Merge tag 'xfs-for-linus-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95 static inline void
96 xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98 {
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105 }
106
107 /*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111 static inline void
112 xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114 {
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 ASSERT(bp->b_flags & XBF_ASYNC);
119 bp->b_flags &= ~_XBF_IN_FLIGHT;
120 percpu_counter_dec(&bp->b_target->bt_io_count);
121 }
122
123 /*
124 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125 * b_lru_ref count so that the buffer is freed immediately when the buffer
126 * reference count falls to zero. If the buffer is already on the LRU, we need
127 * to remove the reference that LRU holds on the buffer.
128 *
129 * This prevents build-up of stale buffers on the LRU.
130 */
131 void
132 xfs_buf_stale(
133 struct xfs_buf *bp)
134 {
135 ASSERT(xfs_buf_islocked(bp));
136
137 bp->b_flags |= XBF_STALE;
138
139 /*
140 * Clear the delwri status so that a delwri queue walker will not
141 * flush this buffer to disk now that it is stale. The delwri queue has
142 * a reference to the buffer, so this is safe to do.
143 */
144 bp->b_flags &= ~_XBF_DELWRI_Q;
145
146 /*
147 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 * could reset b_flags. There is no guarantee that the buffer is
149 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 * status now to preserve accounting consistency.
151 */
152 xfs_buf_ioacct_dec(bp);
153
154 spin_lock(&bp->b_lock);
155 atomic_set(&bp->b_lru_ref, 0);
156 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
157 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 atomic_dec(&bp->b_hold);
159
160 ASSERT(atomic_read(&bp->b_hold) >= 1);
161 spin_unlock(&bp->b_lock);
162 }
163
164 static int
165 xfs_buf_get_maps(
166 struct xfs_buf *bp,
167 int map_count)
168 {
169 ASSERT(bp->b_maps == NULL);
170 bp->b_map_count = map_count;
171
172 if (map_count == 1) {
173 bp->b_maps = &bp->__b_map;
174 return 0;
175 }
176
177 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 KM_NOFS);
179 if (!bp->b_maps)
180 return -ENOMEM;
181 return 0;
182 }
183
184 /*
185 * Frees b_pages if it was allocated.
186 */
187 static void
188 xfs_buf_free_maps(
189 struct xfs_buf *bp)
190 {
191 if (bp->b_maps != &bp->__b_map) {
192 kmem_free(bp->b_maps);
193 bp->b_maps = NULL;
194 }
195 }
196
197 struct xfs_buf *
198 _xfs_buf_alloc(
199 struct xfs_buftarg *target,
200 struct xfs_buf_map *map,
201 int nmaps,
202 xfs_buf_flags_t flags)
203 {
204 struct xfs_buf *bp;
205 int error;
206 int i;
207
208 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
209 if (unlikely(!bp))
210 return NULL;
211
212 /*
213 * We don't want certain flags to appear in b_flags unless they are
214 * specifically set by later operations on the buffer.
215 */
216 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
217
218 atomic_set(&bp->b_hold, 1);
219 atomic_set(&bp->b_lru_ref, 1);
220 init_completion(&bp->b_iowait);
221 INIT_LIST_HEAD(&bp->b_lru);
222 INIT_LIST_HEAD(&bp->b_list);
223 RB_CLEAR_NODE(&bp->b_rbnode);
224 sema_init(&bp->b_sema, 0); /* held, no waiters */
225 spin_lock_init(&bp->b_lock);
226 XB_SET_OWNER(bp);
227 bp->b_target = target;
228 bp->b_flags = flags;
229
230 /*
231 * Set length and io_length to the same value initially.
232 * I/O routines should use io_length, which will be the same in
233 * most cases but may be reset (e.g. XFS recovery).
234 */
235 error = xfs_buf_get_maps(bp, nmaps);
236 if (error) {
237 kmem_zone_free(xfs_buf_zone, bp);
238 return NULL;
239 }
240
241 bp->b_bn = map[0].bm_bn;
242 bp->b_length = 0;
243 for (i = 0; i < nmaps; i++) {
244 bp->b_maps[i].bm_bn = map[i].bm_bn;
245 bp->b_maps[i].bm_len = map[i].bm_len;
246 bp->b_length += map[i].bm_len;
247 }
248 bp->b_io_length = bp->b_length;
249
250 atomic_set(&bp->b_pin_count, 0);
251 init_waitqueue_head(&bp->b_waiters);
252
253 XFS_STATS_INC(target->bt_mount, xb_create);
254 trace_xfs_buf_init(bp, _RET_IP_);
255
256 return bp;
257 }
258
259 /*
260 * Allocate a page array capable of holding a specified number
261 * of pages, and point the page buf at it.
262 */
263 STATIC int
264 _xfs_buf_get_pages(
265 xfs_buf_t *bp,
266 int page_count)
267 {
268 /* Make sure that we have a page list */
269 if (bp->b_pages == NULL) {
270 bp->b_page_count = page_count;
271 if (page_count <= XB_PAGES) {
272 bp->b_pages = bp->b_page_array;
273 } else {
274 bp->b_pages = kmem_alloc(sizeof(struct page *) *
275 page_count, KM_NOFS);
276 if (bp->b_pages == NULL)
277 return -ENOMEM;
278 }
279 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
280 }
281 return 0;
282 }
283
284 /*
285 * Frees b_pages if it was allocated.
286 */
287 STATIC void
288 _xfs_buf_free_pages(
289 xfs_buf_t *bp)
290 {
291 if (bp->b_pages != bp->b_page_array) {
292 kmem_free(bp->b_pages);
293 bp->b_pages = NULL;
294 }
295 }
296
297 /*
298 * Releases the specified buffer.
299 *
300 * The modification state of any associated pages is left unchanged.
301 * The buffer must not be on any hash - use xfs_buf_rele instead for
302 * hashed and refcounted buffers
303 */
304 void
305 xfs_buf_free(
306 xfs_buf_t *bp)
307 {
308 trace_xfs_buf_free(bp, _RET_IP_);
309
310 ASSERT(list_empty(&bp->b_lru));
311
312 if (bp->b_flags & _XBF_PAGES) {
313 uint i;
314
315 if (xfs_buf_is_vmapped(bp))
316 vm_unmap_ram(bp->b_addr - bp->b_offset,
317 bp->b_page_count);
318
319 for (i = 0; i < bp->b_page_count; i++) {
320 struct page *page = bp->b_pages[i];
321
322 __free_page(page);
323 }
324 } else if (bp->b_flags & _XBF_KMEM)
325 kmem_free(bp->b_addr);
326 _xfs_buf_free_pages(bp);
327 xfs_buf_free_maps(bp);
328 kmem_zone_free(xfs_buf_zone, bp);
329 }
330
331 /*
332 * Allocates all the pages for buffer in question and builds it's page list.
333 */
334 STATIC int
335 xfs_buf_allocate_memory(
336 xfs_buf_t *bp,
337 uint flags)
338 {
339 size_t size;
340 size_t nbytes, offset;
341 gfp_t gfp_mask = xb_to_gfp(flags);
342 unsigned short page_count, i;
343 xfs_off_t start, end;
344 int error;
345
346 /*
347 * for buffers that are contained within a single page, just allocate
348 * the memory from the heap - there's no need for the complexity of
349 * page arrays to keep allocation down to order 0.
