gdb: remove unused fetch_inferior_event and inferior_event_handler parameters
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22 #include "as.h"
23 #include <limits.h>
24 #include <stdarg.h>
25 #include "bfd_stdint.h"
26 #define NO_RELOC 0
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "obstack.h"
30
31 #ifdef OBJ_ELF
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
34 #endif
35
36 #include "dwarf2dbg.h"
37
38 /* Types of processor to assemble for. */
39 #ifndef CPU_DEFAULT
40 #define CPU_DEFAULT AARCH64_ARCH_V8
41 #endif
42
43 #define streq(a, b) (strcmp (a, b) == 0)
44
45 #define END_OF_INSN '\0'
46
47 static aarch64_feature_set cpu_variant;
48
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
54
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58 /* Currently active instruction sequence. */
59 static aarch64_instr_sequence *insn_sequence = NULL;
60
61 #ifdef OBJ_ELF
62 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63 static symbolS *GOT_symbol;
64
65 /* Which ABI to use. */
66 enum aarch64_abi_type
67 {
68 AARCH64_ABI_NONE = 0,
69 AARCH64_ABI_LP64 = 1,
70 AARCH64_ABI_ILP32 = 2
71 };
72
73 #ifndef DEFAULT_ARCH
74 #define DEFAULT_ARCH "aarch64"
75 #endif
76
77 /* DEFAULT_ARCH is initialized in gas/configure.tgt. */
78 static const char *default_arch = DEFAULT_ARCH;
79
80 /* AArch64 ABI for the output file. */
81 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
82
83 /* When non-zero, program to a 32-bit model, in which the C data types
84 int, long and all pointer types are 32-bit objects (ILP32); or to a
85 64-bit model, in which the C int type is 32-bits but the C long type
86 and all pointer types are 64-bit objects (LP64). */
87 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
88 #endif
89
90 enum vector_el_type
91 {
92 NT_invtype = -1,
93 NT_b,
94 NT_h,
95 NT_s,
96 NT_d,
97 NT_q,
98 NT_zero,
99 NT_merge
100 };
101
102 /* Bits for DEFINED field in vector_type_el. */
103 #define NTA_HASTYPE 1
104 #define NTA_HASINDEX 2
105 #define NTA_HASVARWIDTH 4
106
107 struct vector_type_el
108 {
109 enum vector_el_type type;
110 unsigned char defined;
111 unsigned width;
112 int64_t index;
113 };
114
115 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
116
117 struct reloc
118 {
119 bfd_reloc_code_real_type type;
120 expressionS exp;
121 int pc_rel;
122 enum aarch64_opnd opnd;
123 uint32_t flags;
124 unsigned need_libopcodes_p : 1;
125 };
126
127 struct aarch64_instruction
128 {
129 /* libopcodes structure for instruction intermediate representation. */
130 aarch64_inst base;
131 /* Record assembly errors found during the parsing. */
132 struct
133 {
134 enum aarch64_operand_error_kind kind;
135 const char *error;
136 } parsing_error;
137 /* The condition that appears in the assembly line. */
138 int cond;
139 /* Relocation information (including the GAS internal fixup). */
140 struct reloc reloc;
141 /* Need to generate an immediate in the literal pool. */
142 unsigned gen_lit_pool : 1;
143 };
144
145 typedef struct aarch64_instruction aarch64_instruction;
146
147 static aarch64_instruction inst;
148
149 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
150 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
151
152 #ifdef OBJ_ELF
153 # define now_instr_sequence seg_info \
154 (now_seg)->tc_segment_info_data.insn_sequence
155 #else
156 static struct aarch64_instr_sequence now_instr_sequence;
157 #endif
158
159 /* Diagnostics inline function utilities.
160
161 These are lightweight utilities which should only be called by parse_operands
162 and other parsers. GAS processes each assembly line by parsing it against
163 instruction template(s), in the case of multiple templates (for the same
164 mnemonic name), those templates are tried one by one until one succeeds or
165 all fail. An assembly line may fail a few templates before being
166 successfully parsed; an error saved here in most cases is not a user error
167 but an error indicating the current template is not the right template.
168 Therefore it is very important that errors can be saved at a low cost during
169 the parsing; we don't want to slow down the whole parsing by recording
170 non-user errors in detail.
171
172 Remember that the objective is to help GAS pick up the most appropriate
173 error message in the case of multiple templates, e.g. FMOV which has 8
174 templates. */
175
176 static inline void
177 clear_error (void)
178 {
179 inst.parsing_error.kind = AARCH64_OPDE_NIL;
180 inst.parsing_error.error = NULL;
181 }
182
183 static inline bfd_boolean
184 error_p (void)
185 {
186 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
187 }
188
189 static inline const char *
190 get_error_message (void)
191 {
192 return inst.parsing_error.error;
193 }
194
195 static inline enum aarch64_operand_error_kind
196 get_error_kind (void)
197 {
198 return inst.parsing_error.kind;
199 }
200
201 static inline void
202 set_error (enum aarch64_operand_error_kind kind, const char *error)
203 {
204 inst.parsing_error.kind = kind;
205 inst.parsing_error.error = error;
206 }
207
208 static inline void
209 set_recoverable_error (const char *error)
210 {
211 set_error (AARCH64_OPDE_RECOVERABLE, error);
212 }
213
214 /* Use the DESC field of the corresponding aarch64_operand entry to compose
215 the error message. */
216 static inline void
217 set_default_error (void)
218 {
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
220 }
221
222 static inline void
223 set_syntax_error (const char *error)
224 {
225 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
226 }
227
228 static inline void
229 set_first_syntax_error (const char *error)
230 {
231 if (! error_p ())
232 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
233 }
234
235 static inline void
236 set_fatal_syntax_error (const char *error)
237 {
238 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
239 }
240 \f
241 /* Return value for certain parsers when the parsing fails; those parsers
242 return the information of the parsed result, e.g. register number, on
243 success. */
244 #define PARSE_FAIL -1
245
246 /* This is an invalid condition code that means no conditional field is
247 present. */
248 #define COND_ALWAYS 0x10
249
250 typedef struct
251 {
252 const char *template;
253 unsigned long value;
254 } asm_barrier_opt;
255
256 typedef struct
257 {
258 const char *template;
259 uint32_t value;
260 } asm_nzcv;
261
262 struct reloc_entry
263 {
264 char *name;
265 bfd_reloc_code_real_type reloc;
266 };
267
268 /* Macros to define the register types and masks for the purpose
269 of parsing. */
270
271 #undef AARCH64_REG_TYPES
272 #define AARCH64_REG_TYPES \
273 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
274 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
275 BASIC_REG_TYPE(SP_32) /* wsp */ \
276 BASIC_REG_TYPE(SP_64) /* sp */ \
277 BASIC_REG_TYPE(Z_32) /* wzr */ \
278 BASIC_REG_TYPE(Z_64) /* xzr */ \
279 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
280 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
281 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
282 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
283 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
284 BASIC_REG_TYPE(VN) /* v[0-31] */ \
285 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
286 BASIC_REG_TYPE(PN) /* p[0-15] */ \
287 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
288 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
289 /* Typecheck: same, plus SVE registers. */ \
290 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
291 | REG_TYPE(ZN)) \
292 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
293 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Typecheck: same, plus SVE registers. */ \
296 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
298 | REG_TYPE(ZN)) \
299 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
300 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
301 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
302 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
303 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
305 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
306 /* Typecheck: any [BHSDQ]P FP. */ \
307 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
308 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
309 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
310 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
311 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
312 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
313 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
314 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
315 be used for SVE instructions, since Zn and Pn are valid symbols \
316 in other contexts. */ \
317 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
318 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
319 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
320 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
321 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
322 | REG_TYPE(ZN) | REG_TYPE(PN)) \
323 /* Any integer register; used for error messages only. */ \
324 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
325 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
326 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
327 /* Pseudo type to mark the end of the enumerator sequence. */ \
328 BASIC_REG_TYPE(MAX)
329
330 #undef BASIC_REG_TYPE
331 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
332 #undef MULTI_REG_TYPE
333 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
334
335 /* Register type enumerators. */
336 typedef enum aarch64_reg_type_
337 {
338 /* A list of REG_TYPE_*. */
339 AARCH64_REG_TYPES
340 } aarch64_reg_type;
341
342 #undef BASIC_REG_TYPE
343 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
344 #undef REG_TYPE
345 #define REG_TYPE(T) (1 << REG_TYPE_##T)
346 #undef MULTI_REG_TYPE
347 #define MULTI_REG_TYPE(T,V) V,
348
349 /* Structure for a hash table entry for a register. */
350 typedef struct
351 {
352 const char *name;
353 unsigned char number;
354 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
355 unsigned char builtin;
356 } reg_entry;
357
358 /* Values indexed by aarch64_reg_type to assist the type checking. */
359 static const unsigned reg_type_masks[] =
360 {
361 AARCH64_REG_TYPES
362 };
363
364 #undef BASIC_REG_TYPE
365 #undef REG_TYPE
366 #undef MULTI_REG_TYPE
367 #undef AARCH64_REG_TYPES
368
369 /* Diagnostics used when we don't get a register of the expected type.
370 Note: this has to synchronized with aarch64_reg_type definitions
371 above. */
372 static const char *
373 get_reg_expected_msg (aarch64_reg_type reg_type)
374 {
375 const char *msg;
376
377 switch (reg_type)
378 {
379 case REG_TYPE_R_32:
380 msg = N_("integer 32-bit register expected");
381 break;
382 case REG_TYPE_R_64:
383 msg = N_("integer 64-bit register expected");
384 break;
385 case REG_TYPE_R_N:
386 msg = N_("integer register expected");
387 break;
388 case REG_TYPE_R64_SP:
389 msg = N_("64-bit integer or SP register expected");
390 break;
391 case REG_TYPE_SVE_BASE:
392 msg = N_("base register expected");
393 break;
394 case REG_TYPE_R_Z:
395 msg = N_("integer or zero register expected");
396 break;
397 case REG_TYPE_SVE_OFFSET:
398 msg = N_("offset register expected");
399 break;
400 case REG_TYPE_R_SP:
401 msg = N_("integer or SP register expected");
402 break;
403 case REG_TYPE_R_Z_SP:
404 msg = N_("integer, zero or SP register expected");
405 break;
406 case REG_TYPE_FP_B:
407 msg = N_("8-bit SIMD scalar register expected");
408 break;
409 case REG_TYPE_FP_H:
410 msg = N_("16-bit SIMD scalar or floating-point half precision "
411 "register expected");
412 break;
413 case REG_TYPE_FP_S:
414 msg = N_("32-bit SIMD scalar or floating-point single precision "
415 "register expected");
416 break;
417 case REG_TYPE_FP_D:
418 msg = N_("64-bit SIMD scalar or floating-point double precision "
419 "register expected");
420 break;
421 case REG_TYPE_FP_Q:
422 msg = N_("128-bit SIMD scalar or floating-point quad precision "
423 "register expected");
424 break;
425 case REG_TYPE_R_Z_BHSDQ_V:
426 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
427 msg = N_("register expected");
428 break;
429 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
430 msg = N_("SIMD scalar or floating-point register expected");
431 break;
432 case REG_TYPE_VN: /* any V reg */
433 msg = N_("vector register expected");
434 break;
435 case REG_TYPE_ZN:
436 msg = N_("SVE vector register expected");
437 break;
438 case REG_TYPE_PN:
439 msg = N_("SVE predicate register expected");
440 break;
441 default:
442 as_fatal (_("invalid register type %d"), reg_type);
443 }
444 return msg;
445 }
446
447 /* Some well known registers that we refer to directly elsewhere. */
448 #define REG_SP 31
449 #define REG_ZR 31
450
451 /* Instructions take 4 bytes in the object file. */
452 #define INSN_SIZE 4
453
454 static struct hash_control *aarch64_ops_hsh;
455 static struct hash_control *aarch64_cond_hsh;
456 static struct hash_control *aarch64_shift_hsh;
457 static struct hash_control *aarch64_sys_regs_hsh;
458 static struct hash_control *aarch64_pstatefield_hsh;
459 static struct hash_control *aarch64_sys_regs_ic_hsh;
460 static struct hash_control *aarch64_sys_regs_dc_hsh;
461 static struct hash_control *aarch64_sys_regs_at_hsh;
462 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
463 static struct hash_control *aarch64_sys_regs_sr_hsh;
464 static struct hash_control *aarch64_reg_hsh;
465 static struct hash_control *aarch64_barrier_opt_hsh;
466 static struct hash_control *aarch64_nzcv_hsh;
467 static struct hash_control *aarch64_pldop_hsh;
468 static struct hash_control *aarch64_hint_opt_hsh;
469
470 /* Stuff needed to resolve the label ambiguity
471 As:
472 ...
473 label: <insn>
474 may differ from:
475 ...
476 label:
477 <insn> */
478
479 static symbolS *last_label_seen;
480
481 /* Literal pool structure. Held on a per-section
482 and per-sub-section basis. */
483
484 #define MAX_LITERAL_POOL_SIZE 1024
485 typedef struct literal_expression
486 {
487 expressionS exp;
488 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
489 LITTLENUM_TYPE * bignum;
490 } literal_expression;
491
492 typedef struct literal_pool
493 {
494 literal_expression literals[MAX_LITERAL_POOL_SIZE];
495 unsigned int next_free_entry;
496 unsigned int id;
497 symbolS *symbol;
498 segT section;
499 subsegT sub_section;
500 int size;
501 struct literal_pool *next;
502 } literal_pool;
503
504 /* Pointer to a linked list of literal pools. */
505 static literal_pool *list_of_pools = NULL;
506 \f
507 /* Pure syntax. */
508
509 /* This array holds the chars that always start a comment. If the
510 pre-processor is disabled, these aren't very useful. */
511 const char comment_chars[] = "";
512
513 /* This array holds the chars that only start a comment at the beginning of
514 a line. If the line seems to have the form '# 123 filename'
515 .line and .file directives will appear in the pre-processed output. */
516 /* Note that input_file.c hand checks for '#' at the beginning of the
517 first line of the input file. This is because the compiler outputs
518 #NO_APP at the beginning of its output. */
519 /* Also note that comments like this one will always work. */
520 const char line_comment_chars[] = "#";
521
522 const char line_separator_chars[] = ";";
523
524 /* Chars that can be used to separate mant
525 from exp in floating point numbers. */
526 const char EXP_CHARS[] = "eE";
527
528 /* Chars that mean this number is a floating point constant. */
529 /* As in 0f12.456 */
530 /* or 0d1.2345e12 */
531
532 const char FLT_CHARS[] = "rRsSfFdDxXeEpPhH";
533
534 /* Prefix character that indicates the start of an immediate value. */
535 #define is_immediate_prefix(C) ((C) == '#')
536
537 /* Separator character handling. */
538
539 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
540
541 static inline bfd_boolean
542 skip_past_char (char **str, char c)
543 {
544 if (**str == c)
545 {
546 (*str)++;
547 return TRUE;
548 }
549 else
550 return FALSE;
551 }
552
553 #define skip_past_comma(str) skip_past_char (str, ',')
554
555 /* Arithmetic expressions (possibly involving symbols). */
556
557 static bfd_boolean in_my_get_expression_p = FALSE;
558
559 /* Third argument to my_get_expression. */
560 #define GE_NO_PREFIX 0
561 #define GE_OPT_PREFIX 1
562
563 /* Return TRUE if the string pointed by *STR is successfully parsed
564 as an valid expression; *EP will be filled with the information of
565 such an expression. Otherwise return FALSE. */
566
567 static bfd_boolean
568 my_get_expression (expressionS * ep, char **str, int prefix_mode,
569 int reject_absent)
570 {
571 char *save_in;
572 segT seg;
573 int prefix_present_p = 0;
574
575 switch (prefix_mode)
576 {
577 case GE_NO_PREFIX:
578 break;
579 case GE_OPT_PREFIX:
580 if (is_immediate_prefix (**str))
581 {
582 (*str)++;
583 prefix_present_p = 1;
584 }
585 break;
586 default:
587 abort ();
588 }
589
590 memset (ep, 0, sizeof (expressionS));
591
592 save_in = input_line_pointer;
593 input_line_pointer = *str;
594 in_my_get_expression_p = TRUE;
595 seg = expression (ep);
596 in_my_get_expression_p = FALSE;
597
598 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
599 {
600 /* We found a bad expression in md_operand(). */
601 *str = input_line_pointer;
602 input_line_pointer = save_in;
603 if (prefix_present_p && ! error_p ())
604 set_fatal_syntax_error (_("bad expression"));
605 else
606 set_first_syntax_error (_("bad expression"));
607 return FALSE;
608 }
609
610 #ifdef OBJ_AOUT
611 if (seg != absolute_section
612 && seg != text_section
613 && seg != data_section
614 && seg != bss_section && seg != undefined_section)
615 {
616 set_syntax_error (_("bad segment"));
617 *str = input_line_pointer;
618 input_line_pointer = save_in;
619 return FALSE;
620 }
621 #else
622 (void) seg;
623 #endif
624
625 *str = input_line_pointer;
626 input_line_pointer = save_in;
627 return TRUE;
628 }
629
630 /* Turn a string in input_line_pointer into a floating point constant
631 of type TYPE, and store the appropriate bytes in *LITP. The number
632 of LITTLENUMS emitted is stored in *SIZEP. An error message is
633 returned, or NULL on OK. */
634
635 const char *
636 md_atof (int type, char *litP, int *sizeP)
637 {
638 /* If this is a bfloat16 type, then parse it slightly differently -
639 as it does not follow the IEEE standard exactly. */
640 if (type == 'b')
641 {
642 char * t;
643 LITTLENUM_TYPE words[MAX_LITTLENUMS];
644 FLONUM_TYPE generic_float;
645
646 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
647
648 if (t)
649 input_line_pointer = t;
650 else
651 return _("invalid floating point number");
652
653 switch (generic_float.sign)
654 {
655 /* Is +Inf. */
656 case 'P':
657 words[0] = 0x7f80;
658 break;
659
660 /* Is -Inf. */
661 case 'N':
662 words[0] = 0xff80;
663 break;
664
665 /* Is NaN. */
666 /* bfloat16 has two types of NaN - quiet and signalling.
667 Quiet NaN has bit[6] == 1 && faction != 0, whereas
668 signalling Nan's have bit[0] == 0 && fraction != 0.
669 Chose this specific encoding as it is the same form
670 as used by other IEEE 754 encodings in GAS. */
671 case 0:
672 words[0] = 0x7fff;
673 break;
674
675 default:
676 break;
677 }
678
679 *sizeP = 2;
680
681 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
682
683 return NULL;
684 }
685
686 return ieee_md_atof (type, litP, sizeP, target_big_endian);
687 }
688
689 /* We handle all bad expressions here, so that we can report the faulty
690 instruction in the error message. */
691 void
692 md_operand (expressionS * exp)
693 {
694 if (in_my_get_expression_p)
695 exp->X_op = O_illegal;
696 }
697
698 /* Immediate values. */
699
700 /* Errors may be set multiple times during parsing or bit encoding
701 (particularly in the Neon bits), but usually the earliest error which is set
702 will be the most meaningful. Avoid overwriting it with later (cascading)
703 errors by calling this function. */
704
705 static void
706 first_error (const char *error)
707 {
708 if (! error_p ())
709 set_syntax_error (error);
710 }
711
712 /* Similar to first_error, but this function accepts formatted error
713 message. */
714 static void
715 first_error_fmt (const char *format, ...)
716 {
717 va_list args;
718 enum
719 { size = 100 };
720 /* N.B. this single buffer will not cause error messages for different
721 instructions to pollute each other; this is because at the end of
722 processing of each assembly line, error message if any will be
723 collected by as_bad. */
724 static char buffer[size];
725
726 if (! error_p ())
727 {
728 int ret ATTRIBUTE_UNUSED;
729 va_start (args, format);
730 ret = vsnprintf (buffer, size, format, args);
731 know (ret <= size - 1 && ret >= 0);
732 va_end (args);
733 set_syntax_error (buffer);
734 }
735 }
736
737 /* Register parsing. */
738
739 /* Generic register parser which is called by other specialized
740 register parsers.
741 CCP points to what should be the beginning of a register name.
742 If it is indeed a valid register name, advance CCP over it and
743 return the reg_entry structure; otherwise return NULL.
744 It does not issue diagnostics. */
745
746 static reg_entry *
747 parse_reg (char **ccp)
748 {
749 char *start = *ccp;
750 char *p;
751 reg_entry *reg;
752
753 #ifdef REGISTER_PREFIX
754 if (*start != REGISTER_PREFIX)
755 return NULL;
756 start++;
757 #endif
758
759 p = start;
760 if (!ISALPHA (*p) || !is_name_beginner (*p))
761 return NULL;
762
763 do
764 p++;
765 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
766
767 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
768
769 if (!reg)
770 return NULL;
771
772 *ccp = p;
773 return reg;
774 }
775
776 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
777 return FALSE. */
778 static bfd_boolean
779 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
780 {
781 return (reg_type_masks[type] & (1 << reg->type)) != 0;
782 }
783
784 /* Try to parse a base or offset register. Allow SVE base and offset
785 registers if REG_TYPE includes SVE registers. Return the register
786 entry on success, setting *QUALIFIER to the register qualifier.
787 Return null otherwise.
788
789 Note that this function does not issue any diagnostics. */
790
791 static const reg_entry *
792 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
793 aarch64_opnd_qualifier_t *qualifier)
794 {
795 char *str = *ccp;
796 const reg_entry *reg = parse_reg (&str);
797
798 if (reg == NULL)
799 return NULL;
800
801 switch (reg->type)
802 {
803 case REG_TYPE_R_32:
804 case REG_TYPE_SP_32:
805 case REG_TYPE_Z_32:
806 *qualifier = AARCH64_OPND_QLF_W;
807 break;
808
809 case REG_TYPE_R_64:
810 case REG_TYPE_SP_64:
811 case REG_TYPE_Z_64:
812 *qualifier = AARCH64_OPND_QLF_X;
813 break;
814
815 case REG_TYPE_ZN:
816 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
817 || str[0] != '.')
818 return NULL;
819 switch (TOLOWER (str[1]))
820 {
821 case 's':
822 *qualifier = AARCH64_OPND_QLF_S_S;
823 break;
824 case 'd':
825 *qualifier = AARCH64_OPND_QLF_S_D;
826 break;
827 default:
828 return NULL;
829 }
830 str += 2;
831 break;
832
833 default:
834 return NULL;
835 }
836
837 *ccp = str;
838
839 return reg;
840 }
841
842 /* Try to parse a base or offset register. Return the register entry
843 on success, setting *QUALIFIER to the register qualifier. Return null
844 otherwise.
845
846 Note that this function does not issue any diagnostics. */
847
848 static const reg_entry *
849 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
850 {
851 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
852 }
853
854 /* Parse the qualifier of a vector register or vector element of type
855 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
856 succeeds; otherwise return FALSE.
857
858 Accept only one occurrence of:
859 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
860 b h s d q */
861 static bfd_boolean
862 parse_vector_type_for_operand (aarch64_reg_type reg_type,
863 struct vector_type_el *parsed_type, char **str)
864 {
865 char *ptr = *str;
866 unsigned width;
867 unsigned element_size;
868 enum vector_el_type type;
869
870 /* skip '.' */
871 gas_assert (*ptr == '.');
872 ptr++;
873
874 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
875 {
876 width = 0;
877 goto elt_size;
878 }
879 width = strtoul (ptr, &ptr, 10);
880 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
881 {
882 first_error_fmt (_("bad size %d in vector width specifier"), width);
883 return FALSE;
884 }
885
886 elt_size:
887 switch (TOLOWER (*ptr))
888 {
889 case 'b':
890 type = NT_b;
891 element_size = 8;
892 break;
893 case 'h':
894 type = NT_h;
895 element_size = 16;
896 break;
897 case 's':
898 type = NT_s;
899 element_size = 32;
900 break;
901 case 'd':
902 type = NT_d;
903 element_size = 64;
904 break;
905 case 'q':
906 if (reg_type == REG_TYPE_ZN || width == 1)
907 {
908 type = NT_q;
909 element_size = 128;
910 break;
911 }
912 /* fall through. */
913 default:
914 if (*ptr != '\0')
915 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
916 else
917 first_error (_("missing element size"));
918 return FALSE;
919 }
920 if (width != 0 && width * element_size != 64
921 && width * element_size != 128
922 && !(width == 2 && element_size == 16)
923 && !(width == 4 && element_size == 8))
924 {
925 first_error_fmt (_
926 ("invalid element size %d and vector size combination %c"),
927 width, *ptr);
928 return FALSE;
929 }
930 ptr++;
931
932 parsed_type->type = type;
933 parsed_type->width = width;
934
935 *str = ptr;
936
937 return TRUE;
938 }
939
940 /* *STR contains an SVE zero/merge predication suffix. Parse it into
941 *PARSED_TYPE and point *STR at the end of the suffix. */
942
943 static bfd_boolean
944 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
945 {
946 char *ptr = *str;
947
948 /* Skip '/'. */
949 gas_assert (*ptr == '/');
950 ptr++;
951 switch (TOLOWER (*ptr))
952 {
953 case 'z':
954 parsed_type->type = NT_zero;
955 break;
956 case 'm':
957 parsed_type->type = NT_merge;
958 break;
959 default:
960 if (*ptr != '\0' && *ptr != ',')
961 first_error_fmt (_("unexpected character `%c' in predication type"),
962 *ptr);
963 else
964 first_error (_("missing predication type"));
965 return FALSE;
966 }
967 parsed_type->width = 0;
968 *str = ptr + 1;
969 return TRUE;
970 }
971
972 /* Parse a register of the type TYPE.
973
974 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
975 name or the parsed register is not of TYPE.
976
977 Otherwise return the register number, and optionally fill in the actual
978 type of the register in *RTYPE when multiple alternatives were given, and
979 return the register shape and element index information in *TYPEINFO.
980
981 IN_REG_LIST should be set with TRUE if the caller is parsing a register
982 list. */
983
984 static int
985 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
986 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
987 {
988 char *str = *ccp;
989 const reg_entry *reg = parse_reg (&str);
990 struct vector_type_el atype;
991 struct vector_type_el parsetype;
992 bfd_boolean is_typed_vecreg = FALSE;
993
994 atype.defined = 0;
995 atype.type = NT_invtype;
996 atype.width = -1;
997 atype.index = 0;
998
999 if (reg == NULL)
1000 {
1001 if (typeinfo)
1002 *typeinfo = atype;
1003 set_default_error ();
1004 return PARSE_FAIL;
1005 }
1006
1007 if (! aarch64_check_reg_type (reg, type))
1008 {
1009 DEBUG_TRACE ("reg type check failed");
1010 set_default_error ();
1011 return PARSE_FAIL;
1012 }
1013 type = reg->type;
1014
1015 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
1016 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
1017 {
1018 if (*str == '.')
1019 {
1020 if (!parse_vector_type_for_operand (type, &parsetype, &str))
1021 return PARSE_FAIL;
1022 }
1023 else
1024 {
1025 if (!parse_predication_for_operand (&parsetype, &str))
1026 return PARSE_FAIL;
1027 }
1028
1029 /* Register if of the form Vn.[bhsdq]. */
1030 is_typed_vecreg = TRUE;
1031
1032 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
1033 {
1034 /* The width is always variable; we don't allow an integer width
1035 to be specified. */
1036 gas_assert (parsetype.width == 0);
1037 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
1038 }
1039 else if (parsetype.width == 0)
1040 /* Expect index. In the new scheme we cannot have
1041 Vn.[bhsdq] represent a scalar. Therefore any
1042 Vn.[bhsdq] should have an index following it.
1043 Except in reglists of course. */
1044 atype.defined |= NTA_HASINDEX;
1045 else
1046 atype.defined |= NTA_HASTYPE;
1047
1048 atype.type = parsetype.type;
1049 atype.width = parsetype.width;
1050 }
1051
1052 if (skip_past_char (&str, '['))
1053 {
1054 expressionS exp;
1055
1056 /* Reject Sn[index] syntax. */
1057 if (!is_typed_vecreg)
1058 {
1059 first_error (_("this type of register can't be indexed"));
1060 return PARSE_FAIL;
1061 }
1062
1063 if (in_reg_list)
1064 {
1065 first_error (_("index not allowed inside register list"));
1066 return PARSE_FAIL;
1067 }
1068
1069 atype.defined |= NTA_HASINDEX;
1070
1071 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1072
1073 if (exp.X_op != O_constant)
1074 {
1075 first_error (_("constant expression required"));
1076 return PARSE_FAIL;
1077 }
1078
1079 if (! skip_past_char (&str, ']'))
1080 return PARSE_FAIL;
1081
1082 atype.index = exp.X_add_number;
1083 }
1084 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1085 {
1086 /* Indexed vector register expected. */
1087 first_error (_("indexed vector register expected"));
1088 return PARSE_FAIL;
1089 }
1090
1091 /* A vector reg Vn should be typed or indexed. */
1092 if (type == REG_TYPE_VN && atype.defined == 0)
1093 {
1094 first_error (_("invalid use of vector register"));
1095 }
1096
1097 if (typeinfo)
1098 *typeinfo = atype;
1099
1100 if (rtype)
1101 *rtype = type;
1102
1103 *ccp = str;
1104
1105 return reg->number;
1106 }
1107
1108 /* Parse register.
1109
1110 Return the register number on success; return PARSE_FAIL otherwise.
1111
1112 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1113 the register (e.g. NEON double or quad reg when either has been requested).
1114
1115 If this is a NEON vector register with additional type information, fill
1116 in the struct pointed to by VECTYPE (if non-NULL).
1117
1118 This parser does not handle register list. */
1119
1120 static int
1121 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1122 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1123 {
1124 struct vector_type_el atype;
1125 char *str = *ccp;
1126 int reg = parse_typed_reg (&str, type, rtype, &atype,
1127 /*in_reg_list= */ FALSE);
1128
1129 if (reg == PARSE_FAIL)
1130 return PARSE_FAIL;
1131
1132 if (vectype)
1133 *vectype = atype;
1134
1135 *ccp = str;
1136
1137 return reg;
1138 }
1139
1140 static inline bfd_boolean
1141 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1142 {
1143 return
1144 e1.type == e2.type
1145 && e1.defined == e2.defined
1146 && e1.width == e2.width && e1.index == e2.index;
1147 }
1148
1149 /* This function parses a list of vector registers of type TYPE.
1150 On success, it returns the parsed register list information in the
1151 following encoded format:
1152
1153 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1154 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1155
1156 The information of the register shape and/or index is returned in
1157 *VECTYPE.
1158
1159 It returns PARSE_FAIL if the register list is invalid.
1160
1161 The list contains one to four registers.
1162 Each register can be one of:
1163 <Vt>.<T>[<index>]
1164 <Vt>.<T>
1165 All <T> should be identical.
1166 All <index> should be identical.
1167 There are restrictions on <Vt> numbers which are checked later
1168 (by reg_list_valid_p). */
1169
1170 static int
1171 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1172 struct vector_type_el *vectype)
1173 {
1174 char *str = *ccp;
1175 int nb_regs;
1176 struct vector_type_el typeinfo, typeinfo_first;
1177 int val, val_range;
1178 int in_range;
1179 int ret_val;
1180 int i;
1181 bfd_boolean error = FALSE;
1182 bfd_boolean expect_index = FALSE;
1183
1184 if (*str != '{')
1185 {
1186 set_syntax_error (_("expecting {"));
1187 return PARSE_FAIL;
1188 }
1189 str++;
1190
1191 nb_regs = 0;
1192 typeinfo_first.defined = 0;
1193 typeinfo_first.type = NT_invtype;
1194 typeinfo_first.width = -1;
1195 typeinfo_first.index = 0;
1196 ret_val = 0;
1197 val = -1;
1198 val_range = -1;
1199 in_range = 0;
1200 do
1201 {
1202 if (in_range)
1203 {
1204 str++; /* skip over '-' */
1205 val_range = val;
1206 }
1207 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1208 /*in_reg_list= */ TRUE);
1209 if (val == PARSE_FAIL)
1210 {
1211 set_first_syntax_error (_("invalid vector register in list"));
1212 error = TRUE;
1213 continue;
1214 }
1215 /* reject [bhsd]n */
1216 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1217 {
1218 set_first_syntax_error (_("invalid scalar register in list"));
1219 error = TRUE;
1220 continue;
1221 }
1222
1223 if (typeinfo.defined & NTA_HASINDEX)
1224 expect_index = TRUE;
1225
1226 if (in_range)
1227 {
1228 if (val < val_range)
1229 {
1230 set_first_syntax_error
1231 (_("invalid range in vector register list"));
1232 error = TRUE;
1233 }
1234 val_range++;
1235 }
1236 else
1237 {
1238 val_range = val;
1239 if (nb_regs == 0)
1240 typeinfo_first = typeinfo;
1241 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1242 {
1243 set_first_syntax_error
1244 (_("type mismatch in vector register list"));
1245 error = TRUE;
1246 }
1247 }
1248 if (! error)
1249 for (i = val_range; i <= val; i++)
1250 {
1251 ret_val |= i << (5 * nb_regs);
1252 nb_regs++;
1253 }
1254 in_range = 0;
1255 }
1256 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1257
1258 skip_whitespace (str);
1259 if (*str != '}')
1260 {
1261 set_first_syntax_error (_("end of vector register list not found"));
1262 error = TRUE;
1263 }
1264 str++;
1265
1266 skip_whitespace (str);
1267
1268 if (expect_index)
1269 {
1270 if (skip_past_char (&str, '['))
1271 {
1272 expressionS exp;
1273
1274 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1275 if (exp.X_op != O_constant)
1276 {
1277 set_first_syntax_error (_("constant expression required."));
1278 error = TRUE;
1279 }
1280 if (! skip_past_char (&str, ']'))
1281 error = TRUE;
1282 else
1283 typeinfo_first.index = exp.X_add_number;
1284 }
1285 else
1286 {
1287 set_first_syntax_error (_("expected index"));
1288 error = TRUE;
1289 }
1290 }
1291
1292 if (nb_regs > 4)
1293 {
1294 set_first_syntax_error (_("too many registers in vector register list"));
1295 error = TRUE;
1296 }
1297 else if (nb_regs == 0)
1298 {
1299 set_first_syntax_error (_("empty vector register list"));
1300 error = TRUE;
1301 }
1302
1303 *ccp = str;
1304 if (! error)
1305 *vectype = typeinfo_first;
1306
1307 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1308 }
1309
1310 /* Directives: register aliases. */
1311
1312 static reg_entry *
1313 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1314 {
1315 reg_entry *new;
1316 const char *name;
1317
1318 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1319 {
1320 if (new->builtin)
1321 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1322 str);
1323
1324 /* Only warn about a redefinition if it's not defined as the
1325 same register. */
1326 else if (new->number != number || new->type != type)
1327 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1328
1329 return NULL;
1330 }
1331
1332 name = xstrdup (str);
1333 new = XNEW (reg_entry);
1334
1335 new->name = name;
1336 new->number = number;
1337 new->type = type;
1338 new->builtin = FALSE;
1339
1340 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1341 abort ();
1342
1343 return new;
1344 }
1345
1346 /* Look for the .req directive. This is of the form:
1347
1348 new_register_name .req existing_register_name
1349
1350 If we find one, or if it looks sufficiently like one that we want to
1351 handle any error here, return TRUE. Otherwise return FALSE. */
1352
1353 static bfd_boolean
1354 create_register_alias (char *newname, char *p)
1355 {
1356 const reg_entry *old;
1357 char *oldname, *nbuf;
1358 size_t nlen;
1359
1360 /* The input scrubber ensures that whitespace after the mnemonic is
1361 collapsed to single spaces. */
1362 oldname = p;
1363 if (strncmp (oldname, " .req ", 6) != 0)
1364 return FALSE;
1365
1366 oldname += 6;
1367 if (*oldname == '\0')
1368 return FALSE;
1369
1370 old = hash_find (aarch64_reg_hsh, oldname);
1371 if (!old)
1372 {
1373 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1374 return TRUE;
1375 }
1376
1377 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1378 the desired alias name, and p points to its end. If not, then
1379 the desired alias name is in the global original_case_string. */
1380 #ifdef TC_CASE_SENSITIVE
1381 nlen = p - newname;
1382 #else
1383 newname = original_case_string;
1384 nlen = strlen (newname);
1385 #endif
1386
1387 nbuf = xmemdup0 (newname, nlen);
1388
1389 /* Create aliases under the new name as stated; an all-lowercase
1390 version of the new name; and an all-uppercase version of the new
1391 name. */
1392 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1393 {
1394 for (p = nbuf; *p; p++)
1395 *p = TOUPPER (*p);
1396
1397 if (strncmp (nbuf, newname, nlen))
1398 {
1399 /* If this attempt to create an additional alias fails, do not bother
1400 trying to create the all-lower case alias. We will fail and issue
1401 a second, duplicate error message. This situation arises when the
1402 programmer does something like:
1403 foo .req r0
1404 Foo .req r1
1405 The second .req creates the "Foo" alias but then fails to create
1406 the artificial FOO alias because it has already been created by the
1407 first .req. */
1408 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1409 {
1410 free (nbuf);
1411 return TRUE;
1412 }
1413 }
1414
1415 for (p = nbuf; *p; p++)
1416 *p = TOLOWER (*p);
1417
1418 if (strncmp (nbuf, newname, nlen))
1419 insert_reg_alias (nbuf, old->number, old->type);
1420 }
1421
1422 free (nbuf);
1423 return TRUE;
1424 }
1425
1426 /* Should never be called, as .req goes between the alias and the
1427 register name, not at the beginning of the line. */
1428 static void
1429 s_req (int a ATTRIBUTE_UNUSED)
1430 {
1431 as_bad (_("invalid syntax for .req directive"));
1432 }
1433
1434 /* The .unreq directive deletes an alias which was previously defined
1435 by .req. For example:
1436
1437 my_alias .req r11
1438 .unreq my_alias */
1439
1440 static void
1441 s_unreq (int a ATTRIBUTE_UNUSED)
1442 {
1443 char *name;
1444 char saved_char;
1445
1446 name = input_line_pointer;
1447
1448 while (*input_line_pointer != 0
1449 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1450 ++input_line_pointer;
1451
1452 saved_char = *input_line_pointer;
1453 *input_line_pointer = 0;
1454
1455 if (!*name)
1456 as_bad (_("invalid syntax for .unreq directive"));
1457 else
1458 {
1459 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1460
1461 if (!reg)
1462 as_bad (_("unknown register alias '%s'"), name);
1463 else if (reg->builtin)
1464 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1465 name);
1466 else
1467 {
1468 char *p;
1469 char *nbuf;
1470
1471 hash_delete (aarch64_reg_hsh, name, FALSE);
1472 free ((char *) reg->name);
1473 free (reg);
1474
1475 /* Also locate the all upper case and all lower case versions.
