mm: vmscan: invoke slab shrinkers from shrink_zone()
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!grab_super_passive(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
79
80 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
81 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89
90 /*
91 * prune the dcache first as the icache is pinned by it, then
92 * prune the icache, followed by the filesystem specific caches
93 */
94 freed = prune_dcache_sb(sb, dentries, sc->nid);
95 freed += prune_icache_sb(sb, inodes, sc->nid);
96
97 if (fs_objects) {
98 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
99 total_objects);
100 freed += sb->s_op->free_cached_objects(sb, fs_objects,
101 sc->nid);
102 }
103
104 drop_super(sb);
105 return freed;
106 }
107
108 static unsigned long super_cache_count(struct shrinker *shrink,
109 struct shrink_control *sc)
110 {
111 struct super_block *sb;
112 long total_objects = 0;
113
114 sb = container_of(shrink, struct super_block, s_shrink);
115
116 /*
117 * Don't call grab_super_passive as it is a potential
118 * scalability bottleneck. The counts could get updated
119 * between super_cache_count and super_cache_scan anyway.
120 * Call to super_cache_count with shrinker_rwsem held
121 * ensures the safety of call to list_lru_count_node() and
122 * s_op->nr_cached_objects().
123 */
124 if (sb->s_op && sb->s_op->nr_cached_objects)
125 total_objects = sb->s_op->nr_cached_objects(sb,
126 sc->nid);
127
128 total_objects += list_lru_count_node(&sb->s_dentry_lru,
129 sc->nid);
130 total_objects += list_lru_count_node(&sb->s_inode_lru,
131 sc->nid);
132
133 total_objects = vfs_pressure_ratio(total_objects);
134 return total_objects;
135 }
136
137 /**
138 * destroy_super - frees a superblock
139 * @s: superblock to free
140 *
141 * Frees a superblock.
142 */
143 static void destroy_super(struct super_block *s)
144 {
145 int i;
146 list_lru_destroy(&s->s_dentry_lru);
147 list_lru_destroy(&s->s_inode_lru);
148 for (i = 0; i < SB_FREEZE_LEVELS; i++)
149 percpu_counter_destroy(&s->s_writers.counter[i]);
150 security_sb_free(s);
151 WARN_ON(!list_empty(&s->s_mounts));
152 kfree(s->s_subtype);
153 kfree(s->s_options);
154 kfree_rcu(s, rcu);
155 }
156
157 /**
158 * alloc_super - create new superblock
159 * @type: filesystem type superblock should belong to
160 * @flags: the mount flags
161 *
162 * Allocates and initializes a new &struct super_block. alloc_super()
163 * returns a pointer new superblock or %NULL if allocation had failed.
164 */
165 static struct super_block *alloc_super(struct file_system_type *type, int flags)
166 {
167 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
168 static const struct super_operations default_op;
169 int i;
170
171 if (!s)
172 return NULL;
173
174 INIT_LIST_HEAD(&s->s_mounts);
175
176 if (security_sb_alloc(s))
177 goto fail;
178
179 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
180 if (percpu_counter_init(&s->s_writers.counter[i], 0,
181 GFP_KERNEL) < 0)
182 goto fail;
183 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
184 &type->s_writers_key[i], 0);
185 }
186 init_waitqueue_head(&s->s_writers.wait);
187 init_waitqueue_head(&s->s_writers.wait_unfrozen);
188 s->s_flags = flags;
189 s->s_bdi = &default_backing_dev_info;
190 INIT_HLIST_NODE(&s->s_instances);
191 INIT_HLIST_BL_HEAD(&s->s_anon);
192 INIT_LIST_HEAD(&s->s_inodes);
193
194 if (list_lru_init(&s->s_dentry_lru))
195 goto fail;
196 if (list_lru_init(&s->s_inode_lru))
197 goto fail;
198
199 init_rwsem(&s->s_umount);
200 lockdep_set_class(&s->s_umount, &type->s_umount_key);
201 /*
202 * sget() can have s_umount recursion.
203 *
204 * When it cannot find a suitable sb, it allocates a new
205 * one (this one), and tries again to find a suitable old
206 * one.
207 *
208 * In case that succeeds, it will acquire the s_umount
209 * lock of the old one. Since these are clearly distrinct
210 * locks, and this object isn't exposed yet, there's no
211 * risk of deadlocks.
212 *
213 * Annotate this by putting this lock in a different
214 * subclass.
215 */
216 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
217 s->s_count = 1;
218 atomic_set(&s->s_active, 1);
219 mutex_init(&s->s_vfs_rename_mutex);
220 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
221 mutex_init(&s->s_dquot.dqio_mutex);
222 mutex_init(&s->s_dquot.dqonoff_mutex);
223 s->s_maxbytes = MAX_NON_LFS;
224 s->s_op = &default_op;
225 s->s_time_gran = 1000000000;
226 s->cleancache_poolid = -1;
227
228 s->s_shrink.seeks = DEFAULT_SEEKS;
229 s->s_shrink.scan_objects = super_cache_scan;
230 s->s_shrink.count_objects = super_cache_count;
231 s->s_shrink.batch = 1024;
232 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
233 return s;
234
235 fail:
236 destroy_super(s);
237 return NULL;
238 }
239
240 /* Superblock refcounting */
241
242 /*
243 * Drop a superblock's refcount. The caller must hold sb_lock.