350 */
351 size = BBTOB(bp->b_length);
352 if (size < PAGE_SIZE) {
353 bp->b_addr = kmem_alloc(size, KM_NOFS);
354 if (!bp->b_addr) {
355 /* low memory - use alloc_page loop instead */
356 goto use_alloc_page;
357 }
358
359 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
360 ((unsigned long)bp->b_addr & PAGE_MASK)) {
361 /* b_addr spans two pages - use alloc_page instead */
362 kmem_free(bp->b_addr);
363 bp->b_addr = NULL;
364 goto use_alloc_page;
365 }
366 bp->b_offset = offset_in_page(bp->b_addr);
367 bp->b_pages = bp->b_page_array;
368 bp->b_pages[0] = virt_to_page(bp->b_addr);
369 bp->b_page_count = 1;
370 bp->b_flags |= _XBF_KMEM;
371 return 0;
372 }
373
374 use_alloc_page:
375 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
376 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
377 >> PAGE_SHIFT;
378 page_count = end - start;
379 error = _xfs_buf_get_pages(bp, page_count);
380 if (unlikely(error))
381 return error;
382
383 offset = bp->b_offset;
384 bp->b_flags |= _XBF_PAGES;
385
386 for (i = 0; i < bp->b_page_count; i++) {
387 struct page *page;
388 uint retries = 0;
389 retry:
390 page = alloc_page(gfp_mask);
391 if (unlikely(page == NULL)) {
392 if (flags & XBF_READ_AHEAD) {
393 bp->b_page_count = i;
394 error = -ENOMEM;
395 goto out_free_pages;
396 }
397
398 /*
399 * This could deadlock.
400 *
401 * But until all the XFS lowlevel code is revamped to
402 * handle buffer allocation failures we can't do much.
403 */
404 if (!(++retries % 100))
405 xfs_err(NULL,
406 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
407 current->comm, current->pid,
408 __func__, gfp_mask);
409
410 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
411 congestion_wait(BLK_RW_ASYNC, HZ/50);
412 goto retry;
413 }
414
415 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
416
417 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
418 size -= nbytes;
419 bp->b_pages[i] = page;
420 offset = 0;
421 }
422 return 0;
423
424 out_free_pages:
425 for (i = 0; i < bp->b_page_count; i++)
426 __free_page(bp->b_pages[i]);
427 return error;
428 }
429
430 /*
431 * Map buffer into kernel address-space if necessary.
432 */
433 STATIC int
434 _xfs_buf_map_pages(
435 xfs_buf_t *bp,
436 uint flags)
437 {
438 ASSERT(bp->b_flags & _XBF_PAGES);
439 if (bp->b_page_count == 1) {
440 /* A single page buffer is always mappable */
441 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
442 } else if (flags & XBF_UNMAPPED) {
443 bp->b_addr = NULL;
444 } else {
445 int retried = 0;
446 unsigned noio_flag;
447
448 /*
449 * vm_map_ram() will allocate auxillary structures (e.g.
450 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
453 * memory reclaim re-entering the filesystem here and
454 * potentially deadlocking.
455 */
456 noio_flag = memalloc_noio_save();
457 do {
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
460 if (bp->b_addr)
461 break;
462 vm_unmap_aliases();
463 } while (retried++ <= 1);
464 memalloc_noio_restore(noio_flag);
465
466 if (!bp->b_addr)
467 return -ENOMEM;
468 bp->b_addr += bp->b_offset;
469 }
470
471 return 0;
472 }
473
474 /*
475 * Finding and Reading Buffers
476 */
477
478 /*
479 * Look up, and creates if absent, a lockable buffer for
480 * a given range of an inode. The buffer is returned
481 * locked. No I/O is implied by this call.
482 */
483 xfs_buf_t *
484 _xfs_buf_find(
485 struct xfs_buftarg *btp,
486 struct xfs_buf_map *map,
487 int nmaps,
488 xfs_buf_flags_t flags,
489 xfs_buf_t *new_bp)
490 {
491 struct xfs_perag *pag;
492 struct rb_node **rbp;
493 struct rb_node *parent;
494 xfs_buf_t *bp;
495 xfs_daddr_t blkno = map[0].bm_bn;
496 xfs_daddr_t eofs;
497 int numblks = 0;
498 int i;
499
500 for (i = 0; i < nmaps; i++)
501 numblks += map[i].bm_len;
502
503 /* Check for IOs smaller than the sector size / not sector aligned */
504 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
505 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
506
507 /*
508 * Corrupted block numbers can get through to here, unfortunately, so we
509 * have to check that the buffer falls within the filesystem bounds.
510 */
511 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
512 if (blkno < 0 || blkno >= eofs) {
513 /*
514 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
515 * but none of the higher level infrastructure supports
516 * returning a specific error on buffer lookup failures.
517 */
518 xfs_alert(btp->bt_mount,
519 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
520 __func__, blkno, eofs);
521 WARN_ON(1);
522 return NULL;
523 }
524
525 /* get tree root */
526 pag = xfs_perag_get(btp->bt_mount,
527 xfs_daddr_to_agno(btp->bt_mount, blkno));
528
529 /* walk tree */
530 spin_lock(&pag->pag_buf_lock);
531 rbp = &pag->pag_buf_tree.rb_node;
532 parent = NULL;
533 bp = NULL;
534 while (*rbp) {
535 parent = *rbp;
536 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
537
538 if (blkno < bp->b_bn)
539 rbp = &(*rbp)->rb_left;
540 else if (blkno > bp->b_bn)
541 rbp = &(*rbp)->rb_right;
542 else {
543 /*
544 * found a block number match. If the range doesn't
545 * match, the only way this is allowed is if the buffer
546 * in the cache is stale and the transaction that made
547 * it stale has not yet committed. i.e. we are
548 * reallocating a busy extent. Skip this buffer and
549 * continue searching to the right for an exact match.
550 */
551 if (bp->b_length != numblks) {
552 ASSERT(bp->b_flags & XBF_STALE);
553 rbp = &(*rbp)->rb_right;
554 continue;
555 }
556 atomic_inc(&bp->b_hold);
557 goto found;
558 }
559 }
560
561 /* No match found */
562 if (new_bp) {
563 rb_link_node(&new_bp->b_rbnode, parent, rbp);
564 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
565 /* the buffer keeps the perag reference until it is freed */
566 new_bp->b_pag = pag;
567 spin_unlock(&pag->pag_buf_lock);
568 } else {
569 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
570 spin_unlock(&pag->pag_buf_lock);
571 xfs_perag_put(pag);
572 }
573 return new_bp;
574
575 found:
576 spin_unlock(&pag->pag_buf_lock);
577 xfs_perag_put(pag);
578
579 if (!xfs_buf_trylock(bp)) {
580 if (flags & XBF_TRYLOCK) {
581 xfs_buf_rele(bp);
582 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
583 return NULL;
584 }
585 xfs_buf_lock(bp);
586 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
587 }
588
589 /*
590 * if the buffer is stale, clear all the external state associated with
591 * it. We need to keep flags such as how we allocated the buffer memory
592 * intact here.