1476 Do not complain if we cannot find one or the other as it
1477 was probably deleted above. */
1478
1479 nbuf = strdup (name);
1480 for (p = nbuf; *p; p++)
1481 *p = TOUPPER (*p);
1482 reg = hash_find (aarch64_reg_hsh, nbuf);
1483 if (reg)
1484 {
1485 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1486 free ((char *) reg->name);
1487 free (reg);
1488 }
1489
1490 for (p = nbuf; *p; p++)
1491 *p = TOLOWER (*p);
1492 reg = hash_find (aarch64_reg_hsh, nbuf);
1493 if (reg)
1494 {
1495 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1496 free ((char *) reg->name);
1497 free (reg);
1498 }
1499
1500 free (nbuf);
1501 }
1502 }
1503
1504 *input_line_pointer = saved_char;
1505 demand_empty_rest_of_line ();
1506 }
1507
1508 /* Directives: Instruction set selection. */
1509
1510 #ifdef OBJ_ELF
1511 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1512 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1513 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1514 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1515
1516 /* Create a new mapping symbol for the transition to STATE. */
1517
1518 static void
1519 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1520 {
1521 symbolS *symbolP;
1522 const char *symname;
1523 int type;
1524
1525 switch (state)
1526 {
1527 case MAP_DATA:
1528 symname = "$d";
1529 type = BSF_NO_FLAGS;
1530 break;
1531 case MAP_INSN:
1532 symname = "$x";
1533 type = BSF_NO_FLAGS;
1534 break;
1535 default:
1536 abort ();
1537 }
1538
1539 symbolP = symbol_new (symname, now_seg, value, frag);
1540 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1541
1542 /* Save the mapping symbols for future reference. Also check that
1543 we do not place two mapping symbols at the same offset within a
1544 frag. We'll handle overlap between frags in
1545 check_mapping_symbols.
1546
1547 If .fill or other data filling directive generates zero sized data,
1548 the mapping symbol for the following code will have the same value
1549 as the one generated for the data filling directive. In this case,
1550 we replace the old symbol with the new one at the same address. */
1551 if (value == 0)
1552 {
1553 if (frag->tc_frag_data.first_map != NULL)
1554 {
1555 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1556 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1557 &symbol_lastP);
1558 }
1559 frag->tc_frag_data.first_map = symbolP;
1560 }
1561 if (frag->tc_frag_data.last_map != NULL)
1562 {
1563 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1564 S_GET_VALUE (symbolP));
1565 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1566 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1567 &symbol_lastP);
1568 }
1569 frag->tc_frag_data.last_map = symbolP;
1570 }
1571
1572 /* We must sometimes convert a region marked as code to data during
1573 code alignment, if an odd number of bytes have to be padded. The
1574 code mapping symbol is pushed to an aligned address. */
1575
1576 static void
1577 insert_data_mapping_symbol (enum mstate state,
1578 valueT value, fragS * frag, offsetT bytes)
1579 {
1580 /* If there was already a mapping symbol, remove it. */
1581 if (frag->tc_frag_data.last_map != NULL
1582 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1583 frag->fr_address + value)
1584 {
1585 symbolS *symp = frag->tc_frag_data.last_map;
1586
1587 if (value == 0)
1588 {
1589 know (frag->tc_frag_data.first_map == symp);
1590 frag->tc_frag_data.first_map = NULL;
1591 }
1592 frag->tc_frag_data.last_map = NULL;
1593 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1594 }
1595
1596 make_mapping_symbol (MAP_DATA, value, frag);
1597 make_mapping_symbol (state, value + bytes, frag);
1598 }
1599
1600 static void mapping_state_2 (enum mstate state, int max_chars);
1601
1602 /* Set the mapping state to STATE. Only call this when about to
1603 emit some STATE bytes to the file. */
1604
1605 void
1606 mapping_state (enum mstate state)
1607 {
1608 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1609
1610 if (state == MAP_INSN)
1611 /* AArch64 instructions require 4-byte alignment. When emitting
1612 instructions into any section, record the appropriate section
1613 alignment. */
1614 record_alignment (now_seg, 2);
1615
1616 if (mapstate == state)
1617 /* The mapping symbol has already been emitted.
1618 There is nothing else to do. */
1619 return;
1620
1621 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1622 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1623 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1624 evaluated later in the next else. */
1625 return;
1626 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1627 {
1628 /* Only add the symbol if the offset is > 0:
1629 if we're at the first frag, check it's size > 0;
1630 if we're not at the first frag, then for sure
1631 the offset is > 0. */
1632 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1633 const int add_symbol = (frag_now != frag_first)
1634 || (frag_now_fix () > 0);
1635
1636 if (add_symbol)
1637 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1638 }
1639 #undef TRANSITION
1640
1641 mapping_state_2 (state, 0);
1642 }
1643
1644 /* Same as mapping_state, but MAX_CHARS bytes have already been
1645 allocated. Put the mapping symbol that far back. */
1646
1647 static void
1648 mapping_state_2 (enum mstate state, int max_chars)
1649 {
1650 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1651
1652 if (!SEG_NORMAL (now_seg))
1653 return;
1654
1655 if (mapstate == state)
1656 /* The mapping symbol has already been emitted.
1657 There is nothing else to do. */
1658 return;
1659
1660 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1661 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1662 }
1663 #else
1664 #define mapping_state(x) /* nothing */
1665 #define mapping_state_2(x, y) /* nothing */
1666 #endif
1667
1668 /* Directives: sectioning and alignment. */
1669
1670 static void
1671 s_bss (int ignore ATTRIBUTE_UNUSED)
1672 {
1673 /* We don't support putting frags in the BSS segment, we fake it by
1674 marking in_bss, then looking at s_skip for clues. */
1675 subseg_set (bss_section, 0);
1676 demand_empty_rest_of_line ();
1677 mapping_state (MAP_DATA);
1678 }
1679
1680 static void
1681 s_even (int ignore ATTRIBUTE_UNUSED)
1682 {
1683 /* Never make frag if expect extra pass. */
1684 if (!need_pass_2)
1685 frag_align (1, 0, 0);
1686
1687 record_alignment (now_seg, 1);
1688
1689 demand_empty_rest_of_line ();
1690 }
1691
1692 /* Directives: Literal pools. */
1693
1694 static literal_pool *
1695 find_literal_pool (int size)
1696 {
1697 literal_pool *pool;
1698
1699 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1700 {
1701 if (pool->section == now_seg
1702 && pool->sub_section == now_subseg && pool->size == size)
1703 break;
1704 }
1705
1706 return pool;
1707 }
1708
1709 static literal_pool *
1710 find_or_make_literal_pool (int size)
1711 {
1712 /* Next literal pool ID number. */
1713 static unsigned int latest_pool_num = 1;
1714 literal_pool *pool;
1715
1716 pool = find_literal_pool (size);
1717
1718 if (pool == NULL)
1719 {
1720 /* Create a new pool. */
1721 pool = XNEW (literal_pool);
1722 if (!pool)
1723 return NULL;
1724
1725 /* Currently we always put the literal pool in the current text
1726 section. If we were generating "small" model code where we
1727 knew that all code and initialised data was within 1MB then
1728 we could output literals to mergeable, read-only data
1729 sections. */
1730
1731 pool->next_free_entry = 0;
1732 pool->section = now_seg;
1733 pool->sub_section = now_subseg;
1734 pool->size = size;
1735 pool->next = list_of_pools;
1736 pool->symbol = NULL;
1737
1738 /* Add it to the list. */
1739 list_of_pools = pool;
1740 }
1741
1742 /* New pools, and emptied pools, will have a NULL symbol. */
1743 if (pool->symbol == NULL)
1744 {
1745 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1746 (valueT) 0, &zero_address_frag);
1747 pool->id = latest_pool_num++;
1748 }
1749
1750 /* Done. */
1751 return pool;
1752 }
1753
1754 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1755 Return TRUE on success, otherwise return FALSE. */
1756 static bfd_boolean
1757 add_to_lit_pool (expressionS *exp, int size)
1758 {
1759 literal_pool *pool;
1760 unsigned int entry;
1761
1762 pool = find_or_make_literal_pool (size);
1763
1764 /* Check if this literal value is already in the pool. */
1765 for (entry = 0; entry < pool->next_free_entry; entry++)
1766 {
1767 expressionS * litexp = & pool->literals[entry].exp;
1768
1769 if ((litexp->X_op == exp->X_op)
1770 && (exp->X_op == O_constant)
1771 && (litexp->X_add_number == exp->X_add_number)
1772 && (litexp->X_unsigned == exp->X_unsigned))
1773 break;
1774
1775 if ((litexp->X_op == exp->X_op)
1776 && (exp->X_op == O_symbol)
1777 && (litexp->X_add_number == exp->X_add_number)
1778 && (litexp->X_add_symbol == exp->X_add_symbol)
1779 && (litexp->X_op_symbol == exp->X_op_symbol))
1780 break;
1781 }
1782
1783 /* Do we need to create a new entry? */
1784 if (entry == pool->next_free_entry)
1785 {
1786 if (entry >= MAX_LITERAL_POOL_SIZE)
1787 {
1788 set_syntax_error (_("literal pool overflow"));
1789 return FALSE;
1790 }
1791
1792 pool->literals[entry].exp = *exp;
1793 pool->next_free_entry += 1;
1794 if (exp->X_op == O_big)
1795 {
1796 /* PR 16688: Bignums are held in a single global array. We must
1797 copy and preserve that value now, before it is overwritten. */
1798 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1799 exp->X_add_number);
1800 memcpy (pool->literals[entry].bignum, generic_bignum,
1801 CHARS_PER_LITTLENUM * exp->X_add_number);
1802 }
1803 else
1804 pool->literals[entry].bignum = NULL;
1805 }
1806
1807 exp->X_op = O_symbol;
1808 exp->X_add_number = ((int) entry) * size;
1809 exp->X_add_symbol = pool->symbol;
1810
1811 return TRUE;
1812 }
1813
1814 /* Can't use symbol_new here, so have to create a symbol and then at
1815 a later date assign it a value. That's what these functions do. */
1816
1817 static void
1818 symbol_locate (symbolS * symbolP,
1819 const char *name,/* It is copied, the caller can modify. */
1820 segT segment, /* Segment identifier (SEG_<something>). */
1821 valueT valu, /* Symbol value. */
1822 fragS * frag) /* Associated fragment. */
1823 {
1824 size_t name_length;
1825 char *preserved_copy_of_name;
1826
1827 name_length = strlen (name) + 1; /* +1 for \0. */
1828 obstack_grow (&notes, name, name_length);
1829 preserved_copy_of_name = obstack_finish (&notes);
1830
1831 #ifdef tc_canonicalize_symbol_name
1832 preserved_copy_of_name =
1833 tc_canonicalize_symbol_name (preserved_copy_of_name);
1834 #endif
1835
1836 S_SET_NAME (symbolP, preserved_copy_of_name);
1837
1838 S_SET_SEGMENT (symbolP, segment);
1839 S_SET_VALUE (symbolP, valu);
1840 symbol_clear_list_pointers (symbolP);
1841
1842 symbol_set_frag (symbolP, frag);
1843
1844 /* Link to end of symbol chain. */
1845 {
1846 extern int symbol_table_frozen;
1847
1848 if (symbol_table_frozen)
1849 abort ();
1850 }
1851
1852 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1853
1854 obj_symbol_new_hook (symbolP);
1855
1856 #ifdef tc_symbol_new_hook
1857 tc_symbol_new_hook (symbolP);
1858 #endif
1859
1860 #ifdef DEBUG_SYMS
1861 verify_symbol_chain (symbol_rootP, symbol_lastP);
1862 #endif /* DEBUG_SYMS */
1863 }
1864
1865
1866 static void
1867 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1868 {
1869 unsigned int entry;
1870 literal_pool *pool;
1871 char sym_name[20];
1872 int align;
1873
1874 for (align = 2; align <= 4; align++)
1875 {
1876 int size = 1 << align;
1877
1878 pool = find_literal_pool (size);
1879 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1880 continue;
1881
1882 /* Align pool as you have word accesses.
1883 Only make a frag if we have to. */
1884 if (!need_pass_2)
1885 frag_align (align, 0, 0);
1886
1887 mapping_state (MAP_DATA);
1888
1889 record_alignment (now_seg, align);
1890
1891 sprintf (sym_name, "$$lit_\002%x", pool->id);
1892
1893 symbol_locate (pool->symbol, sym_name, now_seg,
1894 (valueT) frag_now_fix (), frag_now);
1895 symbol_table_insert (pool->symbol);
1896
1897 for (entry = 0; entry < pool->next_free_entry; entry++)
1898 {
1899 expressionS * exp = & pool->literals[entry].exp;
1900
1901 if (exp->X_op == O_big)
1902 {
1903 /* PR 16688: Restore the global bignum value. */
1904 gas_assert (pool->literals[entry].bignum != NULL);
1905 memcpy (generic_bignum, pool->literals[entry].bignum,
1906 CHARS_PER_LITTLENUM * exp->X_add_number);
1907 }
1908
1909 /* First output the expression in the instruction to the pool. */
1910 emit_expr (exp, size); /* .word|.xword */
1911
1912 if (exp->X_op == O_big)
1913 {
1914 free (pool->literals[entry].bignum);
1915 pool->literals[entry].bignum = NULL;
1916 }
1917 }
1918
1919 /* Mark the pool as empty. */
1920 pool->next_free_entry = 0;
1921 pool->symbol = NULL;
1922 }
1923 }
1924
1925 #ifdef OBJ_ELF
1926 /* Forward declarations for functions below, in the MD interface
1927 section. */
1928 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1929 static struct reloc_table_entry * find_reloc_table_entry (char **);
1930
1931 /* Directives: Data. */
1932 /* N.B. the support for relocation suffix in this directive needs to be
1933 implemented properly. */
1934
1935 static void
1936 s_aarch64_elf_cons (int nbytes)
1937 {
1938 expressionS exp;
1939
1940 #ifdef md_flush_pending_output
1941 md_flush_pending_output ();
1942 #endif
1943
1944 if (is_it_end_of_statement ())
1945 {
1946 demand_empty_rest_of_line ();
1947 return;
1948 }
1949
1950 #ifdef md_cons_align
1951 md_cons_align (nbytes);
1952 #endif
1953
1954 mapping_state (MAP_DATA);
1955 do
1956 {
1957 struct reloc_table_entry *reloc;
1958
1959 expression (&exp);
1960
1961 if (exp.X_op != O_symbol)
1962 emit_expr (&exp, (unsigned int) nbytes);
1963 else
1964 {
1965 skip_past_char (&input_line_pointer, '#');
1966 if (skip_past_char (&input_line_pointer, ':'))
1967 {
1968 reloc = find_reloc_table_entry (&input_line_pointer);
1969 if (reloc == NULL)
1970 as_bad (_("unrecognized relocation suffix"));
1971 else
1972 as_bad (_("unimplemented relocation suffix"));
1973 ignore_rest_of_line ();
1974 return;
1975 }
1976 else
1977 emit_expr (&exp, (unsigned int) nbytes);
1978 }
1979 }
1980 while (*input_line_pointer++ == ',');
1981
1982 /* Put terminator back into stream. */
1983 input_line_pointer--;
1984 demand_empty_rest_of_line ();
1985 }
1986
1987 /* Mark symbol that it follows a variant PCS convention. */
1988
1989 static void
1990 s_variant_pcs (int ignored ATTRIBUTE_UNUSED)
1991 {
1992 char *name;
1993 char c;
1994 symbolS *sym;
1995 asymbol *bfdsym;
1996 elf_symbol_type *elfsym;
1997
1998 c = get_symbol_name (&name);
1999 if (!*name)
2000 as_bad (_("Missing symbol name in directive"));
2001 sym = symbol_find_or_make (name);
2002 restore_line_pointer (c);
2003 demand_empty_rest_of_line ();
2004 bfdsym = symbol_get_bfdsym (sym);
2005 elfsym = elf_symbol_from (bfd_asymbol_bfd (bfdsym), bfdsym);
2006 gas_assert (elfsym);
2007 elfsym->internal_elf_sym.st_other |= STO_AARCH64_VARIANT_PCS;
2008 }
2009 #endif /* OBJ_ELF */
2010
2011 /* Output a 32-bit word, but mark as an instruction. */
2012
2013 static void
2014 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
2015 {
2016 expressionS exp;
2017
2018 #ifdef md_flush_pending_output
2019 md_flush_pending_output ();
2020 #endif
2021
2022 if (is_it_end_of_statement ())
2023 {
2024 demand_empty_rest_of_line ();
2025 return;
2026 }
2027
2028 /* Sections are assumed to start aligned. In executable section, there is no
2029 MAP_DATA symbol pending. So we only align the address during
2030 MAP_DATA --> MAP_INSN transition.
2031 For other sections, this is not guaranteed. */
2032 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2033 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
2034 frag_align_code (2, 0);
2035
2036 #ifdef OBJ_ELF
2037 mapping_state (MAP_INSN);
2038 #endif
2039
2040 do
2041 {
2042 expression (&exp);
2043 if (exp.X_op != O_constant)
2044 {
2045 as_bad (_("constant expression required"));
2046 ignore_rest_of_line ();
2047 return;
2048 }
2049
2050 if (target_big_endian)
2051 {
2052 unsigned int val = exp.X_add_number;
2053 exp.X_add_number = SWAP_32 (val);
2054 }
2055 emit_expr (&exp, 4);
2056 }
2057 while (*input_line_pointer++ == ',');
2058
2059 /* Put terminator back into stream. */
2060 input_line_pointer--;
2061 demand_empty_rest_of_line ();
2062 }
2063
2064 static void
2065 s_aarch64_cfi_b_key_frame (int ignored ATTRIBUTE_UNUSED)
2066 {
2067 demand_empty_rest_of_line ();
2068 struct fde_entry *fde = frchain_now->frch_cfi_data->cur_fde_data;
2069 fde->pauth_key = AARCH64_PAUTH_KEY_B;
2070 }
2071
2072 #ifdef OBJ_ELF
2073 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
2074
2075 static void
2076 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
2077 {
2078 expressionS exp;
2079
2080 expression (&exp);
2081 frag_grow (4);
2082 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2083 BFD_RELOC_AARCH64_TLSDESC_ADD);
2084
2085 demand_empty_rest_of_line ();
2086 }
2087
2088 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2089
2090 static void
2091 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2092 {
2093 expressionS exp;
2094
2095 /* Since we're just labelling the code, there's no need to define a
2096 mapping symbol. */
2097 expression (&exp);
2098 /* Make sure there is enough room in this frag for the following
2099 blr. This trick only works if the blr follows immediately after
2100 the .tlsdesc directive. */
2101 frag_grow (4);
2102 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2103 BFD_RELOC_AARCH64_TLSDESC_CALL);
2104
2105 demand_empty_rest_of_line ();
2106 }
2107
2108 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2109
2110 static void
2111 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2112 {
2113 expressionS exp;
2114
2115 expression (&exp);
2116 frag_grow (4);
2117 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2118 BFD_RELOC_AARCH64_TLSDESC_LDR);
2119
2120 demand_empty_rest_of_line ();
2121 }
2122 #endif /* OBJ_ELF */
2123
2124 static void s_aarch64_arch (int);
2125 static void s_aarch64_cpu (int);
2126 static void s_aarch64_arch_extension (int);
2127
2128 /* This table describes all the machine specific pseudo-ops the assembler
2129 has to support. The fields are:
2130 pseudo-op name without dot
2131 function to call to execute this pseudo-op
2132 Integer arg to pass to the function. */
2133
2134 const pseudo_typeS md_pseudo_table[] = {
2135 /* Never called because '.req' does not start a line. */
2136 {"req", s_req, 0},
2137 {"unreq", s_unreq, 0},
2138 {"bss", s_bss, 0},
2139 {"even", s_even, 0},
2140 {"ltorg", s_ltorg, 0},
2141 {"pool", s_ltorg, 0},
2142 {"cpu", s_aarch64_cpu, 0},
2143 {"arch", s_aarch64_arch, 0},
2144 {"arch_extension", s_aarch64_arch_extension, 0},
2145 {"inst", s_aarch64_inst, 0},
2146 {"cfi_b_key_frame", s_aarch64_cfi_b_key_frame, 0},
2147 #ifdef OBJ_ELF
2148 {"tlsdescadd", s_tlsdescadd, 0},
2149 {"tlsdesccall", s_tlsdesccall, 0},
2150 {"tlsdescldr", s_tlsdescldr, 0},
2151 {"word", s_aarch64_elf_cons, 4},
2152 {"long", s_aarch64_elf_cons, 4},
2153 {"xword", s_aarch64_elf_cons, 8},
2154 {"dword", s_aarch64_elf_cons, 8},
2155 {"variant_pcs", s_variant_pcs, 0},
2156 #endif
2157 {"float16", float_cons, 'h'},
2158 {"bfloat16", float_cons, 'b'},
2159 {0, 0, 0}
2160 };
2161 \f
2162
2163 /* Check whether STR points to a register name followed by a comma or the
2164 end of line; REG_TYPE indicates which register types are checked
2165 against. Return TRUE if STR is such a register name; otherwise return
2166 FALSE. The function does not intend to produce any diagnostics, but since
2167 the register parser aarch64_reg_parse, which is called by this function,
2168 does produce diagnostics, we call clear_error to clear any diagnostics
2169 that may be generated by aarch64_reg_parse.
2170 Also, the function returns FALSE directly if there is any user error
2171 present at the function entry. This prevents the existing diagnostics
2172 state from being spoiled.
2173 The function currently serves parse_constant_immediate and
2174 parse_big_immediate only. */
2175 static bfd_boolean
2176 reg_name_p (char *str, aarch64_reg_type reg_type)
2177 {
2178 int reg;
2179
2180 /* Prevent the diagnostics state from being spoiled. */
2181 if (error_p ())
2182 return FALSE;
2183
2184 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2185
2186 /* Clear the parsing error that may be set by the reg parser. */
2187 clear_error ();
2188
2189 if (reg == PARSE_FAIL)
2190 return FALSE;
2191
2192 skip_whitespace (str);
2193 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2194 return TRUE;
2195
2196 return FALSE;
2197 }
2198
2199 /* Parser functions used exclusively in instruction operands. */
2200
2201 /* Parse an immediate expression which may not be constant.
2202
2203 To prevent the expression parser from pushing a register name
2204 into the symbol table as an undefined symbol, firstly a check is
2205 done to find out whether STR is a register of type REG_TYPE followed
2206 by a comma or the end of line. Return FALSE if STR is such a string. */
2207
2208 static bfd_boolean
2209 parse_immediate_expression (char **str, expressionS *exp,
2210 aarch64_reg_type reg_type)
2211 {
2212 if (reg_name_p (*str, reg_type))
2213 {
2214 set_recoverable_error (_("immediate operand required"));
2215 return FALSE;
2216 }
2217
2218 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2219
2220 if (exp->X_op == O_absent)
2221 {
2222 set_fatal_syntax_error (_("missing immediate expression"));
2223 return FALSE;
2224 }
2225
2226 return TRUE;
2227 }
2228
2229 /* Constant immediate-value read function for use in insn parsing.
2230 STR points to the beginning of the immediate (with the optional
2231 leading #); *VAL receives the value. REG_TYPE says which register
2232 names should be treated as registers rather than as symbolic immediates.
2233
2234 Return TRUE on success; otherwise return FALSE. */
2235
2236 static bfd_boolean
2237 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2238 {
2239 expressionS exp;
2240
2241 if (! parse_immediate_expression (str, &exp, reg_type))
2242 return FALSE;
2243
2244 if (exp.X_op != O_constant)
2245 {
2246 set_syntax_error (_("constant expression required"));
2247 return FALSE;
2248 }
2249
2250 *val = exp.X_add_number;
2251 return TRUE;
2252 }
2253
2254 static uint32_t
2255 encode_imm_float_bits (uint32_t imm)
2256 {
2257 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2258 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2259 }
2260
2261 /* Return TRUE if the single-precision floating-point value encoded in IMM
2262 can be expressed in the AArch64 8-bit signed floating-point format with
2263 3-bit exponent and normalized 4 bits of precision; in other words, the
2264 floating-point value must be expressable as
2265 (+/-) n / 16 * power (2, r)
2266 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2267
2268 static bfd_boolean
2269 aarch64_imm_float_p (uint32_t imm)
2270 {
2271 /* If a single-precision floating-point value has the following bit
2272 pattern, it can be expressed in the AArch64 8-bit floating-point
2273 format:
2274
2275 3 32222222 2221111111111
2276 1 09876543 21098765432109876543210
2277 n Eeeeeexx xxxx0000000000000000000
2278
2279 where n, e and each x are either 0 or 1 independently, with
2280 E == ~ e. */
2281
2282 uint32_t pattern;
2283
2284 /* Prepare the pattern for 'Eeeeee'. */
2285 if (((imm >> 30) & 0x1) == 0)
2286 pattern = 0x3e000000;
2287 else
2288 pattern = 0x40000000;
2289
2290 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2291 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2292 }
2293
2294 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2295 as an IEEE float without any loss of precision. Store the value in
2296 *FPWORD if so. */
2297
2298 static bfd_boolean
2299 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2300 {
2301 /* If a double-precision floating-point value has the following bit
2302 pattern, it can be expressed in a float:
2303
2304 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2305 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2306 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2307
2308 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2309 if Eeee_eeee != 1111_1111
2310
2311 where n, e, s and S are either 0 or 1 independently and where ~ is the
2312 inverse of E. */
2313
2314 uint32_t pattern;
2315 uint32_t high32 = imm >> 32;
2316 uint32_t low32 = imm;
2317
2318 /* Lower 29 bits need to be 0s. */
2319 if ((imm & 0x1fffffff) != 0)
2320 return FALSE;
2321
2322 /* Prepare the pattern for 'Eeeeeeeee'. */
2323 if (((high32 >> 30) & 0x1) == 0)
2324 pattern = 0x38000000;
2325 else
2326 pattern = 0x40000000;
2327
2328 /* Check E~~~. */
2329 if ((high32 & 0x78000000) != pattern)
2330 return FALSE;
2331
2332 /* Check Eeee_eeee != 1111_1111. */
2333 if ((high32 & 0x7ff00000) == 0x47f00000)
2334 return FALSE;
2335
2336 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2337 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2338 | (low32 >> 29)); /* 3 S bits. */
2339 return TRUE;
2340 }
2341
2342 /* Return true if we should treat OPERAND as a double-precision
2343 floating-point operand rather than a single-precision one. */
2344 static bfd_boolean
2345 double_precision_operand_p (const aarch64_opnd_info *operand)
2346 {
2347 /* Check for unsuffixed SVE registers, which are allowed
2348 for LDR and STR but not in instructions that require an
2349 immediate. We get better error messages if we arbitrarily
2350 pick one size, parse the immediate normally, and then
2351 report the match failure in the normal way. */
2352 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2353 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2354 }
2355
2356 /* Parse a floating-point immediate. Return TRUE on success and return the
2357 value in *IMMED in the format of IEEE754 single-precision encoding.
2358 *CCP points to the start of the string; DP_P is TRUE when the immediate
2359 is expected to be in double-precision (N.B. this only matters when
2360 hexadecimal representation is involved). REG_TYPE says which register
2361 names should be treated as registers rather than as symbolic immediates.
2362
2363 This routine accepts any IEEE float; it is up to the callers to reject
2364 invalid ones. */
2365
2366 static bfd_boolean
2367 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2368 aarch64_reg_type reg_type)
2369 {
2370 char *str = *ccp;
2371 char *fpnum;
2372 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2373 int64_t val = 0;
2374 unsigned fpword = 0;
2375 bfd_boolean hex_p = FALSE;
2376
2377 skip_past_char (&str, '#');
2378
2379 fpnum = str;
2380 skip_whitespace (fpnum);
2381
2382 if (strncmp (fpnum, "0x", 2) == 0)
2383 {
2384 /* Support the hexadecimal representation of the IEEE754 encoding.
2385 Double-precision is expected when DP_P is TRUE, otherwise the
2386 representation should be in single-precision. */
2387 if (! parse_constant_immediate (&str, &val, reg_type))
2388 goto invalid_fp;
2389
2390 if (dp_p)
2391 {
2392 if (!can_convert_double_to_float (val, &fpword))
2393 goto invalid_fp;
2394 }
2395 else if ((uint64_t) val > 0xffffffff)
2396 goto invalid_fp;
2397 else
2398 fpword = val;
2399
2400 hex_p = TRUE;
2401 }
2402 else if (reg_name_p (str, reg_type))
2403 {
2404 set_recoverable_error (_("immediate operand required"));
2405 return FALSE;
2406 }
2407
2408 if (! hex_p)
2409 {
2410 int i;
2411
2412 if ((str = atof_ieee (str, 's', words)) == NULL)
2413 goto invalid_fp;
2414
2415 /* Our FP word must be 32 bits (single-precision FP). */
2416 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2417 {
2418 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2419 fpword |= words[i];
2420 }
2421 }
2422
2423 *immed = fpword;
2424 *ccp = str;
2425 return TRUE;
2426
2427 invalid_fp:
2428 set_fatal_syntax_error (_("invalid floating-point constant"));
2429 return FALSE;
2430 }
2431
2432 /* Less-generic immediate-value read function with the possibility of loading
2433 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2434 instructions.
2435
2436 To prevent the expression parser from pushing a register name into the
2437 symbol table as an undefined symbol, a check is firstly done to find
2438 out whether STR is a register of type REG_TYPE followed by a comma or
2439 the end of line. Return FALSE if STR is such a register. */
2440
2441 static bfd_boolean
2442 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2443 {
2444 char *ptr = *str;
2445
2446 if (reg_name_p (ptr, reg_type))
2447 {
2448 set_syntax_error (_("immediate operand required"));
2449 return FALSE;
2450 }
2451
2452 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2453
2454 if (inst.reloc.exp.X_op == O_constant)
2455 *imm = inst.reloc.exp.X_add_number;
2456
2457 *str = ptr;
2458
2459 return TRUE;
2460 }
2461
2462 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2463 if NEED_LIBOPCODES is non-zero, the fixup will need
2464 assistance from the libopcodes. */
2465
2466 static inline void
2467 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2468 const aarch64_opnd_info *operand,
2469 int need_libopcodes_p)
2470 {
2471 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2472 reloc->opnd = operand->type;
2473 if (need_libopcodes_p)
2474 reloc->need_libopcodes_p = 1;
2475 };
2476
2477 /* Return TRUE if the instruction needs to be fixed up later internally by
2478 the GAS; otherwise return FALSE. */
2479
2480 static inline bfd_boolean
2481 aarch64_gas_internal_fixup_p (void)
2482 {
2483 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2484 }
2485
2486 /* Assign the immediate value to the relevant field in *OPERAND if
2487 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2488 needs an internal fixup in a later stage.
