Merge branches 'acpi-soc', 'acpi-misc', 'acpi-pci' and 'device-properties'
[deliverable/linux.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38
39 void
40 xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
43 int *unwritten)
44 {
45 struct buffer_head *bh, *head;
46
47 *delalloc = *unwritten = 0;
48
49 bh = head = page_buffers(page);
50 do {
51 if (buffer_unwritten(bh))
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56 }
57
58 struct block_device *
59 xfs_find_bdev_for_inode(
60 struct inode *inode)
61 {
62 struct xfs_inode *ip = XFS_I(inode);
63 struct xfs_mount *mp = ip->i_mount;
64
65 if (XFS_IS_REALTIME_INODE(ip))
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69 }
70
71 /*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
77 STATIC void
78 xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80 {
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
85 bh->b_end_io(bh, !ioend->io_error);
86 }
87
88 mempool_free(ioend, xfs_ioend_pool);
89 }
90
91 /*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103 {
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 if (error) {
112 xfs_trans_cancel(tp);
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
118 /*
119 * We may pass freeze protection with a transaction. So tell lockdep
120 * we released it.
121 */
122 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
123 /*
124 * We hand off the transaction to the completion thread now, so
125 * clear the flag here.
126 */
127 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
128 return 0;
129 }
130
131 /*
132 * Update on-disk file size now that data has been written to disk.
133 */
134 STATIC int
135 xfs_setfilesize(
136 struct xfs_inode *ip,
137 struct xfs_trans *tp,
138 xfs_off_t offset,
139 size_t size)
140 {
141 xfs_fsize_t isize;
142
143 xfs_ilock(ip, XFS_ILOCK_EXCL);
144 isize = xfs_new_eof(ip, offset + size);
145 if (!isize) {
146 xfs_iunlock(ip, XFS_ILOCK_EXCL);
147 xfs_trans_cancel(tp);
148 return 0;
149 }
150
151 trace_xfs_setfilesize(ip, offset, size);
152
153 ip->i_d.di_size = isize;
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
156
157 return xfs_trans_commit(tp);
158 }
159
160 STATIC int
161 xfs_setfilesize_ioend(
162 struct xfs_ioend *ioend)
163 {
164 struct xfs_inode *ip = XFS_I(ioend->io_inode);
165 struct xfs_trans *tp = ioend->io_append_trans;
166
167 /*
168 * The transaction may have been allocated in the I/O submission thread,
169 * thus we need to mark ourselves as being in a transaction manually.
170 * Similarly for freeze protection.
171 */
172 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
173 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
174
175 /* we abort the update if there was an IO error */
176 if (ioend->io_error) {
177 xfs_trans_cancel(tp);
178 return ioend->io_error;
179 }
180
181 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
182 }
183
184 /*
185 * Schedule IO completion handling on the final put of an ioend.
186 *
187 * If there is no work to do we might as well call it a day and free the
188 * ioend right now.
189 */
190 STATIC void
191 xfs_finish_ioend(
192 struct xfs_ioend *ioend)
193 {
194 if (atomic_dec_and_test(&ioend->io_remaining)) {
195 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
196
197 if (ioend->io_type == XFS_IO_UNWRITTEN)
198 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
199 else if (ioend->io_append_trans)
200 queue_work(mp->m_data_workqueue, &ioend->io_work);
201 else
202 xfs_destroy_ioend(ioend);
203 }
204 }
205
206 /*
207 * IO write completion.
208 */
209 STATIC void
210 xfs_end_io(
211 struct work_struct *work)
212 {
213 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
214 struct xfs_inode *ip = XFS_I(ioend->io_inode);
215 int error = 0;
216
217 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
218 ioend->io_error = -EIO;
219 goto done;
220 }
221
222 /*
223 * For unwritten extents we need to issue transactions to convert a
224 * range to normal written extens after the data I/O has finished.
225 * Detecting and handling completion IO errors is done individually
226 * for each case as different cleanup operations need to be performed
227 * on error.
228 */
229 if (ioend->io_type == XFS_IO_UNWRITTEN) {
230 if (ioend->io_error)
231 goto done;
232 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
233 ioend->io_size);
234 } else if (ioend->io_append_trans) {
235 error = xfs_setfilesize_ioend(ioend);
236 } else {
237 ASSERT(!xfs_ioend_is_append(ioend));
238 }
239
240 done:
241 if (error)
242 ioend->io_error = error;
243 xfs_destroy_ioend(ioend);
244 }
245
246 /*
247 * Allocate and initialise an IO completion structure.
248 * We need to track unwritten extent write completion here initially.
249 * We'll need to extend this for updating the ondisk inode size later
250 * (vs. incore size).
251 */
252 STATIC xfs_ioend_t *
253 xfs_alloc_ioend(
254 struct inode *inode,
255 unsigned int type)
256 {
257 xfs_ioend_t *ioend;
258
259 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
260
261 /*
262 * Set the count to 1 initially, which will prevent an I/O
263 * completion callback from happening before we have started
264 * all the I/O from calling the completion routine too early.
265 */
266 atomic_set(&ioend->io_remaining, 1);
267 ioend->io_error = 0;
268 ioend->io_list = NULL;
269 ioend->io_type = type;
270 ioend->io_inode = inode;
271 ioend->io_buffer_head = NULL;
272 ioend->io_buffer_tail = NULL;
273 ioend->io_offset = 0;
274 ioend->io_size = 0;
275 ioend->io_append_trans = NULL;
276
277 INIT_WORK(&ioend->io_work, xfs_end_io);
278 return ioend;
279 }
280
281 STATIC int
282 xfs_map_blocks(
283 struct inode *inode,
284 loff_t offset,
285 struct xfs_bmbt_irec *imap,
286 int type,
287 int nonblocking)
288 {
289 struct xfs_inode *ip = XFS_I(inode);
290 struct xfs_mount *mp = ip->i_mount;
291 ssize_t count = 1 << inode->i_blkbits;
292 xfs_fileoff_t offset_fsb, end_fsb;
293 int error = 0;
294 int bmapi_flags = XFS_BMAPI_ENTIRE;
295 int nimaps = 1;
296
297 if (XFS_FORCED_SHUTDOWN(mp))
298 return -EIO;
299
300 if (type == XFS_IO_UNWRITTEN)
301 bmapi_flags |= XFS_BMAPI_IGSTATE;
302
303 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
304 if (nonblocking)
305 return -EAGAIN;
306 xfs_ilock(ip, XFS_ILOCK_SHARED);
307 }
308
309 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
310 (ip->i_df.if_flags & XFS_IFEXTENTS));
311 ASSERT(offset <= mp->m_super->s_maxbytes);
312
313 if (offset + count > mp->m_super->s_maxbytes)
314 count = mp->m_super->s_maxbytes - offset;
315 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
316 offset_fsb = XFS_B_TO_FSBT(mp, offset);
317 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
318 imap, &nimaps, bmapi_flags);
319 xfs_iunlock(ip, XFS_ILOCK_SHARED);
320
321 if (error)
322 return error;
323
324 if (type == XFS_IO_DELALLOC &&
325 (!nimaps || isnullstartblock(imap->br_startblock))) {
326 error = xfs_iomap_write_allocate(ip, offset, imap);
327 if (!error)
328 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
329 return error;
330 }
331
332 #ifdef DEBUG
333 if (type == XFS_IO_UNWRITTEN) {
334 ASSERT(nimaps);
335 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
336 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
337 }
338 #endif
339 if (nimaps)
340 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
341 return 0;
342 }
343
344 STATIC int
345 xfs_imap_valid(
346 struct inode *inode,
347 struct xfs_bmbt_irec *imap,
348 xfs_off_t offset)
349 {
350 offset >>= inode->i_blkbits;
351
352 return offset >= imap->br_startoff &&
353 offset < imap->br_startoff + imap->br_blockcount;
354 }
355
356 /*
357 * BIO completion handler for buffered IO.
