tracing: extend sched_pi_setprio
[deliverable/linux.git] / fs / xfs / xfs_rmap_item.c
1 /*
2 * Copyright (C) 2016 Oracle. All Rights Reserved.
3 *
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it would be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_rmap_item.h"
32 #include "xfs_log.h"
33 #include "xfs_rmap.h"
34
35
36 kmem_zone_t *xfs_rui_zone;
37 kmem_zone_t *xfs_rud_zone;
38
39 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
40 {
41 return container_of(lip, struct xfs_rui_log_item, rui_item);
42 }
43
44 void
45 xfs_rui_item_free(
46 struct xfs_rui_log_item *ruip)
47 {
48 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
49 kmem_free(ruip);
50 else
51 kmem_zone_free(xfs_rui_zone, ruip);
52 }
53
54 /*
55 * This returns the number of iovecs needed to log the given rui item.
56 * We only need 1 iovec for an rui item. It just logs the rui_log_format
57 * structure.
58 */
59 static inline int
60 xfs_rui_item_sizeof(
61 struct xfs_rui_log_item *ruip)
62 {
63 return sizeof(struct xfs_rui_log_format) +
64 (ruip->rui_format.rui_nextents - 1) *
65 sizeof(struct xfs_map_extent);
66 }
67
68 STATIC void
69 xfs_rui_item_size(
70 struct xfs_log_item *lip,
71 int *nvecs,
72 int *nbytes)
73 {
74 *nvecs += 1;
75 *nbytes += xfs_rui_item_sizeof(RUI_ITEM(lip));
76 }
77
78 /*
79 * This is called to fill in the vector of log iovecs for the
80 * given rui log item. We use only 1 iovec, and we point that
81 * at the rui_log_format structure embedded in the rui item.
82 * It is at this point that we assert that all of the extent
83 * slots in the rui item have been filled.
84 */
85 STATIC void
86 xfs_rui_item_format(
87 struct xfs_log_item *lip,
88 struct xfs_log_vec *lv)
89 {
90 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
91 struct xfs_log_iovec *vecp = NULL;
92
93 ASSERT(atomic_read(&ruip->rui_next_extent) ==
94 ruip->rui_format.rui_nextents);
95
96 ruip->rui_format.rui_type = XFS_LI_RUI;
97 ruip->rui_format.rui_size = 1;
98
99 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
100 xfs_rui_item_sizeof(ruip));
101 }
102
103 /*
104 * Pinning has no meaning for an rui item, so just return.
105 */
106 STATIC void
107 xfs_rui_item_pin(
108 struct xfs_log_item *lip)
109 {
110 }
111
112 /*
113 * The unpin operation is the last place an RUI is manipulated in the log. It is
114 * either inserted in the AIL or aborted in the event of a log I/O error. In
115 * either case, the RUI transaction has been successfully committed to make it
116 * this far. Therefore, we expect whoever committed the RUI to either construct
117 * and commit the RUD or drop the RUD's reference in the event of error. Simply
118 * drop the log's RUI reference now that the log is done with it.
119 */
120 STATIC void
121 xfs_rui_item_unpin(
122 struct xfs_log_item *lip,
123 int remove)
124 {
125 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
126
127 xfs_rui_release(ruip);
128 }
129
130 /*
131 * RUI items have no locking or pushing. However, since RUIs are pulled from
132 * the AIL when their corresponding RUDs are committed to disk, their situation
133 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
134 * will eventually flush the log. This should help in getting the RUI out of
135 * the AIL.
136 */
137 STATIC uint
138 xfs_rui_item_push(
139 struct xfs_log_item *lip,
140 struct list_head *buffer_list)
141 {
142 return XFS_ITEM_PINNED;
143 }
144
145 /*
146 * The RUI has been either committed or aborted if the transaction has been
147 * cancelled. If the transaction was cancelled, an RUD isn't going to be
148 * constructed and thus we free the RUI here directly.