2489 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2490 IMM.VALUE that may get assigned with the constant. */
2491 static inline void
2492 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2493 aarch64_opnd_info *operand,
2494 int addr_off_p,
2495 int need_libopcodes_p,
2496 int skip_p)
2497 {
2498 if (reloc->exp.X_op == O_constant)
2499 {
2500 if (addr_off_p)
2501 operand->addr.offset.imm = reloc->exp.X_add_number;
2502 else
2503 operand->imm.value = reloc->exp.X_add_number;
2504 reloc->type = BFD_RELOC_UNUSED;
2505 }
2506 else
2507 {
2508 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2509 /* Tell libopcodes to ignore this operand or not. This is helpful
2510 when one of the operands needs to be fixed up later but we need
2511 libopcodes to check the other operands. */
2512 operand->skip = skip_p;
2513 }
2514 }
2515
2516 /* Relocation modifiers. Each entry in the table contains the textual
2517 name for the relocation which may be placed before a symbol used as
2518 a load/store offset, or add immediate. It must be surrounded by a
2519 leading and trailing colon, for example:
2520
2521 ldr x0, [x1, #:rello:varsym]
2522 add x0, x1, #:rello:varsym */
2523
2524 struct reloc_table_entry
2525 {
2526 const char *name;
2527 int pc_rel;
2528 bfd_reloc_code_real_type adr_type;
2529 bfd_reloc_code_real_type adrp_type;
2530 bfd_reloc_code_real_type movw_type;
2531 bfd_reloc_code_real_type add_type;
2532 bfd_reloc_code_real_type ldst_type;
2533 bfd_reloc_code_real_type ld_literal_type;
2534 };
2535
2536 static struct reloc_table_entry reloc_table[] = {
2537 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2538 {"lo12", 0,
2539 0, /* adr_type */
2540 0,
2541 0,
2542 BFD_RELOC_AARCH64_ADD_LO12,
2543 BFD_RELOC_AARCH64_LDST_LO12,
2544 0},
2545
2546 /* Higher 21 bits of pc-relative page offset: ADRP */
2547 {"pg_hi21", 1,
2548 0, /* adr_type */
2549 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2550 0,
2551 0,
2552 0,
2553 0},
2554
2555 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2556 {"pg_hi21_nc", 1,
2557 0, /* adr_type */
2558 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2559 0,
2560 0,
2561 0,
2562 0},
2563
2564 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2565 {"abs_g0", 0,
2566 0, /* adr_type */
2567 0,
2568 BFD_RELOC_AARCH64_MOVW_G0,
2569 0,
2570 0,
2571 0},
2572
2573 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2574 {"abs_g0_s", 0,
2575 0, /* adr_type */
2576 0,
2577 BFD_RELOC_AARCH64_MOVW_G0_S,
2578 0,
2579 0,
2580 0},
2581
2582 /* Less significant bits 0-15 of address/value: MOVK, no check */
2583 {"abs_g0_nc", 0,
2584 0, /* adr_type */
2585 0,
2586 BFD_RELOC_AARCH64_MOVW_G0_NC,
2587 0,
2588 0,
2589 0},
2590
2591 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2592 {"abs_g1", 0,
2593 0, /* adr_type */
2594 0,
2595 BFD_RELOC_AARCH64_MOVW_G1,
2596 0,
2597 0,
2598 0},
2599
2600 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2601 {"abs_g1_s", 0,
2602 0, /* adr_type */
2603 0,
2604 BFD_RELOC_AARCH64_MOVW_G1_S,
2605 0,
2606 0,
2607 0},
2608
2609 /* Less significant bits 16-31 of address/value: MOVK, no check */
2610 {"abs_g1_nc", 0,
2611 0, /* adr_type */
2612 0,
2613 BFD_RELOC_AARCH64_MOVW_G1_NC,
2614 0,
2615 0,
2616 0},
2617
2618 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2619 {"abs_g2", 0,
2620 0, /* adr_type */
2621 0,
2622 BFD_RELOC_AARCH64_MOVW_G2,
2623 0,
2624 0,
2625 0},
2626
2627 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2628 {"abs_g2_s", 0,
2629 0, /* adr_type */
2630 0,
2631 BFD_RELOC_AARCH64_MOVW_G2_S,
2632 0,
2633 0,
2634 0},
2635
2636 /* Less significant bits 32-47 of address/value: MOVK, no check */
2637 {"abs_g2_nc", 0,
2638 0, /* adr_type */
2639 0,
2640 BFD_RELOC_AARCH64_MOVW_G2_NC,
2641 0,
2642 0,
2643 0},
2644
2645 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2646 {"abs_g3", 0,
2647 0, /* adr_type */
2648 0,
2649 BFD_RELOC_AARCH64_MOVW_G3,
2650 0,
2651 0,
2652 0},
2653
2654 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2655 {"prel_g0", 1,
2656 0, /* adr_type */
2657 0,
2658 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2659 0,
2660 0,
2661 0},
2662
2663 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2664 {"prel_g0_nc", 1,
2665 0, /* adr_type */
2666 0,
2667 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2668 0,
2669 0,
2670 0},
2671
2672 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2673 {"prel_g1", 1,
2674 0, /* adr_type */
2675 0,
2676 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2677 0,
2678 0,
2679 0},
2680
2681 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2682 {"prel_g1_nc", 1,
2683 0, /* adr_type */
2684 0,
2685 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2686 0,
2687 0,
2688 0},
2689
2690 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2691 {"prel_g2", 1,
2692 0, /* adr_type */
2693 0,
2694 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2695 0,
2696 0,
2697 0},
2698
2699 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2700 {"prel_g2_nc", 1,
2701 0, /* adr_type */
2702 0,
2703 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2704 0,
2705 0,
2706 0},
2707
2708 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2709 {"prel_g3", 1,
2710 0, /* adr_type */
2711 0,
2712 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2713 0,
2714 0,
2715 0},
2716
2717 /* Get to the page containing GOT entry for a symbol. */
2718 {"got", 1,
2719 0, /* adr_type */
2720 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2721 0,
2722 0,
2723 0,
2724 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2725
2726 /* 12 bit offset into the page containing GOT entry for that symbol. */
2727 {"got_lo12", 0,
2728 0, /* adr_type */
2729 0,
2730 0,
2731 0,
2732 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2733 0},
2734
2735 /* 0-15 bits of address/value: MOVk, no check. */
2736 {"gotoff_g0_nc", 0,
2737 0, /* adr_type */
2738 0,
2739 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2740 0,
2741 0,
2742 0},
2743
2744 /* Most significant bits 16-31 of address/value: MOVZ. */
2745 {"gotoff_g1", 0,
2746 0, /* adr_type */
2747 0,
2748 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2749 0,
2750 0,
2751 0},
2752
2753 /* 15 bit offset into the page containing GOT entry for that symbol. */
2754 {"gotoff_lo15", 0,
2755 0, /* adr_type */
2756 0,
2757 0,
2758 0,
2759 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2760 0},
2761
2762 /* Get to the page containing GOT TLS entry for a symbol */
2763 {"gottprel_g0_nc", 0,
2764 0, /* adr_type */
2765 0,
2766 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2767 0,
2768 0,
2769 0},
2770
2771 /* Get to the page containing GOT TLS entry for a symbol */
2772 {"gottprel_g1", 0,
2773 0, /* adr_type */
2774 0,
2775 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2776 0,
2777 0,
2778 0},
2779
2780 /* Get to the page containing GOT TLS entry for a symbol */
2781 {"tlsgd", 0,
2782 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2783 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2784 0,
2785 0,
2786 0,
2787 0},
2788
2789 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2790 {"tlsgd_lo12", 0,
2791 0, /* adr_type */
2792 0,
2793 0,
2794 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2795 0,
2796 0},
2797
2798 /* Lower 16 bits address/value: MOVk. */
2799 {"tlsgd_g0_nc", 0,
2800 0, /* adr_type */
2801 0,
2802 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2803 0,
2804 0,
2805 0},
2806
2807 /* Most significant bits 16-31 of address/value: MOVZ. */
2808 {"tlsgd_g1", 0,
2809 0, /* adr_type */
2810 0,
2811 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2812 0,
2813 0,
2814 0},
2815
2816 /* Get to the page containing GOT TLS entry for a symbol */
2817 {"tlsdesc", 0,
2818 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2819 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2820 0,
2821 0,
2822 0,
2823 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2824
2825 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2826 {"tlsdesc_lo12", 0,
2827 0, /* adr_type */
2828 0,
2829 0,
2830 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
2831 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2832 0},
2833
2834 /* Get to the page containing GOT TLS entry for a symbol.
2835 The same as GD, we allocate two consecutive GOT slots
2836 for module index and module offset, the only difference
2837 with GD is the module offset should be initialized to
2838 zero without any outstanding runtime relocation. */
2839 {"tlsldm", 0,
2840 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2841 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2842 0,
2843 0,
2844 0,
2845 0},
2846
2847 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2848 {"tlsldm_lo12_nc", 0,
2849 0, /* adr_type */
2850 0,
2851 0,
2852 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2853 0,
2854 0},
2855
2856 /* 12 bit offset into the module TLS base address. */
2857 {"dtprel_lo12", 0,
2858 0, /* adr_type */
2859 0,
2860 0,
2861 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2862 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2863 0},
2864
2865 /* Same as dtprel_lo12, no overflow check. */
2866 {"dtprel_lo12_nc", 0,
2867 0, /* adr_type */
2868 0,
2869 0,
2870 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2871 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2872 0},
2873
2874 /* bits[23:12] of offset to the module TLS base address. */
2875 {"dtprel_hi12", 0,
2876 0, /* adr_type */
2877 0,
2878 0,
2879 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2880 0,
2881 0},
2882
2883 /* bits[15:0] of offset to the module TLS base address. */
2884 {"dtprel_g0", 0,
2885 0, /* adr_type */
2886 0,
2887 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2888 0,
2889 0,
2890 0},
2891
2892 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2893 {"dtprel_g0_nc", 0,
2894 0, /* adr_type */
2895 0,
2896 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2897 0,
2898 0,
2899 0},
2900
2901 /* bits[31:16] of offset to the module TLS base address. */
2902 {"dtprel_g1", 0,
2903 0, /* adr_type */
2904 0,
2905 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2906 0,
2907 0,
2908 0},
2909
2910 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2911 {"dtprel_g1_nc", 0,
2912 0, /* adr_type */
2913 0,
2914 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2915 0,
2916 0,
2917 0},
2918
2919 /* bits[47:32] of offset to the module TLS base address. */
2920 {"dtprel_g2", 0,
2921 0, /* adr_type */
2922 0,
2923 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2924 0,
2925 0,
2926 0},
2927
2928 /* Lower 16 bit offset into GOT entry for a symbol */
2929 {"tlsdesc_off_g0_nc", 0,
2930 0, /* adr_type */
2931 0,
2932 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2933 0,
2934 0,
2935 0},
2936
2937 /* Higher 16 bit offset into GOT entry for a symbol */
2938 {"tlsdesc_off_g1", 0,
2939 0, /* adr_type */
2940 0,
2941 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2942 0,
2943 0,
2944 0},
2945
2946 /* Get to the page containing GOT TLS entry for a symbol */
2947 {"gottprel", 0,
2948 0, /* adr_type */
2949 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2950 0,
2951 0,
2952 0,
2953 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2954
2955 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2956 {"gottprel_lo12", 0,
2957 0, /* adr_type */
2958 0,
2959 0,
2960 0,
2961 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2962 0},
2963
2964 /* Get tp offset for a symbol. */
2965 {"tprel", 0,
2966 0, /* adr_type */
2967 0,
2968 0,
2969 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2970 0,
2971 0},
2972
2973 /* Get tp offset for a symbol. */
2974 {"tprel_lo12", 0,
2975 0, /* adr_type */
2976 0,
2977 0,
2978 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2979 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
2980 0},
2981
2982 /* Get tp offset for a symbol. */
2983 {"tprel_hi12", 0,
2984 0, /* adr_type */
2985 0,
2986 0,
2987 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2988 0,
2989 0},
2990
2991 /* Get tp offset for a symbol. */
2992 {"tprel_lo12_nc", 0,
2993 0, /* adr_type */
2994 0,
2995 0,
2996 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2997 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
2998 0},
2999
3000 /* Most significant bits 32-47 of address/value: MOVZ. */
3001 {"tprel_g2", 0,
3002 0, /* adr_type */
3003 0,
3004 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
3005 0,
3006 0,
3007 0},
3008
3009 /* Most significant bits 16-31 of address/value: MOVZ. */
3010 {"tprel_g1", 0,
3011 0, /* adr_type */
3012 0,
3013 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
3014 0,
3015 0,
3016 0},
3017
3018 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
3019 {"tprel_g1_nc", 0,
3020 0, /* adr_type */
3021 0,
3022 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
3023 0,
3024 0,
3025 0},
3026
3027 /* Most significant bits 0-15 of address/value: MOVZ. */
3028 {"tprel_g0", 0,
3029 0, /* adr_type */
3030 0,
3031 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
3032 0,
3033 0,
3034 0},
3035
3036 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
3037 {"tprel_g0_nc", 0,
3038 0, /* adr_type */
3039 0,
3040 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
3041 0,
3042 0,
3043 0},
3044
3045 /* 15bit offset from got entry to base address of GOT table. */
3046 {"gotpage_lo15", 0,
3047 0,
3048 0,
3049 0,
3050 0,
3051 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
3052 0},
3053
3054 /* 14bit offset from got entry to base address of GOT table. */
3055 {"gotpage_lo14", 0,
3056 0,
3057 0,
3058 0,
3059 0,
3060 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
3061 0},
3062 };
3063
3064 /* Given the address of a pointer pointing to the textual name of a
3065 relocation as may appear in assembler source, attempt to find its
3066 details in reloc_table. The pointer will be updated to the character
3067 after the trailing colon. On failure, NULL will be returned;
3068 otherwise return the reloc_table_entry. */
3069
3070 static struct reloc_table_entry *
3071 find_reloc_table_entry (char **str)
3072 {
3073 unsigned int i;
3074 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
3075 {
3076 int length = strlen (reloc_table[i].name);
3077
3078 if (strncasecmp (reloc_table[i].name, *str, length) == 0
3079 && (*str)[length] == ':')
3080 {
3081 *str += (length + 1);
3082 return &reloc_table[i];
3083 }
3084 }
3085
3086 return NULL;
3087 }
3088
3089 /* Mode argument to parse_shift and parser_shifter_operand. */
3090 enum parse_shift_mode
3091 {
3092 SHIFTED_NONE, /* no shifter allowed */
3093 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3094 "#imm{,lsl #n}" */
3095 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3096 "#imm" */
3097 SHIFTED_LSL, /* bare "lsl #n" */
3098 SHIFTED_MUL, /* bare "mul #n" */
3099 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
3100 SHIFTED_MUL_VL, /* "mul vl" */
3101 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3102 };
3103
3104 /* Parse a <shift> operator on an AArch64 data processing instruction.
3105 Return TRUE on success; otherwise return FALSE. */
3106 static bfd_boolean
3107 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3108 {
3109 const struct aarch64_name_value_pair *shift_op;
3110 enum aarch64_modifier_kind kind;
3111 expressionS exp;
3112 int exp_has_prefix;
3113 char *s = *str;
3114 char *p = s;
3115
3116 for (p = *str; ISALPHA (*p); p++)
3117 ;
3118
3119 if (p == *str)
3120 {
3121 set_syntax_error (_("shift expression expected"));
3122 return FALSE;
3123 }
3124
3125 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
3126
3127 if (shift_op == NULL)
3128 {
3129 set_syntax_error (_("shift operator expected"));
3130 return FALSE;
3131 }
3132
3133 kind = aarch64_get_operand_modifier (shift_op);
3134
3135 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3136 {
3137 set_syntax_error (_("invalid use of 'MSL'"));
3138 return FALSE;
3139 }
3140
3141 if (kind == AARCH64_MOD_MUL
3142 && mode != SHIFTED_MUL
3143 && mode != SHIFTED_MUL_VL)
3144 {
3145 set_syntax_error (_("invalid use of 'MUL'"));
3146 return FALSE;
3147 }
3148
3149 switch (mode)
3150 {
3151 case SHIFTED_LOGIC_IMM:
3152 if (aarch64_extend_operator_p (kind))
3153 {
3154 set_syntax_error (_("extending shift is not permitted"));
3155 return FALSE;
3156 }
3157 break;
3158
3159 case SHIFTED_ARITH_IMM:
3160 if (kind == AARCH64_MOD_ROR)
3161 {
3162 set_syntax_error (_("'ROR' shift is not permitted"));
3163 return FALSE;
3164 }
3165 break;
3166
3167 case SHIFTED_LSL:
3168 if (kind != AARCH64_MOD_LSL)
3169 {
3170 set_syntax_error (_("only 'LSL' shift is permitted"));
3171 return FALSE;
3172 }
3173 break;
3174
3175 case SHIFTED_MUL:
3176 if (kind != AARCH64_MOD_MUL)
3177 {
3178 set_syntax_error (_("only 'MUL' is permitted"));
3179 return FALSE;
3180 }
3181 break;
3182
3183 case SHIFTED_MUL_VL:
3184 /* "MUL VL" consists of two separate tokens. Require the first
3185 token to be "MUL" and look for a following "VL". */
3186 if (kind == AARCH64_MOD_MUL)
3187 {
3188 skip_whitespace (p);
3189 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3190 {
3191 p += 2;
3192 kind = AARCH64_MOD_MUL_VL;
3193 break;
3194 }
3195 }
3196 set_syntax_error (_("only 'MUL VL' is permitted"));
3197 return FALSE;
3198
3199 case SHIFTED_REG_OFFSET:
3200 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3201 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3202 {
3203 set_fatal_syntax_error
3204 (_("invalid shift for the register offset addressing mode"));
3205 return FALSE;
3206 }
3207 break;
3208
3209 case SHIFTED_LSL_MSL:
3210 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3211 {
3212 set_syntax_error (_("invalid shift operator"));
3213 return FALSE;
3214 }
3215 break;
3216
3217 default:
3218 abort ();
3219 }
3220
3221 /* Whitespace can appear here if the next thing is a bare digit. */
3222 skip_whitespace (p);
3223
3224 /* Parse shift amount. */
3225 exp_has_prefix = 0;
3226 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3227 exp.X_op = O_absent;
3228 else
3229 {
3230 if (is_immediate_prefix (*p))
3231 {
3232 p++;
3233 exp_has_prefix = 1;
3234 }
3235 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3236 }
3237 if (kind == AARCH64_MOD_MUL_VL)
3238 /* For consistency, give MUL VL the same shift amount as an implicit
3239 MUL #1. */
3240 operand->shifter.amount = 1;
3241 else if (exp.X_op == O_absent)
3242 {
3243 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
3244 {
3245 set_syntax_error (_("missing shift amount"));
3246 return FALSE;
3247 }
3248 operand->shifter.amount = 0;
3249 }
3250 else if (exp.X_op != O_constant)
3251 {
3252 set_syntax_error (_("constant shift amount required"));
3253 return FALSE;
3254 }
3255 /* For parsing purposes, MUL #n has no inherent range. The range
3256 depends on the operand and will be checked by operand-specific
3257 routines. */
3258 else if (kind != AARCH64_MOD_MUL
3259 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3260 {
3261 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3262 return FALSE;
3263 }
3264 else
3265 {
3266 operand->shifter.amount = exp.X_add_number;
3267 operand->shifter.amount_present = 1;
3268 }
3269
3270 operand->shifter.operator_present = 1;
3271 operand->shifter.kind = kind;
3272
3273 *str = p;
3274 return TRUE;
3275 }
3276
3277 /* Parse a <shifter_operand> for a data processing instruction:
3278
3279 #<immediate>
3280 #<immediate>, LSL #imm
3281
3282 Validation of immediate operands is deferred to md_apply_fix.
3283
3284 Return TRUE on success; otherwise return FALSE. */
3285
3286 static bfd_boolean
3287 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3288 enum parse_shift_mode mode)
3289 {
3290 char *p;
3291
3292 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3293 return FALSE;
3294
3295 p = *str;
3296
3297 /* Accept an immediate expression. */
3298 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3299 return FALSE;
3300
3301 /* Accept optional LSL for arithmetic immediate values. */
3302 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3303 if (! parse_shift (&p, operand, SHIFTED_LSL))
3304 return FALSE;
3305
3306 /* Not accept any shifter for logical immediate values. */
3307 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3308 && parse_shift (&p, operand, mode))
3309 {
3310 set_syntax_error (_("unexpected shift operator"));
3311 return FALSE;
3312 }
3313
3314 *str = p;
3315 return TRUE;
3316 }
3317
3318 /* Parse a <shifter_operand> for a data processing instruction:
3319
3320 <Rm>
3321 <Rm>, <shift>
3322 #<immediate>
3323 #<immediate>, LSL #imm
3324
3325 where <shift> is handled by parse_shift above, and the last two
3326 cases are handled by the function above.
3327
3328 Validation of immediate operands is deferred to md_apply_fix.
3329
3330 Return TRUE on success; otherwise return FALSE. */
3331
3332 static bfd_boolean
3333 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3334 enum parse_shift_mode mode)
3335 {
3336 const reg_entry *reg;
3337 aarch64_opnd_qualifier_t qualifier;
3338 enum aarch64_operand_class opd_class
3339 = aarch64_get_operand_class (operand->type);
3340
3341 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3342 if (reg)
3343 {
3344 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3345 {
3346 set_syntax_error (_("unexpected register in the immediate operand"));
3347 return FALSE;
3348 }
3349
3350 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3351 {
3352 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3353 return FALSE;
3354 }
3355
3356 operand->reg.regno = reg->number;
3357 operand->qualifier = qualifier;
3358
3359 /* Accept optional shift operation on register. */
3360 if (! skip_past_comma (str))
3361 return TRUE;
3362
3363 if (! parse_shift (str, operand, mode))
3364 return FALSE;
3365
3366 return TRUE;
3367 }
3368 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3369 {
3370 set_syntax_error
3371 (_("integer register expected in the extended/shifted operand "
3372 "register"));
3373 return FALSE;
3374 }
3375
3376 /* We have a shifted immediate variable. */
3377 return parse_shifter_operand_imm (str, operand, mode);
3378 }
3379
3380 /* Return TRUE on success; return FALSE otherwise. */
3381
3382 static bfd_boolean
3383 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3384 enum parse_shift_mode mode)
3385 {
3386 char *p = *str;
3387
3388 /* Determine if we have the sequence of characters #: or just :
3389 coming next. If we do, then we check for a :rello: relocation
3390 modifier. If we don't, punt the whole lot to
3391 parse_shifter_operand. */
3392
3393 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3394 {
3395 struct reloc_table_entry *entry;
3396
3397 if (p[0] == '#')
3398 p += 2;
3399 else
3400 p++;
3401 *str = p;
3402
3403 /* Try to parse a relocation. Anything else is an error. */
3404 if (!(entry = find_reloc_table_entry (str)))
3405 {
3406 set_syntax_error (_("unknown relocation modifier"));
3407 return FALSE;
3408 }
3409
3410 if (entry->add_type == 0)
3411 {
3412 set_syntax_error
3413 (_("this relocation modifier is not allowed on this instruction"));
3414 return FALSE;
3415 }
3416
3417 /* Save str before we decompose it. */
3418 p = *str;
3419
3420 /* Next, we parse the expression. */
3421 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3422 return FALSE;
3423
3424 /* Record the relocation type (use the ADD variant here). */
3425 inst.reloc.type = entry->add_type;
3426 inst.reloc.pc_rel = entry->pc_rel;
3427
3428 /* If str is empty, we've reached the end, stop here. */
3429 if (**str == '\0')
3430 return TRUE;
3431
3432 /* Otherwise, we have a shifted reloc modifier, so rewind to
3433 recover the variable name and continue parsing for the shifter. */
3434 *str = p;
3435 return parse_shifter_operand_imm (str, operand, mode);
3436 }
3437
3438 return parse_shifter_operand (str, operand, mode);
3439 }
3440
3441 /* Parse all forms of an address expression. Information is written
3442 to *OPERAND and/or inst.reloc.
3443
3444 The A64 instruction set has the following addressing modes:
3445
3446 Offset
3447 [base] // in SIMD ld/st structure
3448 [base{,#0}] // in ld/st exclusive
3449 [base{,#imm}]
3450 [base,Xm{,LSL #imm}]
3451 [base,Xm,SXTX {#imm}]
3452 [base,Wm,(S|U)XTW {#imm}]
3453 Pre-indexed
3454 [base]! // in ldraa/ldrab exclusive
3455 [base,#imm]!
3456 Post-indexed
3457 [base],#imm
3458 [base],Xm // in SIMD ld/st structure
3459 PC-relative (literal)
3460 label
3461 SVE:
3462 [base,#imm,MUL VL]
3463 [base,Zm.D{,LSL #imm}]
3464 [base,Zm.S,(S|U)XTW {#imm}]
3465 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3466 [Zn.S,#imm]
3467 [Zn.D,#imm]
3468 [Zn.S{, Xm}]
3469 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3470 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3471 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3472
3473 (As a convenience, the notation "=immediate" is permitted in conjunction
3474 with the pc-relative literal load instructions to automatically place an
3475 immediate value or symbolic address in a nearby literal pool and generate
3476 a hidden label which references it.)
3477
3478 Upon a successful parsing, the address structure in *OPERAND will be
3479 filled in the following way:
3480
3481 .base_regno = <base>
3482 .offset.is_reg // 1 if the offset is a register
3483 .offset.imm = <imm>
3484 .offset.regno = <Rm>
3485
3486 For different addressing modes defined in the A64 ISA:
3487
3488 Offset
3489 .pcrel=0; .preind=1; .postind=0; .writeback=0
3490 Pre-indexed
3491 .pcrel=0; .preind=1; .postind=0; .writeback=1
3492 Post-indexed
3493 .pcrel=0; .preind=0; .postind=1; .writeback=1
3494 PC-relative (literal)
3495 .pcrel=1; .preind=1; .postind=0; .writeback=0
3496
3497 The shift/extension information, if any, will be stored in .shifter.
3498 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3499 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3500 corresponding register.
3501
3502 BASE_TYPE says which types of base register should be accepted and
3503 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3504 is the type of shifter that is allowed for immediate offsets,
3505 or SHIFTED_NONE if none.
3506
3507 In all other respects, it is the caller's responsibility to check
3508 for addressing modes not supported by the instruction, and to set
3509 inst.reloc.type. */
3510
3511 static bfd_boolean
3512 parse_address_main (char **str, aarch64_opnd_info *operand,
3513 aarch64_opnd_qualifier_t *base_qualifier,
3514 aarch64_opnd_qualifier_t *offset_qualifier,
3515 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3516 enum parse_shift_mode imm_shift_mode)
3517 {
3518 char *p = *str;
3519 const reg_entry *reg;
3520 expressionS *exp = &inst.reloc.exp;
3521
3522 *base_qualifier = AARCH64_OPND_QLF_NIL;
3523 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3524 if (! skip_past_char (&p, '['))
3525 {
3526 /* =immediate or label. */
3527 operand->addr.pcrel = 1;
3528 operand->addr.preind = 1;
3529
3530 /* #:<reloc_op>:<symbol> */
3531 skip_past_char (&p, '#');
3532 if (skip_past_char (&p, ':'))
3533 {
3534 bfd_reloc_code_real_type ty;
3535 struct reloc_table_entry *entry;
3536
3537 /* Try to parse a relocation modifier. Anything else is
3538 an error. */
3539 entry = find_reloc_table_entry (&p);
3540 if (! entry)
3541 {
3542 set_syntax_error (_("unknown relocation modifier"));
3543 return FALSE;
3544 }
3545
3546 switch (operand->type)
3547 {
3548 case AARCH64_OPND_ADDR_PCREL21:
3549 /* adr */
3550 ty = entry->adr_type;
3551 break;
3552
3553 default:
3554 ty = entry->ld_literal_type;
3555 break;
3556 }
3557
3558 if (ty == 0)
3559 {
3560 set_syntax_error
3561 (_("this relocation modifier is not allowed on this "
3562 "instruction"));
3563 return FALSE;
3564 }
3565
3566 /* #:<reloc_op>: */
3567 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3568 {
3569 set_syntax_error (_("invalid relocation expression"));
3570 return FALSE;
3571 }
3572
3573 /* #:<reloc_op>:<expr> */
3574 /* Record the relocation type. */
3575 inst.reloc.type = ty;
3576 inst.reloc.pc_rel = entry->pc_rel;
3577 }
3578 else
3579 {
3580
3581 if (skip_past_char (&p, '='))
3582 /* =immediate; need to generate the literal in the literal pool. */
3583 inst.gen_lit_pool = 1;
3584
3585 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3586 {
3587 set_syntax_error (_("invalid address"));
3588 return FALSE;
3589 }
3590 }
3591
3592 *str = p;
3593 return TRUE;
3594 }
3595
3596 /* [ */
3597
3598 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3599 if (!reg || !aarch64_check_reg_type (reg, base_type))
3600 {
3601 set_syntax_error (_(get_reg_expected_msg (base_type)));
3602 return FALSE;
3603 }
3604 operand->addr.base_regno = reg->number;
3605
3606 /* [Xn */
3607 if (skip_past_comma (&p))
3608 {
3609 /* [Xn, */
3610 operand->addr.preind = 1;
3611
3612 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3613 if (reg)
3614 {
3615 if (!aarch64_check_reg_type (reg, offset_type))
3616 {
3617 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3618 return FALSE;
3619 }
3620
3621 /* [Xn,Rm */
3622 operand->addr.offset.regno = reg->number;
3623 operand->addr.offset.is_reg = 1;
3624 /* Shifted index. */
3625 if (skip_past_comma (&p))
3626 {
3627 /* [Xn,Rm, */
3628 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3629 /* Use the diagnostics set in parse_shift, so not set new
3630 error message here. */
3631 return FALSE;
3632 }
3633 /* We only accept:
3634 [base,Xm] # For vector plus scalar SVE2 indexing.
3635 [base,Xm{,LSL #imm}]
3636 [base,Xm,SXTX {#imm}]
3637 [base,Wm,(S|U)XTW {#imm}] */
3638 if (operand->shifter.kind == AARCH64_MOD_NONE
3639 || operand->shifter.kind == AARCH64_MOD_LSL
3640 || operand->shifter.kind == AARCH64_MOD_SXTX)
3641 {
3642 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3643 {
3644 set_syntax_error (_("invalid use of 32-bit register offset"));
3645 return FALSE;
3646 }
3647 if (aarch64_get_qualifier_esize (*base_qualifier)
3648 != aarch64_get_qualifier_esize (*offset_qualifier)
3649 && (operand->type != AARCH64_OPND_SVE_ADDR_ZX
3650 || *base_qualifier != AARCH64_OPND_QLF_S_S
3651 || *offset_qualifier != AARCH64_OPND_QLF_X))
3652 {
3653 set_syntax_error (_("offset has different size from base"));
3654 return FALSE;
3655 }
3656 }
3657 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3658 {
3659 set_syntax_error (_("invalid use of 64-bit register offset"));
3660 return FALSE;
3661 }
3662 }
3663 else
3664 {
3665 /* [Xn,#:<reloc_op>:<symbol> */
3666 skip_past_char (&p, '#');
3667 if (skip_past_char (&p, ':'))
3668 {
3669 struct reloc_table_entry *entry;
3670
3671 /* Try to parse a relocation modifier. Anything else is
3672 an error. */
3673 if (!(entry = find_reloc_table_entry (&p)))
3674 {
3675 set_syntax_error (_("unknown relocation modifier"));
3676 return FALSE;
3677 }
3678
3679 if (entry->ldst_type == 0)
3680 {
3681 set_syntax_error
3682 (_("this relocation modifier is not allowed on this "
3683 "instruction"));
3684 return FALSE;
3685 }
3686
3687 /* [Xn,#:<reloc_op>: */
3688 /* We now have the group relocation table entry corresponding to
3689 the name in the assembler source. Next, we parse the
3690 expression. */
3691 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3692 {
3693 set_syntax_error (_("invalid relocation expression"));
3694 return FALSE;
3695 }
3696
3697 /* [Xn,#:<reloc_op>:<expr> */
3698 /* Record the load/store relocation type. */
3699 inst.reloc.type = entry->ldst_type;
3700 inst.reloc.pc_rel = entry->pc_rel;
3701 }
3702 else
3703 {
3704 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3705 {
3706 set_syntax_error (_("invalid expression in the address"));
3707 return FALSE;
3708 }
3709 /* [Xn,<expr> */
3710 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3711 /* [Xn,<expr>,<shifter> */
3712 if (! parse_shift (&p, operand, imm_shift_mode))
3713 return FALSE;
3714 }
3715 }
3716 }
3717
3718 if (! skip_past_char (&p, ']'))
3719 {
3720 set_syntax_error (_("']' expected"));
3721 return FALSE;
3722 }
3723
3724 if (skip_past_char (&p, '!'))
3725 {
3726 if (operand->addr.preind && operand->addr.offset.is_reg)
3727 {
3728 set_syntax_error (_("register offset not allowed in pre-indexed "
3729 "addressing mode"));
3730 return FALSE;
3731 }
3732 /* [Xn]! */
3733 operand->addr.writeback = 1;
3734 }
3735 else if (skip_past_comma (&p))
3736 {
3737 /* [Xn], */
3738 operand->addr.postind = 1;
3739 operand->addr.writeback = 1;
3740
3741 if (operand->addr.preind)
3742 {
3743 set_syntax_error (_("cannot combine pre- and post-indexing"));
3744 return FALSE;
3745 }
3746
3747 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3748 if (reg)
3749 {
3750 /* [Xn],Xm */
3751 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3752 {
3753 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3754 return FALSE;
3755 }
3756
3757 operand->addr.offset.regno = reg->number;
3758 operand->addr.offset.is_reg = 1;
3759 }
3760 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3761 {
3762 /* [Xn],#expr */
3763 set_syntax_error (_("invalid expression in the address"));
3764 return FALSE;
3765 }
3766 }
3767
3768 /* If at this point neither .preind nor .postind is set, we have a
3769 bare [Rn]{!}; only accept [Rn]! as a shorthand for [Rn,#0]! for ldraa and
3770 ldrab, accept [Rn] as a shorthand for [Rn,#0].
3771 For SVE2 vector plus scalar offsets, allow [Zn.<T>] as shorthand for
3772 [Zn.<T>, xzr]. */
3773 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3774 {
3775 if (operand->addr.writeback)
3776 {
3777 if (operand->type == AARCH64_OPND_ADDR_SIMM10)
3778 {
3779 /* Accept [Rn]! as a shorthand for [Rn,#0]! */
3780 operand->addr.offset.is_reg = 0;
3781 operand->addr.offset.imm = 0;
3782 operand->addr.preind = 1;
3783 }
3784 else
3785 {
3786 /* Reject [Rn]! */
3787 set_syntax_error (_("missing offset in the pre-indexed address"));
3788 return FALSE;
3789 }
3790 }
3791 else
3792 {
3793 operand->addr.preind = 1;
3794 if (operand->type == AARCH64_OPND_SVE_ADDR_ZX)
3795 {
3796 operand->addr.offset.is_reg = 1;
3797 operand->addr.offset.regno = REG_ZR;
3798 *offset_qualifier = AARCH64_OPND_QLF_X;
3799 }
3800 else
3801 {
3802 inst.reloc.exp.X_op = O_constant;
3803 inst.reloc.exp.X_add_number = 0;
3804 }
3805 }
3806 }
3807
3808 *str = p;
3809 return TRUE;
3810 }
3811
3812 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3813 on success. */
3814 static bfd_boolean
3815 parse_address (char **str, aarch64_opnd_info *operand)
3816 {
3817 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3818 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3819 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3820 }
3821
3822 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3823 The arguments have the same meaning as for parse_address_main.
