[ARM] Rework Tag_CPU_arch build attribute value selection
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static arm_feature_set *dyn_mcpu_ext_opt = NULL;
151 static const arm_feature_set *mcpu_fpu_opt = NULL;
152 static const arm_feature_set *march_cpu_opt = NULL;
153 static arm_feature_set *dyn_march_ext_opt = NULL;
154 static const arm_feature_set *march_fpu_opt = NULL;
155 static const arm_feature_set *mfpu_opt = NULL;
156 static const arm_feature_set *object_arch = NULL;
157
158 /* Constants for known architecture features. */
159 static const arm_feature_set fpu_default = FPU_DEFAULT;
160 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
161 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
162 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
163 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
164 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
165 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
166 #ifdef OBJ_ELF
167 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
168 #endif
169 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171 #ifdef CPU_DEFAULT
172 static const arm_feature_set cpu_default = CPU_DEFAULT;
173 #endif
174
175 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
176 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
177 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
178 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
179 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
180 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
181 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
182 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
183 static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
185 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
186 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
187 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
188 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
189 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
190 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
191 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
192 static const arm_feature_set arm_ext_v6m = ARM_FEATURE_CORE_LOW (ARM_EXT_V6M);
193 static const arm_feature_set arm_ext_v6_notm =
194 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
195 static const arm_feature_set arm_ext_v6_dsp =
196 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
197 static const arm_feature_set arm_ext_barrier =
198 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
199 static const arm_feature_set arm_ext_msr =
200 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
201 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
202 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
203 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
204 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
205 #ifdef OBJ_ELF
206 static const arm_feature_set arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
207 #endif
208 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
209 static const arm_feature_set arm_ext_m =
210 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M,
211 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
212 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
213 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
214 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
215 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
216 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
217 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
218 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
219 static const arm_feature_set arm_ext_v8m_main =
220 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
221 /* Instructions in ARMv8-M only found in M profile architectures. */
222 static const arm_feature_set arm_ext_v8m_m_only =
223 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
224 static const arm_feature_set arm_ext_v6t2_v8m =
225 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
226 /* Instructions shared between ARMv8-A and ARMv8-M. */
227 static const arm_feature_set arm_ext_atomics =
228 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
229 #ifdef OBJ_ELF
230 /* DSP instructions Tag_DSP_extension refers to. */
231 static const arm_feature_set arm_ext_dsp =
232 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
233 #endif
234 static const arm_feature_set arm_ext_ras =
235 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
236 /* FP16 instructions. */
237 static const arm_feature_set arm_ext_fp16 =
238 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
239 static const arm_feature_set arm_ext_v8_3 =
240 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
241
242 static const arm_feature_set arm_arch_any = ARM_ANY;
243 static const arm_feature_set fpu_any = FPU_ANY;
244 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
245 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
246 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
247 #ifdef OBJ_ELF
248 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
249 #endif
250
251 static const arm_feature_set arm_cext_iwmmxt2 =
252 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
253 static const arm_feature_set arm_cext_iwmmxt =
254 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
255 static const arm_feature_set arm_cext_xscale =
256 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
257 static const arm_feature_set arm_cext_maverick =
258 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
259 static const arm_feature_set fpu_fpa_ext_v1 =
260 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
261 static const arm_feature_set fpu_fpa_ext_v2 =
262 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
263 static const arm_feature_set fpu_vfp_ext_v1xd =
264 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
265 static const arm_feature_set fpu_vfp_ext_v1 =
266 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
267 static const arm_feature_set fpu_vfp_ext_v2 =
268 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
269 static const arm_feature_set fpu_vfp_ext_v3xd =
270 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
271 static const arm_feature_set fpu_vfp_ext_v3 =
272 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
273 static const arm_feature_set fpu_vfp_ext_d32 =
274 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
275 static const arm_feature_set fpu_neon_ext_v1 =
276 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
277 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
278 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
279 #ifdef OBJ_ELF
280 static const arm_feature_set fpu_vfp_fp16 =
281 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
282 static const arm_feature_set fpu_neon_ext_fma =
283 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
284 #endif
285 static const arm_feature_set fpu_vfp_ext_fma =
286 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
287 static const arm_feature_set fpu_vfp_ext_armv8 =
288 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
289 static const arm_feature_set fpu_vfp_ext_armv8xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
291 static const arm_feature_set fpu_neon_ext_armv8 =
292 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
293 static const arm_feature_set fpu_crypto_ext_armv8 =
294 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
295 static const arm_feature_set crc_ext_armv8 =
296 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
297 static const arm_feature_set fpu_neon_ext_v8_1 =
298 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
299
300 static int mfloat_abi_opt = -1;
301 /* Record user cpu selection for object attributes. */
302 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
303 /* Must be long enough to hold any of the names in arm_cpus. */
304 static char selected_cpu_name[20];
305
306 extern FLONUM_TYPE generic_floating_point_number;
307
308 /* Return if no cpu was selected on command-line. */
309 static bfd_boolean
310 no_cpu_selected (void)
311 {
312 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
313 }
314
315 #ifdef OBJ_ELF
316 # ifdef EABI_DEFAULT
317 static int meabi_flags = EABI_DEFAULT;
318 # else
319 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
320 # endif
321
322 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
323
324 bfd_boolean
325 arm_is_eabi (void)
326 {
327 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
328 }
329 #endif
330
331 #ifdef OBJ_ELF
332 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
333 symbolS * GOT_symbol;
334 #endif
335
336 /* 0: assemble for ARM,
337 1: assemble for Thumb,
338 2: assemble for Thumb even though target CPU does not support thumb
339 instructions. */
340 static int thumb_mode = 0;
341 /* A value distinct from the possible values for thumb_mode that we
342 can use to record whether thumb_mode has been copied into the
343 tc_frag_data field of a frag. */
344 #define MODE_RECORDED (1 << 4)
345
346 /* Specifies the intrinsic IT insn behavior mode. */
347 enum implicit_it_mode
348 {
349 IMPLICIT_IT_MODE_NEVER = 0x00,
350 IMPLICIT_IT_MODE_ARM = 0x01,
351 IMPLICIT_IT_MODE_THUMB = 0x02,
352 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
353 };
354 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
355
356 /* If unified_syntax is true, we are processing the new unified
357 ARM/Thumb syntax. Important differences from the old ARM mode:
358
359 - Immediate operands do not require a # prefix.
360 - Conditional affixes always appear at the end of the
361 instruction. (For backward compatibility, those instructions
362 that formerly had them in the middle, continue to accept them
363 there.)
364 - The IT instruction may appear, and if it does is validated
365 against subsequent conditional affixes. It does not generate
366 machine code.
367
368 Important differences from the old Thumb mode:
369
370 - Immediate operands do not require a # prefix.
371 - Most of the V6T2 instructions are only available in unified mode.
372 - The .N and .W suffixes are recognized and honored (it is an error
373 if they cannot be honored).
374 - All instructions set the flags if and only if they have an 's' affix.
375 - Conditional affixes may be used. They are validated against
376 preceding IT instructions. Unlike ARM mode, you cannot use a
377 conditional affix except in the scope of an IT instruction. */
378
379 static bfd_boolean unified_syntax = FALSE;
380
381 /* An immediate operand can start with #, and ld*, st*, pld operands
382 can contain [ and ]. We need to tell APP not to elide whitespace
383 before a [, which can appear as the first operand for pld.
384 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
385 const char arm_symbol_chars[] = "#[]{}";
386
387 enum neon_el_type
388 {
389 NT_invtype,
390 NT_untyped,
391 NT_integer,
392 NT_float,
393 NT_poly,
394 NT_signed,
395 NT_unsigned
396 };
397
398 struct neon_type_el
399 {
400 enum neon_el_type type;
401 unsigned size;
402 };
403
404 #define NEON_MAX_TYPE_ELS 4
405
406 struct neon_type
407 {
408 struct neon_type_el el[NEON_MAX_TYPE_ELS];
409 unsigned elems;
410 };
411
412 enum it_instruction_type
413 {
414 OUTSIDE_IT_INSN,
415 INSIDE_IT_INSN,
416 INSIDE_IT_LAST_INSN,
417 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
418 if inside, should be the last one. */
419 NEUTRAL_IT_INSN, /* This could be either inside or outside,
420 i.e. BKPT and NOP. */
421 IT_INSN /* The IT insn has been parsed. */
422 };
423
424 /* The maximum number of operands we need. */
425 #define ARM_IT_MAX_OPERANDS 6
426
427 struct arm_it
428 {
429 const char * error;
430 unsigned long instruction;
431 int size;
432 int size_req;
433 int cond;
434 /* "uncond_value" is set to the value in place of the conditional field in
435 unconditional versions of the instruction, or -1 if nothing is
436 appropriate. */
437 int uncond_value;
438 struct neon_type vectype;
439 /* This does not indicate an actual NEON instruction, only that
440 the mnemonic accepts neon-style type suffixes. */
441 int is_neon;
442 /* Set to the opcode if the instruction needs relaxation.
443 Zero if the instruction is not relaxed. */
444 unsigned long relax;
445 struct
446 {
447 bfd_reloc_code_real_type type;
448 expressionS exp;
449 int pc_rel;
450 } reloc;
451
452 enum it_instruction_type it_insn_type;
453
454 struct
455 {
456 unsigned reg;
457 signed int imm;
458 struct neon_type_el vectype;
459 unsigned present : 1; /* Operand present. */
460 unsigned isreg : 1; /* Operand was a register. */
461 unsigned immisreg : 1; /* .imm field is a second register. */
462 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
463 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
464 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
465 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
466 instructions. This allows us to disambiguate ARM <-> vector insns. */
467 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
468 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
469 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
470 unsigned issingle : 1; /* Operand is VFP single-precision register. */
471 unsigned hasreloc : 1; /* Operand has relocation suffix. */
472 unsigned writeback : 1; /* Operand has trailing ! */
473 unsigned preind : 1; /* Preindexed address. */
474 unsigned postind : 1; /* Postindexed address. */
475 unsigned negative : 1; /* Index register was negated. */
476 unsigned shifted : 1; /* Shift applied to operation. */
477 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
478 } operands[ARM_IT_MAX_OPERANDS];
479 };
480
481 static struct arm_it inst;
482
483 #define NUM_FLOAT_VALS 8
484
485 const char * fp_const[] =
486 {
487 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
488 };
489
490 /* Number of littlenums required to hold an extended precision number. */
491 #define MAX_LITTLENUMS 6
492
493 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
494
495 #define FAIL (-1)
496 #define SUCCESS (0)
497
498 #define SUFF_S 1
499 #define SUFF_D 2
500 #define SUFF_E 3
501 #define SUFF_P 4
502
503 #define CP_T_X 0x00008000
504 #define CP_T_Y 0x00400000
505
506 #define CONDS_BIT 0x00100000
507 #define LOAD_BIT 0x00100000
508
509 #define DOUBLE_LOAD_FLAG 0x00000001
510
511 struct asm_cond
512 {
513 const char * template_name;
514 unsigned long value;
515 };
516
517 #define COND_ALWAYS 0xE
518
519 struct asm_psr
520 {
521 const char * template_name;
522 unsigned long field;
523 };
524
525 struct asm_barrier_opt
526 {
527 const char * template_name;
528 unsigned long value;
529 const arm_feature_set arch;
530 };
531
532 /* The bit that distinguishes CPSR and SPSR. */
533 #define SPSR_BIT (1 << 22)
534
535 /* The individual PSR flag bits. */
536 #define PSR_c (1 << 16)
537 #define PSR_x (1 << 17)
538 #define PSR_s (1 << 18)
539 #define PSR_f (1 << 19)
540
541 struct reloc_entry
542 {
543 const char * name;
544 bfd_reloc_code_real_type reloc;
545 };
546
547 enum vfp_reg_pos
548 {
549 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
550 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
551 };
552
553 enum vfp_ldstm_type
554 {
555 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
556 };
557
558 /* Bits for DEFINED field in neon_typed_alias. */
559 #define NTA_HASTYPE 1
560 #define NTA_HASINDEX 2
561
562 struct neon_typed_alias
563 {
564 unsigned char defined;
565 unsigned char index;
566 struct neon_type_el eltype;
567 };
568
569 /* ARM register categories. This includes coprocessor numbers and various
570 architecture extensions' registers. */
571 enum arm_reg_type
572 {
573 REG_TYPE_RN,
574 REG_TYPE_CP,
575 REG_TYPE_CN,
576 REG_TYPE_FN,
577 REG_TYPE_VFS,
578 REG_TYPE_VFD,
579 REG_TYPE_NQ,
580 REG_TYPE_VFSD,
581 REG_TYPE_NDQ,
582 REG_TYPE_NSDQ,
583 REG_TYPE_VFC,
584 REG_TYPE_MVF,
585 REG_TYPE_MVD,
586 REG_TYPE_MVFX,
587 REG_TYPE_MVDX,
588 REG_TYPE_MVAX,
589 REG_TYPE_DSPSC,
590 REG_TYPE_MMXWR,
591 REG_TYPE_MMXWC,
592 REG_TYPE_MMXWCG,
593 REG_TYPE_XSCALE,
594 REG_TYPE_RNB
595 };
596
597 /* Structure for a hash table entry for a register.
598 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
599 information which states whether a vector type or index is specified (for a
600 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
601 struct reg_entry
602 {
603 const char * name;
604 unsigned int number;
605 unsigned char type;
606 unsigned char builtin;
607 struct neon_typed_alias * neon;
608 };
609
610 /* Diagnostics used when we don't get a register of the expected type. */
611 const char * const reg_expected_msgs[] =
612 {
613 N_("ARM register expected"),
614 N_("bad or missing co-processor number"),
615 N_("co-processor register expected"),
616 N_("FPA register expected"),
617 N_("VFP single precision register expected"),
618 N_("VFP/Neon double precision register expected"),
619 N_("Neon quad precision register expected"),
620 N_("VFP single or double precision register expected"),
621 N_("Neon double or quad precision register expected"),
622 N_("VFP single, double or Neon quad precision register expected"),
623 N_("VFP system register expected"),
624 N_("Maverick MVF register expected"),
625 N_("Maverick MVD register expected"),
626 N_("Maverick MVFX register expected"),
627 N_("Maverick MVDX register expected"),
628 N_("Maverick MVAX register expected"),
629 N_("Maverick DSPSC register expected"),
630 N_("iWMMXt data register expected"),
631 N_("iWMMXt control register expected"),
632 N_("iWMMXt scalar register expected"),
633 N_("XScale accumulator register expected"),
634 };
635
636 /* Some well known registers that we refer to directly elsewhere. */
637 #define REG_R12 12
638 #define REG_SP 13
639 #define REG_LR 14
640 #define REG_PC 15
641
642 /* ARM instructions take 4bytes in the object file, Thumb instructions
643 take 2: */
644 #define INSN_SIZE 4
645
646 struct asm_opcode
647 {
648 /* Basic string to match. */
649 const char * template_name;
650
651 /* Parameters to instruction. */
652 unsigned int operands[8];
653
654 /* Conditional tag - see opcode_lookup. */
655 unsigned int tag : 4;
656
657 /* Basic instruction code. */
658 unsigned int avalue : 28;
659
660 /* Thumb-format instruction code. */
661 unsigned int tvalue;
662
663 /* Which architecture variant provides this instruction. */
664 const arm_feature_set * avariant;
665 const arm_feature_set * tvariant;
666
667 /* Function to call to encode instruction in ARM format. */
668 void (* aencode) (void);
669
670 /* Function to call to encode instruction in Thumb format. */
671 void (* tencode) (void);
672 };
673
674 /* Defines for various bits that we will want to toggle. */
675 #define INST_IMMEDIATE 0x02000000
676 #define OFFSET_REG 0x02000000
677 #define HWOFFSET_IMM 0x00400000
678 #define SHIFT_BY_REG 0x00000010
679 #define PRE_INDEX 0x01000000
680 #define INDEX_UP 0x00800000
681 #define WRITE_BACK 0x00200000
682 #define LDM_TYPE_2_OR_3 0x00400000
683 #define CPSI_MMOD 0x00020000
684
685 #define LITERAL_MASK 0xf000f000
686 #define OPCODE_MASK 0xfe1fffff
687 #define V4_STR_BIT 0x00000020
688 #define VLDR_VMOV_SAME 0x0040f000
689
690 #define T2_SUBS_PC_LR 0xf3de8f00
691
692 #define DATA_OP_SHIFT 21
693 #define SBIT_SHIFT 20
694
695 #define T2_OPCODE_MASK 0xfe1fffff
696 #define T2_DATA_OP_SHIFT 21
697 #define T2_SBIT_SHIFT 20
698
699 #define A_COND_MASK 0xf0000000
700 #define A_PUSH_POP_OP_MASK 0x0fff0000
701
702 /* Opcodes for pushing/poping registers to/from the stack. */
703 #define A1_OPCODE_PUSH 0x092d0000
704 #define A2_OPCODE_PUSH 0x052d0004
705 #define A2_OPCODE_POP 0x049d0004
706
707 /* Codes to distinguish the arithmetic instructions. */
708 #define OPCODE_AND 0
709 #define OPCODE_EOR 1
710 #define OPCODE_SUB 2
711 #define OPCODE_RSB 3
712 #define OPCODE_ADD 4
713 #define OPCODE_ADC 5
714 #define OPCODE_SBC 6
715 #define OPCODE_RSC 7
716 #define OPCODE_TST 8
717 #define OPCODE_TEQ 9
718 #define OPCODE_CMP 10
719 #define OPCODE_CMN 11
720 #define OPCODE_ORR 12
721 #define OPCODE_MOV 13
722 #define OPCODE_BIC 14
723 #define OPCODE_MVN 15
724
725 #define T2_OPCODE_AND 0
726 #define T2_OPCODE_BIC 1
727 #define T2_OPCODE_ORR 2
728 #define T2_OPCODE_ORN 3
729 #define T2_OPCODE_EOR 4
730 #define T2_OPCODE_ADD 8
731 #define T2_OPCODE_ADC 10
732 #define T2_OPCODE_SBC 11
733 #define T2_OPCODE_SUB 13
734 #define T2_OPCODE_RSB 14
735
736 #define T_OPCODE_MUL 0x4340
737 #define T_OPCODE_TST 0x4200
738 #define T_OPCODE_CMN 0x42c0
739 #define T_OPCODE_NEG 0x4240
740 #define T_OPCODE_MVN 0x43c0
741
742 #define T_OPCODE_ADD_R3 0x1800
743 #define T_OPCODE_SUB_R3 0x1a00
744 #define T_OPCODE_ADD_HI 0x4400
745 #define T_OPCODE_ADD_ST 0xb000
746 #define T_OPCODE_SUB_ST 0xb080
747 #define T_OPCODE_ADD_SP 0xa800
748 #define T_OPCODE_ADD_PC 0xa000
749 #define T_OPCODE_ADD_I8 0x3000
750 #define T_OPCODE_SUB_I8 0x3800
751 #define T_OPCODE_ADD_I3 0x1c00
752 #define T_OPCODE_SUB_I3 0x1e00
753
754 #define T_OPCODE_ASR_R 0x4100
755 #define T_OPCODE_LSL_R 0x4080
756 #define T_OPCODE_LSR_R 0x40c0
757 #define T_OPCODE_ROR_R 0x41c0
758 #define T_OPCODE_ASR_I 0x1000
759 #define T_OPCODE_LSL_I 0x0000
760 #define T_OPCODE_LSR_I 0x0800
761
762 #define T_OPCODE_MOV_I8 0x2000
763 #define T_OPCODE_CMP_I8 0x2800
764 #define T_OPCODE_CMP_LR 0x4280
765 #define T_OPCODE_MOV_HR 0x4600
766 #define T_OPCODE_CMP_HR 0x4500
767
768 #define T_OPCODE_LDR_PC 0x4800
769 #define T_OPCODE_LDR_SP 0x9800
770 #define T_OPCODE_STR_SP 0x9000
771 #define T_OPCODE_LDR_IW 0x6800
772 #define T_OPCODE_STR_IW 0x6000
773 #define T_OPCODE_LDR_IH 0x8800
774 #define T_OPCODE_STR_IH 0x8000
775 #define T_OPCODE_LDR_IB 0x7800
776 #define T_OPCODE_STR_IB 0x7000
777 #define T_OPCODE_LDR_RW 0x5800
778 #define T_OPCODE_STR_RW 0x5000
779 #define T_OPCODE_LDR_RH 0x5a00
780 #define T_OPCODE_STR_RH 0x5200
781 #define T_OPCODE_LDR_RB 0x5c00
782 #define T_OPCODE_STR_RB 0x5400
783
784 #define T_OPCODE_PUSH 0xb400
785 #define T_OPCODE_POP 0xbc00
786
787 #define T_OPCODE_BRANCH 0xe000
788
789 #define THUMB_SIZE 2 /* Size of thumb instruction. */
790 #define THUMB_PP_PC_LR 0x0100
791 #define THUMB_LOAD_BIT 0x0800
792 #define THUMB2_LOAD_BIT 0x00100000
793
794 #define BAD_ARGS _("bad arguments to instruction")
795 #define BAD_SP _("r13 not allowed here")
796 #define BAD_PC _("r15 not allowed here")
797 #define BAD_COND _("instruction cannot be conditional")
798 #define BAD_OVERLAP _("registers may not be the same")
799 #define BAD_HIREG _("lo register required")
800 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
801 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
802 #define BAD_BRANCH _("branch must be last instruction in IT block")
803 #define BAD_NOT_IT _("instruction not allowed in IT block")
804 #define BAD_FPU _("selected FPU does not support instruction")
805 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
806 #define BAD_IT_COND _("incorrect condition in IT block")
807 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
808 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
809 #define BAD_PC_ADDRESSING \
810 _("cannot use register index with PC-relative addressing")
811 #define BAD_PC_WRITEBACK \
812 _("cannot use writeback with PC-relative addressing")
813 #define BAD_RANGE _("branch out of range")
814 #define BAD_FP16 _("selected processor does not support fp16 instruction")
815 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
816 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
817
818 static struct hash_control * arm_ops_hsh;
819 static struct hash_control * arm_cond_hsh;
820 static struct hash_control * arm_shift_hsh;
821 static struct hash_control * arm_psr_hsh;
822 static struct hash_control * arm_v7m_psr_hsh;
823 static struct hash_control * arm_reg_hsh;
824 static struct hash_control * arm_reloc_hsh;
825 static struct hash_control * arm_barrier_opt_hsh;
826
827 /* Stuff needed to resolve the label ambiguity
828 As:
829 ...
830 label: <insn>
831 may differ from:
832 ...
833 label:
834 <insn> */
835
836 symbolS * last_label_seen;
837 static int label_is_thumb_function_name = FALSE;
838
839 /* Literal pool structure. Held on a per-section
840 and per-sub-section basis. */
841
842 #define MAX_LITERAL_POOL_SIZE 1024
843 typedef struct literal_pool
844 {
845 expressionS literals [MAX_LITERAL_POOL_SIZE];
846 unsigned int next_free_entry;
847 unsigned int id;
848 symbolS * symbol;
849 segT section;
850 subsegT sub_section;
851 #ifdef OBJ_ELF
852 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
853 #endif
854 struct literal_pool * next;
855 unsigned int alignment;
856 } literal_pool;
857
858 /* Pointer to a linked list of literal pools. */
859 literal_pool * list_of_pools = NULL;
860
861 typedef enum asmfunc_states
862 {
863 OUTSIDE_ASMFUNC,
864 WAITING_ASMFUNC_NAME,
865 WAITING_ENDASMFUNC
866 } asmfunc_states;
867
868 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
869
870 #ifdef OBJ_ELF
871 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
872 #else
873 static struct current_it now_it;
874 #endif
875
876 static inline int
877 now_it_compatible (int cond)
878 {
879 return (cond & ~1) == (now_it.cc & ~1);
880 }
881
882 static inline int
883 conditional_insn (void)
884 {
885 return inst.cond != COND_ALWAYS;
886 }
887
888 static int in_it_block (void);
889
890 static int handle_it_state (void);
891
892 static void force_automatic_it_block_close (void);
893
894 static void it_fsm_post_encode (void);
895
896 #define set_it_insn_type(type) \
897 do \
898 { \
899 inst.it_insn_type = type; \
900 if (handle_it_state () == FAIL) \
901 return; \
902 } \
903 while (0)
904
905 #define set_it_insn_type_nonvoid(type, failret) \
906 do \
907 { \
908 inst.it_insn_type = type; \
909 if (handle_it_state () == FAIL) \
910 return failret; \
911 } \
912 while(0)
913
914 #define set_it_insn_type_last() \
915 do \
916 { \
917 if (inst.cond == COND_ALWAYS) \
918 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
919 else \
920 set_it_insn_type (INSIDE_IT_LAST_INSN); \
921 } \
922 while (0)
923
924 /* Pure syntax. */
925
926 /* This array holds the chars that always start a comment. If the
927 pre-processor is disabled, these aren't very useful. */
928 char arm_comment_chars[] = "@";
929
930 /* This array holds the chars that only start a comment at the beginning of
931 a line. If the line seems to have the form '# 123 filename'
932 .line and .file directives will appear in the pre-processed output. */
933 /* Note that input_file.c hand checks for '#' at the beginning of the
934 first line of the input file. This is because the compiler outputs
935 #NO_APP at the beginning of its output. */
936 /* Also note that comments like this one will always work. */
937 const char line_comment_chars[] = "#";
938
939 char arm_line_separator_chars[] = ";";
940
941 /* Chars that can be used to separate mant
942 from exp in floating point numbers. */
943 const char EXP_CHARS[] = "eE";
944
945 /* Chars that mean this number is a floating point constant. */
946 /* As in 0f12.456 */
947 /* or 0d1.2345e12 */
948
949 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
950
951 /* Prefix characters that indicate the start of an immediate
952 value. */
953 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
954
955 /* Separator character handling. */
956
957 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
958
959 static inline int
960 skip_past_char (char ** str, char c)
961 {
962 /* PR gas/14987: Allow for whitespace before the expected character. */
963 skip_whitespace (*str);
964
965 if (**str == c)
966 {
967 (*str)++;
968 return SUCCESS;
969 }
970 else
971 return FAIL;
972 }
973
974 #define skip_past_comma(str) skip_past_char (str, ',')
975
976 /* Arithmetic expressions (possibly involving symbols). */
977
978 /* Return TRUE if anything in the expression is a bignum. */
979
980 static int
981 walk_no_bignums (symbolS * sp)
982 {
983 if (symbol_get_value_expression (sp)->X_op == O_big)
984 return 1;
985
986 if (symbol_get_value_expression (sp)->X_add_symbol)
987 {
988 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
989 || (symbol_get_value_expression (sp)->X_op_symbol
990 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
991 }
992
993 return 0;
994 }
995
996 static int in_my_get_expression = 0;
997
998 /* Third argument to my_get_expression. */
999 #define GE_NO_PREFIX 0
1000 #define GE_IMM_PREFIX 1
1001 #define GE_OPT_PREFIX 2
1002 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1003 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1004 #define GE_OPT_PREFIX_BIG 3
1005
1006 static int
1007 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1008 {
1009 char * save_in;
1010 segT seg;
1011
1012 /* In unified syntax, all prefixes are optional. */
1013 if (unified_syntax)
1014 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1015 : GE_OPT_PREFIX;
1016
1017 switch (prefix_mode)
1018 {
1019 case GE_NO_PREFIX: break;
1020 case GE_IMM_PREFIX:
1021 if (!is_immediate_prefix (**str))
1022 {
1023 inst.error = _("immediate expression requires a # prefix");
1024 return FAIL;
1025 }
1026 (*str)++;
1027 break;
1028 case GE_OPT_PREFIX:
1029 case GE_OPT_PREFIX_BIG:
1030 if (is_immediate_prefix (**str))
1031 (*str)++;
1032 break;
1033 default: abort ();
1034 }
1035
1036 memset (ep, 0, sizeof (expressionS));
1037
1038 save_in = input_line_pointer;
1039 input_line_pointer = *str;
1040 in_my_get_expression = 1;
1041 seg = expression (ep);
1042 in_my_get_expression = 0;
1043
1044 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1045 {
1046 /* We found a bad or missing expression in md_operand(). */
1047 *str = input_line_pointer;
1048 input_line_pointer = save_in;
1049 if (inst.error == NULL)
1050 inst.error = (ep->X_op == O_absent
1051 ? _("missing expression") :_("bad expression"));
1052 return 1;
1053 }
1054
1055 #ifdef OBJ_AOUT
1056 if (seg != absolute_section
1057 && seg != text_section
1058 && seg != data_section
1059 && seg != bss_section
1060 && seg != undefined_section)
1061 {
1062 inst.error = _("bad segment");
1063 *str = input_line_pointer;
1064 input_line_pointer = save_in;
1065 return 1;
1066 }
1067 #else
1068 (void) seg;
1069 #endif
1070
1071 /* Get rid of any bignums now, so that we don't generate an error for which
1072 we can't establish a line number later on. Big numbers are never valid
1073 in instructions, which is where this routine is always called. */
1074 if (prefix_mode != GE_OPT_PREFIX_BIG
1075 && (ep->X_op == O_big
1076 || (ep->X_add_symbol
1077 && (walk_no_bignums (ep->X_add_symbol)
1078 || (ep->X_op_symbol
1079 && walk_no_bignums (ep->X_op_symbol))))))
1080 {
1081 inst.error = _("invalid constant");
1082 *str = input_line_pointer;
1083 input_line_pointer = save_in;
1084 return 1;
1085 }
1086
1087 *str = input_line_pointer;
1088 input_line_pointer = save_in;
1089 return 0;
1090 }
1091
1092 /* Turn a string in input_line_pointer into a floating point constant
1093 of type TYPE, and store the appropriate bytes in *LITP. The number
1094 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1095 returned, or NULL on OK.
1096
1097 Note that fp constants aren't represent in the normal way on the ARM.
1098 In big endian mode, things are as expected. However, in little endian
1099 mode fp constants are big-endian word-wise, and little-endian byte-wise
1100 within the words. For example, (double) 1.1 in big endian mode is
1101 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1102 the byte sequence 99 99 f1 3f 9a 99 99 99.
1103
1104 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1105
1106 const char *
1107 md_atof (int type, char * litP, int * sizeP)
1108 {
1109 int prec;
1110 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1111 char *t;
1112 int i;
1113
1114 switch (type)
1115 {
1116 case 'f':
1117 case 'F':
1118 case 's':
1119 case 'S':
1120 prec = 2;
1121 break;
1122
1123 case 'd':
1124 case 'D':
1125 case 'r':
1126 case 'R':
1127 prec = 4;
1128 break;
1129
1130 case 'x':
1131 case 'X':
1132 prec = 5;
1133 break;
1134
1135 case 'p':
1136 case 'P':
1137 prec = 5;
1138 break;
1139
1140 default:
1141 *sizeP = 0;
1142 return _("Unrecognized or unsupported floating point constant");
1143 }
1144
1145 t = atof_ieee (input_line_pointer, type, words);
1146 if (t)
1147 input_line_pointer = t;
1148 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1149
1150 if (target_big_endian)
1151 {
1152 for (i = 0; i < prec; i++)
1153 {
1154 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1155 litP += sizeof (LITTLENUM_TYPE);
1156 }
1157 }
1158 else
1159 {
1160 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1161 for (i = prec - 1; i >= 0; i--)
1162 {
1163 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1164 litP += sizeof (LITTLENUM_TYPE);
1165 }
1166 else
1167 /* For a 4 byte float the order of elements in `words' is 1 0.
1168 For an 8 byte float the order is 1 0 3 2. */
1169 for (i = 0; i < prec; i += 2)
1170 {
1171 md_number_to_chars (litP, (valueT) words[i + 1],
1172 sizeof (LITTLENUM_TYPE));
1173 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1174 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1175 litP += 2 * sizeof (LITTLENUM_TYPE);
1176 }
1177 }
1178
1179 return NULL;
1180 }
1181
1182 /* We handle all bad expressions here, so that we can report the faulty
1183 instruction in the error message. */
1184 void
1185 md_operand (expressionS * exp)
1186 {
1187 if (in_my_get_expression)
1188 exp->X_op = O_illegal;
1189 }
1190
1191 /* Immediate values. */
1192
1193 /* Generic immediate-value read function for use in directives.
1194 Accepts anything that 'expression' can fold to a constant.
1195 *val receives the number. */
1196 #ifdef OBJ_ELF
1197 static int
1198 immediate_for_directive (int *val)
1199 {
1200 expressionS exp;
1201 exp.X_op = O_illegal;
1202
1203 if (is_immediate_prefix (*input_line_pointer))
1204 {
1205 input_line_pointer++;
1206 expression (&exp);
1207 }
1208
1209 if (exp.X_op != O_constant)
1210 {
1211 as_bad (_("expected #constant"));
1212 ignore_rest_of_line ();
1213 return FAIL;
1214 }
1215 *val = exp.X_add_number;
1216 return SUCCESS;
1217 }
1218 #endif
1219
1220 /* Register parsing. */
1221
1222 /* Generic register parser. CCP points to what should be the
1223 beginning of a register name. If it is indeed a valid register
1224 name, advance CCP over it and return the reg_entry structure;
1225 otherwise return NULL. Does not issue diagnostics. */
1226
1227 static struct reg_entry *
1228 arm_reg_parse_multi (char **ccp)
1229 {
1230 char *start = *ccp;
1231 char *p;
1232 struct reg_entry *reg;
1233
1234 skip_whitespace (start);
1235
1236 #ifdef REGISTER_PREFIX
1237 if (*start != REGISTER_PREFIX)
1238 return NULL;
1239 start++;
1240 #endif
1241 #ifdef OPTIONAL_REGISTER_PREFIX
1242 if (*start == OPTIONAL_REGISTER_PREFIX)
1243 start++;
1244 #endif
1245
1246 p = start;
1247 if (!ISALPHA (*p) || !is_name_beginner (*p))
1248 return NULL;
1249
1250 do
1251 p++;
1252 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1253
1254 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1255
1256 if (!reg)
1257 return NULL;
1258
1259 *ccp = p;
1260 return reg;
1261 }
1262
1263 static int
1264 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1265 enum arm_reg_type type)
1266 {
1267 /* Alternative syntaxes are accepted for a few register classes. */
1268 switch (type)
1269 {
1270 case REG_TYPE_MVF:
1271 case REG_TYPE_MVD:
1272 case REG_TYPE_MVFX:
1273 case REG_TYPE_MVDX:
1274 /* Generic coprocessor register names are allowed for these. */
1275 if (reg && reg->type == REG_TYPE_CN)
1276 return reg->number;
1277 break;
1278
1279 case REG_TYPE_CP:
1280 /* For backward compatibility, a bare number is valid here. */
1281 {
1282 unsigned long processor = strtoul (start, ccp, 10);
1283 if (*ccp != start && processor <= 15)
1284 return processor;
1285 }
1286 /* Fall through. */
1287
1288 case REG_TYPE_MMXWC:
1289 /* WC includes WCG. ??? I'm not sure this is true for all
1290 instructions that take WC registers. */
1291 if (reg && reg->type == REG_TYPE_MMXWCG)
1292 return reg->number;
1293 break;
1294
1295 default:
1296 break;
1297 }
1298
1299 return FAIL;
1300 }
1301
1302 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1303 return value is the register number or FAIL. */
1304
1305 static int
1306 arm_reg_parse (char **ccp, enum arm_reg_type type)
1307 {
1308 char *start = *ccp;
1309 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1310 int ret;
1311
1312 /* Do not allow a scalar (reg+index) to parse as a register. */
1313 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1314 return FAIL;
1315
1316 if (reg && reg->type == type)
1317 return reg->number;
1318
1319 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1320 return ret;
1321
1322 *ccp = start;
1323 return FAIL;
1324 }
1325
1326 /* Parse a Neon type specifier. *STR should point at the leading '.'
1327 character. Does no verification at this stage that the type fits the opcode
1328 properly. E.g.,
1329
1330 .i32.i32.s16
1331 .s32.f32
1332 .u16
1333
1334 Can all be legally parsed by this function.
1335
1336 Fills in neon_type struct pointer with parsed information, and updates STR
1337 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1338 type, FAIL if not. */
1339
1340 static int
1341 parse_neon_type (struct neon_type *type, char **str)
1342 {
1343 char *ptr = *str;
1344
1345 if (type)
1346 type->elems = 0;
1347
1348 while (type->elems < NEON_MAX_TYPE_ELS)
1349 {
1350 enum neon_el_type thistype = NT_untyped;
1351 unsigned thissize = -1u;
1352
1353 if (*ptr != '.')
1354 break;
1355
1356 ptr++;
1357
1358 /* Just a size without an explicit type. */
1359 if (ISDIGIT (*ptr))
1360 goto parsesize;
1361
1362 switch (TOLOWER (*ptr))
1363 {
1364 case 'i': thistype = NT_integer; break;
1365 case 'f': thistype = NT_float; break;
1366 case 'p': thistype = NT_poly; break;
1367 case 's': thistype = NT_signed; break;
1368 case 'u': thistype = NT_unsigned; break;
1369 case 'd':
1370 thistype = NT_float;
1371 thissize = 64;
1372 ptr++;
1373 goto done;
1374 default:
1375 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1376 return FAIL;
1377 }
1378
1379 ptr++;
1380
1381 /* .f is an abbreviation for .f32. */
1382 if (thistype == NT_float && !ISDIGIT (*ptr))
1383 thissize = 32;
1384 else
1385 {
1386 parsesize:
1387 thissize = strtoul (ptr, &ptr, 10);
1388
1389 if (thissize != 8 && thissize != 16 && thissize != 32
1390 && thissize != 64)
1391 {
1392 as_bad (_("bad size %d in type specifier"), thissize);
1393 return FAIL;
1394 }
1395 }
1396
1397 done:
1398 if (type)
1399 {
1400 type->el[type->elems].type = thistype;
1401 type->el[type->elems].size = thissize;
1402 type->elems++;
1403 }
1404 }
1405
1406 /* Empty/missing type is not a successful parse. */
1407 if (type->elems == 0)
1408 return FAIL;
1409
1410 *str = ptr;
1411
1412 return SUCCESS;
1413 }
1414
1415 /* Errors may be set multiple times during parsing or bit encoding
1416 (particularly in the Neon bits), but usually the earliest error which is set
1417 will be the most meaningful. Avoid overwriting it with later (cascading)
1418 errors by calling this function. */
1419
1420 static void
1421 first_error (const char *err)
1422 {
1423 if (!inst.error)
1424 inst.error = err;
1425 }
1426
1427 /* Parse a single type, e.g. ".s32", leading period included. */
1428 static int
1429 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1430 {
1431 char *str = *ccp;
1432 struct neon_type optype;
1433
1434 if (*str == '.')
1435 {
1436 if (parse_neon_type (&optype, &str) == SUCCESS)
1437 {
1438 if (optype.elems == 1)
1439 *vectype = optype.el[0];
1440 else
1441 {
1442 first_error (_("only one type should be specified for operand"));
1443 return FAIL;
1444 }
1445 }
1446 else
1447 {
1448 first_error (_("vector type expected"));
1449 return FAIL;
1450 }
1451 }
1452 else
1453 return FAIL;
1454
1455 *ccp = str;
1456
1457 return SUCCESS;
1458 }
1459
1460 /* Special meanings for indices (which have a range of 0-7), which will fit into
1461 a 4-bit integer. */
1462
1463 #define NEON_ALL_LANES 15
1464 #define NEON_INTERLEAVE_LANES 14
1465
1466 /* Parse either a register or a scalar, with an optional type. Return the
1467 register number, and optionally fill in the actual type of the register
1468 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1469 type/index information in *TYPEINFO. */
1470
1471 static int
1472 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1473 enum arm_reg_type *rtype,
1474 struct neon_typed_alias *typeinfo)
1475 {
1476 char *str = *ccp;
1477 struct reg_entry *reg = arm_reg_parse_multi (&str);
1478 struct neon_typed_alias atype;
1479 struct neon_type_el parsetype;
1480
1481 atype.defined = 0;
1482 atype.index = -1;
1483 atype.eltype.type = NT_invtype;
1484 atype.eltype.size = -1;
1485
1486 /* Try alternate syntax for some types of register. Note these are mutually
1487 exclusive with the Neon syntax extensions. */
1488 if (reg == NULL)
1489 {
1490 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1491 if (altreg != FAIL)
1492 *ccp = str;
1493 if (typeinfo)
1494 *typeinfo = atype;
1495 return altreg;
1496 }
1497
1498 /* Undo polymorphism when a set of register types may be accepted. */
1499 if ((type == REG_TYPE_NDQ
1500 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1501 || (type == REG_TYPE_VFSD
1502 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1503 || (type == REG_TYPE_NSDQ
1504 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1505 || reg->type == REG_TYPE_NQ))
1506 || (type == REG_TYPE_MMXWC
1507 && (reg->type == REG_TYPE_MMXWCG)))
1508 type = (enum arm_reg_type) reg->type;
1509
1510 if (type != reg->type)
1511 return FAIL;
1512
1513 if (reg->neon)
1514 atype = *reg->neon;
1515
1516 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1517 {
1518 if ((atype.defined & NTA_HASTYPE) != 0)
1519 {
1520 first_error (_("can't redefine type for operand"));
1521 return FAIL;
1522 }
1523 atype.defined |= NTA_HASTYPE;
1524 atype.eltype = parsetype;
1525 }
1526
1527 if (skip_past_char (&str, '[') == SUCCESS)
1528 {
1529 if (type != REG_TYPE_VFD)
1530 {
1531 first_error (_("only D registers may be indexed"));
1532 return FAIL;
1533 }
1534
1535 if ((atype.defined & NTA_HASINDEX) != 0)
1536 {
1537 first_error (_("can't change index for operand"));
1538 return FAIL;
1539 }
1540
1541 atype.defined |= NTA_HASINDEX;
1542
1543 if (skip_past_char (&str, ']') == SUCCESS)
1544 atype.index = NEON_ALL_LANES;
1545 else
1546 {
1547 expressionS exp;
1548
1549 my_get_expression (&exp, &str, GE_NO_PREFIX);
1550
1551 if (exp.X_op != O_constant)
1552 {
1553 first_error (_("constant expression required"));
1554 return FAIL;
1555 }
1556
1557 if (skip_past_char (&str, ']') == FAIL)
1558 return FAIL;
1559
1560 atype.index = exp.X_add_number;
1561 }
1562 }
1563
1564 if (typeinfo)
1565 *typeinfo = atype;
1566
1567 if (rtype)
1568 *rtype = type;
1569
1570 *ccp = str;
1571
1572 return reg->number;
1573 }
1574
1575 /* Like arm_reg_parse, but allow allow the following extra features:
1576 - If RTYPE is non-zero, return the (possibly restricted) type of the
1577 register (e.g. Neon double or quad reg when either has been requested).
1578 - If this is a Neon vector type with additional type information, fill
1579 in the struct pointed to by VECTYPE (if non-NULL).
1580 This function will fault on encountering a scalar. */
1581
1582 static int
1583 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1584 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1585 {
1586 struct neon_typed_alias atype;
1587 char *str = *ccp;
1588 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1589
1590 if (reg == FAIL)
1591 return FAIL;
1592
1593 /* Do not allow regname(... to parse as a register. */
1594 if (*str == '(')
1595 return FAIL;
1596
1597 /* Do not allow a scalar (reg+index) to parse as a register. */
1598 if ((atype.defined & NTA_HASINDEX) != 0)
1599 {
1600 first_error (_("register operand expected, but got scalar"));
1601 return FAIL;
1602 }
1603
1604 if (vectype)
1605 *vectype = atype.eltype;
1606
1607 *ccp = str;
1608
1609 return reg;
1610 }
1611
1612 #define NEON_SCALAR_REG(X) ((X) >> 4)
1613 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1614
1615 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1616 have enough information to be able to do a good job bounds-checking. So, we
1617 just do easy checks here, and do further checks later. */
1618
1619 static int
1620 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1621 {
1622 int reg;
1623 char *str = *ccp;
1624 struct neon_typed_alias atype;
1625
1626 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1627
1628 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1629 return FAIL;
1630
1631 if (atype.index == NEON_ALL_LANES)
1632 {
1633 first_error (_("scalar must have an index"));
1634 return FAIL;
1635 }
1636 else if (atype.index >= 64 / elsize)
1637 {
1638 first_error (_("scalar index out of range"));
1639 return FAIL;
1640 }
1641
1642 if (type)
1643 *type = atype.eltype;
1644
1645 *ccp = str;
1646
1647 return reg * 16 + atype.index;
1648 }
1649
1650 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1651
1652 static long
1653 parse_reg_list (char ** strp)
1654 {
1655 char * str = * strp;
1656 long range = 0;
1657 int another_range;
1658
1659 /* We come back here if we get ranges concatenated by '+' or '|'. */
1660 do
1661 {
1662 skip_whitespace (str);
1663
1664 another_range = 0;
1665
1666 if (*str == '{')
1667 {
1668 int in_range = 0;
1669 int cur_reg = -1;
1670
1671 str++;
1672 do
1673 {
1674 int reg;
1675
1676 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1677 {
1678 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1679 return FAIL;
1680 }
1681
1682 if (in_range)
1683 {
1684 int i;
1685
1686 if (reg <= cur_reg)
1687 {
1688 first_error (_("bad range in register list"));
1689 return FAIL;
1690 }
1691
1692 for (i = cur_reg + 1; i < reg; i++)
1693 {
1694 if (range & (1 << i))
1695 as_tsktsk
1696 (_("Warning: duplicated register (r%d) in register list"),
1697 i);
1698 else
1699 range |= 1 << i;
1700 }
1701 in_range = 0;
1702 }
1703
1704 if (range & (1 << reg))
1705 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1706 reg);
1707 else if (reg <= cur_reg)
1708 as_tsktsk (_("Warning: register range not in ascending order"));
1709
1710 range |= 1 << reg;
1711 cur_reg = reg;
1712 }
1713 while (skip_past_comma (&str) != FAIL
1714 || (in_range = 1, *str++ == '-'));
1715 str--;
1716
1717 if (skip_past_char (&str, '}') == FAIL)
1718 {
1719 first_error (_("missing `}'"));
1720 return FAIL;
1721 }
1722 }
1723 else
1724 {
1725 expressionS exp;
1726
1727 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1728 return FAIL;
1729
1730 if (exp.X_op == O_constant)
1731 {
1732 if (exp.X_add_number
1733 != (exp.X_add_number & 0x0000ffff))
1734 {
1735 inst.error = _("invalid register mask");
1736 return FAIL;
1737 }
1738
1739 if ((range & exp.X_add_number) != 0)
1740 {
1741 int regno = range & exp.X_add_number;
1742
1743 regno &= -regno;
1744 regno = (1 << regno) - 1;
1745 as_tsktsk
1746 (_("Warning: duplicated register (r%d) in register list"),
1747 regno);
1748 }
1749
1750 range |= exp.X_add_number;
1751 }
1752 else
1753 {
1754 if (inst.reloc.type != 0)
1755 {
1756 inst.error = _("expression too complex");
1757 return FAIL;
1758 }
1759
1760 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1761 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1762 inst.reloc.pc_rel = 0;
1763 }
1764 }
1765
1766 if (*str == '|' || *str == '+')
1767 {
1768 str++;
1769 another_range = 1;
1770 }
1771 }
1772 while (another_range);
1773
1774 *strp = str;
1775 return range;
1776 }
1777
1778 /* Types of registers in a list. */
1779
1780 enum reg_list_els
1781 {
1782 REGLIST_VFP_S,
1783 REGLIST_VFP_D,
1784 REGLIST_NEON_D
1785 };
1786
1787 /* Parse a VFP register list. If the string is invalid return FAIL.
1788 Otherwise return the number of registers, and set PBASE to the first
1789 register. Parses registers of type ETYPE.
1790 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1791 - Q registers can be used to specify pairs of D registers
1792 - { } can be omitted from around a singleton register list
1793 FIXME: This is not implemented, as it would require backtracking in
1794 some cases, e.g.:
1795 vtbl.8 d3,d4,d5
1796 This could be done (the meaning isn't really ambiguous), but doesn't
1797 fit in well with the current parsing framework.
1798 - 32 D registers may be used (also true for VFPv3).
1799 FIXME: Types are ignored in these register lists, which is probably a
1800 bug. */
1801
1802 static int
1803 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1804 {
1805 char *str = *ccp;
1806 int base_reg;
1807 int new_base;
1808 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1809 int max_regs = 0;
1810 int count = 0;
1811 int warned = 0;
1812 unsigned long mask = 0;
1813 int i;
1814
1815 if (skip_past_char (&str, '{') == FAIL)
1816 {
1817 inst.error = _("expecting {");
1818 return FAIL;
1819 }
1820
1821 switch (etype)
1822 {
1823 case REGLIST_VFP_S:
1824 regtype = REG_TYPE_VFS;
1825 max_regs = 32;
1826 break;
1827
1828 case REGLIST_VFP_D:
1829 regtype = REG_TYPE_VFD;
1830 break;
1831
1832 case REGLIST_NEON_D:
1833 regtype = REG_TYPE_NDQ;
1834 break;
1835 }
1836
1837 if (etype != REGLIST_VFP_S)
1838 {
1839 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1840 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1841 {
1842 max_regs = 32;
1843 if (thumb_mode)
1844 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1845 fpu_vfp_ext_d32);
1846 else
1847 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1848 fpu_vfp_ext_d32);
1849 }
1850 else
1851 max_regs = 16;
1852 }
1853
1854 base_reg = max_regs;
1855
1856 do
1857 {
1858 int setmask = 1, addregs = 1;
1859
1860 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1861
1862 if (new_base == FAIL)
1863 {
1864 first_error (_(reg_expected_msgs[regtype]));
1865 return FAIL;
1866 }
1867
1868 if (new_base >= max_regs)
1869 {
1870 first_error (_("register out of range in list"));
1871 return FAIL;
1872 }
1873
1874 /* Note: a value of 2 * n is returned for the register Q<n>. */
1875 if (regtype == REG_TYPE_NQ)
1876 {
1877 setmask = 3;
1878 addregs = 2;
1879 }
1880
1881 if (new_base < base_reg)
1882 base_reg = new_base;
1883
1884 if (mask & (setmask << new_base))
1885 {
1886 first_error (_("invalid register list"));
1887 return FAIL;
1888 }
1889
1890 if ((mask >> new_base) != 0 && ! warned)
1891 {
1892 as_tsktsk (_("register list not in ascending order"));
1893 warned = 1;
1894 }
1895
1896 mask |= setmask << new_base;
1897 count += addregs;
1898
1899 if (*str == '-') /* We have the start of a range expression */
1900 {
1901 int high_range;
1902
1903 str++;
1904
1905 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1906 == FAIL)
1907 {
1908 inst.error = gettext (reg_expected_msgs[regtype]);
1909 return FAIL;
1910 }
1911
1912 if (high_range >= max_regs)
1913 {
1914 first_error (_("register out of range in list"));
1915 return FAIL;
1916 }
1917
1918 if (regtype == REG_TYPE_NQ)
1919 high_range = high_range + 1;
1920
1921 if (high_range <= new_base)
1922 {
1923 inst.error = _("register range not in ascending order");
1924 return FAIL;
1925 }
1926
1927 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1928 {
1929 if (mask & (setmask << new_base))
1930 {
1931 inst.error = _("invalid register list");
1932 return FAIL;
1933 }
1934
1935 mask |= setmask << new_base;
1936 count += addregs;
1937 }
1938 }
1939 }
1940 while (skip_past_comma (&str) != FAIL);
1941
1942 str++;
1943
1944 /* Sanity check -- should have raised a parse error above. */
1945 if (count == 0 || count > max_regs)
1946 abort ();
1947
1948 *pbase = base_reg;
1949
1950 /* Final test -- the registers must be consecutive. */
1951 mask >>= base_reg;
1952 for (i = 0; i < count; i++)
1953 {
1954 if ((mask & (1u << i)) == 0)
1955 {
1956 inst.error = _("non-contiguous register range");
1957 return FAIL;
1958 }
1959 }
1960
1961 *ccp = str;
1962
1963 return count;
1964 }
1965
1966 /* True if two alias types are the same. */
1967
1968 static bfd_boolean
1969 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1970 {
1971 if (!a && !b)
1972 return TRUE;
1973
1974 if (!a || !b)
1975 return FALSE;
1976
1977 if (a->defined != b->defined)
1978 return FALSE;
1979
1980 if ((a->defined & NTA_HASTYPE) != 0
1981 && (a->eltype.type != b->eltype.type
1982 || a->eltype.size != b->eltype.size))
1983 return FALSE;
1984
1985 if ((a->defined & NTA_HASINDEX) != 0
1986 && (a->index != b->index))
1987 return FALSE;
1988
1989 return TRUE;
1990 }
1991
1992 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1993 The base register is put in *PBASE.
1994 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1995 the return value.
1996 The register stride (minus one) is put in bit 4 of the return value.
1997 Bits [6:5] encode the list length (minus one).
1998 The type of the list elements is put in *ELTYPE, if non-NULL. */
1999
2000 #define NEON_LANE(X) ((X) & 0xf)
2001 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2002 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2003
2004 static int
2005 parse_neon_el_struct_list (char **str, unsigned *pbase,
2006 struct neon_type_el *eltype)
2007 {
2008 char *ptr = *str;
2009 int base_reg = -1;
2010 int reg_incr = -1;
2011 int count = 0;
2012 int lane = -1;
2013 int leading_brace = 0;
2014 enum arm_reg_type rtype = REG_TYPE_NDQ;
2015 const char *const incr_error = _("register stride must be 1 or 2");
2016 const char *const type_error = _("mismatched element/structure types in list");
2017 struct neon_typed_alias firsttype;
2018 firsttype.defined = 0;
2019 firsttype.eltype.type = NT_invtype;
2020 firsttype.eltype.size = -1;
2021 firsttype.index = -1;
2022
2023 if (skip_past_char (&ptr, '{') == SUCCESS)
2024 leading_brace = 1;
2025
2026 do
2027 {
2028 struct neon_typed_alias atype;
2029 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2030
2031 if (getreg == FAIL)
2032 {
2033 first_error (_(reg_expected_msgs[rtype]));
2034 return FAIL;
2035 }
2036
2037 if (base_reg == -1)
2038 {
2039 base_reg = getreg;
2040 if (rtype == REG_TYPE_NQ)
2041 {
2042 reg_incr = 1;
2043 }
2044 firsttype = atype;
2045 }
2046 else if (reg_incr == -1)
2047 {
2048 reg_incr = getreg - base_reg;
2049 if (reg_incr < 1 || reg_incr > 2)
2050 {
2051 first_error (_(incr_error));
2052 return FAIL;
2053 }
2054 }
2055 else if (getreg != base_reg + reg_incr * count)
2056 {
2057 first_error (_(incr_error));
2058 return FAIL;
2059 }
2060
2061 if (! neon_alias_types_same (&atype, &firsttype))
2062 {
2063 first_error (_(type_error));
2064 return FAIL;
2065 }
2066
2067 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2068 modes. */
2069 if (ptr[0] == '-')
2070 {
2071 struct neon_typed_alias htype;
2072 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2073 if (lane == -1)
2074 lane = NEON_INTERLEAVE_LANES;
2075 else if (lane != NEON_INTERLEAVE_LANES)
2076 {
2077 first_error (_(type_error));
2078 return FAIL;
2079 }
2080 if (reg_incr == -1)
2081 reg_incr = 1;
2082 else if (reg_incr != 1)
2083 {
2084 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2085 return FAIL;
2086 }
2087 ptr++;
2088 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2089 if (hireg == FAIL)
2090 {
2091 first_error (_(reg_expected_msgs[rtype]));
2092 return FAIL;
2093 }
2094 if (! neon_alias_types_same (&htype, &firsttype))
2095 {
2096 first_error (_(type_error));
2097 return FAIL;
2098 }
2099 count += hireg + dregs - getreg;
2100 continue;
2101 }
2102
2103 /* If we're using Q registers, we can't use [] or [n] syntax. */
2104 if (rtype == REG_TYPE_NQ)
2105 {
2106 count += 2;
2107 continue;
2108 }
2109
2110 if ((atype.defined & NTA_HASINDEX) != 0)
2111 {
2112 if (lane == -1)
2113 lane = atype.index;
2114 else if (lane != atype.index)
2115 {
2116 first_error (_(type_error));
2117 return FAIL;
2118 }
2119 }
2120 else if (lane == -1)
2121 lane = NEON_INTERLEAVE_LANES;
2122 else if (lane != NEON_INTERLEAVE_LANES)
2123 {
2124 first_error (_(type_error));
2125 return FAIL;
2126 }
2127 count++;
2128 }
2129 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2130
2131 /* No lane set by [x]. We must be interleaving structures. */
2132 if (lane == -1)
2133 lane = NEON_INTERLEAVE_LANES;
2134
2135 /* Sanity check. */
2136 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2137 || (count > 1 && reg_incr == -1))
2138 {
2139 first_error (_("error parsing element/structure list"));
2140 return FAIL;
2141 }
2142
2143 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2144 {
2145 first_error (_("expected }"));
2146 return FAIL;
2147 }
2148
2149 if (reg_incr == -1)
2150 reg_incr = 1;
2151
2152 if (eltype)
2153 *eltype = firsttype.eltype;
2154
2155 *pbase = base_reg;
2156 *str = ptr;
2157
2158 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2159 }
2160
2161 /* Parse an explicit relocation suffix on an expression. This is
2162 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2163 arm_reloc_hsh contains no entries, so this function can only
2164 succeed if there is no () after the word. Returns -1 on error,
2165 BFD_RELOC_UNUSED if there wasn't any suffix. */
2166
2167 static int
2168 parse_reloc (char **str)
2169 {
2170 struct reloc_entry *r;
2171 char *p, *q;
2172
2173 if (**str != '(')
2174 return BFD_RELOC_UNUSED;
2175
2176 p = *str + 1;
2177 q = p;
2178
2179 while (*q && *q != ')' && *q != ',')
2180 q++;
2181 if (*q != ')')
2182 return -1;
2183
2184 if ((r = (struct reloc_entry *)
2185 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2186 return -1;
2187
2188 *str = q + 1;
2189 return r->reloc;
2190 }
2191
2192 /* Directives: register aliases. */
2193
2194 static struct reg_entry *
2195 insert_reg_alias (char *str, unsigned number, int type)
2196 {
2197 struct reg_entry *new_reg;
2198 const char *name;
2199
2200 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2201 {
2202 if (new_reg->builtin)
2203 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2204
2205 /* Only warn about a redefinition if it's not defined as the
2206 same register. */
2207 else if (new_reg->number != number || new_reg->type != type)
2208 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2209
2210 return NULL;
2211 }
2212
2213 name = xstrdup (str);
2214 new_reg = XNEW (struct reg_entry);
2215
2216 new_reg->name = name;
2217 new_reg->number = number;
2218 new_reg->type = type;
2219 new_reg->builtin = FALSE;
2220 new_reg->neon = NULL;
2221
2222 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2223 abort ();
2224
2225 return new_reg;
2226 }
2227
2228 static void
2229 insert_neon_reg_alias (char *str, int number, int type,
2230 struct neon_typed_alias *atype)
2231 {
2232 struct reg_entry *reg = insert_reg_alias (str, number, type);
2233
2234 if (!reg)
2235 {
2236 first_error (_("attempt to redefine typed alias"));
2237 return;
2238 }
2239
2240 if (atype)
2241 {
2242 reg->neon = XNEW (struct neon_typed_alias);
2243 *reg->neon = *atype;
2244 }
2245 }
2246
2247 /* Look for the .req directive. This is of the form:
2248
2249 new_register_name .req existing_register_name
2250
2251 If we find one, or if it looks sufficiently like one that we want to
2252 handle any error here, return TRUE. Otherwise return FALSE. */
2253
2254 static bfd_boolean
2255 create_register_alias (char * newname, char *p)
2256 {
2257 struct reg_entry *old;
2258 char *oldname, *nbuf;
2259 size_t nlen;
2260
2261 /* The input scrubber ensures that whitespace after the mnemonic is
2262 collapsed to single spaces. */
2263 oldname = p;
2264 if (strncmp (oldname, " .req ", 6) != 0)
2265 return FALSE;
2266
2267 oldname += 6;
2268 if (*oldname == '\0')
2269 return FALSE;
2270
2271 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2272 if (!old)
2273 {
2274 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2275 return TRUE;
2276 }
2277
2278 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2279 the desired alias name, and p points to its end. If not, then
2280 the desired alias name is in the global original_case_string. */
2281 #ifdef TC_CASE_SENSITIVE
2282 nlen = p - newname;
2283 #else
2284 newname = original_case_string;
2285 nlen = strlen (newname);
2286 #endif
2287
2288 nbuf = xmemdup0 (newname, nlen);
2289
2290 /* Create aliases under the new name as stated; an all-lowercase
2291 version of the new name; and an all-uppercase version of the new
2292 name. */
2293 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2294 {
2295 for (p = nbuf; *p; p++)
2296 *p = TOUPPER (*p);
2297
2298 if (strncmp (nbuf, newname, nlen))
2299 {
2300 /* If this attempt to create an additional alias fails, do not bother
2301 trying to create the all-lower case alias. We will fail and issue
2302 a second, duplicate error message. This situation arises when the
2303 programmer does something like:
2304 foo .req r0
2305 Foo .req r1
2306 The second .req creates the "Foo" alias but then fails to create
2307 the artificial FOO alias because it has already been created by the
2308 first .req. */
2309 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2310 {
2311 free (nbuf);
2312 return TRUE;
2313 }
2314 }
2315
2316 for (p = nbuf; *p; p++)
2317 *p = TOLOWER (*p);
2318
2319 if (strncmp (nbuf, newname, nlen))
2320 insert_reg_alias (nbuf, old->number, old->type);
2321 }
2322
2323 free (nbuf);
2324 return TRUE;
2325 }
2326
2327 /* Create a Neon typed/indexed register alias using directives, e.g.:
2328 X .dn d5.s32[1]
2329 Y .qn 6.s16
2330 Z .dn d7
2331 T .dn Z[0]
2332 These typed registers can be used instead of the types specified after the
2333 Neon mnemonic, so long as all operands given have types. Types can also be
2334 specified directly, e.g.:
2335 vadd d0.s32, d1.s32, d2.s32 */
2336
2337 static bfd_boolean
2338 create_neon_reg_alias (char *newname, char *p)
2339 {
2340 enum arm_reg_type basetype;
2341 struct reg_entry *basereg;
2342 struct reg_entry mybasereg;
2343 struct neon_type ntype;
2344 struct neon_typed_alias typeinfo;
2345 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2346 int namelen;
2347
2348 typeinfo.defined = 0;
2349 typeinfo.eltype.type = NT_invtype;
2350 typeinfo.eltype.size = -1;
2351 typeinfo.index = -1;
2352
2353 nameend = p;
2354
2355 if (strncmp (p, " .dn ", 5) == 0)
2356 basetype = REG_TYPE_VFD;
2357 else if (strncmp (p, " .qn ", 5) == 0)
2358 basetype = REG_TYPE_NQ;
2359 else
2360 return FALSE;
2361
2362 p += 5;
2363
2364 if (*p == '\0')
2365 return FALSE;
2366
2367 basereg = arm_reg_parse_multi (&p);
2368
2369 if (basereg && basereg->type != basetype)
2370 {
2371 as_bad (_("bad type for register"));
2372 return FALSE;
2373 }
2374
2375 if (basereg == NULL)
2376 {
2377 expressionS exp;
2378 /* Try parsing as an integer. */
2379 my_get_expression (&exp, &p, GE_NO_PREFIX);
2380 if (exp.X_op != O_constant)
2381 {
2382 as_bad (_("expression must be constant"));
2383 return FALSE;
2384 }
2385 basereg = &mybasereg;
2386 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2387 : exp.X_add_number;
2388 basereg->neon = 0;
2389 }
2390
2391 if (basereg->neon)
2392 typeinfo = *basereg->neon;
2393
2394 if (parse_neon_type (&ntype, &p) == SUCCESS)
2395 {
2396 /* We got a type. */
2397 if (typeinfo.defined & NTA_HASTYPE)
2398 {
2399 as_bad (_("can't redefine the type of a register alias"));
2400 return FALSE;
2401 }
2402
2403 typeinfo.defined |= NTA_HASTYPE;
2404 if (ntype.elems != 1)
2405 {
2406 as_bad (_("you must specify a single type only"));
2407 return FALSE;
2408 }
2409 typeinfo.eltype = ntype.el[0];
2410 }
2411
2412 if (skip_past_char (&p, '[') == SUCCESS)
2413 {
2414 expressionS exp;
2415 /* We got a scalar index. */
2416
2417 if (typeinfo.defined & NTA_HASINDEX)
2418 {
2419 as_bad (_("can't redefine the index of a scalar alias"));
2420 return FALSE;
2421 }
2422
2423 my_get_expression (&exp, &p, GE_NO_PREFIX);
2424
2425 if (exp.X_op != O_constant)
2426 {
2427 as_bad (_("scalar index must be constant"));
2428 return FALSE;
2429 }
2430
2431 typeinfo.defined |= NTA_HASINDEX;
2432 typeinfo.index = exp.X_add_number;
2433
2434 if (skip_past_char (&p, ']') == FAIL)
2435 {
2436 as_bad (_("expecting ]"));
2437 return FALSE;
2438 }
2439 }
2440
2441 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2442 the desired alias name, and p points to its end. If not, then
2443 the desired alias name is in the global original_case_string. */
2444 #ifdef TC_CASE_SENSITIVE
2445 namelen = nameend - newname;
2446 #else
2447 newname = original_case_string;
2448 namelen = strlen (newname);
2449 #endif
2450
2451 namebuf = xmemdup0 (newname, namelen);
2452
2453 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2454 typeinfo.defined != 0 ? &typeinfo : NULL);
2455
2456 /* Insert name in all uppercase. */
2457 for (p = namebuf; *p; p++)
2458 *p = TOUPPER (*p);
2459
2460 if (strncmp (namebuf, newname, namelen))
2461 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2462 typeinfo.defined != 0 ? &typeinfo : NULL);
2463
2464 /* Insert name in all lowercase. */
2465 for (p = namebuf; *p; p++)
2466 *p = TOLOWER (*p);
2467
2468 if (strncmp (namebuf, newname, namelen))
2469 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2470 typeinfo.defined != 0 ? &typeinfo : NULL);
2471
2472 free (namebuf);
2473 return TRUE;
2474 }
2475
2476 /* Should never be called, as .req goes between the alias and the
2477 register name, not at the beginning of the line. */
2478
2479 static void
2480 s_req (int a ATTRIBUTE_UNUSED)
2481 {
2482 as_bad (_("invalid syntax for .req directive"));
2483 }
2484
2485 static void
2486 s_dn (int a ATTRIBUTE_UNUSED)
2487 {
2488 as_bad (_("invalid syntax for .dn directive"));
2489 }
2490
2491 static void
2492 s_qn (int a ATTRIBUTE_UNUSED)
2493 {
2494 as_bad (_("invalid syntax for .qn directive"));
2495 }
2496
2497 /* The .unreq directive deletes an alias which was previously defined
2498 by .req. For example:
2499
2500 my_alias .req r11
2501 .unreq my_alias */
2502
2503 static void
2504 s_unreq (int a ATTRIBUTE_UNUSED)
2505 {
2506 char * name;
2507 char saved_char;
2508
2509 name = input_line_pointer;
2510
2511 while (*input_line_pointer != 0
2512 && *input_line_pointer != ' '
2513 && *input_line_pointer != '\n')
2514 ++input_line_pointer;
2515
2516 saved_char = *input_line_pointer;
2517 *input_line_pointer = 0;
2518
2519 if (!*name)
2520 as_bad (_("invalid syntax for .unreq directive"));
2521 else
2522 {
2523 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2524 name);
2525
2526 if (!reg)
2527 as_bad (_("unknown register alias '%s'"), name);
2528 else if (reg->builtin)
2529 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2530 name);
2531 else
2532 {
2533 char * p;
2534 char * nbuf;
2535
2536 hash_delete (arm_reg_hsh, name, FALSE);
2537 free ((char *) reg->name);
2538 if (reg->neon)
2539 free (reg->neon);
2540 free (reg);
2541
2542 /* Also locate the all upper case and all lower case versions.
2543 Do not complain if we cannot find one or the other as it
2544 was probably deleted above. */
2545
2546 nbuf = strdup (name);
2547 for (p = nbuf; *p; p++)
2548 *p = TOUPPER (*p);
2549 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2550 if (reg)
2551 {
2552 hash_delete (arm_reg_hsh, nbuf, FALSE);
2553 free ((char *) reg->name);
2554 if (reg->neon)
2555 free (reg->neon);
2556 free (reg);
2557 }
2558
2559 for (p = nbuf; *p; p++)
2560 *p = TOLOWER (*p);
2561 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2562 if (reg)
2563 {
2564 hash_delete (arm_reg_hsh, nbuf, FALSE);
2565 free ((char *) reg->name);
2566 if (reg->neon)
2567 free (reg->neon);
2568 free (reg);
2569 }
2570
2571 free (nbuf);
2572 }
2573 }
2574
2575 *input_line_pointer = saved_char;
2576 demand_empty_rest_of_line ();
2577 }
2578
2579 /* Directives: Instruction set selection. */
2580
2581 #ifdef OBJ_ELF
2582 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2583 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2584 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2585 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2586
2587 /* Create a new mapping symbol for the transition to STATE. */
2588
2589 static void
2590 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2591 {
2592 symbolS * symbolP;
2593 const char * symname;
2594 int type;
2595
2596 switch (state)
2597 {
2598 case MAP_DATA:
2599 symname = "$d";
2600 type = BSF_NO_FLAGS;
2601 break;
2602 case MAP_ARM:
2603 symname = "$a";
2604 type = BSF_NO_FLAGS;
2605 break;
2606 case MAP_THUMB:
2607 symname = "$t";
2608 type = BSF_NO_FLAGS;
2609 break;
2610 default:
2611 abort ();
2612 }
2613
2614 symbolP = symbol_new (symname, now_seg, value, frag);
2615 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2616
2617 switch (state)
2618 {
2619 case MAP_ARM:
2620 THUMB_SET_FUNC (symbolP, 0);
2621 ARM_SET_THUMB (symbolP, 0);
2622 ARM_SET_INTERWORK (symbolP, support_interwork);
2623 break;
2624
2625 case MAP_THUMB:
2626 THUMB_SET_FUNC (symbolP, 1);
2627 ARM_SET_THUMB (symbolP, 1);
2628 ARM_SET_INTERWORK (symbolP, support_interwork);
2629 break;
2630
2631 case MAP_DATA:
2632 default:
2633 break;
2634 }
2635
2636 /* Save the mapping symbols for future reference. Also check that
2637 we do not place two mapping symbols at the same offset within a
2638 frag. We'll handle overlap between frags in
2639 check_mapping_symbols.
2640
2641 If .fill or other data filling directive generates zero sized data,
2642 the mapping symbol for the following code will have the same value
2643 as the one generated for the data filling directive. In this case,
2644 we replace the old symbol with the new one at the same address. */
2645 if (value == 0)
2646 {
2647 if (frag->tc_frag_data.first_map != NULL)
2648 {
2649 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2650 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2651 }
2652 frag->tc_frag_data.first_map = symbolP;
2653 }
2654 if (frag->tc_frag_data.last_map != NULL)
2655 {
2656 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2657 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2658 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2659 }
2660 frag->tc_frag_data.last_map = symbolP;
2661 }
2662
2663 /* We must sometimes convert a region marked as code to data during
2664 code alignment, if an odd number of bytes have to be padded. The
2665 code mapping symbol is pushed to an aligned address. */
2666
2667 static void
2668 insert_data_mapping_symbol (enum mstate state,
2669 valueT value, fragS *frag, offsetT bytes)
2670 {
2671 /* If there was already a mapping symbol, remove it. */
2672 if (frag->tc_frag_data.last_map != NULL
2673 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2674 {
2675 symbolS *symp = frag->tc_frag_data.last_map;
2676
2677 if (value == 0)
2678 {
2679 know (frag->tc_frag_data.first_map == symp);
2680 frag->tc_frag_data.first_map = NULL;
2681 }
2682 frag->tc_frag_data.last_map = NULL;
2683 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2684 }
2685
2686 make_mapping_symbol (MAP_DATA, value, frag);
2687 make_mapping_symbol (state, value + bytes, frag);
2688 }
2689
2690 static void mapping_state_2 (enum mstate state, int max_chars);
2691
2692 /* Set the mapping state to STATE. Only call this when about to
2693 emit some STATE bytes to the file. */
2694
2695 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2696 void
2697 mapping_state (enum mstate state)
2698 {
2699 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2700
2701 if (mapstate == state)
2702 /* The mapping symbol has already been emitted.
2703 There is nothing else to do. */
2704 return;
2705
2706 if (state == MAP_ARM || state == MAP_THUMB)
2707 /* PR gas/12931
2708 All ARM instructions require 4-byte alignment.
2709 (Almost) all Thumb instructions require 2-byte alignment.
2710
2711 When emitting instructions into any section, mark the section
2712 appropriately.
2713
2714 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2715 but themselves require 2-byte alignment; this applies to some
2716 PC- relative forms. However, these cases will involve implicit
2717 literal pool generation or an explicit .align >=2, both of
2718 which will cause the section to me marked with sufficient
2719 alignment. Thus, we don't handle those cases here. */
2720 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2721
2722 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2723 /* This case will be evaluated later. */
2724 return;
2725
2726 mapping_state_2 (state, 0);
2727 }
2728
2729 /* Same as mapping_state, but MAX_CHARS bytes have already been
2730 allocated. Put the mapping symbol that far back. */
2731
2732 static void
2733 mapping_state_2 (enum mstate state, int max_chars)
2734 {
2735 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2736
2737 if (!SEG_NORMAL (now_seg))
2738 return;
2739
2740 if (mapstate == state)
2741 /* The mapping symbol has already been emitted.
2742 There is nothing else to do. */
2743 return;
2744
2745 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2746 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2747 {
2748 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2749 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2750
2751 if (add_symbol)
2752 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2753 }
2754
2755 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2756 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2757 }
2758 #undef TRANSITION
2759 #else
2760 #define mapping_state(x) ((void)0)
2761 #define mapping_state_2(x, y) ((void)0)
2762 #endif
2763
2764 /* Find the real, Thumb encoded start of a Thumb function. */
2765
2766 #ifdef OBJ_COFF
2767 static symbolS *
2768 find_real_start (symbolS * symbolP)
2769 {
2770 char * real_start;
2771 const char * name = S_GET_NAME (symbolP);
2772 symbolS * new_target;
2773
2774 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2775 #define STUB_NAME ".real_start_of"
2776
2777 if (name == NULL)
2778 abort ();
2779
2780 /* The compiler may generate BL instructions to local labels because
2781 it needs to perform a branch to a far away location. These labels
2782 do not have a corresponding ".real_start_of" label. We check
2783 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2784 the ".real_start_of" convention for nonlocal branches. */
2785 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2786 return symbolP;
2787
2788 real_start = concat (STUB_NAME, name, NULL);
2789 new_target = symbol_find (real_start);
2790 free (real_start);
2791
2792 if (new_target == NULL)
2793 {
2794 as_warn (_("Failed to find real start of function: %s\n"), name);
2795 new_target = symbolP;
2796 }
2797
2798 return new_target;
2799 }
2800 #endif
2801
2802 static void
2803 opcode_select (int width)
2804 {
2805 switch (width)
2806 {
2807 case 16:
2808 if (! thumb_mode)
2809 {
2810 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2811 as_bad (_("selected processor does not support THUMB opcodes"));
2812
2813 thumb_mode = 1;
2814 /* No need to force the alignment, since we will have been
2815 coming from ARM mode, which is word-aligned. */
2816 record_alignment (now_seg, 1);
2817 }
2818 break;
2819
2820 case 32:
2821 if (thumb_mode)
2822 {
2823 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2824 as_bad (_("selected processor does not support ARM opcodes"));
2825
2826 thumb_mode = 0;
2827
2828 if (!need_pass_2)
2829 frag_align (2, 0, 0);
2830
2831 record_alignment (now_seg, 1);
2832 }
2833 break;
2834
2835 default:
2836 as_bad (_("invalid instruction size selected (%d)"), width);
2837 }
2838 }
2839
2840 static void
2841 s_arm (int ignore ATTRIBUTE_UNUSED)
2842 {
2843 opcode_select (32);
2844 demand_empty_rest_of_line ();
2845 }
2846
2847 static void
2848 s_thumb (int ignore ATTRIBUTE_UNUSED)
2849 {
2850 opcode_select (16);
2851 demand_empty_rest_of_line ();
2852 }
2853
2854 static void
2855 s_code (int unused ATTRIBUTE_UNUSED)
2856 {
2857 int temp;
2858
2859 temp = get_absolute_expression ();
2860 switch (temp)
2861 {
2862 case 16:
2863 case 32:
2864 opcode_select (temp);
2865 break;
2866
2867 default:
2868 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2869 }
2870 }
2871
2872 static void
2873 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2874 {
2875 /* If we are not already in thumb mode go into it, EVEN if
2876 the target processor does not support thumb instructions.
2877 This is used by gcc/config/arm/lib1funcs.asm for example
2878 to compile interworking support functions even if the
2879 target processor should not support interworking. */
2880 if (! thumb_mode)
2881 {
2882 thumb_mode = 2;
2883 record_alignment (now_seg, 1);
2884 }
2885
2886 demand_empty_rest_of_line ();
2887 }
2888
2889 static void
2890 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2891 {
2892 s_thumb (0);
2893
2894 /* The following label is the name/address of the start of a Thumb function.
2895 We need to know this for the interworking support. */
2896 label_is_thumb_function_name = TRUE;
2897 }
2898
2899 /* Perform a .set directive, but also mark the alias as
2900 being a thumb function. */
2901
2902 static void
2903 s_thumb_set (int equiv)
2904 {
2905 /* XXX the following is a duplicate of the code for s_set() in read.c
2906 We cannot just call that code as we need to get at the symbol that
2907 is created. */
2908 char * name;
2909 char delim;
2910 char * end_name;
2911 symbolS * symbolP;
2912
2913 /* Especial apologies for the random logic:
2914 This just grew, and could be parsed much more simply!
2915 Dean - in haste. */
2916 delim = get_symbol_name (& name);
2917 end_name = input_line_pointer;
2918 (void) restore_line_pointer (delim);
2919
2920 if (*input_line_pointer != ',')
2921 {
2922 *end_name = 0;
2923 as_bad (_("expected comma after name \"%s\""), name);
2924 *end_name = delim;
2925 ignore_rest_of_line ();
2926 return;
2927 }
2928
2929 input_line_pointer++;
2930 *end_name = 0;
2931
2932 if (name[0] == '.' && name[1] == '\0')
2933 {
2934 /* XXX - this should not happen to .thumb_set. */
2935 abort ();
2936 }
2937
2938 if ((symbolP = symbol_find (name)) == NULL
2939 && (symbolP = md_undefined_symbol (name)) == NULL)
2940 {
2941 #ifndef NO_LISTING
2942 /* When doing symbol listings, play games with dummy fragments living
2943 outside the normal fragment chain to record the file and line info
2944 for this symbol. */
2945 if (listing & LISTING_SYMBOLS)
2946 {
2947 extern struct list_info_struct * listing_tail;
2948 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2949
2950 memset (dummy_frag, 0, sizeof (fragS));
2951 dummy_frag->fr_type = rs_fill;
2952 dummy_frag->line = listing_tail;
2953 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2954 dummy_frag->fr_symbol = symbolP;
2955 }
2956 else
2957 #endif
2958 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2959
2960 #ifdef OBJ_COFF
2961 /* "set" symbols are local unless otherwise specified. */
2962 SF_SET_LOCAL (symbolP);
2963 #endif /* OBJ_COFF */
2964 } /* Make a new symbol. */
2965
2966 symbol_table_insert (symbolP);
2967
2968 * end_name = delim;
2969
2970 if (equiv
2971 && S_IS_DEFINED (symbolP)
2972 && S_GET_SEGMENT (symbolP) != reg_section)
2973 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2974
2975 pseudo_set (symbolP);
2976
2977 demand_empty_rest_of_line ();
2978
2979 /* XXX Now we come to the Thumb specific bit of code. */
2980
2981 THUMB_SET_FUNC (symbolP, 1);
2982 ARM_SET_THUMB (symbolP, 1);
2983 #if defined OBJ_ELF || defined OBJ_COFF
2984 ARM_SET_INTERWORK (symbolP, support_interwork);
2985 #endif
2986 }
2987
2988 /* Directives: Mode selection. */
2989
2990 /* .syntax [unified|divided] - choose the new unified syntax
2991 (same for Arm and Thumb encoding, modulo slight differences in what
2992 can be represented) or the old divergent syntax for each mode. */
2993 static void
2994 s_syntax (int unused ATTRIBUTE_UNUSED)
2995 {
2996 char *name, delim;
2997
2998 delim = get_symbol_name (& name);
2999
3000 if (!strcasecmp (name, "unified"))
3001 unified_syntax = TRUE;
3002 else if (!strcasecmp (name, "divided"))
3003 unified_syntax = FALSE;
3004 else
3005 {
3006 as_bad (_("unrecognized syntax mode \"%s\""), name);
3007 return;
3008 }
3009 (void) restore_line_pointer (delim);
3010 demand_empty_rest_of_line ();
3011 }
3012
3013 /* Directives: sectioning and alignment. */
3014
3015 static void
3016 s_bss (int ignore ATTRIBUTE_UNUSED)
3017 {
3018 /* We don't support putting frags in the BSS segment, we fake it by
3019 marking in_bss, then looking at s_skip for clues. */
3020 subseg_set (bss_section, 0);
3021 demand_empty_rest_of_line ();
3022
3023 #ifdef md_elf_section_change_hook
3024 md_elf_section_change_hook ();
3025 #endif
3026 }
3027
3028 static void
3029 s_even (int ignore ATTRIBUTE_UNUSED)
3030 {
3031 /* Never make frag if expect extra pass. */
3032 if (!need_pass_2)
3033 frag_align (1, 0, 0);
3034
3035 record_alignment (now_seg, 1);
3036
3037 demand_empty_rest_of_line ();
3038 }
3039
3040 /* Directives: CodeComposer Studio. */
3041
3042 /* .ref (for CodeComposer Studio syntax only). */
3043 static void
3044 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3045 {
3046 if (codecomposer_syntax)
3047 ignore_rest_of_line ();
3048 else
3049 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3050 }
3051
3052 /* If name is not NULL, then it is used for marking the beginning of a
3053 function, whereas if it is NULL then it means the function end. */
3054 static void
3055 asmfunc_debug (const char * name)
3056 {
3057 static const char * last_name = NULL;
3058
3059 if (name != NULL)
3060 {
3061 gas_assert (last_name == NULL);
3062 last_name = name;
3063
3064 if (debug_type == DEBUG_STABS)
3065 stabs_generate_asm_func (name, name);
3066 }
3067 else
3068 {
3069 gas_assert (last_name != NULL);
3070
3071 if (debug_type == DEBUG_STABS)
3072 stabs_generate_asm_endfunc (last_name, last_name);
3073
3074 last_name = NULL;
3075 }
3076 }
3077
3078 static void
3079 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3080 {
3081 if (codecomposer_syntax)
3082 {
3083 switch (asmfunc_state)
3084 {
3085 case OUTSIDE_ASMFUNC:
3086 asmfunc_state = WAITING_ASMFUNC_NAME;
3087 break;
3088
3089 case WAITING_ASMFUNC_NAME:
3090 as_bad (_(".asmfunc repeated."));
3091 break;
3092
3093 case WAITING_ENDASMFUNC:
3094 as_bad (_(".asmfunc without function."));
3095 break;
3096 }
3097 demand_empty_rest_of_line ();
3098 }
3099 else
3100 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3101 }
3102
3103 static void
3104 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3105 {
3106 if (codecomposer_syntax)
3107 {
3108 switch (asmfunc_state)
3109 {
3110 case OUTSIDE_ASMFUNC:
3111 as_bad (_(".endasmfunc without a .asmfunc."));
3112 break;
3113
3114 case WAITING_ASMFUNC_NAME:
3115 as_bad (_(".endasmfunc without function."));
3116 break;
3117
3118 case WAITING_ENDASMFUNC:
3119 asmfunc_state = OUTSIDE_ASMFUNC;
3120 asmfunc_debug (NULL);
3121 break;
3122 }
3123 demand_empty_rest_of_line ();
3124 }
3125 else
3126 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3127 }
3128
3129 static void
3130 s_ccs_def (int name)
3131 {
3132 if (codecomposer_syntax)
3133 s_globl (name);
3134 else
3135 as_bad (_(".def pseudo-op only available with -mccs flag."));
3136 }
3137
3138 /* Directives: Literal pools. */
3139
3140 static literal_pool *
3141 find_literal_pool (void)
3142 {
3143 literal_pool * pool;
3144
3145 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3146 {
3147 if (pool->section == now_seg
3148 && pool->sub_section == now_subseg)
3149 break;
3150 }
3151
3152 return pool;
3153 }
3154
3155 static literal_pool *
3156 find_or_make_literal_pool (void)
3157 {
3158 /* Next literal pool ID number. */
3159 static unsigned int latest_pool_num = 1;
3160 literal_pool * pool;
3161
3162 pool = find_literal_pool ();
3163
3164 if (pool == NULL)
3165 {
3166 /* Create a new pool. */
3167 pool = XNEW (literal_pool);
3168 if (! pool)
3169 return NULL;
3170
3171 pool->next_free_entry = 0;
3172 pool->section = now_seg;
3173 pool->sub_section = now_subseg;
3174 pool->next = list_of_pools;
3175 pool->symbol = NULL;
3176 pool->alignment = 2;
3177
3178 /* Add it to the list. */
3179 list_of_pools = pool;
3180 }
3181
3182 /* New pools, and emptied pools, will have a NULL symbol. */
3183 if (pool->symbol == NULL)
3184 {
3185 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3186 (valueT) 0, &zero_address_frag);
3187 pool->id = latest_pool_num ++;
3188 }
3189
3190 /* Done. */
3191 return pool;
3192 }
3193
3194 /* Add the literal in the global 'inst'
3195 structure to the relevant literal pool. */
3196
3197 static int
3198 add_to_lit_pool (unsigned int nbytes)
3199 {
3200 #define PADDING_SLOT 0x1
3201 #define LIT_ENTRY_SIZE_MASK 0xFF
3202 literal_pool * pool;
3203 unsigned int entry, pool_size = 0;
3204 bfd_boolean padding_slot_p = FALSE;
3205 unsigned imm1 = 0;
3206 unsigned imm2 = 0;
3207
3208 if (nbytes == 8)
3209 {
3210 imm1 = inst.operands[1].imm;
3211 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3212 : inst.reloc.exp.X_unsigned ? 0
3213 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3214 if (target_big_endian)
3215 {
3216 imm1 = imm2;
3217 imm2 = inst.operands[1].imm;
3218 }
3219 }
3220
3221 pool = find_or_make_literal_pool ();
3222
3223 /* Check if this literal value is already in the pool. */
3224 for (entry = 0; entry < pool->next_free_entry; entry ++)
3225 {
3226 if (nbytes == 4)
3227 {
3228 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3229 && (inst.reloc.exp.X_op == O_constant)
3230 && (pool->literals[entry].X_add_number
3231 == inst.reloc.exp.X_add_number)
3232 && (pool->literals[entry].X_md == nbytes)
3233 && (pool->literals[entry].X_unsigned
3234 == inst.reloc.exp.X_unsigned))
3235 break;
3236
3237 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3238 && (inst.reloc.exp.X_op == O_symbol)
3239 && (pool->literals[entry].X_add_number
3240 == inst.reloc.exp.X_add_number)
3241 && (pool->literals[entry].X_add_symbol
3242 == inst.reloc.exp.X_add_symbol)
3243 && (pool->literals[entry].X_op_symbol
3244 == inst.reloc.exp.X_op_symbol)
3245 && (pool->literals[entry].X_md == nbytes))
3246 break;
3247 }
3248 else if ((nbytes == 8)
3249 && !(pool_size & 0x7)
3250 && ((entry + 1) != pool->next_free_entry)
3251 && (pool->literals[entry].X_op == O_constant)
3252 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3253 && (pool->literals[entry].X_unsigned
3254 == inst.reloc.exp.X_unsigned)
3255 && (pool->literals[entry + 1].X_op == O_constant)
3256 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3257 && (pool->literals[entry + 1].X_unsigned
3258 == inst.reloc.exp.X_unsigned))
3259 break;
3260
3261 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3262 if (padding_slot_p && (nbytes == 4))
3263 break;
3264
3265 pool_size += 4;
3266 }
3267
3268 /* Do we need to create a new entry? */
3269 if (entry == pool->next_free_entry)
3270 {
3271 if (entry >= MAX_LITERAL_POOL_SIZE)
3272 {
3273 inst.error = _("literal pool overflow");
3274 return FAIL;
3275 }
3276
3277 if (nbytes == 8)
3278 {
3279 /* For 8-byte entries, we align to an 8-byte boundary,
3280 and split it into two 4-byte entries, because on 32-bit
3281 host, 8-byte constants are treated as big num, thus
3282 saved in "generic_bignum" which will be overwritten
3283 by later assignments.
3284
3285 We also need to make sure there is enough space for
3286 the split.
3287
3288 We also check to make sure the literal operand is a
3289 constant number. */
3290 if (!(inst.reloc.exp.X_op == O_constant
3291 || inst.reloc.exp.X_op == O_big))
3292 {
3293 inst.error = _("invalid type for literal pool");
3294 return FAIL;
3295 }
3296 else if (pool_size & 0x7)
3297 {
3298 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3299 {
3300 inst.error = _("literal pool overflow");
3301 return FAIL;
3302 }
3303
3304 pool->literals[entry] = inst.reloc.exp;
3305 pool->literals[entry].X_op = O_constant;
3306 pool->literals[entry].X_add_number = 0;
3307 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3308 pool->next_free_entry += 1;
3309 pool_size += 4;
3310 }
3311 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3312 {
3313 inst.error = _("literal pool overflow");
3314 return FAIL;
3315 }
3316
3317 pool->literals[entry] = inst.reloc.exp;
3318 pool->literals[entry].X_op = O_constant;
3319 pool->literals[entry].X_add_number = imm1;
3320 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3321 pool->literals[entry++].X_md = 4;
3322 pool->literals[entry] = inst.reloc.exp;
3323 pool->literals[entry].X_op = O_constant;
3324 pool->literals[entry].X_add_number = imm2;
3325 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3326 pool->literals[entry].X_md = 4;
3327 pool->alignment = 3;
3328 pool->next_free_entry += 1;
3329 }
3330 else
3331 {
3332 pool->literals[entry] = inst.reloc.exp;
3333 pool->literals[entry].X_md = 4;
3334 }
3335
3336 #ifdef OBJ_ELF
3337 /* PR ld/12974: Record the location of the first source line to reference
3338 this entry in the literal pool. If it turns out during linking that the
3339 symbol does not exist we will be able to give an accurate line number for
3340 the (first use of the) missing reference. */
3341 if (debug_type == DEBUG_DWARF2)
3342 dwarf2_where (pool->locs + entry);
3343 #endif
3344 pool->next_free_entry += 1;
3345 }
3346 else if (padding_slot_p)
3347 {
3348 pool->literals[entry] = inst.reloc.exp;
3349 pool->literals[entry].X_md = nbytes;
3350 }
3351
3352 inst.reloc.exp.X_op = O_symbol;
3353 inst.reloc.exp.X_add_number = pool_size;
3354 inst.reloc.exp.X_add_symbol = pool->symbol;
3355
3356 return SUCCESS;
3357 }
3358
3359 bfd_boolean
3360 tc_start_label_without_colon (void)
3361 {
3362 bfd_boolean ret = TRUE;
3363
3364 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3365 {
3366 const char *label = input_line_pointer;
3367
3368 while (!is_end_of_line[(int) label[-1]])
3369 --label;
3370
3371 if (*label == '.')