358 */
359 STATIC void
360 xfs_end_bio(
361 struct bio *bio)
362 {
363 xfs_ioend_t *ioend = bio->bi_private;
364
365 if (!ioend->io_error)
366 ioend->io_error = bio->bi_error;
367
368 /* Toss bio and pass work off to an xfsdatad thread */
369 bio->bi_private = NULL;
370 bio->bi_end_io = NULL;
371 bio_put(bio);
372
373 xfs_finish_ioend(ioend);
374 }
375
376 STATIC void
377 xfs_submit_ioend_bio(
378 struct writeback_control *wbc,
379 xfs_ioend_t *ioend,
380 struct bio *bio)
381 {
382 atomic_inc(&ioend->io_remaining);
383 bio->bi_private = ioend;
384 bio->bi_end_io = xfs_end_bio;
385 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
386 }
387
388 STATIC struct bio *
389 xfs_alloc_ioend_bio(
390 struct buffer_head *bh)
391 {
392 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
393
394 ASSERT(bio->bi_private == NULL);
395 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
396 bio->bi_bdev = bh->b_bdev;
397 return bio;
398 }
399
400 STATIC void
401 xfs_start_buffer_writeback(
402 struct buffer_head *bh)
403 {
404 ASSERT(buffer_mapped(bh));
405 ASSERT(buffer_locked(bh));
406 ASSERT(!buffer_delay(bh));
407 ASSERT(!buffer_unwritten(bh));
408
409 mark_buffer_async_write(bh);
410 set_buffer_uptodate(bh);
411 clear_buffer_dirty(bh);
412 }
413
414 STATIC void
415 xfs_start_page_writeback(
416 struct page *page,
417 int clear_dirty,
418 int buffers)
419 {
420 ASSERT(PageLocked(page));
421 ASSERT(!PageWriteback(page));
422
423 /*
424 * if the page was not fully cleaned, we need to ensure that the higher
425 * layers come back to it correctly. That means we need to keep the page
426 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
427 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
428 * write this page in this writeback sweep will be made.
429 */
430 if (clear_dirty) {
431 clear_page_dirty_for_io(page);
432 set_page_writeback(page);
433 } else
434 set_page_writeback_keepwrite(page);
435
436 unlock_page(page);
437
438 /* If no buffers on the page are to be written, finish it here */
439 if (!buffers)
440 end_page_writeback(page);
441 }
442
443 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
444 {
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446 }
447
448 /*
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
451 *
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
457 *
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
461 *
462 * The fix is two passes across the ioend list - one to start writeback on the
463 * buffer_heads, and then submit them for I/O on the second pass.
464 *
465 * If @fail is non-zero, it means that we have a situation where some part of
466 * the submission process has failed after we have marked paged for writeback
467 * and unlocked them. In this situation, we need to fail the ioend chain rather
468 * than submit it to IO. This typically only happens on a filesystem shutdown.
469 */
470 STATIC void
471 xfs_submit_ioend(
472 struct writeback_control *wbc,
473 xfs_ioend_t *ioend,
474 int fail)
475 {
476 xfs_ioend_t *head = ioend;
477 xfs_ioend_t *next;
478 struct buffer_head *bh;
479 struct bio *bio;
480 sector_t lastblock = 0;
481
482 /* Pass 1 - start writeback */
483 do {
484 next = ioend->io_list;
485 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
486 xfs_start_buffer_writeback(bh);
487 } while ((ioend = next) != NULL);
488
489 /* Pass 2 - submit I/O */
490 ioend = head;
491 do {
492 next = ioend->io_list;
493 bio = NULL;
494
495 /*
496 * If we are failing the IO now, just mark the ioend with an
497 * error and finish it. This will run IO completion immediately
498 * as there is only one reference to the ioend at this point in
499 * time.
500 */
501 if (fail) {
502 ioend->io_error = fail;
503 xfs_finish_ioend(ioend);
504 continue;
505 }
506
507 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
508
509 if (!bio) {
510 retry:
511 bio = xfs_alloc_ioend_bio(bh);
512 } else if (bh->b_blocknr != lastblock + 1) {
513 xfs_submit_ioend_bio(wbc, ioend, bio);
514 goto retry;
515 }
516
517 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
518 xfs_submit_ioend_bio(wbc, ioend, bio);
519 goto retry;
520 }
521
522 lastblock = bh->b_blocknr;
523 }
524 if (bio)
525 xfs_submit_ioend_bio(wbc, ioend, bio);
526 xfs_finish_ioend(ioend);
527 } while ((ioend = next) != NULL);
528 }
529
530 /*
531 * Cancel submission of all buffer_heads so far in this endio.
532 * Toss the endio too. Only ever called for the initial page
533 * in a writepage request, so only ever one page.
534 */
535 STATIC void
536 xfs_cancel_ioend(
537 xfs_ioend_t *ioend)
538 {
539 xfs_ioend_t *next;
540 struct buffer_head *bh, *next_bh;
541
542 do {
543 next = ioend->io_list;
544 bh = ioend->io_buffer_head;
545 do {
546 next_bh = bh->b_private;
547 clear_buffer_async_write(bh);
548 /*
549 * The unwritten flag is cleared when added to the
550 * ioend. We're not submitting for I/O so mark the
551 * buffer unwritten again for next time around.
552 */
553 if (ioend->io_type == XFS_IO_UNWRITTEN)
554 set_buffer_unwritten(bh);
555 unlock_buffer(bh);
556 } while ((bh = next_bh) != NULL);
557
558 mempool_free(ioend, xfs_ioend_pool);
559 } while ((ioend = next) != NULL);
560 }
561
562 /*
563 * Test to see if we've been building up a completion structure for
564 * earlier buffers -- if so, we try to append to this ioend if we
565 * can, otherwise we finish off any current ioend and start another.
566 * Return true if we've finished the given ioend.
567 */
568 STATIC void
569 xfs_add_to_ioend(
570 struct inode *inode,
571 struct buffer_head *bh,
572 xfs_off_t offset,
573 unsigned int type,
574 xfs_ioend_t **result,
575 int need_ioend)
576 {
577 xfs_ioend_t *ioend = *result;
578
579 if (!ioend || need_ioend || type != ioend->io_type) {
580 xfs_ioend_t *previous = *result;
581
582 ioend = xfs_alloc_ioend(inode, type);
583 ioend->io_offset = offset;
584 ioend->io_buffer_head = bh;
585 ioend->io_buffer_tail = bh;
586 if (previous)
587 previous->io_list = ioend;
588 *result = ioend;
589 } else {
590 ioend->io_buffer_tail->b_private = bh;
591 ioend->io_buffer_tail = bh;
592 }
593
594 bh->b_private = NULL;
595 ioend->io_size += bh->b_size;
596 }
597
598 STATIC void
599 xfs_map_buffer(
600 struct inode *inode,
601 struct buffer_head *bh,
602 struct xfs_bmbt_irec *imap,
603 xfs_off_t offset)
604 {
605 sector_t bn;
606 struct xfs_mount *m = XFS_I(inode)->i_mount;
607 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
608 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
609
610 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
611 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
612
613 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
614 ((offset - iomap_offset) >> inode->i_blkbits);
615
616 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
617
618 bh->b_blocknr = bn;
619 set_buffer_mapped(bh);
620 }
621
622 STATIC void
623 xfs_map_at_offset(
624 struct inode *inode,
625 struct buffer_head *bh,
626 struct xfs_bmbt_irec *imap,
627 xfs_off_t offset)
628 {
629 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
630 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
631
632 xfs_map_buffer(inode, bh, imap, offset);
633 set_buffer_mapped(bh);
634 clear_buffer_delay(bh);
635 clear_buffer_unwritten(bh);
636 }
637
638 /*
639 * Test if a given page contains at least one buffer of a given @type.
