Merge branch 'cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET 32768
79 #define VSD_MAX_SECTOR_OFFSET 0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101 struct logicalVolIntegrityDesc *lvid;
102 unsigned int partnum;
103 unsigned int offset;
104
105 if (!UDF_SB(sb)->s_lvid_bh)
106 return NULL;
107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 partnum = le32_to_cpu(lvid->numOfPartitions);
109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 (2 * sizeof(uint32_t)) < partnum) {
112 udf_err(sb, "Logical volume integrity descriptor corrupted "
113 "(numOfPartitions = %u)!\n", partnum);
114 return NULL;
115 }
116 /* The offset is to skip freeSpaceTable and sizeTable arrays */
117 offset = partnum * 2 * sizeof(uint32_t);
118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124 {
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 struct udf_inode_info *ei;
142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_next_alloc_block = 0;
149 ei->i_next_alloc_goal = 0;
150 ei->i_strat4096 = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154
155 return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160 struct inode *inode = container_of(head, struct inode, i_rcu);
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166 call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173 ei->i_ext.i_data = NULL;
174 inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 sizeof(struct udf_inode_info),
181 0, (SLAB_RECLAIM_ACCOUNT |
182 SLAB_MEM_SPREAD |
183 SLAB_ACCOUNT),
184 init_once);
185 if (!udf_inode_cachep)
186 return -ENOMEM;
187 return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192 /*
193 * Make sure all delayed rcu free inodes are flushed before we
194 * destroy cache.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202 .alloc_inode = udf_alloc_inode,
203 .destroy_inode = udf_destroy_inode,
204 .write_inode = udf_write_inode,
205 .evict_inode = udf_evict_inode,
206 .put_super = udf_put_super,
207 .sync_fs = udf_sync_fs,
208 .statfs = udf_statfs,
209 .remount_fs = udf_remount_fs,
210 .show_options = udf_show_options,
211 };
212
213 struct udf_options {
214 unsigned char novrs;
215 unsigned int blocksize;
216 unsigned int session;
217 unsigned int lastblock;
218 unsigned int anchor;
219 unsigned int volume;
220 unsigned short partition;
221 unsigned int fileset;
222 unsigned int rootdir;
223 unsigned int flags;
224 umode_t umask;
225 kgid_t gid;
226 kuid_t uid;
227 umode_t fmode;
228 umode_t dmode;
229 struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234 int err;
235
236 err = init_inodecache();
237 if (err)
238 goto out1;
239 err = register_filesystem(&udf_fstype);
240 if (err)
241 goto out;
242
243 return 0;
244
245 out:
246 destroy_inodecache();
247
248 out1:
249 return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254 unregister_filesystem(&udf_fstype);
255 destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263 struct udf_sb_info *sbi = UDF_SB(sb);
264
265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 GFP_KERNEL);
267 if (!sbi->s_partmaps) {
268 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 count);
270 sbi->s_partitions = 0;
271 return -ENOMEM;
272 }
273
274 sbi->s_partitions = count;
275 return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280 int i;
281 int nr_groups = bitmap->s_nr_groups;
282
283 for (i = 0; i < nr_groups; i++)
284 if (bitmap->s_block_bitmap[i])
285 brelse(bitmap->s_block_bitmap[i]);
286
287 kvfree(bitmap);
288 }
289
290 static void udf_free_partition(struct udf_part_map *map)
291 {
292 int i;
293 struct udf_meta_data *mdata;
294
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
296 iput(map->s_uspace.s_table);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
298 iput(map->s_fspace.s_table);
299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
300 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
302 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
303 if (map->s_partition_type == UDF_SPARABLE_MAP15)
304 for (i = 0; i < 4; i++)
305 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
306 else if (map->s_partition_type == UDF_METADATA_MAP25) {
307 mdata = &map->s_type_specific.s_metadata;
308 iput(mdata->s_metadata_fe);
309 mdata->s_metadata_fe = NULL;
310
311 iput(mdata->s_mirror_fe);
312 mdata->s_mirror_fe = NULL;
313
314 iput(mdata->s_bitmap_fe);
315 mdata->s_bitmap_fe = NULL;
316 }
317 }
318
319 static void udf_sb_free_partitions(struct super_block *sb)
320 {
321 struct udf_sb_info *sbi = UDF_SB(sb);
322 int i;
323 if (sbi->s_partmaps == NULL)
324 return;
325 for (i = 0; i < sbi->s_partitions; i++)
326 udf_free_partition(&sbi->s_partmaps[i]);
327 kfree(sbi->s_partmaps);
328 sbi->s_partmaps = NULL;
329 }
330
331 static int udf_show_options(struct seq_file *seq, struct dentry *root)
332 {
333 struct super_block *sb = root->d_sb;
334 struct udf_sb_info *sbi = UDF_SB(sb);
335
336 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
337 seq_puts(seq, ",nostrict");
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
339 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
341 seq_puts(seq, ",unhide");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
343 seq_puts(seq, ",undelete");
344 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
345 seq_puts(seq, ",noadinicb");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
347 seq_puts(seq, ",shortad");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
349 seq_puts(seq, ",uid=forget");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
351 seq_puts(seq, ",uid=ignore");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
353 seq_puts(seq, ",gid=forget");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
355 seq_puts(seq, ",gid=ignore");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
357 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
359 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
360 if (sbi->s_umask != 0)
361 seq_printf(seq, ",umask=%ho", sbi->s_umask);
362 if (sbi->s_fmode != UDF_INVALID_MODE)
363 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
364 if (sbi->s_dmode != UDF_INVALID_MODE)
365 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
367 seq_printf(seq, ",session=%u", sbi->s_session);
368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
369 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
370 if (sbi->s_anchor != 0)
371 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
372 /*
373 * volume, partition, fileset and rootdir seem to be ignored
374 * currently
375 */
376 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
377 seq_puts(seq, ",utf8");
378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
379 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
380
381 return 0;
382 }
383
384 /*
385 * udf_parse_options
386 *
387 * PURPOSE
388 * Parse mount options.
389 *
390 * DESCRIPTION
391 * The following mount options are supported:
392 *
393 * gid= Set the default group.
394 * umask= Set the default umask.
395 * mode= Set the default file permissions.
396 * dmode= Set the default directory permissions.
397 * uid= Set the default user.
398 * bs= Set the block size.
399 * unhide Show otherwise hidden files.
400 * undelete Show deleted files in lists.
401 * adinicb Embed data in the inode (default)
402 * noadinicb Don't embed data in the inode
403 * shortad Use short ad's
404 * longad Use long ad's (default)
405 * nostrict Unset strict conformance
406 * iocharset= Set the NLS character set
407 *
408 * The remaining are for debugging and disaster recovery:
409 *
410 * novrs Skip volume sequence recognition
411 *
412 * The following expect a offset from 0.
413 *
414 * session= Set the CDROM session (default= last session)
415 * anchor= Override standard anchor location. (default= 256)
416 * volume= Override the VolumeDesc location. (unused)
417 * partition= Override the PartitionDesc location. (unused)
418 * lastblock= Set the last block of the filesystem/
419 *
420 * The following expect a offset from the partition root.
421 *
422 * fileset= Override the fileset block location. (unused)
423 * rootdir= Override the root directory location. (unused)
424 * WARNING: overriding the rootdir to a non-directory may
425 * yield highly unpredictable results.
426 *
427 * PRE-CONDITIONS
428 * options Pointer to mount options string.
429 * uopts Pointer to mount options variable.
430 *
431 * POST-CONDITIONS
432 * <return> 1 Mount options parsed okay.
433 * <return> 0 Error parsing mount options.
434 *
435 * HISTORY
436 * July 1, 1997 - Andrew E. Mileski
437 * Written, tested, and released.