593 */
594 if (bp->b_flags & XBF_STALE) {
595 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
596 ASSERT(bp->b_iodone == NULL);
597 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
598 bp->b_ops = NULL;
599 }
600
601 trace_xfs_buf_find(bp, flags, _RET_IP_);
602 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
603 return bp;
604 }
605
606 /*
607 * Assembles a buffer covering the specified range. The code is optimised for
608 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
609 * more hits than misses.
610 */
611 struct xfs_buf *
612 xfs_buf_get_map(
613 struct xfs_buftarg *target,
614 struct xfs_buf_map *map,
615 int nmaps,
616 xfs_buf_flags_t flags)
617 {
618 struct xfs_buf *bp;
619 struct xfs_buf *new_bp;
620 int error = 0;
621
622 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
623 if (likely(bp))
624 goto found;
625
626 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
627 if (unlikely(!new_bp))
628 return NULL;
629
630 error = xfs_buf_allocate_memory(new_bp, flags);
631 if (error) {
632 xfs_buf_free(new_bp);
633 return NULL;
634 }
635
636 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
637 if (!bp) {
638 xfs_buf_free(new_bp);
639 return NULL;
640 }
641
642 if (bp != new_bp)
643 xfs_buf_free(new_bp);
644
645 found:
646 if (!bp->b_addr) {
647 error = _xfs_buf_map_pages(bp, flags);
648 if (unlikely(error)) {
649 xfs_warn(target->bt_mount,
650 "%s: failed to map pagesn", __func__);
651 xfs_buf_relse(bp);
652 return NULL;
653 }
654 }
655
656 /*
657 * Clear b_error if this is a lookup from a caller that doesn't expect
658 * valid data to be found in the buffer.
659 */
660 if (!(flags & XBF_READ))
661 xfs_buf_ioerror(bp, 0);
662
663 XFS_STATS_INC(target->bt_mount, xb_get);
664 trace_xfs_buf_get(bp, flags, _RET_IP_);
665 return bp;
666 }
667
668 STATIC int
669 _xfs_buf_read(
670 xfs_buf_t *bp,
671 xfs_buf_flags_t flags)
672 {
673 ASSERT(!(flags & XBF_WRITE));
674 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
675
676 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
677 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
678
679 if (flags & XBF_ASYNC) {
680 xfs_buf_submit(bp);
681 return 0;
682 }
683 return xfs_buf_submit_wait(bp);
684 }
685
686 xfs_buf_t *
687 xfs_buf_read_map(
688 struct xfs_buftarg *target,
689 struct xfs_buf_map *map,
690 int nmaps,
691 xfs_buf_flags_t flags,
692 const struct xfs_buf_ops *ops)
693 {
694 struct xfs_buf *bp;
695
696 flags |= XBF_READ;
697
698 bp = xfs_buf_get_map(target, map, nmaps, flags);
699 if (bp) {
700 trace_xfs_buf_read(bp, flags, _RET_IP_);
701
702 if (!(bp->b_flags & XBF_DONE)) {
703 XFS_STATS_INC(target->bt_mount, xb_get_read);
704 bp->b_ops = ops;
705 _xfs_buf_read(bp, flags);
706 } else if (flags & XBF_ASYNC) {
707 /*
708 * Read ahead call which is already satisfied,
709 * drop the buffer
710 */
711 xfs_buf_relse(bp);
712 return NULL;
713 } else {
714 /* We do not want read in the flags */
715 bp->b_flags &= ~XBF_READ;
716 }
717 }
718
719 return bp;
720 }
721
722 /*
723 * If we are not low on memory then do the readahead in a deadlock
724 * safe manner.
725 */
726 void
727 xfs_buf_readahead_map(
728 struct xfs_buftarg *target,
729 struct xfs_buf_map *map,
730 int nmaps,
731 const struct xfs_buf_ops *ops)
732 {
733 if (bdi_read_congested(target->bt_bdi))
734 return;
735
736 xfs_buf_read_map(target, map, nmaps,
737 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
738 }
739
740 /*
741 * Read an uncached buffer from disk. Allocates and returns a locked
742 * buffer containing the disk contents or nothing.
743 */
744 int
745 xfs_buf_read_uncached(
746 struct xfs_buftarg *target,
747 xfs_daddr_t daddr,
748 size_t numblks,
749 int flags,
750 struct xfs_buf **bpp,
751 const struct xfs_buf_ops *ops)
752 {
753 struct xfs_buf *bp;
754
755 *bpp = NULL;
756
757 bp = xfs_buf_get_uncached(target, numblks, flags);
758 if (!bp)
759 return -ENOMEM;
760
761 /* set up the buffer for a read IO */
762 ASSERT(bp->b_map_count == 1);
763 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
764 bp->b_maps[0].bm_bn = daddr;
765 bp->b_flags |= XBF_READ;
766 bp->b_ops = ops;
767
768 xfs_buf_submit_wait(bp);
769 if (bp->b_error) {
770 int error = bp->b_error;
771 xfs_buf_relse(bp);
772 return error;
773 }
774
775 *bpp = bp;
776 return 0;
777 }
778
779 /*
780 * Return a buffer allocated as an empty buffer and associated to external
781 * memory via xfs_buf_associate_memory() back to it's empty state.