244 */
245 static void __put_super(struct super_block *sb)
246 {
247 if (!--sb->s_count) {
248 list_del_init(&sb->s_list);
249 destroy_super(sb);
250 }
251 }
252
253 /**
254 * put_super - drop a temporary reference to superblock
255 * @sb: superblock in question
256 *
257 * Drops a temporary reference, frees superblock if there's no
258 * references left.
259 */
260 static void put_super(struct super_block *sb)
261 {
262 spin_lock(&sb_lock);
263 __put_super(sb);
264 spin_unlock(&sb_lock);
265 }
266
267
268 /**
269 * deactivate_locked_super - drop an active reference to superblock
270 * @s: superblock to deactivate
271 *
272 * Drops an active reference to superblock, converting it into a temprory
273 * one if there is no other active references left. In that case we
274 * tell fs driver to shut it down and drop the temporary reference we
275 * had just acquired.
276 *
277 * Caller holds exclusive lock on superblock; that lock is released.
278 */
279 void deactivate_locked_super(struct super_block *s)
280 {
281 struct file_system_type *fs = s->s_type;
282 if (atomic_dec_and_test(&s->s_active)) {
283 cleancache_invalidate_fs(s);
284 unregister_shrinker(&s->s_shrink);
285 fs->kill_sb(s);
286
287 put_filesystem(fs);
288 put_super(s);
289 } else {
290 up_write(&s->s_umount);
291 }
292 }
293
294 EXPORT_SYMBOL(deactivate_locked_super);
295
296 /**
297 * deactivate_super - drop an active reference to superblock
298 * @s: superblock to deactivate
299 *
300 * Variant of deactivate_locked_super(), except that superblock is *not*
301 * locked by caller. If we are going to drop the final active reference,
302 * lock will be acquired prior to that.
303 */
304 void deactivate_super(struct super_block *s)
305 {
306 if (!atomic_add_unless(&s->s_active, -1, 1)) {
307 down_write(&s->s_umount);
308 deactivate_locked_super(s);
309 }
310 }
311
312 EXPORT_SYMBOL(deactivate_super);
313
314 /**
315 * grab_super - acquire an active reference
316 * @s: reference we are trying to make active
317 *
318 * Tries to acquire an active reference. grab_super() is used when we
319 * had just found a superblock in super_blocks or fs_type->fs_supers
320 * and want to turn it into a full-blown active reference. grab_super()
321 * is called with sb_lock held and drops it. Returns 1 in case of
322 * success, 0 if we had failed (superblock contents was already dead or
323 * dying when grab_super() had been called). Note that this is only
324 * called for superblocks not in rundown mode (== ones still on ->fs_supers
325 * of their type), so increment of ->s_count is OK here.
326 */
327 static int grab_super(struct super_block *s) __releases(sb_lock)
328 {
329 s->s_count++;
330 spin_unlock(&sb_lock);
331 down_write(&s->s_umount);
332 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
333 put_super(s);
334 return 1;
335 }
336 up_write(&s->s_umount);
337 put_super(s);
338 return 0;
339 }
340
341 /*
342 * grab_super_passive - acquire a passive reference
343 * @sb: reference we are trying to grab
344 *
345 * Tries to acquire a passive reference. This is used in places where we
346 * cannot take an active reference but we need to ensure that the
347 * superblock does not go away while we are working on it. It returns
348 * false if a reference was not gained, and returns true with the s_umount
349 * lock held in read mode if a reference is gained. On successful return,
350 * the caller must drop the s_umount lock and the passive reference when
351 * done.
352 */
353 bool grab_super_passive(struct super_block *sb)
354 {
355 spin_lock(&sb_lock);
356 if (hlist_unhashed(&sb->s_instances)) {
357 spin_unlock(&sb_lock);
358 return false;
359 }
360
361 sb->s_count++;
362 spin_unlock(&sb_lock);
363
364 if (down_read_trylock(&sb->s_umount)) {
365 if (sb->s_root && (sb->s_flags & MS_BORN))
366 return true;
367 up_read(&sb->s_umount);
368 }
369
370 put_super(sb);
371 return false;
372 }
373
374 /**
375 * generic_shutdown_super - common helper for ->kill_sb()
376 * @sb: superblock to kill
377 *
378 * generic_shutdown_super() does all fs-independent work on superblock
379 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
380 * that need destruction out of superblock, call generic_shutdown_super()
381 * and release aforementioned objects. Note: dentries and inodes _are_
382 * taken care of and do not need specific handling.
383 *
384 * Upon calling this function, the filesystem may no longer alter or
385 * rearrange the set of dentries belonging to this super_block, nor may it
386 * change the attachments of dentries to inodes.