3372 {
3373 as_bad (_("Invalid label '%s'"), label);
3374 ret = FALSE;
3375 }
3376
3377 asmfunc_debug (label);
3378
3379 asmfunc_state = WAITING_ENDASMFUNC;
3380 }
3381
3382 return ret;
3383 }
3384
3385 /* Can't use symbol_new here, so have to create a symbol and then at
3386 a later date assign it a value. That's what these functions do. */
3387
3388 static void
3389 symbol_locate (symbolS * symbolP,
3390 const char * name, /* It is copied, the caller can modify. */
3391 segT segment, /* Segment identifier (SEG_<something>). */
3392 valueT valu, /* Symbol value. */
3393 fragS * frag) /* Associated fragment. */
3394 {
3395 size_t name_length;
3396 char * preserved_copy_of_name;
3397
3398 name_length = strlen (name) + 1; /* +1 for \0. */
3399 obstack_grow (&notes, name, name_length);
3400 preserved_copy_of_name = (char *) obstack_finish (&notes);
3401
3402 #ifdef tc_canonicalize_symbol_name
3403 preserved_copy_of_name =
3404 tc_canonicalize_symbol_name (preserved_copy_of_name);
3405 #endif
3406
3407 S_SET_NAME (symbolP, preserved_copy_of_name);
3408
3409 S_SET_SEGMENT (symbolP, segment);
3410 S_SET_VALUE (symbolP, valu);
3411 symbol_clear_list_pointers (symbolP);
3412
3413 symbol_set_frag (symbolP, frag);
3414
3415 /* Link to end of symbol chain. */
3416 {
3417 extern int symbol_table_frozen;
3418
3419 if (symbol_table_frozen)
3420 abort ();
3421 }
3422
3423 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3424
3425 obj_symbol_new_hook (symbolP);
3426
3427 #ifdef tc_symbol_new_hook
3428 tc_symbol_new_hook (symbolP);
3429 #endif
3430
3431 #ifdef DEBUG_SYMS
3432 verify_symbol_chain (symbol_rootP, symbol_lastP);
3433 #endif /* DEBUG_SYMS */
3434 }
3435
3436 static void
3437 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3438 {
3439 unsigned int entry;
3440 literal_pool * pool;
3441 char sym_name[20];
3442
3443 pool = find_literal_pool ();
3444 if (pool == NULL
3445 || pool->symbol == NULL
3446 || pool->next_free_entry == 0)
3447 return;
3448
3449 /* Align pool as you have word accesses.
3450 Only make a frag if we have to. */
3451 if (!need_pass_2)
3452 frag_align (pool->alignment, 0, 0);
3453
3454 record_alignment (now_seg, 2);
3455
3456 #ifdef OBJ_ELF
3457 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3458 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3459 #endif
3460 sprintf (sym_name, "$$lit_\002%x", pool->id);
3461
3462 symbol_locate (pool->symbol, sym_name, now_seg,
3463 (valueT) frag_now_fix (), frag_now);
3464 symbol_table_insert (pool->symbol);
3465
3466 ARM_SET_THUMB (pool->symbol, thumb_mode);
3467
3468 #if defined OBJ_COFF || defined OBJ_ELF
3469 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3470 #endif
3471
3472 for (entry = 0; entry < pool->next_free_entry; entry ++)
3473 {
3474 #ifdef OBJ_ELF
3475 if (debug_type == DEBUG_DWARF2)
3476 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3477 #endif
3478 /* First output the expression in the instruction to the pool. */
3479 emit_expr (&(pool->literals[entry]),
3480 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3481 }
3482
3483 /* Mark the pool as empty. */
3484 pool->next_free_entry = 0;
3485 pool->symbol = NULL;
3486 }
3487
3488 #ifdef OBJ_ELF
3489 /* Forward declarations for functions below, in the MD interface
3490 section. */
3491 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3492 static valueT create_unwind_entry (int);
3493 static void start_unwind_section (const segT, int);
3494 static void add_unwind_opcode (valueT, int);
3495 static void flush_pending_unwind (void);
3496
3497 /* Directives: Data. */
3498
3499 static void
3500 s_arm_elf_cons (int nbytes)
3501 {
3502 expressionS exp;
3503
3504 #ifdef md_flush_pending_output
3505 md_flush_pending_output ();
3506 #endif
3507
3508 if (is_it_end_of_statement ())
3509 {
3510 demand_empty_rest_of_line ();
3511 return;
3512 }
3513
3514 #ifdef md_cons_align
3515 md_cons_align (nbytes);
3516 #endif
3517
3518 mapping_state (MAP_DATA);
3519 do
3520 {
3521 int reloc;
3522 char *base = input_line_pointer;
3523
3524 expression (& exp);
3525
3526 if (exp.X_op != O_symbol)
3527 emit_expr (&exp, (unsigned int) nbytes);
3528 else
3529 {
3530 char *before_reloc = input_line_pointer;
3531 reloc = parse_reloc (&input_line_pointer);
3532 if (reloc == -1)
3533 {
3534 as_bad (_("unrecognized relocation suffix"));
3535 ignore_rest_of_line ();
3536 return;
3537 }
3538 else if (reloc == BFD_RELOC_UNUSED)
3539 emit_expr (&exp, (unsigned int) nbytes);
3540 else
3541 {
3542 reloc_howto_type *howto = (reloc_howto_type *)
3543 bfd_reloc_type_lookup (stdoutput,
3544 (bfd_reloc_code_real_type) reloc);
3545 int size = bfd_get_reloc_size (howto);
3546
3547 if (reloc == BFD_RELOC_ARM_PLT32)
3548 {
3549 as_bad (_("(plt) is only valid on branch targets"));
3550 reloc = BFD_RELOC_UNUSED;
3551 size = 0;
3552 }
3553
3554 if (size > nbytes)
3555 as_bad (_("%s relocations do not fit in %d bytes"),
3556 howto->name, nbytes);
3557 else
3558 {
3559 /* We've parsed an expression stopping at O_symbol.
3560 But there may be more expression left now that we
3561 have parsed the relocation marker. Parse it again.
3562 XXX Surely there is a cleaner way to do this. */
3563 char *p = input_line_pointer;
3564 int offset;
3565 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3566
3567 memcpy (save_buf, base, input_line_pointer - base);
3568 memmove (base + (input_line_pointer - before_reloc),
3569 base, before_reloc - base);
3570
3571 input_line_pointer = base + (input_line_pointer-before_reloc);
3572 expression (&exp);
3573 memcpy (base, save_buf, p - base);
3574
3575 offset = nbytes - size;
3576 p = frag_more (nbytes);
3577 memset (p, 0, nbytes);
3578 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3579 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3580 free (save_buf);
3581 }
3582 }
3583 }
3584 }
3585 while (*input_line_pointer++ == ',');
3586
3587 /* Put terminator back into stream. */
3588 input_line_pointer --;
3589 demand_empty_rest_of_line ();
3590 }
3591
3592 /* Emit an expression containing a 32-bit thumb instruction.
3593 Implementation based on put_thumb32_insn. */
3594
3595 static void
3596 emit_thumb32_expr (expressionS * exp)
3597 {
3598 expressionS exp_high = *exp;
3599
3600 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3601 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3602 exp->X_add_number &= 0xffff;
3603 emit_expr (exp, (unsigned int) THUMB_SIZE);
3604 }
3605
3606 /* Guess the instruction size based on the opcode. */
3607
3608 static int
3609 thumb_insn_size (int opcode)
3610 {
3611 if ((unsigned int) opcode < 0xe800u)
3612 return 2;
3613 else if ((unsigned int) opcode >= 0xe8000000u)
3614 return 4;
3615 else
3616 return 0;
3617 }
3618
3619 static bfd_boolean
3620 emit_insn (expressionS *exp, int nbytes)
3621 {
3622 int size = 0;
3623
3624 if (exp->X_op == O_constant)
3625 {
3626 size = nbytes;
3627
3628 if (size == 0)
3629 size = thumb_insn_size (exp->X_add_number);
3630
3631 if (size != 0)
3632 {
3633 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3634 {
3635 as_bad (_(".inst.n operand too big. "\
3636 "Use .inst.w instead"));
3637 size = 0;
3638 }
3639 else
3640 {
3641 if (now_it.state == AUTOMATIC_IT_BLOCK)
3642 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3643 else
3644 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3645
3646 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3647 emit_thumb32_expr (exp);
3648 else
3649 emit_expr (exp, (unsigned int) size);
3650
3651 it_fsm_post_encode ();
3652 }
3653 }
3654 else
3655 as_bad (_("cannot determine Thumb instruction size. " \
3656 "Use .inst.n/.inst.w instead"));
3657 }
3658 else
3659 as_bad (_("constant expression required"));
3660
3661 return (size != 0);
3662 }
3663
3664 /* Like s_arm_elf_cons but do not use md_cons_align and
3665 set the mapping state to MAP_ARM/MAP_THUMB. */
3666
3667 static void
3668 s_arm_elf_inst (int nbytes)
3669 {
3670 if (is_it_end_of_statement ())
3671 {
3672 demand_empty_rest_of_line ();
3673 return;
3674 }
3675
3676 /* Calling mapping_state () here will not change ARM/THUMB,
3677 but will ensure not to be in DATA state. */
3678
3679 if (thumb_mode)
3680 mapping_state (MAP_THUMB);
3681 else
3682 {
3683 if (nbytes != 0)
3684 {
3685 as_bad (_("width suffixes are invalid in ARM mode"));
3686 ignore_rest_of_line ();
3687 return;
3688 }
3689
3690 nbytes = 4;
3691
3692 mapping_state (MAP_ARM);
3693 }
3694
3695 do
3696 {
3697 expressionS exp;
3698
3699 expression (& exp);
3700
3701 if (! emit_insn (& exp, nbytes))
3702 {
3703 ignore_rest_of_line ();
3704 return;
3705 }
3706 }
3707 while (*input_line_pointer++ == ',');
3708
3709 /* Put terminator back into stream. */
3710 input_line_pointer --;
3711 demand_empty_rest_of_line ();
3712 }
3713
3714 /* Parse a .rel31 directive. */
3715
3716 static void
3717 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3718 {
3719 expressionS exp;
3720 char *p;
3721 valueT highbit;
3722
3723 highbit = 0;
3724 if (*input_line_pointer == '1')
3725 highbit = 0x80000000;
3726 else if (*input_line_pointer != '0')
3727 as_bad (_("expected 0 or 1"));
3728
3729 input_line_pointer++;
3730 if (*input_line_pointer != ',')
3731 as_bad (_("missing comma"));
3732 input_line_pointer++;
3733
3734 #ifdef md_flush_pending_output
3735 md_flush_pending_output ();
3736 #endif
3737
3738 #ifdef md_cons_align
3739 md_cons_align (4);
3740 #endif
3741
3742 mapping_state (MAP_DATA);
3743
3744 expression (&exp);
3745
3746 p = frag_more (4);
3747 md_number_to_chars (p, highbit, 4);
3748 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3749 BFD_RELOC_ARM_PREL31);
3750
3751 demand_empty_rest_of_line ();
3752 }
3753
3754 /* Directives: AEABI stack-unwind tables. */
3755
3756 /* Parse an unwind_fnstart directive. Simply records the current location. */
3757
3758 static void
3759 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3760 {
3761 demand_empty_rest_of_line ();
3762 if (unwind.proc_start)
3763 {
3764 as_bad (_("duplicate .fnstart directive"));
3765 return;
3766 }
3767
3768 /* Mark the start of the function. */
3769 unwind.proc_start = expr_build_dot ();
3770
3771 /* Reset the rest of the unwind info. */
3772 unwind.opcode_count = 0;
3773 unwind.table_entry = NULL;
3774 unwind.personality_routine = NULL;
3775 unwind.personality_index = -1;
3776 unwind.frame_size = 0;
3777 unwind.fp_offset = 0;
3778 unwind.fp_reg = REG_SP;
3779 unwind.fp_used = 0;
3780 unwind.sp_restored = 0;
3781 }
3782
3783
3784 /* Parse a handlerdata directive. Creates the exception handling table entry
3785 for the function. */
3786
3787 static void
3788 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3789 {
3790 demand_empty_rest_of_line ();
3791 if (!unwind.proc_start)
3792 as_bad (MISSING_FNSTART);
3793
3794 if (unwind.table_entry)
3795 as_bad (_("duplicate .handlerdata directive"));
3796
3797 create_unwind_entry (1);
3798 }
3799
3800 /* Parse an unwind_fnend directive. Generates the index table entry. */
3801
3802 static void
3803 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3804 {
3805 long where;
3806 char *ptr;
3807 valueT val;
3808 unsigned int marked_pr_dependency;
3809
3810 demand_empty_rest_of_line ();
3811
3812 if (!unwind.proc_start)
3813 {
3814 as_bad (_(".fnend directive without .fnstart"));
3815 return;
3816 }
3817
3818 /* Add eh table entry. */
3819 if (unwind.table_entry == NULL)
3820 val = create_unwind_entry (0);
3821 else
3822 val = 0;
3823
3824 /* Add index table entry. This is two words. */
3825 start_unwind_section (unwind.saved_seg, 1);
3826 frag_align (2, 0, 0);
3827 record_alignment (now_seg, 2);
3828
3829 ptr = frag_more (8);
3830 memset (ptr, 0, 8);
3831 where = frag_now_fix () - 8;
3832
3833 /* Self relative offset of the function start. */
3834 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3835 BFD_RELOC_ARM_PREL31);
3836
3837 /* Indicate dependency on EHABI-defined personality routines to the
3838 linker, if it hasn't been done already. */
3839 marked_pr_dependency
3840 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3841 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3842 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3843 {
3844 static const char *const name[] =
3845 {
3846 "__aeabi_unwind_cpp_pr0",
3847 "__aeabi_unwind_cpp_pr1",
3848 "__aeabi_unwind_cpp_pr2"
3849 };
3850 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3851 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3852 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3853 |= 1 << unwind.personality_index;
3854 }
3855
3856 if (val)
3857 /* Inline exception table entry. */
3858 md_number_to_chars (ptr + 4, val, 4);
3859 else
3860 /* Self relative offset of the table entry. */
3861 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3862 BFD_RELOC_ARM_PREL31);
3863
3864 /* Restore the original section. */
3865 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3866
3867 unwind.proc_start = NULL;
3868 }
3869
3870
3871 /* Parse an unwind_cantunwind directive. */
3872
3873 static void
3874 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3875 {
3876 demand_empty_rest_of_line ();
3877 if (!unwind.proc_start)
3878 as_bad (MISSING_FNSTART);
3879
3880 if (unwind.personality_routine || unwind.personality_index != -1)
3881 as_bad (_("personality routine specified for cantunwind frame"));
3882
3883 unwind.personality_index = -2;
3884 }
3885
3886
3887 /* Parse a personalityindex directive. */
3888
3889 static void
3890 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3891 {
3892 expressionS exp;
3893
3894 if (!unwind.proc_start)
3895 as_bad (MISSING_FNSTART);
3896
3897 if (unwind.personality_routine || unwind.personality_index != -1)
3898 as_bad (_("duplicate .personalityindex directive"));
3899
3900 expression (&exp);
3901
3902 if (exp.X_op != O_constant
3903 || exp.X_add_number < 0 || exp.X_add_number > 15)
3904 {
3905 as_bad (_("bad personality routine number"));
3906 ignore_rest_of_line ();
3907 return;
3908 }
3909
3910 unwind.personality_index = exp.X_add_number;
3911
3912 demand_empty_rest_of_line ();
3913 }
3914
3915
3916 /* Parse a personality directive. */
3917
3918 static void
3919 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3920 {
3921 char *name, *p, c;
3922
3923 if (!unwind.proc_start)
3924 as_bad (MISSING_FNSTART);
3925
3926 if (unwind.personality_routine || unwind.personality_index != -1)
3927 as_bad (_("duplicate .personality directive"));
3928
3929 c = get_symbol_name (& name);
3930 p = input_line_pointer;
3931 if (c == '"')
3932 ++ input_line_pointer;
3933 unwind.personality_routine = symbol_find_or_make (name);
3934 *p = c;
3935 demand_empty_rest_of_line ();
3936 }
3937
3938
3939 /* Parse a directive saving core registers. */
3940
3941 static void
3942 s_arm_unwind_save_core (void)
3943 {
3944 valueT op;
3945 long range;
3946 int n;
3947
3948 range = parse_reg_list (&input_line_pointer);
3949 if (range == FAIL)
3950 {
3951 as_bad (_("expected register list"));
3952 ignore_rest_of_line ();
3953 return;
3954 }
3955
3956 demand_empty_rest_of_line ();
3957
3958 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3959 into .unwind_save {..., sp...}. We aren't bothered about the value of
3960 ip because it is clobbered by calls. */
3961 if (unwind.sp_restored && unwind.fp_reg == 12
3962 && (range & 0x3000) == 0x1000)
3963 {
3964 unwind.opcode_count--;
3965 unwind.sp_restored = 0;
3966 range = (range | 0x2000) & ~0x1000;
3967 unwind.pending_offset = 0;
3968 }
3969
3970 /* Pop r4-r15. */
3971 if (range & 0xfff0)
3972 {
3973 /* See if we can use the short opcodes. These pop a block of up to 8
3974 registers starting with r4, plus maybe r14. */
3975 for (n = 0; n < 8; n++)
3976 {
3977 /* Break at the first non-saved register. */
3978 if ((range & (1 << (n + 4))) == 0)
3979 break;
3980 }
3981 /* See if there are any other bits set. */
3982 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3983 {
3984 /* Use the long form. */
3985 op = 0x8000 | ((range >> 4) & 0xfff);
3986 add_unwind_opcode (op, 2);
3987 }
3988 else
3989 {
3990 /* Use the short form. */
3991 if (range & 0x4000)
3992 op = 0xa8; /* Pop r14. */
3993 else
3994 op = 0xa0; /* Do not pop r14. */
3995 op |= (n - 1);
3996 add_unwind_opcode (op, 1);
3997 }
3998 }
3999
4000 /* Pop r0-r3. */
4001 if (range & 0xf)
4002 {
4003 op = 0xb100 | (range & 0xf);
4004 add_unwind_opcode (op, 2);
4005 }
4006
4007 /* Record the number of bytes pushed. */
4008 for (n = 0; n < 16; n++)
4009 {
4010 if (range & (1 << n))
4011 unwind.frame_size += 4;
4012 }
4013 }
4014
4015
4016 /* Parse a directive saving FPA registers. */
4017
4018 static void
4019 s_arm_unwind_save_fpa (int reg)
4020 {
4021 expressionS exp;
4022 int num_regs;
4023 valueT op;
4024
4025 /* Get Number of registers to transfer. */
4026 if (skip_past_comma (&input_line_pointer) != FAIL)
4027 expression (&exp);
4028 else
4029 exp.X_op = O_illegal;
4030
4031 if (exp.X_op != O_constant)
4032 {
4033 as_bad (_("expected , <constant>"));
4034 ignore_rest_of_line ();
4035 return;
4036 }
4037
4038 num_regs = exp.X_add_number;
4039
4040 if (num_regs < 1 || num_regs > 4)
4041 {
4042 as_bad (_("number of registers must be in the range [1:4]"));
4043 ignore_rest_of_line ();
4044 return;
4045 }
4046
4047 demand_empty_rest_of_line ();
4048
4049 if (reg == 4)
4050 {
4051 /* Short form. */
4052 op = 0xb4 | (num_regs - 1);
4053 add_unwind_opcode (op, 1);
4054 }
4055 else
4056 {
4057 /* Long form. */
4058 op = 0xc800 | (reg << 4) | (num_regs - 1);
4059 add_unwind_opcode (op, 2);
4060 }
4061 unwind.frame_size += num_regs * 12;
4062 }
4063
4064
4065 /* Parse a directive saving VFP registers for ARMv6 and above. */
4066
4067 static void
4068 s_arm_unwind_save_vfp_armv6 (void)
4069 {
4070 int count;
4071 unsigned int start;
4072 valueT op;
4073 int num_vfpv3_regs = 0;
4074 int num_regs_below_16;
4075
4076 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4077 if (count == FAIL)
4078 {
4079 as_bad (_("expected register list"));
4080 ignore_rest_of_line ();
4081 return;
4082 }
4083
4084 demand_empty_rest_of_line ();
4085
4086 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4087 than FSTMX/FLDMX-style ones). */
4088
4089 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4090 if (start >= 16)
4091 num_vfpv3_regs = count;
4092 else if (start + count > 16)
4093 num_vfpv3_regs = start + count - 16;
4094
4095 if (num_vfpv3_regs > 0)
4096 {
4097 int start_offset = start > 16 ? start - 16 : 0;
4098 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4099 add_unwind_opcode (op, 2);
4100 }
4101
4102 /* Generate opcode for registers numbered in the range 0 .. 15. */
4103 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4104 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4105 if (num_regs_below_16 > 0)
4106 {
4107 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4108 add_unwind_opcode (op, 2);
4109 }
4110
4111 unwind.frame_size += count * 8;
4112 }
4113
4114
4115 /* Parse a directive saving VFP registers for pre-ARMv6. */
4116
4117 static void
4118 s_arm_unwind_save_vfp (void)
4119 {
4120 int count;
4121 unsigned int reg;
4122 valueT op;
4123
4124 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4125 if (count == FAIL)
4126 {
4127 as_bad (_("expected register list"));
4128 ignore_rest_of_line ();
4129 return;
4130 }
4131
4132 demand_empty_rest_of_line ();
4133
4134 if (reg == 8)
4135 {
4136 /* Short form. */
4137 op = 0xb8 | (count - 1);
4138 add_unwind_opcode (op, 1);
4139 }
4140 else
4141 {
4142 /* Long form. */
4143 op = 0xb300 | (reg << 4) | (count - 1);
4144 add_unwind_opcode (op, 2);
4145 }
4146 unwind.frame_size += count * 8 + 4;
4147 }
4148
4149
4150 /* Parse a directive saving iWMMXt data registers. */
4151
4152 static void
4153 s_arm_unwind_save_mmxwr (void)
4154 {
4155 int reg;
4156 int hi_reg;
4157 int i;
4158 unsigned mask = 0;
4159 valueT op;
4160
4161 if (*input_line_pointer == '{')
4162 input_line_pointer++;
4163
4164 do
4165 {
4166 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4167
4168 if (reg == FAIL)
4169 {
4170 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4171 goto error;
4172 }
4173
4174 if (mask >> reg)
4175 as_tsktsk (_("register list not in ascending order"));
4176 mask |= 1 << reg;
4177
4178 if (*input_line_pointer == '-')
4179 {
4180 input_line_pointer++;
4181 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4182 if (hi_reg == FAIL)
4183 {
4184 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4185 goto error;
4186 }
4187 else if (reg >= hi_reg)
4188 {
4189 as_bad (_("bad register range"));
4190 goto error;
4191 }
4192 for (; reg < hi_reg; reg++)
4193 mask |= 1 << reg;
4194 }
4195 }
4196 while (skip_past_comma (&input_line_pointer) != FAIL);
4197
4198 skip_past_char (&input_line_pointer, '}');
4199
4200 demand_empty_rest_of_line ();
4201
4202 /* Generate any deferred opcodes because we're going to be looking at
4203 the list. */
4204 flush_pending_unwind ();
4205
4206 for (i = 0; i < 16; i++)
4207 {
4208 if (mask & (1 << i))
4209 unwind.frame_size += 8;
4210 }
4211
4212 /* Attempt to combine with a previous opcode. We do this because gcc
4213 likes to output separate unwind directives for a single block of
4214 registers. */
4215 if (unwind.opcode_count > 0)
4216 {
4217 i = unwind.opcodes[unwind.opcode_count - 1];
4218 if ((i & 0xf8) == 0xc0)
4219 {
4220 i &= 7;
4221 /* Only merge if the blocks are contiguous. */
4222 if (i < 6)
4223 {
4224 if ((mask & 0xfe00) == (1 << 9))
4225 {
4226 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4227 unwind.opcode_count--;
4228 }
4229 }
4230 else if (i == 6 && unwind.opcode_count >= 2)
4231 {
4232 i = unwind.opcodes[unwind.opcode_count - 2];
4233 reg = i >> 4;
4234 i &= 0xf;
4235
4236 op = 0xffff << (reg - 1);
4237 if (reg > 0
4238 && ((mask & op) == (1u << (reg - 1))))
4239 {
4240 op = (1 << (reg + i + 1)) - 1;
4241 op &= ~((1 << reg) - 1);
4242 mask |= op;
4243 unwind.opcode_count -= 2;
4244 }
4245 }
4246 }
4247 }
4248
4249 hi_reg = 15;
4250 /* We want to generate opcodes in the order the registers have been
4251 saved, ie. descending order. */
4252 for (reg = 15; reg >= -1; reg--)
4253 {
4254 /* Save registers in blocks. */
4255 if (reg < 0
4256 || !(mask & (1 << reg)))
4257 {
4258 /* We found an unsaved reg. Generate opcodes to save the
4259 preceding block. */
4260 if (reg != hi_reg)
4261 {
4262 if (reg == 9)
4263 {
4264 /* Short form. */
4265 op = 0xc0 | (hi_reg - 10);
4266 add_unwind_opcode (op, 1);
4267 }
4268 else
4269 {
4270 /* Long form. */
4271 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4272 add_unwind_opcode (op, 2);
4273 }
4274 }
4275 hi_reg = reg - 1;
4276 }
4277 }
4278
4279 return;
4280 error:
4281 ignore_rest_of_line ();
4282 }
4283
4284 static void
4285 s_arm_unwind_save_mmxwcg (void)
4286 {
4287 int reg;
4288 int hi_reg;
4289 unsigned mask = 0;
4290 valueT op;
4291
4292 if (*input_line_pointer == '{')
4293 input_line_pointer++;
4294
4295 skip_whitespace (input_line_pointer);
4296
4297 do
4298 {
4299 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4300
4301 if (reg == FAIL)
4302 {
4303 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4304 goto error;
4305 }
4306
4307 reg -= 8;
4308 if (mask >> reg)
4309 as_tsktsk (_("register list not in ascending order"));
4310 mask |= 1 << reg;
4311
4312 if (*input_line_pointer == '-')
4313 {
4314 input_line_pointer++;
4315 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4316 if (hi_reg == FAIL)
4317 {
4318 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4319 goto error;
4320 }
4321 else if (reg >= hi_reg)
4322 {
4323 as_bad (_("bad register range"));
4324 goto error;
4325 }
4326 for (; reg < hi_reg; reg++)
4327 mask |= 1 << reg;
4328 }
4329 }
4330 while (skip_past_comma (&input_line_pointer) != FAIL);
4331
4332 skip_past_char (&input_line_pointer, '}');
4333
4334 demand_empty_rest_of_line ();
4335
4336 /* Generate any deferred opcodes because we're going to be looking at
4337 the list. */
4338 flush_pending_unwind ();
4339
4340 for (reg = 0; reg < 16; reg++)
4341 {
4342 if (mask & (1 << reg))
4343 unwind.frame_size += 4;
4344 }
4345 op = 0xc700 | mask;
4346 add_unwind_opcode (op, 2);
4347 return;
4348 error:
4349 ignore_rest_of_line ();
4350 }
4351
4352
4353 /* Parse an unwind_save directive.
4354 If the argument is non-zero, this is a .vsave directive. */
4355
4356 static void
4357 s_arm_unwind_save (int arch_v6)
4358 {
4359 char *peek;
4360 struct reg_entry *reg;
4361 bfd_boolean had_brace = FALSE;
4362
4363 if (!unwind.proc_start)
4364 as_bad (MISSING_FNSTART);
4365
4366 /* Figure out what sort of save we have. */
4367 peek = input_line_pointer;
4368
4369 if (*peek == '{')
4370 {
4371 had_brace = TRUE;
4372 peek++;
4373 }
4374
4375 reg = arm_reg_parse_multi (&peek);
4376
4377 if (!reg)
4378 {
4379 as_bad (_("register expected"));
4380 ignore_rest_of_line ();
4381 return;
4382 }
4383
4384 switch (reg->type)
4385 {
4386 case REG_TYPE_FN:
4387 if (had_brace)
4388 {
4389 as_bad (_("FPA .unwind_save does not take a register list"));
4390 ignore_rest_of_line ();
4391 return;
4392 }
4393 input_line_pointer = peek;
4394 s_arm_unwind_save_fpa (reg->number);
4395 return;
4396
4397 case REG_TYPE_RN:
4398 s_arm_unwind_save_core ();
4399 return;
4400
4401 case REG_TYPE_VFD:
4402 if (arch_v6)
4403 s_arm_unwind_save_vfp_armv6 ();
4404 else
4405 s_arm_unwind_save_vfp ();
4406 return;
4407
4408 case REG_TYPE_MMXWR:
4409 s_arm_unwind_save_mmxwr ();
4410 return;
4411
4412 case REG_TYPE_MMXWCG:
4413 s_arm_unwind_save_mmxwcg ();
4414 return;
4415
4416 default:
4417 as_bad (_(".unwind_save does not support this kind of register"));
4418 ignore_rest_of_line ();
4419 }
4420 }
4421
4422
4423 /* Parse an unwind_movsp directive. */
4424
4425 static void
4426 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4427 {
4428 int reg;
4429 valueT op;
4430 int offset;
4431
4432 if (!unwind.proc_start)
4433 as_bad (MISSING_FNSTART);
4434
4435 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4436 if (reg == FAIL)
4437 {
4438 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4439 ignore_rest_of_line ();
4440 return;
4441 }
4442
4443 /* Optional constant. */
4444 if (skip_past_comma (&input_line_pointer) != FAIL)
4445 {
4446 if (immediate_for_directive (&offset) == FAIL)
4447 return;
4448 }
4449 else
4450 offset = 0;
4451
4452 demand_empty_rest_of_line ();
4453
4454 if (reg == REG_SP || reg == REG_PC)
4455 {
4456 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4457 return;
4458 }
4459
4460 if (unwind.fp_reg != REG_SP)
4461 as_bad (_("unexpected .unwind_movsp directive"));
4462
4463 /* Generate opcode to restore the value. */
4464 op = 0x90 | reg;
4465 add_unwind_opcode (op, 1);
4466
4467 /* Record the information for later. */
4468 unwind.fp_reg = reg;
4469 unwind.fp_offset = unwind.frame_size - offset;
4470 unwind.sp_restored = 1;
4471 }
4472
4473 /* Parse an unwind_pad directive. */
4474
4475 static void
4476 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4477 {
4478 int offset;
4479
4480 if (!unwind.proc_start)
4481 as_bad (MISSING_FNSTART);
4482
4483 if (immediate_for_directive (&offset) == FAIL)
4484 return;
4485
4486 if (offset & 3)
4487 {
4488 as_bad (_("stack increment must be multiple of 4"));
4489 ignore_rest_of_line ();
4490 return;
4491 }
4492
4493 /* Don't generate any opcodes, just record the details for later. */
4494 unwind.frame_size += offset;
4495 unwind.pending_offset += offset;
4496
4497 demand_empty_rest_of_line ();
4498 }
4499
4500 /* Parse an unwind_setfp directive. */
4501
4502 static void
4503 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4504 {
4505 int sp_reg;
4506 int fp_reg;
4507 int offset;
4508
4509 if (!unwind.proc_start)
4510 as_bad (MISSING_FNSTART);
4511
4512 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4513 if (skip_past_comma (&input_line_pointer) == FAIL)
4514 sp_reg = FAIL;
4515 else
4516 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4517
4518 if (fp_reg == FAIL || sp_reg == FAIL)
4519 {
4520 as_bad (_("expected <reg>, <reg>"));
4521 ignore_rest_of_line ();
4522 return;
4523 }
4524
4525 /* Optional constant. */
4526 if (skip_past_comma (&input_line_pointer) != FAIL)
4527 {
4528 if (immediate_for_directive (&offset) == FAIL)
4529 return;
4530 }
4531 else
4532 offset = 0;
4533
4534 demand_empty_rest_of_line ();
4535
4536 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4537 {
4538 as_bad (_("register must be either sp or set by a previous"
4539 "unwind_movsp directive"));
4540 return;
4541 }
4542
4543 /* Don't generate any opcodes, just record the information for later. */
4544 unwind.fp_reg = fp_reg;
4545 unwind.fp_used = 1;
4546 if (sp_reg == REG_SP)
4547 unwind.fp_offset = unwind.frame_size - offset;
4548 else
4549 unwind.fp_offset -= offset;
4550 }
4551
4552 /* Parse an unwind_raw directive. */
4553
4554 static void
4555 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4556 {
4557 expressionS exp;
4558 /* This is an arbitrary limit. */
4559 unsigned char op[16];
4560 int count;
4561
4562 if (!unwind.proc_start)
4563 as_bad (MISSING_FNSTART);
4564
4565 expression (&exp);
4566 if (exp.X_op == O_constant
4567 && skip_past_comma (&input_line_pointer) != FAIL)
4568 {
4569 unwind.frame_size += exp.X_add_number;
4570 expression (&exp);
4571 }
4572 else
4573 exp.X_op = O_illegal;
4574
4575 if (exp.X_op != O_constant)
4576 {
4577 as_bad (_("expected <offset>, <opcode>"));
4578 ignore_rest_of_line ();
4579 return;
4580 }
4581
4582 count = 0;
4583
4584 /* Parse the opcode. */
4585 for (;;)
4586 {
4587 if (count >= 16)
4588 {
4589 as_bad (_("unwind opcode too long"));
4590 ignore_rest_of_line ();
4591 }
4592 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4593 {
4594 as_bad (_("invalid unwind opcode"));
4595 ignore_rest_of_line ();
4596 return;
4597 }
4598 op[count++] = exp.X_add_number;
4599
4600 /* Parse the next byte. */
4601 if (skip_past_comma (&input_line_pointer) == FAIL)
4602 break;
4603
4604 expression (&exp);
4605 }
4606
4607 /* Add the opcode bytes in reverse order. */
4608 while (count--)
4609 add_unwind_opcode (op[count], 1);
4610
4611 demand_empty_rest_of_line ();
4612 }
4613
4614
4615 /* Parse a .eabi_attribute directive. */
4616
4617 static void
4618 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4619 {
4620 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4621
4622 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4623 attributes_set_explicitly[tag] = 1;
4624 }
4625
4626 /* Emit a tls fix for the symbol. */
4627
4628 static void
4629 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4630 {
4631 char *p;
4632 expressionS exp;
4633 #ifdef md_flush_pending_output
4634 md_flush_pending_output ();
4635 #endif
4636
4637 #ifdef md_cons_align
4638 md_cons_align (4);
4639 #endif
4640
4641 /* Since we're just labelling the code, there's no need to define a
4642 mapping symbol. */
4643 expression (&exp);
4644 p = obstack_next_free (&frchain_now->frch_obstack);
4645 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4646 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4647 : BFD_RELOC_ARM_TLS_DESCSEQ);
4648 }
4649 #endif /* OBJ_ELF */
4650
4651 static void s_arm_arch (int);
4652 static void s_arm_object_arch (int);
4653 static void s_arm_cpu (int);
4654 static void s_arm_fpu (int);
4655 static void s_arm_arch_extension (int);
4656
4657 #ifdef TE_PE
4658
4659 static void
4660 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4661 {
4662 expressionS exp;
4663
4664 do
4665 {
4666 expression (&exp);
4667 if (exp.X_op == O_symbol)
4668 exp.X_op = O_secrel;
4669
4670 emit_expr (&exp, 4);
4671 }
4672 while (*input_line_pointer++ == ',');
4673
4674 input_line_pointer--;
4675 demand_empty_rest_of_line ();
4676 }
4677 #endif /* TE_PE */
4678
4679 /* This table describes all the machine specific pseudo-ops the assembler
4680 has to support. The fields are:
4681 pseudo-op name without dot
4682 function to call to execute this pseudo-op
4683 Integer arg to pass to the function. */
4684
4685 const pseudo_typeS md_pseudo_table[] =
4686 {
4687 /* Never called because '.req' does not start a line. */
4688 { "req", s_req, 0 },
4689 /* Following two are likewise never called. */
4690 { "dn", s_dn, 0 },
4691 { "qn", s_qn, 0 },
4692 { "unreq", s_unreq, 0 },
4693 { "bss", s_bss, 0 },
4694 { "align", s_align_ptwo, 2 },
4695 { "arm", s_arm, 0 },
4696 { "thumb", s_thumb, 0 },
4697 { "code", s_code, 0 },
4698 { "force_thumb", s_force_thumb, 0 },
4699 { "thumb_func", s_thumb_func, 0 },
4700 { "thumb_set", s_thumb_set, 0 },
4701 { "even", s_even, 0 },
4702 { "ltorg", s_ltorg, 0 },
4703 { "pool", s_ltorg, 0 },
4704 { "syntax", s_syntax, 0 },
4705 { "cpu", s_arm_cpu, 0 },
4706 { "arch", s_arm_arch, 0 },
4707 { "object_arch", s_arm_object_arch, 0 },
4708 { "fpu", s_arm_fpu, 0 },
4709 { "arch_extension", s_arm_arch_extension, 0 },
4710 #ifdef OBJ_ELF
4711 { "word", s_arm_elf_cons, 4 },
4712 { "long", s_arm_elf_cons, 4 },
4713 { "inst.n", s_arm_elf_inst, 2 },
4714 { "inst.w", s_arm_elf_inst, 4 },
4715 { "inst", s_arm_elf_inst, 0 },
4716 { "rel31", s_arm_rel31, 0 },
4717 { "fnstart", s_arm_unwind_fnstart, 0 },
4718 { "fnend", s_arm_unwind_fnend, 0 },
4719 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4720 { "personality", s_arm_unwind_personality, 0 },
4721 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4722 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4723 { "save", s_arm_unwind_save, 0 },
4724 { "vsave", s_arm_unwind_save, 1 },
4725 { "movsp", s_arm_unwind_movsp, 0 },
4726 { "pad", s_arm_unwind_pad, 0 },
4727 { "setfp", s_arm_unwind_setfp, 0 },
4728 { "unwind_raw", s_arm_unwind_raw, 0 },
4729 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4730 { "tlsdescseq", s_arm_tls_descseq, 0 },
4731 #else
4732 { "word", cons, 4},
4733
4734 /* These are used for dwarf. */
4735 {"2byte", cons, 2},
4736 {"4byte", cons, 4},
4737 {"8byte", cons, 8},
4738 /* These are used for dwarf2. */
4739 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4740 { "loc", dwarf2_directive_loc, 0 },
4741 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4742 #endif
4743 { "extend", float_cons, 'x' },
4744 { "ldouble", float_cons, 'x' },
4745 { "packed", float_cons, 'p' },
4746 #ifdef TE_PE
4747 {"secrel32", pe_directive_secrel, 0},
4748 #endif
4749
4750 /* These are for compatibility with CodeComposer Studio. */
4751 {"ref", s_ccs_ref, 0},
4752 {"def", s_ccs_def, 0},
4753 {"asmfunc", s_ccs_asmfunc, 0},
4754 {"endasmfunc", s_ccs_endasmfunc, 0},
4755
4756 { 0, 0, 0 }
4757 };
4758 \f
4759 /* Parser functions used exclusively in instruction operands. */
4760
4761 /* Generic immediate-value read function for use in insn parsing.
4762 STR points to the beginning of the immediate (the leading #);
4763 VAL receives the value; if the value is outside [MIN, MAX]
4764 issue an error. PREFIX_OPT is true if the immediate prefix is
4765 optional. */
4766
4767 static int
4768 parse_immediate (char **str, int *val, int min, int max,
4769 bfd_boolean prefix_opt)
4770 {
4771 expressionS exp;
4772 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4773 if (exp.X_op != O_constant)
4774 {
4775 inst.error = _("constant expression required");
4776 return FAIL;
4777 }
4778
4779 if (exp.X_add_number < min || exp.X_add_number > max)
4780 {
4781 inst.error = _("immediate value out of range");
4782 return FAIL;
4783 }
4784
4785 *val = exp.X_add_number;
4786 return SUCCESS;
4787 }
4788
4789 /* Less-generic immediate-value read function with the possibility of loading a
4790 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4791 instructions. Puts the result directly in inst.operands[i]. */
4792
4793 static int
4794 parse_big_immediate (char **str, int i, expressionS *in_exp,
4795 bfd_boolean allow_symbol_p)
4796 {
4797 expressionS exp;
4798 expressionS *exp_p = in_exp ? in_exp : &exp;
4799 char *ptr = *str;
4800
4801 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4802
4803 if (exp_p->X_op == O_constant)
4804 {
4805 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4806 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4807 O_constant. We have to be careful not to break compilation for
4808 32-bit X_add_number, though. */
4809 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4810 {
4811 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4812 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4813 & 0xffffffff);
4814 inst.operands[i].regisimm = 1;
4815 }
4816 }
4817 else if (exp_p->X_op == O_big
4818 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4819 {
4820 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4821
4822 /* Bignums have their least significant bits in
4823 generic_bignum[0]. Make sure we put 32 bits in imm and
4824 32 bits in reg, in a (hopefully) portable way. */
4825 gas_assert (parts != 0);
4826
4827 /* Make sure that the number is not too big.
4828 PR 11972: Bignums can now be sign-extended to the
4829 size of a .octa so check that the out of range bits
4830 are all zero or all one. */
4831 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4832 {
4833 LITTLENUM_TYPE m = -1;
4834
4835 if (generic_bignum[parts * 2] != 0
4836 && generic_bignum[parts * 2] != m)
4837 return FAIL;
4838
4839 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4840 if (generic_bignum[j] != generic_bignum[j-1])
4841 return FAIL;
4842 }
4843
4844 inst.operands[i].imm = 0;
4845 for (j = 0; j < parts; j++, idx++)
4846 inst.operands[i].imm |= generic_bignum[idx]
4847 << (LITTLENUM_NUMBER_OF_BITS * j);
4848 inst.operands[i].reg = 0;
4849 for (j = 0; j < parts; j++, idx++)
4850 inst.operands[i].reg |= generic_bignum[idx]
4851 << (LITTLENUM_NUMBER_OF_BITS * j);
4852 inst.operands[i].regisimm = 1;
4853 }
4854 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4855 return FAIL;
4856
4857 *str = ptr;
4858
4859 return SUCCESS;
4860 }
4861
4862 /* Returns the pseudo-register number of an FPA immediate constant,
4863 or FAIL if there isn't a valid constant here. */
4864
4865 static int
4866 parse_fpa_immediate (char ** str)
4867 {
4868 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4869 char * save_in;
4870 expressionS exp;
4871 int i;
4872 int j;
4873
4874 /* First try and match exact strings, this is to guarantee
4875 that some formats will work even for cross assembly. */
4876
4877 for (i = 0; fp_const[i]; i++)
4878 {
4879 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4880 {
4881 char *start = *str;
4882
4883 *str += strlen (fp_const[i]);
4884 if (is_end_of_line[(unsigned char) **str])
4885 return i + 8;
4886 *str = start;
4887 }
4888 }
4889
4890 /* Just because we didn't get a match doesn't mean that the constant
4891 isn't valid, just that it is in a format that we don't
4892 automatically recognize. Try parsing it with the standard
4893 expression routines. */
4894
4895 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4896
4897 /* Look for a raw floating point number. */
4898 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4899 && is_end_of_line[(unsigned char) *save_in])
4900 {
4901 for (i = 0; i < NUM_FLOAT_VALS; i++)
4902 {
4903 for (j = 0; j < MAX_LITTLENUMS; j++)
4904 {
4905 if (words[j] != fp_values[i][j])
4906 break;
4907 }
4908
4909 if (j == MAX_LITTLENUMS)
4910 {
4911 *str = save_in;
4912 return i + 8;
4913 }
4914 }
4915 }
4916
4917 /* Try and parse a more complex expression, this will probably fail
4918 unless the code uses a floating point prefix (eg "0f"). */
4919 save_in = input_line_pointer;
4920 input_line_pointer = *str;
4921 if (expression (&exp) == absolute_section
4922 && exp.X_op == O_big
4923 && exp.X_add_number < 0)
4924 {
4925 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4926 Ditto for 15. */
4927 #define X_PRECISION 5
4928 #define E_PRECISION 15L
4929 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4930 {
4931 for (i = 0; i < NUM_FLOAT_VALS; i++)
4932 {
4933 for (j = 0; j < MAX_LITTLENUMS; j++)
4934 {
4935 if (words[j] != fp_values[i][j])
4936 break;
4937 }
4938
4939 if (j == MAX_LITTLENUMS)
4940 {
4941 *str = input_line_pointer;
4942 input_line_pointer = save_in;
4943 return i + 8;
4944 }
4945 }
4946 }
4947 }
4948
4949 *str = input_line_pointer;
4950 input_line_pointer = save_in;
4951 inst.error = _("invalid FPA immediate expression");
4952 return FAIL;
4953 }
4954
4955 /* Returns 1 if a number has "quarter-precision" float format
4956 0baBbbbbbc defgh000 00000000 00000000. */
4957
4958 static int
4959 is_quarter_float (unsigned imm)
4960 {
4961 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4962 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4963 }
4964
4965
4966 /* Detect the presence of a floating point or integer zero constant,
4967 i.e. #0.0 or #0. */
4968
4969 static bfd_boolean
4970 parse_ifimm_zero (char **in)
4971 {
4972 int error_code;
4973
4974 if (!is_immediate_prefix (**in))
4975 {
4976 /* In unified syntax, all prefixes are optional. */
4977 if (!unified_syntax)
4978 return FALSE;
4979 }
4980 else
4981 ++*in;
4982
4983 /* Accept #0x0 as a synonym for #0. */
4984 if (strncmp (*in, "0x", 2) == 0)
4985 {
4986 int val;
4987 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
4988 return FALSE;
4989 return TRUE;
4990 }
4991
4992 error_code = atof_generic (in, ".", EXP_CHARS,
4993 &generic_floating_point_number);
4994
4995 if (!error_code
4996 && generic_floating_point_number.sign == '+'
4997 && (generic_floating_point_number.low
4998 > generic_floating_point_number.leader))
4999 return TRUE;
5000
5001 return FALSE;
5002 }
5003
5004 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5005 0baBbbbbbc defgh000 00000000 00000000.
5006 The zero and minus-zero cases need special handling, since they can't be
5007 encoded in the "quarter-precision" float format, but can nonetheless be
5008 loaded as integer constants. */
5009
5010 static unsigned
5011 parse_qfloat_immediate (char **ccp, int *immed)
5012 {
5013 char *str = *ccp;
5014 char *fpnum;
5015 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5016 int found_fpchar = 0;
5017
5018 skip_past_char (&str, '#');
5019
5020 /* We must not accidentally parse an integer as a floating-point number. Make
5021 sure that the value we parse is not an integer by checking for special
5022 characters '.' or 'e'.
5023 FIXME: This is a horrible hack, but doing better is tricky because type
5024 information isn't in a very usable state at parse time. */
5025 fpnum = str;
5026 skip_whitespace (fpnum);
5027
5028 if (strncmp (fpnum, "0x", 2) == 0)
5029 return FAIL;
5030 else
5031 {
5032 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5033 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5034 {
5035 found_fpchar = 1;
5036 break;
5037 }
5038
5039 if (!found_fpchar)
5040 return FAIL;
5041 }
5042
5043 if ((str = atof_ieee (str, 's', words)) != NULL)
5044 {
5045 unsigned fpword = 0;
5046 int i;
5047
5048 /* Our FP word must be 32 bits (single-precision FP). */
5049 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5050 {
5051 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5052 fpword |= words[i];
5053 }
5054
5055 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5056 *immed = fpword;
5057 else
5058 return FAIL;
5059
5060 *ccp = str;
5061
5062 return SUCCESS;
5063 }
5064
5065 return FAIL;
5066 }
5067
5068 /* Shift operands. */
5069 enum shift_kind
5070 {
5071 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5072 };
5073
5074 struct asm_shift_name
5075 {
5076 const char *name;
5077 enum shift_kind kind;
5078 };
5079
5080 /* Third argument to parse_shift. */
5081 enum parse_shift_mode
5082 {
5083 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5084 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5085 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5086 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5087 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5088 };
5089
5090 /* Parse a <shift> specifier on an ARM data processing instruction.
5091 This has three forms:
5092
5093 (LSL|LSR|ASL|ASR|ROR) Rs
5094 (LSL|LSR|ASL|ASR|ROR) #imm
5095 RRX
5096
5097 Note that ASL is assimilated to LSL in the instruction encoding, and
5098 RRX to ROR #0 (which cannot be written as such). */
5099
5100 static int
5101 parse_shift (char **str, int i, enum parse_shift_mode mode)
5102 {
5103 const struct asm_shift_name *shift_name;
5104 enum shift_kind shift;
5105 char *s = *str;
5106 char *p = s;
5107 int reg;
5108
5109 for (p = *str; ISALPHA (*p); p++)
5110 ;
5111
5112 if (p == *str)
5113 {
5114 inst.error = _("shift expression expected");
5115 return FAIL;
5116 }
5117
5118 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5119 p - *str);
5120
5121 if (shift_name == NULL)
5122 {
5123 inst.error = _("shift expression expected");
5124 return FAIL;
5125 }
5126
5127 shift = shift_name->kind;
5128
5129 switch (mode)
5130 {
5131 case NO_SHIFT_RESTRICT:
5132 case SHIFT_IMMEDIATE: break;
5133
5134 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5135 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5136 {
5137 inst.error = _("'LSL' or 'ASR' required");
5138 return FAIL;
5139 }
5140 break;
5141
5142 case SHIFT_LSL_IMMEDIATE:
5143 if (shift != SHIFT_LSL)
5144 {
5145 inst.error = _("'LSL' required");
5146 return FAIL;
5147 }
5148 break;
5149
5150 case SHIFT_ASR_IMMEDIATE:
5151 if (shift != SHIFT_ASR)
5152 {
5153 inst.error = _("'ASR' required");
5154 return FAIL;
5155 }
5156 break;
5157
5158 default: abort ();
5159 }
5160
5161 if (shift != SHIFT_RRX)
5162 {
5163 /* Whitespace can appear here if the next thing is a bare digit. */
5164 skip_whitespace (p);
5165
5166 if (mode == NO_SHIFT_RESTRICT
5167 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5168 {
5169 inst.operands[i].imm = reg;
5170 inst.operands[i].immisreg = 1;
5171 }
5172 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5173 return FAIL;
5174 }
5175 inst.operands[i].shift_kind = shift;
5176 inst.operands[i].shifted = 1;
5177 *str = p;
5178 return SUCCESS;
5179 }
5180
5181 /* Parse a <shifter_operand> for an ARM data processing instruction:
5182
5183 #<immediate>
5184 #<immediate>, <rotate>
5185 <Rm>
5186 <Rm>, <shift>
5187
5188 where <shift> is defined by parse_shift above, and <rotate> is a
5189 multiple of 2 between 0 and 30. Validation of immediate operands
5190 is deferred to md_apply_fix. */
5191
5192 static int
5193 parse_shifter_operand (char **str, int i)
5194 {
5195 int value;
5196 expressionS exp;
5197
5198 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5199 {
5200 inst.operands[i].reg = value;
5201 inst.operands[i].isreg = 1;
5202
5203 /* parse_shift will override this if appropriate */
5204 inst.reloc.exp.X_op = O_constant;
5205 inst.reloc.exp.X_add_number = 0;
5206
5207 if (skip_past_comma (str) == FAIL)
5208 return SUCCESS;
5209
5210 /* Shift operation on register. */
5211 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5212 }
5213
5214 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5215 return FAIL;
5216
5217 if (skip_past_comma (str) == SUCCESS)
5218 {
5219 /* #x, y -- ie explicit rotation by Y. */
5220 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5221 return FAIL;
5222
5223 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5224 {
5225 inst.error = _("constant expression expected");
5226 return FAIL;
5227 }
5228
5229 value = exp.X_add_number;
5230 if (value < 0 || value > 30 || value % 2 != 0)
5231 {
5232 inst.error = _("invalid rotation");
5233 return FAIL;
5234 }
5235 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5236 {
5237 inst.error = _("invalid constant");
5238 return FAIL;
5239 }
5240
5241 /* Encode as specified. */
5242 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5243 return SUCCESS;
5244 }
5245
5246 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5247 inst.reloc.pc_rel = 0;
5248 return SUCCESS;
5249 }
5250
5251 /* Group relocation information. Each entry in the table contains the
5252 textual name of the relocation as may appear in assembler source
5253 and must end with a colon.
5254 Along with this textual name are the relocation codes to be used if
5255 the corresponding instruction is an ALU instruction (ADD or SUB only),
5256 an LDR, an LDRS, or an LDC. */
5257
5258 struct group_reloc_table_entry
5259 {
5260 const char *name;
5261 int alu_code;
5262 int ldr_code;
5263 int ldrs_code;
5264 int ldc_code;
5265 };
5266
5267 typedef enum
5268 {
5269 /* Varieties of non-ALU group relocation. */
5270
5271 GROUP_LDR,
5272 GROUP_LDRS,
5273 GROUP_LDC
5274 } group_reloc_type;
5275
5276 static struct group_reloc_table_entry group_reloc_table[] =
5277 { /* Program counter relative: */
5278 { "pc_g0_nc",
5279 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5280 0, /* LDR */
5281 0, /* LDRS */
5282 0 }, /* LDC */
5283 { "pc_g0",
5284 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5285 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5286 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5287 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5288 { "pc_g1_nc",
5289 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5290 0, /* LDR */
5291 0, /* LDRS */
5292 0 }, /* LDC */
5293 { "pc_g1",
5294 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5295 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5296 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5297 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5298 { "pc_g2",
5299 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5300 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5301 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5302 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5303 /* Section base relative */
5304 { "sb_g0_nc",
5305 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5306 0, /* LDR */
5307 0, /* LDRS */
5308 0 }, /* LDC */
5309 { "sb_g0",
5310 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5311 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5312 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5313 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5314 { "sb_g1_nc",
5315 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5316 0, /* LDR */
5317 0, /* LDRS */
5318 0 }, /* LDC */
5319 { "sb_g1",
5320 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5321 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5322 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5323 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5324 { "sb_g2",
5325 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5326 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5327 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5328 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5329 /* Absolute thumb alu relocations. */
5330 { "lower0_7",
5331 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5332 0, /* LDR. */
5333 0, /* LDRS. */
5334 0 }, /* LDC. */
5335 { "lower8_15",
5336 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5337 0, /* LDR. */
5338 0, /* LDRS. */
5339 0 }, /* LDC. */
5340 { "upper0_7",
5341 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5342 0, /* LDR. */
5343 0, /* LDRS. */
5344 0 }, /* LDC. */
5345 { "upper8_15",
5346 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5347 0, /* LDR. */
5348 0, /* LDRS. */
5349 0 } }; /* LDC. */
5350
5351 /* Given the address of a pointer pointing to the textual name of a group
5352 relocation as may appear in assembler source, attempt to find its details
5353 in group_reloc_table. The pointer will be updated to the character after
5354 the trailing colon. On failure, FAIL will be returned; SUCCESS
5355 otherwise. On success, *entry will be updated to point at the relevant
5356 group_reloc_table entry. */
5357
5358 static int
5359 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5360 {
5361 unsigned int i;
5362 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5363 {
5364 int length = strlen (group_reloc_table[i].name);
5365
5366 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5367 && (*str)[length] == ':')
5368 {
5369 *out = &group_reloc_table[i];
5370 *str += (length + 1);
5371 return SUCCESS;
5372 }
5373 }
5374
5375 return FAIL;
5376 }
5377
5378 /* Parse a <shifter_operand> for an ARM data processing instruction
5379 (as for parse_shifter_operand) where group relocations are allowed:
5380
5381 #<immediate>
5382 #<immediate>, <rotate>
5383 #:<group_reloc>:<expression>
5384 <Rm>
5385 <Rm>, <shift>
5386
5387 where <group_reloc> is one of the strings defined in group_reloc_table.
5388 The hashes are optional.
5389
5390 Everything else is as for parse_shifter_operand. */
5391
5392 static parse_operand_result
5393 parse_shifter_operand_group_reloc (char **str, int i)
5394 {
5395 /* Determine if we have the sequence of characters #: or just :
5396 coming next. If we do, then we check for a group relocation.
5397 If we don't, punt the whole lot to parse_shifter_operand. */
5398
5399 if (((*str)[0] == '#' && (*str)[1] == ':')
5400 || (*str)[0] == ':')
5401 {
5402 struct group_reloc_table_entry *entry;
5403
5404 if ((*str)[0] == '#')
5405 (*str) += 2;
5406 else
5407 (*str)++;
5408
5409 /* Try to parse a group relocation. Anything else is an error. */
5410 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5411 {
5412 inst.error = _("unknown group relocation");
5413 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5414 }
5415
5416 /* We now have the group relocation table entry corresponding to
5417 the name in the assembler source. Next, we parse the expression. */
5418 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5419 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5420
5421 /* Record the relocation type (always the ALU variant here). */
5422 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5423 gas_assert (inst.reloc.type != 0);
5424
5425 return PARSE_OPERAND_SUCCESS;
5426 }
5427 else
5428 return parse_shifter_operand (str, i) == SUCCESS
5429 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5430
5431 /* Never reached. */
5432 }
5433
5434 /* Parse a Neon alignment expression. Information is written to
5435 inst.operands[i]. We assume the initial ':' has been skipped.
5436
5437 align .imm = align << 8, .immisalign=1, .preind=0 */
5438 static parse_operand_result
5439 parse_neon_alignment (char **str, int i)
5440 {
5441 char *p = *str;
5442 expressionS exp;
5443
5444 my_get_expression (&exp, &p, GE_NO_PREFIX);
5445
5446 if (exp.X_op != O_constant)
5447 {
5448 inst.error = _("alignment must be constant");
5449 return PARSE_OPERAND_FAIL;
5450 }
5451
5452 inst.operands[i].imm = exp.X_add_number << 8;
5453 inst.operands[i].immisalign = 1;
5454 /* Alignments are not pre-indexes. */
5455 inst.operands[i].preind = 0;
5456
5457 *str = p;
5458 return PARSE_OPERAND_SUCCESS;
5459 }
5460
5461 /* Parse all forms of an ARM address expression. Information is written
5462 to inst.operands[i] and/or inst.reloc.
5463
5464 Preindexed addressing (.preind=1):
5465
5466 [Rn, #offset] .reg=Rn .reloc.exp=offset
5467 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5468 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5469 .shift_kind=shift .reloc.exp=shift_imm
5470
5471 These three may have a trailing ! which causes .writeback to be set also.
5472
5473 Postindexed addressing (.postind=1, .writeback=1):
5474
5475 [Rn], #offset .reg=Rn .reloc.exp=offset
5476 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5477 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5478 .shift_kind=shift .reloc.exp=shift_imm
5479
5480 Unindexed addressing (.preind=0, .postind=0):
5481
5482 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5483
5484 Other:
5485
5486 [Rn]{!} shorthand for [Rn,#0]{!}
5487 =immediate .isreg=0 .reloc.exp=immediate
5488 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5489
5490 It is the caller's responsibility to check for addressing modes not
5491 supported by the instruction, and to set inst.reloc.type. */
5492
5493 static parse_operand_result
5494 parse_address_main (char **str, int i, int group_relocations,
5495 group_reloc_type group_type)
5496 {
5497 char *p = *str;
5498 int reg;
5499
5500 if (skip_past_char (&p, '[') == FAIL)
5501 {
5502 if (skip_past_char (&p, '=') == FAIL)
5503 {
5504 /* Bare address - translate to PC-relative offset. */
5505 inst.reloc.pc_rel = 1;
5506 inst.operands[i].reg = REG_PC;
5507 inst.operands[i].isreg = 1;
5508 inst.operands[i].preind = 1;
5509
5510 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5511 return PARSE_OPERAND_FAIL;
5512 }
5513 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5514 /*allow_symbol_p=*/TRUE))
5515 return PARSE_OPERAND_FAIL;
5516
5517 *str = p;
5518 return PARSE_OPERAND_SUCCESS;
5519 }
5520
5521 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5522 skip_whitespace (p);
5523
5524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5525 {
5526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5527 return PARSE_OPERAND_FAIL;
5528 }
5529 inst.operands[i].reg = reg;
5530 inst.operands[i].isreg = 1;
5531
5532 if (skip_past_comma (&p) == SUCCESS)
5533 {
5534 inst.operands[i].preind = 1;
5535
5536 if (*p == '+') p++;
5537 else if (*p == '-') p++, inst.operands[i].negative = 1;
5538
5539 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5540 {
5541 inst.operands[i].imm = reg;
5542 inst.operands[i].immisreg = 1;
5543
5544 if (skip_past_comma (&p) == SUCCESS)
5545 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5546 return PARSE_OPERAND_FAIL;
5547 }
5548 else if (skip_past_char (&p, ':') == SUCCESS)
5549 {
5550 /* FIXME: '@' should be used here, but it's filtered out by generic
5551 code before we get to see it here. This may be subject to
5552 change. */
5553 parse_operand_result result = parse_neon_alignment (&p, i);
5554
5555 if (result != PARSE_OPERAND_SUCCESS)
5556 return result;
5557 }
5558 else
5559 {
5560 if (inst.operands[i].negative)
5561 {
5562 inst.operands[i].negative = 0;
5563 p--;
5564 }
5565
5566 if (group_relocations
5567 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5568 {
5569 struct group_reloc_table_entry *entry;
5570
5571 /* Skip over the #: or : sequence. */
5572 if (*p == '#')
5573 p += 2;
5574 else
5575 p++;
5576
5577 /* Try to parse a group relocation. Anything else is an
5578 error. */
5579 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5580 {
5581 inst.error = _("unknown group relocation");
5582 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5583 }
5584
5585 /* We now have the group relocation table entry corresponding to
5586 the name in the assembler source. Next, we parse the
5587 expression. */
5588 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5589 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5590
5591 /* Record the relocation type. */
5592 switch (group_type)
5593 {
5594 case GROUP_LDR:
5595 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5596 break;
5597
5598 case GROUP_LDRS:
5599 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5600 break;
5601
5602 case GROUP_LDC:
5603 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5604 break;
5605
5606 default:
5607 gas_assert (0);
5608 }
5609
5610 if (inst.reloc.type == 0)
5611 {
5612 inst.error = _("this group relocation is not allowed on this instruction");
5613 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5614 }
5615 }
5616 else
5617 {
5618 char *q = p;
5619 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5620 return PARSE_OPERAND_FAIL;
5621 /* If the offset is 0, find out if it's a +0 or -0. */
5622 if (inst.reloc.exp.X_op == O_constant
5623 && inst.reloc.exp.X_add_number == 0)
5624 {
5625 skip_whitespace (q);
5626 if (*q == '#')
5627 {
5628 q++;
5629 skip_whitespace (q);
5630 }
5631 if (*q == '-')
5632 inst.operands[i].negative = 1;
5633 }
5634 }
5635 }
5636 }
5637 else if (skip_past_char (&p, ':') == SUCCESS)
5638 {
5639 /* FIXME: '@' should be used here, but it's filtered out by generic code
5640 before we get to see it here. This may be subject to change. */
5641 parse_operand_result result = parse_neon_alignment (&p, i);
5642
5643 if (result != PARSE_OPERAND_SUCCESS)
5644 return result;
5645 }
5646
5647 if (skip_past_char (&p, ']') == FAIL)
5648 {
5649 inst.error = _("']' expected");
5650 return PARSE_OPERAND_FAIL;
5651 }
5652
5653 if (skip_past_char (&p, '!') == SUCCESS)
5654 inst.operands[i].writeback = 1;
5655
5656 else if (skip_past_comma (&p) == SUCCESS)
5657 {
5658 if (skip_past_char (&p, '{') == SUCCESS)
5659 {
5660 /* [Rn], {expr} - unindexed, with option */
5661 if (parse_immediate (&p, &inst.operands[i].imm,
5662 0, 255, TRUE) == FAIL)
5663 return PARSE_OPERAND_FAIL;
5664
5665 if (skip_past_char (&p, '}') == FAIL)
5666 {
5667 inst.error = _("'}' expected at end of 'option' field");
5668 return PARSE_OPERAND_FAIL;
5669 }
5670 if (inst.operands[i].preind)
5671 {
5672 inst.error = _("cannot combine index with option");
5673 return PARSE_OPERAND_FAIL;
5674 }
5675 *str = p;
5676 return PARSE_OPERAND_SUCCESS;
5677 }
5678 else
5679 {
5680 inst.operands[i].postind = 1;
5681 inst.operands[i].writeback = 1;
5682
5683 if (inst.operands[i].preind)
5684 {
5685 inst.error = _("cannot combine pre- and post-indexing");
5686 return PARSE_OPERAND_FAIL;
5687 }
5688
5689 if (*p == '+') p++;
5690 else if (*p == '-') p++, inst.operands[i].negative = 1;
5691
5692 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5693 {
5694 /* We might be using the immediate for alignment already. If we
5695 are, OR the register number into the low-order bits. */
5696 if (inst.operands[i].immisalign)
5697 inst.operands[i].imm |= reg;
5698 else
5699 inst.operands[i].imm = reg;
5700 inst.operands[i].immisreg = 1;
5701
5702 if (skip_past_comma (&p) == SUCCESS)
5703 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5704 return PARSE_OPERAND_FAIL;
5705 }
5706 else
5707 {
5708 char *q = p;
5709 if (inst.operands[i].negative)
5710 {
5711 inst.operands[i].negative = 0;
5712 p--;
5713 }
5714 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5715 return PARSE_OPERAND_FAIL;
5716 /* If the offset is 0, find out if it's a +0 or -0. */
5717 if (inst.reloc.exp.X_op == O_constant
5718 && inst.reloc.exp.X_add_number == 0)
5719 {
5720 skip_whitespace (q);
5721 if (*q == '#')
5722 {
5723 q++;
5724 skip_whitespace (q);
5725 }
5726 if (*q == '-')
5727 inst.operands[i].negative = 1;
5728 }
5729 }
5730 }
5731 }
5732
5733 /* If at this point neither .preind nor .postind is set, we have a
5734 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5735 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5736 {
5737 inst.operands[i].preind = 1;
5738 inst.reloc.exp.X_op = O_constant;
5739 inst.reloc.exp.X_add_number = 0;
5740 }
5741 *str = p;
5742 return PARSE_OPERAND_SUCCESS;
5743 }
5744
5745 static int
5746 parse_address (char **str, int i)
5747 {
5748 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5749 ? SUCCESS : FAIL;
5750 }
5751
5752 static parse_operand_result
5753 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5754 {
5755 return parse_address_main (str, i, 1, type);
5756 }
5757
5758 /* Parse an operand for a MOVW or MOVT instruction. */
5759 static int
5760 parse_half (char **str)
5761 {
5762 char * p;
5763
5764 p = *str;
5765 skip_past_char (&p, '#');
5766 if (strncasecmp (p, ":lower16:", 9) == 0)
5767 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5768 else if (strncasecmp (p, ":upper16:", 9) == 0)
5769 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5770
5771 if (inst.reloc.type != BFD_RELOC_UNUSED)
5772 {
5773 p += 9;
5774 skip_whitespace (p);
5775 }
5776
5777 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5778 return FAIL;
5779
5780 if (inst.reloc.type == BFD_RELOC_UNUSED)
5781 {
5782 if (inst.reloc.exp.X_op != O_constant)
5783 {
5784 inst.error = _("constant expression expected");
5785 return FAIL;
5786 }
5787 if (inst.reloc.exp.X_add_number < 0
5788 || inst.reloc.exp.X_add_number > 0xffff)
5789 {
5790 inst.error = _("immediate value out of range");
5791 return FAIL;
5792 }
5793 }
5794 *str = p;
5795 return SUCCESS;
5796 }
5797
5798 /* Miscellaneous. */
5799
5800 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5801 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5802 static int
5803 parse_psr (char **str, bfd_boolean lhs)
5804 {
5805 char *p;
5806 unsigned long psr_field;
5807 const struct asm_psr *psr;
5808 char *start;
5809 bfd_boolean is_apsr = FALSE;
5810 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5811
5812 /* PR gas/12698: If the user has specified -march=all then m_profile will
5813 be TRUE, but we want to ignore it in this case as we are building for any
5814 CPU type, including non-m variants. */
5815 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5816 m_profile = FALSE;
5817
5818 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5819 feature for ease of use and backwards compatibility. */
5820 p = *str;
5821 if (strncasecmp (p, "SPSR", 4) == 0)
5822 {
5823 if (m_profile)
5824 goto unsupported_psr;
5825
5826 psr_field = SPSR_BIT;
5827 }
5828 else if (strncasecmp (p, "CPSR", 4) == 0)
5829 {
5830 if (m_profile)
5831 goto unsupported_psr;
5832
5833 psr_field = 0;
5834 }
5835 else if (strncasecmp (p, "APSR", 4) == 0)
5836 {
5837 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5838 and ARMv7-R architecture CPUs. */
5839 is_apsr = TRUE;
5840 psr_field = 0;
5841 }
5842 else if (m_profile)
5843 {
5844 start = p;
5845 do
5846 p++;
5847 while (ISALNUM (*p) || *p == '_');
5848
5849 if (strncasecmp (start, "iapsr", 5) == 0
5850 || strncasecmp (start, "eapsr", 5) == 0
5851 || strncasecmp (start, "xpsr", 4) == 0
5852 || strncasecmp (start, "psr", 3) == 0)
5853 p = start + strcspn (start, "rR") + 1;
5854
5855 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5856 p - start);
5857
5858 if (!psr)
5859 return FAIL;
5860
5861 /* If APSR is being written, a bitfield may be specified. Note that
5862 APSR itself is handled above. */
5863 if (psr->field <= 3)
5864 {
5865 psr_field = psr->field;
5866 is_apsr = TRUE;
5867 goto check_suffix;
5868 }
5869
5870 *str = p;
5871 /* M-profile MSR instructions have the mask field set to "10", except
5872 *PSR variants which modify APSR, which may use a different mask (and
5873 have been handled already). Do that by setting the PSR_f field
5874 here. */
5875 return psr->field | (lhs ? PSR_f : 0);
5876 }
5877 else
5878 goto unsupported_psr;
5879
5880 p += 4;
5881 check_suffix:
5882 if (*p == '_')
5883 {
5884 /* A suffix follows. */
5885 p++;
5886 start = p;
5887
5888 do
5889 p++;
5890 while (ISALNUM (*p) || *p == '_');
5891
5892 if (is_apsr)
5893 {
5894 /* APSR uses a notation for bits, rather than fields. */
5895 unsigned int nzcvq_bits = 0;
5896 unsigned int g_bit = 0;
5897 char *bit;
5898
5899 for (bit = start; bit != p; bit++)
5900 {
5901 switch (TOLOWER (*bit))
5902 {
5903 case 'n':
5904 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5905 break;
5906
5907 case 'z':
5908 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5909 break;
5910
5911 case 'c':
5912 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5913 break;
5914
5915 case 'v':
5916 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5917 break;
5918
5919 case 'q':
5920 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5921 break;
5922
5923 case 'g':
5924 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5925 break;
5926
5927 default:
5928 inst.error = _("unexpected bit specified after APSR");
5929 return FAIL;
5930 }
5931 }
5932
5933 if (nzcvq_bits == 0x1f)
5934 psr_field |= PSR_f;
5935
5936 if (g_bit == 0x1)
5937 {
5938 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5939 {
5940 inst.error = _("selected processor does not "
5941 "support DSP extension");
5942 return FAIL;
5943 }
5944
5945 psr_field |= PSR_s;
5946 }
5947
5948 if ((nzcvq_bits & 0x20) != 0
5949 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5950 || (g_bit & 0x2) != 0)
5951 {
5952 inst.error = _("bad bitmask specified after APSR");
5953 return FAIL;
5954 }
5955 }
5956 else
5957 {
5958 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5959 p - start);
5960 if (!psr)
5961 goto error;
5962
5963 psr_field |= psr->field;
5964 }
5965 }
5966 else
5967 {
5968 if (ISALNUM (*p))
5969 goto error; /* Garbage after "[CS]PSR". */
5970
5971 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5972 is deprecated, but allow it anyway. */
5973 if (is_apsr && lhs)
5974 {
5975 psr_field |= PSR_f;
5976 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5977 "deprecated"));
5978 }
5979 else if (!m_profile)
5980 /* These bits are never right for M-profile devices: don't set them
5981 (only code paths which read/write APSR reach here). */
5982 psr_field |= (PSR_c | PSR_f);
5983 }
5984 *str = p;
5985 return psr_field;
5986
5987 unsupported_psr:
5988 inst.error = _("selected processor does not support requested special "
5989 "purpose register");
5990 return FAIL;
5991
5992 error:
5993 inst.error = _("flag for {c}psr instruction expected");
5994 return FAIL;
5995 }
5996
5997 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5998 value suitable for splatting into the AIF field of the instruction. */
5999
6000 static int
6001 parse_cps_flags (char **str)
6002 {
6003 int val = 0;
6004 int saw_a_flag = 0;
6005 char *s = *str;
6006
6007 for (;;)
6008 switch (*s++)
6009 {
6010 case '\0': case ',':
6011 goto done;
6012
6013 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6014 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6015 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6016
6017 default:
6018 inst.error = _("unrecognized CPS flag");
6019 return FAIL;
6020 }
6021
6022 done:
6023 if (saw_a_flag == 0)
6024 {
6025 inst.error = _("missing CPS flags");
6026 return FAIL;
6027 }
6028
6029 *str = s - 1;
6030 return val;
6031 }
6032
6033 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6034 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6035
6036 static int
6037 parse_endian_specifier (char **str)
6038 {
6039 int little_endian;
6040 char *s = *str;
6041
6042 if (strncasecmp (s, "BE", 2))
6043 little_endian = 0;
6044 else if (strncasecmp (s, "LE", 2))
6045 little_endian = 1;
6046 else
6047 {
6048 inst.error = _("valid endian specifiers are be or le");
6049 return FAIL;
6050 }
6051
6052 if (ISALNUM (s[2]) || s[2] == '_')
6053 {
6054 inst.error = _("valid endian specifiers are be or le");
6055 return FAIL;
6056 }
6057
6058 *str = s + 2;
6059 return little_endian;
6060 }
6061
6062 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6063 value suitable for poking into the rotate field of an sxt or sxta
6064 instruction, or FAIL on error. */
6065
6066 static int
6067 parse_ror (char **str)
6068 {
6069 int rot;
6070 char *s = *str;
6071
6072 if (strncasecmp (s, "ROR", 3) == 0)
6073 s += 3;
6074 else
6075 {
6076 inst.error = _("missing rotation field after comma");
6077 return FAIL;
6078 }
6079
6080 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6081 return FAIL;
6082
6083 switch (rot)
6084 {
6085 case 0: *str = s; return 0x0;
6086 case 8: *str = s; return 0x1;
6087 case 16: *str = s; return 0x2;
6088 case 24: *str = s; return 0x3;
6089
6090 default:
6091 inst.error = _("rotation can only be 0, 8, 16, or 24");
6092 return FAIL;
6093 }
6094 }
6095
6096 /* Parse a conditional code (from conds[] below). The value returned is in the
6097 range 0 .. 14, or FAIL. */
6098 static int
6099 parse_cond (char **str)
6100 {
6101 char *q;
6102 const struct asm_cond *c;
6103 int n;
6104 /* Condition codes are always 2 characters, so matching up to
6105 3 characters is sufficient. */
6106 char cond[3];
6107
6108 q = *str;
6109 n = 0;
6110 while (ISALPHA (*q) && n < 3)
6111 {
6112 cond[n] = TOLOWER (*q);
6113 q++;
6114 n++;
6115 }
6116
6117 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6118 if (!c)
6119 {
6120 inst.error = _("condition required");
6121 return FAIL;
6122 }
6123
6124 *str = q;
6125 return c->value;
6126 }
6127
6128 /* Record a use of the given feature. */
6129 static void
6130 record_feature_use (const arm_feature_set *feature)
6131 {
6132 if (thumb_mode)
6133 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6134 else
6135 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6136 }
6137
6138 /* If the given feature available in the selected CPU, mark it as used.
6139 Returns TRUE iff feature is available. */
6140 static bfd_boolean
6141 mark_feature_used (const arm_feature_set *feature)
6142 {
6143 /* Ensure the option is valid on the current architecture. */
6144 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6145 return FALSE;
6146
6147 /* Add the appropriate architecture feature for the barrier option used.
6148 */
6149 record_feature_use (feature);
6150
6151 return TRUE;
6152 }
6153
6154 /* Parse an option for a barrier instruction. Returns the encoding for the
6155 option, or FAIL. */
6156 static int
6157 parse_barrier (char **str)
6158 {
6159 char *p, *q;
6160 const struct asm_barrier_opt *o;
6161
6162 p = q = *str;
6163 while (ISALPHA (*q))
6164 q++;
6165
6166 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6167 q - p);
6168 if (!o)
6169 return FAIL;
6170
6171 if (!mark_feature_used (&o->arch))
6172 return FAIL;
6173
6174 *str = q;
6175 return o->value;
6176 }
6177
6178 /* Parse the operands of a table branch instruction. Similar to a memory
6179 operand. */
6180 static int
6181 parse_tb (char **str)
6182 {
6183 char * p = *str;
6184 int reg;
6185
6186 if (skip_past_char (&p, '[') == FAIL)
6187 {
6188 inst.error = _("'[' expected");
6189 return FAIL;
6190 }
6191
6192 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6193 {
6194 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6195 return FAIL;
6196 }
6197 inst.operands[0].reg = reg;
6198
6199 if (skip_past_comma (&p) == FAIL)
6200 {
6201 inst.error = _("',' expected");
6202 return FAIL;
6203 }
6204
6205 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6206 {
6207 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6208 return FAIL;
6209 }
6210 inst.operands[0].imm = reg;
6211
6212 if (skip_past_comma (&p) == SUCCESS)
6213 {
6214 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6215 return FAIL;
6216 if (inst.reloc.exp.X_add_number != 1)
6217 {
6218 inst.error = _("invalid shift");
6219 return FAIL;
6220 }
6221 inst.operands[0].shifted = 1;
6222 }
6223
6224 if (skip_past_char (&p, ']') == FAIL)
6225 {
6226 inst.error = _("']' expected");
6227 return FAIL;
6228 }
6229 *str = p;
6230 return SUCCESS;
6231 }
6232
6233 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6234 information on the types the operands can take and how they are encoded.
6235 Up to four operands may be read; this function handles setting the
6236 ".present" field for each read operand itself.
6237 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6238 else returns FAIL. */
6239
6240 static int
6241 parse_neon_mov (char **str, int *which_operand)
6242 {
6243 int i = *which_operand, val;
6244 enum arm_reg_type rtype;
6245 char *ptr = *str;
6246 struct neon_type_el optype;
6247
6248 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6249 {
6250 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6251 inst.operands[i].reg = val;
6252 inst.operands[i].isscalar = 1;
6253 inst.operands[i].vectype = optype;
6254 inst.operands[i++].present = 1;
6255
6256 if (skip_past_comma (&ptr) == FAIL)
6257 goto wanted_comma;
6258
6259 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6260 goto wanted_arm;
6261
6262 inst.operands[i].reg = val;
6263 inst.operands[i].isreg = 1;
6264 inst.operands[i].present = 1;
6265 }
6266 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6267 != FAIL)
6268 {
6269 /* Cases 0, 1, 2, 3, 5 (D only). */
6270 if (skip_past_comma (&ptr) == FAIL)
6271 goto wanted_comma;
6272
6273 inst.operands[i].reg = val;
6274 inst.operands[i].isreg = 1;
6275 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6276 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6277 inst.operands[i].isvec = 1;
6278 inst.operands[i].vectype = optype;
6279 inst.operands[i++].present = 1;
6280
6281 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6282 {
6283 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6284 Case 13: VMOV <Sd>, <Rm> */
6285 inst.operands[i].reg = val;
6286 inst.operands[i].isreg = 1;
6287 inst.operands[i].present = 1;
6288
6289 if (rtype == REG_TYPE_NQ)
6290 {
6291 first_error (_("can't use Neon quad register here"));
6292 return FAIL;
6293 }
6294 else if (rtype != REG_TYPE_VFS)
6295 {
6296 i++;
6297 if (skip_past_comma (&ptr) == FAIL)
6298 goto wanted_comma;
6299 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6300 goto wanted_arm;
6301 inst.operands[i].reg = val;
6302 inst.operands[i].isreg = 1;
6303 inst.operands[i].present = 1;
6304 }
6305 }
6306 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6307 &optype)) != FAIL)
6308 {
6309 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6310 Case 1: VMOV<c><q> <Dd>, <Dm>
6311 Case 8: VMOV.F32 <Sd>, <Sm>
6312 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6313
6314 inst.operands[i].reg = val;
6315 inst.operands[i].isreg = 1;
6316 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6317 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6318 inst.operands[i].isvec = 1;
6319 inst.operands[i].vectype = optype;
6320 inst.operands[i].present = 1;
6321
6322 if (skip_past_comma (&ptr) == SUCCESS)
6323 {
6324 /* Case 15. */
6325 i++;
6326
6327 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6328 goto wanted_arm;
6329
6330 inst.operands[i].reg = val;
6331 inst.operands[i].isreg = 1;
6332 inst.operands[i++].present = 1;
6333
6334 if (skip_past_comma (&ptr) == FAIL)
6335 goto wanted_comma;
6336
6337 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6338 goto wanted_arm;
6339
6340 inst.operands[i].reg = val;
6341 inst.operands[i].isreg = 1;
6342 inst.operands[i].present = 1;
6343 }
6344 }
6345 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6346 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6347 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6348 Case 10: VMOV.F32 <Sd>, #<imm>
6349 Case 11: VMOV.F64 <Dd>, #<imm> */
6350 inst.operands[i].immisfloat = 1;
6351 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6352 == SUCCESS)
6353 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6354 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6355 ;
6356 else
6357 {
6358 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6359 return FAIL;
6360 }
6361 }
6362 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6363 {
6364 /* Cases 6, 7. */
6365 inst.operands[i].reg = val;
6366 inst.operands[i].isreg = 1;
6367 inst.operands[i++].present = 1;
6368
6369 if (skip_past_comma (&ptr) == FAIL)
6370 goto wanted_comma;
6371
6372 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6373 {
6374 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6375 inst.operands[i].reg = val;
6376 inst.operands[i].isscalar = 1;
6377 inst.operands[i].present = 1;
6378 inst.operands[i].vectype = optype;
6379 }
6380 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6381 {
6382 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6383 inst.operands[i].reg = val;
6384 inst.operands[i].isreg = 1;
6385 inst.operands[i++].present = 1;
6386
6387 if (skip_past_comma (&ptr) == FAIL)
6388 goto wanted_comma;
6389
6390 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6391 == FAIL)
6392 {
6393 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6394 return FAIL;
6395 }
6396
6397 inst.operands[i].reg = val;
6398 inst.operands[i].isreg = 1;
6399 inst.operands[i].isvec = 1;
6400 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6401 inst.operands[i].vectype = optype;
6402 inst.operands[i].present = 1;
6403
6404 if (rtype == REG_TYPE_VFS)
6405 {
6406 /* Case 14. */
6407 i++;
6408 if (skip_past_comma (&ptr) == FAIL)
6409 goto wanted_comma;
6410 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6411 &optype)) == FAIL)
6412 {
6413 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6414 return FAIL;
6415 }
6416 inst.operands[i].reg = val;
6417 inst.operands[i].isreg = 1;
6418 inst.operands[i].isvec = 1;
6419 inst.operands[i].issingle = 1;
6420 inst.operands[i].vectype = optype;
6421 inst.operands[i].present = 1;
6422 }
6423 }
6424 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6425 != FAIL)
6426 {
6427 /* Case 13. */
6428 inst.operands[i].reg = val;
6429 inst.operands[i].isreg = 1;
6430 inst.operands[i].isvec = 1;
6431 inst.operands[i].issingle = 1;
6432 inst.operands[i].vectype = optype;
6433 inst.operands[i].present = 1;
6434 }
6435 }
6436 else
6437 {
6438 first_error (_("parse error"));
6439 return FAIL;
6440 }
6441
6442 /* Successfully parsed the operands. Update args. */
6443 *which_operand = i;
6444 *str = ptr;
6445 return SUCCESS;
6446
6447 wanted_comma:
6448 first_error (_("expected comma"));
6449 return FAIL;
6450
6451 wanted_arm:
6452 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6453 return FAIL;
6454 }
6455
6456 /* Use this macro when the operand constraints are different
6457 for ARM and THUMB (e.g. ldrd). */
6458 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6459 ((arm_operand) | ((thumb_operand) << 16))
6460
6461 /* Matcher codes for parse_operands. */
6462 enum operand_parse_code
6463 {
6464 OP_stop, /* end of line */
6465
6466 OP_RR, /* ARM register */
6467 OP_RRnpc, /* ARM register, not r15 */
6468 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6469 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6470 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6471 optional trailing ! */
6472 OP_RRw, /* ARM register, not r15, optional trailing ! */
6473 OP_RCP, /* Coprocessor number */
6474 OP_RCN, /* Coprocessor register */
6475 OP_RF, /* FPA register */
6476 OP_RVS, /* VFP single precision register */
6477 OP_RVD, /* VFP double precision register (0..15) */
6478 OP_RND, /* Neon double precision register (0..31) */
6479 OP_RNQ, /* Neon quad precision register */
6480 OP_RVSD, /* VFP single or double precision register */
6481 OP_RNDQ, /* Neon double or quad precision register */
6482 OP_RNSDQ, /* Neon single, double or quad precision register */
6483 OP_RNSC, /* Neon scalar D[X] */
6484 OP_RVC, /* VFP control register */
6485 OP_RMF, /* Maverick F register */
6486 OP_RMD, /* Maverick D register */
6487 OP_RMFX, /* Maverick FX register */
6488 OP_RMDX, /* Maverick DX register */
6489 OP_RMAX, /* Maverick AX register */
6490 OP_RMDS, /* Maverick DSPSC register */
6491 OP_RIWR, /* iWMMXt wR register */
6492 OP_RIWC, /* iWMMXt wC register */
6493 OP_RIWG, /* iWMMXt wCG register */
6494 OP_RXA, /* XScale accumulator register */
6495
6496 OP_REGLST, /* ARM register list */
6497 OP_VRSLST, /* VFP single-precision register list */
6498 OP_VRDLST, /* VFP double-precision register list */
6499 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6500 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6501 OP_NSTRLST, /* Neon element/structure list */
6502
6503 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6504 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6505 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6506 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6507 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6508 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6509 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6510 OP_VMOV, /* Neon VMOV operands. */
6511 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6512 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6513 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6514
6515 OP_I0, /* immediate zero */
6516 OP_I7, /* immediate value 0 .. 7 */
6517 OP_I15, /* 0 .. 15 */
6518 OP_I16, /* 1 .. 16 */
6519 OP_I16z, /* 0 .. 16 */
6520 OP_I31, /* 0 .. 31 */
6521 OP_I31w, /* 0 .. 31, optional trailing ! */
6522 OP_I32, /* 1 .. 32 */
6523 OP_I32z, /* 0 .. 32 */
6524 OP_I63, /* 0 .. 63 */
6525 OP_I63s, /* -64 .. 63 */
6526 OP_I64, /* 1 .. 64 */
6527 OP_I64z, /* 0 .. 64 */
6528 OP_I255, /* 0 .. 255 */
6529
6530 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6531 OP_I7b, /* 0 .. 7 */
6532 OP_I15b, /* 0 .. 15 */
6533 OP_I31b, /* 0 .. 31 */
6534
6535 OP_SH, /* shifter operand */
6536 OP_SHG, /* shifter operand with possible group relocation */
6537 OP_ADDR, /* Memory address expression (any mode) */
6538 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6539 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6540 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6541 OP_EXP, /* arbitrary expression */
6542 OP_EXPi, /* same, with optional immediate prefix */
6543 OP_EXPr, /* same, with optional relocation suffix */
6544 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6545 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6546 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6547
6548 OP_CPSF, /* CPS flags */
6549 OP_ENDI, /* Endianness specifier */
6550 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6551 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6552 OP_COND, /* conditional code */
6553 OP_TB, /* Table branch. */
6554
6555 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6556
6557 OP_RRnpc_I0, /* ARM register or literal 0 */
6558 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
6559 OP_RR_EXi, /* ARM register or expression with imm prefix */
6560 OP_RF_IF, /* FPA register or immediate */
6561 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6562 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6563
6564 /* Optional operands. */
6565 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6566 OP_oI31b, /* 0 .. 31 */
6567 OP_oI32b, /* 1 .. 32 */
6568 OP_oI32z, /* 0 .. 32 */
6569 OP_oIffffb, /* 0 .. 65535 */
6570 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6571
6572 OP_oRR, /* ARM register */
6573 OP_oRRnpc, /* ARM register, not the PC */
6574 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6575 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6576 OP_oRND, /* Optional Neon double precision register */
6577 OP_oRNQ, /* Optional Neon quad precision register */
6578 OP_oRNDQ, /* Optional Neon double or quad precision register */
6579 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6580 OP_oSHll, /* LSL immediate */
6581 OP_oSHar, /* ASR immediate */
6582 OP_oSHllar, /* LSL or ASR immediate */
6583 OP_oROR, /* ROR 0/8/16/24 */
6584 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6585
6586 /* Some pre-defined mixed (ARM/THUMB) operands. */
6587 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6588 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6589 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6590
6591 OP_FIRST_OPTIONAL = OP_oI7b
6592 };
6593
6594 /* Generic instruction operand parser. This does no encoding and no
6595 semantic validation; it merely squirrels values away in the inst
6596 structure. Returns SUCCESS or FAIL depending on whether the
6597 specified grammar matched. */
6598 static int
6599 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6600 {
6601 unsigned const int *upat = pattern;
6602 char *backtrack_pos = 0;
6603 const char *backtrack_error = 0;
6604 int i, val = 0, backtrack_index = 0;
6605 enum arm_reg_type rtype;
6606 parse_operand_result result;
6607 unsigned int op_parse_code;
6608
6609 #define po_char_or_fail(chr) \
6610 do \
6611 { \
6612 if (skip_past_char (&str, chr) == FAIL) \
6613 goto bad_args; \
6614 } \
6615 while (0)
6616
6617 #define po_reg_or_fail(regtype) \
6618 do \
6619 { \
6620 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6621 & inst.operands[i].vectype); \
6622 if (val == FAIL) \
6623 { \
6624 first_error (_(reg_expected_msgs[regtype])); \
6625 goto failure; \
6626 } \
6627 inst.operands[i].reg = val; \
6628 inst.operands[i].isreg = 1; \
6629 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6630 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6631 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6632 || rtype == REG_TYPE_VFD \
6633 || rtype == REG_TYPE_NQ); \
6634 } \
6635 while (0)
6636
6637 #define po_reg_or_goto(regtype, label) \
6638 do \
6639 { \
6640 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6641 & inst.operands[i].vectype); \
6642 if (val == FAIL) \
6643 goto label; \
6644 \
6645 inst.operands[i].reg = val; \
6646 inst.operands[i].isreg = 1; \
6647 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6648 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6649 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6650 || rtype == REG_TYPE_VFD \
6651 || rtype == REG_TYPE_NQ); \
6652 } \
6653 while (0)
6654
6655 #define po_imm_or_fail(min, max, popt) \
6656 do \
6657 { \
6658 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6659 goto failure; \
6660 inst.operands[i].imm = val; \
6661 } \
6662 while (0)
6663
6664 #define po_scalar_or_goto(elsz, label) \
6665 do \
6666 { \
6667 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6668 if (val == FAIL) \
6669 goto label; \
6670 inst.operands[i].reg = val; \
6671 inst.operands[i].isscalar = 1; \
6672 } \
6673 while (0)
6674
6675 #define po_misc_or_fail(expr) \
6676 do \
6677 { \
6678 if (expr) \
6679 goto failure; \
6680 } \
6681 while (0)
6682
6683 #define po_misc_or_fail_no_backtrack(expr) \
6684 do \
6685 { \
6686 result = expr; \
6687 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6688 backtrack_pos = 0; \
6689 if (result != PARSE_OPERAND_SUCCESS) \
6690 goto failure; \
6691 } \
6692 while (0)
6693
6694 #define po_barrier_or_imm(str) \
6695 do \
6696 { \
6697 val = parse_barrier (&str); \
6698 if (val == FAIL && ! ISALPHA (*str)) \
6699 goto immediate; \
6700 if (val == FAIL \
6701 /* ISB can only take SY as an option. */ \
6702 || ((inst.instruction & 0xf0) == 0x60 \
6703 && val != 0xf)) \
6704 { \
6705 inst.error = _("invalid barrier type"); \
6706 backtrack_pos = 0; \
6707 goto failure; \
6708 } \
6709 } \
6710 while (0)
6711
6712 skip_whitespace (str);
6713
6714 for (i = 0; upat[i] != OP_stop; i++)
6715 {
6716 op_parse_code = upat[i];
6717 if (op_parse_code >= 1<<16)
6718 op_parse_code = thumb ? (op_parse_code >> 16)
6719 : (op_parse_code & ((1<<16)-1));
6720
6721 if (op_parse_code >= OP_FIRST_OPTIONAL)
6722 {
6723 /* Remember where we are in case we need to backtrack. */
6724 gas_assert (!backtrack_pos);
6725 backtrack_pos = str;
6726 backtrack_error = inst.error;
6727 backtrack_index = i;
6728 }
6729
6730 if (i > 0 && (i > 1 || inst.operands[0].present))
6731 po_char_or_fail (',');
6732
6733 switch (op_parse_code)
6734 {
6735 /* Registers */
6736 case OP_oRRnpc:
6737 case OP_oRRnpcsp:
6738 case OP_RRnpc:
6739 case OP_RRnpcsp:
6740 case OP_oRR:
6741 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6742 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6743 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6744 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6745 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6746 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6747 case OP_oRND:
6748 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6749 case OP_RVC:
6750 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6751 break;
6752 /* Also accept generic coprocessor regs for unknown registers. */
6753 coproc_reg:
6754 po_reg_or_fail (REG_TYPE_CN);
6755 break;
6756 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6757 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6758 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6759 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6760 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6761 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6762 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6763 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6764 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6765 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6766 case OP_oRNQ:
6767 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6768 case OP_oRNDQ:
6769 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6770 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6771 case OP_oRNSDQ:
6772 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6773
6774 /* Neon scalar. Using an element size of 8 means that some invalid
6775 scalars are accepted here, so deal with those in later code. */
6776 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6777
6778 case OP_RNDQ_I0:
6779 {
6780 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6781 break;
6782 try_imm0:
6783 po_imm_or_fail (0, 0, TRUE);
6784 }
6785 break;
6786
6787 case OP_RVSD_I0:
6788 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6789 break;
6790
6791 case OP_RSVD_FI0:
6792 {
6793 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6794 break;
6795 try_ifimm0:
6796 if (parse_ifimm_zero (&str))
6797 inst.operands[i].imm = 0;
6798 else
6799 {
6800 inst.error
6801 = _("only floating point zero is allowed as immediate value");
6802 goto failure;
6803 }
6804 }
6805 break;
6806
6807 case OP_RR_RNSC:
6808 {
6809 po_scalar_or_goto (8, try_rr);
6810 break;
6811 try_rr:
6812 po_reg_or_fail (REG_TYPE_RN);
6813 }
6814 break;
6815
6816 case OP_RNSDQ_RNSC:
6817 {
6818 po_scalar_or_goto (8, try_nsdq);
6819 break;
6820 try_nsdq:
6821 po_reg_or_fail (REG_TYPE_NSDQ);
6822 }
6823 break;
6824
6825 case OP_RNDQ_RNSC:
6826 {
6827 po_scalar_or_goto (8, try_ndq);
6828 break;
6829 try_ndq:
6830 po_reg_or_fail (REG_TYPE_NDQ);
6831 }
6832 break;
6833
6834 case OP_RND_RNSC:
6835 {
6836 po_scalar_or_goto (8, try_vfd);
6837 break;
6838 try_vfd:
6839 po_reg_or_fail (REG_TYPE_VFD);
6840 }
6841 break;
6842
6843 case OP_VMOV:
6844 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6845 not careful then bad things might happen. */
6846 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6847 break;
6848
6849 case OP_RNDQ_Ibig:
6850 {
6851 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6852 break;
6853 try_immbig:
6854 /* There's a possibility of getting a 64-bit immediate here, so
6855 we need special handling. */
6856 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6857 == FAIL)
6858 {
6859 inst.error = _("immediate value is out of range");
6860 goto failure;
6861 }
6862 }
6863 break;
6864
6865 case OP_RNDQ_I63b:
6866 {
6867 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6868 break;
6869 try_shimm:
6870 po_imm_or_fail (0, 63, TRUE);
6871 }
6872 break;
6873
6874 case OP_RRnpcb:
6875 po_char_or_fail ('[');
6876 po_reg_or_fail (REG_TYPE_RN);
6877 po_char_or_fail (']');
6878 break;
6879
6880 case OP_RRnpctw:
6881 case OP_RRw:
6882 case OP_oRRw:
6883 po_reg_or_fail (REG_TYPE_RN);
6884 if (skip_past_char (&str, '!') == SUCCESS)
6885 inst.operands[i].writeback = 1;
6886 break;
6887
6888 /* Immediates */
6889 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6890 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6891 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6892 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6893 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6894 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6895 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6896 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6897 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6898 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6899 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6900 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6901
6902 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6903 case OP_oI7b:
6904 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6905 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6906 case OP_oI31b:
6907 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6908 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6909 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6910 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6911
6912 /* Immediate variants */
6913 case OP_oI255c:
6914 po_char_or_fail ('{');
6915 po_imm_or_fail (0, 255, TRUE);
6916 po_char_or_fail ('}');
6917 break;
6918
6919 case OP_I31w:
6920 /* The expression parser chokes on a trailing !, so we have
6921 to find it first and zap it. */
6922 {
6923 char *s = str;
6924 while (*s && *s != ',')
6925 s++;
6926 if (s[-1] == '!')
