Merge tag 'driver-core-4.6-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44
45
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49
50 void
51 xfs_uuid_table_free(void)
52 {
53 if (xfs_uuid_table_size == 0)
54 return;
55 kmem_free(xfs_uuid_table);
56 xfs_uuid_table = NULL;
57 xfs_uuid_table_size = 0;
58 }
59
60 /*
61 * See if the UUID is unique among mounted XFS filesystems.
62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
63 */
64 STATIC int
65 xfs_uuid_mount(
66 struct xfs_mount *mp)
67 {
68 uuid_t *uuid = &mp->m_sb.sb_uuid;
69 int hole, i;
70
71 if (mp->m_flags & XFS_MOUNT_NOUUID)
72 return 0;
73
74 if (uuid_is_nil(uuid)) {
75 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
76 return -EINVAL;
77 }
78
79 mutex_lock(&xfs_uuid_table_mutex);
80 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
81 if (uuid_is_nil(&xfs_uuid_table[i])) {
82 hole = i;
83 continue;
84 }
85 if (uuid_equal(uuid, &xfs_uuid_table[i]))
86 goto out_duplicate;
87 }
88
89 if (hole < 0) {
90 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
91 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
92 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
93 KM_SLEEP);
94 hole = xfs_uuid_table_size++;
95 }
96 xfs_uuid_table[hole] = *uuid;
97 mutex_unlock(&xfs_uuid_table_mutex);
98
99 return 0;
100
101 out_duplicate:
102 mutex_unlock(&xfs_uuid_table_mutex);
103 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
104 return -EINVAL;
105 }
106
107 STATIC void
108 xfs_uuid_unmount(
109 struct xfs_mount *mp)
110 {
111 uuid_t *uuid = &mp->m_sb.sb_uuid;
112 int i;
113
114 if (mp->m_flags & XFS_MOUNT_NOUUID)
115 return;
116
117 mutex_lock(&xfs_uuid_table_mutex);
118 for (i = 0; i < xfs_uuid_table_size; i++) {
119 if (uuid_is_nil(&xfs_uuid_table[i]))
120 continue;
121 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
122 continue;
123 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
124 break;
125 }
126 ASSERT(i < xfs_uuid_table_size);
127 mutex_unlock(&xfs_uuid_table_mutex);
128 }
129
130
131 STATIC void
132 __xfs_free_perag(
133 struct rcu_head *head)
134 {
135 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
136
137 ASSERT(atomic_read(&pag->pag_ref) == 0);
138 kmem_free(pag);
139 }
140
141 /*
142 * Free up the per-ag resources associated with the mount structure.
143 */
144 STATIC void
145 xfs_free_perag(
146 xfs_mount_t *mp)
147 {
148 xfs_agnumber_t agno;
149 struct xfs_perag *pag;
150
151 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
152 spin_lock(&mp->m_perag_lock);
153 pag = radix_tree_delete(&mp->m_perag_tree, agno);
154 spin_unlock(&mp->m_perag_lock);
155 ASSERT(pag);
156 ASSERT(atomic_read(&pag->pag_ref) == 0);
157 call_rcu(&pag->rcu_head, __xfs_free_perag);
158 }
159 }
160
161 /*
162 * Check size of device based on the (data/realtime) block count.
163 * Note: this check is used by the growfs code as well as mount.
164 */
165 int
166 xfs_sb_validate_fsb_count(
167 xfs_sb_t *sbp,
168 __uint64_t nblocks)
169 {
170 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
171 ASSERT(sbp->sb_blocklog >= BBSHIFT);
172
173 /* Limited by ULONG_MAX of page cache index */
174 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
175 return -EFBIG;
176 return 0;
177 }
178
179 int
180 xfs_initialize_perag(
181 xfs_mount_t *mp,
182 xfs_agnumber_t agcount,
183 xfs_agnumber_t *maxagi)
184 {
185 xfs_agnumber_t index;
186 xfs_agnumber_t first_initialised = 0;
187 xfs_perag_t *pag;
188 int error = -ENOMEM;
189
190 /*
191 * Walk the current per-ag tree so we don't try to initialise AGs
192 * that already exist (growfs case). Allocate and insert all the
193 * AGs we don't find ready for initialisation.