387 */
388 void generic_shutdown_super(struct super_block *sb)
389 {
390 const struct super_operations *sop = sb->s_op;
391
392 if (sb->s_root) {
393 shrink_dcache_for_umount(sb);
394 sync_filesystem(sb);
395 sb->s_flags &= ~MS_ACTIVE;
396
397 fsnotify_unmount_inodes(&sb->s_inodes);
398
399 evict_inodes(sb);
400
401 if (sb->s_dio_done_wq) {
402 destroy_workqueue(sb->s_dio_done_wq);
403 sb->s_dio_done_wq = NULL;
404 }
405
406 if (sop->put_super)
407 sop->put_super(sb);
408
409 if (!list_empty(&sb->s_inodes)) {
410 printk("VFS: Busy inodes after unmount of %s. "
411 "Self-destruct in 5 seconds. Have a nice day...\n",
412 sb->s_id);
413 }
414 }
415 spin_lock(&sb_lock);
416 /* should be initialized for __put_super_and_need_restart() */
417 hlist_del_init(&sb->s_instances);
418 spin_unlock(&sb_lock);
419 up_write(&sb->s_umount);
420 }
421
422 EXPORT_SYMBOL(generic_shutdown_super);
423
424 /**
425 * sget - find or create a superblock
426 * @type: filesystem type superblock should belong to
427 * @test: comparison callback
428 * @set: setup callback
429 * @flags: mount flags
430 * @data: argument to each of them
431 */
432 struct super_block *sget(struct file_system_type *type,
433 int (*test)(struct super_block *,void *),
434 int (*set)(struct super_block *,void *),
435 int flags,
436 void *data)
437 {
438 struct super_block *s = NULL;
439 struct super_block *old;
440 int err;
441
442 retry:
443 spin_lock(&sb_lock);
444 if (test) {
445 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
446 if (!test(old, data))
447 continue;
448 if (!grab_super(old))
449 goto retry;
450 if (s) {
451 up_write(&s->s_umount);
452 destroy_super(s);
453 s = NULL;
454 }
455 return old;
456 }
457 }
458 if (!s) {
459 spin_unlock(&sb_lock);
460 s = alloc_super(type, flags);
461 if (!s)
462 return ERR_PTR(-ENOMEM);
463 goto retry;
464 }
465
466 err = set(s, data);
467 if (err) {
468 spin_unlock(&sb_lock);
469 up_write(&s->s_umount);
470 destroy_super(s);
471 return ERR_PTR(err);
472 }
473 s->s_type = type;
474 strlcpy(s->s_id, type->name, sizeof(s->s_id));
475 list_add_tail(&s->s_list, &super_blocks);
476 hlist_add_head(&s->s_instances, &type->fs_supers);
477 spin_unlock(&sb_lock);
478 get_filesystem(type);
479 register_shrinker(&s->s_shrink);
480 return s;
481 }
482
483 EXPORT_SYMBOL(sget);
484
485 void drop_super(struct super_block *sb)
486 {
487 up_read(&sb->s_umount);
488 put_super(sb);
489 }
490
491 EXPORT_SYMBOL(drop_super);
492
493 /**
494 * iterate_supers - call function for all active superblocks
495 * @f: function to call
496 * @arg: argument to pass to it
497 *
498 * Scans the superblock list and calls given function, passing it
499 * locked superblock and given argument.
500 */
501 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
502 {
503 struct super_block *sb, *p = NULL;
504
505 spin_lock(&sb_lock);
506 list_for_each_entry(sb, &super_blocks, s_list) {
507 if (hlist_unhashed(&sb->s_instances))
508 continue;
509 sb->s_count++;
510 spin_unlock(&sb_lock);
511
512 down_read(&sb->s_umount);
513 if (sb->s_root && (sb->s_flags & MS_BORN))
514 f(sb, arg);
515 up_read(&sb->s_umount);
516
517 spin_lock(&sb_lock);
518 if (p)
519 __put_super(p);
520 p = sb;
521 }
522 if (p)
523 __put_super(p);
524 spin_unlock(&sb_lock);
525 }
526
527 /**
528 * iterate_supers_type - call function for superblocks of given type
529 * @type: fs type
530 * @f: function to call
531 * @arg: argument to pass to it
532 *
533 * Scans the superblock list and calls given function, passing it
534 * locked superblock and given argument.
535 */
536 void iterate_supers_type(struct file_system_type *type,
537 void (*f)(struct super_block *, void *), void *arg)
538 {
539 struct super_block *sb, *p = NULL;
540
541 spin_lock(&sb_lock);
542 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
543 sb->s_count++;
544 spin_unlock(&sb_lock);
545
546 down_read(&sb->s_umount);
547 if (sb->s_root && (sb->s_flags & MS_BORN))
548 f(sb, arg);
549 up_read(&sb->s_umount);
550
551 spin_lock(&sb_lock);
552 if (p)
553 __put_super(p);
554 p = sb;
555 }
556 if (p)
557 __put_super(p);
558 spin_unlock(&sb_lock);
559 }
560
561 EXPORT_SYMBOL(iterate_supers_type);
562
563 /**
564 * get_super - get the superblock of a device
565 * @bdev: device to get the superblock for
566 *
567 * Scans the superblock list and finds the superblock of the file system
568 * mounted on the device given. %NULL is returned if no match is found.