6927 {
6928 s[-1] = '\0';
6929 inst.operands[i].writeback = 1;
6930 }
6931 po_imm_or_fail (0, 31, TRUE);
6932 if (str == s - 1)
6933 str = s;
6934 }
6935 break;
6936
6937 /* Expressions */
6938 case OP_EXPi: EXPi:
6939 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6940 GE_OPT_PREFIX));
6941 break;
6942
6943 case OP_EXP:
6944 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6945 GE_NO_PREFIX));
6946 break;
6947
6948 case OP_EXPr: EXPr:
6949 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6950 GE_NO_PREFIX));
6951 if (inst.reloc.exp.X_op == O_symbol)
6952 {
6953 val = parse_reloc (&str);
6954 if (val == -1)
6955 {
6956 inst.error = _("unrecognized relocation suffix");
6957 goto failure;
6958 }
6959 else if (val != BFD_RELOC_UNUSED)
6960 {
6961 inst.operands[i].imm = val;
6962 inst.operands[i].hasreloc = 1;
6963 }
6964 }
6965 break;
6966
6967 /* Operand for MOVW or MOVT. */
6968 case OP_HALF:
6969 po_misc_or_fail (parse_half (&str));
6970 break;
6971
6972 /* Register or expression. */
6973 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6974 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6975
6976 /* Register or immediate. */
6977 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6978 I0: po_imm_or_fail (0, 0, FALSE); break;
6979
6980 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6981 IF:
6982 if (!is_immediate_prefix (*str))
6983 goto bad_args;
6984 str++;
6985 val = parse_fpa_immediate (&str);
6986 if (val == FAIL)
6987 goto failure;
6988 /* FPA immediates are encoded as registers 8-15.
6989 parse_fpa_immediate has already applied the offset. */
6990 inst.operands[i].reg = val;
6991 inst.operands[i].isreg = 1;
6992 break;
6993
6994 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6995 I32z: po_imm_or_fail (0, 32, FALSE); break;
6996
6997 /* Two kinds of register. */
6998 case OP_RIWR_RIWC:
6999 {
7000 struct reg_entry *rege = arm_reg_parse_multi (&str);
7001 if (!rege
7002 || (rege->type != REG_TYPE_MMXWR
7003 && rege->type != REG_TYPE_MMXWC
7004 && rege->type != REG_TYPE_MMXWCG))
7005 {
7006 inst.error = _("iWMMXt data or control register expected");
7007 goto failure;
7008 }
7009 inst.operands[i].reg = rege->number;
7010 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7011 }
7012 break;
7013
7014 case OP_RIWC_RIWG:
7015 {
7016 struct reg_entry *rege = arm_reg_parse_multi (&str);
7017 if (!rege
7018 || (rege->type != REG_TYPE_MMXWC
7019 && rege->type != REG_TYPE_MMXWCG))
7020 {
7021 inst.error = _("iWMMXt control register expected");
7022 goto failure;
7023 }
7024 inst.operands[i].reg = rege->number;
7025 inst.operands[i].isreg = 1;
7026 }
7027 break;
7028
7029 /* Misc */
7030 case OP_CPSF: val = parse_cps_flags (&str); break;
7031 case OP_ENDI: val = parse_endian_specifier (&str); break;
7032 case OP_oROR: val = parse_ror (&str); break;
7033 case OP_COND: val = parse_cond (&str); break;
7034 case OP_oBARRIER_I15:
7035 po_barrier_or_imm (str); break;
7036 immediate:
7037 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7038 goto failure;
7039 break;
7040
7041 case OP_wPSR:
7042 case OP_rPSR:
7043 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7044 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7045 {
7046 inst.error = _("Banked registers are not available with this "
7047 "architecture.");
7048 goto failure;
7049 }
7050 break;
7051 try_psr:
7052 val = parse_psr (&str, op_parse_code == OP_wPSR);
7053 break;
7054
7055 case OP_APSR_RR:
7056 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7057 break;
7058 try_apsr:
7059 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7060 instruction). */
7061 if (strncasecmp (str, "APSR_", 5) == 0)
7062 {
7063 unsigned found = 0;
7064 str += 5;
7065 while (found < 15)
7066 switch (*str++)
7067 {
7068 case 'c': found = (found & 1) ? 16 : found | 1; break;
7069 case 'n': found = (found & 2) ? 16 : found | 2; break;
7070 case 'z': found = (found & 4) ? 16 : found | 4; break;
7071 case 'v': found = (found & 8) ? 16 : found | 8; break;
7072 default: found = 16;
7073 }
7074 if (found != 15)
7075 goto failure;
7076 inst.operands[i].isvec = 1;
7077 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7078 inst.operands[i].reg = REG_PC;
7079 }
7080 else
7081 goto failure;
7082 break;
7083
7084 case OP_TB:
7085 po_misc_or_fail (parse_tb (&str));
7086 break;
7087
7088 /* Register lists. */
7089 case OP_REGLST:
7090 val = parse_reg_list (&str);
7091 if (*str == '^')
7092 {
7093 inst.operands[i].writeback = 1;
7094 str++;
7095 }
7096 break;
7097
7098 case OP_VRSLST:
7099 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7100 break;
7101
7102 case OP_VRDLST:
7103 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7104 break;
7105
7106 case OP_VRSDLST:
7107 /* Allow Q registers too. */
7108 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7109 REGLIST_NEON_D);
7110 if (val == FAIL)
7111 {
7112 inst.error = NULL;
7113 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7114 REGLIST_VFP_S);
7115 inst.operands[i].issingle = 1;
7116 }
7117 break;
7118
7119 case OP_NRDLST:
7120 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7121 REGLIST_NEON_D);
7122 break;
7123
7124 case OP_NSTRLST:
7125 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7126 &inst.operands[i].vectype);
7127 break;
7128
7129 /* Addressing modes */
7130 case OP_ADDR:
7131 po_misc_or_fail (parse_address (&str, i));
7132 break;
7133
7134 case OP_ADDRGLDR:
7135 po_misc_or_fail_no_backtrack (
7136 parse_address_group_reloc (&str, i, GROUP_LDR));
7137 break;
7138
7139 case OP_ADDRGLDRS:
7140 po_misc_or_fail_no_backtrack (
7141 parse_address_group_reloc (&str, i, GROUP_LDRS));
7142 break;
7143
7144 case OP_ADDRGLDC:
7145 po_misc_or_fail_no_backtrack (
7146 parse_address_group_reloc (&str, i, GROUP_LDC));
7147 break;
7148
7149 case OP_SH:
7150 po_misc_or_fail (parse_shifter_operand (&str, i));
7151 break;
7152
7153 case OP_SHG:
7154 po_misc_or_fail_no_backtrack (
7155 parse_shifter_operand_group_reloc (&str, i));
7156 break;
7157
7158 case OP_oSHll:
7159 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7160 break;
7161
7162 case OP_oSHar:
7163 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7164 break;
7165
7166 case OP_oSHllar:
7167 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7168 break;
7169
7170 default:
7171 as_fatal (_("unhandled operand code %d"), op_parse_code);
7172 }
7173
7174 /* Various value-based sanity checks and shared operations. We
7175 do not signal immediate failures for the register constraints;
7176 this allows a syntax error to take precedence. */
7177 switch (op_parse_code)
7178 {
7179 case OP_oRRnpc:
7180 case OP_RRnpc:
7181 case OP_RRnpcb:
7182 case OP_RRw:
7183 case OP_oRRw:
7184 case OP_RRnpc_I0:
7185 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7186 inst.error = BAD_PC;
7187 break;
7188
7189 case OP_oRRnpcsp:
7190 case OP_RRnpcsp:
7191 if (inst.operands[i].isreg)
7192 {
7193 if (inst.operands[i].reg == REG_PC)
7194 inst.error = BAD_PC;
7195 else if (inst.operands[i].reg == REG_SP
7196 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7197 relaxed since ARMv8-A. */
7198 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7199 {
7200 gas_assert (thumb);
7201 inst.error = BAD_SP;
7202 }
7203 }
7204 break;
7205
7206 case OP_RRnpctw:
7207 if (inst.operands[i].isreg
7208 && inst.operands[i].reg == REG_PC
7209 && (inst.operands[i].writeback || thumb))
7210 inst.error = BAD_PC;
7211 break;
7212
7213 case OP_CPSF:
7214 case OP_ENDI:
7215 case OP_oROR:
7216 case OP_wPSR:
7217 case OP_rPSR:
7218 case OP_COND:
7219 case OP_oBARRIER_I15:
7220 case OP_REGLST:
7221 case OP_VRSLST:
7222 case OP_VRDLST:
7223 case OP_VRSDLST:
7224 case OP_NRDLST:
7225 case OP_NSTRLST:
7226 if (val == FAIL)
7227 goto failure;
7228 inst.operands[i].imm = val;
7229 break;
7230
7231 default:
7232 break;
7233 }
7234
7235 /* If we get here, this operand was successfully parsed. */
7236 inst.operands[i].present = 1;
7237 continue;
7238
7239 bad_args:
7240 inst.error = BAD_ARGS;
7241
7242 failure:
7243 if (!backtrack_pos)
7244 {
7245 /* The parse routine should already have set inst.error, but set a
7246 default here just in case. */
7247 if (!inst.error)
7248 inst.error = _("syntax error");
7249 return FAIL;
7250 }
7251
7252 /* Do not backtrack over a trailing optional argument that
7253 absorbed some text. We will only fail again, with the
7254 'garbage following instruction' error message, which is
7255 probably less helpful than the current one. */
7256 if (backtrack_index == i && backtrack_pos != str
7257 && upat[i+1] == OP_stop)
7258 {
7259 if (!inst.error)
7260 inst.error = _("syntax error");
7261 return FAIL;
7262 }
7263
7264 /* Try again, skipping the optional argument at backtrack_pos. */
7265 str = backtrack_pos;
7266 inst.error = backtrack_error;
7267 inst.operands[backtrack_index].present = 0;
7268 i = backtrack_index;
7269 backtrack_pos = 0;
7270 }
7271
7272 /* Check that we have parsed all the arguments. */
7273 if (*str != '\0' && !inst.error)
7274 inst.error = _("garbage following instruction");
7275
7276 return inst.error ? FAIL : SUCCESS;
7277 }
7278
7279 #undef po_char_or_fail
7280 #undef po_reg_or_fail
7281 #undef po_reg_or_goto
7282 #undef po_imm_or_fail
7283 #undef po_scalar_or_fail
7284 #undef po_barrier_or_imm
7285
7286 /* Shorthand macro for instruction encoding functions issuing errors. */
7287 #define constraint(expr, err) \
7288 do \
7289 { \
7290 if (expr) \
7291 { \
7292 inst.error = err; \
7293 return; \
7294 } \
7295 } \
7296 while (0)
7297
7298 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7299 instructions are unpredictable if these registers are used. This
7300 is the BadReg predicate in ARM's Thumb-2 documentation.
7301
7302 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7303 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7304 #define reject_bad_reg(reg) \
7305 do \
7306 if (reg == REG_PC) \
7307 { \
7308 inst.error = BAD_PC; \
7309 return; \
7310 } \
7311 else if (reg == REG_SP \
7312 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7313 { \
7314 inst.error = BAD_SP; \
7315 return; \
7316 } \
7317 while (0)
7318
7319 /* If REG is R13 (the stack pointer), warn that its use is
7320 deprecated. */
7321 #define warn_deprecated_sp(reg) \
7322 do \
7323 if (warn_on_deprecated && reg == REG_SP) \
7324 as_tsktsk (_("use of r13 is deprecated")); \
7325 while (0)
7326
7327 /* Functions for operand encoding. ARM, then Thumb. */
7328
7329 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7330
7331 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7332
7333 The only binary encoding difference is the Coprocessor number. Coprocessor
7334 9 is used for half-precision calculations or conversions. The format of the
7335 instruction is the same as the equivalent Coprocessor 10 instruction that
7336 exists for Single-Precision operation. */
7337
7338 static void
7339 do_scalar_fp16_v82_encode (void)
7340 {
7341 if (inst.cond != COND_ALWAYS)
7342 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7343 " the behaviour is UNPREDICTABLE"));
7344 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7345 _(BAD_FP16));
7346
7347 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7348 mark_feature_used (&arm_ext_fp16);
7349 }
7350
7351 /* If VAL can be encoded in the immediate field of an ARM instruction,
7352 return the encoded form. Otherwise, return FAIL. */
7353
7354 static unsigned int
7355 encode_arm_immediate (unsigned int val)
7356 {
7357 unsigned int a, i;
7358
7359 if (val <= 0xff)
7360 return val;
7361
7362 for (i = 2; i < 32; i += 2)
7363 if ((a = rotate_left (val, i)) <= 0xff)
7364 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7365
7366 return FAIL;
7367 }
7368
7369 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7370 return the encoded form. Otherwise, return FAIL. */
7371 static unsigned int
7372 encode_thumb32_immediate (unsigned int val)
7373 {
7374 unsigned int a, i;
7375
7376 if (val <= 0xff)
7377 return val;
7378
7379 for (i = 1; i <= 24; i++)
7380 {
7381 a = val >> i;
7382 if ((val & ~(0xff << i)) == 0)
7383 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7384 }
7385
7386 a = val & 0xff;
7387 if (val == ((a << 16) | a))
7388 return 0x100 | a;
7389 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7390 return 0x300 | a;
7391
7392 a = val & 0xff00;
7393 if (val == ((a << 16) | a))
7394 return 0x200 | (a >> 8);
7395
7396 return FAIL;
7397 }
7398 /* Encode a VFP SP or DP register number into inst.instruction. */
7399
7400 static void
7401 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7402 {
7403 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7404 && reg > 15)
7405 {
7406 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7407 {
7408 if (thumb_mode)
7409 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7410 fpu_vfp_ext_d32);
7411 else
7412 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7413 fpu_vfp_ext_d32);
7414 }
7415 else
7416 {
7417 first_error (_("D register out of range for selected VFP version"));
7418 return;
7419 }
7420 }
7421
7422 switch (pos)
7423 {
7424 case VFP_REG_Sd:
7425 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7426 break;
7427
7428 case VFP_REG_Sn:
7429 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7430 break;
7431
7432 case VFP_REG_Sm:
7433 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7434 break;
7435
7436 case VFP_REG_Dd:
7437 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7438 break;
7439
7440 case VFP_REG_Dn:
7441 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7442 break;
7443
7444 case VFP_REG_Dm:
7445 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7446 break;
7447
7448 default:
7449 abort ();
7450 }
7451 }
7452
7453 /* Encode a <shift> in an ARM-format instruction. The immediate,
7454 if any, is handled by md_apply_fix. */
7455 static void
7456 encode_arm_shift (int i)
7457 {
7458 /* register-shifted register. */
7459 if (inst.operands[i].immisreg)
7460 {
7461 int op_index;
7462 for (op_index = 0; op_index <= i; ++op_index)
7463 {
7464 /* Check the operand only when it's presented. In pre-UAL syntax,
7465 if the destination register is the same as the first operand, two
7466 register form of the instruction can be used. */
7467 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7468 && inst.operands[op_index].reg == REG_PC)
7469 as_warn (UNPRED_REG ("r15"));
7470 }
7471
7472 if (inst.operands[i].imm == REG_PC)
7473 as_warn (UNPRED_REG ("r15"));
7474 }
7475
7476 if (inst.operands[i].shift_kind == SHIFT_RRX)
7477 inst.instruction |= SHIFT_ROR << 5;
7478 else
7479 {
7480 inst.instruction |= inst.operands[i].shift_kind << 5;
7481 if (inst.operands[i].immisreg)
7482 {
7483 inst.instruction |= SHIFT_BY_REG;
7484 inst.instruction |= inst.operands[i].imm << 8;
7485 }
7486 else
7487 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7488 }
7489 }
7490
7491 static void
7492 encode_arm_shifter_operand (int i)
7493 {
7494 if (inst.operands[i].isreg)
7495 {
7496 inst.instruction |= inst.operands[i].reg;
7497 encode_arm_shift (i);
7498 }
7499 else
7500 {
7501 inst.instruction |= INST_IMMEDIATE;
7502 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7503 inst.instruction |= inst.operands[i].imm;
7504 }
7505 }
7506
7507 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7508 static void
7509 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7510 {
7511 /* PR 14260:
7512 Generate an error if the operand is not a register. */
7513 constraint (!inst.operands[i].isreg,
7514 _("Instruction does not support =N addresses"));
7515
7516 inst.instruction |= inst.operands[i].reg << 16;
7517
7518 if (inst.operands[i].preind)
7519 {
7520 if (is_t)
7521 {
7522 inst.error = _("instruction does not accept preindexed addressing");
7523 return;
7524 }
7525 inst.instruction |= PRE_INDEX;
7526 if (inst.operands[i].writeback)
7527 inst.instruction |= WRITE_BACK;
7528
7529 }
7530 else if (inst.operands[i].postind)
7531 {
7532 gas_assert (inst.operands[i].writeback);
7533 if (is_t)
7534 inst.instruction |= WRITE_BACK;
7535 }
7536 else /* unindexed - only for coprocessor */
7537 {
7538 inst.error = _("instruction does not accept unindexed addressing");
7539 return;
7540 }
7541
7542 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7543 && (((inst.instruction & 0x000f0000) >> 16)
7544 == ((inst.instruction & 0x0000f000) >> 12)))
7545 as_warn ((inst.instruction & LOAD_BIT)
7546 ? _("destination register same as write-back base")
7547 : _("source register same as write-back base"));
7548 }
7549
7550 /* inst.operands[i] was set up by parse_address. Encode it into an
7551 ARM-format mode 2 load or store instruction. If is_t is true,
7552 reject forms that cannot be used with a T instruction (i.e. not
7553 post-indexed). */
7554 static void
7555 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7556 {
7557 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7558
7559 encode_arm_addr_mode_common (i, is_t);
7560
7561 if (inst.operands[i].immisreg)
7562 {
7563 constraint ((inst.operands[i].imm == REG_PC
7564 || (is_pc && inst.operands[i].writeback)),
7565 BAD_PC_ADDRESSING);
7566 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7567 inst.instruction |= inst.operands[i].imm;
7568 if (!inst.operands[i].negative)
7569 inst.instruction |= INDEX_UP;
7570 if (inst.operands[i].shifted)
7571 {
7572 if (inst.operands[i].shift_kind == SHIFT_RRX)
7573 inst.instruction |= SHIFT_ROR << 5;
7574 else
7575 {
7576 inst.instruction |= inst.operands[i].shift_kind << 5;
7577 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7578 }
7579 }
7580 }
7581 else /* immediate offset in inst.reloc */
7582 {
7583 if (is_pc && !inst.reloc.pc_rel)
7584 {
7585 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7586
7587 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7588 cannot use PC in addressing.
7589 PC cannot be used in writeback addressing, either. */
7590 constraint ((is_t || inst.operands[i].writeback),
7591 BAD_PC_ADDRESSING);
7592
7593 /* Use of PC in str is deprecated for ARMv7. */
7594 if (warn_on_deprecated
7595 && !is_load
7596 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7597 as_tsktsk (_("use of PC in this instruction is deprecated"));
7598 }
7599
7600 if (inst.reloc.type == BFD_RELOC_UNUSED)
7601 {
7602 /* Prefer + for zero encoded value. */
7603 if (!inst.operands[i].negative)
7604 inst.instruction |= INDEX_UP;
7605 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7606 }
7607 }
7608 }
7609
7610 /* inst.operands[i] was set up by parse_address. Encode it into an
7611 ARM-format mode 3 load or store instruction. Reject forms that
7612 cannot be used with such instructions. If is_t is true, reject
7613 forms that cannot be used with a T instruction (i.e. not
7614 post-indexed). */
7615 static void
7616 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7617 {
7618 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7619 {
7620 inst.error = _("instruction does not accept scaled register index");
7621 return;
7622 }
7623
7624 encode_arm_addr_mode_common (i, is_t);
7625
7626 if (inst.operands[i].immisreg)
7627 {
7628 constraint ((inst.operands[i].imm == REG_PC
7629 || (is_t && inst.operands[i].reg == REG_PC)),
7630 BAD_PC_ADDRESSING);
7631 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7632 BAD_PC_WRITEBACK);
7633 inst.instruction |= inst.operands[i].imm;
7634 if (!inst.operands[i].negative)
7635 inst.instruction |= INDEX_UP;
7636 }
7637 else /* immediate offset in inst.reloc */
7638 {
7639 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7640 && inst.operands[i].writeback),
7641 BAD_PC_WRITEBACK);
7642 inst.instruction |= HWOFFSET_IMM;
7643 if (inst.reloc.type == BFD_RELOC_UNUSED)
7644 {
7645 /* Prefer + for zero encoded value. */
7646 if (!inst.operands[i].negative)
7647 inst.instruction |= INDEX_UP;
7648
7649 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7650 }
7651 }
7652 }
7653
7654 /* Write immediate bits [7:0] to the following locations:
7655
7656 |28/24|23 19|18 16|15 4|3 0|
7657 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7658
7659 This function is used by VMOV/VMVN/VORR/VBIC. */
7660
7661 static void
7662 neon_write_immbits (unsigned immbits)
7663 {
7664 inst.instruction |= immbits & 0xf;
7665 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7666 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7667 }
7668
7669 /* Invert low-order SIZE bits of XHI:XLO. */
7670
7671 static void
7672 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7673 {
7674 unsigned immlo = xlo ? *xlo : 0;
7675 unsigned immhi = xhi ? *xhi : 0;
7676
7677 switch (size)
7678 {
7679 case 8:
7680 immlo = (~immlo) & 0xff;
7681 break;
7682
7683 case 16:
7684 immlo = (~immlo) & 0xffff;
7685 break;
7686
7687 case 64:
7688 immhi = (~immhi) & 0xffffffff;
7689 /* fall through. */
7690
7691 case 32:
7692 immlo = (~immlo) & 0xffffffff;
7693 break;
7694
7695 default:
7696 abort ();
7697 }
7698
7699 if (xlo)
7700 *xlo = immlo;
7701
7702 if (xhi)
7703 *xhi = immhi;
7704 }
7705
7706 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7707 A, B, C, D. */
7708
7709 static int
7710 neon_bits_same_in_bytes (unsigned imm)
7711 {
7712 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7713 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7714 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7715 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7716 }
7717
7718 /* For immediate of above form, return 0bABCD. */
7719
7720 static unsigned
7721 neon_squash_bits (unsigned imm)
7722 {
7723 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7724 | ((imm & 0x01000000) >> 21);
7725 }
7726
7727 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7728
7729 static unsigned
7730 neon_qfloat_bits (unsigned imm)
7731 {
7732 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7733 }
7734
7735 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7736 the instruction. *OP is passed as the initial value of the op field, and
7737 may be set to a different value depending on the constant (i.e.
7738 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7739 MVN). If the immediate looks like a repeated pattern then also
7740 try smaller element sizes. */
7741
7742 static int
7743 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7744 unsigned *immbits, int *op, int size,
7745 enum neon_el_type type)
7746 {
7747 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7748 float. */
7749 if (type == NT_float && !float_p)
7750 return FAIL;
7751
7752 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7753 {
7754 if (size != 32 || *op == 1)
7755 return FAIL;
7756 *immbits = neon_qfloat_bits (immlo);
7757 return 0xf;
7758 }
7759
7760 if (size == 64)
7761 {
7762 if (neon_bits_same_in_bytes (immhi)
7763 && neon_bits_same_in_bytes (immlo))
7764 {
7765 if (*op == 1)
7766 return FAIL;
7767 *immbits = (neon_squash_bits (immhi) << 4)
7768 | neon_squash_bits (immlo);
7769 *op = 1;
7770 return 0xe;
7771 }
7772
7773 if (immhi != immlo)
7774 return FAIL;
7775 }
7776
7777 if (size >= 32)
7778 {
7779 if (immlo == (immlo & 0x000000ff))
7780 {
7781 *immbits = immlo;
7782 return 0x0;
7783 }
7784 else if (immlo == (immlo & 0x0000ff00))
7785 {
7786 *immbits = immlo >> 8;
7787 return 0x2;
7788 }
7789 else if (immlo == (immlo & 0x00ff0000))
7790 {
7791 *immbits = immlo >> 16;
7792 return 0x4;
7793 }
7794 else if (immlo == (immlo & 0xff000000))
7795 {
7796 *immbits = immlo >> 24;
7797 return 0x6;
7798 }
7799 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7800 {
7801 *immbits = (immlo >> 8) & 0xff;
7802 return 0xc;
7803 }
7804 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7805 {
7806 *immbits = (immlo >> 16) & 0xff;
7807 return 0xd;
7808 }
7809
7810 if ((immlo & 0xffff) != (immlo >> 16))
7811 return FAIL;
7812 immlo &= 0xffff;
7813 }
7814
7815 if (size >= 16)
7816 {
7817 if (immlo == (immlo & 0x000000ff))
7818 {
7819 *immbits = immlo;
7820 return 0x8;
7821 }
7822 else if (immlo == (immlo & 0x0000ff00))
7823 {
7824 *immbits = immlo >> 8;
7825 return 0xa;
7826 }
7827
7828 if ((immlo & 0xff) != (immlo >> 8))
7829 return FAIL;
7830 immlo &= 0xff;
7831 }
7832
7833 if (immlo == (immlo & 0x000000ff))
7834 {
7835 /* Don't allow MVN with 8-bit immediate. */
7836 if (*op == 1)
7837 return FAIL;
7838 *immbits = immlo;
7839 return 0xe;
7840 }
7841
7842 return FAIL;
7843 }
7844
7845 #if defined BFD_HOST_64_BIT
7846 /* Returns TRUE if double precision value V may be cast
7847 to single precision without loss of accuracy. */
7848
7849 static bfd_boolean
7850 is_double_a_single (bfd_int64_t v)
7851 {
7852 int exp = (int)((v >> 52) & 0x7FF);
7853 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7854
7855 return (exp == 0 || exp == 0x7FF
7856 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7857 && (mantissa & 0x1FFFFFFFl) == 0;
7858 }
7859
7860 /* Returns a double precision value casted to single precision
7861 (ignoring the least significant bits in exponent and mantissa). */
7862
7863 static int
7864 double_to_single (bfd_int64_t v)
7865 {
7866 int sign = (int) ((v >> 63) & 1l);
7867 int exp = (int) ((v >> 52) & 0x7FF);
7868 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7869
7870 if (exp == 0x7FF)
7871 exp = 0xFF;
7872 else
7873 {
7874 exp = exp - 1023 + 127;
7875 if (exp >= 0xFF)
7876 {
7877 /* Infinity. */
7878 exp = 0x7F;
7879 mantissa = 0;
7880 }
7881 else if (exp < 0)
7882 {
7883 /* No denormalized numbers. */
7884 exp = 0;
7885 mantissa = 0;
7886 }
7887 }
7888 mantissa >>= 29;
7889 return (sign << 31) | (exp << 23) | mantissa;
7890 }
7891 #endif /* BFD_HOST_64_BIT */
7892
7893 enum lit_type
7894 {
7895 CONST_THUMB,
7896 CONST_ARM,
7897 CONST_VEC
7898 };
7899
7900 static void do_vfp_nsyn_opcode (const char *);
7901
7902 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7903 Determine whether it can be performed with a move instruction; if
7904 it can, convert inst.instruction to that move instruction and
7905 return TRUE; if it can't, convert inst.instruction to a literal-pool
7906 load and return FALSE. If this is not a valid thing to do in the
7907 current context, set inst.error and return TRUE.
7908
7909 inst.operands[i] describes the destination register. */
7910
7911 static bfd_boolean
7912 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7913 {
7914 unsigned long tbit;
7915 bfd_boolean thumb_p = (t == CONST_THUMB);
7916 bfd_boolean arm_p = (t == CONST_ARM);
7917
7918 if (thumb_p)
7919 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7920 else
7921 tbit = LOAD_BIT;
7922
7923 if ((inst.instruction & tbit) == 0)
7924 {
7925 inst.error = _("invalid pseudo operation");
7926 return TRUE;
7927 }
7928
7929 if (inst.reloc.exp.X_op != O_constant
7930 && inst.reloc.exp.X_op != O_symbol
7931 && inst.reloc.exp.X_op != O_big)
7932 {
7933 inst.error = _("constant expression expected");
7934 return TRUE;
7935 }
7936
7937 if (inst.reloc.exp.X_op == O_constant
7938 || inst.reloc.exp.X_op == O_big)
7939 {
7940 #if defined BFD_HOST_64_BIT
7941 bfd_int64_t v;
7942 #else
7943 offsetT v;
7944 #endif
7945 if (inst.reloc.exp.X_op == O_big)
7946 {
7947 LITTLENUM_TYPE w[X_PRECISION];
7948 LITTLENUM_TYPE * l;
7949
7950 if (inst.reloc.exp.X_add_number == -1)
7951 {
7952 gen_to_words (w, X_PRECISION, E_PRECISION);
7953 l = w;
7954 /* FIXME: Should we check words w[2..5] ? */
7955 }
7956 else
7957 l = generic_bignum;
7958
7959 #if defined BFD_HOST_64_BIT
7960 v =
7961 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
7962 << LITTLENUM_NUMBER_OF_BITS)
7963 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
7964 << LITTLENUM_NUMBER_OF_BITS)
7965 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
7966 << LITTLENUM_NUMBER_OF_BITS)
7967 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
7968 #else
7969 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
7970 | (l[0] & LITTLENUM_MASK);
7971 #endif
7972 }
7973 else
7974 v = inst.reloc.exp.X_add_number;
7975
7976 if (!inst.operands[i].issingle)
7977 {
7978 if (thumb_p)
7979 {
7980 /* LDR should not use lead in a flag-setting instruction being
7981 chosen so we do not check whether movs can be used. */
7982
7983 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
7984 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
7985 && inst.operands[i].reg != 13
7986 && inst.operands[i].reg != 15)
7987 {
7988 /* Check if on thumb2 it can be done with a mov.w, mvn or
7989 movw instruction. */
7990 unsigned int newimm;
7991 bfd_boolean isNegated;
7992
7993 newimm = encode_thumb32_immediate (v);
7994 if (newimm != (unsigned int) FAIL)
7995 isNegated = FALSE;
7996 else
7997 {
7998 newimm = encode_thumb32_immediate (~v);
7999 if (newimm != (unsigned int) FAIL)
8000 isNegated = TRUE;
8001 }
8002
8003 /* The number can be loaded with a mov.w or mvn
8004 instruction. */
8005 if (newimm != (unsigned int) FAIL
8006 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8007 {
8008 inst.instruction = (0xf04f0000 /* MOV.W. */
8009 | (inst.operands[i].reg << 8));
8010 /* Change to MOVN. */
8011 inst.instruction |= (isNegated ? 0x200000 : 0);
8012 inst.instruction |= (newimm & 0x800) << 15;
8013 inst.instruction |= (newimm & 0x700) << 4;
8014 inst.instruction |= (newimm & 0x0ff);
8015 return TRUE;
8016 }
8017 /* The number can be loaded with a movw instruction. */
8018 else if ((v & ~0xFFFF) == 0
8019 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8020 {
8021 int imm = v & 0xFFFF;
8022
8023 inst.instruction = 0xf2400000; /* MOVW. */
8024 inst.instruction |= (inst.operands[i].reg << 8);
8025 inst.instruction |= (imm & 0xf000) << 4;
8026 inst.instruction |= (imm & 0x0800) << 15;
8027 inst.instruction |= (imm & 0x0700) << 4;
8028 inst.instruction |= (imm & 0x00ff);
8029 return TRUE;
8030 }
8031 }
8032 }
8033 else if (arm_p)
8034 {
8035 int value = encode_arm_immediate (v);
8036
8037 if (value != FAIL)
8038 {
8039 /* This can be done with a mov instruction. */
8040 inst.instruction &= LITERAL_MASK;
8041 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8042 inst.instruction |= value & 0xfff;
8043 return TRUE;
8044 }
8045
8046 value = encode_arm_immediate (~ v);
8047 if (value != FAIL)
8048 {
8049 /* This can be done with a mvn instruction. */
8050 inst.instruction &= LITERAL_MASK;
8051 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8052 inst.instruction |= value & 0xfff;
8053 return TRUE;
8054 }
8055 }
8056 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8057 {
8058 int op = 0;
8059 unsigned immbits = 0;
8060 unsigned immlo = inst.operands[1].imm;
8061 unsigned immhi = inst.operands[1].regisimm
8062 ? inst.operands[1].reg
8063 : inst.reloc.exp.X_unsigned
8064 ? 0
8065 : ((bfd_int64_t)((int) immlo)) >> 32;
8066 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8067 &op, 64, NT_invtype);
8068
8069 if (cmode == FAIL)
8070 {
8071 neon_invert_size (&immlo, &immhi, 64);
8072 op = !op;
8073 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8074 &op, 64, NT_invtype);
8075 }
8076
8077 if (cmode != FAIL)
8078 {
8079 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8080 | (1 << 23)
8081 | (cmode << 8)
8082 | (op << 5)
8083 | (1 << 4);
8084
8085 /* Fill other bits in vmov encoding for both thumb and arm. */
8086 if (thumb_mode)
8087 inst.instruction |= (0x7U << 29) | (0xF << 24);
8088 else
8089 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8090 neon_write_immbits (immbits);
8091 return TRUE;
8092 }
8093 }
8094 }
8095
8096 if (t == CONST_VEC)
8097 {
8098 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8099 if (inst.operands[i].issingle
8100 && is_quarter_float (inst.operands[1].imm)
8101 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8102 {
8103 inst.operands[1].imm =
8104 neon_qfloat_bits (v);
8105 do_vfp_nsyn_opcode ("fconsts");
8106 return TRUE;
8107 }
8108
8109 /* If our host does not support a 64-bit type then we cannot perform
8110 the following optimization. This mean that there will be a
8111 discrepancy between the output produced by an assembler built for
8112 a 32-bit-only host and the output produced from a 64-bit host, but
8113 this cannot be helped. */
8114 #if defined BFD_HOST_64_BIT
8115 else if (!inst.operands[1].issingle
8116 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8117 {
8118 if (is_double_a_single (v)
8119 && is_quarter_float (double_to_single (v)))
8120 {
8121 inst.operands[1].imm =
8122 neon_qfloat_bits (double_to_single (v));
8123 do_vfp_nsyn_opcode ("fconstd");
8124 return TRUE;
8125 }
8126 }
8127 #endif
8128 }
8129 }
8130
8131 if (add_to_lit_pool ((!inst.operands[i].isvec
8132 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8133 return TRUE;
8134
8135 inst.operands[1].reg = REG_PC;
8136 inst.operands[1].isreg = 1;
8137 inst.operands[1].preind = 1;
8138 inst.reloc.pc_rel = 1;
8139 inst.reloc.type = (thumb_p
8140 ? BFD_RELOC_ARM_THUMB_OFFSET
8141 : (mode_3
8142 ? BFD_RELOC_ARM_HWLITERAL
8143 : BFD_RELOC_ARM_LITERAL));
8144 return FALSE;
8145 }
8146
8147 /* inst.operands[i] was set up by parse_address. Encode it into an
8148 ARM-format instruction. Reject all forms which cannot be encoded
8149 into a coprocessor load/store instruction. If wb_ok is false,
8150 reject use of writeback; if unind_ok is false, reject use of
8151 unindexed addressing. If reloc_override is not 0, use it instead
8152 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8153 (in which case it is preserved). */
8154
8155 static int
8156 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8157 {
8158 if (!inst.operands[i].isreg)
8159 {
8160 /* PR 18256 */
8161 if (! inst.operands[0].isvec)
8162 {
8163 inst.error = _("invalid co-processor operand");
8164 return FAIL;
8165 }
8166 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8167 return SUCCESS;
8168 }
8169
8170 inst.instruction |= inst.operands[i].reg << 16;
8171
8172 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8173
8174 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8175 {
8176 gas_assert (!inst.operands[i].writeback);
8177 if (!unind_ok)
8178 {
8179 inst.error = _("instruction does not support unindexed addressing");
8180 return FAIL;
8181 }
8182 inst.instruction |= inst.operands[i].imm;
8183 inst.instruction |= INDEX_UP;
8184 return SUCCESS;
8185 }
8186
8187 if (inst.operands[i].preind)
8188 inst.instruction |= PRE_INDEX;
8189
8190 if (inst.operands[i].writeback)
8191 {
8192 if (inst.operands[i].reg == REG_PC)
8193 {
8194 inst.error = _("pc may not be used with write-back");
8195 return FAIL;
8196 }
8197 if (!wb_ok)
8198 {
8199 inst.error = _("instruction does not support writeback");
8200 return FAIL;
8201 }
8202 inst.instruction |= WRITE_BACK;
8203 }
8204
8205 if (reloc_override)
8206 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8207 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8208 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8209 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
8210 {
8211 if (thumb_mode)
8212 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8213 else
8214 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
8215 }
8216
8217 /* Prefer + for zero encoded value. */
8218 if (!inst.operands[i].negative)
8219 inst.instruction |= INDEX_UP;
8220
8221 return SUCCESS;
8222 }
8223
8224 /* Functions for instruction encoding, sorted by sub-architecture.
8225 First some generics; their names are taken from the conventional
8226 bit positions for register arguments in ARM format instructions. */
8227
8228 static void
8229 do_noargs (void)
8230 {
8231 }
8232
8233 static void
8234 do_rd (void)
8235 {
8236 inst.instruction |= inst.operands[0].reg << 12;
8237 }
8238
8239 static void
8240 do_rn (void)
8241 {
8242 inst.instruction |= inst.operands[0].reg << 16;
8243 }
8244
8245 static void
8246 do_rd_rm (void)
8247 {
8248 inst.instruction |= inst.operands[0].reg << 12;
8249 inst.instruction |= inst.operands[1].reg;
8250 }
8251
8252 static void
8253 do_rm_rn (void)
8254 {
8255 inst.instruction |= inst.operands[0].reg;
8256 inst.instruction |= inst.operands[1].reg << 16;
8257 }
8258
8259 static void
8260 do_rd_rn (void)
8261 {
8262 inst.instruction |= inst.operands[0].reg << 12;
8263 inst.instruction |= inst.operands[1].reg << 16;
8264 }
8265
8266 static void
8267 do_rn_rd (void)
8268 {
8269 inst.instruction |= inst.operands[0].reg << 16;
8270 inst.instruction |= inst.operands[1].reg << 12;
8271 }
8272
8273 static void
8274 do_tt (void)
8275 {
8276 inst.instruction |= inst.operands[0].reg << 8;
8277 inst.instruction |= inst.operands[1].reg << 16;
8278 }
8279
8280 static bfd_boolean
8281 check_obsolete (const arm_feature_set *feature, const char *msg)
8282 {
8283 if (ARM_CPU_IS_ANY (cpu_variant))
8284 {
8285 as_tsktsk ("%s", msg);
8286 return TRUE;
8287 }
8288 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8289 {
8290 as_bad ("%s", msg);
8291 return TRUE;
8292 }
8293
8294 return FALSE;
8295 }
8296
8297 static void
8298 do_rd_rm_rn (void)
8299 {
8300 unsigned Rn = inst.operands[2].reg;
8301 /* Enforce restrictions on SWP instruction. */
8302 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8303 {
8304 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8305 _("Rn must not overlap other operands"));
8306
8307 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8308 */
8309 if (!check_obsolete (&arm_ext_v8,
8310 _("swp{b} use is obsoleted for ARMv8 and later"))
8311 && warn_on_deprecated
8312 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8313 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8314 }
8315
8316 inst.instruction |= inst.operands[0].reg << 12;
8317 inst.instruction |= inst.operands[1].reg;
8318 inst.instruction |= Rn << 16;
8319 }
8320
8321 static void
8322 do_rd_rn_rm (void)
8323 {
8324 inst.instruction |= inst.operands[0].reg << 12;
8325 inst.instruction |= inst.operands[1].reg << 16;
8326 inst.instruction |= inst.operands[2].reg;
8327 }
8328
8329 static void
8330 do_rm_rd_rn (void)
8331 {
8332 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8333 constraint (((inst.reloc.exp.X_op != O_constant
8334 && inst.reloc.exp.X_op != O_illegal)
8335 || inst.reloc.exp.X_add_number != 0),
8336 BAD_ADDR_MODE);
8337 inst.instruction |= inst.operands[0].reg;
8338 inst.instruction |= inst.operands[1].reg << 12;
8339 inst.instruction |= inst.operands[2].reg << 16;
8340 }
8341
8342 static void
8343 do_imm0 (void)
8344 {
8345 inst.instruction |= inst.operands[0].imm;
8346 }
8347
8348 static void
8349 do_rd_cpaddr (void)
8350 {
8351 inst.instruction |= inst.operands[0].reg << 12;
8352 encode_arm_cp_address (1, TRUE, TRUE, 0);
8353 }
8354
8355 /* ARM instructions, in alphabetical order by function name (except
8356 that wrapper functions appear immediately after the function they
8357 wrap). */
8358
8359 /* This is a pseudo-op of the form "adr rd, label" to be converted
8360 into a relative address of the form "add rd, pc, #label-.-8". */
8361
8362 static void
8363 do_adr (void)
8364 {
8365 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8366
8367 /* Frag hacking will turn this into a sub instruction if the offset turns
8368 out to be negative. */
8369 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8370 inst.reloc.pc_rel = 1;
8371 inst.reloc.exp.X_add_number -= 8;
8372
8373 if (inst.reloc.exp.X_op == O_symbol
8374 && inst.reloc.exp.X_add_symbol != NULL
8375 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8376 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8377 inst.reloc.exp.X_add_number += 1;
8378 }
8379
8380 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8381 into a relative address of the form:
8382 add rd, pc, #low(label-.-8)"
8383 add rd, rd, #high(label-.-8)" */
8384
8385 static void
8386 do_adrl (void)
8387 {
8388 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8389
8390 /* Frag hacking will turn this into a sub instruction if the offset turns
8391 out to be negative. */
8392 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8393 inst.reloc.pc_rel = 1;
8394 inst.size = INSN_SIZE * 2;
8395 inst.reloc.exp.X_add_number -= 8;
8396
8397 if (inst.reloc.exp.X_op == O_symbol
8398 && inst.reloc.exp.X_add_symbol != NULL
8399 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8400 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8401 inst.reloc.exp.X_add_number += 1;
8402 }
8403
8404 static void
8405 do_arit (void)
8406 {
8407 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8408 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8409 THUMB1_RELOC_ONLY);
8410 if (!inst.operands[1].present)
8411 inst.operands[1].reg = inst.operands[0].reg;
8412 inst.instruction |= inst.operands[0].reg << 12;
8413 inst.instruction |= inst.operands[1].reg << 16;
8414 encode_arm_shifter_operand (2);
8415 }
8416
8417 static void
8418 do_barrier (void)
8419 {
8420 if (inst.operands[0].present)
8421 inst.instruction |= inst.operands[0].imm;
8422 else
8423 inst.instruction |= 0xf;
8424 }
8425
8426 static void
8427 do_bfc (void)
8428 {
8429 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8430 constraint (msb > 32, _("bit-field extends past end of register"));
8431 /* The instruction encoding stores the LSB and MSB,
8432 not the LSB and width. */
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].imm << 7;
8435 inst.instruction |= (msb - 1) << 16;
8436 }
8437
8438 static void
8439 do_bfi (void)
8440 {
8441 unsigned int msb;
8442
8443 /* #0 in second position is alternative syntax for bfc, which is
8444 the same instruction but with REG_PC in the Rm field. */
8445 if (!inst.operands[1].isreg)
8446 inst.operands[1].reg = REG_PC;
8447
8448 msb = inst.operands[2].imm + inst.operands[3].imm;
8449 constraint (msb > 32, _("bit-field extends past end of register"));
8450 /* The instruction encoding stores the LSB and MSB,
8451 not the LSB and width. */
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 inst.instruction |= inst.operands[1].reg;
8454 inst.instruction |= inst.operands[2].imm << 7;
8455 inst.instruction |= (msb - 1) << 16;
8456 }
8457
8458 static void
8459 do_bfx (void)
8460 {
8461 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8462 _("bit-field extends past end of register"));
8463 inst.instruction |= inst.operands[0].reg << 12;
8464 inst.instruction |= inst.operands[1].reg;
8465 inst.instruction |= inst.operands[2].imm << 7;
8466 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8467 }
8468
8469 /* ARM V5 breakpoint instruction (argument parse)
8470 BKPT <16 bit unsigned immediate>
8471 Instruction is not conditional.
8472 The bit pattern given in insns[] has the COND_ALWAYS condition,
8473 and it is an error if the caller tried to override that. */
8474
8475 static void
8476 do_bkpt (void)
8477 {
8478 /* Top 12 of 16 bits to bits 19:8. */
8479 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8480
8481 /* Bottom 4 of 16 bits to bits 3:0. */
8482 inst.instruction |= inst.operands[0].imm & 0xf;
8483 }
8484
8485 static void
8486 encode_branch (int default_reloc)
8487 {
8488 if (inst.operands[0].hasreloc)
8489 {
8490 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8491 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8492 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8493 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8494 ? BFD_RELOC_ARM_PLT32
8495 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8496 }
8497 else
8498 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8499 inst.reloc.pc_rel = 1;
8500 }
8501
8502 static void
8503 do_branch (void)
8504 {
8505 #ifdef OBJ_ELF
8506 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8507 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8508 else
8509 #endif
8510 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8511 }
8512
8513 static void
8514 do_bl (void)
8515 {
8516 #ifdef OBJ_ELF
8517 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8518 {
8519 if (inst.cond == COND_ALWAYS)
8520 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8521 else
8522 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8523 }
8524 else
8525 #endif
8526 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8527 }
8528
8529 /* ARM V5 branch-link-exchange instruction (argument parse)
8530 BLX <target_addr> ie BLX(1)
8531 BLX{<condition>} <Rm> ie BLX(2)
8532 Unfortunately, there are two different opcodes for this mnemonic.
8533 So, the insns[].value is not used, and the code here zaps values
8534 into inst.instruction.
8535 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8536
8537 static void
8538 do_blx (void)
8539 {
8540 if (inst.operands[0].isreg)
8541 {
8542 /* Arg is a register; the opcode provided by insns[] is correct.
8543 It is not illegal to do "blx pc", just useless. */
8544 if (inst.operands[0].reg == REG_PC)
8545 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8546
8547 inst.instruction |= inst.operands[0].reg;
8548 }
8549 else
8550 {
8551 /* Arg is an address; this instruction cannot be executed
8552 conditionally, and the opcode must be adjusted.
8553 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8554 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8555 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8556 inst.instruction = 0xfa000000;
8557 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8558 }
8559 }
8560
8561 static void
8562 do_bx (void)
8563 {
8564 bfd_boolean want_reloc;
8565
8566 if (inst.operands[0].reg == REG_PC)
8567 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8568
8569 inst.instruction |= inst.operands[0].reg;
8570 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8571 it is for ARMv4t or earlier. */
8572 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8573 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8574 want_reloc = TRUE;
8575
8576 #ifdef OBJ_ELF
8577 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8578 #endif
8579 want_reloc = FALSE;
8580
8581 if (want_reloc)
8582 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8583 }
8584
8585
8586 /* ARM v5TEJ. Jump to Jazelle code. */
8587
8588 static void
8589 do_bxj (void)
8590 {
8591 if (inst.operands[0].reg == REG_PC)
8592 as_tsktsk (_("use of r15 in bxj is not really useful"));
8593
8594 inst.instruction |= inst.operands[0].reg;
8595 }
8596
8597 /* Co-processor data operation:
8598 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8599 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8600 static void
8601 do_cdp (void)
8602 {
8603 inst.instruction |= inst.operands[0].reg << 8;
8604 inst.instruction |= inst.operands[1].imm << 20;
8605 inst.instruction |= inst.operands[2].reg << 12;
8606 inst.instruction |= inst.operands[3].reg << 16;
8607 inst.instruction |= inst.operands[4].reg;
8608 inst.instruction |= inst.operands[5].imm << 5;
8609 }
8610
8611 static void
8612 do_cmp (void)
8613 {
8614 inst.instruction |= inst.operands[0].reg << 16;
8615 encode_arm_shifter_operand (1);
8616 }
8617
8618 /* Transfer between coprocessor and ARM registers.
8619 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8620 MRC2
8621 MCR{cond}
8622 MCR2
8623
8624 No special properties. */
8625
8626 struct deprecated_coproc_regs_s
8627 {
8628 unsigned cp;
8629 int opc1;
8630 unsigned crn;
8631 unsigned crm;
8632 int opc2;
8633 arm_feature_set deprecated;
8634 arm_feature_set obsoleted;
8635 const char *dep_msg;
8636 const char *obs_msg;
8637 };
8638
8639 #define DEPR_ACCESS_V8 \
8640 N_("This coprocessor register access is deprecated in ARMv8")
8641
8642 /* Table of all deprecated coprocessor registers. */
8643 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8644 {
8645 {15, 0, 7, 10, 5, /* CP15DMB. */
8646 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8647 DEPR_ACCESS_V8, NULL},
8648 {15, 0, 7, 10, 4, /* CP15DSB. */
8649 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8650 DEPR_ACCESS_V8, NULL},
8651 {15, 0, 7, 5, 4, /* CP15ISB. */
8652 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8653 DEPR_ACCESS_V8, NULL},
8654 {14, 6, 1, 0, 0, /* TEEHBR. */
8655 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8656 DEPR_ACCESS_V8, NULL},
8657 {14, 6, 0, 0, 0, /* TEECR. */
8658 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8659 DEPR_ACCESS_V8, NULL},
8660 };
8661
8662 #undef DEPR_ACCESS_V8
8663
8664 static const size_t deprecated_coproc_reg_count =
8665 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8666
8667 static void
8668 do_co_reg (void)
8669 {
8670 unsigned Rd;
8671 size_t i;
8672
8673 Rd = inst.operands[2].reg;
8674 if (thumb_mode)
8675 {
8676 if (inst.instruction == 0xee000010
8677 || inst.instruction == 0xfe000010)
8678 /* MCR, MCR2 */
8679 reject_bad_reg (Rd);
8680 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8681 /* MRC, MRC2 */
8682 constraint (Rd == REG_SP, BAD_SP);
8683 }
8684 else
8685 {
8686 /* MCR */
8687 if (inst.instruction == 0xe000010)
8688 constraint (Rd == REG_PC, BAD_PC);
8689 }
8690
8691 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8692 {
8693 const struct deprecated_coproc_regs_s *r =
8694 deprecated_coproc_regs + i;
8695
8696 if (inst.operands[0].reg == r->cp
8697 && inst.operands[1].imm == r->opc1
8698 && inst.operands[3].reg == r->crn
8699 && inst.operands[4].reg == r->crm
8700 && inst.operands[5].imm == r->opc2)
8701 {
8702 if (! ARM_CPU_IS_ANY (cpu_variant)
8703 && warn_on_deprecated
8704 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8705 as_tsktsk ("%s", r->dep_msg);
8706 }
8707 }
8708
8709 inst.instruction |= inst.operands[0].reg << 8;
8710 inst.instruction |= inst.operands[1].imm << 21;
8711 inst.instruction |= Rd << 12;
8712 inst.instruction |= inst.operands[3].reg << 16;
8713 inst.instruction |= inst.operands[4].reg;
8714 inst.instruction |= inst.operands[5].imm << 5;
8715 }
8716
8717 /* Transfer between coprocessor register and pair of ARM registers.
8718 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8719 MCRR2
8720 MRRC{cond}
8721 MRRC2
8722
8723 Two XScale instructions are special cases of these:
8724
8725 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8726 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8727
8728 Result unpredictable if Rd or Rn is R15. */
8729
8730 static void
8731 do_co_reg2c (void)
8732 {
8733 unsigned Rd, Rn;
8734
8735 Rd = inst.operands[2].reg;
8736 Rn = inst.operands[3].reg;
8737
8738 if (thumb_mode)
8739 {
8740 reject_bad_reg (Rd);
8741 reject_bad_reg (Rn);
8742 }
8743 else
8744 {
8745 constraint (Rd == REG_PC, BAD_PC);
8746 constraint (Rn == REG_PC, BAD_PC);
8747 }
8748
8749 /* Only check the MRRC{2} variants. */
8750 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8751 {
8752 /* If Rd == Rn, error that the operation is
8753 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8754 constraint (Rd == Rn, BAD_OVERLAP);
8755 }
8756
8757 inst.instruction |= inst.operands[0].reg << 8;
8758 inst.instruction |= inst.operands[1].imm << 4;
8759 inst.instruction |= Rd << 12;
8760 inst.instruction |= Rn << 16;
8761 inst.instruction |= inst.operands[4].reg;
8762 }
8763
8764 static void
8765 do_cpsi (void)
8766 {
8767 inst.instruction |= inst.operands[0].imm << 6;
8768 if (inst.operands[1].present)
8769 {
8770 inst.instruction |= CPSI_MMOD;
8771 inst.instruction |= inst.operands[1].imm;
8772 }
8773 }
8774
8775 static void
8776 do_dbg (void)
8777 {
8778 inst.instruction |= inst.operands[0].imm;
8779 }
8780
8781 static void
8782 do_div (void)
8783 {
8784 unsigned Rd, Rn, Rm;
8785
8786 Rd = inst.operands[0].reg;
8787 Rn = (inst.operands[1].present
8788 ? inst.operands[1].reg : Rd);
8789 Rm = inst.operands[2].reg;
8790
8791 constraint ((Rd == REG_PC), BAD_PC);
8792 constraint ((Rn == REG_PC), BAD_PC);
8793 constraint ((Rm == REG_PC), BAD_PC);
8794
8795 inst.instruction |= Rd << 16;
8796 inst.instruction |= Rn << 0;
8797 inst.instruction |= Rm << 8;
8798 }
8799
8800 static void
8801 do_it (void)
8802 {
8803 /* There is no IT instruction in ARM mode. We
8804 process it to do the validation as if in
8805 thumb mode, just in case the code gets
8806 assembled for thumb using the unified syntax. */
8807
8808 inst.size = 0;
8809 if (unified_syntax)
8810 {
8811 set_it_insn_type (IT_INSN);
8812 now_it.mask = (inst.instruction & 0xf) | 0x10;
8813 now_it.cc = inst.operands[0].imm;
8814 }
8815 }
8816
8817 /* If there is only one register in the register list,
8818 then return its register number. Otherwise return -1. */
8819 static int
8820 only_one_reg_in_list (int range)
8821 {
8822 int i = ffs (range) - 1;
8823 return (i > 15 || range != (1 << i)) ? -1 : i;
8824 }
8825
8826 static void
8827 encode_ldmstm(int from_push_pop_mnem)
8828 {
8829 int base_reg = inst.operands[0].reg;
8830 int range = inst.operands[1].imm;
8831 int one_reg;
8832
8833 inst.instruction |= base_reg << 16;
8834 inst.instruction |= range;
8835
8836 if (inst.operands[1].writeback)
8837 inst.instruction |= LDM_TYPE_2_OR_3;
8838
8839 if (inst.operands[0].writeback)
8840 {
8841 inst.instruction |= WRITE_BACK;
8842 /* Check for unpredictable uses of writeback. */
8843 if (inst.instruction & LOAD_BIT)
8844 {
8845 /* Not allowed in LDM type 2. */
8846 if ((inst.instruction & LDM_TYPE_2_OR_3)
8847 && ((range & (1 << REG_PC)) == 0))
8848 as_warn (_("writeback of base register is UNPREDICTABLE"));
8849 /* Only allowed if base reg not in list for other types. */
8850 else if (range & (1 << base_reg))
8851 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8852 }
8853 else /* STM. */
8854 {
8855 /* Not allowed for type 2. */
8856 if (inst.instruction & LDM_TYPE_2_OR_3)
8857 as_warn (_("writeback of base register is UNPREDICTABLE"));
8858 /* Only allowed if base reg not in list, or first in list. */
8859 else if ((range & (1 << base_reg))
8860 && (range & ((1 << base_reg) - 1)))
8861 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8862 }
8863 }
8864
8865 /* If PUSH/POP has only one register, then use the A2 encoding. */
8866 one_reg = only_one_reg_in_list (range);
8867 if (from_push_pop_mnem && one_reg >= 0)
8868 {
8869 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8870
8871 inst.instruction &= A_COND_MASK;
8872 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8873 inst.instruction |= one_reg << 12;
8874 }
8875 }
8876
8877 static void
8878 do_ldmstm (void)
8879 {
8880 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8881 }
8882
8883 /* ARMv5TE load-consecutive (argument parse)
8884 Mode is like LDRH.
8885
8886 LDRccD R, mode
8887 STRccD R, mode. */
8888
8889 static void
8890 do_ldrd (void)
8891 {
8892 constraint (inst.operands[0].reg % 2 != 0,
8893 _("first transfer register must be even"));
8894 constraint (inst.operands[1].present
8895 && inst.operands[1].reg != inst.operands[0].reg + 1,
8896 _("can only transfer two consecutive registers"));
8897 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8898 constraint (!inst.operands[2].isreg, _("'[' expected"));
8899
8900 if (!inst.operands[1].present)
8901 inst.operands[1].reg = inst.operands[0].reg + 1;
8902
8903 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8904 register and the first register written; we have to diagnose
8905 overlap between the base and the second register written here. */
8906
8907 if (inst.operands[2].reg == inst.operands[1].reg
8908 && (inst.operands[2].writeback || inst.operands[2].postind))
8909 as_warn (_("base register written back, and overlaps "
8910 "second transfer register"));
8911
8912 if (!(inst.instruction & V4_STR_BIT))
8913 {
8914 /* For an index-register load, the index register must not overlap the
8915 destination (even if not write-back). */
8916 if (inst.operands[2].immisreg
8917 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8918 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8919 as_warn (_("index register overlaps transfer register"));
8920 }
8921 inst.instruction |= inst.operands[0].reg << 12;
8922 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8923 }
8924
8925 static void
8926 do_ldrex (void)
8927 {
8928 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8929 || inst.operands[1].postind || inst.operands[1].writeback
8930 || inst.operands[1].immisreg || inst.operands[1].shifted
8931 || inst.operands[1].negative
8932 /* This can arise if the programmer has written
8933 strex rN, rM, foo
8934 or if they have mistakenly used a register name as the last
8935 operand, eg:
8936 strex rN, rM, rX
8937 It is very difficult to distinguish between these two cases
8938 because "rX" might actually be a label. ie the register
8939 name has been occluded by a symbol of the same name. So we
8940 just generate a general 'bad addressing mode' type error
8941 message and leave it up to the programmer to discover the
8942 true cause and fix their mistake. */
8943 || (inst.operands[1].reg == REG_PC),
8944 BAD_ADDR_MODE);
8945
8946 constraint (inst.reloc.exp.X_op != O_constant
8947 || inst.reloc.exp.X_add_number != 0,
8948 _("offset must be zero in ARM encoding"));
8949
8950 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8951
8952 inst.instruction |= inst.operands[0].reg << 12;
8953 inst.instruction |= inst.operands[1].reg << 16;
8954 inst.reloc.type = BFD_RELOC_UNUSED;
8955 }
8956
8957 static void
8958 do_ldrexd (void)
8959 {
8960 constraint (inst.operands[0].reg % 2 != 0,
8961 _("even register required"));
8962 constraint (inst.operands[1].present
8963 && inst.operands[1].reg != inst.operands[0].reg + 1,
8964 _("can only load two consecutive registers"));
8965 /* If op 1 were present and equal to PC, this function wouldn't
8966 have been called in the first place. */
8967 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8968
8969 inst.instruction |= inst.operands[0].reg << 12;
8970 inst.instruction |= inst.operands[2].reg << 16;
8971 }
8972
8973 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8974 which is not a multiple of four is UNPREDICTABLE. */
8975 static void
8976 check_ldr_r15_aligned (void)
8977 {
8978 constraint (!(inst.operands[1].immisreg)
8979 && (inst.operands[0].reg == REG_PC
8980 && inst.operands[1].reg == REG_PC
8981 && (inst.reloc.exp.X_add_number & 0x3)),
8982 _("ldr to register 15 must be 4-byte alligned"));
8983 }
8984
8985 static void
8986 do_ldst (void)
8987 {
8988 inst.instruction |= inst.operands[0].reg << 12;
8989 if (!inst.operands[1].isreg)
8990 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
8991 return;
8992 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8993 check_ldr_r15_aligned ();
8994 }
8995
8996 static void
8997 do_ldstt (void)
8998 {
8999 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9000 reject [Rn,...]. */
9001 if (inst.operands[1].preind)
9002 {
9003 constraint (inst.reloc.exp.X_op != O_constant
9004 || inst.reloc.exp.X_add_number != 0,
9005 _("this instruction requires a post-indexed address"));
9006
9007 inst.operands[1].preind = 0;
9008 inst.operands[1].postind = 1;
9009 inst.operands[1].writeback = 1;
9010 }
9011 inst.instruction |= inst.operands[0].reg << 12;
9012 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9013 }
9014
9015 /* Halfword and signed-byte load/store operations. */
9016
9017 static void
9018 do_ldstv4 (void)
9019 {
9020 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9021 inst.instruction |= inst.operands[0].reg << 12;
9022 if (!inst.operands[1].isreg)
9023 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9024 return;
9025 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9026 }
9027
9028 static void
9029 do_ldsttv4 (void)
9030 {
9031 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9032 reject [Rn,...]. */
9033 if (inst.operands[1].preind)
9034 {
9035 constraint (inst.reloc.exp.X_op != O_constant
9036 || inst.reloc.exp.X_add_number != 0,
9037 _("this instruction requires a post-indexed address"));
9038
9039 inst.operands[1].preind = 0;
9040 inst.operands[1].postind = 1;
9041 inst.operands[1].writeback = 1;
9042 }
9043 inst.instruction |= inst.operands[0].reg << 12;
9044 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9045 }
9046
9047 /* Co-processor register load/store.
9048 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9049 static void
9050 do_lstc (void)
9051 {
9052 inst.instruction |= inst.operands[0].reg << 8;
9053 inst.instruction |= inst.operands[1].reg << 12;
9054 encode_arm_cp_address (2, TRUE, TRUE, 0);
9055 }
9056
9057 static void
9058 do_mlas (void)
9059 {
9060 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9061 if (inst.operands[0].reg == inst.operands[1].reg
9062 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9063 && !(inst.instruction & 0x00400000))
9064 as_tsktsk (_("Rd and Rm should be different in mla"));
9065
9066 inst.instruction |= inst.operands[0].reg << 16;
9067 inst.instruction |= inst.operands[1].reg;
9068 inst.instruction |= inst.operands[2].reg << 8;
9069 inst.instruction |= inst.operands[3].reg << 12;
9070 }
9071
9072 static void
9073 do_mov (void)
9074 {
9075 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9076 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9077 THUMB1_RELOC_ONLY);
9078 inst.instruction |= inst.operands[0].reg << 12;
9079 encode_arm_shifter_operand (1);
9080 }
9081
9082 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9083 static void
9084 do_mov16 (void)
9085 {
9086 bfd_vma imm;
9087 bfd_boolean top;
9088
9089 top = (inst.instruction & 0x00400000) != 0;
9090 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
9091 _(":lower16: not allowed in this instruction"));
9092 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
9093 _(":upper16: not allowed in this instruction"));
9094 inst.instruction |= inst.operands[0].reg << 12;
9095 if (inst.reloc.type == BFD_RELOC_UNUSED)
9096 {
9097 imm = inst.reloc.exp.X_add_number;
9098 /* The value is in two pieces: 0:11, 16:19. */
9099 inst.instruction |= (imm & 0x00000fff);
9100 inst.instruction |= (imm & 0x0000f000) << 4;
9101 }
9102 }
9103
9104 static int
9105 do_vfp_nsyn_mrs (void)
9106 {
9107 if (inst.operands[0].isvec)
9108 {
9109 if (inst.operands[1].reg != 1)
9110 first_error (_("operand 1 must be FPSCR"));
9111 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9112 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9113 do_vfp_nsyn_opcode ("fmstat");
9114 }
9115 else if (inst.operands[1].isvec)
9116 do_vfp_nsyn_opcode ("fmrx");
9117 else
9118 return FAIL;
9119
9120 return SUCCESS;
9121 }
9122
9123 static int
9124 do_vfp_nsyn_msr (void)
9125 {
9126 if (inst.operands[0].isvec)
9127 do_vfp_nsyn_opcode ("fmxr");
9128 else
9129 return FAIL;
9130
9131 return SUCCESS;
9132 }
9133
9134 static void
9135 do_vmrs (void)
9136 {
9137 unsigned Rt = inst.operands[0].reg;
9138
9139 if (thumb_mode && Rt == REG_SP)
9140 {
9141 inst.error = BAD_SP;
9142 return;
9143 }
9144
9145 /* APSR_ sets isvec. All other refs to PC are illegal. */
9146 if (!inst.operands[0].isvec && Rt == REG_PC)
9147 {
9148 inst.error = BAD_PC;
9149 return;
9150 }
9151
9152 /* If we get through parsing the register name, we just insert the number
9153 generated into the instruction without further validation. */
9154 inst.instruction |= (inst.operands[1].reg << 16);
9155 inst.instruction |= (Rt << 12);
9156 }
9157
9158 static void
9159 do_vmsr (void)
9160 {
9161 unsigned Rt = inst.operands[1].reg;
9162
9163 if (thumb_mode)
9164 reject_bad_reg (Rt);
9165 else if (Rt == REG_PC)
9166 {
9167 inst.error = BAD_PC;
9168 return;
9169 }
9170
9171 /* If we get through parsing the register name, we just insert the number
9172 generated into the instruction without further validation. */
9173 inst.instruction |= (inst.operands[0].reg << 16);
9174 inst.instruction |= (Rt << 12);
9175 }
9176
9177 static void
9178 do_mrs (void)
9179 {
9180 unsigned br;
9181
9182 if (do_vfp_nsyn_mrs () == SUCCESS)
9183 return;
9184
9185 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9186 inst.instruction |= inst.operands[0].reg << 12;
9187
9188 if (inst.operands[1].isreg)
9189 {
9190 br = inst.operands[1].reg;
9191 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
9192 as_bad (_("bad register for mrs"));
9193 }
9194 else
9195 {
9196 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9197 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9198 != (PSR_c|PSR_f),
9199 _("'APSR', 'CPSR' or 'SPSR' expected"));
9200 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9201 }
9202
9203 inst.instruction |= br;
9204 }
9205
9206 /* Two possible forms:
9207 "{C|S}PSR_<field>, Rm",
9208 "{C|S}PSR_f, #expression". */
9209
9210 static void
9211 do_msr (void)
9212 {
9213 if (do_vfp_nsyn_msr () == SUCCESS)
9214 return;
9215
9216 inst.instruction |= inst.operands[0].imm;
9217 if (inst.operands[1].isreg)
9218 inst.instruction |= inst.operands[1].reg;
9219 else
9220 {
9221 inst.instruction |= INST_IMMEDIATE;
9222 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9223 inst.reloc.pc_rel = 0;
9224 }
9225 }
9226
9227 static void
9228 do_mul (void)
9229 {
9230 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9231
9232 if (!inst.operands[2].present)
9233 inst.operands[2].reg = inst.operands[0].reg;
9234 inst.instruction |= inst.operands[0].reg << 16;
9235 inst.instruction |= inst.operands[1].reg;
9236 inst.instruction |= inst.operands[2].reg << 8;
9237
9238 if (inst.operands[0].reg == inst.operands[1].reg
9239 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9240 as_tsktsk (_("Rd and Rm should be different in mul"));
9241 }
9242
9243 /* Long Multiply Parser
9244 UMULL RdLo, RdHi, Rm, Rs
9245 SMULL RdLo, RdHi, Rm, Rs
9246 UMLAL RdLo, RdHi, Rm, Rs
9247 SMLAL RdLo, RdHi, Rm, Rs. */
9248
9249 static void
9250 do_mull (void)
9251 {
9252 inst.instruction |= inst.operands[0].reg << 12;
9253 inst.instruction |= inst.operands[1].reg << 16;
9254 inst.instruction |= inst.operands[2].reg;
9255 inst.instruction |= inst.operands[3].reg << 8;
9256
9257 /* rdhi and rdlo must be different. */
9258 if (inst.operands[0].reg == inst.operands[1].reg)
9259 as_tsktsk (_("rdhi and rdlo must be different"));
9260
9261 /* rdhi, rdlo and rm must all be different before armv6. */
9262 if ((inst.operands[0].reg == inst.operands[2].reg
9263 || inst.operands[1].reg == inst.operands[2].reg)
9264 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9265 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9266 }
9267
9268 static void
9269 do_nop (void)
9270 {
9271 if (inst.operands[0].present
9272 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9273 {
9274 /* Architectural NOP hints are CPSR sets with no bits selected. */
9275 inst.instruction &= 0xf0000000;
9276 inst.instruction |= 0x0320f000;
9277 if (inst.operands[0].present)
9278 inst.instruction |= inst.operands[0].imm;
9279 }
9280 }
9281
9282 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9283 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9284 Condition defaults to COND_ALWAYS.
9285 Error if Rd, Rn or Rm are R15. */
9286
9287 static void
9288 do_pkhbt (void)
9289 {
9290 inst.instruction |= inst.operands[0].reg << 12;
9291 inst.instruction |= inst.operands[1].reg << 16;
9292 inst.instruction |= inst.operands[2].reg;
9293 if (inst.operands[3].present)
9294 encode_arm_shift (3);
9295 }
9296
9297 /* ARM V6 PKHTB (Argument Parse). */
9298
9299 static void
9300 do_pkhtb (void)
9301 {
9302 if (!inst.operands[3].present)
9303 {
9304 /* If the shift specifier is omitted, turn the instruction
9305 into pkhbt rd, rm, rn. */
9306 inst.instruction &= 0xfff00010;
9307 inst.instruction |= inst.operands[0].reg << 12;
9308 inst.instruction |= inst.operands[1].reg;
9309 inst.instruction |= inst.operands[2].reg << 16;
9310 }
9311 else
9312 {
9313 inst.instruction |= inst.operands[0].reg << 12;
9314 inst.instruction |= inst.operands[1].reg << 16;
9315 inst.instruction |= inst.operands[2].reg;
9316 encode_arm_shift (3);
9317 }
9318 }
9319
9320 /* ARMv5TE: Preload-Cache
9321 MP Extensions: Preload for write
9322
9323 PLD(W) <addr_mode>
9324
9325 Syntactically, like LDR with B=1, W=0, L=1. */
9326
9327 static void
9328 do_pld (void)
9329 {
9330 constraint (!inst.operands[0].isreg,
9331 _("'[' expected after PLD mnemonic"));
9332 constraint (inst.operands[0].postind,
9333 _("post-indexed expression used in preload instruction"));
9334 constraint (inst.operands[0].writeback,
9335 _("writeback used in preload instruction"));
9336 constraint (!inst.operands[0].preind,
9337 _("unindexed addressing used in preload instruction"));
9338 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9339 }
9340
9341 /* ARMv7: PLI <addr_mode> */
9342 static void
9343 do_pli (void)
9344 {
9345 constraint (!inst.operands[0].isreg,
9346 _("'[' expected after PLI mnemonic"));
9347 constraint (inst.operands[0].postind,
9348 _("post-indexed expression used in preload instruction"));
9349 constraint (inst.operands[0].writeback,
9350 _("writeback used in preload instruction"));
9351 constraint (!inst.operands[0].preind,
9352 _("unindexed addressing used in preload instruction"));
9353 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9354 inst.instruction &= ~PRE_INDEX;
9355 }
9356
9357 static void
9358 do_push_pop (void)
9359 {
9360 constraint (inst.operands[0].writeback,
9361 _("push/pop do not support {reglist}^"));
9362 inst.operands[1] = inst.operands[0];
9363 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9364 inst.operands[0].isreg = 1;
9365 inst.operands[0].writeback = 1;
9366 inst.operands[0].reg = REG_SP;
9367 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9368 }
9369
9370 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9371 word at the specified address and the following word
9372 respectively.
9373 Unconditionally executed.
9374 Error if Rn is R15. */
9375
9376 static void
9377 do_rfe (void)
9378 {
9379 inst.instruction |= inst.operands[0].reg << 16;
9380 if (inst.operands[0].writeback)
9381 inst.instruction |= WRITE_BACK;
9382 }
9383
9384 /* ARM V6 ssat (argument parse). */
9385
9386 static void
9387 do_ssat (void)
9388 {
9389 inst.instruction |= inst.operands[0].reg << 12;
9390 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9391 inst.instruction |= inst.operands[2].reg;
9392
9393 if (inst.operands[3].present)
9394 encode_arm_shift (3);
9395 }
9396
9397 /* ARM V6 usat (argument parse). */
9398
9399 static void
9400 do_usat (void)
9401 {
9402 inst.instruction |= inst.operands[0].reg << 12;
9403 inst.instruction |= inst.operands[1].imm << 16;
9404 inst.instruction |= inst.operands[2].reg;
9405
9406 if (inst.operands[3].present)
9407 encode_arm_shift (3);
9408 }
9409
9410 /* ARM V6 ssat16 (argument parse). */
9411
9412 static void
9413 do_ssat16 (void)
9414 {
9415 inst.instruction |= inst.operands[0].reg << 12;
9416 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9417 inst.instruction |= inst.operands[2].reg;
9418 }
9419
9420 static void
9421 do_usat16 (void)
9422 {
9423 inst.instruction |= inst.operands[0].reg << 12;
9424 inst.instruction |= inst.operands[1].imm << 16;
9425 inst.instruction |= inst.operands[2].reg;
9426 }
9427
9428 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9429 preserving the other bits.
9430
9431 setend <endian_specifier>, where <endian_specifier> is either
9432 BE or LE. */
9433
9434 static void
9435 do_setend (void)
9436 {
9437 if (warn_on_deprecated
9438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9439 as_tsktsk (_("setend use is deprecated for ARMv8"));
9440
9441 if (inst.operands[0].imm)
9442 inst.instruction |= 0x200;
9443 }
9444
9445 static void
9446 do_shift (void)
9447 {
9448 unsigned int Rm = (inst.operands[1].present
9449 ? inst.operands[1].reg
9450 : inst.operands[0].reg);
9451
9452 inst.instruction |= inst.operands[0].reg << 12;
9453 inst.instruction |= Rm;
9454 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9455 {
9456 inst.instruction |= inst.operands[2].reg << 8;
9457 inst.instruction |= SHIFT_BY_REG;
9458 /* PR 12854: Error on extraneous shifts. */
9459 constraint (inst.operands[2].shifted,
9460 _("extraneous shift as part of operand to shift insn"));
9461 }
9462 else
9463 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9464 }
9465
9466 static void
9467 do_smc (void)
9468 {
9469 inst.reloc.type = BFD_RELOC_ARM_SMC;
9470 inst.reloc.pc_rel = 0;
9471 }
9472
9473 static void
9474 do_hvc (void)
9475 {
9476 inst.reloc.type = BFD_RELOC_ARM_HVC;
9477 inst.reloc.pc_rel = 0;
9478 }
9479
9480 static void
9481 do_swi (void)
9482 {
9483 inst.reloc.type = BFD_RELOC_ARM_SWI;
9484 inst.reloc.pc_rel = 0;
9485 }
9486
9487 static void
9488 do_setpan (void)
9489 {
9490 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9491 _("selected processor does not support SETPAN instruction"));
9492
9493 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9494 }
9495
9496 static void
9497 do_t_setpan (void)
9498 {
9499 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9500 _("selected processor does not support SETPAN instruction"));
9501
9502 inst.instruction |= (inst.operands[0].imm << 3);
9503 }
9504
9505 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9506 SMLAxy{cond} Rd,Rm,Rs,Rn
9507 SMLAWy{cond} Rd,Rm,Rs,Rn
9508 Error if any register is R15. */
9509
9510 static void
9511 do_smla (void)
9512 {
9513 inst.instruction |= inst.operands[0].reg << 16;
9514 inst.instruction |= inst.operands[1].reg;
9515 inst.instruction |= inst.operands[2].reg << 8;
9516 inst.instruction |= inst.operands[3].reg << 12;
9517 }
9518
9519 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9520 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9521 Error if any register is R15.
9522 Warning if Rdlo == Rdhi. */
9523
9524 static void
9525 do_smlal (void)
9526 {
9527 inst.instruction |= inst.operands[0].reg << 12;
9528 inst.instruction |= inst.operands[1].reg << 16;
9529 inst.instruction |= inst.operands[2].reg;
9530 inst.instruction |= inst.operands[3].reg << 8;
9531
9532 if (inst.operands[0].reg == inst.operands[1].reg)
9533 as_tsktsk (_("rdhi and rdlo must be different"));
9534 }
9535
9536 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9537 SMULxy{cond} Rd,Rm,Rs
9538 Error if any register is R15. */
9539
9540 static void
9541 do_smul (void)
9542 {
9543 inst.instruction |= inst.operands[0].reg << 16;
9544 inst.instruction |= inst.operands[1].reg;
9545 inst.instruction |= inst.operands[2].reg << 8;
9546 }
9547
9548 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9549 the same for both ARM and Thumb-2. */
9550
9551 static void
9552 do_srs (void)
9553 {
9554 int reg;
9555
9556 if (inst.operands[0].present)
9557 {
9558 reg = inst.operands[0].reg;
9559 constraint (reg != REG_SP, _("SRS base register must be r13"));
9560 }
9561 else
9562 reg = REG_SP;
9563
9564 inst.instruction |= reg << 16;
9565 inst.instruction |= inst.operands[1].imm;
9566 if (inst.operands[0].writeback || inst.operands[1].writeback)
9567 inst.instruction |= WRITE_BACK;
9568 }
9569
9570 /* ARM V6 strex (argument parse). */
9571
9572 static void
9573 do_strex (void)
9574 {
9575 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9576 || inst.operands[2].postind || inst.operands[2].writeback
9577 || inst.operands[2].immisreg || inst.operands[2].shifted
9578 || inst.operands[2].negative
9579 /* See comment in do_ldrex(). */
9580 || (inst.operands[2].reg == REG_PC),
9581 BAD_ADDR_MODE);
9582
9583 constraint (inst.operands[0].reg == inst.operands[1].reg
9584 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9585
9586 constraint (inst.reloc.exp.X_op != O_constant
9587 || inst.reloc.exp.X_add_number != 0,
9588 _("offset must be zero in ARM encoding"));
9589
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 inst.instruction |= inst.operands[1].reg;
9592 inst.instruction |= inst.operands[2].reg << 16;
9593 inst.reloc.type = BFD_RELOC_UNUSED;
9594 }
9595
9596 static void
9597 do_t_strexbh (void)
9598 {
9599 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9600 || inst.operands[2].postind || inst.operands[2].writeback
9601 || inst.operands[2].immisreg || inst.operands[2].shifted
9602 || inst.operands[2].negative,
9603 BAD_ADDR_MODE);
9604
9605 constraint (inst.operands[0].reg == inst.operands[1].reg
9606 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9607
9608 do_rm_rd_rn ();
9609 }
9610
9611 static void
9612 do_strexd (void)
9613 {
9614 constraint (inst.operands[1].reg % 2 != 0,
9615 _("even register required"));
9616 constraint (inst.operands[2].present
9617 && inst.operands[2].reg != inst.operands[1].reg + 1,
9618 _("can only store two consecutive registers"));
9619 /* If op 2 were present and equal to PC, this function wouldn't
9620 have been called in the first place. */
9621 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9622
9623 constraint (inst.operands[0].reg == inst.operands[1].reg
9624 || inst.operands[0].reg == inst.operands[1].reg + 1
9625 || inst.operands[0].reg == inst.operands[3].reg,
9626 BAD_OVERLAP);
9627
9628 inst.instruction |= inst.operands[0].reg << 12;
9629 inst.instruction |= inst.operands[1].reg;
9630 inst.instruction |= inst.operands[3].reg << 16;
9631 }
9632
9633 /* ARM V8 STRL. */
9634 static void
9635 do_stlex (void)
9636 {
9637 constraint (inst.operands[0].reg == inst.operands[1].reg
9638 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9639
9640 do_rd_rm_rn ();
9641 }
9642
9643 static void
9644 do_t_stlex (void)
9645 {
9646 constraint (inst.operands[0].reg == inst.operands[1].reg
9647 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9648
9649 do_rm_rd_rn ();
9650 }
9651
9652 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9653 extends it to 32-bits, and adds the result to a value in another
9654 register. You can specify a rotation by 0, 8, 16, or 24 bits
9655 before extracting the 16-bit value.
9656 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9657 Condition defaults to COND_ALWAYS.
9658 Error if any register uses R15. */
9659
9660 static void
9661 do_sxtah (void)
9662 {
9663 inst.instruction |= inst.operands[0].reg << 12;
9664 inst.instruction |= inst.operands[1].reg << 16;
9665 inst.instruction |= inst.operands[2].reg;
9666 inst.instruction |= inst.operands[3].imm << 10;
9667 }
9668
9669 /* ARM V6 SXTH.
9670
9671 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9672 Condition defaults to COND_ALWAYS.