149 */
150 STATIC void
151 xfs_rui_item_unlock(
152 struct xfs_log_item *lip)
153 {
154 if (lip->li_flags & XFS_LI_ABORTED)
155 xfs_rui_item_free(RUI_ITEM(lip));
156 }
157
158 /*
159 * The RUI is logged only once and cannot be moved in the log, so simply return
160 * the lsn at which it's been logged.
161 */
162 STATIC xfs_lsn_t
163 xfs_rui_item_committed(
164 struct xfs_log_item *lip,
165 xfs_lsn_t lsn)
166 {
167 return lsn;
168 }
169
170 /*
171 * The RUI dependency tracking op doesn't do squat. It can't because
172 * it doesn't know where the free extent is coming from. The dependency
173 * tracking has to be handled by the "enclosing" metadata object. For
174 * example, for inodes, the inode is locked throughout the extent freeing
175 * so the dependency should be recorded there.
176 */
177 STATIC void
178 xfs_rui_item_committing(
179 struct xfs_log_item *lip,
180 xfs_lsn_t lsn)
181 {
182 }
183
184 /*
185 * This is the ops vector shared by all rui log items.
186 */
187 static const struct xfs_item_ops xfs_rui_item_ops = {
188 .iop_size = xfs_rui_item_size,
189 .iop_format = xfs_rui_item_format,
190 .iop_pin = xfs_rui_item_pin,
191 .iop_unpin = xfs_rui_item_unpin,
192 .iop_unlock = xfs_rui_item_unlock,
193 .iop_committed = xfs_rui_item_committed,
194 .iop_push = xfs_rui_item_push,
195 .iop_committing = xfs_rui_item_committing,
196 };
197
198 /*
199 * Allocate and initialize an rui item with the given number of extents.
200 */
201 struct xfs_rui_log_item *
202 xfs_rui_init(
203 struct xfs_mount *mp,
204 uint nextents)
205
206 {
207 struct xfs_rui_log_item *ruip;
208 uint size;
209
210 ASSERT(nextents > 0);
211 if (nextents > XFS_RUI_MAX_FAST_EXTENTS) {
212 size = (uint)(sizeof(struct xfs_rui_log_item) +
213 ((nextents - 1) * sizeof(struct xfs_map_extent)));
214 ruip = kmem_zalloc(size, KM_SLEEP);
215 } else {
216 ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
217 }
218
219 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
220 ruip->rui_format.rui_nextents = nextents;
221 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
222 atomic_set(&ruip->rui_next_extent, 0);
223 atomic_set(&ruip->rui_refcount, 2);
224
225 return ruip;
226 }
227
228 /*
229 * Copy an RUI format buffer from the given buf, and into the destination
230 * RUI format structure. The RUI/RUD items were designed not to need any
231 * special alignment handling.
232 */
233 int
234 xfs_rui_copy_format(
235 struct xfs_log_iovec *buf,
236 struct xfs_rui_log_format *dst_rui_fmt)
237 {
238 struct xfs_rui_log_format *src_rui_fmt;
239 uint len;
240
241 src_rui_fmt = buf->i_addr;
242 len = sizeof(struct xfs_rui_log_format) +
243 (src_rui_fmt->rui_nextents - 1) *
244 sizeof(struct xfs_map_extent);
245
246 if (buf->i_len != len)
247 return -EFSCORRUPTED;
248
249 memcpy((char *)dst_rui_fmt, (char *)src_rui_fmt, len);
250 return 0;
251 }
252
253 /*
254 * Freeing the RUI requires that we remove it from the AIL if it has already
255 * been placed there. However, the RUI may not yet have been placed in the AIL
256 * when called by xfs_rui_release() from RUD processing due to the ordering of
257 * committed vs unpin operations in bulk insert operations. Hence the reference
258 * count to ensure only the last caller frees the RUI.
