 .start = m_start,
832 .next = m_next,
833 .stop = m_stop,
834 .show = show_tid_smap
835 };
836
837 static int pid_smaps_open(struct inode *inode, struct file *file)
838 {
839 return do_maps_open(inode, file, &proc_pid_smaps_op);
840 }
841
842 static int tid_smaps_open(struct inode *inode, struct file *file)
843 {
844 return do_maps_open(inode, file, &proc_tid_smaps_op);
845 }
846
847 const struct file_operations proc_pid_smaps_operations = {
848 .open = pid_smaps_open,
849 .read = seq_read,
850 .llseek = seq_lseek,
851 .release = proc_map_release,
852 };
853
854 const struct file_operations proc_tid_smaps_operations = {
855 .open = tid_smaps_open,
856 .read = seq_read,
857 .llseek = seq_lseek,
858 .release = proc_map_release,
859 };
860
861 enum clear_refs_types {
862 CLEAR_REFS_ALL = 1,
863 CLEAR_REFS_ANON,
864 CLEAR_REFS_MAPPED,
865 CLEAR_REFS_SOFT_DIRTY,
866 CLEAR_REFS_MM_HIWATER_RSS,
867 CLEAR_REFS_LAST,
868 };
869
870 struct clear_refs_private {
871 enum clear_refs_types type;
872 };
873
874 #ifdef CONFIG_MEM_SOFT_DIRTY
875 static inline void clear_soft_dirty(struct vm_area_struct *vma,
876 unsigned long addr, pte_t *pte)
877 {
878 /*
879 * The soft-dirty tracker uses #PF-s to catch writes
880 * to pages, so write-protect the pte as well. See the
881 * Documentation/vm/soft-dirty.txt for full description
882 * of how soft-dirty works.
883 */
884 pte_t ptent = *pte;
885
886 if (pte_present(ptent)) {
887 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
888 ptent = pte_wrprotect(ptent);
889 ptent = pte_clear_soft_dirty(ptent);
890 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
891 } else if (is_swap_pte(ptent)) {
892 ptent = pte_swp_clear_soft_dirty(ptent);
893 set_pte_at(vma->vm_mm, addr, pte, ptent);
894 }
895 }
896 #else
897 static inline void clear_soft_dirty(struct vm_area_struct *vma,
898 unsigned long addr, pte_t *pte)
899 {
900 }
901 #endif
902
903 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
904 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
905 unsigned long addr, pmd_t *pmdp)
906 {
907 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
908
909 pmd = pmd_wrprotect(pmd);
910 pmd = pmd_clear_soft_dirty(pmd);
911
912 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
913 }
914 #else
915 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
916 unsigned long addr, pmd_t *pmdp)
917 {
918 }
919 #endif
920
921 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
922 unsigned long end, struct mm_walk *walk)
923 {
924 struct clear_refs_private *cp = walk->private;
925 struct vm_area_struct *vma = walk->vma;
926 pte_t *pte, ptent;
927 spinlock_t *ptl;
928 struct page *page;
929
930 ptl = pmd_trans_huge_lock(pmd, vma);
931 if (ptl) {
932 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
933 clear_soft_dirty_pmd(vma, addr, pmd);
934 goto out;
935 }
936
937 page = pmd_page(*pmd);
938
939 /* Clear accessed and referenced bits. */
940 pmdp_test_and_clear_young(vma, addr, pmd);
941 test_and_clear_page_young(page);
942 ClearPageReferenced(page);
943 out:
944 spin_unlock(ptl);
945 return 0;
946 }
947
948 if (pmd_trans_unstable(pmd))
949 return 0;
950
951 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
952 for (; addr != end; pte++, addr += PAGE_SIZE) {
953 ptent = *pte;
954
955 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
956 clear_soft_dirty(vma, addr, pte);
957 continue;
958 }
959
960 if (!pte_present(ptent))
961 continue;
962
963 page = vm_normal_page(vma, addr, ptent);
964 if (!page)
965 continue;
966
967 /* Clear accessed and referenced bits. */
968 ptep_test_and_clear_young(vma, addr, pte);
969 test_and_clear_page_young(page);
970 ClearPageReferenced(page);
971 }
972 pte_unmap_unlock(pte - 1, ptl);
973 cond_resched();
974 return 0;
975 }
976
977 static int clear_refs_test_walk(unsigned long start, unsigned long end,
978 struct mm_walk *walk)
979 {
980 struct clear_refs_private *cp = walk->private;
981 struct vm_area_struct *vma = walk->vma;
982
983 if (vma->vm_flags & VM_PFNMAP)
984 return 1;
985
986 /*
987 * Writing 1 to /proc/pid/clear_refs affects all pages.
