[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
2
3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22 #include "as.h"
23 #include <limits.h>
24 #include <stdarg.h>
25 #include "bfd_stdint.h"
26 #define NO_RELOC 0
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "obstack.h"
30
31 #ifdef OBJ_ELF
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
34 #endif
35
36 #include "dwarf2dbg.h"
37
38 /* Types of processor to assemble for. */
39 #ifndef CPU_DEFAULT
40 #define CPU_DEFAULT AARCH64_ARCH_V8
41 #endif
42
43 #define streq(a, b) (strcmp (a, b) == 0)
44
45 #define END_OF_INSN '\0'
46
47 static aarch64_feature_set cpu_variant;
48
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
54
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58 #ifdef OBJ_ELF
59 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60 static symbolS *GOT_symbol;
61
62 /* Which ABI to use. */
63 enum aarch64_abi_type
64 {
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67 };
68
69 /* AArch64 ABI for the output file. */
70 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
72 /* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
76 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
77 #endif
78
79 enum vector_el_type
80 {
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q,
87 NT_zero,
88 NT_merge
89 };
90
91 /* Bits for DEFINED field in vector_type_el. */
92 #define NTA_HASTYPE 1
93 #define NTA_HASINDEX 2
94 #define NTA_HASVARWIDTH 4
95
96 struct vector_type_el
97 {
98 enum vector_el_type type;
99 unsigned char defined;
100 unsigned width;
101 int64_t index;
102 };
103
104 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
105
106 struct reloc
107 {
108 bfd_reloc_code_real_type type;
109 expressionS exp;
110 int pc_rel;
111 enum aarch64_opnd opnd;
112 uint32_t flags;
113 unsigned need_libopcodes_p : 1;
114 };
115
116 struct aarch64_instruction
117 {
118 /* libopcodes structure for instruction intermediate representation. */
119 aarch64_inst base;
120 /* Record assembly errors found during the parsing. */
121 struct
122 {
123 enum aarch64_operand_error_kind kind;
124 const char *error;
125 } parsing_error;
126 /* The condition that appears in the assembly line. */
127 int cond;
128 /* Relocation information (including the GAS internal fixup). */
129 struct reloc reloc;
130 /* Need to generate an immediate in the literal pool. */
131 unsigned gen_lit_pool : 1;
132 };
133
134 typedef struct aarch64_instruction aarch64_instruction;
135
136 static aarch64_instruction inst;
137
138 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
139 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
140
141 /* Diagnostics inline function utilites.
142
143 These are lightweight utlities which should only be called by parse_operands
144 and other parsers. GAS processes each assembly line by parsing it against
145 instruction template(s), in the case of multiple templates (for the same
146 mnemonic name), those templates are tried one by one until one succeeds or
147 all fail. An assembly line may fail a few templates before being
148 successfully parsed; an error saved here in most cases is not a user error
149 but an error indicating the current template is not the right template.
150 Therefore it is very important that errors can be saved at a low cost during
151 the parsing; we don't want to slow down the whole parsing by recording
152 non-user errors in detail.
153
154 Remember that the objective is to help GAS pick up the most approapriate
155 error message in the case of multiple templates, e.g. FMOV which has 8
156 templates. */
157
158 static inline void
159 clear_error (void)
160 {
161 inst.parsing_error.kind = AARCH64_OPDE_NIL;
162 inst.parsing_error.error = NULL;
163 }
164
165 static inline bfd_boolean
166 error_p (void)
167 {
168 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
169 }
170
171 static inline const char *
172 get_error_message (void)
173 {
174 return inst.parsing_error.error;
175 }
176
177 static inline enum aarch64_operand_error_kind
178 get_error_kind (void)
179 {
180 return inst.parsing_error.kind;
181 }
182
183 static inline void
184 set_error (enum aarch64_operand_error_kind kind, const char *error)
185 {
186 inst.parsing_error.kind = kind;
187 inst.parsing_error.error = error;
188 }
189
190 static inline void
191 set_recoverable_error (const char *error)
192 {
193 set_error (AARCH64_OPDE_RECOVERABLE, error);
194 }
195
196 /* Use the DESC field of the corresponding aarch64_operand entry to compose
197 the error message. */
198 static inline void
199 set_default_error (void)
200 {
201 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
202 }
203
204 static inline void
205 set_syntax_error (const char *error)
206 {
207 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
208 }
209
210 static inline void
211 set_first_syntax_error (const char *error)
212 {
213 if (! error_p ())
214 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
215 }
216
217 static inline void
218 set_fatal_syntax_error (const char *error)
219 {
220 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
221 }
222 \f
223 /* Number of littlenums required to hold an extended precision number. */
224 #define MAX_LITTLENUMS 6
225
226 /* Return value for certain parsers when the parsing fails; those parsers
227 return the information of the parsed result, e.g. register number, on
228 success. */
229 #define PARSE_FAIL -1
230
231 /* This is an invalid condition code that means no conditional field is
232 present. */
233 #define COND_ALWAYS 0x10
234
235 typedef struct
236 {
237 const char *template;
238 unsigned long value;
239 } asm_barrier_opt;
240
241 typedef struct
242 {
243 const char *template;
244 uint32_t value;
245 } asm_nzcv;
246
247 struct reloc_entry
248 {
249 char *name;
250 bfd_reloc_code_real_type reloc;
251 };
252
253 /* Macros to define the register types and masks for the purpose
254 of parsing. */
255
256 #undef AARCH64_REG_TYPES
257 #define AARCH64_REG_TYPES \
258 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
259 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
260 BASIC_REG_TYPE(SP_32) /* wsp */ \
261 BASIC_REG_TYPE(SP_64) /* sp */ \
262 BASIC_REG_TYPE(Z_32) /* wzr */ \
263 BASIC_REG_TYPE(Z_64) /* xzr */ \
264 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
265 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
266 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
267 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
268 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
269 BASIC_REG_TYPE(CN) /* c[0-7] */ \
270 BASIC_REG_TYPE(VN) /* v[0-31] */ \
271 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
272 BASIC_REG_TYPE(PN) /* p[0-15] */ \
273 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
274 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
275 /* Typecheck: same, plus SVE registers. */ \
276 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
277 | REG_TYPE(ZN)) \
278 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
279 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
280 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
281 /* Typecheck: same, plus SVE registers. */ \
282 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
283 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
284 | REG_TYPE(ZN)) \
285 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
286 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
288 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
289 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
291 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
292 /* Typecheck: any [BHSDQ]P FP. */ \
293 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
294 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
295 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
296 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
298 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
299 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
300 /* Typecheck: as above, but also Zn and Pn. This should only be \
301 used for SVE instructions, since Zn and Pn are valid symbols \
302 in other contexts. */ \
303 MULTI_REG_TYPE(R_Z_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
307 | REG_TYPE(ZN) | REG_TYPE(PN)) \
308 /* Any integer register; used for error messages only. */ \
309 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
310 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
311 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
312 /* Pseudo type to mark the end of the enumerator sequence. */ \
313 BASIC_REG_TYPE(MAX)
314
315 #undef BASIC_REG_TYPE
316 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
317 #undef MULTI_REG_TYPE
318 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
319
320 /* Register type enumerators. */
321 typedef enum aarch64_reg_type_
322 {
323 /* A list of REG_TYPE_*. */
324 AARCH64_REG_TYPES
325 } aarch64_reg_type;
326
327 #undef BASIC_REG_TYPE
328 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
329 #undef REG_TYPE
330 #define REG_TYPE(T) (1 << REG_TYPE_##T)
331 #undef MULTI_REG_TYPE
332 #define MULTI_REG_TYPE(T,V) V,
333
334 /* Structure for a hash table entry for a register. */
335 typedef struct
336 {
337 const char *name;
338 unsigned char number;
339 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
340 unsigned char builtin;
341 } reg_entry;
342
343 /* Values indexed by aarch64_reg_type to assist the type checking. */
344 static const unsigned reg_type_masks[] =
345 {
346 AARCH64_REG_TYPES
347 };
348
349 #undef BASIC_REG_TYPE
350 #undef REG_TYPE
351 #undef MULTI_REG_TYPE
352 #undef AARCH64_REG_TYPES
353
354 /* Diagnostics used when we don't get a register of the expected type.
355 Note: this has to synchronized with aarch64_reg_type definitions
356 above. */
357 static const char *
358 get_reg_expected_msg (aarch64_reg_type reg_type)
359 {
360 const char *msg;
361
362 switch (reg_type)
363 {
364 case REG_TYPE_R_32:
365 msg = N_("integer 32-bit register expected");
366 break;
367 case REG_TYPE_R_64:
368 msg = N_("integer 64-bit register expected");
369 break;
370 case REG_TYPE_R_N:
371 msg = N_("integer register expected");
372 break;
373 case REG_TYPE_R64_SP:
374 msg = N_("64-bit integer or SP register expected");
375 break;
376 case REG_TYPE_SVE_BASE:
377 msg = N_("base register expected");
378 break;
379 case REG_TYPE_R_Z:
380 msg = N_("integer or zero register expected");
381 break;
382 case REG_TYPE_SVE_OFFSET:
383 msg = N_("offset register expected");
384 break;
385 case REG_TYPE_R_SP:
386 msg = N_("integer or SP register expected");
387 break;
388 case REG_TYPE_R_Z_SP:
389 msg = N_("integer, zero or SP register expected");
390 break;
391 case REG_TYPE_FP_B:
392 msg = N_("8-bit SIMD scalar register expected");
393 break;
394 case REG_TYPE_FP_H:
395 msg = N_("16-bit SIMD scalar or floating-point half precision "
396 "register expected");
397 break;
398 case REG_TYPE_FP_S:
399 msg = N_("32-bit SIMD scalar or floating-point single precision "
400 "register expected");
401 break;
402 case REG_TYPE_FP_D:
403 msg = N_("64-bit SIMD scalar or floating-point double precision "
404 "register expected");
405 break;
406 case REG_TYPE_FP_Q:
407 msg = N_("128-bit SIMD scalar or floating-point quad precision "
408 "register expected");
409 break;
410 case REG_TYPE_CN:
411 msg = N_("C0 - C15 expected");
412 break;
413 case REG_TYPE_R_Z_BHSDQ_V:
414 case REG_TYPE_R_Z_BHSDQ_VZP:
415 msg = N_("register expected");
416 break;
417 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
418 msg = N_("SIMD scalar or floating-point register expected");
419 break;
420 case REG_TYPE_VN: /* any V reg */
421 msg = N_("vector register expected");
422 break;
423 case REG_TYPE_ZN:
424 msg = N_("SVE vector register expected");
425 break;
426 case REG_TYPE_PN:
427 msg = N_("SVE predicate register expected");
428 break;
429 default:
430 as_fatal (_("invalid register type %d"), reg_type);
431 }
432 return msg;
433 }
434
435 /* Some well known registers that we refer to directly elsewhere. */
436 #define REG_SP 31
437
438 /* Instructions take 4 bytes in the object file. */
439 #define INSN_SIZE 4
440
441 static struct hash_control *aarch64_ops_hsh;
442 static struct hash_control *aarch64_cond_hsh;
443 static struct hash_control *aarch64_shift_hsh;
444 static struct hash_control *aarch64_sys_regs_hsh;
445 static struct hash_control *aarch64_pstatefield_hsh;
446 static struct hash_control *aarch64_sys_regs_ic_hsh;
447 static struct hash_control *aarch64_sys_regs_dc_hsh;
448 static struct hash_control *aarch64_sys_regs_at_hsh;
449 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
450 static struct hash_control *aarch64_reg_hsh;
451 static struct hash_control *aarch64_barrier_opt_hsh;
452 static struct hash_control *aarch64_nzcv_hsh;
453 static struct hash_control *aarch64_pldop_hsh;
454 static struct hash_control *aarch64_hint_opt_hsh;
455
456 /* Stuff needed to resolve the label ambiguity
457 As:
458 ...
459 label: <insn>
460 may differ from:
461 ...
462 label:
463 <insn> */
464
465 static symbolS *last_label_seen;
466
467 /* Literal pool structure. Held on a per-section
468 and per-sub-section basis. */
469
470 #define MAX_LITERAL_POOL_SIZE 1024
471 typedef struct literal_expression
472 {
473 expressionS exp;
474 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
475 LITTLENUM_TYPE * bignum;
476 } literal_expression;
477
478 typedef struct literal_pool
479 {
480 literal_expression literals[MAX_LITERAL_POOL_SIZE];
481 unsigned int next_free_entry;
482 unsigned int id;
483 symbolS *symbol;
484 segT section;
485 subsegT sub_section;
486 int size;
487 struct literal_pool *next;
488 } literal_pool;
489
490 /* Pointer to a linked list of literal pools. */
491 static literal_pool *list_of_pools = NULL;
492 \f
493 /* Pure syntax. */
494
495 /* This array holds the chars that always start a comment. If the
496 pre-processor is disabled, these aren't very useful. */
497 const char comment_chars[] = "";
498
499 /* This array holds the chars that only start a comment at the beginning of
500 a line. If the line seems to have the form '# 123 filename'
501 .line and .file directives will appear in the pre-processed output. */
502 /* Note that input_file.c hand checks for '#' at the beginning of the
503 first line of the input file. This is because the compiler outputs
504 #NO_APP at the beginning of its output. */
505 /* Also note that comments like this one will always work. */
506 const char line_comment_chars[] = "#";
507
508 const char line_separator_chars[] = ";";
509
510 /* Chars that can be used to separate mant
511 from exp in floating point numbers. */
512 const char EXP_CHARS[] = "eE";
513
514 /* Chars that mean this number is a floating point constant. */
515 /* As in 0f12.456 */
516 /* or 0d1.2345e12 */
517
518 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
519
520 /* Prefix character that indicates the start of an immediate value. */
521 #define is_immediate_prefix(C) ((C) == '#')
522
523 /* Separator character handling. */
524
525 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
526
527 static inline bfd_boolean
528 skip_past_char (char **str, char c)
529 {
530 if (**str == c)
531 {
532 (*str)++;
533 return TRUE;
534 }
535 else
536 return FALSE;
537 }
538
539 #define skip_past_comma(str) skip_past_char (str, ',')
540
541 /* Arithmetic expressions (possibly involving symbols). */
542
543 static bfd_boolean in_my_get_expression_p = FALSE;
544
545 /* Third argument to my_get_expression. */
546 #define GE_NO_PREFIX 0
547 #define GE_OPT_PREFIX 1
548
549 /* Return TRUE if the string pointed by *STR is successfully parsed
550 as an valid expression; *EP will be filled with the information of
551 such an expression. Otherwise return FALSE. */
552
553 static bfd_boolean
554 my_get_expression (expressionS * ep, char **str, int prefix_mode,
555 int reject_absent)
556 {
557 char *save_in;
558 segT seg;
559 int prefix_present_p = 0;
560
561 switch (prefix_mode)
562 {
563 case GE_NO_PREFIX:
564 break;
565 case GE_OPT_PREFIX:
566 if (is_immediate_prefix (**str))
567 {
568 (*str)++;
569 prefix_present_p = 1;
570 }
571 break;
572 default:
573 abort ();
574 }
575
576 memset (ep, 0, sizeof (expressionS));
577
578 save_in = input_line_pointer;
579 input_line_pointer = *str;
580 in_my_get_expression_p = TRUE;
581 seg = expression (ep);
582 in_my_get_expression_p = FALSE;
583
584 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
585 {
586 /* We found a bad expression in md_operand(). */
587 *str = input_line_pointer;
588 input_line_pointer = save_in;
589 if (prefix_present_p && ! error_p ())
590 set_fatal_syntax_error (_("bad expression"));
591 else
592 set_first_syntax_error (_("bad expression"));
593 return FALSE;
594 }
595
596 #ifdef OBJ_AOUT
597 if (seg != absolute_section
598 && seg != text_section
599 && seg != data_section
600 && seg != bss_section && seg != undefined_section)
601 {
602 set_syntax_error (_("bad segment"));
603 *str = input_line_pointer;
604 input_line_pointer = save_in;
605 return FALSE;
606 }
607 #else
608 (void) seg;
609 #endif
610
611 *str = input_line_pointer;
612 input_line_pointer = save_in;
613 return TRUE;
614 }
615
616 /* Turn a string in input_line_pointer into a floating point constant
617 of type TYPE, and store the appropriate bytes in *LITP. The number
618 of LITTLENUMS emitted is stored in *SIZEP. An error message is
619 returned, or NULL on OK. */
620
621 const char *
622 md_atof (int type, char *litP, int *sizeP)
623 {
624 return ieee_md_atof (type, litP, sizeP, target_big_endian);
625 }
626
627 /* We handle all bad expressions here, so that we can report the faulty
628 instruction in the error message. */
629 void
630 md_operand (expressionS * exp)
631 {
632 if (in_my_get_expression_p)
633 exp->X_op = O_illegal;
634 }
635
636 /* Immediate values. */
637
638 /* Errors may be set multiple times during parsing or bit encoding
639 (particularly in the Neon bits), but usually the earliest error which is set
640 will be the most meaningful. Avoid overwriting it with later (cascading)
641 errors by calling this function. */
642
643 static void
644 first_error (const char *error)
645 {
646 if (! error_p ())
647 set_syntax_error (error);
648 }
649
650 /* Similiar to first_error, but this function accepts formatted error
651 message. */
652 static void
653 first_error_fmt (const char *format, ...)
654 {
655 va_list args;
656 enum
657 { size = 100 };
658 /* N.B. this single buffer will not cause error messages for different
659 instructions to pollute each other; this is because at the end of
660 processing of each assembly line, error message if any will be
661 collected by as_bad. */
662 static char buffer[size];
663
664 if (! error_p ())
665 {
666 int ret ATTRIBUTE_UNUSED;
667 va_start (args, format);
668 ret = vsnprintf (buffer, size, format, args);
669 know (ret <= size - 1 && ret >= 0);
670 va_end (args);
671 set_syntax_error (buffer);
672 }
673 }
674
675 /* Register parsing. */
676
677 /* Generic register parser which is called by other specialized
678 register parsers.
679 CCP points to what should be the beginning of a register name.
680 If it is indeed a valid register name, advance CCP over it and
681 return the reg_entry structure; otherwise return NULL.
682 It does not issue diagnostics. */
683
684 static reg_entry *
685 parse_reg (char **ccp)
686 {
687 char *start = *ccp;
688 char *p;
689 reg_entry *reg;
690
691 #ifdef REGISTER_PREFIX
692 if (*start != REGISTER_PREFIX)
693 return NULL;
694 start++;
695 #endif
696
697 p = start;
698 if (!ISALPHA (*p) || !is_name_beginner (*p))
699 return NULL;
700
701 do
702 p++;
703 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
704
705 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
706
707 if (!reg)
708 return NULL;
709
710 *ccp = p;
711 return reg;
712 }
713
714 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
715 return FALSE. */
716 static bfd_boolean
717 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
718 {
719 return (reg_type_masks[type] & (1 << reg->type)) != 0;
720 }
721
722 /* Try to parse a base or offset register. Allow SVE base and offset
723 registers if REG_TYPE includes SVE registers. Return the register
724 entry on success, setting *QUALIFIER to the register qualifier.
725 Return null otherwise.
726
727 Note that this function does not issue any diagnostics. */
728
729 static const reg_entry *
730 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
731 aarch64_opnd_qualifier_t *qualifier)
732 {
733 char *str = *ccp;
734 const reg_entry *reg = parse_reg (&str);
735
736 if (reg == NULL)
737 return NULL;
738
739 switch (reg->type)
740 {
741 case REG_TYPE_R_32:
742 case REG_TYPE_SP_32:
743 case REG_TYPE_Z_32:
744 *qualifier = AARCH64_OPND_QLF_W;
745 break;
746
747 case REG_TYPE_R_64:
748 case REG_TYPE_SP_64:
749 case REG_TYPE_Z_64:
750 *qualifier = AARCH64_OPND_QLF_X;
751 break;
752
753 case REG_TYPE_ZN:
754 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
755 || str[0] != '.')
756 return NULL;
757 switch (TOLOWER (str[1]))
758 {
759 case 's':
760 *qualifier = AARCH64_OPND_QLF_S_S;
761 break;
762 case 'd':
763 *qualifier = AARCH64_OPND_QLF_S_D;
764 break;
765 default:
766 return NULL;
767 }
768 str += 2;
769 break;
770
771 default:
772 return NULL;
773 }
774
775 *ccp = str;
776
777 return reg;
778 }
779
780 /* Try to parse a base or offset register. Return the register entry
781 on success, setting *QUALIFIER to the register qualifier. Return null
782 otherwise.
783
784 Note that this function does not issue any diagnostics. */
785
786 static const reg_entry *
787 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
788 {
789 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
790 }
791
792 /* Parse the qualifier of a vector register or vector element of type
793 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
794 succeeds; otherwise return FALSE.
795
796 Accept only one occurrence of:
797 8b 16b 2h 4h 8h 2s 4s 1d 2d
798 b h s d q */
799 static bfd_boolean
800 parse_vector_type_for_operand (aarch64_reg_type reg_type,
801 struct vector_type_el *parsed_type, char **str)
802 {
803 char *ptr = *str;
804 unsigned width;
805 unsigned element_size;
806 enum vector_el_type type;
807
808 /* skip '.' */
809 gas_assert (*ptr == '.');
810 ptr++;
811
812 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
813 {
814 width = 0;
815 goto elt_size;
816 }
817 width = strtoul (ptr, &ptr, 10);
818 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
819 {
820 first_error_fmt (_("bad size %d in vector width specifier"), width);
821 return FALSE;
822 }
823
824 elt_size:
825 switch (TOLOWER (*ptr))
826 {
827 case 'b':
828 type = NT_b;
829 element_size = 8;
830 break;
831 case 'h':
832 type = NT_h;
833 element_size = 16;
834 break;
835 case 's':
836 type = NT_s;
837 element_size = 32;
838 break;
839 case 'd':
840 type = NT_d;
841 element_size = 64;
842 break;
843 case 'q':
844 if (width == 1)
845 {
846 type = NT_q;
847 element_size = 128;
848 break;
849 }
850 /* fall through. */
851 default:
852 if (*ptr != '\0')
853 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
854 else
855 first_error (_("missing element size"));
856 return FALSE;
857 }
858 if (width != 0 && width * element_size != 64 && width * element_size != 128
859 && !(width == 2 && element_size == 16))
860 {
861 first_error_fmt (_
862 ("invalid element size %d and vector size combination %c"),
863 width, *ptr);
864 return FALSE;
865 }
866 ptr++;
867
868 parsed_type->type = type;
869 parsed_type->width = width;
870
871 *str = ptr;
872
873 return TRUE;
874 }
875
876 /* *STR contains an SVE zero/merge predication suffix. Parse it into
877 *PARSED_TYPE and point *STR at the end of the suffix. */
878
879 static bfd_boolean
880 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
881 {
882 char *ptr = *str;
883
884 /* Skip '/'. */
885 gas_assert (*ptr == '/');
886 ptr++;
887 switch (TOLOWER (*ptr))
888 {
889 case 'z':
890 parsed_type->type = NT_zero;
891 break;
892 case 'm':
893 parsed_type->type = NT_merge;
894 break;
895 default:
896 if (*ptr != '\0' && *ptr != ',')
897 first_error_fmt (_("unexpected character `%c' in predication type"),
898 *ptr);
899 else
900 first_error (_("missing predication type"));
901 return FALSE;
902 }
903 parsed_type->width = 0;
904 *str = ptr + 1;
905 return TRUE;
906 }
907
908 /* Parse a register of the type TYPE.
909
910 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
911 name or the parsed register is not of TYPE.
912
913 Otherwise return the register number, and optionally fill in the actual
914 type of the register in *RTYPE when multiple alternatives were given, and
915 return the register shape and element index information in *TYPEINFO.
916
917 IN_REG_LIST should be set with TRUE if the caller is parsing a register
918 list. */
919
920 static int
921 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
922 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
923 {
924 char *str = *ccp;
925 const reg_entry *reg = parse_reg (&str);
926 struct vector_type_el atype;
927 struct vector_type_el parsetype;
928 bfd_boolean is_typed_vecreg = FALSE;
929
930 atype.defined = 0;
931 atype.type = NT_invtype;
932 atype.width = -1;
933 atype.index = 0;
934
935 if (reg == NULL)
936 {
937 if (typeinfo)
938 *typeinfo = atype;
939 set_default_error ();
940 return PARSE_FAIL;
941 }
942
943 if (! aarch64_check_reg_type (reg, type))
944 {
945 DEBUG_TRACE ("reg type check failed");
946 set_default_error ();
947 return PARSE_FAIL;
948 }
949 type = reg->type;
950
951 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
952 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
953 {
954 if (*str == '.')
955 {
956 if (!parse_vector_type_for_operand (type, &parsetype, &str))
957 return PARSE_FAIL;
958 }
959 else
960 {
961 if (!parse_predication_for_operand (&parsetype, &str))
962 return PARSE_FAIL;
963 }
964
965 /* Register if of the form Vn.[bhsdq]. */
966 is_typed_vecreg = TRUE;
967
968 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
969 {
970 /* The width is always variable; we don't allow an integer width
971 to be specified. */
972 gas_assert (parsetype.width == 0);
973 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
974 }
975 else if (parsetype.width == 0)
976 /* Expect index. In the new scheme we cannot have
977 Vn.[bhsdq] represent a scalar. Therefore any
978 Vn.[bhsdq] should have an index following it.
979 Except in reglists ofcourse. */
980 atype.defined |= NTA_HASINDEX;
981 else
982 atype.defined |= NTA_HASTYPE;
983
984 atype.type = parsetype.type;
985 atype.width = parsetype.width;
986 }
987
988 if (skip_past_char (&str, '['))
989 {
990 expressionS exp;
991
992 /* Reject Sn[index] syntax. */
993 if (!is_typed_vecreg)
994 {
995 first_error (_("this type of register can't be indexed"));
996 return PARSE_FAIL;
997 }
998
999 if (in_reg_list == TRUE)
1000 {
1001 first_error (_("index not allowed inside register list"));
1002 return PARSE_FAIL;
1003 }
1004
1005 atype.defined |= NTA_HASINDEX;
1006
1007 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1008
1009 if (exp.X_op != O_constant)
1010 {
1011 first_error (_("constant expression required"));
1012 return PARSE_FAIL;
1013 }
1014
1015 if (! skip_past_char (&str, ']'))
1016 return PARSE_FAIL;
1017
1018 atype.index = exp.X_add_number;
1019 }
1020 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1021 {
1022 /* Indexed vector register expected. */
1023 first_error (_("indexed vector register expected"));
1024 return PARSE_FAIL;
1025 }
1026
1027 /* A vector reg Vn should be typed or indexed. */
1028 if (type == REG_TYPE_VN && atype.defined == 0)
1029 {
1030 first_error (_("invalid use of vector register"));
1031 }
1032
1033 if (typeinfo)
1034 *typeinfo = atype;
1035
1036 if (rtype)
1037 *rtype = type;
1038
1039 *ccp = str;
1040
1041 return reg->number;
1042 }
1043
1044 /* Parse register.
1045
1046 Return the register number on success; return PARSE_FAIL otherwise.
1047
1048 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1049 the register (e.g. NEON double or quad reg when either has been requested).
1050
1051 If this is a NEON vector register with additional type information, fill
1052 in the struct pointed to by VECTYPE (if non-NULL).
1053
1054 This parser does not handle register list. */
1055
1056 static int
1057 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1058 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1059 {
1060 struct vector_type_el atype;
1061 char *str = *ccp;
1062 int reg = parse_typed_reg (&str, type, rtype, &atype,
1063 /*in_reg_list= */ FALSE);
1064
1065 if (reg == PARSE_FAIL)
1066 return PARSE_FAIL;
1067
1068 if (vectype)
1069 *vectype = atype;
1070
1071 *ccp = str;
1072
1073 return reg;
1074 }
1075
1076 static inline bfd_boolean
1077 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1078 {
1079 return
1080 e1.type == e2.type
1081 && e1.defined == e2.defined
1082 && e1.width == e2.width && e1.index == e2.index;
1083 }
1084
1085 /* This function parses a list of vector registers of type TYPE.
1086 On success, it returns the parsed register list information in the
1087 following encoded format:
1088
1089 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1090 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1091
1092 The information of the register shape and/or index is returned in
1093 *VECTYPE.