9673 Error if any register uses R15. */
9674
9675 static void
9676 do_sxth (void)
9677 {
9678 inst.instruction |= inst.operands[0].reg << 12;
9679 inst.instruction |= inst.operands[1].reg;
9680 inst.instruction |= inst.operands[2].imm << 10;
9681 }
9682 \f
9683 /* VFP instructions. In a logical order: SP variant first, monad
9684 before dyad, arithmetic then move then load/store. */
9685
9686 static void
9687 do_vfp_sp_monadic (void)
9688 {
9689 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9690 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9691 }
9692
9693 static void
9694 do_vfp_sp_dyadic (void)
9695 {
9696 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9697 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9698 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9699 }
9700
9701 static void
9702 do_vfp_sp_compare_z (void)
9703 {
9704 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9705 }
9706
9707 static void
9708 do_vfp_dp_sp_cvt (void)
9709 {
9710 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9711 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9712 }
9713
9714 static void
9715 do_vfp_sp_dp_cvt (void)
9716 {
9717 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9718 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9719 }
9720
9721 static void
9722 do_vfp_reg_from_sp (void)
9723 {
9724 inst.instruction |= inst.operands[0].reg << 12;
9725 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9726 }
9727
9728 static void
9729 do_vfp_reg2_from_sp2 (void)
9730 {
9731 constraint (inst.operands[2].imm != 2,
9732 _("only two consecutive VFP SP registers allowed here"));
9733 inst.instruction |= inst.operands[0].reg << 12;
9734 inst.instruction |= inst.operands[1].reg << 16;
9735 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9736 }
9737
9738 static void
9739 do_vfp_sp_from_reg (void)
9740 {
9741 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9742 inst.instruction |= inst.operands[1].reg << 12;
9743 }
9744
9745 static void
9746 do_vfp_sp2_from_reg2 (void)
9747 {
9748 constraint (inst.operands[0].imm != 2,
9749 _("only two consecutive VFP SP registers allowed here"));
9750 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9751 inst.instruction |= inst.operands[1].reg << 12;
9752 inst.instruction |= inst.operands[2].reg << 16;
9753 }
9754
9755 static void
9756 do_vfp_sp_ldst (void)
9757 {
9758 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9759 encode_arm_cp_address (1, FALSE, TRUE, 0);
9760 }
9761
9762 static void
9763 do_vfp_dp_ldst (void)
9764 {
9765 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9766 encode_arm_cp_address (1, FALSE, TRUE, 0);
9767 }
9768
9769
9770 static void
9771 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9772 {
9773 if (inst.operands[0].writeback)
9774 inst.instruction |= WRITE_BACK;
9775 else
9776 constraint (ldstm_type != VFP_LDSTMIA,
9777 _("this addressing mode requires base-register writeback"));
9778 inst.instruction |= inst.operands[0].reg << 16;
9779 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9780 inst.instruction |= inst.operands[1].imm;
9781 }
9782
9783 static void
9784 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9785 {
9786 int count;
9787
9788 if (inst.operands[0].writeback)
9789 inst.instruction |= WRITE_BACK;
9790 else
9791 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9792 _("this addressing mode requires base-register writeback"));
9793
9794 inst.instruction |= inst.operands[0].reg << 16;
9795 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9796
9797 count = inst.operands[1].imm << 1;
9798 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9799 count += 1;
9800
9801 inst.instruction |= count;
9802 }
9803
9804 static void
9805 do_vfp_sp_ldstmia (void)
9806 {
9807 vfp_sp_ldstm (VFP_LDSTMIA);
9808 }
9809
9810 static void
9811 do_vfp_sp_ldstmdb (void)
9812 {
9813 vfp_sp_ldstm (VFP_LDSTMDB);
9814 }
9815
9816 static void
9817 do_vfp_dp_ldstmia (void)
9818 {
9819 vfp_dp_ldstm (VFP_LDSTMIA);
9820 }
9821
9822 static void
9823 do_vfp_dp_ldstmdb (void)
9824 {
9825 vfp_dp_ldstm (VFP_LDSTMDB);
9826 }
9827
9828 static void
9829 do_vfp_xp_ldstmia (void)
9830 {
9831 vfp_dp_ldstm (VFP_LDSTMIAX);
9832 }
9833
9834 static void
9835 do_vfp_xp_ldstmdb (void)
9836 {
9837 vfp_dp_ldstm (VFP_LDSTMDBX);
9838 }
9839
9840 static void
9841 do_vfp_dp_rd_rm (void)
9842 {
9843 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9844 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9845 }
9846
9847 static void
9848 do_vfp_dp_rn_rd (void)
9849 {
9850 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9851 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9852 }
9853
9854 static void
9855 do_vfp_dp_rd_rn (void)
9856 {
9857 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9858 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9859 }
9860
9861 static void
9862 do_vfp_dp_rd_rn_rm (void)
9863 {
9864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9865 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9866 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9867 }
9868
9869 static void
9870 do_vfp_dp_rd (void)
9871 {
9872 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9873 }
9874
9875 static void
9876 do_vfp_dp_rm_rd_rn (void)
9877 {
9878 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9879 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9880 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9881 }
9882
9883 /* VFPv3 instructions. */
9884 static void
9885 do_vfp_sp_const (void)
9886 {
9887 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9888 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9889 inst.instruction |= (inst.operands[1].imm & 0x0f);
9890 }
9891
9892 static void
9893 do_vfp_dp_const (void)
9894 {
9895 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9896 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9897 inst.instruction |= (inst.operands[1].imm & 0x0f);
9898 }
9899
9900 static void
9901 vfp_conv (int srcsize)
9902 {
9903 int immbits = srcsize - inst.operands[1].imm;
9904
9905 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9906 {
9907 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9908 i.e. immbits must be in range 0 - 16. */
9909 inst.error = _("immediate value out of range, expected range [0, 16]");
9910 return;
9911 }
9912 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9913 {
9914 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9915 i.e. immbits must be in range 0 - 31. */
9916 inst.error = _("immediate value out of range, expected range [1, 32]");
9917 return;
9918 }
9919
9920 inst.instruction |= (immbits & 1) << 5;
9921 inst.instruction |= (immbits >> 1);
9922 }
9923
9924 static void
9925 do_vfp_sp_conv_16 (void)
9926 {
9927 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9928 vfp_conv (16);
9929 }
9930
9931 static void
9932 do_vfp_dp_conv_16 (void)
9933 {
9934 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9935 vfp_conv (16);
9936 }
9937
9938 static void
9939 do_vfp_sp_conv_32 (void)
9940 {
9941 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9942 vfp_conv (32);
9943 }
9944
9945 static void
9946 do_vfp_dp_conv_32 (void)
9947 {
9948 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9949 vfp_conv (32);
9950 }
9951 \f
9952 /* FPA instructions. Also in a logical order. */
9953
9954 static void
9955 do_fpa_cmp (void)
9956 {
9957 inst.instruction |= inst.operands[0].reg << 16;
9958 inst.instruction |= inst.operands[1].reg;
9959 }
9960
9961 static void
9962 do_fpa_ldmstm (void)
9963 {
9964 inst.instruction |= inst.operands[0].reg << 12;
9965 switch (inst.operands[1].imm)
9966 {
9967 case 1: inst.instruction |= CP_T_X; break;
9968 case 2: inst.instruction |= CP_T_Y; break;
9969 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9970 case 4: break;
9971 default: abort ();
9972 }
9973
9974 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9975 {
9976 /* The instruction specified "ea" or "fd", so we can only accept
9977 [Rn]{!}. The instruction does not really support stacking or
9978 unstacking, so we have to emulate these by setting appropriate
9979 bits and offsets. */
9980 constraint (inst.reloc.exp.X_op != O_constant
9981 || inst.reloc.exp.X_add_number != 0,
9982 _("this instruction does not support indexing"));
9983
9984 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9985 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9986
9987 if (!(inst.instruction & INDEX_UP))
9988 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9989
9990 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9991 {
9992 inst.operands[2].preind = 0;
9993 inst.operands[2].postind = 1;
9994 }
9995 }
9996
9997 encode_arm_cp_address (2, TRUE, TRUE, 0);
9998 }
9999 \f
10000 /* iWMMXt instructions: strictly in alphabetical order. */
10001
10002 static void
10003 do_iwmmxt_tandorc (void)
10004 {
10005 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10006 }
10007
10008 static void
10009 do_iwmmxt_textrc (void)
10010 {
10011 inst.instruction |= inst.operands[0].reg << 12;
10012 inst.instruction |= inst.operands[1].imm;
10013 }
10014
10015 static void
10016 do_iwmmxt_textrm (void)
10017 {
10018 inst.instruction |= inst.operands[0].reg << 12;
10019 inst.instruction |= inst.operands[1].reg << 16;
10020 inst.instruction |= inst.operands[2].imm;
10021 }
10022
10023 static void
10024 do_iwmmxt_tinsr (void)
10025 {
10026 inst.instruction |= inst.operands[0].reg << 16;
10027 inst.instruction |= inst.operands[1].reg << 12;
10028 inst.instruction |= inst.operands[2].imm;
10029 }
10030
10031 static void
10032 do_iwmmxt_tmia (void)
10033 {
10034 inst.instruction |= inst.operands[0].reg << 5;
10035 inst.instruction |= inst.operands[1].reg;
10036 inst.instruction |= inst.operands[2].reg << 12;
10037 }
10038
10039 static void
10040 do_iwmmxt_waligni (void)
10041 {
10042 inst.instruction |= inst.operands[0].reg << 12;
10043 inst.instruction |= inst.operands[1].reg << 16;
10044 inst.instruction |= inst.operands[2].reg;
10045 inst.instruction |= inst.operands[3].imm << 20;
10046 }
10047
10048 static void
10049 do_iwmmxt_wmerge (void)
10050 {
10051 inst.instruction |= inst.operands[0].reg << 12;
10052 inst.instruction |= inst.operands[1].reg << 16;
10053 inst.instruction |= inst.operands[2].reg;
10054 inst.instruction |= inst.operands[3].imm << 21;
10055 }
10056
10057 static void
10058 do_iwmmxt_wmov (void)
10059 {
10060 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 inst.instruction |= inst.operands[1].reg << 16;
10063 inst.instruction |= inst.operands[1].reg;
10064 }
10065
10066 static void
10067 do_iwmmxt_wldstbh (void)
10068 {
10069 int reloc;
10070 inst.instruction |= inst.operands[0].reg << 12;
10071 if (thumb_mode)
10072 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10073 else
10074 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10075 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10076 }
10077
10078 static void
10079 do_iwmmxt_wldstw (void)
10080 {
10081 /* RIWR_RIWC clears .isreg for a control register. */
10082 if (!inst.operands[0].isreg)
10083 {
10084 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10085 inst.instruction |= 0xf0000000;
10086 }
10087
10088 inst.instruction |= inst.operands[0].reg << 12;
10089 encode_arm_cp_address (1, TRUE, TRUE, 0);
10090 }
10091
10092 static void
10093 do_iwmmxt_wldstd (void)
10094 {
10095 inst.instruction |= inst.operands[0].reg << 12;
10096 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10097 && inst.operands[1].immisreg)
10098 {
10099 inst.instruction &= ~0x1a000ff;
10100 inst.instruction |= (0xfU << 28);
10101 if (inst.operands[1].preind)
10102 inst.instruction |= PRE_INDEX;
10103 if (!inst.operands[1].negative)
10104 inst.instruction |= INDEX_UP;
10105 if (inst.operands[1].writeback)
10106 inst.instruction |= WRITE_BACK;
10107 inst.instruction |= inst.operands[1].reg << 16;
10108 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10109 inst.instruction |= inst.operands[1].imm;
10110 }
10111 else
10112 encode_arm_cp_address (1, TRUE, FALSE, 0);
10113 }
10114
10115 static void
10116 do_iwmmxt_wshufh (void)
10117 {
10118 inst.instruction |= inst.operands[0].reg << 12;
10119 inst.instruction |= inst.operands[1].reg << 16;
10120 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10121 inst.instruction |= (inst.operands[2].imm & 0x0f);
10122 }
10123
10124 static void
10125 do_iwmmxt_wzero (void)
10126 {
10127 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10128 inst.instruction |= inst.operands[0].reg;
10129 inst.instruction |= inst.operands[0].reg << 12;
10130 inst.instruction |= inst.operands[0].reg << 16;
10131 }
10132
10133 static void
10134 do_iwmmxt_wrwrwr_or_imm5 (void)
10135 {
10136 if (inst.operands[2].isreg)
10137 do_rd_rn_rm ();
10138 else {
10139 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10140 _("immediate operand requires iWMMXt2"));
10141 do_rd_rn ();
10142 if (inst.operands[2].imm == 0)
10143 {
10144 switch ((inst.instruction >> 20) & 0xf)
10145 {
10146 case 4:
10147 case 5:
10148 case 6:
10149 case 7:
10150 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10151 inst.operands[2].imm = 16;
10152 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10153 break;
10154 case 8:
10155 case 9:
10156 case 10:
10157 case 11:
10158 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10159 inst.operands[2].imm = 32;
10160 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10161 break;
10162 case 12:
10163 case 13:
10164 case 14:
10165 case 15:
10166 {
10167 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10168 unsigned long wrn;
10169 wrn = (inst.instruction >> 16) & 0xf;
10170 inst.instruction &= 0xff0fff0f;
10171 inst.instruction |= wrn;
10172 /* Bail out here; the instruction is now assembled. */
10173 return;
10174 }
10175 }
10176 }
10177 /* Map 32 -> 0, etc. */
10178 inst.operands[2].imm &= 0x1f;
10179 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10180 }
10181 }
10182 \f
10183 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10184 operations first, then control, shift, and load/store. */
10185
10186 /* Insns like "foo X,Y,Z". */
10187
10188 static void
10189 do_mav_triple (void)
10190 {
10191 inst.instruction |= inst.operands[0].reg << 16;
10192 inst.instruction |= inst.operands[1].reg;
10193 inst.instruction |= inst.operands[2].reg << 12;
10194 }
10195
10196 /* Insns like "foo W,X,Y,Z".
10197 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10198
10199 static void
10200 do_mav_quad (void)
10201 {
10202 inst.instruction |= inst.operands[0].reg << 5;
10203 inst.instruction |= inst.operands[1].reg << 12;
10204 inst.instruction |= inst.operands[2].reg << 16;
10205 inst.instruction |= inst.operands[3].reg;
10206 }
10207
10208 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10209 static void
10210 do_mav_dspsc (void)
10211 {
10212 inst.instruction |= inst.operands[1].reg << 12;
10213 }
10214
10215 /* Maverick shift immediate instructions.
10216 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10217 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10218
10219 static void
10220 do_mav_shift (void)
10221 {
10222 int imm = inst.operands[2].imm;
10223
10224 inst.instruction |= inst.operands[0].reg << 12;
10225 inst.instruction |= inst.operands[1].reg << 16;
10226
10227 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10228 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10229 Bit 4 should be 0. */
10230 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10231
10232 inst.instruction |= imm;
10233 }
10234 \f
10235 /* XScale instructions. Also sorted arithmetic before move. */
10236
10237 /* Xscale multiply-accumulate (argument parse)
10238 MIAcc acc0,Rm,Rs
10239 MIAPHcc acc0,Rm,Rs
10240 MIAxycc acc0,Rm,Rs. */
10241
10242 static void
10243 do_xsc_mia (void)
10244 {
10245 inst.instruction |= inst.operands[1].reg;
10246 inst.instruction |= inst.operands[2].reg << 12;
10247 }
10248
10249 /* Xscale move-accumulator-register (argument parse)
10250
10251 MARcc acc0,RdLo,RdHi. */
10252
10253 static void
10254 do_xsc_mar (void)
10255 {
10256 inst.instruction |= inst.operands[1].reg << 12;
10257 inst.instruction |= inst.operands[2].reg << 16;
10258 }
10259
10260 /* Xscale move-register-accumulator (argument parse)
10261
10262 MRAcc RdLo,RdHi,acc0. */
10263
10264 static void
10265 do_xsc_mra (void)
10266 {
10267 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10268 inst.instruction |= inst.operands[0].reg << 12;
10269 inst.instruction |= inst.operands[1].reg << 16;
10270 }
10271 \f
10272 /* Encoding functions relevant only to Thumb. */
10273
10274 /* inst.operands[i] is a shifted-register operand; encode
10275 it into inst.instruction in the format used by Thumb32. */
10276
10277 static void
10278 encode_thumb32_shifted_operand (int i)
10279 {
10280 unsigned int value = inst.reloc.exp.X_add_number;
10281 unsigned int shift = inst.operands[i].shift_kind;
10282
10283 constraint (inst.operands[i].immisreg,
10284 _("shift by register not allowed in thumb mode"));
10285 inst.instruction |= inst.operands[i].reg;
10286 if (shift == SHIFT_RRX)
10287 inst.instruction |= SHIFT_ROR << 4;
10288 else
10289 {
10290 constraint (inst.reloc.exp.X_op != O_constant,
10291 _("expression too complex"));
10292
10293 constraint (value > 32
10294 || (value == 32 && (shift == SHIFT_LSL
10295 || shift == SHIFT_ROR)),
10296 _("shift expression is too large"));
10297
10298 if (value == 0)
10299 shift = SHIFT_LSL;
10300 else if (value == 32)
10301 value = 0;
10302
10303 inst.instruction |= shift << 4;
10304 inst.instruction |= (value & 0x1c) << 10;
10305 inst.instruction |= (value & 0x03) << 6;
10306 }
10307 }
10308
10309
10310 /* inst.operands[i] was set up by parse_address. Encode it into a
10311 Thumb32 format load or store instruction. Reject forms that cannot
10312 be used with such instructions. If is_t is true, reject forms that
10313 cannot be used with a T instruction; if is_d is true, reject forms
10314 that cannot be used with a D instruction. If it is a store insn,
10315 reject PC in Rn. */
10316
10317 static void
10318 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10319 {
10320 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10321
10322 constraint (!inst.operands[i].isreg,
10323 _("Instruction does not support =N addresses"));
10324
10325 inst.instruction |= inst.operands[i].reg << 16;
10326 if (inst.operands[i].immisreg)
10327 {
10328 constraint (is_pc, BAD_PC_ADDRESSING);
10329 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10330 constraint (inst.operands[i].negative,
10331 _("Thumb does not support negative register indexing"));
10332 constraint (inst.operands[i].postind,
10333 _("Thumb does not support register post-indexing"));
10334 constraint (inst.operands[i].writeback,
10335 _("Thumb does not support register indexing with writeback"));
10336 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10337 _("Thumb supports only LSL in shifted register indexing"));
10338
10339 inst.instruction |= inst.operands[i].imm;
10340 if (inst.operands[i].shifted)
10341 {
10342 constraint (inst.reloc.exp.X_op != O_constant,
10343 _("expression too complex"));
10344 constraint (inst.reloc.exp.X_add_number < 0
10345 || inst.reloc.exp.X_add_number > 3,
10346 _("shift out of range"));
10347 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10348 }
10349 inst.reloc.type = BFD_RELOC_UNUSED;
10350 }
10351 else if (inst.operands[i].preind)
10352 {
10353 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10354 constraint (is_t && inst.operands[i].writeback,
10355 _("cannot use writeback with this instruction"));
10356 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10357 BAD_PC_ADDRESSING);
10358
10359 if (is_d)
10360 {
10361 inst.instruction |= 0x01000000;
10362 if (inst.operands[i].writeback)
10363 inst.instruction |= 0x00200000;
10364 }
10365 else
10366 {
10367 inst.instruction |= 0x00000c00;
10368 if (inst.operands[i].writeback)
10369 inst.instruction |= 0x00000100;
10370 }
10371 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10372 }
10373 else if (inst.operands[i].postind)
10374 {
10375 gas_assert (inst.operands[i].writeback);
10376 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10377 constraint (is_t, _("cannot use post-indexing with this instruction"));
10378
10379 if (is_d)
10380 inst.instruction |= 0x00200000;
10381 else
10382 inst.instruction |= 0x00000900;
10383 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10384 }
10385 else /* unindexed - only for coprocessor */
10386 inst.error = _("instruction does not accept unindexed addressing");
10387 }
10388
10389 /* Table of Thumb instructions which exist in both 16- and 32-bit
10390 encodings (the latter only in post-V6T2 cores). The index is the
10391 value used in the insns table below. When there is more than one
10392 possible 16-bit encoding for the instruction, this table always
10393 holds variant (1).
10394 Also contains several pseudo-instructions used during relaxation. */
10395 #define T16_32_TAB \
10396 X(_adc, 4140, eb400000), \
10397 X(_adcs, 4140, eb500000), \
10398 X(_add, 1c00, eb000000), \
10399 X(_adds, 1c00, eb100000), \
10400 X(_addi, 0000, f1000000), \
10401 X(_addis, 0000, f1100000), \
10402 X(_add_pc,000f, f20f0000), \
10403 X(_add_sp,000d, f10d0000), \
10404 X(_adr, 000f, f20f0000), \
10405 X(_and, 4000, ea000000), \
10406 X(_ands, 4000, ea100000), \
10407 X(_asr, 1000, fa40f000), \
10408 X(_asrs, 1000, fa50f000), \
10409 X(_b, e000, f000b000), \
10410 X(_bcond, d000, f0008000), \
10411 X(_bic, 4380, ea200000), \
10412 X(_bics, 4380, ea300000), \
10413 X(_cmn, 42c0, eb100f00), \
10414 X(_cmp, 2800, ebb00f00), \
10415 X(_cpsie, b660, f3af8400), \
10416 X(_cpsid, b670, f3af8600), \
10417 X(_cpy, 4600, ea4f0000), \
10418 X(_dec_sp,80dd, f1ad0d00), \
10419 X(_eor, 4040, ea800000), \
10420 X(_eors, 4040, ea900000), \
10421 X(_inc_sp,00dd, f10d0d00), \
10422 X(_ldmia, c800, e8900000), \
10423 X(_ldr, 6800, f8500000), \
10424 X(_ldrb, 7800, f8100000), \
10425 X(_ldrh, 8800, f8300000), \
10426 X(_ldrsb, 5600, f9100000), \
10427 X(_ldrsh, 5e00, f9300000), \
10428 X(_ldr_pc,4800, f85f0000), \
10429 X(_ldr_pc2,4800, f85f0000), \
10430 X(_ldr_sp,9800, f85d0000), \
10431 X(_lsl, 0000, fa00f000), \
10432 X(_lsls, 0000, fa10f000), \
10433 X(_lsr, 0800, fa20f000), \
10434 X(_lsrs, 0800, fa30f000), \
10435 X(_mov, 2000, ea4f0000), \
10436 X(_movs, 2000, ea5f0000), \
10437 X(_mul, 4340, fb00f000), \
10438 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10439 X(_mvn, 43c0, ea6f0000), \
10440 X(_mvns, 43c0, ea7f0000), \
10441 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10442 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10443 X(_orr, 4300, ea400000), \
10444 X(_orrs, 4300, ea500000), \
10445 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10446 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10447 X(_rev, ba00, fa90f080), \
10448 X(_rev16, ba40, fa90f090), \
10449 X(_revsh, bac0, fa90f0b0), \
10450 X(_ror, 41c0, fa60f000), \
10451 X(_rors, 41c0, fa70f000), \
10452 X(_sbc, 4180, eb600000), \
10453 X(_sbcs, 4180, eb700000), \
10454 X(_stmia, c000, e8800000), \
10455 X(_str, 6000, f8400000), \
10456 X(_strb, 7000, f8000000), \
10457 X(_strh, 8000, f8200000), \
10458 X(_str_sp,9000, f84d0000), \
10459 X(_sub, 1e00, eba00000), \
10460 X(_subs, 1e00, ebb00000), \
10461 X(_subi, 8000, f1a00000), \
10462 X(_subis, 8000, f1b00000), \
10463 X(_sxtb, b240, fa4ff080), \
10464 X(_sxth, b200, fa0ff080), \
10465 X(_tst, 4200, ea100f00), \
10466 X(_uxtb, b2c0, fa5ff080), \
10467 X(_uxth, b280, fa1ff080), \
10468 X(_nop, bf00, f3af8000), \
10469 X(_yield, bf10, f3af8001), \
10470 X(_wfe, bf20, f3af8002), \
10471 X(_wfi, bf30, f3af8003), \
10472 X(_sev, bf40, f3af8004), \
10473 X(_sevl, bf50, f3af8005), \
10474 X(_udf, de00, f7f0a000)
10475
10476 /* To catch errors in encoding functions, the codes are all offset by
10477 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10478 as 16-bit instructions. */
10479 #define X(a,b,c) T_MNEM##a
10480 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10481 #undef X
10482
10483 #define X(a,b,c) 0x##b
10484 static const unsigned short thumb_op16[] = { T16_32_TAB };
10485 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10486 #undef X
10487
10488 #define X(a,b,c) 0x##c
10489 static const unsigned int thumb_op32[] = { T16_32_TAB };
10490 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10491 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10492 #undef X
10493 #undef T16_32_TAB
10494
10495 /* Thumb instruction encoders, in alphabetical order. */
10496
10497 /* ADDW or SUBW. */
10498
10499 static void
10500 do_t_add_sub_w (void)
10501 {
10502 int Rd, Rn;
10503
10504 Rd = inst.operands[0].reg;
10505 Rn = inst.operands[1].reg;
10506
10507 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10508 is the SP-{plus,minus}-immediate form of the instruction. */
10509 if (Rn == REG_SP)
10510 constraint (Rd == REG_PC, BAD_PC);
10511 else
10512 reject_bad_reg (Rd);
10513
10514 inst.instruction |= (Rn << 16) | (Rd << 8);
10515 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10516 }
10517
10518 /* Parse an add or subtract instruction. We get here with inst.instruction
10519 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
10520
10521 static void
10522 do_t_add_sub (void)
10523 {
10524 int Rd, Rs, Rn;
10525
10526 Rd = inst.operands[0].reg;
10527 Rs = (inst.operands[1].present
10528 ? inst.operands[1].reg /* Rd, Rs, foo */
10529 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10530
10531 if (Rd == REG_PC)
10532 set_it_insn_type_last ();
10533
10534 if (unified_syntax)
10535 {
10536 bfd_boolean flags;
10537 bfd_boolean narrow;
10538 int opcode;
10539
10540 flags = (inst.instruction == T_MNEM_adds
10541 || inst.instruction == T_MNEM_subs);
10542 if (flags)
10543 narrow = !in_it_block ();
10544 else
10545 narrow = in_it_block ();
10546 if (!inst.operands[2].isreg)
10547 {
10548 int add;
10549
10550 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10551 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10552
10553 add = (inst.instruction == T_MNEM_add
10554 || inst.instruction == T_MNEM_adds);
10555 opcode = 0;
10556 if (inst.size_req != 4)
10557 {
10558 /* Attempt to use a narrow opcode, with relaxation if
10559 appropriate. */
10560 if (Rd == REG_SP && Rs == REG_SP && !flags)
10561 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10562 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10563 opcode = T_MNEM_add_sp;
10564 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10565 opcode = T_MNEM_add_pc;
10566 else if (Rd <= 7 && Rs <= 7 && narrow)
10567 {
10568 if (flags)
10569 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10570 else
10571 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10572 }
10573 if (opcode)
10574 {
10575 inst.instruction = THUMB_OP16(opcode);
10576 inst.instruction |= (Rd << 4) | Rs;
10577 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10578 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
10579 {
10580 if (inst.size_req == 2)
10581 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10582 else
10583 inst.relax = opcode;
10584 }
10585 }
10586 else
10587 constraint (inst.size_req == 2, BAD_HIREG);
10588 }
10589 if (inst.size_req == 4
10590 || (inst.size_req != 2 && !opcode))
10591 {
10592 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10593 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10594 THUMB1_RELOC_ONLY);
10595 if (Rd == REG_PC)
10596 {
10597 constraint (add, BAD_PC);
10598 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10599 _("only SUBS PC, LR, #const allowed"));
10600 constraint (inst.reloc.exp.X_op != O_constant,
10601 _("expression too complex"));
10602 constraint (inst.reloc.exp.X_add_number < 0
10603 || inst.reloc.exp.X_add_number > 0xff,
10604 _("immediate value out of range"));
10605 inst.instruction = T2_SUBS_PC_LR
10606 | inst.reloc.exp.X_add_number;
10607 inst.reloc.type = BFD_RELOC_UNUSED;
10608 return;
10609 }
10610 else if (Rs == REG_PC)
10611 {
10612 /* Always use addw/subw. */
10613 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10614 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10615 }
10616 else
10617 {
10618 inst.instruction = THUMB_OP32 (inst.instruction);
10619 inst.instruction = (inst.instruction & 0xe1ffffff)
10620 | 0x10000000;
10621 if (flags)
10622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10623 else
10624 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10625 }
10626 inst.instruction |= Rd << 8;
10627 inst.instruction |= Rs << 16;
10628 }
10629 }
10630 else
10631 {
10632 unsigned int value = inst.reloc.exp.X_add_number;
10633 unsigned int shift = inst.operands[2].shift_kind;
10634
10635 Rn = inst.operands[2].reg;
10636 /* See if we can do this with a 16-bit instruction. */
10637 if (!inst.operands[2].shifted && inst.size_req != 4)
10638 {
10639 if (Rd > 7 || Rs > 7 || Rn > 7)
10640 narrow = FALSE;
10641
10642 if (narrow)
10643 {
10644 inst.instruction = ((inst.instruction == T_MNEM_adds
10645 || inst.instruction == T_MNEM_add)
10646 ? T_OPCODE_ADD_R3
10647 : T_OPCODE_SUB_R3);
10648 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10649 return;
10650 }
10651
10652 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10653 {
10654 /* Thumb-1 cores (except v6-M) require at least one high
10655 register in a narrow non flag setting add. */
10656 if (Rd > 7 || Rn > 7
10657 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10658 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10659 {
10660 if (Rd == Rn)
10661 {
10662 Rn = Rs;
10663 Rs = Rd;
10664 }
10665 inst.instruction = T_OPCODE_ADD_HI;
10666 inst.instruction |= (Rd & 8) << 4;
10667 inst.instruction |= (Rd & 7);
10668 inst.instruction |= Rn << 3;
10669 return;
10670 }
10671 }
10672 }
10673
10674 constraint (Rd == REG_PC, BAD_PC);
10675 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10676 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10677 constraint (Rs == REG_PC, BAD_PC);
10678 reject_bad_reg (Rn);
10679
10680 /* If we get here, it can't be done in 16 bits. */
10681 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10682 _("shift must be constant"));
10683 inst.instruction = THUMB_OP32 (inst.instruction);
10684 inst.instruction |= Rd << 8;
10685 inst.instruction |= Rs << 16;
10686 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10687 _("shift value over 3 not allowed in thumb mode"));
10688 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10689 _("only LSL shift allowed in thumb mode"));
10690 encode_thumb32_shifted_operand (2);
10691 }
10692 }
10693 else
10694 {
10695 constraint (inst.instruction == T_MNEM_adds
10696 || inst.instruction == T_MNEM_subs,
10697 BAD_THUMB32);
10698
10699 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10700 {
10701 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10702 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10703 BAD_HIREG);
10704
10705 inst.instruction = (inst.instruction == T_MNEM_add
10706 ? 0x0000 : 0x8000);
10707 inst.instruction |= (Rd << 4) | Rs;
10708 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10709 return;
10710 }
10711
10712 Rn = inst.operands[2].reg;
10713 constraint (inst.operands[2].shifted, _("unshifted register required"));
10714
10715 /* We now have Rd, Rs, and Rn set to registers. */
10716 if (Rd > 7 || Rs > 7 || Rn > 7)
10717 {
10718 /* Can't do this for SUB. */
10719 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10720 inst.instruction = T_OPCODE_ADD_HI;
10721 inst.instruction |= (Rd & 8) << 4;
10722 inst.instruction |= (Rd & 7);
10723 if (Rs == Rd)
10724 inst.instruction |= Rn << 3;
10725 else if (Rn == Rd)
10726 inst.instruction |= Rs << 3;
10727 else
10728 constraint (1, _("dest must overlap one source register"));
10729 }
10730 else
10731 {
10732 inst.instruction = (inst.instruction == T_MNEM_add
10733 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10734 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10735 }
10736 }
10737 }
10738
10739 static void
10740 do_t_adr (void)
10741 {
10742 unsigned Rd;
10743
10744 Rd = inst.operands[0].reg;
10745 reject_bad_reg (Rd);
10746
10747 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10748 {
10749 /* Defer to section relaxation. */
10750 inst.relax = inst.instruction;
10751 inst.instruction = THUMB_OP16 (inst.instruction);
10752 inst.instruction |= Rd << 4;
10753 }
10754 else if (unified_syntax && inst.size_req != 2)
10755 {
10756 /* Generate a 32-bit opcode. */
10757 inst.instruction = THUMB_OP32 (inst.instruction);
10758 inst.instruction |= Rd << 8;
10759 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10760 inst.reloc.pc_rel = 1;
10761 }
10762 else
10763 {
10764 /* Generate a 16-bit opcode. */
10765 inst.instruction = THUMB_OP16 (inst.instruction);
10766 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10767 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10768 inst.reloc.pc_rel = 1;
10769 inst.instruction |= Rd << 4;
10770 }
10771
10772 if (inst.reloc.exp.X_op == O_symbol
10773 && inst.reloc.exp.X_add_symbol != NULL
10774 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10775 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10776 inst.reloc.exp.X_add_number += 1;
10777 }
10778
10779 /* Arithmetic instructions for which there is just one 16-bit
10780 instruction encoding, and it allows only two low registers.
10781 For maximal compatibility with ARM syntax, we allow three register
10782 operands even when Thumb-32 instructions are not available, as long
10783 as the first two are identical. For instance, both "sbc r0,r1" and
10784 "sbc r0,r0,r1" are allowed. */
10785 static void
10786 do_t_arit3 (void)
10787 {
10788 int Rd, Rs, Rn;
10789
10790 Rd = inst.operands[0].reg;
10791 Rs = (inst.operands[1].present
10792 ? inst.operands[1].reg /* Rd, Rs, foo */
10793 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10794 Rn = inst.operands[2].reg;
10795
10796 reject_bad_reg (Rd);
10797 reject_bad_reg (Rs);
10798 if (inst.operands[2].isreg)
10799 reject_bad_reg (Rn);
10800
10801 if (unified_syntax)
10802 {
10803 if (!inst.operands[2].isreg)
10804 {
10805 /* For an immediate, we always generate a 32-bit opcode;
10806 section relaxation will shrink it later if possible. */
10807 inst.instruction = THUMB_OP32 (inst.instruction);
10808 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10809 inst.instruction |= Rd << 8;
10810 inst.instruction |= Rs << 16;
10811 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10812 }
10813 else
10814 {
10815 bfd_boolean narrow;
10816
10817 /* See if we can do this with a 16-bit instruction. */
10818 if (THUMB_SETS_FLAGS (inst.instruction))
10819 narrow = !in_it_block ();
10820 else
10821 narrow = in_it_block ();
10822
10823 if (Rd > 7 || Rn > 7 || Rs > 7)
10824 narrow = FALSE;
10825 if (inst.operands[2].shifted)
10826 narrow = FALSE;
10827 if (inst.size_req == 4)
10828 narrow = FALSE;
10829
10830 if (narrow
10831 && Rd == Rs)
10832 {
10833 inst.instruction = THUMB_OP16 (inst.instruction);
10834 inst.instruction |= Rd;
10835 inst.instruction |= Rn << 3;
10836 return;
10837 }
10838
10839 /* If we get here, it can't be done in 16 bits. */
10840 constraint (inst.operands[2].shifted
10841 && inst.operands[2].immisreg,
10842 _("shift must be constant"));
10843 inst.instruction = THUMB_OP32 (inst.instruction);
10844 inst.instruction |= Rd << 8;
10845 inst.instruction |= Rs << 16;
10846 encode_thumb32_shifted_operand (2);
10847 }
10848 }
10849 else
10850 {
10851 /* On its face this is a lie - the instruction does set the
10852 flags. However, the only supported mnemonic in this mode
10853 says it doesn't. */
10854 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10855
10856 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10857 _("unshifted register required"));
10858 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10859 constraint (Rd != Rs,
10860 _("dest and source1 must be the same register"));
10861
10862 inst.instruction = THUMB_OP16 (inst.instruction);
10863 inst.instruction |= Rd;
10864 inst.instruction |= Rn << 3;
10865 }
10866 }
10867
10868 /* Similarly, but for instructions where the arithmetic operation is
10869 commutative, so we can allow either of them to be different from
10870 the destination operand in a 16-bit instruction. For instance, all
10871 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10872 accepted. */
10873 static void
10874 do_t_arit3c (void)
10875 {
10876 int Rd, Rs, Rn;
10877
10878 Rd = inst.operands[0].reg;
10879 Rs = (inst.operands[1].present
10880 ? inst.operands[1].reg /* Rd, Rs, foo */
10881 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10882 Rn = inst.operands[2].reg;
10883
10884 reject_bad_reg (Rd);
10885 reject_bad_reg (Rs);
10886 if (inst.operands[2].isreg)
10887 reject_bad_reg (Rn);
10888
10889 if (unified_syntax)
10890 {
10891 if (!inst.operands[2].isreg)
10892 {
10893 /* For an immediate, we always generate a 32-bit opcode;
10894 section relaxation will shrink it later if possible. */
10895 inst.instruction = THUMB_OP32 (inst.instruction);
10896 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10897 inst.instruction |= Rd << 8;
10898 inst.instruction |= Rs << 16;
10899 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10900 }
10901 else
10902 {
10903 bfd_boolean narrow;
10904
10905 /* See if we can do this with a 16-bit instruction. */
10906 if (THUMB_SETS_FLAGS (inst.instruction))
10907 narrow = !in_it_block ();
10908 else
10909 narrow = in_it_block ();
10910
10911 if (Rd > 7 || Rn > 7 || Rs > 7)
10912 narrow = FALSE;
10913 if (inst.operands[2].shifted)
10914 narrow = FALSE;
10915 if (inst.size_req == 4)
10916 narrow = FALSE;
10917
10918 if (narrow)
10919 {
10920 if (Rd == Rs)
10921 {
10922 inst.instruction = THUMB_OP16 (inst.instruction);
10923 inst.instruction |= Rd;
10924 inst.instruction |= Rn << 3;
10925 return;
10926 }
10927 if (Rd == Rn)
10928 {
10929 inst.instruction = THUMB_OP16 (inst.instruction);
10930 inst.instruction |= Rd;
10931 inst.instruction |= Rs << 3;
10932 return;
10933 }
10934 }
10935
10936 /* If we get here, it can't be done in 16 bits. */
10937 constraint (inst.operands[2].shifted
10938 && inst.operands[2].immisreg,
10939 _("shift must be constant"));
10940 inst.instruction = THUMB_OP32 (inst.instruction);
10941 inst.instruction |= Rd << 8;
10942 inst.instruction |= Rs << 16;
10943 encode_thumb32_shifted_operand (2);
10944 }
10945 }
10946 else
10947 {
10948 /* On its face this is a lie - the instruction does set the
10949 flags. However, the only supported mnemonic in this mode
10950 says it doesn't. */
10951 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10952
10953 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10954 _("unshifted register required"));
10955 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10956
10957 inst.instruction = THUMB_OP16 (inst.instruction);
10958 inst.instruction |= Rd;
10959
10960 if (Rd == Rs)
10961 inst.instruction |= Rn << 3;
10962 else if (Rd == Rn)
10963 inst.instruction |= Rs << 3;
10964 else
10965 constraint (1, _("dest must overlap one source register"));
10966 }
10967 }
10968
10969 static void
10970 do_t_bfc (void)
10971 {
10972 unsigned Rd;
10973 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10974 constraint (msb > 32, _("bit-field extends past end of register"));
10975 /* The instruction encoding stores the LSB and MSB,
10976 not the LSB and width. */
10977 Rd = inst.operands[0].reg;
10978 reject_bad_reg (Rd);
10979 inst.instruction |= Rd << 8;
10980 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10981 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10982 inst.instruction |= msb - 1;
10983 }
10984
10985 static void
10986 do_t_bfi (void)
10987 {
10988 int Rd, Rn;
10989 unsigned int msb;
10990
10991 Rd = inst.operands[0].reg;
10992 reject_bad_reg (Rd);
10993
10994 /* #0 in second position is alternative syntax for bfc, which is
10995 the same instruction but with REG_PC in the Rm field. */
10996 if (!inst.operands[1].isreg)
10997 Rn = REG_PC;
10998 else
10999 {
11000 Rn = inst.operands[1].reg;
11001 reject_bad_reg (Rn);
11002 }
11003
11004 msb = inst.operands[2].imm + inst.operands[3].imm;
11005 constraint (msb > 32, _("bit-field extends past end of register"));
11006 /* The instruction encoding stores the LSB and MSB,
11007 not the LSB and width. */
11008 inst.instruction |= Rd << 8;
11009 inst.instruction |= Rn << 16;
11010 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11011 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11012 inst.instruction |= msb - 1;
11013 }
11014
11015 static void
11016 do_t_bfx (void)
11017 {
11018 unsigned Rd, Rn;
11019
11020 Rd = inst.operands[0].reg;
11021 Rn = inst.operands[1].reg;
11022
11023 reject_bad_reg (Rd);
11024 reject_bad_reg (Rn);
11025
11026 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11027 _("bit-field extends past end of register"));
11028 inst.instruction |= Rd << 8;
11029 inst.instruction |= Rn << 16;
11030 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11031 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11032 inst.instruction |= inst.operands[3].imm - 1;
11033 }
11034
11035 /* ARM V5 Thumb BLX (argument parse)
11036 BLX <target_addr> which is BLX(1)
11037 BLX <Rm> which is BLX(2)
11038 Unfortunately, there are two different opcodes for this mnemonic.
11039 So, the insns[].value is not used, and the code here zaps values
11040 into inst.instruction.
11041
11042 ??? How to take advantage of the additional two bits of displacement
11043 available in Thumb32 mode? Need new relocation? */
11044
11045 static void
11046 do_t_blx (void)
11047 {
11048 set_it_insn_type_last ();
11049
11050 if (inst.operands[0].isreg)
11051 {
11052 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11053 /* We have a register, so this is BLX(2). */
11054 inst.instruction |= inst.operands[0].reg << 3;
11055 }
11056 else
11057 {
11058 /* No register. This must be BLX(1). */
11059 inst.instruction = 0xf000e800;
11060 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11061 }
11062 }
11063
11064 static void
11065 do_t_branch (void)
11066 {
11067 int opcode;
11068 int cond;
11069 bfd_reloc_code_real_type reloc;
11070
11071 cond = inst.cond;
11072 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11073
11074 if (in_it_block ())
11075 {
11076 /* Conditional branches inside IT blocks are encoded as unconditional
11077 branches. */
11078 cond = COND_ALWAYS;
11079 }
11080 else
11081 cond = inst.cond;
11082
11083 if (cond != COND_ALWAYS)
11084 opcode = T_MNEM_bcond;
11085 else
11086 opcode = inst.instruction;
11087
11088 if (unified_syntax
11089 && (inst.size_req == 4
11090 || (inst.size_req != 2
11091 && (inst.operands[0].hasreloc
11092 || inst.reloc.exp.X_op == O_constant))))
11093 {
11094 inst.instruction = THUMB_OP32(opcode);
11095 if (cond == COND_ALWAYS)
11096 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11097 else
11098 {
11099 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11100 _("selected architecture does not support "
11101 "wide conditional branch instruction"));
11102
11103 gas_assert (cond != 0xF);
11104 inst.instruction |= cond << 22;
11105 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11106 }
11107 }
11108 else
11109 {
11110 inst.instruction = THUMB_OP16(opcode);
11111 if (cond == COND_ALWAYS)
11112 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11113 else
11114 {
11115 inst.instruction |= cond << 8;
11116 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11117 }
11118 /* Allow section relaxation. */
11119 if (unified_syntax && inst.size_req != 2)
11120 inst.relax = opcode;
11121 }
11122 inst.reloc.type = reloc;
11123 inst.reloc.pc_rel = 1;
11124 }
11125
11126 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11127 between the two is the maximum immediate allowed - which is passed in
11128 RANGE. */
11129 static void
11130 do_t_bkpt_hlt1 (int range)
11131 {
11132 constraint (inst.cond != COND_ALWAYS,
11133 _("instruction is always unconditional"));
11134 if (inst.operands[0].present)
11135 {
11136 constraint (inst.operands[0].imm > range,
11137 _("immediate value out of range"));
11138 inst.instruction |= inst.operands[0].imm;
11139 }
11140
11141 set_it_insn_type (NEUTRAL_IT_INSN);
11142 }
11143
11144 static void
11145 do_t_hlt (void)
11146 {
11147 do_t_bkpt_hlt1 (63);
11148 }
11149
11150 static void
11151 do_t_bkpt (void)
11152 {
11153 do_t_bkpt_hlt1 (255);
11154 }
11155
11156 static void
11157 do_t_branch23 (void)
11158 {
11159 set_it_insn_type_last ();
11160 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11161
11162 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11163 this file. We used to simply ignore the PLT reloc type here --
11164 the branch encoding is now needed to deal with TLSCALL relocs.
11165 So if we see a PLT reloc now, put it back to how it used to be to
11166 keep the preexisting behaviour. */
11167 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11168 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11169
11170 #if defined(OBJ_COFF)
11171 /* If the destination of the branch is a defined symbol which does not have
11172 the THUMB_FUNC attribute, then we must be calling a function which has
11173 the (interfacearm) attribute. We look for the Thumb entry point to that
11174 function and change the branch to refer to that function instead. */
11175 if ( inst.reloc.exp.X_op == O_symbol
11176 && inst.reloc.exp.X_add_symbol != NULL
11177 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11178 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11179 inst.reloc.exp.X_add_symbol =
11180 find_real_start (inst.reloc.exp.X_add_symbol);
11181 #endif
11182 }
11183
11184 static void
11185 do_t_bx (void)
11186 {
11187 set_it_insn_type_last ();
11188 inst.instruction |= inst.operands[0].reg << 3;
11189 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11190 should cause the alignment to be checked once it is known. This is
11191 because BX PC only works if the instruction is word aligned. */
11192 }
11193
11194 static void
11195 do_t_bxj (void)
11196 {
11197 int Rm;
11198
11199 set_it_insn_type_last ();
11200 Rm = inst.operands[0].reg;
11201 reject_bad_reg (Rm);
11202 inst.instruction |= Rm << 16;
11203 }
11204
11205 static void
11206 do_t_clz (void)
11207 {
11208 unsigned Rd;
11209 unsigned Rm;
11210
11211 Rd = inst.operands[0].reg;
11212 Rm = inst.operands[1].reg;
11213
11214 reject_bad_reg (Rd);
11215 reject_bad_reg (Rm);
11216
11217 inst.instruction |= Rd << 8;
11218 inst.instruction |= Rm << 16;
11219 inst.instruction |= Rm;
11220 }
11221
11222 static void
11223 do_t_cps (void)
11224 {
11225 set_it_insn_type (OUTSIDE_IT_INSN);
11226 inst.instruction |= inst.operands[0].imm;
11227 }
11228
11229 static void
11230 do_t_cpsi (void)
11231 {
11232 set_it_insn_type (OUTSIDE_IT_INSN);
11233 if (unified_syntax
11234 && (inst.operands[1].present || inst.size_req == 4)
11235 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11236 {
11237 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11238 inst.instruction = 0xf3af8000;
11239 inst.instruction |= imod << 9;
11240 inst.instruction |= inst.operands[0].imm << 5;
11241 if (inst.operands[1].present)
11242 inst.instruction |= 0x100 | inst.operands[1].imm;
11243 }
11244 else
11245 {
11246 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11247 && (inst.operands[0].imm & 4),
11248 _("selected processor does not support 'A' form "
11249 "of this instruction"));
11250 constraint (inst.operands[1].present || inst.size_req == 4,
11251 _("Thumb does not support the 2-argument "
11252 "form of this instruction"));
11253 inst.instruction |= inst.operands[0].imm;
11254 }
11255 }
11256
11257 /* THUMB CPY instruction (argument parse). */
11258
11259 static void
11260 do_t_cpy (void)
11261 {
11262 if (inst.size_req == 4)
11263 {
11264 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11265 inst.instruction |= inst.operands[0].reg << 8;
11266 inst.instruction |= inst.operands[1].reg;
11267 }
11268 else
11269 {
11270 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11271 inst.instruction |= (inst.operands[0].reg & 0x7);
11272 inst.instruction |= inst.operands[1].reg << 3;
11273 }
11274 }
11275
11276 static void
11277 do_t_cbz (void)
11278 {
11279 set_it_insn_type (OUTSIDE_IT_INSN);
11280 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11281 inst.instruction |= inst.operands[0].reg;
11282 inst.reloc.pc_rel = 1;
11283 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11284 }
11285
11286 static void
11287 do_t_dbg (void)
11288 {
11289 inst.instruction |= inst.operands[0].imm;
11290 }
11291
11292 static void
11293 do_t_div (void)
11294 {
11295 unsigned Rd, Rn, Rm;
11296
11297 Rd = inst.operands[0].reg;
11298 Rn = (inst.operands[1].present
11299 ? inst.operands[1].reg : Rd);
11300 Rm = inst.operands[2].reg;
11301
11302 reject_bad_reg (Rd);
11303 reject_bad_reg (Rn);
11304 reject_bad_reg (Rm);
11305
11306 inst.instruction |= Rd << 8;
11307 inst.instruction |= Rn << 16;
11308 inst.instruction |= Rm;
11309 }
11310
11311 static void
11312 do_t_hint (void)
11313 {
11314 if (unified_syntax && inst.size_req == 4)
11315 inst.instruction = THUMB_OP32 (inst.instruction);
11316 else
11317 inst.instruction = THUMB_OP16 (inst.instruction);
11318 }
11319
11320 static void
11321 do_t_it (void)
11322 {
11323 unsigned int cond = inst.operands[0].imm;
11324
11325 set_it_insn_type (IT_INSN);
11326 now_it.mask = (inst.instruction & 0xf) | 0x10;
11327 now_it.cc = cond;
11328 now_it.warn_deprecated = FALSE;
11329
11330 /* If the condition is a negative condition, invert the mask. */
11331 if ((cond & 0x1) == 0x0)
11332 {
11333 unsigned int mask = inst.instruction & 0x000f;
11334
11335 if ((mask & 0x7) == 0)
11336 {
11337 /* No conversion needed. */
11338 now_it.block_length = 1;
11339 }
11340 else if ((mask & 0x3) == 0)
11341 {
11342 mask ^= 0x8;
11343 now_it.block_length = 2;
11344 }
11345 else if ((mask & 0x1) == 0)
11346 {
11347 mask ^= 0xC;
11348 now_it.block_length = 3;
11349 }
11350 else
11351 {
11352 mask ^= 0xE;
11353 now_it.block_length = 4;
11354 }
11355
11356 inst.instruction &= 0xfff0;
11357 inst.instruction |= mask;
11358 }
11359
11360 inst.instruction |= cond << 4;
11361 }
11362
11363 /* Helper function used for both push/pop and ldm/stm. */
11364 static void
11365 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11366 {
11367 bfd_boolean load;
11368
11369 load = (inst.instruction & (1 << 20)) != 0;
11370
11371 if (mask & (1 << 13))
11372 inst.error = _("SP not allowed in register list");
11373
11374 if ((mask & (1 << base)) != 0
11375 && writeback)
11376 inst.error = _("having the base register in the register list when "
11377 "using write back is UNPREDICTABLE");
11378
11379 if (load)
11380 {
11381 if (mask & (1 << 15))
11382 {
11383 if (mask & (1 << 14))
11384 inst.error = _("LR and PC should not both be in register list");
11385 else
11386 set_it_insn_type_last ();
11387 }
11388 }
11389 else
11390 {
11391 if (mask & (1 << 15))
11392 inst.error = _("PC not allowed in register list");
11393 }
11394
11395 if ((mask & (mask - 1)) == 0)
11396 {
11397 /* Single register transfers implemented as str/ldr. */
11398 if (writeback)
11399 {
11400 if (inst.instruction & (1 << 23))
11401 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11402 else
11403 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11404 }
11405 else
11406 {
11407 if (inst.instruction & (1 << 23))
11408 inst.instruction = 0x00800000; /* ia -> [base] */
11409 else
11410 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11411 }
11412
11413 inst.instruction |= 0xf8400000;
11414 if (load)
11415 inst.instruction |= 0x00100000;
11416
11417 mask = ffs (mask) - 1;
11418 mask <<= 12;
11419 }
11420 else if (writeback)
11421 inst.instruction |= WRITE_BACK;
11422
11423 inst.instruction |= mask;
11424 inst.instruction |= base << 16;
11425 }
11426
11427 static void
11428 do_t_ldmstm (void)
11429 {
11430 /* This really doesn't seem worth it. */
11431 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11432 _("expression too complex"));
11433 constraint (inst.operands[1].writeback,
11434 _("Thumb load/store multiple does not support {reglist}^"));
11435
11436 if (unified_syntax)
11437 {
11438 bfd_boolean narrow;
11439 unsigned mask;
11440
11441 narrow = FALSE;
11442 /* See if we can use a 16-bit instruction. */
11443 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11444 && inst.size_req != 4
11445 && !(inst.operands[1].imm & ~0xff))
11446 {
11447 mask = 1 << inst.operands[0].reg;
11448
11449 if (inst.operands[0].reg <= 7)
11450 {
11451 if (inst.instruction == T_MNEM_stmia
11452 ? inst.operands[0].writeback
11453 : (inst.operands[0].writeback
11454 == !(inst.operands[1].imm & mask)))
11455 {
11456 if (inst.instruction == T_MNEM_stmia
11457 && (inst.operands[1].imm & mask)
11458 && (inst.operands[1].imm & (mask - 1)))
11459 as_warn (_("value stored for r%d is UNKNOWN"),
11460 inst.operands[0].reg);
11461
11462 inst.instruction = THUMB_OP16 (inst.instruction);
11463 inst.instruction |= inst.operands[0].reg << 8;
11464 inst.instruction |= inst.operands[1].imm;
11465 narrow = TRUE;
11466 }
11467 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11468 {
11469 /* This means 1 register in reg list one of 3 situations:
11470 1. Instruction is stmia, but without writeback.
11471 2. lmdia without writeback, but with Rn not in
11472 reglist.
11473 3. ldmia with writeback, but with Rn in reglist.
11474 Case 3 is UNPREDICTABLE behaviour, so we handle
11475 case 1 and 2 which can be converted into a 16-bit
11476 str or ldr. The SP cases are handled below. */
11477 unsigned long opcode;
11478 /* First, record an error for Case 3. */
11479 if (inst.operands[1].imm & mask
11480 && inst.operands[0].writeback)
11481 inst.error =
11482 _("having the base register in the register list when "
11483 "using write back is UNPREDICTABLE");
11484
11485 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11486 : T_MNEM_ldr);
11487 inst.instruction = THUMB_OP16 (opcode);
11488 inst.instruction |= inst.operands[0].reg << 3;
11489 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11490 narrow = TRUE;
11491 }
11492 }
11493 else if (inst.operands[0] .reg == REG_SP)
11494 {
11495 if (inst.operands[0].writeback)
11496 {
11497 inst.instruction =
11498 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11499 ? T_MNEM_push : T_MNEM_pop);
11500 inst.instruction |= inst.operands[1].imm;
11501 narrow = TRUE;
11502 }
11503 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11504 {
11505 inst.instruction =
11506 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11507 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11508 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11509 narrow = TRUE;
11510 }
11511 }
11512 }
11513
11514 if (!narrow)
11515 {
11516 if (inst.instruction < 0xffff)
11517 inst.instruction = THUMB_OP32 (inst.instruction);
11518
11519 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11520 inst.operands[0].writeback);
11521 }
11522 }
11523 else
11524 {
11525 constraint (inst.operands[0].reg > 7
11526 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11527 constraint (inst.instruction != T_MNEM_ldmia
11528 && inst.instruction != T_MNEM_stmia,
11529 _("Thumb-2 instruction only valid in unified syntax"));
11530 if (inst.instruction == T_MNEM_stmia)
11531 {
11532 if (!inst.operands[0].writeback)
11533 as_warn (_("this instruction will write back the base register"));
11534 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11535 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11536 as_warn (_("value stored for r%d is UNKNOWN"),
11537 inst.operands[0].reg);
11538 }
11539 else
11540 {
11541 if (!inst.operands[0].writeback
11542 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11543 as_warn (_("this instruction will write back the base register"));
11544 else if (inst.operands[0].writeback
11545 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11546 as_warn (_("this instruction will not write back the base register"));
11547 }
11548
11549 inst.instruction = THUMB_OP16 (inst.instruction);
11550 inst.instruction |= inst.operands[0].reg << 8;
11551 inst.instruction |= inst.operands[1].imm;
11552 }
11553 }
11554
11555 static void
11556 do_t_ldrex (void)
11557 {
11558 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11559 || inst.operands[1].postind || inst.operands[1].writeback
11560 || inst.operands[1].immisreg || inst.operands[1].shifted
11561 || inst.operands[1].negative,
11562 BAD_ADDR_MODE);
11563
11564 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11565
11566 inst.instruction |= inst.operands[0].reg << 12;
11567 inst.instruction |= inst.operands[1].reg << 16;
11568 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11569 }
11570
11571 static void
11572 do_t_ldrexd (void)
11573 {
11574 if (!inst.operands[1].present)
11575 {
11576 constraint (inst.operands[0].reg == REG_LR,
11577 _("r14 not allowed as first register "
11578 "when second register is omitted"));
11579 inst.operands[1].reg = inst.operands[0].reg + 1;
11580 }
11581 constraint (inst.operands[0].reg == inst.operands[1].reg,
11582 BAD_OVERLAP);
11583
11584 inst.instruction |= inst.operands[0].reg << 12;
11585 inst.instruction |= inst.operands[1].reg << 8;
11586 inst.instruction |= inst.operands[2].reg << 16;
11587 }
11588
11589 static void
11590 do_t_ldst (void)
11591 {
11592 unsigned long opcode;
11593 int Rn;
11594
11595 if (inst.operands[0].isreg
11596 && !inst.operands[0].preind
11597 && inst.operands[0].reg == REG_PC)
11598 set_it_insn_type_last ();
11599
11600 opcode = inst.instruction;
11601 if (unified_syntax)
11602 {
11603 if (!inst.operands[1].isreg)
11604 {
11605 if (opcode <= 0xffff)
11606 inst.instruction = THUMB_OP32 (opcode);
11607 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11608 return;
11609 }
11610 if (inst.operands[1].isreg
11611 && !inst.operands[1].writeback
11612 && !inst.operands[1].shifted && !inst.operands[1].postind
11613 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11614 && opcode <= 0xffff
11615 && inst.size_req != 4)
11616 {
11617 /* Insn may have a 16-bit form. */
11618 Rn = inst.operands[1].reg;
11619 if (inst.operands[1].immisreg)
11620 {
11621 inst.instruction = THUMB_OP16 (opcode);
11622 /* [Rn, Rik] */
11623 if (Rn <= 7 && inst.operands[1].imm <= 7)
11624 goto op16;
11625 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11626 reject_bad_reg (inst.operands[1].imm);
11627 }
11628 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11629 && opcode != T_MNEM_ldrsb)
11630 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11631 || (Rn == REG_SP && opcode == T_MNEM_str))
11632 {
11633 /* [Rn, #const] */
11634 if (Rn > 7)
11635 {
11636 if (Rn == REG_PC)
11637 {
11638 if (inst.reloc.pc_rel)
11639 opcode = T_MNEM_ldr_pc2;
11640 else
11641 opcode = T_MNEM_ldr_pc;
11642 }
11643 else
11644 {
11645 if (opcode == T_MNEM_ldr)
11646 opcode = T_MNEM_ldr_sp;
11647 else
11648 opcode = T_MNEM_str_sp;
11649 }
11650 inst.instruction = inst.operands[0].reg << 8;
11651 }
11652 else
11653 {
11654 inst.instruction = inst.operands[0].reg;
11655 inst.instruction |= inst.operands[1].reg << 3;
11656 }
11657 inst.instruction |= THUMB_OP16 (opcode);
11658 if (inst.size_req == 2)
11659 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11660 else
11661 inst.relax = opcode;
11662 return;
11663 }
11664 }
11665 /* Definitely a 32-bit variant. */
11666
11667 /* Warning for Erratum 752419. */
11668 if (opcode == T_MNEM_ldr
11669 && inst.operands[0].reg == REG_SP
11670 && inst.operands[1].writeback == 1
11671 && !inst.operands[1].immisreg)
11672 {
11673 if (no_cpu_selected ()
11674 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11675 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11676 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11677 as_warn (_("This instruction may be unpredictable "
11678 "if executed on M-profile cores "
11679 "with interrupts enabled."));
11680 }
11681
11682 /* Do some validations regarding addressing modes. */
11683 if (inst.operands[1].immisreg)
11684 reject_bad_reg (inst.operands[1].imm);
11685
11686 constraint (inst.operands[1].writeback == 1
11687 && inst.operands[0].reg == inst.operands[1].reg,
11688 BAD_OVERLAP);
11689
11690 inst.instruction = THUMB_OP32 (opcode);
11691 inst.instruction |= inst.operands[0].reg << 12;
11692 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11693 check_ldr_r15_aligned ();
11694 return;
11695 }
11696
11697 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11698
11699 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11700 {
11701 /* Only [Rn,Rm] is acceptable. */
11702 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11703 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11704 || inst.operands[1].postind || inst.operands[1].shifted
11705 || inst.operands[1].negative,
11706 _("Thumb does not support this addressing mode"));
11707 inst.instruction = THUMB_OP16 (inst.instruction);
11708 goto op16;
11709 }
11710
11711 inst.instruction = THUMB_OP16 (inst.instruction);
11712 if (!inst.operands[1].isreg)
11713 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11714 return;
11715
11716 constraint (!inst.operands[1].preind
11717 || inst.operands[1].shifted
11718 || inst.operands[1].writeback,
11719 _("Thumb does not support this addressing mode"));
11720 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11721 {
11722 constraint (inst.instruction & 0x0600,
11723 _("byte or halfword not valid for base register"));
11724 constraint (inst.operands[1].reg == REG_PC
11725 && !(inst.instruction & THUMB_LOAD_BIT),
11726 _("r15 based store not allowed"));
11727 constraint (inst.operands[1].immisreg,
11728 _("invalid base register for register offset"));
11729
11730 if (inst.operands[1].reg == REG_PC)
11731 inst.instruction = T_OPCODE_LDR_PC;
11732 else if (inst.instruction & THUMB_LOAD_BIT)
11733 inst.instruction = T_OPCODE_LDR_SP;
11734 else
11735 inst.instruction = T_OPCODE_STR_SP;
11736
11737 inst.instruction |= inst.operands[0].reg << 8;
11738 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11739 return;
11740 }
11741
11742 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11743 if (!inst.operands[1].immisreg)
11744 {
11745 /* Immediate offset. */
11746 inst.instruction |= inst.operands[0].reg;
11747 inst.instruction |= inst.operands[1].reg << 3;
11748 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11749 return;
11750 }
11751
11752 /* Register offset. */
11753 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11754 constraint (inst.operands[1].negative,
11755 _("Thumb does not support this addressing mode"));
11756
11757 op16:
11758 switch (inst.instruction)
11759 {
11760 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11761 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11762 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11763 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11764 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11765 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11766 case 0x5600 /* ldrsb */:
11767 case 0x5e00 /* ldrsh */: break;
11768 default: abort ();
11769 }
11770
11771 inst.instruction |= inst.operands[0].reg;
11772 inst.instruction |= inst.operands[1].reg << 3;
11773 inst.instruction |= inst.operands[1].imm << 6;
11774 }
11775
11776 static void
11777 do_t_ldstd (void)
11778 {
11779 if (!inst.operands[1].present)
11780 {
11781 inst.operands[1].reg = inst.operands[0].reg + 1;
11782 constraint (inst.operands[0].reg == REG_LR,
11783 _("r14 not allowed here"));
11784 constraint (inst.operands[0].reg == REG_R12,
11785 _("r12 not allowed here"));
11786 }
11787
11788 if (inst.operands[2].writeback
11789 && (inst.operands[0].reg == inst.operands[2].reg
11790 || inst.operands[1].reg == inst.operands[2].reg))
11791 as_warn (_("base register written back, and overlaps "
11792 "one of transfer registers"));
11793
11794 inst.instruction |= inst.operands[0].reg << 12;
11795 inst.instruction |= inst.operands[1].reg << 8;
11796 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11797 }
11798
11799 static void
11800 do_t_ldstt (void)
11801 {
11802 inst.instruction |= inst.operands[0].reg << 12;
11803 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11804 }
11805
11806 static void
11807 do_t_mla (void)
11808 {
11809 unsigned Rd, Rn, Rm, Ra;
11810
11811 Rd = inst.operands[0].reg;
11812 Rn = inst.operands[1].reg;
11813 Rm = inst.operands[2].reg;
11814 Ra = inst.operands[3].reg;
11815
11816 reject_bad_reg (Rd);
11817 reject_bad_reg (Rn);
11818 reject_bad_reg (Rm);
11819 reject_bad_reg (Ra);
11820
11821 inst.instruction |= Rd << 8;
11822 inst.instruction |= Rn << 16;
11823 inst.instruction |= Rm;
11824 inst.instruction |= Ra << 12;
11825 }
11826
11827 static void
11828 do_t_mlal (void)
11829 {
11830 unsigned RdLo, RdHi, Rn, Rm;
11831
11832 RdLo = inst.operands[0].reg;
11833 RdHi = inst.operands[1].reg;
11834 Rn = inst.operands[2].reg;
11835 Rm = inst.operands[3].reg;
11836
11837 reject_bad_reg (RdLo);
11838 reject_bad_reg (RdHi);
11839 reject_bad_reg (Rn);
11840 reject_bad_reg (Rm);
11841
11842 inst.instruction |= RdLo << 12;
11843 inst.instruction |= RdHi << 8;
11844 inst.instruction |= Rn << 16;
11845 inst.instruction |= Rm;
11846 }
11847
11848 static void
11849 do_t_mov_cmp (void)
11850 {
11851 unsigned Rn, Rm;
11852
11853 Rn = inst.operands[0].reg;
11854 Rm = inst.operands[1].reg;
11855
11856 if (Rn == REG_PC)
11857 set_it_insn_type_last ();
11858
11859 if (unified_syntax)
11860 {
11861 int r0off = (inst.instruction == T_MNEM_mov
11862 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11863 unsigned long opcode;
11864 bfd_boolean narrow;
11865 bfd_boolean low_regs;
11866
11867 low_regs = (Rn <= 7 && Rm <= 7);
11868 opcode = inst.instruction;
11869 if (in_it_block ())
11870 narrow = opcode != T_MNEM_movs;
11871 else
11872 narrow = opcode != T_MNEM_movs || low_regs;
11873 if (inst.size_req == 4
11874 || inst.operands[1].shifted)
11875 narrow = FALSE;
11876
11877 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11878 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11879 && !inst.operands[1].shifted
11880 && Rn == REG_PC
11881 && Rm == REG_LR)
11882 {
11883 inst.instruction = T2_SUBS_PC_LR;
11884 return;
11885 }
11886
11887 if (opcode == T_MNEM_cmp)
11888 {
11889 constraint (Rn == REG_PC, BAD_PC);
11890 if (narrow)
11891 {
11892 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11893 but valid. */
11894 warn_deprecated_sp (Rm);
11895 /* R15 was documented as a valid choice for Rm in ARMv6,
11896 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11897 tools reject R15, so we do too. */
11898 constraint (Rm == REG_PC, BAD_PC);
11899 }
11900 else
11901 reject_bad_reg (Rm);
11902 }
11903 else if (opcode == T_MNEM_mov
11904 || opcode == T_MNEM_movs)
11905 {
11906 if (inst.operands[1].isreg)
11907 {
11908 if (opcode == T_MNEM_movs)
11909 {
11910 reject_bad_reg (Rn);
11911 reject_bad_reg (Rm);
11912 }
11913 else if (narrow)
11914 {
11915 /* This is mov.n. */
11916 if ((Rn == REG_SP || Rn == REG_PC)
11917 && (Rm == REG_SP || Rm == REG_PC))
11918 {
11919 as_tsktsk (_("Use of r%u as a source register is "
11920 "deprecated when r%u is the destination "
11921 "register."), Rm, Rn);
11922 }
11923 }
11924 else
11925 {
11926 /* This is mov.w. */
11927 constraint (Rn == REG_PC, BAD_PC);
11928 constraint (Rm == REG_PC, BAD_PC);
11929 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11930 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11931 }
11932 }
11933 else
11934 reject_bad_reg (Rn);
11935 }
11936
11937 if (!inst.operands[1].isreg)
11938 {
11939 /* Immediate operand. */
11940 if (!in_it_block () && opcode == T_MNEM_mov)
11941 narrow = 0;
11942 if (low_regs && narrow)
11943 {
11944 inst.instruction = THUMB_OP16 (opcode);
11945 inst.instruction |= Rn << 8;
11946 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11947 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
11948 {
11949 if (inst.size_req == 2)
11950 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11951 else
11952 inst.relax = opcode;
11953 }
11954 }
11955 else
11956 {
11957 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11958 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
11959 THUMB1_RELOC_ONLY);
11960
11961 inst.instruction = THUMB_OP32 (inst.instruction);
11962 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11963 inst.instruction |= Rn << r0off;
11964 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11965 }
11966 }
11967 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11968 && (inst.instruction == T_MNEM_mov
11969 || inst.instruction == T_MNEM_movs))
11970 {
11971 /* Register shifts are encoded as separate shift instructions. */
11972 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11973
11974 if (in_it_block ())
11975 narrow = !flags;
11976 else
11977 narrow = flags;
11978
11979 if (inst.size_req == 4)
11980 narrow = FALSE;
11981
11982 if (!low_regs || inst.operands[1].imm > 7)
11983 narrow = FALSE;
11984
11985 if (Rn != Rm)
11986 narrow = FALSE;
11987
11988 switch (inst.operands[1].shift_kind)
11989 {
11990 case SHIFT_LSL:
11991 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11992 break;
11993 case SHIFT_ASR:
11994 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11995 break;
11996 case SHIFT_LSR:
11997 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11998 break;
11999 case SHIFT_ROR:
12000 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12001 break;
12002 default:
12003 abort ();
12004 }
12005
12006 inst.instruction = opcode;
12007 if (narrow)
12008 {
12009 inst.instruction |= Rn;
12010 inst.instruction |= inst.operands[1].imm << 3;
12011 }
12012 else
12013 {
12014 if (flags)
12015 inst.instruction |= CONDS_BIT;
12016
12017 inst.instruction |= Rn << 8;
12018 inst.instruction |= Rm << 16;
12019 inst.instruction |= inst.operands[1].imm;
12020 }
12021 }
12022 else if (!narrow)
12023 {
12024 /* Some mov with immediate shift have narrow variants.
12025 Register shifts are handled above. */
12026 if (low_regs && inst.operands[1].shifted
12027 && (inst.instruction == T_MNEM_mov
12028 || inst.instruction == T_MNEM_movs))
12029 {
12030 if (in_it_block ())
12031 narrow = (inst.instruction == T_MNEM_mov);
12032 else
12033 narrow = (inst.instruction == T_MNEM_movs);
12034 }
12035
12036 if (narrow)
12037 {
12038 switch (inst.operands[1].shift_kind)
12039 {
12040 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12041 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12042 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12043 default: narrow = FALSE; break;
12044 }
12045 }
12046
12047 if (narrow)
12048 {
12049 inst.instruction |= Rn;
12050 inst.instruction |= Rm << 3;
12051 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12052 }
12053 else
12054 {
12055 inst.instruction = THUMB_OP32 (inst.instruction);
12056 inst.instruction |= Rn << r0off;
12057 encode_thumb32_shifted_operand (1);
12058 }
12059 }
12060 else
12061 switch (inst.instruction)
12062 {
12063 case T_MNEM_mov:
12064 /* In v4t or v5t a move of two lowregs produces unpredictable
12065 results. Don't allow this. */
12066 if (low_regs)
12067 {
12068 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12069 "MOV Rd, Rs with two low registers is not "
12070 "permitted on this architecture");
12071 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12072 arm_ext_v6);
12073 }
12074
12075 inst.instruction = T_OPCODE_MOV_HR;
12076 inst.instruction |= (Rn & 0x8) << 4;
12077 inst.instruction |= (Rn & 0x7);
12078 inst.instruction |= Rm << 3;
12079 break;
12080
12081 case T_MNEM_movs:
12082 /* We know we have low registers at this point.
12083 Generate LSLS Rd, Rs, #0. */
12084 inst.instruction = T_OPCODE_LSL_I;
12085 inst.instruction |= Rn;
12086 inst.instruction |= Rm << 3;
12087 break;
12088
12089 case T_MNEM_cmp:
12090 if (low_regs)
12091 {
12092 inst.instruction = T_OPCODE_CMP_LR;
12093 inst.instruction |= Rn;
12094 inst.instruction |= Rm << 3;
12095 }
12096 else
12097 {
12098 inst.instruction = T_OPCODE_CMP_HR;
12099 inst.instruction |= (Rn & 0x8) << 4;
12100 inst.instruction |= (Rn & 0x7);
12101 inst.instruction |= Rm << 3;
12102 }
12103 break;
12104 }
12105 return;
12106 }
12107
12108 inst.instruction = THUMB_OP16 (inst.instruction);
12109
12110 /* PR 10443: Do not silently ignore shifted operands. */
12111 constraint (inst.operands[1].shifted,
12112 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12113
12114 if (inst.operands[1].isreg)
12115 {
12116 if (Rn < 8 && Rm < 8)
12117 {
12118 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12119 since a MOV instruction produces unpredictable results. */
12120 if (inst.instruction == T_OPCODE_MOV_I8)
12121 inst.instruction = T_OPCODE_ADD_I3;
12122 else
12123 inst.instruction = T_OPCODE_CMP_LR;
12124
12125 inst.instruction |= Rn;
12126 inst.instruction |= Rm << 3;
12127 }
12128 else
12129 {
12130 if (inst.instruction == T_OPCODE_MOV_I8)
12131 inst.instruction = T_OPCODE_MOV_HR;
12132 else
12133 inst.instruction = T_OPCODE_CMP_HR;
12134 do_t_cpy ();
12135 }
12136 }
12137 else
12138 {
12139 constraint (Rn > 7,
12140 _("only lo regs allowed with immediate"));
12141 inst.instruction |= Rn << 8;
12142 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12143 }
12144 }
12145
12146 static void
12147 do_t_mov16 (void)
12148 {
12149 unsigned Rd;
12150 bfd_vma imm;
12151 bfd_boolean top;
12152
12153 top = (inst.instruction & 0x00800000) != 0;
12154 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12155 {
12156 constraint (top, _(":lower16: not allowed in this instruction"));
12157 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12158 }
12159 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12160 {
12161 constraint (!top, _(":upper16: not allowed in this instruction"));
12162 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12163 }
12164
12165 Rd = inst.operands[0].reg;
12166 reject_bad_reg (Rd);
12167
12168 inst.instruction |= Rd << 8;
12169 if (inst.reloc.type == BFD_RELOC_UNUSED)
12170 {
12171 imm = inst.reloc.exp.X_add_number;
12172 inst.instruction |= (imm & 0xf000) << 4;
12173 inst.instruction |= (imm & 0x0800) << 15;
12174 inst.instruction |= (imm & 0x0700) << 4;
12175 inst.instruction |= (imm & 0x00ff);
12176 }
12177 }
12178
12179 static void
12180 do_t_mvn_tst (void)
12181 {
12182 unsigned Rn, Rm;
12183
12184 Rn = inst.operands[0].reg;
12185 Rm = inst.operands[1].reg;
12186
12187 if (inst.instruction == T_MNEM_cmp
12188 || inst.instruction == T_MNEM_cmn)
12189 constraint (Rn == REG_PC, BAD_PC);
12190 else
12191 reject_bad_reg (Rn);
12192 reject_bad_reg (Rm);
12193
12194 if (unified_syntax)
12195 {
12196 int r0off = (inst.instruction == T_MNEM_mvn
12197 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12198 bfd_boolean narrow;
12199
12200 if (inst.size_req == 4
12201 || inst.instruction > 0xffff
12202 || inst.operands[1].shifted
12203 || Rn > 7 || Rm > 7)
12204 narrow = FALSE;
12205 else if (inst.instruction == T_MNEM_cmn
12206 || inst.instruction == T_MNEM_tst)
12207 narrow = TRUE;
12208 else if (THUMB_SETS_FLAGS (inst.instruction))
12209 narrow = !in_it_block ();
12210 else
12211 narrow = in_it_block ();
12212
12213 if (!inst.operands[1].isreg)
12214 {
12215 /* For an immediate, we always generate a 32-bit opcode;
12216 section relaxation will shrink it later if possible. */
12217 if (inst.instruction < 0xffff)
12218 inst.instruction = THUMB_OP32 (inst.instruction);
12219 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12220 inst.instruction |= Rn << r0off;
12221 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12222 }
12223 else
12224 {
12225 /* See if we can do this with a 16-bit instruction. */
12226 if (narrow)
12227 {
12228 inst.instruction = THUMB_OP16 (inst.instruction);
12229 inst.instruction |= Rn;
12230 inst.instruction |= Rm << 3;
12231 }
12232 else
12233 {
12234 constraint (inst.operands[1].shifted
12235 && inst.operands[1].immisreg,
12236 _("shift must be constant"));
12237 if (inst.instruction < 0xffff)
12238 inst.instruction = THUMB_OP32 (inst.instruction);
12239 inst.instruction |= Rn << r0off;
12240 encode_thumb32_shifted_operand (1);
12241 }
12242 }
12243 }
12244 else
12245 {
12246 constraint (inst.instruction > 0xffff
12247 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12248 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12249 _("unshifted register required"));
12250 constraint (Rn > 7 || Rm > 7,
12251 BAD_HIREG);
12252
12253 inst.instruction = THUMB_OP16 (inst.instruction);
12254 inst.instruction |= Rn;
12255 inst.instruction |= Rm << 3;
12256 }
12257 }
12258
12259 static void
12260 do_t_mrs (void)
12261 {
12262 unsigned Rd;
12263
12264 if (do_vfp_nsyn_mrs () == SUCCESS)
12265 return;
12266
12267 Rd = inst.operands[0].reg;
12268 reject_bad_reg (Rd);
12269 inst.instruction |= Rd << 8;
12270
12271 if (inst.operands[1].isreg)
12272 {
12273 unsigned br = inst.operands[1].reg;
12274 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12275 as_bad (_("bad register for mrs"));
12276
12277 inst.instruction |= br & (0xf << 16);
12278 inst.instruction |= (br & 0x300) >> 4;
12279 inst.instruction |= (br & SPSR_BIT) >> 2;
12280 }
12281 else
12282 {
12283 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12284
12285 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12286 {
12287 /* PR gas/12698: The constraint is only applied for m_profile.
12288 If the user has specified -march=all, we want to ignore it as
12289 we are building for any CPU type, including non-m variants. */
12290 bfd_boolean m_profile =
12291 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12292 constraint ((flags != 0) && m_profile, _("selected processor does "
12293 "not support requested special purpose register"));
12294 }
12295 else
12296 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12297 devices). */
12298 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12299 _("'APSR', 'CPSR' or 'SPSR' expected"));
12300
12301 inst.instruction |= (flags & SPSR_BIT) >> 2;
12302 inst.instruction |= inst.operands[1].imm & 0xff;
12303 inst.instruction |= 0xf0000;
12304 }
12305 }
12306
12307 static void
12308 do_t_msr (void)
12309 {
12310 int flags;
12311 unsigned Rn;
12312
12313 if (do_vfp_nsyn_msr () == SUCCESS)
12314 return;
12315
12316 constraint (!inst.operands[1].isreg,
12317 _("Thumb encoding does not support an immediate here"));
12318
12319 if (inst.operands[0].isreg)
12320 flags = (int)(inst.operands[0].reg);
12321 else
12322 flags = inst.operands[0].imm;
12323
12324 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12325 {
12326 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12327
12328 /* PR gas/12698: The constraint is only applied for m_profile.