438 */
439
440 enum {
441 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
442 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
443 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
444 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
445 Opt_rootdir, Opt_utf8, Opt_iocharset,
446 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
447 Opt_fmode, Opt_dmode
448 };
449
450 static const match_table_t tokens = {
451 {Opt_novrs, "novrs"},
452 {Opt_nostrict, "nostrict"},
453 {Opt_bs, "bs=%u"},
454 {Opt_unhide, "unhide"},
455 {Opt_undelete, "undelete"},
456 {Opt_noadinicb, "noadinicb"},
457 {Opt_adinicb, "adinicb"},
458 {Opt_shortad, "shortad"},
459 {Opt_longad, "longad"},
460 {Opt_uforget, "uid=forget"},
461 {Opt_uignore, "uid=ignore"},
462 {Opt_gforget, "gid=forget"},
463 {Opt_gignore, "gid=ignore"},
464 {Opt_gid, "gid=%u"},
465 {Opt_uid, "uid=%u"},
466 {Opt_umask, "umask=%o"},
467 {Opt_session, "session=%u"},
468 {Opt_lastblock, "lastblock=%u"},
469 {Opt_anchor, "anchor=%u"},
470 {Opt_volume, "volume=%u"},
471 {Opt_partition, "partition=%u"},
472 {Opt_fileset, "fileset=%u"},
473 {Opt_rootdir, "rootdir=%u"},
474 {Opt_utf8, "utf8"},
475 {Opt_iocharset, "iocharset=%s"},
476 {Opt_fmode, "mode=%o"},
477 {Opt_dmode, "dmode=%o"},
478 {Opt_err, NULL}
479 };
480
481 static int udf_parse_options(char *options, struct udf_options *uopt,
482 bool remount)
483 {
484 char *p;
485 int option;
486
487 uopt->novrs = 0;
488 uopt->partition = 0xFFFF;
489 uopt->session = 0xFFFFFFFF;
490 uopt->lastblock = 0;
491 uopt->anchor = 0;
492 uopt->volume = 0xFFFFFFFF;
493 uopt->rootdir = 0xFFFFFFFF;
494 uopt->fileset = 0xFFFFFFFF;
495 uopt->nls_map = NULL;
496
497 if (!options)
498 return 1;
499
500 while ((p = strsep(&options, ",")) != NULL) {
501 substring_t args[MAX_OPT_ARGS];
502 int token;
503 unsigned n;
504 if (!*p)
505 continue;
506
507 token = match_token(p, tokens, args);
508 switch (token) {
509 case Opt_novrs:
510 uopt->novrs = 1;
511 break;
512 case Opt_bs:
513 if (match_int(&args[0], &option))
514 return 0;
515 n = option;
516 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
517 return 0;
518 uopt->blocksize = n;
519 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
520 break;
521 case Opt_unhide:
522 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
523 break;
524 case Opt_undelete:
525 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
526 break;
527 case Opt_noadinicb:
528 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
529 break;
530 case Opt_adinicb:
531 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
532 break;
533 case Opt_shortad:
534 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
535 break;
536 case Opt_longad:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
538 break;
539 case Opt_gid:
540 if (match_int(args, &option))
541 return 0;
542 uopt->gid = make_kgid(current_user_ns(), option);
543 if (!gid_valid(uopt->gid))
544 return 0;
545 uopt->flags |= (1 << UDF_FLAG_GID_SET);
546 break;
547 case Opt_uid:
548 if (match_int(args, &option))
549 return 0;
550 uopt->uid = make_kuid(current_user_ns(), option);
551 if (!uid_valid(uopt->uid))
552 return 0;
553 uopt->flags |= (1 << UDF_FLAG_UID_SET);
554 break;
555 case Opt_umask:
556 if (match_octal(args, &option))
557 return 0;
558 uopt->umask = option;
559 break;
560 case Opt_nostrict:
561 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
562 break;
563 case Opt_session:
564 if (match_int(args, &option))
565 return 0;
566 uopt->session = option;
567 if (!remount)
568 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
569 break;
570 case Opt_lastblock:
571 if (match_int(args, &option))
572 return 0;
573 uopt->lastblock = option;
574 if (!remount)
575 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
576 break;
577 case Opt_anchor:
578 if (match_int(args, &option))
579 return 0;
580 uopt->anchor = option;
581 break;
582 case Opt_volume:
583 if (match_int(args, &option))
584 return 0;
585 uopt->volume = option;
586 break;
587 case Opt_partition:
588 if (match_int(args, &option))
589 return 0;
590 uopt->partition = option;
591 break;
592 case Opt_fileset:
593 if (match_int(args, &option))
594 return 0;
595 uopt->fileset = option;
596 break;
597 case Opt_rootdir:
598 if (match_int(args, &option))
599 return 0;
600 uopt->rootdir = option;
601 break;
602 case Opt_utf8:
603 uopt->flags |= (1 << UDF_FLAG_UTF8);
604 break;
605 #ifdef CONFIG_UDF_NLS
606 case Opt_iocharset:
607 uopt->nls_map = load_nls(args[0].from);
608 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
609 break;
610 #endif
611 case Opt_uignore:
612 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
613 break;
614 case Opt_uforget:
615 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
616 break;
617 case Opt_gignore:
618 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
619 break;
620 case Opt_gforget:
621 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
622 break;
623 case Opt_fmode:
624 if (match_octal(args, &option))
625 return 0;
626 uopt->fmode = option & 0777;
627 break;
628 case Opt_dmode:
629 if (match_octal(args, &option))
630 return 0;
631 uopt->dmode = option & 0777;
632 break;
633 default:
634 pr_err("bad mount option \"%s\" or missing value\n", p);
635 return 0;
636 }
637 }
638 return 1;
639 }
640
641 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
642 {
643 struct udf_options uopt;
644 struct udf_sb_info *sbi = UDF_SB(sb);
645 int error = 0;
646 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
647
648 sync_filesystem(sb);
649 if (lvidiu) {
650 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
651 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
652 return -EACCES;
653 }
654
655 uopt.flags = sbi->s_flags;
656 uopt.uid = sbi->s_uid;
657 uopt.gid = sbi->s_gid;
658 uopt.umask = sbi->s_umask;
659 uopt.fmode = sbi->s_fmode;
660 uopt.dmode = sbi->s_dmode;
661
662 if (!udf_parse_options(options, &uopt, true))
663 return -EINVAL;
664
665 write_lock(&sbi->s_cred_lock);
666 sbi->s_flags = uopt.flags;
667 sbi->s_uid = uopt.uid;
668 sbi->s_gid = uopt.gid;
669 sbi->s_umask = uopt.umask;
670 sbi->s_fmode = uopt.fmode;
671 sbi->s_dmode = uopt.dmode;
672 write_unlock(&sbi->s_cred_lock);
673
674 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
675 goto out_unlock;
676
677 if (*flags & MS_RDONLY)
678 udf_close_lvid(sb);
679 else
680 udf_open_lvid(sb);
681
682 out_unlock:
683 return error;
684 }
685
686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
688 static loff_t udf_check_vsd(struct super_block *sb)
689 {
690 struct volStructDesc *vsd = NULL;
691 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
692 int sectorsize;
693 struct buffer_head *bh = NULL;
694 int nsr02 = 0;
695 int nsr03 = 0;
696 struct udf_sb_info *sbi;
697
698 sbi = UDF_SB(sb);
699 if (sb->s_blocksize < sizeof(struct volStructDesc))
700 sectorsize = sizeof(struct volStructDesc);
701 else
702 sectorsize = sb->s_blocksize;
703
704 sector += (sbi->s_session << sb->s_blocksize_bits);
705
706 udf_debug("Starting at sector %u (%ld byte sectors)\n",
707 (unsigned int)(sector >> sb->s_blocksize_bits),
708 sb->s_blocksize);
709 /* Process the sequence (if applicable). The hard limit on the sector
710 * offset is arbitrary, hopefully large enough so that all valid UDF
711 * filesystems will be recognised. There is no mention of an upper
712 * bound to the size of the volume recognition area in the standard.