3824 Return TRUE on success. */
3825 static bfd_boolean
3826 parse_sve_address (char **str, aarch64_opnd_info *operand,
3827 aarch64_opnd_qualifier_t *base_qualifier,
3828 aarch64_opnd_qualifier_t *offset_qualifier)
3829 {
3830 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3831 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3832 SHIFTED_MUL_VL);
3833 }
3834
3835 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3836 Return TRUE on success; otherwise return FALSE. */
3837 static bfd_boolean
3838 parse_half (char **str, int *internal_fixup_p)
3839 {
3840 char *p = *str;
3841
3842 skip_past_char (&p, '#');
3843
3844 gas_assert (internal_fixup_p);
3845 *internal_fixup_p = 0;
3846
3847 if (*p == ':')
3848 {
3849 struct reloc_table_entry *entry;
3850
3851 /* Try to parse a relocation. Anything else is an error. */
3852 ++p;
3853 if (!(entry = find_reloc_table_entry (&p)))
3854 {
3855 set_syntax_error (_("unknown relocation modifier"));
3856 return FALSE;
3857 }
3858
3859 if (entry->movw_type == 0)
3860 {
3861 set_syntax_error
3862 (_("this relocation modifier is not allowed on this instruction"));
3863 return FALSE;
3864 }
3865
3866 inst.reloc.type = entry->movw_type;
3867 }
3868 else
3869 *internal_fixup_p = 1;
3870
3871 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3872 return FALSE;
3873
3874 *str = p;
3875 return TRUE;
3876 }
3877
3878 /* Parse an operand for an ADRP instruction:
3879 ADRP <Xd>, <label>
3880 Return TRUE on success; otherwise return FALSE. */
3881
3882 static bfd_boolean
3883 parse_adrp (char **str)
3884 {
3885 char *p;
3886
3887 p = *str;
3888 if (*p == ':')
3889 {
3890 struct reloc_table_entry *entry;
3891
3892 /* Try to parse a relocation. Anything else is an error. */
3893 ++p;
3894 if (!(entry = find_reloc_table_entry (&p)))
3895 {
3896 set_syntax_error (_("unknown relocation modifier"));
3897 return FALSE;
3898 }
3899
3900 if (entry->adrp_type == 0)
3901 {
3902 set_syntax_error
3903 (_("this relocation modifier is not allowed on this instruction"));
3904 return FALSE;
3905 }
3906
3907 inst.reloc.type = entry->adrp_type;
3908 }
3909 else
3910 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3911
3912 inst.reloc.pc_rel = 1;
3913
3914 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3915 return FALSE;
3916
3917 *str = p;
3918 return TRUE;
3919 }
3920
3921 /* Miscellaneous. */
3922
3923 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3924 of SIZE tokens in which index I gives the token for field value I,
3925 or is null if field value I is invalid. REG_TYPE says which register
3926 names should be treated as registers rather than as symbolic immediates.
3927
3928 Return true on success, moving *STR past the operand and storing the
3929 field value in *VAL. */
3930
3931 static int
3932 parse_enum_string (char **str, int64_t *val, const char *const *array,
3933 size_t size, aarch64_reg_type reg_type)
3934 {
3935 expressionS exp;
3936 char *p, *q;
3937 size_t i;
3938
3939 /* Match C-like tokens. */
3940 p = q = *str;
3941 while (ISALNUM (*q))
3942 q++;
3943
3944 for (i = 0; i < size; ++i)
3945 if (array[i]
3946 && strncasecmp (array[i], p, q - p) == 0
3947 && array[i][q - p] == 0)
3948 {
3949 *val = i;
3950 *str = q;
3951 return TRUE;
3952 }
3953
3954 if (!parse_immediate_expression (&p, &exp, reg_type))
3955 return FALSE;
3956
3957 if (exp.X_op == O_constant
3958 && (uint64_t) exp.X_add_number < size)
3959 {
3960 *val = exp.X_add_number;
3961 *str = p;
3962 return TRUE;
3963 }
3964
3965 /* Use the default error for this operand. */
3966 return FALSE;
3967 }
3968
3969 /* Parse an option for a preload instruction. Returns the encoding for the
3970 option, or PARSE_FAIL. */
3971
3972 static int
3973 parse_pldop (char **str)
3974 {
3975 char *p, *q;
3976 const struct aarch64_name_value_pair *o;
3977
3978 p = q = *str;
3979 while (ISALNUM (*q))
3980 q++;
3981
3982 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3983 if (!o)
3984 return PARSE_FAIL;
3985
3986 *str = q;
3987 return o->value;
3988 }
3989
3990 /* Parse an option for a barrier instruction. Returns the encoding for the
3991 option, or PARSE_FAIL. */
3992
3993 static int
3994 parse_barrier (char **str)
3995 {
3996 char *p, *q;
3997 const asm_barrier_opt *o;
3998
3999 p = q = *str;
4000 while (ISALPHA (*q))
4001 q++;
4002
4003 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
4004 if (!o)
4005 return PARSE_FAIL;
4006
4007 *str = q;
4008 return o->value;
4009 }
4010
4011 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
4012 return 0 if successful. Otherwise return PARSE_FAIL. */
4013
4014 static int
4015 parse_barrier_psb (char **str,
4016 const struct aarch64_name_value_pair ** hint_opt)
4017 {
4018 char *p, *q;
4019 const struct aarch64_name_value_pair *o;
4020
4021 p = q = *str;
4022 while (ISALPHA (*q))
4023 q++;
4024
4025 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
4026 if (!o)
4027 {
4028 set_fatal_syntax_error
4029 ( _("unknown or missing option to PSB/TSB"));
4030 return PARSE_FAIL;
4031 }
4032
4033 if (o->value != 0x11)
4034 {
4035 /* PSB only accepts option name 'CSYNC'. */
4036 set_syntax_error
4037 (_("the specified option is not accepted for PSB/TSB"));
4038 return PARSE_FAIL;
4039 }
4040
4041 *str = q;
4042 *hint_opt = o;
4043 return 0;
4044 }
4045
4046 /* Parse an operand for BTI. Set *HINT_OPT to the hint-option record
4047 return 0 if successful. Otherwise return PARSE_FAIL. */
4048
4049 static int
4050 parse_bti_operand (char **str,
4051 const struct aarch64_name_value_pair ** hint_opt)
4052 {
4053 char *p, *q;
4054 const struct aarch64_name_value_pair *o;
4055
4056 p = q = *str;
4057 while (ISALPHA (*q))
4058 q++;
4059
4060 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
4061 if (!o)
4062 {
4063 set_fatal_syntax_error
4064 ( _("unknown option to BTI"));
4065 return PARSE_FAIL;
4066 }
4067
4068 switch (o->value)
4069 {
4070 /* Valid BTI operands. */
4071 case HINT_OPD_C:
4072 case HINT_OPD_J:
4073 case HINT_OPD_JC:
4074 break;
4075
4076 default:
4077 set_syntax_error
4078 (_("unknown option to BTI"));
4079 return PARSE_FAIL;
4080 }
4081
4082 *str = q;
4083 *hint_opt = o;
4084 return 0;
4085 }
4086
4087 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
4088 Returns the encoding for the option, or PARSE_FAIL.
4089
4090 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
4091 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
4092
4093 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
4094 field, otherwise as a system register.
4095 */
4096
4097 static int
4098 parse_sys_reg (char **str, struct hash_control *sys_regs,
4099 int imple_defined_p, int pstatefield_p,
4100 uint32_t* flags)
4101 {
4102 char *p, *q;
4103 char buf[32];
4104 const aarch64_sys_reg *o;
4105 int value;
4106
4107 p = buf;
4108 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4109 if (p < buf + 31)
4110 *p++ = TOLOWER (*q);
4111 *p = '\0';
4112 /* Assert that BUF be large enough. */
4113 gas_assert (p - buf == q - *str);
4114
4115 o = hash_find (sys_regs, buf);
4116 if (!o)
4117 {
4118 if (!imple_defined_p)
4119 return PARSE_FAIL;
4120 else
4121 {
4122 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
4123 unsigned int op0, op1, cn, cm, op2;
4124
4125 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
4126 != 5)
4127 return PARSE_FAIL;
4128 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
4129 return PARSE_FAIL;
4130 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
4131 if (flags)
4132 *flags = 0;
4133 }
4134 }
4135 else
4136 {
4137 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
4138 as_bad (_("selected processor does not support PSTATE field "
4139 "name '%s'"), buf);
4140 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
4141 as_bad (_("selected processor does not support system register "
4142 "name '%s'"), buf);
4143 if (aarch64_sys_reg_deprecated_p (o))
4144 as_warn (_("system register name '%s' is deprecated and may be "
4145 "removed in a future release"), buf);
4146 value = o->value;
4147 if (flags)
4148 *flags = o->flags;
4149 }
4150
4151 *str = q;
4152 return value;
4153 }
4154
4155 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
4156 for the option, or NULL. */
4157
4158 static const aarch64_sys_ins_reg *
4159 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
4160 {
4161 char *p, *q;
4162 char buf[32];
4163 const aarch64_sys_ins_reg *o;
4164
4165 p = buf;
4166 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4167 if (p < buf + 31)
4168 *p++ = TOLOWER (*q);
4169 *p = '\0';
4170
4171 o = hash_find (sys_ins_regs, buf);
4172 if (!o)
4173 return NULL;
4174
4175 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
4176 as_bad (_("selected processor does not support system register "
4177 "name '%s'"), buf);
4178
4179 *str = q;
4180 return o;
4181 }
4182 \f
4183 #define po_char_or_fail(chr) do { \
4184 if (! skip_past_char (&str, chr)) \
4185 goto failure; \
4186 } while (0)
4187
4188 #define po_reg_or_fail(regtype) do { \
4189 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4190 if (val == PARSE_FAIL) \
4191 { \
4192 set_default_error (); \
4193 goto failure; \
4194 } \
4195 } while (0)
4196
4197 #define po_int_reg_or_fail(reg_type) do { \
4198 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4199 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
4200 { \
4201 set_default_error (); \
4202 goto failure; \
4203 } \
4204 info->reg.regno = reg->number; \
4205 info->qualifier = qualifier; \
4206 } while (0)
4207
4208 #define po_imm_nc_or_fail() do { \
4209 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4210 goto failure; \
4211 } while (0)
4212
4213 #define po_imm_or_fail(min, max) do { \
4214 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4215 goto failure; \
4216 if (val < min || val > max) \
4217 { \
4218 set_fatal_syntax_error (_("immediate value out of range "\
4219 #min " to "#max)); \
4220 goto failure; \
4221 } \
4222 } while (0)
4223
4224 #define po_enum_or_fail(array) do { \
4225 if (!parse_enum_string (&str, &val, array, \
4226 ARRAY_SIZE (array), imm_reg_type)) \
4227 goto failure; \
4228 } while (0)
4229
4230 #define po_misc_or_fail(expr) do { \
4231 if (!expr) \
4232 goto failure; \
4233 } while (0)
4234 \f
4235 /* encode the 12-bit imm field of Add/sub immediate */
4236 static inline uint32_t
4237 encode_addsub_imm (uint32_t imm)
4238 {
4239 return imm << 10;
4240 }
4241
4242 /* encode the shift amount field of Add/sub immediate */
4243 static inline uint32_t
4244 encode_addsub_imm_shift_amount (uint32_t cnt)
4245 {
4246 return cnt << 22;
4247 }
4248
4249
4250 /* encode the imm field of Adr instruction */
4251 static inline uint32_t
4252 encode_adr_imm (uint32_t imm)
4253 {
4254 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4255 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4256 }
4257
4258 /* encode the immediate field of Move wide immediate */
4259 static inline uint32_t
4260 encode_movw_imm (uint32_t imm)
4261 {
4262 return imm << 5;
4263 }
4264
4265 /* encode the 26-bit offset of unconditional branch */
4266 static inline uint32_t
4267 encode_branch_ofs_26 (uint32_t ofs)
4268 {
4269 return ofs & ((1 << 26) - 1);
4270 }
4271
4272 /* encode the 19-bit offset of conditional branch and compare & branch */
4273 static inline uint32_t
4274 encode_cond_branch_ofs_19 (uint32_t ofs)
4275 {
4276 return (ofs & ((1 << 19) - 1)) << 5;
4277 }
4278
4279 /* encode the 19-bit offset of ld literal */
4280 static inline uint32_t
4281 encode_ld_lit_ofs_19 (uint32_t ofs)
4282 {
4283 return (ofs & ((1 << 19) - 1)) << 5;
4284 }
4285
4286 /* Encode the 14-bit offset of test & branch. */
4287 static inline uint32_t
4288 encode_tst_branch_ofs_14 (uint32_t ofs)
4289 {
4290 return (ofs & ((1 << 14) - 1)) << 5;
4291 }
4292
4293 /* Encode the 16-bit imm field of svc/hvc/smc. */
4294 static inline uint32_t
4295 encode_svc_imm (uint32_t imm)
4296 {
4297 return imm << 5;
4298 }
4299
4300 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4301 static inline uint32_t
4302 reencode_addsub_switch_add_sub (uint32_t opcode)
4303 {
4304 return opcode ^ (1 << 30);
4305 }
4306
4307 static inline uint32_t
4308 reencode_movzn_to_movz (uint32_t opcode)
4309 {
4310 return opcode | (1 << 30);
4311 }
4312
4313 static inline uint32_t
4314 reencode_movzn_to_movn (uint32_t opcode)
4315 {
4316 return opcode & ~(1 << 30);
4317 }
4318
4319 /* Overall per-instruction processing. */
4320
4321 /* We need to be able to fix up arbitrary expressions in some statements.
4322 This is so that we can handle symbols that are an arbitrary distance from
4323 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4324 which returns part of an address in a form which will be valid for
4325 a data instruction. We do this by pushing the expression into a symbol
4326 in the expr_section, and creating a fix for that. */
4327
4328 static fixS *
4329 fix_new_aarch64 (fragS * frag,
4330 int where,
4331 short int size, expressionS * exp, int pc_rel, int reloc)
4332 {
4333 fixS *new_fix;
4334
4335 switch (exp->X_op)
4336 {
4337 case O_constant:
4338 case O_symbol:
4339 case O_add:
4340 case O_subtract:
4341 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4342 break;
4343
4344 default:
4345 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4346 pc_rel, reloc);
4347 break;
4348 }
4349 return new_fix;
4350 }
4351 \f
4352 /* Diagnostics on operands errors. */
4353
4354 /* By default, output verbose error message.
4355 Disable the verbose error message by -mno-verbose-error. */
4356 static int verbose_error_p = 1;
4357
4358 #ifdef DEBUG_AARCH64
4359 /* N.B. this is only for the purpose of debugging. */
4360 const char* operand_mismatch_kind_names[] =
4361 {
4362 "AARCH64_OPDE_NIL",
4363 "AARCH64_OPDE_RECOVERABLE",
4364 "AARCH64_OPDE_SYNTAX_ERROR",
4365 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4366 "AARCH64_OPDE_INVALID_VARIANT",
4367 "AARCH64_OPDE_OUT_OF_RANGE",
4368 "AARCH64_OPDE_UNALIGNED",
4369 "AARCH64_OPDE_REG_LIST",
4370 "AARCH64_OPDE_OTHER_ERROR",
4371 };
4372 #endif /* DEBUG_AARCH64 */
4373
4374 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4375
4376 When multiple errors of different kinds are found in the same assembly
4377 line, only the error of the highest severity will be picked up for
4378 issuing the diagnostics. */
4379
4380 static inline bfd_boolean
4381 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4382 enum aarch64_operand_error_kind rhs)
4383 {
4384 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4385 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4386 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4387 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4388 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4389 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4390 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4391 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4392 return lhs > rhs;
4393 }
4394
4395 /* Helper routine to get the mnemonic name from the assembly instruction
4396 line; should only be called for the diagnosis purpose, as there is
4397 string copy operation involved, which may affect the runtime
4398 performance if used in elsewhere. */
4399
4400 static const char*
4401 get_mnemonic_name (const char *str)
4402 {
4403 static char mnemonic[32];
4404 char *ptr;
4405
4406 /* Get the first 15 bytes and assume that the full name is included. */
4407 strncpy (mnemonic, str, 31);
4408 mnemonic[31] = '\0';
4409
4410 /* Scan up to the end of the mnemonic, which must end in white space,
4411 '.', or end of string. */
4412 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4413 ;
4414
4415 *ptr = '\0';
4416
4417 /* Append '...' to the truncated long name. */
4418 if (ptr - mnemonic == 31)
4419 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4420
4421 return mnemonic;
4422 }
4423
4424 static void
4425 reset_aarch64_instruction (aarch64_instruction *instruction)
4426 {
4427 memset (instruction, '\0', sizeof (aarch64_instruction));
4428 instruction->reloc.type = BFD_RELOC_UNUSED;
4429 }
4430
4431 /* Data structures storing one user error in the assembly code related to
4432 operands. */
4433
4434 struct operand_error_record
4435 {
4436 const aarch64_opcode *opcode;
4437 aarch64_operand_error detail;
4438 struct operand_error_record *next;
4439 };
4440
4441 typedef struct operand_error_record operand_error_record;
4442
4443 struct operand_errors
4444 {
4445 operand_error_record *head;
4446 operand_error_record *tail;
4447 };
4448
4449 typedef struct operand_errors operand_errors;
4450
4451 /* Top-level data structure reporting user errors for the current line of
4452 the assembly code.
4453 The way md_assemble works is that all opcodes sharing the same mnemonic
4454 name are iterated to find a match to the assembly line. In this data
4455 structure, each of the such opcodes will have one operand_error_record
4456 allocated and inserted. In other words, excessive errors related with
4457 a single opcode are disregarded. */
4458 operand_errors operand_error_report;
4459
4460 /* Free record nodes. */
4461 static operand_error_record *free_opnd_error_record_nodes = NULL;
4462
4463 /* Initialize the data structure that stores the operand mismatch
4464 information on assembling one line of the assembly code. */
4465 static void
4466 init_operand_error_report (void)
4467 {
4468 if (operand_error_report.head != NULL)
4469 {
4470 gas_assert (operand_error_report.tail != NULL);
4471 operand_error_report.tail->next = free_opnd_error_record_nodes;
4472 free_opnd_error_record_nodes = operand_error_report.head;
4473 operand_error_report.head = NULL;
4474 operand_error_report.tail = NULL;
4475 return;
4476 }
4477 gas_assert (operand_error_report.tail == NULL);
4478 }
4479
4480 /* Return TRUE if some operand error has been recorded during the
4481 parsing of the current assembly line using the opcode *OPCODE;
4482 otherwise return FALSE. */
4483 static inline bfd_boolean
4484 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4485 {
4486 operand_error_record *record = operand_error_report.head;
4487 return record && record->opcode == opcode;
4488 }
4489
4490 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4491 OPCODE field is initialized with OPCODE.
4492 N.B. only one record for each opcode, i.e. the maximum of one error is
4493 recorded for each instruction template. */
4494
4495 static void
4496 add_operand_error_record (const operand_error_record* new_record)
4497 {
4498 const aarch64_opcode *opcode = new_record->opcode;
4499 operand_error_record* record = operand_error_report.head;
4500
4501 /* The record may have been created for this opcode. If not, we need
4502 to prepare one. */
4503 if (! opcode_has_operand_error_p (opcode))
4504 {
4505 /* Get one empty record. */
4506 if (free_opnd_error_record_nodes == NULL)
4507 {
4508 record = XNEW (operand_error_record);
4509 }
4510 else
4511 {
4512 record = free_opnd_error_record_nodes;
4513 free_opnd_error_record_nodes = record->next;
4514 }
4515 record->opcode = opcode;
4516 /* Insert at the head. */
4517 record->next = operand_error_report.head;
4518 operand_error_report.head = record;
4519 if (operand_error_report.tail == NULL)
4520 operand_error_report.tail = record;
4521 }
4522 else if (record->detail.kind != AARCH64_OPDE_NIL
4523 && record->detail.index <= new_record->detail.index
4524 && operand_error_higher_severity_p (record->detail.kind,
4525 new_record->detail.kind))
4526 {
4527 /* In the case of multiple errors found on operands related with a
4528 single opcode, only record the error of the leftmost operand and
4529 only if the error is of higher severity. */
4530 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4531 " the existing error %s on operand %d",
4532 operand_mismatch_kind_names[new_record->detail.kind],
4533 new_record->detail.index,
4534 operand_mismatch_kind_names[record->detail.kind],
4535 record->detail.index);
4536 return;
4537 }
4538
4539 record->detail = new_record->detail;
4540 }
4541
4542 static inline void
4543 record_operand_error_info (const aarch64_opcode *opcode,
4544 aarch64_operand_error *error_info)
4545 {
4546 operand_error_record record;
4547 record.opcode = opcode;
4548 record.detail = *error_info;
4549 add_operand_error_record (&record);
4550 }
4551
4552 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4553 error message *ERROR, for operand IDX (count from 0). */
4554
4555 static void
4556 record_operand_error (const aarch64_opcode *opcode, int idx,
4557 enum aarch64_operand_error_kind kind,
4558 const char* error)
4559 {
4560 aarch64_operand_error info;
4561 memset(&info, 0, sizeof (info));
4562 info.index = idx;
4563 info.kind = kind;
4564 info.error = error;
4565 info.non_fatal = FALSE;
4566 record_operand_error_info (opcode, &info);
4567 }
4568
4569 static void
4570 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4571 enum aarch64_operand_error_kind kind,
4572 const char* error, const int *extra_data)
4573 {
4574 aarch64_operand_error info;
4575 info.index = idx;
4576 info.kind = kind;
4577 info.error = error;
4578 info.data[0] = extra_data[0];
4579 info.data[1] = extra_data[1];
4580 info.data[2] = extra_data[2];
4581 info.non_fatal = FALSE;
4582 record_operand_error_info (opcode, &info);
4583 }
4584
4585 static void
4586 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4587 const char* error, int lower_bound,
4588 int upper_bound)
4589 {
4590 int data[3] = {lower_bound, upper_bound, 0};
4591 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4592 error, data);
4593 }
4594
4595 /* Remove the operand error record for *OPCODE. */
4596 static void ATTRIBUTE_UNUSED
4597 remove_operand_error_record (const aarch64_opcode *opcode)
4598 {
4599 if (opcode_has_operand_error_p (opcode))
4600 {
4601 operand_error_record* record = operand_error_report.head;
4602 gas_assert (record != NULL && operand_error_report.tail != NULL);
4603 operand_error_report.head = record->next;
4604 record->next = free_opnd_error_record_nodes;
4605 free_opnd_error_record_nodes = record;
4606 if (operand_error_report.head == NULL)
4607 {
4608 gas_assert (operand_error_report.tail == record);
4609 operand_error_report.tail = NULL;
4610 }
4611 }
4612 }
4613
4614 /* Given the instruction in *INSTR, return the index of the best matched
4615 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4616
4617 Return -1 if there is no qualifier sequence; return the first match
4618 if there is multiple matches found. */
4619
4620 static int
4621 find_best_match (const aarch64_inst *instr,
4622 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4623 {
4624 int i, num_opnds, max_num_matched, idx;
4625
4626 num_opnds = aarch64_num_of_operands (instr->opcode);
4627 if (num_opnds == 0)
4628 {
4629 DEBUG_TRACE ("no operand");
4630 return -1;
4631 }
4632
4633 max_num_matched = 0;
4634 idx = 0;
4635
4636 /* For each pattern. */
4637 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4638 {
4639 int j, num_matched;
4640 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4641
4642 /* Most opcodes has much fewer patterns in the list. */
4643 if (empty_qualifier_sequence_p (qualifiers))
4644 {
4645 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4646 break;
4647 }
4648
4649 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4650 if (*qualifiers == instr->operands[j].qualifier)
4651 ++num_matched;
4652
4653 if (num_matched > max_num_matched)
4654 {
4655 max_num_matched = num_matched;
4656 idx = i;
4657 }
4658 }
4659
4660 DEBUG_TRACE ("return with %d", idx);
4661 return idx;
4662 }
4663
4664 /* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
4665 corresponding operands in *INSTR. */
4666
4667 static inline void
4668 assign_qualifier_sequence (aarch64_inst *instr,
4669 const aarch64_opnd_qualifier_t *qualifiers)
4670 {
4671 int i = 0;
4672 int num_opnds = aarch64_num_of_operands (instr->opcode);
4673 gas_assert (num_opnds);
4674 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4675 instr->operands[i].qualifier = *qualifiers;
4676 }
4677
4678 /* Print operands for the diagnosis purpose. */
4679
4680 static void
4681 print_operands (char *buf, const aarch64_opcode *opcode,
4682 const aarch64_opnd_info *opnds)
4683 {
4684 int i;
4685
4686 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4687 {
4688 char str[128];
4689
4690 /* We regard the opcode operand info more, however we also look into
4691 the inst->operands to support the disassembling of the optional
4692 operand.
4693 The two operand code should be the same in all cases, apart from
4694 when the operand can be optional. */
4695 if (opcode->operands[i] == AARCH64_OPND_NIL
4696 || opnds[i].type == AARCH64_OPND_NIL)
4697 break;
4698
4699 /* Generate the operand string in STR. */
4700 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
4701 NULL);
4702
4703 /* Delimiter. */
4704 if (str[0] != '\0')
4705 strcat (buf, i == 0 ? " " : ", ");
4706
4707 /* Append the operand string. */
4708 strcat (buf, str);
4709 }
4710 }
4711
4712 /* Send to stderr a string as information. */
4713
4714 static void
4715 output_info (const char *format, ...)
4716 {
4717 const char *file;
4718 unsigned int line;
4719 va_list args;
4720
4721 file = as_where (&line);
4722 if (file)
4723 {
4724 if (line != 0)
4725 fprintf (stderr, "%s:%u: ", file, line);
4726 else
4727 fprintf (stderr, "%s: ", file);
4728 }
4729 fprintf (stderr, _("Info: "));
4730 va_start (args, format);
4731 vfprintf (stderr, format, args);
4732 va_end (args);
4733 (void) putc ('\n', stderr);
4734 }
4735
4736 /* Output one operand error record. */
4737
4738 static void
4739 output_operand_error_record (const operand_error_record *record, char *str)
4740 {
4741 const aarch64_operand_error *detail = &record->detail;
4742 int idx = detail->index;
4743 const aarch64_opcode *opcode = record->opcode;
4744 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4745 : AARCH64_OPND_NIL);
4746
4747 typedef void (*handler_t)(const char *format, ...);
4748 handler_t handler = detail->non_fatal ? as_warn : as_bad;
4749
4750 switch (detail->kind)
4751 {
4752 case AARCH64_OPDE_NIL:
4753 gas_assert (0);
4754 break;
4755 case AARCH64_OPDE_SYNTAX_ERROR:
4756 case AARCH64_OPDE_RECOVERABLE:
4757 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4758 case AARCH64_OPDE_OTHER_ERROR:
4759 /* Use the prepared error message if there is, otherwise use the
4760 operand description string to describe the error. */
4761 if (detail->error != NULL)
4762 {
4763 if (idx < 0)
4764 handler (_("%s -- `%s'"), detail->error, str);
4765 else
4766 handler (_("%s at operand %d -- `%s'"),
4767 detail->error, idx + 1, str);
4768 }
4769 else
4770 {
4771 gas_assert (idx >= 0);
4772 handler (_("operand %d must be %s -- `%s'"), idx + 1,
4773 aarch64_get_operand_desc (opd_code), str);
4774 }
4775 break;
4776
4777 case AARCH64_OPDE_INVALID_VARIANT:
4778 handler (_("operand mismatch -- `%s'"), str);
4779 if (verbose_error_p)
4780 {
4781 /* We will try to correct the erroneous instruction and also provide
4782 more information e.g. all other valid variants.
4783
4784 The string representation of the corrected instruction and other
4785 valid variants are generated by
4786
4787 1) obtaining the intermediate representation of the erroneous
4788 instruction;
4789 2) manipulating the IR, e.g. replacing the operand qualifier;
4790 3) printing out the instruction by calling the printer functions
4791 shared with the disassembler.
4792
4793 The limitation of this method is that the exact input assembly
4794 line cannot be accurately reproduced in some cases, for example an
4795 optional operand present in the actual assembly line will be
4796 omitted in the output; likewise for the optional syntax rules,
4797 e.g. the # before the immediate. Another limitation is that the
4798 assembly symbols and relocation operations in the assembly line
4799 currently cannot be printed out in the error report. Last but not
4800 least, when there is other error(s) co-exist with this error, the
4801 'corrected' instruction may be still incorrect, e.g. given
4802 'ldnp h0,h1,[x0,#6]!'
4803 this diagnosis will provide the version:
4804 'ldnp s0,s1,[x0,#6]!'
4805 which is still not right. */
4806 size_t len = strlen (get_mnemonic_name (str));
4807 int i, qlf_idx;
4808 bfd_boolean result;
4809 char buf[2048];
4810 aarch64_inst *inst_base = &inst.base;
4811 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4812
4813 /* Init inst. */
4814 reset_aarch64_instruction (&inst);
4815 inst_base->opcode = opcode;
4816
4817 /* Reset the error report so that there is no side effect on the
4818 following operand parsing. */
4819 init_operand_error_report ();
4820
4821 /* Fill inst. */
4822 result = parse_operands (str + len, opcode)
4823 && programmer_friendly_fixup (&inst);
4824 gas_assert (result);
4825 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4826 NULL, NULL, insn_sequence);
4827 gas_assert (!result);
4828
4829 /* Find the most matched qualifier sequence. */
4830 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4831 gas_assert (qlf_idx > -1);
4832
4833 /* Assign the qualifiers. */
4834 assign_qualifier_sequence (inst_base,
4835 opcode->qualifiers_list[qlf_idx]);
4836
4837 /* Print the hint. */
4838 output_info (_(" did you mean this?"));
4839 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4840 print_operands (buf, opcode, inst_base->operands);
4841 output_info (_(" %s"), buf);
4842
4843 /* Print out other variant(s) if there is any. */
4844 if (qlf_idx != 0 ||
4845 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4846 output_info (_(" other valid variant(s):"));
4847
4848 /* For each pattern. */
4849 qualifiers_list = opcode->qualifiers_list;
4850 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4851 {
4852 /* Most opcodes has much fewer patterns in the list.
4853 First NIL qualifier indicates the end in the list. */
4854 if (empty_qualifier_sequence_p (*qualifiers_list))
4855 break;
4856
4857 if (i != qlf_idx)
4858 {
4859 /* Mnemonics name. */
4860 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4861
4862 /* Assign the qualifiers. */
4863 assign_qualifier_sequence (inst_base, *qualifiers_list);
4864
4865 /* Print instruction. */
4866 print_operands (buf, opcode, inst_base->operands);
4867
4868 output_info (_(" %s"), buf);
4869 }
4870 }
4871 }
4872 break;
4873
4874 case AARCH64_OPDE_UNTIED_OPERAND:
4875 handler (_("operand %d must be the same register as operand 1 -- `%s'"),
4876 detail->index + 1, str);
4877 break;
4878
4879 case AARCH64_OPDE_OUT_OF_RANGE:
4880 if (detail->data[0] != detail->data[1])
4881 handler (_("%s out of range %d to %d at operand %d -- `%s'"),
4882 detail->error ? detail->error : _("immediate value"),
4883 detail->data[0], detail->data[1], idx + 1, str);
4884 else
4885 handler (_("%s must be %d at operand %d -- `%s'"),
4886 detail->error ? detail->error : _("immediate value"),
4887 detail->data[0], idx + 1, str);
4888 break;
4889
4890 case AARCH64_OPDE_REG_LIST:
4891 if (detail->data[0] == 1)
4892 handler (_("invalid number of registers in the list; "
4893 "only 1 register is expected at operand %d -- `%s'"),
4894 idx + 1, str);
4895 else
4896 handler (_("invalid number of registers in the list; "
4897 "%d registers are expected at operand %d -- `%s'"),
4898 detail->data[0], idx + 1, str);
4899 break;
4900
4901 case AARCH64_OPDE_UNALIGNED:
4902 handler (_("immediate value must be a multiple of "
4903 "%d at operand %d -- `%s'"),
4904 detail->data[0], idx + 1, str);
4905 break;
4906
4907 default:
4908 gas_assert (0);
4909 break;
4910 }
4911 }
4912
4913 /* Process and output the error message about the operand mismatching.
4914
4915 When this function is called, the operand error information had
4916 been collected for an assembly line and there will be multiple
4917 errors in the case of multiple instruction templates; output the
4918 error message that most closely describes the problem.