12329 If the user has specified -march=all, we want to ignore it as
12330 we are building for any CPU type, including non-m variants. */
12331 bfd_boolean m_profile =
12332 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12333 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12334 && (bits & ~(PSR_s | PSR_f)) != 0)
12335 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12336 && bits != PSR_f)) && m_profile,
12337 _("selected processor does not support requested special "
12338 "purpose register"));
12339 }
12340 else
12341 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12342 "requested special purpose register"));
12343
12344 Rn = inst.operands[1].reg;
12345 reject_bad_reg (Rn);
12346
12347 inst.instruction |= (flags & SPSR_BIT) >> 2;
12348 inst.instruction |= (flags & 0xf0000) >> 8;
12349 inst.instruction |= (flags & 0x300) >> 4;
12350 inst.instruction |= (flags & 0xff);
12351 inst.instruction |= Rn << 16;
12352 }
12353
12354 static void
12355 do_t_mul (void)
12356 {
12357 bfd_boolean narrow;
12358 unsigned Rd, Rn, Rm;
12359
12360 if (!inst.operands[2].present)
12361 inst.operands[2].reg = inst.operands[0].reg;
12362
12363 Rd = inst.operands[0].reg;
12364 Rn = inst.operands[1].reg;
12365 Rm = inst.operands[2].reg;
12366
12367 if (unified_syntax)
12368 {
12369 if (inst.size_req == 4
12370 || (Rd != Rn
12371 && Rd != Rm)
12372 || Rn > 7
12373 || Rm > 7)
12374 narrow = FALSE;
12375 else if (inst.instruction == T_MNEM_muls)
12376 narrow = !in_it_block ();
12377 else
12378 narrow = in_it_block ();
12379 }
12380 else
12381 {
12382 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12383 constraint (Rn > 7 || Rm > 7,
12384 BAD_HIREG);
12385 narrow = TRUE;
12386 }
12387
12388 if (narrow)
12389 {
12390 /* 16-bit MULS/Conditional MUL. */
12391 inst.instruction = THUMB_OP16 (inst.instruction);
12392 inst.instruction |= Rd;
12393
12394 if (Rd == Rn)
12395 inst.instruction |= Rm << 3;
12396 else if (Rd == Rm)
12397 inst.instruction |= Rn << 3;
12398 else
12399 constraint (1, _("dest must overlap one source register"));
12400 }
12401 else
12402 {
12403 constraint (inst.instruction != T_MNEM_mul,
12404 _("Thumb-2 MUL must not set flags"));
12405 /* 32-bit MUL. */
12406 inst.instruction = THUMB_OP32 (inst.instruction);
12407 inst.instruction |= Rd << 8;
12408 inst.instruction |= Rn << 16;
12409 inst.instruction |= Rm << 0;
12410
12411 reject_bad_reg (Rd);
12412 reject_bad_reg (Rn);
12413 reject_bad_reg (Rm);
12414 }
12415 }
12416
12417 static void
12418 do_t_mull (void)
12419 {
12420 unsigned RdLo, RdHi, Rn, Rm;
12421
12422 RdLo = inst.operands[0].reg;
12423 RdHi = inst.operands[1].reg;
12424 Rn = inst.operands[2].reg;
12425 Rm = inst.operands[3].reg;
12426
12427 reject_bad_reg (RdLo);
12428 reject_bad_reg (RdHi);
12429 reject_bad_reg (Rn);
12430 reject_bad_reg (Rm);
12431
12432 inst.instruction |= RdLo << 12;
12433 inst.instruction |= RdHi << 8;
12434 inst.instruction |= Rn << 16;
12435 inst.instruction |= Rm;
12436
12437 if (RdLo == RdHi)
12438 as_tsktsk (_("rdhi and rdlo must be different"));
12439 }
12440
12441 static void
12442 do_t_nop (void)
12443 {
12444 set_it_insn_type (NEUTRAL_IT_INSN);
12445
12446 if (unified_syntax)
12447 {
12448 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12449 {
12450 inst.instruction = THUMB_OP32 (inst.instruction);
12451 inst.instruction |= inst.operands[0].imm;
12452 }
12453 else
12454 {
12455 /* PR9722: Check for Thumb2 availability before
12456 generating a thumb2 nop instruction. */
12457 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12458 {
12459 inst.instruction = THUMB_OP16 (inst.instruction);
12460 inst.instruction |= inst.operands[0].imm << 4;
12461 }
12462 else
12463 inst.instruction = 0x46c0;
12464 }
12465 }
12466 else
12467 {
12468 constraint (inst.operands[0].present,
12469 _("Thumb does not support NOP with hints"));
12470 inst.instruction = 0x46c0;
12471 }
12472 }
12473
12474 static void
12475 do_t_neg (void)
12476 {
12477 if (unified_syntax)
12478 {
12479 bfd_boolean narrow;
12480
12481 if (THUMB_SETS_FLAGS (inst.instruction))
12482 narrow = !in_it_block ();
12483 else
12484 narrow = in_it_block ();
12485 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12486 narrow = FALSE;
12487 if (inst.size_req == 4)
12488 narrow = FALSE;
12489
12490 if (!narrow)
12491 {
12492 inst.instruction = THUMB_OP32 (inst.instruction);
12493 inst.instruction |= inst.operands[0].reg << 8;
12494 inst.instruction |= inst.operands[1].reg << 16;
12495 }
12496 else
12497 {
12498 inst.instruction = THUMB_OP16 (inst.instruction);
12499 inst.instruction |= inst.operands[0].reg;
12500 inst.instruction |= inst.operands[1].reg << 3;
12501 }
12502 }
12503 else
12504 {
12505 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12506 BAD_HIREG);
12507 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12508
12509 inst.instruction = THUMB_OP16 (inst.instruction);
12510 inst.instruction |= inst.operands[0].reg;
12511 inst.instruction |= inst.operands[1].reg << 3;
12512 }
12513 }
12514
12515 static void
12516 do_t_orn (void)
12517 {
12518 unsigned Rd, Rn;
12519
12520 Rd = inst.operands[0].reg;
12521 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12522
12523 reject_bad_reg (Rd);
12524 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12525 reject_bad_reg (Rn);
12526
12527 inst.instruction |= Rd << 8;
12528 inst.instruction |= Rn << 16;
12529
12530 if (!inst.operands[2].isreg)
12531 {
12532 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12533 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12534 }
12535 else
12536 {
12537 unsigned Rm;
12538
12539 Rm = inst.operands[2].reg;
12540 reject_bad_reg (Rm);
12541
12542 constraint (inst.operands[2].shifted
12543 && inst.operands[2].immisreg,
12544 _("shift must be constant"));
12545 encode_thumb32_shifted_operand (2);
12546 }
12547 }
12548
12549 static void
12550 do_t_pkhbt (void)
12551 {
12552 unsigned Rd, Rn, Rm;
12553
12554 Rd = inst.operands[0].reg;
12555 Rn = inst.operands[1].reg;
12556 Rm = inst.operands[2].reg;
12557
12558 reject_bad_reg (Rd);
12559 reject_bad_reg (Rn);
12560 reject_bad_reg (Rm);
12561
12562 inst.instruction |= Rd << 8;
12563 inst.instruction |= Rn << 16;
12564 inst.instruction |= Rm;
12565 if (inst.operands[3].present)
12566 {
12567 unsigned int val = inst.reloc.exp.X_add_number;
12568 constraint (inst.reloc.exp.X_op != O_constant,
12569 _("expression too complex"));
12570 inst.instruction |= (val & 0x1c) << 10;
12571 inst.instruction |= (val & 0x03) << 6;
12572 }
12573 }
12574
12575 static void
12576 do_t_pkhtb (void)
12577 {
12578 if (!inst.operands[3].present)
12579 {
12580 unsigned Rtmp;
12581
12582 inst.instruction &= ~0x00000020;
12583
12584 /* PR 10168. Swap the Rm and Rn registers. */
12585 Rtmp = inst.operands[1].reg;
12586 inst.operands[1].reg = inst.operands[2].reg;
12587 inst.operands[2].reg = Rtmp;
12588 }
12589 do_t_pkhbt ();
12590 }
12591
12592 static void
12593 do_t_pld (void)
12594 {
12595 if (inst.operands[0].immisreg)
12596 reject_bad_reg (inst.operands[0].imm);
12597
12598 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12599 }
12600
12601 static void
12602 do_t_push_pop (void)
12603 {
12604 unsigned mask;
12605
12606 constraint (inst.operands[0].writeback,
12607 _("push/pop do not support {reglist}^"));
12608 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12609 _("expression too complex"));
12610
12611 mask = inst.operands[0].imm;
12612 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12613 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12614 else if (inst.size_req != 4
12615 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
12616 ? REG_LR : REG_PC)))
12617 {
12618 inst.instruction = THUMB_OP16 (inst.instruction);
12619 inst.instruction |= THUMB_PP_PC_LR;
12620 inst.instruction |= mask & 0xff;
12621 }
12622 else if (unified_syntax)
12623 {
12624 inst.instruction = THUMB_OP32 (inst.instruction);
12625 encode_thumb2_ldmstm (13, mask, TRUE);
12626 }
12627 else
12628 {
12629 inst.error = _("invalid register list to push/pop instruction");
12630 return;
12631 }
12632 }
12633
12634 static void
12635 do_t_rbit (void)
12636 {
12637 unsigned Rd, Rm;
12638
12639 Rd = inst.operands[0].reg;
12640 Rm = inst.operands[1].reg;
12641
12642 reject_bad_reg (Rd);
12643 reject_bad_reg (Rm);
12644
12645 inst.instruction |= Rd << 8;
12646 inst.instruction |= Rm << 16;
12647 inst.instruction |= Rm;
12648 }
12649
12650 static void
12651 do_t_rev (void)
12652 {
12653 unsigned Rd, Rm;
12654
12655 Rd = inst.operands[0].reg;
12656 Rm = inst.operands[1].reg;
12657
12658 reject_bad_reg (Rd);
12659 reject_bad_reg (Rm);
12660
12661 if (Rd <= 7 && Rm <= 7
12662 && inst.size_req != 4)
12663 {
12664 inst.instruction = THUMB_OP16 (inst.instruction);
12665 inst.instruction |= Rd;
12666 inst.instruction |= Rm << 3;
12667 }
12668 else if (unified_syntax)
12669 {
12670 inst.instruction = THUMB_OP32 (inst.instruction);
12671 inst.instruction |= Rd << 8;
12672 inst.instruction |= Rm << 16;
12673 inst.instruction |= Rm;
12674 }
12675 else
12676 inst.error = BAD_HIREG;
12677 }
12678
12679 static void
12680 do_t_rrx (void)
12681 {
12682 unsigned Rd, Rm;
12683
12684 Rd = inst.operands[0].reg;
12685 Rm = inst.operands[1].reg;
12686
12687 reject_bad_reg (Rd);
12688 reject_bad_reg (Rm);
12689
12690 inst.instruction |= Rd << 8;
12691 inst.instruction |= Rm;
12692 }
12693
12694 static void
12695 do_t_rsb (void)
12696 {
12697 unsigned Rd, Rs;
12698
12699 Rd = inst.operands[0].reg;
12700 Rs = (inst.operands[1].present
12701 ? inst.operands[1].reg /* Rd, Rs, foo */
12702 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12703
12704 reject_bad_reg (Rd);
12705 reject_bad_reg (Rs);
12706 if (inst.operands[2].isreg)
12707 reject_bad_reg (inst.operands[2].reg);
12708
12709 inst.instruction |= Rd << 8;
12710 inst.instruction |= Rs << 16;
12711 if (!inst.operands[2].isreg)
12712 {
12713 bfd_boolean narrow;
12714
12715 if ((inst.instruction & 0x00100000) != 0)
12716 narrow = !in_it_block ();
12717 else
12718 narrow = in_it_block ();
12719
12720 if (Rd > 7 || Rs > 7)
12721 narrow = FALSE;
12722
12723 if (inst.size_req == 4 || !unified_syntax)
12724 narrow = FALSE;
12725
12726 if (inst.reloc.exp.X_op != O_constant
12727 || inst.reloc.exp.X_add_number != 0)
12728 narrow = FALSE;
12729
12730 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12731 relaxation, but it doesn't seem worth the hassle. */
12732 if (narrow)
12733 {
12734 inst.reloc.type = BFD_RELOC_UNUSED;
12735 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12736 inst.instruction |= Rs << 3;
12737 inst.instruction |= Rd;
12738 }
12739 else
12740 {
12741 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12742 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12743 }
12744 }
12745 else
12746 encode_thumb32_shifted_operand (2);
12747 }
12748
12749 static void
12750 do_t_setend (void)
12751 {
12752 if (warn_on_deprecated
12753 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12754 as_tsktsk (_("setend use is deprecated for ARMv8"));
12755
12756 set_it_insn_type (OUTSIDE_IT_INSN);
12757 if (inst.operands[0].imm)
12758 inst.instruction |= 0x8;
12759 }
12760
12761 static void
12762 do_t_shift (void)
12763 {
12764 if (!inst.operands[1].present)
12765 inst.operands[1].reg = inst.operands[0].reg;
12766
12767 if (unified_syntax)
12768 {
12769 bfd_boolean narrow;
12770 int shift_kind;
12771
12772 switch (inst.instruction)
12773 {
12774 case T_MNEM_asr:
12775 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12776 case T_MNEM_lsl:
12777 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12778 case T_MNEM_lsr:
12779 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12780 case T_MNEM_ror:
12781 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12782 default: abort ();
12783 }
12784
12785 if (THUMB_SETS_FLAGS (inst.instruction))
12786 narrow = !in_it_block ();
12787 else
12788 narrow = in_it_block ();
12789 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12790 narrow = FALSE;
12791 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12792 narrow = FALSE;
12793 if (inst.operands[2].isreg
12794 && (inst.operands[1].reg != inst.operands[0].reg
12795 || inst.operands[2].reg > 7))
12796 narrow = FALSE;
12797 if (inst.size_req == 4)
12798 narrow = FALSE;
12799
12800 reject_bad_reg (inst.operands[0].reg);
12801 reject_bad_reg (inst.operands[1].reg);
12802
12803 if (!narrow)
12804 {
12805 if (inst.operands[2].isreg)
12806 {
12807 reject_bad_reg (inst.operands[2].reg);
12808 inst.instruction = THUMB_OP32 (inst.instruction);
12809 inst.instruction |= inst.operands[0].reg << 8;
12810 inst.instruction |= inst.operands[1].reg << 16;
12811 inst.instruction |= inst.operands[2].reg;
12812
12813 /* PR 12854: Error on extraneous shifts. */
12814 constraint (inst.operands[2].shifted,
12815 _("extraneous shift as part of operand to shift insn"));
12816 }
12817 else
12818 {
12819 inst.operands[1].shifted = 1;
12820 inst.operands[1].shift_kind = shift_kind;
12821 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12822 ? T_MNEM_movs : T_MNEM_mov);
12823 inst.instruction |= inst.operands[0].reg << 8;
12824 encode_thumb32_shifted_operand (1);
12825 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12826 inst.reloc.type = BFD_RELOC_UNUSED;
12827 }
12828 }
12829 else
12830 {
12831 if (inst.operands[2].isreg)
12832 {
12833 switch (shift_kind)
12834 {
12835 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12836 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12837 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12838 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12839 default: abort ();
12840 }
12841
12842 inst.instruction |= inst.operands[0].reg;
12843 inst.instruction |= inst.operands[2].reg << 3;
12844
12845 /* PR 12854: Error on extraneous shifts. */
12846 constraint (inst.operands[2].shifted,
12847 _("extraneous shift as part of operand to shift insn"));
12848 }
12849 else
12850 {
12851 switch (shift_kind)
12852 {
12853 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12854 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12855 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12856 default: abort ();
12857 }
12858 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12859 inst.instruction |= inst.operands[0].reg;
12860 inst.instruction |= inst.operands[1].reg << 3;
12861 }
12862 }
12863 }
12864 else
12865 {
12866 constraint (inst.operands[0].reg > 7
12867 || inst.operands[1].reg > 7, BAD_HIREG);
12868 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12869
12870 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12871 {
12872 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12873 constraint (inst.operands[0].reg != inst.operands[1].reg,
12874 _("source1 and dest must be same register"));
12875
12876 switch (inst.instruction)
12877 {
12878 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12879 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12880 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12881 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12882 default: abort ();
12883 }
12884
12885 inst.instruction |= inst.operands[0].reg;
12886 inst.instruction |= inst.operands[2].reg << 3;
12887
12888 /* PR 12854: Error on extraneous shifts. */
12889 constraint (inst.operands[2].shifted,
12890 _("extraneous shift as part of operand to shift insn"));
12891 }
12892 else
12893 {
12894 switch (inst.instruction)
12895 {
12896 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12897 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12898 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12899 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12900 default: abort ();
12901 }
12902 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12903 inst.instruction |= inst.operands[0].reg;
12904 inst.instruction |= inst.operands[1].reg << 3;
12905 }
12906 }
12907 }
12908
12909 static void
12910 do_t_simd (void)
12911 {
12912 unsigned Rd, Rn, Rm;
12913
12914 Rd = inst.operands[0].reg;
12915 Rn = inst.operands[1].reg;
12916 Rm = inst.operands[2].reg;
12917
12918 reject_bad_reg (Rd);
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12921
12922 inst.instruction |= Rd << 8;
12923 inst.instruction |= Rn << 16;
12924 inst.instruction |= Rm;
12925 }
12926
12927 static void
12928 do_t_simd2 (void)
12929 {
12930 unsigned Rd, Rn, Rm;
12931
12932 Rd = inst.operands[0].reg;
12933 Rm = inst.operands[1].reg;
12934 Rn = inst.operands[2].reg;
12935
12936 reject_bad_reg (Rd);
12937 reject_bad_reg (Rn);
12938 reject_bad_reg (Rm);
12939
12940 inst.instruction |= Rd << 8;
12941 inst.instruction |= Rn << 16;
12942 inst.instruction |= Rm;
12943 }
12944
12945 static void
12946 do_t_smc (void)
12947 {
12948 unsigned int value = inst.reloc.exp.X_add_number;
12949 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12950 _("SMC is not permitted on this architecture"));
12951 constraint (inst.reloc.exp.X_op != O_constant,
12952 _("expression too complex"));
12953 inst.reloc.type = BFD_RELOC_UNUSED;
12954 inst.instruction |= (value & 0xf000) >> 12;
12955 inst.instruction |= (value & 0x0ff0);
12956 inst.instruction |= (value & 0x000f) << 16;
12957 /* PR gas/15623: SMC instructions must be last in an IT block. */
12958 set_it_insn_type_last ();
12959 }
12960
12961 static void
12962 do_t_hvc (void)
12963 {
12964 unsigned int value = inst.reloc.exp.X_add_number;
12965
12966 inst.reloc.type = BFD_RELOC_UNUSED;
12967 inst.instruction |= (value & 0x0fff);
12968 inst.instruction |= (value & 0xf000) << 4;
12969 }
12970
12971 static void
12972 do_t_ssat_usat (int bias)
12973 {
12974 unsigned Rd, Rn;
12975
12976 Rd = inst.operands[0].reg;
12977 Rn = inst.operands[2].reg;
12978
12979 reject_bad_reg (Rd);
12980 reject_bad_reg (Rn);
12981
12982 inst.instruction |= Rd << 8;
12983 inst.instruction |= inst.operands[1].imm - bias;
12984 inst.instruction |= Rn << 16;
12985
12986 if (inst.operands[3].present)
12987 {
12988 offsetT shift_amount = inst.reloc.exp.X_add_number;
12989
12990 inst.reloc.type = BFD_RELOC_UNUSED;
12991
12992 constraint (inst.reloc.exp.X_op != O_constant,
12993 _("expression too complex"));
12994
12995 if (shift_amount != 0)
12996 {
12997 constraint (shift_amount > 31,
12998 _("shift expression is too large"));
12999
13000 if (inst.operands[3].shift_kind == SHIFT_ASR)
13001 inst.instruction |= 0x00200000; /* sh bit. */
13002
13003 inst.instruction |= (shift_amount & 0x1c) << 10;
13004 inst.instruction |= (shift_amount & 0x03) << 6;
13005 }
13006 }
13007 }
13008
13009 static void
13010 do_t_ssat (void)
13011 {
13012 do_t_ssat_usat (1);
13013 }
13014
13015 static void
13016 do_t_ssat16 (void)
13017 {
13018 unsigned Rd, Rn;
13019
13020 Rd = inst.operands[0].reg;
13021 Rn = inst.operands[2].reg;
13022
13023 reject_bad_reg (Rd);
13024 reject_bad_reg (Rn);
13025
13026 inst.instruction |= Rd << 8;
13027 inst.instruction |= inst.operands[1].imm - 1;
13028 inst.instruction |= Rn << 16;
13029 }
13030
13031 static void
13032 do_t_strex (void)
13033 {
13034 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13035 || inst.operands[2].postind || inst.operands[2].writeback
13036 || inst.operands[2].immisreg || inst.operands[2].shifted
13037 || inst.operands[2].negative,
13038 BAD_ADDR_MODE);
13039
13040 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13041
13042 inst.instruction |= inst.operands[0].reg << 8;
13043 inst.instruction |= inst.operands[1].reg << 12;
13044 inst.instruction |= inst.operands[2].reg << 16;
13045 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
13046 }
13047
13048 static void
13049 do_t_strexd (void)
13050 {
13051 if (!inst.operands[2].present)
13052 inst.operands[2].reg = inst.operands[1].reg + 1;
13053
13054 constraint (inst.operands[0].reg == inst.operands[1].reg
13055 || inst.operands[0].reg == inst.operands[2].reg
13056 || inst.operands[0].reg == inst.operands[3].reg,
13057 BAD_OVERLAP);
13058
13059 inst.instruction |= inst.operands[0].reg;
13060 inst.instruction |= inst.operands[1].reg << 12;
13061 inst.instruction |= inst.operands[2].reg << 8;
13062 inst.instruction |= inst.operands[3].reg << 16;
13063 }
13064
13065 static void
13066 do_t_sxtah (void)
13067 {
13068 unsigned Rd, Rn, Rm;
13069
13070 Rd = inst.operands[0].reg;
13071 Rn = inst.operands[1].reg;
13072 Rm = inst.operands[2].reg;
13073
13074 reject_bad_reg (Rd);
13075 reject_bad_reg (Rn);
13076 reject_bad_reg (Rm);
13077
13078 inst.instruction |= Rd << 8;
13079 inst.instruction |= Rn << 16;
13080 inst.instruction |= Rm;
13081 inst.instruction |= inst.operands[3].imm << 4;
13082 }
13083
13084 static void
13085 do_t_sxth (void)
13086 {
13087 unsigned Rd, Rm;
13088
13089 Rd = inst.operands[0].reg;
13090 Rm = inst.operands[1].reg;
13091
13092 reject_bad_reg (Rd);
13093 reject_bad_reg (Rm);
13094
13095 if (inst.instruction <= 0xffff
13096 && inst.size_req != 4
13097 && Rd <= 7 && Rm <= 7
13098 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13099 {
13100 inst.instruction = THUMB_OP16 (inst.instruction);
13101 inst.instruction |= Rd;
13102 inst.instruction |= Rm << 3;
13103 }
13104 else if (unified_syntax)
13105 {
13106 if (inst.instruction <= 0xffff)
13107 inst.instruction = THUMB_OP32 (inst.instruction);
13108 inst.instruction |= Rd << 8;
13109 inst.instruction |= Rm;
13110 inst.instruction |= inst.operands[2].imm << 4;
13111 }
13112 else
13113 {
13114 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13115 _("Thumb encoding does not support rotation"));
13116 constraint (1, BAD_HIREG);
13117 }
13118 }
13119
13120 static void
13121 do_t_swi (void)
13122 {
13123 /* We have to do the following check manually as ARM_EXT_OS only applies
13124 to ARM_EXT_V6M. */
13125 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
13126 {
13127 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
13128 /* This only applies to the v6m however, not later architectures. */
13129 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
13130 as_bad (_("SVC is not permitted on this architecture"));
13131 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
13132 }
13133
13134 inst.reloc.type = BFD_RELOC_ARM_SWI;
13135 }
13136
13137 static void
13138 do_t_tb (void)
13139 {
13140 unsigned Rn, Rm;
13141 int half;
13142
13143 half = (inst.instruction & 0x10) != 0;
13144 set_it_insn_type_last ();
13145 constraint (inst.operands[0].immisreg,
13146 _("instruction requires register index"));
13147
13148 Rn = inst.operands[0].reg;
13149 Rm = inst.operands[0].imm;
13150
13151 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13152 constraint (Rn == REG_SP, BAD_SP);
13153 reject_bad_reg (Rm);
13154
13155 constraint (!half && inst.operands[0].shifted,
13156 _("instruction does not allow shifted index"));
13157 inst.instruction |= (Rn << 16) | Rm;
13158 }
13159
13160 static void
13161 do_t_udf (void)
13162 {
13163 if (!inst.operands[0].present)
13164 inst.operands[0].imm = 0;
13165
13166 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13167 {
13168 constraint (inst.size_req == 2,
13169 _("immediate value out of range"));
13170 inst.instruction = THUMB_OP32 (inst.instruction);
13171 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13172 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13173 }
13174 else
13175 {
13176 inst.instruction = THUMB_OP16 (inst.instruction);
13177 inst.instruction |= inst.operands[0].imm;
13178 }
13179
13180 set_it_insn_type (NEUTRAL_IT_INSN);
13181 }
13182
13183
13184 static void
13185 do_t_usat (void)
13186 {
13187 do_t_ssat_usat (0);
13188 }
13189
13190 static void
13191 do_t_usat16 (void)
13192 {
13193 unsigned Rd, Rn;
13194
13195 Rd = inst.operands[0].reg;
13196 Rn = inst.operands[2].reg;
13197
13198 reject_bad_reg (Rd);
13199 reject_bad_reg (Rn);
13200
13201 inst.instruction |= Rd << 8;
13202 inst.instruction |= inst.operands[1].imm;
13203 inst.instruction |= Rn << 16;
13204 }
13205
13206 /* Neon instruction encoder helpers. */
13207
13208 /* Encodings for the different types for various Neon opcodes. */
13209
13210 /* An "invalid" code for the following tables. */
13211 #define N_INV -1u
13212
13213 struct neon_tab_entry
13214 {
13215 unsigned integer;
13216 unsigned float_or_poly;
13217 unsigned scalar_or_imm;
13218 };
13219
13220 /* Map overloaded Neon opcodes to their respective encodings. */
13221 #define NEON_ENC_TAB \
13222 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13223 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13224 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13225 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13226 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13227 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13228 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13229 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13230 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13231 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13232 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13233 /* Register variants of the following two instructions are encoded as
13234 vcge / vcgt with the operands reversed. */ \
13235 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13236 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13237 X(vfma, N_INV, 0x0000c10, N_INV), \
13238 X(vfms, N_INV, 0x0200c10, N_INV), \
13239 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13240 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13241 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13242 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13243 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13244 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13245 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13246 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13247 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13248 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13249 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13250 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13251 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13252 X(vshl, 0x0000400, N_INV, 0x0800510), \
13253 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13254 X(vand, 0x0000110, N_INV, 0x0800030), \
13255 X(vbic, 0x0100110, N_INV, 0x0800030), \
13256 X(veor, 0x1000110, N_INV, N_INV), \
13257 X(vorn, 0x0300110, N_INV, 0x0800010), \
13258 X(vorr, 0x0200110, N_INV, 0x0800010), \
13259 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13260 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13261 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13262 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13263 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13264 X(vst1, 0x0000000, 0x0800000, N_INV), \
13265 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13266 X(vst2, 0x0000100, 0x0800100, N_INV), \
13267 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13268 X(vst3, 0x0000200, 0x0800200, N_INV), \
13269 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13270 X(vst4, 0x0000300, 0x0800300, N_INV), \
13271 X(vmovn, 0x1b20200, N_INV, N_INV), \
13272 X(vtrn, 0x1b20080, N_INV, N_INV), \
13273 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13274 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13275 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13276 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13277 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13278 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13279 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13280 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13281 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13282 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13283 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13284 X(vseleq, 0xe000a00, N_INV, N_INV), \
13285 X(vselvs, 0xe100a00, N_INV, N_INV), \
13286 X(vselge, 0xe200a00, N_INV, N_INV), \
13287 X(vselgt, 0xe300a00, N_INV, N_INV), \
13288 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13289 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13290 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13291 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13292 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13293 X(aes, 0x3b00300, N_INV, N_INV), \
13294 X(sha3op, 0x2000c00, N_INV, N_INV), \
13295 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13296 X(sha2op, 0x3ba0380, N_INV, N_INV)
13297
13298 enum neon_opc
13299 {
13300 #define X(OPC,I,F,S) N_MNEM_##OPC
13301 NEON_ENC_TAB
13302 #undef X
13303 };
13304
13305 static const struct neon_tab_entry neon_enc_tab[] =
13306 {
13307 #define X(OPC,I,F,S) { (I), (F), (S) }
13308 NEON_ENC_TAB
13309 #undef X
13310 };
13311
13312 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13313 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13314 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13315 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13316 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13317 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13318 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13319 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13320 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13321 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13322 #define NEON_ENC_SINGLE_(X) \
13323 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13324 #define NEON_ENC_DOUBLE_(X) \
13325 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13326 #define NEON_ENC_FPV8_(X) \
13327 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13328
13329 #define NEON_ENCODE(type, inst) \
13330 do \
13331 { \
13332 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13333 inst.is_neon = 1; \
13334 } \
13335 while (0)
13336
13337 #define check_neon_suffixes \
13338 do \
13339 { \
13340 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13341 { \
13342 as_bad (_("invalid neon suffix for non neon instruction")); \
13343 return; \
13344 } \
13345 } \
13346 while (0)
13347
13348 /* Define shapes for instruction operands. The following mnemonic characters
13349 are used in this table:
13350
13351 F - VFP S<n> register
13352 D - Neon D<n> register
13353 Q - Neon Q<n> register
13354 I - Immediate
13355 S - Scalar
13356 R - ARM register
13357 L - D<n> register list
13358
13359 This table is used to generate various data:
13360 - enumerations of the form NS_DDR to be used as arguments to
13361 neon_select_shape.
13362 - a table classifying shapes into single, double, quad, mixed.
13363 - a table used to drive neon_select_shape. */
13364
13365 #define NEON_SHAPE_DEF \
13366 X(3, (D, D, D), DOUBLE), \
13367 X(3, (Q, Q, Q), QUAD), \
13368 X(3, (D, D, I), DOUBLE), \
13369 X(3, (Q, Q, I), QUAD), \
13370 X(3, (D, D, S), DOUBLE), \
13371 X(3, (Q, Q, S), QUAD), \
13372 X(2, (D, D), DOUBLE), \
13373 X(2, (Q, Q), QUAD), \
13374 X(2, (D, S), DOUBLE), \
13375 X(2, (Q, S), QUAD), \
13376 X(2, (D, R), DOUBLE), \
13377 X(2, (Q, R), QUAD), \
13378 X(2, (D, I), DOUBLE), \
13379 X(2, (Q, I), QUAD), \
13380 X(3, (D, L, D), DOUBLE), \
13381 X(2, (D, Q), MIXED), \
13382 X(2, (Q, D), MIXED), \
13383 X(3, (D, Q, I), MIXED), \
13384 X(3, (Q, D, I), MIXED), \
13385 X(3, (Q, D, D), MIXED), \
13386 X(3, (D, Q, Q), MIXED), \
13387 X(3, (Q, Q, D), MIXED), \
13388 X(3, (Q, D, S), MIXED), \
13389 X(3, (D, Q, S), MIXED), \
13390 X(4, (D, D, D, I), DOUBLE), \
13391 X(4, (Q, Q, Q, I), QUAD), \
13392 X(4, (D, D, S, I), DOUBLE), \
13393 X(4, (Q, Q, S, I), QUAD), \
13394 X(2, (F, F), SINGLE), \
13395 X(3, (F, F, F), SINGLE), \
13396 X(2, (F, I), SINGLE), \
13397 X(2, (F, D), MIXED), \
13398 X(2, (D, F), MIXED), \
13399 X(3, (F, F, I), MIXED), \
13400 X(4, (R, R, F, F), SINGLE), \
13401 X(4, (F, F, R, R), SINGLE), \
13402 X(3, (D, R, R), DOUBLE), \
13403 X(3, (R, R, D), DOUBLE), \
13404 X(2, (S, R), SINGLE), \
13405 X(2, (R, S), SINGLE), \
13406 X(2, (F, R), SINGLE), \
13407 X(2, (R, F), SINGLE), \
13408 /* Half float shape supported so far. */\
13409 X (2, (H, D), MIXED), \
13410 X (2, (D, H), MIXED), \
13411 X (2, (H, F), MIXED), \
13412 X (2, (F, H), MIXED), \
13413 X (2, (H, H), HALF), \
13414 X (2, (H, R), HALF), \
13415 X (2, (R, H), HALF), \
13416 X (2, (H, I), HALF), \
13417 X (3, (H, H, H), HALF), \
13418 X (3, (H, F, I), MIXED), \
13419 X (3, (F, H, I), MIXED)
13420
13421 #define S2(A,B) NS_##A##B
13422 #define S3(A,B,C) NS_##A##B##C
13423 #define S4(A,B,C,D) NS_##A##B##C##D
13424
13425 #define X(N, L, C) S##N L
13426
13427 enum neon_shape
13428 {
13429 NEON_SHAPE_DEF,
13430 NS_NULL
13431 };
13432
13433 #undef X
13434 #undef S2
13435 #undef S3
13436 #undef S4
13437
13438 enum neon_shape_class
13439 {
13440 SC_HALF,
13441 SC_SINGLE,
13442 SC_DOUBLE,
13443 SC_QUAD,
13444 SC_MIXED
13445 };
13446
13447 #define X(N, L, C) SC_##C
13448
13449 static enum neon_shape_class neon_shape_class[] =
13450 {
13451 NEON_SHAPE_DEF
13452 };
13453
13454 #undef X
13455
13456 enum neon_shape_el
13457 {
13458 SE_H,
13459 SE_F,
13460 SE_D,
13461 SE_Q,
13462 SE_I,
13463 SE_S,
13464 SE_R,
13465 SE_L
13466 };
13467
13468 /* Register widths of above. */
13469 static unsigned neon_shape_el_size[] =
13470 {
13471 16,
13472 32,
13473 64,
13474 128,
13475 0,
13476 32,
13477 32,
13478 0
13479 };
13480
13481 struct neon_shape_info
13482 {
13483 unsigned els;
13484 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13485 };
13486
13487 #define S2(A,B) { SE_##A, SE_##B }
13488 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13489 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13490
13491 #define X(N, L, C) { N, S##N L }
13492
13493 static struct neon_shape_info neon_shape_tab[] =
13494 {
13495 NEON_SHAPE_DEF
13496 };
13497
13498 #undef X
13499 #undef S2
13500 #undef S3
13501 #undef S4
13502
13503 /* Bit masks used in type checking given instructions.
13504 'N_EQK' means the type must be the same as (or based on in some way) the key
13505 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13506 set, various other bits can be set as well in order to modify the meaning of
13507 the type constraint. */
13508
13509 enum neon_type_mask
13510 {
13511 N_S8 = 0x0000001,
13512 N_S16 = 0x0000002,
13513 N_S32 = 0x0000004,
13514 N_S64 = 0x0000008,
13515 N_U8 = 0x0000010,
13516 N_U16 = 0x0000020,
13517 N_U32 = 0x0000040,
13518 N_U64 = 0x0000080,
13519 N_I8 = 0x0000100,
13520 N_I16 = 0x0000200,
13521 N_I32 = 0x0000400,
13522 N_I64 = 0x0000800,
13523 N_8 = 0x0001000,
13524 N_16 = 0x0002000,
13525 N_32 = 0x0004000,
13526 N_64 = 0x0008000,
13527 N_P8 = 0x0010000,
13528 N_P16 = 0x0020000,
13529 N_F16 = 0x0040000,
13530 N_F32 = 0x0080000,
13531 N_F64 = 0x0100000,
13532 N_P64 = 0x0200000,
13533 N_KEY = 0x1000000, /* Key element (main type specifier). */
13534 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13535 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13536 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13537 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13538 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13539 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13540 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13541 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13542 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13543 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13544 N_UTYP = 0,
13545 N_MAX_NONSPECIAL = N_P64
13546 };
13547
13548 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13549
13550 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13551 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13552 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13553 #define N_S_32 (N_S8 | N_S16 | N_S32)
13554 #define N_F_16_32 (N_F16 | N_F32)
13555 #define N_SUF_32 (N_SU_32 | N_F_16_32)
13556 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13557 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
13558 #define N_F_ALL (N_F16 | N_F32 | N_F64)
13559
13560 /* Pass this as the first type argument to neon_check_type to ignore types
13561 altogether. */
13562 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13563
13564 /* Select a "shape" for the current instruction (describing register types or
13565 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13566 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13567 function of operand parsing, so this function doesn't need to be called.
13568 Shapes should be listed in order of decreasing length. */
13569
13570 static enum neon_shape
13571 neon_select_shape (enum neon_shape shape, ...)
13572 {
13573 va_list ap;
13574 enum neon_shape first_shape = shape;
13575
13576 /* Fix missing optional operands. FIXME: we don't know at this point how
13577 many arguments we should have, so this makes the assumption that we have
13578 > 1. This is true of all current Neon opcodes, I think, but may not be
13579 true in the future. */
13580 if (!inst.operands[1].present)
13581 inst.operands[1] = inst.operands[0];
13582
13583 va_start (ap, shape);
13584
13585 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13586 {
13587 unsigned j;
13588 int matches = 1;
13589
13590 for (j = 0; j < neon_shape_tab[shape].els; j++)
13591 {
13592 if (!inst.operands[j].present)
13593 {
13594 matches = 0;
13595 break;
13596 }
13597
13598 switch (neon_shape_tab[shape].el[j])
13599 {
13600 /* If a .f16, .16, .u16, .s16 type specifier is given over
13601 a VFP single precision register operand, it's essentially
13602 means only half of the register is used.
13603
13604 If the type specifier is given after the mnemonics, the
13605 information is stored in inst.vectype. If the type specifier
13606 is given after register operand, the information is stored
13607 in inst.operands[].vectype.
13608
13609 When there is only one type specifier, and all the register
13610 operands are the same type of hardware register, the type
13611 specifier applies to all register operands.
13612
13613 If no type specifier is given, the shape is inferred from
13614 operand information.
13615
13616 for example:
13617 vadd.f16 s0, s1, s2: NS_HHH
13618 vabs.f16 s0, s1: NS_HH
13619 vmov.f16 s0, r1: NS_HR
13620 vmov.f16 r0, s1: NS_RH
13621 vcvt.f16 r0, s1: NS_RH
13622 vcvt.f16.s32 s2, s2, #29: NS_HFI
13623 vcvt.f16.s32 s2, s2: NS_HF
13624 */
13625 case SE_H:
13626 if (!(inst.operands[j].isreg
13627 && inst.operands[j].isvec
13628 && inst.operands[j].issingle
13629 && !inst.operands[j].isquad
13630 && ((inst.vectype.elems == 1
13631 && inst.vectype.el[0].size == 16)
13632 || (inst.vectype.elems > 1
13633 && inst.vectype.el[j].size == 16)
13634 || (inst.vectype.elems == 0
13635 && inst.operands[j].vectype.type != NT_invtype
13636 && inst.operands[j].vectype.size == 16))))
13637 matches = 0;
13638 break;
13639
13640 case SE_F:
13641 if (!(inst.operands[j].isreg
13642 && inst.operands[j].isvec
13643 && inst.operands[j].issingle
13644 && !inst.operands[j].isquad
13645 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13646 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13647 || (inst.vectype.elems == 0
13648 && (inst.operands[j].vectype.size == 32
13649 || inst.operands[j].vectype.type == NT_invtype)))))
13650 matches = 0;
13651 break;
13652
13653 case SE_D:
13654 if (!(inst.operands[j].isreg
13655 && inst.operands[j].isvec
13656 && !inst.operands[j].isquad
13657 && !inst.operands[j].issingle))
13658 matches = 0;
13659 break;
13660
13661 case SE_R:
13662 if (!(inst.operands[j].isreg
13663 && !inst.operands[j].isvec))
13664 matches = 0;
13665 break;
13666
13667 case SE_Q:
13668 if (!(inst.operands[j].isreg
13669 && inst.operands[j].isvec
13670 && inst.operands[j].isquad
13671 && !inst.operands[j].issingle))
13672 matches = 0;
13673 break;
13674
13675 case SE_I:
13676 if (!(!inst.operands[j].isreg
13677 && !inst.operands[j].isscalar))
13678 matches = 0;
13679 break;
13680
13681 case SE_S:
13682 if (!(!inst.operands[j].isreg
13683 && inst.operands[j].isscalar))
13684 matches = 0;
13685 break;
13686
13687 case SE_L:
13688 break;
13689 }
13690 if (!matches)
13691 break;
13692 }
13693 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13694 /* We've matched all the entries in the shape table, and we don't
13695 have any left over operands which have not been matched. */
13696 break;
13697 }
13698
13699 va_end (ap);
13700
13701 if (shape == NS_NULL && first_shape != NS_NULL)
13702 first_error (_("invalid instruction shape"));
13703
13704 return shape;
13705 }
13706
13707 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13708 means the Q bit should be set). */
13709
13710 static int
13711 neon_quad (enum neon_shape shape)
13712 {
13713 return neon_shape_class[shape] == SC_QUAD;
13714 }
13715
13716 static void
13717 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13718 unsigned *g_size)
13719 {
13720 /* Allow modification to be made to types which are constrained to be
13721 based on the key element, based on bits set alongside N_EQK. */
13722 if ((typebits & N_EQK) != 0)
13723 {
13724 if ((typebits & N_HLF) != 0)
13725 *g_size /= 2;
13726 else if ((typebits & N_DBL) != 0)
13727 *g_size *= 2;
13728 if ((typebits & N_SGN) != 0)
13729 *g_type = NT_signed;
13730 else if ((typebits & N_UNS) != 0)
13731 *g_type = NT_unsigned;
13732 else if ((typebits & N_INT) != 0)
13733 *g_type = NT_integer;
13734 else if ((typebits & N_FLT) != 0)
13735 *g_type = NT_float;
13736 else if ((typebits & N_SIZ) != 0)
13737 *g_type = NT_untyped;
13738 }
13739 }
13740
13741 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13742 operand type, i.e. the single type specified in a Neon instruction when it
13743 is the only one given. */
13744
13745 static struct neon_type_el
13746 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13747 {
13748 struct neon_type_el dest = *key;
13749
13750 gas_assert ((thisarg & N_EQK) != 0);
13751
13752 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13753
13754 return dest;
13755 }
13756
13757 /* Convert Neon type and size into compact bitmask representation. */
13758
13759 static enum neon_type_mask
13760 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13761 {
13762 switch (type)
13763 {
13764 case NT_untyped:
13765 switch (size)
13766 {
13767 case 8: return N_8;
13768 case 16: return N_16;
13769 case 32: return N_32;
13770 case 64: return N_64;
13771 default: ;
13772 }
13773 break;
13774
13775 case NT_integer:
13776 switch (size)
13777 {
13778 case 8: return N_I8;
13779 case 16: return N_I16;
13780 case 32: return N_I32;
13781 case 64: return N_I64;
13782 default: ;
13783 }
13784 break;
13785
13786 case NT_float:
13787 switch (size)
13788 {
13789 case 16: return N_F16;
13790 case 32: return N_F32;
13791 case 64: return N_F64;
13792 default: ;
13793 }
13794 break;
13795
13796 case NT_poly:
13797 switch (size)
13798 {
13799 case 8: return N_P8;
13800 case 16: return N_P16;
13801 case 64: return N_P64;
13802 default: ;
13803 }
13804 break;
13805
13806 case NT_signed:
13807 switch (size)
13808 {
13809 case 8: return N_S8;
13810 case 16: return N_S16;
13811 case 32: return N_S32;
13812 case 64: return N_S64;
13813 default: ;
13814 }
13815 break;
13816
13817 case NT_unsigned:
13818 switch (size)
13819 {
13820 case 8: return N_U8;
13821 case 16: return N_U16;
13822 case 32: return N_U32;
13823 case 64: return N_U64;
13824 default: ;
13825 }
13826 break;
13827
13828 default: ;
13829 }
13830
13831 return N_UTYP;
13832 }
13833
13834 /* Convert compact Neon bitmask type representation to a type and size. Only
13835 handles the case where a single bit is set in the mask. */
13836
13837 static int
13838 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13839 enum neon_type_mask mask)
13840 {
13841 if ((mask & N_EQK) != 0)
13842 return FAIL;
13843
13844 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13845 *size = 8;
13846 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13847 *size = 16;
13848 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13849 *size = 32;
13850 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13851 *size = 64;
13852 else
13853 return FAIL;
13854
13855 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13856 *type = NT_signed;
13857 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13858 *type = NT_unsigned;
13859 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13860 *type = NT_integer;
13861 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13862 *type = NT_untyped;
13863 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13864 *type = NT_poly;
13865 else if ((mask & (N_F_ALL)) != 0)
13866 *type = NT_float;
13867 else
13868 return FAIL;
13869
13870 return SUCCESS;
13871 }
13872
13873 /* Modify a bitmask of allowed types. This is only needed for type
13874 relaxation. */
13875
13876 static unsigned
13877 modify_types_allowed (unsigned allowed, unsigned mods)
13878 {
13879 unsigned size;
13880 enum neon_el_type type;
13881 unsigned destmask;
13882 int i;
13883
13884 destmask = 0;
13885
13886 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13887 {
13888 if (el_type_of_type_chk (&type, &size,
13889 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13890 {
13891 neon_modify_type_size (mods, &type, &size);
13892 destmask |= type_chk_of_el_type (type, size);
13893 }
13894 }
13895
13896 return destmask;
13897 }
13898
13899 /* Check type and return type classification.
13900 The manual states (paraphrase): If one datatype is given, it indicates the
13901 type given in:
13902 - the second operand, if there is one
13903 - the operand, if there is no second operand
13904 - the result, if there are no operands.
13905 This isn't quite good enough though, so we use a concept of a "key" datatype
13906 which is set on a per-instruction basis, which is the one which matters when
13907 only one data type is written.
13908 Note: this function has side-effects (e.g. filling in missing operands). All
13909 Neon instructions should call it before performing bit encoding. */
13910
13911 static struct neon_type_el
13912 neon_check_type (unsigned els, enum neon_shape ns, ...)
13913 {
13914 va_list ap;
13915 unsigned i, pass, key_el = 0;
13916 unsigned types[NEON_MAX_TYPE_ELS];
13917 enum neon_el_type k_type = NT_invtype;
13918 unsigned k_size = -1u;
13919 struct neon_type_el badtype = {NT_invtype, -1};
13920 unsigned key_allowed = 0;
13921
13922 /* Optional registers in Neon instructions are always (not) in operand 1.
13923 Fill in the missing operand here, if it was omitted. */
13924 if (els > 1 && !inst.operands[1].present)
13925 inst.operands[1] = inst.operands[0];
13926
13927 /* Suck up all the varargs. */
13928 va_start (ap, ns);
13929 for (i = 0; i < els; i++)
13930 {
13931 unsigned thisarg = va_arg (ap, unsigned);
13932 if (thisarg == N_IGNORE_TYPE)
13933 {
13934 va_end (ap);
13935 return badtype;
13936 }
13937 types[i] = thisarg;
13938 if ((thisarg & N_KEY) != 0)
13939 key_el = i;
13940 }
13941 va_end (ap);
13942
13943 if (inst.vectype.elems > 0)
13944 for (i = 0; i < els; i++)
13945 if (inst.operands[i].vectype.type != NT_invtype)
13946 {
13947 first_error (_("types specified in both the mnemonic and operands"));
13948 return badtype;
13949 }
13950
13951 /* Duplicate inst.vectype elements here as necessary.
13952 FIXME: No idea if this is exactly the same as the ARM assembler,
13953 particularly when an insn takes one register and one non-register
13954 operand. */
13955 if (inst.vectype.elems == 1 && els > 1)
13956 {
13957 unsigned j;
13958 inst.vectype.elems = els;
13959 inst.vectype.el[key_el] = inst.vectype.el[0];
13960 for (j = 0; j < els; j++)
13961 if (j != key_el)
13962 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13963 types[j]);
13964 }
13965 else if (inst.vectype.elems == 0 && els > 0)
13966 {
13967 unsigned j;
13968 /* No types were given after the mnemonic, so look for types specified
13969 after each operand. We allow some flexibility here; as long as the
13970 "key" operand has a type, we can infer the others. */
13971 for (j = 0; j < els; j++)
13972 if (inst.operands[j].vectype.type != NT_invtype)
13973 inst.vectype.el[j] = inst.operands[j].vectype;
13974
13975 if (inst.operands[key_el].vectype.type != NT_invtype)
13976 {
13977 for (j = 0; j < els; j++)
13978 if (inst.operands[j].vectype.type == NT_invtype)
13979 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13980 types[j]);
13981 }
13982 else
13983 {
13984 first_error (_("operand types can't be inferred"));
13985 return badtype;
13986 }
13987 }
13988 else if (inst.vectype.elems != els)
13989 {
13990 first_error (_("type specifier has the wrong number of parts"));
13991 return badtype;
13992 }
13993
13994 for (pass = 0; pass < 2; pass++)
13995 {
13996 for (i = 0; i < els; i++)
13997 {
13998 unsigned thisarg = types[i];
13999 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14000 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14001 enum neon_el_type g_type = inst.vectype.el[i].type;
14002 unsigned g_size = inst.vectype.el[i].size;
14003
14004 /* Decay more-specific signed & unsigned types to sign-insensitive
14005 integer types if sign-specific variants are unavailable. */
14006 if ((g_type == NT_signed || g_type == NT_unsigned)
14007 && (types_allowed & N_SU_ALL) == 0)
14008 g_type = NT_integer;
14009
14010 /* If only untyped args are allowed, decay any more specific types to
14011 them. Some instructions only care about signs for some element
14012 sizes, so handle that properly. */
14013 if (((types_allowed & N_UNT) == 0)
14014 && ((g_size == 8 && (types_allowed & N_8) != 0)
14015 || (g_size == 16 && (types_allowed & N_16) != 0)
14016 || (g_size == 32 && (types_allowed & N_32) != 0)
14017 || (g_size == 64 && (types_allowed & N_64) != 0)))
14018 g_type = NT_untyped;
14019
14020 if (pass == 0)
14021 {
14022 if ((thisarg & N_KEY) != 0)
14023 {
14024 k_type = g_type;
14025 k_size = g_size;
14026 key_allowed = thisarg & ~N_KEY;
14027
14028 /* Check architecture constraint on FP16 extension. */
14029 if (k_size == 16
14030 && k_type == NT_float
14031 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14032 {
14033 inst.error = _(BAD_FP16);
14034 return badtype;
14035 }
14036 }
14037 }
14038 else
14039 {
14040 if ((thisarg & N_VFP) != 0)
14041 {
14042 enum neon_shape_el regshape;
14043 unsigned regwidth, match;
14044
14045 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14046 if (ns == NS_NULL)
14047 {
14048 first_error (_("invalid instruction shape"));
14049 return badtype;
14050 }
14051 regshape = neon_shape_tab[ns].el[i];
14052 regwidth = neon_shape_el_size[regshape];
14053
14054 /* In VFP mode, operands must match register widths. If we
14055 have a key operand, use its width, else use the width of
14056 the current operand. */
14057 if (k_size != -1u)
14058 match = k_size;
14059 else
14060 match = g_size;
14061
14062 /* FP16 will use a single precision register. */
14063 if (regwidth == 32 && match == 16)
14064 {
14065 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14066 match = regwidth;
14067 else
14068 {
14069 inst.error = _(BAD_FP16);
14070 return badtype;
14071 }
14072 }
14073
14074 if (regwidth != match)
14075 {
14076 first_error (_("operand size must match register width"));
14077 return badtype;
14078 }
14079 }
14080
14081 if ((thisarg & N_EQK) == 0)
14082 {
14083 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14084
14085 if ((given_type & types_allowed) == 0)
14086 {
14087 first_error (_("bad type in Neon instruction"));
14088 return badtype;
14089 }
14090 }
14091 else
14092 {
14093 enum neon_el_type mod_k_type = k_type;
14094 unsigned mod_k_size = k_size;
14095 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14096 if (g_type != mod_k_type || g_size != mod_k_size)
14097 {
14098 first_error (_("inconsistent types in Neon instruction"));
14099 return badtype;
14100 }
14101 }
14102 }
14103 }
14104 }
14105
14106 return inst.vectype.el[key_el];
14107 }
14108
14109 /* Neon-style VFP instruction forwarding. */
14110
14111 /* Thumb VFP instructions have 0xE in the condition field. */
14112
14113 static void
14114 do_vfp_cond_or_thumb (void)
14115 {
14116 inst.is_neon = 1;
14117
14118 if (thumb_mode)
14119 inst.instruction |= 0xe0000000;
14120 else
14121 inst.instruction |= inst.cond << 28;
14122 }
14123
14124 /* Look up and encode a simple mnemonic, for use as a helper function for the
14125 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14126 etc. It is assumed that operand parsing has already been done, and that the
14127 operands are in the form expected by the given opcode (this isn't necessarily
14128 the same as the form in which they were parsed, hence some massaging must
14129 take place before this function is called).
14130 Checks current arch version against that in the looked-up opcode. */
14131
14132 static void
14133 do_vfp_nsyn_opcode (const char *opname)
14134 {
14135 const struct asm_opcode *opcode;
14136
14137 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
14138
14139 if (!opcode)
14140 abort ();
14141
14142 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
14143 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14144 _(BAD_FPU));
14145
14146 inst.is_neon = 1;
14147
14148 if (thumb_mode)
14149 {
14150 inst.instruction = opcode->tvalue;
14151 opcode->tencode ();
14152 }
14153 else
14154 {
14155 inst.instruction = (inst.cond << 28) | opcode->avalue;
14156 opcode->aencode ();
14157 }
14158 }
14159
14160 static void
14161 do_vfp_nsyn_add_sub (enum neon_shape rs)
14162 {
14163 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14164
14165 if (rs == NS_FFF || rs == NS_HHH)
14166 {
14167 if (is_add)
14168 do_vfp_nsyn_opcode ("fadds");
14169 else
14170 do_vfp_nsyn_opcode ("fsubs");
14171
14172 /* ARMv8.2 fp16 instruction. */
14173 if (rs == NS_HHH)
14174 do_scalar_fp16_v82_encode ();
14175 }
14176 else
14177 {
14178 if (is_add)
14179 do_vfp_nsyn_opcode ("faddd");
14180 else
14181 do_vfp_nsyn_opcode ("fsubd");
14182 }
14183 }
14184
14185 /* Check operand types to see if this is a VFP instruction, and if so call
14186 PFN (). */
14187
14188 static int
14189 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14190 {
14191 enum neon_shape rs;
14192 struct neon_type_el et;
14193
14194 switch (args)
14195 {
14196 case 2:
14197 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14198 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14199 break;
14200
14201 case 3:
14202 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14203 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14204 N_F_ALL | N_KEY | N_VFP);
14205 break;
14206
14207 default:
14208 abort ();
14209 }
14210
14211 if (et.type != NT_invtype)
14212 {
14213 pfn (rs);
14214 return SUCCESS;
14215 }
14216
14217 inst.error = NULL;
14218 return FAIL;
14219 }
14220
14221 static void
14222 do_vfp_nsyn_mla_mls (enum neon_shape rs)
14223 {
14224 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
14225
14226 if (rs == NS_FFF || rs == NS_HHH)
14227 {
14228 if (is_mla)
14229 do_vfp_nsyn_opcode ("fmacs");
14230 else
14231 do_vfp_nsyn_opcode ("fnmacs");
14232
14233 /* ARMv8.2 fp16 instruction. */
14234 if (rs == NS_HHH)
14235 do_scalar_fp16_v82_encode ();
14236 }
14237 else
14238 {
14239 if (is_mla)
14240 do_vfp_nsyn_opcode ("fmacd");
14241 else
14242 do_vfp_nsyn_opcode ("fnmacd");
14243 }
14244 }
14245
14246 static void
14247 do_vfp_nsyn_fma_fms (enum neon_shape rs)
14248 {
14249 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14250
14251 if (rs == NS_FFF || rs == NS_HHH)
14252 {
14253 if (is_fma)
14254 do_vfp_nsyn_opcode ("ffmas");
14255 else
14256 do_vfp_nsyn_opcode ("ffnmas");
14257
14258 /* ARMv8.2 fp16 instruction. */
14259 if (rs == NS_HHH)
14260 do_scalar_fp16_v82_encode ();
14261 }
14262 else
14263 {
14264 if (is_fma)
14265 do_vfp_nsyn_opcode ("ffmad");
14266 else
14267 do_vfp_nsyn_opcode ("ffnmad");
14268 }
14269 }
14270
14271 static void
14272 do_vfp_nsyn_mul (enum neon_shape rs)
14273 {
14274 if (rs == NS_FFF || rs == NS_HHH)
14275 {
14276 do_vfp_nsyn_opcode ("fmuls");
14277
14278 /* ARMv8.2 fp16 instruction. */
14279 if (rs == NS_HHH)
14280 do_scalar_fp16_v82_encode ();
14281 }
14282 else
14283 do_vfp_nsyn_opcode ("fmuld");
14284 }
14285
14286 static void
14287 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14288 {
14289 int is_neg = (inst.instruction & 0x80) != 0;
14290 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
14291
14292 if (rs == NS_FF || rs == NS_HH)
14293 {
14294 if (is_neg)
14295 do_vfp_nsyn_opcode ("fnegs");
14296 else
14297 do_vfp_nsyn_opcode ("fabss");
14298
14299 /* ARMv8.2 fp16 instruction. */
14300 if (rs == NS_HH)
14301 do_scalar_fp16_v82_encode ();
14302 }
14303 else
14304 {
14305 if (is_neg)
14306 do_vfp_nsyn_opcode ("fnegd");
14307 else
14308 do_vfp_nsyn_opcode ("fabsd");
14309 }
14310 }
14311
14312 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14313 insns belong to Neon, and are handled elsewhere. */
14314
14315 static void
14316 do_vfp_nsyn_ldm_stm (int is_dbmode)
14317 {
14318 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14319 if (is_ldm)
14320 {
14321 if (is_dbmode)
14322 do_vfp_nsyn_opcode ("fldmdbs");
14323 else
14324 do_vfp_nsyn_opcode ("fldmias");
14325 }
14326 else
14327 {
14328 if (is_dbmode)
14329 do_vfp_nsyn_opcode ("fstmdbs");
14330 else
14331 do_vfp_nsyn_opcode ("fstmias");
14332 }
14333 }
14334
14335 static void
14336 do_vfp_nsyn_sqrt (void)
14337 {
14338 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14339 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14340
14341 if (rs == NS_FF || rs == NS_HH)
14342 {
14343 do_vfp_nsyn_opcode ("fsqrts");
14344
14345 /* ARMv8.2 fp16 instruction. */
14346 if (rs == NS_HH)
14347 do_scalar_fp16_v82_encode ();
14348 }
14349 else
14350 do_vfp_nsyn_opcode ("fsqrtd");
14351 }
14352
14353 static void
14354 do_vfp_nsyn_div (void)
14355 {
14356 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14357 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14358 N_F_ALL | N_KEY | N_VFP);
14359
14360 if (rs == NS_FFF || rs == NS_HHH)
14361 {
14362 do_vfp_nsyn_opcode ("fdivs");
14363
14364 /* ARMv8.2 fp16 instruction. */
14365 if (rs == NS_HHH)
14366 do_scalar_fp16_v82_encode ();
14367 }
14368 else
14369 do_vfp_nsyn_opcode ("fdivd");
14370 }
14371
14372 static void
14373 do_vfp_nsyn_nmul (void)
14374 {
14375 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14376 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14377 N_F_ALL | N_KEY | N_VFP);
14378
14379 if (rs == NS_FFF || rs == NS_HHH)
14380 {
14381 NEON_ENCODE (SINGLE, inst);
14382 do_vfp_sp_dyadic ();
14383
14384 /* ARMv8.2 fp16 instruction. */
14385 if (rs == NS_HHH)
14386 do_scalar_fp16_v82_encode ();
14387 }
14388 else
14389 {
14390 NEON_ENCODE (DOUBLE, inst);
14391 do_vfp_dp_rd_rn_rm ();
14392 }
14393 do_vfp_cond_or_thumb ();
14394
14395 }
14396
14397 static void
14398 do_vfp_nsyn_cmp (void)
14399 {
14400 enum neon_shape rs;
14401 if (inst.operands[1].isreg)
14402 {
14403 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14404 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14405
14406 if (rs == NS_FF || rs == NS_HH)
14407 {
14408 NEON_ENCODE (SINGLE, inst);
14409 do_vfp_sp_monadic ();
14410 }
14411 else
14412 {
14413 NEON_ENCODE (DOUBLE, inst);
14414 do_vfp_dp_rd_rm ();
14415 }
14416 }
14417 else
14418 {
14419 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14420 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
14421
14422 switch (inst.instruction & 0x0fffffff)
14423 {
14424 case N_MNEM_vcmp:
14425 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14426 break;
14427 case N_MNEM_vcmpe:
14428 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14429 break;
14430 default:
14431 abort ();
14432 }
14433
14434 if (rs == NS_FI || rs == NS_HI)
14435 {
14436 NEON_ENCODE (SINGLE, inst);
14437 do_vfp_sp_compare_z ();
14438 }
14439 else
14440 {
14441 NEON_ENCODE (DOUBLE, inst);
14442 do_vfp_dp_rd ();
14443 }
14444 }
14445 do_vfp_cond_or_thumb ();
14446
14447 /* ARMv8.2 fp16 instruction. */
14448 if (rs == NS_HI || rs == NS_HH)
14449 do_scalar_fp16_v82_encode ();
14450 }
14451
14452 static void
14453 nsyn_insert_sp (void)
14454 {
14455 inst.operands[1] = inst.operands[0];
14456 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14457 inst.operands[0].reg = REG_SP;
14458 inst.operands[0].isreg = 1;
14459 inst.operands[0].writeback = 1;
14460 inst.operands[0].present = 1;
14461 }
14462
14463 static void
14464 do_vfp_nsyn_push (void)
14465 {
14466 nsyn_insert_sp ();
14467
14468 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14469 _("register list must contain at least 1 and at most 16 "
14470 "registers"));
14471
14472 if (inst.operands[1].issingle)
14473 do_vfp_nsyn_opcode ("fstmdbs");
14474 else
14475 do_vfp_nsyn_opcode ("fstmdbd");
14476 }
14477
14478 static void
14479 do_vfp_nsyn_pop (void)
14480 {
14481 nsyn_insert_sp ();
14482
14483 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14484 _("register list must contain at least 1 and at most 16 "
14485 "registers"));
14486
14487 if (inst.operands[1].issingle)
14488 do_vfp_nsyn_opcode ("fldmias");
14489 else
14490 do_vfp_nsyn_opcode ("fldmiad");
14491 }
14492
14493 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14494 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14495
14496 static void
14497 neon_dp_fixup (struct arm_it* insn)
14498 {
14499 unsigned int i = insn->instruction;
14500 insn->is_neon = 1;
14501
14502 if (thumb_mode)
14503 {
14504 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14505 if (i & (1 << 24))
14506 i |= 1 << 28;
14507
14508 i &= ~(1 << 24);
14509
14510 i |= 0xef000000;
14511 }
14512 else
14513 i |= 0xf2000000;
14514
14515 insn->instruction = i;
14516 }
14517
14518 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14519 (0, 1, 2, 3). */
14520
14521 static unsigned
14522 neon_logbits (unsigned x)
14523 {
14524 return ffs (x) - 4;
14525 }
14526
14527 #define LOW4(R) ((R) & 0xf)
14528 #define HI1(R) (((R) >> 4) & 1)
14529
14530 /* Encode insns with bit pattern:
14531
14532 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14533 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14534
14535 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14536 different meaning for some instruction. */
14537
14538 static void
14539 neon_three_same (int isquad, int ubit, int size)
14540 {
14541 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14542 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14543 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14544 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14545 inst.instruction |= LOW4 (inst.operands[2].reg);
14546 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14547 inst.instruction |= (isquad != 0) << 6;
14548 inst.instruction |= (ubit != 0) << 24;
14549 if (size != -1)
14550 inst.instruction |= neon_logbits (size) << 20;
14551
14552 neon_dp_fixup (&inst);
14553 }
14554
14555 /* Encode instructions of the form:
14556
14557 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14558 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14559
14560 Don't write size if SIZE == -1. */
14561
14562 static void
14563 neon_two_same (int qbit, int ubit, int size)
14564 {
14565 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14566 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14567 inst.instruction |= LOW4 (inst.operands[1].reg);
14568 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14569 inst.instruction |= (qbit != 0) << 6;
14570 inst.instruction |= (ubit != 0) << 24;
14571
14572 if (size != -1)
14573 inst.instruction |= neon_logbits (size) << 18;
14574
14575 neon_dp_fixup (&inst);
14576 }
14577
14578 /* Neon instruction encoders, in approximate order of appearance. */
14579
14580 static void
14581 do_neon_dyadic_i_su (void)
14582 {
14583 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14584 struct neon_type_el et = neon_check_type (3, rs,
14585 N_EQK, N_EQK, N_SU_32 | N_KEY);
14586 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14587 }
14588
14589 static void
14590 do_neon_dyadic_i64_su (void)
14591 {
14592 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14593 struct neon_type_el et = neon_check_type (3, rs,
14594 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14595 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14596 }
14597
14598 static void
14599 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14600 unsigned immbits)
14601 {
14602 unsigned size = et.size >> 3;
14603 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14604 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14605 inst.instruction |= LOW4 (inst.operands[1].reg);
14606 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14607 inst.instruction |= (isquad != 0) << 6;
14608 inst.instruction |= immbits << 16;
14609 inst.instruction |= (size >> 3) << 7;
14610 inst.instruction |= (size & 0x7) << 19;
14611 if (write_ubit)
14612 inst.instruction |= (uval != 0) << 24;
14613
14614 neon_dp_fixup (&inst);
14615 }
14616
14617 static void
14618 do_neon_shl_imm (void)
14619 {
14620 if (!inst.operands[2].isreg)
14621 {
14622 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14623 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14624 int imm = inst.operands[2].imm;
14625
14626 constraint (imm < 0 || (unsigned)imm >= et.size,
14627 _("immediate out of range for shift"));
14628 NEON_ENCODE (IMMED, inst);
14629 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14630 }
14631 else
14632 {
14633 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14634 struct neon_type_el et = neon_check_type (3, rs,
14635 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14636 unsigned int tmp;
14637
14638 /* VSHL/VQSHL 3-register variants have syntax such as:
14639 vshl.xx Dd, Dm, Dn
14640 whereas other 3-register operations encoded by neon_three_same have
14641 syntax like:
14642 vadd.xx Dd, Dn, Dm
14643 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14644 here. */
14645 tmp = inst.operands[2].reg;
14646 inst.operands[2].reg = inst.operands[1].reg;
14647 inst.operands[1].reg = tmp;
14648 NEON_ENCODE (INTEGER, inst);
14649 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14650 }
14651 }
14652
14653 static void
14654 do_neon_qshl_imm (void)
14655 {
14656 if (!inst.operands[2].isreg)
14657 {
14658 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14659 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14660 int imm = inst.operands[2].imm;
14661
14662 constraint (imm < 0 || (unsigned)imm >= et.size,
14663 _("immediate out of range for shift"));
14664 NEON_ENCODE (IMMED, inst);
14665 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14666 }
14667 else
14668 {
14669 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14670 struct neon_type_el et = neon_check_type (3, rs,
14671 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14672 unsigned int tmp;
14673
14674 /* See note in do_neon_shl_imm. */
14675 tmp = inst.operands[2].reg;
14676 inst.operands[2].reg = inst.operands[1].reg;
14677 inst.operands[1].reg = tmp;
14678 NEON_ENCODE (INTEGER, inst);
14679 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14680 }
14681 }
14682
14683 static void
14684 do_neon_rshl (void)
14685 {
14686 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14687 struct neon_type_el et = neon_check_type (3, rs,
14688 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14689 unsigned int tmp;
14690
14691 tmp = inst.operands[2].reg;
14692 inst.operands[2].reg = inst.operands[1].reg;
14693 inst.operands[1].reg = tmp;
14694 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14695 }
14696
14697 static int
14698 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14699 {
14700 /* Handle .I8 pseudo-instructions. */
14701 if (size == 8)
14702 {
14703 /* Unfortunately, this will make everything apart from zero out-of-range.
14704 FIXME is this the intended semantics? There doesn't seem much point in
14705 accepting .I8 if so. */
14706 immediate |= immediate << 8;
14707 size = 16;
14708 }
14709
14710 if (size >= 32)
14711 {
14712 if (immediate == (immediate & 0x000000ff))
14713 {
14714 *immbits = immediate;
14715 return 0x1;
14716 }
14717 else if (immediate == (immediate & 0x0000ff00))
14718 {
14719 *immbits = immediate >> 8;
14720 return 0x3;
14721 }
14722 else if (immediate == (immediate & 0x00ff0000))
14723 {
14724 *immbits = immediate >> 16;
14725 return 0x5;
14726 }
14727 else if (immediate == (immediate & 0xff000000))
14728 {
14729 *immbits = immediate >> 24;
14730 return 0x7;
14731 }
14732 if ((immediate & 0xffff) != (immediate >> 16))
14733 goto bad_immediate;
14734 immediate &= 0xffff;
14735 }
14736
14737 if (immediate == (immediate & 0x000000ff))
14738 {
14739 *immbits = immediate;
14740 return 0x9;
14741 }
14742 else if (immediate == (immediate & 0x0000ff00))
14743 {
14744 *immbits = immediate >> 8;
14745 return 0xb;
14746 }
14747
14748 bad_immediate:
14749 first_error (_("immediate value out of range"));
14750 return FAIL;
14751 }
14752
14753 static void
14754 do_neon_logic (void)
14755 {
14756 if (inst.operands[2].present && inst.operands[2].isreg)
14757 {
14758 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14759 neon_check_type (3, rs, N_IGNORE_TYPE);
14760 /* U bit and size field were set as part of the bitmask. */
14761 NEON_ENCODE (INTEGER, inst);
14762 neon_three_same (neon_quad (rs), 0, -1);
14763 }
14764 else
14765 {
14766 const int three_ops_form = (inst.operands[2].present
14767 && !inst.operands[2].isreg);
14768 const int immoperand = (three_ops_form ? 2 : 1);
14769 enum neon_shape rs = (three_ops_form
14770 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14771 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14772 struct neon_type_el et = neon_check_type (2, rs,
14773 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14774 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14775 unsigned immbits;
14776 int cmode;
14777
14778 if (et.type == NT_invtype)
14779 return;
14780
14781 if (three_ops_form)
14782 constraint (inst.operands[0].reg != inst.operands[1].reg,
14783 _("first and second operands shall be the same register"));
14784
14785 NEON_ENCODE (IMMED, inst);
14786
14787 immbits = inst.operands[immoperand].imm;
14788 if (et.size == 64)
14789 {
14790 /* .i64 is a pseudo-op, so the immediate must be a repeating
14791 pattern. */
14792 if (immbits != (inst.operands[immoperand].regisimm ?
14793 inst.operands[immoperand].reg : 0))
14794 {
14795 /* Set immbits to an invalid constant. */
14796 immbits = 0xdeadbeef;
14797 }
14798 }
14799
14800 switch (opcode)
14801 {
14802 case N_MNEM_vbic:
14803 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14804 break;
14805
14806 case N_MNEM_vorr:
14807 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14808 break;
14809
14810 case N_MNEM_vand:
14811 /* Pseudo-instruction for VBIC. */
14812 neon_invert_size (&immbits, 0, et.size);
14813 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14814 break;
14815
14816 case N_MNEM_vorn:
14817 /* Pseudo-instruction for VORR. */
14818 neon_invert_size (&immbits, 0, et.size);
14819 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14820 break;
14821
14822 default:
14823 abort ();
14824 }
14825
14826 if (cmode == FAIL)
14827 return;
14828
14829 inst.instruction |= neon_quad (rs) << 6;
14830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14832 inst.instruction |= cmode << 8;
14833 neon_write_immbits (immbits);
14834
14835 neon_dp_fixup (&inst);
14836 }
14837 }
14838
14839 static void
14840 do_neon_bitfield (void)
14841 {
14842 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14843 neon_check_type (3, rs, N_IGNORE_TYPE);
14844 neon_three_same (neon_quad (rs), 0, -1);
14845 }
14846
14847 static void
14848 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14849 unsigned destbits)
14850 {
14851 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14852 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14853 types | N_KEY);
14854 if (et.type == NT_float)
14855 {
14856 NEON_ENCODE (FLOAT, inst);
14857 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
14858 }
14859 else
14860 {
14861 NEON_ENCODE (INTEGER, inst);
14862 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14863 }
14864 }
14865
14866 static void
14867 do_neon_dyadic_if_su (void)
14868 {
14869 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14870 }
14871
14872 static void
14873 do_neon_dyadic_if_su_d (void)
14874 {
14875 /* This version only allow D registers, but that constraint is enforced during
14876 operand parsing so we don't need to do anything extra here. */
14877 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14878 }
14879
14880 static void
14881 do_neon_dyadic_if_i_d (void)
14882 {
14883 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14884 affected if we specify unsigned args. */
14885 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14886 }
14887
14888 enum vfp_or_neon_is_neon_bits
14889 {
14890 NEON_CHECK_CC = 1,
14891 NEON_CHECK_ARCH = 2,
14892 NEON_CHECK_ARCH8 = 4
14893 };
14894
14895 /* Call this function if an instruction which may have belonged to the VFP or
14896 Neon instruction sets, but turned out to be a Neon instruction (due to the
14897 operand types involved, etc.). We have to check and/or fix-up a couple of
14898 things:
14899
14900 - Make sure the user hasn't attempted to make a Neon instruction
14901 conditional.
14902 - Alter the value in the condition code field if necessary.
14903 - Make sure that the arch supports Neon instructions.
14904
14905 Which of these operations take place depends on bits from enum
14906 vfp_or_neon_is_neon_bits.
14907
14908 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14909 current instruction's condition is COND_ALWAYS, the condition field is
14910 changed to inst.uncond_value. This is necessary because instructions shared
14911 between VFP and Neon may be conditional for the VFP variants only, and the
14912 unconditional Neon version must have, e.g., 0xF in the condition field. */
14913
14914 static int
14915 vfp_or_neon_is_neon (unsigned check)
14916 {
14917 /* Conditions are always legal in Thumb mode (IT blocks). */
14918 if (!thumb_mode && (check & NEON_CHECK_CC))
14919 {
14920 if (inst.cond != COND_ALWAYS)
14921 {
14922 first_error (_(BAD_COND));
14923 return FAIL;
14924 }
14925 if (inst.uncond_value != -1)
14926 inst.instruction |= inst.uncond_value << 28;
14927 }
14928
14929 if ((check & NEON_CHECK_ARCH)
14930 && !mark_feature_used (&fpu_neon_ext_v1))
14931 {
14932 first_error (_(BAD_FPU));
14933 return FAIL;
14934 }
14935
14936 if ((check & NEON_CHECK_ARCH8)
14937 && !mark_feature_used (&fpu_neon_ext_armv8))
14938 {
14939 first_error (_(BAD_FPU));
14940 return FAIL;
14941 }
14942
14943 return SUCCESS;
14944 }
14945
14946 static void
14947 do_neon_addsub_if_i (void)
14948 {
14949 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14950 return;
14951
14952 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14953 return;
14954
14955 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14956 affected if we specify unsigned args. */
14957 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14958 }
14959
14960 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14961 result to be:
14962 V<op> A,B (A is operand 0, B is operand 2)
14963 to mean:
14964 V<op> A,B,A
14965 not:
14966 V<op> A,B,B
14967 so handle that case specially. */
14968
14969 static void
14970 neon_exchange_operands (void)
14971 {
14972 if (inst.operands[1].present)
14973 {
14974 void *scratch = xmalloc (sizeof (inst.operands[0]));
14975
14976 /* Swap operands[1] and operands[2]. */
14977 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14978 inst.operands[1] = inst.operands[2];
14979 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14980 free (scratch);
14981 }
14982 else
14983 {
14984 inst.operands[1] = inst.operands[2];
14985 inst.operands[2] = inst.operands[0];
14986 }
14987 }
14988
14989 static void
14990 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14991 {
14992 if (inst.operands[2].isreg)
14993 {
14994 if (invert)
14995 neon_exchange_operands ();
14996 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14997 }
14998 else
14999 {
15000 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15001 struct neon_type_el et = neon_check_type (2, rs,
15002 N_EQK | N_SIZ, immtypes | N_KEY);
15003
15004 NEON_ENCODE (IMMED, inst);
15005 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15006 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15007 inst.instruction |= LOW4 (inst.operands[1].reg);
15008 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15009 inst.instruction |= neon_quad (rs) << 6;
15010 inst.instruction |= (et.type == NT_float) << 10;
15011 inst.instruction |= neon_logbits (et.size) << 18;
15012
15013 neon_dp_fixup (&inst);
15014 }
15015 }
15016
15017 static void
15018 do_neon_cmp (void)
15019 {
15020 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
15021 }
15022
15023 static void
15024 do_neon_cmp_inv (void)
15025 {
15026 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
15027 }
15028
15029 static void
15030 do_neon_ceq (void)
15031 {
15032 neon_compare (N_IF_32, N_IF_32, FALSE);
15033 }
15034
15035 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
15036 scalars, which are encoded in 5 bits, M : Rm.
15037 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15038 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
15039 index in M. */
15040
15041 static unsigned
15042 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15043 {
15044 unsigned regno = NEON_SCALAR_REG (scalar);
15045 unsigned elno = NEON_SCALAR_INDEX (scalar);
15046
15047 switch (elsize)
15048 {
15049 case 16:
15050 if (regno > 7 || elno > 3)
15051 goto bad_scalar;
15052 return regno | (elno << 3);
15053
15054 case 32:
15055 if (regno > 15 || elno > 1)
15056 goto bad_scalar;
15057 return regno | (elno << 4);
15058
15059 default:
15060 bad_scalar:
15061 first_error (_("scalar out of range for multiply instruction"));
15062 }
15063
15064 return 0;
15065 }
15066
15067 /* Encode multiply / multiply-accumulate scalar instructions. */
15068
15069 static void
15070 neon_mul_mac (struct neon_type_el et, int ubit)
15071 {
15072 unsigned scalar;
15073
15074 /* Give a more helpful error message if we have an invalid type. */
15075 if (et.type == NT_invtype)
15076 return;
15077
15078 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
15079 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15080 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15081 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15082 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15083 inst.instruction |= LOW4 (scalar);
15084 inst.instruction |= HI1 (scalar) << 5;
15085 inst.instruction |= (et.type == NT_float) << 8;
15086 inst.instruction |= neon_logbits (et.size) << 20;
15087 inst.instruction |= (ubit != 0) << 24;
15088
15089 neon_dp_fixup (&inst);
15090 }
15091
15092 static void
15093 do_neon_mac_maybe_scalar (void)
15094 {
15095 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15096 return;
15097
15098 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15099 return;
15100
15101 if (inst.operands[2].isscalar)
15102 {
15103 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15104 struct neon_type_el et = neon_check_type (3, rs,
15105 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
15106 NEON_ENCODE (SCALAR, inst);
15107 neon_mul_mac (et, neon_quad (rs));
15108 }
15109 else
15110 {
15111 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15112 affected if we specify unsigned args. */
15113 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15114 }
15115 }
15116
15117 static void
15118 do_neon_fmac (void)
15119 {
15120 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15121 return;
15122
15123 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15124 return;
15125
15126 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15127 }
15128
15129 static void
15130 do_neon_tst (void)
15131 {
15132 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15133 struct neon_type_el et = neon_check_type (3, rs,
15134 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
15135 neon_three_same (neon_quad (rs), 0, et.size);
15136 }
15137
15138 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
15139 same types as the MAC equivalents. The polynomial type for this instruction
15140 is encoded the same as the integer type. */
15141
15142 static void
15143 do_neon_mul (void)
15144 {
15145 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15146 return;
15147
15148 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15149 return;
15150
15151 if (inst.operands[2].isscalar)
15152 do_neon_mac_maybe_scalar ();
15153 else
15154 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
15155 }
15156
15157 static void
15158 do_neon_qdmulh (void)
15159 {
15160 if (inst.operands[2].isscalar)
15161 {
15162 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15163 struct neon_type_el et = neon_check_type (3, rs,
15164 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15165 NEON_ENCODE (SCALAR, inst);
15166 neon_mul_mac (et, neon_quad (rs));
15167 }
15168 else
15169 {
15170 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15171 struct neon_type_el et = neon_check_type (3, rs,
15172 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15173 NEON_ENCODE (INTEGER, inst);
15174 /* The U bit (rounding) comes from bit mask. */
15175 neon_three_same (neon_quad (rs), 0, et.size);
15176 }
15177 }
15178
15179 static void
15180 do_neon_qrdmlah (void)
15181 {
15182 /* Check we're on the correct architecture. */
15183 if (!mark_feature_used (&fpu_neon_ext_armv8))
15184 inst.error =
15185 _("instruction form not available on this architecture.");
15186 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15187 {
15188 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15189 record_feature_use (&fpu_neon_ext_v8_1);
15190 }
15191
15192 if (inst.operands[2].isscalar)
15193 {
15194 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15195 struct neon_type_el et = neon_check_type (3, rs,
15196 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15197 NEON_ENCODE (SCALAR, inst);
15198 neon_mul_mac (et, neon_quad (rs));
15199 }
15200 else
15201 {
15202 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15203 struct neon_type_el et = neon_check_type (3, rs,
15204 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15205 NEON_ENCODE (INTEGER, inst);
15206 /* The U bit (rounding) comes from bit mask. */
15207 neon_three_same (neon_quad (rs), 0, et.size);
15208 }
15209 }
15210
15211 static void
15212 do_neon_fcmp_absolute (void)
15213 {
15214 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15215 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15216 N_F_16_32 | N_KEY);
15217 /* Size field comes from bit mask. */
15218 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
15219 }
15220
15221 static void
15222 do_neon_fcmp_absolute_inv (void)
15223 {
15224 neon_exchange_operands ();
15225 do_neon_fcmp_absolute ();
15226 }
15227
15228 static void
15229 do_neon_step (void)
15230 {
15231 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15232 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15233 N_F_16_32 | N_KEY);
15234 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15235 }
15236
15237 static void
15238 do_neon_abs_neg (void)
15239 {
15240 enum neon_shape rs;
15241 struct neon_type_el et;
15242
15243 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15244 return;
15245
15246 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15247 return;
15248
15249 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15250 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
15251
15252 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15253 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15254 inst.instruction |= LOW4 (inst.operands[1].reg);
15255 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15256 inst.instruction |= neon_quad (rs) << 6;
15257 inst.instruction |= (et.type == NT_float) << 10;
15258 inst.instruction |= neon_logbits (et.size) << 18;
15259
15260 neon_dp_fixup (&inst);
15261 }
15262
15263 static void
15264 do_neon_sli (void)
15265 {
15266 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15267 struct neon_type_el et = neon_check_type (2, rs,
15268 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15269 int imm = inst.operands[2].imm;
15270 constraint (imm < 0 || (unsigned)imm >= et.size,
15271 _("immediate out of range for insert"));
15272 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15273 }
15274
15275 static void
15276 do_neon_sri (void)
15277 {
15278 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15279 struct neon_type_el et = neon_check_type (2, rs,
15280 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15281 int imm = inst.operands[2].imm;
15282 constraint (imm < 1 || (unsigned)imm > et.size,
15283 _("immediate out of range for insert"));
15284 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
15285 }
15286
15287 static void
15288 do_neon_qshlu_imm (void)
15289 {
15290 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15291 struct neon_type_el et = neon_check_type (2, rs,
15292 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15293 int imm = inst.operands[2].imm;
15294 constraint (imm < 0 || (unsigned)imm >= et.size,
15295 _("immediate out of range for shift"));
15296 /* Only encodes the 'U present' variant of the instruction.
15297 In this case, signed types have OP (bit 8) set to 0.
15298 Unsigned types have OP set to 1. */
15299 inst.instruction |= (et.type == NT_unsigned) << 8;
15300 /* The rest of the bits are the same as other immediate shifts. */
15301 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15302 }
15303
15304 static void
15305 do_neon_qmovn (void)
15306 {
15307 struct neon_type_el et = neon_check_type (2, NS_DQ,
15308 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15309 /* Saturating move where operands can be signed or unsigned, and the
15310 destination has the same signedness. */
15311 NEON_ENCODE (INTEGER, inst);
15312 if (et.type == NT_unsigned)
15313 inst.instruction |= 0xc0;
15314 else
15315 inst.instruction |= 0x80;
15316 neon_two_same (0, 1, et.size / 2);
15317 }
15318
15319 static void
15320 do_neon_qmovun (void)
15321 {
15322 struct neon_type_el et = neon_check_type (2, NS_DQ,
15323 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15324 /* Saturating move with unsigned results. Operands must be signed. */
15325 NEON_ENCODE (INTEGER, inst);
15326 neon_two_same (0, 1, et.size / 2);
15327 }
15328
15329 static void
15330 do_neon_rshift_sat_narrow (void)
15331 {
15332 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15333 or unsigned. If operands are unsigned, results must also be unsigned. */
15334 struct neon_type_el et = neon_check_type (2, NS_DQI,
15335 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15336 int imm = inst.operands[2].imm;
15337 /* This gets the bounds check, size encoding and immediate bits calculation
15338 right. */
15339 et.size /= 2;
15340
15341 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15342 VQMOVN.I<size> <Dd>, <Qm>. */
15343 if (imm == 0)
15344 {
15345 inst.operands[2].present = 0;
15346 inst.instruction = N_MNEM_vqmovn;
15347 do_neon_qmovn ();
15348 return;
15349 }
15350
15351 constraint (imm < 1 || (unsigned)imm > et.size,
15352 _("immediate out of range"));
15353 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15354 }
15355
15356 static void
15357 do_neon_rshift_sat_narrow_u (void)
15358 {
15359 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15360 or unsigned. If operands are unsigned, results must also be unsigned. */
15361 struct neon_type_el et = neon_check_type (2, NS_DQI,
15362 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15363 int imm = inst.operands[2].imm;
15364 /* This gets the bounds check, size encoding and immediate bits calculation
15365 right. */
15366 et.size /= 2;
15367
15368 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15369 VQMOVUN.I<size> <Dd>, <Qm>. */
15370 if (imm == 0)
15371 {
15372 inst.operands[2].present = 0;
15373 inst.instruction = N_MNEM_vqmovun;
15374 do_neon_qmovun ();
15375 return;
15376 }
15377
15378 constraint (imm < 1 || (unsigned)imm > et.size,
15379 _("immediate out of range"));
15380 /* FIXME: The manual is kind of unclear about what value U should have in
15381 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15382 must be 1. */
15383 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15384 }
15385
15386 static void
15387 do_neon_movn (void)
15388 {
15389 struct neon_type_el et = neon_check_type (2, NS_DQ,
15390 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15391 NEON_ENCODE (INTEGER, inst);
15392 neon_two_same (0, 1, et.size / 2);
15393 }
15394
15395 static void
15396 do_neon_rshift_narrow (void)
15397 {
15398 struct neon_type_el et = neon_check_type (2, NS_DQI,
15399 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15400 int imm = inst.operands[2].imm;
15401 /* This gets the bounds check, size encoding and immediate bits calculation
15402 right. */
15403 et.size /= 2;
15404
15405 /* If immediate is zero then we are a pseudo-instruction for
15406 VMOVN.I<size> <Dd>, <Qm> */
15407 if (imm == 0)
15408 {
15409 inst.operands[2].present = 0;
15410 inst.instruction = N_MNEM_vmovn;
15411 do_neon_movn ();
15412 return;
15413 }
15414
15415 constraint (imm < 1 || (unsigned)imm > et.size,
15416 _("immediate out of range for narrowing operation"));
15417 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15418 }
15419
15420 static void
15421 do_neon_shll (void)
15422 {
15423 /* FIXME: Type checking when lengthening. */
15424 struct neon_type_el et = neon_check_type (2, NS_QDI,
15425 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15426 unsigned imm = inst.operands[2].imm;
15427
15428 if (imm == et.size)
15429 {
15430 /* Maximum shift variant. */
15431 NEON_ENCODE (INTEGER, inst);
15432 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15433 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15434 inst.instruction |= LOW4 (inst.operands[1].reg);
15435 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15436 inst.instruction |= neon_logbits (et.size) << 18;
15437
15438 neon_dp_fixup (&inst);
15439 }
15440 else
15441 {
15442 /* A more-specific type check for non-max versions. */
15443 et = neon_check_type (2, NS_QDI,
15444 N_EQK | N_DBL, N_SU_32 | N_KEY);
15445 NEON_ENCODE (IMMED, inst);
15446 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15447 }
15448 }
15449
15450 /* Check the various types for the VCVT instruction, and return which version
15451 the current instruction is. */
15452
15453 #define CVT_FLAVOUR_VAR \
15454 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15455 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15456 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15457 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15458 /* Half-precision conversions. */ \
15459 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15460 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15461 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15462 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
15463 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15464 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15465 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15466 Compared with single/double precision variants, only the co-processor \
15467 field is different, so the encoding flow is reused here. */ \
15468 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15469 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15470 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15471 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
15472 /* VFP instructions. */ \
15473 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15474 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15475 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15476 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15477 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15478 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15479 /* VFP instructions with bitshift. */ \
15480 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15481 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15482 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15483 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15484 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15485 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15486 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15487 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15488
15489 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15490 neon_cvt_flavour_##C,
15491
15492 /* The different types of conversions we can do. */
15493 enum neon_cvt_flavour
15494 {
15495 CVT_FLAVOUR_VAR
15496 neon_cvt_flavour_invalid,
15497 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15498 };
15499
15500 #undef CVT_VAR
15501
15502 static enum neon_cvt_flavour
15503 get_neon_cvt_flavour (enum neon_shape rs)
15504 {
15505 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15506 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15507 if (et.type != NT_invtype) \
15508 { \
15509 inst.error = NULL; \
15510 return (neon_cvt_flavour_##C); \
15511 }
15512
15513 struct neon_type_el et;
15514 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15515 || rs == NS_FF) ? N_VFP : 0;
15516 /* The instruction versions which take an immediate take one register
15517 argument, which is extended to the width of the full register. Thus the
15518 "source" and "destination" registers must have the same width. Hack that
15519 here by making the size equal to the key (wider, in this case) operand. */
15520 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15521
15522 CVT_FLAVOUR_VAR;
15523
15524 return neon_cvt_flavour_invalid;
15525 #undef CVT_VAR
15526 }
15527
15528 enum neon_cvt_mode
15529 {
15530 neon_cvt_mode_a,
15531 neon_cvt_mode_n,
15532 neon_cvt_mode_p,
15533 neon_cvt_mode_m,
15534 neon_cvt_mode_z,
15535 neon_cvt_mode_x,
15536 neon_cvt_mode_r
15537 };
15538
15539 /* Neon-syntax VFP conversions. */
15540
15541 static void
15542 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15543 {
15544 const char *opname = 0;
15545
15546 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15547 || rs == NS_FHI || rs == NS_HFI)
15548 {
15549 /* Conversions with immediate bitshift. */
15550 const char *enc[] =
15551 {
15552 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15553 CVT_FLAVOUR_VAR
15554 NULL
15555 #undef CVT_VAR
15556 };
15557
15558 if (flavour < (int) ARRAY_SIZE (enc))
15559 {
15560 opname = enc[flavour];
15561 constraint (inst.operands[0].reg != inst.operands[1].reg,
15562 _("operands 0 and 1 must be the same register"));
15563 inst.operands[1] = inst.operands[2];
15564 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15565 }
15566 }
15567 else
15568 {
15569 /* Conversions without bitshift. */
15570 const char *enc[] =
15571 {
15572 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15573 CVT_FLAVOUR_VAR
15574 NULL
15575 #undef CVT_VAR
15576 };
15577
15578 if (flavour < (int) ARRAY_SIZE (enc))
15579 opname = enc[flavour];
15580 }
15581
15582 if (opname)
15583 do_vfp_nsyn_opcode (opname);
15584
15585 /* ARMv8.2 fp16 VCVT instruction. */
15586 if (flavour == neon_cvt_flavour_s32_f16
15587 || flavour == neon_cvt_flavour_u32_f16
15588 || flavour == neon_cvt_flavour_f16_u32
15589 || flavour == neon_cvt_flavour_f16_s32)
15590 do_scalar_fp16_v82_encode ();
15591 }
15592
15593 static void
15594 do_vfp_nsyn_cvtz (void)
15595 {
15596 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
15597 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15598 const char *enc[] =
15599 {
15600 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15601 CVT_FLAVOUR_VAR
15602 NULL
15603 #undef CVT_VAR
15604 };
15605
15606 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15607 do_vfp_nsyn_opcode (enc[flavour]);
15608 }
15609
15610 static void
15611 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15612 enum neon_cvt_mode mode)
15613 {
15614 int sz, op;
15615 int rm;
15616
15617 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15618 D register operands. */
15619 if (flavour == neon_cvt_flavour_s32_f64
15620 || flavour == neon_cvt_flavour_u32_f64)
15621 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15622 _(BAD_FPU));
15623
15624 if (flavour == neon_cvt_flavour_s32_f16
15625 || flavour == neon_cvt_flavour_u32_f16)
15626 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15627 _(BAD_FP16));
15628
15629 set_it_insn_type (OUTSIDE_IT_INSN);
15630
15631 switch (flavour)
15632 {
15633 case neon_cvt_flavour_s32_f64:
15634 sz = 1;
15635 op = 1;
15636 break;
15637 case neon_cvt_flavour_s32_f32:
15638 sz = 0;
15639 op = 1;
15640 break;
15641 case neon_cvt_flavour_s32_f16:
15642 sz = 0;
15643 op = 1;
15644 break;
15645 case neon_cvt_flavour_u32_f64:
15646 sz = 1;
15647 op = 0;
15648 break;
15649 case neon_cvt_flavour_u32_f32:
15650 sz = 0;
15651 op = 0;
15652 break;
15653 case neon_cvt_flavour_u32_f16:
15654 sz = 0;
15655 op = 0;
15656 break;
15657 default:
15658 first_error (_("invalid instruction shape"));
15659 return;
15660 }
15661
15662 switch (mode)
15663 {
15664 case neon_cvt_mode_a: rm = 0; break;
15665 case neon_cvt_mode_n: rm = 1; break;
15666 case neon_cvt_mode_p: rm = 2; break;
15667 case neon_cvt_mode_m: rm = 3; break;
15668 default: first_error (_("invalid rounding mode")); return;
15669 }
15670
15671 NEON_ENCODE (FPV8, inst);
15672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15673 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15674 inst.instruction |= sz << 8;
15675
15676 /* ARMv8.2 fp16 VCVT instruction. */
15677 if (flavour == neon_cvt_flavour_s32_f16
15678 ||flavour == neon_cvt_flavour_u32_f16)
15679 do_scalar_fp16_v82_encode ();
15680 inst.instruction |= op << 7;
15681 inst.instruction |= rm << 16;
15682 inst.instruction |= 0xf0000000;
15683 inst.is_neon = TRUE;
15684 }
15685
15686 static void
15687 do_neon_cvt_1 (enum neon_cvt_mode mode)
15688 {
15689 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15690 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15691 NS_FH, NS_HF, NS_FHI, NS_HFI,
15692 NS_NULL);
15693 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15694
15695 if (flavour == neon_cvt_flavour_invalid)
15696 return;
15697
15698 /* PR11109: Handle round-to-zero for VCVT conversions. */
15699 if (mode == neon_cvt_mode_z
15700 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15701 && (flavour == neon_cvt_flavour_s16_f16
15702 || flavour == neon_cvt_flavour_u16_f16
15703 || flavour == neon_cvt_flavour_s32_f32
15704 || flavour == neon_cvt_flavour_u32_f32
15705 || flavour == neon_cvt_flavour_s32_f64
15706 || flavour == neon_cvt_flavour_u32_f64)
15707 && (rs == NS_FD || rs == NS_FF))
15708 {
15709 do_vfp_nsyn_cvtz ();
15710 return;
15711 }
15712
15713 /* ARMv8.2 fp16 VCVT conversions. */
15714 if (mode == neon_cvt_mode_z
15715 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15716 && (flavour == neon_cvt_flavour_s32_f16
15717 || flavour == neon_cvt_flavour_u32_f16)
15718 && (rs == NS_FH))
15719 {
15720 do_vfp_nsyn_cvtz ();
15721 do_scalar_fp16_v82_encode ();
15722 return;
15723 }
15724
15725 /* VFP rather than Neon conversions. */
15726 if (flavour >= neon_cvt_flavour_first_fp)
15727 {
15728 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15729 do_vfp_nsyn_cvt (rs, flavour);
15730 else
15731 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15732
15733 return;
15734 }
15735
15736 switch (rs)
15737 {
15738 case NS_DDI:
15739 case NS_QQI:
15740 {
15741 unsigned immbits;
15742 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15743 0x0000100, 0x1000100, 0x0, 0x1000000};
15744
15745 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15746 return;
15747
15748 /* Fixed-point conversion with #0 immediate is encoded as an
15749 integer conversion. */
15750 if (inst.operands[2].present && inst.operands[2].imm == 0)
15751 goto int_encode;
15752 NEON_ENCODE (IMMED, inst);
15753 if (flavour != neon_cvt_flavour_invalid)
15754 inst.instruction |= enctab[flavour];
15755 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15757 inst.instruction |= LOW4 (inst.operands[1].reg);
15758 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15759 inst.instruction |= neon_quad (rs) << 6;
15760 inst.instruction |= 1 << 21;
15761 if (flavour < neon_cvt_flavour_s16_f16)
15762 {
15763 inst.instruction |= 1 << 21;
15764 immbits = 32 - inst.operands[2].imm;
15765 inst.instruction |= immbits << 16;
15766 }
15767 else
15768 {
15769 inst.instruction |= 3 << 20;
15770 immbits = 16 - inst.operands[2].imm;
15771 inst.instruction |= immbits << 16;
15772 inst.instruction &= ~(1 << 9);
15773 }
15774
15775 neon_dp_fixup (&inst);
15776 }
15777 break;
15778
15779 case NS_DD:
15780 case NS_QQ:
15781 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15782 {
15783 NEON_ENCODE (FLOAT, inst);
15784 set_it_insn_type (OUTSIDE_IT_INSN);
15785
15786 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15787 return;
15788
15789 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15790 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15791 inst.instruction |= LOW4 (inst.operands[1].reg);
15792 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15793 inst.instruction |= neon_quad (rs) << 6;
15794 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15795 || flavour == neon_cvt_flavour_u32_f32) << 7;
15796 inst.instruction |= mode << 8;
15797 if (flavour == neon_cvt_flavour_u16_f16
15798 || flavour == neon_cvt_flavour_s16_f16)
15799 /* Mask off the original size bits and reencode them. */
15800 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15801
15802 if (thumb_mode)
15803 inst.instruction |= 0xfc000000;
15804 else
15805 inst.instruction |= 0xf0000000;
15806 }
15807 else
15808 {
15809 int_encode:
15810 {
15811 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15812 0x100, 0x180, 0x0, 0x080};
15813
15814 NEON_ENCODE (INTEGER, inst);
15815
15816 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15817 return;
15818
15819 if (flavour != neon_cvt_flavour_invalid)
15820 inst.instruction |= enctab[flavour];
15821
15822 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15823 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15824 inst.instruction |= LOW4 (inst.operands[1].reg);
15825 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15826 inst.instruction |= neon_quad (rs) << 6;
15827 if (flavour >= neon_cvt_flavour_s16_f16
15828 && flavour <= neon_cvt_flavour_f16_u16)
15829 /* Half precision. */
15830 inst.instruction |= 1 << 18;
15831 else
15832 inst.instruction |= 2 << 18;
15833
15834 neon_dp_fixup (&inst);
15835 }
15836 }
15837 break;
15838
15839 /* Half-precision conversions for Advanced SIMD -- neon. */
15840 case NS_QD:
15841 case NS_DQ:
15842
15843 if ((rs == NS_DQ)
15844 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15845 {
15846 as_bad (_("operand size must match register width"));
15847 break;
15848 }
15849
15850 if ((rs == NS_QD)
15851 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15852 {
15853 as_bad (_("operand size must match register width"));
15854 break;
15855 }
15856
15857 if (rs == NS_DQ)
15858 inst.instruction = 0x3b60600;
15859 else
15860 inst.instruction = 0x3b60700;
15861
15862 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15863 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15864 inst.instruction |= LOW4 (inst.operands[1].reg);
15865 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15866 neon_dp_fixup (&inst);
15867 break;
15868
15869 default:
15870 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15871 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15872 do_vfp_nsyn_cvt (rs, flavour);
15873 else
15874 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15875 }
15876 }
15877
15878 static void
15879 do_neon_cvtr (void)
15880 {
15881 do_neon_cvt_1 (neon_cvt_mode_x);
15882 }
15883
15884 static void
15885 do_neon_cvt (void)
15886 {
15887 do_neon_cvt_1 (neon_cvt_mode_z);
15888 }
15889
15890 static void
15891 do_neon_cvta (void)
15892 {
15893 do_neon_cvt_1 (neon_cvt_mode_a);
15894 }
15895
15896 static void
15897 do_neon_cvtn (void)
15898 {
15899 do_neon_cvt_1 (neon_cvt_mode_n);
15900 }
15901
15902 static void
15903 do_neon_cvtp (void)
15904 {
15905 do_neon_cvt_1 (neon_cvt_mode_p);
15906 }
15907
15908 static void
15909 do_neon_cvtm (void)
15910 {
15911 do_neon_cvt_1 (neon_cvt_mode_m);
15912 }
15913
15914 static void
15915 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15916 {
15917 if (is_double)
15918 mark_feature_used (&fpu_vfp_ext_armv8);
15919
15920 encode_arm_vfp_reg (inst.operands[0].reg,
15921 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15922 encode_arm_vfp_reg (inst.operands[1].reg,
15923 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15924 inst.instruction |= to ? 0x10000 : 0;
15925 inst.instruction |= t ? 0x80 : 0;
15926 inst.instruction |= is_double ? 0x100 : 0;
15927 do_vfp_cond_or_thumb ();
15928 }
15929
15930 static void
15931 do_neon_cvttb_1 (bfd_boolean t)
15932 {
15933 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
15934 NS_DF, NS_DH, NS_NULL);
15935
15936 if (rs == NS_NULL)
15937 return;
15938 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15939 {
15940 inst.error = NULL;
15941 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15942 }
15943 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15944 {
15945 inst.error = NULL;
15946 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15947 }
15948 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15949 {
15950 /* The VCVTB and VCVTT instructions with D-register operands
15951 don't work for SP only targets. */
15952 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15953 _(BAD_FPU));
15954
15955 inst.error = NULL;
15956 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15957 }
15958 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15959 {
15960 /* The VCVTB and VCVTT instructions with D-register operands
15961 don't work for SP only targets. */
15962 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15963 _(BAD_FPU));
15964
15965 inst.error = NULL;
15966 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15967 }
15968 else
15969 return;
15970 }
15971
15972 static void
15973 do_neon_cvtb (void)
15974 {
15975 do_neon_cvttb_1 (FALSE);
15976 }
15977
15978
15979 static void
15980 do_neon_cvtt (void)
15981 {
15982 do_neon_cvttb_1 (TRUE);
15983 }
15984
15985 static void
15986 neon_move_immediate (void)
15987 {
15988 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15989 struct neon_type_el et = neon_check_type (2, rs,
15990 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15991 unsigned immlo, immhi = 0, immbits;
15992 int op, cmode, float_p;
15993
15994 constraint (et.type == NT_invtype,
15995 _("operand size must be specified for immediate VMOV"));
15996
15997 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
15998 op = (inst.instruction & (1 << 5)) != 0;
15999
16000 immlo = inst.operands[1].imm;
16001 if (inst.operands[1].regisimm)
16002 immhi = inst.operands[1].reg;
16003
16004 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
16005 _("immediate has bits set outside the operand size"));
16006
16007 float_p = inst.operands[1].immisfloat;
16008
16009 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
16010 et.size, et.type)) == FAIL)
16011 {
16012 /* Invert relevant bits only. */
16013 neon_invert_size (&immlo, &immhi, et.size);
16014 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
16015 with one or the other; those cases are caught by
16016 neon_cmode_for_move_imm. */
16017 op = !op;
16018 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16019 &op, et.size, et.type)) == FAIL)
16020 {
16021 first_error (_("immediate out of range"));
16022 return;
16023 }
16024 }
16025
16026 inst.instruction &= ~(1 << 5);
16027 inst.instruction |= op << 5;
16028
16029 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16030 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16031 inst.instruction |= neon_quad (rs) << 6;
16032 inst.instruction |= cmode << 8;
16033
16034 neon_write_immbits (immbits);
16035 }
16036
16037 static void
16038 do_neon_mvn (void)
16039 {
16040 if (inst.operands[1].isreg)
16041 {
16042 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16043
16044 NEON_ENCODE (INTEGER, inst);
16045 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16046 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16047 inst.instruction |= LOW4 (inst.operands[1].reg);
16048 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16049 inst.instruction |= neon_quad (rs) << 6;
16050 }
16051 else
16052 {
16053 NEON_ENCODE (IMMED, inst);
16054 neon_move_immediate ();
16055 }
16056
16057 neon_dp_fixup (&inst);
16058 }
16059
16060 /* Encode instructions of form:
16061
16062 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16063 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
16064
16065 static void
16066 neon_mixed_length (struct neon_type_el et, unsigned size)
16067 {
16068 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16069 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16070 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16071 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16072 inst.instruction |= LOW4 (inst.operands[2].reg);
16073 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16074 inst.instruction |= (et.type == NT_unsigned) << 24;
16075 inst.instruction |= neon_logbits (size) << 20;
16076
16077 neon_dp_fixup (&inst);
16078 }
16079
16080 static void
16081 do_neon_dyadic_long (void)
16082 {
16083 /* FIXME: Type checking for lengthening op. */
16084 struct neon_type_el et = neon_check_type (3, NS_QDD,
16085 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16086 neon_mixed_length (et, et.size);
16087 }
16088
16089 static void
16090 do_neon_abal (void)
16091 {
16092 struct neon_type_el et = neon_check_type (3, NS_QDD,
16093 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16094 neon_mixed_length (et, et.size);
16095 }
16096
16097 static void
16098 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16099 {
16100 if (inst.operands[2].isscalar)
16101 {
16102 struct neon_type_el et = neon_check_type (3, NS_QDS,
16103 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
16104 NEON_ENCODE (SCALAR, inst);
16105 neon_mul_mac (et, et.type == NT_unsigned);
16106 }
16107 else
16108 {
16109 struct neon_type_el et = neon_check_type (3, NS_QDD,
16110 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
16111 NEON_ENCODE (INTEGER, inst);
16112 neon_mixed_length (et, et.size);
16113 }
16114 }
16115
16116 static void
16117 do_neon_mac_maybe_scalar_long (void)
16118 {
16119 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16120 }
16121
16122 static void
16123 do_neon_dyadic_wide (void)
16124 {
16125 struct neon_type_el et = neon_check_type (3, NS_QQD,
16126 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16127 neon_mixed_length (et, et.size);
16128 }
16129
16130 static void
16131 do_neon_dyadic_narrow (void)
16132 {
16133 struct neon_type_el et = neon_check_type (3, NS_QDD,
16134 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
16135 /* Operand sign is unimportant, and the U bit is part of the opcode,
16136 so force the operand type to integer. */
16137 et.type = NT_integer;
16138 neon_mixed_length (et, et.size / 2);
16139 }
16140
16141 static void
16142 do_neon_mul_sat_scalar_long (void)
16143 {
16144 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16145 }
16146
16147 static void
16148 do_neon_vmull (void)
16149 {
16150 if (inst.operands[2].isscalar)
16151 do_neon_mac_maybe_scalar_long ();
16152 else
16153 {
16154 struct neon_type_el et = neon_check_type (3, NS_QDD,
16155 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
16156
16157 if (et.type == NT_poly)
16158 NEON_ENCODE (POLY, inst);
16159 else
16160 NEON_ENCODE (INTEGER, inst);
16161
16162 /* For polynomial encoding the U bit must be zero, and the size must
16163 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16164 obviously, as 0b10). */
16165 if (et.size == 64)
16166 {
16167 /* Check we're on the correct architecture. */
16168 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16169 inst.error =
16170 _("Instruction form not available on this architecture.");
16171
16172 et.size = 32;
16173 }
16174
16175 neon_mixed_length (et, et.size);
16176 }
16177 }
16178
16179 static void
16180 do_neon_ext (void)
16181 {
16182 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
16183 struct neon_type_el et = neon_check_type (3, rs,
16184 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16185 unsigned imm = (inst.operands[3].imm * et.size) / 8;
16186
16187 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16188 _("shift out of range"));
16189 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16190 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16191 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16192 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16193 inst.instruction |= LOW4 (inst.operands[2].reg);
16194 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16195 inst.instruction |= neon_quad (rs) << 6;
16196 inst.instruction |= imm << 8;
16197
16198 neon_dp_fixup (&inst);
16199 }
16200
16201 static void
16202 do_neon_rev (void)
16203 {
16204 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16205 struct neon_type_el et = neon_check_type (2, rs,
16206 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16207 unsigned op = (inst.instruction >> 7) & 3;
16208 /* N (width of reversed regions) is encoded as part of the bitmask. We
16209 extract it here to check the elements to be reversed are smaller.