988 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
989 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
990 * Writing 4 to /proc/pid/clear_refs affects all pages.
991 */
992 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
993 return 1;
994 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
995 return 1;
996 return 0;
997 }
998
999 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1000 size_t count, loff_t *ppos)
1001 {
1002 struct task_struct *task;
1003 char buffer[PROC_NUMBUF];
1004 struct mm_struct *mm;
1005 struct vm_area_struct *vma;
1006 enum clear_refs_types type;
1007 int itype;
1008 int rv;
1009
1010 memset(buffer, 0, sizeof(buffer));
1011 if (count > sizeof(buffer) - 1)
1012 count = sizeof(buffer) - 1;
1013 if (copy_from_user(buffer, buf, count))
1014 return -EFAULT;
1015 rv = kstrtoint(strstrip(buffer), 10, &itype);
1016 if (rv < 0)
1017 return rv;
1018 type = (enum clear_refs_types)itype;
1019 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1020 return -EINVAL;
1021
1022 task = get_proc_task(file_inode(file));
1023 if (!task)
1024 return -ESRCH;
1025 mm = get_task_mm(task);
1026 if (mm) {
1027 struct clear_refs_private cp = {
1028 .type = type,
1029 };
1030 struct mm_walk clear_refs_walk = {
1031 .pmd_entry = clear_refs_pte_range,
1032 .test_walk = clear_refs_test_walk,
1033 .mm = mm,
1034 .private = &cp,
1035 };
1036
1037 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1038 if (down_write_killable(&mm->mmap_sem)) {
1039 count = -EINTR;
1040 goto out_mm;
1041 }
1042
1043 /*
1044 * Writing 5 to /proc/pid/clear_refs resets the peak
1045 * resident set size to this mm's current rss value.
1046 */
1047 reset_mm_hiwater_rss(mm);
1048 up_write(&mm->mmap_sem);
1049 goto out_mm;
1050 }
1051
1052 down_read(&mm->mmap_sem);
1053 if (type == CLEAR_REFS_SOFT_DIRTY) {
1054 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1055 if (!(vma->vm_flags & VM_SOFTDIRTY))
1056 continue;
1057 up_read(&mm->mmap_sem);
1058 if (down_write_killable(&mm->mmap_sem)) {
1059 count = -EINTR;
1060 goto out_mm;
1061 }
1062 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1063 vma->vm_flags &= ~VM_SOFTDIRTY;
1064 vma_set_page_prot(vma);
1065 }
1066 downgrade_write(&mm->mmap_sem);
1067 break;
1068 }
1069 mmu_notifier_invalidate_range_start(mm, 0, -1);
1070 }
1071 walk_page_range(0, ~0UL, &clear_refs_walk);
1072 if (type == CLEAR_REFS_SOFT_DIRTY)
1073 mmu_notifier_invalidate_range_end(mm, 0, -1);
1074 flush_tlb_mm(mm);
1075 up_read(&mm->mmap_sem);
1076 out_mm:
1077 mmput(mm);
1078 }
1079 put_task_struct(task);
1080
1081 return count;
1082 }
1083
1084 const struct file_operations proc_clear_refs_operations = {
1085 .write = clear_refs_write,
1086 .llseek = noop_llseek,
1087 };
1088
1089 typedef struct {
1090 u64 pme;
1091 } pagemap_entry_t;
1092
1093 struct pagemapread {
1094 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1095 pagemap_entry_t *buffer;
1096 bool show_pfn;
1097 };
1098
1099 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1100 #define PAGEMAP_WALK_MASK (PMD_MASK)
1101
1102 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1103 #define PM_PFRAME_BITS 55
1104 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1105 #define PM_SOFT_DIRTY BIT_ULL(55)