569 */
570
571 struct super_block *get_super(struct block_device *bdev)
572 {
573 struct super_block *sb;
574
575 if (!bdev)
576 return NULL;
577
578 spin_lock(&sb_lock);
579 rescan:
580 list_for_each_entry(sb, &super_blocks, s_list) {
581 if (hlist_unhashed(&sb->s_instances))
582 continue;
583 if (sb->s_bdev == bdev) {
584 sb->s_count++;
585 spin_unlock(&sb_lock);
586 down_read(&sb->s_umount);
587 /* still alive? */
588 if (sb->s_root && (sb->s_flags & MS_BORN))
589 return sb;
590 up_read(&sb->s_umount);
591 /* nope, got unmounted */
592 spin_lock(&sb_lock);
593 __put_super(sb);
594 goto rescan;
595 }
596 }
597 spin_unlock(&sb_lock);
598 return NULL;
599 }
600
601 EXPORT_SYMBOL(get_super);
602
603 /**
604 * get_super_thawed - get thawed superblock of a device
605 * @bdev: device to get the superblock for
606 *
607 * Scans the superblock list and finds the superblock of the file system
608 * mounted on the device. The superblock is returned once it is thawed
609 * (or immediately if it was not frozen). %NULL is returned if no match
610 * is found.
611 */
612 struct super_block *get_super_thawed(struct block_device *bdev)
613 {
614 while (1) {
615 struct super_block *s = get_super(bdev);
616 if (!s || s->s_writers.frozen == SB_UNFROZEN)
617 return s;
618 up_read(&s->s_umount);
619 wait_event(s->s_writers.wait_unfrozen,
620 s->s_writers.frozen == SB_UNFROZEN);
621 put_super(s);
622 }
623 }
624 EXPORT_SYMBOL(get_super_thawed);
625
626 /**
627 * get_active_super - get an active reference to the superblock of a device
628 * @bdev: device to get the superblock for
629 *
630 * Scans the superblock list and finds the superblock of the file system
631 * mounted on the device given. Returns the superblock with an active
632 * reference or %NULL if none was found.
633 */
634 struct super_block *get_active_super(struct block_device *bdev)
635 {
636 struct super_block *sb;
637
638 if (!bdev)
639 return NULL;
640
641 restart:
642 spin_lock(&sb_lock);
643 list_for_each_entry(sb, &super_blocks, s_list) {
644 if (hlist_unhashed(&sb->s_instances))
645 continue;
646 if (sb->s_bdev == bdev) {
647 if (!grab_super(sb))
648 goto restart;
649 up_write(&sb->s_umount);
650 return sb;
651 }
652 }
653 spin_unlock(&sb_lock);
654 return NULL;
655 }
656
657 struct super_block *user_get_super(dev_t dev)
658 {
659 struct super_block *sb;
660
661 spin_lock(&sb_lock);
662 rescan:
663 list_for_each_entry(sb, &super_blocks, s_list) {
664 if (hlist_unhashed(&sb->s_instances))
665 continue;
666 if (sb->s_dev == dev) {
667 sb->s_count++;
668 spin_unlock(&sb_lock);
669 down_read(&sb->s_umount);
670 /* still alive? */
671 if (sb->s_root && (sb->s_flags & MS_BORN))
672 return sb;
673 up_read(&sb->s_umount);
674 /* nope, got unmounted */
675 spin_lock(&sb_lock);
676 __put_super(sb);
677 goto rescan;
678 }
679 }
680 spin_unlock(&sb_lock);
681 return NULL;
682 }
683
684 /**
685 * do_remount_sb - asks filesystem to change mount options.
686 * @sb: superblock in question
687 * @flags: numeric part of options
688 * @data: the rest of options
689 * @force: whether or not to force the change
690 *
691 * Alters the mount options of a mounted file system.
692 */
693 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
694 {
695 int retval;
696 int remount_ro;
697
698 if (sb->s_writers.frozen != SB_UNFROZEN)
699 return -EBUSY;
700
701 #ifdef CONFIG_BLOCK
702 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
703 return -EACCES;
704 #endif
705
706 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
707
708 if (remount_ro) {
709 if (sb->s_pins.first) {
710 up_write(&sb->s_umount);
711 sb_pin_kill(sb);
712 down_write(&sb->s_umount);
713 if (!sb->s_root)
714 return 0;
715 if (sb->s_writers.frozen != SB_UNFROZEN)
716 return -EBUSY;
717 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
718 }
719 }
720 shrink_dcache_sb(sb);
721
722 /* If we are remounting RDONLY and current sb is read/write,
723 make sure there are no rw files opened */
724 if (remount_ro) {
725 if (force) {
726 sb->s_readonly_remount = 1;
727 smp_wmb();
728 } else {
729 retval = sb_prepare_remount_readonly(sb);
730 if (retval)
731 return retval;
732 }
733 }
734
735 if (sb->s_op->remount_fs) {
736 retval = sb->s_op->remount_fs(sb, &flags, data);
737 if (retval) {
738 if (!force)
739 goto cancel_readonly;
740 /* If forced remount, go ahead despite any errors */
741 WARN(1, "forced remount of a %s fs returned %i\n",
742 sb->s_type->name, retval);
743 }
744 }
745 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
746 /* Needs to be ordered wrt mnt_is_readonly() */
747 smp_wmb();
748 sb->s_readonly_remount = 0;
749
750 /*
751 * Some filesystems modify their metadata via some other path than the
752 * bdev buffer cache (eg. use a private mapping, or directories in
753 * pagecache, etc). Also file data modifications go via their own
754 * mappings. So If we try to mount readonly then copy the filesystem
755 * from bdev, we could get stale data, so invalidate it to give a best
756 * effort at coherency.