1094
1095 It returns PARSE_FAIL if the register list is invalid.
1096
1097 The list contains one to four registers.
1098 Each register can be one of:
1099 <Vt>.<T>[<index>]
1100 <Vt>.<T>
1101 All <T> should be identical.
1102 All <index> should be identical.
1103 There are restrictions on <Vt> numbers which are checked later
1104 (by reg_list_valid_p). */
1105
1106 static int
1107 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1108 struct vector_type_el *vectype)
1109 {
1110 char *str = *ccp;
1111 int nb_regs;
1112 struct vector_type_el typeinfo, typeinfo_first;
1113 int val, val_range;
1114 int in_range;
1115 int ret_val;
1116 int i;
1117 bfd_boolean error = FALSE;
1118 bfd_boolean expect_index = FALSE;
1119
1120 if (*str != '{')
1121 {
1122 set_syntax_error (_("expecting {"));
1123 return PARSE_FAIL;
1124 }
1125 str++;
1126
1127 nb_regs = 0;
1128 typeinfo_first.defined = 0;
1129 typeinfo_first.type = NT_invtype;
1130 typeinfo_first.width = -1;
1131 typeinfo_first.index = 0;
1132 ret_val = 0;
1133 val = -1;
1134 val_range = -1;
1135 in_range = 0;
1136 do
1137 {
1138 if (in_range)
1139 {
1140 str++; /* skip over '-' */
1141 val_range = val;
1142 }
1143 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1144 /*in_reg_list= */ TRUE);
1145 if (val == PARSE_FAIL)
1146 {
1147 set_first_syntax_error (_("invalid vector register in list"));
1148 error = TRUE;
1149 continue;
1150 }
1151 /* reject [bhsd]n */
1152 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1153 {
1154 set_first_syntax_error (_("invalid scalar register in list"));
1155 error = TRUE;
1156 continue;
1157 }
1158
1159 if (typeinfo.defined & NTA_HASINDEX)
1160 expect_index = TRUE;
1161
1162 if (in_range)
1163 {
1164 if (val < val_range)
1165 {
1166 set_first_syntax_error
1167 (_("invalid range in vector register list"));
1168 error = TRUE;
1169 }
1170 val_range++;
1171 }
1172 else
1173 {
1174 val_range = val;
1175 if (nb_regs == 0)
1176 typeinfo_first = typeinfo;
1177 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1178 {
1179 set_first_syntax_error
1180 (_("type mismatch in vector register list"));
1181 error = TRUE;
1182 }
1183 }
1184 if (! error)
1185 for (i = val_range; i <= val; i++)
1186 {
1187 ret_val |= i << (5 * nb_regs);
1188 nb_regs++;
1189 }
1190 in_range = 0;
1191 }
1192 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1193
1194 skip_whitespace (str);
1195 if (*str != '}')
1196 {
1197 set_first_syntax_error (_("end of vector register list not found"));
1198 error = TRUE;
1199 }
1200 str++;
1201
1202 skip_whitespace (str);
1203
1204 if (expect_index)
1205 {
1206 if (skip_past_char (&str, '['))
1207 {
1208 expressionS exp;
1209
1210 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1211 if (exp.X_op != O_constant)
1212 {
1213 set_first_syntax_error (_("constant expression required."));
1214 error = TRUE;
1215 }
1216 if (! skip_past_char (&str, ']'))
1217 error = TRUE;
1218 else
1219 typeinfo_first.index = exp.X_add_number;
1220 }
1221 else
1222 {
1223 set_first_syntax_error (_("expected index"));
1224 error = TRUE;
1225 }
1226 }
1227
1228 if (nb_regs > 4)
1229 {
1230 set_first_syntax_error (_("too many registers in vector register list"));
1231 error = TRUE;
1232 }
1233 else if (nb_regs == 0)
1234 {
1235 set_first_syntax_error (_("empty vector register list"));
1236 error = TRUE;
1237 }
1238
1239 *ccp = str;
1240 if (! error)
1241 *vectype = typeinfo_first;
1242
1243 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1244 }
1245
1246 /* Directives: register aliases. */
1247
1248 static reg_entry *
1249 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1250 {
1251 reg_entry *new;
1252 const char *name;
1253
1254 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1255 {
1256 if (new->builtin)
1257 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1258 str);
1259
1260 /* Only warn about a redefinition if it's not defined as the
1261 same register. */
1262 else if (new->number != number || new->type != type)
1263 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1264
1265 return NULL;
1266 }
1267
1268 name = xstrdup (str);
1269 new = XNEW (reg_entry);
1270
1271 new->name = name;
1272 new->number = number;
1273 new->type = type;
1274 new->builtin = FALSE;
1275
1276 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1277 abort ();
1278
1279 return new;
1280 }
1281
1282 /* Look for the .req directive. This is of the form:
1283
1284 new_register_name .req existing_register_name
1285
1286 If we find one, or if it looks sufficiently like one that we want to
1287 handle any error here, return TRUE. Otherwise return FALSE. */
1288
1289 static bfd_boolean
1290 create_register_alias (char *newname, char *p)
1291 {
1292 const reg_entry *old;
1293 char *oldname, *nbuf;
1294 size_t nlen;
1295
1296 /* The input scrubber ensures that whitespace after the mnemonic is
1297 collapsed to single spaces. */
1298 oldname = p;
1299 if (strncmp (oldname, " .req ", 6) != 0)
1300 return FALSE;
1301
1302 oldname += 6;
1303 if (*oldname == '\0')
1304 return FALSE;
1305
1306 old = hash_find (aarch64_reg_hsh, oldname);
1307 if (!old)
1308 {
1309 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1310 return TRUE;
1311 }
1312
1313 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1314 the desired alias name, and p points to its end. If not, then
1315 the desired alias name is in the global original_case_string. */
1316 #ifdef TC_CASE_SENSITIVE
1317 nlen = p - newname;
1318 #else
1319 newname = original_case_string;
1320 nlen = strlen (newname);
1321 #endif
1322
1323 nbuf = xmemdup0 (newname, nlen);
1324
1325 /* Create aliases under the new name as stated; an all-lowercase
1326 version of the new name; and an all-uppercase version of the new
1327 name. */
1328 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1329 {
1330 for (p = nbuf; *p; p++)
1331 *p = TOUPPER (*p);
1332
1333 if (strncmp (nbuf, newname, nlen))
1334 {
1335 /* If this attempt to create an additional alias fails, do not bother
1336 trying to create the all-lower case alias. We will fail and issue
1337 a second, duplicate error message. This situation arises when the
1338 programmer does something like:
1339 foo .req r0
1340 Foo .req r1
1341 The second .req creates the "Foo" alias but then fails to create
1342 the artificial FOO alias because it has already been created by the
1343 first .req. */
1344 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1345 {
1346 free (nbuf);
1347 return TRUE;
1348 }
1349 }
1350
1351 for (p = nbuf; *p; p++)
1352 *p = TOLOWER (*p);
1353
1354 if (strncmp (nbuf, newname, nlen))
1355 insert_reg_alias (nbuf, old->number, old->type);
1356 }
1357
1358 free (nbuf);
1359 return TRUE;
1360 }
1361
1362 /* Should never be called, as .req goes between the alias and the
1363 register name, not at the beginning of the line. */
1364 static void
1365 s_req (int a ATTRIBUTE_UNUSED)
1366 {
1367 as_bad (_("invalid syntax for .req directive"));
1368 }
1369
1370 /* The .unreq directive deletes an alias which was previously defined
1371 by .req. For example:
1372
1373 my_alias .req r11
1374 .unreq my_alias */
1375
1376 static void
1377 s_unreq (int a ATTRIBUTE_UNUSED)
1378 {
1379 char *name;
1380 char saved_char;
1381
1382 name = input_line_pointer;
1383
1384 while (*input_line_pointer != 0
1385 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1386 ++input_line_pointer;
1387
1388 saved_char = *input_line_pointer;
1389 *input_line_pointer = 0;
1390
1391 if (!*name)
1392 as_bad (_("invalid syntax for .unreq directive"));
1393 else
1394 {
1395 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1396
1397 if (!reg)
1398 as_bad (_("unknown register alias '%s'"), name);
1399 else if (reg->builtin)
1400 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1401 name);
1402 else
1403 {
1404 char *p;
1405 char *nbuf;
1406
1407 hash_delete (aarch64_reg_hsh, name, FALSE);
1408 free ((char *) reg->name);
1409 free (reg);
1410
1411 /* Also locate the all upper case and all lower case versions.
1412 Do not complain if we cannot find one or the other as it
1413 was probably deleted above. */
1414
1415 nbuf = strdup (name);
1416 for (p = nbuf; *p; p++)
1417 *p = TOUPPER (*p);
1418 reg = hash_find (aarch64_reg_hsh, nbuf);
1419 if (reg)
1420 {
1421 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1422 free ((char *) reg->name);
1423 free (reg);
1424 }
1425
1426 for (p = nbuf; *p; p++)
1427 *p = TOLOWER (*p);
1428 reg = hash_find (aarch64_reg_hsh, nbuf);
1429 if (reg)
1430 {
1431 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1432 free ((char *) reg->name);
1433 free (reg);
1434 }
1435
1436 free (nbuf);
1437 }
1438 }
1439
1440 *input_line_pointer = saved_char;
1441 demand_empty_rest_of_line ();
1442 }
1443
1444 /* Directives: Instruction set selection. */
1445
1446 #ifdef OBJ_ELF
1447 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1448 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1449 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1450 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1451
1452 /* Create a new mapping symbol for the transition to STATE. */
1453
1454 static void
1455 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1456 {
1457 symbolS *symbolP;
1458 const char *symname;
1459 int type;
1460
1461 switch (state)
1462 {
1463 case MAP_DATA:
1464 symname = "$d";
1465 type = BSF_NO_FLAGS;
1466 break;
1467 case MAP_INSN:
1468 symname = "$x";
1469 type = BSF_NO_FLAGS;
1470 break;
1471 default:
1472 abort ();
1473 }
1474
1475 symbolP = symbol_new (symname, now_seg, value, frag);
1476 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1477
1478 /* Save the mapping symbols for future reference. Also check that
1479 we do not place two mapping symbols at the same offset within a
1480 frag. We'll handle overlap between frags in
1481 check_mapping_symbols.
1482
1483 If .fill or other data filling directive generates zero sized data,
1484 the mapping symbol for the following code will have the same value
1485 as the one generated for the data filling directive. In this case,
1486 we replace the old symbol with the new one at the same address. */
1487 if (value == 0)
1488 {
1489 if (frag->tc_frag_data.first_map != NULL)
1490 {
1491 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1492 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1493 &symbol_lastP);
1494 }
1495 frag->tc_frag_data.first_map = symbolP;
1496 }
1497 if (frag->tc_frag_data.last_map != NULL)
1498 {
1499 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1500 S_GET_VALUE (symbolP));
1501 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1502 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1503 &symbol_lastP);
1504 }
1505 frag->tc_frag_data.last_map = symbolP;
1506 }
1507
1508 /* We must sometimes convert a region marked as code to data during
1509 code alignment, if an odd number of bytes have to be padded. The
1510 code mapping symbol is pushed to an aligned address. */
1511
1512 static void
1513 insert_data_mapping_symbol (enum mstate state,
1514 valueT value, fragS * frag, offsetT bytes)
1515 {
1516 /* If there was already a mapping symbol, remove it. */
1517 if (frag->tc_frag_data.last_map != NULL
1518 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1519 frag->fr_address + value)
1520 {
1521 symbolS *symp = frag->tc_frag_data.last_map;
1522
1523 if (value == 0)
1524 {
1525 know (frag->tc_frag_data.first_map == symp);
1526 frag->tc_frag_data.first_map = NULL;
1527 }
1528 frag->tc_frag_data.last_map = NULL;
1529 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1530 }
1531
1532 make_mapping_symbol (MAP_DATA, value, frag);
1533 make_mapping_symbol (state, value + bytes, frag);
1534 }
1535
1536 static void mapping_state_2 (enum mstate state, int max_chars);
1537
1538 /* Set the mapping state to STATE. Only call this when about to
1539 emit some STATE bytes to the file. */
1540
1541 void
1542 mapping_state (enum mstate state)
1543 {
1544 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1545
1546 if (state == MAP_INSN)
1547 /* AArch64 instructions require 4-byte alignment. When emitting
1548 instructions into any section, record the appropriate section
1549 alignment. */
1550 record_alignment (now_seg, 2);
1551
1552 if (mapstate == state)
1553 /* The mapping symbol has already been emitted.
1554 There is nothing else to do. */
1555 return;
1556
1557 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1558 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1559 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1560 evaluated later in the next else. */
1561 return;
1562 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1563 {
1564 /* Only add the symbol if the offset is > 0:
1565 if we're at the first frag, check it's size > 0;
1566 if we're not at the first frag, then for sure
1567 the offset is > 0. */
1568 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1569 const int add_symbol = (frag_now != frag_first)
1570 || (frag_now_fix () > 0);
1571
1572 if (add_symbol)
1573 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1574 }
1575 #undef TRANSITION
1576
1577 mapping_state_2 (state, 0);
1578 }
1579
1580 /* Same as mapping_state, but MAX_CHARS bytes have already been
1581 allocated. Put the mapping symbol that far back. */
1582
1583 static void
1584 mapping_state_2 (enum mstate state, int max_chars)
1585 {
1586 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1587
1588 if (!SEG_NORMAL (now_seg))
1589 return;
1590
1591 if (mapstate == state)
1592 /* The mapping symbol has already been emitted.
1593 There is nothing else to do. */
1594 return;
1595
1596 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1597 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1598 }
1599 #else
1600 #define mapping_state(x) /* nothing */
1601 #define mapping_state_2(x, y) /* nothing */
1602 #endif
1603
1604 /* Directives: sectioning and alignment. */
1605
1606 static void
1607 s_bss (int ignore ATTRIBUTE_UNUSED)
1608 {
1609 /* We don't support putting frags in the BSS segment, we fake it by
1610 marking in_bss, then looking at s_skip for clues. */
1611 subseg_set (bss_section, 0);
1612 demand_empty_rest_of_line ();
1613 mapping_state (MAP_DATA);
1614 }
1615
1616 static void
1617 s_even (int ignore ATTRIBUTE_UNUSED)
1618 {
1619 /* Never make frag if expect extra pass. */
1620 if (!need_pass_2)
1621 frag_align (1, 0, 0);
1622
1623 record_alignment (now_seg, 1);
1624
1625 demand_empty_rest_of_line ();
1626 }
1627
1628 /* Directives: Literal pools. */
1629
1630 static literal_pool *
1631 find_literal_pool (int size)
1632 {
1633 literal_pool *pool;
1634
1635 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1636 {
1637 if (pool->section == now_seg
1638 && pool->sub_section == now_subseg && pool->size == size)
1639 break;
1640 }
1641
1642 return pool;
1643 }
1644
1645 static literal_pool *
1646 find_or_make_literal_pool (int size)
1647 {
1648 /* Next literal pool ID number. */
1649 static unsigned int latest_pool_num = 1;
1650 literal_pool *pool;
1651
1652 pool = find_literal_pool (size);
1653
1654 if (pool == NULL)
1655 {
1656 /* Create a new pool. */
1657 pool = XNEW (literal_pool);
1658 if (!pool)
1659 return NULL;
1660
1661 /* Currently we always put the literal pool in the current text
1662 section. If we were generating "small" model code where we
1663 knew that all code and initialised data was within 1MB then
1664 we could output literals to mergeable, read-only data
1665 sections. */
1666
1667 pool->next_free_entry = 0;
1668 pool->section = now_seg;
1669 pool->sub_section = now_subseg;
1670 pool->size = size;
1671 pool->next = list_of_pools;
1672 pool->symbol = NULL;
1673
1674 /* Add it to the list. */
1675 list_of_pools = pool;
1676 }
1677
1678 /* New pools, and emptied pools, will have a NULL symbol. */
1679 if (pool->symbol == NULL)
1680 {
1681 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1682 (valueT) 0, &zero_address_frag);
1683 pool->id = latest_pool_num++;
1684 }
1685
1686 /* Done. */
1687 return pool;
1688 }
1689
1690 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1691 Return TRUE on success, otherwise return FALSE. */
1692 static bfd_boolean
1693 add_to_lit_pool (expressionS *exp, int size)
1694 {
1695 literal_pool *pool;
1696 unsigned int entry;
1697
1698 pool = find_or_make_literal_pool (size);
1699
1700 /* Check if this literal value is already in the pool. */
1701 for (entry = 0; entry < pool->next_free_entry; entry++)
1702 {
1703 expressionS * litexp = & pool->literals[entry].exp;
1704
1705 if ((litexp->X_op == exp->X_op)
1706 && (exp->X_op == O_constant)
1707 && (litexp->X_add_number == exp->X_add_number)
1708 && (litexp->X_unsigned == exp->X_unsigned))
1709 break;
1710
1711 if ((litexp->X_op == exp->X_op)
1712 && (exp->X_op == O_symbol)
1713 && (litexp->X_add_number == exp->X_add_number)
1714 && (litexp->X_add_symbol == exp->X_add_symbol)
1715 && (litexp->X_op_symbol == exp->X_op_symbol))
1716 break;
1717 }
1718
1719 /* Do we need to create a new entry? */
1720 if (entry == pool->next_free_entry)
1721 {
1722 if (entry >= MAX_LITERAL_POOL_SIZE)
1723 {
1724 set_syntax_error (_("literal pool overflow"));
1725 return FALSE;
1726 }
1727
1728 pool->literals[entry].exp = *exp;
1729 pool->next_free_entry += 1;
1730 if (exp->X_op == O_big)
1731 {
1732 /* PR 16688: Bignums are held in a single global array. We must
1733 copy and preserve that value now, before it is overwritten. */
1734 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1735 exp->X_add_number);
1736 memcpy (pool->literals[entry].bignum, generic_bignum,
1737 CHARS_PER_LITTLENUM * exp->X_add_number);
1738 }
1739 else
1740 pool->literals[entry].bignum = NULL;
1741 }
1742
1743 exp->X_op = O_symbol;
1744 exp->X_add_number = ((int) entry) * size;
1745 exp->X_add_symbol = pool->symbol;
1746
1747 return TRUE;
1748 }
1749
1750 /* Can't use symbol_new here, so have to create a symbol and then at
1751 a later date assign it a value. Thats what these functions do. */
1752
1753 static void
1754 symbol_locate (symbolS * symbolP,
1755 const char *name,/* It is copied, the caller can modify. */
1756 segT segment, /* Segment identifier (SEG_<something>). */
1757 valueT valu, /* Symbol value. */
1758 fragS * frag) /* Associated fragment. */
1759 {
1760 size_t name_length;
1761 char *preserved_copy_of_name;
1762
1763 name_length = strlen (name) + 1; /* +1 for \0. */
1764 obstack_grow (&notes, name, name_length);
1765 preserved_copy_of_name = obstack_finish (&notes);
1766
1767 #ifdef tc_canonicalize_symbol_name
1768 preserved_copy_of_name =
1769 tc_canonicalize_symbol_name (preserved_copy_of_name);
1770 #endif
1771
1772 S_SET_NAME (symbolP, preserved_copy_of_name);
1773
1774 S_SET_SEGMENT (symbolP, segment);
1775 S_SET_VALUE (symbolP, valu);
1776 symbol_clear_list_pointers (symbolP);
1777
1778 symbol_set_frag (symbolP, frag);
1779
1780 /* Link to end of symbol chain. */
1781 {
1782 extern int symbol_table_frozen;
1783
1784 if (symbol_table_frozen)
1785 abort ();
1786 }
1787
1788 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1789
1790 obj_symbol_new_hook (symbolP);
1791
1792 #ifdef tc_symbol_new_hook
1793 tc_symbol_new_hook (symbolP);
1794 #endif
1795
1796 #ifdef DEBUG_SYMS
1797 verify_symbol_chain (symbol_rootP, symbol_lastP);
1798 #endif /* DEBUG_SYMS */
1799 }
1800
1801
1802 static void
1803 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1804 {
1805 unsigned int entry;
1806 literal_pool *pool;
1807 char sym_name[20];
1808 int align;
1809
1810 for (align = 2; align <= 4; align++)
1811 {
1812 int size = 1 << align;
1813
1814 pool = find_literal_pool (size);
1815 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1816 continue;
1817
1818 /* Align pool as you have word accesses.
1819 Only make a frag if we have to. */
1820 if (!need_pass_2)
1821 frag_align (align, 0, 0);
1822
1823 mapping_state (MAP_DATA);
1824
1825 record_alignment (now_seg, align);
1826
1827 sprintf (sym_name, "$$lit_\002%x", pool->id);
1828
1829 symbol_locate (pool->symbol, sym_name, now_seg,
1830 (valueT) frag_now_fix (), frag_now);
1831 symbol_table_insert (pool->symbol);
1832
1833 for (entry = 0; entry < pool->next_free_entry; entry++)
1834 {
1835 expressionS * exp = & pool->literals[entry].exp;
1836
1837 if (exp->X_op == O_big)
1838 {
1839 /* PR 16688: Restore the global bignum value. */
1840 gas_assert (pool->literals[entry].bignum != NULL);
1841 memcpy (generic_bignum, pool->literals[entry].bignum,
1842 CHARS_PER_LITTLENUM * exp->X_add_number);
1843 }
1844
1845 /* First output the expression in the instruction to the pool. */
1846 emit_expr (exp, size); /* .word|.xword */
1847
1848 if (exp->X_op == O_big)
1849 {
1850 free (pool->literals[entry].bignum);
1851 pool->literals[entry].bignum = NULL;
1852 }
1853 }
1854
1855 /* Mark the pool as empty. */
1856 pool->next_free_entry = 0;
1857 pool->symbol = NULL;
1858 }
1859 }
1860
1861 #ifdef OBJ_ELF
1862 /* Forward declarations for functions below, in the MD interface
1863 section. */
1864 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1865 static struct reloc_table_entry * find_reloc_table_entry (char **);
1866
1867 /* Directives: Data. */
1868 /* N.B. the support for relocation suffix in this directive needs to be
1869 implemented properly. */
1870
1871 static void
1872 s_aarch64_elf_cons (int nbytes)
1873 {
1874 expressionS exp;
1875
1876 #ifdef md_flush_pending_output
1877 md_flush_pending_output ();
1878 #endif
1879
1880 if (is_it_end_of_statement ())
1881 {
1882 demand_empty_rest_of_line ();
1883 return;
1884 }
1885
1886 #ifdef md_cons_align
1887 md_cons_align (nbytes);
1888 #endif
1889
1890 mapping_state (MAP_DATA);
1891 do
1892 {
1893 struct reloc_table_entry *reloc;
1894
1895 expression (&exp);
1896
1897 if (exp.X_op != O_symbol)
1898 emit_expr (&exp, (unsigned int) nbytes);
1899 else
1900 {
1901 skip_past_char (&input_line_pointer, '#');
1902 if (skip_past_char (&input_line_pointer, ':'))
1903 {
1904 reloc = find_reloc_table_entry (&input_line_pointer);
1905 if (reloc == NULL)
1906 as_bad (_("unrecognized relocation suffix"));
1907 else
1908 as_bad (_("unimplemented relocation suffix"));
1909 ignore_rest_of_line ();
1910 return;
1911 }
1912 else
1913 emit_expr (&exp, (unsigned int) nbytes);
1914 }
1915 }
1916 while (*input_line_pointer++ == ',');
1917
1918 /* Put terminator back into stream. */
1919 input_line_pointer--;
1920 demand_empty_rest_of_line ();
1921 }
1922
1923 #endif /* OBJ_ELF */
1924
1925 /* Output a 32-bit word, but mark as an instruction. */
1926
1927 static void
1928 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1929 {
1930 expressionS exp;
1931
1932 #ifdef md_flush_pending_output
1933 md_flush_pending_output ();
1934 #endif
1935
1936 if (is_it_end_of_statement ())
1937 {
1938 demand_empty_rest_of_line ();
1939 return;
1940 }
1941
1942 /* Sections are assumed to start aligned. In executable section, there is no
1943 MAP_DATA symbol pending. So we only align the address during
1944 MAP_DATA --> MAP_INSN transition.
1945 For other sections, this is not guaranteed. */
1946 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1947 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
1948 frag_align_code (2, 0);
1949
1950 #ifdef OBJ_ELF
1951 mapping_state (MAP_INSN);
1952 #endif
1953
1954 do
1955 {
1956 expression (&exp);
1957 if (exp.X_op != O_constant)
1958 {
1959 as_bad (_("constant expression required"));
1960 ignore_rest_of_line ();
1961 return;
1962 }
1963
1964 if (target_big_endian)
1965 {
1966 unsigned int val = exp.X_add_number;
1967 exp.X_add_number = SWAP_32 (val);
1968 }
1969 emit_expr (&exp, 4);
1970 }
1971 while (*input_line_pointer++ == ',');
1972
1973 /* Put terminator back into stream. */
1974 input_line_pointer--;
1975 demand_empty_rest_of_line ();
1976 }
1977
1978 #ifdef OBJ_ELF
1979 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1980
1981 static void
1982 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1983 {
1984 expressionS exp;
1985
1986 expression (&exp);
1987 frag_grow (4);
1988 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1989 BFD_RELOC_AARCH64_TLSDESC_ADD);
1990
1991 demand_empty_rest_of_line ();
1992 }
1993
1994 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1995
1996 static void
1997 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1998 {
1999 expressionS exp;
2000
2001 /* Since we're just labelling the code, there's no need to define a
2002 mapping symbol. */
2003 expression (&exp);
2004 /* Make sure there is enough room in this frag for the following
2005 blr. This trick only works if the blr follows immediately after
2006 the .tlsdesc directive. */
2007 frag_grow (4);
2008 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2009 BFD_RELOC_AARCH64_TLSDESC_CALL);
2010
2011 demand_empty_rest_of_line ();
2012 }
2013
2014 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2015
2016 static void
2017 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2018 {
2019 expressionS exp;
2020
2021 expression (&exp);
2022 frag_grow (4);
2023 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2024 BFD_RELOC_AARCH64_TLSDESC_LDR);
2025
2026 demand_empty_rest_of_line ();
2027 }
2028 #endif /* OBJ_ELF */
2029
2030 static void s_aarch64_arch (int);
2031 static void s_aarch64_cpu (int);
2032 static void s_aarch64_arch_extension (int);
2033
2034 /* This table describes all the machine specific pseudo-ops the assembler
2035 has to support. The fields are:
2036 pseudo-op name without dot
2037 function to call to execute this pseudo-op
2038 Integer arg to pass to the function. */
2039
2040 const pseudo_typeS md_pseudo_table[] = {
2041 /* Never called because '.req' does not start a line. */
2042 {"req", s_req, 0},
2043 {"unreq", s_unreq, 0},
2044 {"bss", s_bss, 0},
2045 {"even", s_even, 0},
2046 {"ltorg", s_ltorg, 0},
2047 {"pool", s_ltorg, 0},
2048 {"cpu", s_aarch64_cpu, 0},
2049 {"arch", s_aarch64_arch, 0},
2050 {"arch_extension", s_aarch64_arch_extension, 0},
2051 {"inst", s_aarch64_inst, 0},
2052 #ifdef OBJ_ELF
2053 {"tlsdescadd", s_tlsdescadd, 0},
2054 {"tlsdesccall", s_tlsdesccall, 0},
2055 {"tlsdescldr", s_tlsdescldr, 0},
2056 {"word", s_aarch64_elf_cons, 4},
2057 {"long", s_aarch64_elf_cons, 4},
2058 {"xword", s_aarch64_elf_cons, 8},
2059 {"dword", s_aarch64_elf_cons, 8},
2060 #endif
2061 {0, 0, 0}
2062 };
2063 \f
2064
2065 /* Check whether STR points to a register name followed by a comma or the
2066 end of line; REG_TYPE indicates which register types are checked
2067 against. Return TRUE if STR is such a register name; otherwise return
2068 FALSE. The function does not intend to produce any diagnostics, but since
2069 the register parser aarch64_reg_parse, which is called by this function,
2070 does produce diagnostics, we call clear_error to clear any diagnostics
2071 that may be generated by aarch64_reg_parse.
2072 Also, the function returns FALSE directly if there is any user error
2073 present at the function entry. This prevents the existing diagnostics
2074 state from being spoiled.
2075 The function currently serves parse_constant_immediate and
2076 parse_big_immediate only. */
2077 static bfd_boolean
2078 reg_name_p (char *str, aarch64_reg_type reg_type)
2079 {
2080 int reg;
2081
2082 /* Prevent the diagnostics state from being spoiled. */
2083 if (error_p ())
2084 return FALSE;
2085
2086 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2087
2088 /* Clear the parsing error that may be set by the reg parser. */
2089 clear_error ();
2090
2091 if (reg == PARSE_FAIL)
2092 return FALSE;
2093
2094 skip_whitespace (str);
2095 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2096 return TRUE;
2097
2098 return FALSE;
2099 }
2100
2101 /* Parser functions used exclusively in instruction operands. */
2102
2103 /* Parse an immediate expression which may not be constant.
2104
2105 To prevent the expression parser from pushing a register name
2106 into the symbol table as an undefined symbol, firstly a check is
2107 done to find out whether STR is a register of type REG_TYPE followed
2108 by a comma or the end of line. Return FALSE if STR is such a string. */
2109
2110 static bfd_boolean
2111 parse_immediate_expression (char **str, expressionS *exp,
2112 aarch64_reg_type reg_type)
2113 {
2114 if (reg_name_p (*str, reg_type))
2115 {
2116 set_recoverable_error (_("immediate operand required"));
2117 return FALSE;
2118 }
2119
2120 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2121
2122 if (exp->X_op == O_absent)
2123 {
2124 set_fatal_syntax_error (_("missing immediate expression"));
2125 return FALSE;
2126 }
2127
2128 return TRUE;
2129 }
2130
2131 /* Constant immediate-value read function for use in insn parsing.
2132 STR points to the beginning of the immediate (with the optional
2133 leading #); *VAL receives the value. REG_TYPE says which register
2134 names should be treated as registers rather than as symbolic immediates.
2135
2136 Return TRUE on success; otherwise return FALSE. */
2137
2138 static bfd_boolean
2139 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2140 {
2141 expressionS exp;
2142
2143 if (! parse_immediate_expression (str, &exp, reg_type))
2144 return FALSE;
2145
2146 if (exp.X_op != O_constant)
2147 {
2148 set_syntax_error (_("constant expression required"));
2149 return FALSE;
2150 }
2151
2152 *val = exp.X_add_number;
2153 return TRUE;
2154 }
2155
2156 static uint32_t
2157 encode_imm_float_bits (uint32_t imm)
2158 {
2159 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2160 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2161 }
2162
2163 /* Return TRUE if the single-precision floating-point value encoded in IMM
2164 can be expressed in the AArch64 8-bit signed floating-point format with
2165 3-bit exponent and normalized 4 bits of precision; in other words, the
2166 floating-point value must be expressable as
2167 (+/-) n / 16 * power (2, r)
2168 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2169
2170 static bfd_boolean
2171 aarch64_imm_float_p (uint32_t imm)
2172 {
2173 /* If a single-precision floating-point value has the following bit
2174 pattern, it can be expressed in the AArch64 8-bit floating-point
2175 format:
2176
2177 3 32222222 2221111111111
2178 1 09876543 21098765432109876543210
2179 n Eeeeeexx xxxx0000000000000000000
2180
2181 where n, e and each x are either 0 or 1 independently, with
2182 E == ~ e. */
2183
2184 uint32_t pattern;
2185
2186 /* Prepare the pattern for 'Eeeeee'. */
2187 if (((imm >> 30) & 0x1) == 0)
2188 pattern = 0x3e000000;
2189 else
2190 pattern = 0x40000000;
2191
2192 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2193 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2194 }
2195
2196 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2197 as an IEEE float without any loss of precision. Store the value in
2198 *FPWORD if so. */
2199
2200 static bfd_boolean
2201 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2202 {
2203 /* If a double-precision floating-point value has the following bit
2204 pattern, it can be expressed in a float:
2205
2206 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2207 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2208 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2209
2210 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2211 if Eeee_eeee != 1111_1111
2212
2213 where n, e, s and S are either 0 or 1 independently and where ~ is the
2214 inverse of E. */
2215
2216 uint32_t pattern;
2217 uint32_t high32 = imm >> 32;
2218 uint32_t low32 = imm;
2219
2220 /* Lower 29 bits need to be 0s. */
2221 if ((imm & 0x1fffffff) != 0)
2222 return FALSE;
2223
2224 /* Prepare the pattern for 'Eeeeeeeee'. */
2225 if (((high32 >> 30) & 0x1) == 0)
2226 pattern = 0x38000000;
2227 else
2228 pattern = 0x40000000;
2229
2230 /* Check E~~~. */
2231 if ((high32 & 0x78000000) != pattern)
2232 return FALSE;
2233
2234 /* Check Eeee_eeee != 1111_1111. */
2235 if ((high32 & 0x7ff00000) == 0x47f00000)
2236 return FALSE;
2237
2238 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2239 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2240 | (low32 >> 29)); /* 3 S bits. */
2241 return TRUE;
2242 }
2243
2244 /* Return true if we should treat OPERAND as a double-precision
2245 floating-point operand rather than a single-precision one. */
2246 static bfd_boolean
2247 double_precision_operand_p (const aarch64_opnd_info *operand)
2248 {
2249 /* Check for unsuffixed SVE registers, which are allowed
2250 for LDR and STR but not in instructions that require an
2251 immediate. We get better error messages if we arbitrarily
2252 pick one size, parse the immediate normally, and then
2253 report the match failure in the normal way. */
2254 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2255 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2256 }
2257
2258 /* Parse a floating-point immediate. Return TRUE on success and return the
2259 value in *IMMED in the format of IEEE754 single-precision encoding.
2260 *CCP points to the start of the string; DP_P is TRUE when the immediate
2261 is expected to be in double-precision (N.B. this only matters when
2262 hexadecimal representation is involved). REG_TYPE says which register
2263 names should be treated as registers rather than as symbolic immediates.
2264
2265 This routine accepts any IEEE float; it is up to the callers to reject
2266 invalid ones. */
2267
2268 static bfd_boolean
2269 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2270 aarch64_reg_type reg_type)
2271 {
2272 char *str = *ccp;
2273 char *fpnum;
2274 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2275 int found_fpchar = 0;
2276 int64_t val = 0;
2277 unsigned fpword = 0;
2278 bfd_boolean hex_p = FALSE;
2279
2280 skip_past_char (&str, '#');
2281
2282 fpnum = str;
2283 skip_whitespace (fpnum);
2284
2285 if (strncmp (fpnum, "0x", 2) == 0)
2286 {
2287 /* Support the hexadecimal representation of the IEEE754 encoding.
2288 Double-precision is expected when DP_P is TRUE, otherwise the
2289 representation should be in single-precision. */
2290 if (! parse_constant_immediate (&str, &val, reg_type))
2291 goto invalid_fp;
2292
2293 if (dp_p)
2294 {
2295 if (!can_convert_double_to_float (val, &fpword))
2296 goto invalid_fp;
2297 }
2298 else if ((uint64_t) val > 0xffffffff)
2299 goto invalid_fp;
2300 else
2301 fpword = val;
2302
2303 hex_p = TRUE;
2304 }
2305 else
2306 {
2307 if (reg_name_p (str, reg_type))
2308 {
2309 set_recoverable_error (_("immediate operand required"));
2310 return FALSE;
2311 }
2312
2313 /* We must not accidentally parse an integer as a floating-point number.
2314 Make sure that the value we parse is not an integer by checking for
2315 special characters '.' or 'e'. */
2316 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2317 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2318 {
2319 found_fpchar = 1;
2320 break;
2321 }
2322
2323 if (!found_fpchar)
2324 return FALSE;
2325 }
2326
2327 if (! hex_p)
2328 {
2329 int i;
2330
2331 if ((str = atof_ieee (str, 's', words)) == NULL)
2332 goto invalid_fp;
2333
2334 /* Our FP word must be 32 bits (single-precision FP). */
2335 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2336 {
2337 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2338 fpword |= words[i];
2339 }
2340 }
2341
2342 *immed = fpword;
2343 *ccp = str;
2344 return TRUE;
2345
2346 invalid_fp:
2347 set_fatal_syntax_error (_("invalid floating-point constant"));
2348 return FALSE;
2349 }
2350
2351 /* Less-generic immediate-value read function with the possibility of loading
2352 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2353 instructions.