16210 Otherwise we'd get a reserved instruction. */
16211 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
16212 gas_assert (elsize != 0);
16213 constraint (et.size >= elsize,
16214 _("elements must be smaller than reversal region"));
16215 neon_two_same (neon_quad (rs), 1, et.size);
16216 }
16217
16218 static void
16219 do_neon_dup (void)
16220 {
16221 if (inst.operands[1].isscalar)
16222 {
16223 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
16224 struct neon_type_el et = neon_check_type (2, rs,
16225 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16226 unsigned sizebits = et.size >> 3;
16227 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
16228 int logsize = neon_logbits (et.size);
16229 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
16230
16231 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
16232 return;
16233
16234 NEON_ENCODE (SCALAR, inst);
16235 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16236 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16237 inst.instruction |= LOW4 (dm);
16238 inst.instruction |= HI1 (dm) << 5;
16239 inst.instruction |= neon_quad (rs) << 6;
16240 inst.instruction |= x << 17;
16241 inst.instruction |= sizebits << 16;
16242
16243 neon_dp_fixup (&inst);
16244 }
16245 else
16246 {
16247 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16248 struct neon_type_el et = neon_check_type (2, rs,
16249 N_8 | N_16 | N_32 | N_KEY, N_EQK);
16250 /* Duplicate ARM register to lanes of vector. */
16251 NEON_ENCODE (ARMREG, inst);
16252 switch (et.size)
16253 {
16254 case 8: inst.instruction |= 0x400000; break;
16255 case 16: inst.instruction |= 0x000020; break;
16256 case 32: inst.instruction |= 0x000000; break;
16257 default: break;
16258 }
16259 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16260 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16261 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
16262 inst.instruction |= neon_quad (rs) << 21;
16263 /* The encoding for this instruction is identical for the ARM and Thumb
16264 variants, except for the condition field. */
16265 do_vfp_cond_or_thumb ();
16266 }
16267 }
16268
16269 /* VMOV has particularly many variations. It can be one of:
16270 0. VMOV<c><q> <Qd>, <Qm>
16271 1. VMOV<c><q> <Dd>, <Dm>
16272 (Register operations, which are VORR with Rm = Rn.)
16273 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16274 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16275 (Immediate loads.)
16276 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16277 (ARM register to scalar.)
16278 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16279 (Two ARM registers to vector.)
16280 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16281 (Scalar to ARM register.)
16282 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16283 (Vector to two ARM registers.)
16284 8. VMOV.F32 <Sd>, <Sm>
16285 9. VMOV.F64 <Dd>, <Dm>
16286 (VFP register moves.)
16287 10. VMOV.F32 <Sd>, #imm
16288 11. VMOV.F64 <Dd>, #imm
16289 (VFP float immediate load.)
16290 12. VMOV <Rd>, <Sm>
16291 (VFP single to ARM reg.)
16292 13. VMOV <Sd>, <Rm>
16293 (ARM reg to VFP single.)
16294 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16295 (Two ARM regs to two VFP singles.)
16296 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16297 (Two VFP singles to two ARM regs.)
16298
16299 These cases can be disambiguated using neon_select_shape, except cases 1/9
16300 and 3/11 which depend on the operand type too.
16301
16302 All the encoded bits are hardcoded by this function.
16303
16304 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16305 Cases 5, 7 may be used with VFPv2 and above.
16306
16307 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
16308 can specify a type where it doesn't make sense to, and is ignored). */
16309
16310 static void
16311 do_neon_mov (void)
16312 {
16313 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
16314 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16315 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16316 NS_HR, NS_RH, NS_HI, NS_NULL);
16317 struct neon_type_el et;
16318 const char *ldconst = 0;
16319
16320 switch (rs)
16321 {
16322 case NS_DD: /* case 1/9. */
16323 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16324 /* It is not an error here if no type is given. */
16325 inst.error = NULL;
16326 if (et.type == NT_float && et.size == 64)
16327 {
16328 do_vfp_nsyn_opcode ("fcpyd");
16329 break;
16330 }
16331 /* fall through. */
16332
16333 case NS_QQ: /* case 0/1. */
16334 {
16335 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16336 return;
16337 /* The architecture manual I have doesn't explicitly state which
16338 value the U bit should have for register->register moves, but
16339 the equivalent VORR instruction has U = 0, so do that. */
16340 inst.instruction = 0x0200110;
16341 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16342 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16343 inst.instruction |= LOW4 (inst.operands[1].reg);
16344 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16345 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16346 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16347 inst.instruction |= neon_quad (rs) << 6;
16348
16349 neon_dp_fixup (&inst);
16350 }
16351 break;
16352
16353 case NS_DI: /* case 3/11. */
16354 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16355 inst.error = NULL;
16356 if (et.type == NT_float && et.size == 64)
16357 {
16358 /* case 11 (fconstd). */
16359 ldconst = "fconstd";
16360 goto encode_fconstd;
16361 }
16362 /* fall through. */
16363
16364 case NS_QI: /* case 2/3. */
16365 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16366 return;
16367 inst.instruction = 0x0800010;
16368 neon_move_immediate ();
16369 neon_dp_fixup (&inst);
16370 break;
16371
16372 case NS_SR: /* case 4. */
16373 {
16374 unsigned bcdebits = 0;
16375 int logsize;
16376 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16377 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
16378
16379 /* .<size> is optional here, defaulting to .32. */
16380 if (inst.vectype.elems == 0
16381 && inst.operands[0].vectype.type == NT_invtype
16382 && inst.operands[1].vectype.type == NT_invtype)
16383 {
16384 inst.vectype.el[0].type = NT_untyped;
16385 inst.vectype.el[0].size = 32;
16386 inst.vectype.elems = 1;
16387 }
16388
16389 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16390 logsize = neon_logbits (et.size);
16391
16392 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16393 _(BAD_FPU));
16394 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16395 && et.size != 32, _(BAD_FPU));
16396 constraint (et.type == NT_invtype, _("bad type for scalar"));
16397 constraint (x >= 64 / et.size, _("scalar index out of range"));
16398
16399 switch (et.size)
16400 {
16401 case 8: bcdebits = 0x8; break;
16402 case 16: bcdebits = 0x1; break;
16403 case 32: bcdebits = 0x0; break;
16404 default: ;
16405 }
16406
16407 bcdebits |= x << logsize;
16408
16409 inst.instruction = 0xe000b10;
16410 do_vfp_cond_or_thumb ();
16411 inst.instruction |= LOW4 (dn) << 16;
16412 inst.instruction |= HI1 (dn) << 7;
16413 inst.instruction |= inst.operands[1].reg << 12;
16414 inst.instruction |= (bcdebits & 3) << 5;
16415 inst.instruction |= (bcdebits >> 2) << 21;
16416 }
16417 break;
16418
16419 case NS_DRR: /* case 5 (fmdrr). */
16420 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16421 _(BAD_FPU));
16422
16423 inst.instruction = 0xc400b10;
16424 do_vfp_cond_or_thumb ();
16425 inst.instruction |= LOW4 (inst.operands[0].reg);
16426 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16427 inst.instruction |= inst.operands[1].reg << 12;
16428 inst.instruction |= inst.operands[2].reg << 16;
16429 break;
16430
16431 case NS_RS: /* case 6. */
16432 {
16433 unsigned logsize;
16434 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16435 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16436 unsigned abcdebits = 0;
16437
16438 /* .<dt> is optional here, defaulting to .32. */
16439 if (inst.vectype.elems == 0
16440 && inst.operands[0].vectype.type == NT_invtype
16441 && inst.operands[1].vectype.type == NT_invtype)
16442 {
16443 inst.vectype.el[0].type = NT_untyped;
16444 inst.vectype.el[0].size = 32;
16445 inst.vectype.elems = 1;
16446 }
16447
16448 et = neon_check_type (2, NS_NULL,
16449 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16450 logsize = neon_logbits (et.size);
16451
16452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16453 _(BAD_FPU));
16454 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16455 && et.size != 32, _(BAD_FPU));
16456 constraint (et.type == NT_invtype, _("bad type for scalar"));
16457 constraint (x >= 64 / et.size, _("scalar index out of range"));
16458
16459 switch (et.size)
16460 {
16461 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16462 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16463 case 32: abcdebits = 0x00; break;
16464 default: ;
16465 }
16466
16467 abcdebits |= x << logsize;
16468 inst.instruction = 0xe100b10;
16469 do_vfp_cond_or_thumb ();
16470 inst.instruction |= LOW4 (dn) << 16;
16471 inst.instruction |= HI1 (dn) << 7;
16472 inst.instruction |= inst.operands[0].reg << 12;
16473 inst.instruction |= (abcdebits & 3) << 5;
16474 inst.instruction |= (abcdebits >> 2) << 21;
16475 }
16476 break;
16477
16478 case NS_RRD: /* case 7 (fmrrd). */
16479 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16480 _(BAD_FPU));
16481
16482 inst.instruction = 0xc500b10;
16483 do_vfp_cond_or_thumb ();
16484 inst.instruction |= inst.operands[0].reg << 12;
16485 inst.instruction |= inst.operands[1].reg << 16;
16486 inst.instruction |= LOW4 (inst.operands[2].reg);
16487 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16488 break;
16489
16490 case NS_FF: /* case 8 (fcpys). */
16491 do_vfp_nsyn_opcode ("fcpys");
16492 break;
16493
16494 case NS_HI:
16495 case NS_FI: /* case 10 (fconsts). */
16496 ldconst = "fconsts";
16497 encode_fconstd:
16498 if (is_quarter_float (inst.operands[1].imm))
16499 {
16500 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16501 do_vfp_nsyn_opcode (ldconst);
16502
16503 /* ARMv8.2 fp16 vmov.f16 instruction. */
16504 if (rs == NS_HI)
16505 do_scalar_fp16_v82_encode ();
16506 }
16507 else
16508 first_error (_("immediate out of range"));
16509 break;
16510
16511 case NS_RH:
16512 case NS_RF: /* case 12 (fmrs). */
16513 do_vfp_nsyn_opcode ("fmrs");
16514 /* ARMv8.2 fp16 vmov.f16 instruction. */
16515 if (rs == NS_RH)
16516 do_scalar_fp16_v82_encode ();
16517 break;
16518
16519 case NS_HR:
16520 case NS_FR: /* case 13 (fmsr). */
16521 do_vfp_nsyn_opcode ("fmsr");
16522 /* ARMv8.2 fp16 vmov.f16 instruction. */
16523 if (rs == NS_HR)
16524 do_scalar_fp16_v82_encode ();
16525 break;
16526
16527 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16528 (one of which is a list), but we have parsed four. Do some fiddling to
16529 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16530 expect. */
16531 case NS_RRFF: /* case 14 (fmrrs). */
16532 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16533 _("VFP registers must be adjacent"));
16534 inst.operands[2].imm = 2;
16535 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16536 do_vfp_nsyn_opcode ("fmrrs");
16537 break;
16538
16539 case NS_FFRR: /* case 15 (fmsrr). */
16540 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16541 _("VFP registers must be adjacent"));
16542 inst.operands[1] = inst.operands[2];
16543 inst.operands[2] = inst.operands[3];
16544 inst.operands[0].imm = 2;
16545 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16546 do_vfp_nsyn_opcode ("fmsrr");
16547 break;
16548
16549 case NS_NULL:
16550 /* neon_select_shape has determined that the instruction
16551 shape is wrong and has already set the error message. */
16552 break;
16553
16554 default:
16555 abort ();
16556 }
16557 }
16558
16559 static void
16560 do_neon_rshift_round_imm (void)
16561 {
16562 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16563 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16564 int imm = inst.operands[2].imm;
16565
16566 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16567 if (imm == 0)
16568 {
16569 inst.operands[2].present = 0;
16570 do_neon_mov ();
16571 return;
16572 }
16573
16574 constraint (imm < 1 || (unsigned)imm > et.size,
16575 _("immediate out of range for shift"));
16576 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16577 et.size - imm);
16578 }
16579
16580 static void
16581 do_neon_movhf (void)
16582 {
16583 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16584 constraint (rs != NS_HH, _("invalid suffix"));
16585
16586 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16587 _(BAD_FPU));
16588
16589 do_vfp_sp_monadic ();
16590
16591 inst.is_neon = 1;
16592 inst.instruction |= 0xf0000000;
16593 }
16594
16595 static void
16596 do_neon_movl (void)
16597 {
16598 struct neon_type_el et = neon_check_type (2, NS_QD,
16599 N_EQK | N_DBL, N_SU_32 | N_KEY);
16600 unsigned sizebits = et.size >> 3;
16601 inst.instruction |= sizebits << 19;
16602 neon_two_same (0, et.type == NT_unsigned, -1);
16603 }
16604
16605 static void
16606 do_neon_trn (void)
16607 {
16608 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16609 struct neon_type_el et = neon_check_type (2, rs,
16610 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16611 NEON_ENCODE (INTEGER, inst);
16612 neon_two_same (neon_quad (rs), 1, et.size);
16613 }
16614
16615 static void
16616 do_neon_zip_uzp (void)
16617 {
16618 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16619 struct neon_type_el et = neon_check_type (2, rs,
16620 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16621 if (rs == NS_DD && et.size == 32)
16622 {
16623 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16624 inst.instruction = N_MNEM_vtrn;
16625 do_neon_trn ();
16626 return;
16627 }
16628 neon_two_same (neon_quad (rs), 1, et.size);
16629 }
16630
16631 static void
16632 do_neon_sat_abs_neg (void)
16633 {
16634 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16635 struct neon_type_el et = neon_check_type (2, rs,
16636 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16637 neon_two_same (neon_quad (rs), 1, et.size);
16638 }
16639
16640 static void
16641 do_neon_pair_long (void)
16642 {
16643 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16644 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16645 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16646 inst.instruction |= (et.type == NT_unsigned) << 7;
16647 neon_two_same (neon_quad (rs), 1, et.size);
16648 }
16649
16650 static void
16651 do_neon_recip_est (void)
16652 {
16653 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16654 struct neon_type_el et = neon_check_type (2, rs,
16655 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
16656 inst.instruction |= (et.type == NT_float) << 8;
16657 neon_two_same (neon_quad (rs), 1, et.size);
16658 }
16659
16660 static void
16661 do_neon_cls (void)
16662 {
16663 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16664 struct neon_type_el et = neon_check_type (2, rs,
16665 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16666 neon_two_same (neon_quad (rs), 1, et.size);
16667 }
16668
16669 static void
16670 do_neon_clz (void)
16671 {
16672 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16673 struct neon_type_el et = neon_check_type (2, rs,
16674 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16675 neon_two_same (neon_quad (rs), 1, et.size);
16676 }
16677
16678 static void
16679 do_neon_cnt (void)
16680 {
16681 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16682 struct neon_type_el et = neon_check_type (2, rs,
16683 N_EQK | N_INT, N_8 | N_KEY);
16684 neon_two_same (neon_quad (rs), 1, et.size);
16685 }
16686
16687 static void
16688 do_neon_swp (void)
16689 {
16690 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16691 neon_two_same (neon_quad (rs), 1, -1);
16692 }
16693
16694 static void
16695 do_neon_tbl_tbx (void)
16696 {
16697 unsigned listlenbits;
16698 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16699
16700 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16701 {
16702 first_error (_("bad list length for table lookup"));
16703 return;
16704 }
16705
16706 listlenbits = inst.operands[1].imm - 1;
16707 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16708 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16709 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16710 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16711 inst.instruction |= LOW4 (inst.operands[2].reg);
16712 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16713 inst.instruction |= listlenbits << 8;
16714
16715 neon_dp_fixup (&inst);
16716 }
16717
16718 static void
16719 do_neon_ldm_stm (void)
16720 {
16721 /* P, U and L bits are part of bitmask. */
16722 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16723 unsigned offsetbits = inst.operands[1].imm * 2;
16724
16725 if (inst.operands[1].issingle)
16726 {
16727 do_vfp_nsyn_ldm_stm (is_dbmode);
16728 return;
16729 }
16730
16731 constraint (is_dbmode && !inst.operands[0].writeback,
16732 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16733
16734 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16735 _("register list must contain at least 1 and at most 16 "
16736 "registers"));
16737
16738 inst.instruction |= inst.operands[0].reg << 16;
16739 inst.instruction |= inst.operands[0].writeback << 21;
16740 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16741 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16742
16743 inst.instruction |= offsetbits;
16744
16745 do_vfp_cond_or_thumb ();
16746 }
16747
16748 static void
16749 do_neon_ldr_str (void)
16750 {
16751 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16752
16753 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16754 And is UNPREDICTABLE in thumb mode. */
16755 if (!is_ldr
16756 && inst.operands[1].reg == REG_PC
16757 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16758 {
16759 if (thumb_mode)
16760 inst.error = _("Use of PC here is UNPREDICTABLE");
16761 else if (warn_on_deprecated)
16762 as_tsktsk (_("Use of PC here is deprecated"));
16763 }
16764
16765 if (inst.operands[0].issingle)
16766 {
16767 if (is_ldr)
16768 do_vfp_nsyn_opcode ("flds");
16769 else
16770 do_vfp_nsyn_opcode ("fsts");
16771
16772 /* ARMv8.2 vldr.16/vstr.16 instruction. */
16773 if (inst.vectype.el[0].size == 16)
16774 do_scalar_fp16_v82_encode ();
16775 }
16776 else
16777 {
16778 if (is_ldr)
16779 do_vfp_nsyn_opcode ("fldd");
16780 else
16781 do_vfp_nsyn_opcode ("fstd");
16782 }
16783 }
16784
16785 /* "interleave" version also handles non-interleaving register VLD1/VST1
16786 instructions. */
16787
16788 static void
16789 do_neon_ld_st_interleave (void)
16790 {
16791 struct neon_type_el et = neon_check_type (1, NS_NULL,
16792 N_8 | N_16 | N_32 | N_64);
16793 unsigned alignbits = 0;
16794 unsigned idx;
16795 /* The bits in this table go:
16796 0: register stride of one (0) or two (1)
16797 1,2: register list length, minus one (1, 2, 3, 4).
16798 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16799 We use -1 for invalid entries. */
16800 const int typetable[] =
16801 {
16802 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16803 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16804 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16805 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16806 };
16807 int typebits;
16808
16809 if (et.type == NT_invtype)
16810 return;
16811
16812 if (inst.operands[1].immisalign)
16813 switch (inst.operands[1].imm >> 8)
16814 {
16815 case 64: alignbits = 1; break;
16816 case 128:
16817 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
16818 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16819 goto bad_alignment;
16820 alignbits = 2;
16821 break;
16822 case 256:
16823 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16824 goto bad_alignment;
16825 alignbits = 3;
16826 break;
16827 default:
16828 bad_alignment:
16829 first_error (_("bad alignment"));
16830 return;
16831 }
16832
16833 inst.instruction |= alignbits << 4;
16834 inst.instruction |= neon_logbits (et.size) << 6;
16835
16836 /* Bits [4:6] of the immediate in a list specifier encode register stride
16837 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
16838 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
16839 up the right value for "type" in a table based on this value and the given
16840 list style, then stick it back. */
16841 idx = ((inst.operands[0].imm >> 4) & 7)
16842 | (((inst.instruction >> 8) & 3) << 3);
16843
16844 typebits = typetable[idx];
16845
16846 constraint (typebits == -1, _("bad list type for instruction"));
16847 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
16848 _("bad element type for instruction"));
16849
16850 inst.instruction &= ~0xf00;
16851 inst.instruction |= typebits << 8;
16852 }
16853
16854 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
16855 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
16856 otherwise. The variable arguments are a list of pairs of legal (size, align)
16857 values, terminated with -1. */
16858
16859 static int
16860 neon_alignment_bit (int size, int align, int *do_alignment, ...)
16861 {
16862 va_list ap;
16863 int result = FAIL, thissize, thisalign;
16864
16865 if (!inst.operands[1].immisalign)
16866 {
16867 *do_alignment = 0;
16868 return SUCCESS;
16869 }
16870
16871 va_start (ap, do_alignment);
16872
16873 do
16874 {
16875 thissize = va_arg (ap, int);
16876 if (thissize == -1)
16877 break;
16878 thisalign = va_arg (ap, int);
16879
16880 if (size == thissize && align == thisalign)
16881 result = SUCCESS;
16882 }
16883 while (result != SUCCESS);
16884
16885 va_end (ap);
16886
16887 if (result == SUCCESS)
16888 *do_alignment = 1;
16889 else
16890 first_error (_("unsupported alignment for instruction"));
16891
16892 return result;
16893 }
16894
16895 static void
16896 do_neon_ld_st_lane (void)
16897 {
16898 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16899 int align_good, do_alignment = 0;
16900 int logsize = neon_logbits (et.size);
16901 int align = inst.operands[1].imm >> 8;
16902 int n = (inst.instruction >> 8) & 3;
16903 int max_el = 64 / et.size;
16904
16905 if (et.type == NT_invtype)
16906 return;
16907
16908 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
16909 _("bad list length"));
16910 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
16911 _("scalar index out of range"));
16912 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
16913 && et.size == 8,
16914 _("stride of 2 unavailable when element size is 8"));
16915
16916 switch (n)
16917 {
16918 case 0: /* VLD1 / VST1. */
16919 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
16920 32, 32, -1);
16921 if (align_good == FAIL)
16922 return;
16923 if (do_alignment)
16924 {
16925 unsigned alignbits = 0;
16926 switch (et.size)
16927 {
16928 case 16: alignbits = 0x1; break;
16929 case 32: alignbits = 0x3; break;
16930 default: ;
16931 }
16932 inst.instruction |= alignbits << 4;
16933 }
16934 break;
16935
16936 case 1: /* VLD2 / VST2. */
16937 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
16938 16, 32, 32, 64, -1);
16939 if (align_good == FAIL)
16940 return;
16941 if (do_alignment)
16942 inst.instruction |= 1 << 4;
16943 break;
16944
16945 case 2: /* VLD3 / VST3. */
16946 constraint (inst.operands[1].immisalign,
16947 _("can't use alignment with this instruction"));
16948 break;
16949
16950 case 3: /* VLD4 / VST4. */
16951 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
16952 16, 64, 32, 64, 32, 128, -1);
16953 if (align_good == FAIL)
16954 return;
16955 if (do_alignment)
16956 {
16957 unsigned alignbits = 0;
16958 switch (et.size)
16959 {
16960 case 8: alignbits = 0x1; break;
16961 case 16: alignbits = 0x1; break;
16962 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16963 default: ;
16964 }
16965 inst.instruction |= alignbits << 4;
16966 }
16967 break;
16968
16969 default: ;
16970 }
16971
16972 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16973 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16974 inst.instruction |= 1 << (4 + logsize);
16975
16976 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16977 inst.instruction |= logsize << 10;
16978 }
16979
16980 /* Encode single n-element structure to all lanes VLD<n> instructions. */
16981
16982 static void
16983 do_neon_ld_dup (void)
16984 {
16985 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16986 int align_good, do_alignment = 0;
16987
16988 if (et.type == NT_invtype)
16989 return;
16990
16991 switch ((inst.instruction >> 8) & 3)
16992 {
16993 case 0: /* VLD1. */
16994 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
16995 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16996 &do_alignment, 16, 16, 32, 32, -1);
16997 if (align_good == FAIL)
16998 return;
16999 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
17000 {
17001 case 1: break;
17002 case 2: inst.instruction |= 1 << 5; break;
17003 default: first_error (_("bad list length")); return;
17004 }
17005 inst.instruction |= neon_logbits (et.size) << 6;
17006 break;
17007
17008 case 1: /* VLD2. */
17009 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17010 &do_alignment, 8, 16, 16, 32, 32, 64,
17011 -1);
17012 if (align_good == FAIL)
17013 return;
17014 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
17015 _("bad list length"));
17016 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17017 inst.instruction |= 1 << 5;
17018 inst.instruction |= neon_logbits (et.size) << 6;
17019 break;
17020
17021 case 2: /* VLD3. */
17022 constraint (inst.operands[1].immisalign,
17023 _("can't use alignment with this instruction"));
17024 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
17025 _("bad list length"));
17026 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17027 inst.instruction |= 1 << 5;
17028 inst.instruction |= neon_logbits (et.size) << 6;
17029 break;
17030
17031 case 3: /* VLD4. */
17032 {
17033 int align = inst.operands[1].imm >> 8;
17034 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17035 16, 64, 32, 64, 32, 128, -1);
17036 if (align_good == FAIL)
17037 return;
17038 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17039 _("bad list length"));
17040 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17041 inst.instruction |= 1 << 5;
17042 if (et.size == 32 && align == 128)
17043 inst.instruction |= 0x3 << 6;
17044 else
17045 inst.instruction |= neon_logbits (et.size) << 6;
17046 }
17047 break;
17048
17049 default: ;
17050 }
17051
17052 inst.instruction |= do_alignment << 4;
17053 }
17054
17055 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17056 apart from bits [11:4]. */
17057
17058 static void
17059 do_neon_ldx_stx (void)
17060 {
17061 if (inst.operands[1].isreg)
17062 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17063
17064 switch (NEON_LANE (inst.operands[0].imm))
17065 {
17066 case NEON_INTERLEAVE_LANES:
17067 NEON_ENCODE (INTERLV, inst);
17068 do_neon_ld_st_interleave ();
17069 break;
17070
17071 case NEON_ALL_LANES:
17072 NEON_ENCODE (DUP, inst);
17073 if (inst.instruction == N_INV)
17074 {
17075 first_error ("only loads support such operands");
17076 break;
17077 }
17078 do_neon_ld_dup ();
17079 break;
17080
17081 default:
17082 NEON_ENCODE (LANE, inst);
17083 do_neon_ld_st_lane ();
17084 }
17085
17086 /* L bit comes from bit mask. */
17087 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17088 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17089 inst.instruction |= inst.operands[1].reg << 16;
17090
17091 if (inst.operands[1].postind)
17092 {
17093 int postreg = inst.operands[1].imm & 0xf;
17094 constraint (!inst.operands[1].immisreg,
17095 _("post-index must be a register"));
17096 constraint (postreg == 0xd || postreg == 0xf,
17097 _("bad register for post-index"));
17098 inst.instruction |= postreg;
17099 }
17100 else
17101 {
17102 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17103 constraint (inst.reloc.exp.X_op != O_constant
17104 || inst.reloc.exp.X_add_number != 0,
17105 BAD_ADDR_MODE);
17106
17107 if (inst.operands[1].writeback)
17108 {
17109 inst.instruction |= 0xd;
17110 }
17111 else
17112 inst.instruction |= 0xf;
17113 }
17114
17115 if (thumb_mode)
17116 inst.instruction |= 0xf9000000;
17117 else
17118 inst.instruction |= 0xf4000000;
17119 }
17120
17121 /* FP v8. */
17122 static void
17123 do_vfp_nsyn_fpv8 (enum neon_shape rs)
17124 {
17125 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17126 D register operands. */
17127 if (neon_shape_class[rs] == SC_DOUBLE)
17128 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17129 _(BAD_FPU));
17130
17131 NEON_ENCODE (FPV8, inst);
17132
17133 if (rs == NS_FFF || rs == NS_HHH)
17134 {
17135 do_vfp_sp_dyadic ();
17136
17137 /* ARMv8.2 fp16 instruction. */
17138 if (rs == NS_HHH)
17139 do_scalar_fp16_v82_encode ();
17140 }
17141 else
17142 do_vfp_dp_rd_rn_rm ();
17143
17144 if (rs == NS_DDD)
17145 inst.instruction |= 0x100;
17146
17147 inst.instruction |= 0xf0000000;
17148 }
17149
17150 static void
17151 do_vsel (void)
17152 {
17153 set_it_insn_type (OUTSIDE_IT_INSN);
17154
17155 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17156 first_error (_("invalid instruction shape"));
17157 }
17158
17159 static void
17160 do_vmaxnm (void)
17161 {
17162 set_it_insn_type (OUTSIDE_IT_INSN);
17163
17164 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17165 return;
17166
17167 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17168 return;
17169
17170 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
17171 }
17172
17173 static void
17174 do_vrint_1 (enum neon_cvt_mode mode)
17175 {
17176 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
17177 struct neon_type_el et;
17178
17179 if (rs == NS_NULL)
17180 return;
17181
17182 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17183 D register operands. */
17184 if (neon_shape_class[rs] == SC_DOUBLE)
17185 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17186 _(BAD_FPU));
17187
17188 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17189 | N_VFP);
17190 if (et.type != NT_invtype)
17191 {
17192 /* VFP encodings. */
17193 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17194 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17195 set_it_insn_type (OUTSIDE_IT_INSN);
17196
17197 NEON_ENCODE (FPV8, inst);
17198 if (rs == NS_FF || rs == NS_HH)
17199 do_vfp_sp_monadic ();
17200 else
17201 do_vfp_dp_rd_rm ();
17202
17203 switch (mode)
17204 {
17205 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17206 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17207 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17208 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17209 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17210 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17211 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17212 default: abort ();
17213 }
17214
17215 inst.instruction |= (rs == NS_DD) << 8;
17216 do_vfp_cond_or_thumb ();
17217
17218 /* ARMv8.2 fp16 vrint instruction. */
17219 if (rs == NS_HH)
17220 do_scalar_fp16_v82_encode ();
17221 }
17222 else
17223 {
17224 /* Neon encodings (or something broken...). */
17225 inst.error = NULL;
17226 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
17227
17228 if (et.type == NT_invtype)
17229 return;
17230
17231 set_it_insn_type (OUTSIDE_IT_INSN);
17232 NEON_ENCODE (FLOAT, inst);
17233
17234 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17235 return;
17236
17237 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17238 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17239 inst.instruction |= LOW4 (inst.operands[1].reg);
17240 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17241 inst.instruction |= neon_quad (rs) << 6;
17242 /* Mask off the original size bits and reencode them. */
17243 inst.instruction = ((inst.instruction & 0xfff3ffff)
17244 | neon_logbits (et.size) << 18);
17245
17246 switch (mode)
17247 {
17248 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17249 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17250 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17251 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17252 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17253 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17254 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17255 default: abort ();
17256 }
17257
17258 if (thumb_mode)
17259 inst.instruction |= 0xfc000000;
17260 else
17261 inst.instruction |= 0xf0000000;
17262 }
17263 }
17264
17265 static void
17266 do_vrintx (void)
17267 {
17268 do_vrint_1 (neon_cvt_mode_x);
17269 }
17270
17271 static void
17272 do_vrintz (void)
17273 {
17274 do_vrint_1 (neon_cvt_mode_z);
17275 }
17276
17277 static void
17278 do_vrintr (void)
17279 {
17280 do_vrint_1 (neon_cvt_mode_r);
17281 }
17282
17283 static void
17284 do_vrinta (void)
17285 {
17286 do_vrint_1 (neon_cvt_mode_a);
17287 }
17288
17289 static void
17290 do_vrintn (void)
17291 {
17292 do_vrint_1 (neon_cvt_mode_n);
17293 }
17294
17295 static void
17296 do_vrintp (void)
17297 {
17298 do_vrint_1 (neon_cvt_mode_p);
17299 }
17300
17301 static void
17302 do_vrintm (void)
17303 {
17304 do_vrint_1 (neon_cvt_mode_m);
17305 }
17306
17307 static unsigned
17308 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17309 {
17310 unsigned regno = NEON_SCALAR_REG (opnd);
17311 unsigned elno = NEON_SCALAR_INDEX (opnd);
17312
17313 if (elsize == 16 && elno < 2 && regno < 16)
17314 return regno | (elno << 4);
17315 else if (elsize == 32 && elno == 0)
17316 return regno;
17317
17318 first_error (_("scalar out of range"));
17319 return 0;
17320 }
17321
17322 static void
17323 do_vcmla (void)
17324 {
17325 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17326 _(BAD_FPU));
17327 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17328 unsigned rot = inst.reloc.exp.X_add_number;
17329 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17330 _("immediate out of range"));
17331 rot /= 90;
17332 if (inst.operands[2].isscalar)
17333 {
17334 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17335 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17336 N_KEY | N_F16 | N_F32).size;
17337 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17338 inst.is_neon = 1;
17339 inst.instruction = 0xfe000800;
17340 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17341 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17342 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17343 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17344 inst.instruction |= LOW4 (m);
17345 inst.instruction |= HI1 (m) << 5;
17346 inst.instruction |= neon_quad (rs) << 6;
17347 inst.instruction |= rot << 20;
17348 inst.instruction |= (size == 32) << 23;
17349 }
17350 else
17351 {
17352 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17353 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17354 N_KEY | N_F16 | N_F32).size;
17355 neon_three_same (neon_quad (rs), 0, -1);
17356 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17357 inst.instruction |= 0xfc200800;
17358 inst.instruction |= rot << 23;
17359 inst.instruction |= (size == 32) << 20;
17360 }
17361 }
17362
17363 static void
17364 do_vcadd (void)
17365 {
17366 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17367 _(BAD_FPU));
17368 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17369 unsigned rot = inst.reloc.exp.X_add_number;
17370 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17371 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17372 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17373 N_KEY | N_F16 | N_F32).size;
17374 neon_three_same (neon_quad (rs), 0, -1);
17375 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17376 inst.instruction |= 0xfc800800;
17377 inst.instruction |= (rot == 270) << 24;
17378 inst.instruction |= (size == 32) << 20;
17379 }
17380
17381 /* Crypto v1 instructions. */
17382 static void
17383 do_crypto_2op_1 (unsigned elttype, int op)
17384 {
17385 set_it_insn_type (OUTSIDE_IT_INSN);
17386
17387 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17388 == NT_invtype)
17389 return;
17390
17391 inst.error = NULL;
17392
17393 NEON_ENCODE (INTEGER, inst);
17394 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17395 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17396 inst.instruction |= LOW4 (inst.operands[1].reg);
17397 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17398 if (op != -1)
17399 inst.instruction |= op << 6;
17400
17401 if (thumb_mode)
17402 inst.instruction |= 0xfc000000;
17403 else
17404 inst.instruction |= 0xf0000000;
17405 }
17406
17407 static void
17408 do_crypto_3op_1 (int u, int op)
17409 {
17410 set_it_insn_type (OUTSIDE_IT_INSN);
17411
17412 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17413 N_32 | N_UNT | N_KEY).type == NT_invtype)
17414 return;
17415
17416 inst.error = NULL;
17417
17418 NEON_ENCODE (INTEGER, inst);
17419 neon_three_same (1, u, 8 << op);
17420 }
17421
17422 static void
17423 do_aese (void)
17424 {
17425 do_crypto_2op_1 (N_8, 0);
17426 }
17427
17428 static void
17429 do_aesd (void)
17430 {
17431 do_crypto_2op_1 (N_8, 1);
17432 }
17433
17434 static void
17435 do_aesmc (void)
17436 {
17437 do_crypto_2op_1 (N_8, 2);
17438 }
17439
17440 static void
17441 do_aesimc (void)
17442 {
17443 do_crypto_2op_1 (N_8, 3);
17444 }
17445
17446 static void
17447 do_sha1c (void)
17448 {
17449 do_crypto_3op_1 (0, 0);
17450 }
17451
17452 static void
17453 do_sha1p (void)
17454 {
17455 do_crypto_3op_1 (0, 1);
17456 }
17457
17458 static void
17459 do_sha1m (void)
17460 {
17461 do_crypto_3op_1 (0, 2);
17462 }
17463
17464 static void
17465 do_sha1su0 (void)
17466 {
17467 do_crypto_3op_1 (0, 3);
17468 }
17469
17470 static void
17471 do_sha256h (void)
17472 {
17473 do_crypto_3op_1 (1, 0);
17474 }
17475
17476 static void
17477 do_sha256h2 (void)
17478 {
17479 do_crypto_3op_1 (1, 1);
17480 }
17481
17482 static void
17483 do_sha256su1 (void)
17484 {
17485 do_crypto_3op_1 (1, 2);
17486 }
17487
17488 static void
17489 do_sha1h (void)
17490 {
17491 do_crypto_2op_1 (N_32, -1);
17492 }
17493
17494 static void
17495 do_sha1su1 (void)
17496 {
17497 do_crypto_2op_1 (N_32, 0);
17498 }
17499
17500 static void
17501 do_sha256su0 (void)
17502 {
17503 do_crypto_2op_1 (N_32, 1);
17504 }
17505
17506 static void
17507 do_crc32_1 (unsigned int poly, unsigned int sz)
17508 {
17509 unsigned int Rd = inst.operands[0].reg;
17510 unsigned int Rn = inst.operands[1].reg;
17511 unsigned int Rm = inst.operands[2].reg;
17512
17513 set_it_insn_type (OUTSIDE_IT_INSN);
17514 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17515 inst.instruction |= LOW4 (Rn) << 16;
17516 inst.instruction |= LOW4 (Rm);
17517 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17518 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17519
17520 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17521 as_warn (UNPRED_REG ("r15"));
17522 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
17523 as_warn (UNPRED_REG ("r13"));
17524 }
17525
17526 static void
17527 do_crc32b (void)
17528 {
17529 do_crc32_1 (0, 0);
17530 }
17531
17532 static void
17533 do_crc32h (void)
17534 {
17535 do_crc32_1 (0, 1);
17536 }
17537
17538 static void
17539 do_crc32w (void)
17540 {
17541 do_crc32_1 (0, 2);
17542 }
17543
17544 static void
17545 do_crc32cb (void)
17546 {
17547 do_crc32_1 (1, 0);
17548 }
17549
17550 static void
17551 do_crc32ch (void)
17552 {
17553 do_crc32_1 (1, 1);
17554 }
17555
17556 static void
17557 do_crc32cw (void)
17558 {
17559 do_crc32_1 (1, 2);
17560 }
17561
17562 static void
17563 do_vjcvt (void)
17564 {
17565 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17566 _(BAD_FPU));
17567 neon_check_type (2, NS_FD, N_S32, N_F64);
17568 do_vfp_sp_dp_cvt ();
17569 do_vfp_cond_or_thumb ();
17570 }
17571
17572 \f
17573 /* Overall per-instruction processing. */
17574
17575 /* We need to be able to fix up arbitrary expressions in some statements.
17576 This is so that we can handle symbols that are an arbitrary distance from
17577 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17578 which returns part of an address in a form which will be valid for
17579 a data instruction. We do this by pushing the expression into a symbol
17580 in the expr_section, and creating a fix for that. */
17581
17582 static void
17583 fix_new_arm (fragS * frag,
17584 int where,
17585 short int size,
17586 expressionS * exp,
17587 int pc_rel,
17588 int reloc)
17589 {
17590 fixS * new_fix;
17591
17592 switch (exp->X_op)
17593 {
17594 case O_constant:
17595 if (pc_rel)
17596 {
17597 /* Create an absolute valued symbol, so we have something to
17598 refer to in the object file. Unfortunately for us, gas's
17599 generic expression parsing will already have folded out
17600 any use of .set foo/.type foo %function that may have
17601 been used to set type information of the target location,
17602 that's being specified symbolically. We have to presume
17603 the user knows what they are doing. */
17604 char name[16 + 8];
17605 symbolS *symbol;
17606
17607 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17608
17609 symbol = symbol_find_or_make (name);
17610 S_SET_SEGMENT (symbol, absolute_section);
17611 symbol_set_frag (symbol, &zero_address_frag);
17612 S_SET_VALUE (symbol, exp->X_add_number);
17613 exp->X_op = O_symbol;
17614 exp->X_add_symbol = symbol;
17615 exp->X_add_number = 0;
17616 }
17617 /* FALLTHROUGH */
17618 case O_symbol:
17619 case O_add:
17620 case O_subtract:
17621 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
17622 (enum bfd_reloc_code_real) reloc);
17623 break;
17624
17625 default:
17626 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
17627 pc_rel, (enum bfd_reloc_code_real) reloc);
17628 break;
17629 }
17630
17631 /* Mark whether the fix is to a THUMB instruction, or an ARM
17632 instruction. */
17633 new_fix->tc_fix_data = thumb_mode;
17634 }
17635
17636 /* Create a frg for an instruction requiring relaxation. */
17637 static void
17638 output_relax_insn (void)
17639 {
17640 char * to;
17641 symbolS *sym;
17642 int offset;
17643
17644 /* The size of the instruction is unknown, so tie the debug info to the
17645 start of the instruction. */
17646 dwarf2_emit_insn (0);
17647
17648 switch (inst.reloc.exp.X_op)
17649 {
17650 case O_symbol:
17651 sym = inst.reloc.exp.X_add_symbol;
17652 offset = inst.reloc.exp.X_add_number;
17653 break;
17654 case O_constant:
17655 sym = NULL;
17656 offset = inst.reloc.exp.X_add_number;
17657 break;
17658 default:
17659 sym = make_expr_symbol (&inst.reloc.exp);
17660 offset = 0;
17661 break;
17662 }
17663 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17664 inst.relax, sym, offset, NULL/*offset, opcode*/);
17665 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
17666 }
17667
17668 /* Write a 32-bit thumb instruction to buf. */
17669 static void
17670 put_thumb32_insn (char * buf, unsigned long insn)
17671 {
17672 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17673 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17674 }
17675
17676 static void
17677 output_inst (const char * str)
17678 {
17679 char * to = NULL;
17680
17681 if (inst.error)
17682 {
17683 as_bad ("%s -- `%s'", inst.error, str);
17684 return;
17685 }
17686 if (inst.relax)
17687 {
17688 output_relax_insn ();
17689 return;
17690 }
17691 if (inst.size == 0)
17692 return;
17693
17694 to = frag_more (inst.size);
17695 /* PR 9814: Record the thumb mode into the current frag so that we know
17696 what type of NOP padding to use, if necessary. We override any previous
17697 setting so that if the mode has changed then the NOPS that we use will
17698 match the encoding of the last instruction in the frag. */
17699 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
17700
17701 if (thumb_mode && (inst.size > THUMB_SIZE))
17702 {
17703 gas_assert (inst.size == (2 * THUMB_SIZE));
17704 put_thumb32_insn (to, inst.instruction);
17705 }
17706 else if (inst.size > INSN_SIZE)
17707 {
17708 gas_assert (inst.size == (2 * INSN_SIZE));
17709 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17710 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
17711 }
17712 else
17713 md_number_to_chars (to, inst.instruction, inst.size);
17714
17715 if (inst.reloc.type != BFD_RELOC_UNUSED)
17716 fix_new_arm (frag_now, to - frag_now->fr_literal,
17717 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17718 inst.reloc.type);
17719
17720 dwarf2_emit_insn (inst.size);
17721 }
17722
17723 static char *
17724 output_it_inst (int cond, int mask, char * to)
17725 {
17726 unsigned long instruction = 0xbf00;
17727
17728 mask &= 0xf;
17729 instruction |= mask;
17730 instruction |= cond << 4;
17731
17732 if (to == NULL)
17733 {
17734 to = frag_more (2);
17735 #ifdef OBJ_ELF
17736 dwarf2_emit_insn (2);
17737 #endif
17738 }
17739
17740 md_number_to_chars (to, instruction, 2);
17741
17742 return to;
17743 }
17744
17745 /* Tag values used in struct asm_opcode's tag field. */
17746 enum opcode_tag
17747 {
17748 OT_unconditional, /* Instruction cannot be conditionalized.
17749 The ARM condition field is still 0xE. */
17750 OT_unconditionalF, /* Instruction cannot be conditionalized
17751 and carries 0xF in its ARM condition field. */
17752 OT_csuffix, /* Instruction takes a conditional suffix. */
17753 OT_csuffixF, /* Some forms of the instruction take a conditional
17754 suffix, others place 0xF where the condition field
17755 would be. */
17756 OT_cinfix3, /* Instruction takes a conditional infix,
17757 beginning at character index 3. (In
17758 unified mode, it becomes a suffix.) */
17759 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
17760 tsts, cmps, cmns, and teqs. */
17761 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
17762 character index 3, even in unified mode. Used for
17763 legacy instructions where suffix and infix forms
17764 may be ambiguous. */
17765 OT_csuf_or_in3, /* Instruction takes either a conditional
17766 suffix or an infix at character index 3. */
17767 OT_odd_infix_unc, /* This is the unconditional variant of an
17768 instruction that takes a conditional infix
17769 at an unusual position. In unified mode,
17770 this variant will accept a suffix. */
17771 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
17772 are the conditional variants of instructions that
17773 take conditional infixes in unusual positions.
17774 The infix appears at character index
17775 (tag - OT_odd_infix_0). These are not accepted
17776 in unified mode. */
17777 };
17778
17779 /* Subroutine of md_assemble, responsible for looking up the primary
17780 opcode from the mnemonic the user wrote. STR points to the
17781 beginning of the mnemonic.
17782
17783 This is not simply a hash table lookup, because of conditional
17784 variants. Most instructions have conditional variants, which are
17785 expressed with a _conditional affix_ to the mnemonic. If we were
17786 to encode each conditional variant as a literal string in the opcode
17787 table, it would have approximately 20,000 entries.
17788
17789 Most mnemonics take this affix as a suffix, and in unified syntax,
17790 'most' is upgraded to 'all'. However, in the divided syntax, some
17791 instructions take the affix as an infix, notably the s-variants of
17792 the arithmetic instructions. Of those instructions, all but six
17793 have the infix appear after the third character of the mnemonic.
17794
17795 Accordingly, the algorithm for looking up primary opcodes given
17796 an identifier is:
17797
17798 1. Look up the identifier in the opcode table.
17799 If we find a match, go to step U.
17800
17801 2. Look up the last two characters of the identifier in the
17802 conditions table. If we find a match, look up the first N-2
17803 characters of the identifier in the opcode table. If we
17804 find a match, go to step CE.
17805
17806 3. Look up the fourth and fifth characters of the identifier in
17807 the conditions table. If we find a match, extract those
17808 characters from the identifier, and look up the remaining
17809 characters in the opcode table. If we find a match, go
17810 to step CM.
17811
17812 4. Fail.
17813
17814 U. Examine the tag field of the opcode structure, in case this is
17815 one of the six instructions with its conditional infix in an
17816 unusual place. If it is, the tag tells us where to find the
17817 infix; look it up in the conditions table and set inst.cond
17818 accordingly. Otherwise, this is an unconditional instruction.
17819 Again set inst.cond accordingly. Return the opcode structure.
17820
17821 CE. Examine the tag field to make sure this is an instruction that
17822 should receive a conditional suffix. If it is not, fail.
17823 Otherwise, set inst.cond from the suffix we already looked up,
17824 and return the opcode structure.
17825
17826 CM. Examine the tag field to make sure this is an instruction that
17827 should receive a conditional infix after the third character.
17828 If it is not, fail. Otherwise, undo the edits to the current
17829 line of input and proceed as for case CE. */
17830
17831 static const struct asm_opcode *
17832 opcode_lookup (char **str)
17833 {
17834 char *end, *base;
17835 char *affix;
17836 const struct asm_opcode *opcode;
17837 const struct asm_cond *cond;
17838 char save[2];
17839
17840 /* Scan up to the end of the mnemonic, which must end in white space,
17841 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
17842 for (base = end = *str; *end != '\0'; end++)
17843 if (*end == ' ' || *end == '.')
17844 break;
17845
17846 if (end == base)
17847 return NULL;
17848
17849 /* Handle a possible width suffix and/or Neon type suffix. */
17850 if (end[0] == '.')
17851 {
17852 int offset = 2;
17853
17854 /* The .w and .n suffixes are only valid if the unified syntax is in
17855 use. */
17856 if (unified_syntax && end[1] == 'w')
17857 inst.size_req = 4;
17858 else if (unified_syntax && end[1] == 'n')
17859 inst.size_req = 2;
17860 else
17861 offset = 0;
17862
17863 inst.vectype.elems = 0;
17864
17865 *str = end + offset;
17866
17867 if (end[offset] == '.')
17868 {
17869 /* See if we have a Neon type suffix (possible in either unified or
17870 non-unified ARM syntax mode). */
17871 if (parse_neon_type (&inst.vectype, str) == FAIL)
17872 return NULL;
17873 }
17874 else if (end[offset] != '\0' && end[offset] != ' ')
17875 return NULL;
17876 }
17877 else
17878 *str = end;
17879
17880 /* Look for unaffixed or special-case affixed mnemonic. */
17881 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17882 end - base);
17883 if (opcode)
17884 {
17885 /* step U */
17886 if (opcode->tag < OT_odd_infix_0)
17887 {
17888 inst.cond = COND_ALWAYS;
17889 return opcode;
17890 }
17891
17892 if (warn_on_deprecated && unified_syntax)
17893 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17894 affix = base + (opcode->tag - OT_odd_infix_0);
17895 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17896 gas_assert (cond);
17897
17898 inst.cond = cond->value;
17899 return opcode;
17900 }
17901
17902 /* Cannot have a conditional suffix on a mnemonic of less than two
17903 characters. */
17904 if (end - base < 3)
17905 return NULL;
17906
17907 /* Look for suffixed mnemonic. */
17908 affix = end - 2;
17909 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17910 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17911 affix - base);
17912 if (opcode && cond)
17913 {
17914 /* step CE */
17915 switch (opcode->tag)
17916 {
17917 case OT_cinfix3_legacy:
17918 /* Ignore conditional suffixes matched on infix only mnemonics. */
17919 break;
17920
17921 case OT_cinfix3:
17922 case OT_cinfix3_deprecated:
17923 case OT_odd_infix_unc:
17924 if (!unified_syntax)
17925 return 0;
17926 /* Fall through. */
17927
17928 case OT_csuffix:
17929 case OT_csuffixF:
17930 case OT_csuf_or_in3:
17931 inst.cond = cond->value;
17932 return opcode;
17933
17934 case OT_unconditional:
17935 case OT_unconditionalF:
17936 if (thumb_mode)
17937 inst.cond = cond->value;
17938 else
17939 {
17940 /* Delayed diagnostic. */
17941 inst.error = BAD_COND;
17942 inst.cond = COND_ALWAYS;
17943 }
17944 return opcode;
17945
17946 default:
17947 return NULL;
17948 }
17949 }
17950
17951 /* Cannot have a usual-position infix on a mnemonic of less than
17952 six characters (five would be a suffix). */
17953 if (end - base < 6)
17954 return NULL;
17955
17956 /* Look for infixed mnemonic in the usual position. */
17957 affix = base + 3;
17958 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17959 if (!cond)
17960 return NULL;
17961
17962 memcpy (save, affix, 2);
17963 memmove (affix, affix + 2, (end - affix) - 2);
17964 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17965 (end - base) - 2);
17966 memmove (affix + 2, affix, (end - affix) - 2);
17967 memcpy (affix, save, 2);
17968
17969 if (opcode
17970 && (opcode->tag == OT_cinfix3
17971 || opcode->tag == OT_cinfix3_deprecated
17972 || opcode->tag == OT_csuf_or_in3
17973 || opcode->tag == OT_cinfix3_legacy))
17974 {
17975 /* Step CM. */
17976 if (warn_on_deprecated && unified_syntax
17977 && (opcode->tag == OT_cinfix3
17978 || opcode->tag == OT_cinfix3_deprecated))
17979 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17980
17981 inst.cond = cond->value;
17982 return opcode;
17983 }
17984
17985 return NULL;
17986 }
17987
17988 /* This function generates an initial IT instruction, leaving its block
17989 virtually open for the new instructions. Eventually,
17990 the mask will be updated by now_it_add_mask () each time
17991 a new instruction needs to be included in the IT block.
17992 Finally, the block is closed with close_automatic_it_block ().
17993 The block closure can be requested either from md_assemble (),
17994 a tencode (), or due to a label hook. */
17995
17996 static void
17997 new_automatic_it_block (int cond)
17998 {
17999 now_it.state = AUTOMATIC_IT_BLOCK;
18000 now_it.mask = 0x18;
18001 now_it.cc = cond;
18002 now_it.block_length = 1;
18003 mapping_state (MAP_THUMB);
18004 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
18005 now_it.warn_deprecated = FALSE;
18006 now_it.insn_cond = TRUE;
18007 }
18008
18009 /* Close an automatic IT block.
18010 See comments in new_automatic_it_block (). */
18011
18012 static void
18013 close_automatic_it_block (void)
18014 {
18015 now_it.mask = 0x10;
18016 now_it.block_length = 0;
18017 }
18018
18019 /* Update the mask of the current automatically-generated IT
18020 instruction. See comments in new_automatic_it_block (). */
18021
18022 static void
18023 now_it_add_mask (int cond)
18024 {
18025 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18026 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
18027 | ((bitvalue) << (nbit)))
18028 const int resulting_bit = (cond & 1);
18029
18030 now_it.mask &= 0xf;
18031 now_it.mask = SET_BIT_VALUE (now_it.mask,
18032 resulting_bit,
18033 (5 - now_it.block_length));
18034 now_it.mask = SET_BIT_VALUE (now_it.mask,
18035 1,
18036 ((5 - now_it.block_length) - 1) );
18037 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18038
18039 #undef CLEAR_BIT
18040 #undef SET_BIT_VALUE
18041 }
18042
18043 /* The IT blocks handling machinery is accessed through the these functions:
18044 it_fsm_pre_encode () from md_assemble ()
18045 set_it_insn_type () optional, from the tencode functions
18046 set_it_insn_type_last () ditto
18047 in_it_block () ditto
18048 it_fsm_post_encode () from md_assemble ()
18049 force_automatic_it_block_close () from label handling functions
18050
18051 Rationale:
18052 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
18053 initializing the IT insn type with a generic initial value depending
18054 on the inst.condition.
18055 2) During the tencode function, two things may happen:
18056 a) The tencode function overrides the IT insn type by
18057 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18058 b) The tencode function queries the IT block state by
18059 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18060
18061 Both set_it_insn_type and in_it_block run the internal FSM state
18062 handling function (handle_it_state), because: a) setting the IT insn
18063 type may incur in an invalid state (exiting the function),
18064 and b) querying the state requires the FSM to be updated.
18065 Specifically we want to avoid creating an IT block for conditional
18066 branches, so it_fsm_pre_encode is actually a guess and we can't
18067 determine whether an IT block is required until the tencode () routine
18068 has decided what type of instruction this actually it.
18069 Because of this, if set_it_insn_type and in_it_block have to be used,
18070 set_it_insn_type has to be called first.
18071
18072 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18073 determines the insn IT type depending on the inst.cond code.
18074 When a tencode () routine encodes an instruction that can be
18075 either outside an IT block, or, in the case of being inside, has to be
18076 the last one, set_it_insn_type_last () will determine the proper
18077 IT instruction type based on the inst.cond code. Otherwise,
18078 set_it_insn_type can be called for overriding that logic or
18079 for covering other cases.
18080
18081 Calling handle_it_state () may not transition the IT block state to
18082 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
18083 still queried. Instead, if the FSM determines that the state should
18084 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18085 after the tencode () function: that's what it_fsm_post_encode () does.
18086
18087 Since in_it_block () calls the state handling function to get an
18088 updated state, an error may occur (due to invalid insns combination).
18089 In that case, inst.error is set.
18090 Therefore, inst.error has to be checked after the execution of
18091 the tencode () routine.
18092
18093 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
18094 any pending state change (if any) that didn't take place in
18095 handle_it_state () as explained above. */
18096
18097 static void
18098 it_fsm_pre_encode (void)
18099 {
18100 if (inst.cond != COND_ALWAYS)
18101 inst.it_insn_type = INSIDE_IT_INSN;
18102 else
18103 inst.it_insn_type = OUTSIDE_IT_INSN;
18104
18105 now_it.state_handled = 0;
18106 }
18107
18108 /* IT state FSM handling function. */
18109
18110 static int
18111 handle_it_state (void)
18112 {
18113 now_it.state_handled = 1;
18114 now_it.insn_cond = FALSE;
18115
18116 switch (now_it.state)
18117 {
18118 case OUTSIDE_IT_BLOCK:
18119 switch (inst.it_insn_type)
18120 {
18121 case OUTSIDE_IT_INSN:
18122 break;
18123
18124 case INSIDE_IT_INSN:
18125 case INSIDE_IT_LAST_INSN:
18126 if (thumb_mode == 0)
18127 {
18128 if (unified_syntax
18129 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18130 as_tsktsk (_("Warning: conditional outside an IT block"\
18131 " for Thumb."));
18132 }
18133 else
18134 {
18135 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
18136 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
18137 {
18138 /* Automatically generate the IT instruction. */
18139 new_automatic_it_block (inst.cond);
18140 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18141 close_automatic_it_block ();
18142 }
18143 else
18144 {
18145 inst.error = BAD_OUT_IT;
18146 return FAIL;
18147 }
18148 }
18149 break;
18150
18151 case IF_INSIDE_IT_LAST_INSN:
18152 case NEUTRAL_IT_INSN:
18153 break;
18154
18155 case IT_INSN:
18156 now_it.state = MANUAL_IT_BLOCK;
18157 now_it.block_length = 0;
18158 break;
18159 }
18160 break;
18161
18162 case AUTOMATIC_IT_BLOCK:
18163 /* Three things may happen now:
18164 a) We should increment current it block size;
18165 b) We should close current it block (closing insn or 4 insns);
18166 c) We should close current it block and start a new one (due
18167 to incompatible conditions or
18168 4 insns-length block reached). */
18169
18170 switch (inst.it_insn_type)
18171 {
18172 case OUTSIDE_IT_INSN:
18173 /* The closure of the block shall happen immediately,
18174 so any in_it_block () call reports the block as closed. */
18175 force_automatic_it_block_close ();
18176 break;
18177
18178 case INSIDE_IT_INSN:
18179 case INSIDE_IT_LAST_INSN:
18180 case IF_INSIDE_IT_LAST_INSN:
18181 now_it.block_length++;
18182
18183 if (now_it.block_length > 4
18184 || !now_it_compatible (inst.cond))
18185 {
18186 force_automatic_it_block_close ();
18187 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18188 new_automatic_it_block (inst.cond);
18189 }
18190 else
18191 {
18192 now_it.insn_cond = TRUE;
18193 now_it_add_mask (inst.cond);
18194 }
18195
18196 if (now_it.state == AUTOMATIC_IT_BLOCK
18197 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18198 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18199 close_automatic_it_block ();
18200 break;
18201
18202 case NEUTRAL_IT_INSN:
18203 now_it.block_length++;
18204 now_it.insn_cond = TRUE;
18205
18206 if (now_it.block_length > 4)
18207 force_automatic_it_block_close ();
18208 else
18209 now_it_add_mask (now_it.cc & 1);
18210 break;
18211
18212 case IT_INSN:
18213 close_automatic_it_block ();
18214 now_it.state = MANUAL_IT_BLOCK;
18215 break;
18216 }
18217 break;
18218
18219 case MANUAL_IT_BLOCK:
18220 {
18221 /* Check conditional suffixes. */
18222 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18223 int is_last;
18224 now_it.mask <<= 1;
18225 now_it.mask &= 0x1f;
18226 is_last = (now_it.mask == 0x10);
18227 now_it.insn_cond = TRUE;
18228
18229 switch (inst.it_insn_type)
18230 {
18231 case OUTSIDE_IT_INSN:
18232 inst.error = BAD_NOT_IT;
18233 return FAIL;
18234
18235 case INSIDE_IT_INSN:
18236 if (cond != inst.cond)
18237 {
18238 inst.error = BAD_IT_COND;
18239 return FAIL;
18240 }
18241 break;
18242
18243 case INSIDE_IT_LAST_INSN:
18244 case IF_INSIDE_IT_LAST_INSN:
18245 if (cond != inst.cond)
18246 {
18247 inst.error = BAD_IT_COND;
18248 return FAIL;
18249 }
18250 if (!is_last)
18251 {
18252 inst.error = BAD_BRANCH;
18253 return FAIL;
18254 }
18255 break;
18256
18257 case NEUTRAL_IT_INSN:
18258 /* The BKPT instruction is unconditional even in an IT block. */
18259 break;
18260
18261 case IT_INSN:
18262 inst.error = BAD_IT_IT;
18263 return FAIL;
18264 }
18265 }
18266 break;
18267 }
18268
18269 return SUCCESS;
18270 }
18271
18272 struct depr_insn_mask
18273 {
18274 unsigned long pattern;
18275 unsigned long mask;
18276 const char* description;
18277 };
18278
18279 /* List of 16-bit instruction patterns deprecated in an IT block in
18280 ARMv8. */
18281 static const struct depr_insn_mask depr_it_insns[] = {
18282 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18283 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18284 { 0xa000, 0xb800, N_("ADR") },
18285 { 0x4800, 0xf800, N_("Literal loads") },
18286 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18287 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
18288 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18289 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18290 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
18291 { 0, 0, NULL }
18292 };
18293
18294 static void
18295 it_fsm_post_encode (void)
18296 {
18297 int is_last;
18298
18299 if (!now_it.state_handled)
18300 handle_it_state ();
18301
18302 if (now_it.insn_cond
18303 && !now_it.warn_deprecated
18304 && warn_on_deprecated
18305 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
18306 {
18307 if (inst.instruction >= 0x10000)
18308 {
18309 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
18310 "deprecated in ARMv8"));
18311 now_it.warn_deprecated = TRUE;
18312 }
18313 else
18314 {
18315 const struct depr_insn_mask *p = depr_it_insns;
18316
18317 while (p->mask != 0)
18318 {
18319 if ((inst.instruction & p->mask) == p->pattern)
18320 {
18321 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
18322 "of the following class are deprecated in ARMv8: "
18323 "%s"), p->description);
18324 now_it.warn_deprecated = TRUE;
18325 break;
18326 }
18327
18328 ++p;
18329 }
18330 }
18331
18332 if (now_it.block_length > 1)
18333 {
18334 as_tsktsk (_("IT blocks containing more than one conditional "
18335 "instruction are deprecated in ARMv8"));
18336 now_it.warn_deprecated = TRUE;
18337 }
18338 }
18339
18340 is_last = (now_it.mask == 0x10);
18341 if (is_last)
18342 {
18343 now_it.state = OUTSIDE_IT_BLOCK;
18344 now_it.mask = 0;
18345 }
18346 }
18347
18348 static void
18349 force_automatic_it_block_close (void)
18350 {
18351 if (now_it.state == AUTOMATIC_IT_BLOCK)
18352 {
18353 close_automatic_it_block ();
18354 now_it.state = OUTSIDE_IT_BLOCK;
18355 now_it.mask = 0;
18356 }
18357 }
18358
18359 static int
18360 in_it_block (void)
18361 {
18362 if (!now_it.state_handled)
18363 handle_it_state ();
18364
18365 return now_it.state != OUTSIDE_IT_BLOCK;
18366 }
18367
18368 /* Whether OPCODE only has T32 encoding. Since this function is only used by
18369 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18370 here, hence the "known" in the function name. */
18371
18372 static bfd_boolean
18373 known_t32_only_insn (const struct asm_opcode *opcode)
18374 {
18375 /* Original Thumb-1 wide instruction. */
18376 if (opcode->tencode == do_t_blx
18377 || opcode->tencode == do_t_branch23
18378 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18379 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18380 return TRUE;
18381
18382 /* Wide-only instruction added to ARMv8-M Baseline. */
18383 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
18384 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18385 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18386 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18387 return TRUE;
18388
18389 return FALSE;
18390 }
18391
18392 /* Whether wide instruction variant can be used if available for a valid OPCODE
18393 in ARCH. */
18394
18395 static bfd_boolean
18396 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18397 {
18398 if (known_t32_only_insn (opcode))
18399 return TRUE;
18400
18401 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18402 of variant T3 of B.W is checked in do_t_branch. */
18403 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18404 && opcode->tencode == do_t_branch)
18405 return TRUE;
18406
18407 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18408 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18409 && opcode->tencode == do_t_mov_cmp
18410 /* Make sure CMP instruction is not affected. */
18411 && opcode->aencode == do_mov)
18412 return TRUE;
18413
18414 /* Wide instruction variants of all instructions with narrow *and* wide
18415 variants become available with ARMv6t2. Other opcodes are either
18416 narrow-only or wide-only and are thus available if OPCODE is valid. */
18417 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18418 return TRUE;
18419
18420 /* OPCODE with narrow only instruction variant or wide variant not
18421 available. */
18422 return FALSE;
18423 }
18424
18425 void
18426 md_assemble (char *str)
18427 {
18428 char *p = str;
18429 const struct asm_opcode * opcode;
18430
18431 /* Align the previous label if needed. */
18432 if (last_label_seen != NULL)
18433 {
18434 symbol_set_frag (last_label_seen, frag_now);
18435 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18436 S_SET_SEGMENT (last_label_seen, now_seg);
18437 }
18438
18439 memset (&inst, '\0', sizeof (inst));
18440 inst.reloc.type = BFD_RELOC_UNUSED;
18441
18442 opcode = opcode_lookup (&p);
18443 if (!opcode)
18444 {
18445 /* It wasn't an instruction, but it might be a register alias of
18446 the form alias .req reg, or a Neon .dn/.qn directive. */
18447 if (! create_register_alias (str, p)
18448 && ! create_neon_reg_alias (str, p))
18449 as_bad (_("bad instruction `%s'"), str);
18450
18451 return;
18452 }
18453
18454 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
18455 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
18456
18457 /* The value which unconditional instructions should have in place of the
18458 condition field. */
18459 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18460
18461 if (thumb_mode)
18462 {
18463 arm_feature_set variant;
18464
18465 variant = cpu_variant;
18466 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
18467 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18468 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
18469 /* Check that this instruction is supported for this CPU. */
18470 if (!opcode->tvariant
18471 || (thumb_mode == 1
18472 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
18473 {
18474 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
18475 return;
18476 }
18477 if (inst.cond != COND_ALWAYS && !unified_syntax
18478 && opcode->tencode != do_t_branch)
18479 {
18480 as_bad (_("Thumb does not support conditional execution"));
18481 return;
18482 }
18483
18484 /* Two things are addressed here:
18485 1) Implicit require narrow instructions on Thumb-1.
18486 This avoids relaxation accidentally introducing Thumb-2
18487 instructions.
18488 2) Reject wide instructions in non Thumb-2 cores.
18489
18490 Only instructions with narrow and wide variants need to be handled
18491 but selecting all non wide-only instructions is easier. */
18492 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
18493 && !t32_insn_ok (variant, opcode))
18494 {
18495 if (inst.size_req == 0)
18496 inst.size_req = 2;
18497 else if (inst.size_req == 4)
18498 {
18499 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18500 as_bad (_("selected processor does not support 32bit wide "
18501 "variant of instruction `%s'"), str);
18502 else
18503 as_bad (_("selected processor does not support `%s' in "
18504 "Thumb-2 mode"), str);
18505 return;
18506 }
18507 }
18508
18509 inst.instruction = opcode->tvalue;
18510
18511 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
18512 {
18513 /* Prepare the it_insn_type for those encodings that don't set
18514 it. */
18515 it_fsm_pre_encode ();
18516
18517 opcode->tencode ();
18518
18519 it_fsm_post_encode ();
18520 }
18521
18522 if (!(inst.error || inst.relax))
18523 {
18524 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
18525 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18526 if (inst.size_req && inst.size_req != inst.size)
18527 {
18528 as_bad (_("cannot honor width suffix -- `%s'"), str);
18529 return;
18530 }
18531 }
18532
18533 /* Something has gone badly wrong if we try to relax a fixed size
18534 instruction. */
18535 gas_assert (inst.size_req == 0 || !inst.relax);
18536
18537 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18538 *opcode->tvariant);
18539 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
18540 set those bits when Thumb-2 32-bit instructions are seen. The impact
18541 of relaxable instructions will be considered later after we finish all
18542 relaxation. */
18543 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18544 variant = arm_arch_none;
18545 else
18546 variant = cpu_variant;
18547 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
18548 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18549 arm_ext_v6t2);
18550
18551 check_neon_suffixes;
18552
18553 if (!inst.error)
18554 {
18555 mapping_state (MAP_THUMB);
18556 }
18557 }
18558 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
18559 {
18560 bfd_boolean is_bx;
18561
18562 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18563 is_bx = (opcode->aencode == do_bx);
18564
18565 /* Check that this instruction is supported for this CPU. */
18566 if (!(is_bx && fix_v4bx)
18567 && !(opcode->avariant &&
18568 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
18569 {
18570 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
18571 return;
18572 }
18573 if (inst.size_req)
18574 {
18575 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18576 return;
18577 }
18578
18579 inst.instruction = opcode->avalue;
18580 if (opcode->tag == OT_unconditionalF)
18581 inst.instruction |= 0xFU << 28;
18582 else
18583 inst.instruction |= inst.cond << 28;
18584 inst.size = INSN_SIZE;
18585 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
18586 {
18587 it_fsm_pre_encode ();
18588 opcode->aencode ();
18589 it_fsm_post_encode ();
18590 }
18591 /* Arm mode bx is marked as both v4T and v5 because it's still required
18592 on a hypothetical non-thumb v5 core. */
18593 if (is_bx)
18594 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
18595 else
18596 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18597 *opcode->avariant);
18598
18599 check_neon_suffixes;
18600
18601 if (!inst.error)
18602 {
18603 mapping_state (MAP_ARM);
18604 }
18605 }
18606 else
18607 {
18608 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18609 "-- `%s'"), str);
18610 return;
18611 }
18612 output_inst (str);
18613 }
18614
18615 static void
18616 check_it_blocks_finished (void)
18617 {
18618 #ifdef OBJ_ELF
18619 asection *sect;
18620
18621 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18622 if (seg_info (sect)->tc_segment_info_data.current_it.state
18623 == MANUAL_IT_BLOCK)
18624 {
18625 as_warn (_("section '%s' finished with an open IT block."),
18626 sect->name);
18627 }
18628 #else
18629 if (now_it.state == MANUAL_IT_BLOCK)
18630 as_warn (_("file finished with an open IT block."));
18631 #endif
18632 }
18633
18634 /* Various frobbings of labels and their addresses. */
18635
18636 void
18637 arm_start_line_hook (void)
18638 {
18639 last_label_seen = NULL;
18640 }
18641
18642 void
18643 arm_frob_label (symbolS * sym)
18644 {
18645 last_label_seen = sym;
18646
18647 ARM_SET_THUMB (sym, thumb_mode);
18648
18649 #if defined OBJ_COFF || defined OBJ_ELF
18650 ARM_SET_INTERWORK (sym, support_interwork);
18651 #endif
18652
18653 force_automatic_it_block_close ();
18654
18655 /* Note - do not allow local symbols (.Lxxx) to be labelled
18656 as Thumb functions. This is because these labels, whilst
18657 they exist inside Thumb code, are not the entry points for
18658 possible ARM->Thumb calls. Also, these labels can be used
18659 as part of a computed goto or switch statement. eg gcc
18660 can generate code that looks like this:
18661
18662 ldr r2, [pc, .Laaa]
18663 lsl r3, r3, #2
18664 ldr r2, [r3, r2]
18665 mov pc, r2
18666
18667 .Lbbb: .word .Lxxx
18668 .Lccc: .word .Lyyy
18669 ..etc...
18670 .Laaa: .word Lbbb
18671
18672 The first instruction loads the address of the jump table.
18673 The second instruction converts a table index into a byte offset.
18674 The third instruction gets the jump address out of the table.
18675 The fourth instruction performs the jump.
18676
18677 If the address stored at .Laaa is that of a symbol which has the
18678 Thumb_Func bit set, then the linker will arrange for this address
18679 to have the bottom bit set, which in turn would mean that the
18680 address computation performed by the third instruction would end
18681 up with the bottom bit set. Since the ARM is capable of unaligned
18682 word loads, the instruction would then load the incorrect address
18683 out of the jump table, and chaos would ensue. */
18684 if (label_is_thumb_function_name
18685 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18686 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
18687 {
18688 /* When the address of a Thumb function is taken the bottom
18689 bit of that address should be set. This will allow
18690 interworking between Arm and Thumb functions to work
18691 correctly. */
18692
18693 THUMB_SET_FUNC (sym, 1);
18694
18695 label_is_thumb_function_name = FALSE;
18696 }
18697
18698 dwarf2_emit_label (sym);
18699 }
18700
18701 bfd_boolean
18702 arm_data_in_code (void)
18703 {
18704 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
18705 {
18706 *input_line_pointer = '/';
18707 input_line_pointer += 5;
18708 *input_line_pointer = 0;
18709 return TRUE;
18710 }
18711
18712 return FALSE;
18713 }
18714
18715 char *
18716 arm_canonicalize_symbol_name (char * name)
18717 {
18718 int len;
18719
18720 if (thumb_mode && (len = strlen (name)) > 5
18721 && streq (name + len - 5, "/data"))
18722 *(name + len - 5) = 0;
18723
18724 return name;
18725 }
18726 \f
18727 /* Table of all register names defined by default. The user can
18728 define additional names with .req. Note that all register names
18729 should appear in both upper and lowercase variants. Some registers
18730 also have mixed-case names. */
18731
18732 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
18733 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
18734 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
18735 #define REGSET(p,t) \
18736 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18737 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18738 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18739 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
18740 #define REGSETH(p,t) \
18741 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
18742 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
18743 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
18744 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
18745 #define REGSET2(p,t) \
18746 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
18747 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
18748 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
18749 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
18750 #define SPLRBANK(base,bank,t) \
18751 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
18752 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
18753 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
18754 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
18755 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
18756 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
18757
18758 static const struct reg_entry reg_names[] =
18759 {
18760 /* ARM integer registers. */
18761 REGSET(r, RN), REGSET(R, RN),
18762
18763 /* ATPCS synonyms. */
18764 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
18765 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
18766 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
18767
18768 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
18769 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
18770 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
18771
18772 /* Well-known aliases. */
18773 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
18774 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
18775
18776 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
18777 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
18778
18779 /* Coprocessor numbers. */
18780 REGSET(p, CP), REGSET(P, CP),
18781
18782 /* Coprocessor register numbers. The "cr" variants are for backward
18783 compatibility. */
18784 REGSET(c, CN), REGSET(C, CN),
18785 REGSET(cr, CN), REGSET(CR, CN),
18786
18787 /* ARM banked registers. */
18788 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
18789 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
18790 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
18791 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
18792 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
18793 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
18794 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
18795
18796 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
18797 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
18798 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
18799 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
18800 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
18801 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
18802 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
18803 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
18804
18805 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
18806 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
18807 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
18808 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
18809 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
18810 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
18811 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
18812 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
18813 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
18814
18815 /* FPA registers. */
18816 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
18817 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
18818
18819 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
18820 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
18821
18822 /* VFP SP registers. */
18823 REGSET(s,VFS), REGSET(S,VFS),
18824 REGSETH(s,VFS), REGSETH(S,VFS),
18825
18826 /* VFP DP Registers. */
18827 REGSET(d,VFD), REGSET(D,VFD),
18828 /* Extra Neon DP registers. */
18829 REGSETH(d,VFD), REGSETH(D,VFD),
18830
18831 /* Neon QP registers. */
18832 REGSET2(q,NQ), REGSET2(Q,NQ),
18833
18834 /* VFP control registers. */
18835 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
18836 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
18837 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
18838 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
18839 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
18840 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
18841
18842 /* Maverick DSP coprocessor registers. */
18843 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
18844 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
18845
18846 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
18847 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
18848 REGDEF(dspsc,0,DSPSC),
18849
18850 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
18851 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
18852 REGDEF(DSPSC,0,DSPSC),
18853
18854 /* iWMMXt data registers - p0, c0-15. */
18855 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
18856
18857 /* iWMMXt control registers - p1, c0-3. */
18858 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
18859 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
18860 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
18861 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
18862
18863 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
18864 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
18865 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
18866 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
18867 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
18868
18869 /* XScale accumulator registers. */
18870 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
18871 };
18872 #undef REGDEF
18873 #undef REGNUM
18874 #undef REGSET
18875
18876 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
18877 within psr_required_here. */
18878 static const struct asm_psr psrs[] =
18879 {
18880 /* Backward compatibility notation. Note that "all" is no longer
18881 truly all possible PSR bits. */
18882 {"all", PSR_c | PSR_f},
18883 {"flg", PSR_f},
18884 {"ctl", PSR_c},
18885
18886 /* Individual flags. */
18887 {"f", PSR_f},
18888 {"c", PSR_c},
18889 {"x", PSR_x},
18890 {"s", PSR_s},
18891
18892 /* Combinations of flags. */
18893 {"fs", PSR_f | PSR_s},
18894 {"fx", PSR_f | PSR_x},
18895 {"fc", PSR_f | PSR_c},
18896 {"sf", PSR_s | PSR_f},
18897 {"sx", PSR_s | PSR_x},
18898 {"sc", PSR_s | PSR_c},
18899 {"xf", PSR_x | PSR_f},
18900 {"xs", PSR_x | PSR_s},
18901 {"xc", PSR_x | PSR_c},
18902 {"cf", PSR_c | PSR_f},
18903 {"cs", PSR_c | PSR_s},
18904 {"cx", PSR_c | PSR_x},
18905 {"fsx", PSR_f | PSR_s | PSR_x},
18906 {"fsc", PSR_f | PSR_s | PSR_c},
18907 {"fxs", PSR_f | PSR_x | PSR_s},
18908 {"fxc", PSR_f | PSR_x | PSR_c},
18909 {"fcs", PSR_f | PSR_c | PSR_s},
18910 {"fcx", PSR_f | PSR_c | PSR_x},
18911 {"sfx", PSR_s | PSR_f | PSR_x},
18912 {"sfc", PSR_s | PSR_f | PSR_c},
18913 {"sxf", PSR_s | PSR_x | PSR_f},
18914 {"sxc", PSR_s | PSR_x | PSR_c},
18915 {"scf", PSR_s | PSR_c | PSR_f},
18916 {"scx", PSR_s | PSR_c | PSR_x},
18917 {"xfs", PSR_x | PSR_f | PSR_s},
18918 {"xfc", PSR_x | PSR_f | PSR_c},
18919 {"xsf", PSR_x | PSR_s | PSR_f},
18920 {"xsc", PSR_x | PSR_s | PSR_c},
18921 {"xcf", PSR_x | PSR_c | PSR_f},
18922 {"xcs", PSR_x | PSR_c | PSR_s},
18923 {"cfs", PSR_c | PSR_f | PSR_s},
18924 {"cfx", PSR_c | PSR_f | PSR_x},
18925 {"csf", PSR_c | PSR_s | PSR_f},
18926 {"csx", PSR_c | PSR_s | PSR_x},
18927 {"cxf", PSR_c | PSR_x | PSR_f},
18928 {"cxs", PSR_c | PSR_x | PSR_s},
18929 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
18930 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
18931 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
18932 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
18933 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
18934 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
18935 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
18936 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
18937 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
18938 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
18939 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
18940 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
18941 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
18942 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
18943 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
18944 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
18945 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
18946 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
18947 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
18948 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
18949 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
18950 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
18951 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
18952 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
18953 };
18954
18955 /* Table of V7M psr names. */
18956 static const struct asm_psr v7m_psrs[] =
18957 {
18958 {"apsr", 0x0 }, {"APSR", 0x0 },
18959 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
18960 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
18961 {"psr", 0x3 }, {"PSR", 0x3 },
18962 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
18963 {"ipsr", 0x5 }, {"IPSR", 0x5 },
18964 {"epsr", 0x6 }, {"EPSR", 0x6 },
18965 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
18966 {"msp", 0x8 }, {"MSP", 0x8 },
18967 {"psp", 0x9 }, {"PSP", 0x9 },
18968 {"msplim", 0xa }, {"MSPLIM", 0xa },
18969 {"psplim", 0xb }, {"PSPLIM", 0xb },
18970 {"primask", 0x10}, {"PRIMASK", 0x10},
18971 {"basepri", 0x11}, {"BASEPRI", 0x11},
18972 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
18973 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
18974 {"control", 0x14}, {"CONTROL", 0x14},
18975 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
18976 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
18977 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
18978 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
18979 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
18980 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
18981 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
18982 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
18983 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
18984 };
18985
18986 /* Table of all shift-in-operand names. */
18987 static const struct asm_shift_name shift_names [] =
18988 {
18989 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
18990 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
18991 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
18992 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
18993 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
18994 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
18995 };
18996
18997 /* Table of all explicit relocation names. */
18998 #ifdef OBJ_ELF
18999 static struct reloc_entry reloc_names[] =
19000 {
19001 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19002 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19003 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19004 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19005 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19006 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19007 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19008 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19009 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19010 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
19011 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
19012 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19013 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
19014 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
19015 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
19016 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
19017 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
19018 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
19019 };
19020 #endif
19021
19022 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
19023 static const struct asm_cond conds[] =
19024 {
19025 {"eq", 0x0},
19026 {"ne", 0x1},
19027 {"cs", 0x2}, {"hs", 0x2},
19028 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19029 {"mi", 0x4},
19030 {"pl", 0x5},
19031 {"vs", 0x6},
19032 {"vc", 0x7},
19033 {"hi", 0x8},
19034 {"ls", 0x9},
19035 {"ge", 0xa},
19036 {"lt", 0xb},
19037 {"gt", 0xc},
19038 {"le", 0xd},
19039 {"al", 0xe}
19040 };
19041
19042 #define UL_BARRIER(L,U,CODE,FEAT) \
19043 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19044 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
19045
19046 static struct asm_barrier_opt barrier_opt_names[] =
19047 {
19048 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19049 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19050 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19051 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19052 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19053 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19054 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19055 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19056 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19057 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19058 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19059 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19060 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19061 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19062 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19063 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
19064 };
19065
19066 #undef UL_BARRIER
19067
19068 /* Table of ARM-format instructions. */
19069
19070 /* Macros for gluing together operand strings. N.B. In all cases
19071 other than OPS0, the trailing OP_stop comes from default
19072 zero-initialization of the unspecified elements of the array. */
19073 #define OPS0() { OP_stop, }
19074 #define OPS1(a) { OP_##a, }
19075 #define OPS2(a,b) { OP_##a,OP_##b, }
19076 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19077 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19078 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19079 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19080
19081 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19082 This is useful when mixing operands for ARM and THUMB, i.e. using the
19083 MIX_ARM_THUMB_OPERANDS macro.
19084 In order to use these macros, prefix the number of operands with _
19085 e.g. _3. */
19086 #define OPS_1(a) { a, }
19087 #define OPS_2(a,b) { a,b, }
19088 #define OPS_3(a,b,c) { a,b,c, }
19089 #define OPS_4(a,b,c,d) { a,b,c,d, }
19090 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19091 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19092
19093 /* These macros abstract out the exact format of the mnemonic table and
19094 save some repeated characters. */
19095
19096 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19097 #define TxCE(mnem, op, top, nops, ops, ae, te) \
19098 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
19099 THUMB_VARIANT, do_##ae, do_##te }
19100
19101 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19102 a T_MNEM_xyz enumerator. */
19103 #define TCE(mnem, aop, top, nops, ops, ae, te) \
19104 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
19105 #define tCE(mnem, aop, top, nops, ops, ae, te) \
19106 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19107
19108 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19109 infix after the third character. */
19110 #define TxC3(mnem, op, top, nops, ops, ae, te) \
19111 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
19112 THUMB_VARIANT, do_##ae, do_##te }
19113 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
19114 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
19115 THUMB_VARIANT, do_##ae, do_##te }
19116 #define TC3(mnem, aop, top, nops, ops, ae, te) \
19117 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
19118 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
19119 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
19120 #define tC3(mnem, aop, top, nops, ops, ae, te) \
19121 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19122 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
19123 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19124
19125 /* Mnemonic that cannot be conditionalized. The ARM condition-code
19126 field is still 0xE. Many of the Thumb variants can be executed
19127 conditionally, so this is checked separately. */
19128 #define TUE(mnem, op, top, nops, ops, ae, te) \
19129 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19130 THUMB_VARIANT, do_##ae, do_##te }
19131
19132 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19133 Used by mnemonics that have very minimal differences in the encoding for
19134 ARM and Thumb variants and can be handled in a common function. */
19135 #define TUEc(mnem, op, top, nops, ops, en) \
19136 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19137 THUMB_VARIANT, do_##en, do_##en }
19138
19139 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19140 condition code field. */
19141 #define TUF(mnem, op, top, nops, ops, ae, te) \
19142 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
19143 THUMB_VARIANT, do_##ae, do_##te }
19144
19145 /* ARM-only variants of all the above. */
19146 #define CE(mnem, op, nops, ops, ae) \
19147 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19148
19149 #define C3(mnem, op, nops, ops, ae) \
19150 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19151
19152 /* Legacy mnemonics that always have conditional infix after the third
19153 character. */
19154 #define CL(mnem, op, nops, ops, ae) \
19155 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19156 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19157
19158 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19159 #define cCE(mnem, op, nops, ops, ae) \
19160 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19161
19162 /* Legacy coprocessor instructions where conditional infix and conditional
19163 suffix are ambiguous. For consistency this includes all FPA instructions,
19164 not just the potentially ambiguous ones. */
19165 #define cCL(mnem, op, nops, ops, ae) \
19166 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19167 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19168
19169 /* Coprocessor, takes either a suffix or a position-3 infix
19170 (for an FPA corner case). */
19171 #define C3E(mnem, op, nops, ops, ae) \
19172 { mnem, OPS##nops ops, OT_csuf_or_in3, \
19173 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19174
19175 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
19176 { m1 #m2 m3, OPS##nops ops, \
19177 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
19178 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19179
19180 #define CM(m1, m2, op, nops, ops, ae) \
19181 xCM_ (m1, , m2, op, nops, ops, ae), \
19182 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19183 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19184 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19185 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19186 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19187 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19188 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19189 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19190 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19191 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19192 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19193 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19194 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19195 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19196 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19197 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19198 xCM_ (m1, le, m2, op, nops, ops, ae), \
19199 xCM_ (m1, al, m2, op, nops, ops, ae)
19200
19201 #define UE(mnem, op, nops, ops, ae) \
19202 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19203
19204 #define UF(mnem, op, nops, ops, ae) \
19205 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19206
19207 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
19208 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19209 use the same encoding function for each. */
19210 #define NUF(mnem, op, nops, ops, enc) \
19211 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19212 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19213
19214 /* Neon data processing, version which indirects through neon_enc_tab for
19215 the various overloaded versions of opcodes. */
19216 #define nUF(mnem, op, nops, ops, enc) \
19217 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
19218 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19219
19220 /* Neon insn with conditional suffix for the ARM version, non-overloaded
19221 version. */
19222 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
19223 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
19224 THUMB_VARIANT, do_##enc, do_##enc }
19225
19226 #define NCE(mnem, op, nops, ops, enc) \
19227 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19228
19229 #define NCEF(mnem, op, nops, ops, enc) \
19230 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19231
19232 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
19233 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
19234 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
19235 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19236
19237 #define nCE(mnem, op, nops, ops, enc) \
19238 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19239
19240 #define nCEF(mnem, op, nops, ops, enc) \
19241 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19242
19243 #define do_0 0
19244
19245 static const struct asm_opcode insns[] =
19246 {
19247 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19248 #define THUMB_VARIANT & arm_ext_v4t
19249 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19250 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19251 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19252 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19253 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19254 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19255 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19256 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19257 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19258 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19259 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19260 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19261 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19262 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19263 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19264 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
19265
19266 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19267 for setting PSR flag bits. They are obsolete in V6 and do not
19268 have Thumb equivalents. */
19269 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19270 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19271 CL("tstp", 110f000, 2, (RR, SH), cmp),
19272 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19273 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19274 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19275 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19276 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19277 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19278
19279 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
19280 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
19281 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19282 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19283
19284 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
19285 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19286 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19287 OP_RRnpc),
19288 OP_ADDRGLDR),ldst, t_ldst),
19289 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19290
19291 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19292 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19293 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19294 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19295 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19296 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19297
19298 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19299 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19300 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19301 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
19302
19303 /* Pseudo ops. */
19304 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
19305 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
19306 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
19307 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
19308
19309 /* Thumb-compatibility pseudo ops. */
19310 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19311 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19312 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19313 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19314 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19315 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19316 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19317 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19318 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19319 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19320 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19321 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
19322
19323 /* These may simplify to neg. */
19324 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19325 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
19326
19327 #undef THUMB_VARIANT
19328 #define THUMB_VARIANT & arm_ext_v6
19329
19330 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
19331
19332 /* V1 instructions with no Thumb analogue prior to V6T2. */
19333 #undef THUMB_VARIANT
19334 #define THUMB_VARIANT & arm_ext_v6t2
19335
19336 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19337 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19338 CL("teqp", 130f000, 2, (RR, SH), cmp),
19339
19340 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19341 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19342 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19343 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19344
19345 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19346 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19347
19348 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19349 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19350
19351 /* V1 instructions with no Thumb analogue at all. */
19352 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
19353 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19354
19355 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19356 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19357 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19358 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19359 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19360 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19361 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19362 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19363
19364 #undef ARM_VARIANT
19365 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19366 #undef THUMB_VARIANT
19367 #define THUMB_VARIANT & arm_ext_v4t
19368
19369 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19370 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19371
19372 #undef THUMB_VARIANT
19373 #define THUMB_VARIANT & arm_ext_v6t2
19374
19375 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19376 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19377
19378 /* Generic coprocessor instructions. */
19379 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19380 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19381 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19382 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19383 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19384 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19385 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
19386
19387 #undef ARM_VARIANT
19388 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19389
19390 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19391 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19392
19393 #undef ARM_VARIANT
19394 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19395 #undef THUMB_VARIANT
19396 #define THUMB_VARIANT & arm_ext_msr
19397
19398 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19399 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
19400
19401 #undef ARM_VARIANT
19402 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19403 #undef THUMB_VARIANT
19404 #define THUMB_VARIANT & arm_ext_v6t2
19405
19406 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19407 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19408 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19409 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19410 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19411 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19412 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19413 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19414
19415 #undef ARM_VARIANT
19416 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19417 #undef THUMB_VARIANT
19418 #define THUMB_VARIANT & arm_ext_v4t
19419
19420 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19421 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19422 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19423 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19424 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19425 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19426
19427 #undef ARM_VARIANT
19428 #define ARM_VARIANT & arm_ext_v4t_5
19429
19430 /* ARM Architecture 4T. */
19431 /* Note: bx (and blx) are required on V5, even if the processor does
19432 not support Thumb. */
19433 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
19434
19435 #undef ARM_VARIANT
19436 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19437 #undef THUMB_VARIANT
19438 #define THUMB_VARIANT & arm_ext_v5t
19439
19440 /* Note: blx has 2 variants; the .value coded here is for
19441 BLX(2). Only this variant has conditional execution. */
19442 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19443 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
19444
19445 #undef THUMB_VARIANT
19446 #define THUMB_VARIANT & arm_ext_v6t2
19447
19448 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19449 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19450 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19451 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19452 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19453 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19454 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19455 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19456
19457 #undef ARM_VARIANT
19458 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19459 #undef THUMB_VARIANT
19460 #define THUMB_VARIANT & arm_ext_v5exp
19461
19462 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19463 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19464 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19465 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19466
19467 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19468 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19469
19470 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19471 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19472 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19473 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19474
19475 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19476 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19477 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19478 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19479
19480 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19481 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19482
19483 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19484 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19485 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19486 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19487
19488 #undef ARM_VARIANT
19489 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19490 #undef THUMB_VARIANT
19491 #define THUMB_VARIANT & arm_ext_v6t2
19492
19493 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
19494 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19495 ldrd, t_ldstd),
19496 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19497 ADDRGLDRS), ldrd, t_ldstd),
19498
19499 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19500 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19501
19502 #undef ARM_VARIANT
19503 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19504
19505 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
19506
19507 #undef ARM_VARIANT
19508 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19509 #undef THUMB_VARIANT
19510 #define THUMB_VARIANT & arm_ext_v6
19511
19512 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19513 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19514 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19515 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19516 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19517 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19518 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19519 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19520 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19521 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
19522
19523 #undef THUMB_VARIANT
19524 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19525
19526 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19527 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19528 strex, t_strex),
19529 #undef THUMB_VARIANT
19530 #define THUMB_VARIANT & arm_ext_v6t2
19531
19532 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19533 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19534
19535 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19536 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
19537
19538 /* ARM V6 not included in V7M. */
19539 #undef THUMB_VARIANT
19540 #define THUMB_VARIANT & arm_ext_v6_notm
19541 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19542 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19543 UF(rfeib, 9900a00, 1, (RRw), rfe),
19544 UF(rfeda, 8100a00, 1, (RRw), rfe),
19545 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19546 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19547 UF(rfefa, 8100a00, 1, (RRw), rfe),
19548 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19549 UF(rfeed, 9900a00, 1, (RRw), rfe),
19550 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19551 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19552 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19553 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
19554 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
19555 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
19556 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
19557 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19558 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19559 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
19560
19561 /* ARM V6 not included in V7M (eg. integer SIMD). */
19562 #undef THUMB_VARIANT
19563 #define THUMB_VARIANT & arm_ext_v6_dsp
19564 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19565 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19566 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19567 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19568 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19569 /* Old name for QASX. */
19570 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19571 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19572 /* Old name for QSAX. */
19573 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19574 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19575 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19576 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19577 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19578 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19579 /* Old name for SASX. */
19580 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19581 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19582 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19583 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19584 /* Old name for SHASX. */
19585 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19586 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19587 /* Old name for SHSAX. */
19588 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19589 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19590 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19591 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19592 /* Old name for SSAX. */
19593 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19594 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19595 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19596 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19597 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19598 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19599 /* Old name for UASX. */
19600 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19601 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19602 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19603 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19604 /* Old name for UHASX. */
19605 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19606 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19607 /* Old name for UHSAX. */
19608 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19609 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19610 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19611 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19612 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19613 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19614 /* Old name for UQASX. */
19615 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19616 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19617 /* Old name for UQSAX. */
19618 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19619 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19620 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19621 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19622 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19623 /* Old name for USAX. */
19624 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19625 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19626 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19627 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19628 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19629 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19630 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19631 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19632 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19633 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19634 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19635 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19636 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19637 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19638 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19639 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19640 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19641 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19642 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19643 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19644 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19645 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19646 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19647 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19648 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19649 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19650 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19651 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19652 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19653 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19654 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19655 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19656 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19657 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
19658
19659 #undef ARM_VARIANT
19660 #define ARM_VARIANT & arm_ext_v6k
19661 #undef THUMB_VARIANT
19662 #define THUMB_VARIANT & arm_ext_v6k
19663
19664 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19665 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19666 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19667 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
19668
19669 #undef THUMB_VARIANT
19670 #define THUMB_VARIANT & arm_ext_v6_notm
19671 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19672 ldrexd, t_ldrexd),
19673 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19674 RRnpcb), strexd, t_strexd),
19675
19676 #undef THUMB_VARIANT
19677 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19678 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19679 rd_rn, rd_rn),
19680 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19681 rd_rn, rd_rn),
19682 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19683 strex, t_strexbh),
19684 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19685 strex, t_strexbh),
19686 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
19687
19688 #undef ARM_VARIANT
19689 #define ARM_VARIANT & arm_ext_sec
19690 #undef THUMB_VARIANT
19691 #define THUMB_VARIANT & arm_ext_sec
19692
19693 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
19694
19695 #undef ARM_VARIANT
19696 #define ARM_VARIANT & arm_ext_virt
19697 #undef THUMB_VARIANT
19698 #define THUMB_VARIANT & arm_ext_virt
19699
19700 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19701 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19702
19703 #undef ARM_VARIANT
19704 #define ARM_VARIANT & arm_ext_pan
19705 #undef THUMB_VARIANT
19706 #define THUMB_VARIANT & arm_ext_pan
19707
19708 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19709
19710 #undef ARM_VARIANT
19711 #define ARM_VARIANT & arm_ext_v6t2
19712 #undef THUMB_VARIANT
19713 #define THUMB_VARIANT & arm_ext_v6t2
19714
19715 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19716 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19717 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19718 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19719
19720 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19721 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
19722
19723 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19724 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19725 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19726 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19727
19728 #undef THUMB_VARIANT
19729 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19730 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
19731 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
19732
19733 /* Thumb-only instructions. */
19734 #undef ARM_VARIANT
19735 #define ARM_VARIANT NULL
19736 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
19737 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
19738
19739 /* ARM does not really have an IT instruction, so always allow it.