713 * The limit will prevent the code to read all the sectors of a
714 * specially crafted image (like a bluray disc full of CD001 sectors),
715 * potentially causing minutes or even hours of uninterruptible I/O
716 * activity. This actually happened with uninitialised SSD partitions
717 * (all 0xFF) before the check for the limit and all valid IDs were
718 * added */
719 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
720 sector += sectorsize) {
721 /* Read a block */
722 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
723 if (!bh)
724 break;
725
726 /* Look for ISO descriptors */
727 vsd = (struct volStructDesc *)(bh->b_data +
728 (sector & (sb->s_blocksize - 1)));
729
730 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
731 VSD_STD_ID_LEN)) {
732 switch (vsd->structType) {
733 case 0:
734 udf_debug("ISO9660 Boot Record found\n");
735 break;
736 case 1:
737 udf_debug("ISO9660 Primary Volume Descriptor found\n");
738 break;
739 case 2:
740 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
741 break;
742 case 3:
743 udf_debug("ISO9660 Volume Partition Descriptor found\n");
744 break;
745 case 255:
746 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
747 break;
748 default:
749 udf_debug("ISO9660 VRS (%u) found\n",
750 vsd->structType);
751 break;
752 }
753 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
754 VSD_STD_ID_LEN))
755 ; /* nothing */
756 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
757 VSD_STD_ID_LEN)) {
758 brelse(bh);
759 break;
760 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
761 VSD_STD_ID_LEN))
762 nsr02 = sector;
763 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
764 VSD_STD_ID_LEN))
765 nsr03 = sector;
766 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
767 VSD_STD_ID_LEN))
768 ; /* nothing */
769 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
770 VSD_STD_ID_LEN))
771 ; /* nothing */
772 else {
773 /* invalid id : end of volume recognition area */
774 brelse(bh);
775 break;
776 }
777 brelse(bh);
778 }
779
780 if (nsr03)
781 return nsr03;
782 else if (nsr02)
783 return nsr02;
784 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
785 VSD_FIRST_SECTOR_OFFSET)
786 return -1;
787 else
788 return 0;
789 }
790
791 static int udf_find_fileset(struct super_block *sb,
792 struct kernel_lb_addr *fileset,
793 struct kernel_lb_addr *root)
794 {
795 struct buffer_head *bh = NULL;
796 long lastblock;
797 uint16_t ident;
798 struct udf_sb_info *sbi;
799
800 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
801 fileset->partitionReferenceNum != 0xFFFF) {
802 bh = udf_read_ptagged(sb, fileset, 0, &ident);
803
804 if (!bh) {
805 return 1;
806 } else if (ident != TAG_IDENT_FSD) {
807 brelse(bh);
808 return 1;
809 }
810
811 }
812
813 sbi = UDF_SB(sb);
814 if (!bh) {
815 /* Search backwards through the partitions */
816 struct kernel_lb_addr newfileset;
817
818 /* --> cvg: FIXME - is it reasonable? */
819 return 1;
820
821 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
822 (newfileset.partitionReferenceNum != 0xFFFF &&
823 fileset->logicalBlockNum == 0xFFFFFFFF &&
824 fileset->partitionReferenceNum == 0xFFFF);
825 newfileset.partitionReferenceNum--) {
826 lastblock = sbi->s_partmaps
827 [newfileset.partitionReferenceNum]
828 .s_partition_len;
829 newfileset.logicalBlockNum = 0;
830
831 do {
832 bh = udf_read_ptagged(sb, &newfileset, 0,
833 &ident);
834 if (!bh) {
835 newfileset.logicalBlockNum++;
836 continue;
837 }
838
839 switch (ident) {
840 case TAG_IDENT_SBD:
841 {
842 struct spaceBitmapDesc *sp;
843 sp = (struct spaceBitmapDesc *)
844 bh->b_data;
845 newfileset.logicalBlockNum += 1 +
846 ((le32_to_cpu(sp->numOfBytes) +
847 sizeof(struct spaceBitmapDesc)
848 - 1) >> sb->s_blocksize_bits);
849 brelse(bh);
850 break;
851 }
852 case TAG_IDENT_FSD:
853 *fileset = newfileset;
854 break;
855 default:
856 newfileset.logicalBlockNum++;
857 brelse(bh);
858 bh = NULL;
859 break;
860 }
861 } while (newfileset.logicalBlockNum < lastblock &&
862 fileset->logicalBlockNum == 0xFFFFFFFF &&
863 fileset->partitionReferenceNum == 0xFFFF);
864 }
865 }
866
867 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
868 fileset->partitionReferenceNum != 0xFFFF) && bh) {
869 udf_debug("Fileset at block=%d, partition=%d\n",
870 fileset->logicalBlockNum,
871 fileset->partitionReferenceNum);
872
873 sbi->s_partition = fileset->partitionReferenceNum;
874 udf_load_fileset(sb, bh, root);
875 brelse(bh);
876 return 0;
877 }
878 return 1;
879 }
880
881 /*
882 * Load primary Volume Descriptor Sequence
883 *
884 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
885 * should be tried.
886 */
887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
888 {
889 struct primaryVolDesc *pvoldesc;
890 struct ustr *instr, *outstr;
891 struct buffer_head *bh;
892 uint16_t ident;
893 int ret = -ENOMEM;
894
895 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
896 if (!instr)
897 return -ENOMEM;
898
899 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900 if (!outstr)
901 goto out1;
902
903 bh = udf_read_tagged(sb, block, block, &ident);
904 if (!bh) {
905 ret = -EAGAIN;
906 goto out2;
907 }
908
909 if (ident != TAG_IDENT_PVD) {
910 ret = -EIO;
911 goto out_bh;
912 }
913
914 pvoldesc = (struct primaryVolDesc *)bh->b_data;
915
916 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 pvoldesc->recordingDateAndTime)) {
918 #ifdef UDFFS_DEBUG
919 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
920 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
921 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
922 ts->minute, le16_to_cpu(ts->typeAndTimezone));
923 #endif
924 }
925
926 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
927 ret = udf_CS0toUTF8(outstr, instr);
928 if (ret < 0)
929 goto out_bh;
930
931 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
932 outstr->u_len > 31 ? 31 : outstr->u_len);
933 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
934 }
935
936 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
937 ret = udf_CS0toUTF8(outstr, instr);
938 if (ret < 0)
939 goto out_bh;
940
941 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942 }
943
944 ret = 0;
945 out_bh:
946 brelse(bh);
947 out2:
948 kfree(outstr);
949 out1:
950 kfree(instr);
951 return ret;
952 }
953
954 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
955 u32 meta_file_loc, u32 partition_num)
956 {
957 struct kernel_lb_addr addr;
958 struct inode *metadata_fe;
959
960 addr.logicalBlockNum = meta_file_loc;
961 addr.partitionReferenceNum = partition_num;
962
963 metadata_fe = udf_iget_special(sb, &addr);
964
965 if (IS_ERR(metadata_fe)) {
966 udf_warn(sb, "metadata inode efe not found\n");
967 return metadata_fe;
968 }
969 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
970 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
971 iput(metadata_fe);
972 return ERR_PTR(-EIO);
973 }
974
975 return metadata_fe;
976 }
977
978 static int udf_load_metadata_files(struct super_block *sb, int partition)
979 {
980 struct udf_sb_info *sbi = UDF_SB(sb);
981 struct udf_part_map *map;
982 struct udf_meta_data *mdata;
983 struct kernel_lb_addr addr;
984 struct inode *fe;
985
986 map = &sbi->s_partmaps[partition];
987 mdata = &map->s_type_specific.s_metadata;
988
989 /* metadata address */
990 udf_debug("Metadata file location: block = %d part = %d\n",
991 mdata->s_meta_file_loc, map->s_partition_num);
992
993 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
994 map->s_partition_num);
995 if (IS_ERR(fe)) {
996 /* mirror file entry */
997 udf_debug("Mirror metadata file location: block = %d part = %d\n",
998 mdata->s_mirror_file_loc, map->s_partition_num);
999
1000 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1001 map->s_partition_num);
1002
1003 if (IS_ERR(fe)) {
1004 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1005 return PTR_ERR(fe);
1006 }
1007 mdata->s_mirror_fe = fe;
1008 } else
1009 mdata->s_metadata_fe = fe;
1010
1011
1012 /*
1013 * bitmap file entry
1014 * Note:
1015 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1016 */
1017 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1018 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1019 addr.partitionReferenceNum = map->s_partition_num;
1020
1021 udf_debug("Bitmap file location: block = %d part = %d\n",
1022 addr.logicalBlockNum, addr.partitionReferenceNum);
1023
1024 fe = udf_iget_special(sb, &addr);
1025 if (IS_ERR(fe)) {
1026 if (sb->s_flags & MS_RDONLY)
1027 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1028 else {
1029 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1030 return PTR_ERR(fe);
1031 }
1032 } else
1033 mdata->s_bitmap_fe = fe;
1034 }
1035
1036 udf_debug("udf_load_metadata_files Ok\n");
1037 return 0;
1038 }
1039
1040 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1041 struct kernel_lb_addr *root)
1042 {
1043 struct fileSetDesc *fset;
1044
1045 fset = (struct fileSetDesc *)bh->b_data;
1046
1047 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1048
1049 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1050
1051 udf_debug("Rootdir at block=%d, partition=%d\n",
1052 root->logicalBlockNum, root->partitionReferenceNum);
1053 }
1054
1055 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1056 {
1057 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1058 return DIV_ROUND_UP(map->s_partition_len +
1059 (sizeof(struct spaceBitmapDesc) << 3),
1060 sb->s_blocksize * 8);
1061 }
1062
1063 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1064 {
1065 struct udf_bitmap *bitmap;
1066 int nr_groups;
1067 int size;
1068
1069 nr_groups = udf_compute_nr_groups(sb, index);
1070 size = sizeof(struct udf_bitmap) +
1071 (sizeof(struct buffer_head *) * nr_groups);
1072
1073 if (size <= PAGE_SIZE)
1074 bitmap = kzalloc(size, GFP_KERNEL);
1075 else
1076 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1077
1078 if (bitmap == NULL)
1079 return NULL;
1080
1081 bitmap->s_nr_groups = nr_groups;
1082 return bitmap;
1083 }
1084
1085 static int udf_fill_partdesc_info(struct super_block *sb,
1086 struct partitionDesc *p, int p_index)
1087 {
1088 struct udf_part_map *map;
1089 struct udf_sb_info *sbi = UDF_SB(sb);
1090 struct partitionHeaderDesc *phd;
1091
1092 map = &sbi->s_partmaps[p_index];
1093
1094 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1095 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1096
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1098 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1100 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1102 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1103 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1104 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1105
1106 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1107 p_index, map->s_partition_type,
1108 map->s_partition_root, map->s_partition_len);
1109
1110 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1111 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1112 return 0;
1113
1114 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115 if (phd->unallocSpaceTable.extLength) {
1116 struct kernel_lb_addr loc = {
1117 .logicalBlockNum = le32_to_cpu(
1118 phd->unallocSpaceTable.extPosition),
1119 .partitionReferenceNum = p_index,
1120 };
1121 struct inode *inode;
1122
1123 inode = udf_iget_special(sb, &loc);
1124 if (IS_ERR(inode)) {
1125 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126 p_index);
1127 return PTR_ERR(inode);
1128 }
1129 map->s_uspace.s_table = inode;
1130 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1132 p_index, map->s_uspace.s_table->i_ino);
1133 }
1134
1135 if (phd->unallocSpaceBitmap.extLength) {
1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 if (!bitmap)
1138 return -ENOMEM;
1139 map->s_uspace.s_bitmap = bitmap;
1140 bitmap->s_extPosition = le32_to_cpu(
1141 phd->unallocSpaceBitmap.extPosition);
1142 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1144 p_index, bitmap->s_extPosition);
1145 }
1146
1147 if (phd->partitionIntegrityTable.extLength)
1148 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1149
1150 if (phd->freedSpaceTable.extLength) {
1151 struct kernel_lb_addr loc = {
1152 .logicalBlockNum = le32_to_cpu(
1153 phd->freedSpaceTable.extPosition),
1154 .partitionReferenceNum = p_index,
1155 };
1156 struct inode *inode;
1157
1158 inode = udf_iget_special(sb, &loc);
1159 if (IS_ERR(inode)) {
1160 udf_debug("cannot load freedSpaceTable (part %d)\n",
1161 p_index);
1162 return PTR_ERR(inode);
1163 }
1164 map->s_fspace.s_table = inode;
1165 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1166 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1167 p_index, map->s_fspace.s_table->i_ino);
1168 }
1169
1170 if (phd->freedSpaceBitmap.extLength) {
1171 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1172 if (!bitmap)
1173 return -ENOMEM;
1174 map->s_fspace.s_bitmap = bitmap;
1175 bitmap->s_extPosition = le32_to_cpu(
1176 phd->freedSpaceBitmap.extPosition);
1177 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1178 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1179 p_index, bitmap->s_extPosition);
1180 }
1181 return 0;
1182 }
1183
1184 static void udf_find_vat_block(struct super_block *sb, int p_index,
1185 int type1_index, sector_t start_block)
1186 {
1187 struct udf_sb_info *sbi = UDF_SB(sb);
1188 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1189 sector_t vat_block;
1190 struct kernel_lb_addr ino;
1191 struct inode *inode;
1192
1193 /*
1194 * VAT file entry is in the last recorded block. Some broken disks have
1195 * it a few blocks before so try a bit harder...