259 */
260 void
261 xfs_rui_release(
262 struct xfs_rui_log_item *ruip)
263 {
264 if (atomic_dec_and_test(&ruip->rui_refcount)) {
265 xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
266 xfs_rui_item_free(ruip);
267 }
268 }
269
270 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
271 {
272 return container_of(lip, struct xfs_rud_log_item, rud_item);
273 }
274
275 STATIC void
276 xfs_rud_item_size(
277 struct xfs_log_item *lip,
278 int *nvecs,
279 int *nbytes)
280 {
281 *nvecs += 1;
282 *nbytes += sizeof(struct xfs_rud_log_format);
283 }
284
285 /*
286 * This is called to fill in the vector of log iovecs for the
287 * given rud log item. We use only 1 iovec, and we point that
288 * at the rud_log_format structure embedded in the rud item.
289 * It is at this point that we assert that all of the extent
290 * slots in the rud item have been filled.
291 */
292 STATIC void
293 xfs_rud_item_format(
294 struct xfs_log_item *lip,
295 struct xfs_log_vec *lv)
296 {
297 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
298 struct xfs_log_iovec *vecp = NULL;
299
300 rudp->rud_format.rud_type = XFS_LI_RUD;
301 rudp->rud_format.rud_size = 1;
302
303 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
304 sizeof(struct xfs_rud_log_format));
305 }
306
307 /*
308 * Pinning has no meaning for an rud item, so just return.
309 */
310 STATIC void
311 xfs_rud_item_pin(
312 struct xfs_log_item *lip)
313 {
314 }
315
316 /*
317 * Since pinning has no meaning for an rud item, unpinning does
318 * not either.
319 */
320 STATIC void
321 xfs_rud_item_unpin(
322 struct xfs_log_item *lip,
323 int remove)
324 {
325 }
326
327 /*
328 * There isn't much you can do to push on an rud item. It is simply stuck
329 * waiting for the log to be flushed to disk.
330 */
331 STATIC uint
332 xfs_rud_item_push(
333 struct xfs_log_item *lip,
334 struct list_head *buffer_list)
335 {
336 return XFS_ITEM_PINNED;
337 }
338
339 /*
340 * The RUD is either committed or aborted if the transaction is cancelled. If
341 * the transaction is cancelled, drop our reference to the RUI and free the
342 * RUD.
343 */
344 STATIC void
345 xfs_rud_item_unlock(
346 struct xfs_log_item *lip)
347 {
348 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
349
350 if (lip->li_flags & XFS_LI_ABORTED) {
351 xfs_rui_release(rudp->rud_ruip);
352 kmem_zone_free(xfs_rud_zone, rudp);
353 }
354 }
355
356 /*
357 * When the rud item is committed to disk, all we need to do is delete our
358 * reference to our partner rui item and then free ourselves. Since we're
359 * freeing ourselves we must return -1 to keep the transaction code from
360 * further referencing this item.
361 */
362 STATIC xfs_lsn_t
363 xfs_rud_item_committed(
364 struct xfs_log_item *lip,
365 xfs_lsn_t lsn)
366 {
367 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
368
369 /*
370 * Drop the RUI reference regardless of whether the RUD has been
371 * aborted. Once the RUD transaction is constructed, it is the sole
372 * responsibility of the RUD to release the RUI (even if the RUI is
373 * aborted due to log I/O error).
374 */
375 xfs_rui_release(rudp->rud_ruip);
376 kmem_zone_free(xfs_rud_zone, rudp);
377
378 return (xfs_lsn_t)-1;
379 }
380
381 /*
382 * The RUD dependency tracking op doesn't do squat. It can't because
383 * it doesn't know where the free extent is coming from. The dependency
384 * tracking has to be handled by the "enclosing" metadata object. For
385 * example, for inodes, the inode is locked throughout the extent freeing
386 * so the dependency should be recorded there.
387 */
388 STATIC void
389 xfs_rud_item_committing(
390 struct xfs_log_item *lip,
391 xfs_lsn_t lsn)
392 {
393 }
394
395 /*
396 * This is the ops vector shared by all rud log items.
397 */
398 static const struct xfs_item_ops xfs_rud_item_ops = {
399 .iop_size = xfs_rud_item_size,
400 .iop_format = xfs_rud_item_format,
401 .iop_pin = xfs_rud_item_pin,
402 .iop_unpin = xfs_rud_item_unpin,
403 .iop_unlock = xfs_rud_item_unlock,
404 .iop_committed = xfs_rud_item_committed,
405 .iop_push = xfs_rud_item_push,
406 .iop_committing = xfs_rud_item_committing,
407 };
408
409 /*
410 * Allocate and initialize an rud item with the given number of extents.