194 */
195 for (index = 0; index < agcount; index++) {
196 pag = xfs_perag_get(mp, index);
197 if (pag) {
198 xfs_perag_put(pag);
199 continue;
200 }
201 if (!first_initialised)
202 first_initialised = index;
203
204 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
205 if (!pag)
206 goto out_unwind;
207 pag->pag_agno = index;
208 pag->pag_mount = mp;
209 spin_lock_init(&pag->pag_ici_lock);
210 mutex_init(&pag->pag_ici_reclaim_lock);
211 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
212 spin_lock_init(&pag->pag_buf_lock);
213 pag->pag_buf_tree = RB_ROOT;
214
215 if (radix_tree_preload(GFP_NOFS))
216 goto out_unwind;
217
218 spin_lock(&mp->m_perag_lock);
219 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
220 BUG();
221 spin_unlock(&mp->m_perag_lock);
222 radix_tree_preload_end();
223 error = -EEXIST;
224 goto out_unwind;
225 }
226 spin_unlock(&mp->m_perag_lock);
227 radix_tree_preload_end();
228 }
229
230 index = xfs_set_inode_alloc(mp, agcount);
231
232 if (maxagi)
233 *maxagi = index;
234 return 0;
235
236 out_unwind:
237 kmem_free(pag);
238 for (; index > first_initialised; index--) {
239 pag = radix_tree_delete(&mp->m_perag_tree, index);
240 kmem_free(pag);
241 }
242 return error;
243 }
244
245 /*
246 * xfs_readsb
247 *
248 * Does the initial read of the superblock.
249 */
250 int
251 xfs_readsb(
252 struct xfs_mount *mp,
253 int flags)
254 {
255 unsigned int sector_size;
256 struct xfs_buf *bp;
257 struct xfs_sb *sbp = &mp->m_sb;
258 int error;
259 int loud = !(flags & XFS_MFSI_QUIET);
260 const struct xfs_buf_ops *buf_ops;
261
262 ASSERT(mp->m_sb_bp == NULL);
263 ASSERT(mp->m_ddev_targp != NULL);
264
265 /*
266 * For the initial read, we must guess at the sector
267 * size based on the block device. It's enough to
268 * get the sb_sectsize out of the superblock and
269 * then reread with the proper length.
270 * We don't verify it yet, because it may not be complete.
271 */
272 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
273 buf_ops = NULL;
274
275 /*
276 * Allocate a (locked) buffer to hold the superblock.
277 * This will be kept around at all times to optimize
278 * access to the superblock.
279 */
280 reread:
281 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
282 BTOBB(sector_size), 0, &bp, buf_ops);
283 if (error) {
284 if (loud)
285 xfs_warn(mp, "SB validate failed with error %d.", error);
286 /* bad CRC means corrupted metadata */
287 if (error == -EFSBADCRC)
288 error = -EFSCORRUPTED;
289 return error;
290 }
291
292 /*
293 * Initialize the mount structure from the superblock.
294 */
295 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
296
297 /*
298 * If we haven't validated the superblock, do so now before we try
299 * to check the sector size and reread the superblock appropriately.
300 */
301 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
302 if (loud)
303 xfs_warn(mp, "Invalid superblock magic number");
304 error = -EINVAL;
305 goto release_buf;
306 }
307
308 /*
309 * We must be able to do sector-sized and sector-aligned IO.
310 */
311 if (sector_size > sbp->sb_sectsize) {
312 if (loud)
313 xfs_warn(mp, "device supports %u byte sectors (not %u)",
314 sector_size, sbp->sb_sectsize);
315 error = -ENOSYS;
316 goto release_buf;
317 }
318
319 if (buf_ops == NULL) {
320 /*
321 * Re-read the superblock so the buffer is correctly sized,
322 * and properly verified.
323 */
324 xfs_buf_relse(bp);
325 sector_size = sbp->sb_sectsize;
326 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
327 goto reread;
328 }
329
330 xfs_reinit_percpu_counters(mp);
331
332 /* no need to be quiet anymore, so reset the buf ops */
333 bp->b_ops = &xfs_sb_buf_ops;
334
335 mp->m_sb_bp = bp;
336 xfs_buf_unlock(bp);
337 return 0;
338
339 release_buf:
340 xfs_buf_relse(bp);
341 return error;
342 }
343
344 /*
345 * Update alignment values based on mount options and sb values
346 */
347 STATIC int
348 xfs_update_alignment(xfs_mount_t *mp)
349 {
350 xfs_sb_t *sbp = &(mp->m_sb);
351
352 if (mp->m_dalign) {
353 /*
354 * If stripe unit and stripe width are not multiples
355 * of the fs blocksize turn off alignment.
356 */
357 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
358 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
359 xfs_warn(mp,
360 "alignment check failed: sunit/swidth vs. blocksize(%d)",
361 sbp->sb_blocksize);
362 return -EINVAL;
363 } else {
364 /*
365 * Convert the stripe unit and width to FSBs.