757 */
758 if (remount_ro && sb->s_bdev)
759 invalidate_bdev(sb->s_bdev);
760 return 0;
761
762 cancel_readonly:
763 sb->s_readonly_remount = 0;
764 return retval;
765 }
766
767 static void do_emergency_remount(struct work_struct *work)
768 {
769 struct super_block *sb, *p = NULL;
770
771 spin_lock(&sb_lock);
772 list_for_each_entry(sb, &super_blocks, s_list) {
773 if (hlist_unhashed(&sb->s_instances))
774 continue;
775 sb->s_count++;
776 spin_unlock(&sb_lock);
777 down_write(&sb->s_umount);
778 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
779 !(sb->s_flags & MS_RDONLY)) {
780 /*
781 * What lock protects sb->s_flags??
782 */
783 do_remount_sb(sb, MS_RDONLY, NULL, 1);
784 }
785 up_write(&sb->s_umount);
786 spin_lock(&sb_lock);
787 if (p)
788 __put_super(p);
789 p = sb;
790 }
791 if (p)
792 __put_super(p);
793 spin_unlock(&sb_lock);
794 kfree(work);
795 printk("Emergency Remount complete\n");
796 }
797
798 void emergency_remount(void)
799 {
800 struct work_struct *work;
801
802 work = kmalloc(sizeof(*work), GFP_ATOMIC);
803 if (work) {
804 INIT_WORK(work, do_emergency_remount);
805 schedule_work(work);
806 }
807 }
808
809 /*
810 * Unnamed block devices are dummy devices used by virtual
811 * filesystems which don't use real block-devices. -- jrs
812 */
813
814 static DEFINE_IDA(unnamed_dev_ida);
815 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
816 /* Many userspace utilities consider an FSID of 0 invalid.
817 * Always return at least 1 from get_anon_bdev.
818 */
819 static int unnamed_dev_start = 1;
820
821 int get_anon_bdev(dev_t *p)
822 {
823 int dev;
824 int error;
825
826 retry:
827 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
828 return -ENOMEM;
829 spin_lock(&unnamed_dev_lock);
830 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
831 if (!error)
832 unnamed_dev_start = dev + 1;
833 spin_unlock(&unnamed_dev_lock);
834 if (error == -EAGAIN)
835 /* We raced and lost with another CPU. */
836 goto retry;
837 else if (error)
838 return -EAGAIN;
839
840 if (dev == (1 << MINORBITS)) {
841 spin_lock(&unnamed_dev_lock);
842 ida_remove(&unnamed_dev_ida, dev);
843 if (unnamed_dev_start > dev)
844 unnamed_dev_start = dev;
845 spin_unlock(&unnamed_dev_lock);
846 return -EMFILE;
847 }
848 *p = MKDEV(0, dev & MINORMASK);
849 return 0;
850 }
851 EXPORT_SYMBOL(get_anon_bdev);
852
853 void free_anon_bdev(dev_t dev)
854 {
855 int slot = MINOR(dev);
856 spin_lock(&unnamed_dev_lock);
857 ida_remove(&unnamed_dev_ida, slot);
858 if (slot < unnamed_dev_start)
859 unnamed_dev_start = slot;
860 spin_unlock(&unnamed_dev_lock);
861 }
862 EXPORT_SYMBOL(free_anon_bdev);
863
864 int set_anon_super(struct super_block *s, void *data)
865 {
866 int error = get_anon_bdev(&s->s_dev);
867 if (!error)
868 s->s_bdi = &noop_backing_dev_info;
869 return error;
870 }
871
872 EXPORT_SYMBOL(set_anon_super);
873
874 void kill_anon_super(struct super_block *sb)
875 {
876 dev_t dev = sb->s_dev;
877 generic_shutdown_super(sb);
878 free_anon_bdev(dev);
879 }
880
881 EXPORT_SYMBOL(kill_anon_super);
882
883 void kill_litter_super(struct super_block *sb)
884 {
885 if (sb->s_root)
886 d_genocide(sb->s_root);
887 kill_anon_super(sb);
888 }
889
890 EXPORT_SYMBOL(kill_litter_super);
891
892 static int ns_test_super(struct super_block *sb, void *data)
893 {
894 return sb->s_fs_info == data;
895 }
896
897 static int ns_set_super(struct super_block *sb, void *data)
898 {
899 sb->s_fs_info = data;
900 return set_anon_super(sb, NULL);
901 }
902
903 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
904 void *data, int (*fill_super)(struct super_block *, void *, int))
905 {
906 struct super_block *sb;
907
908 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
909 if (IS_ERR(sb))
910 return ERR_CAST(sb);
911
912 if (!sb->s_root) {
913 int err;
914 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
915 if (err) {
916 deactivate_locked_super(sb);
917 return ERR_PTR(err);
918 }
919
920 sb->s_flags |= MS_ACTIVE;
921 }
922
923 return dget(sb->s_root);
924 }
925
926 EXPORT_SYMBOL(mount_ns);
927
928 #ifdef CONFIG_BLOCK
929 static int set_bdev_super(struct super_block *s, void *data)
930 {