411 */
412 struct xfs_rud_log_item *
413 xfs_rud_init(
414 struct xfs_mount *mp,
415 struct xfs_rui_log_item *ruip)
416
417 {
418 struct xfs_rud_log_item *rudp;
419
420 rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
421 xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops);
422 rudp->rud_ruip = ruip;
423 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
424
425 return rudp;
426 }
427
428 /*
429 * Process an rmap update intent item that was recovered from the log.
430 * We need to update the rmapbt.
431 */
432 int
433 xfs_rui_recover(
434 struct xfs_mount *mp,
435 struct xfs_rui_log_item *ruip)
436 {
437 int i;
438 int error = 0;
439 struct xfs_map_extent *rmap;
440 xfs_fsblock_t startblock_fsb;
441 bool op_ok;
442 struct xfs_rud_log_item *rudp;
443 enum xfs_rmap_intent_type type;
444 int whichfork;
445 xfs_exntst_t state;
446 struct xfs_trans *tp;
447 struct xfs_btree_cur *rcur = NULL;
448
449 ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
450
451 /*
452 * First check the validity of the extents described by the
453 * RUI. If any are bad, then assume that all are bad and
454 * just toss the RUI.
455 */
456 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
457 rmap = &ruip->rui_format.rui_extents[i];
458 startblock_fsb = XFS_BB_TO_FSB(mp,
459 XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
460 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
461 case XFS_RMAP_EXTENT_MAP:
462 case XFS_RMAP_EXTENT_UNMAP:
463 case XFS_RMAP_EXTENT_CONVERT:
464 case XFS_RMAP_EXTENT_ALLOC:
465 case XFS_RMAP_EXTENT_FREE:
466 op_ok = true;
467 break;
468 default:
469 op_ok = false;
470 break;
471 }
472 if (!op_ok || startblock_fsb == 0 ||
473 rmap->me_len == 0 ||
474 startblock_fsb >= mp->m_sb.sb_dblocks ||
475 rmap->me_len >= mp->m_sb.sb_agblocks ||
476 (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
477 /*
478 * This will pull the RUI from the AIL and
479 * free the memory associated with it.
480 */
481 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
482 xfs_rui_release(ruip);
483 return -EIO;
484 }
485 }
486
487 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
488 if (error)
489 return error;
490 rudp = xfs_trans_get_rud(tp, ruip);
491
492 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
493 rmap = &ruip->rui_format.rui_extents[i];
494 state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
495 XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
496 whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
497 XFS_ATTR_FORK : XFS_DATA_FORK;
498 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
499 case XFS_RMAP_EXTENT_MAP:
500 type = XFS_RMAP_MAP;
501 break;
502 case XFS_RMAP_EXTENT_UNMAP:
503 type = XFS_RMAP_UNMAP;
504 break;
505 case XFS_RMAP_EXTENT_CONVERT:
506 type = XFS_RMAP_CONVERT;
507 break;
508 case XFS_RMAP_EXTENT_ALLOC:
509 type = XFS_RMAP_ALLOC;
510 break;
511 case XFS_RMAP_EXTENT_FREE:
512 type = XFS_RMAP_FREE;
513 break;
514 default:
515 error = -EFSCORRUPTED;
516 goto abort_error;
517 }
518 error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
519 rmap->me_owner, whichfork,
520 rmap->me_startoff, rmap->me_startblock,
521 rmap->me_len, state, &rcur);
522 if (error)
523 goto abort_error;
524
525 }
526
527 xfs_rmap_finish_one_cleanup(tp, rcur, error);
528 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
529 error = xfs_trans_commit(tp);
530 return error;
531
532 abort_error:
533 xfs_rmap_finish_one_cleanup(tp, rcur, error);
534 xfs_trans_cancel(tp);
535 return error;
536 }
This page took 0.059148 seconds and 5 git commands to generate.