366 */
367 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
368 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
369 xfs_warn(mp,
370 "alignment check failed: sunit/swidth vs. agsize(%d)",
371 sbp->sb_agblocks);
372 return -EINVAL;
373 } else if (mp->m_dalign) {
374 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
375 } else {
376 xfs_warn(mp,
377 "alignment check failed: sunit(%d) less than bsize(%d)",
378 mp->m_dalign, sbp->sb_blocksize);
379 return -EINVAL;
380 }
381 }
382
383 /*
384 * Update superblock with new values
385 * and log changes
386 */
387 if (xfs_sb_version_hasdalign(sbp)) {
388 if (sbp->sb_unit != mp->m_dalign) {
389 sbp->sb_unit = mp->m_dalign;
390 mp->m_update_sb = true;
391 }
392 if (sbp->sb_width != mp->m_swidth) {
393 sbp->sb_width = mp->m_swidth;
394 mp->m_update_sb = true;
395 }
396 } else {
397 xfs_warn(mp,
398 "cannot change alignment: superblock does not support data alignment");
399 return -EINVAL;
400 }
401 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
402 xfs_sb_version_hasdalign(&mp->m_sb)) {
403 mp->m_dalign = sbp->sb_unit;
404 mp->m_swidth = sbp->sb_width;
405 }
406
407 return 0;
408 }
409
410 /*
411 * Set the maximum inode count for this filesystem
412 */
413 STATIC void
414 xfs_set_maxicount(xfs_mount_t *mp)
415 {
416 xfs_sb_t *sbp = &(mp->m_sb);
417 __uint64_t icount;
418
419 if (sbp->sb_imax_pct) {
420 /*
421 * Make sure the maximum inode count is a multiple
422 * of the units we allocate inodes in.
423 */
424 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
425 do_div(icount, 100);
426 do_div(icount, mp->m_ialloc_blks);
427 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
428 sbp->sb_inopblog;
429 } else {
430 mp->m_maxicount = 0;
431 }
432 }
433
434 /*
435 * Set the default minimum read and write sizes unless
436 * already specified in a mount option.
437 * We use smaller I/O sizes when the file system
438 * is being used for NFS service (wsync mount option).
439 */
440 STATIC void
441 xfs_set_rw_sizes(xfs_mount_t *mp)
442 {
443 xfs_sb_t *sbp = &(mp->m_sb);
444 int readio_log, writeio_log;
445
446 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
447 if (mp->m_flags & XFS_MOUNT_WSYNC) {
448 readio_log = XFS_WSYNC_READIO_LOG;
449 writeio_log = XFS_WSYNC_WRITEIO_LOG;
450 } else {
451 readio_log = XFS_READIO_LOG_LARGE;
452 writeio_log = XFS_WRITEIO_LOG_LARGE;
453 }
454 } else {
455 readio_log = mp->m_readio_log;
456 writeio_log = mp->m_writeio_log;
457 }
458
459 if (sbp->sb_blocklog > readio_log) {
460 mp->m_readio_log = sbp->sb_blocklog;
461 } else {
462 mp->m_readio_log = readio_log;
463 }
464 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
465 if (sbp->sb_blocklog > writeio_log) {
466 mp->m_writeio_log = sbp->sb_blocklog;
467 } else {
468 mp->m_writeio_log = writeio_log;
469 }
470 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
471 }
472
473 /*
474 * precalculate the low space thresholds for dynamic speculative preallocation.
475 */
476 void
477 xfs_set_low_space_thresholds(
478 struct xfs_mount *mp)
479 {
480 int i;
481
482 for (i = 0; i < XFS_LOWSP_MAX; i++) {
483 __uint64_t space = mp->m_sb.sb_dblocks;
484
485 do_div(space, 100);
486 mp->m_low_space[i] = space * (i + 1);
487 }
488 }
489
490
491 /*
492 * Set whether we're using inode alignment.
493 */
494 STATIC void
495 xfs_set_inoalignment(xfs_mount_t *mp)
496 {
497 if (xfs_sb_version_hasalign(&mp->m_sb) &&
498 mp->m_sb.sb_inoalignmt >=
499 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
500 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
501 else
502 mp->m_inoalign_mask = 0;
503 /*
504 * If we are using stripe alignment, check whether
505 * the stripe unit is a multiple of the inode alignment
506 */
507 if (mp->m_dalign && mp->m_inoalign_mask &&
508 !(mp->m_dalign & mp->m_inoalign_mask))
509 mp->m_sinoalign = mp->m_dalign;
510 else
511 mp->m_sinoalign = 0;
512 }
513
514 /*
515 * Check that the data (and log if separate) is an ok size.
516 */
517 STATIC int
518 xfs_check_sizes(
519 struct xfs_mount *mp)
520 {
521 struct xfs_buf *bp;
522 xfs_daddr_t d;
523 int error;
524
525 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
526 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
527 xfs_warn(mp, "filesystem size mismatch detected");
528 return -EFBIG;
529 }
530 error = xfs_buf_read_uncached(mp->m_ddev_targp,
531 d - XFS_FSS_TO_BB(mp, 1),
532 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
533 if (error) {
534 xfs_warn(mp, "last sector read failed");
535 return error;
536 }
537 xfs_buf_relse(bp);
538
539 if (mp->m_logdev_targp == mp->m_ddev_targp)
540 return 0;
541
542 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
543 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
544 xfs_warn(mp, "log size mismatch detected");
545 return -EFBIG;
546 }
547 error = xfs_buf_read_uncached(mp->m_logdev_targp,
548 d - XFS_FSB_TO_BB(mp, 1),
549 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
550 if (error) {
551 xfs_warn(mp, "log device read failed");
552 return error;
553 }
554 xfs_buf_relse(bp);
555 return 0;
556 }
557
558 /*
559 * Clear the quotaflags in memory and in the superblock.