1106 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1107 #define PM_FILE BIT_ULL(61)
1108 #define PM_SWAP BIT_ULL(62)
1109 #define PM_PRESENT BIT_ULL(63)
1110
1111 #define PM_END_OF_BUFFER 1
1112
1113 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1114 {
1115 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1116 }
1117
1118 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1119 struct pagemapread *pm)
1120 {
1121 pm->buffer[pm->pos++] = *pme;
1122 if (pm->pos >= pm->len)
1123 return PM_END_OF_BUFFER;
1124 return 0;
1125 }
1126
1127 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1128 struct mm_walk *walk)
1129 {
1130 struct pagemapread *pm = walk->private;
1131 unsigned long addr = start;
1132 int err = 0;
1133
1134 while (addr < end) {
1135 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1136 pagemap_entry_t pme = make_pme(0, 0);
1137 /* End of address space hole, which we mark as non-present. */
1138 unsigned long hole_end;
1139
1140 if (vma)
1141 hole_end = min(end, vma->vm_start);
1142 else
1143 hole_end = end;
1144
1145 for (; addr < hole_end; addr += PAGE_SIZE) {
1146 err = add_to_pagemap(addr, &pme, pm);
1147 if (err)
1148 goto out;
1149 }
1150
1151 if (!vma)
1152 break;
1153
1154 /* Addresses in the VMA. */
1155 if (vma->vm_flags & VM_SOFTDIRTY)
1156 pme = make_pme(0, PM_SOFT_DIRTY);
1157 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1158 err = add_to_pagemap(addr, &pme, pm);
1159 if (err)
1160 goto out;
1161 }
1162 }
1163 out:
1164 return err;
1165 }
1166
1167 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1168 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1169 {
1170 u64 frame = 0, flags = 0;
1171 struct page *page = NULL;
1172
1173 if (pte_present(pte)) {
1174 if (pm->show_pfn)
1175 frame = pte_pfn(pte);
1176 flags |= PM_PRESENT;
1177 page = vm_normal_page(vma, addr, pte);
1178 if (pte_soft_dirty(pte))
1179 flags |= PM_SOFT_DIRTY;
1180 } else if (is_swap_pte(pte)) {
1181 swp_entry_t entry;
1182 if (pte_swp_soft_dirty(pte))
1183 flags |= PM_SOFT_DIRTY;
1184 entry = pte_to_swp_entry(pte);
1185 frame = swp_type(entry) |
1186 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1187 flags |= PM_SWAP;
1188 if (is_migration_entry(entry))
1189 page = migration_entry_to_page(entry);
1190 }
1191
1192 if (page && !PageAnon(page))
1193 flags |= PM_FILE;
1194 if (page && page_mapcount(page) == 1)
1195 flags |= PM_MMAP_EXCLUSIVE;
1196 if (vma->vm_flags & VM_SOFTDIRTY)
1197 flags |= PM_SOFT_DIRTY;
1198
1199 return make_pme(frame, flags);
1200 }
1201
1202 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1203 struct mm_walk *walk)
1204 {
1205 struct vm_area_struct *vma = walk->vma;
1206 struct pagemapread *pm = walk->private;
1207 spinlock_t *ptl;
1208 pte_t *pte, *orig_pte;
1209 int err = 0;
1210
1211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1212 ptl = pmd_trans_huge_lock(pmdp, vma);
1213 if (ptl) {
1214 u64 flags = 0, frame = 0;
1215 pmd_t pmd = *pmdp;
1216
1217 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1218 flags |= PM_SOFT_DIRTY;
1219
1220 /*
1221 * Currently pmd for thp is always present because thp
1222 * can not be swapped-out, migrated, or HWPOISONed
1223 * (split in such cases instead.)
1224 * This if-check is just to prepare for future implementation.