2354
2355 To prevent the expression parser from pushing a register name into the
2356 symbol table as an undefined symbol, a check is firstly done to find
2357 out whether STR is a register of type REG_TYPE followed by a comma or
2358 the end of line. Return FALSE if STR is such a register. */
2359
2360 static bfd_boolean
2361 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2362 {
2363 char *ptr = *str;
2364
2365 if (reg_name_p (ptr, reg_type))
2366 {
2367 set_syntax_error (_("immediate operand required"));
2368 return FALSE;
2369 }
2370
2371 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2372
2373 if (inst.reloc.exp.X_op == O_constant)
2374 *imm = inst.reloc.exp.X_add_number;
2375
2376 *str = ptr;
2377
2378 return TRUE;
2379 }
2380
2381 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2382 if NEED_LIBOPCODES is non-zero, the fixup will need
2383 assistance from the libopcodes. */
2384
2385 static inline void
2386 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2387 const aarch64_opnd_info *operand,
2388 int need_libopcodes_p)
2389 {
2390 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2391 reloc->opnd = operand->type;
2392 if (need_libopcodes_p)
2393 reloc->need_libopcodes_p = 1;
2394 };
2395
2396 /* Return TRUE if the instruction needs to be fixed up later internally by
2397 the GAS; otherwise return FALSE. */
2398
2399 static inline bfd_boolean
2400 aarch64_gas_internal_fixup_p (void)
2401 {
2402 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2403 }
2404
2405 /* Assign the immediate value to the relavant field in *OPERAND if
2406 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2407 needs an internal fixup in a later stage.
2408 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2409 IMM.VALUE that may get assigned with the constant. */
2410 static inline void
2411 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2412 aarch64_opnd_info *operand,
2413 int addr_off_p,
2414 int need_libopcodes_p,
2415 int skip_p)
2416 {
2417 if (reloc->exp.X_op == O_constant)
2418 {
2419 if (addr_off_p)
2420 operand->addr.offset.imm = reloc->exp.X_add_number;
2421 else
2422 operand->imm.value = reloc->exp.X_add_number;
2423 reloc->type = BFD_RELOC_UNUSED;
2424 }
2425 else
2426 {
2427 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2428 /* Tell libopcodes to ignore this operand or not. This is helpful
2429 when one of the operands needs to be fixed up later but we need
2430 libopcodes to check the other operands. */
2431 operand->skip = skip_p;
2432 }
2433 }
2434
2435 /* Relocation modifiers. Each entry in the table contains the textual
2436 name for the relocation which may be placed before a symbol used as
2437 a load/store offset, or add immediate. It must be surrounded by a
2438 leading and trailing colon, for example:
2439
2440 ldr x0, [x1, #:rello:varsym]
2441 add x0, x1, #:rello:varsym */
2442
2443 struct reloc_table_entry
2444 {
2445 const char *name;
2446 int pc_rel;
2447 bfd_reloc_code_real_type adr_type;
2448 bfd_reloc_code_real_type adrp_type;
2449 bfd_reloc_code_real_type movw_type;
2450 bfd_reloc_code_real_type add_type;
2451 bfd_reloc_code_real_type ldst_type;
2452 bfd_reloc_code_real_type ld_literal_type;
2453 };
2454
2455 static struct reloc_table_entry reloc_table[] = {
2456 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2457 {"lo12", 0,
2458 0, /* adr_type */
2459 0,
2460 0,
2461 BFD_RELOC_AARCH64_ADD_LO12,
2462 BFD_RELOC_AARCH64_LDST_LO12,
2463 0},
2464
2465 /* Higher 21 bits of pc-relative page offset: ADRP */
2466 {"pg_hi21", 1,
2467 0, /* adr_type */
2468 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2469 0,
2470 0,
2471 0,
2472 0},
2473
2474 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2475 {"pg_hi21_nc", 1,
2476 0, /* adr_type */
2477 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2478 0,
2479 0,
2480 0,
2481 0},
2482
2483 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2484 {"abs_g0", 0,
2485 0, /* adr_type */
2486 0,
2487 BFD_RELOC_AARCH64_MOVW_G0,
2488 0,
2489 0,
2490 0},
2491
2492 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2493 {"abs_g0_s", 0,
2494 0, /* adr_type */
2495 0,
2496 BFD_RELOC_AARCH64_MOVW_G0_S,
2497 0,
2498 0,
2499 0},
2500
2501 /* Less significant bits 0-15 of address/value: MOVK, no check */
2502 {"abs_g0_nc", 0,
2503 0, /* adr_type */
2504 0,
2505 BFD_RELOC_AARCH64_MOVW_G0_NC,
2506 0,
2507 0,
2508 0},
2509
2510 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2511 {"abs_g1", 0,
2512 0, /* adr_type */
2513 0,
2514 BFD_RELOC_AARCH64_MOVW_G1,
2515 0,
2516 0,
2517 0},
2518
2519 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2520 {"abs_g1_s", 0,
2521 0, /* adr_type */
2522 0,
2523 BFD_RELOC_AARCH64_MOVW_G1_S,
2524 0,
2525 0,
2526 0},
2527
2528 /* Less significant bits 16-31 of address/value: MOVK, no check */
2529 {"abs_g1_nc", 0,
2530 0, /* adr_type */
2531 0,
2532 BFD_RELOC_AARCH64_MOVW_G1_NC,
2533 0,
2534 0,
2535 0},
2536
2537 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2538 {"abs_g2", 0,
2539 0, /* adr_type */
2540 0,
2541 BFD_RELOC_AARCH64_MOVW_G2,
2542 0,
2543 0,
2544 0},
2545
2546 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2547 {"abs_g2_s", 0,
2548 0, /* adr_type */
2549 0,
2550 BFD_RELOC_AARCH64_MOVW_G2_S,
2551 0,
2552 0,
2553 0},
2554
2555 /* Less significant bits 32-47 of address/value: MOVK, no check */
2556 {"abs_g2_nc", 0,
2557 0, /* adr_type */
2558 0,
2559 BFD_RELOC_AARCH64_MOVW_G2_NC,
2560 0,
2561 0,
2562 0},
2563
2564 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2565 {"abs_g3", 0,
2566 0, /* adr_type */
2567 0,
2568 BFD_RELOC_AARCH64_MOVW_G3,
2569 0,
2570 0,
2571 0},
2572
2573 /* Get to the page containing GOT entry for a symbol. */
2574 {"got", 1,
2575 0, /* adr_type */
2576 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2577 0,
2578 0,
2579 0,
2580 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2581
2582 /* 12 bit offset into the page containing GOT entry for that symbol. */
2583 {"got_lo12", 0,
2584 0, /* adr_type */
2585 0,
2586 0,
2587 0,
2588 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2589 0},
2590
2591 /* 0-15 bits of address/value: MOVk, no check. */
2592 {"gotoff_g0_nc", 0,
2593 0, /* adr_type */
2594 0,
2595 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2596 0,
2597 0,
2598 0},
2599
2600 /* Most significant bits 16-31 of address/value: MOVZ. */
2601 {"gotoff_g1", 0,
2602 0, /* adr_type */
2603 0,
2604 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2605 0,
2606 0,
2607 0},
2608
2609 /* 15 bit offset into the page containing GOT entry for that symbol. */
2610 {"gotoff_lo15", 0,
2611 0, /* adr_type */
2612 0,
2613 0,
2614 0,
2615 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2616 0},
2617
2618 /* Get to the page containing GOT TLS entry for a symbol */
2619 {"gottprel_g0_nc", 0,
2620 0, /* adr_type */
2621 0,
2622 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2623 0,
2624 0,
2625 0},
2626
2627 /* Get to the page containing GOT TLS entry for a symbol */
2628 {"gottprel_g1", 0,
2629 0, /* adr_type */
2630 0,
2631 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2632 0,
2633 0,
2634 0},
2635
2636 /* Get to the page containing GOT TLS entry for a symbol */
2637 {"tlsgd", 0,
2638 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2639 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2640 0,
2641 0,
2642 0,
2643 0},
2644
2645 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2646 {"tlsgd_lo12", 0,
2647 0, /* adr_type */
2648 0,
2649 0,
2650 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2651 0,
2652 0},
2653
2654 /* Lower 16 bits address/value: MOVk. */
2655 {"tlsgd_g0_nc", 0,
2656 0, /* adr_type */
2657 0,
2658 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2659 0,
2660 0,
2661 0},
2662
2663 /* Most significant bits 16-31 of address/value: MOVZ. */
2664 {"tlsgd_g1", 0,
2665 0, /* adr_type */
2666 0,
2667 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2668 0,
2669 0,
2670 0},
2671
2672 /* Get to the page containing GOT TLS entry for a symbol */
2673 {"tlsdesc", 0,
2674 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2675 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2676 0,
2677 0,
2678 0,
2679 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2680
2681 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2682 {"tlsdesc_lo12", 0,
2683 0, /* adr_type */
2684 0,
2685 0,
2686 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
2687 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2688 0},
2689
2690 /* Get to the page containing GOT TLS entry for a symbol.
2691 The same as GD, we allocate two consecutive GOT slots
2692 for module index and module offset, the only difference
2693 with GD is the module offset should be intialized to
2694 zero without any outstanding runtime relocation. */
2695 {"tlsldm", 0,
2696 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2697 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2698 0,
2699 0,
2700 0,
2701 0},
2702
2703 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2704 {"tlsldm_lo12_nc", 0,
2705 0, /* adr_type */
2706 0,
2707 0,
2708 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2709 0,
2710 0},
2711
2712 /* 12 bit offset into the module TLS base address. */
2713 {"dtprel_lo12", 0,
2714 0, /* adr_type */
2715 0,
2716 0,
2717 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2718 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2719 0},
2720
2721 /* Same as dtprel_lo12, no overflow check. */
2722 {"dtprel_lo12_nc", 0,
2723 0, /* adr_type */
2724 0,
2725 0,
2726 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2727 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2728 0},
2729
2730 /* bits[23:12] of offset to the module TLS base address. */
2731 {"dtprel_hi12", 0,
2732 0, /* adr_type */
2733 0,
2734 0,
2735 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2736 0,
2737 0},
2738
2739 /* bits[15:0] of offset to the module TLS base address. */
2740 {"dtprel_g0", 0,
2741 0, /* adr_type */
2742 0,
2743 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2744 0,
2745 0,
2746 0},
2747
2748 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2749 {"dtprel_g0_nc", 0,
2750 0, /* adr_type */
2751 0,
2752 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2753 0,
2754 0,
2755 0},
2756
2757 /* bits[31:16] of offset to the module TLS base address. */
2758 {"dtprel_g1", 0,
2759 0, /* adr_type */
2760 0,
2761 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2762 0,
2763 0,
2764 0},
2765
2766 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2767 {"dtprel_g1_nc", 0,
2768 0, /* adr_type */
2769 0,
2770 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2771 0,
2772 0,
2773 0},
2774
2775 /* bits[47:32] of offset to the module TLS base address. */
2776 {"dtprel_g2", 0,
2777 0, /* adr_type */
2778 0,
2779 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2780 0,
2781 0,
2782 0},
2783
2784 /* Lower 16 bit offset into GOT entry for a symbol */
2785 {"tlsdesc_off_g0_nc", 0,
2786 0, /* adr_type */
2787 0,
2788 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2789 0,
2790 0,
2791 0},
2792
2793 /* Higher 16 bit offset into GOT entry for a symbol */
2794 {"tlsdesc_off_g1", 0,
2795 0, /* adr_type */
2796 0,
2797 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2798 0,
2799 0,
2800 0},
2801
2802 /* Get to the page containing GOT TLS entry for a symbol */
2803 {"gottprel", 0,
2804 0, /* adr_type */
2805 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2806 0,
2807 0,
2808 0,
2809 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2810
2811 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2812 {"gottprel_lo12", 0,
2813 0, /* adr_type */
2814 0,
2815 0,
2816 0,
2817 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2818 0},
2819
2820 /* Get tp offset for a symbol. */
2821 {"tprel", 0,
2822 0, /* adr_type */
2823 0,
2824 0,
2825 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2826 0,
2827 0},
2828
2829 /* Get tp offset for a symbol. */
2830 {"tprel_lo12", 0,
2831 0, /* adr_type */
2832 0,
2833 0,
2834 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2835 0,
2836 0},
2837
2838 /* Get tp offset for a symbol. */
2839 {"tprel_hi12", 0,
2840 0, /* adr_type */
2841 0,
2842 0,
2843 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2844 0,
2845 0},
2846
2847 /* Get tp offset for a symbol. */
2848 {"tprel_lo12_nc", 0,
2849 0, /* adr_type */
2850 0,
2851 0,
2852 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2853 0,
2854 0},
2855
2856 /* Most significant bits 32-47 of address/value: MOVZ. */
2857 {"tprel_g2", 0,
2858 0, /* adr_type */
2859 0,
2860 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2861 0,
2862 0,
2863 0},
2864
2865 /* Most significant bits 16-31 of address/value: MOVZ. */
2866 {"tprel_g1", 0,
2867 0, /* adr_type */
2868 0,
2869 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2870 0,
2871 0,
2872 0},
2873
2874 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2875 {"tprel_g1_nc", 0,
2876 0, /* adr_type */
2877 0,
2878 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2879 0,
2880 0,
2881 0},
2882
2883 /* Most significant bits 0-15 of address/value: MOVZ. */
2884 {"tprel_g0", 0,
2885 0, /* adr_type */
2886 0,
2887 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2888 0,
2889 0,
2890 0},
2891
2892 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2893 {"tprel_g0_nc", 0,
2894 0, /* adr_type */
2895 0,
2896 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2897 0,
2898 0,
2899 0},
2900
2901 /* 15bit offset from got entry to base address of GOT table. */
2902 {"gotpage_lo15", 0,
2903 0,
2904 0,
2905 0,
2906 0,
2907 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2908 0},
2909
2910 /* 14bit offset from got entry to base address of GOT table. */
2911 {"gotpage_lo14", 0,
2912 0,
2913 0,
2914 0,
2915 0,
2916 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2917 0},
2918 };
2919
2920 /* Given the address of a pointer pointing to the textual name of a
2921 relocation as may appear in assembler source, attempt to find its
2922 details in reloc_table. The pointer will be updated to the character
2923 after the trailing colon. On failure, NULL will be returned;
2924 otherwise return the reloc_table_entry. */
2925
2926 static struct reloc_table_entry *
2927 find_reloc_table_entry (char **str)
2928 {
2929 unsigned int i;
2930 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2931 {
2932 int length = strlen (reloc_table[i].name);
2933
2934 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2935 && (*str)[length] == ':')
2936 {
2937 *str += (length + 1);
2938 return &reloc_table[i];
2939 }
2940 }
2941
2942 return NULL;
2943 }
2944
2945 /* Mode argument to parse_shift and parser_shifter_operand. */
2946 enum parse_shift_mode
2947 {
2948 SHIFTED_NONE, /* no shifter allowed */
2949 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2950 "#imm{,lsl #n}" */
2951 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2952 "#imm" */
2953 SHIFTED_LSL, /* bare "lsl #n" */
2954 SHIFTED_MUL, /* bare "mul #n" */
2955 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2956 SHIFTED_MUL_VL, /* "mul vl" */
2957 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2958 };
2959
2960 /* Parse a <shift> operator on an AArch64 data processing instruction.
2961 Return TRUE on success; otherwise return FALSE. */
2962 static bfd_boolean
2963 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2964 {
2965 const struct aarch64_name_value_pair *shift_op;
2966 enum aarch64_modifier_kind kind;
2967 expressionS exp;
2968 int exp_has_prefix;
2969 char *s = *str;
2970 char *p = s;
2971
2972 for (p = *str; ISALPHA (*p); p++)
2973 ;
2974
2975 if (p == *str)
2976 {
2977 set_syntax_error (_("shift expression expected"));
2978 return FALSE;
2979 }
2980
2981 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2982
2983 if (shift_op == NULL)
2984 {
2985 set_syntax_error (_("shift operator expected"));
2986 return FALSE;
2987 }
2988
2989 kind = aarch64_get_operand_modifier (shift_op);
2990
2991 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2992 {
2993 set_syntax_error (_("invalid use of 'MSL'"));
2994 return FALSE;
2995 }
2996
2997 if (kind == AARCH64_MOD_MUL
2998 && mode != SHIFTED_MUL
2999 && mode != SHIFTED_MUL_VL)
3000 {
3001 set_syntax_error (_("invalid use of 'MUL'"));
3002 return FALSE;
3003 }
3004
3005 switch (mode)
3006 {
3007 case SHIFTED_LOGIC_IMM:
3008 if (aarch64_extend_operator_p (kind) == TRUE)
3009 {
3010 set_syntax_error (_("extending shift is not permitted"));
3011 return FALSE;
3012 }
3013 break;
3014
3015 case SHIFTED_ARITH_IMM:
3016 if (kind == AARCH64_MOD_ROR)
3017 {
3018 set_syntax_error (_("'ROR' shift is not permitted"));
3019 return FALSE;
3020 }
3021 break;
3022
3023 case SHIFTED_LSL:
3024 if (kind != AARCH64_MOD_LSL)
3025 {
3026 set_syntax_error (_("only 'LSL' shift is permitted"));
3027 return FALSE;
3028 }
3029 break;
3030
3031 case SHIFTED_MUL:
3032 if (kind != AARCH64_MOD_MUL)
3033 {
3034 set_syntax_error (_("only 'MUL' is permitted"));
3035 return FALSE;
3036 }
3037 break;
3038
3039 case SHIFTED_MUL_VL:
3040 /* "MUL VL" consists of two separate tokens. Require the first
3041 token to be "MUL" and look for a following "VL". */
3042 if (kind == AARCH64_MOD_MUL)
3043 {
3044 skip_whitespace (p);
3045 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3046 {
3047 p += 2;
3048 kind = AARCH64_MOD_MUL_VL;
3049 break;
3050 }
3051 }
3052 set_syntax_error (_("only 'MUL VL' is permitted"));
3053 return FALSE;
3054
3055 case SHIFTED_REG_OFFSET:
3056 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3057 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3058 {
3059 set_fatal_syntax_error
3060 (_("invalid shift for the register offset addressing mode"));
3061 return FALSE;
3062 }
3063 break;
3064
3065 case SHIFTED_LSL_MSL:
3066 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3067 {
3068 set_syntax_error (_("invalid shift operator"));
3069 return FALSE;
3070 }
3071 break;
3072
3073 default:
3074 abort ();
3075 }
3076
3077 /* Whitespace can appear here if the next thing is a bare digit. */
3078 skip_whitespace (p);
3079
3080 /* Parse shift amount. */
3081 exp_has_prefix = 0;
3082 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3083 exp.X_op = O_absent;
3084 else
3085 {
3086 if (is_immediate_prefix (*p))
3087 {
3088 p++;
3089 exp_has_prefix = 1;
3090 }
3091 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3092 }
3093 if (kind == AARCH64_MOD_MUL_VL)
3094 /* For consistency, give MUL VL the same shift amount as an implicit
3095 MUL #1. */
3096 operand->shifter.amount = 1;
3097 else if (exp.X_op == O_absent)
3098 {
3099 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
3100 {
3101 set_syntax_error (_("missing shift amount"));
3102 return FALSE;
3103 }
3104 operand->shifter.amount = 0;
3105 }
3106 else if (exp.X_op != O_constant)
3107 {
3108 set_syntax_error (_("constant shift amount required"));
3109 return FALSE;
3110 }
3111 /* For parsing purposes, MUL #n has no inherent range. The range
3112 depends on the operand and will be checked by operand-specific
3113 routines. */
3114 else if (kind != AARCH64_MOD_MUL
3115 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3116 {
3117 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3118 return FALSE;
3119 }
3120 else
3121 {
3122 operand->shifter.amount = exp.X_add_number;
3123 operand->shifter.amount_present = 1;
3124 }
3125
3126 operand->shifter.operator_present = 1;
3127 operand->shifter.kind = kind;
3128
3129 *str = p;
3130 return TRUE;
3131 }
3132
3133 /* Parse a <shifter_operand> for a data processing instruction:
3134
3135 #<immediate>
3136 #<immediate>, LSL #imm
3137
3138 Validation of immediate operands is deferred to md_apply_fix.
3139
3140 Return TRUE on success; otherwise return FALSE. */
3141
3142 static bfd_boolean
3143 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3144 enum parse_shift_mode mode)
3145 {
3146 char *p;
3147
3148 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3149 return FALSE;
3150
3151 p = *str;
3152
3153 /* Accept an immediate expression. */
3154 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3155 return FALSE;
3156
3157 /* Accept optional LSL for arithmetic immediate values. */
3158 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3159 if (! parse_shift (&p, operand, SHIFTED_LSL))
3160 return FALSE;
3161
3162 /* Not accept any shifter for logical immediate values. */
3163 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3164 && parse_shift (&p, operand, mode))
3165 {
3166 set_syntax_error (_("unexpected shift operator"));
3167 return FALSE;
3168 }
3169
3170 *str = p;
3171 return TRUE;
3172 }
3173
3174 /* Parse a <shifter_operand> for a data processing instruction:
3175
3176 <Rm>
3177 <Rm>, <shift>
3178 #<immediate>
3179 #<immediate>, LSL #imm
3180
3181 where <shift> is handled by parse_shift above, and the last two
3182 cases are handled by the function above.
3183
3184 Validation of immediate operands is deferred to md_apply_fix.
3185
3186 Return TRUE on success; otherwise return FALSE. */
3187
3188 static bfd_boolean
3189 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3190 enum parse_shift_mode mode)
3191 {
3192 const reg_entry *reg;
3193 aarch64_opnd_qualifier_t qualifier;
3194 enum aarch64_operand_class opd_class
3195 = aarch64_get_operand_class (operand->type);
3196
3197 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3198 if (reg)
3199 {
3200 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3201 {
3202 set_syntax_error (_("unexpected register in the immediate operand"));
3203 return FALSE;
3204 }
3205
3206 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3207 {
3208 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3209 return FALSE;
3210 }
3211
3212 operand->reg.regno = reg->number;
3213 operand->qualifier = qualifier;
3214
3215 /* Accept optional shift operation on register. */
3216 if (! skip_past_comma (str))
3217 return TRUE;
3218
3219 if (! parse_shift (str, operand, mode))
3220 return FALSE;
3221
3222 return TRUE;
3223 }
3224 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3225 {
3226 set_syntax_error
3227 (_("integer register expected in the extended/shifted operand "
3228 "register"));
3229 return FALSE;
3230 }
3231
3232 /* We have a shifted immediate variable. */
3233 return parse_shifter_operand_imm (str, operand, mode);
3234 }
3235
3236 /* Return TRUE on success; return FALSE otherwise. */
3237
3238 static bfd_boolean
3239 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3240 enum parse_shift_mode mode)
3241 {
3242 char *p = *str;
3243
3244 /* Determine if we have the sequence of characters #: or just :
3245 coming next. If we do, then we check for a :rello: relocation
3246 modifier. If we don't, punt the whole lot to
3247 parse_shifter_operand. */
3248
3249 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3250 {
3251 struct reloc_table_entry *entry;
3252
3253 if (p[0] == '#')
3254 p += 2;
3255 else
3256 p++;
3257 *str = p;
3258
3259 /* Try to parse a relocation. Anything else is an error. */
3260 if (!(entry = find_reloc_table_entry (str)))
3261 {
3262 set_syntax_error (_("unknown relocation modifier"));
3263 return FALSE;
3264 }
3265
3266 if (entry->add_type == 0)
3267 {
3268 set_syntax_error
3269 (_("this relocation modifier is not allowed on this instruction"));
3270 return FALSE;
3271 }
3272
3273 /* Save str before we decompose it. */
3274 p = *str;
3275
3276 /* Next, we parse the expression. */
3277 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3278 return FALSE;
3279
3280 /* Record the relocation type (use the ADD variant here). */
3281 inst.reloc.type = entry->add_type;
3282 inst.reloc.pc_rel = entry->pc_rel;
3283
3284 /* If str is empty, we've reached the end, stop here. */
3285 if (**str == '\0')
3286 return TRUE;
3287
3288 /* Otherwise, we have a shifted reloc modifier, so rewind to
3289 recover the variable name and continue parsing for the shifter. */
3290 *str = p;
3291 return parse_shifter_operand_imm (str, operand, mode);
3292 }
3293
3294 return parse_shifter_operand (str, operand, mode);
3295 }
3296
3297 /* Parse all forms of an address expression. Information is written
3298 to *OPERAND and/or inst.reloc.
3299
3300 The A64 instruction set has the following addressing modes:
3301
3302 Offset
3303 [base] // in SIMD ld/st structure
3304 [base{,#0}] // in ld/st exclusive
3305 [base{,#imm}]
3306 [base,Xm{,LSL #imm}]
3307 [base,Xm,SXTX {#imm}]
3308 [base,Wm,(S|U)XTW {#imm}]
3309 Pre-indexed
3310 [base,#imm]!
3311 Post-indexed
3312 [base],#imm
3313 [base],Xm // in SIMD ld/st structure
3314 PC-relative (literal)
3315 label
3316 SVE:
3317 [base,#imm,MUL VL]
3318 [base,Zm.D{,LSL #imm}]
3319 [base,Zm.S,(S|U)XTW {#imm}]
3320 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3321 [Zn.S,#imm]
3322 [Zn.D,#imm]
3323 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3324 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3325 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3326
3327 (As a convenience, the notation "=immediate" is permitted in conjunction
3328 with the pc-relative literal load instructions to automatically place an
3329 immediate value or symbolic address in a nearby literal pool and generate
3330 a hidden label which references it.)
3331
3332 Upon a successful parsing, the address structure in *OPERAND will be
3333 filled in the following way:
3334
3335 .base_regno = <base>
3336 .offset.is_reg // 1 if the offset is a register
3337 .offset.imm = <imm>
3338 .offset.regno = <Rm>
3339
3340 For different addressing modes defined in the A64 ISA:
3341
3342 Offset
3343 .pcrel=0; .preind=1; .postind=0; .writeback=0
3344 Pre-indexed
3345 .pcrel=0; .preind=1; .postind=0; .writeback=1
3346 Post-indexed
3347 .pcrel=0; .preind=0; .postind=1; .writeback=1
3348 PC-relative (literal)
3349 .pcrel=1; .preind=1; .postind=0; .writeback=0
3350
3351 The shift/extension information, if any, will be stored in .shifter.
3352 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3353 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3354 corresponding register.
3355
3356 BASE_TYPE says which types of base register should be accepted and
3357 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3358 is the type of shifter that is allowed for immediate offsets,
3359 or SHIFTED_NONE if none.
3360
3361 In all other respects, it is the caller's responsibility to check
3362 for addressing modes not supported by the instruction, and to set
3363 inst.reloc.type. */
3364
3365 static bfd_boolean
3366 parse_address_main (char **str, aarch64_opnd_info *operand,
3367 aarch64_opnd_qualifier_t *base_qualifier,
3368 aarch64_opnd_qualifier_t *offset_qualifier,
3369 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3370 enum parse_shift_mode imm_shift_mode)
3371 {
3372 char *p = *str;
3373 const reg_entry *reg;
3374 expressionS *exp = &inst.reloc.exp;
3375
3376 *base_qualifier = AARCH64_OPND_QLF_NIL;
3377 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3378 if (! skip_past_char (&p, '['))
3379 {
3380 /* =immediate or label. */
3381 operand->addr.pcrel = 1;
3382 operand->addr.preind = 1;
3383
3384 /* #:<reloc_op>:<symbol> */
3385 skip_past_char (&p, '#');
3386 if (skip_past_char (&p, ':'))
3387 {
3388 bfd_reloc_code_real_type ty;
3389 struct reloc_table_entry *entry;
3390
3391 /* Try to parse a relocation modifier. Anything else is
3392 an error. */
3393 entry = find_reloc_table_entry (&p);
3394 if (! entry)
3395 {
3396 set_syntax_error (_("unknown relocation modifier"));
3397 return FALSE;
3398 }
3399
3400 switch (operand->type)
3401 {
3402 case AARCH64_OPND_ADDR_PCREL21:
3403 /* adr */
3404 ty = entry->adr_type;
3405 break;
3406
3407 default:
3408 ty = entry->ld_literal_type;
3409 break;
3410 }
3411
3412 if (ty == 0)
3413 {
3414 set_syntax_error
3415 (_("this relocation modifier is not allowed on this "
3416 "instruction"));
3417 return FALSE;
3418 }
3419
3420 /* #:<reloc_op>: */
3421 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3422 {
3423 set_syntax_error (_("invalid relocation expression"));
3424 return FALSE;
3425 }
3426
3427 /* #:<reloc_op>:<expr> */
3428 /* Record the relocation type. */
3429 inst.reloc.type = ty;
3430 inst.reloc.pc_rel = entry->pc_rel;
3431 }
3432 else
3433 {
3434
3435 if (skip_past_char (&p, '='))
3436 /* =immediate; need to generate the literal in the literal pool. */
3437 inst.gen_lit_pool = 1;
3438
3439 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3440 {
3441 set_syntax_error (_("invalid address"));
3442 return FALSE;
3443 }
3444 }
3445
3446 *str = p;
3447 return TRUE;
3448 }
3449
3450 /* [ */
3451
3452 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3453 if (!reg || !aarch64_check_reg_type (reg, base_type))
3454 {
3455 set_syntax_error (_(get_reg_expected_msg (base_type)));
3456 return FALSE;
3457 }
3458 operand->addr.base_regno = reg->number;
3459
3460 /* [Xn */
3461 if (skip_past_comma (&p))
3462 {
3463 /* [Xn, */
3464 operand->addr.preind = 1;
3465
3466 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3467 if (reg)
3468 {
3469 if (!aarch64_check_reg_type (reg, offset_type))
3470 {
3471 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3472 return FALSE;
3473 }
3474
3475 /* [Xn,Rm */
3476 operand->addr.offset.regno = reg->number;
3477 operand->addr.offset.is_reg = 1;
3478 /* Shifted index. */
3479 if (skip_past_comma (&p))
3480 {
3481 /* [Xn,Rm, */
3482 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3483 /* Use the diagnostics set in parse_shift, so not set new
3484 error message here. */
3485 return FALSE;
3486 }
3487 /* We only accept:
3488 [base,Xm{,LSL #imm}]
3489 [base,Xm,SXTX {#imm}]
3490 [base,Wm,(S|U)XTW {#imm}] */
3491 if (operand->shifter.kind == AARCH64_MOD_NONE
3492 || operand->shifter.kind == AARCH64_MOD_LSL
3493 || operand->shifter.kind == AARCH64_MOD_SXTX)
3494 {
3495 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3496 {
3497 set_syntax_error (_("invalid use of 32-bit register offset"));
3498 return FALSE;
3499 }
3500 if (aarch64_get_qualifier_esize (*base_qualifier)
3501 != aarch64_get_qualifier_esize (*offset_qualifier))
3502 {
3503 set_syntax_error (_("offset has different size from base"));
3504 return FALSE;
3505 }
3506 }
3507 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3508 {
3509 set_syntax_error (_("invalid use of 64-bit register offset"));
3510 return FALSE;
3511 }
3512 }
3513 else
3514 {
3515 /* [Xn,#:<reloc_op>:<symbol> */
3516 skip_past_char (&p, '#');
3517 if (skip_past_char (&p, ':'))
3518 {
3519 struct reloc_table_entry *entry;
3520
3521 /* Try to parse a relocation modifier. Anything else is
3522 an error. */
3523 if (!(entry = find_reloc_table_entry (&p)))
3524 {
3525 set_syntax_error (_("unknown relocation modifier"));
3526 return FALSE;
3527 }
3528
3529 if (entry->ldst_type == 0)
3530 {
3531 set_syntax_error
3532 (_("this relocation modifier is not allowed on this "
3533 "instruction"));
3534 return FALSE;
3535 }
3536
3537 /* [Xn,#:<reloc_op>: */
3538 /* We now have the group relocation table entry corresponding to
3539 the name in the assembler source. Next, we parse the
3540 expression. */
3541 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3542 {
3543 set_syntax_error (_("invalid relocation expression"));
3544 return FALSE;
3545 }
3546
3547 /* [Xn,#:<reloc_op>:<expr> */
3548 /* Record the load/store relocation type. */
3549 inst.reloc.type = entry->ldst_type;
3550 inst.reloc.pc_rel = entry->pc_rel;
3551 }
3552 else
3553 {
3554 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3555 {
3556 set_syntax_error (_("invalid expression in the address"));
3557 return FALSE;
3558 }
3559 /* [Xn,<expr> */
3560 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3561 /* [Xn,<expr>,<shifter> */
3562 if (! parse_shift (&p, operand, imm_shift_mode))
3563 return FALSE;
3564 }
3565 }
3566 }
3567
3568 if (! skip_past_char (&p, ']'))
3569 {
3570 set_syntax_error (_("']' expected"));
3571 return FALSE;
3572 }
3573
3574 if (skip_past_char (&p, '!'))