4919
4920 The errors to be printed can be filtered on printing all errors
4921 or only non-fatal errors. This distinction has to be made because
4922 the error buffer may already be filled with fatal errors we don't want to
4923 print due to the different instruction templates. */
4924
4925 static void
4926 output_operand_error_report (char *str, bfd_boolean non_fatal_only)
4927 {
4928 int largest_error_pos;
4929 const char *msg = NULL;
4930 enum aarch64_operand_error_kind kind;
4931 operand_error_record *curr;
4932 operand_error_record *head = operand_error_report.head;
4933 operand_error_record *record = NULL;
4934
4935 /* No error to report. */
4936 if (head == NULL)
4937 return;
4938
4939 gas_assert (head != NULL && operand_error_report.tail != NULL);
4940
4941 /* Only one error. */
4942 if (head == operand_error_report.tail)
4943 {
4944 /* If the only error is a non-fatal one and we don't want to print it,
4945 just exit. */
4946 if (!non_fatal_only || head->detail.non_fatal)
4947 {
4948 DEBUG_TRACE ("single opcode entry with error kind: %s",
4949 operand_mismatch_kind_names[head->detail.kind]);
4950 output_operand_error_record (head, str);
4951 }
4952 return;
4953 }
4954
4955 /* Find the error kind of the highest severity. */
4956 DEBUG_TRACE ("multiple opcode entries with error kind");
4957 kind = AARCH64_OPDE_NIL;
4958 for (curr = head; curr != NULL; curr = curr->next)
4959 {
4960 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4961 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4962 if (operand_error_higher_severity_p (curr->detail.kind, kind)
4963 && (!non_fatal_only || (non_fatal_only && curr->detail.non_fatal)))
4964 kind = curr->detail.kind;
4965 }
4966
4967 gas_assert (kind != AARCH64_OPDE_NIL || non_fatal_only);
4968
4969 /* Pick up one of errors of KIND to report. */
4970 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4971 for (curr = head; curr != NULL; curr = curr->next)
4972 {
4973 /* If we don't want to print non-fatal errors then don't consider them
4974 at all. */
4975 if (curr->detail.kind != kind
4976 || (non_fatal_only && !curr->detail.non_fatal))
4977 continue;
4978 /* If there are multiple errors, pick up the one with the highest
4979 mismatching operand index. In the case of multiple errors with
4980 the equally highest operand index, pick up the first one or the
4981 first one with non-NULL error message. */
4982 if (curr->detail.index > largest_error_pos
4983 || (curr->detail.index == largest_error_pos && msg == NULL
4984 && curr->detail.error != NULL))
4985 {
4986 largest_error_pos = curr->detail.index;
4987 record = curr;
4988 msg = record->detail.error;
4989 }
4990 }
4991
4992 /* The way errors are collected in the back-end is a bit non-intuitive. But
4993 essentially, because each operand template is tried recursively you may
4994 always have errors collected from the previous tried OPND. These are
4995 usually skipped if there is one successful match. However now with the
4996 non-fatal errors we have to ignore those previously collected hard errors
4997 when we're only interested in printing the non-fatal ones. This condition
4998 prevents us from printing errors that are not appropriate, since we did
4999 match a condition, but it also has warnings that it wants to print. */
5000 if (non_fatal_only && !record)
5001 return;
5002
5003 gas_assert (largest_error_pos != -2 && record != NULL);
5004 DEBUG_TRACE ("Pick up error kind %s to report",
5005 operand_mismatch_kind_names[record->detail.kind]);
5006
5007 /* Output. */
5008 output_operand_error_record (record, str);
5009 }
5010 \f
5011 /* Write an AARCH64 instruction to buf - always little-endian. */
5012 static void
5013 put_aarch64_insn (char *buf, uint32_t insn)
5014 {
5015 unsigned char *where = (unsigned char *) buf;
5016 where[0] = insn;
5017 where[1] = insn >> 8;
5018 where[2] = insn >> 16;
5019 where[3] = insn >> 24;
5020 }
5021
5022 static uint32_t
5023 get_aarch64_insn (char *buf)
5024 {
5025 unsigned char *where = (unsigned char *) buf;
5026 uint32_t result;
5027 result = ((where[0] | (where[1] << 8) | (where[2] << 16)
5028 | ((uint32_t) where[3] << 24)));
5029 return result;
5030 }
5031
5032 static void
5033 output_inst (struct aarch64_inst *new_inst)
5034 {
5035 char *to = NULL;
5036
5037 to = frag_more (INSN_SIZE);
5038
5039 frag_now->tc_frag_data.recorded = 1;
5040
5041 put_aarch64_insn (to, inst.base.value);
5042
5043 if (inst.reloc.type != BFD_RELOC_UNUSED)
5044 {
5045 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
5046 INSN_SIZE, &inst.reloc.exp,
5047 inst.reloc.pc_rel,
5048 inst.reloc.type);
5049 DEBUG_TRACE ("Prepared relocation fix up");
5050 /* Don't check the addend value against the instruction size,
5051 that's the job of our code in md_apply_fix(). */
5052 fixp->fx_no_overflow = 1;
5053 if (new_inst != NULL)
5054 fixp->tc_fix_data.inst = new_inst;
5055 if (aarch64_gas_internal_fixup_p ())
5056 {
5057 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
5058 fixp->tc_fix_data.opnd = inst.reloc.opnd;
5059 fixp->fx_addnumber = inst.reloc.flags;
5060 }
5061 }
5062
5063 dwarf2_emit_insn (INSN_SIZE);
5064 }
5065
5066 /* Link together opcodes of the same name. */
5067
5068 struct templates
5069 {
5070 aarch64_opcode *opcode;
5071 struct templates *next;
5072 };
5073
5074 typedef struct templates templates;
5075
5076 static templates *
5077 lookup_mnemonic (const char *start, int len)
5078 {
5079 templates *templ = NULL;
5080
5081 templ = hash_find_n (aarch64_ops_hsh, start, len);
5082 return templ;
5083 }
5084
5085 /* Subroutine of md_assemble, responsible for looking up the primary
5086 opcode from the mnemonic the user wrote. STR points to the
5087 beginning of the mnemonic. */
5088
5089 static templates *
5090 opcode_lookup (char **str)
5091 {
5092 char *end, *base, *dot;
5093 const aarch64_cond *cond;
5094 char condname[16];
5095 int len;
5096
5097 /* Scan up to the end of the mnemonic, which must end in white space,
5098 '.', or end of string. */
5099 dot = 0;
5100 for (base = end = *str; is_part_of_name(*end); end++)
5101 if (*end == '.' && !dot)
5102 dot = end;
5103
5104 if (end == base || dot == base)
5105 return 0;
5106
5107 inst.cond = COND_ALWAYS;
5108
5109 /* Handle a possible condition. */
5110 if (dot)
5111 {
5112 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
5113 if (cond)
5114 {
5115 inst.cond = cond->value;
5116 *str = end;
5117 }
5118 else
5119 {
5120 *str = dot;
5121 return 0;
5122 }
5123 len = dot - base;
5124 }
5125 else
5126 {
5127 *str = end;
5128 len = end - base;
5129 }
5130
5131 if (inst.cond == COND_ALWAYS)
5132 {
5133 /* Look for unaffixed mnemonic. */
5134 return lookup_mnemonic (base, len);
5135 }
5136 else if (len <= 13)
5137 {
5138 /* append ".c" to mnemonic if conditional */
5139 memcpy (condname, base, len);
5140 memcpy (condname + len, ".c", 2);
5141 base = condname;
5142 len += 2;
5143 return lookup_mnemonic (base, len);
5144 }
5145
5146 return NULL;
5147 }
5148
5149 /* Internal helper routine converting a vector_type_el structure *VECTYPE
5150 to a corresponding operand qualifier. */
5151
5152 static inline aarch64_opnd_qualifier_t
5153 vectype_to_qualifier (const struct vector_type_el *vectype)
5154 {
5155 /* Element size in bytes indexed by vector_el_type. */
5156 const unsigned char ele_size[5]
5157 = {1, 2, 4, 8, 16};
5158 const unsigned int ele_base [5] =
5159 {
5160 AARCH64_OPND_QLF_V_4B,
5161 AARCH64_OPND_QLF_V_2H,
5162 AARCH64_OPND_QLF_V_2S,
5163 AARCH64_OPND_QLF_V_1D,
5164 AARCH64_OPND_QLF_V_1Q
5165 };
5166
5167 if (!vectype->defined || vectype->type == NT_invtype)
5168 goto vectype_conversion_fail;
5169
5170 if (vectype->type == NT_zero)
5171 return AARCH64_OPND_QLF_P_Z;
5172 if (vectype->type == NT_merge)
5173 return AARCH64_OPND_QLF_P_M;
5174
5175 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
5176
5177 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
5178 {
5179 /* Special case S_4B. */
5180 if (vectype->type == NT_b && vectype->width == 4)
5181 return AARCH64_OPND_QLF_S_4B;
5182
5183 /* Special case S_2H. */
5184 if (vectype->type == NT_h && vectype->width == 2)
5185 return AARCH64_OPND_QLF_S_2H;
5186
5187 /* Vector element register. */
5188 return AARCH64_OPND_QLF_S_B + vectype->type;
5189 }
5190 else
5191 {
5192 /* Vector register. */
5193 int reg_size = ele_size[vectype->type] * vectype->width;
5194 unsigned offset;
5195 unsigned shift;
5196 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
5197 goto vectype_conversion_fail;
5198
5199 /* The conversion is by calculating the offset from the base operand
5200 qualifier for the vector type. The operand qualifiers are regular
5201 enough that the offset can established by shifting the vector width by
5202 a vector-type dependent amount. */
5203 shift = 0;
5204 if (vectype->type == NT_b)
5205 shift = 3;
5206 else if (vectype->type == NT_h || vectype->type == NT_s)
5207 shift = 2;
5208 else if (vectype->type >= NT_d)
5209 shift = 1;
5210 else
5211 gas_assert (0);
5212
5213 offset = ele_base [vectype->type] + (vectype->width >> shift);
5214 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
5215 && offset <= AARCH64_OPND_QLF_V_1Q);
5216 return offset;
5217 }
5218
5219 vectype_conversion_fail:
5220 first_error (_("bad vector arrangement type"));
5221 return AARCH64_OPND_QLF_NIL;
5222 }
5223
5224 /* Process an optional operand that is found omitted from the assembly line.
5225 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5226 instruction's opcode entry while IDX is the index of this omitted operand.
5227 */
5228
5229 static void
5230 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5231 int idx, aarch64_opnd_info *operand)
5232 {
5233 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5234 gas_assert (optional_operand_p (opcode, idx));
5235 gas_assert (!operand->present);
5236
5237 switch (type)
5238 {
5239 case AARCH64_OPND_Rd:
5240 case AARCH64_OPND_Rn:
5241 case AARCH64_OPND_Rm:
5242 case AARCH64_OPND_Rt:
5243 case AARCH64_OPND_Rt2:
5244 case AARCH64_OPND_Rt_SP:
5245 case AARCH64_OPND_Rs:
5246 case AARCH64_OPND_Ra:
5247 case AARCH64_OPND_Rt_SYS:
5248 case AARCH64_OPND_Rd_SP:
5249 case AARCH64_OPND_Rn_SP:
5250 case AARCH64_OPND_Rm_SP:
5251 case AARCH64_OPND_Fd:
5252 case AARCH64_OPND_Fn:
5253 case AARCH64_OPND_Fm:
5254 case AARCH64_OPND_Fa:
5255 case AARCH64_OPND_Ft:
5256 case AARCH64_OPND_Ft2:
5257 case AARCH64_OPND_Sd:
5258 case AARCH64_OPND_Sn:
5259 case AARCH64_OPND_Sm:
5260 case AARCH64_OPND_Va:
5261 case AARCH64_OPND_Vd:
5262 case AARCH64_OPND_Vn:
5263 case AARCH64_OPND_Vm:
5264 case AARCH64_OPND_VdD1:
5265 case AARCH64_OPND_VnD1:
5266 operand->reg.regno = default_value;
5267 break;
5268
5269 case AARCH64_OPND_Ed:
5270 case AARCH64_OPND_En:
5271 case AARCH64_OPND_Em:
5272 case AARCH64_OPND_Em16:
5273 case AARCH64_OPND_SM3_IMM2:
5274 operand->reglane.regno = default_value;
5275 break;
5276
5277 case AARCH64_OPND_IDX:
5278 case AARCH64_OPND_BIT_NUM:
5279 case AARCH64_OPND_IMMR:
5280 case AARCH64_OPND_IMMS:
5281 case AARCH64_OPND_SHLL_IMM:
5282 case AARCH64_OPND_IMM_VLSL:
5283 case AARCH64_OPND_IMM_VLSR:
5284 case AARCH64_OPND_CCMP_IMM:
5285 case AARCH64_OPND_FBITS:
5286 case AARCH64_OPND_UIMM4:
5287 case AARCH64_OPND_UIMM3_OP1:
5288 case AARCH64_OPND_UIMM3_OP2:
5289 case AARCH64_OPND_IMM:
5290 case AARCH64_OPND_IMM_2:
5291 case AARCH64_OPND_WIDTH:
5292 case AARCH64_OPND_UIMM7:
5293 case AARCH64_OPND_NZCV:
5294 case AARCH64_OPND_SVE_PATTERN:
5295 case AARCH64_OPND_SVE_PRFOP:
5296 operand->imm.value = default_value;
5297 break;
5298
5299 case AARCH64_OPND_SVE_PATTERN_SCALED:
5300 operand->imm.value = default_value;
5301 operand->shifter.kind = AARCH64_MOD_MUL;
5302 operand->shifter.amount = 1;
5303 break;
5304
5305 case AARCH64_OPND_EXCEPTION:
5306 inst.reloc.type = BFD_RELOC_UNUSED;
5307 break;
5308
5309 case AARCH64_OPND_BARRIER_ISB:
5310 operand->barrier = aarch64_barrier_options + default_value;
5311 break;
5312
5313 case AARCH64_OPND_BTI_TARGET:
5314 operand->hint_option = aarch64_hint_options + default_value;
5315 break;
5316
5317 default:
5318 break;
5319 }
5320 }
5321
5322 /* Process the relocation type for move wide instructions.
5323 Return TRUE on success; otherwise return FALSE. */
5324
5325 static bfd_boolean
5326 process_movw_reloc_info (void)
5327 {
5328 int is32;
5329 unsigned shift;
5330
5331 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5332
5333 if (inst.base.opcode->op == OP_MOVK)
5334 switch (inst.reloc.type)
5335 {
5336 case BFD_RELOC_AARCH64_MOVW_G0_S:
5337 case BFD_RELOC_AARCH64_MOVW_G1_S:
5338 case BFD_RELOC_AARCH64_MOVW_G2_S:
5339 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5340 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5341 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5342 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5343 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5344 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5345 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5346 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5347 set_syntax_error
5348 (_("the specified relocation type is not allowed for MOVK"));
5349 return FALSE;
5350 default:
5351 break;
5352 }
5353
5354 switch (inst.reloc.type)
5355 {
5356 case BFD_RELOC_AARCH64_MOVW_G0:
5357 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5358 case BFD_RELOC_AARCH64_MOVW_G0_S:
5359 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5360 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5361 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5362 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5363 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5364 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5365 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5366 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5367 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5368 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5369 shift = 0;
5370 break;
5371 case BFD_RELOC_AARCH64_MOVW_G1:
5372 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5373 case BFD_RELOC_AARCH64_MOVW_G1_S:
5374 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5375 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5376 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5377 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5378 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5379 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5380 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5381 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5382 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5383 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5384 shift = 16;
5385 break;
5386 case BFD_RELOC_AARCH64_MOVW_G2:
5387 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5388 case BFD_RELOC_AARCH64_MOVW_G2_S:
5389 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5390 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5391 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5392 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5393 if (is32)
5394 {
5395 set_fatal_syntax_error
5396 (_("the specified relocation type is not allowed for 32-bit "
5397 "register"));
5398 return FALSE;
5399 }
5400 shift = 32;
5401 break;
5402 case BFD_RELOC_AARCH64_MOVW_G3:
5403 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5404 if (is32)
5405 {
5406 set_fatal_syntax_error
5407 (_("the specified relocation type is not allowed for 32-bit "
5408 "register"));
5409 return FALSE;
5410 }
5411 shift = 48;
5412 break;
5413 default:
5414 /* More cases should be added when more MOVW-related relocation types
5415 are supported in GAS. */
5416 gas_assert (aarch64_gas_internal_fixup_p ());
5417 /* The shift amount should have already been set by the parser. */
5418 return TRUE;
5419 }
5420 inst.base.operands[1].shifter.amount = shift;
5421 return TRUE;
5422 }
5423
5424 /* A primitive log calculator. */
5425
5426 static inline unsigned int
5427 get_logsz (unsigned int size)
5428 {
5429 const unsigned char ls[16] =
5430 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5431 if (size > 16)
5432 {
5433 gas_assert (0);
5434 return -1;
5435 }
5436 gas_assert (ls[size - 1] != (unsigned char)-1);
5437 return ls[size - 1];
5438 }
5439
5440 /* Determine and return the real reloc type code for an instruction
5441 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5442
5443 static inline bfd_reloc_code_real_type
5444 ldst_lo12_determine_real_reloc_type (void)
5445 {
5446 unsigned logsz;
5447 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5448 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5449
5450 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
5451 {
5452 BFD_RELOC_AARCH64_LDST8_LO12,
5453 BFD_RELOC_AARCH64_LDST16_LO12,
5454 BFD_RELOC_AARCH64_LDST32_LO12,
5455 BFD_RELOC_AARCH64_LDST64_LO12,
5456 BFD_RELOC_AARCH64_LDST128_LO12
5457 },
5458 {
5459 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5460 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5461 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5462 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5463 BFD_RELOC_AARCH64_NONE
5464 },
5465 {
5466 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5467 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5468 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5469 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5470 BFD_RELOC_AARCH64_NONE
5471 },
5472 {
5473 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5474 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5475 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5476 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5477 BFD_RELOC_AARCH64_NONE
5478 },
5479 {
5480 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5481 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5482 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5483 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5484 BFD_RELOC_AARCH64_NONE
5485 }
5486 };
5487
5488 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5489 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5490 || (inst.reloc.type
5491 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5492 || (inst.reloc.type
5493 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5494 || (inst.reloc.type
5495 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
5496 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5497
5498 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5499 opd1_qlf =
5500 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5501 1, opd0_qlf, 0);
5502 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5503
5504 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5505 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5506 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5507 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5508 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
5509 gas_assert (logsz <= 3);
5510 else
5511 gas_assert (logsz <= 4);
5512
5513 /* In reloc.c, these pseudo relocation types should be defined in similar
5514 order as above reloc_ldst_lo12 array. Because the array index calculation
5515 below relies on this. */
5516 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5517 }
5518
5519 /* Check whether a register list REGINFO is valid. The registers must be
5520 numbered in increasing order (modulo 32), in increments of one or two.
5521
5522 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5523 increments of two.
5524
5525 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5526
5527 static bfd_boolean
5528 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5529 {
5530 uint32_t i, nb_regs, prev_regno, incr;
5531
5532 nb_regs = 1 + (reginfo & 0x3);
5533 reginfo >>= 2;
5534 prev_regno = reginfo & 0x1f;
5535 incr = accept_alternate ? 2 : 1;
5536
5537 for (i = 1; i < nb_regs; ++i)
5538 {
5539 uint32_t curr_regno;
5540 reginfo >>= 5;
5541 curr_regno = reginfo & 0x1f;
5542 if (curr_regno != ((prev_regno + incr) & 0x1f))
5543 return FALSE;
5544 prev_regno = curr_regno;
5545 }
5546
5547 return TRUE;
5548 }
5549
5550 /* Generic instruction operand parser. This does no encoding and no
5551 semantic validation; it merely squirrels values away in the inst
5552 structure. Returns TRUE or FALSE depending on whether the
5553 specified grammar matched. */
5554
5555 static bfd_boolean
5556 parse_operands (char *str, const aarch64_opcode *opcode)
5557 {
5558 int i;
5559 char *backtrack_pos = 0;
5560 const enum aarch64_opnd *operands = opcode->operands;
5561 aarch64_reg_type imm_reg_type;
5562
5563 clear_error ();
5564 skip_whitespace (str);
5565
5566 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5567 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
5568 else
5569 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5570
5571 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5572 {
5573 int64_t val;
5574 const reg_entry *reg;
5575 int comma_skipped_p = 0;
5576 aarch64_reg_type rtype;
5577 struct vector_type_el vectype;
5578 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5579 aarch64_opnd_info *info = &inst.base.operands[i];
5580 aarch64_reg_type reg_type;
5581
5582 DEBUG_TRACE ("parse operand %d", i);
5583
5584 /* Assign the operand code. */
5585 info->type = operands[i];
5586
5587 if (optional_operand_p (opcode, i))
5588 {
5589 /* Remember where we are in case we need to backtrack. */
5590 gas_assert (!backtrack_pos);
5591 backtrack_pos = str;
5592 }
5593
5594 /* Expect comma between operands; the backtrack mechanism will take
5595 care of cases of omitted optional operand. */
5596 if (i > 0 && ! skip_past_char (&str, ','))
5597 {
5598 set_syntax_error (_("comma expected between operands"));
5599 goto failure;
5600 }
5601 else
5602 comma_skipped_p = 1;
5603
5604 switch (operands[i])
5605 {
5606 case AARCH64_OPND_Rd:
5607 case AARCH64_OPND_Rn:
5608 case AARCH64_OPND_Rm:
5609 case AARCH64_OPND_Rt:
5610 case AARCH64_OPND_Rt2:
5611 case AARCH64_OPND_Rs:
5612 case AARCH64_OPND_Ra:
5613 case AARCH64_OPND_Rt_SYS:
5614 case AARCH64_OPND_PAIRREG:
5615 case AARCH64_OPND_SVE_Rm:
5616 po_int_reg_or_fail (REG_TYPE_R_Z);
5617 break;
5618
5619 case AARCH64_OPND_Rd_SP:
5620 case AARCH64_OPND_Rn_SP:
5621 case AARCH64_OPND_Rt_SP:
5622 case AARCH64_OPND_SVE_Rn_SP:
5623 case AARCH64_OPND_Rm_SP:
5624 po_int_reg_or_fail (REG_TYPE_R_SP);
5625 break;
5626
5627 case AARCH64_OPND_Rm_EXT:
5628 case AARCH64_OPND_Rm_SFT:
5629 po_misc_or_fail (parse_shifter_operand
5630 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5631 ? SHIFTED_ARITH_IMM
5632 : SHIFTED_LOGIC_IMM)));
5633 if (!info->shifter.operator_present)
5634 {
5635 /* Default to LSL if not present. Libopcodes prefers shifter
5636 kind to be explicit. */
5637 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5638 info->shifter.kind = AARCH64_MOD_LSL;
5639 /* For Rm_EXT, libopcodes will carry out further check on whether
5640 or not stack pointer is used in the instruction (Recall that
5641 "the extend operator is not optional unless at least one of
5642 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5643 }
5644 break;
5645
5646 case AARCH64_OPND_Fd:
5647 case AARCH64_OPND_Fn:
5648 case AARCH64_OPND_Fm:
5649 case AARCH64_OPND_Fa:
5650 case AARCH64_OPND_Ft:
5651 case AARCH64_OPND_Ft2:
5652 case AARCH64_OPND_Sd:
5653 case AARCH64_OPND_Sn:
5654 case AARCH64_OPND_Sm:
5655 case AARCH64_OPND_SVE_VZn:
5656 case AARCH64_OPND_SVE_Vd:
5657 case AARCH64_OPND_SVE_Vm:
5658 case AARCH64_OPND_SVE_Vn:
5659 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5660 if (val == PARSE_FAIL)
5661 {
5662 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5663 goto failure;
5664 }
5665 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5666
5667 info->reg.regno = val;
5668 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5669 break;
5670
5671 case AARCH64_OPND_SVE_Pd:
5672 case AARCH64_OPND_SVE_Pg3:
5673 case AARCH64_OPND_SVE_Pg4_5:
5674 case AARCH64_OPND_SVE_Pg4_10:
5675 case AARCH64_OPND_SVE_Pg4_16:
5676 case AARCH64_OPND_SVE_Pm:
5677 case AARCH64_OPND_SVE_Pn:
5678 case AARCH64_OPND_SVE_Pt:
5679 reg_type = REG_TYPE_PN;
5680 goto vector_reg;
5681
5682 case AARCH64_OPND_SVE_Za_5:
5683 case AARCH64_OPND_SVE_Za_16:
5684 case AARCH64_OPND_SVE_Zd:
5685 case AARCH64_OPND_SVE_Zm_5:
5686 case AARCH64_OPND_SVE_Zm_16:
5687 case AARCH64_OPND_SVE_Zn:
5688 case AARCH64_OPND_SVE_Zt:
5689 reg_type = REG_TYPE_ZN;
5690 goto vector_reg;
5691
5692 case AARCH64_OPND_Va:
5693 case AARCH64_OPND_Vd:
5694 case AARCH64_OPND_Vn:
5695 case AARCH64_OPND_Vm:
5696 reg_type = REG_TYPE_VN;
5697 vector_reg:
5698 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5699 if (val == PARSE_FAIL)
5700 {
5701 first_error (_(get_reg_expected_msg (reg_type)));
5702 goto failure;
5703 }
5704 if (vectype.defined & NTA_HASINDEX)
5705 goto failure;
5706
5707 info->reg.regno = val;
5708 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5709 && vectype.type == NT_invtype)
5710 /* Unqualified Pn and Zn registers are allowed in certain
5711 contexts. Rely on F_STRICT qualifier checking to catch
5712 invalid uses. */
5713 info->qualifier = AARCH64_OPND_QLF_NIL;
5714 else
5715 {
5716 info->qualifier = vectype_to_qualifier (&vectype);
5717 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5718 goto failure;
5719 }
5720 break;
5721
5722 case AARCH64_OPND_VdD1:
5723 case AARCH64_OPND_VnD1:
5724 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5725 if (val == PARSE_FAIL)
5726 {
5727 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5728 goto failure;
5729 }
5730 if (vectype.type != NT_d || vectype.index != 1)
5731 {
5732 set_fatal_syntax_error
5733 (_("the top half of a 128-bit FP/SIMD register is expected"));
5734 goto failure;
5735 }
5736 info->reg.regno = val;
5737 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5738 here; it is correct for the purpose of encoding/decoding since
5739 only the register number is explicitly encoded in the related
5740 instructions, although this appears a bit hacky. */
5741 info->qualifier = AARCH64_OPND_QLF_S_D;
5742 break;
5743
5744 case AARCH64_OPND_SVE_Zm3_INDEX:
5745 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5746 case AARCH64_OPND_SVE_Zm3_11_INDEX:
5747 case AARCH64_OPND_SVE_Zm4_11_INDEX:
5748 case AARCH64_OPND_SVE_Zm4_INDEX:
5749 case AARCH64_OPND_SVE_Zn_INDEX:
5750 reg_type = REG_TYPE_ZN;
5751 goto vector_reg_index;
5752
5753 case AARCH64_OPND_Ed:
5754 case AARCH64_OPND_En:
5755 case AARCH64_OPND_Em:
5756 case AARCH64_OPND_Em16:
5757 case AARCH64_OPND_SM3_IMM2:
5758 reg_type = REG_TYPE_VN;
5759 vector_reg_index:
5760 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5761 if (val == PARSE_FAIL)
5762 {
5763 first_error (_(get_reg_expected_msg (reg_type)));
5764 goto failure;
5765 }
5766 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5767 goto failure;
5768
5769 info->reglane.regno = val;
5770 info->reglane.index = vectype.index;
5771 info->qualifier = vectype_to_qualifier (&vectype);
5772 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5773 goto failure;
5774 break;
5775
5776 case AARCH64_OPND_SVE_ZnxN:
5777 case AARCH64_OPND_SVE_ZtxN:
5778 reg_type = REG_TYPE_ZN;
5779 goto vector_reg_list;
5780
5781 case AARCH64_OPND_LVn:
5782 case AARCH64_OPND_LVt:
5783 case AARCH64_OPND_LVt_AL:
5784 case AARCH64_OPND_LEt:
5785 reg_type = REG_TYPE_VN;
5786 vector_reg_list:
5787 if (reg_type == REG_TYPE_ZN
5788 && get_opcode_dependent_value (opcode) == 1
5789 && *str != '{')
5790 {
5791 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5792 if (val == PARSE_FAIL)
5793 {
5794 first_error (_(get_reg_expected_msg (reg_type)));
5795 goto failure;
5796 }
5797 info->reglist.first_regno = val;
5798 info->reglist.num_regs = 1;
5799 }
5800 else
5801 {
5802 val = parse_vector_reg_list (&str, reg_type, &vectype);
5803 if (val == PARSE_FAIL)
5804 goto failure;
5805
5806 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5807 {
5808 set_fatal_syntax_error (_("invalid register list"));
5809 goto failure;
5810 }
5811
5812 if (vectype.width != 0 && *str != ',')
5813 {
5814 set_fatal_syntax_error
5815 (_("expected element type rather than vector type"));
5816 goto failure;
5817 }
5818
5819 info->reglist.first_regno = (val >> 2) & 0x1f;
5820 info->reglist.num_regs = (val & 0x3) + 1;
5821 }
5822 if (operands[i] == AARCH64_OPND_LEt)
5823 {
5824 if (!(vectype.defined & NTA_HASINDEX))
5825 goto failure;
5826 info->reglist.has_index = 1;
5827 info->reglist.index = vectype.index;
5828 }
5829 else
5830 {
5831 if (vectype.defined & NTA_HASINDEX)
5832 goto failure;
5833 if (!(vectype.defined & NTA_HASTYPE))
5834 {
5835 if (reg_type == REG_TYPE_ZN)
5836 set_fatal_syntax_error (_("missing type suffix"));
5837 goto failure;
5838 }
5839 }
5840 info->qualifier = vectype_to_qualifier (&vectype);
5841 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5842 goto failure;
5843 break;
5844
5845 case AARCH64_OPND_CRn:
5846 case AARCH64_OPND_CRm:
5847 {
5848 char prefix = *(str++);
5849 if (prefix != 'c' && prefix != 'C')
5850 goto failure;
5851
5852 po_imm_nc_or_fail ();
5853 if (val > 15)
5854 {
5855 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5856 goto failure;
5857 }
5858 info->qualifier = AARCH64_OPND_QLF_CR;
5859 info->imm.value = val;
5860 break;
5861 }
5862
5863 case AARCH64_OPND_SHLL_IMM:
5864 case AARCH64_OPND_IMM_VLSR:
5865 po_imm_or_fail (1, 64);
5866 info->imm.value = val;
5867 break;
5868
5869 case AARCH64_OPND_CCMP_IMM:
5870 case AARCH64_OPND_SIMM5:
5871 case AARCH64_OPND_FBITS:
5872 case AARCH64_OPND_TME_UIMM16:
5873 case AARCH64_OPND_UIMM4:
5874 case AARCH64_OPND_UIMM4_ADDG:
5875 case AARCH64_OPND_UIMM10:
5876 case AARCH64_OPND_UIMM3_OP1:
5877 case AARCH64_OPND_UIMM3_OP2:
5878 case AARCH64_OPND_IMM_VLSL:
5879 case AARCH64_OPND_IMM:
5880 case AARCH64_OPND_IMM_2:
5881 case AARCH64_OPND_WIDTH:
5882 case AARCH64_OPND_SVE_INV_LIMM:
5883 case AARCH64_OPND_SVE_LIMM:
5884 case AARCH64_OPND_SVE_LIMM_MOV:
5885 case AARCH64_OPND_SVE_SHLIMM_PRED:
5886 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5887 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
5888 case AARCH64_OPND_SVE_SHRIMM_PRED:
5889 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5890 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
5891 case AARCH64_OPND_SVE_SIMM5:
5892 case AARCH64_OPND_SVE_SIMM5B:
5893 case AARCH64_OPND_SVE_SIMM6:
5894 case AARCH64_OPND_SVE_SIMM8:
5895 case AARCH64_OPND_SVE_UIMM3:
5896 case AARCH64_OPND_SVE_UIMM7:
5897 case AARCH64_OPND_SVE_UIMM8:
5898 case AARCH64_OPND_SVE_UIMM8_53:
5899 case AARCH64_OPND_IMM_ROT1:
5900 case AARCH64_OPND_IMM_ROT2:
5901 case AARCH64_OPND_IMM_ROT3:
5902 case AARCH64_OPND_SVE_IMM_ROT1:
5903 case AARCH64_OPND_SVE_IMM_ROT2:
5904 case AARCH64_OPND_SVE_IMM_ROT3:
5905 po_imm_nc_or_fail ();
5906 info->imm.value = val;
5907 break;
5908
5909 case AARCH64_OPND_SVE_AIMM:
5910 case AARCH64_OPND_SVE_ASIMM:
5911 po_imm_nc_or_fail ();
5912 info->imm.value = val;
5913 skip_whitespace (str);
5914 if (skip_past_comma (&str))
5915 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5916 else
5917 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5918 break;
5919
5920 case AARCH64_OPND_SVE_PATTERN:
5921 po_enum_or_fail (aarch64_sve_pattern_array);
5922 info->imm.value = val;
5923 break;
5924
5925 case AARCH64_OPND_SVE_PATTERN_SCALED:
5926 po_enum_or_fail (aarch64_sve_pattern_array);
5927 info->imm.value = val;
5928 if (skip_past_comma (&str)
5929 && !parse_shift (&str, info, SHIFTED_MUL))
5930 goto failure;
5931 if (!info->shifter.operator_present)
5932 {
5933 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5934 info->shifter.kind = AARCH64_MOD_MUL;
5935 info->shifter.amount = 1;
5936 }
5937 break;
5938
5939 case AARCH64_OPND_SVE_PRFOP:
5940 po_enum_or_fail (aarch64_sve_prfop_array);
5941 info->imm.value = val;
5942 break;
5943
5944 case AARCH64_OPND_UIMM7:
5945 po_imm_or_fail (0, 127);
5946 info->imm.value = val;
5947 break;
5948
5949 case AARCH64_OPND_IDX:
5950 case AARCH64_OPND_MASK:
5951 case AARCH64_OPND_BIT_NUM:
5952 case AARCH64_OPND_IMMR:
5953 case AARCH64_OPND_IMMS:
5954 po_imm_or_fail (0, 63);
5955 info->imm.value = val;
5956 break;
5957
5958 case AARCH64_OPND_IMM0:
5959 po_imm_nc_or_fail ();
5960 if (val != 0)
5961 {
5962 set_fatal_syntax_error (_("immediate zero expected"));
5963 goto failure;
5964 }
5965 info->imm.value = 0;
5966 break;
5967
5968 case AARCH64_OPND_FPIMM0:
5969 {
5970 int qfloat;
5971 bfd_boolean res1 = FALSE, res2 = FALSE;
5972 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5973 it is probably not worth the effort to support it. */
5974 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5975 imm_reg_type))
5976 && (error_p ()
5977 || !(res2 = parse_constant_immediate (&str, &val,
5978 imm_reg_type))))
5979 goto failure;
5980 if ((res1 && qfloat == 0) || (res2 && val == 0))
5981 {
5982 info->imm.value = 0;
5983 info->imm.is_fp = 1;
5984 break;
5985 }
5986 set_fatal_syntax_error (_("immediate zero expected"));
5987 goto failure;
5988 }
5989
5990 case AARCH64_OPND_IMM_MOV:
5991 {
5992 char *saved = str;
5993 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5994 reg_name_p (str, REG_TYPE_VN))
5995 goto failure;
5996 str = saved;
5997 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5998 GE_OPT_PREFIX, 1));
5999 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
6000 later. fix_mov_imm_insn will try to determine a machine
6001 instruction (MOVZ, MOVN or ORR) for it and will issue an error
6002 message if the immediate cannot be moved by a single
6003 instruction. */
6004 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6005 inst.base.operands[i].skip = 1;
6006 }
6007 break;
6008
6009 case AARCH64_OPND_SIMD_IMM:
6010 case AARCH64_OPND_SIMD_IMM_SFT:
6011 if (! parse_big_immediate (&str, &val, imm_reg_type))
6012 goto failure;
6013 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6014 /* addr_off_p */ 0,
6015 /* need_libopcodes_p */ 1,
6016 /* skip_p */ 1);
6017 /* Parse shift.