1225 */
1226 if (pmd_present(pmd)) {
1227 struct page *page = pmd_page(pmd);
1228
1229 if (page_mapcount(page) == 1)
1230 flags |= PM_MMAP_EXCLUSIVE;
1231
1232 flags |= PM_PRESENT;
1233 if (pm->show_pfn)
1234 frame = pmd_pfn(pmd) +
1235 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1236 }
1237
1238 for (; addr != end; addr += PAGE_SIZE) {
1239 pagemap_entry_t pme = make_pme(frame, flags);
1240
1241 err = add_to_pagemap(addr, &pme, pm);
1242 if (err)
1243 break;
1244 if (pm->show_pfn && (flags & PM_PRESENT))
1245 frame++;
1246 }
1247 spin_unlock(ptl);
1248 return err;
1249 }
1250
1251 if (pmd_trans_unstable(pmdp))
1252 return 0;
1253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1254
1255 /*
1256 * We can assume that @vma always points to a valid one and @end never
1257 * goes beyond vma->vm_end.
1258 */
1259 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1260 for (; addr < end; pte++, addr += PAGE_SIZE) {
1261 pagemap_entry_t pme;
1262
1263 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1264 err = add_to_pagemap(addr, &pme, pm);
1265 if (err)
1266 break;
1267 }
1268 pte_unmap_unlock(orig_pte, ptl);
1269
1270 cond_resched();
1271
1272 return err;
1273 }
1274
1275 #ifdef CONFIG_HUGETLB_PAGE
1276 /* This function walks within one hugetlb entry in the single call */
1277 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1278 unsigned long addr, unsigned long end,
1279 struct mm_walk *walk)
1280 {
1281 struct pagemapread *pm = walk->private;
1282 struct vm_area_struct *vma = walk->vma;
1283 u64 flags = 0, frame = 0;
1284 int err = 0;
1285 pte_t pte;
1286
1287 if (vma->vm_flags & VM_SOFTDIRTY)
1288 flags |= PM_SOFT_DIRTY;
1289
1290 pte = huge_ptep_get(ptep);
1291 if (pte_present(pte)) {
1292 struct page *page = pte_page(pte);
1293
1294 if (!PageAnon(page))
1295 flags |= PM_FILE;
1296
1297 if (page_mapcount(page) == 1)
1298 flags |= PM_MMAP_EXCLUSIVE;
1299
1300 flags |= PM_PRESENT;
1301 if (pm->show_pfn)
1302 frame = pte_pfn(pte) +
1303 ((addr & ~hmask) >> PAGE_SHIFT);
1304 }
1305
1306 for (; addr != end; addr += PAGE_SIZE) {
1307 pagemap_entry_t pme = make_pme(frame, flags);
1308
1309 err = add_to_pagemap(addr, &pme, pm);
1310 if (err)
1311 return err;
1312 if (pm->show_pfn && (flags & PM_PRESENT))
1313 frame++;
1314 }
1315
1316 cond_resched();
1317
1318 return err;
1319 }
1320 #endif /* HUGETLB_PAGE */
1321
1322 /*
1323 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1324 *
1325 * For each page in the address space, this file contains one 64-bit entry
1326 * consisting of the following:
1327 *
1328 * Bits 0-54 page frame number (PFN) if present
1329 * Bits 0-4 swap type if swapped
1330 * Bits 5-54 swap offset if swapped
1331 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1332 * Bit 56 page exclusively mapped
1333 * Bits 57-60 zero
1334 * Bit 61 page is file-page or shared-anon
1335 * Bit 62 page swapped
1336 * Bit 63 page present
1337 *
1338 * If the page is not present but in swap, then the PFN contains an
1339 * encoding of the swap file number and the page's offset into the
1340 * swap. Unmapped pages return a null PFN. This allows determining
1341 * precisely which pages are mapped (or in swap) and comparing mapped
1342 * pages between processes.
1343 *
1344 * Efficient users of this interface will use /proc/pid/maps to
1345 * determine which areas of memory are actually mapped and llseek to
1346 * skip over unmapped regions.