19740 The opcode is copied from Thumb in order to allow warnings in
19741 -mimplicit-it=[never | arm] modes. */
19742 #undef ARM_VARIANT
19743 #define ARM_VARIANT & arm_ext_v1
19744 #undef THUMB_VARIANT
19745 #define THUMB_VARIANT & arm_ext_v6t2
19746
19747 TUE("it", bf08, bf08, 1, (COND), it, t_it),
19748 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
19749 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
19750 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
19751 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
19752 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
19753 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
19754 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
19755 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
19756 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
19757 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
19758 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
19759 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
19760 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
19761 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
19762 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
19763 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
19764 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
19765
19766 /* Thumb2 only instructions. */
19767 #undef ARM_VARIANT
19768 #define ARM_VARIANT NULL
19769
19770 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19771 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19772 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
19773 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
19774 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
19775 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
19776
19777 /* Hardware division instructions. */
19778 #undef ARM_VARIANT
19779 #define ARM_VARIANT & arm_ext_adiv
19780 #undef THUMB_VARIANT
19781 #define THUMB_VARIANT & arm_ext_div
19782
19783 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
19784 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
19785
19786 /* ARM V6M/V7 instructions. */
19787 #undef ARM_VARIANT
19788 #define ARM_VARIANT & arm_ext_barrier
19789 #undef THUMB_VARIANT
19790 #define THUMB_VARIANT & arm_ext_barrier
19791
19792 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
19793 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
19794 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
19795
19796 /* ARM V7 instructions. */
19797 #undef ARM_VARIANT
19798 #define ARM_VARIANT & arm_ext_v7
19799 #undef THUMB_VARIANT
19800 #define THUMB_VARIANT & arm_ext_v7
19801
19802 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
19803 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
19804
19805 #undef ARM_VARIANT
19806 #define ARM_VARIANT & arm_ext_mp
19807 #undef THUMB_VARIANT
19808 #define THUMB_VARIANT & arm_ext_mp
19809
19810 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
19811
19812 /* AArchv8 instructions. */
19813 #undef ARM_VARIANT
19814 #define ARM_VARIANT & arm_ext_v8
19815
19816 /* Instructions shared between armv8-a and armv8-m. */
19817 #undef THUMB_VARIANT
19818 #define THUMB_VARIANT & arm_ext_atomics
19819
19820 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19821 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19822 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19823 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19824 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19825 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19826 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19827 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
19828 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19829 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
19830 stlex, t_stlex),
19831 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
19832 stlex, t_stlex),
19833 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
19834 stlex, t_stlex),
19835 #undef THUMB_VARIANT
19836 #define THUMB_VARIANT & arm_ext_v8
19837
19838 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
19839 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
19840 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
19841 ldrexd, t_ldrexd),
19842 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
19843 strexd, t_strexd),
19844 /* ARMv8 T32 only. */
19845 #undef ARM_VARIANT
19846 #define ARM_VARIANT NULL
19847 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
19848 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
19849 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
19850
19851 /* FP for ARMv8. */
19852 #undef ARM_VARIANT
19853 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
19854 #undef THUMB_VARIANT
19855 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
19856
19857 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
19858 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
19859 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
19860 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
19861 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19862 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19863 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
19864 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
19865 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
19866 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
19867 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
19868 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
19869 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
19870 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
19871 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
19872 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
19873 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
19874
19875 /* Crypto v1 extensions. */
19876 #undef ARM_VARIANT
19877 #define ARM_VARIANT & fpu_crypto_ext_armv8
19878 #undef THUMB_VARIANT
19879 #define THUMB_VARIANT & fpu_crypto_ext_armv8
19880
19881 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
19882 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
19883 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
19884 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
19885 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
19886 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
19887 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
19888 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
19889 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
19890 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
19891 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
19892 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
19893 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
19894 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
19895
19896 #undef ARM_VARIANT
19897 #define ARM_VARIANT & crc_ext_armv8
19898 #undef THUMB_VARIANT
19899 #define THUMB_VARIANT & crc_ext_armv8
19900 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
19901 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
19902 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
19903 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
19904 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
19905 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
19906
19907 /* ARMv8.2 RAS extension. */
19908 #undef ARM_VARIANT
19909 #define ARM_VARIANT & arm_ext_ras
19910 #undef THUMB_VARIANT
19911 #define THUMB_VARIANT & arm_ext_ras
19912 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
19913
19914 #undef ARM_VARIANT
19915 #define ARM_VARIANT & arm_ext_v8_3
19916 #undef THUMB_VARIANT
19917 #define THUMB_VARIANT & arm_ext_v8_3
19918 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
19919 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
19920 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
19921
19922 #undef ARM_VARIANT
19923 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
19924 #undef THUMB_VARIANT
19925 #define THUMB_VARIANT NULL
19926
19927 cCE("wfs", e200110, 1, (RR), rd),
19928 cCE("rfs", e300110, 1, (RR), rd),
19929 cCE("wfc", e400110, 1, (RR), rd),
19930 cCE("rfc", e500110, 1, (RR), rd),
19931
19932 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
19933 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
19934 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
19935 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
19936
19937 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
19938 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
19939 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
19940 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
19941
19942 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
19943 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
19944 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
19945 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
19946 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
19947 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
19948 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
19949 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
19950 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
19951 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
19952 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
19953 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
19954
19955 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
19956 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
19957 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
19958 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
19959 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
19960 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
19961 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
19962 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
19963 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
19964 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
19965 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
19966 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
19967
19968 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
19969 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
19970 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
19971 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
19972 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
19973 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
19974 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
19975 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
19976 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
19977 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
19978 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
19979 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
19980
19981 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
19982 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
19983 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
19984 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
19985 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
19986 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
19987 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
19988 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
19989 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
19990 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
19991 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
19992 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
19993
19994 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
19995 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
19996 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
19997 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
19998 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
19999 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20000 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20001 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20002 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20003 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20004 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20005 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20006
20007 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20008 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20009 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20010 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20011 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20012 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20013 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20014 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20015 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20016 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20017 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20018 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20019
20020 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20021 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20022 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20023 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20024 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20025 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20026 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20027 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20028 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20029 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20030 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20031 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20032
20033 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20034 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20035 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20036 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20037 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20038 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20039 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20040 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20041 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20042 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20043 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20044 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20045
20046 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20047 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20048 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20049 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20050 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20051 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20052 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20053 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20054 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20055 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20056 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20057 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20058
20059 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20060 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20061 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20062 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20063 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20064 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20065 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20066 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20067 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20068 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20069 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20070 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20071
20072 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20073 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20074 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20075 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20076 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20077 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20078 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20079 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20080 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20081 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20082 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20083 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20084
20085 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20086 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20087 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20088 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20089 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20090 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20091 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20092 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20093 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20094 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20095 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20096 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20097
20098 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20099 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20100 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20101 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20102 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20103 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20104 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20105 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20106 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20107 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20108 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20109 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20110
20111 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20112 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20113 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20114 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20115 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20116 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20117 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20118 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20119 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20120 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20121 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20122 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20123
20124 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20125 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20126 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20127 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20128 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20129 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20130 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20131 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20132 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20133 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20134 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20135 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20136
20137 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20138 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20139 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20140 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20141 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20142 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20143 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20144 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20145 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20146 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20147 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20148 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20149
20150 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20151 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20152 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20153 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20154 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20155 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20156 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20157 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20158 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20159 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20160 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20161 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20162
20163 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20164 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20165 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20166 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20167 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20168 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20169 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20170 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20171 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20172 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20173 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20174 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20175
20176 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20177 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20178 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20179 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20180 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20181 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20182 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20183 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20184 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20185 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20186 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20187 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20188
20189 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20190 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20191 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20192 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20193 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20194 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20195 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20196 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20197 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20198 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20199 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20200 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20201
20202 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20203 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20204 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20205 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20206 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20207 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20208 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20209 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20210 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20211 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20212 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20213 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20214
20215 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20216 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20217 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20218 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20219 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20220 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20221 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20222 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20223 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20224 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20225 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20226 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20227
20228 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20229 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20230 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20231 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20232 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20233 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20234 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20235 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20236 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20237 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20238 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20239 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20240
20241 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20242 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20243 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20244 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20245 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20246 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20247 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20248 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20249 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20250 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20251 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20252 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20253
20254 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20255 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20256 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20257 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20258 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20259 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20260 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20261 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20262 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20263 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20264 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20265 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20266
20267 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20268 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20269 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20270 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20271 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20272 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20273 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20274 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20275 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20276 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20277 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20278 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20279
20280 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20281 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20282 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20283 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20284 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20285 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20286 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20287 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20288 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20289 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20290 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20291 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20292
20293 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20294 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20295 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20296 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20297 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20298 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20299 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20300 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20301 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20302 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20303 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20304 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20305
20306 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20307 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20308 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20309 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20310 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20311 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20312 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20313 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20314 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20315 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20316 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20317 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20318
20319 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20320 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20321 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20322 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20323
20324 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20325 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20326 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20327 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20328 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20329 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20330 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20331 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20332 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20333 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20334 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20335 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
20336
20337 /* The implementation of the FIX instruction is broken on some
20338 assemblers, in that it accepts a precision specifier as well as a
20339 rounding specifier, despite the fact that this is meaningless.
20340 To be more compatible, we accept it as well, though of course it
20341 does not set any bits. */
20342 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20343 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20344 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20345 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20346 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20347 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20348 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20349 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20350 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20351 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20352 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20353 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20354 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
20355
20356 /* Instructions that were new with the real FPA, call them V2. */
20357 #undef ARM_VARIANT
20358 #define ARM_VARIANT & fpu_fpa_ext_v2
20359
20360 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20361 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20362 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20363 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20364 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20365 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20366
20367 #undef ARM_VARIANT
20368 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20369
20370 /* Moves and type conversions. */
20371 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20372 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20373 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20374 cCE("fmstat", ef1fa10, 0, (), noargs),
20375 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20376 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
20377 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20378 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20379 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20380 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20381 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20382 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20383 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20384 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
20385
20386 /* Memory operations. */
20387 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20388 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20389 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20390 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20391 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20392 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20393 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20394 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20395 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20396 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20397 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20398 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20399 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20400 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20401 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20402 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20403 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20404 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20405
20406 /* Monadic operations. */
20407 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20408 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20409 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
20410
20411 /* Dyadic operations. */
20412 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20413 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20414 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20415 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20416 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20417 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20418 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20419 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20420 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20421
20422 /* Comparisons. */
20423 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20424 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20425 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20426 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
20427
20428 /* Double precision load/store are still present on single precision
20429 implementations. */
20430 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20431 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20432 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20433 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20434 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20435 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20436 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20437 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20438 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20439 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20440
20441 #undef ARM_VARIANT
20442 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20443
20444 /* Moves and type conversions. */
20445 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20446 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20447 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20448 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20449 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20450 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20451 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20452 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20453 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20454 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20455 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20456 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20457 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20458
20459 /* Monadic operations. */
20460 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20461 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20462 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20463
20464 /* Dyadic operations. */
20465 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20466 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20467 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20468 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20469 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20470 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20471 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20472 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20473 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20474
20475 /* Comparisons. */
20476 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20477 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20478 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20479 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
20480
20481 #undef ARM_VARIANT
20482 #define ARM_VARIANT & fpu_vfp_ext_v2
20483
20484 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20485 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20486 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20487 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
20488
20489 /* Instructions which may belong to either the Neon or VFP instruction sets.
20490 Individual encoder functions perform additional architecture checks. */
20491 #undef ARM_VARIANT
20492 #define ARM_VARIANT & fpu_vfp_ext_v1xd
20493 #undef THUMB_VARIANT
20494 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
20495
20496 /* These mnemonics are unique to VFP. */
20497 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20498 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
20499 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20500 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20501 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20502 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20503 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20504 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20505 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20506 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20507
20508 /* Mnemonics shared by Neon and VFP. */
20509 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20510 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20511 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20512
20513 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20514 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20515
20516 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20517 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20518
20519 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20520 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20521 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20522 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20523 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20524 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20525 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20526 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20527
20528 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
20529 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
20530 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20531 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
20532
20533
20534 /* NOTE: All VMOV encoding is special-cased! */
20535 NCE(vmov, 0, 1, (VMOV), neon_mov),
20536 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20537
20538 #undef ARM_VARIANT
20539 #define ARM_VARIANT & arm_ext_fp16
20540 #undef THUMB_VARIANT
20541 #define THUMB_VARIANT & arm_ext_fp16
20542 /* New instructions added from v8.2, allowing the extraction and insertion of
20543 the upper 16 bits of a 32-bit vector register. */
20544 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20545 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20546
20547 #undef THUMB_VARIANT
20548 #define THUMB_VARIANT & fpu_neon_ext_v1
20549 #undef ARM_VARIANT
20550 #define ARM_VARIANT & fpu_neon_ext_v1
20551
20552 /* Data processing with three registers of the same length. */
20553 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20554 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20555 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20556 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20557 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20558 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20559 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20560 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20561 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20562 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20563 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20564 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20565 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20566 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20567 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20568 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20569 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20570 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20571 /* If not immediate, fall back to neon_dyadic_i64_su.
20572 shl_imm should accept I8 I16 I32 I64,
20573 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
20574 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20575 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20576 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20577 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
20578 /* Logic ops, types optional & ignored. */
20579 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20580 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20581 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20582 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20583 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20584 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20585 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20586 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20587 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20588 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
20589 /* Bitfield ops, untyped. */
20590 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20591 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20592 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20593 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20594 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20595 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20596 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
20597 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20598 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20599 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20600 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20601 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20602 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20603 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20604 back to neon_dyadic_if_su. */
20605 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20606 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20607 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20608 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20609 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20610 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20611 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20612 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20613 /* Comparison. Type I8 I16 I32 F32. */
20614 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20615 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
20616 /* As above, D registers only. */
20617 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20618 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20619 /* Int and float variants, signedness unimportant. */
20620 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20621 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20622 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
20623 /* Add/sub take types I8 I16 I32 I64 F32. */
20624 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20625 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20626 /* vtst takes sizes 8, 16, 32. */
20627 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20628 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20629 /* VMUL takes I8 I16 I32 F32 P8. */
20630 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
20631 /* VQD{R}MULH takes S16 S32. */
20632 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20633 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20634 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20635 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20636 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20637 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20638 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20639 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20640 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20641 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20642 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20643 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20644 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20645 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20646 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20647 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20648 /* ARM v8.1 extension. */
20649 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20650 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20651 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20652 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20653
20654 /* Two address, int/float. Types S8 S16 S32 F32. */
20655 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
20656 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
20657
20658 /* Data processing with two registers and a shift amount. */
20659 /* Right shifts, and variants with rounding.
20660 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
20661 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20662 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20663 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20664 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20665 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20666 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20667 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20668 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20669 /* Shift and insert. Sizes accepted 8 16 32 64. */
20670 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
20671 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
20672 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
20673 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
20674 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
20675 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
20676 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
20677 /* Right shift immediate, saturating & narrowing, with rounding variants.
20678 Types accepted S16 S32 S64 U16 U32 U64. */
20679 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20680 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20681 /* As above, unsigned. Types accepted S16 S32 S64. */
20682 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20683 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20684 /* Right shift narrowing. Types accepted I16 I32 I64. */
20685 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20686 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20687 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
20688 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
20689 /* CVT with optional immediate for fixed-point variant. */
20690 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
20691
20692 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
20693 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
20694
20695 /* Data processing, three registers of different lengths. */
20696 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
20697 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
20698 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
20699 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
20700 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
20701 /* If not scalar, fall back to neon_dyadic_long.
20702 Vector types as above, scalar types S16 S32 U16 U32. */
20703 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20704 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20705 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20706 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20707 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20708 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20709 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20710 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20711 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20712 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20713 /* Saturating doubling multiplies. Types S16 S32. */
20714 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20715 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20716 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20717 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
20718 S16 S32 U16 U32. */
20719 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
20720
20721 /* Extract. Size 8. */
20722 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
20723 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
20724
20725 /* Two registers, miscellaneous. */
20726 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
20727 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
20728 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
20729 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
20730 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
20731 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
20732 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
20733 /* Vector replicate. Sizes 8 16 32. */
20734 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
20735 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
20736 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
20737 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
20738 /* VMOVN. Types I16 I32 I64. */
20739 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
20740 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
20741 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
20742 /* VQMOVUN. Types S16 S32 S64. */
20743 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
20744 /* VZIP / VUZP. Sizes 8 16 32. */
20745 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
20746 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
20747 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
20748 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
20749 /* VQABS / VQNEG. Types S8 S16 S32. */
20750 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20751 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
20752 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20753 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
20754 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
20755 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
20756 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
20757 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
20758 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
20759 /* Reciprocal estimates. Types U32 F16 F32. */
20760 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
20761 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
20762 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
20763 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
20764 /* VCLS. Types S8 S16 S32. */
20765 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
20766 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
20767 /* VCLZ. Types I8 I16 I32. */
20768 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
20769 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
20770 /* VCNT. Size 8. */
20771 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
20772 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
20773 /* Two address, untyped. */
20774 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
20775 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
20776 /* VTRN. Sizes 8 16 32. */
20777 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
20778 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
20779
20780 /* Table lookup. Size 8. */
20781 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20782 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20783
20784 #undef THUMB_VARIANT
20785 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
20786 #undef ARM_VARIANT
20787 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
20788
20789 /* Neon element/structure load/store. */
20790 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20791 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20792 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20793 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20794 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20795 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20796 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20797 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20798
20799 #undef THUMB_VARIANT
20800 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
20801 #undef ARM_VARIANT
20802 #define ARM_VARIANT & fpu_vfp_ext_v3xd
20803 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
20804 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20805 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20806 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20807 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20808 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20809 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20810 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20811 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20812
20813 #undef THUMB_VARIANT
20814 #define THUMB_VARIANT & fpu_vfp_ext_v3
20815 #undef ARM_VARIANT
20816 #define ARM_VARIANT & fpu_vfp_ext_v3
20817
20818 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
20819 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20820 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20821 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20822 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20823 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20824 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20825 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20826 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20827
20828 #undef ARM_VARIANT
20829 #define ARM_VARIANT & fpu_vfp_ext_fma
20830 #undef THUMB_VARIANT
20831 #define THUMB_VARIANT & fpu_vfp_ext_fma
20832 /* Mnemonics shared by Neon and VFP. These are included in the
20833 VFP FMA variant; NEON and VFP FMA always includes the NEON
20834 FMA instructions. */
20835 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20836 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20837 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
20838 the v form should always be used. */
20839 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20840 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20841 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20842 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20843 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20844 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20845
20846 #undef THUMB_VARIANT
20847 #undef ARM_VARIANT
20848 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
20849
20850 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20851 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20852 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20853 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20854 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20855 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20856 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
20857 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
20858
20859 #undef ARM_VARIANT
20860 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
20861
20862 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
20863 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
20864 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
20865 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
20866 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
20867 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
20868 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
20869 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
20870 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
20871 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20872 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20873 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20874 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20875 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20876 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20877 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20878 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20879 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20880 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
20881 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
20882 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20883 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20884 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20885 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20886 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20887 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20888 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
20889 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
20890 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
20891 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
20892 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
20893 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
20894 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
20895 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
20896 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
20897 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
20898 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
20899 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20900 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20901 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20902 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20903 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20904 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20905 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20906 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20907 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20908 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
20909 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20910 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20911 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20912 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20913 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20914 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20915 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20916 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20917 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20918 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20919 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20920 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20921 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20922 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20923 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20924 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20925 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20926 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20927 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20928 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20929 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20930 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20931 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20932 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20933 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20934 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20935 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20936 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20937 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20938 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20939 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20940 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20941 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20942 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20943 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20944 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20945 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20946 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20947 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20948 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20949 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20950 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
20951 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20952 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20953 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20954 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20955 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20956 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20957 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20958 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20959 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20960 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20961 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20962 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20963 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20964 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20965 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20966 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20967 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20968 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20969 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20970 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20971 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20972 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
20973 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20974 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20975 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20976 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20977 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20978 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20979 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20980 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20981 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20982 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20983 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20984 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20985 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20986 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20987 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20988 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20989 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20990 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20991 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20992 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20993 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20994 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20995 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20996 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20997 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20998 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20999 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21000 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21001 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21002 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21003 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21004 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21005 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21006 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21007 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21008 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21009 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21010 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21011 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21012 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21013 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21014 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21015 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21016 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21017 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21018 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21019 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21020 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21021 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21022 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21023 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
21024
21025 #undef ARM_VARIANT
21026 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21027
21028 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21029 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21030 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21031 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21032 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21033 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21034 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21035 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21036 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21037 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21038 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21039 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21040 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21041 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21042 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21043 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21044 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21045 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21046 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21047 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21048 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21049 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21050 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21051 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21052 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21053 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21054 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21055 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21056 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21057 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21058 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21059 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21060 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21061 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21062 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21063 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21064 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21065 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21066 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21067 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21068 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21069 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21070 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21071 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21072 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21073 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21074 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21075 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21076 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21077 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21078 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21079 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21080 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21081 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21082 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21083 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21084 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21085
21086 #undef ARM_VARIANT
21087 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21088
21089 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21090 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21091 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21092 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21093 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21094 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21095 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21096 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21097 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21098 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21099 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21100 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21101 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21102 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
21103 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21104 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21105 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21106 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21107 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21108 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21109 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21110 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21111 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21112 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21113 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21114 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21115 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21116 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
21117 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21118 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21119 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21120 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21121 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21122 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
21123 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21124 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21125 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21126 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21127 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21128 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21129 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21130 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
21131 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21132 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21133 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21134 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21135 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21136 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21137 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21138 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21139 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21140 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21141 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21142 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21143 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21144 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21145 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21146 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21147 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21148 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21149 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21150 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21151 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21152 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21153 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21154 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21155 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21156 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21157 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21158 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21159 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21160 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21161 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21162 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21163 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21164 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21165
21166 /* ARMv8-M instructions. */
21167 #undef ARM_VARIANT
21168 #define ARM_VARIANT NULL
21169 #undef THUMB_VARIANT
21170 #define THUMB_VARIANT & arm_ext_v8m
21171 TUE("sg", 0, e97fe97f, 0, (), 0, noargs),
21172 TUE("blxns", 0, 4784, 1, (RRnpc), 0, t_blx),
21173 TUE("bxns", 0, 4704, 1, (RRnpc), 0, t_bx),
21174 TUE("tt", 0, e840f000, 2, (RRnpc, RRnpc), 0, tt),
21175 TUE("ttt", 0, e840f040, 2, (RRnpc, RRnpc), 0, tt),
21176 TUE("tta", 0, e840f080, 2, (RRnpc, RRnpc), 0, tt),
21177 TUE("ttat", 0, e840f0c0, 2, (RRnpc, RRnpc), 0, tt),
21178
21179 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21180 instructions behave as nop if no VFP is present. */
21181 #undef THUMB_VARIANT
21182 #define THUMB_VARIANT & arm_ext_v8m_main
21183 TUEc("vlldm", 0, ec300a00, 1, (RRnpc), rn),
21184 TUEc("vlstm", 0, ec200a00, 1, (RRnpc), rn),
21185 };
21186 #undef ARM_VARIANT
21187 #undef THUMB_VARIANT
21188 #undef TCE
21189 #undef TUE
21190 #undef TUF
21191 #undef TCC
21192 #undef cCE
21193 #undef cCL
21194 #undef C3E
21195 #undef CE
21196 #undef CM
21197 #undef UE
21198 #undef UF
21199 #undef UT
21200 #undef NUF
21201 #undef nUF
21202 #undef NCE
21203 #undef nCE
21204 #undef OPS0
21205 #undef OPS1
21206 #undef OPS2
21207 #undef OPS3
21208 #undef OPS4
21209 #undef OPS5
21210 #undef OPS6
21211 #undef do_0
21212 \f
21213 /* MD interface: bits in the object file. */
21214
21215 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21216 for use in the a.out file, and stores them in the array pointed to by buf.
21217 This knows about the endian-ness of the target machine and does
21218 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21219 2 (short) and 4 (long) Floating numbers are put out as a series of
21220 LITTLENUMS (shorts, here at least). */
21221
21222 void
21223 md_number_to_chars (char * buf, valueT val, int n)
21224 {
21225 if (target_big_endian)
21226 number_to_chars_bigendian (buf, val, n);
21227 else
21228 number_to_chars_littleendian (buf, val, n);
21229 }
21230
21231 static valueT
21232 md_chars_to_number (char * buf, int n)
21233 {
21234 valueT result = 0;
21235 unsigned char * where = (unsigned char *) buf;
21236
21237 if (target_big_endian)
21238 {
21239 while (n--)
21240 {
21241 result <<= 8;
21242 result |= (*where++ & 255);
21243 }
21244 }
21245 else
21246 {
21247 while (n--)
21248 {
21249 result <<= 8;
21250 result |= (where[n] & 255);
21251 }
21252 }
21253
21254 return result;
21255 }
21256
21257 /* MD interface: Sections. */
21258
21259 /* Calculate the maximum variable size (i.e., excluding fr_fix)
21260 that an rs_machine_dependent frag may reach. */
21261
21262 unsigned int
21263 arm_frag_max_var (fragS *fragp)
21264 {
21265 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21266 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21267
21268 Note that we generate relaxable instructions even for cases that don't
21269 really need it, like an immediate that's a trivial constant. So we're
21270 overestimating the instruction size for some of those cases. Rather
21271 than putting more intelligence here, it would probably be better to
21272 avoid generating a relaxation frag in the first place when it can be
21273 determined up front that a short instruction will suffice. */
21274
21275 gas_assert (fragp->fr_type == rs_machine_dependent);
21276 return INSN_SIZE;
21277 }
21278
21279 /* Estimate the size of a frag before relaxing. Assume everything fits in
21280 2 bytes. */
21281
21282 int
21283 md_estimate_size_before_relax (fragS * fragp,
21284 segT segtype ATTRIBUTE_UNUSED)
21285 {
21286 fragp->fr_var = 2;
21287 return 2;
21288 }
21289
21290 /* Convert a machine dependent frag. */
21291
21292 void
21293 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21294 {
21295 unsigned long insn;
21296 unsigned long old_op;
21297 char *buf;
21298 expressionS exp;
21299 fixS *fixp;
21300 int reloc_type;
21301 int pc_rel;
21302 int opcode;
21303
21304 buf = fragp->fr_literal + fragp->fr_fix;
21305
21306 old_op = bfd_get_16(abfd, buf);
21307 if (fragp->fr_symbol)
21308 {
21309 exp.X_op = O_symbol;
21310 exp.X_add_symbol = fragp->fr_symbol;
21311 }
21312 else
21313 {
21314 exp.X_op = O_constant;
21315 }
21316 exp.X_add_number = fragp->fr_offset;
21317 opcode = fragp->fr_subtype;
21318 switch (opcode)
21319 {
21320 case T_MNEM_ldr_pc:
21321 case T_MNEM_ldr_pc2:
21322 case T_MNEM_ldr_sp:
21323 case T_MNEM_str_sp:
21324 case T_MNEM_ldr:
21325 case T_MNEM_ldrb:
21326 case T_MNEM_ldrh:
21327 case T_MNEM_str:
21328 case T_MNEM_strb:
21329 case T_MNEM_strh:
21330 if (fragp->fr_var == 4)
21331 {
21332 insn = THUMB_OP32 (opcode);
21333 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21334 {
21335 insn |= (old_op & 0x700) << 4;
21336 }
21337 else
21338 {
21339 insn |= (old_op & 7) << 12;
21340 insn |= (old_op & 0x38) << 13;
21341 }
21342 insn |= 0x00000c00;
21343 put_thumb32_insn (buf, insn);
21344 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21345 }
21346 else
21347 {
21348 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21349 }
21350 pc_rel = (opcode == T_MNEM_ldr_pc2);
21351 break;
21352 case T_MNEM_adr:
21353 if (fragp->fr_var == 4)
21354 {
21355 insn = THUMB_OP32 (opcode);
21356 insn |= (old_op & 0xf0) << 4;
21357 put_thumb32_insn (buf, insn);
21358 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21359 }
21360 else
21361 {
21362 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21363 exp.X_add_number -= 4;
21364 }
21365 pc_rel = 1;
21366 break;
21367 case T_MNEM_mov:
21368 case T_MNEM_movs:
21369 case T_MNEM_cmp:
21370 case T_MNEM_cmn:
21371 if (fragp->fr_var == 4)
21372 {
21373 int r0off = (opcode == T_MNEM_mov
21374 || opcode == T_MNEM_movs) ? 0 : 8;
21375 insn = THUMB_OP32 (opcode);
21376 insn = (insn & 0xe1ffffff) | 0x10000000;
21377 insn |= (old_op & 0x700) << r0off;
21378 put_thumb32_insn (buf, insn);
21379 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21380 }
21381 else
21382 {
21383 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21384 }
21385 pc_rel = 0;
21386 break;
21387 case T_MNEM_b:
21388 if (fragp->fr_var == 4)
21389 {
21390 insn = THUMB_OP32(opcode);
21391 put_thumb32_insn (buf, insn);
21392 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21393 }
21394 else
21395 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21396 pc_rel = 1;
21397 break;
21398 case T_MNEM_bcond:
21399 if (fragp->fr_var == 4)
21400 {
21401 insn = THUMB_OP32(opcode);
21402 insn |= (old_op & 0xf00) << 14;
21403 put_thumb32_insn (buf, insn);
21404 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21405 }
21406 else
21407 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21408 pc_rel = 1;
21409 break;
21410 case T_MNEM_add_sp:
21411 case T_MNEM_add_pc:
21412 case T_MNEM_inc_sp:
21413 case T_MNEM_dec_sp:
21414 if (fragp->fr_var == 4)
21415 {
21416 /* ??? Choose between add and addw. */
21417 insn = THUMB_OP32 (opcode);
21418 insn |= (old_op & 0xf0) << 4;
21419 put_thumb32_insn (buf, insn);
21420 if (opcode == T_MNEM_add_pc)
21421 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21422 else
21423 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21424 }
21425 else
21426 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21427 pc_rel = 0;
21428 break;
21429
21430 case T_MNEM_addi:
21431 case T_MNEM_addis:
21432 case T_MNEM_subi:
21433 case T_MNEM_subis:
21434 if (fragp->fr_var == 4)
21435 {
21436 insn = THUMB_OP32 (opcode);
21437 insn |= (old_op & 0xf0) << 4;
21438 insn |= (old_op & 0xf) << 16;
21439 put_thumb32_insn (buf, insn);
21440 if (insn & (1 << 20))
21441 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21442 else
21443 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21444 }
21445 else
21446 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21447 pc_rel = 0;
21448 break;
21449 default:
21450 abort ();
21451 }
21452 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21453 (enum bfd_reloc_code_real) reloc_type);
21454 fixp->fx_file = fragp->fr_file;
21455 fixp->fx_line = fragp->fr_line;
21456 fragp->fr_fix += fragp->fr_var;
21457
21458 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21459 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21460 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21461 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
21462 }
21463
21464 /* Return the size of a relaxable immediate operand instruction.
21465 SHIFT and SIZE specify the form of the allowable immediate. */
21466 static int
21467 relax_immediate (fragS *fragp, int size, int shift)
21468 {
21469 offsetT offset;
21470 offsetT mask;
21471 offsetT low;
21472
21473 /* ??? Should be able to do better than this. */
21474 if (fragp->fr_symbol)
21475 return 4;
21476
21477 low = (1 << shift) - 1;
21478 mask = (1 << (shift + size)) - (1 << shift);
21479 offset = fragp->fr_offset;
21480 /* Force misaligned offsets to 32-bit variant. */
21481 if (offset & low)
21482 return 4;
21483 if (offset & ~mask)
21484 return 4;
21485 return 2;
21486 }
21487
21488 /* Get the address of a symbol during relaxation. */
21489 static addressT
21490 relaxed_symbol_addr (fragS *fragp, long stretch)
21491 {
21492 fragS *sym_frag;
21493 addressT addr;
21494 symbolS *sym;
21495
21496 sym = fragp->fr_symbol;
21497 sym_frag = symbol_get_frag (sym);
21498 know (S_GET_SEGMENT (sym) != absolute_section
21499 || sym_frag == &zero_address_frag);
21500 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21501
21502 /* If frag has yet to be reached on this pass, assume it will
21503 move by STRETCH just as we did. If this is not so, it will
21504 be because some frag between grows, and that will force
21505 another pass. */
21506
21507 if (stretch != 0
21508 && sym_frag->relax_marker != fragp->relax_marker)
21509 {
21510 fragS *f;
21511
21512 /* Adjust stretch for any alignment frag. Note that if have
21513 been expanding the earlier code, the symbol may be
21514 defined in what appears to be an earlier frag. FIXME:
21515 This doesn't handle the fr_subtype field, which specifies
21516 a maximum number of bytes to skip when doing an
21517 alignment. */
21518 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21519 {
21520 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21521 {
21522 if (stretch < 0)
21523 stretch = - ((- stretch)
21524 & ~ ((1 << (int) f->fr_offset) - 1));
21525 else
21526 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21527 if (stretch == 0)
21528 break;
21529 }
21530 }
21531 if (f != NULL)
21532 addr += stretch;
21533 }
21534
21535 return addr;
21536 }
21537
21538 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
21539 load. */
21540 static int
21541 relax_adr (fragS *fragp, asection *sec, long stretch)
21542 {
21543 addressT addr;
21544 offsetT val;
21545
21546 /* Assume worst case for symbols not known to be in the same section. */
21547 if (fragp->fr_symbol == NULL
21548 || !S_IS_DEFINED (fragp->fr_symbol)
21549 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21550 || S_IS_WEAK (fragp->fr_symbol))
21551 return 4;
21552
21553 val = relaxed_symbol_addr (fragp, stretch);
21554 addr = fragp->fr_address + fragp->fr_fix;
21555 addr = (addr + 4) & ~3;
21556 /* Force misaligned targets to 32-bit variant. */
21557 if (val & 3)
21558 return 4;
21559 val -= addr;
21560 if (val < 0 || val > 1020)
21561 return 4;
21562 return 2;
21563 }
21564
21565 /* Return the size of a relaxable add/sub immediate instruction. */
21566 static int
21567 relax_addsub (fragS *fragp, asection *sec)
21568 {
21569 char *buf;
21570 int op;
21571
21572 buf = fragp->fr_literal + fragp->fr_fix;
21573 op = bfd_get_16(sec->owner, buf);
21574 if ((op & 0xf) == ((op >> 4) & 0xf))
21575 return relax_immediate (fragp, 8, 0);
21576 else
21577 return relax_immediate (fragp, 3, 0);
21578 }
21579
21580 /* Return TRUE iff the definition of symbol S could be pre-empted
21581 (overridden) at link or load time. */
21582 static bfd_boolean
21583 symbol_preemptible (symbolS *s)
21584 {
21585 /* Weak symbols can always be pre-empted. */
21586 if (S_IS_WEAK (s))
21587 return TRUE;
21588
21589 /* Non-global symbols cannot be pre-empted. */
21590 if (! S_IS_EXTERNAL (s))
21591 return FALSE;
21592
21593 #ifdef OBJ_ELF
21594 /* In ELF, a global symbol can be marked protected, or private. In that
21595 case it can't be pre-empted (other definitions in the same link unit
21596 would violate the ODR). */
21597 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21598 return FALSE;
21599 #endif
21600
21601 /* Other global symbols might be pre-empted. */
21602 return TRUE;
21603 }
21604
21605 /* Return the size of a relaxable branch instruction. BITS is the
21606 size of the offset field in the narrow instruction. */
21607
21608 static int
21609 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
21610 {
21611 addressT addr;
21612 offsetT val;
21613 offsetT limit;
21614
21615 /* Assume worst case for symbols not known to be in the same section. */
21616 if (!S_IS_DEFINED (fragp->fr_symbol)
21617 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21618 || S_IS_WEAK (fragp->fr_symbol))
21619 return 4;
21620
21621 #ifdef OBJ_ELF
21622 /* A branch to a function in ARM state will require interworking. */
21623 if (S_IS_DEFINED (fragp->fr_symbol)
21624 && ARM_IS_FUNC (fragp->fr_symbol))
21625 return 4;
21626 #endif
21627
21628 if (symbol_preemptible (fragp->fr_symbol))
21629 return 4;
21630
21631 val = relaxed_symbol_addr (fragp, stretch);
21632 addr = fragp->fr_address + fragp->fr_fix + 4;
21633 val -= addr;
21634
21635 /* Offset is a signed value *2 */
21636 limit = 1 << bits;
21637 if (val >= limit || val < -limit)
21638 return 4;
21639 return 2;
21640 }
21641
21642
21643 /* Relax a machine dependent frag. This returns the amount by which
21644 the current size of the frag should change. */
21645
21646 int
21647 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
21648 {
21649 int oldsize;
21650 int newsize;
21651
21652 oldsize = fragp->fr_var;
21653 switch (fragp->fr_subtype)
21654 {
21655 case T_MNEM_ldr_pc2:
21656 newsize = relax_adr (fragp, sec, stretch);
21657 break;
21658 case T_MNEM_ldr_pc:
21659 case T_MNEM_ldr_sp:
21660 case T_MNEM_str_sp:
21661 newsize = relax_immediate (fragp, 8, 2);
21662 break;
21663 case T_MNEM_ldr:
21664 case T_MNEM_str:
21665 newsize = relax_immediate (fragp, 5, 2);
21666 break;
21667 case T_MNEM_ldrh:
21668 case T_MNEM_strh:
21669 newsize = relax_immediate (fragp, 5, 1);
21670 break;
21671 case T_MNEM_ldrb:
21672 case T_MNEM_strb:
21673 newsize = relax_immediate (fragp, 5, 0);
21674 break;
21675 case T_MNEM_adr:
21676 newsize = relax_adr (fragp, sec, stretch);
21677 break;
21678 case T_MNEM_mov:
21679 case T_MNEM_movs:
21680 case T_MNEM_cmp:
21681 case T_MNEM_cmn:
21682 newsize = relax_immediate (fragp, 8, 0);
21683 break;
21684 case T_MNEM_b:
21685 newsize = relax_branch (fragp, sec, 11, stretch);
21686 break;
21687 case T_MNEM_bcond:
21688 newsize = relax_branch (fragp, sec, 8, stretch);
21689 break;
21690 case T_MNEM_add_sp:
21691 case T_MNEM_add_pc:
21692 newsize = relax_immediate (fragp, 8, 2);
21693 break;
21694 case T_MNEM_inc_sp:
21695 case T_MNEM_dec_sp:
21696 newsize = relax_immediate (fragp, 7, 2);
21697 break;
21698 case T_MNEM_addi:
21699 case T_MNEM_addis:
21700 case T_MNEM_subi:
21701 case T_MNEM_subis:
21702 newsize = relax_addsub (fragp, sec);
21703 break;
21704 default:
21705 abort ();
21706 }
21707
21708 fragp->fr_var = newsize;
21709 /* Freeze wide instructions that are at or before the same location as
21710 in the previous pass. This avoids infinite loops.
21711 Don't freeze them unconditionally because targets may be artificially
21712 misaligned by the expansion of preceding frags. */
21713 if (stretch <= 0 && newsize > 2)
21714 {
21715 md_convert_frag (sec->owner, sec, fragp);
21716 frag_wane (fragp);
21717 }
21718
21719 return newsize - oldsize;
21720 }
21721
21722 /* Round up a section size to the appropriate boundary. */
21723
21724 valueT
21725 md_section_align (segT segment ATTRIBUTE_UNUSED,
21726 valueT size)
21727 {
21728 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
21729 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
21730 {
21731 /* For a.out, force the section size to be aligned. If we don't do
21732 this, BFD will align it for us, but it will not write out the
21733 final bytes of the section. This may be a bug in BFD, but it is
21734 easier to fix it here since that is how the other a.out targets
21735 work. */
21736 int align;
21737
21738 align = bfd_get_section_alignment (stdoutput, segment);
21739 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
21740 }
21741 #endif
21742
21743 return size;
21744 }
21745
21746 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
21747 of an rs_align_code fragment. */
21748
21749 void
21750 arm_handle_align (fragS * fragP)
21751 {
21752 static unsigned char const arm_noop[2][2][4] =
21753 {
21754 { /* ARMv1 */
21755 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
21756 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
21757 },
21758 { /* ARMv6k */
21759 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
21760 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
21761 },
21762 };
21763 static unsigned char const thumb_noop[2][2][2] =
21764 {
21765 { /* Thumb-1 */
21766 {0xc0, 0x46}, /* LE */
21767 {0x46, 0xc0}, /* BE */
21768 },
21769 { /* Thumb-2 */
21770 {0x00, 0xbf}, /* LE */
21771 {0xbf, 0x00} /* BE */
21772 }
21773 };
21774 static unsigned char const wide_thumb_noop[2][4] =
21775 { /* Wide Thumb-2 */
21776 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
21777 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
21778 };
21779
21780 unsigned bytes, fix, noop_size;
21781 char * p;
21782 const unsigned char * noop;
21783 const unsigned char *narrow_noop = NULL;
21784 #ifdef OBJ_ELF
21785 enum mstate state;
21786 #endif
21787
21788 if (fragP->fr_type != rs_align_code)
21789 return;
21790
21791 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
21792 p = fragP->fr_literal + fragP->fr_fix;
21793 fix = 0;
21794
21795 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
21796 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
21797
21798 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
21799
21800 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
21801 {
21802 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21803 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
21804 {
21805 narrow_noop = thumb_noop[1][target_big_endian];
21806 noop = wide_thumb_noop[target_big_endian];
21807 }
21808 else
21809 noop = thumb_noop[0][target_big_endian];
21810 noop_size = 2;
21811 #ifdef OBJ_ELF
21812 state = MAP_THUMB;
21813 #endif
21814 }
21815 else
21816 {
21817 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21818 ? selected_cpu : arm_arch_none,
21819 arm_ext_v6k) != 0]
21820 [target_big_endian];
21821 noop_size = 4;
21822 #ifdef OBJ_ELF
21823 state = MAP_ARM;
21824 #endif
21825 }
21826
21827 fragP->fr_var = noop_size;
21828
21829 if (bytes & (noop_size - 1))
21830 {
21831 fix = bytes & (noop_size - 1);
21832 #ifdef OBJ_ELF
21833 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
21834 #endif
21835 memset (p, 0, fix);
21836 p += fix;
21837 bytes -= fix;
21838 }
21839
21840 if (narrow_noop)
21841 {
21842 if (bytes & noop_size)
21843 {
21844 /* Insert a narrow noop. */
21845 memcpy (p, narrow_noop, noop_size);
21846 p += noop_size;
21847 bytes -= noop_size;
21848 fix += noop_size;
21849 }
21850
21851 /* Use wide noops for the remainder */
21852 noop_size = 4;
21853 }
21854
21855 while (bytes >= noop_size)
21856 {
21857 memcpy (p, noop, noop_size);
21858 p += noop_size;
21859 bytes -= noop_size;
21860 fix += noop_size;
21861 }
21862
21863 fragP->fr_fix += fix;
21864 }
21865
21866 /* Called from md_do_align. Used to create an alignment
21867 frag in a code section. */
21868
21869 void
21870 arm_frag_align_code (int n, int max)
21871 {
21872 char * p;
21873
21874 /* We assume that there will never be a requirement
21875 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
21876 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
21877 {
21878 char err_msg[128];
21879
21880 sprintf (err_msg,
21881 _("alignments greater than %d bytes not supported in .text sections."),
21882 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
21883 as_fatal ("%s", err_msg);
21884 }
21885
21886 p = frag_var (rs_align_code,
21887 MAX_MEM_FOR_RS_ALIGN_CODE,
21888 1,
21889 (relax_substateT) max,
21890 (symbolS *) NULL,
21891 (offsetT) n,
21892 (char *) NULL);
21893 *p = 0;
21894 }
21895
21896 /* Perform target specific initialisation of a frag.
21897 Note - despite the name this initialisation is not done when the frag
21898 is created, but only when its type is assigned. A frag can be created
21899 and used a long time before its type is set, so beware of assuming that
21900 this initialisation is performed first. */
21901
21902 #ifndef OBJ_ELF
21903 void
21904 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
21905 {
21906 /* Record whether this frag is in an ARM or a THUMB area. */
21907 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21908 }
21909
21910 #else /* OBJ_ELF is defined. */
21911 void
21912 arm_init_frag (fragS * fragP, int max_chars)
21913 {
21914 int frag_thumb_mode;
21915
21916 /* If the current ARM vs THUMB mode has not already
21917 been recorded into this frag then do so now. */
21918 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
21919 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21920
21921 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
21922
21923 /* Record a mapping symbol for alignment frags. We will delete this
21924 later if the alignment ends up empty. */
21925 switch (fragP->fr_type)
21926 {
21927 case rs_align:
21928 case rs_align_test:
21929 case rs_fill:
21930 mapping_state_2 (MAP_DATA, max_chars);
21931 break;
21932 case rs_align_code:
21933 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
21934 break;
21935 default:
21936 break;
21937 }
21938 }
21939
21940 /* When we change sections we need to issue a new mapping symbol. */
21941
21942 void
21943 arm_elf_change_section (void)
21944 {
21945 /* Link an unlinked unwind index table section to the .text section. */
21946 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
21947 && elf_linked_to_section (now_seg) == NULL)
21948 elf_linked_to_section (now_seg) = text_section;
21949 }
21950
21951 int
21952 arm_elf_section_type (const char * str, size_t len)
21953 {
21954 if (len == 5 && strncmp (str, "exidx", 5) == 0)
21955 return SHT_ARM_EXIDX;
21956
21957 return -1;
21958 }
21959 \f
21960 /* Code to deal with unwinding tables. */
21961
21962 static void add_unwind_adjustsp (offsetT);
21963
21964 /* Generate any deferred unwind frame offset. */
21965
21966 static void
21967 flush_pending_unwind (void)
21968 {
21969 offsetT offset;
21970
21971 offset = unwind.pending_offset;
21972 unwind.pending_offset = 0;
21973 if (offset != 0)
21974 add_unwind_adjustsp (offset);
21975 }
21976
21977 /* Add an opcode to this list for this function. Two-byte opcodes should
21978 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
21979 order. */
21980
21981 static void
21982 add_unwind_opcode (valueT op, int length)
21983 {
21984 /* Add any deferred stack adjustment. */
21985 if (unwind.pending_offset)
21986 flush_pending_unwind ();
21987
21988 unwind.sp_restored = 0;
21989
21990 if (unwind.opcode_count + length > unwind.opcode_alloc)
21991 {
21992 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
21993 if (unwind.opcodes)
21994 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
21995 unwind.opcode_alloc);
21996 else
21997 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
21998 }
21999 while (length > 0)
22000 {
22001 length--;
22002 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22003 op >>= 8;
22004 unwind.opcode_count++;
22005 }
22006 }
22007
22008 /* Add unwind opcodes to adjust the stack pointer. */
22009
22010 static void
22011 add_unwind_adjustsp (offsetT offset)
22012 {
22013 valueT op;
22014
22015 if (offset > 0x200)
22016 {
22017 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22018 char bytes[5];
22019 int n;
22020 valueT o;
22021
22022 /* Long form: 0xb2, uleb128. */
22023 /* This might not fit in a word so add the individual bytes,
22024 remembering the list is built in reverse order. */
22025 o = (valueT) ((offset - 0x204) >> 2);
22026 if (o == 0)
22027 add_unwind_opcode (0, 1);
22028
22029 /* Calculate the uleb128 encoding of the offset. */
22030 n = 0;
22031 while (o)
22032 {
22033 bytes[n] = o & 0x7f;
22034 o >>= 7;
22035 if (o)
22036 bytes[n] |= 0x80;
22037 n++;
22038 }
22039 /* Add the insn. */
22040 for (; n; n--)
22041 add_unwind_opcode (bytes[n - 1], 1);
22042 add_unwind_opcode (0xb2, 1);
22043 }
22044 else if (offset > 0x100)
22045 {
22046 /* Two short opcodes. */
22047 add_unwind_opcode (0x3f, 1);
22048 op = (offset - 0x104) >> 2;
22049 add_unwind_opcode (op, 1);
22050 }
22051 else if (offset > 0)
22052 {
22053 /* Short opcode. */
22054 op = (offset - 4) >> 2;
22055 add_unwind_opcode (op, 1);
22056 }
22057 else if (offset < 0)
22058 {
22059 offset = -offset;
22060 while (offset > 0x100)
22061 {
22062 add_unwind_opcode (0x7f, 1);
22063 offset -= 0x100;
22064 }
22065 op = ((offset - 4) >> 2) | 0x40;
22066 add_unwind_opcode (op, 1);
22067 }
22068 }
22069
22070 /* Finish the list of unwind opcodes for this function. */
22071 static void
22072 finish_unwind_opcodes (void)
22073 {
22074 valueT op;
22075
22076 if (unwind.fp_used)
22077 {
22078 /* Adjust sp as necessary. */
22079 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22080 flush_pending_unwind ();
22081
22082 /* After restoring sp from the frame pointer. */
22083 op = 0x90 | unwind.fp_reg;
22084 add_unwind_opcode (op, 1);
22085 }
22086 else
22087 flush_pending_unwind ();
22088 }
22089
22090
22091 /* Start an exception table entry. If idx is nonzero this is an index table
22092 entry. */
22093
22094 static void
22095 start_unwind_section (const segT text_seg, int idx)
22096 {
22097 const char * text_name;
22098 const char * prefix;
22099 const char * prefix_once;
22100 const char * group_name;
22101 char * sec_name;
22102 int type;
22103 int flags;
22104 int linkonce;
22105
22106 if (idx)
22107 {
22108 prefix = ELF_STRING_ARM_unwind;
22109 prefix_once = ELF_STRING_ARM_unwind_once;
22110 type = SHT_ARM_EXIDX;
22111 }
22112 else
22113 {
22114 prefix = ELF_STRING_ARM_unwind_info;
22115 prefix_once = ELF_STRING_ARM_unwind_info_once;
22116 type = SHT_PROGBITS;
22117 }
22118
22119 text_name = segment_name (text_seg);
22120 if (streq (text_name, ".text"))
22121 text_name = "";
22122
22123 if (strncmp (text_name, ".gnu.linkonce.t.",
22124 strlen (".gnu.linkonce.t.")) == 0)
22125 {
22126 prefix = prefix_once;
22127 text_name += strlen (".gnu.linkonce.t.");
22128 }
22129
22130 sec_name = concat (prefix, text_name, (char *) NULL);
22131
22132 flags = SHF_ALLOC;
22133 linkonce = 0;
22134 group_name = 0;
22135
22136 /* Handle COMDAT group. */
22137 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
22138 {
22139 group_name = elf_group_name (text_seg);
22140 if (group_name == NULL)
22141 {
22142 as_bad (_("Group section `%s' has no group signature"),
22143 segment_name (text_seg));
22144 ignore_rest_of_line ();
22145 return;
22146 }
22147 flags |= SHF_GROUP;
22148 linkonce = 1;
22149 }
22150
22151 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22152 linkonce, 0);
22153
22154 /* Set the section link for index tables. */
22155 if (idx)
22156 elf_linked_to_section (now_seg) = text_seg;
22157 }
22158
22159
22160 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22161 personality routine data. Returns zero, or the index table value for
22162 an inline entry. */
22163
22164 static valueT
22165 create_unwind_entry (int have_data)
22166 {
22167 int size;
22168 addressT where;
22169 char *ptr;
22170 /* The current word of data. */
22171 valueT data;
22172 /* The number of bytes left in this word. */
22173 int n;
22174
22175 finish_unwind_opcodes ();
22176
22177 /* Remember the current text section. */
22178 unwind.saved_seg = now_seg;
22179 unwind.saved_subseg = now_subseg;
22180
22181 start_unwind_section (now_seg, 0);
22182
22183 if (unwind.personality_routine == NULL)
22184 {
22185 if (unwind.personality_index == -2)
22186 {
22187 if (have_data)
22188 as_bad (_("handlerdata in cantunwind frame"));
22189 return 1; /* EXIDX_CANTUNWIND. */
22190 }
22191
22192 /* Use a default personality routine if none is specified. */
22193 if (unwind.personality_index == -1)
22194 {
22195 if (unwind.opcode_count > 3)
22196 unwind.personality_index = 1;
22197 else
22198 unwind.personality_index = 0;
22199 }
22200
22201 /* Space for the personality routine entry. */
22202 if (unwind.personality_index == 0)
22203 {
22204 if (unwind.opcode_count > 3)
22205 as_bad (_("too many unwind opcodes for personality routine 0"));
22206
22207 if (!have_data)
22208 {
22209 /* All the data is inline in the index table. */
22210 data = 0x80;
22211 n = 3;
22212 while (unwind.opcode_count > 0)
22213 {
22214 unwind.opcode_count--;
22215 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22216 n--;
22217 }
22218
22219 /* Pad with "finish" opcodes. */
22220 while (n--)
22221 data = (data << 8) | 0xb0;
22222
22223 return data;
22224 }
22225 size = 0;
22226 }
22227 else
22228 /* We get two opcodes "free" in the first word. */
22229 size = unwind.opcode_count - 2;
22230 }
22231 else
22232 {
22233 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22234 if (unwind.personality_index != -1)
22235 {
22236 as_bad (_("attempt to recreate an unwind entry"));
22237 return 1;
22238 }
22239
22240 /* An extra byte is required for the opcode count. */
22241 size = unwind.opcode_count + 1;
22242 }
22243
22244 size = (size + 3) >> 2;
22245 if (size > 0xff)
22246 as_bad (_("too many unwind opcodes"));
22247
22248 frag_align (2, 0, 0);
22249 record_alignment (now_seg, 2);
22250 unwind.table_entry = expr_build_dot ();
22251
22252 /* Allocate the table entry. */
22253 ptr = frag_more ((size << 2) + 4);
22254 /* PR 13449: Zero the table entries in case some of them are not used. */
22255 memset (ptr, 0, (size << 2) + 4);
22256 where = frag_now_fix () - ((size << 2) + 4);
22257
22258 switch (unwind.personality_index)
22259 {
22260 case -1:
22261 /* ??? Should this be a PLT generating relocation? */
22262 /* Custom personality routine. */
22263 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22264 BFD_RELOC_ARM_PREL31);
22265
22266 where += 4;
22267 ptr += 4;
22268
22269 /* Set the first byte to the number of additional words. */
22270 data = size > 0 ? size - 1 : 0;
22271 n = 3;
22272 break;
22273
22274 /* ABI defined personality routines. */
22275 case 0:
22276 /* Three opcodes bytes are packed into the first word. */
22277 data = 0x80;
22278 n = 3;
22279 break;
22280
22281 case 1:
22282 case 2:
22283 /* The size and first two opcode bytes go in the first word. */
22284 data = ((0x80 + unwind.personality_index) << 8) | size;
22285 n = 2;
22286 break;
22287
22288 default:
22289 /* Should never happen. */
22290 abort ();
22291 }
22292
22293 /* Pack the opcodes into words (MSB first), reversing the list at the same
22294 time. */
22295 while (unwind.opcode_count > 0)
22296 {
22297 if (n == 0)
22298 {
22299 md_number_to_chars (ptr, data, 4);
22300 ptr += 4;
22301 n = 4;
22302 data = 0;
22303 }
22304 unwind.opcode_count--;
22305 n--;
22306 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22307 }
22308
22309 /* Finish off the last word. */
22310 if (n < 4)
22311 {
22312 /* Pad with "finish" opcodes. */
22313 while (n--)
22314 data = (data << 8) | 0xb0;
22315
22316 md_number_to_chars (ptr, data, 4);
22317 }
22318
22319 if (!have_data)
22320 {
22321 /* Add an empty descriptor if there is no user-specified data. */
22322 ptr = frag_more (4);
22323 md_number_to_chars (ptr, 0, 4);
22324 }
22325
22326 return 0;
22327 }
22328
22329
22330 /* Initialize the DWARF-2 unwind information for this procedure. */
22331
22332 void
22333 tc_arm_frame_initial_instructions (void)
22334 {
22335 cfi_add_CFA_def_cfa (REG_SP, 0);
22336 }
22337 #endif /* OBJ_ELF */
22338
22339 /* Convert REGNAME to a DWARF-2 register number. */
22340
22341 int
22342 tc_arm_regname_to_dw2regnum (char *regname)
22343 {
22344 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
22345 if (reg != FAIL)
22346 return reg;
22347
22348 /* PR 16694: Allow VFP registers as well. */
22349 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22350 if (reg != FAIL)
22351 return 64 + reg;
22352
22353 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22354 if (reg != FAIL)
22355 return reg + 256;
22356
22357 return -1;
22358 }
22359
22360 #ifdef TE_PE
22361 void
22362 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
22363 {
22364 expressionS exp;
22365
22366 exp.X_op = O_secrel;
22367 exp.X_add_symbol = symbol;
22368 exp.X_add_number = 0;
22369 emit_expr (&exp, size);
22370 }
22371 #endif
22372
22373 /* MD interface: Symbol and relocation handling. */
22374
22375 /* Return the address within the segment that a PC-relative fixup is
22376 relative to. For ARM, PC-relative fixups applied to instructions
22377 are generally relative to the location of the fixup plus 8 bytes.
22378 Thumb branches are offset by 4, and Thumb loads relative to PC
22379 require special handling. */
22380
22381 long
22382 md_pcrel_from_section (fixS * fixP, segT seg)
22383 {
22384 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22385
22386 /* If this is pc-relative and we are going to emit a relocation
22387 then we just want to put out any pipeline compensation that the linker
22388 will need. Otherwise we want to use the calculated base.
22389 For WinCE we skip the bias for externals as well, since this
22390 is how the MS ARM-CE assembler behaves and we want to be compatible. */
22391 if (fixP->fx_pcrel
22392 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
22393 || (arm_force_relocation (fixP)
22394 #ifdef TE_WINCE
22395 && !S_IS_EXTERNAL (fixP->fx_addsy)
22396 #endif
22397 )))
22398 base = 0;
22399
22400
22401 switch (fixP->fx_r_type)
22402 {
22403 /* PC relative addressing on the Thumb is slightly odd as the
22404 bottom two bits of the PC are forced to zero for the
22405 calculation. This happens *after* application of the
22406 pipeline offset. However, Thumb adrl already adjusts for
22407 this, so we need not do it again. */
22408 case BFD_RELOC_ARM_THUMB_ADD:
22409 return base & ~3;
22410
22411 case BFD_RELOC_ARM_THUMB_OFFSET:
22412 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22413 case BFD_RELOC_ARM_T32_ADD_PC12:
22414 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22415 return (base + 4) & ~3;
22416
22417 /* Thumb branches are simply offset by +4. */
22418 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22419 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22420 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22421 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22422 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22423 return base + 4;
22424
22425 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22426 if (fixP->fx_addsy
22427 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22428 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22429 && ARM_IS_FUNC (fixP->fx_addsy)
22430 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22431 base = fixP->fx_where + fixP->fx_frag->fr_address;
22432 return base + 4;
22433
22434 /* BLX is like branches above, but forces the low two bits of PC to
22435 zero. */
22436 case BFD_RELOC_THUMB_PCREL_BLX:
22437 if (fixP->fx_addsy
22438 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22439 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22440 && THUMB_IS_FUNC (fixP->fx_addsy)
22441 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22442 base = fixP->fx_where + fixP->fx_frag->fr_address;
22443 return (base + 4) & ~3;
22444
22445 /* ARM mode branches are offset by +8. However, the Windows CE
22446 loader expects the relocation not to take this into account. */
22447 case BFD_RELOC_ARM_PCREL_BLX:
22448 if (fixP->fx_addsy
22449 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22450 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22451 && ARM_IS_FUNC (fixP->fx_addsy)
22452 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22453 base = fixP->fx_where + fixP->fx_frag->fr_address;
22454 return base + 8;
22455
22456 case BFD_RELOC_ARM_PCREL_CALL:
22457 if (fixP->fx_addsy
22458 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22459 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22460 && THUMB_IS_FUNC (fixP->fx_addsy)
22461 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22462 base = fixP->fx_where + fixP->fx_frag->fr_address;
22463 return base + 8;
22464
22465 case BFD_RELOC_ARM_PCREL_BRANCH:
22466 case BFD_RELOC_ARM_PCREL_JUMP:
22467 case BFD_RELOC_ARM_PLT32:
22468 #ifdef TE_WINCE
22469 /* When handling fixups immediately, because we have already
22470 discovered the value of a symbol, or the address of the frag involved
22471 we must account for the offset by +8, as the OS loader will never see the reloc.
22472 see fixup_segment() in write.c
22473 The S_IS_EXTERNAL test handles the case of global symbols.
22474 Those need the calculated base, not just the pipe compensation the linker will need. */
22475 if (fixP->fx_pcrel
22476 && fixP->fx_addsy != NULL
22477 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22478 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22479 return base + 8;
22480 return base;
22481 #else
22482 return base + 8;
22483 #endif
22484
22485
22486 /* ARM mode loads relative to PC are also offset by +8. Unlike
22487 branches, the Windows CE loader *does* expect the relocation
22488 to take this into account. */
22489 case BFD_RELOC_ARM_OFFSET_IMM:
22490 case BFD_RELOC_ARM_OFFSET_IMM8:
22491 case BFD_RELOC_ARM_HWLITERAL:
22492 case BFD_RELOC_ARM_LITERAL:
22493 case BFD_RELOC_ARM_CP_OFF_IMM:
22494 return base + 8;
22495
22496
22497 /* Other PC-relative relocations are un-offset. */
22498 default:
22499 return base;
22500 }
22501 }
22502
22503 static bfd_boolean flag_warn_syms = TRUE;
22504
22505 bfd_boolean
22506 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
22507 {
22508 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22509 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22510 does mean that the resulting code might be very confusing to the reader.
22511 Also this warning can be triggered if the user omits an operand before
22512 an immediate address, eg:
22513
22514 LDR =foo
22515
22516 GAS treats this as an assignment of the value of the symbol foo to a
22517 symbol LDR, and so (without this code) it will not issue any kind of
22518 warning or error message.
22519
22520 Note - ARM instructions are case-insensitive but the strings in the hash
22521 table are all stored in lower case, so we must first ensure that name is
22522 lower case too. */
22523 if (flag_warn_syms && arm_ops_hsh)
22524 {
22525 char * nbuf = strdup (name);
22526 char * p;
22527
22528 for (p = nbuf; *p; p++)
22529 *p = TOLOWER (*p);
22530 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22531 {
22532 static struct hash_control * already_warned = NULL;
22533
22534 if (already_warned == NULL)
22535 already_warned = hash_new ();
22536 /* Only warn about the symbol once. To keep the code
22537 simple we let hash_insert do the lookup for us. */
22538 if (hash_insert (already_warned, name, NULL) == NULL)
22539 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
22540 }
22541 else
22542 free (nbuf);
22543 }
22544
22545 return FALSE;
22546 }
22547
22548 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22549 Otherwise we have no need to default values of symbols. */
22550
22551 symbolS *
22552 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22553 {
22554 #ifdef OBJ_ELF
22555 if (name[0] == '_' && name[1] == 'G'
22556 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22557 {
22558 if (!GOT_symbol)
22559 {
22560 if (symbol_find (name))
22561 as_bad (_("GOT already in the symbol table"));
22562
22563 GOT_symbol = symbol_new (name, undefined_section,
22564 (valueT) 0, & zero_address_frag);
22565 }
22566
22567 return GOT_symbol;
22568 }
22569 #endif
22570
22571 return NULL;
22572 }
22573
22574 /* Subroutine of md_apply_fix. Check to see if an immediate can be
22575 computed as two separate immediate values, added together. We
22576 already know that this value cannot be computed by just one ARM
22577 instruction. */
22578
22579 static unsigned int
22580 validate_immediate_twopart (unsigned int val,
22581 unsigned int * highpart)
22582 {
22583 unsigned int a;
22584 unsigned int i;
22585
22586 for (i = 0; i < 32; i += 2)
22587 if (((a = rotate_left (val, i)) & 0xff) != 0)
22588 {
22589 if (a & 0xff00)
22590 {
22591 if (a & ~ 0xffff)
22592 continue;
22593 * highpart = (a >> 8) | ((i + 24) << 7);
22594 }
22595 else if (a & 0xff0000)
22596 {
22597 if (a & 0xff000000)
22598 continue;
22599 * highpart = (a >> 16) | ((i + 16) << 7);
22600 }
22601 else
22602 {
22603 gas_assert (a & 0xff000000);
22604 * highpart = (a >> 24) | ((i + 8) << 7);
22605 }
22606
22607 return (a & 0xff) | (i << 7);
22608 }
22609
22610 return FAIL;
22611 }
22612
22613 static int
22614 validate_offset_imm (unsigned int val, int hwse)
22615 {
22616 if ((hwse && val > 255) || val > 4095)
22617 return FAIL;
22618 return val;
22619 }
22620
22621 /* Subroutine of md_apply_fix. Do those data_ops which can take a
22622 negative immediate constant by altering the instruction. A bit of
22623 a hack really.
22624 MOV <-> MVN
22625 AND <-> BIC
22626 ADC <-> SBC
22627 by inverting the second operand, and
22628 ADD <-> SUB
22629 CMP <-> CMN
22630 by negating the second operand. */
22631
22632 static int
22633 negate_data_op (unsigned long * instruction,
22634 unsigned long value)
22635 {
22636 int op, new_inst;
22637 unsigned long negated, inverted;
22638
22639 negated = encode_arm_immediate (-value);
22640 inverted = encode_arm_immediate (~value);
22641
22642 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
22643 switch (op)
22644 {
22645 /* First negates. */
22646 case OPCODE_SUB: /* ADD <-> SUB */
22647 new_inst = OPCODE_ADD;
22648 value = negated;
22649 break;
22650
22651 case OPCODE_ADD:
22652 new_inst = OPCODE_SUB;
22653 value = negated;
22654 break;
22655
22656 case OPCODE_CMP: /* CMP <-> CMN */
22657 new_inst = OPCODE_CMN;
22658 value = negated;
22659 break;
22660
22661 case OPCODE_CMN:
22662 new_inst = OPCODE_CMP;
22663 value = negated;
22664 break;
22665
22666 /* Now Inverted ops. */
22667 case OPCODE_MOV: /* MOV <-> MVN */
22668 new_inst = OPCODE_MVN;
22669 value = inverted;
22670 break;
22671
22672 case OPCODE_MVN:
22673 new_inst = OPCODE_MOV;
22674 value = inverted;
22675 break;
22676
22677 case OPCODE_AND: /* AND <-> BIC */
22678 new_inst = OPCODE_BIC;
22679 value = inverted;
22680 break;
22681
22682 case OPCODE_BIC:
22683 new_inst = OPCODE_AND;
22684 value = inverted;
22685 break;
22686
22687 case OPCODE_ADC: /* ADC <-> SBC */
22688 new_inst = OPCODE_SBC;
22689 value = inverted;
22690 break;
22691
22692 case OPCODE_SBC:
22693 new_inst = OPCODE_ADC;
22694 value = inverted;
22695 break;
22696
22697 /* We cannot do anything. */
22698 default:
22699 return FAIL;
22700 }
22701
22702 if (value == (unsigned) FAIL)
22703 return FAIL;
22704
22705 *instruction &= OPCODE_MASK;
22706 *instruction |= new_inst << DATA_OP_SHIFT;
22707 return value;
22708 }
22709
22710 /* Like negate_data_op, but for Thumb-2. */
22711
22712 static unsigned int
22713 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
22714 {
22715 int op, new_inst;
22716 int rd;
22717 unsigned int negated, inverted;
22718
22719 negated = encode_thumb32_immediate (-value);
22720 inverted = encode_thumb32_immediate (~value);
22721
22722 rd = (*instruction >> 8) & 0xf;
22723 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
22724 switch (op)
22725 {
22726 /* ADD <-> SUB. Includes CMP <-> CMN. */
22727 case T2_OPCODE_SUB:
22728 new_inst = T2_OPCODE_ADD;
22729 value = negated;
22730 break;
22731
22732 case T2_OPCODE_ADD:
22733 new_inst = T2_OPCODE_SUB;
22734 value = negated;
22735 break;
22736
22737 /* ORR <-> ORN. Includes MOV <-> MVN. */
22738 case T2_OPCODE_ORR:
22739 new_inst = T2_OPCODE_ORN;
22740 value = inverted;
22741 break;
22742
22743 case T2_OPCODE_ORN:
22744 new_inst = T2_OPCODE_ORR;
22745 value = inverted;
22746 break;
22747
22748 /* AND <-> BIC. TST has no inverted equivalent. */
22749 case T2_OPCODE_AND:
22750 new_inst = T2_OPCODE_BIC;
22751 if (rd == 15)
22752 value = FAIL;
22753 else
22754 value = inverted;
22755 break;
22756
22757 case T2_OPCODE_BIC:
22758 new_inst = T2_OPCODE_AND;
22759 value = inverted;
22760 break;
22761
22762 /* ADC <-> SBC */
22763 case T2_OPCODE_ADC:
22764 new_inst = T2_OPCODE_SBC;
22765 value = inverted;
22766 break;
22767
22768 case T2_OPCODE_SBC:
22769 new_inst = T2_OPCODE_ADC;
22770 value = inverted;
22771 break;
22772
22773 /* We cannot do anything. */
22774 default:
22775 return FAIL;
22776 }
22777
22778 if (value == (unsigned int)FAIL)
22779 return FAIL;
22780
22781 *instruction &= T2_OPCODE_MASK;
22782 *instruction |= new_inst << T2_DATA_OP_SHIFT;
22783 return value;
22784 }
22785
22786 /* Read a 32-bit thumb instruction from buf. */
22787 static unsigned long
22788 get_thumb32_insn (char * buf)
22789 {
22790 unsigned long insn;
22791 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
22792 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22793
22794 return insn;
22795 }
22796
22797
22798 /* We usually want to set the low bit on the address of thumb function
22799 symbols. In particular .word foo - . should have the low bit set.
22800 Generic code tries to fold the difference of two symbols to
22801 a constant. Prevent this and force a relocation when the first symbols
22802 is a thumb function. */
22803
22804 bfd_boolean
22805 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
22806 {
22807 if (op == O_subtract
22808 && l->X_op == O_symbol
22809 && r->X_op == O_symbol
22810 && THUMB_IS_FUNC (l->X_add_symbol))
22811 {
22812 l->X_op = O_subtract;
22813 l->X_op_symbol = r->X_add_symbol;
22814 l->X_add_number -= r->X_add_number;
22815 return TRUE;
22816 }
22817
22818 /* Process as normal. */
22819 return FALSE;
22820 }
22821
22822 /* Encode Thumb2 unconditional branches and calls. The encoding
22823 for the 2 are identical for the immediate values. */
22824
22825 static void
22826 encode_thumb2_b_bl_offset (char * buf, offsetT value)
22827 {
22828 #define T2I1I2MASK ((1 << 13) | (1 << 11))
22829 offsetT newval;
22830 offsetT newval2;
22831 addressT S, I1, I2, lo, hi;
22832
22833 S = (value >> 24) & 0x01;
22834 I1 = (value >> 23) & 0x01;
22835 I2 = (value >> 22) & 0x01;
22836 hi = (value >> 12) & 0x3ff;
22837 lo = (value >> 1) & 0x7ff;
22838 newval = md_chars_to_number (buf, THUMB_SIZE);
22839 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22840 newval |= (S << 10) | hi;
22841 newval2 &= ~T2I1I2MASK;
22842 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
22843 md_number_to_chars (buf, newval, THUMB_SIZE);
22844 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22845 }
22846
22847 void
22848 md_apply_fix (fixS * fixP,
22849 valueT * valP,
22850 segT seg)
22851 {
22852 offsetT value = * valP;
22853 offsetT newval;
22854 unsigned int newimm;
22855 unsigned long temp;
22856 int sign;
22857 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
22858
22859 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
22860
22861 /* Note whether this will delete the relocation. */
22862
22863 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
22864 fixP->fx_done = 1;
22865
22866 /* On a 64-bit host, silently truncate 'value' to 32 bits for
22867 consistency with the behaviour on 32-bit hosts. Remember value
22868 for emit_reloc. */
22869 value &= 0xffffffff;
22870 value ^= 0x80000000;
22871 value -= 0x80000000;
22872
22873 *valP = value;
22874 fixP->fx_addnumber = value;
22875
22876 /* Same treatment for fixP->fx_offset. */
22877 fixP->fx_offset &= 0xffffffff;
22878 fixP->fx_offset ^= 0x80000000;
22879 fixP->fx_offset -= 0x80000000;
22880
22881 switch (fixP->fx_r_type)
22882 {
22883 case BFD_RELOC_NONE:
22884 /* This will need to go in the object file. */
22885 fixP->fx_done = 0;
22886 break;
22887
22888 case BFD_RELOC_ARM_IMMEDIATE:
22889 /* We claim that this fixup has been processed here,
22890 even if in fact we generate an error because we do
22891 not have a reloc for it, so tc_gen_reloc will reject it. */
22892 fixP->fx_done = 1;
22893
22894 if (fixP->fx_addsy)
22895 {
22896 const char *msg = 0;
22897
22898 if (! S_IS_DEFINED (fixP->fx_addsy))
22899 msg = _("undefined symbol %s used as an immediate value");
22900 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22901 msg = _("symbol %s is in a different section");
22902 else if (S_IS_WEAK (fixP->fx_addsy))
22903 msg = _("symbol %s is weak and may be overridden later");
22904
22905 if (msg)
22906 {
22907 as_bad_where (fixP->fx_file, fixP->fx_line,
22908 msg, S_GET_NAME (fixP->fx_addsy));
22909 break;
22910 }
22911 }
22912
22913 temp = md_chars_to_number (buf, INSN_SIZE);
22914
22915 /* If the offset is negative, we should use encoding A2 for ADR. */
22916 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
22917 newimm = negate_data_op (&temp, value);
22918 else
22919 {
22920 newimm = encode_arm_immediate (value);
22921
22922 /* If the instruction will fail, see if we can fix things up by
22923 changing the opcode. */
22924 if (newimm == (unsigned int) FAIL)
22925 newimm = negate_data_op (&temp, value);
22926 /* MOV accepts both ARM modified immediate (A1 encoding) and
22927 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
22928 When disassembling, MOV is preferred when there is no encoding
22929 overlap. */
22930 if (newimm == (unsigned int) FAIL
22931 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
22932 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
22933 && !((temp >> SBIT_SHIFT) & 0x1)
22934 && value >= 0 && value <= 0xffff)
22935 {
22936 /* Clear bits[23:20] to change encoding from A1 to A2. */
22937 temp &= 0xff0fffff;
22938 /* Encoding high 4bits imm. Code below will encode the remaining
22939 low 12bits. */
22940 temp |= (value & 0x0000f000) << 4;
22941 newimm = value & 0x00000fff;
22942 }
22943 }
22944
22945 if (newimm == (unsigned int) FAIL)
22946 {
22947 as_bad_where (fixP->fx_file, fixP->fx_line,
22948 _("invalid constant (%lx) after fixup"),
22949 (unsigned long) value);
22950 break;
22951 }
22952
22953 newimm |= (temp & 0xfffff000);
22954 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22955 break;
22956
22957 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22958 {
22959 unsigned int highpart = 0;
22960 unsigned int newinsn = 0xe1a00000; /* nop. */
22961
22962 if (fixP->fx_addsy)
22963 {
22964 const char *msg = 0;
22965
22966 if (! S_IS_DEFINED (fixP->fx_addsy))
22967 msg = _("undefined symbol %s used as an immediate value");
22968 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22969 msg = _("symbol %s is in a different section");
22970 else if (S_IS_WEAK (fixP->fx_addsy))
22971 msg = _("symbol %s is weak and may be overridden later");
22972
22973 if (msg)
22974 {
22975 as_bad_where (fixP->fx_file, fixP->fx_line,
22976 msg, S_GET_NAME (fixP->fx_addsy));
22977 break;
22978 }
22979 }
22980
22981 newimm = encode_arm_immediate (value);
22982 temp = md_chars_to_number (buf, INSN_SIZE);
22983
22984 /* If the instruction will fail, see if we can fix things up by
22985 changing the opcode. */
22986 if (newimm == (unsigned int) FAIL
22987 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
22988 {
22989 /* No ? OK - try using two ADD instructions to generate
22990 the value. */
22991 newimm = validate_immediate_twopart (value, & highpart);
22992
22993 /* Yes - then make sure that the second instruction is
22994 also an add. */
22995 if (newimm != (unsigned int) FAIL)
22996 newinsn = temp;
22997 /* Still No ? Try using a negated value. */
22998 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
22999 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23000 /* Otherwise - give up. */
23001 else
23002 {
23003 as_bad_where (fixP->fx_file, fixP->fx_line,
23004 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23005 (long) value);
23006 break;
23007 }
23008
23009 /* Replace the first operand in the 2nd instruction (which
23010 is the PC) with the destination register. We have
23011 already added in the PC in the first instruction and we
23012 do not want to do it again. */
23013 newinsn &= ~ 0xf0000;
23014 newinsn |= ((newinsn & 0x0f000) << 4);
23015 }
23016
23017 newimm |= (temp & 0xfffff000);
23018 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23019
23020 highpart |= (newinsn & 0xfffff000);
23021 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23022 }
23023 break;
23024
23025 case BFD_RELOC_ARM_OFFSET_IMM:
23026 if (!fixP->fx_done && seg->use_rela_p)
23027 value = 0;
23028 /* Fall through. */
23029
23030 case BFD_RELOC_ARM_LITERAL:
23031 sign = value > 0;
23032
23033 if (value < 0)
23034 value = - value;
23035
23036 if (validate_offset_imm (value, 0) == FAIL)
23037 {
23038 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23039 as_bad_where (fixP->fx_file, fixP->fx_line,
23040 _("invalid literal constant: pool needs to be closer"));
23041 else
23042 as_bad_where (fixP->fx_file, fixP->fx_line,
23043 _("bad immediate value for offset (%ld)"),
23044 (long) value);
23045 break;
23046 }
23047
23048 newval = md_chars_to_number (buf, INSN_SIZE);
23049 if (value == 0)
23050 newval &= 0xfffff000;
23051 else
23052 {
23053 newval &= 0xff7ff000;
23054 newval |= value | (sign ? INDEX_UP : 0);
23055 }
23056 md_number_to_chars (buf, newval, INSN_SIZE);
23057 break;
23058
23059 case BFD_RELOC_ARM_OFFSET_IMM8:
23060 case BFD_RELOC_ARM_HWLITERAL:
23061 sign = value > 0;
23062
23063 if (value < 0)
23064 value = - value;
23065
23066 if (validate_offset_imm (value, 1) == FAIL)
23067 {
23068 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23069 as_bad_where (fixP->fx_file, fixP->fx_line,
23070 _("invalid literal constant: pool needs to be closer"));
23071 else
23072 as_bad_where (fixP->fx_file, fixP->fx_line,
23073 _("bad immediate value for 8-bit offset (%ld)"),
23074 (long) value);
23075 break;
23076 }
23077
23078 newval = md_chars_to_number (buf, INSN_SIZE);
23079 if (value == 0)
23080 newval &= 0xfffff0f0;
23081 else
23082 {
23083 newval &= 0xff7ff0f0;
23084 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23085 }
23086 md_number_to_chars (buf, newval, INSN_SIZE);
23087 break;
23088
23089 case BFD_RELOC_ARM_T32_OFFSET_U8:
23090 if (value < 0 || value > 1020 || value % 4 != 0)
23091 as_bad_where (fixP->fx_file, fixP->fx_line,
23092 _("bad immediate value for offset (%ld)"), (long) value);
23093 value /= 4;
23094
23095 newval = md_chars_to_number (buf+2, THUMB_SIZE);
23096 newval |= value;
23097 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23098 break;
23099
23100 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23101 /* This is a complicated relocation used for all varieties of Thumb32
23102 load/store instruction with immediate offset:
23103
23104 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
23105 *4, optional writeback(W)
23106 (doubleword load/store)
23107
23108 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23109 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23110 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23111 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23112 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23113
23114 Uppercase letters indicate bits that are already encoded at
23115 this point. Lowercase letters are our problem. For the
23116 second block of instructions, the secondary opcode nybble
23117 (bits 8..11) is present, and bit 23 is zero, even if this is
23118 a PC-relative operation. */
23119 newval = md_chars_to_number (buf, THUMB_SIZE);
23120 newval <<= 16;
23121 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
23122
23123 if ((newval & 0xf0000000) == 0xe0000000)
23124 {
23125 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23126 if (value >= 0)
23127 newval |= (1 << 23);
23128 else
23129 value = -value;
23130 if (value % 4 != 0)
23131 {
23132 as_bad_where (fixP->fx_file, fixP->fx_line,
23133 _("offset not a multiple of 4"));
23134 break;
23135 }
23136 value /= 4;
23137 if (value > 0xff)
23138 {
23139 as_bad_where (fixP->fx_file, fixP->fx_line,
23140 _("offset out of range"));
23141 break;
23142 }
23143 newval &= ~0xff;
23144 }
23145 else if ((newval & 0x000f0000) == 0x000f0000)
23146 {
23147 /* PC-relative, 12-bit offset. */
23148 if (value >= 0)
23149 newval |= (1 << 23);
23150 else
23151 value = -value;
23152 if (value > 0xfff)
23153 {
23154 as_bad_where (fixP->fx_file, fixP->fx_line,
23155 _("offset out of range"));
23156 break;
23157 }
23158 newval &= ~0xfff;
23159 }
23160 else if ((newval & 0x00000100) == 0x00000100)
23161 {
23162 /* Writeback: 8-bit, +/- offset. */
23163 if (value >= 0)
23164 newval |= (1 << 9);
23165 else
23166 value = -value;
23167 if (value > 0xff)
23168 {
23169 as_bad_where (fixP->fx_file, fixP->fx_line,
23170 _("offset out of range"));
23171 break;
23172 }
23173 newval &= ~0xff;
23174 }
23175 else if ((newval & 0x00000f00) == 0x00000e00)
23176 {
23177 /* T-instruction: positive 8-bit offset. */
23178 if (value < 0 || value > 0xff)
23179 {
23180 as_bad_where (fixP->fx_file, fixP->fx_line,
23181 _("offset out of range"));
23182 break;
23183 }
23184 newval &= ~0xff;
23185 newval |= value;
23186 }
23187 else
23188 {
23189 /* Positive 12-bit or negative 8-bit offset. */
23190 int limit;
23191 if (value >= 0)
23192 {
23193 newval |= (1 << 23);
23194 limit = 0xfff;
23195 }
23196 else
23197 {
23198 value = -value;
23199 limit = 0xff;
23200 }
23201 if (value > limit)
23202 {
23203 as_bad_where (fixP->fx_file, fixP->fx_line,
23204 _("offset out of range"));
23205 break;
23206 }
23207 newval &= ~limit;
23208 }
23209
23210 newval |= value;
23211 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23212 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23213 break;
23214
23215 case BFD_RELOC_ARM_SHIFT_IMM:
23216 newval = md_chars_to_number (buf, INSN_SIZE);
23217 if (((unsigned long) value) > 32
23218 || (value == 32
23219 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23220 {
23221 as_bad_where (fixP->fx_file, fixP->fx_line,
23222 _("shift expression is too large"));
23223 break;
23224 }
23225
23226 if (value == 0)
23227 /* Shifts of zero must be done as lsl. */
23228 newval &= ~0x60;
23229 else if (value == 32)
23230 value = 0;
23231 newval &= 0xfffff07f;
23232 newval |= (value & 0x1f) << 7;
23233 md_number_to_chars (buf, newval, INSN_SIZE);
23234 break;
23235
23236 case BFD_RELOC_ARM_T32_IMMEDIATE:
23237 case BFD_RELOC_ARM_T32_ADD_IMM:
23238 case BFD_RELOC_ARM_T32_IMM12:
23239 case BFD_RELOC_ARM_T32_ADD_PC12:
23240 /* We claim that this fixup has been processed here,
23241 even if in fact we generate an error because we do
23242 not have a reloc for it, so tc_gen_reloc will reject it. */
23243 fixP->fx_done = 1;
23244
23245 if (fixP->fx_addsy
23246 && ! S_IS_DEFINED (fixP->fx_addsy))
23247 {
23248 as_bad_where (fixP->fx_file, fixP->fx_line,
23249 _("undefined symbol %s used as an immediate value"),
23250 S_GET_NAME (fixP->fx_addsy));
23251 break;
23252 }
23253
23254 newval = md_chars_to_number (buf, THUMB_SIZE);
23255 newval <<= 16;
23256 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
23257
23258 newimm = FAIL;
23259 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23260 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23261 Thumb2 modified immediate encoding (T2). */
23262 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
23263 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23264 {
23265 newimm = encode_thumb32_immediate (value);
23266 if (newimm == (unsigned int) FAIL)
23267 newimm = thumb32_negate_data_op (&newval, value);
23268 }
23269 if (newimm == (unsigned int) FAIL)
23270 {
23271 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
23272 {
23273 /* Turn add/sum into addw/subw. */
23274 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23275 newval = (newval & 0xfeffffff) | 0x02000000;
23276 /* No flat 12-bit imm encoding for addsw/subsw. */
23277 if ((newval & 0x00100000) == 0)
23278 {
23279 /* 12 bit immediate for addw/subw. */
23280 if (value < 0)
23281 {
23282 value = -value;
23283 newval ^= 0x00a00000;
23284 }
23285 if (value > 0xfff)
23286 newimm = (unsigned int) FAIL;
23287 else
23288 newimm = value;
23289 }
23290 }
23291 else
23292 {
23293 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23294 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23295 disassembling, MOV is preferred when there is no encoding
23296 overlap.