560 */
561 int
562 xfs_mount_reset_sbqflags(
563 struct xfs_mount *mp)
564 {
565 mp->m_qflags = 0;
566
567 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
568 if (mp->m_sb.sb_qflags == 0)
569 return 0;
570 spin_lock(&mp->m_sb_lock);
571 mp->m_sb.sb_qflags = 0;
572 spin_unlock(&mp->m_sb_lock);
573
574 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
575 return 0;
576
577 return xfs_sync_sb(mp, false);
578 }
579
580 __uint64_t
581 xfs_default_resblks(xfs_mount_t *mp)
582 {
583 __uint64_t resblks;
584
585 /*
586 * We default to 5% or 8192 fsbs of space reserved, whichever is
587 * smaller. This is intended to cover concurrent allocation
588 * transactions when we initially hit enospc. These each require a 4
589 * block reservation. Hence by default we cover roughly 2000 concurrent
590 * allocation reservations.
591 */
592 resblks = mp->m_sb.sb_dblocks;
593 do_div(resblks, 20);
594 resblks = min_t(__uint64_t, resblks, 8192);
595 return resblks;
596 }
597
598 /*
599 * This function does the following on an initial mount of a file system:
600 * - reads the superblock from disk and init the mount struct
601 * - if we're a 32-bit kernel, do a size check on the superblock
602 * so we don't mount terabyte filesystems
603 * - init mount struct realtime fields
604 * - allocate inode hash table for fs
605 * - init directory manager
606 * - perform recovery and init the log manager
607 */
608 int
609 xfs_mountfs(
610 struct xfs_mount *mp)
611 {
612 struct xfs_sb *sbp = &(mp->m_sb);
613 struct xfs_inode *rip;
614 __uint64_t resblks;
615 uint quotamount = 0;
616 uint quotaflags = 0;
617 int error = 0;
618
619 xfs_sb_mount_common(mp, sbp);
620
621 /*
622 * Check for a mismatched features2 values. Older kernels read & wrote
623 * into the wrong sb offset for sb_features2 on some platforms due to
624 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
625 * which made older superblock reading/writing routines swap it as a
626 * 64-bit value.
627 *
628 * For backwards compatibility, we make both slots equal.
629 *
630 * If we detect a mismatched field, we OR the set bits into the existing
631 * features2 field in case it has already been modified; we don't want
632 * to lose any features. We then update the bad location with the ORed
633 * value so that older kernels will see any features2 flags. The
634 * superblock writeback code ensures the new sb_features2 is copied to
635 * sb_bad_features2 before it is logged or written to disk.
636 */
637 if (xfs_sb_has_mismatched_features2(sbp)) {
638 xfs_warn(mp, "correcting sb_features alignment problem");
639 sbp->sb_features2 |= sbp->sb_bad_features2;
640 mp->m_update_sb = true;
641
642 /*
643 * Re-check for ATTR2 in case it was found in bad_features2
644 * slot.
645 */
646 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
647 !(mp->m_flags & XFS_MOUNT_NOATTR2))
648 mp->m_flags |= XFS_MOUNT_ATTR2;
649 }
650
651 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
652 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
653 xfs_sb_version_removeattr2(&mp->m_sb);
654 mp->m_update_sb = true;
655
656 /* update sb_versionnum for the clearing of the morebits */
657 if (!sbp->sb_features2)
658 mp->m_update_sb = true;
659 }
660
661 /* always use v2 inodes by default now */
662 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
663 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
664 mp->m_update_sb = true;
665 }
666
667 /*
668 * Check if sb_agblocks is aligned at stripe boundary
669 * If sb_agblocks is NOT aligned turn off m_dalign since
670 * allocator alignment is within an ag, therefore ag has
671 * to be aligned at stripe boundary.
672 */
673 error = xfs_update_alignment(mp);
674 if (error)
675 goto out;
676
677 xfs_alloc_compute_maxlevels(mp);
678 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
679 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
680 xfs_ialloc_compute_maxlevels(mp);
681
682 xfs_set_maxicount(mp);
683
684 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
685 if (error)
686 goto out;
687
688 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
689 &mp->m_kobj, "stats");
690 if (error)
691 goto out_remove_sysfs;
692
693 error = xfs_uuid_mount(mp);
694 if (error)
695 goto out_del_stats;
696
697 /*
698 * Set the minimum read and write sizes
699 */
700 xfs_set_rw_sizes(mp);
701
702 /* set the low space thresholds for dynamic preallocation */
703 xfs_set_low_space_thresholds(mp);
704
705 /*
706 * Set the inode cluster size.