6018 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
6019 shift, we don't check it here; we leave the checking to
6020 the libopcodes (operand_general_constraint_met_p). By
6021 doing this, we achieve better diagnostics. */
6022 if (skip_past_comma (&str)
6023 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
6024 goto failure;
6025 if (!info->shifter.operator_present
6026 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
6027 {
6028 /* Default to LSL if not present. Libopcodes prefers shifter
6029 kind to be explicit. */
6030 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6031 info->shifter.kind = AARCH64_MOD_LSL;
6032 }
6033 break;
6034
6035 case AARCH64_OPND_FPIMM:
6036 case AARCH64_OPND_SIMD_FPIMM:
6037 case AARCH64_OPND_SVE_FPIMM8:
6038 {
6039 int qfloat;
6040 bfd_boolean dp_p;
6041
6042 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6043 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
6044 || !aarch64_imm_float_p (qfloat))
6045 {
6046 if (!error_p ())
6047 set_fatal_syntax_error (_("invalid floating-point"
6048 " constant"));
6049 goto failure;
6050 }
6051 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
6052 inst.base.operands[i].imm.is_fp = 1;
6053 }
6054 break;
6055
6056 case AARCH64_OPND_SVE_I1_HALF_ONE:
6057 case AARCH64_OPND_SVE_I1_HALF_TWO:
6058 case AARCH64_OPND_SVE_I1_ZERO_ONE:
6059 {
6060 int qfloat;
6061 bfd_boolean dp_p;
6062
6063 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6064 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
6065 {
6066 if (!error_p ())
6067 set_fatal_syntax_error (_("invalid floating-point"
6068 " constant"));
6069 goto failure;
6070 }
6071 inst.base.operands[i].imm.value = qfloat;
6072 inst.base.operands[i].imm.is_fp = 1;
6073 }
6074 break;
6075
6076 case AARCH64_OPND_LIMM:
6077 po_misc_or_fail (parse_shifter_operand (&str, info,
6078 SHIFTED_LOGIC_IMM));
6079 if (info->shifter.operator_present)
6080 {
6081 set_fatal_syntax_error
6082 (_("shift not allowed for bitmask immediate"));
6083 goto failure;
6084 }
6085 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6086 /* addr_off_p */ 0,
6087 /* need_libopcodes_p */ 1,
6088 /* skip_p */ 1);
6089 break;
6090
6091 case AARCH64_OPND_AIMM:
6092 if (opcode->op == OP_ADD)
6093 /* ADD may have relocation types. */
6094 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
6095 SHIFTED_ARITH_IMM));
6096 else
6097 po_misc_or_fail (parse_shifter_operand (&str, info,
6098 SHIFTED_ARITH_IMM));
6099 switch (inst.reloc.type)
6100 {
6101 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6102 info->shifter.amount = 12;
6103 break;
6104 case BFD_RELOC_UNUSED:
6105 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
6106 if (info->shifter.kind != AARCH64_MOD_NONE)
6107 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
6108 inst.reloc.pc_rel = 0;
6109 break;
6110 default:
6111 break;
6112 }
6113 info->imm.value = 0;
6114 if (!info->shifter.operator_present)
6115 {
6116 /* Default to LSL if not present. Libopcodes prefers shifter
6117 kind to be explicit. */
6118 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6119 info->shifter.kind = AARCH64_MOD_LSL;
6120 }
6121 break;
6122
6123 case AARCH64_OPND_HALF:
6124 {
6125 /* #<imm16> or relocation. */
6126 int internal_fixup_p;
6127 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
6128 if (internal_fixup_p)
6129 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
6130 skip_whitespace (str);
6131 if (skip_past_comma (&str))
6132 {
6133 /* {, LSL #<shift>} */
6134 if (! aarch64_gas_internal_fixup_p ())
6135 {
6136 set_fatal_syntax_error (_("can't mix relocation modifier "
6137 "with explicit shift"));
6138 goto failure;
6139 }
6140 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
6141 }
6142 else
6143 inst.base.operands[i].shifter.amount = 0;
6144 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
6145 inst.base.operands[i].imm.value = 0;
6146 if (! process_movw_reloc_info ())
6147 goto failure;
6148 }
6149 break;
6150
6151 case AARCH64_OPND_EXCEPTION:
6152 case AARCH64_OPND_UNDEFINED:
6153 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
6154 imm_reg_type));
6155 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6156 /* addr_off_p */ 0,
6157 /* need_libopcodes_p */ 0,
6158 /* skip_p */ 1);
6159 break;
6160
6161 case AARCH64_OPND_NZCV:
6162 {
6163 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
6164 if (nzcv != NULL)
6165 {
6166 str += 4;
6167 info->imm.value = nzcv->value;
6168 break;
6169 }
6170 po_imm_or_fail (0, 15);
6171 info->imm.value = val;
6172 }
6173 break;
6174
6175 case AARCH64_OPND_COND:
6176 case AARCH64_OPND_COND1:
6177 {
6178 char *start = str;
6179 do
6180 str++;
6181 while (ISALPHA (*str));
6182 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
6183 if (info->cond == NULL)
6184 {
6185 set_syntax_error (_("invalid condition"));
6186 goto failure;
6187 }
6188 else if (operands[i] == AARCH64_OPND_COND1
6189 && (info->cond->value & 0xe) == 0xe)
6190 {
6191 /* Do not allow AL or NV. */
6192 set_default_error ();
6193 goto failure;
6194 }
6195 }
6196 break;
6197
6198 case AARCH64_OPND_ADDR_ADRP:
6199 po_misc_or_fail (parse_adrp (&str));
6200 /* Clear the value as operand needs to be relocated. */
6201 info->imm.value = 0;
6202 break;
6203
6204 case AARCH64_OPND_ADDR_PCREL14:
6205 case AARCH64_OPND_ADDR_PCREL19:
6206 case AARCH64_OPND_ADDR_PCREL21:
6207 case AARCH64_OPND_ADDR_PCREL26:
6208 po_misc_or_fail (parse_address (&str, info));
6209 if (!info->addr.pcrel)
6210 {
6211 set_syntax_error (_("invalid pc-relative address"));
6212 goto failure;
6213 }
6214 if (inst.gen_lit_pool
6215 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
6216 {
6217 /* Only permit "=value" in the literal load instructions.
6218 The literal will be generated by programmer_friendly_fixup. */
6219 set_syntax_error (_("invalid use of \"=immediate\""));
6220 goto failure;
6221 }
6222 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
6223 {
6224 set_syntax_error (_("unrecognized relocation suffix"));
6225 goto failure;
6226 }
6227 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
6228 {
6229 info->imm.value = inst.reloc.exp.X_add_number;
6230 inst.reloc.type = BFD_RELOC_UNUSED;
6231 }
6232 else
6233 {
6234 info->imm.value = 0;
6235 if (inst.reloc.type == BFD_RELOC_UNUSED)
6236 switch (opcode->iclass)
6237 {
6238 case compbranch:
6239 case condbranch:
6240 /* e.g. CBZ or B.COND */
6241 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6242 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6243 break;
6244 case testbranch:
6245 /* e.g. TBZ */
6246 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6247 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6248 break;
6249 case branch_imm:
6250 /* e.g. B or BL */
6251 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6252 inst.reloc.type =
6253 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6254 : BFD_RELOC_AARCH64_JUMP26;
6255 break;
6256 case loadlit:
6257 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6258 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6259 break;
6260 case pcreladdr:
6261 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6262 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6263 break;
6264 default:
6265 gas_assert (0);
6266 abort ();
6267 }
6268 inst.reloc.pc_rel = 1;
6269 }
6270 break;
6271
6272 case AARCH64_OPND_ADDR_SIMPLE:
6273 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
6274 {
6275 /* [<Xn|SP>{, #<simm>}] */
6276 char *start = str;
6277 /* First use the normal address-parsing routines, to get
6278 the usual syntax errors. */
6279 po_misc_or_fail (parse_address (&str, info));
6280 if (info->addr.pcrel || info->addr.offset.is_reg
6281 || !info->addr.preind || info->addr.postind
6282 || info->addr.writeback)
6283 {
6284 set_syntax_error (_("invalid addressing mode"));
6285 goto failure;
6286 }
6287
6288 /* Then retry, matching the specific syntax of these addresses. */
6289 str = start;
6290 po_char_or_fail ('[');
6291 po_reg_or_fail (REG_TYPE_R64_SP);
6292 /* Accept optional ", #0". */
6293 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6294 && skip_past_char (&str, ','))
6295 {
6296 skip_past_char (&str, '#');
6297 if (! skip_past_char (&str, '0'))
6298 {
6299 set_fatal_syntax_error
6300 (_("the optional immediate offset can only be 0"));
6301 goto failure;
6302 }
6303 }
6304 po_char_or_fail (']');
6305 break;
6306 }
6307
6308 case AARCH64_OPND_ADDR_REGOFF:
6309 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
6310 po_misc_or_fail (parse_address (&str, info));
6311 regoff_addr:
6312 if (info->addr.pcrel || !info->addr.offset.is_reg
6313 || !info->addr.preind || info->addr.postind
6314 || info->addr.writeback)
6315 {
6316 set_syntax_error (_("invalid addressing mode"));
6317 goto failure;
6318 }
6319 if (!info->shifter.operator_present)
6320 {
6321 /* Default to LSL if not present. Libopcodes prefers shifter
6322 kind to be explicit. */
6323 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6324 info->shifter.kind = AARCH64_MOD_LSL;
6325 }
6326 /* Qualifier to be deduced by libopcodes. */
6327 break;
6328
6329 case AARCH64_OPND_ADDR_SIMM7:
6330 po_misc_or_fail (parse_address (&str, info));
6331 if (info->addr.pcrel || info->addr.offset.is_reg
6332 || (!info->addr.preind && !info->addr.postind))
6333 {
6334 set_syntax_error (_("invalid addressing mode"));
6335 goto failure;
6336 }
6337 if (inst.reloc.type != BFD_RELOC_UNUSED)
6338 {
6339 set_syntax_error (_("relocation not allowed"));
6340 goto failure;
6341 }
6342 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6343 /* addr_off_p */ 1,
6344 /* need_libopcodes_p */ 1,
6345 /* skip_p */ 0);
6346 break;
6347
6348 case AARCH64_OPND_ADDR_SIMM9:
6349 case AARCH64_OPND_ADDR_SIMM9_2:
6350 case AARCH64_OPND_ADDR_SIMM11:
6351 case AARCH64_OPND_ADDR_SIMM13:
6352 po_misc_or_fail (parse_address (&str, info));
6353 if (info->addr.pcrel || info->addr.offset.is_reg
6354 || (!info->addr.preind && !info->addr.postind)
6355 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6356 && info->addr.writeback))
6357 {
6358 set_syntax_error (_("invalid addressing mode"));
6359 goto failure;
6360 }
6361 if (inst.reloc.type != BFD_RELOC_UNUSED)
6362 {
6363 set_syntax_error (_("relocation not allowed"));
6364 goto failure;
6365 }
6366 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6367 /* addr_off_p */ 1,
6368 /* need_libopcodes_p */ 1,
6369 /* skip_p */ 0);
6370 break;
6371
6372 case AARCH64_OPND_ADDR_SIMM10:
6373 case AARCH64_OPND_ADDR_OFFSET:
6374 po_misc_or_fail (parse_address (&str, info));
6375 if (info->addr.pcrel || info->addr.offset.is_reg
6376 || !info->addr.preind || info->addr.postind)
6377 {
6378 set_syntax_error (_("invalid addressing mode"));
6379 goto failure;
6380 }
6381 if (inst.reloc.type != BFD_RELOC_UNUSED)
6382 {
6383 set_syntax_error (_("relocation not allowed"));
6384 goto failure;
6385 }
6386 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6387 /* addr_off_p */ 1,
6388 /* need_libopcodes_p */ 1,
6389 /* skip_p */ 0);
6390 break;
6391
6392 case AARCH64_OPND_ADDR_UIMM12:
6393 po_misc_or_fail (parse_address (&str, info));
6394 if (info->addr.pcrel || info->addr.offset.is_reg
6395 || !info->addr.preind || info->addr.writeback)
6396 {
6397 set_syntax_error (_("invalid addressing mode"));
6398 goto failure;
6399 }
6400 if (inst.reloc.type == BFD_RELOC_UNUSED)
6401 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6402 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6403 || (inst.reloc.type
6404 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6405 || (inst.reloc.type
6406 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6407 || (inst.reloc.type
6408 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6409 || (inst.reloc.type
6410 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
6411 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6412 /* Leave qualifier to be determined by libopcodes. */
6413 break;
6414
6415 case AARCH64_OPND_SIMD_ADDR_POST:
6416 /* [<Xn|SP>], <Xm|#<amount>> */
6417 po_misc_or_fail (parse_address (&str, info));
6418 if (!info->addr.postind || !info->addr.writeback)
6419 {
6420 set_syntax_error (_("invalid addressing mode"));
6421 goto failure;
6422 }
6423 if (!info->addr.offset.is_reg)
6424 {
6425 if (inst.reloc.exp.X_op == O_constant)
6426 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6427 else
6428 {
6429 set_fatal_syntax_error
6430 (_("writeback value must be an immediate constant"));
6431 goto failure;
6432 }
6433 }
6434 /* No qualifier. */
6435 break;
6436
6437 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
6438 case AARCH64_OPND_SVE_ADDR_RI_S4x32:
6439 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6440 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6441 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6442 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6443 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6444 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6445 case AARCH64_OPND_SVE_ADDR_RI_U6:
6446 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6447 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6448 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6449 /* [X<n>{, #imm, MUL VL}]
6450 [X<n>{, #imm}]
6451 but recognizing SVE registers. */
6452 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6453 &offset_qualifier));
6454 if (base_qualifier != AARCH64_OPND_QLF_X)
6455 {
6456 set_syntax_error (_("invalid addressing mode"));
6457 goto failure;
6458 }
6459 sve_regimm:
6460 if (info->addr.pcrel || info->addr.offset.is_reg
6461 || !info->addr.preind || info->addr.writeback)
6462 {
6463 set_syntax_error (_("invalid addressing mode"));
6464 goto failure;
6465 }
6466 if (inst.reloc.type != BFD_RELOC_UNUSED
6467 || inst.reloc.exp.X_op != O_constant)
6468 {
6469 /* Make sure this has priority over
6470 "invalid addressing mode". */
6471 set_fatal_syntax_error (_("constant offset required"));
6472 goto failure;
6473 }
6474 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6475 break;
6476
6477 case AARCH64_OPND_SVE_ADDR_R:
6478 /* [<Xn|SP>{, <R><m>}]
6479 but recognizing SVE registers. */
6480 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6481 &offset_qualifier));
6482 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6483 {
6484 offset_qualifier = AARCH64_OPND_QLF_X;
6485 info->addr.offset.is_reg = 1;
6486 info->addr.offset.regno = 31;
6487 }
6488 else if (base_qualifier != AARCH64_OPND_QLF_X
6489 || offset_qualifier != AARCH64_OPND_QLF_X)
6490 {
6491 set_syntax_error (_("invalid addressing mode"));
6492 goto failure;
6493 }
6494 goto regoff_addr;
6495
6496 case AARCH64_OPND_SVE_ADDR_RR:
6497 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6498 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6499 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6500 case AARCH64_OPND_SVE_ADDR_RX:
6501 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6502 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6503 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6504 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6505 but recognizing SVE registers. */
6506 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6507 &offset_qualifier));
6508 if (base_qualifier != AARCH64_OPND_QLF_X
6509 || offset_qualifier != AARCH64_OPND_QLF_X)
6510 {
6511 set_syntax_error (_("invalid addressing mode"));
6512 goto failure;
6513 }
6514 goto regoff_addr;
6515
6516 case AARCH64_OPND_SVE_ADDR_RZ:
6517 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6518 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6519 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6520 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6521 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6522 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6523 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6524 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6525 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6526 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6527 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6528 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6529 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6530 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6531 &offset_qualifier));
6532 if (base_qualifier != AARCH64_OPND_QLF_X
6533 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6534 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6535 {
6536 set_syntax_error (_("invalid addressing mode"));
6537 goto failure;
6538 }
6539 info->qualifier = offset_qualifier;
6540 goto regoff_addr;
6541
6542 case AARCH64_OPND_SVE_ADDR_ZX:
6543 /* [Zn.<T>{, <Xm>}]. */
6544 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6545 &offset_qualifier));
6546 /* Things to check:
6547 base_qualifier either S_S or S_D
6548 offset_qualifier must be X
6549 */
6550 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6551 && base_qualifier != AARCH64_OPND_QLF_S_D)
6552 || offset_qualifier != AARCH64_OPND_QLF_X)
6553 {
6554 set_syntax_error (_("invalid addressing mode"));
6555 goto failure;
6556 }
6557 info->qualifier = base_qualifier;
6558 if (!info->addr.offset.is_reg || info->addr.pcrel
6559 || !info->addr.preind || info->addr.writeback
6560 || info->shifter.operator_present != 0)
6561 {
6562 set_syntax_error (_("invalid addressing mode"));
6563 goto failure;
6564 }
6565 info->shifter.kind = AARCH64_MOD_LSL;
6566 break;
6567
6568
6569 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6570 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6571 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6572 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6573 /* [Z<n>.<T>{, #imm}] */
6574 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6575 &offset_qualifier));
6576 if (base_qualifier != AARCH64_OPND_QLF_S_S
6577 && base_qualifier != AARCH64_OPND_QLF_S_D)
6578 {
6579 set_syntax_error (_("invalid addressing mode"));
6580 goto failure;
6581 }
6582 info->qualifier = base_qualifier;
6583 goto sve_regimm;
6584
6585 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6586 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6587 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6588 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6589 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6590
6591 We don't reject:
6592
6593 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6594
6595 here since we get better error messages by leaving it to
6596 the qualifier checking routines. */
6597 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6598 &offset_qualifier));
6599 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6600 && base_qualifier != AARCH64_OPND_QLF_S_D)
6601 || offset_qualifier != base_qualifier)
6602 {
6603 set_syntax_error (_("invalid addressing mode"));
6604 goto failure;
6605 }
6606 info->qualifier = base_qualifier;
6607 goto regoff_addr;
6608
6609 case AARCH64_OPND_SYSREG:
6610 {
6611 uint32_t sysreg_flags;
6612 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
6613 &sysreg_flags)) == PARSE_FAIL)
6614 {
6615 set_syntax_error (_("unknown or missing system register name"));
6616 goto failure;
6617 }
6618 inst.base.operands[i].sysreg.value = val;
6619 inst.base.operands[i].sysreg.flags = sysreg_flags;
6620 break;
6621 }
6622
6623 case AARCH64_OPND_PSTATEFIELD:
6624 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1, NULL))
6625 == PARSE_FAIL)
6626 {
6627 set_syntax_error (_("unknown or missing PSTATE field name"));
6628 goto failure;
6629 }
6630 inst.base.operands[i].pstatefield = val;
6631 break;
6632
6633 case AARCH64_OPND_SYSREG_IC:
6634 inst.base.operands[i].sysins_op =
6635 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6636 goto sys_reg_ins;
6637
6638 case AARCH64_OPND_SYSREG_DC:
6639 inst.base.operands[i].sysins_op =
6640 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6641 goto sys_reg_ins;
6642
6643 case AARCH64_OPND_SYSREG_AT:
6644 inst.base.operands[i].sysins_op =
6645 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6646 goto sys_reg_ins;
6647
6648 case AARCH64_OPND_SYSREG_SR:
6649 inst.base.operands[i].sysins_op =
6650 parse_sys_ins_reg (&str, aarch64_sys_regs_sr_hsh);
6651 goto sys_reg_ins;
6652
6653 case AARCH64_OPND_SYSREG_TLBI:
6654 inst.base.operands[i].sysins_op =
6655 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6656 sys_reg_ins:
6657 if (inst.base.operands[i].sysins_op == NULL)
6658 {
6659 set_fatal_syntax_error ( _("unknown or missing operation name"));
6660 goto failure;
6661 }
6662 break;
6663
6664 case AARCH64_OPND_BARRIER:
6665 case AARCH64_OPND_BARRIER_ISB:
6666 val = parse_barrier (&str);
6667 if (val != PARSE_FAIL
6668 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6669 {
6670 /* ISB only accepts options name 'sy'. */
6671 set_syntax_error
6672 (_("the specified option is not accepted in ISB"));
6673 /* Turn off backtrack as this optional operand is present. */
6674 backtrack_pos = 0;
6675 goto failure;
6676 }
6677 /* This is an extension to accept a 0..15 immediate. */
6678 if (val == PARSE_FAIL)
6679 po_imm_or_fail (0, 15);
6680 info->barrier = aarch64_barrier_options + val;
6681 break;
6682
6683 case AARCH64_OPND_PRFOP:
6684 val = parse_pldop (&str);
6685 /* This is an extension to accept a 0..31 immediate. */
6686 if (val == PARSE_FAIL)
6687 po_imm_or_fail (0, 31);
6688 inst.base.operands[i].prfop = aarch64_prfops + val;
6689 break;
6690
6691 case AARCH64_OPND_BARRIER_PSB:
6692 val = parse_barrier_psb (&str, &(info->hint_option));
6693 if (val == PARSE_FAIL)
6694 goto failure;
6695 break;
6696
6697 case AARCH64_OPND_BTI_TARGET:
6698 val = parse_bti_operand (&str, &(info->hint_option));
6699 if (val == PARSE_FAIL)
6700 goto failure;
6701 break;
6702
6703 default:
6704 as_fatal (_("unhandled operand code %d"), operands[i]);
6705 }
6706
6707 /* If we get here, this operand was successfully parsed. */
6708 inst.base.operands[i].present = 1;
6709 continue;
6710
6711 failure:
6712 /* The parse routine should already have set the error, but in case
6713 not, set a default one here. */
6714 if (! error_p ())
6715 set_default_error ();
6716
6717 if (! backtrack_pos)
6718 goto parse_operands_return;
6719
6720 {
6721 /* We reach here because this operand is marked as optional, and
6722 either no operand was supplied or the operand was supplied but it
6723 was syntactically incorrect. In the latter case we report an
6724 error. In the former case we perform a few more checks before
6725 dropping through to the code to insert the default operand. */
6726
6727 char *tmp = backtrack_pos;
6728 char endchar = END_OF_INSN;
6729
6730 if (i != (aarch64_num_of_operands (opcode) - 1))
6731 endchar = ',';
6732 skip_past_char (&tmp, ',');
6733
6734 if (*tmp != endchar)
6735 /* The user has supplied an operand in the wrong format. */
6736 goto parse_operands_return;
6737
6738 /* Make sure there is not a comma before the optional operand.
6739 For example the fifth operand of 'sys' is optional:
6740
6741 sys #0,c0,c0,#0, <--- wrong
6742 sys #0,c0,c0,#0 <--- correct. */
6743 if (comma_skipped_p && i && endchar == END_OF_INSN)
6744 {
6745 set_fatal_syntax_error
6746 (_("unexpected comma before the omitted optional operand"));
6747 goto parse_operands_return;
6748 }
6749 }
6750
6751 /* Reaching here means we are dealing with an optional operand that is
6752 omitted from the assembly line. */
6753 gas_assert (optional_operand_p (opcode, i));
6754 info->present = 0;
6755 process_omitted_operand (operands[i], opcode, i, info);
6756
6757 /* Try again, skipping the optional operand at backtrack_pos. */
6758 str = backtrack_pos;
6759 backtrack_pos = 0;
6760
6761 /* Clear any error record after the omitted optional operand has been
6762 successfully handled. */
6763 clear_error ();
6764 }
6765
6766 /* Check if we have parsed all the operands. */
6767 if (*str != '\0' && ! error_p ())
6768 {
6769 /* Set I to the index of the last present operand; this is
6770 for the purpose of diagnostics. */
6771 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6772 ;
6773 set_fatal_syntax_error
6774 (_("unexpected characters following instruction"));
6775 }
6776
6777 parse_operands_return:
6778
6779 if (error_p ())
6780 {
6781 DEBUG_TRACE ("parsing FAIL: %s - %s",
6782 operand_mismatch_kind_names[get_error_kind ()],
6783 get_error_message ());
6784 /* Record the operand error properly; this is useful when there
6785 are multiple instruction templates for a mnemonic name, so that
6786 later on, we can select the error that most closely describes
6787 the problem. */
6788 record_operand_error (opcode, i, get_error_kind (),
6789 get_error_message ());
6790 return FALSE;
6791 }
6792 else
6793 {
6794 DEBUG_TRACE ("parsing SUCCESS");
6795 return TRUE;
6796 }
6797 }
6798
6799 /* It does some fix-up to provide some programmer friendly feature while
6800 keeping the libopcodes happy, i.e. libopcodes only accepts
6801 the preferred architectural syntax.
6802 Return FALSE if there is any failure; otherwise return TRUE. */
6803
6804 static bfd_boolean
6805 programmer_friendly_fixup (aarch64_instruction *instr)
6806 {
6807 aarch64_inst *base = &instr->base;
6808 const aarch64_opcode *opcode = base->opcode;
6809 enum aarch64_op op = opcode->op;
6810 aarch64_opnd_info *operands = base->operands;
6811
6812 DEBUG_TRACE ("enter");
6813
6814 switch (opcode->iclass)
6815 {
6816 case testbranch:
6817 /* TBNZ Xn|Wn, #uimm6, label
6818 Test and Branch Not Zero: conditionally jumps to label if bit number
6819 uimm6 in register Xn is not zero. The bit number implies the width of
6820 the register, which may be written and should be disassembled as Wn if
6821 uimm is less than 32. */
6822 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6823 {
6824 if (operands[1].imm.value >= 32)
6825 {
6826 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6827 0, 31);
6828 return FALSE;
6829 }
6830 operands[0].qualifier = AARCH64_OPND_QLF_X;
6831 }
6832 break;
6833 case loadlit:
6834 /* LDR Wt, label | =value
6835 As a convenience assemblers will typically permit the notation
6836 "=value" in conjunction with the pc-relative literal load instructions
6837 to automatically place an immediate value or symbolic address in a
6838 nearby literal pool and generate a hidden label which references it.
6839 ISREG has been set to 0 in the case of =value. */
6840 if (instr->gen_lit_pool
6841 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6842 {
6843 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6844 if (op == OP_LDRSW_LIT)
6845 size = 4;
6846 if (instr->reloc.exp.X_op != O_constant
6847 && instr->reloc.exp.X_op != O_big
6848 && instr->reloc.exp.X_op != O_symbol)
6849 {
6850 record_operand_error (opcode, 1,
6851 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6852 _("constant expression expected"));
6853 return FALSE;
6854 }
6855 if (! add_to_lit_pool (&instr->reloc.exp, size))
6856 {
6857 record_operand_error (opcode, 1,
6858 AARCH64_OPDE_OTHER_ERROR,
6859 _("literal pool insertion failed"));
6860 return FALSE;
6861 }
6862 }
6863 break;
6864 case log_shift:
6865 case bitfield:
6866 /* UXT[BHW] Wd, Wn
6867 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6868 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6869 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6870 A programmer-friendly assembler should accept a destination Xd in
6871 place of Wd, however that is not the preferred form for disassembly.
6872 */
6873 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6874 && operands[1].qualifier == AARCH64_OPND_QLF_W
6875 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6876 operands[0].qualifier = AARCH64_OPND_QLF_W;
6877 break;
6878
6879 case addsub_ext:
6880 {
6881 /* In the 64-bit form, the final register operand is written as Wm
6882 for all but the (possibly omitted) UXTX/LSL and SXTX
6883 operators.
6884 As a programmer-friendly assembler, we accept e.g.
6885 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6886 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6887 int idx = aarch64_operand_index (opcode->operands,
6888 AARCH64_OPND_Rm_EXT);
6889 gas_assert (idx == 1 || idx == 2);
6890 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6891 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6892 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6893 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6894 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6895 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6896 }
6897 break;
6898
6899 default:
6900 break;
6901 }
6902
6903 DEBUG_TRACE ("exit with SUCCESS");
6904 return TRUE;
6905 }
6906
6907 /* Check for loads and stores that will cause unpredictable behavior. */
6908
6909 static void
6910 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6911 {
6912 aarch64_inst *base = &instr->base;
6913 const aarch64_opcode *opcode = base->opcode;
6914 const aarch64_opnd_info *opnds = base->operands;
6915 switch (opcode->iclass)
6916 {
6917 case ldst_pos:
6918 case ldst_imm9:
6919 case ldst_imm10:
6920 case ldst_unscaled:
6921 case ldst_unpriv:
6922 /* Loading/storing the base register is unpredictable if writeback. */
6923 if ((aarch64_get_operand_class (opnds[0].type)
6924 == AARCH64_OPND_CLASS_INT_REG)
6925 && opnds[0].reg.regno == opnds[1].addr.base_regno
6926 && opnds[1].addr.base_regno != REG_SP
6927 /* Exempt STG/STZG/ST2G/STZ2G. */
6928 && !(opnds[1].type == AARCH64_OPND_ADDR_SIMM13)
6929 && opnds[1].addr.writeback)
6930 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6931 break;
6932
6933 case ldstpair_off:
6934 case ldstnapair_offs:
6935 case ldstpair_indexed:
6936 /* Loading/storing the base register is unpredictable if writeback. */
6937 if ((aarch64_get_operand_class (opnds[0].type)
6938 == AARCH64_OPND_CLASS_INT_REG)
6939 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6940 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6941 && opnds[2].addr.base_regno != REG_SP
6942 /* Exempt STGP. */
6943 && !(opnds[2].type == AARCH64_OPND_ADDR_SIMM11)
6944 && opnds[2].addr.writeback)
6945 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6946 /* Load operations must load different registers. */
6947 if ((opcode->opcode & (1 << 22))
6948 && opnds[0].reg.regno == opnds[1].reg.regno)
6949 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6950 break;
6951
6952 case ldstexcl:
6953 /* It is unpredictable if the destination and status registers are the
6954 same. */
6955 if ((aarch64_get_operand_class (opnds[0].type)
6956 == AARCH64_OPND_CLASS_INT_REG)
6957 && (aarch64_get_operand_class (opnds[1].type)
6958 == AARCH64_OPND_CLASS_INT_REG)
6959 && (opnds[0].reg.regno == opnds[1].reg.regno
6960 || opnds[0].reg.regno == opnds[2].reg.regno))
6961 as_warn (_("unpredictable: identical transfer and status registers"
6962 " --`%s'"),
6963 str);
6964
6965 break;
6966
6967 default:
6968 break;
6969 }
6970 }
6971
6972 static void
6973 force_automatic_sequence_close (void)
6974 {
6975 if (now_instr_sequence.instr)
6976 {
6977 as_warn (_("previous `%s' sequence has not been closed"),
6978 now_instr_sequence.instr->opcode->name);
6979 init_insn_sequence (NULL, &now_instr_sequence);
6980 }
6981 }
6982
6983 /* A wrapper function to interface with libopcodes on encoding and
6984 record the error message if there is any.
6985
6986 Return TRUE on success; otherwise return FALSE. */
6987
6988 static bfd_boolean
6989 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6990 aarch64_insn *code)
6991 {
6992 aarch64_operand_error error_info;
6993 memset (&error_info, '\0', sizeof (error_info));
6994 error_info.kind = AARCH64_OPDE_NIL;
6995 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info, insn_sequence)
6996 && !error_info.non_fatal)
6997 return TRUE;
6998
6999 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
7000 record_operand_error_info (opcode, &error_info);
7001 return error_info.non_fatal;
7002 }
7003
7004 #ifdef DEBUG_AARCH64
7005 static inline void
7006 dump_opcode_operands (const aarch64_opcode *opcode)
7007 {
7008 int i = 0;
7009 while (opcode->operands[i] != AARCH64_OPND_NIL)
7010 {
7011 aarch64_verbose ("\t\t opnd%d: %s", i,
7012 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
7013 ? aarch64_get_operand_name (opcode->operands[i])
7014 : aarch64_get_operand_desc (opcode->operands[i]));
7015 ++i;
7016 }
7017 }
7018 #endif /* DEBUG_AARCH64 */
7019
7020 /* This is the guts of the machine-dependent assembler. STR points to a
7021 machine dependent instruction. This function is supposed to emit
7022 the frags/bytes it assembles to. */
7023
7024 void
7025 md_assemble (char *str)
7026 {
7027 char *p = str;
7028 templates *template;
7029 aarch64_opcode *opcode;
7030 aarch64_inst *inst_base;
7031 unsigned saved_cond;
7032
7033 /* Align the previous label if needed. */
7034 if (last_label_seen != NULL)
7035 {
7036 symbol_set_frag (last_label_seen, frag_now);
7037 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
7038 S_SET_SEGMENT (last_label_seen, now_seg);
7039 }
7040
7041 /* Update the current insn_sequence from the segment. */
7042 insn_sequence = &seg_info (now_seg)->tc_segment_info_data.insn_sequence;
7043
7044 inst.reloc.type = BFD_RELOC_UNUSED;
7045
7046 DEBUG_TRACE ("\n\n");
7047 DEBUG_TRACE ("==============================");
7048 DEBUG_TRACE ("Enter md_assemble with %s", str);
7049
7050 template = opcode_lookup (&p);
7051 if (!template)
7052 {
7053 /* It wasn't an instruction, but it might be a register alias of
7054 the form alias .req reg directive. */
7055 if (!create_register_alias (str, p))
7056 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
7057 str);
7058 return;
7059 }
7060
7061 skip_whitespace (p);
7062 if (*p == ',')
7063 {
7064 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
7065 get_mnemonic_name (str), str);
7066 return;
7067 }
7068
7069 init_operand_error_report ();
7070
7071 /* Sections are assumed to start aligned. In executable section, there is no
7072 MAP_DATA symbol pending. So we only align the address during
7073 MAP_DATA --> MAP_INSN transition.
7074 For other sections, this is not guaranteed. */
7075 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
7076 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
7077 frag_align_code (2, 0);
7078
7079 saved_cond = inst.cond;
7080 reset_aarch64_instruction (&inst);
7081 inst.cond = saved_cond;
7082
7083 /* Iterate through all opcode entries with the same mnemonic name. */
7084 do
7085 {
7086 opcode = template->opcode;
7087
7088 DEBUG_TRACE ("opcode %s found", opcode->name);
7089 #ifdef DEBUG_AARCH64
7090 if (debug_dump)
7091 dump_opcode_operands (opcode);
7092 #endif /* DEBUG_AARCH64 */
7093
7094 mapping_state (MAP_INSN);
7095
7096 inst_base = &inst.base;
7097 inst_base->opcode = opcode;
7098
7099 /* Truly conditionally executed instructions, e.g. b.cond. */
7100 if (opcode->flags & F_COND)
7101 {
7102 gas_assert (inst.cond != COND_ALWAYS);
7103 inst_base->cond = get_cond_from_value (inst.cond);
7104 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
7105 }
7106 else if (inst.cond != COND_ALWAYS)
7107 {
7108 /* It shouldn't arrive here, where the assembly looks like a
7109 conditional instruction but the found opcode is unconditional. */
7110 gas_assert (0);
7111 continue;
7112 }
7113
7114 if (parse_operands (p, opcode)
7115 && programmer_friendly_fixup (&inst)
7116 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
7117 {
7118 /* Check that this instruction is supported for this CPU. */
7119 if (!opcode->avariant
7120 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
7121 {
7122 as_bad (_("selected processor does not support `%s'"), str);
7123 return;
7124 }
7125
7126 warn_unpredictable_ldst (&inst, str);
7127
7128 if (inst.reloc.type == BFD_RELOC_UNUSED
7129 || !inst.reloc.need_libopcodes_p)
7130 output_inst (NULL);
7131 else
7132 {
7133 /* If there is relocation generated for the instruction,
7134 store the instruction information for the future fix-up. */
7135 struct aarch64_inst *copy;
7136 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
7137 copy = XNEW (struct aarch64_inst);
7138 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
7139 output_inst (copy);
7140 }
7141
7142 /* Issue non-fatal messages if any. */
7143 output_operand_error_report (str, TRUE);
7144 return;
7145 }
7146
7147 template = template->next;
7148 if (template != NULL)
7149 {
7150 reset_aarch64_instruction (&inst);
7151 inst.cond = saved_cond;
7152 }
7153 }
7154 while (template != NULL);
7155
7156 /* Issue the error messages if any. */
7157 output_operand_error_report (str, FALSE);
7158 }
7159
7160 /* Various frobbings of labels and their addresses. */
7161
7162 void
7163 aarch64_start_line_hook (void)
7164 {
7165 last_label_seen = NULL;
7166 }
7167
7168 void
7169 aarch64_frob_label (symbolS * sym)
7170 {
7171 last_label_seen = sym;
7172
7173 dwarf2_emit_label (sym);
7174 }
7175
7176 void
7177 aarch64_frob_section (asection *sec ATTRIBUTE_UNUSED)
7178 {
7179 /* Check to see if we have a block to close. */
7180 force_automatic_sequence_close ();
7181 }
7182
7183 int
7184 aarch64_data_in_code (void)
7185 {
7186 if (!strncmp (input_line_pointer + 1, "data:", 5))
7187 {
7188 *input_line_pointer = '/';
7189 input_line_pointer += 5;
7190 *input_line_pointer = 0;
7191 return 1;
7192 }
7193
7194 return 0;
7195 }
7196
7197 char *
7198 aarch64_canonicalize_symbol_name (char *name)
7199 {
7200 int len;
7201
7202 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
7203 *(name + len - 5) = 0;
7204
7205 return name;
7206 }
7207 \f
7208 /* Table of all register names defined by default. The user can
7209 define additional names with .req. Note that all register names
7210 should appear in both upper and lowercase variants. Some registers
7211 also have mixed-case names. */
7212
7213 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
7214 #define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
7215 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
7216 #define REGSET16(p,t) \
7217 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
7218 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
7219 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
7220 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7221 #define REGSET31(p,t) \
7222 REGSET16(p, t), \
7223 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
7224 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
7225 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
7226 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
7227 #define REGSET(p,t) \
7228 REGSET31(p,t), REGNUM(p,31,t)
7229
7230 /* These go into aarch64_reg_hsh hash-table. */
7231 static const reg_entry reg_names[] = {
7232 /* Integer registers. */
7233 REGSET31 (x, R_64), REGSET31 (X, R_64),
7234 REGSET31 (w, R_32), REGSET31 (W, R_32),
7235
7236 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
7237 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
7238 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
7239 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
7240 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
7241 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
7242
7243 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
7244 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
7245
7246 /* Floating-point single precision registers. */
7247 REGSET (s, FP_S), REGSET (S, FP_S),
7248
7249 /* Floating-point double precision registers. */
7250 REGSET (d, FP_D), REGSET (D, FP_D),
7251
7252 /* Floating-point half precision registers. */
7253 REGSET (h, FP_H), REGSET (H, FP_H),
7254
7255 /* Floating-point byte precision registers. */
7256 REGSET (b, FP_B), REGSET (B, FP_B),
7257
7258 /* Floating-point quad precision registers. */
7259 REGSET (q, FP_Q), REGSET (Q, FP_Q),
7260
7261 /* FP/SIMD registers. */
7262 REGSET (v, VN), REGSET (V, VN),
7263
7264 /* SVE vector registers. */
7265 REGSET (z, ZN), REGSET (Z, ZN),
7266
7267 /* SVE predicate registers. */
7268 REGSET16 (p, PN), REGSET16 (P, PN)
7269 };
7270
7271 #undef REGDEF
7272 #undef REGDEF_ALIAS
7273 #undef REGNUM
7274 #undef REGSET16
7275 #undef REGSET31
7276 #undef REGSET
7277
7278 #define N 1
7279 #define n 0
7280 #define Z 1
7281 #define z 0
7282 #define C 1
7283 #define c 0
7284 #define V 1
7285 #define v 0
7286 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
7287 static const asm_nzcv nzcv_names[] = {
7288 {"nzcv", B (n, z, c, v)},
7289 {"nzcV", B (n, z, c, V)},
7290 {"nzCv", B (n, z, C, v)},
7291 {"nzCV", B (n, z, C, V)},
7292 {"nZcv", B (n, Z, c, v)},
7293 {"nZcV", B (n, Z, c, V)},
7294 {"nZCv", B (n, Z, C, v)},
7295 {"nZCV", B (n, Z, C, V)},
7296 {"Nzcv", B (N, z, c, v)},
7297 {"NzcV", B (N, z, c, V)},
7298 {"NzCv", B (N, z, C, v)},
7299 {"NzCV", B (N, z, C, V)},
7300 {"NZcv", B (N, Z, c, v)},
7301 {"NZcV", B (N, Z, c, V)},
7302 {"NZCv", B (N, Z, C, v)},
7303 {"NZCV", B (N, Z, C, V)}
7304 };
7305
7306 #undef N
7307 #undef n
7308 #undef Z
7309 #undef z
7310 #undef C
7311 #undef c
7312 #undef V
7313 #undef v
7314 #undef B
7315 \f
7316 /* MD interface: bits in the object file. */
7317
7318 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
7319 for use in the a.out file, and stores them in the array pointed to by buf.