931 s->s_bdev = data;
932 s->s_dev = s->s_bdev->bd_dev;
933
934 /*
935 * We set the bdi here to the queue backing, file systems can
936 * overwrite this in ->fill_super()
937 */
938 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
939 return 0;
940 }
941
942 static int test_bdev_super(struct super_block *s, void *data)
943 {
944 return (void *)s->s_bdev == data;
945 }
946
947 struct dentry *mount_bdev(struct file_system_type *fs_type,
948 int flags, const char *dev_name, void *data,
949 int (*fill_super)(struct super_block *, void *, int))
950 {
951 struct block_device *bdev;
952 struct super_block *s;
953 fmode_t mode = FMODE_READ | FMODE_EXCL;
954 int error = 0;
955
956 if (!(flags & MS_RDONLY))
957 mode |= FMODE_WRITE;
958
959 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
960 if (IS_ERR(bdev))
961 return ERR_CAST(bdev);
962
963 /*
964 * once the super is inserted into the list by sget, s_umount
965 * will protect the lockfs code from trying to start a snapshot
966 * while we are mounting
967 */
968 mutex_lock(&bdev->bd_fsfreeze_mutex);
969 if (bdev->bd_fsfreeze_count > 0) {
970 mutex_unlock(&bdev->bd_fsfreeze_mutex);
971 error = -EBUSY;
972 goto error_bdev;
973 }
974 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
975 bdev);
976 mutex_unlock(&bdev->bd_fsfreeze_mutex);
977 if (IS_ERR(s))
978 goto error_s;
979
980 if (s->s_root) {
981 if ((flags ^ s->s_flags) & MS_RDONLY) {
982 deactivate_locked_super(s);
983 error = -EBUSY;
984 goto error_bdev;
985 }
986
987 /*
988 * s_umount nests inside bd_mutex during
989 * __invalidate_device(). blkdev_put() acquires
990 * bd_mutex and can't be called under s_umount. Drop
991 * s_umount temporarily. This is safe as we're
992 * holding an active reference.
993 */
994 up_write(&s->s_umount);
995 blkdev_put(bdev, mode);
996 down_write(&s->s_umount);
997 } else {
998 char b[BDEVNAME_SIZE];
999
1000 s->s_mode = mode;
1001 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1002 sb_set_blocksize(s, block_size(bdev));
1003 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1004 if (error) {
1005 deactivate_locked_super(s);
1006 goto error;
1007 }
1008
1009 s->s_flags |= MS_ACTIVE;
1010 bdev->bd_super = s;
1011 }
1012
1013 return dget(s->s_root);
1014
1015 error_s:
1016 error = PTR_ERR(s);
1017 error_bdev:
1018 blkdev_put(bdev, mode);
1019 error:
1020 return ERR_PTR(error);
1021 }
1022 EXPORT_SYMBOL(mount_bdev);
1023
1024 void kill_block_super(struct super_block *sb)
1025 {
1026 struct block_device *bdev = sb->s_bdev;
1027 fmode_t mode = sb->s_mode;
1028
1029 bdev->bd_super = NULL;
1030 generic_shutdown_super(sb);
1031 sync_blockdev(bdev);
1032 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1033 blkdev_put(bdev, mode | FMODE_EXCL);
1034 }
1035
1036 EXPORT_SYMBOL(kill_block_super);
1037 #endif
1038
1039 struct dentry *mount_nodev(struct file_system_type *fs_type,
1040 int flags, void *data,
1041 int (*fill_super)(struct super_block *, void *, int))
1042 {
1043 int error;
1044 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1045
1046 if (IS_ERR(s))
1047 return ERR_CAST(s);
1048
1049 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1050 if (error) {
1051 deactivate_locked_super(s);
1052 return ERR_PTR(error);
1053 }
1054 s->s_flags |= MS_ACTIVE;
1055 return dget(s->s_root);
1056 }
1057 EXPORT_SYMBOL(mount_nodev);
1058
1059 static int compare_single(struct super_block *s, void *p)
1060 {
1061 return 1;
1062 }
1063
1064 struct dentry *mount_single(struct file_system_type *fs_type,
1065 int flags, void *data,
1066 int (*fill_super)(struct super_block *, void *, int))
1067 {
1068 struct super_block *s;
1069 int error;
1070
1071 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1072 if (IS_ERR(s))
1073 return ERR_CAST(s);
1074 if (!s->s_root) {
1075 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1076 if (error) {
1077 deactivate_locked_super(s);
1078 return ERR_PTR(error);
1079 }
1080 s->s_flags |= MS_ACTIVE;
1081 } else {
1082 do_remount_sb(s, flags, data, 0);
1083 }
1084 return dget(s->s_root);
1085 }
1086 EXPORT_SYMBOL(mount_single);
1087
1088 struct dentry *
1089 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1090 {