782 */
783 void
784 xfs_buf_set_empty(
785 struct xfs_buf *bp,
786 size_t numblks)
787 {
788 if (bp->b_pages)
789 _xfs_buf_free_pages(bp);
790
791 bp->b_pages = NULL;
792 bp->b_page_count = 0;
793 bp->b_addr = NULL;
794 bp->b_length = numblks;
795 bp->b_io_length = numblks;
796
797 ASSERT(bp->b_map_count == 1);
798 bp->b_bn = XFS_BUF_DADDR_NULL;
799 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
800 bp->b_maps[0].bm_len = bp->b_length;
801 }
802
803 static inline struct page *
804 mem_to_page(
805 void *addr)
806 {
807 if ((!is_vmalloc_addr(addr))) {
808 return virt_to_page(addr);
809 } else {
810 return vmalloc_to_page(addr);
811 }
812 }
813
814 int
815 xfs_buf_associate_memory(
816 xfs_buf_t *bp,
817 void *mem,
818 size_t len)
819 {
820 int rval;
821 int i = 0;
822 unsigned long pageaddr;
823 unsigned long offset;
824 size_t buflen;
825 int page_count;
826
827 pageaddr = (unsigned long)mem & PAGE_MASK;
828 offset = (unsigned long)mem - pageaddr;
829 buflen = PAGE_ALIGN(len + offset);
830 page_count = buflen >> PAGE_SHIFT;
831
832 /* Free any previous set of page pointers */
833 if (bp->b_pages)
834 _xfs_buf_free_pages(bp);
835
836 bp->b_pages = NULL;
837 bp->b_addr = mem;
838
839 rval = _xfs_buf_get_pages(bp, page_count);
840 if (rval)
841 return rval;
842
843 bp->b_offset = offset;
844
845 for (i = 0; i < bp->b_page_count; i++) {
846 bp->b_pages[i] = mem_to_page((void *)pageaddr);
847 pageaddr += PAGE_SIZE;
848 }
849
850 bp->b_io_length = BTOBB(len);
851 bp->b_length = BTOBB(buflen);
852
853 return 0;
854 }
855
856 xfs_buf_t *
857 xfs_buf_get_uncached(
858 struct xfs_buftarg *target,
859 size_t numblks,
860 int flags)
861 {
862 unsigned long page_count;
863 int error, i;
864 struct xfs_buf *bp;
865 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
866
867 /* flags might contain irrelevant bits, pass only what we care about */
868 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
869 if (unlikely(bp == NULL))
870 goto fail;
871
872 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
873 error = _xfs_buf_get_pages(bp, page_count);
874 if (error)
875 goto fail_free_buf;
876
877 for (i = 0; i < page_count; i++) {
878 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
879 if (!bp->b_pages[i])
880 goto fail_free_mem;
881 }
882 bp->b_flags |= _XBF_PAGES;
883
884 error = _xfs_buf_map_pages(bp, 0);
885 if (unlikely(error)) {
886 xfs_warn(target->bt_mount,
887 "%s: failed to map pages", __func__);
888 goto fail_free_mem;
889 }
890
891 trace_xfs_buf_get_uncached(bp, _RET_IP_);
892 return bp;
893
894 fail_free_mem:
895 while (--i >= 0)
896 __free_page(bp->b_pages[i]);
897 _xfs_buf_free_pages(bp);
898 fail_free_buf:
899 xfs_buf_free_maps(bp);
900 kmem_zone_free(xfs_buf_zone, bp);
901 fail:
902 return NULL;
903 }
904
905 /*
906 * Increment reference count on buffer, to hold the buffer concurrently
907 * with another thread which may release (free) the buffer asynchronously.
908 * Must hold the buffer already to call this function.
909 */
910 void
911 xfs_buf_hold(
912 xfs_buf_t *bp)
913 {
914 trace_xfs_buf_hold(bp, _RET_IP_);
915 atomic_inc(&bp->b_hold);
916 }
917
918 /*
919 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
920 * placed on LRU or freed (depending on b_lru_ref).
921 */
922 void
923 xfs_buf_rele(
924 xfs_buf_t *bp)
925 {
926 struct xfs_perag *pag = bp->b_pag;
927 bool release;
928 bool freebuf = false;
929
930 trace_xfs_buf_rele(bp, _RET_IP_);
931
932 if (!pag) {
933 ASSERT(list_empty(&bp->b_lru));
934 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
935 if (atomic_dec_and_test(&bp->b_hold)) {
936 xfs_buf_ioacct_dec(bp);
937 xfs_buf_free(bp);
938 }
939 return;
940 }
941
942 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
943
944 ASSERT(atomic_read(&bp->b_hold) > 0);
945
946 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
947 spin_lock(&bp->b_lock);
948 if (!release) {
949 /*
950 * Drop the in-flight state if the buffer is already on the LRU
951 * and it holds the only reference. This is racy because we
952 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
953 * ensures the decrement occurs only once per-buf.
954 */
955 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
956 xfs_buf_ioacct_dec(bp);
957 goto out_unlock;
958 }
959
960 /* the last reference has been dropped ... */
961 xfs_buf_ioacct_dec(bp);
962 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
963 /*
964 * If the buffer is added to the LRU take a new reference to the
965 * buffer for the LRU and clear the (now stale) dispose list
966 * state flag
967 */
968 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
969 bp->b_state &= ~XFS_BSTATE_DISPOSE;
970 atomic_inc(&bp->b_hold);
971 }
972 spin_unlock(&pag->pag_buf_lock);
973 } else {
974 /*
975 * most of the time buffers will already be removed from the
976 * LRU, so optimise that case by checking for the
977 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
978 * was on was the disposal list
979 */
980 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
981 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
982 } else {
983 ASSERT(list_empty(&bp->b_lru));
984 }
985
986 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
987 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
988 spin_unlock(&pag->pag_buf_lock);
989 xfs_perag_put(pag);
990 freebuf = true;
991 }
992
993 out_unlock:
994 spin_unlock(&bp->b_lock);
995
996 if (freebuf)
997 xfs_buf_free(bp);
998 }
999
1000
1001 /*
1002 * Lock a buffer object, if it is not already locked.
1003 *
1004 * If we come across a stale, pinned, locked buffer, we know that we are
1005 * being asked to lock a buffer that has been reallocated. Because it is
1006 * pinned, we know that the log has not been pushed to disk and hence it
1007 * will still be locked. Rather than continuing to have trylock attempts
1008 * fail until someone else pushes the log, push it ourselves before
1009 * returning. This means that the xfsaild will not get stuck trying
1010 * to push on stale inode buffers.
1011 */
1012 int
1013 xfs_buf_trylock(
1014 struct xfs_buf *bp)
1015 {
1016 int locked;
1017
1018 locked = down_trylock(&bp->b_sema) == 0;
1019 if (locked) {
1020 XB_SET_OWNER(bp);
1021 trace_xfs_buf_trylock(bp, _RET_IP_);
1022 } else {
1023 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1024 }
1025 return locked;
1026 }
1027
1028 /*
1029 * Lock a buffer object.
1030 *
1031 * If we come across a stale, pinned, locked buffer, we know that we
1032 * are being asked to lock a buffer that has been reallocated. Because
1033 * it is pinned, we know that the log has not been pushed to disk and
1034 * hence it will still be locked. Rather than sleeping until someone
1035 * else pushes the log, push it ourselves before trying to get the lock.
1036 */
1037 void
1038 xfs_buf_lock(
1039 struct xfs_buf *bp)
1040 {
1041 trace_xfs_buf_lock(bp, _RET_IP_);
1042
1043 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1044 xfs_log_force(bp->b_target->bt_mount, 0);
1045 down(&bp->b_sema);
1046 XB_SET_OWNER(bp);
1047
1048 trace_xfs_buf_lock_done(bp, _RET_IP_);
1049 }
1050
1051 void
1052 xfs_buf_unlock(
1053 struct xfs_buf *bp)
1054 {
1055 XB_CLEAR_OWNER(bp);
1056 up(&bp->b_sema);
1057
1058 trace_xfs_buf_unlock(bp, _RET_IP_);
1059 }
1060
1061 STATIC void
1062 xfs_buf_wait_unpin(
1063 xfs_buf_t *bp)
1064 {
1065 DECLARE_WAITQUEUE (wait, current);
1066
1067 if (atomic_read(&bp->b_pin_count) == 0)
1068 return;
1069
1070 add_wait_queue(&bp->b_waiters, &wait);
1071 for (;;) {
1072 set_current_state(TASK_UNINTERRUPTIBLE);
1073 if (atomic_read(&bp->b_pin_count) == 0)
1074 break;
1075 io_schedule();
1076 }
1077 remove_wait_queue(&bp->b_waiters, &wait);
1078 set_current_state(TASK_RUNNING);
1079 }
1080
1081 /*
1082 * Buffer Utility Routines
1083 */
1084
1085 void
1086 xfs_buf_ioend(
1087 struct xfs_buf *bp)
1088 {
1089 bool read = bp->b_flags & XBF_READ;
1090
1091 trace_xfs_buf_iodone(bp, _RET_IP_);
1092
1093 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1094
1095 /*
1096 * Pull in IO completion errors now. We are guaranteed to be running
1097 * single threaded, so we don't need the lock to read b_io_error.