640 * If @check_all_buffers is true, then we walk all the buffers in the page to
641 * try to find one of the type passed in. If it is not set, then the caller only
642 * needs to check the first buffer on the page for a match.
643 */
644 STATIC bool
645 xfs_check_page_type(
646 struct page *page,
647 unsigned int type,
648 bool check_all_buffers)
649 {
650 struct buffer_head *bh;
651 struct buffer_head *head;
652
653 if (PageWriteback(page))
654 return false;
655 if (!page->mapping)
656 return false;
657 if (!page_has_buffers(page))
658 return false;
659
660 bh = head = page_buffers(page);
661 do {
662 if (buffer_unwritten(bh)) {
663 if (type == XFS_IO_UNWRITTEN)
664 return true;
665 } else if (buffer_delay(bh)) {
666 if (type == XFS_IO_DELALLOC)
667 return true;
668 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
669 if (type == XFS_IO_OVERWRITE)
670 return true;
671 }
672
673 /* If we are only checking the first buffer, we are done now. */
674 if (!check_all_buffers)
675 break;
676 } while ((bh = bh->b_this_page) != head);
677
678 return false;
679 }
680
681 /*
682 * Allocate & map buffers for page given the extent map. Write it out.
683 * except for the original page of a writepage, this is called on
684 * delalloc/unwritten pages only, for the original page it is possible
685 * that the page has no mapping at all.
686 */
687 STATIC int
688 xfs_convert_page(
689 struct inode *inode,
690 struct page *page,
691 loff_t tindex,
692 struct xfs_bmbt_irec *imap,
693 xfs_ioend_t **ioendp,
694 struct writeback_control *wbc)
695 {
696 struct buffer_head *bh, *head;
697 xfs_off_t end_offset;
698 unsigned long p_offset;
699 unsigned int type;
700 int len, page_dirty;
701 int count = 0, done = 0, uptodate = 1;
702 xfs_off_t offset = page_offset(page);
703
704 if (page->index != tindex)
705 goto fail;
706 if (!trylock_page(page))
707 goto fail;
708 if (PageWriteback(page))
709 goto fail_unlock_page;
710 if (page->mapping != inode->i_mapping)
711 goto fail_unlock_page;
712 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
713 goto fail_unlock_page;
714
715 /*
716 * page_dirty is initially a count of buffers on the page before
717 * EOF and is decremented as we move each into a cleanable state.
718 *
719 * Derivation:
720 *
721 * End offset is the highest offset that this page should represent.
722 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
723 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
724 * hence give us the correct page_dirty count. On any other page,
725 * it will be zero and in that case we need page_dirty to be the
726 * count of buffers on the page.
727 */
728 end_offset = min_t(unsigned long long,
729 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
730 i_size_read(inode));
731
732 /*
733 * If the current map does not span the entire page we are about to try
734 * to write, then give up. The only way we can write a page that spans
735 * multiple mappings in a single writeback iteration is via the
736 * xfs_vm_writepage() function. Data integrity writeback requires the
737 * entire page to be written in a single attempt, otherwise the part of
738 * the page we don't write here doesn't get written as part of the data
739 * integrity sync.
740 *
741 * For normal writeback, we also don't attempt to write partial pages
742 * here as it simply means that write_cache_pages() will see it under
743 * writeback and ignore the page until some point in the future, at
744 * which time this will be the only page in the file that needs
745 * writeback. Hence for more optimal IO patterns, we should always
746 * avoid partial page writeback due to multiple mappings on a page here.
747 */
748 if (!xfs_imap_valid(inode, imap, end_offset))
749 goto fail_unlock_page;
750
751 len = 1 << inode->i_blkbits;
752 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
753 PAGE_CACHE_SIZE);
754 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
755 page_dirty = p_offset / len;
756
757 /*
758 * The moment we find a buffer that doesn't match our current type
759 * specification or can't be written, abort the loop and start
760 * writeback. As per the above xfs_imap_valid() check, only
761 * xfs_vm_writepage() can handle partial page writeback fully - we are
762 * limited here to the buffers that are contiguous with the current
763 * ioend, and hence a buffer we can't write breaks that contiguity and
764 * we have to defer the rest of the IO to xfs_vm_writepage().
765 */
766 bh = head = page_buffers(page);
767 do {
768 if (offset >= end_offset)
769 break;
770 if (!buffer_uptodate(bh))
771 uptodate = 0;
772 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
773 done = 1;
774 break;
775 }
776
777 if (buffer_unwritten(bh) || buffer_delay(bh) ||
778 buffer_mapped(bh)) {
779 if (buffer_unwritten(bh))
780 type = XFS_IO_UNWRITTEN;
781 else if (buffer_delay(bh))
782 type = XFS_IO_DELALLOC;
783 else
784 type = XFS_IO_OVERWRITE;
785
786 /*
787 * imap should always be valid because of the above
788 * partial page end_offset check on the imap.
789 */
790 ASSERT(xfs_imap_valid(inode, imap, offset));
791
792 lock_buffer(bh);
793 if (type != XFS_IO_OVERWRITE)
794 xfs_map_at_offset(inode, bh, imap, offset);
795 xfs_add_to_ioend(inode, bh, offset, type,
796 ioendp, done);
797
798 page_dirty--;
799 count++;
800 } else {
801 done = 1;
802 break;
803 }
804 } while (offset += len, (bh = bh->b_this_page) != head);
805
806 if (uptodate && bh == head)
807 SetPageUptodate(page);
808
809 if (count) {
810 if (--wbc->nr_to_write <= 0 &&
811 wbc->sync_mode == WB_SYNC_NONE)
812 done = 1;
813 }
814 xfs_start_page_writeback(page, !page_dirty, count);
815
816 return done;
817 fail_unlock_page:
818 unlock_page(page);
819 fail:
820 return 1;
821 }
822
823 /*
824 * Convert & write out a cluster of pages in the same extent as defined
825 * by mp and following the start page.
826 */
827 STATIC void
828 xfs_cluster_write(
829 struct inode *inode,
830 pgoff_t tindex,
831 struct xfs_bmbt_irec *imap,
832 xfs_ioend_t **ioendp,
833 struct writeback_control *wbc,
834 pgoff_t tlast)
835 {
836 struct pagevec pvec;
837 int done = 0, i;
838
839 pagevec_init(&pvec, 0);
840 while (!done && tindex <= tlast) {
841 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
842
843 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
844 break;
845
846 for (i = 0; i < pagevec_count(&pvec); i++) {
847 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
848 imap, ioendp, wbc);
849 if (done)
850 break;
851 }
852
853 pagevec_release(&pvec);
854 cond_resched();
855 }
856 }
857
858 STATIC void
859 xfs_vm_invalidatepage(
860 struct page *page,
861 unsigned int offset,
862 unsigned int length)
863 {
864 trace_xfs_invalidatepage(page->mapping->host, page, offset,
865 length);
866 block_invalidatepage(page, offset, length);
867 }
868
869 /*
870 * If the page has delalloc buffers on it, we need to punch them out before we
871 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
872 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
873 * is done on that same region - the delalloc extent is returned when none is
874 * supposed to be there.