3575 {
3576 if (operand->addr.preind && operand->addr.offset.is_reg)
3577 {
3578 set_syntax_error (_("register offset not allowed in pre-indexed "
3579 "addressing mode"));
3580 return FALSE;
3581 }
3582 /* [Xn]! */
3583 operand->addr.writeback = 1;
3584 }
3585 else if (skip_past_comma (&p))
3586 {
3587 /* [Xn], */
3588 operand->addr.postind = 1;
3589 operand->addr.writeback = 1;
3590
3591 if (operand->addr.preind)
3592 {
3593 set_syntax_error (_("cannot combine pre- and post-indexing"));
3594 return FALSE;
3595 }
3596
3597 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3598 if (reg)
3599 {
3600 /* [Xn],Xm */
3601 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3602 {
3603 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3604 return FALSE;
3605 }
3606
3607 operand->addr.offset.regno = reg->number;
3608 operand->addr.offset.is_reg = 1;
3609 }
3610 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3611 {
3612 /* [Xn],#expr */
3613 set_syntax_error (_("invalid expression in the address"));
3614 return FALSE;
3615 }
3616 }
3617
3618 /* If at this point neither .preind nor .postind is set, we have a
3619 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3620 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3621 {
3622 if (operand->addr.writeback)
3623 {
3624 /* Reject [Rn]! */
3625 set_syntax_error (_("missing offset in the pre-indexed address"));
3626 return FALSE;
3627 }
3628 operand->addr.preind = 1;
3629 inst.reloc.exp.X_op = O_constant;
3630 inst.reloc.exp.X_add_number = 0;
3631 }
3632
3633 *str = p;
3634 return TRUE;
3635 }
3636
3637 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3638 on success. */
3639 static bfd_boolean
3640 parse_address (char **str, aarch64_opnd_info *operand)
3641 {
3642 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3643 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3644 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3645 }
3646
3647 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3648 The arguments have the same meaning as for parse_address_main.
3649 Return TRUE on success. */
3650 static bfd_boolean
3651 parse_sve_address (char **str, aarch64_opnd_info *operand,
3652 aarch64_opnd_qualifier_t *base_qualifier,
3653 aarch64_opnd_qualifier_t *offset_qualifier)
3654 {
3655 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3656 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3657 SHIFTED_MUL_VL);
3658 }
3659
3660 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3661 Return TRUE on success; otherwise return FALSE. */
3662 static bfd_boolean
3663 parse_half (char **str, int *internal_fixup_p)
3664 {
3665 char *p = *str;
3666
3667 skip_past_char (&p, '#');
3668
3669 gas_assert (internal_fixup_p);
3670 *internal_fixup_p = 0;
3671
3672 if (*p == ':')
3673 {
3674 struct reloc_table_entry *entry;
3675
3676 /* Try to parse a relocation. Anything else is an error. */
3677 ++p;
3678 if (!(entry = find_reloc_table_entry (&p)))
3679 {
3680 set_syntax_error (_("unknown relocation modifier"));
3681 return FALSE;
3682 }
3683
3684 if (entry->movw_type == 0)
3685 {
3686 set_syntax_error
3687 (_("this relocation modifier is not allowed on this instruction"));
3688 return FALSE;
3689 }
3690
3691 inst.reloc.type = entry->movw_type;
3692 }
3693 else
3694 *internal_fixup_p = 1;
3695
3696 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3697 return FALSE;
3698
3699 *str = p;
3700 return TRUE;
3701 }
3702
3703 /* Parse an operand for an ADRP instruction:
3704 ADRP <Xd>, <label>
3705 Return TRUE on success; otherwise return FALSE. */
3706
3707 static bfd_boolean
3708 parse_adrp (char **str)
3709 {
3710 char *p;
3711
3712 p = *str;
3713 if (*p == ':')
3714 {
3715 struct reloc_table_entry *entry;
3716
3717 /* Try to parse a relocation. Anything else is an error. */
3718 ++p;
3719 if (!(entry = find_reloc_table_entry (&p)))
3720 {
3721 set_syntax_error (_("unknown relocation modifier"));
3722 return FALSE;
3723 }
3724
3725 if (entry->adrp_type == 0)
3726 {
3727 set_syntax_error
3728 (_("this relocation modifier is not allowed on this instruction"));
3729 return FALSE;
3730 }
3731
3732 inst.reloc.type = entry->adrp_type;
3733 }
3734 else
3735 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3736
3737 inst.reloc.pc_rel = 1;
3738
3739 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3740 return FALSE;
3741
3742 *str = p;
3743 return TRUE;
3744 }
3745
3746 /* Miscellaneous. */
3747
3748 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3749 of SIZE tokens in which index I gives the token for field value I,
3750 or is null if field value I is invalid. REG_TYPE says which register
3751 names should be treated as registers rather than as symbolic immediates.
3752
3753 Return true on success, moving *STR past the operand and storing the
3754 field value in *VAL. */
3755
3756 static int
3757 parse_enum_string (char **str, int64_t *val, const char *const *array,
3758 size_t size, aarch64_reg_type reg_type)
3759 {
3760 expressionS exp;
3761 char *p, *q;
3762 size_t i;
3763
3764 /* Match C-like tokens. */
3765 p = q = *str;
3766 while (ISALNUM (*q))
3767 q++;
3768
3769 for (i = 0; i < size; ++i)
3770 if (array[i]
3771 && strncasecmp (array[i], p, q - p) == 0
3772 && array[i][q - p] == 0)
3773 {
3774 *val = i;
3775 *str = q;
3776 return TRUE;
3777 }
3778
3779 if (!parse_immediate_expression (&p, &exp, reg_type))
3780 return FALSE;
3781
3782 if (exp.X_op == O_constant
3783 && (uint64_t) exp.X_add_number < size)
3784 {
3785 *val = exp.X_add_number;
3786 *str = p;
3787 return TRUE;
3788 }
3789
3790 /* Use the default error for this operand. */
3791 return FALSE;
3792 }
3793
3794 /* Parse an option for a preload instruction. Returns the encoding for the
3795 option, or PARSE_FAIL. */
3796
3797 static int
3798 parse_pldop (char **str)
3799 {
3800 char *p, *q;
3801 const struct aarch64_name_value_pair *o;
3802
3803 p = q = *str;
3804 while (ISALNUM (*q))
3805 q++;
3806
3807 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3808 if (!o)
3809 return PARSE_FAIL;
3810
3811 *str = q;
3812 return o->value;
3813 }
3814
3815 /* Parse an option for a barrier instruction. Returns the encoding for the
3816 option, or PARSE_FAIL. */
3817
3818 static int
3819 parse_barrier (char **str)
3820 {
3821 char *p, *q;
3822 const asm_barrier_opt *o;
3823
3824 p = q = *str;
3825 while (ISALPHA (*q))
3826 q++;
3827
3828 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3829 if (!o)
3830 return PARSE_FAIL;
3831
3832 *str = q;
3833 return o->value;
3834 }
3835
3836 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3837 return 0 if successful. Otherwise return PARSE_FAIL. */
3838
3839 static int
3840 parse_barrier_psb (char **str,
3841 const struct aarch64_name_value_pair ** hint_opt)
3842 {
3843 char *p, *q;
3844 const struct aarch64_name_value_pair *o;
3845
3846 p = q = *str;
3847 while (ISALPHA (*q))
3848 q++;
3849
3850 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3851 if (!o)
3852 {
3853 set_fatal_syntax_error
3854 ( _("unknown or missing option to PSB"));
3855 return PARSE_FAIL;
3856 }
3857
3858 if (o->value != 0x11)
3859 {
3860 /* PSB only accepts option name 'CSYNC'. */
3861 set_syntax_error
3862 (_("the specified option is not accepted for PSB"));
3863 return PARSE_FAIL;
3864 }
3865
3866 *str = q;
3867 *hint_opt = o;
3868 return 0;
3869 }
3870
3871 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3872 Returns the encoding for the option, or PARSE_FAIL.
3873
3874 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3875 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3876
3877 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3878 field, otherwise as a system register.
3879 */
3880
3881 static int
3882 parse_sys_reg (char **str, struct hash_control *sys_regs,
3883 int imple_defined_p, int pstatefield_p)
3884 {
3885 char *p, *q;
3886 char buf[32];
3887 const aarch64_sys_reg *o;
3888 int value;
3889
3890 p = buf;
3891 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3892 if (p < buf + 31)
3893 *p++ = TOLOWER (*q);
3894 *p = '\0';
3895 /* Assert that BUF be large enough. */
3896 gas_assert (p - buf == q - *str);
3897
3898 o = hash_find (sys_regs, buf);
3899 if (!o)
3900 {
3901 if (!imple_defined_p)
3902 return PARSE_FAIL;
3903 else
3904 {
3905 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3906 unsigned int op0, op1, cn, cm, op2;
3907
3908 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3909 != 5)
3910 return PARSE_FAIL;
3911 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3912 return PARSE_FAIL;
3913 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3914 }
3915 }
3916 else
3917 {
3918 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3919 as_bad (_("selected processor does not support PSTATE field "
3920 "name '%s'"), buf);
3921 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3922 as_bad (_("selected processor does not support system register "
3923 "name '%s'"), buf);
3924 if (aarch64_sys_reg_deprecated_p (o))
3925 as_warn (_("system register name '%s' is deprecated and may be "
3926 "removed in a future release"), buf);
3927 value = o->value;
3928 }
3929
3930 *str = q;
3931 return value;
3932 }
3933
3934 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3935 for the option, or NULL. */
3936
3937 static const aarch64_sys_ins_reg *
3938 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3939 {
3940 char *p, *q;
3941 char buf[32];
3942 const aarch64_sys_ins_reg *o;
3943
3944 p = buf;
3945 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3946 if (p < buf + 31)
3947 *p++ = TOLOWER (*q);
3948 *p = '\0';
3949
3950 o = hash_find (sys_ins_regs, buf);
3951 if (!o)
3952 return NULL;
3953
3954 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3955 as_bad (_("selected processor does not support system register "
3956 "name '%s'"), buf);
3957
3958 *str = q;
3959 return o;
3960 }
3961 \f
3962 #define po_char_or_fail(chr) do { \
3963 if (! skip_past_char (&str, chr)) \
3964 goto failure; \
3965 } while (0)
3966
3967 #define po_reg_or_fail(regtype) do { \
3968 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3969 if (val == PARSE_FAIL) \
3970 { \
3971 set_default_error (); \
3972 goto failure; \
3973 } \
3974 } while (0)
3975
3976 #define po_int_reg_or_fail(reg_type) do { \
3977 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
3978 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
3979 { \
3980 set_default_error (); \
3981 goto failure; \
3982 } \
3983 info->reg.regno = reg->number; \
3984 info->qualifier = qualifier; \
3985 } while (0)
3986
3987 #define po_imm_nc_or_fail() do { \
3988 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
3989 goto failure; \
3990 } while (0)
3991
3992 #define po_imm_or_fail(min, max) do { \
3993 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
3994 goto failure; \
3995 if (val < min || val > max) \
3996 { \
3997 set_fatal_syntax_error (_("immediate value out of range "\
3998 #min " to "#max)); \
3999 goto failure; \
4000 } \
4001 } while (0)
4002
4003 #define po_enum_or_fail(array) do { \
4004 if (!parse_enum_string (&str, &val, array, \
4005 ARRAY_SIZE (array), imm_reg_type)) \
4006 goto failure; \
4007 } while (0)
4008
4009 #define po_misc_or_fail(expr) do { \
4010 if (!expr) \
4011 goto failure; \
4012 } while (0)
4013 \f
4014 /* encode the 12-bit imm field of Add/sub immediate */
4015 static inline uint32_t
4016 encode_addsub_imm (uint32_t imm)
4017 {
4018 return imm << 10;
4019 }
4020
4021 /* encode the shift amount field of Add/sub immediate */
4022 static inline uint32_t
4023 encode_addsub_imm_shift_amount (uint32_t cnt)
4024 {
4025 return cnt << 22;
4026 }
4027
4028
4029 /* encode the imm field of Adr instruction */
4030 static inline uint32_t
4031 encode_adr_imm (uint32_t imm)
4032 {
4033 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4034 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4035 }
4036
4037 /* encode the immediate field of Move wide immediate */
4038 static inline uint32_t
4039 encode_movw_imm (uint32_t imm)
4040 {
4041 return imm << 5;
4042 }
4043
4044 /* encode the 26-bit offset of unconditional branch */
4045 static inline uint32_t
4046 encode_branch_ofs_26 (uint32_t ofs)
4047 {
4048 return ofs & ((1 << 26) - 1);
4049 }
4050
4051 /* encode the 19-bit offset of conditional branch and compare & branch */
4052 static inline uint32_t
4053 encode_cond_branch_ofs_19 (uint32_t ofs)
4054 {
4055 return (ofs & ((1 << 19) - 1)) << 5;
4056 }
4057
4058 /* encode the 19-bit offset of ld literal */
4059 static inline uint32_t
4060 encode_ld_lit_ofs_19 (uint32_t ofs)
4061 {
4062 return (ofs & ((1 << 19) - 1)) << 5;
4063 }
4064
4065 /* Encode the 14-bit offset of test & branch. */
4066 static inline uint32_t
4067 encode_tst_branch_ofs_14 (uint32_t ofs)
4068 {
4069 return (ofs & ((1 << 14) - 1)) << 5;
4070 }
4071
4072 /* Encode the 16-bit imm field of svc/hvc/smc. */
4073 static inline uint32_t
4074 encode_svc_imm (uint32_t imm)
4075 {
4076 return imm << 5;
4077 }
4078
4079 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4080 static inline uint32_t
4081 reencode_addsub_switch_add_sub (uint32_t opcode)
4082 {
4083 return opcode ^ (1 << 30);
4084 }
4085
4086 static inline uint32_t
4087 reencode_movzn_to_movz (uint32_t opcode)
4088 {
4089 return opcode | (1 << 30);
4090 }
4091
4092 static inline uint32_t
4093 reencode_movzn_to_movn (uint32_t opcode)
4094 {
4095 return opcode & ~(1 << 30);
4096 }
4097
4098 /* Overall per-instruction processing. */
4099
4100 /* We need to be able to fix up arbitrary expressions in some statements.
4101 This is so that we can handle symbols that are an arbitrary distance from
4102 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4103 which returns part of an address in a form which will be valid for
4104 a data instruction. We do this by pushing the expression into a symbol
4105 in the expr_section, and creating a fix for that. */
4106
4107 static fixS *
4108 fix_new_aarch64 (fragS * frag,
4109 int where,
4110 short int size, expressionS * exp, int pc_rel, int reloc)
4111 {
4112 fixS *new_fix;
4113
4114 switch (exp->X_op)
4115 {
4116 case O_constant:
4117 case O_symbol:
4118 case O_add:
4119 case O_subtract:
4120 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4121 break;
4122
4123 default:
4124 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4125 pc_rel, reloc);
4126 break;
4127 }
4128 return new_fix;
4129 }
4130 \f
4131 /* Diagnostics on operands errors. */
4132
4133 /* By default, output verbose error message.
4134 Disable the verbose error message by -mno-verbose-error. */
4135 static int verbose_error_p = 1;
4136
4137 #ifdef DEBUG_AARCH64
4138 /* N.B. this is only for the purpose of debugging. */
4139 const char* operand_mismatch_kind_names[] =
4140 {
4141 "AARCH64_OPDE_NIL",
4142 "AARCH64_OPDE_RECOVERABLE",
4143 "AARCH64_OPDE_SYNTAX_ERROR",
4144 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4145 "AARCH64_OPDE_INVALID_VARIANT",
4146 "AARCH64_OPDE_OUT_OF_RANGE",
4147 "AARCH64_OPDE_UNALIGNED",
4148 "AARCH64_OPDE_REG_LIST",
4149 "AARCH64_OPDE_OTHER_ERROR",
4150 };
4151 #endif /* DEBUG_AARCH64 */
4152
4153 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4154
4155 When multiple errors of different kinds are found in the same assembly
4156 line, only the error of the highest severity will be picked up for
4157 issuing the diagnostics. */
4158
4159 static inline bfd_boolean
4160 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4161 enum aarch64_operand_error_kind rhs)
4162 {
4163 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4164 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4165 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4166 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4167 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4168 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4169 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4170 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4171 return lhs > rhs;
4172 }
4173
4174 /* Helper routine to get the mnemonic name from the assembly instruction
4175 line; should only be called for the diagnosis purpose, as there is
4176 string copy operation involved, which may affect the runtime
4177 performance if used in elsewhere. */
4178
4179 static const char*
4180 get_mnemonic_name (const char *str)
4181 {
4182 static char mnemonic[32];
4183 char *ptr;
4184
4185 /* Get the first 15 bytes and assume that the full name is included. */
4186 strncpy (mnemonic, str, 31);
4187 mnemonic[31] = '\0';
4188
4189 /* Scan up to the end of the mnemonic, which must end in white space,
4190 '.', or end of string. */
4191 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4192 ;
4193
4194 *ptr = '\0';
4195
4196 /* Append '...' to the truncated long name. */
4197 if (ptr - mnemonic == 31)
4198 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4199
4200 return mnemonic;
4201 }
4202
4203 static void
4204 reset_aarch64_instruction (aarch64_instruction *instruction)
4205 {
4206 memset (instruction, '\0', sizeof (aarch64_instruction));
4207 instruction->reloc.type = BFD_RELOC_UNUSED;
4208 }
4209
4210 /* Data strutures storing one user error in the assembly code related to
4211 operands. */
4212
4213 struct operand_error_record
4214 {
4215 const aarch64_opcode *opcode;
4216 aarch64_operand_error detail;
4217 struct operand_error_record *next;
4218 };
4219
4220 typedef struct operand_error_record operand_error_record;
4221
4222 struct operand_errors
4223 {
4224 operand_error_record *head;
4225 operand_error_record *tail;
4226 };
4227
4228 typedef struct operand_errors operand_errors;
4229
4230 /* Top-level data structure reporting user errors for the current line of
4231 the assembly code.
4232 The way md_assemble works is that all opcodes sharing the same mnemonic
4233 name are iterated to find a match to the assembly line. In this data
4234 structure, each of the such opcodes will have one operand_error_record
4235 allocated and inserted. In other words, excessive errors related with
4236 a single opcode are disregarded. */
4237 operand_errors operand_error_report;
4238
4239 /* Free record nodes. */
4240 static operand_error_record *free_opnd_error_record_nodes = NULL;
4241
4242 /* Initialize the data structure that stores the operand mismatch
4243 information on assembling one line of the assembly code. */
4244 static void
4245 init_operand_error_report (void)
4246 {
4247 if (operand_error_report.head != NULL)
4248 {
4249 gas_assert (operand_error_report.tail != NULL);
4250 operand_error_report.tail->next = free_opnd_error_record_nodes;
4251 free_opnd_error_record_nodes = operand_error_report.head;
4252 operand_error_report.head = NULL;
4253 operand_error_report.tail = NULL;
4254 return;
4255 }
4256 gas_assert (operand_error_report.tail == NULL);
4257 }
4258
4259 /* Return TRUE if some operand error has been recorded during the
4260 parsing of the current assembly line using the opcode *OPCODE;
4261 otherwise return FALSE. */
4262 static inline bfd_boolean
4263 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4264 {
4265 operand_error_record *record = operand_error_report.head;
4266 return record && record->opcode == opcode;
4267 }
4268
4269 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4270 OPCODE field is initialized with OPCODE.
4271 N.B. only one record for each opcode, i.e. the maximum of one error is
4272 recorded for each instruction template. */
4273
4274 static void
4275 add_operand_error_record (const operand_error_record* new_record)
4276 {
4277 const aarch64_opcode *opcode = new_record->opcode;
4278 operand_error_record* record = operand_error_report.head;
4279
4280 /* The record may have been created for this opcode. If not, we need
4281 to prepare one. */
4282 if (! opcode_has_operand_error_p (opcode))
4283 {
4284 /* Get one empty record. */
4285 if (free_opnd_error_record_nodes == NULL)
4286 {
4287 record = XNEW (operand_error_record);
4288 }
4289 else
4290 {
4291 record = free_opnd_error_record_nodes;
4292 free_opnd_error_record_nodes = record->next;
4293 }
4294 record->opcode = opcode;
4295 /* Insert at the head. */
4296 record->next = operand_error_report.head;
4297 operand_error_report.head = record;
4298 if (operand_error_report.tail == NULL)
4299 operand_error_report.tail = record;
4300 }
4301 else if (record->detail.kind != AARCH64_OPDE_NIL
4302 && record->detail.index <= new_record->detail.index
4303 && operand_error_higher_severity_p (record->detail.kind,
4304 new_record->detail.kind))
4305 {
4306 /* In the case of multiple errors found on operands related with a
4307 single opcode, only record the error of the leftmost operand and
4308 only if the error is of higher severity. */
4309 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4310 " the existing error %s on operand %d",
4311 operand_mismatch_kind_names[new_record->detail.kind],
4312 new_record->detail.index,
4313 operand_mismatch_kind_names[record->detail.kind],
4314 record->detail.index);
4315 return;
4316 }
4317
4318 record->detail = new_record->detail;
4319 }
4320
4321 static inline void
4322 record_operand_error_info (const aarch64_opcode *opcode,
4323 aarch64_operand_error *error_info)
4324 {
4325 operand_error_record record;
4326 record.opcode = opcode;
4327 record.detail = *error_info;
4328 add_operand_error_record (&record);
4329 }
4330
4331 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4332 error message *ERROR, for operand IDX (count from 0). */
4333
4334 static void
4335 record_operand_error (const aarch64_opcode *opcode, int idx,
4336 enum aarch64_operand_error_kind kind,
4337 const char* error)
4338 {
4339 aarch64_operand_error info;
4340 memset(&info, 0, sizeof (info));
4341 info.index = idx;
4342 info.kind = kind;
4343 info.error = error;
4344 record_operand_error_info (opcode, &info);
4345 }
4346
4347 static void
4348 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4349 enum aarch64_operand_error_kind kind,
4350 const char* error, const int *extra_data)
4351 {
4352 aarch64_operand_error info;
4353 info.index = idx;
4354 info.kind = kind;
4355 info.error = error;
4356 info.data[0] = extra_data[0];
4357 info.data[1] = extra_data[1];
4358 info.data[2] = extra_data[2];
4359 record_operand_error_info (opcode, &info);
4360 }
4361
4362 static void
4363 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4364 const char* error, int lower_bound,
4365 int upper_bound)
4366 {
4367 int data[3] = {lower_bound, upper_bound, 0};
4368 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4369 error, data);
4370 }
4371
4372 /* Remove the operand error record for *OPCODE. */
4373 static void ATTRIBUTE_UNUSED
4374 remove_operand_error_record (const aarch64_opcode *opcode)
4375 {
4376 if (opcode_has_operand_error_p (opcode))
4377 {
4378 operand_error_record* record = operand_error_report.head;
4379 gas_assert (record != NULL && operand_error_report.tail != NULL);
4380 operand_error_report.head = record->next;
4381 record->next = free_opnd_error_record_nodes;
4382 free_opnd_error_record_nodes = record;
4383 if (operand_error_report.head == NULL)
4384 {
4385 gas_assert (operand_error_report.tail == record);
4386 operand_error_report.tail = NULL;
4387 }
4388 }
4389 }
4390
4391 /* Given the instruction in *INSTR, return the index of the best matched
4392 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4393
4394 Return -1 if there is no qualifier sequence; return the first match
4395 if there is multiple matches found. */
4396
4397 static int
4398 find_best_match (const aarch64_inst *instr,
4399 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4400 {
4401 int i, num_opnds, max_num_matched, idx;
4402
4403 num_opnds = aarch64_num_of_operands (instr->opcode);
4404 if (num_opnds == 0)
4405 {
4406 DEBUG_TRACE ("no operand");
4407 return -1;
4408 }
4409
4410 max_num_matched = 0;
4411 idx = 0;
4412
4413 /* For each pattern. */
4414 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4415 {
4416 int j, num_matched;
4417 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4418
4419 /* Most opcodes has much fewer patterns in the list. */
4420 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4421 {
4422 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4423 break;
4424 }
4425
4426 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4427 if (*qualifiers == instr->operands[j].qualifier)
4428 ++num_matched;
4429
4430 if (num_matched > max_num_matched)
4431 {
4432 max_num_matched = num_matched;
4433 idx = i;
4434 }
4435 }
4436
4437 DEBUG_TRACE ("return with %d", idx);
4438 return idx;
4439 }
4440
4441 /* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4442 corresponding operands in *INSTR. */
4443
4444 static inline void
4445 assign_qualifier_sequence (aarch64_inst *instr,
4446 const aarch64_opnd_qualifier_t *qualifiers)
4447 {
4448 int i = 0;
4449 int num_opnds = aarch64_num_of_operands (instr->opcode);
4450 gas_assert (num_opnds);
4451 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4452 instr->operands[i].qualifier = *qualifiers;
4453 }
4454
4455 /* Print operands for the diagnosis purpose. */
4456
4457 static void
4458 print_operands (char *buf, const aarch64_opcode *opcode,
4459 const aarch64_opnd_info *opnds)
4460 {
4461 int i;
4462
4463 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4464 {
4465 char str[128];
4466
4467 /* We regard the opcode operand info more, however we also look into
4468 the inst->operands to support the disassembling of the optional
4469 operand.
4470 The two operand code should be the same in all cases, apart from
4471 when the operand can be optional. */
4472 if (opcode->operands[i] == AARCH64_OPND_NIL
4473 || opnds[i].type == AARCH64_OPND_NIL)
4474 break;
4475
4476 /* Generate the operand string in STR. */
4477 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL);
4478
4479 /* Delimiter. */
4480 if (str[0] != '\0')
4481 strcat (buf, i == 0 ? " " : ", ");
4482
4483 /* Append the operand string. */
4484 strcat (buf, str);
4485 }
4486 }
4487
4488 /* Send to stderr a string as information. */
4489
4490 static void
4491 output_info (const char *format, ...)
4492 {
4493 const char *file;
4494 unsigned int line;
4495 va_list args;
4496
4497 file = as_where (&line);
4498 if (file)
4499 {
4500 if (line != 0)
4501 fprintf (stderr, "%s:%u: ", file, line);
4502 else
4503 fprintf (stderr, "%s: ", file);
4504 }
4505 fprintf (stderr, _("Info: "));
4506 va_start (args, format);
4507 vfprintf (stderr, format, args);
4508 va_end (args);
4509 (void) putc ('\n', stderr);
4510 }
4511
4512 /* Output one operand error record. */
4513
4514 static void
4515 output_operand_error_record (const operand_error_record *record, char *str)
4516 {
4517 const aarch64_operand_error *detail = &record->detail;
4518 int idx = detail->index;
4519 const aarch64_opcode *opcode = record->opcode;
4520 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4521 : AARCH64_OPND_NIL);
4522
4523 switch (detail->kind)
4524 {
4525 case AARCH64_OPDE_NIL:
4526 gas_assert (0);
4527 break;
4528
4529 case AARCH64_OPDE_SYNTAX_ERROR:
4530 case AARCH64_OPDE_RECOVERABLE:
4531 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4532 case AARCH64_OPDE_OTHER_ERROR:
4533 /* Use the prepared error message if there is, otherwise use the
4534 operand description string to describe the error. */
4535 if (detail->error != NULL)
4536 {
4537 if (idx < 0)
4538 as_bad (_("%s -- `%s'"), detail->error, str);
4539 else
4540 as_bad (_("%s at operand %d -- `%s'"),
4541 detail->error, idx + 1, str);
4542 }
4543 else
4544 {
4545 gas_assert (idx >= 0);
4546 as_bad (_("operand %d must be %s -- `%s'"), idx + 1,
4547 aarch64_get_operand_desc (opd_code), str);
4548 }
4549 break;
4550
4551 case AARCH64_OPDE_INVALID_VARIANT:
4552 as_bad (_("operand mismatch -- `%s'"), str);
4553 if (verbose_error_p)
4554 {
4555 /* We will try to correct the erroneous instruction and also provide
4556 more information e.g. all other valid variants.
4557
4558 The string representation of the corrected instruction and other
4559 valid variants are generated by
4560
4561 1) obtaining the intermediate representation of the erroneous
4562 instruction;
4563 2) manipulating the IR, e.g. replacing the operand qualifier;
4564 3) printing out the instruction by calling the printer functions
4565 shared with the disassembler.
4566
4567 The limitation of this method is that the exact input assembly
4568 line cannot be accurately reproduced in some cases, for example an
4569 optional operand present in the actual assembly line will be
4570 omitted in the output; likewise for the optional syntax rules,
4571 e.g. the # before the immediate. Another limitation is that the
4572 assembly symbols and relocation operations in the assembly line
4573 currently cannot be printed out in the error report. Last but not
4574 least, when there is other error(s) co-exist with this error, the
4575 'corrected' instruction may be still incorrect, e.g. given
4576 'ldnp h0,h1,[x0,#6]!'
4577 this diagnosis will provide the version:
4578 'ldnp s0,s1,[x0,#6]!'
4579 which is still not right. */
4580 size_t len = strlen (get_mnemonic_name (str));
4581 int i, qlf_idx;
4582 bfd_boolean result;
4583 char buf[2048];
4584 aarch64_inst *inst_base = &inst.base;
4585 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4586
4587 /* Init inst. */
4588 reset_aarch64_instruction (&inst);
4589 inst_base->opcode = opcode;
4590
4591 /* Reset the error report so that there is no side effect on the
4592 following operand parsing. */
4593 init_operand_error_report ();
4594
4595 /* Fill inst. */
4596 result = parse_operands (str + len, opcode)
4597 && programmer_friendly_fixup (&inst);
4598 gas_assert (result);
4599 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4600 NULL, NULL);
4601 gas_assert (!result);
4602
4603 /* Find the most matched qualifier sequence. */
4604 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4605 gas_assert (qlf_idx > -1);
4606
4607 /* Assign the qualifiers. */
4608 assign_qualifier_sequence (inst_base,
4609 opcode->qualifiers_list[qlf_idx]);
4610
4611 /* Print the hint. */
4612 output_info (_(" did you mean this?"));
4613 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4614 print_operands (buf, opcode, inst_base->operands);
4615 output_info (_(" %s"), buf);
4616
4617 /* Print out other variant(s) if there is any. */
4618 if (qlf_idx != 0 ||
4619 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4620 output_info (_(" other valid variant(s):"));
4621
4622 /* For each pattern. */
4623 qualifiers_list = opcode->qualifiers_list;
4624 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4625 {
4626 /* Most opcodes has much fewer patterns in the list.
