* atof-generic.c: Some reformatting.
[deliverable/binutils-gdb.git] / gas / atof-generic.c
1 /* atof_generic.c - turn a string of digits into a Flonum
2 Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <ctype.h>
21 #include <string.h>
22
23 #include "as.h"
24
25 #ifdef __GNUC__
26 #define alloca __builtin_alloca
27 #else
28 #ifdef sparc
29 #include <alloca.h>
30 #endif
31 #endif
32
33 #ifndef FALSE
34 #define FALSE (0)
35 #endif
36 #ifndef TRUE
37 #define TRUE (1)
38 #endif
39
40 /***********************************************************************\
41 * *
42 * Given a string of decimal digits , with optional decimal *
43 * mark and optional decimal exponent (place value) of the *
44 * lowest_order decimal digit: produce a floating point *
45 * number. The number is 'generic' floating point: our *
46 * caller will encode it for a specific machine architecture. *
47 * *
48 * Assumptions *
49 * uses base (radix) 2 *
50 * this machine uses 2's complement binary integers *
51 * target flonums use " " " " *
52 * target flonums exponents fit in a long *
53 * *
54 \***********************************************************************/
55
56 /*
57
58 Syntax:
59
60 <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
61 <optional-sign> ::= '+' | '-' | {empty}
62 <decimal-number> ::= <integer>
63 | <integer> <radix-character>
64 | <integer> <radix-character> <integer>
65 | <radix-character> <integer>
66
67 <optional-exponent> ::= {empty}
68 | <exponent-character> <optional-sign> <integer>
69
70 <integer> ::= <digit> | <digit> <integer>
71 <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
72 <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
73 <radix-character> ::= {one character from "string_of_decimal_marks"}
74
75 */
76
77 int
78 atof_generic (address_of_string_pointer,
79 string_of_decimal_marks,
80 string_of_decimal_exponent_marks,
81 address_of_generic_floating_point_number)
82 /* return pointer to just AFTER number we read. */
83 char **address_of_string_pointer;
84 /* At most one per number. */
85 const char *string_of_decimal_marks;
86 const char *string_of_decimal_exponent_marks;
87 FLONUM_TYPE *address_of_generic_floating_point_number;
88 {
89 int return_value; /* 0 means OK. */
90 char *first_digit;
91 /* char *last_digit; JF unused */
92 int number_of_digits_before_decimal;
93 int number_of_digits_after_decimal;
94 long decimal_exponent;
95 int number_of_digits_available;
96 char digits_sign_char;
97
98 /*
99 * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
100 * It would be simpler to modify the string, but we don't; just to be nice
101 * to caller.
102 * We need to know how many digits we have, so we can allocate space for
103 * the digits' value.
104 */
105
106 char *p;
107 char c;
108 int seen_significant_digit;
109
110 first_digit = *address_of_string_pointer;
111 c = *first_digit;
112
113 if (c == '-' || c == '+')
114 {
115 digits_sign_char = c;
116 first_digit++;
117 }
118 else
119 digits_sign_char = '+';
120
121 if ((first_digit[0] == 'n' || first_digit[0] == 'N')
122 && (first_digit[1] == 'a' || first_digit[1] == 'A')
123 && (first_digit[2] == 'n' || first_digit[2] == 'N'))
124 {
125 address_of_generic_floating_point_number->sign = 0;
126 address_of_generic_floating_point_number->exponent = 0;
127 address_of_generic_floating_point_number->leader =
128 address_of_generic_floating_point_number->low;