707 * This may still be overridden by the file system
708 * block size if it is larger than the chosen cluster size.
709 *
710 * For v5 filesystems, scale the cluster size with the inode size to
711 * keep a constant ratio of inode per cluster buffer, but only if mkfs
712 * has set the inode alignment value appropriately for larger cluster
713 * sizes.
714 */
715 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
716 if (xfs_sb_version_hascrc(&mp->m_sb)) {
717 int new_size = mp->m_inode_cluster_size;
718
719 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
720 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
721 mp->m_inode_cluster_size = new_size;
722 }
723
724 /*
725 * If enabled, sparse inode chunk alignment is expected to match the
726 * cluster size. Full inode chunk alignment must match the chunk size,
727 * but that is checked on sb read verification...
728 */
729 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
730 mp->m_sb.sb_spino_align !=
731 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
732 xfs_warn(mp,
733 "Sparse inode block alignment (%u) must match cluster size (%llu).",
734 mp->m_sb.sb_spino_align,
735 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
736 error = -EINVAL;
737 goto out_remove_uuid;
738 }
739
740 /*
741 * Set inode alignment fields
742 */
743 xfs_set_inoalignment(mp);
744
745 /*
746 * Check that the data (and log if separate) is an ok size.
747 */
748 error = xfs_check_sizes(mp);
749 if (error)
750 goto out_remove_uuid;
751
752 /*
753 * Initialize realtime fields in the mount structure
754 */
755 error = xfs_rtmount_init(mp);
756 if (error) {
757 xfs_warn(mp, "RT mount failed");
758 goto out_remove_uuid;
759 }
760
761 /*
762 * Copies the low order bits of the timestamp and the randomly
763 * set "sequence" number out of a UUID.
764 */
765 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
766
767 mp->m_dmevmask = 0; /* not persistent; set after each mount */
768
769 error = xfs_da_mount(mp);
770 if (error) {
771 xfs_warn(mp, "Failed dir/attr init: %d", error);
772 goto out_remove_uuid;
773 }
774
775 /*
776 * Initialize the precomputed transaction reservations values.
777 */
778 xfs_trans_init(mp);
779
780 /*
781 * Allocate and initialize the per-ag data.
782 */
783 spin_lock_init(&mp->m_perag_lock);
784 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
785 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
786 if (error) {
787 xfs_warn(mp, "Failed per-ag init: %d", error);
788 goto out_free_dir;
789 }
790
791 if (!sbp->sb_logblocks) {
792 xfs_warn(mp, "no log defined");
793 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
794 error = -EFSCORRUPTED;
795 goto out_free_perag;
796 }
797
798 /*
799 * Log's mount-time initialization. The first part of recovery can place
800 * some items on the AIL, to be handled when recovery is finished or
801 * cancelled.
802 */
803 error = xfs_log_mount(mp, mp->m_logdev_targp,
804 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
805 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
806 if (error) {
807 xfs_warn(mp, "log mount failed");
808 goto out_fail_wait;
809 }
810
811 /*
812 * Now the log is mounted, we know if it was an unclean shutdown or
813 * not. If it was, with the first phase of recovery has completed, we
814 * have consistent AG blocks on disk. We have not recovered EFIs yet,
815 * but they are recovered transactionally in the second recovery phase
816 * later.
817 *
818 * Hence we can safely re-initialise incore superblock counters from
819 * the per-ag data. These may not be correct if the filesystem was not
820 * cleanly unmounted, so we need to wait for recovery to finish before
821 * doing this.
822 *
823 * If the filesystem was cleanly unmounted, then we can trust the
824 * values in the superblock to be correct and we don't need to do
825 * anything here.
826 *
827 * If we are currently making the filesystem, the initialisation will
828 * fail as the perag data is in an undefined state.
829 */
830 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
831 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
832 !mp->m_sb.sb_inprogress) {
833 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
834 if (error)
835 goto out_log_dealloc;
836 }
837
838 /*
839 * Get and sanity-check the root inode.
840 * Save the pointer to it in the mount structure.
841 */
842 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
843 if (error) {
844 xfs_warn(mp, "failed to read root inode");
845 goto out_log_dealloc;
846 }
847
848 ASSERT(rip != NULL);
849
850 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
851 xfs_warn(mp, "corrupted root inode %llu: not a directory",
852 (unsigned long long)rip->i_ino);
853 xfs_iunlock(rip, XFS_ILOCK_EXCL);
854 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
855 mp);
856 error = -EFSCORRUPTED;
857 goto out_rele_rip;
858 }
859 mp->m_rootip = rip; /* save it */
860
861 xfs_iunlock(rip, XFS_ILOCK_EXCL);
862
863 /*
864 * Initialize realtime inode pointers in the mount structure
865 */
866 error = xfs_rtmount_inodes(mp);
867 if (error) {
868 /*
869 * Free up the root inode.