875 *
876 * We prevent this by truncating away the delalloc regions on the page before
877 * invalidating it. Because they are delalloc, we can do this without needing a
878 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
879 * truncation without a transaction as there is no space left for block
880 * reservation (typically why we see a ENOSPC in writeback).
881 *
882 * This is not a performance critical path, so for now just do the punching a
883 * buffer head at a time.
884 */
885 STATIC void
886 xfs_aops_discard_page(
887 struct page *page)
888 {
889 struct inode *inode = page->mapping->host;
890 struct xfs_inode *ip = XFS_I(inode);
891 struct buffer_head *bh, *head;
892 loff_t offset = page_offset(page);
893
894 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
895 goto out_invalidate;
896
897 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
898 goto out_invalidate;
899
900 xfs_alert(ip->i_mount,
901 "page discard on page %p, inode 0x%llx, offset %llu.",
902 page, ip->i_ino, offset);
903
904 xfs_ilock(ip, XFS_ILOCK_EXCL);
905 bh = head = page_buffers(page);
906 do {
907 int error;
908 xfs_fileoff_t start_fsb;
909
910 if (!buffer_delay(bh))
911 goto next_buffer;
912
913 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
914 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
915 if (error) {
916 /* something screwed, just bail */
917 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
918 xfs_alert(ip->i_mount,
919 "page discard unable to remove delalloc mapping.");
920 }
921 break;
922 }
923 next_buffer:
924 offset += 1 << inode->i_blkbits;
925
926 } while ((bh = bh->b_this_page) != head);
927
928 xfs_iunlock(ip, XFS_ILOCK_EXCL);
929 out_invalidate:
930 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
931 return;
932 }
933
934 /*
935 * Write out a dirty page.
936 *
937 * For delalloc space on the page we need to allocate space and flush it.
938 * For unwritten space on the page we need to start the conversion to
939 * regular allocated space.
940 * For any other dirty buffer heads on the page we should flush them.
941 */
942 STATIC int
943 xfs_vm_writepage(
944 struct page *page,
945 struct writeback_control *wbc)
946 {
947 struct inode *inode = page->mapping->host;
948 struct buffer_head *bh, *head;
949 struct xfs_bmbt_irec imap;
950 xfs_ioend_t *ioend = NULL, *iohead = NULL;
951 loff_t offset;
952 unsigned int type;
953 __uint64_t end_offset;
954 pgoff_t end_index, last_index;
955 ssize_t len;
956 int err, imap_valid = 0, uptodate = 1;
957 int count = 0;
958 int nonblocking = 0;
959
960 trace_xfs_writepage(inode, page, 0, 0);
961
962 ASSERT(page_has_buffers(page));
963
964 /*
965 * Refuse to write the page out if we are called from reclaim context.
966 *
967 * This avoids stack overflows when called from deeply used stacks in
968 * random callers for direct reclaim or memcg reclaim. We explicitly
969 * allow reclaim from kswapd as the stack usage there is relatively low.
970 *
971 * This should never happen except in the case of a VM regression so
972 * warn about it.
973 */
974 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
975 PF_MEMALLOC))
976 goto redirty;
977
978 /*
979 * Given that we do not allow direct reclaim to call us, we should
980 * never be called while in a filesystem transaction.
981 */
982 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
983 goto redirty;
984
985 /* Is this page beyond the end of the file? */
986 offset = i_size_read(inode);
987 end_index = offset >> PAGE_CACHE_SHIFT;
988 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
989
990 /*
991 * The page index is less than the end_index, adjust the end_offset
992 * to the highest offset that this page should represent.
993 * -----------------------------------------------------
994 * | file mapping | <EOF> |
995 * -----------------------------------------------------
996 * | Page ... | Page N-2 | Page N-1 | Page N | |
997 * ^--------------------------------^----------|--------
998 * | desired writeback range | see else |
999 * ---------------------------------^------------------|
1000 */
1001 if (page->index < end_index)
1002 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1003 else {
1004 /*
1005 * Check whether the page to write out is beyond or straddles
1006 * i_size or not.
1007 * -------------------------------------------------------
1008 * | file mapping | <EOF> |
1009 * -------------------------------------------------------
1010 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1011 * ^--------------------------------^-----------|---------
1012 * | | Straddles |
1013 * ---------------------------------^-----------|--------|
1014 */
1015 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1016
1017 /*
1018 * Skip the page if it is fully outside i_size, e.g. due to a
1019 * truncate operation that is in progress. We must redirty the
1020 * page so that reclaim stops reclaiming it. Otherwise
1021 * xfs_vm_releasepage() is called on it and gets confused.
1022 *
1023 * Note that the end_index is unsigned long, it would overflow
1024 * if the given offset is greater than 16TB on 32-bit system
1025 * and if we do check the page is fully outside i_size or not
1026 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1027 * will be evaluated to 0. Hence this page will be redirtied
1028 * and be written out repeatedly which would result in an
1029 * infinite loop, the user program that perform this operation
1030 * will hang. Instead, we can verify this situation by checking
1031 * if the page to write is totally beyond the i_size or if it's
1032 * offset is just equal to the EOF.
1033 */
1034 if (page->index > end_index ||
1035 (page->index == end_index && offset_into_page == 0))
1036 goto redirty;
1037
1038 /*
1039 * The page straddles i_size. It must be zeroed out on each
1040 * and every writepage invocation because it may be mmapped.
1041 * "A file is mapped in multiples of the page size. For a file
1042 * that is not a multiple of the page size, the remaining
1043 * memory is zeroed when mapped, and writes to that region are
1044 * not written out to the file."
1045 */
1046 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1047
1048 /* Adjust the end_offset to the end of file */
1049 end_offset = offset;
1050 }
1051
1052 len = 1 << inode->i_blkbits;
1053
1054 bh = head = page_buffers(page);
1055 offset = page_offset(page);
1056 type = XFS_IO_OVERWRITE;
1057
1058 if (wbc->sync_mode == WB_SYNC_NONE)
1059 nonblocking = 1;
1060
1061 do {
1062 int new_ioend = 0;
1063
1064 if (offset >= end_offset)
1065 break;
1066 if (!buffer_uptodate(bh))
1067 uptodate = 0;
1068
1069 /*
1070 * set_page_dirty dirties all buffers in a page, independent
1071 * of their state. The dirty state however is entirely
1072 * meaningless for holes (!mapped && uptodate), so skip
1073 * buffers covering holes here.
1074 */
1075 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1076 imap_valid = 0;
1077 continue;
1078 }
1079
1080 if (buffer_unwritten(bh)) {
1081 if (type != XFS_IO_UNWRITTEN) {
1082 type = XFS_IO_UNWRITTEN;
1083 imap_valid = 0;
1084 }
1085 } else if (buffer_delay(bh)) {
1086 if (type != XFS_IO_DELALLOC) {
1087 type = XFS_IO_DELALLOC;
1088 imap_valid = 0;
1089 }
1090 } else if (buffer_uptodate(bh)) {
1091 if (type != XFS_IO_OVERWRITE) {
1092 type = XFS_IO_OVERWRITE;
1093 imap_valid = 0;
1094 }
1095 } else {
1096 if (PageUptodate(page))
1097 ASSERT(buffer_mapped(bh));
1098 /*
1099 * This buffer is not uptodate and will not be
1100 * written to disk. Ensure that we will put any
1101 * subsequent writeable buffers into a new
1102 * ioend.