4627 First NIL qualifier indicates the end in the list. */
4628 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4629 break;
4630
4631 if (i != qlf_idx)
4632 {
4633 /* Mnemonics name. */
4634 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4635
4636 /* Assign the qualifiers. */
4637 assign_qualifier_sequence (inst_base, *qualifiers_list);
4638
4639 /* Print instruction. */
4640 print_operands (buf, opcode, inst_base->operands);
4641
4642 output_info (_(" %s"), buf);
4643 }
4644 }
4645 }
4646 break;
4647
4648 case AARCH64_OPDE_UNTIED_OPERAND:
4649 as_bad (_("operand %d must be the same register as operand 1 -- `%s'"),
4650 detail->index + 1, str);
4651 break;
4652
4653 case AARCH64_OPDE_OUT_OF_RANGE:
4654 if (detail->data[0] != detail->data[1])
4655 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4656 detail->error ? detail->error : _("immediate value"),
4657 detail->data[0], detail->data[1], idx + 1, str);
4658 else
4659 as_bad (_("%s must be %d at operand %d -- `%s'"),
4660 detail->error ? detail->error : _("immediate value"),
4661 detail->data[0], idx + 1, str);
4662 break;
4663
4664 case AARCH64_OPDE_REG_LIST:
4665 if (detail->data[0] == 1)
4666 as_bad (_("invalid number of registers in the list; "
4667 "only 1 register is expected at operand %d -- `%s'"),
4668 idx + 1, str);
4669 else
4670 as_bad (_("invalid number of registers in the list; "
4671 "%d registers are expected at operand %d -- `%s'"),
4672 detail->data[0], idx + 1, str);
4673 break;
4674
4675 case AARCH64_OPDE_UNALIGNED:
4676 as_bad (_("immediate value must be a multiple of "
4677 "%d at operand %d -- `%s'"),
4678 detail->data[0], idx + 1, str);
4679 break;
4680
4681 default:
4682 gas_assert (0);
4683 break;
4684 }
4685 }
4686
4687 /* Process and output the error message about the operand mismatching.
4688
4689 When this function is called, the operand error information had
4690 been collected for an assembly line and there will be multiple
4691 errors in the case of mulitple instruction templates; output the
4692 error message that most closely describes the problem. */
4693
4694 static void
4695 output_operand_error_report (char *str)
4696 {
4697 int largest_error_pos;
4698 const char *msg = NULL;
4699 enum aarch64_operand_error_kind kind;
4700 operand_error_record *curr;
4701 operand_error_record *head = operand_error_report.head;
4702 operand_error_record *record = NULL;
4703
4704 /* No error to report. */
4705 if (head == NULL)
4706 return;
4707
4708 gas_assert (head != NULL && operand_error_report.tail != NULL);
4709
4710 /* Only one error. */
4711 if (head == operand_error_report.tail)
4712 {
4713 DEBUG_TRACE ("single opcode entry with error kind: %s",
4714 operand_mismatch_kind_names[head->detail.kind]);
4715 output_operand_error_record (head, str);
4716 return;
4717 }
4718
4719 /* Find the error kind of the highest severity. */
4720 DEBUG_TRACE ("multiple opcode entres with error kind");
4721 kind = AARCH64_OPDE_NIL;
4722 for (curr = head; curr != NULL; curr = curr->next)
4723 {
4724 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4725 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4726 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4727 kind = curr->detail.kind;
4728 }
4729 gas_assert (kind != AARCH64_OPDE_NIL);
4730
4731 /* Pick up one of errors of KIND to report. */
4732 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4733 for (curr = head; curr != NULL; curr = curr->next)
4734 {
4735 if (curr->detail.kind != kind)
4736 continue;
4737 /* If there are multiple errors, pick up the one with the highest
4738 mismatching operand index. In the case of multiple errors with
4739 the equally highest operand index, pick up the first one or the
4740 first one with non-NULL error message. */
4741 if (curr->detail.index > largest_error_pos
4742 || (curr->detail.index == largest_error_pos && msg == NULL
4743 && curr->detail.error != NULL))
4744 {
4745 largest_error_pos = curr->detail.index;
4746 record = curr;
4747 msg = record->detail.error;
4748 }
4749 }
4750
4751 gas_assert (largest_error_pos != -2 && record != NULL);
4752 DEBUG_TRACE ("Pick up error kind %s to report",
4753 operand_mismatch_kind_names[record->detail.kind]);
4754
4755 /* Output. */
4756 output_operand_error_record (record, str);
4757 }
4758 \f
4759 /* Write an AARCH64 instruction to buf - always little-endian. */
4760 static void
4761 put_aarch64_insn (char *buf, uint32_t insn)
4762 {
4763 unsigned char *where = (unsigned char *) buf;
4764 where[0] = insn;
4765 where[1] = insn >> 8;
4766 where[2] = insn >> 16;
4767 where[3] = insn >> 24;
4768 }
4769
4770 static uint32_t
4771 get_aarch64_insn (char *buf)
4772 {
4773 unsigned char *where = (unsigned char *) buf;
4774 uint32_t result;
4775 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4776 return result;
4777 }
4778
4779 static void
4780 output_inst (struct aarch64_inst *new_inst)
4781 {
4782 char *to = NULL;
4783
4784 to = frag_more (INSN_SIZE);
4785
4786 frag_now->tc_frag_data.recorded = 1;
4787
4788 put_aarch64_insn (to, inst.base.value);
4789
4790 if (inst.reloc.type != BFD_RELOC_UNUSED)
4791 {
4792 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4793 INSN_SIZE, &inst.reloc.exp,
4794 inst.reloc.pc_rel,
4795 inst.reloc.type);
4796 DEBUG_TRACE ("Prepared relocation fix up");
4797 /* Don't check the addend value against the instruction size,
4798 that's the job of our code in md_apply_fix(). */
4799 fixp->fx_no_overflow = 1;
4800 if (new_inst != NULL)
4801 fixp->tc_fix_data.inst = new_inst;
4802 if (aarch64_gas_internal_fixup_p ())
4803 {
4804 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4805 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4806 fixp->fx_addnumber = inst.reloc.flags;
4807 }
4808 }
4809
4810 dwarf2_emit_insn (INSN_SIZE);
4811 }
4812
4813 /* Link together opcodes of the same name. */
4814
4815 struct templates
4816 {
4817 aarch64_opcode *opcode;
4818 struct templates *next;
4819 };
4820
4821 typedef struct templates templates;
4822
4823 static templates *
4824 lookup_mnemonic (const char *start, int len)
4825 {
4826 templates *templ = NULL;
4827
4828 templ = hash_find_n (aarch64_ops_hsh, start, len);
4829 return templ;
4830 }
4831
4832 /* Subroutine of md_assemble, responsible for looking up the primary
4833 opcode from the mnemonic the user wrote. STR points to the
4834 beginning of the mnemonic. */
4835
4836 static templates *
4837 opcode_lookup (char **str)
4838 {
4839 char *end, *base, *dot;
4840 const aarch64_cond *cond;
4841 char condname[16];
4842 int len;
4843
4844 /* Scan up to the end of the mnemonic, which must end in white space,
4845 '.', or end of string. */
4846 dot = 0;
4847 for (base = end = *str; is_part_of_name(*end); end++)
4848 if (*end == '.' && !dot)
4849 dot = end;
4850
4851 if (end == base || dot == base)
4852 return 0;
4853
4854 inst.cond = COND_ALWAYS;
4855
4856 /* Handle a possible condition. */
4857 if (dot)
4858 {
4859 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
4860 if (cond)
4861 {
4862 inst.cond = cond->value;
4863 *str = end;
4864 }
4865 else
4866 {
4867 *str = dot;
4868 return 0;
4869 }
4870 len = dot - base;
4871 }
4872 else
4873 {
4874 *str = end;
4875 len = end - base;
4876 }
4877
4878 if (inst.cond == COND_ALWAYS)
4879 {
4880 /* Look for unaffixed mnemonic. */
4881 return lookup_mnemonic (base, len);
4882 }
4883 else if (len <= 13)
4884 {
4885 /* append ".c" to mnemonic if conditional */
4886 memcpy (condname, base, len);
4887 memcpy (condname + len, ".c", 2);
4888 base = condname;
4889 len += 2;
4890 return lookup_mnemonic (base, len);
4891 }
4892
4893 return NULL;
4894 }
4895
4896 /* Internal helper routine converting a vector_type_el structure *VECTYPE
4897 to a corresponding operand qualifier. */
4898
4899 static inline aarch64_opnd_qualifier_t
4900 vectype_to_qualifier (const struct vector_type_el *vectype)
4901 {
4902 /* Element size in bytes indexed by vector_el_type. */
4903 const unsigned char ele_size[5]
4904 = {1, 2, 4, 8, 16};
4905 const unsigned int ele_base [5] =
4906 {
4907 AARCH64_OPND_QLF_V_8B,
4908 AARCH64_OPND_QLF_V_2H,
4909 AARCH64_OPND_QLF_V_2S,
4910 AARCH64_OPND_QLF_V_1D,
4911 AARCH64_OPND_QLF_V_1Q
4912 };
4913
4914 if (!vectype->defined || vectype->type == NT_invtype)
4915 goto vectype_conversion_fail;
4916
4917 if (vectype->type == NT_zero)
4918 return AARCH64_OPND_QLF_P_Z;
4919 if (vectype->type == NT_merge)
4920 return AARCH64_OPND_QLF_P_M;
4921
4922 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4923
4924 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
4925 /* Vector element register. */
4926 return AARCH64_OPND_QLF_S_B + vectype->type;
4927 else
4928 {
4929 /* Vector register. */
4930 int reg_size = ele_size[vectype->type] * vectype->width;
4931 unsigned offset;
4932 unsigned shift;
4933 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
4934 goto vectype_conversion_fail;
4935
4936 /* The conversion is by calculating the offset from the base operand
4937 qualifier for the vector type. The operand qualifiers are regular
4938 enough that the offset can established by shifting the vector width by
4939 a vector-type dependent amount. */
4940 shift = 0;
4941 if (vectype->type == NT_b)
4942 shift = 4;
4943 else if (vectype->type == NT_h || vectype->type == NT_s)
4944 shift = 2;
4945 else if (vectype->type >= NT_d)
4946 shift = 1;
4947 else
4948 gas_assert (0);
4949
4950 offset = ele_base [vectype->type] + (vectype->width >> shift);
4951 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4952 && offset <= AARCH64_OPND_QLF_V_1Q);
4953 return offset;
4954 }
4955
4956 vectype_conversion_fail:
4957 first_error (_("bad vector arrangement type"));
4958 return AARCH64_OPND_QLF_NIL;
4959 }
4960
4961 /* Process an optional operand that is found omitted from the assembly line.
4962 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4963 instruction's opcode entry while IDX is the index of this omitted operand.
4964 */
4965
4966 static void
4967 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4968 int idx, aarch64_opnd_info *operand)
4969 {
4970 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4971 gas_assert (optional_operand_p (opcode, idx));
4972 gas_assert (!operand->present);
4973
4974 switch (type)
4975 {
4976 case AARCH64_OPND_Rd:
4977 case AARCH64_OPND_Rn:
4978 case AARCH64_OPND_Rm:
4979 case AARCH64_OPND_Rt:
4980 case AARCH64_OPND_Rt2:
4981 case AARCH64_OPND_Rs:
4982 case AARCH64_OPND_Ra:
4983 case AARCH64_OPND_Rt_SYS:
4984 case AARCH64_OPND_Rd_SP:
4985 case AARCH64_OPND_Rn_SP:
4986 case AARCH64_OPND_Rm_SP:
4987 case AARCH64_OPND_Fd:
4988 case AARCH64_OPND_Fn:
4989 case AARCH64_OPND_Fm:
4990 case AARCH64_OPND_Fa:
4991 case AARCH64_OPND_Ft:
4992 case AARCH64_OPND_Ft2:
4993 case AARCH64_OPND_Sd:
4994 case AARCH64_OPND_Sn:
4995 case AARCH64_OPND_Sm:
4996 case AARCH64_OPND_Vd:
4997 case AARCH64_OPND_Vn:
4998 case AARCH64_OPND_Vm:
4999 case AARCH64_OPND_VdD1:
5000 case AARCH64_OPND_VnD1:
5001 operand->reg.regno = default_value;
5002 break;
5003
5004 case AARCH64_OPND_Ed:
5005 case AARCH64_OPND_En:
5006 case AARCH64_OPND_Em:
5007 operand->reglane.regno = default_value;
5008 break;
5009
5010 case AARCH64_OPND_IDX:
5011 case AARCH64_OPND_BIT_NUM:
5012 case AARCH64_OPND_IMMR:
5013 case AARCH64_OPND_IMMS:
5014 case AARCH64_OPND_SHLL_IMM:
5015 case AARCH64_OPND_IMM_VLSL:
5016 case AARCH64_OPND_IMM_VLSR:
5017 case AARCH64_OPND_CCMP_IMM:
5018 case AARCH64_OPND_FBITS:
5019 case AARCH64_OPND_UIMM4:
5020 case AARCH64_OPND_UIMM3_OP1:
5021 case AARCH64_OPND_UIMM3_OP2:
5022 case AARCH64_OPND_IMM:
5023 case AARCH64_OPND_WIDTH:
5024 case AARCH64_OPND_UIMM7:
5025 case AARCH64_OPND_NZCV:
5026 case AARCH64_OPND_SVE_PATTERN:
5027 case AARCH64_OPND_SVE_PRFOP:
5028 operand->imm.value = default_value;
5029 break;
5030
5031 case AARCH64_OPND_SVE_PATTERN_SCALED:
5032 operand->imm.value = default_value;
5033 operand->shifter.kind = AARCH64_MOD_MUL;
5034 operand->shifter.amount = 1;
5035 break;
5036
5037 case AARCH64_OPND_EXCEPTION:
5038 inst.reloc.type = BFD_RELOC_UNUSED;
5039 break;
5040
5041 case AARCH64_OPND_BARRIER_ISB:
5042 operand->barrier = aarch64_barrier_options + default_value;
5043
5044 default:
5045 break;
5046 }
5047 }
5048
5049 /* Process the relocation type for move wide instructions.
5050 Return TRUE on success; otherwise return FALSE. */
5051
5052 static bfd_boolean
5053 process_movw_reloc_info (void)
5054 {
5055 int is32;
5056 unsigned shift;
5057
5058 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5059
5060 if (inst.base.opcode->op == OP_MOVK)
5061 switch (inst.reloc.type)
5062 {
5063 case BFD_RELOC_AARCH64_MOVW_G0_S:
5064 case BFD_RELOC_AARCH64_MOVW_G1_S:
5065 case BFD_RELOC_AARCH64_MOVW_G2_S:
5066 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5067 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5068 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5069 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5070 set_syntax_error
5071 (_("the specified relocation type is not allowed for MOVK"));
5072 return FALSE;
5073 default:
5074 break;
5075 }
5076
5077 switch (inst.reloc.type)
5078 {
5079 case BFD_RELOC_AARCH64_MOVW_G0:
5080 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5081 case BFD_RELOC_AARCH64_MOVW_G0_S:
5082 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5083 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5084 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5085 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5086 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5087 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5088 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5089 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5090 shift = 0;
5091 break;
5092 case BFD_RELOC_AARCH64_MOVW_G1:
5093 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5094 case BFD_RELOC_AARCH64_MOVW_G1_S:
5095 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5096 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5097 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5098 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5099 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5100 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5101 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5102 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5103 shift = 16;
5104 break;
5105 case BFD_RELOC_AARCH64_MOVW_G2:
5106 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5107 case BFD_RELOC_AARCH64_MOVW_G2_S:
5108 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5109 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5110 if (is32)
5111 {
5112 set_fatal_syntax_error
5113 (_("the specified relocation type is not allowed for 32-bit "
5114 "register"));
5115 return FALSE;
5116 }
5117 shift = 32;
5118 break;
5119 case BFD_RELOC_AARCH64_MOVW_G3:
5120 if (is32)
5121 {
5122 set_fatal_syntax_error
5123 (_("the specified relocation type is not allowed for 32-bit "
5124 "register"));
5125 return FALSE;
5126 }
5127 shift = 48;
5128 break;
5129 default:
5130 /* More cases should be added when more MOVW-related relocation types
5131 are supported in GAS. */
5132 gas_assert (aarch64_gas_internal_fixup_p ());
5133 /* The shift amount should have already been set by the parser. */
5134 return TRUE;
5135 }
5136 inst.base.operands[1].shifter.amount = shift;
5137 return TRUE;
5138 }
5139
5140 /* A primitive log caculator. */
5141
5142 static inline unsigned int
5143 get_logsz (unsigned int size)
5144 {
5145 const unsigned char ls[16] =
5146 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5147 if (size > 16)
5148 {
5149 gas_assert (0);
5150 return -1;
5151 }
5152 gas_assert (ls[size - 1] != (unsigned char)-1);
5153 return ls[size - 1];
5154 }
5155
5156 /* Determine and return the real reloc type code for an instruction
5157 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5158
5159 static inline bfd_reloc_code_real_type
5160 ldst_lo12_determine_real_reloc_type (void)
5161 {
5162 unsigned logsz;
5163 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5164 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5165
5166 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
5167 {
5168 BFD_RELOC_AARCH64_LDST8_LO12,
5169 BFD_RELOC_AARCH64_LDST16_LO12,
5170 BFD_RELOC_AARCH64_LDST32_LO12,
5171 BFD_RELOC_AARCH64_LDST64_LO12,
5172 BFD_RELOC_AARCH64_LDST128_LO12
5173 },
5174 {
5175 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5176 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5177 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5178 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5179 BFD_RELOC_AARCH64_NONE
5180 },
5181 {
5182 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5183 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5184 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5185 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5186 BFD_RELOC_AARCH64_NONE
5187 }
5188 };
5189
5190 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5191 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5192 || (inst.reloc.type
5193 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
5194 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5195
5196 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5197 opd1_qlf =
5198 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5199 1, opd0_qlf, 0);
5200 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5201
5202 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5203 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5204 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5205 gas_assert (logsz <= 3);
5206 else
5207 gas_assert (logsz <= 4);
5208
5209 /* In reloc.c, these pseudo relocation types should be defined in similar
5210 order as above reloc_ldst_lo12 array. Because the array index calcuation
5211 below relies on this. */
5212 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5213 }
5214
5215 /* Check whether a register list REGINFO is valid. The registers must be
5216 numbered in increasing order (modulo 32), in increments of one or two.
5217
5218 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5219 increments of two.
5220
5221 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5222
5223 static bfd_boolean
5224 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5225 {
5226 uint32_t i, nb_regs, prev_regno, incr;
5227
5228 nb_regs = 1 + (reginfo & 0x3);
5229 reginfo >>= 2;
5230 prev_regno = reginfo & 0x1f;
5231 incr = accept_alternate ? 2 : 1;
5232
5233 for (i = 1; i < nb_regs; ++i)
5234 {
5235 uint32_t curr_regno;
5236 reginfo >>= 5;
5237 curr_regno = reginfo & 0x1f;
5238 if (curr_regno != ((prev_regno + incr) & 0x1f))
5239 return FALSE;
5240 prev_regno = curr_regno;
5241 }
5242
5243 return TRUE;
5244 }
5245
5246 /* Generic instruction operand parser. This does no encoding and no
5247 semantic validation; it merely squirrels values away in the inst
5248 structure. Returns TRUE or FALSE depending on whether the
5249 specified grammar matched. */
5250
5251 static bfd_boolean
5252 parse_operands (char *str, const aarch64_opcode *opcode)
5253 {
5254 int i;
5255 char *backtrack_pos = 0;
5256 const enum aarch64_opnd *operands = opcode->operands;
5257 aarch64_reg_type imm_reg_type;
5258
5259 clear_error ();
5260 skip_whitespace (str);
5261
5262 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5263 imm_reg_type = REG_TYPE_R_Z_BHSDQ_VZP;
5264 else
5265 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5266
5267 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5268 {
5269 int64_t val;
5270 const reg_entry *reg;
5271 int comma_skipped_p = 0;
5272 aarch64_reg_type rtype;
5273 struct vector_type_el vectype;
5274 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5275 aarch64_opnd_info *info = &inst.base.operands[i];
5276 aarch64_reg_type reg_type;
5277
5278 DEBUG_TRACE ("parse operand %d", i);
5279
5280 /* Assign the operand code. */
5281 info->type = operands[i];
5282
5283 if (optional_operand_p (opcode, i))
5284 {
5285 /* Remember where we are in case we need to backtrack. */
5286 gas_assert (!backtrack_pos);
5287 backtrack_pos = str;
5288 }
5289
5290 /* Expect comma between operands; the backtrack mechanizm will take
5291 care of cases of omitted optional operand. */
5292 if (i > 0 && ! skip_past_char (&str, ','))
5293 {
5294 set_syntax_error (_("comma expected between operands"));
5295 goto failure;
5296 }
5297 else
5298 comma_skipped_p = 1;
5299
5300 switch (operands[i])
5301 {
5302 case AARCH64_OPND_Rd:
5303 case AARCH64_OPND_Rn:
5304 case AARCH64_OPND_Rm:
5305 case AARCH64_OPND_Rt:
5306 case AARCH64_OPND_Rt2:
5307 case AARCH64_OPND_Rs:
5308 case AARCH64_OPND_Ra:
5309 case AARCH64_OPND_Rt_SYS:
5310 case AARCH64_OPND_PAIRREG:
5311 case AARCH64_OPND_SVE_Rm:
5312 po_int_reg_or_fail (REG_TYPE_R_Z);
5313 break;
5314
5315 case AARCH64_OPND_Rd_SP:
5316 case AARCH64_OPND_Rn_SP:
5317 case AARCH64_OPND_SVE_Rn_SP:
5318 case AARCH64_OPND_Rm_SP:
5319 po_int_reg_or_fail (REG_TYPE_R_SP);
5320 break;
5321
5322 case AARCH64_OPND_Rm_EXT:
5323 case AARCH64_OPND_Rm_SFT:
5324 po_misc_or_fail (parse_shifter_operand
5325 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5326 ? SHIFTED_ARITH_IMM
5327 : SHIFTED_LOGIC_IMM)));
5328 if (!info->shifter.operator_present)
5329 {
5330 /* Default to LSL if not present. Libopcodes prefers shifter
5331 kind to be explicit. */
5332 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5333 info->shifter.kind = AARCH64_MOD_LSL;
5334 /* For Rm_EXT, libopcodes will carry out further check on whether
5335 or not stack pointer is used in the instruction (Recall that
5336 "the extend operator is not optional unless at least one of
5337 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5338 }
5339 break;
5340
5341 case AARCH64_OPND_Fd:
5342 case AARCH64_OPND_Fn:
5343 case AARCH64_OPND_Fm:
5344 case AARCH64_OPND_Fa:
5345 case AARCH64_OPND_Ft:
5346 case AARCH64_OPND_Ft2:
5347 case AARCH64_OPND_Sd:
5348 case AARCH64_OPND_Sn:
5349 case AARCH64_OPND_Sm:
5350 case AARCH64_OPND_SVE_VZn:
5351 case AARCH64_OPND_SVE_Vd:
5352 case AARCH64_OPND_SVE_Vm:
5353 case AARCH64_OPND_SVE_Vn:
5354 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5355 if (val == PARSE_FAIL)
5356 {
5357 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5358 goto failure;
5359 }
5360 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5361
5362 info->reg.regno = val;
5363 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5364 break;
5365
5366 case AARCH64_OPND_SVE_Pd:
5367 case AARCH64_OPND_SVE_Pg3:
5368 case AARCH64_OPND_SVE_Pg4_5:
5369 case AARCH64_OPND_SVE_Pg4_10:
5370 case AARCH64_OPND_SVE_Pg4_16:
5371 case AARCH64_OPND_SVE_Pm:
5372 case AARCH64_OPND_SVE_Pn:
5373 case AARCH64_OPND_SVE_Pt:
5374 reg_type = REG_TYPE_PN;
5375 goto vector_reg;
5376
5377 case AARCH64_OPND_SVE_Za_5:
5378 case AARCH64_OPND_SVE_Za_16:
5379 case AARCH64_OPND_SVE_Zd:
5380 case AARCH64_OPND_SVE_Zm_5:
5381 case AARCH64_OPND_SVE_Zm_16:
5382 case AARCH64_OPND_SVE_Zn:
5383 case AARCH64_OPND_SVE_Zt:
5384 reg_type = REG_TYPE_ZN;
5385 goto vector_reg;
5386
5387 case AARCH64_OPND_Vd:
5388 case AARCH64_OPND_Vn:
5389 case AARCH64_OPND_Vm:
5390 reg_type = REG_TYPE_VN;
5391 vector_reg:
5392 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5393 if (val == PARSE_FAIL)
5394 {
5395 first_error (_(get_reg_expected_msg (reg_type)));
5396 goto failure;
5397 }
5398 if (vectype.defined & NTA_HASINDEX)
5399 goto failure;
5400
5401 info->reg.regno = val;
5402 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5403 && vectype.type == NT_invtype)
5404 /* Unqualified Pn and Zn registers are allowed in certain
5405 contexts. Rely on F_STRICT qualifier checking to catch
5406 invalid uses. */
5407 info->qualifier = AARCH64_OPND_QLF_NIL;
5408 else
5409 {
5410 info->qualifier = vectype_to_qualifier (&vectype);
5411 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5412 goto failure;
5413 }
5414 break;
5415
5416 case AARCH64_OPND_VdD1:
5417 case AARCH64_OPND_VnD1:
5418 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5419 if (val == PARSE_FAIL)
5420 {
5421 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5422 goto failure;
5423 }
5424 if (vectype.type != NT_d || vectype.index != 1)
5425 {
5426 set_fatal_syntax_error
5427 (_("the top half of a 128-bit FP/SIMD register is expected"));
5428 goto failure;
5429 }
5430 info->reg.regno = val;
5431 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5432 here; it is correct for the purpose of encoding/decoding since
5433 only the register number is explicitly encoded in the related
5434 instructions, although this appears a bit hacky. */
5435 info->qualifier = AARCH64_OPND_QLF_S_D;
5436 break;
5437
5438 case AARCH64_OPND_SVE_Zn_INDEX:
5439 reg_type = REG_TYPE_ZN;
5440 goto vector_reg_index;
5441
5442 case AARCH64_OPND_Ed:
5443 case AARCH64_OPND_En:
5444 case AARCH64_OPND_Em:
5445 reg_type = REG_TYPE_VN;
5446 vector_reg_index:
5447 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5448 if (val == PARSE_FAIL)
5449 {
5450 first_error (_(get_reg_expected_msg (reg_type)));
5451 goto failure;
5452 }
5453 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5454 goto failure;
5455
5456 info->reglane.regno = val;
5457 info->reglane.index = vectype.index;
5458 info->qualifier = vectype_to_qualifier (&vectype);
5459 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5460 goto failure;
5461 break;
5462
5463 case AARCH64_OPND_SVE_ZnxN:
5464 case AARCH64_OPND_SVE_ZtxN:
5465 reg_type = REG_TYPE_ZN;
5466 goto vector_reg_list;
5467
5468 case AARCH64_OPND_LVn:
5469 case AARCH64_OPND_LVt:
5470 case AARCH64_OPND_LVt_AL:
5471 case AARCH64_OPND_LEt:
5472 reg_type = REG_TYPE_VN;
5473 vector_reg_list:
5474 if (reg_type == REG_TYPE_ZN
5475 && get_opcode_dependent_value (opcode) == 1
5476 && *str != '{')
5477 {
5478 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5479 if (val == PARSE_FAIL)
5480 {
5481 first_error (_(get_reg_expected_msg (reg_type)));
5482 goto failure;
5483 }
5484 info->reglist.first_regno = val;
5485 info->reglist.num_regs = 1;
5486 }
5487 else
5488 {
5489 val = parse_vector_reg_list (&str, reg_type, &vectype);
5490 if (val == PARSE_FAIL)
5491 goto failure;
5492 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5493 {
5494 set_fatal_syntax_error (_("invalid register list"));
5495 goto failure;
5496 }
5497 info->reglist.first_regno = (val >> 2) & 0x1f;
5498 info->reglist.num_regs = (val & 0x3) + 1;
5499 }
5500 if (operands[i] == AARCH64_OPND_LEt)
5501 {
5502 if (!(vectype.defined & NTA_HASINDEX))
5503 goto failure;
5504 info->reglist.has_index = 1;
5505 info->reglist.index = vectype.index;
5506 }
5507 else
5508 {
5509 if (vectype.defined & NTA_HASINDEX)
5510 goto failure;
5511 if (!(vectype.defined & NTA_HASTYPE))
5512 {
5513 if (reg_type == REG_TYPE_ZN)
5514 set_fatal_syntax_error (_("missing type suffix"));
5515 goto failure;
5516 }
5517 }
5518 info->qualifier = vectype_to_qualifier (&vectype);
5519 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5520 goto failure;
5521 break;
5522
5523 case AARCH64_OPND_Cn:
5524 case AARCH64_OPND_Cm:
5525 po_reg_or_fail (REG_TYPE_CN);
5526 if (val > 15)
5527 {
5528 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5529 goto failure;
5530 }
5531 inst.base.operands[i].reg.regno = val;
5532 break;
5533
5534 case AARCH64_OPND_SHLL_IMM:
5535 case AARCH64_OPND_IMM_VLSR:
5536 po_imm_or_fail (1, 64);
5537 info->imm.value = val;
5538 break;
5539
5540 case AARCH64_OPND_CCMP_IMM:
5541 case AARCH64_OPND_SIMM5:
5542 case AARCH64_OPND_FBITS:
5543 case AARCH64_OPND_UIMM4:
5544 case AARCH64_OPND_UIMM3_OP1:
5545 case AARCH64_OPND_UIMM3_OP2:
5546 case AARCH64_OPND_IMM_VLSL:
5547 case AARCH64_OPND_IMM:
5548 case AARCH64_OPND_WIDTH:
5549 case AARCH64_OPND_SVE_INV_LIMM:
5550 case AARCH64_OPND_SVE_LIMM:
5551 case AARCH64_OPND_SVE_LIMM_MOV:
5552 case AARCH64_OPND_SVE_SHLIMM_PRED:
5553 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5554 case AARCH64_OPND_SVE_SHRIMM_PRED:
5555 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5556 case AARCH64_OPND_SVE_SIMM5:
5557 case AARCH64_OPND_SVE_SIMM5B:
5558 case AARCH64_OPND_SVE_SIMM6:
5559 case AARCH64_OPND_SVE_SIMM8:
5560 case AARCH64_OPND_SVE_UIMM3:
5561 case AARCH64_OPND_SVE_UIMM7:
5562 case AARCH64_OPND_SVE_UIMM8:
5563 case AARCH64_OPND_SVE_UIMM8_53:
5564 case AARCH64_OPND_IMM_ROT1:
5565 case AARCH64_OPND_IMM_ROT2:
5566 case AARCH64_OPND_IMM_ROT3:
5567 po_imm_nc_or_fail ();
5568 info->imm.value = val;
5569 break;
5570
5571 case AARCH64_OPND_SVE_AIMM:
5572 case AARCH64_OPND_SVE_ASIMM:
5573 po_imm_nc_or_fail ();
5574 info->imm.value = val;
5575 skip_whitespace (str);
5576 if (skip_past_comma (&str))
5577 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5578 else
5579 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5580 break;
5581
5582 case AARCH64_OPND_SVE_PATTERN:
5583 po_enum_or_fail (aarch64_sve_pattern_array);
5584 info->imm.value = val;
5585 break;
5586
5587 case AARCH64_OPND_SVE_PATTERN_SCALED:
5588 po_enum_or_fail (aarch64_sve_pattern_array);
5589 info->imm.value = val;
5590 if (skip_past_comma (&str)
5591 && !parse_shift (&str, info, SHIFTED_MUL))
5592 goto failure;
5593 if (!info->shifter.operator_present)
5594 {
5595 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5596 info->shifter.kind = AARCH64_MOD_MUL;
5597 info->shifter.amount = 1;
5598 }
5599 break;
5600
5601 case AARCH64_OPND_SVE_PRFOP:
5602 po_enum_or_fail (aarch64_sve_prfop_array);
5603 info->imm.value = val;
5604 break;
5605
5606 case AARCH64_OPND_UIMM7:
5607 po_imm_or_fail (0, 127);
5608 info->imm.value = val;
5609 break;
5610
5611 case AARCH64_OPND_IDX:
5612 case AARCH64_OPND_BIT_NUM:
5613 case AARCH64_OPND_IMMR:
5614 case AARCH64_OPND_IMMS:
5615 po_imm_or_fail (0, 63);
5616 info->imm.value = val;
5617 break;
5618
5619 case AARCH64_OPND_IMM0:
5620 po_imm_nc_or_fail ();
5621 if (val != 0)
5622 {
5623 set_fatal_syntax_error (_("immediate zero expected"));
5624 goto failure;
5625 }
5626 info->imm.value = 0;
5627 break;
5628
5629 case AARCH64_OPND_FPIMM0:
5630 {
5631 int qfloat;
5632 bfd_boolean res1 = FALSE, res2 = FALSE;
5633 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5634 it is probably not worth the effort to support it. */
5635 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5636 imm_reg_type))
5637 && (error_p ()
5638 || !(res2 = parse_constant_immediate (&str, &val,
5639 imm_reg_type))))
5640 goto failure;
5641 if ((res1 && qfloat == 0) || (res2 && val == 0))
5642 {
5643 info->imm.value = 0;
5644 info->imm.is_fp = 1;
5645 break;
5646 }
5647 set_fatal_syntax_error (_("immediate zero expected"));
5648 goto failure;
5649 }
5650
5651 case AARCH64_OPND_IMM_MOV:
5652 {
5653 char *saved = str;
5654 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5655 reg_name_p (str, REG_TYPE_VN))
5656 goto failure;
5657 str = saved;
5658 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5659 GE_OPT_PREFIX, 1));
5660 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5661 later. fix_mov_imm_insn will try to determine a machine
5662 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5663 message if the immediate cannot be moved by a single
5664 instruction. */
5665 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5666 inst.base.operands[i].skip = 1;
5667 }
5668 break;
5669
5670 case AARCH64_OPND_SIMD_IMM:
5671 case AARCH64_OPND_SIMD_IMM_SFT:
5672 if (! parse_big_immediate (&str, &val, imm_reg_type))
5673 goto failure;
5674 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5675 /* addr_off_p */ 0,
5676 /* need_libopcodes_p */ 1,
5677 /* skip_p */ 1);
5678 /* Parse shift.