129 *address_of_string_pointer = first_digit + 3;
130 return 0;
131 }
132
133 if ((first_digit[0] == 'i' || first_digit[0] == 'I')
134 && (first_digit[1] == 'n' || first_digit[1] == 'N')
135 && (first_digit[2] == 'f' || first_digit[2] == 'F'))
136 {
137 address_of_generic_floating_point_number->sign =
138 digits_sign_char == '+' ? 'P' : 'N';
139 address_of_generic_floating_point_number->exponent = 0;
140 address_of_generic_floating_point_number->leader =
141 address_of_generic_floating_point_number->low;
142
143 if ((first_digit[3] == 'i'
144 || first_digit[3] == 'I')
145 && (first_digit[4] == 'n'
146 || first_digit[4] == 'N')
147 && (first_digit[5] == 'i'
148 || first_digit[5] == 'I')
149 && (first_digit[6] == 't'
150 || first_digit[6] == 'T')
151 && (first_digit[7] == 'y'
152 || first_digit[7] == 'Y'))
153 {
154 *address_of_string_pointer = first_digit + 8;
155 }
156 else
157 {
158 *address_of_string_pointer = first_digit + 3;
159 }
160 return 0;
161 }
162
163 number_of_digits_before_decimal = 0;
164 number_of_digits_after_decimal = 0;
165 decimal_exponent = 0;
166 seen_significant_digit = 0;
167 for (p = first_digit;
168 (((c = *p) != '\0')
169 && (!c || !strchr (string_of_decimal_marks, c))
170 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
171 p++)
172 {
173 if (isdigit (c))
174 {
175 if (seen_significant_digit || c > '0')
176 {
177 ++number_of_digits_before_decimal;
178 seen_significant_digit = 1;
179 }
180 else
181 {
182 first_digit++;
183 }
184 }
185 else
186 {
187 break; /* p -> char after pre-decimal digits. */
188 }
189 } /* For each digit before decimal mark. */
190
191 #ifndef OLD_FLOAT_READS
192 /* Ignore trailing 0's after the decimal point. The original code here
193 * (ifdef'd out) does not do this, and numbers like
194 * 4.29496729600000000000e+09 (2**31)
195 * come out inexact for some reason related to length of the digit
196 * string.
197 */
198 if (c && strchr (string_of_decimal_marks, c))
199 {
200 int zeros = 0; /* Length of current string of zeros */
201
202 for (p++; (c = *p) && isdigit (c); p++)
203 {
204 if (c == '0')
205 {
206 zeros++;
207 }
208 else
209 {
210 number_of_digits_after_decimal += 1 + zeros;
211 zeros = 0;
212 }
213 }
214 }
215 #else
216 if (c && strchr (string_of_decimal_marks, c))
217 {
218 for (p++;
219 (((c = *p) != '\0')
220 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
221 p++)
222 {
223 if (isdigit (c))
224 {
225 /* This may be retracted below. */
226 number_of_digits_after_decimal++;
227
228 if ( /* seen_significant_digit || */ c > '0')
229 {
230 seen_significant_digit = TRUE;
231 }
232 }
233 else
234 {
235 if (!seen_significant_digit)
236 {
237 number_of_digits_after_decimal = 0;
238 }
239 break;
240 }
241 } /* For each digit after decimal mark. */
242 }
243
244 while (number_of_digits_after_decimal
245 && first_digit[number_of_digits_before_decimal
246 + number_of_digits_after_decimal] == '0')
247 --number_of_digits_after_decimal;
248 #endif
249
250 if (c && strchr (string_of_decimal_exponent_marks, c))
251 {
252 char digits_exponent_sign_char;
253
254 c = *++p;
255 if (c && strchr ("+-", c))
256 {
257 digits_exponent_sign_char = c;
258 c = *++p;
259 }
260 else
261 {
262 digits_exponent_sign_char = '+';
263 }
264
265 for (; (c); c = *++p)
266 {
267 if (isdigit (c))
268 {
269 decimal_exponent = decimal_exponent * 10 + c - '0';
270 /*
271 * BUG! If we overflow here, we lose!