1098 */
1099 if (!bp->b_error && bp->b_io_error)
1100 xfs_buf_ioerror(bp, bp->b_io_error);
1101
1102 /* Only validate buffers that were read without errors */
1103 if (read && !bp->b_error && bp->b_ops) {
1104 ASSERT(!bp->b_iodone);
1105 bp->b_ops->verify_read(bp);
1106 }
1107
1108 if (!bp->b_error)
1109 bp->b_flags |= XBF_DONE;
1110
1111 if (bp->b_iodone)
1112 (*(bp->b_iodone))(bp);
1113 else if (bp->b_flags & XBF_ASYNC)
1114 xfs_buf_relse(bp);
1115 else
1116 complete(&bp->b_iowait);
1117 }
1118
1119 static void
1120 xfs_buf_ioend_work(
1121 struct work_struct *work)
1122 {
1123 struct xfs_buf *bp =
1124 container_of(work, xfs_buf_t, b_ioend_work);
1125
1126 xfs_buf_ioend(bp);
1127 }
1128
1129 static void
1130 xfs_buf_ioend_async(
1131 struct xfs_buf *bp)
1132 {
1133 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1134 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1135 }
1136
1137 void
1138 xfs_buf_ioerror(
1139 xfs_buf_t *bp,
1140 int error)
1141 {
1142 ASSERT(error <= 0 && error >= -1000);
1143 bp->b_error = error;
1144 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1145 }
1146
1147 void
1148 xfs_buf_ioerror_alert(
1149 struct xfs_buf *bp,
1150 const char *func)
1151 {
1152 xfs_alert(bp->b_target->bt_mount,
1153 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1154 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1155 }
1156
1157 int
1158 xfs_bwrite(
1159 struct xfs_buf *bp)
1160 {
1161 int error;
1162
1163 ASSERT(xfs_buf_islocked(bp));
1164
1165 bp->b_flags |= XBF_WRITE;
1166 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1167 XBF_WRITE_FAIL | XBF_DONE);
1168
1169 error = xfs_buf_submit_wait(bp);
1170 if (error) {
1171 xfs_force_shutdown(bp->b_target->bt_mount,
1172 SHUTDOWN_META_IO_ERROR);
1173 }
1174 return error;
1175 }
1176
1177 static void
1178 xfs_buf_bio_end_io(
1179 struct bio *bio)
1180 {
1181 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1182
1183 /*
1184 * don't overwrite existing errors - otherwise we can lose errors on
1185 * buffers that require multiple bios to complete.
1186 */
1187 if (bio->bi_error)
1188 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1189
1190 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1191 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1192
1193 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1194 xfs_buf_ioend_async(bp);
1195 bio_put(bio);
1196 }
1197
1198 static void
1199 xfs_buf_ioapply_map(
1200 struct xfs_buf *bp,
1201 int map,
1202 int *buf_offset,
1203 int *count,
1204 int op,
1205 int op_flags)
1206 {
1207 int page_index;
1208 int total_nr_pages = bp->b_page_count;
1209 int nr_pages;
1210 struct bio *bio;
1211 sector_t sector = bp->b_maps[map].bm_bn;
1212 int size;
1213 int offset;
1214
1215 total_nr_pages = bp->b_page_count;
1216
1217 /* skip the pages in the buffer before the start offset */
1218 page_index = 0;
1219 offset = *buf_offset;
1220 while (offset >= PAGE_SIZE) {
1221 page_index++;
1222 offset -= PAGE_SIZE;
1223 }
1224
1225 /*
1226 * Limit the IO size to the length of the current vector, and update the
1227 * remaining IO count for the next time around.
1228 */
1229 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1230 *count -= size;
1231 *buf_offset += size;
1232
1233 next_chunk:
1234 atomic_inc(&bp->b_io_remaining);
1235 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1236
1237 bio = bio_alloc(GFP_NOIO, nr_pages);
1238 bio->bi_bdev = bp->b_target->bt_bdev;
1239 bio->bi_iter.bi_sector = sector;
1240 bio->bi_end_io = xfs_buf_bio_end_io;
1241 bio->bi_private = bp;
1242 bio_set_op_attrs(bio, op, op_flags);
1243
1244 for (; size && nr_pages; nr_pages--, page_index++) {
1245 int rbytes, nbytes = PAGE_SIZE - offset;
1246
1247 if (nbytes > size)
1248 nbytes = size;
1249
1250 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1251 offset);
1252 if (rbytes < nbytes)
1253 break;
1254
1255 offset = 0;
1256 sector += BTOBB(nbytes);
1257 size -= nbytes;
1258 total_nr_pages--;
1259 }
1260
1261 if (likely(bio->bi_iter.bi_size)) {
1262 if (xfs_buf_is_vmapped(bp)) {
1263 flush_kernel_vmap_range(bp->b_addr,
1264 xfs_buf_vmap_len(bp));
1265 }
1266 submit_bio(bio);
1267 if (size)
1268 goto next_chunk;
1269 } else {
1270 /*
1271 * This is guaranteed not to be the last io reference count
1272 * because the caller (xfs_buf_submit) holds a count itself.
1273 */
1274 atomic_dec(&bp->b_io_remaining);
1275 xfs_buf_ioerror(bp, -EIO);
1276 bio_put(bio);
1277 }
1278
1279 }
1280
1281 STATIC void
1282 _xfs_buf_ioapply(
1283 struct xfs_buf *bp)
1284 {
1285 struct blk_plug plug;
1286 int op;
1287 int op_flags = 0;
1288 int offset;
1289 int size;
1290 int i;
1291
1292 /*
1293 * Make sure we capture only current IO errors rather than stale errors
1294 * left over from previous use of the buffer (e.g. failed readahead).
1295 */
1296 bp->b_error = 0;
1297
1298 /*
1299 * Initialize the I/O completion workqueue if we haven't yet or the
1300 * submitter has not opted to specify a custom one.
1301 */
1302 if (!bp->b_ioend_wq)
1303 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1304
1305 if (bp->b_flags & XBF_WRITE) {
1306 op = REQ_OP_WRITE;
1307 if (bp->b_flags & XBF_SYNCIO)
1308 op_flags = WRITE_SYNC;
1309 if (bp->b_flags & XBF_FUA)
1310 op_flags |= REQ_FUA;
1311 if (bp->b_flags & XBF_FLUSH)
1312 op_flags |= REQ_PREFLUSH;
1313
1314 /*
1315 * Run the write verifier callback function if it exists. If
1316 * this function fails it will mark the buffer with an error and
1317 * the IO should not be dispatched.