1103 */
1104 imap_valid = 0;
1105 continue;
1106 }
1107
1108 if (imap_valid)
1109 imap_valid = xfs_imap_valid(inode, &imap, offset);
1110 if (!imap_valid) {
1111 /*
1112 * If we didn't have a valid mapping then we need to
1113 * put the new mapping into a separate ioend structure.
1114 * This ensures non-contiguous extents always have
1115 * separate ioends, which is particularly important
1116 * for unwritten extent conversion at I/O completion
1117 * time.
1118 */
1119 new_ioend = 1;
1120 err = xfs_map_blocks(inode, offset, &imap, type,
1121 nonblocking);
1122 if (err)
1123 goto error;
1124 imap_valid = xfs_imap_valid(inode, &imap, offset);
1125 }
1126 if (imap_valid) {
1127 lock_buffer(bh);
1128 if (type != XFS_IO_OVERWRITE)
1129 xfs_map_at_offset(inode, bh, &imap, offset);
1130 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1131 new_ioend);
1132 count++;
1133 }
1134
1135 if (!iohead)
1136 iohead = ioend;
1137
1138 } while (offset += len, ((bh = bh->b_this_page) != head));
1139
1140 if (uptodate && bh == head)
1141 SetPageUptodate(page);
1142
1143 xfs_start_page_writeback(page, 1, count);
1144
1145 /* if there is no IO to be submitted for this page, we are done */
1146 if (!ioend)
1147 return 0;
1148
1149 ASSERT(iohead);
1150
1151 /*
1152 * Any errors from this point onwards need tobe reported through the IO
1153 * completion path as we have marked the initial page as under writeback
1154 * and unlocked it.
1155 */
1156 if (imap_valid) {
1157 xfs_off_t end_index;
1158
1159 end_index = imap.br_startoff + imap.br_blockcount;
1160
1161 /* to bytes */
1162 end_index <<= inode->i_blkbits;
1163
1164 /* to pages */
1165 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1166
1167 /* check against file size */
1168 if (end_index > last_index)
1169 end_index = last_index;
1170
1171 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1172 wbc, end_index);
1173 }
1174
1175
1176 /*
1177 * Reserve log space if we might write beyond the on-disk inode size.
1178 */
1179 err = 0;
1180 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1181 err = xfs_setfilesize_trans_alloc(ioend);
1182
1183 xfs_submit_ioend(wbc, iohead, err);
1184
1185 return 0;
1186
1187 error:
1188 if (iohead)
1189 xfs_cancel_ioend(iohead);
1190
1191 if (err == -EAGAIN)
1192 goto redirty;
1193
1194 xfs_aops_discard_page(page);
1195 ClearPageUptodate(page);
1196 unlock_page(page);
1197 return err;
1198
1199 redirty:
1200 redirty_page_for_writepage(wbc, page);
1201 unlock_page(page);
1202 return 0;
1203 }
1204
1205 STATIC int
1206 xfs_vm_writepages(
1207 struct address_space *mapping,
1208 struct writeback_control *wbc)
1209 {
1210 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1211 if (dax_mapping(mapping))
1212 return dax_writeback_mapping_range(mapping,
1213 xfs_find_bdev_for_inode(mapping->host), wbc);
1214
1215 return generic_writepages(mapping, wbc);
1216 }
1217
1218 /*
1219 * Called to move a page into cleanable state - and from there
1220 * to be released. The page should already be clean. We always
1221 * have buffer heads in this call.
1222 *
1223 * Returns 1 if the page is ok to release, 0 otherwise.
1224 */
1225 STATIC int
1226 xfs_vm_releasepage(
1227 struct page *page,
1228 gfp_t gfp_mask)
1229 {
1230 int delalloc, unwritten;
1231
1232 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1233
1234 xfs_count_page_state(page, &delalloc, &unwritten);
1235
1236 if (WARN_ON_ONCE(delalloc))
1237 return 0;
1238 if (WARN_ON_ONCE(unwritten))
1239 return 0;
1240
1241 return try_to_free_buffers(page);
1242 }
1243
1244 /*
1245 * When we map a DIO buffer, we may need to attach an ioend that describes the
1246 * type of write IO we are doing. This passes to the completion function the
1247 * operations it needs to perform. If the mapping is for an overwrite wholly
1248 * within the EOF then we don't need an ioend and so we don't allocate one.
1249 * This avoids the unnecessary overhead of allocating and freeing ioends for
1250 * workloads that don't require transactions on IO completion.
1251 *
1252 * If we get multiple mappings in a single IO, we might be mapping different
1253 * types. But because the direct IO can only have a single private pointer, we
1254 * need to ensure that:
1255 *
1256 * a) i) the ioend spans the entire region of unwritten mappings; or
1257 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
1258 * b) if it contains unwritten extents, it is *permanently* marked as such
1259 *
1260 * We could do this by chaining ioends like buffered IO does, but we only
1261 * actually get one IO completion callback from the direct IO, and that spans
1262 * the entire IO regardless of how many mappings and IOs are needed to complete
1263 * the DIO. There is only going to be one reference to the ioend and its life
1264 * cycle is constrained by the DIO completion code. hence we don't need
1265 * reference counting here.
1266 *
1267 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1268 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1269 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1270 * extending the file size. We won't know for sure until IO completion is run
1271 * and the actual max write offset is communicated to the IO completion
1272 * routine.
1273 *
1274 * For DAX page faults, we are preparing to never see unwritten extents here,
1275 * nor should we ever extend the inode size. Hence we will soon have nothing to
1276 * do here for this case, ensuring we don't have to provide an IO completion
1277 * callback to free an ioend that we don't actually need for a fault into the
1278 * page at offset (2^63 - 1FSB) bytes.
1279 */
1280
1281 static void
1282 xfs_map_direct(
1283 struct inode *inode,
1284 struct buffer_head *bh_result,
1285 struct xfs_bmbt_irec *imap,
1286 xfs_off_t offset,
1287 bool dax_fault)
1288 {
1289 struct xfs_ioend *ioend;
1290 xfs_off_t size = bh_result->b_size;
1291 int type;
1292
1293 if (ISUNWRITTEN(imap))
1294 type = XFS_IO_UNWRITTEN;
1295 else
1296 type = XFS_IO_OVERWRITE;
1297
1298 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1299
1300 if (dax_fault) {
1301 ASSERT(type == XFS_IO_OVERWRITE);
1302 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1303 imap);
1304 return;
1305 }
1306
1307 if (bh_result->b_private) {
1308 ioend = bh_result->b_private;
1309 ASSERT(ioend->io_size > 0);
1310 ASSERT(offset >= ioend->io_offset);
1311 if (offset + size > ioend->io_offset + ioend->io_size)
1312 ioend->io_size = offset - ioend->io_offset + size;
1313
1314 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1315 ioend->io_type = XFS_IO_UNWRITTEN;
1316
1317 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1318 ioend->io_size, ioend->io_type,
1319 imap);
1320 } else if (type == XFS_IO_UNWRITTEN ||
1321 offset + size > i_size_read(inode) ||
1322 offset + size < 0) {
1323 ioend = xfs_alloc_ioend(inode, type);
1324 ioend->io_offset = offset;
1325 ioend->io_size = size;
1326
1327 bh_result->b_private = ioend;
1328 set_buffer_defer_completion(bh_result);
1329
1330 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1331 imap);
1332 } else {
1333 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1334 imap);
1335 }
1336 }
1337
1338 /*
1339 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1340 * is, so that we can avoid repeated get_blocks calls.