7320 This knows about the endian-ness of the target machine and does
7321 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
7322 2 (short) and 4 (long) Floating numbers are put out as a series of
7323 LITTLENUMS (shorts, here at least). */
7324
7325 void
7326 md_number_to_chars (char *buf, valueT val, int n)
7327 {
7328 if (target_big_endian)
7329 number_to_chars_bigendian (buf, val, n);
7330 else
7331 number_to_chars_littleendian (buf, val, n);
7332 }
7333
7334 /* MD interface: Sections. */
7335
7336 /* Estimate the size of a frag before relaxing. Assume everything fits in
7337 4 bytes. */
7338
7339 int
7340 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7341 {
7342 fragp->fr_var = 4;
7343 return 4;
7344 }
7345
7346 /* Round up a section size to the appropriate boundary. */
7347
7348 valueT
7349 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7350 {
7351 return size;
7352 }
7353
7354 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
7355 of an rs_align_code fragment.
7356
7357 Here we fill the frag with the appropriate info for padding the
7358 output stream. The resulting frag will consist of a fixed (fr_fix)
7359 and of a repeating (fr_var) part.
7360
7361 The fixed content is always emitted before the repeating content and
7362 these two parts are used as follows in constructing the output:
7363 - the fixed part will be used to align to a valid instruction word
7364 boundary, in case that we start at a misaligned address; as no
7365 executable instruction can live at the misaligned location, we
7366 simply fill with zeros;
7367 - the variable part will be used to cover the remaining padding and
7368 we fill using the AArch64 NOP instruction.
7369
7370 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7371 enough storage space for up to 3 bytes for padding the back to a valid
7372 instruction alignment and exactly 4 bytes to store the NOP pattern. */
7373
7374 void
7375 aarch64_handle_align (fragS * fragP)
7376 {
7377 /* NOP = d503201f */
7378 /* AArch64 instructions are always little-endian. */
7379 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
7380
7381 int bytes, fix, noop_size;
7382 char *p;
7383
7384 if (fragP->fr_type != rs_align_code)
7385 return;
7386
7387 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7388 p = fragP->fr_literal + fragP->fr_fix;
7389
7390 #ifdef OBJ_ELF
7391 gas_assert (fragP->tc_frag_data.recorded);
7392 #endif
7393
7394 noop_size = sizeof (aarch64_noop);
7395
7396 fix = bytes & (noop_size - 1);
7397 if (fix)
7398 {
7399 #ifdef OBJ_ELF
7400 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7401 #endif
7402 memset (p, 0, fix);
7403 p += fix;
7404 fragP->fr_fix += fix;
7405 }
7406
7407 if (noop_size)
7408 memcpy (p, aarch64_noop, noop_size);
7409 fragP->fr_var = noop_size;
7410 }
7411
7412 /* Perform target specific initialisation of a frag.
7413 Note - despite the name this initialisation is not done when the frag
7414 is created, but only when its type is assigned. A frag can be created
7415 and used a long time before its type is set, so beware of assuming that
7416 this initialisation is performed first. */
7417
7418 #ifndef OBJ_ELF
7419 void
7420 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7421 int max_chars ATTRIBUTE_UNUSED)
7422 {
7423 }
7424
7425 #else /* OBJ_ELF is defined. */
7426 void
7427 aarch64_init_frag (fragS * fragP, int max_chars)
7428 {
7429 /* Record a mapping symbol for alignment frags. We will delete this
7430 later if the alignment ends up empty. */
7431 if (!fragP->tc_frag_data.recorded)
7432 fragP->tc_frag_data.recorded = 1;
7433
7434 /* PR 21809: Do not set a mapping state for debug sections
7435 - it just confuses other tools. */
7436 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
7437 return;
7438
7439 switch (fragP->fr_type)
7440 {
7441 case rs_align_test:
7442 case rs_fill:
7443 mapping_state_2 (MAP_DATA, max_chars);
7444 break;
7445 case rs_align:
7446 /* PR 20364: We can get alignment frags in code sections,
7447 so do not just assume that we should use the MAP_DATA state. */
7448 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7449 break;
7450 case rs_align_code:
7451 mapping_state_2 (MAP_INSN, max_chars);
7452 break;
7453 default:
7454 break;
7455 }
7456 }
7457 \f
7458 /* Initialize the DWARF-2 unwind information for this procedure. */
7459
7460 void
7461 tc_aarch64_frame_initial_instructions (void)
7462 {
7463 cfi_add_CFA_def_cfa (REG_SP, 0);
7464 }
7465 #endif /* OBJ_ELF */
7466
7467 /* Convert REGNAME to a DWARF-2 register number. */
7468
7469 int
7470 tc_aarch64_regname_to_dw2regnum (char *regname)
7471 {
7472 const reg_entry *reg = parse_reg (&regname);
7473 if (reg == NULL)
7474 return -1;
7475
7476 switch (reg->type)
7477 {
7478 case REG_TYPE_SP_32:
7479 case REG_TYPE_SP_64:
7480 case REG_TYPE_R_32:
7481 case REG_TYPE_R_64:
7482 return reg->number;
7483
7484 case REG_TYPE_FP_B:
7485 case REG_TYPE_FP_H:
7486 case REG_TYPE_FP_S:
7487 case REG_TYPE_FP_D:
7488 case REG_TYPE_FP_Q:
7489 return reg->number + 64;
7490
7491 default:
7492 break;
7493 }
7494 return -1;
7495 }
7496
7497 /* Implement DWARF2_ADDR_SIZE. */
7498
7499 int
7500 aarch64_dwarf2_addr_size (void)
7501 {
7502 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7503 if (ilp32_p)
7504 return 4;
7505 #endif
7506 return bfd_arch_bits_per_address (stdoutput) / 8;
7507 }
7508
7509 /* MD interface: Symbol and relocation handling. */
7510
7511 /* Return the address within the segment that a PC-relative fixup is
7512 relative to. For AArch64 PC-relative fixups applied to instructions
7513 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7514
7515 long
7516 md_pcrel_from_section (fixS * fixP, segT seg)
7517 {
7518 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7519
7520 /* If this is pc-relative and we are going to emit a relocation
7521 then we just want to put out any pipeline compensation that the linker
7522 will need. Otherwise we want to use the calculated base. */
7523 if (fixP->fx_pcrel
7524 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7525 || aarch64_force_relocation (fixP)))
7526 base = 0;
7527
7528 /* AArch64 should be consistent for all pc-relative relocations. */
7529 return base + AARCH64_PCREL_OFFSET;
7530 }
7531
7532 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7533 Otherwise we have no need to default values of symbols. */
7534
7535 symbolS *
7536 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7537 {
7538 #ifdef OBJ_ELF
7539 if (name[0] == '_' && name[1] == 'G'
7540 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7541 {
7542 if (!GOT_symbol)
7543 {
7544 if (symbol_find (name))
7545 as_bad (_("GOT already in the symbol table"));
7546
7547 GOT_symbol = symbol_new (name, undefined_section,
7548 (valueT) 0, &zero_address_frag);
7549 }
7550
7551 return GOT_symbol;
7552 }
7553 #endif
7554
7555 return 0;
7556 }
7557
7558 /* Return non-zero if the indicated VALUE has overflowed the maximum
7559 range expressible by a unsigned number with the indicated number of
7560 BITS. */
7561
7562 static bfd_boolean
7563 unsigned_overflow (valueT value, unsigned bits)
7564 {
7565 valueT lim;
7566 if (bits >= sizeof (valueT) * 8)
7567 return FALSE;
7568 lim = (valueT) 1 << bits;
7569 return (value >= lim);
7570 }
7571
7572
7573 /* Return non-zero if the indicated VALUE has overflowed the maximum
7574 range expressible by an signed number with the indicated number of
7575 BITS. */
7576
7577 static bfd_boolean
7578 signed_overflow (offsetT value, unsigned bits)
7579 {
7580 offsetT lim;
7581 if (bits >= sizeof (offsetT) * 8)
7582 return FALSE;
7583 lim = (offsetT) 1 << (bits - 1);
7584 return (value < -lim || value >= lim);
7585 }
7586
7587 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7588 unsigned immediate offset load/store instruction, try to encode it as
7589 an unscaled, 9-bit, signed immediate offset load/store instruction.
7590 Return TRUE if it is successful; otherwise return FALSE.
7591
7592 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7593 in response to the standard LDR/STR mnemonics when the immediate offset is
7594 unambiguous, i.e. when it is negative or unaligned. */
7595
7596 static bfd_boolean
7597 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7598 {
7599 int idx;
7600 enum aarch64_op new_op;
7601 const aarch64_opcode *new_opcode;
7602
7603 gas_assert (instr->opcode->iclass == ldst_pos);
7604
7605 switch (instr->opcode->op)
7606 {
7607 case OP_LDRB_POS:new_op = OP_LDURB; break;
7608 case OP_STRB_POS: new_op = OP_STURB; break;
7609 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7610 case OP_LDRH_POS: new_op = OP_LDURH; break;
7611 case OP_STRH_POS: new_op = OP_STURH; break;
7612 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7613 case OP_LDR_POS: new_op = OP_LDUR; break;
7614 case OP_STR_POS: new_op = OP_STUR; break;
7615 case OP_LDRF_POS: new_op = OP_LDURV; break;
7616 case OP_STRF_POS: new_op = OP_STURV; break;
7617 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7618 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7619 default: new_op = OP_NIL; break;
7620 }
7621
7622 if (new_op == OP_NIL)
7623 return FALSE;
7624
7625 new_opcode = aarch64_get_opcode (new_op);
7626 gas_assert (new_opcode != NULL);
7627
7628 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7629 instr->opcode->op, new_opcode->op);
7630
7631 aarch64_replace_opcode (instr, new_opcode);
7632
7633 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7634 qualifier matching may fail because the out-of-date qualifier will
7635 prevent the operand being updated with a new and correct qualifier. */
7636 idx = aarch64_operand_index (instr->opcode->operands,
7637 AARCH64_OPND_ADDR_SIMM9);
7638 gas_assert (idx == 1);
7639 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7640
7641 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7642
7643 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL,
7644 insn_sequence))
7645 return FALSE;
7646
7647 return TRUE;
7648 }
7649
7650 /* Called by fix_insn to fix a MOV immediate alias instruction.
7651
7652 Operand for a generic move immediate instruction, which is an alias
7653 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7654 a 32-bit/64-bit immediate value into general register. An assembler error
7655 shall result if the immediate cannot be created by a single one of these
7656 instructions. If there is a choice, then to ensure reversability an
7657 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7658
7659 static void
7660 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7661 {
7662 const aarch64_opcode *opcode;
7663
7664 /* Need to check if the destination is SP/ZR. The check has to be done
7665 before any aarch64_replace_opcode. */
7666 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7667 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7668
7669 instr->operands[1].imm.value = value;
7670 instr->operands[1].skip = 0;
7671
7672 if (try_mov_wide_p)
7673 {
7674 /* Try the MOVZ alias. */
7675 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7676 aarch64_replace_opcode (instr, opcode);
7677 if (aarch64_opcode_encode (instr->opcode, instr,
7678 &instr->value, NULL, NULL, insn_sequence))
7679 {
7680 put_aarch64_insn (buf, instr->value);
7681 return;
7682 }
7683 /* Try the MOVK alias. */
7684 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7685 aarch64_replace_opcode (instr, opcode);
7686 if (aarch64_opcode_encode (instr->opcode, instr,
7687 &instr->value, NULL, NULL, insn_sequence))
7688 {
7689 put_aarch64_insn (buf, instr->value);
7690 return;
7691 }
7692 }
7693
7694 if (try_mov_bitmask_p)
7695 {
7696 /* Try the ORR alias. */
7697 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7698 aarch64_replace_opcode (instr, opcode);
7699 if (aarch64_opcode_encode (instr->opcode, instr,
7700 &instr->value, NULL, NULL, insn_sequence))
7701 {
7702 put_aarch64_insn (buf, instr->value);
7703 return;
7704 }
7705 }
7706
7707 as_bad_where (fixP->fx_file, fixP->fx_line,
7708 _("immediate cannot be moved by a single instruction"));
7709 }
7710
7711 /* An instruction operand which is immediate related may have symbol used
7712 in the assembly, e.g.
7713
7714 mov w0, u32
7715 .set u32, 0x00ffff00
7716
7717 At the time when the assembly instruction is parsed, a referenced symbol,
7718 like 'u32' in the above example may not have been seen; a fixS is created
7719 in such a case and is handled here after symbols have been resolved.
7720 Instruction is fixed up with VALUE using the information in *FIXP plus
7721 extra information in FLAGS.
7722
7723 This function is called by md_apply_fix to fix up instructions that need
7724 a fix-up described above but does not involve any linker-time relocation. */
7725
7726 static void
7727 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7728 {
7729 int idx;
7730 uint32_t insn;
7731 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7732 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7733 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7734
7735 if (new_inst)
7736 {
7737 /* Now the instruction is about to be fixed-up, so the operand that
7738 was previously marked as 'ignored' needs to be unmarked in order
7739 to get the encoding done properly. */
7740 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7741 new_inst->operands[idx].skip = 0;
7742 }
7743
7744 gas_assert (opnd != AARCH64_OPND_NIL);
7745
7746 switch (opnd)
7747 {
7748 case AARCH64_OPND_EXCEPTION:
7749 case AARCH64_OPND_UNDEFINED:
7750 if (unsigned_overflow (value, 16))
7751 as_bad_where (fixP->fx_file, fixP->fx_line,
7752 _("immediate out of range"));
7753 insn = get_aarch64_insn (buf);
7754 insn |= (opnd == AARCH64_OPND_EXCEPTION) ? encode_svc_imm (value) : value;
7755 put_aarch64_insn (buf, insn);
7756 break;
7757
7758 case AARCH64_OPND_AIMM:
7759 /* ADD or SUB with immediate.
7760 NOTE this assumes we come here with a add/sub shifted reg encoding
7761 3 322|2222|2 2 2 21111 111111
7762 1 098|7654|3 2 1 09876 543210 98765 43210
7763 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7764 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7765 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7766 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7767 ->
7768 3 322|2222|2 2 221111111111
7769 1 098|7654|3 2 109876543210 98765 43210
7770 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7771 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7772 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7773 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7774 Fields sf Rn Rd are already set. */
7775 insn = get_aarch64_insn (buf);
7776 if (value < 0)
7777 {
7778 /* Add <-> sub. */
7779 insn = reencode_addsub_switch_add_sub (insn);
7780 value = -value;
7781 }
7782
7783 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7784 && unsigned_overflow (value, 12))
7785 {
7786 /* Try to shift the value by 12 to make it fit. */
7787 if (((value >> 12) << 12) == value
7788 && ! unsigned_overflow (value, 12 + 12))
7789 {
7790 value >>= 12;
7791 insn |= encode_addsub_imm_shift_amount (1);
7792 }
7793 }
7794
7795 if (unsigned_overflow (value, 12))
7796 as_bad_where (fixP->fx_file, fixP->fx_line,
7797 _("immediate out of range"));
7798
7799 insn |= encode_addsub_imm (value);
7800
7801 put_aarch64_insn (buf, insn);
7802 break;
7803
7804 case AARCH64_OPND_SIMD_IMM:
7805 case AARCH64_OPND_SIMD_IMM_SFT:
7806 case AARCH64_OPND_LIMM:
7807 /* Bit mask immediate. */
7808 gas_assert (new_inst != NULL);
7809 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7810 new_inst->operands[idx].imm.value = value;
7811 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7812 &new_inst->value, NULL, NULL, insn_sequence))
7813 put_aarch64_insn (buf, new_inst->value);
7814 else
7815 as_bad_where (fixP->fx_file, fixP->fx_line,
7816 _("invalid immediate"));
7817 break;
7818
7819 case AARCH64_OPND_HALF:
7820 /* 16-bit unsigned immediate. */
7821 if (unsigned_overflow (value, 16))
7822 as_bad_where (fixP->fx_file, fixP->fx_line,
7823 _("immediate out of range"));
7824 insn = get_aarch64_insn (buf);
7825 insn |= encode_movw_imm (value & 0xffff);
7826 put_aarch64_insn (buf, insn);
7827 break;
7828
7829 case AARCH64_OPND_IMM_MOV:
7830 /* Operand for a generic move immediate instruction, which is
7831 an alias instruction that generates a single MOVZ, MOVN or ORR
7832 instruction to loads a 32-bit/64-bit immediate value into general
7833 register. An assembler error shall result if the immediate cannot be
7834 created by a single one of these instructions. If there is a choice,
7835 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7836 and MOVZ or MOVN to ORR. */
7837 gas_assert (new_inst != NULL);
7838 fix_mov_imm_insn (fixP, buf, new_inst, value);
7839 break;
7840
7841 case AARCH64_OPND_ADDR_SIMM7:
7842 case AARCH64_OPND_ADDR_SIMM9:
7843 case AARCH64_OPND_ADDR_SIMM9_2:
7844 case AARCH64_OPND_ADDR_SIMM10:
7845 case AARCH64_OPND_ADDR_UIMM12:
7846 case AARCH64_OPND_ADDR_SIMM11:
7847 case AARCH64_OPND_ADDR_SIMM13:
7848 /* Immediate offset in an address. */
7849 insn = get_aarch64_insn (buf);
7850
7851 gas_assert (new_inst != NULL && new_inst->value == insn);
7852 gas_assert (new_inst->opcode->operands[1] == opnd
7853 || new_inst->opcode->operands[2] == opnd);
7854
7855 /* Get the index of the address operand. */
7856 if (new_inst->opcode->operands[1] == opnd)
7857 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7858 idx = 1;
7859 else
7860 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7861 idx = 2;
7862
7863 /* Update the resolved offset value. */
7864 new_inst->operands[idx].addr.offset.imm = value;
7865
7866 /* Encode/fix-up. */
7867 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7868 &new_inst->value, NULL, NULL, insn_sequence))
7869 {
7870 put_aarch64_insn (buf, new_inst->value);
7871 break;
7872 }
7873 else if (new_inst->opcode->iclass == ldst_pos
7874 && try_to_encode_as_unscaled_ldst (new_inst))
7875 {
7876 put_aarch64_insn (buf, new_inst->value);
7877 break;
7878 }
7879
7880 as_bad_where (fixP->fx_file, fixP->fx_line,
7881 _("immediate offset out of range"));
7882 break;
7883
7884 default:
7885 gas_assert (0);
7886 as_fatal (_("unhandled operand code %d"), opnd);
7887 }
7888 }
7889
7890 /* Apply a fixup (fixP) to segment data, once it has been determined
7891 by our caller that we have all the info we need to fix it up.
7892
7893 Parameter valP is the pointer to the value of the bits. */
7894
7895 void
7896 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7897 {
7898 offsetT value = *valP;
7899 uint32_t insn;
7900 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7901 int scale;
7902 unsigned flags = fixP->fx_addnumber;
7903
7904 DEBUG_TRACE ("\n\n");
7905 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7906 DEBUG_TRACE ("Enter md_apply_fix");
7907
7908 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7909
7910 /* Note whether this will delete the relocation. */
7911
7912 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7913 fixP->fx_done = 1;
7914
7915 /* Process the relocations. */
7916 switch (fixP->fx_r_type)
7917 {
7918 case BFD_RELOC_NONE:
7919 /* This will need to go in the object file. */
7920 fixP->fx_done = 0;
7921 break;
7922
7923 case BFD_RELOC_8:
7924 case BFD_RELOC_8_PCREL:
7925 if (fixP->fx_done || !seg->use_rela_p)
7926 md_number_to_chars (buf, value, 1);
7927 break;
7928
7929 case BFD_RELOC_16:
7930 case BFD_RELOC_16_PCREL:
7931 if (fixP->fx_done || !seg->use_rela_p)
7932 md_number_to_chars (buf, value, 2);
7933 break;
7934
7935 case BFD_RELOC_32:
7936 case BFD_RELOC_32_PCREL:
7937 if (fixP->fx_done || !seg->use_rela_p)
7938 md_number_to_chars (buf, value, 4);
7939 break;
7940
7941 case BFD_RELOC_64:
7942 case BFD_RELOC_64_PCREL:
7943 if (fixP->fx_done || !seg->use_rela_p)
7944 md_number_to_chars (buf, value, 8);
7945 break;
7946
7947 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7948 /* We claim that these fixups have been processed here, even if
7949 in fact we generate an error because we do not have a reloc
7950 for them, so tc_gen_reloc() will reject them. */
7951 fixP->fx_done = 1;
7952 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7953 {
7954 as_bad_where (fixP->fx_file, fixP->fx_line,
7955 _("undefined symbol %s used as an immediate value"),
7956 S_GET_NAME (fixP->fx_addsy));
7957 goto apply_fix_return;
7958 }
7959 fix_insn (fixP, flags, value);
7960 break;
7961
7962 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7963 if (fixP->fx_done || !seg->use_rela_p)
7964 {
7965 if (value & 3)
7966 as_bad_where (fixP->fx_file, fixP->fx_line,
7967 _("pc-relative load offset not word aligned"));
7968 if (signed_overflow (value, 21))
7969 as_bad_where (fixP->fx_file, fixP->fx_line,
7970 _("pc-relative load offset out of range"));
7971 insn = get_aarch64_insn (buf);
7972 insn |= encode_ld_lit_ofs_19 (value >> 2);
7973 put_aarch64_insn (buf, insn);
7974 }
7975 break;
7976
7977 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7978 if (fixP->fx_done || !seg->use_rela_p)
7979 {
7980 if (signed_overflow (value, 21))
7981 as_bad_where (fixP->fx_file, fixP->fx_line,
7982 _("pc-relative address offset out of range"));
7983 insn = get_aarch64_insn (buf);
7984 insn |= encode_adr_imm (value);
7985 put_aarch64_insn (buf, insn);
7986 }
7987 break;
7988
7989 case BFD_RELOC_AARCH64_BRANCH19:
7990 if (fixP->fx_done || !seg->use_rela_p)
7991 {
7992 if (value & 3)
7993 as_bad_where (fixP->fx_file, fixP->fx_line,
7994 _("conditional branch target not word aligned"));
7995 if (signed_overflow (value, 21))
7996 as_bad_where (fixP->fx_file, fixP->fx_line,
7997 _("conditional branch out of range"));
7998 insn = get_aarch64_insn (buf);
7999 insn |= encode_cond_branch_ofs_19 (value >> 2);
8000 put_aarch64_insn (buf, insn);
8001 }
8002 break;
8003
8004 case BFD_RELOC_AARCH64_TSTBR14:
8005 if (fixP->fx_done || !seg->use_rela_p)
8006 {
8007 if (value & 3)
8008 as_bad_where (fixP->fx_file, fixP->fx_line,
8009 _("conditional branch target not word aligned"));
8010 if (signed_overflow (value, 16))
8011 as_bad_where (fixP->fx_file, fixP->fx_line,
8012 _("conditional branch out of range"));
8013 insn = get_aarch64_insn (buf);
8014 insn |= encode_tst_branch_ofs_14 (value >> 2);
8015 put_aarch64_insn (buf, insn);
8016 }
8017 break;
8018
8019 case BFD_RELOC_AARCH64_CALL26:
8020 case BFD_RELOC_AARCH64_JUMP26:
8021 if (fixP->fx_done || !seg->use_rela_p)
8022 {
8023 if (value & 3)
8024 as_bad_where (fixP->fx_file, fixP->fx_line,
8025 _("branch target not word aligned"));
8026 if (signed_overflow (value, 28))
8027 as_bad_where (fixP->fx_file, fixP->fx_line,
8028 _("branch out of range"));
8029 insn = get_aarch64_insn (buf);
8030 insn |= encode_branch_ofs_26 (value >> 2);
8031 put_aarch64_insn (buf, insn);
8032 }
8033 break;
8034
8035 case BFD_RELOC_AARCH64_MOVW_G0:
8036 case BFD_RELOC_AARCH64_MOVW_G0_NC:
8037 case BFD_RELOC_AARCH64_MOVW_G0_S:
8038 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
8039 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
8040 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
8041 scale = 0;
8042 goto movw_common;
8043 case BFD_RELOC_AARCH64_MOVW_G1:
8044 case BFD_RELOC_AARCH64_MOVW_G1_NC:
8045 case BFD_RELOC_AARCH64_MOVW_G1_S:
8046 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
8047 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
8048 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
8049 scale = 16;
8050 goto movw_common;
8051 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8052 scale = 0;
8053 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8054 /* Should always be exported to object file, see
8055 aarch64_force_relocation(). */
8056 gas_assert (!fixP->fx_done);
8057 gas_assert (seg->use_rela_p);
8058 goto movw_common;
8059 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8060 scale = 16;
8061 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8062 /* Should always be exported to object file, see
8063 aarch64_force_relocation(). */
8064 gas_assert (!fixP->fx_done);
8065 gas_assert (seg->use_rela_p);
8066 goto movw_common;
8067 case BFD_RELOC_AARCH64_MOVW_G2:
8068 case BFD_RELOC_AARCH64_MOVW_G2_NC:
8069 case BFD_RELOC_AARCH64_MOVW_G2_S:
8070 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
8071 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
8072 scale = 32;
8073 goto movw_common;
8074 case BFD_RELOC_AARCH64_MOVW_G3:
8075 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
8076 scale = 48;
8077 movw_common:
8078 if (fixP->fx_done || !seg->use_rela_p)
8079 {
8080 insn = get_aarch64_insn (buf);
8081
8082 if (!fixP->fx_done)
8083 {
8084 /* REL signed addend must fit in 16 bits */
8085 if (signed_overflow (value, 16))
8086 as_bad_where (fixP->fx_file, fixP->fx_line,
8087 _("offset out of range"));
8088 }
8089 else
8090 {
8091 /* Check for overflow and scale. */
8092 switch (fixP->fx_r_type)
8093 {
8094 case BFD_RELOC_AARCH64_MOVW_G0:
8095 case BFD_RELOC_AARCH64_MOVW_G1:
8096 case BFD_RELOC_AARCH64_MOVW_G2:
8097 case BFD_RELOC_AARCH64_MOVW_G3:
8098 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
8099 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8100 if (unsigned_overflow (value, scale + 16))
8101 as_bad_where (fixP->fx_file, fixP->fx_line,
8102 _("unsigned value out of range"));
8103 break;
8104 case BFD_RELOC_AARCH64_MOVW_G0_S:
8105 case BFD_RELOC_AARCH64_MOVW_G1_S:
8106 case BFD_RELOC_AARCH64_MOVW_G2_S:
8107 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
8108 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
8109 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
8110 /* NOTE: We can only come here with movz or movn. */
8111 if (signed_overflow (value, scale + 16))
8112 as_bad_where (fixP->fx_file, fixP->fx_line,
8113 _("signed value out of range"));
8114 if (value < 0)
8115 {
8116 /* Force use of MOVN. */
8117 value = ~value;
8118 insn = reencode_movzn_to_movn (insn);
8119 }
8120 else
8121 {
8122 /* Force use of MOVZ. */
8123 insn = reencode_movzn_to_movz (insn);
8124 }
8125 break;
8126 default:
8127 /* Unchecked relocations. */
8128 break;
8129 }
8130 value >>= scale;
8131 }
8132
8133 /* Insert value into MOVN/MOVZ/MOVK instruction. */
8134 insn |= encode_movw_imm (value & 0xffff);
8135
8136 put_aarch64_insn (buf, insn);
8137 }
8138 break;
8139
8140 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
8141 fixP->fx_r_type = (ilp32_p
8142 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
8143 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8144 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8145 /* Should always be exported to object file, see
8146 aarch64_force_relocation(). */
8147 gas_assert (!fixP->fx_done);
8148 gas_assert (seg->use_rela_p);
8149 break;
8150
8151 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8152 fixP->fx_r_type = (ilp32_p
8153 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
8154 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
8155 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8156 /* Should always be exported to object file, see
8157 aarch64_force_relocation(). */
8158 gas_assert (!fixP->fx_done);
8159 gas_assert (seg->use_rela_p);
8160 break;
8161
8162 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
8163 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
8164 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
8165 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
8166 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
8167 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
8168 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
8169 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
8170 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
8171 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
8172 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
8173 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
8174 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
8175 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8176 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
8177 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8178 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8179 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
8180 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
8181 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8182 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
8183 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
8184 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
8185 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8186 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8187 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8188 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8189 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8190 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8191 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8192 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
8193 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8194 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8195 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8196 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8197 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
8198 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8199 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8200 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8201 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8202 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8203 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8204 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8205 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
8206 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
8207 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
8208 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
8209 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8210 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8211 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8212 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8213 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
8214 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8215 /* Should always be exported to object file, see
8216 aarch64_force_relocation(). */
8217 gas_assert (!fixP->fx_done);
8218 gas_assert (seg->use_rela_p);
8219 break;
8220
8221 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8222 /* Should always be exported to object file, see
8223 aarch64_force_relocation(). */
8224 fixP->fx_r_type = (ilp32_p
8225 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
8226 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
8227 gas_assert (!fixP->fx_done);
8228 gas_assert (seg->use_rela_p);
8229 break;
8230
8231 case BFD_RELOC_AARCH64_ADD_LO12:
8232 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8233 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8234 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8235 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8236 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
8237 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
8238 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
8239 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
8240 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8241 case BFD_RELOC_AARCH64_LDST128_LO12:
8242 case BFD_RELOC_AARCH64_LDST16_LO12:
8243 case BFD_RELOC_AARCH64_LDST32_LO12:
8244 case BFD_RELOC_AARCH64_LDST64_LO12:
8245 case BFD_RELOC_AARCH64_LDST8_LO12:
8246 /* Should always be exported to object file, see
8247 aarch64_force_relocation(). */
8248 gas_assert (!fixP->fx_done);
8249 gas_assert (seg->use_rela_p);
8250 break;
8251
8252 case BFD_RELOC_AARCH64_TLSDESC_ADD:
8253 case BFD_RELOC_AARCH64_TLSDESC_CALL:
8254 case BFD_RELOC_AARCH64_TLSDESC_LDR:
8255 break;
8256
8257 case BFD_RELOC_UNUSED:
8258 /* An error will already have been reported. */
8259 break;
8260
8261 default:
8262 as_bad_where (fixP->fx_file, fixP->fx_line,
8263 _("unexpected %s fixup"),
8264 bfd_get_reloc_code_name (fixP->fx_r_type));
8265 break;
8266 }
8267
8268 apply_fix_return:
8269 /* Free the allocated the struct aarch64_inst.
8270 N.B. currently there are very limited number of fix-up types actually use
8271 this field, so the impact on the performance should be minimal . */
8272 free (fixP->tc_fix_data.inst);
8273
8274 return;
8275 }
8276
8277 /* Translate internal representation of relocation info to BFD target
8278 format. */
8279
8280 arelent *
8281 tc_gen_reloc (asection * section, fixS * fixp)
8282 {
8283 arelent *reloc;
8284 bfd_reloc_code_real_type code;
8285
8286 reloc = XNEW (arelent);
8287
8288 reloc->sym_ptr_ptr = XNEW (asymbol *);
8289 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8290 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
8291
8292 if (fixp->fx_pcrel)
8293 {
8294 if (section->use_rela_p)
8295 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
8296 else
8297 fixp->fx_offset = reloc->address;
8298 }
8299 reloc->addend = fixp->fx_offset;
8300
8301 code = fixp->fx_r_type;
8302 switch (code)
8303 {
8304 case BFD_RELOC_16:
8305 if (fixp->fx_pcrel)
8306 code = BFD_RELOC_16_PCREL;
8307 break;
8308
8309 case BFD_RELOC_32:
8310 if (fixp->fx_pcrel)
8311 code = BFD_RELOC_32_PCREL;
8312 break;
8313
8314 case BFD_RELOC_64:
8315 if (fixp->fx_pcrel)
8316 code = BFD_RELOC_64_PCREL;
8317 break;
8318
8319 default:
8320 break;
8321 }
8322
8323 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
8324 if (reloc->howto == NULL)
8325 {
8326 as_bad_where (fixp->fx_file, fixp->fx_line,
8327 _
8328 ("cannot represent %s relocation in this object file format"),
8329 bfd_get_reloc_code_name (code));
8330 return NULL;
8331 }
8332
8333 return reloc;
8334 }
8335
8336 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8337
8338 void
8339 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8340 {
8341 bfd_reloc_code_real_type type;
8342 int pcrel = 0;
8343
8344 /* Pick a reloc.