870 */
871 xfs_warn(mp, "failed to read RT inodes");
872 goto out_rele_rip;
873 }
874
875 /*
876 * If this is a read-only mount defer the superblock updates until
877 * the next remount into writeable mode. Otherwise we would never
878 * perform the update e.g. for the root filesystem.
879 */
880 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
881 error = xfs_sync_sb(mp, false);
882 if (error) {
883 xfs_warn(mp, "failed to write sb changes");
884 goto out_rtunmount;
885 }
886 }
887
888 /*
889 * Initialise the XFS quota management subsystem for this mount
890 */
891 if (XFS_IS_QUOTA_RUNNING(mp)) {
892 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
893 if (error)
894 goto out_rtunmount;
895 } else {
896 ASSERT(!XFS_IS_QUOTA_ON(mp));
897
898 /*
899 * If a file system had quotas running earlier, but decided to
900 * mount without -o uquota/pquota/gquota options, revoke the
901 * quotachecked license.
902 */
903 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
904 xfs_notice(mp, "resetting quota flags");
905 error = xfs_mount_reset_sbqflags(mp);
906 if (error)
907 goto out_rtunmount;
908 }
909 }
910
911 /*
912 * Finish recovering the file system. This part needed to be delayed
913 * until after the root and real-time bitmap inodes were consistently
914 * read in.
915 */
916 error = xfs_log_mount_finish(mp);
917 if (error) {
918 xfs_warn(mp, "log mount finish failed");
919 goto out_rtunmount;
920 }
921
922 /*
923 * Complete the quota initialisation, post-log-replay component.
924 */
925 if (quotamount) {
926 ASSERT(mp->m_qflags == 0);
927 mp->m_qflags = quotaflags;
928
929 xfs_qm_mount_quotas(mp);
930 }
931
932 /*
933 * Now we are mounted, reserve a small amount of unused space for
934 * privileged transactions. This is needed so that transaction
935 * space required for critical operations can dip into this pool
936 * when at ENOSPC. This is needed for operations like create with
937 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
938 * are not allowed to use this reserved space.
939 *
940 * This may drive us straight to ENOSPC on mount, but that implies
941 * we were already there on the last unmount. Warn if this occurs.
942 */
943 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
944 resblks = xfs_default_resblks(mp);
945 error = xfs_reserve_blocks(mp, &resblks, NULL);
946 if (error)
947 xfs_warn(mp,
948 "Unable to allocate reserve blocks. Continuing without reserve pool.");
949 }
950
951 return 0;
952
953 out_rtunmount:
954 xfs_rtunmount_inodes(mp);
955 out_rele_rip:
956 IRELE(rip);
957 cancel_delayed_work_sync(&mp->m_reclaim_work);
958 xfs_reclaim_inodes(mp, SYNC_WAIT);
959 out_log_dealloc:
960 xfs_log_mount_cancel(mp);
961 out_fail_wait:
962 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
963 xfs_wait_buftarg(mp->m_logdev_targp);
964 xfs_wait_buftarg(mp->m_ddev_targp);
965 out_free_perag:
966 xfs_free_perag(mp);
967 out_free_dir:
968 xfs_da_unmount(mp);
969 out_remove_uuid:
970 xfs_uuid_unmount(mp);
971 out_del_stats:
972 xfs_sysfs_del(&mp->m_stats.xs_kobj);
973 out_remove_sysfs:
974 xfs_sysfs_del(&mp->m_kobj);
975 out:
976 return error;
977 }
978
979 /*
980 * This flushes out the inodes,dquots and the superblock, unmounts the
981 * log and makes sure that incore structures are freed.
982 */
983 void
984 xfs_unmountfs(
985 struct xfs_mount *mp)
986 {
987 __uint64_t resblks;
988 int error;
989
990 cancel_delayed_work_sync(&mp->m_eofblocks_work);
991
992 xfs_qm_unmount_quotas(mp);
993 xfs_rtunmount_inodes(mp);
994 IRELE(mp->m_rootip);
995
996 /*
997 * We can potentially deadlock here if we have an inode cluster
998 * that has been freed has its buffer still pinned in memory because
999 * the transaction is still sitting in a iclog. The stale inodes
1000 * on that buffer will have their flush locks held until the
1001 * transaction hits the disk and the callbacks run. the inode
1002 * flush takes the flush lock unconditionally and with nothing to
1003 * push out the iclog we will never get that unlocked. hence we
1004 * need to force the log first.
1005 */
1006 xfs_log_force(mp, XFS_LOG_SYNC);
1007
1008 /*
1009 * Flush all pending changes from the AIL.