1318 */
1319 if (bp->b_ops) {
1320 bp->b_ops->verify_write(bp);
1321 if (bp->b_error) {
1322 xfs_force_shutdown(bp->b_target->bt_mount,
1323 SHUTDOWN_CORRUPT_INCORE);
1324 return;
1325 }
1326 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1327 struct xfs_mount *mp = bp->b_target->bt_mount;
1328
1329 /*
1330 * non-crc filesystems don't attach verifiers during
1331 * log recovery, so don't warn for such filesystems.
1332 */
1333 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1334 xfs_warn(mp,
1335 "%s: no ops on block 0x%llx/0x%x",
1336 __func__, bp->b_bn, bp->b_length);
1337 xfs_hex_dump(bp->b_addr, 64);
1338 dump_stack();
1339 }
1340 }
1341 } else if (bp->b_flags & XBF_READ_AHEAD) {
1342 op = REQ_OP_READ;
1343 op_flags = REQ_RAHEAD;
1344 } else {
1345 op = REQ_OP_READ;
1346 }
1347
1348 /* we only use the buffer cache for meta-data */
1349 op_flags |= REQ_META;
1350
1351 /*
1352 * Walk all the vectors issuing IO on them. Set up the initial offset
1353 * into the buffer and the desired IO size before we start -
1354 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1355 * subsequent call.
1356 */
1357 offset = bp->b_offset;
1358 size = BBTOB(bp->b_io_length);
1359 blk_start_plug(&plug);
1360 for (i = 0; i < bp->b_map_count; i++) {
1361 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1362 if (bp->b_error)
1363 break;
1364 if (size <= 0)
1365 break; /* all done */
1366 }
1367 blk_finish_plug(&plug);
1368 }
1369
1370 /*
1371 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1372 * the current reference to the IO. It is not safe to reference the buffer after
1373 * a call to this function unless the caller holds an additional reference
1374 * itself.
1375 */
1376 void
1377 xfs_buf_submit(
1378 struct xfs_buf *bp)
1379 {
1380 trace_xfs_buf_submit(bp, _RET_IP_);
1381
1382 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1383 ASSERT(bp->b_flags & XBF_ASYNC);
1384
1385 /* on shutdown we stale and complete the buffer immediately */
1386 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1387 xfs_buf_ioerror(bp, -EIO);
1388 bp->b_flags &= ~XBF_DONE;
1389 xfs_buf_stale(bp);
1390 xfs_buf_ioend(bp);
1391 return;
1392 }
1393
1394 if (bp->b_flags & XBF_WRITE)
1395 xfs_buf_wait_unpin(bp);
1396
1397 /* clear the internal error state to avoid spurious errors */
1398 bp->b_io_error = 0;
1399
1400 /*
1401 * The caller's reference is released during I/O completion.
1402 * This occurs some time after the last b_io_remaining reference is
1403 * released, so after we drop our Io reference we have to have some
1404 * other reference to ensure the buffer doesn't go away from underneath
1405 * us. Take a direct reference to ensure we have safe access to the
1406 * buffer until we are finished with it.
1407 */
1408 xfs_buf_hold(bp);
1409
1410 /*
1411 * Set the count to 1 initially, this will stop an I/O completion
1412 * callout which happens before we have started all the I/O from calling
1413 * xfs_buf_ioend too early.
1414 */
1415 atomic_set(&bp->b_io_remaining, 1);
1416 xfs_buf_ioacct_inc(bp);
1417 _xfs_buf_ioapply(bp);
1418
1419 /*
1420 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1421 * reference we took above. If we drop it to zero, run completion so
1422 * that we don't return to the caller with completion still pending.
1423 */
1424 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1425 if (bp->b_error)
1426 xfs_buf_ioend(bp);
1427 else
1428 xfs_buf_ioend_async(bp);
1429 }
1430
1431 xfs_buf_rele(bp);
1432 /* Note: it is not safe to reference bp now we've dropped our ref */
1433 }
1434
1435 /*
1436 * Synchronous buffer IO submission path, read or write.
1437 */
1438 int
1439 xfs_buf_submit_wait(
1440 struct xfs_buf *bp)
1441 {
1442 int error;
1443
1444 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1445
1446 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1447
1448 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1449 xfs_buf_ioerror(bp, -EIO);
1450 xfs_buf_stale(bp);
1451 bp->b_flags &= ~XBF_DONE;
1452 return -EIO;
1453 }
1454
1455 if (bp->b_flags & XBF_WRITE)
1456 xfs_buf_wait_unpin(bp);
1457
1458 /* clear the internal error state to avoid spurious errors */
1459 bp->b_io_error = 0;
1460
1461 /*
1462 * For synchronous IO, the IO does not inherit the submitters reference
1463 * count, nor the buffer lock. Hence we cannot release the reference we
1464 * are about to take until we've waited for all IO completion to occur,
1465 * including any xfs_buf_ioend_async() work that may be pending.
1466 */
1467 xfs_buf_hold(bp);
1468
1469 /*
1470 * Set the count to 1 initially, this will stop an I/O completion
1471 * callout which happens before we have started all the I/O from calling
1472 * xfs_buf_ioend too early.
1473 */
1474 atomic_set(&bp->b_io_remaining, 1);
1475 _xfs_buf_ioapply(bp);
1476
1477 /*
1478 * make sure we run completion synchronously if it raced with us and is
1479 * already complete.
1480 */
1481 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1482 xfs_buf_ioend(bp);
1483
1484 /* wait for completion before gathering the error from the buffer */
1485 trace_xfs_buf_iowait(bp, _RET_IP_);
1486 wait_for_completion(&bp->b_iowait);
1487 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1488 error = bp->b_error;
1489
1490 /*
1491 * all done now, we can release the hold that keeps the buffer
1492 * referenced for the entire IO.
1493 */
1494 xfs_buf_rele(bp);
1495 return error;
1496 }
1497
1498 void *
1499 xfs_buf_offset(
1500 struct xfs_buf *bp,
1501 size_t offset)
1502 {
1503 struct page *page;
1504
1505 if (bp->b_addr)
1506 return bp->b_addr + offset;
1507
1508 offset += bp->b_offset;
1509 page = bp->b_pages[offset >> PAGE_SHIFT];
1510 return page_address(page) + (offset & (PAGE_SIZE-1));
1511 }
1512
1513 /*
1514 * Move data into or out of a buffer.