1196 */
1197 ino.partitionReferenceNum = type1_index;
1198 for (vat_block = start_block;
1199 vat_block >= map->s_partition_root &&
1200 vat_block >= start_block - 3; vat_block--) {
1201 ino.logicalBlockNum = vat_block - map->s_partition_root;
1202 inode = udf_iget_special(sb, &ino);
1203 if (!IS_ERR(inode)) {
1204 sbi->s_vat_inode = inode;
1205 break;
1206 }
1207 }
1208 }
1209
1210 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1211 {
1212 struct udf_sb_info *sbi = UDF_SB(sb);
1213 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1214 struct buffer_head *bh = NULL;
1215 struct udf_inode_info *vati;
1216 uint32_t pos;
1217 struct virtualAllocationTable20 *vat20;
1218 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1219
1220 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1221 if (!sbi->s_vat_inode &&
1222 sbi->s_last_block != blocks - 1) {
1223 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1224 (unsigned long)sbi->s_last_block,
1225 (unsigned long)blocks - 1);
1226 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1227 }
1228 if (!sbi->s_vat_inode)
1229 return -EIO;
1230
1231 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1232 map->s_type_specific.s_virtual.s_start_offset = 0;
1233 map->s_type_specific.s_virtual.s_num_entries =
1234 (sbi->s_vat_inode->i_size - 36) >> 2;
1235 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1236 vati = UDF_I(sbi->s_vat_inode);
1237 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1238 pos = udf_block_map(sbi->s_vat_inode, 0);
1239 bh = sb_bread(sb, pos);
1240 if (!bh)
1241 return -EIO;
1242 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1243 } else {
1244 vat20 = (struct virtualAllocationTable20 *)
1245 vati->i_ext.i_data;
1246 }
1247
1248 map->s_type_specific.s_virtual.s_start_offset =
1249 le16_to_cpu(vat20->lengthHeader);
1250 map->s_type_specific.s_virtual.s_num_entries =
1251 (sbi->s_vat_inode->i_size -
1252 map->s_type_specific.s_virtual.
1253 s_start_offset) >> 2;
1254 brelse(bh);
1255 }
1256 return 0;
1257 }
1258
1259 /*
1260 * Load partition descriptor block
1261 *
1262 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1263 * sequence.
1264 */
1265 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1266 {
1267 struct buffer_head *bh;
1268 struct partitionDesc *p;
1269 struct udf_part_map *map;
1270 struct udf_sb_info *sbi = UDF_SB(sb);
1271 int i, type1_idx;
1272 uint16_t partitionNumber;
1273 uint16_t ident;
1274 int ret;
1275
1276 bh = udf_read_tagged(sb, block, block, &ident);
1277 if (!bh)
1278 return -EAGAIN;
1279 if (ident != TAG_IDENT_PD) {
1280 ret = 0;
1281 goto out_bh;
1282 }
1283
1284 p = (struct partitionDesc *)bh->b_data;
1285 partitionNumber = le16_to_cpu(p->partitionNumber);
1286
1287 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1288 for (i = 0; i < sbi->s_partitions; i++) {
1289 map = &sbi->s_partmaps[i];
1290 udf_debug("Searching map: (%d == %d)\n",
1291 map->s_partition_num, partitionNumber);
1292 if (map->s_partition_num == partitionNumber &&
1293 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1294 map->s_partition_type == UDF_SPARABLE_MAP15))
1295 break;
1296 }
1297
1298 if (i >= sbi->s_partitions) {
1299 udf_debug("Partition (%d) not found in partition map\n",
1300 partitionNumber);
1301 ret = 0;
1302 goto out_bh;
1303 }
1304
1305 ret = udf_fill_partdesc_info(sb, p, i);
1306 if (ret < 0)
1307 goto out_bh;
1308
1309 /*
1310 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1311 * PHYSICAL partitions are already set up
1312 */
1313 type1_idx = i;
1314 #ifdef UDFFS_DEBUG
1315 map = NULL; /* supress 'maybe used uninitialized' warning */
1316 #endif
1317 for (i = 0; i < sbi->s_partitions; i++) {
1318 map = &sbi->s_partmaps[i];
1319
1320 if (map->s_partition_num == partitionNumber &&
1321 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1322 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1323 map->s_partition_type == UDF_METADATA_MAP25))
1324 break;
1325 }
1326
1327 if (i >= sbi->s_partitions) {
1328 ret = 0;
1329 goto out_bh;
1330 }
1331
1332 ret = udf_fill_partdesc_info(sb, p, i);
1333 if (ret < 0)
1334 goto out_bh;
1335
1336 if (map->s_partition_type == UDF_METADATA_MAP25) {
1337 ret = udf_load_metadata_files(sb, i);
1338 if (ret < 0) {
1339 udf_err(sb, "error loading MetaData partition map %d\n",
1340 i);
1341 goto out_bh;
1342 }
1343 } else {
1344 /*
1345 * If we have a partition with virtual map, we don't handle
1346 * writing to it (we overwrite blocks instead of relocating
1347 * them).