1341 *
1342 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1343 * for blocks beyond EOF must be marked new so that sub block regions can be
1344 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1345 * was just allocated or is unwritten, otherwise the callers would overwrite
1346 * existing data with zeros. Hence we have to split the mapping into a range up
1347 * to and including EOF, and a second mapping for beyond EOF.
1348 */
1349 static void
1350 xfs_map_trim_size(
1351 struct inode *inode,
1352 sector_t iblock,
1353 struct buffer_head *bh_result,
1354 struct xfs_bmbt_irec *imap,
1355 xfs_off_t offset,
1356 ssize_t size)
1357 {
1358 xfs_off_t mapping_size;
1359
1360 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1361 mapping_size <<= inode->i_blkbits;
1362
1363 ASSERT(mapping_size > 0);
1364 if (mapping_size > size)
1365 mapping_size = size;
1366 if (offset < i_size_read(inode) &&
1367 offset + mapping_size >= i_size_read(inode)) {
1368 /* limit mapping to block that spans EOF */
1369 mapping_size = roundup_64(i_size_read(inode) - offset,
1370 1 << inode->i_blkbits);
1371 }
1372 if (mapping_size > LONG_MAX)
1373 mapping_size = LONG_MAX;
1374
1375 bh_result->b_size = mapping_size;
1376 }
1377
1378 STATIC int
1379 __xfs_get_blocks(
1380 struct inode *inode,
1381 sector_t iblock,
1382 struct buffer_head *bh_result,
1383 int create,
1384 bool direct,
1385 bool dax_fault)
1386 {
1387 struct xfs_inode *ip = XFS_I(inode);
1388 struct xfs_mount *mp = ip->i_mount;
1389 xfs_fileoff_t offset_fsb, end_fsb;
1390 int error = 0;
1391 int lockmode = 0;
1392 struct xfs_bmbt_irec imap;
1393 int nimaps = 1;
1394 xfs_off_t offset;
1395 ssize_t size;
1396 int new = 0;
1397
1398 if (XFS_FORCED_SHUTDOWN(mp))
1399 return -EIO;
1400
1401 offset = (xfs_off_t)iblock << inode->i_blkbits;
1402 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1403 size = bh_result->b_size;
1404
1405 if (!create && direct && offset >= i_size_read(inode))
1406 return 0;
1407
1408 /*
1409 * Direct I/O is usually done on preallocated files, so try getting
1410 * a block mapping without an exclusive lock first. For buffered
1411 * writes we already have the exclusive iolock anyway, so avoiding
1412 * a lock roundtrip here by taking the ilock exclusive from the
1413 * beginning is a useful micro optimization.
1414 */
1415 if (create && !direct) {
1416 lockmode = XFS_ILOCK_EXCL;
1417 xfs_ilock(ip, lockmode);
1418 } else {
1419 lockmode = xfs_ilock_data_map_shared(ip);
1420 }
1421
1422 ASSERT(offset <= mp->m_super->s_maxbytes);
1423 if (offset + size > mp->m_super->s_maxbytes)
1424 size = mp->m_super->s_maxbytes - offset;
1425 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1426 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1427
1428 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1429 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1430 if (error)
1431 goto out_unlock;
1432
1433 /* for DAX, we convert unwritten extents directly */
1434 if (create &&
1435 (!nimaps ||
1436 (imap.br_startblock == HOLESTARTBLOCK ||
1437 imap.br_startblock == DELAYSTARTBLOCK) ||
1438 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1439 if (direct || xfs_get_extsz_hint(ip)) {
1440 /*
1441 * xfs_iomap_write_direct() expects the shared lock. It
1442 * is unlocked on return.
1443 */
1444 if (lockmode == XFS_ILOCK_EXCL)
1445 xfs_ilock_demote(ip, lockmode);
1446
1447 error = xfs_iomap_write_direct(ip, offset, size,
1448 &imap, nimaps);
1449 if (error)
1450 return error;
1451 new = 1;
1452
1453 } else {
1454 /*
1455 * Delalloc reservations do not require a transaction,
1456 * we can go on without dropping the lock here. If we
1457 * are allocating a new delalloc block, make sure that
1458 * we set the new flag so that we mark the buffer new so
1459 * that we know that it is newly allocated if the write
1460 * fails.
1461 */
1462 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1463 new = 1;
1464 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1465 if (error)
1466 goto out_unlock;
1467
1468 xfs_iunlock(ip, lockmode);
1469 }
1470 trace_xfs_get_blocks_alloc(ip, offset, size,
1471 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1472 : XFS_IO_DELALLOC, &imap);
1473 } else if (nimaps) {
1474 trace_xfs_get_blocks_found(ip, offset, size,
1475 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1476 : XFS_IO_OVERWRITE, &imap);
1477 xfs_iunlock(ip, lockmode);
1478 } else {
1479 trace_xfs_get_blocks_notfound(ip, offset, size);
1480 goto out_unlock;
1481 }
1482
1483 if (IS_DAX(inode) && create) {
1484 ASSERT(!ISUNWRITTEN(&imap));
1485 /* zeroing is not needed at a higher layer */
1486 new = 0;
1487 }
1488
1489 /* trim mapping down to size requested */
1490 if (direct || size > (1 << inode->i_blkbits))
1491 xfs_map_trim_size(inode, iblock, bh_result,
1492 &imap, offset, size);
1493
1494 /*
1495 * For unwritten extents do not report a disk address in the buffered
1496 * read case (treat as if we're reading into a hole).
1497 */
1498 if (imap.br_startblock != HOLESTARTBLOCK &&
1499 imap.br_startblock != DELAYSTARTBLOCK &&
1500 (create || !ISUNWRITTEN(&imap))) {
1501 xfs_map_buffer(inode, bh_result, &imap, offset);
1502 if (ISUNWRITTEN(&imap))
1503 set_buffer_unwritten(bh_result);
1504 /* direct IO needs special help */
1505 if (create && direct)
1506 xfs_map_direct(inode, bh_result, &imap, offset,
1507 dax_fault);
1508 }
1509
1510 /*
1511 * If this is a realtime file, data may be on a different device.
1512 * to that pointed to from the buffer_head b_bdev currently.
1513 */
1514 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1515
1516 /*
1517 * If we previously allocated a block out beyond eof and we are now
1518 * coming back to use it then we will need to flag it as new even if it
1519 * has a disk address.
1520 *
1521 * With sub-block writes into unwritten extents we also need to mark
1522 * the buffer as new so that the unwritten parts of the buffer gets
1523 * correctly zeroed.