272 */
273 }
274 else
275 {
276 break;
277 }
278 }
279
280 if (digits_exponent_sign_char == '-')
281 {
282 decimal_exponent = -decimal_exponent;
283 }
284 }
285
286 *address_of_string_pointer = p;
287
288
289
290 number_of_digits_available =
291 number_of_digits_before_decimal + number_of_digits_after_decimal;
292 return_value = 0;
293 if (number_of_digits_available == 0)
294 {
295 address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
296 address_of_generic_floating_point_number->leader
297 = -1 + address_of_generic_floating_point_number->low;
298 address_of_generic_floating_point_number->sign = digits_sign_char;
299 /* We have just concocted (+/-)0.0E0 */
300
301 }
302 else
303 {
304 int count; /* Number of useful digits left to scan. */
305
306 LITTLENUM_TYPE *digits_binary_low;
307 unsigned int precision;
308 unsigned int maximum_useful_digits;
309 unsigned int number_of_digits_to_use;
310 unsigned int more_than_enough_bits_for_digits;
311 unsigned int more_than_enough_littlenums_for_digits;
312 unsigned int size_of_digits_in_littlenums;
313 unsigned int size_of_digits_in_chars;
314 FLONUM_TYPE power_of_10_flonum;
315 FLONUM_TYPE digits_flonum;
316
317 precision = (address_of_generic_floating_point_number->high
318 - address_of_generic_floating_point_number->low
319 + 1); /* Number of destination littlenums. */
320
321 /* Includes guard bits (two littlenums worth) */
322 maximum_useful_digits = (((double) (precision - 2))
323 * ((double) (LITTLENUM_NUMBER_OF_BITS))
324 / (LOG_TO_BASE_2_OF_10))
325 + 2; /* 2 :: guard digits. */
326
327 if (number_of_digits_available > maximum_useful_digits)
328 {
329 number_of_digits_to_use = maximum_useful_digits;
330 }
331 else
332 {
333 number_of_digits_to_use = number_of_digits_available;
334 }
335
336 /* Cast these to SIGNED LONG first, otherwise, on systems with
337 LONG wider than INT (such as Alpha OSF/1), unsignedness may
338 cause unexpected results. */
339 decimal_exponent += ((long) number_of_digits_before_decimal
340 - (long) number_of_digits_to_use);
341
342 more_than_enough_bits_for_digits
343 = ((((double) number_of_digits_to_use) * LOG_TO_BASE_2_OF_10) + 1);
344
345 more_than_enough_littlenums_for_digits
346 = (more_than_enough_bits_for_digits
347 / LITTLENUM_NUMBER_OF_BITS)
348 + 2;
349
350 /* Compute (digits) part. In "12.34E56" this is the "1234" part.
351 Arithmetic is exact here. If no digits are supplied then this
352 part is a 0 valued binary integer. Allocate room to build up
353 the binary number as littlenums. We want this memory to
354 disappear when we leave this function. Assume no alignment
355 problems => (room for n objects) == n * (room for 1
356 object). */
357
358 size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
359 size_of_digits_in_chars = size_of_digits_in_littlenums
360 * sizeof (LITTLENUM_TYPE);
361
362 digits_binary_low = (LITTLENUM_TYPE *)
363 alloca (size_of_digits_in_chars);
364
365 memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
366
367 /* Digits_binary_low[] is allocated and zeroed. */
368
369 /*
370 * Parse the decimal digits as if * digits_low was in the units position.
371 * Emit a binary number into digits_binary_low[].
372 *
373 * Use a large-precision version of:
374 * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
375 */
376
377 for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
378 {
379 c = *p;
380 if (isdigit (c))
381 {
382 /*
383 * Multiply by 10. Assume can never overflow.
384 * Add this digit to digits_binary_low[].
385 */
386
387 long carry;
388 LITTLENUM_TYPE *littlenum_pointer;
389 LITTLENUM_TYPE *littlenum_limit;
390
391 littlenum_limit = digits_binary_low
392 + more_than_enough_littlenums_for_digits
393 - 1;
394
395 carry = c - '0'; /* char -> binary */
396
397 for (littlenum_pointer = digits_binary_low;
398 littlenum_pointer <= littlenum_limit;
399 littlenum_pointer++)
400 {
401 long work;
402
403 work = carry + 10 * (long) (*littlenum_pointer);
404 *littlenum_pointer = work & LITTLENUM_MASK;
405 carry = work >> LITTLENUM_NUMBER_OF_BITS;
406 }
407
408 if (carry != 0)
409 {
410 /*
411 * We have a GROSS internal error.
412 * This should never happen.
413 */
414 as_fatal ("failed sanity check.");
415 }
416 }
417 else
418 {
419 ++count; /* '.' doesn't alter digits used count. */
420 }
421 }
422
423
424 /*
425 * Digits_binary_low[] properly encodes the value of the digits.
426 * Forget about any high-order littlenums that are 0.
427 */
428 while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
429 && size_of_digits_in_littlenums >= 2)
430 size_of_digits_in_littlenums--;
431
432 digits_flonum.low = digits_binary_low;
433 digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
434 digits_flonum.leader = digits_flonum.high;
435 digits_flonum.exponent = 0;
436 /*
437 * The value of digits_flonum . sign should not be important.
438 * We have already decided the output's sign.
439 * We trust that the sign won't influence the other parts of the number!
440 * So we give it a value for these reasons:
441 * (1) courtesy to humans reading/debugging
442 * these numbers so they don't get excited about strange values
443 * (2) in future there may be more meaning attached to sign,
444 * and what was
445 * harmless noise may become disruptive, ill-conditioned (or worse)
446 * input.