5679 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5680 shift, we don't check it here; we leave the checking to
5681 the libopcodes (operand_general_constraint_met_p). By
5682 doing this, we achieve better diagnostics. */
5683 if (skip_past_comma (&str)
5684 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5685 goto failure;
5686 if (!info->shifter.operator_present
5687 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5688 {
5689 /* Default to LSL if not present. Libopcodes prefers shifter
5690 kind to be explicit. */
5691 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5692 info->shifter.kind = AARCH64_MOD_LSL;
5693 }
5694 break;
5695
5696 case AARCH64_OPND_FPIMM:
5697 case AARCH64_OPND_SIMD_FPIMM:
5698 case AARCH64_OPND_SVE_FPIMM8:
5699 {
5700 int qfloat;
5701 bfd_boolean dp_p;
5702
5703 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5704 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
5705 || !aarch64_imm_float_p (qfloat))
5706 {
5707 if (!error_p ())
5708 set_fatal_syntax_error (_("invalid floating-point"
5709 " constant"));
5710 goto failure;
5711 }
5712 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5713 inst.base.operands[i].imm.is_fp = 1;
5714 }
5715 break;
5716
5717 case AARCH64_OPND_SVE_I1_HALF_ONE:
5718 case AARCH64_OPND_SVE_I1_HALF_TWO:
5719 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5720 {
5721 int qfloat;
5722 bfd_boolean dp_p;
5723
5724 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5725 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5726 {
5727 if (!error_p ())
5728 set_fatal_syntax_error (_("invalid floating-point"
5729 " constant"));
5730 goto failure;
5731 }
5732 inst.base.operands[i].imm.value = qfloat;
5733 inst.base.operands[i].imm.is_fp = 1;
5734 }
5735 break;
5736
5737 case AARCH64_OPND_LIMM:
5738 po_misc_or_fail (parse_shifter_operand (&str, info,
5739 SHIFTED_LOGIC_IMM));
5740 if (info->shifter.operator_present)
5741 {
5742 set_fatal_syntax_error
5743 (_("shift not allowed for bitmask immediate"));
5744 goto failure;
5745 }
5746 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5747 /* addr_off_p */ 0,
5748 /* need_libopcodes_p */ 1,
5749 /* skip_p */ 1);
5750 break;
5751
5752 case AARCH64_OPND_AIMM:
5753 if (opcode->op == OP_ADD)
5754 /* ADD may have relocation types. */
5755 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5756 SHIFTED_ARITH_IMM));
5757 else
5758 po_misc_or_fail (parse_shifter_operand (&str, info,
5759 SHIFTED_ARITH_IMM));
5760 switch (inst.reloc.type)
5761 {
5762 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5763 info->shifter.amount = 12;
5764 break;
5765 case BFD_RELOC_UNUSED:
5766 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5767 if (info->shifter.kind != AARCH64_MOD_NONE)
5768 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5769 inst.reloc.pc_rel = 0;
5770 break;
5771 default:
5772 break;
5773 }
5774 info->imm.value = 0;
5775 if (!info->shifter.operator_present)
5776 {
5777 /* Default to LSL if not present. Libopcodes prefers shifter
5778 kind to be explicit. */
5779 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5780 info->shifter.kind = AARCH64_MOD_LSL;
5781 }
5782 break;
5783
5784 case AARCH64_OPND_HALF:
5785 {
5786 /* #<imm16> or relocation. */
5787 int internal_fixup_p;
5788 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5789 if (internal_fixup_p)
5790 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5791 skip_whitespace (str);
5792 if (skip_past_comma (&str))
5793 {
5794 /* {, LSL #<shift>} */
5795 if (! aarch64_gas_internal_fixup_p ())
5796 {
5797 set_fatal_syntax_error (_("can't mix relocation modifier "
5798 "with explicit shift"));
5799 goto failure;
5800 }
5801 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5802 }
5803 else
5804 inst.base.operands[i].shifter.amount = 0;
5805 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5806 inst.base.operands[i].imm.value = 0;
5807 if (! process_movw_reloc_info ())
5808 goto failure;
5809 }
5810 break;
5811
5812 case AARCH64_OPND_EXCEPTION:
5813 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5814 imm_reg_type));
5815 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5816 /* addr_off_p */ 0,
5817 /* need_libopcodes_p */ 0,
5818 /* skip_p */ 1);
5819 break;
5820
5821 case AARCH64_OPND_NZCV:
5822 {
5823 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5824 if (nzcv != NULL)
5825 {
5826 str += 4;
5827 info->imm.value = nzcv->value;
5828 break;
5829 }
5830 po_imm_or_fail (0, 15);
5831 info->imm.value = val;
5832 }
5833 break;
5834
5835 case AARCH64_OPND_COND:
5836 case AARCH64_OPND_COND1:
5837 {
5838 char *start = str;
5839 do
5840 str++;
5841 while (ISALPHA (*str));
5842 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5843 if (info->cond == NULL)
5844 {
5845 set_syntax_error (_("invalid condition"));
5846 goto failure;
5847 }
5848 else if (operands[i] == AARCH64_OPND_COND1
5849 && (info->cond->value & 0xe) == 0xe)
5850 {
5851 /* Do not allow AL or NV. */
5852 set_default_error ();
5853 goto failure;
5854 }
5855 }
5856 break;
5857
5858 case AARCH64_OPND_ADDR_ADRP:
5859 po_misc_or_fail (parse_adrp (&str));
5860 /* Clear the value as operand needs to be relocated. */
5861 info->imm.value = 0;
5862 break;
5863
5864 case AARCH64_OPND_ADDR_PCREL14:
5865 case AARCH64_OPND_ADDR_PCREL19:
5866 case AARCH64_OPND_ADDR_PCREL21:
5867 case AARCH64_OPND_ADDR_PCREL26:
5868 po_misc_or_fail (parse_address (&str, info));
5869 if (!info->addr.pcrel)
5870 {
5871 set_syntax_error (_("invalid pc-relative address"));
5872 goto failure;
5873 }
5874 if (inst.gen_lit_pool
5875 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5876 {
5877 /* Only permit "=value" in the literal load instructions.
5878 The literal will be generated by programmer_friendly_fixup. */
5879 set_syntax_error (_("invalid use of \"=immediate\""));
5880 goto failure;
5881 }
5882 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5883 {
5884 set_syntax_error (_("unrecognized relocation suffix"));
5885 goto failure;
5886 }
5887 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5888 {
5889 info->imm.value = inst.reloc.exp.X_add_number;
5890 inst.reloc.type = BFD_RELOC_UNUSED;
5891 }
5892 else
5893 {
5894 info->imm.value = 0;
5895 if (inst.reloc.type == BFD_RELOC_UNUSED)
5896 switch (opcode->iclass)
5897 {
5898 case compbranch:
5899 case condbranch:
5900 /* e.g. CBZ or B.COND */
5901 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5902 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5903 break;
5904 case testbranch:
5905 /* e.g. TBZ */
5906 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5907 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5908 break;
5909 case branch_imm:
5910 /* e.g. B or BL */
5911 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5912 inst.reloc.type =
5913 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5914 : BFD_RELOC_AARCH64_JUMP26;
5915 break;
5916 case loadlit:
5917 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5918 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5919 break;
5920 case pcreladdr:
5921 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5922 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5923 break;
5924 default:
5925 gas_assert (0);
5926 abort ();
5927 }
5928 inst.reloc.pc_rel = 1;
5929 }
5930 break;
5931
5932 case AARCH64_OPND_ADDR_SIMPLE:
5933 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5934 {
5935 /* [<Xn|SP>{, #<simm>}] */
5936 char *start = str;
5937 /* First use the normal address-parsing routines, to get
5938 the usual syntax errors. */
5939 po_misc_or_fail (parse_address (&str, info));
5940 if (info->addr.pcrel || info->addr.offset.is_reg
5941 || !info->addr.preind || info->addr.postind
5942 || info->addr.writeback)
5943 {
5944 set_syntax_error (_("invalid addressing mode"));
5945 goto failure;
5946 }
5947
5948 /* Then retry, matching the specific syntax of these addresses. */
5949 str = start;
5950 po_char_or_fail ('[');
5951 po_reg_or_fail (REG_TYPE_R64_SP);
5952 /* Accept optional ", #0". */
5953 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5954 && skip_past_char (&str, ','))
5955 {
5956 skip_past_char (&str, '#');
5957 if (! skip_past_char (&str, '0'))
5958 {
5959 set_fatal_syntax_error
5960 (_("the optional immediate offset can only be 0"));
5961 goto failure;
5962 }
5963 }
5964 po_char_or_fail (']');
5965 break;
5966 }
5967
5968 case AARCH64_OPND_ADDR_REGOFF:
5969 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5970 po_misc_or_fail (parse_address (&str, info));
5971 regoff_addr:
5972 if (info->addr.pcrel || !info->addr.offset.is_reg
5973 || !info->addr.preind || info->addr.postind
5974 || info->addr.writeback)
5975 {
5976 set_syntax_error (_("invalid addressing mode"));
5977 goto failure;
5978 }
5979 if (!info->shifter.operator_present)
5980 {
5981 /* Default to LSL if not present. Libopcodes prefers shifter
5982 kind to be explicit. */
5983 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5984 info->shifter.kind = AARCH64_MOD_LSL;
5985 }
5986 /* Qualifier to be deduced by libopcodes. */
5987 break;
5988
5989 case AARCH64_OPND_ADDR_SIMM7:
5990 po_misc_or_fail (parse_address (&str, info));
5991 if (info->addr.pcrel || info->addr.offset.is_reg
5992 || (!info->addr.preind && !info->addr.postind))
5993 {
5994 set_syntax_error (_("invalid addressing mode"));
5995 goto failure;
5996 }
5997 if (inst.reloc.type != BFD_RELOC_UNUSED)
5998 {
5999 set_syntax_error (_("relocation not allowed"));
6000 goto failure;
6001 }
6002 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6003 /* addr_off_p */ 1,
6004 /* need_libopcodes_p */ 1,
6005 /* skip_p */ 0);
6006 break;
6007
6008 case AARCH64_OPND_ADDR_SIMM9:
6009 case AARCH64_OPND_ADDR_SIMM9_2:
6010 po_misc_or_fail (parse_address (&str, info));
6011 if (info->addr.pcrel || info->addr.offset.is_reg
6012 || (!info->addr.preind && !info->addr.postind)
6013 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6014 && info->addr.writeback))
6015 {
6016 set_syntax_error (_("invalid addressing mode"));
6017 goto failure;
6018 }
6019 if (inst.reloc.type != BFD_RELOC_UNUSED)
6020 {
6021 set_syntax_error (_("relocation not allowed"));
6022 goto failure;
6023 }
6024 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6025 /* addr_off_p */ 1,
6026 /* need_libopcodes_p */ 1,
6027 /* skip_p */ 0);
6028 break;
6029
6030 case AARCH64_OPND_ADDR_SIMM10:
6031 po_misc_or_fail (parse_address (&str, info));
6032 if (info->addr.pcrel || info->addr.offset.is_reg
6033 || !info->addr.preind || info->addr.postind)
6034 {
6035 set_syntax_error (_("invalid addressing mode"));
6036 goto failure;
6037 }
6038 if (inst.reloc.type != BFD_RELOC_UNUSED)
6039 {
6040 set_syntax_error (_("relocation not allowed"));
6041 goto failure;
6042 }
6043 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6044 /* addr_off_p */ 1,
6045 /* need_libopcodes_p */ 1,
6046 /* skip_p */ 0);
6047 break;
6048
6049 case AARCH64_OPND_ADDR_UIMM12:
6050 po_misc_or_fail (parse_address (&str, info));
6051 if (info->addr.pcrel || info->addr.offset.is_reg
6052 || !info->addr.preind || info->addr.writeback)
6053 {
6054 set_syntax_error (_("invalid addressing mode"));
6055 goto failure;
6056 }
6057 if (inst.reloc.type == BFD_RELOC_UNUSED)
6058 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6059 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6060 || (inst.reloc.type
6061 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6062 || (inst.reloc.type
6063 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
6064 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6065 /* Leave qualifier to be determined by libopcodes. */
6066 break;
6067
6068 case AARCH64_OPND_SIMD_ADDR_POST:
6069 /* [<Xn|SP>], <Xm|#<amount>> */
6070 po_misc_or_fail (parse_address (&str, info));
6071 if (!info->addr.postind || !info->addr.writeback)
6072 {
6073 set_syntax_error (_("invalid addressing mode"));
6074 goto failure;
6075 }
6076 if (!info->addr.offset.is_reg)
6077 {
6078 if (inst.reloc.exp.X_op == O_constant)
6079 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6080 else
6081 {
6082 set_fatal_syntax_error
6083 (_("writeback value must be an immediate constant"));
6084 goto failure;
6085 }
6086 }
6087 /* No qualifier. */
6088 break;
6089
6090 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6091 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6092 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6093 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6094 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6095 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6096 case AARCH64_OPND_SVE_ADDR_RI_U6:
6097 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6098 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6099 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6100 /* [X<n>{, #imm, MUL VL}]
6101 [X<n>{, #imm}]
6102 but recognizing SVE registers. */
6103 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6104 &offset_qualifier));
6105 if (base_qualifier != AARCH64_OPND_QLF_X)
6106 {
6107 set_syntax_error (_("invalid addressing mode"));
6108 goto failure;
6109 }
6110 sve_regimm:
6111 if (info->addr.pcrel || info->addr.offset.is_reg
6112 || !info->addr.preind || info->addr.writeback)
6113 {
6114 set_syntax_error (_("invalid addressing mode"));
6115 goto failure;
6116 }
6117 if (inst.reloc.type != BFD_RELOC_UNUSED
6118 || inst.reloc.exp.X_op != O_constant)
6119 {
6120 /* Make sure this has priority over
6121 "invalid addressing mode". */
6122 set_fatal_syntax_error (_("constant offset required"));
6123 goto failure;
6124 }
6125 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6126 break;
6127
6128 case AARCH64_OPND_SVE_ADDR_RR:
6129 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6130 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6131 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6132 case AARCH64_OPND_SVE_ADDR_RX:
6133 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6134 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6135 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6136 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6137 but recognizing SVE registers. */
6138 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6139 &offset_qualifier));
6140 if (base_qualifier != AARCH64_OPND_QLF_X
6141 || offset_qualifier != AARCH64_OPND_QLF_X)
6142 {
6143 set_syntax_error (_("invalid addressing mode"));
6144 goto failure;
6145 }
6146 goto regoff_addr;
6147
6148 case AARCH64_OPND_SVE_ADDR_RZ:
6149 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6150 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6151 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6152 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6153 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6154 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6155 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6156 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6157 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6158 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6159 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6160 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6161 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6162 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6163 &offset_qualifier));
6164 if (base_qualifier != AARCH64_OPND_QLF_X
6165 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6166 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6167 {
6168 set_syntax_error (_("invalid addressing mode"));
6169 goto failure;
6170 }
6171 info->qualifier = offset_qualifier;
6172 goto regoff_addr;
6173
6174 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6175 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6176 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6177 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6178 /* [Z<n>.<T>{, #imm}] */
6179 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6180 &offset_qualifier));
6181 if (base_qualifier != AARCH64_OPND_QLF_S_S
6182 && base_qualifier != AARCH64_OPND_QLF_S_D)
6183 {
6184 set_syntax_error (_("invalid addressing mode"));
6185 goto failure;
6186 }
6187 info->qualifier = base_qualifier;
6188 goto sve_regimm;
6189
6190 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6191 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6192 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6193 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6194 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6195
6196 We don't reject:
6197
6198 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6199
6200 here since we get better error messages by leaving it to
6201 the qualifier checking routines. */
6202 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6203 &offset_qualifier));
6204 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6205 && base_qualifier != AARCH64_OPND_QLF_S_D)
6206 || offset_qualifier != base_qualifier)
6207 {
6208 set_syntax_error (_("invalid addressing mode"));
6209 goto failure;
6210 }
6211 info->qualifier = base_qualifier;
6212 goto regoff_addr;
6213
6214 case AARCH64_OPND_SYSREG:
6215 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
6216 == PARSE_FAIL)
6217 {
6218 set_syntax_error (_("unknown or missing system register name"));
6219 goto failure;
6220 }
6221 inst.base.operands[i].sysreg = val;
6222 break;
6223
6224 case AARCH64_OPND_PSTATEFIELD:
6225 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
6226 == PARSE_FAIL)
6227 {
6228 set_syntax_error (_("unknown or missing PSTATE field name"));
6229 goto failure;
6230 }
6231 inst.base.operands[i].pstatefield = val;
6232 break;
6233
6234 case AARCH64_OPND_SYSREG_IC:
6235 inst.base.operands[i].sysins_op =
6236 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6237 goto sys_reg_ins;
6238 case AARCH64_OPND_SYSREG_DC:
6239 inst.base.operands[i].sysins_op =
6240 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6241 goto sys_reg_ins;
6242 case AARCH64_OPND_SYSREG_AT:
6243 inst.base.operands[i].sysins_op =
6244 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6245 goto sys_reg_ins;
6246 case AARCH64_OPND_SYSREG_TLBI:
6247 inst.base.operands[i].sysins_op =
6248 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6249 sys_reg_ins:
6250 if (inst.base.operands[i].sysins_op == NULL)
6251 {
6252 set_fatal_syntax_error ( _("unknown or missing operation name"));
6253 goto failure;
6254 }
6255 break;
6256
6257 case AARCH64_OPND_BARRIER:
6258 case AARCH64_OPND_BARRIER_ISB:
6259 val = parse_barrier (&str);
6260 if (val != PARSE_FAIL
6261 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6262 {
6263 /* ISB only accepts options name 'sy'. */
6264 set_syntax_error
6265 (_("the specified option is not accepted in ISB"));
6266 /* Turn off backtrack as this optional operand is present. */
6267 backtrack_pos = 0;
6268 goto failure;
6269 }
6270 /* This is an extension to accept a 0..15 immediate. */
6271 if (val == PARSE_FAIL)
6272 po_imm_or_fail (0, 15);
6273 info->barrier = aarch64_barrier_options + val;
6274 break;
6275
6276 case AARCH64_OPND_PRFOP:
6277 val = parse_pldop (&str);
6278 /* This is an extension to accept a 0..31 immediate. */
6279 if (val == PARSE_FAIL)
6280 po_imm_or_fail (0, 31);
6281 inst.base.operands[i].prfop = aarch64_prfops + val;
6282 break;
6283
6284 case AARCH64_OPND_BARRIER_PSB:
6285 val = parse_barrier_psb (&str, &(info->hint_option));
6286 if (val == PARSE_FAIL)
6287 goto failure;
6288 break;
6289
6290 default:
6291 as_fatal (_("unhandled operand code %d"), operands[i]);
6292 }
6293
6294 /* If we get here, this operand was successfully parsed. */
6295 inst.base.operands[i].present = 1;
6296 continue;
6297
6298 failure:
6299 /* The parse routine should already have set the error, but in case
6300 not, set a default one here. */
6301 if (! error_p ())
6302 set_default_error ();
6303
6304 if (! backtrack_pos)
6305 goto parse_operands_return;
6306
6307 {
6308 /* We reach here because this operand is marked as optional, and
6309 either no operand was supplied or the operand was supplied but it
6310 was syntactically incorrect. In the latter case we report an
6311 error. In the former case we perform a few more checks before
6312 dropping through to the code to insert the default operand. */
6313
6314 char *tmp = backtrack_pos;
6315 char endchar = END_OF_INSN;
6316
6317 if (i != (aarch64_num_of_operands (opcode) - 1))
6318 endchar = ',';
6319 skip_past_char (&tmp, ',');
6320
6321 if (*tmp != endchar)
6322 /* The user has supplied an operand in the wrong format. */
6323 goto parse_operands_return;
6324
6325 /* Make sure there is not a comma before the optional operand.
6326 For example the fifth operand of 'sys' is optional:
6327
6328 sys #0,c0,c0,#0, <--- wrong
6329 sys #0,c0,c0,#0 <--- correct. */
6330 if (comma_skipped_p && i && endchar == END_OF_INSN)
6331 {
6332 set_fatal_syntax_error
6333 (_("unexpected comma before the omitted optional operand"));
6334 goto parse_operands_return;
6335 }
6336 }
6337
6338 /* Reaching here means we are dealing with an optional operand that is
6339 omitted from the assembly line. */
6340 gas_assert (optional_operand_p (opcode, i));
6341 info->present = 0;
6342 process_omitted_operand (operands[i], opcode, i, info);
6343
6344 /* Try again, skipping the optional operand at backtrack_pos. */
6345 str = backtrack_pos;
6346 backtrack_pos = 0;
6347
6348 /* Clear any error record after the omitted optional operand has been
6349 successfully handled. */
6350 clear_error ();
6351 }
6352
6353 /* Check if we have parsed all the operands. */
6354 if (*str != '\0' && ! error_p ())
6355 {
6356 /* Set I to the index of the last present operand; this is
6357 for the purpose of diagnostics. */
6358 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6359 ;
6360 set_fatal_syntax_error
6361 (_("unexpected characters following instruction"));
6362 }
6363
6364 parse_operands_return:
6365
6366 if (error_p ())
6367 {
6368 DEBUG_TRACE ("parsing FAIL: %s - %s",
6369 operand_mismatch_kind_names[get_error_kind ()],
6370 get_error_message ());
6371 /* Record the operand error properly; this is useful when there
6372 are multiple instruction templates for a mnemonic name, so that
6373 later on, we can select the error that most closely describes
6374 the problem. */
6375 record_operand_error (opcode, i, get_error_kind (),
6376 get_error_message ());
6377 return FALSE;
6378 }
6379 else
6380 {
6381 DEBUG_TRACE ("parsing SUCCESS");
6382 return TRUE;
6383 }
6384 }
6385
6386 /* It does some fix-up to provide some programmer friendly feature while
6387 keeping the libopcodes happy, i.e. libopcodes only accepts
6388 the preferred architectural syntax.
6389 Return FALSE if there is any failure; otherwise return TRUE. */
6390
6391 static bfd_boolean
6392 programmer_friendly_fixup (aarch64_instruction *instr)
6393 {
6394 aarch64_inst *base = &instr->base;
6395 const aarch64_opcode *opcode = base->opcode;
6396 enum aarch64_op op = opcode->op;
6397 aarch64_opnd_info *operands = base->operands;
6398
6399 DEBUG_TRACE ("enter");
6400
6401 switch (opcode->iclass)
6402 {
6403 case testbranch:
6404 /* TBNZ Xn|Wn, #uimm6, label
6405 Test and Branch Not Zero: conditionally jumps to label if bit number
6406 uimm6 in register Xn is not zero. The bit number implies the width of
6407 the register, which may be written and should be disassembled as Wn if
6408 uimm is less than 32. */
6409 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6410 {
6411 if (operands[1].imm.value >= 32)
6412 {
6413 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6414 0, 31);
6415 return FALSE;
6416 }
6417 operands[0].qualifier = AARCH64_OPND_QLF_X;
6418 }
6419 break;
6420 case loadlit:
6421 /* LDR Wt, label | =value
6422 As a convenience assemblers will typically permit the notation
6423 "=value" in conjunction with the pc-relative literal load instructions
6424 to automatically place an immediate value or symbolic address in a
6425 nearby literal pool and generate a hidden label which references it.
6426 ISREG has been set to 0 in the case of =value. */
6427 if (instr->gen_lit_pool
6428 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6429 {
6430 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6431 if (op == OP_LDRSW_LIT)
6432 size = 4;
6433 if (instr->reloc.exp.X_op != O_constant
6434 && instr->reloc.exp.X_op != O_big
6435 && instr->reloc.exp.X_op != O_symbol)
6436 {
6437 record_operand_error (opcode, 1,
6438 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6439 _("constant expression expected"));
6440 return FALSE;
6441 }
6442 if (! add_to_lit_pool (&instr->reloc.exp, size))
6443 {
6444 record_operand_error (opcode, 1,
6445 AARCH64_OPDE_OTHER_ERROR,
6446 _("literal pool insertion failed"));
6447 return FALSE;
6448 }
6449 }
6450 break;
6451 case log_shift:
6452 case bitfield:
6453 /* UXT[BHW] Wd, Wn
6454 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6455 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6456 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6457 A programmer-friendly assembler should accept a destination Xd in
6458 place of Wd, however that is not the preferred form for disassembly.
6459 */
6460 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6461 && operands[1].qualifier == AARCH64_OPND_QLF_W
6462 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6463 operands[0].qualifier = AARCH64_OPND_QLF_W;
6464 break;
6465
6466 case addsub_ext:
6467 {
6468 /* In the 64-bit form, the final register operand is written as Wm
6469 for all but the (possibly omitted) UXTX/LSL and SXTX
6470 operators.
6471 As a programmer-friendly assembler, we accept e.g.
6472 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6473 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6474 int idx = aarch64_operand_index (opcode->operands,
6475 AARCH64_OPND_Rm_EXT);
6476 gas_assert (idx == 1 || idx == 2);
6477 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6478 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6479 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6480 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6481 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6482 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6483 }
6484 break;
6485
6486 default:
6487 break;
6488 }
6489
6490 DEBUG_TRACE ("exit with SUCCESS");
6491 return TRUE;
6492 }
6493
6494 /* Check for loads and stores that will cause unpredictable behavior. */
6495
6496 static void
6497 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6498 {
6499 aarch64_inst *base = &instr->base;
6500 const aarch64_opcode *opcode = base->opcode;
6501 const aarch64_opnd_info *opnds = base->operands;
6502 switch (opcode->iclass)
6503 {
6504 case ldst_pos:
6505 case ldst_imm9:
6506 case ldst_imm10:
6507 case ldst_unscaled:
6508 case ldst_unpriv:
6509 /* Loading/storing the base register is unpredictable if writeback. */
6510 if ((aarch64_get_operand_class (opnds[0].type)
6511 == AARCH64_OPND_CLASS_INT_REG)
6512 && opnds[0].reg.regno == opnds[1].addr.base_regno
6513 && opnds[1].addr.base_regno != REG_SP
6514 && opnds[1].addr.writeback)
6515 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6516 break;
6517 case ldstpair_off:
6518 case ldstnapair_offs:
6519 case ldstpair_indexed:
6520 /* Loading/storing the base register is unpredictable if writeback. */
6521 if ((aarch64_get_operand_class (opnds[0].type)
6522 == AARCH64_OPND_CLASS_INT_REG)
6523 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6524 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6525 && opnds[2].addr.base_regno != REG_SP
6526 && opnds[2].addr.writeback)
6527 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6528 /* Load operations must load different registers. */
6529 if ((opcode->opcode & (1 << 22))
6530 && opnds[0].reg.regno == opnds[1].reg.regno)
6531 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6532 break;
6533 default:
6534 break;
6535 }
6536 }
6537
6538 /* A wrapper function to interface with libopcodes on encoding and
6539 record the error message if there is any.