1091 struct dentry *root;
1092 struct super_block *sb;
1093 char *secdata = NULL;
1094 int error = -ENOMEM;
1095
1096 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1097 secdata = alloc_secdata();
1098 if (!secdata)
1099 goto out;
1100
1101 error = security_sb_copy_data(data, secdata);
1102 if (error)
1103 goto out_free_secdata;
1104 }
1105
1106 root = type->mount(type, flags, name, data);
1107 if (IS_ERR(root)) {
1108 error = PTR_ERR(root);
1109 goto out_free_secdata;
1110 }
1111 sb = root->d_sb;
1112 BUG_ON(!sb);
1113 WARN_ON(!sb->s_bdi);
1114 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1115 sb->s_flags |= MS_BORN;
1116
1117 error = security_sb_kern_mount(sb, flags, secdata);
1118 if (error)
1119 goto out_sb;
1120
1121 /*
1122 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1123 * but s_maxbytes was an unsigned long long for many releases. Throw
1124 * this warning for a little while to try and catch filesystems that
1125 * violate this rule.
1126 */
1127 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1128 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1129
1130 up_write(&sb->s_umount);
1131 free_secdata(secdata);
1132 return root;
1133 out_sb:
1134 dput(root);
1135 deactivate_locked_super(sb);
1136 out_free_secdata:
1137 free_secdata(secdata);
1138 out:
1139 return ERR_PTR(error);
1140 }
1141
1142 /*
1143 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1144 * instead.
1145 */
1146 void __sb_end_write(struct super_block *sb, int level)
1147 {
1148 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1149 /*
1150 * Make sure s_writers are updated before we wake up waiters in
1151 * freeze_super().
1152 */
1153 smp_mb();
1154 if (waitqueue_active(&sb->s_writers.wait))
1155 wake_up(&sb->s_writers.wait);
1156 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1157 }
1158 EXPORT_SYMBOL(__sb_end_write);
1159
1160 #ifdef CONFIG_LOCKDEP
1161 /*
1162 * We want lockdep to tell us about possible deadlocks with freezing but
1163 * it's it bit tricky to properly instrument it. Getting a freeze protection
1164 * works as getting a read lock but there are subtle problems. XFS for example
1165 * gets freeze protection on internal level twice in some cases, which is OK
1166 * only because we already hold a freeze protection also on higher level. Due
1167 * to these cases we have to tell lockdep we are doing trylock when we
1168 * already hold a freeze protection for a higher freeze level.
1169 */
1170 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1171 unsigned long ip)
1172 {
1173 int i;
1174
1175 if (!trylock) {
1176 for (i = 0; i < level - 1; i++)
1177 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1178 trylock = true;
1179 break;
1180 }
1181 }
1182 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1183 }
1184 #endif
1185
1186 /*
1187 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1188 * instead.
1189 */
1190 int __sb_start_write(struct super_block *sb, int level, bool wait)
1191 {
1192 retry:
1193 if (unlikely(sb->s_writers.frozen >= level)) {
1194 if (!wait)
1195 return 0;
1196 wait_event(sb->s_writers.wait_unfrozen,
1197 sb->s_writers.frozen < level);
1198 }
1199
1200 #ifdef CONFIG_LOCKDEP
1201 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1202 #endif
1203 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1204 /*
1205 * Make sure counter is updated before we check for frozen.
1206 * freeze_super() first sets frozen and then checks the counter.
1207 */
1208 smp_mb();
1209 if (unlikely(sb->s_writers.frozen >= level)) {
1210 __sb_end_write(sb, level);
1211 goto retry;
1212 }
1213 return 1;
1214 }
1215 EXPORT_SYMBOL(__sb_start_write);
1216
1217 /**
1218 * sb_wait_write - wait until all writers to given file system finish
1219 * @sb: the super for which we wait
1220 * @level: type of writers we wait for (normal vs page fault)
1221 *
1222 * This function waits until there are no writers of given type to given file
1223 * system. Caller of this function should make sure there can be no new writers
1224 * of type @level before calling this function. Otherwise this function can
1225 * livelock.