1348 */
1349 if (!(sb->s_flags & MS_RDONLY)) {
1350 ret = -EACCES;
1351 goto out_bh;
1352 }
1353 ret = udf_load_vat(sb, i, type1_idx);
1354 if (ret < 0)
1355 goto out_bh;
1356 }
1357 ret = 0;
1358 out_bh:
1359 /* In case loading failed, we handle cleanup in udf_fill_super */
1360 brelse(bh);
1361 return ret;
1362 }
1363
1364 static int udf_load_sparable_map(struct super_block *sb,
1365 struct udf_part_map *map,
1366 struct sparablePartitionMap *spm)
1367 {
1368 uint32_t loc;
1369 uint16_t ident;
1370 struct sparingTable *st;
1371 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1372 int i;
1373 struct buffer_head *bh;
1374
1375 map->s_partition_type = UDF_SPARABLE_MAP15;
1376 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1377 if (!is_power_of_2(sdata->s_packet_len)) {
1378 udf_err(sb, "error loading logical volume descriptor: "
1379 "Invalid packet length %u\n",
1380 (unsigned)sdata->s_packet_len);
1381 return -EIO;
1382 }
1383 if (spm->numSparingTables > 4) {
1384 udf_err(sb, "error loading logical volume descriptor: "
1385 "Too many sparing tables (%d)\n",
1386 (int)spm->numSparingTables);
1387 return -EIO;
1388 }
1389
1390 for (i = 0; i < spm->numSparingTables; i++) {
1391 loc = le32_to_cpu(spm->locSparingTable[i]);
1392 bh = udf_read_tagged(sb, loc, loc, &ident);
1393 if (!bh)
1394 continue;
1395
1396 st = (struct sparingTable *)bh->b_data;
1397 if (ident != 0 ||
1398 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1399 strlen(UDF_ID_SPARING)) ||
1400 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1401 sb->s_blocksize) {
1402 brelse(bh);
1403 continue;
1404 }
1405
1406 sdata->s_spar_map[i] = bh;
1407 }
1408 map->s_partition_func = udf_get_pblock_spar15;
1409 return 0;
1410 }
1411
1412 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1413 struct kernel_lb_addr *fileset)
1414 {
1415 struct logicalVolDesc *lvd;
1416 int i, offset;
1417 uint8_t type;
1418 struct udf_sb_info *sbi = UDF_SB(sb);
1419 struct genericPartitionMap *gpm;
1420 uint16_t ident;
1421 struct buffer_head *bh;
1422 unsigned int table_len;
1423 int ret;
1424
1425 bh = udf_read_tagged(sb, block, block, &ident);
1426 if (!bh)
1427 return -EAGAIN;
1428 BUG_ON(ident != TAG_IDENT_LVD);
1429 lvd = (struct logicalVolDesc *)bh->b_data;
1430 table_len = le32_to_cpu(lvd->mapTableLength);
1431 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1432 udf_err(sb, "error loading logical volume descriptor: "
1433 "Partition table too long (%u > %lu)\n", table_len,
1434 sb->s_blocksize - sizeof(*lvd));
1435 ret = -EIO;
1436 goto out_bh;
1437 }
1438
1439 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1440 if (ret)
1441 goto out_bh;
1442
1443 for (i = 0, offset = 0;
1444 i < sbi->s_partitions && offset < table_len;
1445 i++, offset += gpm->partitionMapLength) {
1446 struct udf_part_map *map = &sbi->s_partmaps[i];
1447 gpm = (struct genericPartitionMap *)
1448 &(lvd->partitionMaps[offset]);
1449 type = gpm->partitionMapType;
1450 if (type == 1) {
1451 struct genericPartitionMap1 *gpm1 =
1452 (struct genericPartitionMap1 *)gpm;
1453 map->s_partition_type = UDF_TYPE1_MAP15;
1454 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1455 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1456 map->s_partition_func = NULL;
1457 } else if (type == 2) {
1458 struct udfPartitionMap2 *upm2 =
1459 (struct udfPartitionMap2 *)gpm;
1460 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1461 strlen(UDF_ID_VIRTUAL))) {
1462 u16 suf =
1463 le16_to_cpu(((__le16 *)upm2->partIdent.
1464 identSuffix)[0]);
1465 if (suf < 0x0200) {
1466 map->s_partition_type =
1467 UDF_VIRTUAL_MAP15;
1468 map->s_partition_func =
1469 udf_get_pblock_virt15;
1470 } else {
1471 map->s_partition_type =
1472 UDF_VIRTUAL_MAP20;
1473 map->s_partition_func =
1474 udf_get_pblock_virt20;
1475 }
1476 } else if (!strncmp(upm2->partIdent.ident,
1477 UDF_ID_SPARABLE,
1478 strlen(UDF_ID_SPARABLE))) {
1479 ret = udf_load_sparable_map(sb, map,
1480 (struct sparablePartitionMap *)gpm);
1481 if (ret < 0)
1482 goto out_bh;
1483 } else if (!strncmp(upm2->partIdent.ident,
1484 UDF_ID_METADATA,
1485 strlen(UDF_ID_METADATA))) {
1486 struct udf_meta_data *mdata =
1487 &map->s_type_specific.s_metadata;
1488 struct metadataPartitionMap *mdm =
1489 (struct metadataPartitionMap *)
1490 &(lvd->partitionMaps[offset]);
1491 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1492 i, type, UDF_ID_METADATA);
1493
1494 map->s_partition_type = UDF_METADATA_MAP25;
1495 map->s_partition_func = udf_get_pblock_meta25;
1496
1497 mdata->s_meta_file_loc =
1498 le32_to_cpu(mdm->metadataFileLoc);
1499 mdata->s_mirror_file_loc =
1500 le32_to_cpu(mdm->metadataMirrorFileLoc);
1501 mdata->s_bitmap_file_loc =
1502 le32_to_cpu(mdm->metadataBitmapFileLoc);
1503 mdata->s_alloc_unit_size =
1504 le32_to_cpu(mdm->allocUnitSize);
1505 mdata->s_align_unit_size =
1506 le16_to_cpu(mdm->alignUnitSize);
1507 if (mdm->flags & 0x01)
1508 mdata->s_flags |= MF_DUPLICATE_MD;
1509
1510 udf_debug("Metadata Ident suffix=0x%x\n",
1511 le16_to_cpu(*(__le16 *)
1512 mdm->partIdent.identSuffix));
1513 udf_debug("Metadata part num=%d\n",
1514 le16_to_cpu(mdm->partitionNum));
1515 udf_debug("Metadata part alloc unit size=%d\n",
1516 le32_to_cpu(mdm->allocUnitSize));
1517 udf_debug("Metadata file loc=%d\n",
1518 le32_to_cpu(mdm->metadataFileLoc));
1519 udf_debug("Mirror file loc=%d\n",
1520 le32_to_cpu(mdm->metadataMirrorFileLoc));
1521 udf_debug("Bitmap file loc=%d\n",
1522 le32_to_cpu(mdm->metadataBitmapFileLoc));
1523 udf_debug("Flags: %d %d\n",
1524 mdata->s_flags, mdm->flags);
1525 } else {
1526 udf_debug("Unknown ident: %s\n",
1527 upm2->partIdent.ident);
1528 continue;
1529 }
1530 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1531 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1532 }
1533 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1534 i, map->s_partition_num, type, map->s_volumeseqnum);
1535 }
1536
1537 if (fileset) {
1538 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1539
1540 *fileset = lelb_to_cpu(la->extLocation);
1541 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1542 fileset->logicalBlockNum,
1543 fileset->partitionReferenceNum);
1544 }
1545 if (lvd->integritySeqExt.extLength)
1546 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1547 ret = 0;
1548 out_bh:
1549 brelse(bh);
1550 return ret;
1551 }
1552
1553 /*
1554 * udf_load_logicalvolint
1555 *
1556 */
1557 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558 {
1559 struct buffer_head *bh = NULL;
1560 uint16_t ident;
1561 struct udf_sb_info *sbi = UDF_SB(sb);
1562 struct logicalVolIntegrityDesc *lvid;
1563
1564 while (loc.extLength > 0 &&
1565 (bh = udf_read_tagged(sb, loc.extLocation,
1566 loc.extLocation, &ident)) &&
1567 ident == TAG_IDENT_LVID) {
1568 sbi->s_lvid_bh = bh;
1569 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1570
1571 if (lvid->nextIntegrityExt.extLength)
1572 udf_load_logicalvolint(sb,
1573 leea_to_cpu(lvid->nextIntegrityExt));
1574
1575 if (sbi->s_lvid_bh != bh)
1576 brelse(bh);
1577 loc.extLength -= sb->s_blocksize;
1578 loc.extLocation++;
1579 }
1580 if (sbi->s_lvid_bh != bh)
1581 brelse(bh);
1582 }
1583
1584 /*
1585 * Maximum number of Terminating Descriptor redirections. The chosen number is
1586 * arbitrary - just that we hopefully don't limit any real use of rewritten
1587 * inode on write-once media but avoid looping for too long on corrupted media.
1588 */
1589 #define UDF_MAX_TD_NESTING 64
1590
1591 /*
1592 * Process a main/reserve volume descriptor sequence.
1593 * @block First block of first extent of the sequence.
1594 * @lastblock Lastblock of first extent of the sequence.
1595 * @fileset There we store extent containing root fileset
1596 *
1597 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1598 * sequence
1599 */
1600 static noinline int udf_process_sequence(
1601 struct super_block *sb,
1602 sector_t block, sector_t lastblock,
1603 struct kernel_lb_addr *fileset)
1604 {
1605 struct buffer_head *bh = NULL;
1606 struct udf_vds_record vds[VDS_POS_LENGTH];
1607 struct udf_vds_record *curr;
1608 struct generic_desc *gd;
1609 struct volDescPtr *vdp;
1610 bool done = false;
1611 uint32_t vdsn;
1612 uint16_t ident;
1613 long next_s = 0, next_e = 0;
1614 int ret;
1615 unsigned int indirections = 0;
1616
1617 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1618
1619 /*
1620 * Read the main descriptor sequence and find which descriptors
1621 * are in it.