6540
6541 Return TRUE on success; otherwise return FALSE. */
6542
6543 static bfd_boolean
6544 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6545 aarch64_insn *code)
6546 {
6547 aarch64_operand_error error_info;
6548 error_info.kind = AARCH64_OPDE_NIL;
6549 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
6550 return TRUE;
6551 else
6552 {
6553 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6554 record_operand_error_info (opcode, &error_info);
6555 return FALSE;
6556 }
6557 }
6558
6559 #ifdef DEBUG_AARCH64
6560 static inline void
6561 dump_opcode_operands (const aarch64_opcode *opcode)
6562 {
6563 int i = 0;
6564 while (opcode->operands[i] != AARCH64_OPND_NIL)
6565 {
6566 aarch64_verbose ("\t\t opnd%d: %s", i,
6567 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6568 ? aarch64_get_operand_name (opcode->operands[i])
6569 : aarch64_get_operand_desc (opcode->operands[i]));
6570 ++i;
6571 }
6572 }
6573 #endif /* DEBUG_AARCH64 */
6574
6575 /* This is the guts of the machine-dependent assembler. STR points to a
6576 machine dependent instruction. This function is supposed to emit
6577 the frags/bytes it assembles to. */
6578
6579 void
6580 md_assemble (char *str)
6581 {
6582 char *p = str;
6583 templates *template;
6584 aarch64_opcode *opcode;
6585 aarch64_inst *inst_base;
6586 unsigned saved_cond;
6587
6588 /* Align the previous label if needed. */
6589 if (last_label_seen != NULL)
6590 {
6591 symbol_set_frag (last_label_seen, frag_now);
6592 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6593 S_SET_SEGMENT (last_label_seen, now_seg);
6594 }
6595
6596 inst.reloc.type = BFD_RELOC_UNUSED;
6597
6598 DEBUG_TRACE ("\n\n");
6599 DEBUG_TRACE ("==============================");
6600 DEBUG_TRACE ("Enter md_assemble with %s", str);
6601
6602 template = opcode_lookup (&p);
6603 if (!template)
6604 {
6605 /* It wasn't an instruction, but it might be a register alias of
6606 the form alias .req reg directive. */
6607 if (!create_register_alias (str, p))
6608 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6609 str);
6610 return;
6611 }
6612
6613 skip_whitespace (p);
6614 if (*p == ',')
6615 {
6616 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6617 get_mnemonic_name (str), str);
6618 return;
6619 }
6620
6621 init_operand_error_report ();
6622
6623 /* Sections are assumed to start aligned. In executable section, there is no
6624 MAP_DATA symbol pending. So we only align the address during
6625 MAP_DATA --> MAP_INSN transition.
6626 For other sections, this is not guaranteed. */
6627 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6628 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6629 frag_align_code (2, 0);
6630
6631 saved_cond = inst.cond;
6632 reset_aarch64_instruction (&inst);
6633 inst.cond = saved_cond;
6634
6635 /* Iterate through all opcode entries with the same mnemonic name. */
6636 do
6637 {
6638 opcode = template->opcode;
6639
6640 DEBUG_TRACE ("opcode %s found", opcode->name);
6641 #ifdef DEBUG_AARCH64
6642 if (debug_dump)
6643 dump_opcode_operands (opcode);
6644 #endif /* DEBUG_AARCH64 */
6645
6646 mapping_state (MAP_INSN);
6647
6648 inst_base = &inst.base;
6649 inst_base->opcode = opcode;
6650
6651 /* Truly conditionally executed instructions, e.g. b.cond. */
6652 if (opcode->flags & F_COND)
6653 {
6654 gas_assert (inst.cond != COND_ALWAYS);
6655 inst_base->cond = get_cond_from_value (inst.cond);
6656 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6657 }
6658 else if (inst.cond != COND_ALWAYS)
6659 {
6660 /* It shouldn't arrive here, where the assembly looks like a
6661 conditional instruction but the found opcode is unconditional. */
6662 gas_assert (0);
6663 continue;
6664 }
6665
6666 if (parse_operands (p, opcode)
6667 && programmer_friendly_fixup (&inst)
6668 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6669 {
6670 /* Check that this instruction is supported for this CPU. */
6671 if (!opcode->avariant
6672 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
6673 {
6674 as_bad (_("selected processor does not support `%s'"), str);
6675 return;
6676 }
6677
6678 warn_unpredictable_ldst (&inst, str);
6679
6680 if (inst.reloc.type == BFD_RELOC_UNUSED
6681 || !inst.reloc.need_libopcodes_p)
6682 output_inst (NULL);
6683 else
6684 {
6685 /* If there is relocation generated for the instruction,
6686 store the instruction information for the future fix-up. */
6687 struct aarch64_inst *copy;
6688 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6689 copy = XNEW (struct aarch64_inst);
6690 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6691 output_inst (copy);
6692 }
6693 return;
6694 }
6695
6696 template = template->next;
6697 if (template != NULL)
6698 {
6699 reset_aarch64_instruction (&inst);
6700 inst.cond = saved_cond;
6701 }
6702 }
6703 while (template != NULL);
6704
6705 /* Issue the error messages if any. */
6706 output_operand_error_report (str);
6707 }
6708
6709 /* Various frobbings of labels and their addresses. */
6710
6711 void
6712 aarch64_start_line_hook (void)
6713 {
6714 last_label_seen = NULL;
6715 }
6716
6717 void
6718 aarch64_frob_label (symbolS * sym)
6719 {
6720 last_label_seen = sym;
6721
6722 dwarf2_emit_label (sym);
6723 }
6724
6725 int
6726 aarch64_data_in_code (void)
6727 {
6728 if (!strncmp (input_line_pointer + 1, "data:", 5))
6729 {
6730 *input_line_pointer = '/';
6731 input_line_pointer += 5;
6732 *input_line_pointer = 0;
6733 return 1;
6734 }
6735
6736 return 0;
6737 }
6738
6739 char *
6740 aarch64_canonicalize_symbol_name (char *name)
6741 {
6742 int len;
6743
6744 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6745 *(name + len - 5) = 0;
6746
6747 return name;
6748 }
6749 \f
6750 /* Table of all register names defined by default. The user can
6751 define additional names with .req. Note that all register names
6752 should appear in both upper and lowercase variants. Some registers
6753 also have mixed-case names. */
6754
6755 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6756 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
6757 #define REGSET16(p,t) \
6758 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6759 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6760 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6761 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6762 #define REGSET31(p,t) \
6763 REGSET16(p, t), \
6764 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6765 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6766 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6767 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6768 #define REGSET(p,t) \
6769 REGSET31(p,t), REGNUM(p,31,t)
6770
6771 /* These go into aarch64_reg_hsh hash-table. */
6772 static const reg_entry reg_names[] = {
6773 /* Integer registers. */
6774 REGSET31 (x, R_64), REGSET31 (X, R_64),
6775 REGSET31 (w, R_32), REGSET31 (W, R_32),
6776
6777 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6778 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6779
6780 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6781 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6782
6783 /* Coprocessor register numbers. */
6784 REGSET (c, CN), REGSET (C, CN),
6785
6786 /* Floating-point single precision registers. */
6787 REGSET (s, FP_S), REGSET (S, FP_S),
6788
6789 /* Floating-point double precision registers. */
6790 REGSET (d, FP_D), REGSET (D, FP_D),
6791
6792 /* Floating-point half precision registers. */
6793 REGSET (h, FP_H), REGSET (H, FP_H),
6794
6795 /* Floating-point byte precision registers. */
6796 REGSET (b, FP_B), REGSET (B, FP_B),
6797
6798 /* Floating-point quad precision registers. */
6799 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6800
6801 /* FP/SIMD registers. */
6802 REGSET (v, VN), REGSET (V, VN),
6803
6804 /* SVE vector registers. */
6805 REGSET (z, ZN), REGSET (Z, ZN),
6806
6807 /* SVE predicate registers. */
6808 REGSET16 (p, PN), REGSET16 (P, PN)
6809 };
6810
6811 #undef REGDEF
6812 #undef REGNUM
6813 #undef REGSET16
6814 #undef REGSET31
6815 #undef REGSET
6816
6817 #define N 1
6818 #define n 0
6819 #define Z 1
6820 #define z 0
6821 #define C 1
6822 #define c 0
6823 #define V 1
6824 #define v 0
6825 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6826 static const asm_nzcv nzcv_names[] = {
6827 {"nzcv", B (n, z, c, v)},
6828 {"nzcV", B (n, z, c, V)},
6829 {"nzCv", B (n, z, C, v)},
6830 {"nzCV", B (n, z, C, V)},
6831 {"nZcv", B (n, Z, c, v)},
6832 {"nZcV", B (n, Z, c, V)},
6833 {"nZCv", B (n, Z, C, v)},
6834 {"nZCV", B (n, Z, C, V)},
6835 {"Nzcv", B (N, z, c, v)},
6836 {"NzcV", B (N, z, c, V)},
6837 {"NzCv", B (N, z, C, v)},
6838 {"NzCV", B (N, z, C, V)},
6839 {"NZcv", B (N, Z, c, v)},
6840 {"NZcV", B (N, Z, c, V)},
6841 {"NZCv", B (N, Z, C, v)},
6842 {"NZCV", B (N, Z, C, V)}
6843 };
6844
6845 #undef N
6846 #undef n
6847 #undef Z
6848 #undef z
6849 #undef C
6850 #undef c
6851 #undef V
6852 #undef v
6853 #undef B
6854 \f
6855 /* MD interface: bits in the object file. */
6856
6857 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6858 for use in the a.out file, and stores them in the array pointed to by buf.
6859 This knows about the endian-ness of the target machine and does
6860 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6861 2 (short) and 4 (long) Floating numbers are put out as a series of
6862 LITTLENUMS (shorts, here at least). */
6863
6864 void
6865 md_number_to_chars (char *buf, valueT val, int n)
6866 {
6867 if (target_big_endian)
6868 number_to_chars_bigendian (buf, val, n);
6869 else
6870 number_to_chars_littleendian (buf, val, n);
6871 }
6872
6873 /* MD interface: Sections. */
6874
6875 /* Estimate the size of a frag before relaxing. Assume everything fits in
6876 4 bytes. */
6877
6878 int
6879 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6880 {
6881 fragp->fr_var = 4;
6882 return 4;
6883 }
6884
6885 /* Round up a section size to the appropriate boundary. */
6886
6887 valueT
6888 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6889 {
6890 return size;
6891 }
6892
6893 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
6894 of an rs_align_code fragment.
6895
6896 Here we fill the frag with the appropriate info for padding the
6897 output stream. The resulting frag will consist of a fixed (fr_fix)
6898 and of a repeating (fr_var) part.
6899
6900 The fixed content is always emitted before the repeating content and
6901 these two parts are used as follows in constructing the output:
6902 - the fixed part will be used to align to a valid instruction word
6903 boundary, in case that we start at a misaligned address; as no
6904 executable instruction can live at the misaligned location, we
6905 simply fill with zeros;
6906 - the variable part will be used to cover the remaining padding and
6907 we fill using the AArch64 NOP instruction.
6908
6909 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6910 enough storage space for up to 3 bytes for padding the back to a valid
6911 instruction alignment and exactly 4 bytes to store the NOP pattern. */
6912
6913 void
6914 aarch64_handle_align (fragS * fragP)
6915 {
6916 /* NOP = d503201f */
6917 /* AArch64 instructions are always little-endian. */
6918 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6919
6920 int bytes, fix, noop_size;
6921 char *p;
6922
6923 if (fragP->fr_type != rs_align_code)
6924 return;
6925
6926 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6927 p = fragP->fr_literal + fragP->fr_fix;
6928
6929 #ifdef OBJ_ELF
6930 gas_assert (fragP->tc_frag_data.recorded);
6931 #endif
6932
6933 noop_size = sizeof (aarch64_noop);
6934
6935 fix = bytes & (noop_size - 1);
6936 if (fix)
6937 {
6938 #ifdef OBJ_ELF
6939 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6940 #endif
6941 memset (p, 0, fix);
6942 p += fix;
6943 fragP->fr_fix += fix;
6944 }
6945
6946 if (noop_size)
6947 memcpy (p, aarch64_noop, noop_size);
6948 fragP->fr_var = noop_size;
6949 }
6950
6951 /* Perform target specific initialisation of a frag.
6952 Note - despite the name this initialisation is not done when the frag
6953 is created, but only when its type is assigned. A frag can be created
6954 and used a long time before its type is set, so beware of assuming that
6955 this initialisationis performed first. */
6956
6957 #ifndef OBJ_ELF
6958 void
6959 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6960 int max_chars ATTRIBUTE_UNUSED)
6961 {
6962 }
6963
6964 #else /* OBJ_ELF is defined. */
6965 void
6966 aarch64_init_frag (fragS * fragP, int max_chars)
6967 {
6968 /* Record a mapping symbol for alignment frags. We will delete this
6969 later if the alignment ends up empty. */
6970 if (!fragP->tc_frag_data.recorded)
6971 fragP->tc_frag_data.recorded = 1;
6972
6973 switch (fragP->fr_type)
6974 {
6975 case rs_align_test:
6976 case rs_fill:
6977 mapping_state_2 (MAP_DATA, max_chars);
6978 break;
6979 case rs_align:
6980 /* PR 20364: We can get alignment frags in code sections,
6981 so do not just assume that we should use the MAP_DATA state. */
6982 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
6983 break;
6984 case rs_align_code:
6985 mapping_state_2 (MAP_INSN, max_chars);
6986 break;
6987 default:
6988 break;
6989 }
6990 }
6991 \f
6992 /* Initialize the DWARF-2 unwind information for this procedure. */
6993
6994 void
6995 tc_aarch64_frame_initial_instructions (void)
6996 {
6997 cfi_add_CFA_def_cfa (REG_SP, 0);
6998 }
6999 #endif /* OBJ_ELF */
7000
7001 /* Convert REGNAME to a DWARF-2 register number. */
7002
7003 int
7004 tc_aarch64_regname_to_dw2regnum (char *regname)
7005 {
7006 const reg_entry *reg = parse_reg (&regname);
7007 if (reg == NULL)
7008 return -1;
7009
7010 switch (reg->type)
7011 {
7012 case REG_TYPE_SP_32:
7013 case REG_TYPE_SP_64:
7014 case REG_TYPE_R_32:
7015 case REG_TYPE_R_64:
7016 return reg->number;
7017
7018 case REG_TYPE_FP_B:
7019 case REG_TYPE_FP_H:
7020 case REG_TYPE_FP_S:
7021 case REG_TYPE_FP_D:
7022 case REG_TYPE_FP_Q:
7023 return reg->number + 64;
7024
7025 default:
7026 break;
7027 }
7028 return -1;
7029 }
7030
7031 /* Implement DWARF2_ADDR_SIZE. */
7032
7033 int
7034 aarch64_dwarf2_addr_size (void)
7035 {
7036 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7037 if (ilp32_p)
7038 return 4;
7039 #endif
7040 return bfd_arch_bits_per_address (stdoutput) / 8;
7041 }
7042
7043 /* MD interface: Symbol and relocation handling. */
7044
7045 /* Return the address within the segment that a PC-relative fixup is
7046 relative to. For AArch64 PC-relative fixups applied to instructions
7047 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7048
7049 long
7050 md_pcrel_from_section (fixS * fixP, segT seg)
7051 {
7052 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7053
7054 /* If this is pc-relative and we are going to emit a relocation
7055 then we just want to put out any pipeline compensation that the linker
7056 will need. Otherwise we want to use the calculated base. */
7057 if (fixP->fx_pcrel
7058 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7059 || aarch64_force_relocation (fixP)))
7060 base = 0;
7061
7062 /* AArch64 should be consistent for all pc-relative relocations. */
7063 return base + AARCH64_PCREL_OFFSET;
7064 }
7065
7066 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7067 Otherwise we have no need to default values of symbols. */
7068
7069 symbolS *
7070 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7071 {
7072 #ifdef OBJ_ELF
7073 if (name[0] == '_' && name[1] == 'G'
7074 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7075 {
7076 if (!GOT_symbol)
7077 {
7078 if (symbol_find (name))
7079 as_bad (_("GOT already in the symbol table"));
7080
7081 GOT_symbol = symbol_new (name, undefined_section,
7082 (valueT) 0, &zero_address_frag);
7083 }
7084
7085 return GOT_symbol;
7086 }
7087 #endif
7088
7089 return 0;
7090 }
7091
7092 /* Return non-zero if the indicated VALUE has overflowed the maximum
7093 range expressible by a unsigned number with the indicated number of
7094 BITS. */
7095
7096 static bfd_boolean
7097 unsigned_overflow (valueT value, unsigned bits)
7098 {
7099 valueT lim;
7100 if (bits >= sizeof (valueT) * 8)
7101 return FALSE;
7102 lim = (valueT) 1 << bits;
7103 return (value >= lim);
7104 }
7105
7106
7107 /* Return non-zero if the indicated VALUE has overflowed the maximum
7108 range expressible by an signed number with the indicated number of
7109 BITS. */
7110
7111 static bfd_boolean
7112 signed_overflow (offsetT value, unsigned bits)
7113 {
7114 offsetT lim;
7115 if (bits >= sizeof (offsetT) * 8)
7116 return FALSE;
7117 lim = (offsetT) 1 << (bits - 1);
7118 return (value < -lim || value >= lim);
7119 }
7120
7121 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7122 unsigned immediate offset load/store instruction, try to encode it as
7123 an unscaled, 9-bit, signed immediate offset load/store instruction.
7124 Return TRUE if it is successful; otherwise return FALSE.
7125
7126 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7127 in response to the standard LDR/STR mnemonics when the immediate offset is
7128 unambiguous, i.e. when it is negative or unaligned. */
7129
7130 static bfd_boolean
7131 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7132 {
7133 int idx;
7134 enum aarch64_op new_op;
7135 const aarch64_opcode *new_opcode;
7136
7137 gas_assert (instr->opcode->iclass == ldst_pos);
7138
7139 switch (instr->opcode->op)
7140 {
7141 case OP_LDRB_POS:new_op = OP_LDURB; break;
7142 case OP_STRB_POS: new_op = OP_STURB; break;
7143 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7144 case OP_LDRH_POS: new_op = OP_LDURH; break;
7145 case OP_STRH_POS: new_op = OP_STURH; break;
7146 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7147 case OP_LDR_POS: new_op = OP_LDUR; break;
7148 case OP_STR_POS: new_op = OP_STUR; break;
7149 case OP_LDRF_POS: new_op = OP_LDURV; break;
7150 case OP_STRF_POS: new_op = OP_STURV; break;
7151 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7152 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7153 default: new_op = OP_NIL; break;
7154 }
7155
7156 if (new_op == OP_NIL)
7157 return FALSE;
7158
7159 new_opcode = aarch64_get_opcode (new_op);
7160 gas_assert (new_opcode != NULL);
7161
7162 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7163 instr->opcode->op, new_opcode->op);
7164
7165 aarch64_replace_opcode (instr, new_opcode);
7166
7167 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7168 qualifier matching may fail because the out-of-date qualifier will
7169 prevent the operand being updated with a new and correct qualifier. */
7170 idx = aarch64_operand_index (instr->opcode->operands,
7171 AARCH64_OPND_ADDR_SIMM9);
7172 gas_assert (idx == 1);
7173 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7174
7175 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7176
7177 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7178 return FALSE;
7179
7180 return TRUE;
7181 }
7182
7183 /* Called by fix_insn to fix a MOV immediate alias instruction.
7184
7185 Operand for a generic move immediate instruction, which is an alias
7186 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7187 a 32-bit/64-bit immediate value into general register. An assembler error
7188 shall result if the immediate cannot be created by a single one of these
7189 instructions. If there is a choice, then to ensure reversability an
7190 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7191
7192 static void
7193 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7194 {
7195 const aarch64_opcode *opcode;
7196
7197 /* Need to check if the destination is SP/ZR. The check has to be done
7198 before any aarch64_replace_opcode. */
7199 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7200 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7201
7202 instr->operands[1].imm.value = value;
7203 instr->operands[1].skip = 0;
7204
7205 if (try_mov_wide_p)
7206 {
7207 /* Try the MOVZ alias. */
7208 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7209 aarch64_replace_opcode (instr, opcode);
7210 if (aarch64_opcode_encode (instr->opcode, instr,
7211 &instr->value, NULL, NULL))
7212 {
7213 put_aarch64_insn (buf, instr->value);
7214 return;
7215 }
7216 /* Try the MOVK alias. */
7217 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7218 aarch64_replace_opcode (instr, opcode);
7219 if (aarch64_opcode_encode (instr->opcode, instr,
7220 &instr->value, NULL, NULL))
7221 {
7222 put_aarch64_insn (buf, instr->value);
7223 return;
7224 }
7225 }
7226
7227 if (try_mov_bitmask_p)
7228 {
7229 /* Try the ORR alias. */
7230 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7231 aarch64_replace_opcode (instr, opcode);
7232 if (aarch64_opcode_encode (instr->opcode, instr,
7233 &instr->value, NULL, NULL))
7234 {
7235 put_aarch64_insn (buf, instr->value);
7236 return;
7237 }
7238 }
7239
7240 as_bad_where (fixP->fx_file, fixP->fx_line,
7241 _("immediate cannot be moved by a single instruction"));
7242 }
7243
7244 /* An instruction operand which is immediate related may have symbol used
7245 in the assembly, e.g.
7246
7247 mov w0, u32
7248 .set u32, 0x00ffff00
7249
7250 At the time when the assembly instruction is parsed, a referenced symbol,
7251 like 'u32' in the above example may not have been seen; a fixS is created
7252 in such a case and is handled here after symbols have been resolved.
7253 Instruction is fixed up with VALUE using the information in *FIXP plus
7254 extra information in FLAGS.
7255
7256 This function is called by md_apply_fix to fix up instructions that need
7257 a fix-up described above but does not involve any linker-time relocation. */
7258
7259 static void
7260 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7261 {
7262 int idx;
7263 uint32_t insn;
7264 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7265 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7266 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7267
7268 if (new_inst)
7269 {
7270 /* Now the instruction is about to be fixed-up, so the operand that
7271 was previously marked as 'ignored' needs to be unmarked in order
7272 to get the encoding done properly. */
7273 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7274 new_inst->operands[idx].skip = 0;
7275 }
7276
7277 gas_assert (opnd != AARCH64_OPND_NIL);
7278
7279 switch (opnd)
7280 {
7281 case AARCH64_OPND_EXCEPTION:
7282 if (unsigned_overflow (value, 16))
7283 as_bad_where (fixP->fx_file, fixP->fx_line,
7284 _("immediate out of range"));
7285 insn = get_aarch64_insn (buf);
7286 insn |= encode_svc_imm (value);
7287 put_aarch64_insn (buf, insn);
7288 break;
7289
7290 case AARCH64_OPND_AIMM:
7291 /* ADD or SUB with immediate.
7292 NOTE this assumes we come here with a add/sub shifted reg encoding
7293 3 322|2222|2 2 2 21111 111111
7294 1 098|7654|3 2 1 09876 543210 98765 43210
7295 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7296 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7297 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7298 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7299 ->
7300 3 322|2222|2 2 221111111111
7301 1 098|7654|3 2 109876543210 98765 43210
7302 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7303 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7304 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7305 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7306 Fields sf Rn Rd are already set. */
7307 insn = get_aarch64_insn (buf);
7308 if (value < 0)
7309 {
7310 /* Add <-> sub. */
7311 insn = reencode_addsub_switch_add_sub (insn);
7312 value = -value;
7313 }
7314
7315 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7316 && unsigned_overflow (value, 12))
7317 {
7318 /* Try to shift the value by 12 to make it fit. */
7319 if (((value >> 12) << 12) == value
7320 && ! unsigned_overflow (value, 12 + 12))
7321 {
7322 value >>= 12;
7323 insn |= encode_addsub_imm_shift_amount (1);
7324 }
7325 }
7326
7327 if (unsigned_overflow (value, 12))
7328 as_bad_where (fixP->fx_file, fixP->fx_line,
7329 _("immediate out of range"));
7330
7331 insn |= encode_addsub_imm (value);
7332
7333 put_aarch64_insn (buf, insn);
7334 break;
7335
7336 case AARCH64_OPND_SIMD_IMM:
7337 case AARCH64_OPND_SIMD_IMM_SFT:
7338 case AARCH64_OPND_LIMM:
7339 /* Bit mask immediate. */
7340 gas_assert (new_inst != NULL);
7341 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7342 new_inst->operands[idx].imm.value = value;
7343 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7344 &new_inst->value, NULL, NULL))
7345 put_aarch64_insn (buf, new_inst->value);
7346 else
7347 as_bad_where (fixP->fx_file, fixP->fx_line,
7348 _("invalid immediate"));
7349 break;
7350
7351 case AARCH64_OPND_HALF:
7352 /* 16-bit unsigned immediate. */
7353 if (unsigned_overflow (value, 16))
7354 as_bad_where (fixP->fx_file, fixP->fx_line,
7355 _("immediate out of range"));
7356 insn = get_aarch64_insn (buf);
7357 insn |= encode_movw_imm (value & 0xffff);
7358 put_aarch64_insn (buf, insn);
7359 break;
7360
7361 case AARCH64_OPND_IMM_MOV:
7362 /* Operand for a generic move immediate instruction, which is
7363 an alias instruction that generates a single MOVZ, MOVN or ORR
7364 instruction to loads a 32-bit/64-bit immediate value into general
7365 register. An assembler error shall result if the immediate cannot be
7366 created by a single one of these instructions. If there is a choice,
7367 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7368 and MOVZ or MOVN to ORR. */
7369 gas_assert (new_inst != NULL);
7370 fix_mov_imm_insn (fixP, buf, new_inst, value);
7371 break;
7372
7373 case AARCH64_OPND_ADDR_SIMM7:
7374 case AARCH64_OPND_ADDR_SIMM9:
7375 case AARCH64_OPND_ADDR_SIMM9_2:
7376 case AARCH64_OPND_ADDR_SIMM10:
7377 case AARCH64_OPND_ADDR_UIMM12:
7378 /* Immediate offset in an address. */
7379 insn = get_aarch64_insn (buf);
7380
7381 gas_assert (new_inst != NULL && new_inst->value == insn);
7382 gas_assert (new_inst->opcode->operands[1] == opnd
7383 || new_inst->opcode->operands[2] == opnd);
7384
7385 /* Get the index of the address operand. */
7386 if (new_inst->opcode->operands[1] == opnd)
7387 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7388 idx = 1;
7389 else
7390 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7391 idx = 2;
7392
7393 /* Update the resolved offset value. */
7394 new_inst->operands[idx].addr.offset.imm = value;
7395
7396 /* Encode/fix-up. */
7397 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7398 &new_inst->value, NULL, NULL))
7399 {
7400 put_aarch64_insn (buf, new_inst->value);
7401 break;
7402 }
7403 else if (new_inst->opcode->iclass == ldst_pos
7404 && try_to_encode_as_unscaled_ldst (new_inst))
7405 {
7406 put_aarch64_insn (buf, new_inst->value);
7407 break;
7408 }
7409
7410 as_bad_where (fixP->fx_file, fixP->fx_line,
7411 _("immediate offset out of range"));
7412 break;
7413
7414 default:
7415 gas_assert (0);
7416 as_fatal (_("unhandled operand code %d"), opnd);
7417 }
7418 }
7419
7420 /* Apply a fixup (fixP) to segment data, once it has been determined
7421 by our caller that we have all the info we need to fix it up.
7422
7423 Parameter valP is the pointer to the value of the bits. */
7424
7425 void
7426 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7427 {
7428 offsetT value = *valP;
7429 uint32_t insn;
7430 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7431 int scale;
7432 unsigned flags = fixP->fx_addnumber;
7433
7434 DEBUG_TRACE ("\n\n");
7435 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7436 DEBUG_TRACE ("Enter md_apply_fix");
7437
7438 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7439
7440 /* Note whether this will delete the relocation. */
7441
7442 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7443 fixP->fx_done = 1;
7444
7445 /* Process the relocations. */
7446 switch (fixP->fx_r_type)
7447 {
7448 case BFD_RELOC_NONE:
7449 /* This will need to go in the object file. */
7450 fixP->fx_done = 0;
7451 break;
7452
7453 case BFD_RELOC_8:
7454 case BFD_RELOC_8_PCREL:
7455 if (fixP->fx_done || !seg->use_rela_p)
7456 md_number_to_chars (buf, value, 1);
7457 break;
7458
7459 case BFD_RELOC_16:
7460 case BFD_RELOC_16_PCREL:
7461 if (fixP->fx_done || !seg->use_rela_p)
7462 md_number_to_chars (buf, value, 2);
7463 break;
7464
7465 case BFD_RELOC_32:
7466 case BFD_RELOC_32_PCREL:
7467 if (fixP->fx_done || !seg->use_rela_p)
7468 md_number_to_chars (buf, value, 4);
7469 break;
7470
7471 case BFD_RELOC_64:
7472 case BFD_RELOC_64_PCREL:
7473 if (fixP->fx_done || !seg->use_rela_p)
7474 md_number_to_chars (buf, value, 8);
7475 break;
7476
7477 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7478 /* We claim that these fixups have been processed here, even if
7479 in fact we generate an error because we do not have a reloc
7480 for them, so tc_gen_reloc() will reject them. */
7481 fixP->fx_done = 1;
7482 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7483 {
7484 as_bad_where (fixP->fx_file, fixP->fx_line,
7485 _("undefined symbol %s used as an immediate value"),
7486 S_GET_NAME (fixP->fx_addsy));
7487 goto apply_fix_return;
7488 }
7489 fix_insn (fixP, flags, value);
7490 break;
7491
7492 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7493 if (fixP->fx_done || !seg->use_rela_p)
7494 {
7495 if (value & 3)
7496 as_bad_where (fixP->fx_file, fixP->fx_line,
7497 _("pc-relative load offset not word aligned"));
7498 if (signed_overflow (value, 21))
7499 as_bad_where (fixP->fx_file, fixP->fx_line,
7500 _("pc-relative load offset out of range"));
7501 insn = get_aarch64_insn (buf);
7502 insn |= encode_ld_lit_ofs_19 (value >> 2);
7503 put_aarch64_insn (buf, insn);
7504 }
7505 break;
7506
7507 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7508 if (fixP->fx_done || !seg->use_rela_p)
7509 {
7510 if (signed_overflow (value, 21))
7511 as_bad_where (fixP->fx_file, fixP->fx_line,
7512 _("pc-relative address offset out of range"));
7513 insn = get_aarch64_insn (buf);
7514 insn |= encode_adr_imm (value);
7515 put_aarch64_insn (buf, insn);
7516 }
7517 break;
7518
7519 case BFD_RELOC_AARCH64_BRANCH19:
7520 if (fixP->fx_done || !seg->use_rela_p)
7521 {
7522 if (value & 3)
7523 as_bad_where (fixP->fx_file, fixP->fx_line,
7524 _("conditional branch target not word aligned"));
7525 if (signed_overflow (value, 21))
7526 as_bad_where (fixP->fx_file, fixP->fx_line,
7527 _("conditional branch out of range"));
7528 insn = get_aarch64_insn (buf);
7529 insn |= encode_cond_branch_ofs_19 (value >> 2);
7530 put_aarch64_insn (buf, insn);
7531 }
7532 break;
7533
7534 case BFD_RELOC_AARCH64_TSTBR14:
7535 if (fixP->fx_done || !seg->use_rela_p)
7536 {
7537 if (value & 3)
7538 as_bad_where (fixP->fx_file, fixP->fx_line,
7539 _("conditional branch target not word aligned"));
7540 if (signed_overflow (value, 16))
7541 as_bad_where (fixP->fx_file, fixP->fx_line,
7542 _("conditional branch out of range"));
7543 insn = get_aarch64_insn (buf);
7544 insn |= encode_tst_branch_ofs_14 (value >> 2);
7545 put_aarch64_insn (buf, insn);
7546 }
7547 break;
7548
7549 case BFD_RELOC_AARCH64_CALL26:
7550 case BFD_RELOC_AARCH64_JUMP26:
7551 if (fixP->fx_done || !seg->use_rela_p)
7552 {
7553 if (value & 3)
7554 as_bad_where (fixP->fx_file, fixP->fx_line,
7555 _("branch target not word aligned"));
7556 if (signed_overflow (value, 28))
7557 as_bad_where (fixP->fx_file, fixP->fx_line,
7558 _("branch out of range"));
7559 insn = get_aarch64_insn (buf);
7560 insn |= encode_branch_ofs_26 (value >> 2);
7561 put_aarch64_insn (buf, insn);
7562 }
7563 break;
7564
7565 case BFD_RELOC_AARCH64_MOVW_G0:
7566 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7567 case BFD_RELOC_AARCH64_MOVW_G0_S:
7568 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7569 scale = 0;
7570 goto movw_common;
7571 case BFD_RELOC_AARCH64_MOVW_G1:
7572 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7573 case BFD_RELOC_AARCH64_MOVW_G1_S:
7574 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7575 scale = 16;
7576 goto movw_common;
7577 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7578 scale = 0;
7579 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7580 /* Should always be exported to object file, see
7581 aarch64_force_relocation(). */
7582 gas_assert (!fixP->fx_done);
7583 gas_assert (seg->use_rela_p);
7584 goto movw_common;
7585 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7586 scale = 16;
7587 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7588 /* Should always be exported to object file, see
7589 aarch64_force_relocation(). */
7590 gas_assert (!fixP->fx_done);
7591 gas_assert (seg->use_rela_p);
7592 goto movw_common;
7593 case BFD_RELOC_AARCH64_MOVW_G2:
7594 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7595 case BFD_RELOC_AARCH64_MOVW_G2_S:
7596 scale = 32;
7597 goto movw_common;
7598 case BFD_RELOC_AARCH64_MOVW_G3:
7599 scale = 48;
7600 movw_common:
7601 if (fixP->fx_done || !seg->use_rela_p)
7602 {
7603 insn = get_aarch64_insn (buf);
7604
7605 if (!fixP->fx_done)
7606 {
7607 /* REL signed addend must fit in 16 bits */
7608 if (signed_overflow (value, 16))
7609 as_bad_where (fixP->fx_file, fixP->fx_line,
7610 _("offset out of range"));
7611 }
7612 else
7613 {
7614 /* Check for overflow and scale. */
7615 switch (fixP->fx_r_type)
7616 {
7617 case BFD_RELOC_AARCH64_MOVW_G0:
7618 case BFD_RELOC_AARCH64_MOVW_G1:
7619 case BFD_RELOC_AARCH64_MOVW_G2:
7620 case BFD_RELOC_AARCH64_MOVW_G3:
7621 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7622 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7623 if (unsigned_overflow (value, scale + 16))
7624 as_bad_where (fixP->fx_file, fixP->fx_line,
7625 _("unsigned value out of range"));
7626 break;
7627 case BFD_RELOC_AARCH64_MOVW_G0_S:
7628 case BFD_RELOC_AARCH64_MOVW_G1_S:
7629 case BFD_RELOC_AARCH64_MOVW_G2_S:
7630 /* NOTE: We can only come here with movz or movn. */
7631 if (signed_overflow (value, scale + 16))
7632 as_bad_where (fixP->fx_file, fixP->fx_line,
7633 _("signed value out of range"));
7634 if (value < 0)
7635 {
7636 /* Force use of MOVN. */
7637 value = ~value;
7638 insn = reencode_movzn_to_movn (insn);
7639 }
7640 else
7641 {
7642 /* Force use of MOVZ. */
7643 insn = reencode_movzn_to_movz (insn);
7644 }
7645 break;
7646 default:
7647 /* Unchecked relocations. */
7648 break;
7649 }
7650 value >>= scale;
7651 }
7652
7653 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7654 insn |= encode_movw_imm (value & 0xffff);
7655
7656 put_aarch64_insn (buf, insn);
7657 }
7658 break;
7659
7660 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7661 fixP->fx_r_type = (ilp32_p
7662 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7663 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7664 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7665 /* Should always be exported to object file, see
7666 aarch64_force_relocation(). */
7667 gas_assert (!fixP->fx_done);
7668 gas_assert (seg->use_rela_p);
7669 break;
7670
7671 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7672 fixP->fx_r_type = (ilp32_p
7673 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7674 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
7675 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7676 /* Should always be exported to object file, see
7677 aarch64_force_relocation(). */
7678 gas_assert (!fixP->fx_done);
7679 gas_assert (seg->use_rela_p);
7680 break;
7681
7682 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7683 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7684 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7685 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7686 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7687 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7688 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7689 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7690 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7691 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7692 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7693 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7694 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7695 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7696 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7697 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7698 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7699 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7700 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7701 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7702 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7703 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7704 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7705 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7706 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7707 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7708 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7709 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7710 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7711 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7712 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7713 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7714 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7715 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7716 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7717 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7718 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7719 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7720 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7721 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7722 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7723 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7724 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7725 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7726 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7727 /* Should always be exported to object file, see
7728 aarch64_force_relocation(). */
7729 gas_assert (!fixP->fx_done);
7730 gas_assert (seg->use_rela_p);
7731 break;
7732
7733 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7734 /* Should always be exported to object file, see
7735 aarch64_force_relocation(). */
7736 fixP->fx_r_type = (ilp32_p
7737 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7738 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7739 gas_assert (!fixP->fx_done);
7740 gas_assert (seg->use_rela_p);
7741 break;
7742
7743 case BFD_RELOC_AARCH64_ADD_LO12:
7744 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7745 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7746 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7747 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7748 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7749 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7750 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7751 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7752 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7753 case BFD_RELOC_AARCH64_LDST128_LO12:
7754 case BFD_RELOC_AARCH64_LDST16_LO12:
7755 case BFD_RELOC_AARCH64_LDST32_LO12:
7756 case BFD_RELOC_AARCH64_LDST64_LO12:
7757 case BFD_RELOC_AARCH64_LDST8_LO12:
7758 /* Should always be exported to object file, see
7759 aarch64_force_relocation(). */
7760 gas_assert (!fixP->fx_done);
7761 gas_assert (seg->use_rela_p);
7762 break;
7763
7764 case BFD_RELOC_AARCH64_TLSDESC_ADD:
7765 case BFD_RELOC_AARCH64_TLSDESC_CALL:
7766 case BFD_RELOC_AARCH64_TLSDESC_LDR:
7767 break;
7768
7769 case BFD_RELOC_UNUSED:
7770 /* An error will already have been reported. */
7771 break;
7772
7773 default:
7774 as_bad_where (fixP->fx_file, fixP->fx_line,
7775 _("unexpected %s fixup"),
7776 bfd_get_reloc_code_name (fixP->fx_r_type));
7777 break;
7778 }
7779
7780 apply_fix_return:
7781 /* Free the allocated the struct aarch64_inst.