1347 */
1348 static ssize_t pagemap_read(struct file *file, char __user *buf,
1349 size_t count, loff_t *ppos)
1350 {
1351 struct mm_struct *mm = file->private_data;
1352 struct pagemapread pm;
1353 struct mm_walk pagemap_walk = {};
1354 unsigned long src;
1355 unsigned long svpfn;
1356 unsigned long start_vaddr;
1357 unsigned long end_vaddr;
1358 int ret = 0, copied = 0;
1359
1360 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1361 goto out;
1362
1363 ret = -EINVAL;
1364 /* file position must be aligned */
1365 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1366 goto out_mm;
1367
1368 ret = 0;
1369 if (!count)
1370 goto out_mm;
1371
1372 /* do not disclose physical addresses: attack vector */
1373 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1374
1375 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1376 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1377 ret = -ENOMEM;
1378 if (!pm.buffer)
1379 goto out_mm;
1380
1381 pagemap_walk.pmd_entry = pagemap_pmd_range;
1382 pagemap_walk.pte_hole = pagemap_pte_hole;
1383 #ifdef CONFIG_HUGETLB_PAGE
1384 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1385 #endif
1386 pagemap_walk.mm = mm;
1387 pagemap_walk.private = &pm;
1388
1389 src = *ppos;
1390 svpfn = src / PM_ENTRY_BYTES;
1391 start_vaddr = svpfn << PAGE_SHIFT;
1392 end_vaddr = mm->task_size;
1393
1394 /* watch out for wraparound */
1395 if (svpfn > mm->task_size >> PAGE_SHIFT)
1396 start_vaddr = end_vaddr;
1397
1398 /*
1399 * The odds are that this will stop walking way
1400 * before end_vaddr, because the length of the
1401 * user buffer is tracked in "pm", and the walk
1402 * will stop when we hit the end of the buffer.
1403 */
1404 ret = 0;
1405 while (count && (start_vaddr < end_vaddr)) {
1406 int len;
1407 unsigned long end;
1408
1409 pm.pos = 0;
1410 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1411 /* overflow ? */
1412 if (end < start_vaddr || end > end_vaddr)
1413 end = end_vaddr;
1414 down_read(&mm->mmap_sem);
1415 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1416 up_read(&mm->mmap_sem);
1417 start_vaddr = end;
1418
1419 len = min(count, PM_ENTRY_BYTES * pm.pos);
1420 if (copy_to_user(buf, pm.buffer, len)) {
1421 ret = -EFAULT;
1422 goto out_free;
1423 }
1424 copied += len;
1425 buf += len;
1426 count -= len;
1427 }
1428 *ppos += copied;
1429 if (!ret || ret == PM_END_OF_BUFFER)
1430 ret = copied;
1431
1432 out_free:
1433 kfree(pm.buffer);
1434 out_mm:
1435 mmput(mm);
1436 out:
1437 return ret;
1438 }
1439
1440 static int pagemap_open(struct inode *inode, struct file *file)
1441 {
1442 struct mm_struct *mm;
1443
1444 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1445 if (IS_ERR(mm))
1446 return PTR_ERR(mm);
1447 file->private_data = mm;
1448 return 0;
1449 }
1450
1451 static int pagemap_release(struct inode *inode, struct file *file)
1452 {
1453 struct mm_struct *mm = file->private_data;
1454
1455 if (mm)
1456 mmdrop(mm);
1457 return 0;
1458 }
1459
1460 const struct file_operations proc_pagemap_operations = {
1461 .llseek = mem_lseek, /* borrow this */
1462 .read = pagemap_read,
1463 .open = pagemap_open,
1464 .release = pagemap_release,
1465 };
1466 #endif /* CONFIG_PROC_PAGE_MONITOR */
1467
1468 #ifdef CONFIG_NUMA
1469
1470 struct numa_maps {
1471 unsigned long pages;
1472 unsigned long anon;
1473 unsigned long active;
1474 unsigned long writeback;
1475 unsigned long mapcount_max;
1476 unsigned long dirty;
1477 unsigned long swapcache;
1478 unsigned long node[MAX_NUMNODES];
1479 };