1622 */
1623 for (; (!done && block <= lastblock); block++) {
1624
1625 bh = udf_read_tagged(sb, block, block, &ident);
1626 if (!bh) {
1627 udf_err(sb,
1628 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1629 (unsigned long long)block);
1630 return -EAGAIN;
1631 }
1632
1633 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1634 gd = (struct generic_desc *)bh->b_data;
1635 vdsn = le32_to_cpu(gd->volDescSeqNum);
1636 switch (ident) {
1637 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1638 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1639 if (vdsn >= curr->volDescSeqNum) {
1640 curr->volDescSeqNum = vdsn;
1641 curr->block = block;
1642 }
1643 break;
1644 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1645 curr = &vds[VDS_POS_VOL_DESC_PTR];
1646 if (vdsn >= curr->volDescSeqNum) {
1647 curr->volDescSeqNum = vdsn;
1648 curr->block = block;
1649
1650 vdp = (struct volDescPtr *)bh->b_data;
1651 next_s = le32_to_cpu(
1652 vdp->nextVolDescSeqExt.extLocation);
1653 next_e = le32_to_cpu(
1654 vdp->nextVolDescSeqExt.extLength);
1655 next_e = next_e >> sb->s_blocksize_bits;
1656 next_e += next_s;
1657 }
1658 break;
1659 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1660 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1661 if (vdsn >= curr->volDescSeqNum) {
1662 curr->volDescSeqNum = vdsn;
1663 curr->block = block;
1664 }
1665 break;
1666 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1667 curr = &vds[VDS_POS_PARTITION_DESC];
1668 if (!curr->block)
1669 curr->block = block;
1670 break;
1671 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1672 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1673 if (vdsn >= curr->volDescSeqNum) {
1674 curr->volDescSeqNum = vdsn;
1675 curr->block = block;
1676 }
1677 break;
1678 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1679 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1680 if (vdsn >= curr->volDescSeqNum) {
1681 curr->volDescSeqNum = vdsn;
1682 curr->block = block;
1683 }
1684 break;
1685 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1686 if (++indirections > UDF_MAX_TD_NESTING) {
1687 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1688 brelse(bh);
1689 return -EIO;
1690 }
1691
1692 vds[VDS_POS_TERMINATING_DESC].block = block;
1693 if (next_e) {
1694 block = next_s;
1695 lastblock = next_e;
1696 next_s = next_e = 0;
1697 } else
1698 done = true;
1699 break;
1700 }
1701 brelse(bh);
1702 }
1703 /*
1704 * Now read interesting descriptors again and process them
1705 * in a suitable order
1706 */
1707 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1708 udf_err(sb, "Primary Volume Descriptor not found!\n");
1709 return -EAGAIN;
1710 }
1711 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1712 if (ret < 0)
1713 return ret;
1714
1715 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1716 ret = udf_load_logicalvol(sb,
1717 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1718 fileset);
1719 if (ret < 0)
1720 return ret;
1721 }
1722
1723 if (vds[VDS_POS_PARTITION_DESC].block) {
1724 /*
1725 * We rescan the whole descriptor sequence to find
1726 * partition descriptor blocks and process them.
1727 */
1728 for (block = vds[VDS_POS_PARTITION_DESC].block;
1729 block < vds[VDS_POS_TERMINATING_DESC].block;
1730 block++) {
1731 ret = udf_load_partdesc(sb, block);
1732 if (ret < 0)
1733 return ret;
1734 }
1735 }
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * Load Volume Descriptor Sequence described by anchor in bh
1742 *
1743 * Returns <0 on error, 0 on success
1744 */
1745 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1746 struct kernel_lb_addr *fileset)
1747 {
1748 struct anchorVolDescPtr *anchor;
1749 sector_t main_s, main_e, reserve_s, reserve_e;
1750 int ret;
1751
1752 anchor = (struct anchorVolDescPtr *)bh->b_data;
1753
1754 /* Locate the main sequence */
1755 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1756 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1757 main_e = main_e >> sb->s_blocksize_bits;
1758 main_e += main_s;
1759
1760 /* Locate the reserve sequence */
1761 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1762 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1763 reserve_e = reserve_e >> sb->s_blocksize_bits;
1764 reserve_e += reserve_s;
1765
1766 /* Process the main & reserve sequences */
1767 /* responsible for finding the PartitionDesc(s) */
1768 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1769 if (ret != -EAGAIN)
1770 return ret;
1771 udf_sb_free_partitions(sb);
1772 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1773 if (ret < 0) {
1774 udf_sb_free_partitions(sb);
1775 /* No sequence was OK, return -EIO */
1776 if (ret == -EAGAIN)
1777 ret = -EIO;
1778 }
1779 return ret;
1780 }
1781
1782 /*
1783 * Check whether there is an anchor block in the given block and
1784 * load Volume Descriptor Sequence if so.
1785 *
1786 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1787 * block
1788 */
1789 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1790 struct kernel_lb_addr *fileset)
1791 {
1792 struct buffer_head *bh;
1793 uint16_t ident;
1794 int ret;
1795
1796 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1797 udf_fixed_to_variable(block) >=
1798 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1799 return -EAGAIN;
1800
1801 bh = udf_read_tagged(sb, block, block, &ident);
1802 if (!bh)
1803 return -EAGAIN;
1804 if (ident != TAG_IDENT_AVDP) {
1805 brelse(bh);
1806 return -EAGAIN;
1807 }
1808 ret = udf_load_sequence(sb, bh, fileset);
1809 brelse(bh);
1810 return ret;
1811 }
1812
1813 /*
1814 * Search for an anchor volume descriptor pointer.
1815 *
1816 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1817 * of anchors.
1818 */
1819 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1820 struct kernel_lb_addr *fileset)
1821 {
1822 sector_t last[6];
1823 int i;
1824 struct udf_sb_info *sbi = UDF_SB(sb);
1825 int last_count = 0;
1826 int ret;
1827
1828 /* First try user provided anchor */
1829 if (sbi->s_anchor) {
1830 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1831 if (ret != -EAGAIN)
1832 return ret;
1833 }
1834 /*
1835 * according to spec, anchor is in either:
1836 * block 256
1837 * lastblock-256
1838 * lastblock
1839 * however, if the disc isn't closed, it could be 512.
1840 */
1841 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1842 if (ret != -EAGAIN)
1843 return ret;
1844 /*
1845 * The trouble is which block is the last one. Drives often misreport
1846 * this so we try various possibilities.
1847 */
1848 last[last_count++] = *lastblock;
1849 if (*lastblock >= 1)
1850 last[last_count++] = *lastblock - 1;
1851 last[last_count++] = *lastblock + 1;
1852 if (*lastblock >= 2)
1853 last[last_count++] = *lastblock - 2;
1854 if (*lastblock >= 150)
1855 last[last_count++] = *lastblock - 150;
1856 if (*lastblock >= 152)
1857 last[last_count++] = *lastblock - 152;
1858
1859 for (i = 0; i < last_count; i++) {
1860 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1861 sb->s_blocksize_bits)
1862 continue;
1863 ret = udf_check_anchor_block(sb, last[i], fileset);
1864 if (ret != -EAGAIN) {
1865 if (!ret)
1866 *lastblock = last[i];
1867 return ret;
1868 }
1869 if (last[i] < 256)
1870 continue;
1871 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1872 if (ret != -EAGAIN) {
1873 if (!ret)
1874 *lastblock = last[i];
1875 return ret;
1876 }
1877 }
1878
1879 /* Finally try block 512 in case media is open */
1880 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1881 }
1882
1883 /*
1884 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1885 * area specified by it. The function expects sbi->s_lastblock to be the last
1886 * block on the media.
1887 *
1888 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1889 * was not found.
1890 */
1891 static int udf_find_anchor(struct super_block *sb,
1892 struct kernel_lb_addr *fileset)
1893 {
1894 struct udf_sb_info *sbi = UDF_SB(sb);
1895 sector_t lastblock = sbi->s_last_block;
1896 int ret;
1897
1898 ret = udf_scan_anchors(sb, &lastblock, fileset);
1899 if (ret != -EAGAIN)
1900 goto out;
1901
1902 /* No anchor found? Try VARCONV conversion of block numbers */
1903 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1904 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1905 /* Firstly, we try to not convert number of the last block */
1906 ret = udf_scan_anchors(sb, &lastblock, fileset);
1907 if (ret != -EAGAIN)
1908 goto out;
1909
1910 lastblock = sbi->s_last_block;
1911 /* Secondly, we try with converted number of the last block */
1912 ret = udf_scan_anchors(sb, &lastblock, fileset);
1913 if (ret < 0) {
1914 /* VARCONV didn't help. Clear it. */
1915 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1916 }
1917 out:
1918 if (ret == 0)
1919 sbi->s_last_block = lastblock;
1920 return ret;
1921 }
1922
1923 /*
1924 * Check Volume Structure Descriptor, find Anchor block and load Volume
1925 * Descriptor Sequence.