7782 N.B. currently there are very limited number of fix-up types actually use
7783 this field, so the impact on the performance should be minimal . */
7784 if (fixP->tc_fix_data.inst != NULL)
7785 free (fixP->tc_fix_data.inst);
7786
7787 return;
7788 }
7789
7790 /* Translate internal representation of relocation info to BFD target
7791 format. */
7792
7793 arelent *
7794 tc_gen_reloc (asection * section, fixS * fixp)
7795 {
7796 arelent *reloc;
7797 bfd_reloc_code_real_type code;
7798
7799 reloc = XNEW (arelent);
7800
7801 reloc->sym_ptr_ptr = XNEW (asymbol *);
7802 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7803 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7804
7805 if (fixp->fx_pcrel)
7806 {
7807 if (section->use_rela_p)
7808 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7809 else
7810 fixp->fx_offset = reloc->address;
7811 }
7812 reloc->addend = fixp->fx_offset;
7813
7814 code = fixp->fx_r_type;
7815 switch (code)
7816 {
7817 case BFD_RELOC_16:
7818 if (fixp->fx_pcrel)
7819 code = BFD_RELOC_16_PCREL;
7820 break;
7821
7822 case BFD_RELOC_32:
7823 if (fixp->fx_pcrel)
7824 code = BFD_RELOC_32_PCREL;
7825 break;
7826
7827 case BFD_RELOC_64:
7828 if (fixp->fx_pcrel)
7829 code = BFD_RELOC_64_PCREL;
7830 break;
7831
7832 default:
7833 break;
7834 }
7835
7836 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7837 if (reloc->howto == NULL)
7838 {
7839 as_bad_where (fixp->fx_file, fixp->fx_line,
7840 _
7841 ("cannot represent %s relocation in this object file format"),
7842 bfd_get_reloc_code_name (code));
7843 return NULL;
7844 }
7845
7846 return reloc;
7847 }
7848
7849 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7850
7851 void
7852 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7853 {
7854 bfd_reloc_code_real_type type;
7855 int pcrel = 0;
7856
7857 /* Pick a reloc.
7858 FIXME: @@ Should look at CPU word size. */
7859 switch (size)
7860 {
7861 case 1:
7862 type = BFD_RELOC_8;
7863 break;
7864 case 2:
7865 type = BFD_RELOC_16;
7866 break;
7867 case 4:
7868 type = BFD_RELOC_32;
7869 break;
7870 case 8:
7871 type = BFD_RELOC_64;
7872 break;
7873 default:
7874 as_bad (_("cannot do %u-byte relocation"), size);
7875 type = BFD_RELOC_UNUSED;
7876 break;
7877 }
7878
7879 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7880 }
7881
7882 int
7883 aarch64_force_relocation (struct fix *fixp)
7884 {
7885 switch (fixp->fx_r_type)
7886 {
7887 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7888 /* Perform these "immediate" internal relocations
7889 even if the symbol is extern or weak. */
7890 return 0;
7891
7892 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7893 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7894 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7895 /* Pseudo relocs that need to be fixed up according to
7896 ilp32_p. */
7897 return 0;
7898
7899 case BFD_RELOC_AARCH64_ADD_LO12:
7900 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7901 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7902 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7903 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7904 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7905 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7906 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7907 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7908 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7909 case BFD_RELOC_AARCH64_LDST128_LO12:
7910 case BFD_RELOC_AARCH64_LDST16_LO12:
7911 case BFD_RELOC_AARCH64_LDST32_LO12:
7912 case BFD_RELOC_AARCH64_LDST64_LO12:
7913 case BFD_RELOC_AARCH64_LDST8_LO12:
7914 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7915 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7916 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7917 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7918 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7919 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7920 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7921 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7922 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7923 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7924 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7925 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7926 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7927 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7928 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7929 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7930 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7931 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7932 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7933 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
7934 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
7935 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7936 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7937 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7938 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7939 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7940 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7941 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7942 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7943 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7944 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7945 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7946 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
7947 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7948 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7949 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7950 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7951 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
7952 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7953 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
7954 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7955 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7956 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7957 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7958 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7959 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7960 /* Always leave these relocations for the linker. */
7961 return 1;
7962
7963 default:
7964 break;
7965 }
7966
7967 return generic_force_reloc (fixp);
7968 }
7969
7970 #ifdef OBJ_ELF
7971
7972 const char *
7973 elf64_aarch64_target_format (void)
7974 {
7975 if (strcmp (TARGET_OS, "cloudabi") == 0)
7976 {
7977 /* FIXME: What to do for ilp32_p ? */
7978 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
7979 }
7980 if (target_big_endian)
7981 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
7982 else
7983 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
7984 }
7985
7986 void
7987 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7988 {
7989 elf_frob_symbol (symp, puntp);
7990 }
7991 #endif
7992
7993 /* MD interface: Finalization. */
7994
7995 /* A good place to do this, although this was probably not intended
7996 for this kind of use. We need to dump the literal pool before
7997 references are made to a null symbol pointer. */
7998
7999 void
8000 aarch64_cleanup (void)
8001 {
8002 literal_pool *pool;
8003
8004 for (pool = list_of_pools; pool; pool = pool->next)
8005 {
8006 /* Put it at the end of the relevant section. */
8007 subseg_set (pool->section, pool->sub_section);
8008 s_ltorg (0);
8009 }
8010 }
8011
8012 #ifdef OBJ_ELF
8013 /* Remove any excess mapping symbols generated for alignment frags in
8014 SEC. We may have created a mapping symbol before a zero byte
8015 alignment; remove it if there's a mapping symbol after the
8016 alignment. */
8017 static void
8018 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8019 void *dummy ATTRIBUTE_UNUSED)
8020 {
8021 segment_info_type *seginfo = seg_info (sec);
8022 fragS *fragp;
8023
8024 if (seginfo == NULL || seginfo->frchainP == NULL)
8025 return;
8026
8027 for (fragp = seginfo->frchainP->frch_root;
8028 fragp != NULL; fragp = fragp->fr_next)
8029 {
8030 symbolS *sym = fragp->tc_frag_data.last_map;
8031 fragS *next = fragp->fr_next;
8032
8033 /* Variable-sized frags have been converted to fixed size by
8034 this point. But if this was variable-sized to start with,
8035 there will be a fixed-size frag after it. So don't handle
8036 next == NULL. */
8037 if (sym == NULL || next == NULL)
8038 continue;
8039
8040 if (S_GET_VALUE (sym) < next->fr_address)
8041 /* Not at the end of this frag. */
8042 continue;
8043 know (S_GET_VALUE (sym) == next->fr_address);
8044
8045 do
8046 {
8047 if (next->tc_frag_data.first_map != NULL)
8048 {
8049 /* Next frag starts with a mapping symbol. Discard this
8050 one. */
8051 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8052 break;
8053 }
8054
8055 if (next->fr_next == NULL)
8056 {
8057 /* This mapping symbol is at the end of the section. Discard
8058 it. */
8059 know (next->fr_fix == 0 && next->fr_var == 0);
8060 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8061 break;
8062 }
8063
8064 /* As long as we have empty frags without any mapping symbols,
8065 keep looking. */
8066 /* If the next frag is non-empty and does not start with a
8067 mapping symbol, then this mapping symbol is required. */
8068 if (next->fr_address != next->fr_next->fr_address)
8069 break;
8070
8071 next = next->fr_next;
8072 }
8073 while (next != NULL);
8074 }
8075 }
8076 #endif
8077
8078 /* Adjust the symbol table. */
8079
8080 void
8081 aarch64_adjust_symtab (void)
8082 {
8083 #ifdef OBJ_ELF
8084 /* Remove any overlapping mapping symbols generated by alignment frags. */
8085 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8086 /* Now do generic ELF adjustments. */
8087 elf_adjust_symtab ();
8088 #endif
8089 }
8090
8091 static void
8092 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8093 {
8094 const char *hash_err;
8095
8096 hash_err = hash_insert (table, key, value);
8097 if (hash_err)
8098 printf ("Internal Error: Can't hash %s\n", key);
8099 }
8100
8101 static void
8102 fill_instruction_hash_table (void)
8103 {
8104 aarch64_opcode *opcode = aarch64_opcode_table;
8105
8106 while (opcode->name != NULL)
8107 {
8108 templates *templ, *new_templ;
8109 templ = hash_find (aarch64_ops_hsh, opcode->name);
8110
8111 new_templ = XNEW (templates);
8112 new_templ->opcode = opcode;
8113 new_templ->next = NULL;
8114
8115 if (!templ)
8116 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8117 else
8118 {
8119 new_templ->next = templ->next;
8120 templ->next = new_templ;
8121 }
8122 ++opcode;
8123 }
8124 }
8125
8126 static inline void
8127 convert_to_upper (char *dst, const char *src, size_t num)
8128 {
8129 unsigned int i;
8130 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8131 *dst = TOUPPER (*src);
8132 *dst = '\0';
8133 }
8134
8135 /* Assume STR point to a lower-case string, allocate, convert and return
8136 the corresponding upper-case string. */
8137 static inline const char*
8138 get_upper_str (const char *str)
8139 {
8140 char *ret;
8141 size_t len = strlen (str);
8142 ret = XNEWVEC (char, len + 1);
8143 convert_to_upper (ret, str, len);
8144 return ret;
8145 }
8146
8147 /* MD interface: Initialization. */
8148
8149 void
8150 md_begin (void)
8151 {
8152 unsigned mach;
8153 unsigned int i;
8154
8155 if ((aarch64_ops_hsh = hash_new ()) == NULL
8156 || (aarch64_cond_hsh = hash_new ()) == NULL
8157 || (aarch64_shift_hsh = hash_new ()) == NULL
8158 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8159 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8160 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8161 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8162 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8163 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8164 || (aarch64_reg_hsh = hash_new ()) == NULL
8165 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8166 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8167 || (aarch64_pldop_hsh = hash_new ()) == NULL
8168 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8169 as_fatal (_("virtual memory exhausted"));
8170
8171 fill_instruction_hash_table ();
8172
8173 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8174 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8175 (void *) (aarch64_sys_regs + i));
8176
8177 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8178 checked_hash_insert (aarch64_pstatefield_hsh,
8179 aarch64_pstatefields[i].name,
8180 (void *) (aarch64_pstatefields + i));
8181
8182 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8183 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8184 aarch64_sys_regs_ic[i].name,
8185 (void *) (aarch64_sys_regs_ic + i));
8186
8187 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8188 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8189 aarch64_sys_regs_dc[i].name,
8190 (void *) (aarch64_sys_regs_dc + i));
8191
8192 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8193 checked_hash_insert (aarch64_sys_regs_at_hsh,
8194 aarch64_sys_regs_at[i].name,
8195 (void *) (aarch64_sys_regs_at + i));
8196
8197 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8198 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8199 aarch64_sys_regs_tlbi[i].name,
8200 (void *) (aarch64_sys_regs_tlbi + i));
8201
8202 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8203 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8204 (void *) (reg_names + i));
8205
8206 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8207 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8208 (void *) (nzcv_names + i));
8209
8210 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8211 {
8212 const char *name = aarch64_operand_modifiers[i].name;
8213 checked_hash_insert (aarch64_shift_hsh, name,
8214 (void *) (aarch64_operand_modifiers + i));
8215 /* Also hash the name in the upper case. */
8216 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8217 (void *) (aarch64_operand_modifiers + i));
8218 }
8219
8220 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8221 {
8222 unsigned int j;
8223 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8224 the same condition code. */
8225 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8226 {
8227 const char *name = aarch64_conds[i].names[j];
8228 if (name == NULL)
8229 break;
8230 checked_hash_insert (aarch64_cond_hsh, name,
8231 (void *) (aarch64_conds + i));
8232 /* Also hash the name in the upper case. */
8233 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8234 (void *) (aarch64_conds + i));
8235 }
8236 }
8237
8238 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8239 {
8240 const char *name = aarch64_barrier_options[i].name;
8241 /* Skip xx00 - the unallocated values of option. */
8242 if ((i & 0x3) == 0)
8243 continue;
8244 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8245 (void *) (aarch64_barrier_options + i));
8246 /* Also hash the name in the upper case. */
8247 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8248 (void *) (aarch64_barrier_options + i));
8249 }
8250
8251 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8252 {
8253 const char* name = aarch64_prfops[i].name;
8254 /* Skip the unallocated hint encodings. */
8255 if (name == NULL)
8256 continue;
8257 checked_hash_insert (aarch64_pldop_hsh, name,
8258 (void *) (aarch64_prfops + i));
8259 /* Also hash the name in the upper case. */
8260 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8261 (void *) (aarch64_prfops + i));
8262 }
8263
8264 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8265 {
8266 const char* name = aarch64_hint_options[i].name;
8267
8268 checked_hash_insert (aarch64_hint_opt_hsh, name,
8269 (void *) (aarch64_hint_options + i));
8270 /* Also hash the name in the upper case. */
8271 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8272 (void *) (aarch64_hint_options + i));
8273 }
8274
8275 /* Set the cpu variant based on the command-line options. */
8276 if (!mcpu_cpu_opt)
8277 mcpu_cpu_opt = march_cpu_opt;
8278
8279 if (!mcpu_cpu_opt)
8280 mcpu_cpu_opt = &cpu_default;
8281
8282 cpu_variant = *mcpu_cpu_opt;
8283
8284 /* Record the CPU type. */
8285 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8286
8287 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8288 }
8289
8290 /* Command line processing. */
8291
8292 const char *md_shortopts = "m:";
8293
8294 #ifdef AARCH64_BI_ENDIAN
8295 #define OPTION_EB (OPTION_MD_BASE + 0)
8296 #define OPTION_EL (OPTION_MD_BASE + 1)
8297 #else
8298 #if TARGET_BYTES_BIG_ENDIAN
8299 #define OPTION_EB (OPTION_MD_BASE + 0)
8300 #else
8301 #define OPTION_EL (OPTION_MD_BASE + 1)
8302 #endif
8303 #endif
8304
8305 struct option md_longopts[] = {
8306 #ifdef OPTION_EB
8307 {"EB", no_argument, NULL, OPTION_EB},
8308 #endif
8309 #ifdef OPTION_EL
8310 {"EL", no_argument, NULL, OPTION_EL},
8311 #endif
8312 {NULL, no_argument, NULL, 0}
8313 };
8314
8315 size_t md_longopts_size = sizeof (md_longopts);
8316
8317 struct aarch64_option_table
8318 {
8319 const char *option; /* Option name to match. */
8320 const char *help; /* Help information. */
8321 int *var; /* Variable to change. */
8322 int value; /* What to change it to. */
8323 char *deprecated; /* If non-null, print this message. */
8324 };
8325
8326 static struct aarch64_option_table aarch64_opts[] = {
8327 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8328 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8329 NULL},
8330 #ifdef DEBUG_AARCH64
8331 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8332 #endif /* DEBUG_AARCH64 */
8333 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8334 NULL},
8335 {"mno-verbose-error", N_("do not output verbose error messages"),
8336 &verbose_error_p, 0, NULL},
8337 {NULL, NULL, NULL, 0, NULL}
8338 };
8339
8340 struct aarch64_cpu_option_table
8341 {
8342 const char *name;
8343 const aarch64_feature_set value;
8344 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8345 case. */
8346 const char *canonical_name;
8347 };
8348
8349 /* This list should, at a minimum, contain all the cpu names
8350 recognized by GCC. */
8351 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8352 {"all", AARCH64_ANY, NULL},
8353 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8354 AARCH64_FEATURE_CRC), "Cortex-A35"},
8355 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8356 AARCH64_FEATURE_CRC), "Cortex-A53"},
8357 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8358 AARCH64_FEATURE_CRC), "Cortex-A57"},
8359 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8360 AARCH64_FEATURE_CRC), "Cortex-A72"},
8361 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8362 AARCH64_FEATURE_CRC), "Cortex-A73"},
8363 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8364 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8365 "Samsung Exynos M1"},
8366 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8367 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8368 "Qualcomm Falkor"},
8369 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8370 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8371 "Qualcomm QDF24XX"},
8372 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8373 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8374 "Cavium ThunderX"},
8375 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8376 AARCH64_FEATURE_CRYPTO),
8377 "Broadcom Vulcan"},
8378 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8379 in earlier releases and is superseded by 'xgene1' in all
8380 tools. */
8381 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8382 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8383 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8384 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8385 {"generic", AARCH64_ARCH_V8, NULL},
8386
8387 {NULL, AARCH64_ARCH_NONE, NULL}
8388 };
8389
8390 struct aarch64_arch_option_table
8391 {
8392 const char *name;
8393 const aarch64_feature_set value;
8394 };
8395
8396 /* This list should, at a minimum, contain all the architecture names
8397 recognized by GCC. */
8398 static const struct aarch64_arch_option_table aarch64_archs[] = {
8399 {"all", AARCH64_ANY},
8400 {"armv8-a", AARCH64_ARCH_V8},
8401 {"armv8.1-a", AARCH64_ARCH_V8_1},
8402 {"armv8.2-a", AARCH64_ARCH_V8_2},
8403 {"armv8.3-a", AARCH64_ARCH_V8_3},
8404 {NULL, AARCH64_ARCH_NONE}
8405 };
8406
8407 /* ISA extensions. */
8408 struct aarch64_option_cpu_value_table
8409 {
8410 const char *name;
8411 const aarch64_feature_set value;
8412 const aarch64_feature_set require; /* Feature dependencies. */
8413 };
8414
8415 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8416 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8417 AARCH64_ARCH_NONE},
8418 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
8419 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8420 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8421 AARCH64_ARCH_NONE},
8422 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8423 AARCH64_ARCH_NONE},
8424 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
8425 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8426 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8427 AARCH64_ARCH_NONE},
8428 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8429 AARCH64_ARCH_NONE},
8430 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8431 AARCH64_ARCH_NONE},
8432 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8433 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8434 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8435 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8436 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8437 AARCH64_ARCH_NONE},
8438 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8439 AARCH64_FEATURE (AARCH64_FEATURE_FP
8440 | AARCH64_FEATURE_SIMD, 0)},
8441 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
8442 };
8443
8444 struct aarch64_long_option_table
8445 {
8446 const char *option; /* Substring to match. */
8447 const char *help; /* Help information. */
8448 int (*func) (const char *subopt); /* Function to decode sub-option. */
8449 char *deprecated; /* If non-null, print this message. */
8450 };
8451
8452 /* Transitive closure of features depending on set. */
8453 static aarch64_feature_set
8454 aarch64_feature_disable_set (aarch64_feature_set set)
8455 {
8456 const struct aarch64_option_cpu_value_table *opt;
8457 aarch64_feature_set prev = 0;
8458
8459 while (prev != set) {
8460 prev = set;
8461 for (opt = aarch64_features; opt->name != NULL; opt++)
8462 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8463 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8464 }
8465 return set;
8466 }
8467
8468 /* Transitive closure of dependencies of set. */
8469 static aarch64_feature_set
8470 aarch64_feature_enable_set (aarch64_feature_set set)
8471 {
8472 const struct aarch64_option_cpu_value_table *opt;
8473 aarch64_feature_set prev = 0;
8474
8475 while (prev != set) {
8476 prev = set;
8477 for (opt = aarch64_features; opt->name != NULL; opt++)
8478 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8479 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8480 }
8481 return set;
8482 }
8483
8484 static int
8485 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
8486 bfd_boolean ext_only)
8487 {
8488 /* We insist on extensions being added before being removed. We achieve
8489 this by using the ADDING_VALUE variable to indicate whether we are
8490 adding an extension (1) or removing it (0) and only allowing it to
8491 change in the order -1 -> 1 -> 0. */
8492 int adding_value = -1;
8493 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
8494
8495 /* Copy the feature set, so that we can modify it. */
8496 *ext_set = **opt_p;
8497 *opt_p = ext_set;
8498
8499 while (str != NULL && *str != 0)
8500 {
8501 const struct aarch64_option_cpu_value_table *opt;
8502 const char *ext = NULL;
8503 int optlen;
8504
8505 if (!ext_only)
8506 {
8507 if (*str != '+')
8508 {
8509 as_bad (_("invalid architectural extension"));
8510 return 0;
8511 }
8512
8513 ext = strchr (++str, '+');
8514 }
8515
8516 if (ext != NULL)
8517 optlen = ext - str;
8518 else
8519 optlen = strlen (str);
8520
8521 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8522 {
8523 if (adding_value != 0)
8524 adding_value = 0;
8525 optlen -= 2;
8526 str += 2;
8527 }
8528 else if (optlen > 0)
8529 {
8530 if (adding_value == -1)
8531 adding_value = 1;
8532 else if (adding_value != 1)
8533 {
8534 as_bad (_("must specify extensions to add before specifying "
8535 "those to remove"));
8536 return FALSE;
8537 }
8538 }
8539
8540 if (optlen == 0)
8541 {
8542 as_bad (_("missing architectural extension"));
8543 return 0;
8544 }
8545
8546 gas_assert (adding_value != -1);
8547
8548 for (opt = aarch64_features; opt->name != NULL; opt++)
8549 if (strncmp (opt->name, str, optlen) == 0)
8550 {
8551 aarch64_feature_set set;
8552
8553 /* Add or remove the extension. */
8554 if (adding_value)
8555 {
8556 set = aarch64_feature_enable_set (opt->value);
8557 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8558 }
8559 else
8560 {
8561 set = aarch64_feature_disable_set (opt->value);
8562 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8563 }
8564 break;
8565 }
8566
8567 if (opt->name == NULL)
8568 {
8569 as_bad (_("unknown architectural extension `%s'"), str);
8570 return 0;
8571 }
8572
8573 str = ext;
8574 };
8575
8576 return 1;
8577 }
8578
8579 static int
8580 aarch64_parse_cpu (const char *str)
8581 {
8582 const struct aarch64_cpu_option_table *opt;
8583 const char *ext = strchr (str, '+');
8584 size_t optlen;
8585
8586 if (ext != NULL)
8587 optlen = ext - str;
8588 else
8589 optlen = strlen (str);
8590
8591 if (optlen == 0)
8592 {
8593 as_bad (_("missing cpu name `%s'"), str);
8594 return 0;
8595 }
8596
8597 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8598 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8599 {
8600 mcpu_cpu_opt = &opt->value;
8601 if (ext != NULL)
8602 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
8603
8604 return 1;
8605 }
8606
8607 as_bad (_("unknown cpu `%s'"), str);
8608 return 0;
8609 }
8610
8611 static int
8612 aarch64_parse_arch (const char *str)
8613 {
8614 const struct aarch64_arch_option_table *opt;
8615 const char *ext = strchr (str, '+');
8616 size_t optlen;
8617
8618 if (ext != NULL)
8619 optlen = ext - str;
8620 else
8621 optlen = strlen (str);
8622
8623 if (optlen == 0)
8624 {
8625 as_bad (_("missing architecture name `%s'"), str);
8626 return 0;
8627 }
8628
8629 for (opt = aarch64_archs; opt->name != NULL; opt++)
8630 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8631 {
8632 march_cpu_opt = &opt->value;
8633 if (ext != NULL)
8634 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
8635
8636 return 1;
8637 }
8638
8639 as_bad (_("unknown architecture `%s'\n"), str);
8640 return 0;
8641 }
8642
8643 /* ABIs. */
8644 struct aarch64_option_abi_value_table
8645 {
8646 const char *name;
8647 enum aarch64_abi_type value;
8648 };
8649
8650 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8651 {"ilp32", AARCH64_ABI_ILP32},
8652 {"lp64", AARCH64_ABI_LP64},
8653 };
8654
8655 static int
8656 aarch64_parse_abi (const char *str)
8657 {
8658 unsigned int i;
8659
8660 if (str[0] == '\0')
8661 {
8662 as_bad (_("missing abi name `%s'"), str);
8663 return 0;
8664 }
8665
8666 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8667 if (strcmp (str, aarch64_abis[i].name) == 0)
8668 {
8669 aarch64_abi = aarch64_abis[i].value;
8670 return 1;
8671 }
8672
8673 as_bad (_("unknown abi `%s'\n"), str);
8674 return 0;
8675 }
8676
8677 static struct aarch64_long_option_table aarch64_long_opts[] = {
8678 #ifdef OBJ_ELF
8679 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8680 aarch64_parse_abi, NULL},
8681 #endif /* OBJ_ELF */
8682 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8683 aarch64_parse_cpu, NULL},
8684 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8685 aarch64_parse_arch, NULL},
8686 {NULL, NULL, 0, NULL}
8687 };
8688
8689 int
8690 md_parse_option (int c, const char *arg)
8691 {
8692 struct aarch64_option_table *opt;
8693 struct aarch64_long_option_table *lopt;
8694
8695 switch (c)
8696 {
8697 #ifdef OPTION_EB
8698 case OPTION_EB:
8699 target_big_endian = 1;
8700 break;
8701 #endif
8702
8703 #ifdef OPTION_EL
8704 case OPTION_EL:
8705 target_big_endian = 0;
8706 break;
8707 #endif
8708
8709 case 'a':
8710 /* Listing option. Just ignore these, we don't support additional
8711 ones. */
8712 return 0;
8713
8714 default:
8715 for (opt = aarch64_opts; opt->option != NULL; opt++)
8716 {
8717 if (c == opt->option[0]
8718 && ((arg == NULL && opt->option[1] == 0)
8719 || streq (arg, opt->option + 1)))
8720 {
8721 /* If the option is deprecated, tell the user. */
8722 if (opt->deprecated != NULL)
8723 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8724 arg ? arg : "", _(opt->deprecated));
8725
8726 if (opt->var != NULL)
8727 *opt->var = opt->value;
8728
8729 return 1;
8730 }
8731 }
8732
8733 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8734 {
8735 /* These options are expected to have an argument. */
8736 if (c == lopt->option[0]
8737 && arg != NULL
8738 && strncmp (arg, lopt->option + 1,
8739 strlen (lopt->option + 1)) == 0)
8740 {
8741 /* If the option is deprecated, tell the user. */
8742 if (lopt->deprecated != NULL)
8743 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8744 _(lopt->deprecated));
8745
8746 /* Call the sup-option parser. */
8747 return lopt->func (arg + strlen (lopt->option) - 1);
8748 }
8749 }
8750
8751 return 0;
8752 }
8753
8754 return 1;
8755 }
8756
8757 void
8758 md_show_usage (FILE * fp)
8759 {
8760 struct aarch64_option_table *opt;
8761 struct aarch64_long_option_table *lopt;
8762
8763 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8764
8765 for (opt = aarch64_opts; opt->option != NULL; opt++)
8766 if (opt->help != NULL)
8767 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8768
8769 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8770 if (lopt->help != NULL)
8771 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8772
8773 #ifdef OPTION_EB
8774 fprintf (fp, _("\
8775 -EB assemble code for a big-endian cpu\n"));
8776 #endif
8777
8778 #ifdef OPTION_EL
8779 fprintf (fp, _("\
8780 -EL assemble code for a little-endian cpu\n"));
8781 #endif
8782 }
8783
8784 /* Parse a .cpu directive. */
8785
8786 static void
8787 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8788 {
8789 const struct aarch64_cpu_option_table *opt;
8790 char saved_char;
8791 char *name;
8792 char *ext;
8793 size_t optlen;
8794
8795 name = input_line_pointer;
8796 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8797 input_line_pointer++;
8798 saved_char = *input_line_pointer;
8799 *input_line_pointer = 0;
8800
8801 ext = strchr (name, '+');
8802
8803 if (ext != NULL)
8804 optlen = ext - name;
8805 else
8806 optlen = strlen (name);
8807
8808 /* Skip the first "all" entry. */
8809 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8810 if (strlen (opt->name) == optlen
8811 && strncmp (name, opt->name, optlen) == 0)
8812 {
8813 mcpu_cpu_opt = &opt->value;
8814 if (ext != NULL)
8815 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8816 return;
8817
8818 cpu_variant = *mcpu_cpu_opt;
8819
8820 *input_line_pointer = saved_char;
8821 demand_empty_rest_of_line ();
8822 return;
8823 }
8824 as_bad (_("unknown cpu `%s'"), name);
8825 *input_line_pointer = saved_char;
8826 ignore_rest_of_line ();
8827 }
8828
8829
8830 /* Parse a .arch directive. */
8831
8832 static void
8833 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8834 {
8835 const struct aarch64_arch_option_table *opt;
8836 char saved_char;
8837 char *name;
8838 char *ext;
8839 size_t optlen;
8840
8841 name = input_line_pointer;
8842 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8843 input_line_pointer++;
8844 saved_char = *input_line_pointer;
8845 *input_line_pointer = 0;
8846
8847 ext = strchr (name, '+');
8848
8849 if (ext != NULL)
8850 optlen = ext - name;
8851 else
8852 optlen = strlen (name);
8853
8854 /* Skip the first "all" entry. */
8855 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8856 if (strlen (opt->name) == optlen
8857 && strncmp (name, opt->name, optlen) == 0)
8858 {
8859 mcpu_cpu_opt = &opt->value;
8860 if (ext != NULL)
8861 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
8862 return;
8863
8864 cpu_variant = *mcpu_cpu_opt;
8865
8866 *input_line_pointer = saved_char;
8867 demand_empty_rest_of_line ();
8868 return;
8869 }
8870
8871 as_bad (_("unknown architecture `%s'\n"), name);
8872 *input_line_pointer = saved_char;
8873 ignore_rest_of_line ();
8874 }
8875
8876 /* Parse a .arch_extension directive. */
8877
8878 static void
8879 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8880 {
8881 char saved_char;
8882 char *ext = input_line_pointer;;
8883
8884 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8885 input_line_pointer++;
8886 saved_char = *input_line_pointer;
8887 *input_line_pointer = 0;
8888
8889 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8890 return;
8891
8892 cpu_variant = *mcpu_cpu_opt;
8893
8894 *input_line_pointer = saved_char;
8895 demand_empty_rest_of_line ();
8896 }
8897
8898 /* Copy symbol information. */
8899
8900 void
8901 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8902 {
8903 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8904 }
This page took 0.230188 seconds and 4 git commands to generate.