8345 FIXME: @@ Should look at CPU word size. */
8346 switch (size)
8347 {
8348 case 1:
8349 type = BFD_RELOC_8;
8350 break;
8351 case 2:
8352 type = BFD_RELOC_16;
8353 break;
8354 case 4:
8355 type = BFD_RELOC_32;
8356 break;
8357 case 8:
8358 type = BFD_RELOC_64;
8359 break;
8360 default:
8361 as_bad (_("cannot do %u-byte relocation"), size);
8362 type = BFD_RELOC_UNUSED;
8363 break;
8364 }
8365
8366 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8367 }
8368
8369 int
8370 aarch64_force_relocation (struct fix *fixp)
8371 {
8372 switch (fixp->fx_r_type)
8373 {
8374 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8375 /* Perform these "immediate" internal relocations
8376 even if the symbol is extern or weak. */
8377 return 0;
8378
8379 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8380 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8381 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
8382 /* Pseudo relocs that need to be fixed up according to
8383 ilp32_p. */
8384 return 0;
8385
8386 case BFD_RELOC_AARCH64_ADD_LO12:
8387 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8388 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8389 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8390 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8391 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
8392 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
8393 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
8394 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
8395 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8396 case BFD_RELOC_AARCH64_LDST128_LO12:
8397 case BFD_RELOC_AARCH64_LDST16_LO12:
8398 case BFD_RELOC_AARCH64_LDST32_LO12:
8399 case BFD_RELOC_AARCH64_LDST64_LO12:
8400 case BFD_RELOC_AARCH64_LDST8_LO12:
8401 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
8402 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
8403 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
8404 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
8405 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
8406 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
8407 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8408 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8409 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
8410 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
8411 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
8412 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
8413 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
8414 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
8415 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
8416 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8417 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
8418 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8419 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8420 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
8421 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
8422 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8423 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
8424 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
8425 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
8426 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8427 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8428 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8429 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8430 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8431 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8432 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8433 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
8434 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8435 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8436 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8437 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8438 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
8439 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8440 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8441 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8442 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8443 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8444 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8445 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8446 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
8447 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
8448 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
8449 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
8450 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8451 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8452 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8453 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8454 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
8455 /* Always leave these relocations for the linker. */
8456 return 1;
8457
8458 default:
8459 break;
8460 }
8461
8462 return generic_force_reloc (fixp);
8463 }
8464
8465 #ifdef OBJ_ELF
8466
8467 /* Implement md_after_parse_args. This is the earliest time we need to decide
8468 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8469
8470 void
8471 aarch64_after_parse_args (void)
8472 {
8473 if (aarch64_abi != AARCH64_ABI_NONE)
8474 return;
8475
8476 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8477 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8478 aarch64_abi = AARCH64_ABI_ILP32;
8479 else
8480 aarch64_abi = AARCH64_ABI_LP64;
8481 }
8482
8483 const char *
8484 elf64_aarch64_target_format (void)
8485 {
8486 #ifdef TE_CLOUDABI
8487 /* FIXME: What to do for ilp32_p ? */
8488 if (target_big_endian)
8489 return "elf64-bigaarch64-cloudabi";
8490 else
8491 return "elf64-littleaarch64-cloudabi";
8492 #else
8493 if (target_big_endian)
8494 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
8495 else
8496 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
8497 #endif
8498 }
8499
8500 void
8501 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8502 {
8503 elf_frob_symbol (symp, puntp);
8504 }
8505 #endif
8506
8507 /* MD interface: Finalization. */
8508
8509 /* A good place to do this, although this was probably not intended
8510 for this kind of use. We need to dump the literal pool before
8511 references are made to a null symbol pointer. */
8512
8513 void
8514 aarch64_cleanup (void)
8515 {
8516 literal_pool *pool;
8517
8518 for (pool = list_of_pools; pool; pool = pool->next)
8519 {
8520 /* Put it at the end of the relevant section. */
8521 subseg_set (pool->section, pool->sub_section);
8522 s_ltorg (0);
8523 }
8524 }
8525
8526 #ifdef OBJ_ELF
8527 /* Remove any excess mapping symbols generated for alignment frags in
8528 SEC. We may have created a mapping symbol before a zero byte
8529 alignment; remove it if there's a mapping symbol after the
8530 alignment. */
8531 static void
8532 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8533 void *dummy ATTRIBUTE_UNUSED)
8534 {
8535 segment_info_type *seginfo = seg_info (sec);
8536 fragS *fragp;
8537
8538 if (seginfo == NULL || seginfo->frchainP == NULL)
8539 return;
8540
8541 for (fragp = seginfo->frchainP->frch_root;
8542 fragp != NULL; fragp = fragp->fr_next)
8543 {
8544 symbolS *sym = fragp->tc_frag_data.last_map;
8545 fragS *next = fragp->fr_next;
8546
8547 /* Variable-sized frags have been converted to fixed size by
8548 this point. But if this was variable-sized to start with,
8549 there will be a fixed-size frag after it. So don't handle
8550 next == NULL. */
8551 if (sym == NULL || next == NULL)
8552 continue;
8553
8554 if (S_GET_VALUE (sym) < next->fr_address)
8555 /* Not at the end of this frag. */
8556 continue;
8557 know (S_GET_VALUE (sym) == next->fr_address);
8558
8559 do
8560 {
8561 if (next->tc_frag_data.first_map != NULL)
8562 {
8563 /* Next frag starts with a mapping symbol. Discard this
8564 one. */
8565 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8566 break;
8567 }
8568
8569 if (next->fr_next == NULL)
8570 {
8571 /* This mapping symbol is at the end of the section. Discard
8572 it. */
8573 know (next->fr_fix == 0 && next->fr_var == 0);
8574 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8575 break;
8576 }
8577
8578 /* As long as we have empty frags without any mapping symbols,
8579 keep looking. */
8580 /* If the next frag is non-empty and does not start with a
8581 mapping symbol, then this mapping symbol is required. */
8582 if (next->fr_address != next->fr_next->fr_address)
8583 break;
8584
8585 next = next->fr_next;
8586 }
8587 while (next != NULL);
8588 }
8589 }
8590 #endif
8591
8592 /* Adjust the symbol table. */
8593
8594 void
8595 aarch64_adjust_symtab (void)
8596 {
8597 #ifdef OBJ_ELF
8598 /* Remove any overlapping mapping symbols generated by alignment frags. */
8599 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8600 /* Now do generic ELF adjustments. */
8601 elf_adjust_symtab ();
8602 #endif
8603 }
8604
8605 static void
8606 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8607 {
8608 const char *hash_err;
8609
8610 hash_err = hash_insert (table, key, value);
8611 if (hash_err)
8612 printf ("Internal Error: Can't hash %s\n", key);
8613 }
8614
8615 static void
8616 fill_instruction_hash_table (void)
8617 {
8618 aarch64_opcode *opcode = aarch64_opcode_table;
8619
8620 while (opcode->name != NULL)
8621 {
8622 templates *templ, *new_templ;
8623 templ = hash_find (aarch64_ops_hsh, opcode->name);
8624
8625 new_templ = XNEW (templates);
8626 new_templ->opcode = opcode;
8627 new_templ->next = NULL;
8628
8629 if (!templ)
8630 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8631 else
8632 {
8633 new_templ->next = templ->next;
8634 templ->next = new_templ;
8635 }
8636 ++opcode;
8637 }
8638 }
8639
8640 static inline void
8641 convert_to_upper (char *dst, const char *src, size_t num)
8642 {
8643 unsigned int i;
8644 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8645 *dst = TOUPPER (*src);
8646 *dst = '\0';
8647 }
8648
8649 /* Assume STR point to a lower-case string, allocate, convert and return
8650 the corresponding upper-case string. */
8651 static inline const char*
8652 get_upper_str (const char *str)
8653 {
8654 char *ret;
8655 size_t len = strlen (str);
8656 ret = XNEWVEC (char, len + 1);
8657 convert_to_upper (ret, str, len);
8658 return ret;
8659 }
8660
8661 /* MD interface: Initialization. */
8662
8663 void
8664 md_begin (void)
8665 {
8666 unsigned mach;
8667 unsigned int i;
8668
8669 if ((aarch64_ops_hsh = hash_new ()) == NULL
8670 || (aarch64_cond_hsh = hash_new ()) == NULL
8671 || (aarch64_shift_hsh = hash_new ()) == NULL
8672 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8673 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8674 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8675 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8676 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8677 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8678 || (aarch64_sys_regs_sr_hsh = hash_new ()) == NULL
8679 || (aarch64_reg_hsh = hash_new ()) == NULL
8680 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8681 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8682 || (aarch64_pldop_hsh = hash_new ()) == NULL
8683 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8684 as_fatal (_("virtual memory exhausted"));
8685
8686 fill_instruction_hash_table ();
8687
8688 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8689 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8690 (void *) (aarch64_sys_regs + i));
8691
8692 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8693 checked_hash_insert (aarch64_pstatefield_hsh,
8694 aarch64_pstatefields[i].name,
8695 (void *) (aarch64_pstatefields + i));
8696
8697 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8698 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8699 aarch64_sys_regs_ic[i].name,
8700 (void *) (aarch64_sys_regs_ic + i));
8701
8702 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8703 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8704 aarch64_sys_regs_dc[i].name,
8705 (void *) (aarch64_sys_regs_dc + i));
8706
8707 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8708 checked_hash_insert (aarch64_sys_regs_at_hsh,
8709 aarch64_sys_regs_at[i].name,
8710 (void *) (aarch64_sys_regs_at + i));
8711
8712 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8713 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8714 aarch64_sys_regs_tlbi[i].name,
8715 (void *) (aarch64_sys_regs_tlbi + i));
8716
8717 for (i = 0; aarch64_sys_regs_sr[i].name != NULL; i++)
8718 checked_hash_insert (aarch64_sys_regs_sr_hsh,
8719 aarch64_sys_regs_sr[i].name,
8720 (void *) (aarch64_sys_regs_sr + i));
8721
8722 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8723 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8724 (void *) (reg_names + i));
8725
8726 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8727 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8728 (void *) (nzcv_names + i));
8729
8730 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8731 {
8732 const char *name = aarch64_operand_modifiers[i].name;
8733 checked_hash_insert (aarch64_shift_hsh, name,
8734 (void *) (aarch64_operand_modifiers + i));
8735 /* Also hash the name in the upper case. */
8736 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8737 (void *) (aarch64_operand_modifiers + i));
8738 }
8739
8740 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8741 {
8742 unsigned int j;
8743 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8744 the same condition code. */
8745 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8746 {
8747 const char *name = aarch64_conds[i].names[j];
8748 if (name == NULL)
8749 break;
8750 checked_hash_insert (aarch64_cond_hsh, name,
8751 (void *) (aarch64_conds + i));
8752 /* Also hash the name in the upper case. */
8753 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8754 (void *) (aarch64_conds + i));
8755 }
8756 }
8757
8758 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8759 {
8760 const char *name = aarch64_barrier_options[i].name;
8761 /* Skip xx00 - the unallocated values of option. */
8762 if ((i & 0x3) == 0)
8763 continue;
8764 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8765 (void *) (aarch64_barrier_options + i));
8766 /* Also hash the name in the upper case. */
8767 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8768 (void *) (aarch64_barrier_options + i));
8769 }
8770
8771 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8772 {
8773 const char* name = aarch64_prfops[i].name;
8774 /* Skip the unallocated hint encodings. */
8775 if (name == NULL)
8776 continue;
8777 checked_hash_insert (aarch64_pldop_hsh, name,
8778 (void *) (aarch64_prfops + i));
8779 /* Also hash the name in the upper case. */
8780 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8781 (void *) (aarch64_prfops + i));
8782 }
8783
8784 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8785 {
8786 const char* name = aarch64_hint_options[i].name;
8787 const char* upper_name = get_upper_str(name);
8788
8789 checked_hash_insert (aarch64_hint_opt_hsh, name,
8790 (void *) (aarch64_hint_options + i));
8791
8792 /* Also hash the name in the upper case if not the same. */
8793 if (strcmp (name, upper_name) != 0)
8794 checked_hash_insert (aarch64_hint_opt_hsh, upper_name,
8795 (void *) (aarch64_hint_options + i));
8796 }
8797
8798 /* Set the cpu variant based on the command-line options. */
8799 if (!mcpu_cpu_opt)
8800 mcpu_cpu_opt = march_cpu_opt;
8801
8802 if (!mcpu_cpu_opt)
8803 mcpu_cpu_opt = &cpu_default;
8804
8805 cpu_variant = *mcpu_cpu_opt;
8806
8807 /* Record the CPU type. */
8808 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8809
8810 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8811 }
8812
8813 /* Command line processing. */
8814
8815 const char *md_shortopts = "m:";
8816
8817 #ifdef AARCH64_BI_ENDIAN
8818 #define OPTION_EB (OPTION_MD_BASE + 0)
8819 #define OPTION_EL (OPTION_MD_BASE + 1)
8820 #else
8821 #if TARGET_BYTES_BIG_ENDIAN
8822 #define OPTION_EB (OPTION_MD_BASE + 0)
8823 #else
8824 #define OPTION_EL (OPTION_MD_BASE + 1)
8825 #endif
8826 #endif
8827
8828 struct option md_longopts[] = {
8829 #ifdef OPTION_EB
8830 {"EB", no_argument, NULL, OPTION_EB},
8831 #endif
8832 #ifdef OPTION_EL
8833 {"EL", no_argument, NULL, OPTION_EL},
8834 #endif
8835 {NULL, no_argument, NULL, 0}
8836 };
8837
8838 size_t md_longopts_size = sizeof (md_longopts);
8839
8840 struct aarch64_option_table
8841 {
8842 const char *option; /* Option name to match. */
8843 const char *help; /* Help information. */
8844 int *var; /* Variable to change. */
8845 int value; /* What to change it to. */
8846 char *deprecated; /* If non-null, print this message. */
8847 };
8848
8849 static struct aarch64_option_table aarch64_opts[] = {
8850 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8851 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8852 NULL},
8853 #ifdef DEBUG_AARCH64
8854 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8855 #endif /* DEBUG_AARCH64 */
8856 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8857 NULL},
8858 {"mno-verbose-error", N_("do not output verbose error messages"),
8859 &verbose_error_p, 0, NULL},
8860 {NULL, NULL, NULL, 0, NULL}
8861 };
8862
8863 struct aarch64_cpu_option_table
8864 {
8865 const char *name;
8866 const aarch64_feature_set value;
8867 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8868 case. */
8869 const char *canonical_name;
8870 };
8871
8872 /* This list should, at a minimum, contain all the cpu names
8873 recognized by GCC. */
8874 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8875 {"all", AARCH64_ANY, NULL},
8876 {"cortex-a34", AARCH64_FEATURE (AARCH64_ARCH_V8,
8877 AARCH64_FEATURE_CRC), "Cortex-A34"},
8878 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8879 AARCH64_FEATURE_CRC), "Cortex-A35"},
8880 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8881 AARCH64_FEATURE_CRC), "Cortex-A53"},
8882 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8883 AARCH64_FEATURE_CRC), "Cortex-A57"},
8884 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8885 AARCH64_FEATURE_CRC), "Cortex-A72"},
8886 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8887 AARCH64_FEATURE_CRC), "Cortex-A73"},
8888 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8889 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8890 "Cortex-A55"},
8891 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8892 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8893 "Cortex-A75"},
8894 {"cortex-a76", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8895 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8896 "Cortex-A76"},
8897 {"cortex-a76ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8898 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8899 | AARCH64_FEATURE_DOTPROD
8900 | AARCH64_FEATURE_SSBS),
8901 "Cortex-A76AE"},
8902 {"cortex-a77", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8903 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8904 | AARCH64_FEATURE_DOTPROD
8905 | AARCH64_FEATURE_SSBS),
8906 "Cortex-A77"},
8907 {"cortex-a65", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8908 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8909 | AARCH64_FEATURE_DOTPROD
8910 | AARCH64_FEATURE_SSBS),
8911 "Cortex-A65"},
8912 {"cortex-a65ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8913 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8914 | AARCH64_FEATURE_DOTPROD
8915 | AARCH64_FEATURE_SSBS),
8916 "Cortex-A65AE"},
8917 {"ares", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8918 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
8919 | AARCH64_FEATURE_DOTPROD
8920 | AARCH64_FEATURE_PROFILE),
8921 "Ares"},
8922 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8923 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8924 "Samsung Exynos M1"},
8925 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8926 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8927 | AARCH64_FEATURE_RDMA),
8928 "Qualcomm Falkor"},
8929 {"neoverse-e1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8930 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
8931 | AARCH64_FEATURE_DOTPROD
8932 | AARCH64_FEATURE_SSBS),
8933 "Neoverse E1"},
8934 {"neoverse-n1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8935 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
8936 | AARCH64_FEATURE_DOTPROD
8937 | AARCH64_FEATURE_PROFILE),
8938 "Neoverse N1"},
8939 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8940 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8941 | AARCH64_FEATURE_RDMA),
8942 "Qualcomm QDF24XX"},
8943 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
8944 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
8945 "Qualcomm Saphira"},
8946 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8947 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8948 "Cavium ThunderX"},
8949 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8950 AARCH64_FEATURE_CRYPTO),
8951 "Broadcom Vulcan"},
8952 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8953 in earlier releases and is superseded by 'xgene1' in all
8954 tools. */
8955 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8956 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8957 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8958 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8959 {"generic", AARCH64_ARCH_V8, NULL},
8960
8961 {NULL, AARCH64_ARCH_NONE, NULL}
8962 };
8963
8964 struct aarch64_arch_option_table
8965 {
8966 const char *name;
8967 const aarch64_feature_set value;
8968 };
8969
8970 /* This list should, at a minimum, contain all the architecture names
8971 recognized by GCC. */
8972 static const struct aarch64_arch_option_table aarch64_archs[] = {
8973 {"all", AARCH64_ANY},
8974 {"armv8-a", AARCH64_ARCH_V8},
8975 {"armv8.1-a", AARCH64_ARCH_V8_1},
8976 {"armv8.2-a", AARCH64_ARCH_V8_2},
8977 {"armv8.3-a", AARCH64_ARCH_V8_3},
8978 {"armv8.4-a", AARCH64_ARCH_V8_4},
8979 {"armv8.5-a", AARCH64_ARCH_V8_5},
8980 {"armv8.6-a", AARCH64_ARCH_V8_6},
8981 {NULL, AARCH64_ARCH_NONE}
8982 };
8983
8984 /* ISA extensions. */
8985 struct aarch64_option_cpu_value_table
8986 {
8987 const char *name;
8988 const aarch64_feature_set value;
8989 const aarch64_feature_set require; /* Feature dependencies. */
8990 };
8991
8992 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8993 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8994 AARCH64_ARCH_NONE},
8995 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
8996 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8997 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8998 AARCH64_ARCH_NONE},
8999 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
9000 AARCH64_ARCH_NONE},
9001 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
9002 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
9003 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
9004 AARCH64_ARCH_NONE},
9005 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
9006 AARCH64_ARCH_NONE},
9007 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
9008 AARCH64_ARCH_NONE},
9009 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
9010 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
9011 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
9012 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
9013 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
9014 AARCH64_FEATURE (AARCH64_FEATURE_FP
9015 | AARCH64_FEATURE_F16, 0)},
9016 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
9017 AARCH64_ARCH_NONE},
9018 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
9019 AARCH64_FEATURE (AARCH64_FEATURE_F16
9020 | AARCH64_FEATURE_SIMD
9021 | AARCH64_FEATURE_COMPNUM, 0)},
9022 {"tme", AARCH64_FEATURE (AARCH64_FEATURE_TME, 0),
9023 AARCH64_ARCH_NONE},
9024 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
9025 AARCH64_FEATURE (AARCH64_FEATURE_F16
9026 | AARCH64_FEATURE_SIMD, 0)},
9027 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
9028 AARCH64_ARCH_NONE},
9029 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
9030 AARCH64_ARCH_NONE},
9031 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
9032 AARCH64_ARCH_NONE},
9033 {"sb", AARCH64_FEATURE (AARCH64_FEATURE_SB, 0),
9034 AARCH64_ARCH_NONE},
9035 {"predres", AARCH64_FEATURE (AARCH64_FEATURE_PREDRES, 0),
9036 AARCH64_ARCH_NONE},
9037 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
9038 AARCH64_ARCH_NONE},
9039 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
9040 AARCH64_ARCH_NONE},
9041 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA3, 0),
9042 AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0)},
9043 {"rng", AARCH64_FEATURE (AARCH64_FEATURE_RNG, 0),
9044 AARCH64_ARCH_NONE},
9045 {"ssbs", AARCH64_FEATURE (AARCH64_FEATURE_SSBS, 0),
9046 AARCH64_ARCH_NONE},
9047 {"memtag", AARCH64_FEATURE (AARCH64_FEATURE_MEMTAG, 0),
9048 AARCH64_ARCH_NONE},
9049 {"sve2", AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0),
9050 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
9051 {"sve2-sm4", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SM4, 0),
9052 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9053 | AARCH64_FEATURE_SM4, 0)},
9054 {"sve2-aes", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_AES, 0),
9055 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9056 | AARCH64_FEATURE_AES, 0)},
9057 {"sve2-sha3", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SHA3, 0),
9058 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9059 | AARCH64_FEATURE_SHA3, 0)},
9060 {"sve2-bitperm", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_BITPERM, 0),
9061 AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0)},
9062 {"bf16", AARCH64_FEATURE (AARCH64_FEATURE_BFLOAT16, 0),
9063 AARCH64_ARCH_NONE},
9064 {"i8mm", AARCH64_FEATURE (AARCH64_FEATURE_I8MM, 0),
9065 AARCH64_ARCH_NONE},
9066 {"f32mm", AARCH64_FEATURE (AARCH64_FEATURE_F32MM, 0),
9067 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
9068 {"f64mm", AARCH64_FEATURE (AARCH64_FEATURE_F64MM, 0),
9069 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
9070 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
9071 };
9072
9073 struct aarch64_long_option_table
9074 {
9075 const char *option; /* Substring to match. */
9076 const char *help; /* Help information. */
9077 int (*func) (const char *subopt); /* Function to decode sub-option. */
9078 char *deprecated; /* If non-null, print this message. */
9079 };
9080
9081 /* Transitive closure of features depending on set. */
9082 static aarch64_feature_set
9083 aarch64_feature_disable_set (aarch64_feature_set set)
9084 {
9085 const struct aarch64_option_cpu_value_table *opt;
9086 aarch64_feature_set prev = 0;
9087
9088 while (prev != set) {
9089 prev = set;
9090 for (opt = aarch64_features; opt->name != NULL; opt++)
9091 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
9092 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
9093 }
9094 return set;
9095 }
9096
9097 /* Transitive closure of dependencies of set. */
9098 static aarch64_feature_set
9099 aarch64_feature_enable_set (aarch64_feature_set set)
9100 {
9101 const struct aarch64_option_cpu_value_table *opt;
9102 aarch64_feature_set prev = 0;
9103
9104 while (prev != set) {
9105 prev = set;
9106 for (opt = aarch64_features; opt->name != NULL; opt++)
9107 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
9108 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
9109 }
9110 return set;
9111 }
9112
9113 static int
9114 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
9115 bfd_boolean ext_only)
9116 {
9117 /* We insist on extensions being added before being removed. We achieve
9118 this by using the ADDING_VALUE variable to indicate whether we are
9119 adding an extension (1) or removing it (0) and only allowing it to
9120 change in the order -1 -> 1 -> 0. */
9121 int adding_value = -1;
9122 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
9123
9124 /* Copy the feature set, so that we can modify it. */
9125 *ext_set = **opt_p;
9126 *opt_p = ext_set;
9127
9128 while (str != NULL && *str != 0)
9129 {
9130 const struct aarch64_option_cpu_value_table *opt;
9131 const char *ext = NULL;
9132 int optlen;
9133
9134 if (!ext_only)
9135 {
9136 if (*str != '+')
9137 {
9138 as_bad (_("invalid architectural extension"));
9139 return 0;
9140 }
9141
9142 ext = strchr (++str, '+');
9143 }
9144
9145 if (ext != NULL)
9146 optlen = ext - str;
9147 else
9148 optlen = strlen (str);
9149
9150 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
9151 {
9152 if (adding_value != 0)
9153 adding_value = 0;
9154 optlen -= 2;
9155 str += 2;
9156 }
9157 else if (optlen > 0)
9158 {
9159 if (adding_value == -1)
9160 adding_value = 1;
9161 else if (adding_value != 1)
9162 {
9163 as_bad (_("must specify extensions to add before specifying "
9164 "those to remove"));
9165 return FALSE;
9166 }
9167 }
9168
9169 if (optlen == 0)
9170 {
9171 as_bad (_("missing architectural extension"));
9172 return 0;
9173 }
9174
9175 gas_assert (adding_value != -1);
9176
9177 for (opt = aarch64_features; opt->name != NULL; opt++)
9178 if (strncmp (opt->name, str, optlen) == 0)
9179 {
9180 aarch64_feature_set set;
9181
9182 /* Add or remove the extension. */
9183 if (adding_value)
9184 {
9185 set = aarch64_feature_enable_set (opt->value);
9186 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
9187 }
9188 else
9189 {
9190 set = aarch64_feature_disable_set (opt->value);
9191 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
9192 }
9193 break;
9194 }
9195
9196 if (opt->name == NULL)
9197 {
9198 as_bad (_("unknown architectural extension `%s'"), str);
9199 return 0;
9200 }
9201
9202 str = ext;
9203 };
9204
9205 return 1;
9206 }
9207
9208 static int
9209 aarch64_parse_cpu (const char *str)
9210 {
9211 const struct aarch64_cpu_option_table *opt;
9212 const char *ext = strchr (str, '+');
9213 size_t optlen;
9214
9215 if (ext != NULL)
9216 optlen = ext - str;
9217 else
9218 optlen = strlen (str);
9219
9220 if (optlen == 0)
9221 {
9222 as_bad (_("missing cpu name `%s'"), str);
9223 return 0;
9224 }
9225
9226 for (opt = aarch64_cpus; opt->name != NULL; opt++)
9227 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9228 {
9229 mcpu_cpu_opt = &opt->value;
9230 if (ext != NULL)
9231 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
9232
9233 return 1;
9234 }
9235
9236 as_bad (_("unknown cpu `%s'"), str);
9237 return 0;
9238 }
9239
9240 static int
9241 aarch64_parse_arch (const char *str)
9242 {
9243 const struct aarch64_arch_option_table *opt;
9244 const char *ext = strchr (str, '+');
9245 size_t optlen;
9246
9247 if (ext != NULL)
9248 optlen = ext - str;
9249 else
9250 optlen = strlen (str);
9251
9252 if (optlen == 0)
9253 {
9254 as_bad (_("missing architecture name `%s'"), str);
9255 return 0;
9256 }
9257
9258 for (opt = aarch64_archs; opt->name != NULL; opt++)
9259 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9260 {
9261 march_cpu_opt = &opt->value;
9262 if (ext != NULL)
9263 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
9264
9265 return 1;
9266 }
9267
9268 as_bad (_("unknown architecture `%s'\n"), str);
9269 return 0;
9270 }
9271
9272 /* ABIs. */
9273 struct aarch64_option_abi_value_table
9274 {
9275 const char *name;
9276 enum aarch64_abi_type value;
9277 };
9278
9279 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
9280 {"ilp32", AARCH64_ABI_ILP32},
9281 {"lp64", AARCH64_ABI_LP64},
9282 };
9283
9284 static int
9285 aarch64_parse_abi (const char *str)
9286 {
9287 unsigned int i;
9288
9289 if (str[0] == '\0')
9290 {
9291 as_bad (_("missing abi name `%s'"), str);
9292 return 0;
9293 }
9294
9295 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
9296 if (strcmp (str, aarch64_abis[i].name) == 0)
9297 {
9298 aarch64_abi = aarch64_abis[i].value;
9299 return 1;
9300 }
9301
9302 as_bad (_("unknown abi `%s'\n"), str);
9303 return 0;
9304 }
9305
9306 static struct aarch64_long_option_table aarch64_long_opts[] = {
9307 #ifdef OBJ_ELF
9308 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
9309 aarch64_parse_abi, NULL},
9310 #endif /* OBJ_ELF */
9311 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
9312 aarch64_parse_cpu, NULL},
9313 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
9314 aarch64_parse_arch, NULL},
9315 {NULL, NULL, 0, NULL}
9316 };
9317
9318 int
9319 md_parse_option (int c, const char *arg)
9320 {
9321 struct aarch64_option_table *opt;
9322 struct aarch64_long_option_table *lopt;
9323
9324 switch (c)
9325 {
9326 #ifdef OPTION_EB
9327 case OPTION_EB:
9328 target_big_endian = 1;
9329 break;
9330 #endif
9331
9332 #ifdef OPTION_EL
9333 case OPTION_EL:
9334 target_big_endian = 0;
9335 break;
9336 #endif
9337
9338 case 'a':
9339 /* Listing option. Just ignore these, we don't support additional
9340 ones. */
9341 return 0;
9342
9343 default:
9344 for (opt = aarch64_opts; opt->option != NULL; opt++)
9345 {
9346 if (c == opt->option[0]
9347 && ((arg == NULL && opt->option[1] == 0)
9348 || streq (arg, opt->option + 1)))
9349 {
9350 /* If the option is deprecated, tell the user. */
9351 if (opt->deprecated != NULL)
9352 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
9353 arg ? arg : "", _(opt->deprecated));
9354
9355 if (opt->var != NULL)
9356 *opt->var = opt->value;
9357
9358 return 1;
9359 }
9360 }
9361
9362 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9363 {
9364 /* These options are expected to have an argument. */
9365 if (c == lopt->option[0]
9366 && arg != NULL
9367 && strncmp (arg, lopt->option + 1,
9368 strlen (lopt->option + 1)) == 0)
9369 {
9370 /* If the option is deprecated, tell the user. */
9371 if (lopt->deprecated != NULL)
9372 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
9373 _(lopt->deprecated));
9374
9375 /* Call the sup-option parser. */
9376 return lopt->func (arg + strlen (lopt->option) - 1);
9377 }
9378 }
9379
9380 return 0;
9381 }
9382
9383 return 1;
9384 }
9385
9386 void
9387 md_show_usage (FILE * fp)
9388 {
9389 struct aarch64_option_table *opt;
9390 struct aarch64_long_option_table *lopt;
9391
9392 fprintf (fp, _(" AArch64-specific assembler options:\n"));
9393
9394 for (opt = aarch64_opts; opt->option != NULL; opt++)
9395 if (opt->help != NULL)
9396 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
9397
9398 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9399 if (lopt->help != NULL)
9400 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
9401
9402 #ifdef OPTION_EB
9403 fprintf (fp, _("\
9404 -EB assemble code for a big-endian cpu\n"));
9405 #endif
9406
9407 #ifdef OPTION_EL
9408 fprintf (fp, _("\
9409 -EL assemble code for a little-endian cpu\n"));
9410 #endif
9411 }
9412
9413 /* Parse a .cpu directive. */
9414
9415 static void
9416 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9417 {
9418 const struct aarch64_cpu_option_table *opt;
9419 char saved_char;
9420 char *name;
9421 char *ext;
9422 size_t optlen;
9423
9424 name = input_line_pointer;
9425 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9426 input_line_pointer++;
9427 saved_char = *input_line_pointer;
9428 *input_line_pointer = 0;
9429
9430 ext = strchr (name, '+');
9431
9432 if (ext != NULL)
9433 optlen = ext - name;
9434 else
9435 optlen = strlen (name);
9436
9437 /* Skip the first "all" entry. */
9438 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9439 if (strlen (opt->name) == optlen
9440 && strncmp (name, opt->name, optlen) == 0)
9441 {
9442 mcpu_cpu_opt = &opt->value;
9443 if (ext != NULL)
9444 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9445 return;
9446
9447 cpu_variant = *mcpu_cpu_opt;
9448
9449 *input_line_pointer = saved_char;
9450 demand_empty_rest_of_line ();
9451 return;
9452 }
9453 as_bad (_("unknown cpu `%s'"), name);
9454 *input_line_pointer = saved_char;
9455 ignore_rest_of_line ();
9456 }
9457
9458
9459 /* Parse a .arch directive. */
9460
9461 static void
9462 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9463 {
9464 const struct aarch64_arch_option_table *opt;
9465 char saved_char;
9466 char *name;
9467 char *ext;
9468 size_t optlen;
9469
9470 name = input_line_pointer;
9471 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9472 input_line_pointer++;
9473 saved_char = *input_line_pointer;
9474 *input_line_pointer = 0;
9475
9476 ext = strchr (name, '+');
9477
9478 if (ext != NULL)
9479 optlen = ext - name;
9480 else
9481 optlen = strlen (name);
9482
9483 /* Skip the first "all" entry. */
9484 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9485 if (strlen (opt->name) == optlen
9486 && strncmp (name, opt->name, optlen) == 0)
9487 {
9488 mcpu_cpu_opt = &opt->value;
9489 if (ext != NULL)
9490 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9491 return;
9492
9493 cpu_variant = *mcpu_cpu_opt;
9494
9495 *input_line_pointer = saved_char;
9496 demand_empty_rest_of_line ();
9497 return;
9498 }
9499
9500 as_bad (_("unknown architecture `%s'\n"), name);
9501 *input_line_pointer = saved_char;
9502 ignore_rest_of_line ();
9503 }
9504
9505 /* Parse a .arch_extension directive. */
9506
9507 static void
9508 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9509 {
9510 char saved_char;
9511 char *ext = input_line_pointer;;
9512
9513 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9514 input_line_pointer++;
9515 saved_char = *input_line_pointer;
9516 *input_line_pointer = 0;
9517
9518 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9519 return;
9520
9521 cpu_variant = *mcpu_cpu_opt;
9522
9523 *input_line_pointer = saved_char;
9524 demand_empty_rest_of_line ();
9525 }
9526
9527 /* Copy symbol information. */
9528
9529 void
9530 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9531 {
9532 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9533 }
9534
9535 #ifdef OBJ_ELF
9536 /* Same as elf_copy_symbol_attributes, but without copying st_other.
9537 This is needed so AArch64 specific st_other values can be independently
9538 specified for an IFUNC resolver (that is called by the dynamic linker)
9539 and the symbol it resolves (aliased to the resolver). In particular,
9540 if a function symbol has special st_other value set via directives,
9541 then attaching an IFUNC resolver to that symbol should not override
9542 the st_other setting. Requiring the directive on the IFUNC resolver
9543 symbol would be unexpected and problematic in C code, where the two
9544 symbols appear as two independent function declarations. */
9545
9546 void
9547 aarch64_elf_copy_symbol_attributes (symbolS *dest, symbolS *src)
9548 {
9549 struct elf_obj_sy *srcelf = symbol_get_obj (src);
9550 struct elf_obj_sy *destelf = symbol_get_obj (dest);
9551 if (srcelf->size)
9552 {
9553 if (destelf->size == NULL)
9554 destelf->size = XNEW (expressionS);
9555 *destelf->size = *srcelf->size;
9556 }
9557 else
9558 {
9559 free (destelf->size);
9560 destelf->size = NULL;
9561 }
9562 S_SET_SIZE (dest, S_GET_SIZE (src));
9563 }
9564 #endif
This page took 0.229954 seconds and 4 git commands to generate.