1926 *
1927 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1928 * block was not found.
1929 */
1930 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1931 int silent, struct kernel_lb_addr *fileset)
1932 {
1933 struct udf_sb_info *sbi = UDF_SB(sb);
1934 loff_t nsr_off;
1935 int ret;
1936
1937 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1938 if (!silent)
1939 udf_warn(sb, "Bad block size\n");
1940 return -EINVAL;
1941 }
1942 sbi->s_last_block = uopt->lastblock;
1943 if (!uopt->novrs) {
1944 /* Check that it is NSR02 compliant */
1945 nsr_off = udf_check_vsd(sb);
1946 if (!nsr_off) {
1947 if (!silent)
1948 udf_warn(sb, "No VRS found\n");
1949 return 0;
1950 }
1951 if (nsr_off == -1)
1952 udf_debug("Failed to read sector at offset %d. "
1953 "Assuming open disc. Skipping validity "
1954 "check\n", VSD_FIRST_SECTOR_OFFSET);
1955 if (!sbi->s_last_block)
1956 sbi->s_last_block = udf_get_last_block(sb);
1957 } else {
1958 udf_debug("Validity check skipped because of novrs option\n");
1959 }
1960
1961 /* Look for anchor block and load Volume Descriptor Sequence */
1962 sbi->s_anchor = uopt->anchor;
1963 ret = udf_find_anchor(sb, fileset);
1964 if (ret < 0) {
1965 if (!silent && ret == -EAGAIN)
1966 udf_warn(sb, "No anchor found\n");
1967 return ret;
1968 }
1969 return 0;
1970 }
1971
1972 static void udf_open_lvid(struct super_block *sb)
1973 {
1974 struct udf_sb_info *sbi = UDF_SB(sb);
1975 struct buffer_head *bh = sbi->s_lvid_bh;
1976 struct logicalVolIntegrityDesc *lvid;
1977 struct logicalVolIntegrityDescImpUse *lvidiu;
1978
1979 if (!bh)
1980 return;
1981 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1982 lvidiu = udf_sb_lvidiu(sb);
1983 if (!lvidiu)
1984 return;
1985
1986 mutex_lock(&sbi->s_alloc_mutex);
1987 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1988 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1989 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1990 CURRENT_TIME);
1991 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1992
1993 lvid->descTag.descCRC = cpu_to_le16(
1994 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1995 le16_to_cpu(lvid->descTag.descCRCLength)));
1996
1997 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1998 mark_buffer_dirty(bh);
1999 sbi->s_lvid_dirty = 0;
2000 mutex_unlock(&sbi->s_alloc_mutex);
2001 /* Make opening of filesystem visible on the media immediately */
2002 sync_dirty_buffer(bh);
2003 }
2004
2005 static void udf_close_lvid(struct super_block *sb)
2006 {
2007 struct udf_sb_info *sbi = UDF_SB(sb);
2008 struct buffer_head *bh = sbi->s_lvid_bh;
2009 struct logicalVolIntegrityDesc *lvid;
2010 struct logicalVolIntegrityDescImpUse *lvidiu;
2011
2012 if (!bh)
2013 return;
2014 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2015 lvidiu = udf_sb_lvidiu(sb);
2016 if (!lvidiu)
2017 return;
2018
2019 mutex_lock(&sbi->s_alloc_mutex);
2020 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2021 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2022 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2023 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2024 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2025 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2026 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2027 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2028 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2029 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2030
2031 lvid->descTag.descCRC = cpu_to_le16(
2032 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2033 le16_to_cpu(lvid->descTag.descCRCLength)));
2034
2035 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2036 /*
2037 * We set buffer uptodate unconditionally here to avoid spurious
2038 * warnings from mark_buffer_dirty() when previous EIO has marked
2039 * the buffer as !uptodate
2040 */
2041 set_buffer_uptodate(bh);
2042 mark_buffer_dirty(bh);
2043 sbi->s_lvid_dirty = 0;
2044 mutex_unlock(&sbi->s_alloc_mutex);
2045 /* Make closing of filesystem visible on the media immediately */
2046 sync_dirty_buffer(bh);
2047 }
2048
2049 u64 lvid_get_unique_id(struct super_block *sb)
2050 {
2051 struct buffer_head *bh;
2052 struct udf_sb_info *sbi = UDF_SB(sb);
2053 struct logicalVolIntegrityDesc *lvid;
2054 struct logicalVolHeaderDesc *lvhd;
2055 u64 uniqueID;
2056 u64 ret;
2057
2058 bh = sbi->s_lvid_bh;
2059 if (!bh)
2060 return 0;
2061
2062 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2063 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2064
2065 mutex_lock(&sbi->s_alloc_mutex);
2066 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2067 if (!(++uniqueID & 0xFFFFFFFF))
2068 uniqueID += 16;
2069 lvhd->uniqueID = cpu_to_le64(uniqueID);
2070 mutex_unlock(&sbi->s_alloc_mutex);
2071 mark_buffer_dirty(bh);
2072
2073 return ret;
2074 }
2075
2076 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2077 {
2078 int ret = -EINVAL;
2079 struct inode *inode = NULL;
2080 struct udf_options uopt;
2081 struct kernel_lb_addr rootdir, fileset;
2082 struct udf_sb_info *sbi;
2083 bool lvid_open = false;
2084
2085 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2086 uopt.uid = INVALID_UID;
2087 uopt.gid = INVALID_GID;
2088 uopt.umask = 0;
2089 uopt.fmode = UDF_INVALID_MODE;
2090 uopt.dmode = UDF_INVALID_MODE;
2091
2092 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2093 if (!sbi)
2094 return -ENOMEM;
2095
2096 sb->s_fs_info = sbi;
2097
2098 mutex_init(&sbi->s_alloc_mutex);
2099
2100 if (!udf_parse_options((char *)options, &uopt, false))
2101 goto parse_options_failure;
2102
2103 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2104 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2105 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2106 goto parse_options_failure;
2107 }
2108 #ifdef CONFIG_UDF_NLS
2109 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2110 uopt.nls_map = load_nls_default();
2111 if (!uopt.nls_map)
2112 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2113 else
2114 udf_debug("Using default NLS map\n");
2115 }
2116 #endif
2117 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2118 uopt.flags |= (1 << UDF_FLAG_UTF8);
2119
2120 fileset.logicalBlockNum = 0xFFFFFFFF;
2121 fileset.partitionReferenceNum = 0xFFFF;
2122
2123 sbi->s_flags = uopt.flags;
2124 sbi->s_uid = uopt.uid;
2125 sbi->s_gid = uopt.gid;
2126 sbi->s_umask = uopt.umask;
2127 sbi->s_fmode = uopt.fmode;
2128 sbi->s_dmode = uopt.dmode;
2129 sbi->s_nls_map = uopt.nls_map;
2130 rwlock_init(&sbi->s_cred_lock);
2131
2132 if (uopt.session == 0xFFFFFFFF)
2133 sbi->s_session = udf_get_last_session(sb);
2134 else
2135 sbi->s_session = uopt.session;
2136
2137 udf_debug("Multi-session=%d\n", sbi->s_session);
2138
2139 /* Fill in the rest of the superblock */
2140 sb->s_op = &udf_sb_ops;
2141 sb->s_export_op = &udf_export_ops;
2142
2143 sb->s_magic = UDF_SUPER_MAGIC;
2144 sb->s_time_gran = 1000;
2145
2146 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148 } else {
2149 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2150 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2151 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2152 if (!silent)
2153 pr_notice("Rescanning with blocksize %d\n",
2154 UDF_DEFAULT_BLOCKSIZE);
2155 brelse(sbi->s_lvid_bh);
2156 sbi->s_lvid_bh = NULL;
2157 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2158 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 }
2160 }
2161 if (ret < 0) {
2162 if (ret == -EAGAIN) {
2163 udf_warn(sb, "No partition found (1)\n");
2164 ret = -EINVAL;
2165 }
2166 goto error_out;
2167 }
2168
2169 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2170
2171 if (sbi->s_lvid_bh) {
2172 struct logicalVolIntegrityDescImpUse *lvidiu =
2173 udf_sb_lvidiu(sb);
2174 uint16_t minUDFReadRev;
2175 uint16_t minUDFWriteRev;
2176
2177 if (!lvidiu) {
2178 ret = -EINVAL;
2179 goto error_out;
2180 }
2181 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2182 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2183 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2184 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2185 minUDFReadRev,
2186 UDF_MAX_READ_VERSION);
2187 ret = -EINVAL;
2188 goto error_out;
2189 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2190 !(sb->s_flags & MS_RDONLY)) {
2191 ret = -EACCES;
2192 goto error_out;
2193 }
2194
2195 sbi->s_udfrev = minUDFWriteRev;
2196
2197 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2198 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2199 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2200 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2201 }
2202
2203 if (!sbi->s_partitions) {
2204 udf_warn(sb, "No partition found (2)\n");
2205 ret = -EINVAL;
2206 goto error_out;
2207 }
2208
2209 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2210 UDF_PART_FLAG_READ_ONLY &&
2211 !(sb->s_flags & MS_RDONLY)) {
2212 ret = -EACCES;
2213 goto error_out;
2214 }
2215
2216 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2217 udf_warn(sb, "No fileset found\n");
2218 ret = -EINVAL;
2219 goto error_out;
2220 }
2221
2222 if (!silent) {
2223 struct timestamp ts;
2224 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2225 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2226 sbi->s_volume_ident,
2227 le16_to_cpu(ts.year), ts.month, ts.day,
2228 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2229 }
2230 if (!(sb->s_flags & MS_RDONLY)) {
2231 udf_open_lvid(sb);
2232 lvid_open = true;
2233 }
2234
2235 /* Assign the root inode */
2236 /* assign inodes by physical block number */
2237 /* perhaps it's not extensible enough, but for now ... */
2238 inode = udf_iget(sb, &rootdir);
2239 if (IS_ERR(inode)) {
2240 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2241 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2242 ret = PTR_ERR(inode);
2243 goto error_out;
2244 }
2245
2246 /* Allocate a dentry for the root inode */
2247 sb->s_root = d_make_root(inode);
2248 if (!sb->s_root) {
2249 udf_err(sb, "Couldn't allocate root dentry\n");
2250 ret = -ENOMEM;
2251 goto error_out;
2252 }
2253 sb->s_maxbytes = MAX_LFS_FILESIZE;
2254 sb->s_max_links = UDF_MAX_LINKS;
2255 return 0;
2256
2257 error_out:
2258 iput(sbi->s_vat_inode);
2259 parse_options_failure:
2260 #ifdef CONFIG_UDF_NLS
2261 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2262 unload_nls(sbi->s_nls_map);
2263 #endif
2264 if (lvid_open)
2265 udf_close_lvid(sb);
2266 brelse(sbi->s_lvid_bh);
2267 udf_sb_free_partitions(sb);
2268 kfree(sbi);
2269 sb->s_fs_info = NULL;
2270
2271 return ret;
2272 }
2273
2274 void _udf_err(struct super_block *sb, const char *function,
2275 const char *fmt, ...)