1480
1481 struct numa_maps_private {
1482 struct proc_maps_private proc_maps;
1483 struct numa_maps md;
1484 };
1485
1486 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1487 unsigned long nr_pages)
1488 {
1489 int count = page_mapcount(page);
1490
1491 md->pages += nr_pages;
1492 if (pte_dirty || PageDirty(page))
1493 md->dirty += nr_pages;
1494
1495 if (PageSwapCache(page))
1496 md->swapcache += nr_pages;
1497
1498 if (PageActive(page) || PageUnevictable(page))
1499 md->active += nr_pages;
1500
1501 if (PageWriteback(page))
1502 md->writeback += nr_pages;
1503
1504 if (PageAnon(page))
1505 md->anon += nr_pages;
1506
1507 if (count > md->mapcount_max)
1508 md->mapcount_max = count;
1509
1510 md->node[page_to_nid(page)] += nr_pages;
1511 }
1512
1513 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1514 unsigned long addr)
1515 {
1516 struct page *page;
1517 int nid;
1518
1519 if (!pte_present(pte))
1520 return NULL;
1521
1522 page = vm_normal_page(vma, addr, pte);
1523 if (!page)
1524 return NULL;
1525
1526 if (PageReserved(page))
1527 return NULL;
1528
1529 nid = page_to_nid(page);
1530 if (!node_isset(nid, node_states[N_MEMORY]))
1531 return NULL;
1532
1533 return page;
1534 }
1535
1536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1537 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1538 struct vm_area_struct *vma,
1539 unsigned long addr)
1540 {
1541 struct page *page;
1542 int nid;
1543
1544 if (!pmd_present(pmd))
1545 return NULL;
1546
1547 page = vm_normal_page_pmd(vma, addr, pmd);
1548 if (!page)
1549 return NULL;
1550
1551 if (PageReserved(page))
1552 return NULL;
1553
1554 nid = page_to_nid(page);
1555 if (!node_isset(nid, node_states[N_MEMORY]))
1556 return NULL;
1557
1558 return page;
1559 }
1560 #endif
1561
1562 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1563 unsigned long end, struct mm_walk *walk)
1564 {
1565 struct numa_maps *md = walk->private;
1566 struct vm_area_struct *vma = walk->vma;
1567 spinlock_t *ptl;
1568 pte_t *orig_pte;
1569 pte_t *pte;
1570
1571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1572 ptl = pmd_trans_huge_lock(pmd, vma);
1573 if (ptl) {
1574 struct page *page;
1575
1576 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1577 if (page)
1578 gather_stats(page, md, pmd_dirty(*pmd),
1579 HPAGE_PMD_SIZE/PAGE_SIZE);
1580 spin_unlock(ptl);
1581 return 0;
1582 }
1583
1584 if (pmd_trans_unstable(pmd))
1585 return 0;
1586 #endif
1587 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1588 do {
1589 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1590 if (!page)
1591 continue;
1592 gather_stats(page, md, pte_dirty(*pte), 1);
1593
1594 } while (pte++, addr += PAGE_SIZE, addr != end);
1595 pte_unmap_unlock(orig_pte, ptl);
1596 return 0;
1597 }
1598 #ifdef CONFIG_HUGETLB_PAGE
1599 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1600 unsigned long addr, unsigned long end, struct mm_walk *walk)
1601 {
1602 pte_t huge_pte = huge_ptep_get(pte);
1603 struct numa_maps *md;
1604 struct page *page;
1605
1606 if (!pte_present(huge_pte))
1607 return 0;
1608
1609 page = pte_page(huge_pte);
1610 if (!page)
1611 return 0;
1612
1613 md = walk->private;
1614 gather_stats(page, md, pte_dirty(huge_pte), 1);
1615 return 0;
1616 }
1617
1618 #else
1619 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1620 unsigned long addr, unsigned long end, struct mm_walk *walk)
1621 {
1622 return 0;
1623 }
1624 #endif
1625
1626 /*
1627 * Display pages allocated per node and memory policy via /proc.