1524 */
1525 if (create &&
1526 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1527 (offset >= i_size_read(inode)) ||
1528 (new || ISUNWRITTEN(&imap))))
1529 set_buffer_new(bh_result);
1530
1531 if (imap.br_startblock == DELAYSTARTBLOCK) {
1532 BUG_ON(direct);
1533 if (create) {
1534 set_buffer_uptodate(bh_result);
1535 set_buffer_mapped(bh_result);
1536 set_buffer_delay(bh_result);
1537 }
1538 }
1539
1540 return 0;
1541
1542 out_unlock:
1543 xfs_iunlock(ip, lockmode);
1544 return error;
1545 }
1546
1547 int
1548 xfs_get_blocks(
1549 struct inode *inode,
1550 sector_t iblock,
1551 struct buffer_head *bh_result,
1552 int create)
1553 {
1554 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1555 }
1556
1557 int
1558 xfs_get_blocks_direct(
1559 struct inode *inode,
1560 sector_t iblock,
1561 struct buffer_head *bh_result,
1562 int create)
1563 {
1564 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1565 }
1566
1567 int
1568 xfs_get_blocks_dax_fault(
1569 struct inode *inode,
1570 sector_t iblock,
1571 struct buffer_head *bh_result,
1572 int create)
1573 {
1574 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1575 }
1576
1577 static void
1578 __xfs_end_io_direct_write(
1579 struct inode *inode,
1580 struct xfs_ioend *ioend,
1581 loff_t offset,
1582 ssize_t size)
1583 {
1584 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1585
1586 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
1587 goto out_end_io;
1588
1589 /*
1590 * dio completion end_io functions are only called on writes if more
1591 * than 0 bytes was written.
1592 */
1593 ASSERT(size > 0);
1594
1595 /*
1596 * The ioend only maps whole blocks, while the IO may be sector aligned.
1597 * Hence the ioend offset/size may not match the IO offset/size exactly.
1598 * Because we don't map overwrites within EOF into the ioend, the offset
1599 * may not match, but only if the endio spans EOF. Either way, write
1600 * the IO sizes into the ioend so that completion processing does the
1601 * right thing.
1602 */
1603 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1604 ioend->io_size = size;
1605 ioend->io_offset = offset;
1606
1607 /*
1608 * The ioend tells us whether we are doing unwritten extent conversion
1609 * or an append transaction that updates the on-disk file size. These
1610 * cases are the only cases where we should *potentially* be needing
1611 * to update the VFS inode size.
1612 *
1613 * We need to update the in-core inode size here so that we don't end up
1614 * with the on-disk inode size being outside the in-core inode size. We
1615 * have no other method of updating EOF for AIO, so always do it here
1616 * if necessary.
1617 *
1618 * We need to lock the test/set EOF update as we can be racing with
1619 * other IO completions here to update the EOF. Failing to serialise
1620 * here can result in EOF moving backwards and Bad Things Happen when
1621 * that occurs.
1622 */
1623 spin_lock(&XFS_I(inode)->i_flags_lock);
1624 if (offset + size > i_size_read(inode))
1625 i_size_write(inode, offset + size);
1626 spin_unlock(&XFS_I(inode)->i_flags_lock);
1627
1628 /*
1629 * If we are doing an append IO that needs to update the EOF on disk,
1630 * do the transaction reserve now so we can use common end io
1631 * processing. Stashing the error (if there is one) in the ioend will
1632 * result in the ioend processing passing on the error if it is
1633 * possible as we can't return it from here.
1634 */
1635 if (ioend->io_type == XFS_IO_OVERWRITE)
1636 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1637
1638 out_end_io:
1639 xfs_end_io(&ioend->io_work);
1640 return;
1641 }
1642
1643 /*
1644 * Complete a direct I/O write request.
1645 *
1646 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1647 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1648 * wholly within the EOF and so there is nothing for us to do. Note that in this
1649 * case the completion can be called in interrupt context, whereas if we have an
1650 * ioend we will always be called in task context (i.e. from a workqueue).
1651 */
1652 STATIC void
1653 xfs_end_io_direct_write(
1654 struct kiocb *iocb,
1655 loff_t offset,
1656 ssize_t size,
1657 void *private)
1658 {
1659 struct inode *inode = file_inode(iocb->ki_filp);
1660 struct xfs_ioend *ioend = private;
1661
1662 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1663 ioend ? ioend->io_type : 0, NULL);
1664
1665 if (!ioend) {
1666 ASSERT(offset + size <= i_size_read(inode));
1667 return;
1668 }
1669
1670 __xfs_end_io_direct_write(inode, ioend, offset, size);
1671 }
1672
1673 static inline ssize_t
1674 xfs_vm_do_dio(
1675 struct inode *inode,
1676 struct kiocb *iocb,
1677 struct iov_iter *iter,
1678 loff_t offset,
1679 void (*endio)(struct kiocb *iocb,
1680 loff_t offset,
1681 ssize_t size,
1682 void *private),
1683 int flags)
1684 {
1685 struct block_device *bdev;
1686
1687 if (IS_DAX(inode))
1688 return dax_do_io(iocb, inode, iter, offset,
1689 xfs_get_blocks_direct, endio, 0);
1690
1691 bdev = xfs_find_bdev_for_inode(inode);
1692 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1693 xfs_get_blocks_direct, endio, NULL, flags);
1694 }
1695
1696 STATIC ssize_t
1697 xfs_vm_direct_IO(
1698 struct kiocb *iocb,
1699 struct iov_iter *iter,
1700 loff_t offset)
1701 {
1702 struct inode *inode = iocb->ki_filp->f_mapping->host;
1703
1704 if (iov_iter_rw(iter) == WRITE)
1705 return xfs_vm_do_dio(inode, iocb, iter, offset,
1706 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1707 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1708 }
1709
1710 /*
1711 * Punch out the delalloc blocks we have already allocated.
1712 *
1713 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1714 * as the page is still locked at this point.
1715 */
1716 STATIC void
1717 xfs_vm_kill_delalloc_range(
1718 struct inode *inode,
1719 loff_t start,
1720 loff_t end)
1721 {
1722 struct xfs_inode *ip = XFS_I(inode);
1723 xfs_fileoff_t start_fsb;
1724 xfs_fileoff_t end_fsb;
1725 int error;
1726
1727 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1728 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1729 if (end_fsb <= start_fsb)
1730 return;
1731
1732 xfs_ilock(ip, XFS_ILOCK_EXCL);
1733 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1734 end_fsb - start_fsb);
1735 if (error) {
1736 /* something screwed, just bail */
1737 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1738 xfs_alert(ip->i_mount,
1739 "xfs_vm_write_failed: unable to clean up ino %lld",
1740 ip->i_ino);
1741 }
1742 }
1743 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1744 }
1745
1746 STATIC void
1747 xfs_vm_write_failed(
1748 struct inode *inode,
1749 struct page *page,
1750 loff_t pos,
1751 unsigned len)
1752 {
1753 loff_t block_offset;
1754 loff_t block_start;
1755 loff_t block_end;
1756 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1757 loff_t to = from + len;
1758 struct buffer_head *bh, *head;
1759
1760 /*
1761 * The request pos offset might be 32 or 64 bit, this is all fine
1762 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1763 * platform, the high 32-bit will be masked off if we evaluate the
1764 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1765 * 0xfffff000 as an unsigned long, hence the result is incorrect
1766 * which could cause the following ASSERT failed in most cases.
1767 * In order to avoid this, we can evaluate the block_offset of the
1768 * start of the page by using shifts rather than masks the mismatch
1769 * problem.
1770 */
1771 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1772
1773 ASSERT(block_offset + from == pos);
1774
1775 head = page_buffers(page);
1776 block_start = 0;
1777 for (bh = head; bh != head || !block_start;
1778 bh = bh->b_this_page, block_start = block_end,
1779 block_offset += bh->b_size) {
1780 block_end = block_start + bh->b_size;
1781
1782 /* skip buffers before the write */
1783 if (block_end <= from)
1784 continue;
1785
1786 /* if the buffer is after the write, we're done */
1787 if (block_start >= to)
1788 break;
1789
1790 if (!buffer_delay(bh))
1791 continue;
1792
1793 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1794 continue;
1795
1796 xfs_vm_kill_delalloc_range(inode, block_offset,
1797 block_offset + bh->b_size);
1798
1799 /*
1800 * This buffer does not contain data anymore. make sure anyone
1801 * who finds it knows that for certain.