1010 */
1011 xfs_ail_push_all_sync(mp->m_ail);
1012
1013 /*
1014 * And reclaim all inodes. At this point there should be no dirty
1015 * inodes and none should be pinned or locked, but use synchronous
1016 * reclaim just to be sure. We can stop background inode reclaim
1017 * here as well if it is still running.
1018 */
1019 cancel_delayed_work_sync(&mp->m_reclaim_work);
1020 xfs_reclaim_inodes(mp, SYNC_WAIT);
1021
1022 xfs_qm_unmount(mp);
1023
1024 /*
1025 * Unreserve any blocks we have so that when we unmount we don't account
1026 * the reserved free space as used. This is really only necessary for
1027 * lazy superblock counting because it trusts the incore superblock
1028 * counters to be absolutely correct on clean unmount.
1029 *
1030 * We don't bother correcting this elsewhere for lazy superblock
1031 * counting because on mount of an unclean filesystem we reconstruct the
1032 * correct counter value and this is irrelevant.
1033 *
1034 * For non-lazy counter filesystems, this doesn't matter at all because
1035 * we only every apply deltas to the superblock and hence the incore
1036 * value does not matter....
1037 */
1038 resblks = 0;
1039 error = xfs_reserve_blocks(mp, &resblks, NULL);
1040 if (error)
1041 xfs_warn(mp, "Unable to free reserved block pool. "
1042 "Freespace may not be correct on next mount.");
1043
1044 error = xfs_log_sbcount(mp);
1045 if (error)
1046 xfs_warn(mp, "Unable to update superblock counters. "
1047 "Freespace may not be correct on next mount.");
1048
1049
1050 xfs_log_unmount(mp);
1051 xfs_da_unmount(mp);
1052 xfs_uuid_unmount(mp);
1053
1054 #if defined(DEBUG)
1055 xfs_errortag_clearall(mp, 0);
1056 #endif
1057 xfs_free_perag(mp);
1058
1059 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1060 xfs_sysfs_del(&mp->m_kobj);
1061 }
1062
1063 /*
1064 * Determine whether modifications can proceed. The caller specifies the minimum
1065 * freeze level for which modifications should not be allowed. This allows
1066 * certain operations to proceed while the freeze sequence is in progress, if
1067 * necessary.
1068 */
1069 bool
1070 xfs_fs_writable(
1071 struct xfs_mount *mp,
1072 int level)
1073 {
1074 ASSERT(level > SB_UNFROZEN);
1075 if ((mp->m_super->s_writers.frozen >= level) ||
1076 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1077 return false;
1078
1079 return true;
1080 }
1081
1082 /*
1083 * xfs_log_sbcount
1084 *
1085 * Sync the superblock counters to disk.
1086 *
1087 * Note this code can be called during the process of freezing, so we use the
1088 * transaction allocator that does not block when the transaction subsystem is
1089 * in its frozen state.
1090 */
1091 int
1092 xfs_log_sbcount(xfs_mount_t *mp)
1093 {
1094 /* allow this to proceed during the freeze sequence... */
1095 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1096 return 0;
1097
1098 /*
1099 * we don't need to do this if we are updating the superblock
1100 * counters on every modification.
1101 */
1102 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1103 return 0;
1104
1105 return xfs_sync_sb(mp, true);
1106 }
1107
1108 /*
1109 * Deltas for the inode count are +/-64, hence we use a large batch size
1110 * of 128 so we don't need to take the counter lock on every update.
1111 */
1112 #define XFS_ICOUNT_BATCH 128
1113 int
1114 xfs_mod_icount(
1115 struct xfs_mount *mp,
1116 int64_t delta)
1117 {
1118 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1119 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1120 ASSERT(0);
1121 percpu_counter_add(&mp->m_icount, -delta);
1122 return -EINVAL;
1123 }
1124 return 0;
1125 }
1126
1127 int
1128 xfs_mod_ifree(
1129 struct xfs_mount *mp,
1130 int64_t delta)
1131 {
1132 percpu_counter_add(&mp->m_ifree, delta);
1133 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1134 ASSERT(0);
1135 percpu_counter_add(&mp->m_ifree, -delta);
1136 return -EINVAL;
1137 }
1138 return 0;
1139 }
1140
1141 /*
1142 * Deltas for the block count can vary from 1 to very large, but lock contention
1143 * only occurs on frequent small block count updates such as in the delayed
1144 * allocation path for buffered writes (page a time updates). Hence we set
1145 * a large batch count (1024) to minimise global counter updates except when
1146 * we get near to ENOSPC and we have to be very accurate with our updates.