1628 */
1629 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1630 {
1631 struct numa_maps_private *numa_priv = m->private;
1632 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1633 struct vm_area_struct *vma = v;
1634 struct numa_maps *md = &numa_priv->md;
1635 struct file *file = vma->vm_file;
1636 struct mm_struct *mm = vma->vm_mm;
1637 struct mm_walk walk = {
1638 .hugetlb_entry = gather_hugetlb_stats,
1639 .pmd_entry = gather_pte_stats,
1640 .private = md,
1641 .mm = mm,
1642 };
1643 struct mempolicy *pol;
1644 char buffer[64];
1645 int nid;
1646
1647 if (!mm)
1648 return 0;
1649
1650 /* Ensure we start with an empty set of numa_maps statistics. */
1651 memset(md, 0, sizeof(*md));
1652
1653 pol = __get_vma_policy(vma, vma->vm_start);
1654 if (pol) {
1655 mpol_to_str(buffer, sizeof(buffer), pol);
1656 mpol_cond_put(pol);
1657 } else {
1658 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1659 }
1660
1661 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1662
1663 if (file) {
1664 seq_puts(m, " file=");
1665 seq_file_path(m, file, "\n\t= ");
1666 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1667 seq_puts(m, " heap");
1668 } else if (is_stack(proc_priv, vma, is_pid)) {
1669 seq_puts(m, " stack");
1670 }
1671
1672 if (is_vm_hugetlb_page(vma))
1673 seq_puts(m, " huge");
1674
1675 /* mmap_sem is held by m_start */
1676 walk_page_vma(vma, &walk);
1677
1678 if (!md->pages)
1679 goto out;
1680
1681 if (md->anon)
1682 seq_printf(m, " anon=%lu", md->anon);
1683
1684 if (md->dirty)
1685 seq_printf(m, " dirty=%lu", md->dirty);
1686
1687 if (md->pages != md->anon && md->pages != md->dirty)
1688 seq_printf(m, " mapped=%lu", md->pages);
1689
1690 if (md->mapcount_max > 1)
1691 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1692
1693 if (md->swapcache)
1694 seq_printf(m, " swapcache=%lu", md->swapcache);
1695
1696 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1697 seq_printf(m, " active=%lu", md->active);
1698
1699 if (md->writeback)
1700 seq_printf(m, " writeback=%lu", md->writeback);
1701
1702 for_each_node_state(nid, N_MEMORY)
1703 if (md->node[nid])
1704 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1705
1706 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1707 out:
1708 seq_putc(m, '\n');
1709 m_cache_vma(m, vma);
1710 return 0;
1711 }
1712
1713 static int show_pid_numa_map(struct seq_file *m, void *v)
1714 {
1715 return show_numa_map(m, v, 1);
1716 }
1717
1718 static int show_tid_numa_map(struct seq_file *m, void *v)
1719 {
1720 return show_numa_map(m, v, 0);
1721 }
1722
1723 static const struct seq_operations proc_pid_numa_maps_op = {
1724 .start = m_start,
1725 .next = m_next,
1726 .stop = m_stop,
1727 .show = show_pid_numa_map,
1728 };
1729
1730 static const struct seq_operations proc_tid_numa_maps_op = {
1731 .start = m_start,
1732 .next = m_next,
1733 .stop = m_stop,
1734 .show = show_tid_numa_map,
1735 };
1736
1737 static int numa_maps_open(struct inode *inode, struct file *file,
1738 const struct seq_operations *ops)
1739 {
1740 return proc_maps_open(inode, file, ops,
1741 sizeof(struct numa_maps_private));
1742 }
1743
1744 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1745 {
1746 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1747 }
1748
1749 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1750 {
1751 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1752 }
1753
1754 const struct file_operations proc_pid_numa_maps_operations = {
1755 .open = pid_numa_maps_open,
1756 .read = seq_read,
1757 .llseek = seq_lseek,
1758 .release = proc_map_release,
1759 };
1760
1761 const struct file_operations proc_tid_numa_maps_operations = {
1762 .open = tid_numa_maps_open,
1763 .read = seq_read,
1764 .llseek = seq_lseek,
1765 .release = proc_map_release,
1766 };
1767 #endif /* CONFIG_NUMA */
This page took 0.076983 seconds and 6 git commands to generate.