1802 */
1803 clear_buffer_delay(bh);
1804 clear_buffer_uptodate(bh);
1805 clear_buffer_mapped(bh);
1806 clear_buffer_new(bh);
1807 clear_buffer_dirty(bh);
1808 }
1809
1810 }
1811
1812 /*
1813 * This used to call block_write_begin(), but it unlocks and releases the page
1814 * on error, and we need that page to be able to punch stale delalloc blocks out
1815 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1816 * the appropriate point.
1817 */
1818 STATIC int
1819 xfs_vm_write_begin(
1820 struct file *file,
1821 struct address_space *mapping,
1822 loff_t pos,
1823 unsigned len,
1824 unsigned flags,
1825 struct page **pagep,
1826 void **fsdata)
1827 {
1828 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1829 struct page *page;
1830 int status;
1831
1832 ASSERT(len <= PAGE_CACHE_SIZE);
1833
1834 page = grab_cache_page_write_begin(mapping, index, flags);
1835 if (!page)
1836 return -ENOMEM;
1837
1838 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1839 if (unlikely(status)) {
1840 struct inode *inode = mapping->host;
1841 size_t isize = i_size_read(inode);
1842
1843 xfs_vm_write_failed(inode, page, pos, len);
1844 unlock_page(page);
1845
1846 /*
1847 * If the write is beyond EOF, we only want to kill blocks
1848 * allocated in this write, not blocks that were previously
1849 * written successfully.
1850 */
1851 if (pos + len > isize) {
1852 ssize_t start = max_t(ssize_t, pos, isize);
1853
1854 truncate_pagecache_range(inode, start, pos + len);
1855 }
1856
1857 page_cache_release(page);
1858 page = NULL;
1859 }
1860
1861 *pagep = page;
1862 return status;
1863 }
1864
1865 /*
1866 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1867 * this specific write because they will never be written. Previous writes
1868 * beyond EOF where block allocation succeeded do not need to be trashed, so
1869 * only new blocks from this write should be trashed. For blocks within
1870 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1871 * written with all the other valid data.
1872 */
1873 STATIC int
1874 xfs_vm_write_end(
1875 struct file *file,
1876 struct address_space *mapping,
1877 loff_t pos,
1878 unsigned len,
1879 unsigned copied,
1880 struct page *page,
1881 void *fsdata)
1882 {
1883 int ret;
1884
1885 ASSERT(len <= PAGE_CACHE_SIZE);
1886
1887 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1888 if (unlikely(ret < len)) {
1889 struct inode *inode = mapping->host;
1890 size_t isize = i_size_read(inode);
1891 loff_t to = pos + len;
1892
1893 if (to > isize) {
1894 /* only kill blocks in this write beyond EOF */
1895 if (pos > isize)
1896 isize = pos;
1897 xfs_vm_kill_delalloc_range(inode, isize, to);
1898 truncate_pagecache_range(inode, isize, to);
1899 }
1900 }
1901 return ret;
1902 }
1903
1904 STATIC sector_t
1905 xfs_vm_bmap(
1906 struct address_space *mapping,
1907 sector_t block)
1908 {
1909 struct inode *inode = (struct inode *)mapping->host;
1910 struct xfs_inode *ip = XFS_I(inode);
1911
1912 trace_xfs_vm_bmap(XFS_I(inode));
1913 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1914 filemap_write_and_wait(mapping);
1915 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1916 return generic_block_bmap(mapping, block, xfs_get_blocks);
1917 }
1918
1919 STATIC int
1920 xfs_vm_readpage(
1921 struct file *unused,
1922 struct page *page)
1923 {
1924 trace_xfs_vm_readpage(page->mapping->host, 1);
1925 return mpage_readpage(page, xfs_get_blocks);
1926 }
1927
1928 STATIC int
1929 xfs_vm_readpages(
1930 struct file *unused,
1931 struct address_space *mapping,
1932 struct list_head *pages,
1933 unsigned nr_pages)
1934 {
1935 trace_xfs_vm_readpages(mapping->host, nr_pages);
1936 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1937 }
1938
1939 /*
1940 * This is basically a copy of __set_page_dirty_buffers() with one
1941 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1942 * dirty, we'll never be able to clean them because we don't write buffers
1943 * beyond EOF, and that means we can't invalidate pages that span EOF
1944 * that have been marked dirty. Further, the dirty state can leak into
1945 * the file interior if the file is extended, resulting in all sorts of
1946 * bad things happening as the state does not match the underlying data.
1947 *
1948 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1949 * this only exist because of bufferheads and how the generic code manages them.
1950 */
1951 STATIC int
1952 xfs_vm_set_page_dirty(
1953 struct page *page)
1954 {
1955 struct address_space *mapping = page->mapping;
1956 struct inode *inode = mapping->host;
1957 loff_t end_offset;
1958 loff_t offset;
1959 int newly_dirty;
1960
1961 if (unlikely(!mapping))
1962 return !TestSetPageDirty(page);
1963
1964 end_offset = i_size_read(inode);
1965 offset = page_offset(page);
1966
1967 spin_lock(&mapping->private_lock);
1968 if (page_has_buffers(page)) {
1969 struct buffer_head *head = page_buffers(page);
1970 struct buffer_head *bh = head;
1971
1972 do {
1973 if (offset < end_offset)
1974 set_buffer_dirty(bh);
1975 bh = bh->b_this_page;
1976 offset += 1 << inode->i_blkbits;
1977 } while (bh != head);
1978 }
1979 /*
1980 * Lock out page->mem_cgroup migration to keep PageDirty
1981 * synchronized with per-memcg dirty page counters.
1982 */
1983 lock_page_memcg(page);
1984 newly_dirty = !TestSetPageDirty(page);
1985 spin_unlock(&mapping->private_lock);
1986
1987 if (newly_dirty) {
1988 /* sigh - __set_page_dirty() is static, so copy it here, too */
1989 unsigned long flags;
1990
1991 spin_lock_irqsave(&mapping->tree_lock, flags);
1992 if (page->mapping) { /* Race with truncate? */
1993 WARN_ON_ONCE(!PageUptodate(page));
1994 account_page_dirtied(page, mapping);
1995 radix_tree_tag_set(&mapping->page_tree,
1996 page_index(page), PAGECACHE_TAG_DIRTY);
1997 }
1998 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1999 }
2000 unlock_page_memcg(page);
2001 if (newly_dirty)
2002 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2003 return newly_dirty;
2004 }
2005
2006 const struct address_space_operations xfs_address_space_operations = {
2007 .readpage = xfs_vm_readpage,
2008 .readpages = xfs_vm_readpages,
2009 .writepage = xfs_vm_writepage,
2010 .writepages = xfs_vm_writepages,
2011 .set_page_dirty = xfs_vm_set_page_dirty,
2012 .releasepage = xfs_vm_releasepage,
2013 .invalidatepage = xfs_vm_invalidatepage,
2014 .write_begin = xfs_vm_write_begin,
2015 .write_end = xfs_vm_write_end,
2016 .bmap = xfs_vm_bmap,
2017 .direct_IO = xfs_vm_direct_IO,
2018 .migratepage = buffer_migrate_page,
2019 .is_partially_uptodate = block_is_partially_uptodate,
2020 .error_remove_page = generic_error_remove_page,
2021 };
This page took 0.070253 seconds and 5 git commands to generate.