447 */
448 digits_flonum.sign = '+';
449
450 {
451 /*
452 * Compute the mantssa (& exponent) of the power of 10.
453 * If sucessful, then multiply the power of 10 by the digits
454 * giving return_binary_mantissa and return_binary_exponent.
455 */
456
457 LITTLENUM_TYPE *power_binary_low;
458 int decimal_exponent_is_negative;
459 /* This refers to the "-56" in "12.34E-56". */
460 /* FALSE: decimal_exponent is positive (or 0) */
461 /* TRUE: decimal_exponent is negative */
462 FLONUM_TYPE temporary_flonum;
463 LITTLENUM_TYPE *temporary_binary_low;
464 unsigned int size_of_power_in_littlenums;
465 unsigned int size_of_power_in_chars;
466
467 size_of_power_in_littlenums = precision;
468 /* Precision has a built-in fudge factor so we get a few guard bits. */
469
470 decimal_exponent_is_negative = decimal_exponent < 0;
471 if (decimal_exponent_is_negative)
472 {
473 decimal_exponent = -decimal_exponent;
474 }
475
476 /* From now on: the decimal exponent is > 0. Its sign is seperate. */
477
478 size_of_power_in_chars = size_of_power_in_littlenums
479 * sizeof (LITTLENUM_TYPE) + 2;
480
481 power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
482 temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
483 memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
484 *power_binary_low = 1;
485 power_of_10_flonum.exponent = 0;
486 power_of_10_flonum.low = power_binary_low;
487 power_of_10_flonum.leader = power_binary_low;
488 power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
489 power_of_10_flonum.sign = '+';
490 temporary_flonum.low = temporary_binary_low;
491 temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
492 /*
493 * (power) == 1.
494 * Space for temporary_flonum allocated.
495 */
496
497 /*
498 * ...
499 *
500 * WHILE more bits
501 * DO find next bit (with place value)
502 * multiply into power mantissa
503 * OD
504 */
505 {
506 int place_number_limit;
507 /* Any 10^(2^n) whose "n" exceeds this */
508 /* value will fall off the end of */
509 /* flonum_XXXX_powers_of_ten[]. */
510 int place_number;
511 const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
512
513 place_number_limit = table_size_of_flonum_powers_of_ten;
514
515 multiplicand = (decimal_exponent_is_negative
516 ? flonum_negative_powers_of_ten
517 : flonum_positive_powers_of_ten);
518
519 for (place_number = 1;/* Place value of this bit of exponent. */
520 decimal_exponent;/* Quit when no more 1 bits in exponent. */
521 decimal_exponent >>= 1, place_number++)
522 {
523 if (decimal_exponent & 1)
524 {
525 if (place_number > place_number_limit)
526 {
527 /* The decimal exponent has a magnitude so great
528 that our tables can't help us fragment it.
529 Although this routine is in error because it
530 can't imagine a number that big, signal an
531 error as if it is the user's fault for
532 presenting such a big number. */
533 return_value = ERROR_EXPONENT_OVERFLOW;
534 /* quit out of loop gracefully */
535 decimal_exponent = 0;
536 }
537 else
538 {
539 #ifdef TRACE
540 printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
541 place_number);
542
543 flonum_print (&power_of_10_flonum);
544 (void) putchar ('\n');
545 #endif
546 flonum_multip (multiplicand + place_number,
547 &power_of_10_flonum, &temporary_flonum);
548 flonum_copy (&temporary_flonum, &power_of_10_flonum);
549 } /* If this bit of decimal_exponent was computable.*/
550 } /* If this bit of decimal_exponent was set. */
551 } /* For each bit of binary representation of exponent */
552 #ifdef TRACE
553 printf (" after computing power_of_10_flonum: ");
554 flonum_print (&power_of_10_flonum);
555 (void) putchar ('\n');
556 #endif
557 }
558
559 }
560
561 /*
562 * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
563 * It may be the number 1, in which case we don't NEED to multiply.
564 *
565 * Multiply (decimal digits) by power_of_10_flonum.
566 */
567
568 flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
569 /* Assert sign of the number we made is '+'. */
570 address_of_generic_floating_point_number->sign = digits_sign_char;
571
572 }
573 return return_value;
574 }
575
576 /* end of atof_generic.c */
This page took 0.044612 seconds and 5 git commands to generate.