1147 */
1148 #define XFS_FDBLOCKS_BATCH 1024
1149 int
1150 xfs_mod_fdblocks(
1151 struct xfs_mount *mp,
1152 int64_t delta,
1153 bool rsvd)
1154 {
1155 int64_t lcounter;
1156 long long res_used;
1157 s32 batch;
1158
1159 if (delta > 0) {
1160 /*
1161 * If the reserve pool is depleted, put blocks back into it
1162 * first. Most of the time the pool is full.
1163 */
1164 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1165 percpu_counter_add(&mp->m_fdblocks, delta);
1166 return 0;
1167 }
1168
1169 spin_lock(&mp->m_sb_lock);
1170 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1171
1172 if (res_used > delta) {
1173 mp->m_resblks_avail += delta;
1174 } else {
1175 delta -= res_used;
1176 mp->m_resblks_avail = mp->m_resblks;
1177 percpu_counter_add(&mp->m_fdblocks, delta);
1178 }
1179 spin_unlock(&mp->m_sb_lock);
1180 return 0;
1181 }
1182
1183 /*
1184 * Taking blocks away, need to be more accurate the closer we
1185 * are to zero.
1186 *
1187 * If the counter has a value of less than 2 * max batch size,
1188 * then make everything serialise as we are real close to
1189 * ENOSPC.
1190 */
1191 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1192 XFS_FDBLOCKS_BATCH) < 0)
1193 batch = 1;
1194 else
1195 batch = XFS_FDBLOCKS_BATCH;
1196
1197 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1198 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1199 XFS_FDBLOCKS_BATCH) >= 0) {
1200 /* we had space! */
1201 return 0;
1202 }
1203
1204 /*
1205 * lock up the sb for dipping into reserves before releasing the space
1206 * that took us to ENOSPC.
1207 */
1208 spin_lock(&mp->m_sb_lock);
1209 percpu_counter_add(&mp->m_fdblocks, -delta);
1210 if (!rsvd)
1211 goto fdblocks_enospc;
1212
1213 lcounter = (long long)mp->m_resblks_avail + delta;
1214 if (lcounter >= 0) {
1215 mp->m_resblks_avail = lcounter;
1216 spin_unlock(&mp->m_sb_lock);
1217 return 0;
1218 }
1219 printk_once(KERN_WARNING
1220 "Filesystem \"%s\": reserve blocks depleted! "
1221 "Consider increasing reserve pool size.",
1222 mp->m_fsname);
1223 fdblocks_enospc:
1224 spin_unlock(&mp->m_sb_lock);
1225 return -ENOSPC;
1226 }
1227
1228 int
1229 xfs_mod_frextents(
1230 struct xfs_mount *mp,
1231 int64_t delta)
1232 {
1233 int64_t lcounter;
1234 int ret = 0;
1235
1236 spin_lock(&mp->m_sb_lock);
1237 lcounter = mp->m_sb.sb_frextents + delta;
1238 if (lcounter < 0)
1239 ret = -ENOSPC;
1240 else
1241 mp->m_sb.sb_frextents = lcounter;
1242 spin_unlock(&mp->m_sb_lock);
1243 return ret;
1244 }
1245
1246 /*
1247 * xfs_getsb() is called to obtain the buffer for the superblock.
1248 * The buffer is returned locked and read in from disk.
1249 * The buffer should be released with a call to xfs_brelse().
1250 *
1251 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1252 * the superblock buffer if it can be locked without sleeping.
1253 * If it can't then we'll return NULL.
1254 */
1255 struct xfs_buf *
1256 xfs_getsb(
1257 struct xfs_mount *mp,
1258 int flags)
1259 {
1260 struct xfs_buf *bp = mp->m_sb_bp;
1261
1262 if (!xfs_buf_trylock(bp)) {
1263 if (flags & XBF_TRYLOCK)
1264 return NULL;
1265 xfs_buf_lock(bp);
1266 }
1267
1268 xfs_buf_hold(bp);
1269 ASSERT(bp->b_flags & XBF_DONE);
1270 return bp;
1271 }
1272
1273 /*
1274 * Used to free the superblock along various error paths.
1275 */
1276 void
1277 xfs_freesb(
1278 struct xfs_mount *mp)
1279 {
1280 struct xfs_buf *bp = mp->m_sb_bp;
1281
1282 xfs_buf_lock(bp);
1283 mp->m_sb_bp = NULL;
1284 xfs_buf_relse(bp);
1285 }
1286
1287 /*
1288 * If the underlying (data/log/rt) device is readonly, there are some
1289 * operations that cannot proceed.
1290 */
1291 int
1292 xfs_dev_is_read_only(
1293 struct xfs_mount *mp,
1294 char *message)
1295 {
1296 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1297 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1298 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1299 xfs_notice(mp, "%s required on read-only device.", message);
1300 xfs_notice(mp, "write access unavailable, cannot proceed.");
1301 return -EROFS;
1302 }
1303 return 0;
1304 }
This page took 0.070126 seconds and 5 git commands to generate.