2276 {
2277 struct va_format vaf;
2278 va_list args;
2279
2280 va_start(args, fmt);
2281
2282 vaf.fmt = fmt;
2283 vaf.va = &args;
2284
2285 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2286
2287 va_end(args);
2288 }
2289
2290 void _udf_warn(struct super_block *sb, const char *function,
2291 const char *fmt, ...)
2292 {
2293 struct va_format vaf;
2294 va_list args;
2295
2296 va_start(args, fmt);
2297
2298 vaf.fmt = fmt;
2299 vaf.va = &args;
2300
2301 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2302
2303 va_end(args);
2304 }
2305
2306 static void udf_put_super(struct super_block *sb)
2307 {
2308 struct udf_sb_info *sbi;
2309
2310 sbi = UDF_SB(sb);
2311
2312 iput(sbi->s_vat_inode);
2313 #ifdef CONFIG_UDF_NLS
2314 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2315 unload_nls(sbi->s_nls_map);
2316 #endif
2317 if (!(sb->s_flags & MS_RDONLY))
2318 udf_close_lvid(sb);
2319 brelse(sbi->s_lvid_bh);
2320 udf_sb_free_partitions(sb);
2321 mutex_destroy(&sbi->s_alloc_mutex);
2322 kfree(sb->s_fs_info);
2323 sb->s_fs_info = NULL;
2324 }
2325
2326 static int udf_sync_fs(struct super_block *sb, int wait)
2327 {
2328 struct udf_sb_info *sbi = UDF_SB(sb);
2329
2330 mutex_lock(&sbi->s_alloc_mutex);
2331 if (sbi->s_lvid_dirty) {
2332 /*
2333 * Blockdevice will be synced later so we don't have to submit
2334 * the buffer for IO
2335 */
2336 mark_buffer_dirty(sbi->s_lvid_bh);
2337 sbi->s_lvid_dirty = 0;
2338 }
2339 mutex_unlock(&sbi->s_alloc_mutex);
2340
2341 return 0;
2342 }
2343
2344 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2345 {
2346 struct super_block *sb = dentry->d_sb;
2347 struct udf_sb_info *sbi = UDF_SB(sb);
2348 struct logicalVolIntegrityDescImpUse *lvidiu;
2349 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2350
2351 lvidiu = udf_sb_lvidiu(sb);
2352 buf->f_type = UDF_SUPER_MAGIC;
2353 buf->f_bsize = sb->s_blocksize;
2354 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2355 buf->f_bfree = udf_count_free(sb);
2356 buf->f_bavail = buf->f_bfree;
2357 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2358 le32_to_cpu(lvidiu->numDirs)) : 0)
2359 + buf->f_bfree;
2360 buf->f_ffree = buf->f_bfree;
2361 buf->f_namelen = UDF_NAME_LEN - 2;
2362 buf->f_fsid.val[0] = (u32)id;
2363 buf->f_fsid.val[1] = (u32)(id >> 32);
2364
2365 return 0;
2366 }
2367
2368 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2369 struct udf_bitmap *bitmap)
2370 {
2371 struct buffer_head *bh = NULL;
2372 unsigned int accum = 0;
2373 int index;
2374 int block = 0, newblock;
2375 struct kernel_lb_addr loc;
2376 uint32_t bytes;
2377 uint8_t *ptr;
2378 uint16_t ident;
2379 struct spaceBitmapDesc *bm;
2380
2381 loc.logicalBlockNum = bitmap->s_extPosition;
2382 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2383 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2384
2385 if (!bh) {
2386 udf_err(sb, "udf_count_free failed\n");
2387 goto out;
2388 } else if (ident != TAG_IDENT_SBD) {
2389 brelse(bh);
2390 udf_err(sb, "udf_count_free failed\n");
2391 goto out;
2392 }
2393
2394 bm = (struct spaceBitmapDesc *)bh->b_data;
2395 bytes = le32_to_cpu(bm->numOfBytes);
2396 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2397 ptr = (uint8_t *)bh->b_data;
2398
2399 while (bytes > 0) {
2400 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2401 accum += bitmap_weight((const unsigned long *)(ptr + index),
2402 cur_bytes * 8);
2403 bytes -= cur_bytes;
2404 if (bytes) {
2405 brelse(bh);
2406 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2407 bh = udf_tread(sb, newblock);
2408 if (!bh) {
2409 udf_debug("read failed\n");
2410 goto out;
2411 }
2412 index = 0;
2413 ptr = (uint8_t *)bh->b_data;
2414 }
2415 }
2416 brelse(bh);
2417 out:
2418 return accum;
2419 }
2420
2421 static unsigned int udf_count_free_table(struct super_block *sb,
2422 struct inode *table)
2423 {
2424 unsigned int accum = 0;
2425 uint32_t elen;
2426 struct kernel_lb_addr eloc;
2427 int8_t etype;
2428 struct extent_position epos;
2429
2430 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2431 epos.block = UDF_I(table)->i_location;
2432 epos.offset = sizeof(struct unallocSpaceEntry);
2433 epos.bh = NULL;
2434
2435 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2436 accum += (elen >> table->i_sb->s_blocksize_bits);
2437
2438 brelse(epos.bh);
2439 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2440
2441 return accum;
2442 }
2443
2444 static unsigned int udf_count_free(struct super_block *sb)
2445 {
2446 unsigned int accum = 0;
2447 struct udf_sb_info *sbi;
2448 struct udf_part_map *map;
2449
2450 sbi = UDF_SB(sb);
2451 if (sbi->s_lvid_bh) {
2452 struct logicalVolIntegrityDesc *lvid =
2453 (struct logicalVolIntegrityDesc *)
2454 sbi->s_lvid_bh->b_data;
2455 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2456 accum = le32_to_cpu(
2457 lvid->freeSpaceTable[sbi->s_partition]);
2458 if (accum == 0xFFFFFFFF)
2459 accum = 0;
2460 }
2461 }
2462
2463 if (accum)
2464 return accum;
2465
2466 map = &sbi->s_partmaps[sbi->s_partition];
2467 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2468 accum += udf_count_free_bitmap(sb,
2469 map->s_uspace.s_bitmap);
2470 }
2471 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2472 accum += udf_count_free_bitmap(sb,
2473 map->s_fspace.s_bitmap);
2474 }
2475 if (accum)
2476 return accum;
2477
2478 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2479 accum += udf_count_free_table(sb,
2480 map->s_uspace.s_table);
2481 }
2482 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2483 accum += udf_count_free_table(sb,
2484 map->s_fspace.s_table);
2485 }
2486
2487 return accum;
2488 }
This page took 0.128085 seconds and 6 git commands to generate.