1226 */
1227 static void sb_wait_write(struct super_block *sb, int level)
1228 {
1229 s64 writers;
1230
1231 /*
1232 * We just cycle-through lockdep here so that it does not complain
1233 * about returning with lock to userspace
1234 */
1235 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1236 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1237
1238 do {
1239 DEFINE_WAIT(wait);
1240
1241 /*
1242 * We use a barrier in prepare_to_wait() to separate setting
1243 * of frozen and checking of the counter
1244 */
1245 prepare_to_wait(&sb->s_writers.wait, &wait,
1246 TASK_UNINTERRUPTIBLE);
1247
1248 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1249 if (writers)
1250 schedule();
1251
1252 finish_wait(&sb->s_writers.wait, &wait);
1253 } while (writers);
1254 }
1255
1256 /**
1257 * freeze_super - lock the filesystem and force it into a consistent state
1258 * @sb: the super to lock
1259 *
1260 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1261 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1262 * -EBUSY.
1263 *
1264 * During this function, sb->s_writers.frozen goes through these values:
1265 *
1266 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1267 *
1268 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1269 * writes should be blocked, though page faults are still allowed. We wait for
1270 * all writes to complete and then proceed to the next stage.
1271 *
1272 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1273 * but internal fs threads can still modify the filesystem (although they
1274 * should not dirty new pages or inodes), writeback can run etc. After waiting
1275 * for all running page faults we sync the filesystem which will clean all
1276 * dirty pages and inodes (no new dirty pages or inodes can be created when
1277 * sync is running).
1278 *
1279 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1280 * modification are blocked (e.g. XFS preallocation truncation on inode
1281 * reclaim). This is usually implemented by blocking new transactions for
1282 * filesystems that have them and need this additional guard. After all
1283 * internal writers are finished we call ->freeze_fs() to finish filesystem
1284 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1285 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1286 *
1287 * sb->s_writers.frozen is protected by sb->s_umount.
1288 */
1289 int freeze_super(struct super_block *sb)
1290 {
1291 int ret;
1292
1293 atomic_inc(&sb->s_active);
1294 down_write(&sb->s_umount);
1295 if (sb->s_writers.frozen != SB_UNFROZEN) {
1296 deactivate_locked_super(sb);
1297 return -EBUSY;
1298 }
1299
1300 if (!(sb->s_flags & MS_BORN)) {
1301 up_write(&sb->s_umount);
1302 return 0; /* sic - it's "nothing to do" */
1303 }
1304
1305 if (sb->s_flags & MS_RDONLY) {
1306 /* Nothing to do really... */
1307 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1308 up_write(&sb->s_umount);
1309 return 0;
1310 }
1311
1312 /* From now on, no new normal writers can start */
1313 sb->s_writers.frozen = SB_FREEZE_WRITE;
1314 smp_wmb();
1315
1316 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1317 up_write(&sb->s_umount);
1318
1319 sb_wait_write(sb, SB_FREEZE_WRITE);
1320
1321 /* Now we go and block page faults... */
1322 down_write(&sb->s_umount);
1323 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1324 smp_wmb();
1325
1326 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1327
1328 /* All writers are done so after syncing there won't be dirty data */
1329 sync_filesystem(sb);
1330
1331 /* Now wait for internal filesystem counter */
1332 sb->s_writers.frozen = SB_FREEZE_FS;
1333 smp_wmb();
1334 sb_wait_write(sb, SB_FREEZE_FS);
1335
1336 if (sb->s_op->freeze_fs) {
1337 ret = sb->s_op->freeze_fs(sb);
1338 if (ret) {
1339 printk(KERN_ERR
1340 "VFS:Filesystem freeze failed\n");
1341 sb->s_writers.frozen = SB_UNFROZEN;
1342 smp_wmb();
1343 wake_up(&sb->s_writers.wait_unfrozen);
1344 deactivate_locked_super(sb);
1345 return ret;
1346 }
1347 }
1348 /*
1349 * This is just for debugging purposes so that fs can warn if it
1350 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1351 */
1352 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1353 up_write(&sb->s_umount);
1354 return 0;
1355 }
1356 EXPORT_SYMBOL(freeze_super);
1357
1358 /**
1359 * thaw_super -- unlock filesystem
1360 * @sb: the super to thaw
1361 *
1362 * Unlocks the filesystem and marks it writeable again after freeze_super().
1363 */
1364 int thaw_super(struct super_block *sb)
1365 {
1366 int error;
1367
1368 down_write(&sb->s_umount);
1369 if (sb->s_writers.frozen == SB_UNFROZEN) {
1370 up_write(&sb->s_umount);
1371 return -EINVAL;
1372 }
1373
1374 if (sb->s_flags & MS_RDONLY)
1375 goto out;
1376
1377 if (sb->s_op->unfreeze_fs) {
1378 error = sb->s_op->unfreeze_fs(sb);
1379 if (error) {
1380 printk(KERN_ERR
1381 "VFS:Filesystem thaw failed\n");
1382 up_write(&sb->s_umount);
1383 return error;
1384 }
1385 }
1386
1387 out:
1388 sb->s_writers.frozen = SB_UNFROZEN;
1389 smp_wmb();
1390 wake_up(&sb->s_writers.wait_unfrozen);
1391 deactivate_locked_super(sb);
1392
1393 return 0;
1394 }
1395 EXPORT_SYMBOL(thaw_super);
This page took 0.05786 seconds and 5 git commands to generate.