1515 */
1516 void
1517 xfs_buf_iomove(
1518 xfs_buf_t *bp, /* buffer to process */
1519 size_t boff, /* starting buffer offset */
1520 size_t bsize, /* length to copy */
1521 void *data, /* data address */
1522 xfs_buf_rw_t mode) /* read/write/zero flag */
1523 {
1524 size_t bend;
1525
1526 bend = boff + bsize;
1527 while (boff < bend) {
1528 struct page *page;
1529 int page_index, page_offset, csize;
1530
1531 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1532 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1533 page = bp->b_pages[page_index];
1534 csize = min_t(size_t, PAGE_SIZE - page_offset,
1535 BBTOB(bp->b_io_length) - boff);
1536
1537 ASSERT((csize + page_offset) <= PAGE_SIZE);
1538
1539 switch (mode) {
1540 case XBRW_ZERO:
1541 memset(page_address(page) + page_offset, 0, csize);
1542 break;
1543 case XBRW_READ:
1544 memcpy(data, page_address(page) + page_offset, csize);
1545 break;
1546 case XBRW_WRITE:
1547 memcpy(page_address(page) + page_offset, data, csize);
1548 }
1549
1550 boff += csize;
1551 data += csize;
1552 }
1553 }
1554
1555 /*
1556 * Handling of buffer targets (buftargs).
1557 */
1558
1559 /*
1560 * Wait for any bufs with callbacks that have been submitted but have not yet
1561 * returned. These buffers will have an elevated hold count, so wait on those
1562 * while freeing all the buffers only held by the LRU.
1563 */
1564 static enum lru_status
1565 xfs_buftarg_wait_rele(
1566 struct list_head *item,
1567 struct list_lru_one *lru,
1568 spinlock_t *lru_lock,
1569 void *arg)
1570
1571 {
1572 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1573 struct list_head *dispose = arg;
1574
1575 if (atomic_read(&bp->b_hold) > 1) {
1576 /* need to wait, so skip it this pass */
1577 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1578 return LRU_SKIP;
1579 }
1580 if (!spin_trylock(&bp->b_lock))
1581 return LRU_SKIP;
1582
1583 /*
1584 * clear the LRU reference count so the buffer doesn't get
1585 * ignored in xfs_buf_rele().
1586 */
1587 atomic_set(&bp->b_lru_ref, 0);
1588 bp->b_state |= XFS_BSTATE_DISPOSE;
1589 list_lru_isolate_move(lru, item, dispose);
1590 spin_unlock(&bp->b_lock);
1591 return LRU_REMOVED;
1592 }
1593
1594 void
1595 xfs_wait_buftarg(
1596 struct xfs_buftarg *btp)
1597 {
1598 LIST_HEAD(dispose);
1599 int loop = 0;
1600
1601 /*
1602 * First wait on the buftarg I/O count for all in-flight buffers to be
1603 * released. This is critical as new buffers do not make the LRU until
1604 * they are released.
1605 *
1606 * Next, flush the buffer workqueue to ensure all completion processing
1607 * has finished. Just waiting on buffer locks is not sufficient for
1608 * async IO as the reference count held over IO is not released until
1609 * after the buffer lock is dropped. Hence we need to ensure here that
1610 * all reference counts have been dropped before we start walking the
1611 * LRU list.
1612 */
1613 while (percpu_counter_sum(&btp->bt_io_count))
1614 delay(100);
1615 drain_workqueue(btp->bt_mount->m_buf_workqueue);
1616
1617 /* loop until there is nothing left on the lru list. */
1618 while (list_lru_count(&btp->bt_lru)) {
1619 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1620 &dispose, LONG_MAX);
1621
1622 while (!list_empty(&dispose)) {
1623 struct xfs_buf *bp;
1624 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1625 list_del_init(&bp->b_lru);
1626 if (bp->b_flags & XBF_WRITE_FAIL) {
1627 xfs_alert(btp->bt_mount,
1628 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1629 (long long)bp->b_bn);
1630 xfs_alert(btp->bt_mount,
1631 "Please run xfs_repair to determine the extent of the problem.");
1632 }
1633 xfs_buf_rele(bp);
1634 }
1635 if (loop++ != 0)
1636 delay(100);
1637 }
1638 }
1639
1640 static enum lru_status
1641 xfs_buftarg_isolate(
1642 struct list_head *item,
1643 struct list_lru_one *lru,
1644 spinlock_t *lru_lock,
1645 void *arg)
1646 {
1647 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1648 struct list_head *dispose = arg;
1649
1650 /*
1651 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1652 * If we fail to get the lock, just skip it.
1653 */
1654 if (!spin_trylock(&bp->b_lock))
1655 return LRU_SKIP;
1656 /*
1657 * Decrement the b_lru_ref count unless the value is already
1658 * zero. If the value is already zero, we need to reclaim the
1659 * buffer, otherwise it gets another trip through the LRU.
1660 */
1661 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1662 spin_unlock(&bp->b_lock);
1663 return LRU_ROTATE;
1664 }
1665
1666 bp->b_state |= XFS_BSTATE_DISPOSE;
1667 list_lru_isolate_move(lru, item, dispose);
1668 spin_unlock(&bp->b_lock);
1669 return LRU_REMOVED;
1670 }
1671
1672 static unsigned long
1673 xfs_buftarg_shrink_scan(
1674 struct shrinker *shrink,
1675 struct shrink_control *sc)
1676 {
1677 struct xfs_buftarg *btp = container_of(shrink,
1678 struct xfs_buftarg, bt_shrinker);
1679 LIST_HEAD(dispose);
1680 unsigned long freed;
1681
1682 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1683 xfs_buftarg_isolate, &dispose);
1684
1685 while (!list_empty(&dispose)) {
1686 struct xfs_buf *bp;
1687 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1688 list_del_init(&bp->b_lru);
1689 xfs_buf_rele(bp);
1690 }
1691
1692 return freed;
1693 }
1694
1695 static unsigned long
1696 xfs_buftarg_shrink_count(
1697 struct shrinker *shrink,
1698 struct shrink_control *sc)
1699 {
1700 struct xfs_buftarg *btp = container_of(shrink,
1701 struct xfs_buftarg, bt_shrinker);
1702 return list_lru_shrink_count(&btp->bt_lru, sc);
1703 }
1704
1705 void
1706 xfs_free_buftarg(
1707 struct xfs_mount *mp,
1708 struct xfs_buftarg *btp)
1709 {
1710 unregister_shrinker(&btp->bt_shrinker);
1711 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1712 percpu_counter_destroy(&btp->bt_io_count);
1713 list_lru_destroy(&btp->bt_lru);
1714
1715 if (mp->m_flags & XFS_MOUNT_BARRIER)
1716 xfs_blkdev_issue_flush(btp);
1717
1718 kmem_free(btp);
1719 }
1720
1721 int
1722 xfs_setsize_buftarg(
1723 xfs_buftarg_t *btp,
1724 unsigned int sectorsize)
1725 {
1726 /* Set up metadata sector size info */
1727 btp->bt_meta_sectorsize = sectorsize;
1728 btp->bt_meta_sectormask = sectorsize - 1;
1729
1730 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1731 xfs_warn(btp->bt_mount,
1732 "Cannot set_blocksize to %u on device %pg",
1733 sectorsize, btp->bt_bdev);
1734 return -EINVAL;
1735 }
1736
1737 /* Set up device logical sector size mask */
1738 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1739 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1740
1741 return 0;
1742 }
1743
1744 /*
1745 * When allocating the initial buffer target we have not yet
1746 * read in the superblock, so don't know what sized sectors
1747 * are being used at this early stage. Play safe.
1748 */
1749 STATIC int
1750 xfs_setsize_buftarg_early(
1751 xfs_buftarg_t *btp,
1752 struct block_device *bdev)
1753 {
1754 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1755 }
1756
1757 xfs_buftarg_t *
1758 xfs_alloc_buftarg(
1759 struct xfs_mount *mp,
1760 struct block_device *bdev)
1761 {
1762 xfs_buftarg_t *btp;
1763
1764 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1765
1766 btp->bt_mount = mp;
1767 btp->bt_dev = bdev->bd_dev;
1768 btp->bt_bdev = bdev;
1769 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1770
1771 if (xfs_setsize_buftarg_early(btp, bdev))
1772 goto error;
1773
1774 if (list_lru_init(&btp->bt_lru))
1775 goto error;
1776
1777 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1778 goto error;
1779
1780 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1781 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1782 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1783 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1784 register_shrinker(&btp->bt_shrinker);
1785 return btp;
1786
1787 error:
1788 kmem_free(btp);
1789 return NULL;
1790 }
1791
1792 /*
1793 * Add a buffer to the delayed write list.
1794 *
1795 * This queues a buffer for writeout if it hasn't already been. Note that
1796 * neither this routine nor the buffer list submission functions perform
1797 * any internal synchronization. It is expected that the lists are thread-local
1798 * to the callers.
1799 *
1800 * Returns true if we queued up the buffer, or false if it already had
1801 * been on the buffer list.
1802 */
1803 bool
1804 xfs_buf_delwri_queue(
1805 struct xfs_buf *bp,
1806 struct list_head *list)
1807 {
1808 ASSERT(xfs_buf_islocked(bp));
1809 ASSERT(!(bp->b_flags & XBF_READ));
1810
1811 /*
1812 * If the buffer is already marked delwri it already is queued up
1813 * by someone else for imediate writeout. Just ignore it in that
1814 * case.
1815 */
1816 if (bp->b_flags & _XBF_DELWRI_Q) {
1817 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1818 return false;
1819 }
1820
1821 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1822
1823 /*
1824 * If a buffer gets written out synchronously or marked stale while it
1825 * is on a delwri list we lazily remove it. To do this, the other party
1826 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1827 * It remains referenced and on the list. In a rare corner case it
1828 * might get readded to a delwri list after the synchronous writeout, in
1829 * which case we need just need to re-add the flag here.
1830 */
1831 bp->b_flags |= _XBF_DELWRI_Q;
1832 if (list_empty(&bp->b_list)) {
1833 atomic_inc(&bp->b_hold);
1834 list_add_tail(&bp->b_list, list);
1835 }
1836
1837 return true;
1838 }
1839
1840 /*
1841 * Compare function is more complex than it needs to be because
1842 * the return value is only 32 bits and we are doing comparisons
1843 * on 64 bit values
1844 */
1845 static int
1846 xfs_buf_cmp(
1847 void *priv,
1848 struct list_head *a,
1849 struct list_head *b)
1850 {
1851 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1852 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1853 xfs_daddr_t diff;
1854
1855 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1856 if (diff < 0)
1857 return -1;
1858 if (diff > 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /*
1864 * submit buffers for write.
1865 *
1866 * When we have a large buffer list, we do not want to hold all the buffers
1867 * locked while we block on the request queue waiting for IO dispatch. To avoid
1868 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1869 * the lock hold times for lists which may contain thousands of objects.
1870 *
1871 * To do this, we sort the buffer list before we walk the list to lock and
1872 * submit buffers, and we plug and unplug around each group of buffers we
1873 * submit.
1874 */
1875 static int
1876 xfs_buf_delwri_submit_buffers(
1877 struct list_head *buffer_list,
1878 struct list_head *wait_list)
1879 {
1880 struct xfs_buf *bp, *n;
1881 LIST_HEAD (submit_list);
1882 int pinned = 0;
1883 struct blk_plug plug;
1884
1885 list_sort(NULL, buffer_list, xfs_buf_cmp);
1886
1887 blk_start_plug(&plug);
1888 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1889 if (!wait_list) {
1890 if (xfs_buf_ispinned(bp)) {
1891 pinned++;
1892 continue;
1893 }
1894 if (!xfs_buf_trylock(bp))
1895 continue;
1896 } else {
1897 xfs_buf_lock(bp);
1898 }
1899
1900 /*
1901 * Someone else might have written the buffer synchronously or
1902 * marked it stale in the meantime. In that case only the
1903 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1904 * reference and remove it from the list here.
1905 */
1906 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1907 list_del_init(&bp->b_list);
1908 xfs_buf_relse(bp);
1909 continue;
1910 }
1911
1912 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1913
1914 /*
1915 * We do all IO submission async. This means if we need
1916 * to wait for IO completion we need to take an extra
1917 * reference so the buffer is still valid on the other
1918 * side. We need to move the buffer onto the io_list
1919 * at this point so the caller can still access it.
1920 */
1921 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1922 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1923 if (wait_list) {
1924 xfs_buf_hold(bp);
1925 list_move_tail(&bp->b_list, wait_list);
1926 } else
1927 list_del_init(&bp->b_list);
1928
1929 xfs_buf_submit(bp);
1930 }
1931 blk_finish_plug(&plug);
1932
1933 return pinned;
1934 }
1935
1936 /*
1937 * Write out a buffer list asynchronously.
1938 *
1939 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1940 * out and not wait for I/O completion on any of the buffers. This interface
1941 * is only safely useable for callers that can track I/O completion by higher
1942 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1943 * function.
1944 */
1945 int
1946 xfs_buf_delwri_submit_nowait(
1947 struct list_head *buffer_list)
1948 {
1949 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1950 }
1951
1952 /*
1953 * Write out a buffer list synchronously.
1954 *
1955 * This will take the @buffer_list, write all buffers out and wait for I/O
1956 * completion on all of the buffers. @buffer_list is consumed by the function,
1957 * so callers must have some other way of tracking buffers if they require such
1958 * functionality.
1959 */
1960 int
1961 xfs_buf_delwri_submit(
1962 struct list_head *buffer_list)
1963 {
1964 LIST_HEAD (wait_list);
1965 int error = 0, error2;
1966 struct xfs_buf *bp;
1967
1968 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1969
1970 /* Wait for IO to complete. */
1971 while (!list_empty(&wait_list)) {
1972 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1973
1974 list_del_init(&bp->b_list);
1975
1976 /* locking the buffer will wait for async IO completion. */
1977 xfs_buf_lock(bp);
1978 error2 = bp->b_error;
1979 xfs_buf_relse(bp);
1980 if (!error)
1981 error = error2;
1982 }
1983
1984 return error;
1985 }
1986
1987 int __init
1988 xfs_buf_init(void)
1989 {
1990 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1991 KM_ZONE_HWALIGN, NULL);
1992 if (!xfs_buf_zone)
1993 goto out;
1994
1995 return 0;
1996
1997 out:
1998 return -ENOMEM;
1999 }
2000
2001 void
2002 xfs_buf_terminate(void)
2003 {
2004 kmem_zone_destroy(xfs_buf_zone);
2005 }
This page took 0.074967 seconds and 5 git commands to generate.