23297 NOTE: MOV is using ORR opcode under Thumb 2 mode. */
23298 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23299 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23300 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23301 && value >= 0 && value <=0xffff)
23302 {
23303 /* Toggle bit[25] to change encoding from T2 to T3. */
23304 newval ^= 1 << 25;
23305 /* Clear bits[19:16]. */
23306 newval &= 0xfff0ffff;
23307 /* Encoding high 4bits imm. Code below will encode the
23308 remaining low 12bits. */
23309 newval |= (value & 0x0000f000) << 4;
23310 newimm = value & 0x00000fff;
23311 }
23312 }
23313 }
23314
23315 if (newimm == (unsigned int)FAIL)
23316 {
23317 as_bad_where (fixP->fx_file, fixP->fx_line,
23318 _("invalid constant (%lx) after fixup"),
23319 (unsigned long) value);
23320 break;
23321 }
23322
23323 newval |= (newimm & 0x800) << 15;
23324 newval |= (newimm & 0x700) << 4;
23325 newval |= (newimm & 0x0ff);
23326
23327 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23328 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23329 break;
23330
23331 case BFD_RELOC_ARM_SMC:
23332 if (((unsigned long) value) > 0xffff)
23333 as_bad_where (fixP->fx_file, fixP->fx_line,
23334 _("invalid smc expression"));
23335 newval = md_chars_to_number (buf, INSN_SIZE);
23336 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23337 md_number_to_chars (buf, newval, INSN_SIZE);
23338 break;
23339
23340 case BFD_RELOC_ARM_HVC:
23341 if (((unsigned long) value) > 0xffff)
23342 as_bad_where (fixP->fx_file, fixP->fx_line,
23343 _("invalid hvc expression"));
23344 newval = md_chars_to_number (buf, INSN_SIZE);
23345 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23346 md_number_to_chars (buf, newval, INSN_SIZE);
23347 break;
23348
23349 case BFD_RELOC_ARM_SWI:
23350 if (fixP->tc_fix_data != 0)
23351 {
23352 if (((unsigned long) value) > 0xff)
23353 as_bad_where (fixP->fx_file, fixP->fx_line,
23354 _("invalid swi expression"));
23355 newval = md_chars_to_number (buf, THUMB_SIZE);
23356 newval |= value;
23357 md_number_to_chars (buf, newval, THUMB_SIZE);
23358 }
23359 else
23360 {
23361 if (((unsigned long) value) > 0x00ffffff)
23362 as_bad_where (fixP->fx_file, fixP->fx_line,
23363 _("invalid swi expression"));
23364 newval = md_chars_to_number (buf, INSN_SIZE);
23365 newval |= value;
23366 md_number_to_chars (buf, newval, INSN_SIZE);
23367 }
23368 break;
23369
23370 case BFD_RELOC_ARM_MULTI:
23371 if (((unsigned long) value) > 0xffff)
23372 as_bad_where (fixP->fx_file, fixP->fx_line,
23373 _("invalid expression in load/store multiple"));
23374 newval = value | md_chars_to_number (buf, INSN_SIZE);
23375 md_number_to_chars (buf, newval, INSN_SIZE);
23376 break;
23377
23378 #ifdef OBJ_ELF
23379 case BFD_RELOC_ARM_PCREL_CALL:
23380
23381 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23382 && fixP->fx_addsy
23383 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23384 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23385 && THUMB_IS_FUNC (fixP->fx_addsy))
23386 /* Flip the bl to blx. This is a simple flip
23387 bit here because we generate PCREL_CALL for
23388 unconditional bls. */
23389 {
23390 newval = md_chars_to_number (buf, INSN_SIZE);
23391 newval = newval | 0x10000000;
23392 md_number_to_chars (buf, newval, INSN_SIZE);
23393 temp = 1;
23394 fixP->fx_done = 1;
23395 }
23396 else
23397 temp = 3;
23398 goto arm_branch_common;
23399
23400 case BFD_RELOC_ARM_PCREL_JUMP:
23401 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23402 && fixP->fx_addsy
23403 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23404 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23405 && THUMB_IS_FUNC (fixP->fx_addsy))
23406 {
23407 /* This would map to a bl<cond>, b<cond>,
23408 b<always> to a Thumb function. We
23409 need to force a relocation for this particular
23410 case. */
23411 newval = md_chars_to_number (buf, INSN_SIZE);
23412 fixP->fx_done = 0;
23413 }
23414 /* Fall through. */
23415
23416 case BFD_RELOC_ARM_PLT32:
23417 #endif
23418 case BFD_RELOC_ARM_PCREL_BRANCH:
23419 temp = 3;
23420 goto arm_branch_common;
23421
23422 case BFD_RELOC_ARM_PCREL_BLX:
23423
23424 temp = 1;
23425 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23426 && fixP->fx_addsy
23427 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23428 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23429 && ARM_IS_FUNC (fixP->fx_addsy))
23430 {
23431 /* Flip the blx to a bl and warn. */
23432 const char *name = S_GET_NAME (fixP->fx_addsy);
23433 newval = 0xeb000000;
23434 as_warn_where (fixP->fx_file, fixP->fx_line,
23435 _("blx to '%s' an ARM ISA state function changed to bl"),
23436 name);
23437 md_number_to_chars (buf, newval, INSN_SIZE);
23438 temp = 3;
23439 fixP->fx_done = 1;
23440 }
23441
23442 #ifdef OBJ_ELF
23443 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23444 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
23445 #endif
23446
23447 arm_branch_common:
23448 /* We are going to store value (shifted right by two) in the
23449 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23450 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
23451 also be be clear. */
23452 if (value & temp)
23453 as_bad_where (fixP->fx_file, fixP->fx_line,
23454 _("misaligned branch destination"));
23455 if ((value & (offsetT)0xfe000000) != (offsetT)0
23456 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
23457 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23458
23459 if (fixP->fx_done || !seg->use_rela_p)
23460 {
23461 newval = md_chars_to_number (buf, INSN_SIZE);
23462 newval |= (value >> 2) & 0x00ffffff;
23463 /* Set the H bit on BLX instructions. */
23464 if (temp == 1)
23465 {
23466 if (value & 2)
23467 newval |= 0x01000000;
23468 else
23469 newval &= ~0x01000000;
23470 }
23471 md_number_to_chars (buf, newval, INSN_SIZE);
23472 }
23473 break;
23474
23475 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23476 /* CBZ can only branch forward. */
23477
23478 /* Attempts to use CBZ to branch to the next instruction
23479 (which, strictly speaking, are prohibited) will be turned into
23480 no-ops.
23481
23482 FIXME: It may be better to remove the instruction completely and
23483 perform relaxation. */
23484 if (value == -2)
23485 {
23486 newval = md_chars_to_number (buf, THUMB_SIZE);
23487 newval = 0xbf00; /* NOP encoding T1 */
23488 md_number_to_chars (buf, newval, THUMB_SIZE);
23489 }
23490 else
23491 {
23492 if (value & ~0x7e)
23493 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23494
23495 if (fixP->fx_done || !seg->use_rela_p)
23496 {
23497 newval = md_chars_to_number (buf, THUMB_SIZE);
23498 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23499 md_number_to_chars (buf, newval, THUMB_SIZE);
23500 }
23501 }
23502 break;
23503
23504 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
23505 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
23506 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23507
23508 if (fixP->fx_done || !seg->use_rela_p)
23509 {
23510 newval = md_chars_to_number (buf, THUMB_SIZE);
23511 newval |= (value & 0x1ff) >> 1;
23512 md_number_to_chars (buf, newval, THUMB_SIZE);
23513 }
23514 break;
23515
23516 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
23517 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
23518 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23519
23520 if (fixP->fx_done || !seg->use_rela_p)
23521 {
23522 newval = md_chars_to_number (buf, THUMB_SIZE);
23523 newval |= (value & 0xfff) >> 1;
23524 md_number_to_chars (buf, newval, THUMB_SIZE);
23525 }
23526 break;
23527
23528 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23529 if (fixP->fx_addsy
23530 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23531 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23532 && ARM_IS_FUNC (fixP->fx_addsy)
23533 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23534 {
23535 /* Force a relocation for a branch 20 bits wide. */
23536 fixP->fx_done = 0;
23537 }
23538 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
23539 as_bad_where (fixP->fx_file, fixP->fx_line,
23540 _("conditional branch out of range"));
23541
23542 if (fixP->fx_done || !seg->use_rela_p)
23543 {
23544 offsetT newval2;
23545 addressT S, J1, J2, lo, hi;
23546
23547 S = (value & 0x00100000) >> 20;
23548 J2 = (value & 0x00080000) >> 19;
23549 J1 = (value & 0x00040000) >> 18;
23550 hi = (value & 0x0003f000) >> 12;
23551 lo = (value & 0x00000ffe) >> 1;
23552
23553 newval = md_chars_to_number (buf, THUMB_SIZE);
23554 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23555 newval |= (S << 10) | hi;
23556 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23557 md_number_to_chars (buf, newval, THUMB_SIZE);
23558 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23559 }
23560 break;
23561
23562 case BFD_RELOC_THUMB_PCREL_BLX:
23563 /* If there is a blx from a thumb state function to
23564 another thumb function flip this to a bl and warn
23565 about it. */
23566
23567 if (fixP->fx_addsy
23568 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23569 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23570 && THUMB_IS_FUNC (fixP->fx_addsy))
23571 {
23572 const char *name = S_GET_NAME (fixP->fx_addsy);
23573 as_warn_where (fixP->fx_file, fixP->fx_line,
23574 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23575 name);
23576 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23577 newval = newval | 0x1000;
23578 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23579 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23580 fixP->fx_done = 1;
23581 }
23582
23583
23584 goto thumb_bl_common;
23585
23586 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23587 /* A bl from Thumb state ISA to an internal ARM state function
23588 is converted to a blx. */
23589 if (fixP->fx_addsy
23590 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23591 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23592 && ARM_IS_FUNC (fixP->fx_addsy)
23593 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23594 {
23595 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23596 newval = newval & ~0x1000;
23597 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23598 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23599 fixP->fx_done = 1;
23600 }
23601
23602 thumb_bl_common:
23603
23604 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23605 /* For a BLX instruction, make sure that the relocation is rounded up
23606 to a word boundary. This follows the semantics of the instruction
23607 which specifies that bit 1 of the target address will come from bit
23608 1 of the base address. */
23609 value = (value + 3) & ~ 3;
23610
23611 #ifdef OBJ_ELF
23612 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23613 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23614 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23615 #endif
23616
23617 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23618 {
23619 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
23620 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23621 else if ((value & ~0x1ffffff)
23622 && ((value & ~0x1ffffff) != ~0x1ffffff))
23623 as_bad_where (fixP->fx_file, fixP->fx_line,
23624 _("Thumb2 branch out of range"));
23625 }
23626
23627 if (fixP->fx_done || !seg->use_rela_p)
23628 encode_thumb2_b_bl_offset (buf, value);
23629
23630 break;
23631
23632 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23633 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
23634 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23635
23636 if (fixP->fx_done || !seg->use_rela_p)
23637 encode_thumb2_b_bl_offset (buf, value);
23638
23639 break;
23640
23641 case BFD_RELOC_8:
23642 if (fixP->fx_done || !seg->use_rela_p)
23643 *buf = value;
23644 break;
23645
23646 case BFD_RELOC_16:
23647 if (fixP->fx_done || !seg->use_rela_p)
23648 md_number_to_chars (buf, value, 2);
23649 break;
23650
23651 #ifdef OBJ_ELF
23652 case BFD_RELOC_ARM_TLS_CALL:
23653 case BFD_RELOC_ARM_THM_TLS_CALL:
23654 case BFD_RELOC_ARM_TLS_DESCSEQ:
23655 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23656 case BFD_RELOC_ARM_TLS_GOTDESC:
23657 case BFD_RELOC_ARM_TLS_GD32:
23658 case BFD_RELOC_ARM_TLS_LE32:
23659 case BFD_RELOC_ARM_TLS_IE32:
23660 case BFD_RELOC_ARM_TLS_LDM32:
23661 case BFD_RELOC_ARM_TLS_LDO32:
23662 S_SET_THREAD_LOCAL (fixP->fx_addsy);
23663 break;
23664
23665 case BFD_RELOC_ARM_GOT32:
23666 case BFD_RELOC_ARM_GOTOFF:
23667 break;
23668
23669 case BFD_RELOC_ARM_GOT_PREL:
23670 if (fixP->fx_done || !seg->use_rela_p)
23671 md_number_to_chars (buf, value, 4);
23672 break;
23673
23674 case BFD_RELOC_ARM_TARGET2:
23675 /* TARGET2 is not partial-inplace, so we need to write the
23676 addend here for REL targets, because it won't be written out
23677 during reloc processing later. */
23678 if (fixP->fx_done || !seg->use_rela_p)
23679 md_number_to_chars (buf, fixP->fx_offset, 4);
23680 break;
23681 #endif
23682
23683 case BFD_RELOC_RVA:
23684 case BFD_RELOC_32:
23685 case BFD_RELOC_ARM_TARGET1:
23686 case BFD_RELOC_ARM_ROSEGREL32:
23687 case BFD_RELOC_ARM_SBREL32:
23688 case BFD_RELOC_32_PCREL:
23689 #ifdef TE_PE
23690 case BFD_RELOC_32_SECREL:
23691 #endif
23692 if (fixP->fx_done || !seg->use_rela_p)
23693 #ifdef TE_WINCE
23694 /* For WinCE we only do this for pcrel fixups. */
23695 if (fixP->fx_done || fixP->fx_pcrel)
23696 #endif
23697 md_number_to_chars (buf, value, 4);
23698 break;
23699
23700 #ifdef OBJ_ELF
23701 case BFD_RELOC_ARM_PREL31:
23702 if (fixP->fx_done || !seg->use_rela_p)
23703 {
23704 newval = md_chars_to_number (buf, 4) & 0x80000000;
23705 if ((value ^ (value >> 1)) & 0x40000000)
23706 {
23707 as_bad_where (fixP->fx_file, fixP->fx_line,
23708 _("rel31 relocation overflow"));
23709 }
23710 newval |= value & 0x7fffffff;
23711 md_number_to_chars (buf, newval, 4);
23712 }
23713 break;
23714 #endif
23715
23716 case BFD_RELOC_ARM_CP_OFF_IMM:
23717 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
23718 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
23719 newval = md_chars_to_number (buf, INSN_SIZE);
23720 else
23721 newval = get_thumb32_insn (buf);
23722 if ((newval & 0x0f200f00) == 0x0d000900)
23723 {
23724 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
23725 has permitted values that are multiples of 2, in the range 0
23726 to 510. */
23727 if (value < -510 || value > 510 || (value & 1))
23728 as_bad_where (fixP->fx_file, fixP->fx_line,
23729 _("co-processor offset out of range"));
23730 }
23731 else if (value < -1023 || value > 1023 || (value & 3))
23732 as_bad_where (fixP->fx_file, fixP->fx_line,
23733 _("co-processor offset out of range"));
23734 cp_off_common:
23735 sign = value > 0;
23736 if (value < 0)
23737 value = -value;
23738 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23739 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23740 newval = md_chars_to_number (buf, INSN_SIZE);
23741 else
23742 newval = get_thumb32_insn (buf);
23743 if (value == 0)
23744 newval &= 0xffffff00;
23745 else
23746 {
23747 newval &= 0xff7fff00;
23748 if ((newval & 0x0f200f00) == 0x0d000900)
23749 {
23750 /* This is a fp16 vstr/vldr.
23751
23752 It requires the immediate offset in the instruction is shifted
23753 left by 1 to be a half-word offset.
23754
23755 Here, left shift by 1 first, and later right shift by 2
23756 should get the right offset. */
23757 value <<= 1;
23758 }
23759 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
23760 }
23761 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23762 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23763 md_number_to_chars (buf, newval, INSN_SIZE);
23764 else
23765 put_thumb32_insn (buf, newval);
23766 break;
23767
23768 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
23769 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
23770 if (value < -255 || value > 255)
23771 as_bad_where (fixP->fx_file, fixP->fx_line,
23772 _("co-processor offset out of range"));
23773 value *= 4;
23774 goto cp_off_common;
23775
23776 case BFD_RELOC_ARM_THUMB_OFFSET:
23777 newval = md_chars_to_number (buf, THUMB_SIZE);
23778 /* Exactly what ranges, and where the offset is inserted depends
23779 on the type of instruction, we can establish this from the
23780 top 4 bits. */
23781 switch (newval >> 12)
23782 {
23783 case 4: /* PC load. */
23784 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
23785 forced to zero for these loads; md_pcrel_from has already
23786 compensated for this. */
23787 if (value & 3)
23788 as_bad_where (fixP->fx_file, fixP->fx_line,
23789 _("invalid offset, target not word aligned (0x%08lX)"),
23790 (((unsigned long) fixP->fx_frag->fr_address
23791 + (unsigned long) fixP->fx_where) & ~3)
23792 + (unsigned long) value);
23793
23794 if (value & ~0x3fc)
23795 as_bad_where (fixP->fx_file, fixP->fx_line,
23796 _("invalid offset, value too big (0x%08lX)"),
23797 (long) value);
23798
23799 newval |= value >> 2;
23800 break;
23801
23802 case 9: /* SP load/store. */
23803 if (value & ~0x3fc)
23804 as_bad_where (fixP->fx_file, fixP->fx_line,
23805 _("invalid offset, value too big (0x%08lX)"),
23806 (long) value);
23807 newval |= value >> 2;
23808 break;
23809
23810 case 6: /* Word load/store. */
23811 if (value & ~0x7c)
23812 as_bad_where (fixP->fx_file, fixP->fx_line,
23813 _("invalid offset, value too big (0x%08lX)"),
23814 (long) value);
23815 newval |= value << 4; /* 6 - 2. */
23816 break;
23817
23818 case 7: /* Byte load/store. */
23819 if (value & ~0x1f)
23820 as_bad_where (fixP->fx_file, fixP->fx_line,
23821 _("invalid offset, value too big (0x%08lX)"),
23822 (long) value);
23823 newval |= value << 6;
23824 break;
23825
23826 case 8: /* Halfword load/store. */
23827 if (value & ~0x3e)
23828 as_bad_where (fixP->fx_file, fixP->fx_line,
23829 _("invalid offset, value too big (0x%08lX)"),
23830 (long) value);
23831 newval |= value << 5; /* 6 - 1. */
23832 break;
23833
23834 default:
23835 as_bad_where (fixP->fx_file, fixP->fx_line,
23836 "Unable to process relocation for thumb opcode: %lx",
23837 (unsigned long) newval);
23838 break;
23839 }
23840 md_number_to_chars (buf, newval, THUMB_SIZE);
23841 break;
23842
23843 case BFD_RELOC_ARM_THUMB_ADD:
23844 /* This is a complicated relocation, since we use it for all of
23845 the following immediate relocations:
23846
23847 3bit ADD/SUB
23848 8bit ADD/SUB
23849 9bit ADD/SUB SP word-aligned
23850 10bit ADD PC/SP word-aligned
23851
23852 The type of instruction being processed is encoded in the
23853 instruction field:
23854
23855 0x8000 SUB
23856 0x00F0 Rd
23857 0x000F Rs
23858 */
23859 newval = md_chars_to_number (buf, THUMB_SIZE);
23860 {
23861 int rd = (newval >> 4) & 0xf;
23862 int rs = newval & 0xf;
23863 int subtract = !!(newval & 0x8000);
23864
23865 /* Check for HI regs, only very restricted cases allowed:
23866 Adjusting SP, and using PC or SP to get an address. */
23867 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
23868 || (rs > 7 && rs != REG_SP && rs != REG_PC))
23869 as_bad_where (fixP->fx_file, fixP->fx_line,
23870 _("invalid Hi register with immediate"));
23871
23872 /* If value is negative, choose the opposite instruction. */
23873 if (value < 0)
23874 {
23875 value = -value;
23876 subtract = !subtract;
23877 if (value < 0)
23878 as_bad_where (fixP->fx_file, fixP->fx_line,
23879 _("immediate value out of range"));
23880 }
23881
23882 if (rd == REG_SP)
23883 {
23884 if (value & ~0x1fc)
23885 as_bad_where (fixP->fx_file, fixP->fx_line,
23886 _("invalid immediate for stack address calculation"));
23887 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
23888 newval |= value >> 2;
23889 }
23890 else if (rs == REG_PC || rs == REG_SP)
23891 {
23892 /* PR gas/18541. If the addition is for a defined symbol
23893 within range of an ADR instruction then accept it. */
23894 if (subtract
23895 && value == 4
23896 && fixP->fx_addsy != NULL)
23897 {
23898 subtract = 0;
23899
23900 if (! S_IS_DEFINED (fixP->fx_addsy)
23901 || S_GET_SEGMENT (fixP->fx_addsy) != seg
23902 || S_IS_WEAK (fixP->fx_addsy))
23903 {
23904 as_bad_where (fixP->fx_file, fixP->fx_line,
23905 _("address calculation needs a strongly defined nearby symbol"));
23906 }
23907 else
23908 {
23909 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
23910
23911 /* Round up to the next 4-byte boundary. */
23912 if (v & 3)
23913 v = (v + 3) & ~ 3;
23914 else
23915 v += 4;
23916 v = S_GET_VALUE (fixP->fx_addsy) - v;
23917
23918 if (v & ~0x3fc)
23919 {
23920 as_bad_where (fixP->fx_file, fixP->fx_line,
23921 _("symbol too far away"));
23922 }
23923 else
23924 {
23925 fixP->fx_done = 1;
23926 value = v;
23927 }
23928 }
23929 }
23930
23931 if (subtract || value & ~0x3fc)
23932 as_bad_where (fixP->fx_file, fixP->fx_line,
23933 _("invalid immediate for address calculation (value = 0x%08lX)"),
23934 (unsigned long) (subtract ? - value : value));
23935 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
23936 newval |= rd << 8;
23937 newval |= value >> 2;
23938 }
23939 else if (rs == rd)
23940 {
23941 if (value & ~0xff)
23942 as_bad_where (fixP->fx_file, fixP->fx_line,
23943 _("immediate value out of range"));
23944 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
23945 newval |= (rd << 8) | value;
23946 }
23947 else
23948 {
23949 if (value & ~0x7)
23950 as_bad_where (fixP->fx_file, fixP->fx_line,
23951 _("immediate value out of range"));
23952 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
23953 newval |= rd | (rs << 3) | (value << 6);
23954 }
23955 }
23956 md_number_to_chars (buf, newval, THUMB_SIZE);
23957 break;
23958
23959 case BFD_RELOC_ARM_THUMB_IMM:
23960 newval = md_chars_to_number (buf, THUMB_SIZE);
23961 if (value < 0 || value > 255)
23962 as_bad_where (fixP->fx_file, fixP->fx_line,
23963 _("invalid immediate: %ld is out of range"),
23964 (long) value);
23965 newval |= value;
23966 md_number_to_chars (buf, newval, THUMB_SIZE);
23967 break;
23968
23969 case BFD_RELOC_ARM_THUMB_SHIFT:
23970 /* 5bit shift value (0..32). LSL cannot take 32. */
23971 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
23972 temp = newval & 0xf800;
23973 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
23974 as_bad_where (fixP->fx_file, fixP->fx_line,
23975 _("invalid shift value: %ld"), (long) value);
23976 /* Shifts of zero must be encoded as LSL. */
23977 if (value == 0)
23978 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
23979 /* Shifts of 32 are encoded as zero. */
23980 else if (value == 32)
23981 value = 0;
23982 newval |= value << 6;
23983 md_number_to_chars (buf, newval, THUMB_SIZE);
23984 break;
23985
23986 case BFD_RELOC_VTABLE_INHERIT:
23987 case BFD_RELOC_VTABLE_ENTRY:
23988 fixP->fx_done = 0;
23989 return;
23990
23991 case BFD_RELOC_ARM_MOVW:
23992 case BFD_RELOC_ARM_MOVT:
23993 case BFD_RELOC_ARM_THUMB_MOVW:
23994 case BFD_RELOC_ARM_THUMB_MOVT:
23995 if (fixP->fx_done || !seg->use_rela_p)
23996 {
23997 /* REL format relocations are limited to a 16-bit addend. */
23998 if (!fixP->fx_done)
23999 {
24000 if (value < -0x8000 || value > 0x7fff)
24001 as_bad_where (fixP->fx_file, fixP->fx_line,
24002 _("offset out of range"));
24003 }
24004 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24005 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24006 {
24007 value >>= 16;
24008 }
24009
24010 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24011 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24012 {
24013 newval = get_thumb32_insn (buf);
24014 newval &= 0xfbf08f00;
24015 newval |= (value & 0xf000) << 4;
24016 newval |= (value & 0x0800) << 15;
24017 newval |= (value & 0x0700) << 4;
24018 newval |= (value & 0x00ff);
24019 put_thumb32_insn (buf, newval);
24020 }
24021 else
24022 {
24023 newval = md_chars_to_number (buf, 4);
24024 newval &= 0xfff0f000;
24025 newval |= value & 0x0fff;
24026 newval |= (value & 0xf000) << 4;
24027 md_number_to_chars (buf, newval, 4);
24028 }
24029 }
24030 return;
24031
24032 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24033 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24034 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24035 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24036 gas_assert (!fixP->fx_done);
24037 {
24038 bfd_vma insn;
24039 bfd_boolean is_mov;
24040 bfd_vma encoded_addend = value;
24041
24042 /* Check that addend can be encoded in instruction. */
24043 if (!seg->use_rela_p && (value < 0 || value > 255))
24044 as_bad_where (fixP->fx_file, fixP->fx_line,
24045 _("the offset 0x%08lX is not representable"),
24046 (unsigned long) encoded_addend);
24047
24048 /* Extract the instruction. */
24049 insn = md_chars_to_number (buf, THUMB_SIZE);
24050 is_mov = (insn & 0xf800) == 0x2000;
24051
24052 /* Encode insn. */
24053 if (is_mov)
24054 {
24055 if (!seg->use_rela_p)
24056 insn |= encoded_addend;
24057 }
24058 else
24059 {
24060 int rd, rs;
24061
24062 /* Extract the instruction. */
24063 /* Encoding is the following
24064 0x8000 SUB
24065 0x00F0 Rd
24066 0x000F Rs
24067 */
24068 /* The following conditions must be true :
24069 - ADD
24070 - Rd == Rs
24071 - Rd <= 7
24072 */
24073 rd = (insn >> 4) & 0xf;
24074 rs = insn & 0xf;
24075 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24076 as_bad_where (fixP->fx_file, fixP->fx_line,
24077 _("Unable to process relocation for thumb opcode: %lx"),
24078 (unsigned long) insn);
24079
24080 /* Encode as ADD immediate8 thumb 1 code. */
24081 insn = 0x3000 | (rd << 8);
24082
24083 /* Place the encoded addend into the first 8 bits of the
24084 instruction. */
24085 if (!seg->use_rela_p)
24086 insn |= encoded_addend;
24087 }
24088
24089 /* Update the instruction. */
24090 md_number_to_chars (buf, insn, THUMB_SIZE);
24091 }
24092 break;
24093
24094 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24095 case BFD_RELOC_ARM_ALU_PC_G0:
24096 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24097 case BFD_RELOC_ARM_ALU_PC_G1:
24098 case BFD_RELOC_ARM_ALU_PC_G2:
24099 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24100 case BFD_RELOC_ARM_ALU_SB_G0:
24101 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24102 case BFD_RELOC_ARM_ALU_SB_G1:
24103 case BFD_RELOC_ARM_ALU_SB_G2:
24104 gas_assert (!fixP->fx_done);
24105 if (!seg->use_rela_p)
24106 {
24107 bfd_vma insn;
24108 bfd_vma encoded_addend;
24109 bfd_vma addend_abs = abs (value);
24110
24111 /* Check that the absolute value of the addend can be
24112 expressed as an 8-bit constant plus a rotation. */
24113 encoded_addend = encode_arm_immediate (addend_abs);
24114 if (encoded_addend == (unsigned int) FAIL)
24115 as_bad_where (fixP->fx_file, fixP->fx_line,
24116 _("the offset 0x%08lX is not representable"),
24117 (unsigned long) addend_abs);
24118
24119 /* Extract the instruction. */
24120 insn = md_chars_to_number (buf, INSN_SIZE);
24121
24122 /* If the addend is positive, use an ADD instruction.
24123 Otherwise use a SUB. Take care not to destroy the S bit. */
24124 insn &= 0xff1fffff;
24125 if (value < 0)
24126 insn |= 1 << 22;
24127 else
24128 insn |= 1 << 23;
24129
24130 /* Place the encoded addend into the first 12 bits of the
24131 instruction. */
24132 insn &= 0xfffff000;
24133 insn |= encoded_addend;
24134
24135 /* Update the instruction. */
24136 md_number_to_chars (buf, insn, INSN_SIZE);
24137 }
24138 break;
24139
24140 case BFD_RELOC_ARM_LDR_PC_G0:
24141 case BFD_RELOC_ARM_LDR_PC_G1:
24142 case BFD_RELOC_ARM_LDR_PC_G2:
24143 case BFD_RELOC_ARM_LDR_SB_G0:
24144 case BFD_RELOC_ARM_LDR_SB_G1:
24145 case BFD_RELOC_ARM_LDR_SB_G2:
24146 gas_assert (!fixP->fx_done);
24147 if (!seg->use_rela_p)
24148 {
24149 bfd_vma insn;
24150 bfd_vma addend_abs = abs (value);
24151
24152 /* Check that the absolute value of the addend can be
24153 encoded in 12 bits. */
24154 if (addend_abs >= 0x1000)
24155 as_bad_where (fixP->fx_file, fixP->fx_line,
24156 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24157 (unsigned long) addend_abs);
24158
24159 /* Extract the instruction. */
24160 insn = md_chars_to_number (buf, INSN_SIZE);
24161
24162 /* If the addend is negative, clear bit 23 of the instruction.
24163 Otherwise set it. */
24164 if (value < 0)
24165 insn &= ~(1 << 23);
24166 else
24167 insn |= 1 << 23;
24168
24169 /* Place the absolute value of the addend into the first 12 bits
24170 of the instruction. */
24171 insn &= 0xfffff000;
24172 insn |= addend_abs;
24173
24174 /* Update the instruction. */
24175 md_number_to_chars (buf, insn, INSN_SIZE);
24176 }
24177 break;
24178
24179 case BFD_RELOC_ARM_LDRS_PC_G0:
24180 case BFD_RELOC_ARM_LDRS_PC_G1:
24181 case BFD_RELOC_ARM_LDRS_PC_G2:
24182 case BFD_RELOC_ARM_LDRS_SB_G0:
24183 case BFD_RELOC_ARM_LDRS_SB_G1:
24184 case BFD_RELOC_ARM_LDRS_SB_G2:
24185 gas_assert (!fixP->fx_done);
24186 if (!seg->use_rela_p)
24187 {
24188 bfd_vma insn;
24189 bfd_vma addend_abs = abs (value);
24190
24191 /* Check that the absolute value of the addend can be
24192 encoded in 8 bits. */
24193 if (addend_abs >= 0x100)
24194 as_bad_where (fixP->fx_file, fixP->fx_line,
24195 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24196 (unsigned long) addend_abs);
24197
24198 /* Extract the instruction. */
24199 insn = md_chars_to_number (buf, INSN_SIZE);
24200
24201 /* If the addend is negative, clear bit 23 of the instruction.
24202 Otherwise set it. */
24203 if (value < 0)
24204 insn &= ~(1 << 23);
24205 else
24206 insn |= 1 << 23;
24207
24208 /* Place the first four bits of the absolute value of the addend
24209 into the first 4 bits of the instruction, and the remaining
24210 four into bits 8 .. 11. */
24211 insn &= 0xfffff0f0;
24212 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24213
24214 /* Update the instruction. */
24215 md_number_to_chars (buf, insn, INSN_SIZE);
24216 }
24217 break;
24218
24219 case BFD_RELOC_ARM_LDC_PC_G0:
24220 case BFD_RELOC_ARM_LDC_PC_G1:
24221 case BFD_RELOC_ARM_LDC_PC_G2:
24222 case BFD_RELOC_ARM_LDC_SB_G0:
24223 case BFD_RELOC_ARM_LDC_SB_G1:
24224 case BFD_RELOC_ARM_LDC_SB_G2:
24225 gas_assert (!fixP->fx_done);
24226 if (!seg->use_rela_p)
24227 {
24228 bfd_vma insn;
24229 bfd_vma addend_abs = abs (value);
24230
24231 /* Check that the absolute value of the addend is a multiple of
24232 four and, when divided by four, fits in 8 bits. */
24233 if (addend_abs & 0x3)
24234 as_bad_where (fixP->fx_file, fixP->fx_line,
24235 _("bad offset 0x%08lX (must be word-aligned)"),
24236 (unsigned long) addend_abs);
24237
24238 if ((addend_abs >> 2) > 0xff)
24239 as_bad_where (fixP->fx_file, fixP->fx_line,
24240 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24241 (unsigned long) addend_abs);
24242
24243 /* Extract the instruction. */
24244 insn = md_chars_to_number (buf, INSN_SIZE);
24245
24246 /* If the addend is negative, clear bit 23 of the instruction.
24247 Otherwise set it. */
24248 if (value < 0)
24249 insn &= ~(1 << 23);
24250 else
24251 insn |= 1 << 23;
24252
24253 /* Place the addend (divided by four) into the first eight
24254 bits of the instruction. */
24255 insn &= 0xfffffff0;
24256 insn |= addend_abs >> 2;
24257
24258 /* Update the instruction. */
24259 md_number_to_chars (buf, insn, INSN_SIZE);
24260 }
24261 break;
24262
24263 case BFD_RELOC_ARM_V4BX:
24264 /* This will need to go in the object file. */
24265 fixP->fx_done = 0;
24266 break;
24267
24268 case BFD_RELOC_UNUSED:
24269 default:
24270 as_bad_where (fixP->fx_file, fixP->fx_line,
24271 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24272 }
24273 }
24274
24275 /* Translate internal representation of relocation info to BFD target
24276 format. */
24277
24278 arelent *
24279 tc_gen_reloc (asection *section, fixS *fixp)
24280 {
24281 arelent * reloc;
24282 bfd_reloc_code_real_type code;
24283
24284 reloc = XNEW (arelent);
24285
24286 reloc->sym_ptr_ptr = XNEW (asymbol *);
24287 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24288 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
24289
24290 if (fixp->fx_pcrel)
24291 {
24292 if (section->use_rela_p)
24293 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24294 else
24295 fixp->fx_offset = reloc->address;
24296 }
24297 reloc->addend = fixp->fx_offset;
24298
24299 switch (fixp->fx_r_type)
24300 {
24301 case BFD_RELOC_8:
24302 if (fixp->fx_pcrel)
24303 {
24304 code = BFD_RELOC_8_PCREL;
24305 break;
24306 }
24307 /* Fall through. */
24308
24309 case BFD_RELOC_16:
24310 if (fixp->fx_pcrel)
24311 {
24312 code = BFD_RELOC_16_PCREL;
24313 break;
24314 }
24315 /* Fall through. */
24316
24317 case BFD_RELOC_32:
24318 if (fixp->fx_pcrel)
24319 {
24320 code = BFD_RELOC_32_PCREL;
24321 break;
24322 }
24323 /* Fall through. */
24324
24325 case BFD_RELOC_ARM_MOVW:
24326 if (fixp->fx_pcrel)
24327 {
24328 code = BFD_RELOC_ARM_MOVW_PCREL;
24329 break;
24330 }
24331 /* Fall through. */
24332
24333 case BFD_RELOC_ARM_MOVT:
24334 if (fixp->fx_pcrel)
24335 {
24336 code = BFD_RELOC_ARM_MOVT_PCREL;
24337 break;
24338 }
24339 /* Fall through. */
24340
24341 case BFD_RELOC_ARM_THUMB_MOVW:
24342 if (fixp->fx_pcrel)
24343 {
24344 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24345 break;
24346 }
24347 /* Fall through. */
24348
24349 case BFD_RELOC_ARM_THUMB_MOVT:
24350 if (fixp->fx_pcrel)
24351 {
24352 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24353 break;
24354 }
24355 /* Fall through. */
24356
24357 case BFD_RELOC_NONE:
24358 case BFD_RELOC_ARM_PCREL_BRANCH:
24359 case BFD_RELOC_ARM_PCREL_BLX:
24360 case BFD_RELOC_RVA:
24361 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24362 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24363 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24364 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24365 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24366 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24367 case BFD_RELOC_VTABLE_ENTRY:
24368 case BFD_RELOC_VTABLE_INHERIT:
24369 #ifdef TE_PE
24370 case BFD_RELOC_32_SECREL:
24371 #endif
24372 code = fixp->fx_r_type;
24373 break;
24374
24375 case BFD_RELOC_THUMB_PCREL_BLX:
24376 #ifdef OBJ_ELF
24377 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24378 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24379 else
24380 #endif
24381 code = BFD_RELOC_THUMB_PCREL_BLX;
24382 break;
24383
24384 case BFD_RELOC_ARM_LITERAL:
24385 case BFD_RELOC_ARM_HWLITERAL:
24386 /* If this is called then the a literal has
24387 been referenced across a section boundary. */
24388 as_bad_where (fixp->fx_file, fixp->fx_line,
24389 _("literal referenced across section boundary"));
24390 return NULL;
24391
24392 #ifdef OBJ_ELF
24393 case BFD_RELOC_ARM_TLS_CALL:
24394 case BFD_RELOC_ARM_THM_TLS_CALL:
24395 case BFD_RELOC_ARM_TLS_DESCSEQ:
24396 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24397 case BFD_RELOC_ARM_GOT32:
24398 case BFD_RELOC_ARM_GOTOFF:
24399 case BFD_RELOC_ARM_GOT_PREL:
24400 case BFD_RELOC_ARM_PLT32:
24401 case BFD_RELOC_ARM_TARGET1:
24402 case BFD_RELOC_ARM_ROSEGREL32:
24403 case BFD_RELOC_ARM_SBREL32:
24404 case BFD_RELOC_ARM_PREL31:
24405 case BFD_RELOC_ARM_TARGET2:
24406 case BFD_RELOC_ARM_TLS_LDO32:
24407 case BFD_RELOC_ARM_PCREL_CALL:
24408 case BFD_RELOC_ARM_PCREL_JUMP:
24409 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24410 case BFD_RELOC_ARM_ALU_PC_G0:
24411 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24412 case BFD_RELOC_ARM_ALU_PC_G1:
24413 case BFD_RELOC_ARM_ALU_PC_G2:
24414 case BFD_RELOC_ARM_LDR_PC_G0:
24415 case BFD_RELOC_ARM_LDR_PC_G1:
24416 case BFD_RELOC_ARM_LDR_PC_G2:
24417 case BFD_RELOC_ARM_LDRS_PC_G0:
24418 case BFD_RELOC_ARM_LDRS_PC_G1:
24419 case BFD_RELOC_ARM_LDRS_PC_G2:
24420 case BFD_RELOC_ARM_LDC_PC_G0:
24421 case BFD_RELOC_ARM_LDC_PC_G1:
24422 case BFD_RELOC_ARM_LDC_PC_G2:
24423 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24424 case BFD_RELOC_ARM_ALU_SB_G0:
24425 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24426 case BFD_RELOC_ARM_ALU_SB_G1:
24427 case BFD_RELOC_ARM_ALU_SB_G2:
24428 case BFD_RELOC_ARM_LDR_SB_G0:
24429 case BFD_RELOC_ARM_LDR_SB_G1:
24430 case BFD_RELOC_ARM_LDR_SB_G2:
24431 case BFD_RELOC_ARM_LDRS_SB_G0:
24432 case BFD_RELOC_ARM_LDRS_SB_G1:
24433 case BFD_RELOC_ARM_LDRS_SB_G2:
24434 case BFD_RELOC_ARM_LDC_SB_G0:
24435 case BFD_RELOC_ARM_LDC_SB_G1:
24436 case BFD_RELOC_ARM_LDC_SB_G2:
24437 case BFD_RELOC_ARM_V4BX:
24438 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24439 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24440 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24441 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24442 code = fixp->fx_r_type;
24443 break;
24444
24445 case BFD_RELOC_ARM_TLS_GOTDESC:
24446 case BFD_RELOC_ARM_TLS_GD32:
24447 case BFD_RELOC_ARM_TLS_LE32:
24448 case BFD_RELOC_ARM_TLS_IE32:
24449 case BFD_RELOC_ARM_TLS_LDM32:
24450 /* BFD will include the symbol's address in the addend.
24451 But we don't want that, so subtract it out again here. */
24452 if (!S_IS_COMMON (fixp->fx_addsy))
24453 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24454 code = fixp->fx_r_type;
24455 break;
24456 #endif
24457
24458 case BFD_RELOC_ARM_IMMEDIATE:
24459 as_bad_where (fixp->fx_file, fixp->fx_line,
24460 _("internal relocation (type: IMMEDIATE) not fixed up"));
24461 return NULL;
24462
24463 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24464 as_bad_where (fixp->fx_file, fixp->fx_line,
24465 _("ADRL used for a symbol not defined in the same file"));
24466 return NULL;
24467
24468 case BFD_RELOC_ARM_OFFSET_IMM:
24469 if (section->use_rela_p)
24470 {
24471 code = fixp->fx_r_type;
24472 break;
24473 }
24474
24475 if (fixp->fx_addsy != NULL
24476 && !S_IS_DEFINED (fixp->fx_addsy)
24477 && S_IS_LOCAL (fixp->fx_addsy))
24478 {
24479 as_bad_where (fixp->fx_file, fixp->fx_line,
24480 _("undefined local label `%s'"),
24481 S_GET_NAME (fixp->fx_addsy));
24482 return NULL;
24483 }
24484
24485 as_bad_where (fixp->fx_file, fixp->fx_line,
24486 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24487 return NULL;
24488
24489 default:
24490 {
24491 const char * type;
24492
24493 switch (fixp->fx_r_type)
24494 {
24495 case BFD_RELOC_NONE: type = "NONE"; break;
24496 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24497 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
24498 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
24499 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24500 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24501 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
24502 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
24503 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
24504 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24505 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24506 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24507 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24508 default: type = _("<unknown>"); break;
24509 }
24510 as_bad_where (fixp->fx_file, fixp->fx_line,
24511 _("cannot represent %s relocation in this object file format"),
24512 type);
24513 return NULL;
24514 }
24515 }
24516
24517 #ifdef OBJ_ELF
24518 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24519 && GOT_symbol
24520 && fixp->fx_addsy == GOT_symbol)
24521 {
24522 code = BFD_RELOC_ARM_GOTPC;
24523 reloc->addend = fixp->fx_offset = reloc->address;
24524 }
24525 #endif
24526
24527 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
24528
24529 if (reloc->howto == NULL)
24530 {
24531 as_bad_where (fixp->fx_file, fixp->fx_line,
24532 _("cannot represent %s relocation in this object file format"),
24533 bfd_get_reloc_code_name (code));
24534 return NULL;
24535 }
24536
24537 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24538 vtable entry to be used in the relocation's section offset. */
24539 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24540 reloc->address = fixp->fx_offset;
24541
24542 return reloc;
24543 }
24544
24545 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
24546
24547 void
24548 cons_fix_new_arm (fragS * frag,
24549 int where,
24550 int size,
24551 expressionS * exp,
24552 bfd_reloc_code_real_type reloc)
24553 {
24554 int pcrel = 0;
24555
24556 /* Pick a reloc.
24557 FIXME: @@ Should look at CPU word size. */
24558 switch (size)
24559 {
24560 case 1:
24561 reloc = BFD_RELOC_8;
24562 break;
24563 case 2:
24564 reloc = BFD_RELOC_16;
24565 break;
24566 case 4:
24567 default:
24568 reloc = BFD_RELOC_32;
24569 break;
24570 case 8:
24571 reloc = BFD_RELOC_64;
24572 break;
24573 }
24574
24575 #ifdef TE_PE
24576 if (exp->X_op == O_secrel)
24577 {
24578 exp->X_op = O_symbol;
24579 reloc = BFD_RELOC_32_SECREL;
24580 }
24581 #endif
24582
24583 fix_new_exp (frag, where, size, exp, pcrel, reloc);
24584 }
24585
24586 #if defined (OBJ_COFF)
24587 void
24588 arm_validate_fix (fixS * fixP)
24589 {
24590 /* If the destination of the branch is a defined symbol which does not have
24591 the THUMB_FUNC attribute, then we must be calling a function which has
24592 the (interfacearm) attribute. We look for the Thumb entry point to that
24593 function and change the branch to refer to that function instead. */
24594 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24595 && fixP->fx_addsy != NULL
24596 && S_IS_DEFINED (fixP->fx_addsy)
24597 && ! THUMB_IS_FUNC (fixP->fx_addsy))
24598 {
24599 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
24600 }
24601 }
24602 #endif
24603
24604
24605 int
24606 arm_force_relocation (struct fix * fixp)
24607 {
24608 #if defined (OBJ_COFF) && defined (TE_PE)
24609 if (fixp->fx_r_type == BFD_RELOC_RVA)
24610 return 1;
24611 #endif
24612
24613 /* In case we have a call or a branch to a function in ARM ISA mode from
24614 a thumb function or vice-versa force the relocation. These relocations
24615 are cleared off for some cores that might have blx and simple transformations
24616 are possible. */
24617
24618 #ifdef OBJ_ELF
24619 switch (fixp->fx_r_type)
24620 {
24621 case BFD_RELOC_ARM_PCREL_JUMP:
24622 case BFD_RELOC_ARM_PCREL_CALL:
24623 case BFD_RELOC_THUMB_PCREL_BLX:
24624 if (THUMB_IS_FUNC (fixp->fx_addsy))
24625 return 1;
24626 break;
24627
24628 case BFD_RELOC_ARM_PCREL_BLX:
24629 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24630 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24631 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24632 if (ARM_IS_FUNC (fixp->fx_addsy))
24633 return 1;
24634 break;
24635
24636 default:
24637 break;
24638 }
24639 #endif
24640
24641 /* Resolve these relocations even if the symbol is extern or weak.
24642 Technically this is probably wrong due to symbol preemption.
24643 In practice these relocations do not have enough range to be useful
24644 at dynamic link time, and some code (e.g. in the Linux kernel)
24645 expects these references to be resolved. */
24646 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
24647 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
24648 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
24649 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
24650 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24651 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
24652 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
24653 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
24654 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
24655 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
24656 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
24657 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
24658 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
24659 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
24660 return 0;
24661
24662 /* Always leave these relocations for the linker. */
24663 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24664 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24665 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24666 return 1;
24667
24668 /* Always generate relocations against function symbols. */
24669 if (fixp->fx_r_type == BFD_RELOC_32
24670 && fixp->fx_addsy
24671 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
24672 return 1;
24673
24674 return generic_force_reloc (fixp);
24675 }
24676
24677 #if defined (OBJ_ELF) || defined (OBJ_COFF)
24678 /* Relocations against function names must be left unadjusted,
24679 so that the linker can use this information to generate interworking
24680 stubs. The MIPS version of this function
24681 also prevents relocations that are mips-16 specific, but I do not
24682 know why it does this.
24683
24684 FIXME:
24685 There is one other problem that ought to be addressed here, but
24686 which currently is not: Taking the address of a label (rather
24687 than a function) and then later jumping to that address. Such
24688 addresses also ought to have their bottom bit set (assuming that
24689 they reside in Thumb code), but at the moment they will not. */
24690
24691 bfd_boolean
24692 arm_fix_adjustable (fixS * fixP)
24693 {
24694 if (fixP->fx_addsy == NULL)
24695 return 1;
24696
24697 /* Preserve relocations against symbols with function type. */
24698 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
24699 return FALSE;
24700
24701 if (THUMB_IS_FUNC (fixP->fx_addsy)
24702 && fixP->fx_subsy == NULL)
24703 return FALSE;
24704
24705 /* We need the symbol name for the VTABLE entries. */
24706 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
24707 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24708 return FALSE;
24709
24710 /* Don't allow symbols to be discarded on GOT related relocs. */
24711 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
24712 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
24713 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
24714 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
24715 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
24716 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
24717 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
24718 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
24719 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
24720 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
24721 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
24722 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
24723 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
24724 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
24725 return FALSE;
24726
24727 /* Similarly for group relocations. */
24728 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24729 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24730 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24731 return FALSE;
24732
24733 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
24734 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
24735 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24736 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
24737 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
24738 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24739 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
24740 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
24741 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
24742 return FALSE;
24743
24744 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
24745 offsets, so keep these symbols. */
24746 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
24747 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
24748 return FALSE;
24749
24750 return TRUE;
24751 }
24752 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
24753
24754 #ifdef OBJ_ELF
24755 const char *
24756 elf32_arm_target_format (void)
24757 {
24758 #ifdef TE_SYMBIAN
24759 return (target_big_endian
24760 ? "elf32-bigarm-symbian"
24761 : "elf32-littlearm-symbian");
24762 #elif defined (TE_VXWORKS)
24763 return (target_big_endian
24764 ? "elf32-bigarm-vxworks"
24765 : "elf32-littlearm-vxworks");
24766 #elif defined (TE_NACL)
24767 return (target_big_endian
24768 ? "elf32-bigarm-nacl"
24769 : "elf32-littlearm-nacl");
24770 #else
24771 if (target_big_endian)
24772 return "elf32-bigarm";
24773 else
24774 return "elf32-littlearm";
24775 #endif
24776 }
24777
24778 void
24779 armelf_frob_symbol (symbolS * symp,
24780 int * puntp)
24781 {
24782 elf_frob_symbol (symp, puntp);
24783 }
24784 #endif
24785
24786 /* MD interface: Finalization. */
24787
24788 void
24789 arm_cleanup (void)
24790 {
24791 literal_pool * pool;
24792
24793 /* Ensure that all the IT blocks are properly closed. */
24794 check_it_blocks_finished ();
24795
24796 for (pool = list_of_pools; pool; pool = pool->next)
24797 {
24798 /* Put it at the end of the relevant section. */
24799 subseg_set (pool->section, pool->sub_section);
24800 #ifdef OBJ_ELF
24801 arm_elf_change_section ();
24802 #endif
24803 s_ltorg (0);
24804 }
24805 }
24806
24807 #ifdef OBJ_ELF
24808 /* Remove any excess mapping symbols generated for alignment frags in
24809 SEC. We may have created a mapping symbol before a zero byte
24810 alignment; remove it if there's a mapping symbol after the
24811 alignment. */
24812 static void
24813 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
24814 void *dummy ATTRIBUTE_UNUSED)
24815 {
24816 segment_info_type *seginfo = seg_info (sec);
24817 fragS *fragp;
24818
24819 if (seginfo == NULL || seginfo->frchainP == NULL)
24820 return;
24821
24822 for (fragp = seginfo->frchainP->frch_root;
24823 fragp != NULL;
24824 fragp = fragp->fr_next)
24825 {
24826 symbolS *sym = fragp->tc_frag_data.last_map;
24827 fragS *next = fragp->fr_next;
24828
24829 /* Variable-sized frags have been converted to fixed size by
24830 this point. But if this was variable-sized to start with,
24831 there will be a fixed-size frag after it. So don't handle
24832 next == NULL. */
24833 if (sym == NULL || next == NULL)
24834 continue;
24835
24836 if (S_GET_VALUE (sym) < next->fr_address)
24837 /* Not at the end of this frag. */
24838 continue;
24839 know (S_GET_VALUE (sym) == next->fr_address);
24840
24841 do
24842 {
24843 if (next->tc_frag_data.first_map != NULL)
24844 {
24845 /* Next frag starts with a mapping symbol. Discard this
24846 one. */
24847 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24848 break;
24849 }
24850
24851 if (next->fr_next == NULL)
24852 {
24853 /* This mapping symbol is at the end of the section. Discard
24854 it. */
24855 know (next->fr_fix == 0 && next->fr_var == 0);
24856 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24857 break;
24858 }
24859
24860 /* As long as we have empty frags without any mapping symbols,
24861 keep looking. */
24862 /* If the next frag is non-empty and does not start with a
24863 mapping symbol, then this mapping symbol is required. */
24864 if (next->fr_address != next->fr_next->fr_address)
24865 break;
24866
24867 next = next->fr_next;
24868 }
24869 while (next != NULL);
24870 }
24871 }
24872 #endif
24873
24874 /* Adjust the symbol table. This marks Thumb symbols as distinct from
24875 ARM ones. */
24876
24877 void
24878 arm_adjust_symtab (void)
24879 {
24880 #ifdef OBJ_COFF
24881 symbolS * sym;
24882
24883 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24884 {
24885 if (ARM_IS_THUMB (sym))
24886 {
24887 if (THUMB_IS_FUNC (sym))
24888 {
24889 /* Mark the symbol as a Thumb function. */
24890 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
24891 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
24892 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
24893
24894 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
24895 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
24896 else
24897 as_bad (_("%s: unexpected function type: %d"),
24898 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
24899 }
24900 else switch (S_GET_STORAGE_CLASS (sym))
24901 {
24902 case C_EXT:
24903 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
24904 break;
24905 case C_STAT:
24906 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
24907 break;
24908 case C_LABEL:
24909 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
24910 break;
24911 default:
24912 /* Do nothing. */
24913 break;
24914 }
24915 }
24916
24917 if (ARM_IS_INTERWORK (sym))
24918 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
24919 }
24920 #endif
24921 #ifdef OBJ_ELF
24922 symbolS * sym;
24923 char bind;
24924
24925 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24926 {
24927 if (ARM_IS_THUMB (sym))
24928 {
24929 elf_symbol_type * elf_sym;
24930
24931 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
24932 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
24933
24934 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
24935 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
24936 {
24937 /* If it's a .thumb_func, declare it as so,
24938 otherwise tag label as .code 16. */
24939 if (THUMB_IS_FUNC (sym))
24940 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
24941 ST_BRANCH_TO_THUMB);
24942 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24943 elf_sym->internal_elf_sym.st_info =
24944 ELF_ST_INFO (bind, STT_ARM_16BIT);
24945 }
24946 }
24947 }
24948
24949 /* Remove any overlapping mapping symbols generated by alignment frags. */
24950 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
24951 /* Now do generic ELF adjustments. */
24952 elf_adjust_symtab ();
24953 #endif
24954 }
24955
24956 /* MD interface: Initialization. */
24957
24958 static void
24959 set_constant_flonums (void)
24960 {
24961 int i;
24962
24963 for (i = 0; i < NUM_FLOAT_VALS; i++)
24964 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
24965 abort ();
24966 }
24967
24968 /* Auto-select Thumb mode if it's the only available instruction set for the
24969 given architecture. */
24970
24971 static void
24972 autoselect_thumb_from_cpu_variant (void)
24973 {
24974 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
24975 opcode_select (16);
24976 }
24977
24978 void
24979 md_begin (void)
24980 {
24981 unsigned mach;
24982 unsigned int i;
24983
24984 if ( (arm_ops_hsh = hash_new ()) == NULL
24985 || (arm_cond_hsh = hash_new ()) == NULL
24986 || (arm_shift_hsh = hash_new ()) == NULL
24987 || (arm_psr_hsh = hash_new ()) == NULL
24988 || (arm_v7m_psr_hsh = hash_new ()) == NULL
24989 || (arm_reg_hsh = hash_new ()) == NULL
24990 || (arm_reloc_hsh = hash_new ()) == NULL
24991 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
24992 as_fatal (_("virtual memory exhausted"));
24993
24994 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
24995 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
24996 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
24997 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
24998 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
24999 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
25000 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
25001 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
25002 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
25003 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
25004 (void *) (v7m_psrs + i));
25005 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
25006 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
25007 for (i = 0;
25008 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25009 i++)
25010 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
25011 (void *) (barrier_opt_names + i));
25012 #ifdef OBJ_ELF
25013 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25014 {
25015 struct reloc_entry * entry = reloc_names + i;
25016
25017 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25018 /* This makes encode_branch() use the EABI versions of this relocation. */
25019 entry->reloc = BFD_RELOC_UNUSED;
25020
25021 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25022 }
25023 #endif
25024
25025 set_constant_flonums ();
25026
25027 /* Set the cpu variant based on the command-line options. We prefer
25028 -mcpu= over -march= if both are set (as for GCC); and we prefer
25029 -mfpu= over any other way of setting the floating point unit.
25030 Use of legacy options with new options are faulted. */
25031 if (legacy_cpu)
25032 {
25033 if (mcpu_cpu_opt || march_cpu_opt)
25034 as_bad (_("use of old and new-style options to set CPU type"));
25035
25036 mcpu_cpu_opt = legacy_cpu;
25037 }
25038 else if (!mcpu_cpu_opt)
25039 {
25040 mcpu_cpu_opt = march_cpu_opt;
25041 dyn_mcpu_ext_opt = dyn_march_ext_opt;
25042 /* Avoid double free in arm_md_end. */
25043 dyn_march_ext_opt = NULL;
25044 }
25045
25046 if (legacy_fpu)
25047 {
25048 if (mfpu_opt)
25049 as_bad (_("use of old and new-style options to set FPU type"));
25050
25051 mfpu_opt = legacy_fpu;
25052 }
25053 else if (!mfpu_opt)
25054 {
25055 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25056 || defined (TE_NetBSD) || defined (TE_VXWORKS))
25057 /* Some environments specify a default FPU. If they don't, infer it
25058 from the processor. */
25059 if (mcpu_fpu_opt)
25060 mfpu_opt = mcpu_fpu_opt;
25061 else
25062 mfpu_opt = march_fpu_opt;
25063 #else
25064 mfpu_opt = &fpu_default;
25065 #endif
25066 }
25067
25068 if (!mfpu_opt)
25069 {
25070 if (mcpu_cpu_opt != NULL)
25071 mfpu_opt = &fpu_default;
25072 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
25073 mfpu_opt = &fpu_arch_vfp_v2;
25074 else
25075 mfpu_opt = &fpu_arch_fpa;
25076 }
25077
25078 #ifdef CPU_DEFAULT
25079 if (!mcpu_cpu_opt)
25080 {
25081 mcpu_cpu_opt = &cpu_default;
25082 selected_cpu = cpu_default;
25083 }
25084 else if (dyn_mcpu_ext_opt)
25085 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25086 else
25087 selected_cpu = *mcpu_cpu_opt;
25088 #else
25089 if (mcpu_cpu_opt && dyn_mcpu_ext_opt)
25090 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25091 else if (mcpu_cpu_opt)
25092 selected_cpu = *mcpu_cpu_opt;
25093 else
25094 mcpu_cpu_opt = &arm_arch_any;
25095 #endif
25096
25097 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25098 if (dyn_mcpu_ext_opt)
25099 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
25100
25101 autoselect_thumb_from_cpu_variant ();
25102
25103 arm_arch_used = thumb_arch_used = arm_arch_none;
25104
25105 #if defined OBJ_COFF || defined OBJ_ELF
25106 {
25107 unsigned int flags = 0;
25108
25109 #if defined OBJ_ELF
25110 flags = meabi_flags;
25111
25112 switch (meabi_flags)
25113 {
25114 case EF_ARM_EABI_UNKNOWN:
25115 #endif
25116 /* Set the flags in the private structure. */
25117 if (uses_apcs_26) flags |= F_APCS26;
25118 if (support_interwork) flags |= F_INTERWORK;
25119 if (uses_apcs_float) flags |= F_APCS_FLOAT;
25120 if (pic_code) flags |= F_PIC;
25121 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
25122 flags |= F_SOFT_FLOAT;
25123
25124 switch (mfloat_abi_opt)
25125 {
25126 case ARM_FLOAT_ABI_SOFT:
25127 case ARM_FLOAT_ABI_SOFTFP:
25128 flags |= F_SOFT_FLOAT;
25129 break;
25130
25131 case ARM_FLOAT_ABI_HARD:
25132 if (flags & F_SOFT_FLOAT)
25133 as_bad (_("hard-float conflicts with specified fpu"));
25134 break;
25135 }
25136
25137 /* Using pure-endian doubles (even if soft-float). */
25138 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
25139 flags |= F_VFP_FLOAT;
25140
25141 #if defined OBJ_ELF
25142 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
25143 flags |= EF_ARM_MAVERICK_FLOAT;
25144 break;
25145
25146 case EF_ARM_EABI_VER4:
25147 case EF_ARM_EABI_VER5:
25148 /* No additional flags to set. */
25149 break;
25150
25151 default:
25152 abort ();
25153 }
25154 #endif
25155 bfd_set_private_flags (stdoutput, flags);
25156
25157 /* We have run out flags in the COFF header to encode the
25158 status of ATPCS support, so instead we create a dummy,
25159 empty, debug section called .arm.atpcs. */
25160 if (atpcs)
25161 {
25162 asection * sec;
25163
25164 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25165
25166 if (sec != NULL)
25167 {
25168 bfd_set_section_flags
25169 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25170 bfd_set_section_size (stdoutput, sec, 0);
25171 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25172 }
25173 }
25174 }
25175 #endif
25176
25177 /* Record the CPU type as well. */
25178 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25179 mach = bfd_mach_arm_iWMMXt2;
25180 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
25181 mach = bfd_mach_arm_iWMMXt;
25182 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
25183 mach = bfd_mach_arm_XScale;
25184 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
25185 mach = bfd_mach_arm_ep9312;
25186 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
25187 mach = bfd_mach_arm_5TE;
25188 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
25189 {
25190 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25191 mach = bfd_mach_arm_5T;
25192 else
25193 mach = bfd_mach_arm_5;
25194 }
25195 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
25196 {
25197 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25198 mach = bfd_mach_arm_4T;
25199 else
25200 mach = bfd_mach_arm_4;
25201 }
25202 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
25203 mach = bfd_mach_arm_3M;
25204 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25205 mach = bfd_mach_arm_3;
25206 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25207 mach = bfd_mach_arm_2a;
25208 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25209 mach = bfd_mach_arm_2;
25210 else
25211 mach = bfd_mach_arm_unknown;
25212
25213 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25214 }
25215
25216 /* Command line processing. */
25217
25218 /* md_parse_option
25219 Invocation line includes a switch not recognized by the base assembler.
25220 See if it's a processor-specific option.
25221
25222 This routine is somewhat complicated by the need for backwards
25223 compatibility (since older releases of gcc can't be changed).
25224 The new options try to make the interface as compatible as
25225 possible with GCC.
25226
25227 New options (supported) are:
25228
25229 -mcpu=<cpu name> Assemble for selected processor
25230 -march=<architecture name> Assemble for selected architecture
25231 -mfpu=<fpu architecture> Assemble for selected FPU.
25232 -EB/-mbig-endian Big-endian
25233 -EL/-mlittle-endian Little-endian
25234 -k Generate PIC code
25235 -mthumb Start in Thumb mode
25236 -mthumb-interwork Code supports ARM/Thumb interworking
25237
25238 -m[no-]warn-deprecated Warn about deprecated features
25239 -m[no-]warn-syms Warn when symbols match instructions
25240
25241 For now we will also provide support for:
25242
25243 -mapcs-32 32-bit Program counter
25244 -mapcs-26 26-bit Program counter
25245 -macps-float Floats passed in FP registers
25246 -mapcs-reentrant Reentrant code
25247 -matpcs
25248 (sometime these will probably be replaced with -mapcs=<list of options>
25249 and -matpcs=<list of options>)
25250
25251 The remaining options are only supported for back-wards compatibility.
25252 Cpu variants, the arm part is optional:
25253 -m[arm]1 Currently not supported.
25254 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25255 -m[arm]3 Arm 3 processor
25256 -m[arm]6[xx], Arm 6 processors
25257 -m[arm]7[xx][t][[d]m] Arm 7 processors
25258 -m[arm]8[10] Arm 8 processors
25259 -m[arm]9[20][tdmi] Arm 9 processors
25260 -mstrongarm[110[0]] StrongARM processors
25261 -mxscale XScale processors
25262 -m[arm]v[2345[t[e]]] Arm architectures
25263 -mall All (except the ARM1)
25264 FP variants:
25265 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25266 -mfpe-old (No float load/store multiples)
25267 -mvfpxd VFP Single precision
25268 -mvfp All VFP
25269 -mno-fpu Disable all floating point instructions
25270
25271 The following CPU names are recognized:
25272 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25273 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25274 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25275 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25276 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25277 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25278 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
25279
25280 */
25281
25282 const char * md_shortopts = "m:k";
25283
25284 #ifdef ARM_BI_ENDIAN
25285 #define OPTION_EB (OPTION_MD_BASE + 0)
25286 #define OPTION_EL (OPTION_MD_BASE + 1)
25287 #else
25288 #if TARGET_BYTES_BIG_ENDIAN
25289 #define OPTION_EB (OPTION_MD_BASE + 0)
25290 #else
25291 #define OPTION_EL (OPTION_MD_BASE + 1)
25292 #endif
25293 #endif
25294 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
25295
25296 struct option md_longopts[] =
25297 {
25298 #ifdef OPTION_EB
25299 {"EB", no_argument, NULL, OPTION_EB},
25300 #endif
25301 #ifdef OPTION_EL
25302 {"EL", no_argument, NULL, OPTION_EL},
25303 #endif
25304 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
25305 {NULL, no_argument, NULL, 0}
25306 };
25307
25308
25309 size_t md_longopts_size = sizeof (md_longopts);
25310
25311 struct arm_option_table
25312 {
25313 const char *option; /* Option name to match. */
25314 const char *help; /* Help information. */
25315 int *var; /* Variable to change. */
25316 int value; /* What to change it to. */
25317 const char *deprecated; /* If non-null, print this message. */
25318 };
25319
25320 struct arm_option_table arm_opts[] =
25321 {
25322 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25323 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25324 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25325 &support_interwork, 1, NULL},
25326 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25327 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25328 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25329 1, NULL},
25330 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25331 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25332 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25333 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25334 NULL},
25335
25336 /* These are recognized by the assembler, but have no affect on code. */
25337 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25338 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
25339
25340 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25341 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25342 &warn_on_deprecated, 0, NULL},
25343 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25344 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
25345 {NULL, NULL, NULL, 0, NULL}
25346 };
25347
25348 struct arm_legacy_option_table
25349 {
25350 const char *option; /* Option name to match. */
25351 const arm_feature_set **var; /* Variable to change. */
25352 const arm_feature_set value; /* What to change it to. */
25353 const char *deprecated; /* If non-null, print this message. */
25354 };
25355
25356 const struct arm_legacy_option_table arm_legacy_opts[] =
25357 {
25358 /* DON'T add any new processors to this list -- we want the whole list
25359 to go away... Add them to the processors table instead. */
25360 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25361 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25362 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25363 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25364 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25365 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25366 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25367 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25368 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25369 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25370 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25371 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25372 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25373 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25374 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25375 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25376 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25377 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25378 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25379 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25380 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25381 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25382 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25383 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25384 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25385 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25386 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25387 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25388 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25389 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25390 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25391 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25392 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25393 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25394 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25395 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25396 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25397 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25398 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25399 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25400 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25401 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25402 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25403 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25404 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25405 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25406 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25407 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25408 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25409 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25410 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25411 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25412 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25413 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25414 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25415 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25416 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25417 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25418 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25419 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25420 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25421 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25422 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25423 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25424 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25425 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25426 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25427 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25428 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25429 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
25430 N_("use -mcpu=strongarm110")},
25431 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
25432 N_("use -mcpu=strongarm1100")},
25433 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
25434 N_("use -mcpu=strongarm1110")},
25435 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25436 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25437 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
25438
25439 /* Architecture variants -- don't add any more to this list either. */
25440 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25441 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25442 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25443 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25444 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25445 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25446 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25447 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25448 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25449 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25450 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25451 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25452 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25453 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25454 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25455 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25456 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25457 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25458
25459 /* Floating point variants -- don't add any more to this list either. */
25460 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25461 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25462 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25463 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
25464 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
25465
25466 {NULL, NULL, ARM_ARCH_NONE, NULL}
25467 };
25468
25469 struct arm_cpu_option_table
25470 {
25471 const char *name;
25472 size_t name_len;
25473 const arm_feature_set value;
25474 const arm_feature_set ext;
25475 /* For some CPUs we assume an FPU unless the user explicitly sets
25476 -mfpu=... */
25477 const arm_feature_set default_fpu;
25478 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25479 case. */
25480 const char *canonical_name;
25481 };
25482
25483 /* This list should, at a minimum, contain all the cpu names
25484 recognized by GCC. */
25485 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
25486 static const struct arm_cpu_option_table arm_cpus[] =
25487 {
25488 ARM_CPU_OPT ("all", NULL, ARM_ANY,
25489 ARM_ARCH_NONE,
25490 FPU_ARCH_FPA),
25491 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
25492 ARM_ARCH_NONE,
25493 FPU_ARCH_FPA),
25494 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
25495 ARM_ARCH_NONE,
25496 FPU_ARCH_FPA),
25497 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
25498 ARM_ARCH_NONE,
25499 FPU_ARCH_FPA),
25500 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
25501 ARM_ARCH_NONE,
25502 FPU_ARCH_FPA),
25503 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
25504 ARM_ARCH_NONE,
25505 FPU_ARCH_FPA),
25506 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
25507 ARM_ARCH_NONE,
25508 FPU_ARCH_FPA),
25509 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
25510 ARM_ARCH_NONE,
25511 FPU_ARCH_FPA),
25512 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
25513 ARM_ARCH_NONE,
25514 FPU_ARCH_FPA),
25515 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
25516 ARM_ARCH_NONE,
25517 FPU_ARCH_FPA),
25518 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
25519 ARM_ARCH_NONE,
25520 FPU_ARCH_FPA),
25521 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
25522 ARM_ARCH_NONE,
25523 FPU_ARCH_FPA),
25524 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
25525 ARM_ARCH_NONE,
25526 FPU_ARCH_FPA),
25527 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
25528 ARM_ARCH_NONE,
25529 FPU_ARCH_FPA),
25530 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
25531 ARM_ARCH_NONE,
25532 FPU_ARCH_FPA),
25533 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
25534 ARM_ARCH_NONE,
25535 FPU_ARCH_FPA),
25536 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
25537 ARM_ARCH_NONE,
25538 FPU_ARCH_FPA),
25539 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
25540 ARM_ARCH_NONE,
25541 FPU_ARCH_FPA),
25542 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
25543 ARM_ARCH_NONE,
25544 FPU_ARCH_FPA),
25545 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
25546 ARM_ARCH_NONE,
25547 FPU_ARCH_FPA),
25548 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
25549 ARM_ARCH_NONE,
25550 FPU_ARCH_FPA),
25551 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
25552 ARM_ARCH_NONE,
25553 FPU_ARCH_FPA),
25554 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
25555 ARM_ARCH_NONE,
25556 FPU_ARCH_FPA),
25557 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
25558 ARM_ARCH_NONE,
25559 FPU_ARCH_FPA),
25560 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
25561 ARM_ARCH_NONE,
25562 FPU_ARCH_FPA),
25563 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
25564 ARM_ARCH_NONE,
25565 FPU_ARCH_FPA),
25566 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
25567 ARM_ARCH_NONE,
25568 FPU_ARCH_FPA),
25569 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
25570 ARM_ARCH_NONE,
25571 FPU_ARCH_FPA),
25572 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
25573 ARM_ARCH_NONE,
25574 FPU_ARCH_FPA),
25575 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
25576 ARM_ARCH_NONE,
25577 FPU_ARCH_FPA),
25578 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
25579 ARM_ARCH_NONE,
25580 FPU_ARCH_FPA),
25581 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
25582 ARM_ARCH_NONE,
25583 FPU_ARCH_FPA),
25584 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
25585 ARM_ARCH_NONE,
25586 FPU_ARCH_FPA),
25587 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
25588 ARM_ARCH_NONE,
25589 FPU_ARCH_FPA),
25590 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
25591 ARM_ARCH_NONE,
25592 FPU_ARCH_FPA),
25593 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
25594 ARM_ARCH_NONE,
25595 FPU_ARCH_FPA),
25596 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
25597 ARM_ARCH_NONE,
25598 FPU_ARCH_FPA),
25599 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
25600 ARM_ARCH_NONE,
25601 FPU_ARCH_FPA),
25602 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
25603 ARM_ARCH_NONE,
25604 FPU_ARCH_FPA),
25605 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
25606 ARM_ARCH_NONE,
25607 FPU_ARCH_FPA),
25608 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
25609 ARM_ARCH_NONE,
25610 FPU_ARCH_FPA),
25611 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
25612 ARM_ARCH_NONE,
25613 FPU_ARCH_FPA),
25614 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
25615 ARM_ARCH_NONE,
25616 FPU_ARCH_FPA),
25617 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
25618 ARM_ARCH_NONE,
25619 FPU_ARCH_FPA),
25620 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
25621 ARM_ARCH_NONE,
25622 FPU_ARCH_FPA),
25623 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
25624 ARM_ARCH_NONE,
25625 FPU_ARCH_FPA),
25626
25627 /* For V5 or later processors we default to using VFP; but the user
25628 should really set the FPU type explicitly. */
25629 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
25630 ARM_ARCH_NONE,
25631 FPU_ARCH_VFP_V2),
25632 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
25633 ARM_ARCH_NONE,
25634 FPU_ARCH_VFP_V2),
25635 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25636 ARM_ARCH_NONE,
25637 FPU_ARCH_VFP_V2),
25638 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25639 ARM_ARCH_NONE,
25640 FPU_ARCH_VFP_V2),
25641 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
25642 ARM_ARCH_NONE,
25643 FPU_ARCH_VFP_V2),
25644 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
25645 ARM_ARCH_NONE,
25646 FPU_ARCH_VFP_V2),
25647 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
25648 ARM_ARCH_NONE,
25649 FPU_ARCH_VFP_V2),
25650 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
25651 ARM_ARCH_NONE,
25652 FPU_ARCH_VFP_V2),
25653 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
25654 ARM_ARCH_NONE,
25655 FPU_ARCH_VFP_V2),
25656 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
25657 ARM_ARCH_NONE,
25658 FPU_ARCH_VFP_V2),
25659 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
25660 ARM_ARCH_NONE,
25661 FPU_ARCH_VFP_V2),
25662 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
25663 ARM_ARCH_NONE,
25664 FPU_ARCH_VFP_V2),
25665 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
25666 ARM_ARCH_NONE,
25667 FPU_ARCH_VFP_V1),
25668 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
25669 ARM_ARCH_NONE,
25670 FPU_ARCH_VFP_V1),
25671 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
25672 ARM_ARCH_NONE,
25673 FPU_ARCH_VFP_V2),
25674 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
25675 ARM_ARCH_NONE,
25676 FPU_ARCH_VFP_V2),
25677 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
25678 ARM_ARCH_NONE,
25679 FPU_ARCH_VFP_V1),
25680 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
25681 ARM_ARCH_NONE,
25682 FPU_ARCH_VFP_V2),
25683 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
25684 ARM_ARCH_NONE,
25685 FPU_ARCH_VFP_V2),
25686 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
25687 ARM_ARCH_NONE,
25688 FPU_ARCH_VFP_V2),
25689 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
25690 ARM_ARCH_NONE,
25691 FPU_ARCH_VFP_V2),
25692 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
25693 ARM_ARCH_NONE,
25694 FPU_ARCH_VFP_V2),
25695 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
25696 ARM_ARCH_NONE,
25697 FPU_ARCH_VFP_V2),
25698 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
25699 ARM_ARCH_NONE,
25700 FPU_ARCH_VFP_V2),
25701 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
25702 ARM_ARCH_NONE,
25703 FPU_ARCH_VFP_V2),
25704 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
25705 ARM_ARCH_NONE,
25706 FPU_ARCH_VFP_V2),
25707 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
25708 ARM_ARCH_NONE,
25709 FPU_NONE),
25710 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
25711 ARM_ARCH_NONE,
25712 FPU_NONE),
25713 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
25714 ARM_ARCH_NONE,
25715 FPU_ARCH_VFP_V2),
25716 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
25717 ARM_ARCH_NONE,
25718 FPU_ARCH_VFP_V2),
25719 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
25720 ARM_ARCH_NONE,
25721 FPU_ARCH_VFP_V2),
25722 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
25723 ARM_ARCH_NONE,
25724 FPU_NONE),
25725 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
25726 ARM_ARCH_NONE,
25727 FPU_NONE),
25728 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
25729 ARM_ARCH_NONE,
25730 FPU_ARCH_VFP_V2),
25731 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
25732 ARM_ARCH_NONE,
25733 FPU_NONE),
25734 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
25735 ARM_ARCH_NONE,
25736 FPU_ARCH_VFP_V2),
25737 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
25738 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25739 FPU_NONE),
25740 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
25741 ARM_ARCH_NONE,
25742 FPU_ARCH_NEON_VFP_V4),
25743 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
25744 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
25745 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
25746 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
25747 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25748 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
25749 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
25750 ARM_ARCH_NONE,
25751 FPU_ARCH_NEON_VFP_V4),
25752 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
25753 ARM_ARCH_NONE,
25754 FPU_ARCH_NEON_VFP_V4),
25755 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
25756 ARM_ARCH_NONE,
25757 FPU_ARCH_NEON_VFP_V4),
25758 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
25759 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25760 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25761 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
25762 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25763 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25764 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
25765 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25766 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25767 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
25768 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25769 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25770 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
25771 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25772 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25773 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
25774 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25775 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25776 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
25777 ARM_ARCH_NONE,
25778 FPU_NONE),
25779 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
25780 ARM_ARCH_NONE,
25781 FPU_ARCH_VFP_V3D16),
25782 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
25783 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25784 FPU_NONE),
25785 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
25786 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25787 FPU_ARCH_VFP_V3D16),
25788 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
25789 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25790 FPU_ARCH_VFP_V3D16),
25791 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
25792 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
25793 FPU_NONE),
25794 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
25795 ARM_ARCH_NONE,
25796 FPU_NONE),
25797 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
25798 ARM_ARCH_NONE,
25799 FPU_NONE),
25800 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
25801 ARM_ARCH_NONE,
25802 FPU_NONE),
25803 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
25804 ARM_ARCH_NONE,
25805 FPU_NONE),
25806 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
25807 ARM_ARCH_NONE,
25808 FPU_NONE),
25809 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
25810 ARM_ARCH_NONE,
25811 FPU_NONE),
25812 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
25813 ARM_ARCH_NONE,
25814 FPU_NONE),
25815 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
25816 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25817 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25818
25819 /* ??? XSCALE is really an architecture. */
25820 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
25821 ARM_ARCH_NONE,
25822 FPU_ARCH_VFP_V2),
25823
25824 /* ??? iwmmxt is not a processor. */
25825 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
25826 ARM_ARCH_NONE,
25827 FPU_ARCH_VFP_V2),
25828 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
25829 ARM_ARCH_NONE,
25830 FPU_ARCH_VFP_V2),
25831 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
25832 ARM_ARCH_NONE,
25833 FPU_ARCH_VFP_V2),
25834
25835 /* Maverick */
25836 ARM_CPU_OPT ("ep9312", "ARM920T",
25837 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
25838 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
25839
25840 /* Marvell processors. */
25841 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
25842 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25843 FPU_ARCH_VFP_V3D16),
25844 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
25845 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25846 FPU_ARCH_NEON_VFP_V4),
25847
25848 /* APM X-Gene family. */
25849 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
25850 ARM_ARCH_NONE,
25851 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25852 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
25853 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25854 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25855
25856 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
25857 };
25858 #undef ARM_CPU_OPT
25859
25860 struct arm_arch_option_table
25861 {
25862 const char *name;
25863 size_t name_len;
25864 const arm_feature_set value;
25865 const arm_feature_set default_fpu;
25866 };
25867
25868 /* This list should, at a minimum, contain all the architecture names
25869 recognized by GCC. */
25870 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
25871 static const struct arm_arch_option_table arm_archs[] =
25872 {
25873 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
25874 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
25875 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
25876 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
25877 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
25878 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
25879 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
25880 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
25881 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
25882 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
25883 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
25884 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
25885 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
25886 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
25887 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
25888 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
25889 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
25890 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
25891 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
25892 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
25893 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
25894 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
25895 kept to preserve existing behaviour. */
25896 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
25897 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
25898 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
25899 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
25900 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
25901 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
25902 kept to preserve existing behaviour. */
25903 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
25904 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
25905 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
25906 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
25907 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
25908 /* The official spelling of the ARMv7 profile variants is the dashed form.
25909 Accept the non-dashed form for compatibility with old toolchains. */
25910 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
25911 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
25912 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
25913 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
25914 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
25915 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
25916 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
25917 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
25918 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
25919 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
25920 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
25921 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
25922 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
25923 ARM_ARCH_OPT ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP),
25924 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
25925 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
25926 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
25927 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
25928 };
25929 #undef ARM_ARCH_OPT
25930
25931 /* ISA extensions in the co-processor and main instruction set space. */
25932 struct arm_option_extension_value_table
25933 {
25934 const char *name;
25935 size_t name_len;
25936 const arm_feature_set merge_value;
25937 const arm_feature_set clear_value;
25938 /* List of architectures for which an extension is available. ARM_ARCH_NONE
25939 indicates that an extension is available for all architectures while
25940 ARM_ANY marks an empty entry. */
25941 const arm_feature_set allowed_archs[2];
25942 };
25943
25944 /* The following table must be in alphabetical order with a NULL last entry.
25945 */
25946 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
25947 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
25948 static const struct arm_option_extension_value_table arm_extensions[] =
25949 {
25950 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25951 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25952 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25953 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
25954 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25955 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
25956 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
25957 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
25958 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
25959 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25960 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25961 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25962 ARM_ARCH_V8_2A),
25963 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
25964 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
25965 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
25966 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
25967 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
25968 Thumb divide instruction. Due to this having the same name as the
25969 previous entry, this will be ignored when doing command-line parsing and
25970 only considered by build attribute selection code. */
25971 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
25972 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
25973 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
25974 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
25975 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
25976 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
25977 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
25978 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
25979 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
25980 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
25981 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
25982 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
25983 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
25984 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
25985 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
25986 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
25987 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
25988 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
25989 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25990 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
25991 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
25992 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25993 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
25994 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
25995 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25996 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
25997 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
25998 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
25999 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26000 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26001 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26002 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26003 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26004 | ARM_EXT_DIV),
26005 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26006 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26007 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
26008 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26009 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
26010 };
26011 #undef ARM_EXT_OPT
26012
26013 /* ISA floating-point and Advanced SIMD extensions. */
26014 struct arm_option_fpu_value_table
26015 {
26016 const char *name;
26017 const arm_feature_set value;
26018 };
26019
26020 /* This list should, at a minimum, contain all the fpu names
26021 recognized by GCC. */
26022 static const struct arm_option_fpu_value_table arm_fpus[] =
26023 {
26024 {"softfpa", FPU_NONE},
26025 {"fpe", FPU_ARCH_FPE},
26026 {"fpe2", FPU_ARCH_FPE},
26027 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26028 {"fpa", FPU_ARCH_FPA},
26029 {"fpa10", FPU_ARCH_FPA},
26030 {"fpa11", FPU_ARCH_FPA},
26031 {"arm7500fe", FPU_ARCH_FPA},
26032 {"softvfp", FPU_ARCH_VFP},
26033 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26034 {"vfp", FPU_ARCH_VFP_V2},
26035 {"vfp9", FPU_ARCH_VFP_V2},
26036 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
26037 {"vfp10", FPU_ARCH_VFP_V2},
26038 {"vfp10-r0", FPU_ARCH_VFP_V1},
26039 {"vfpxd", FPU_ARCH_VFP_V1xD},
26040 {"vfpv2", FPU_ARCH_VFP_V2},
26041 {"vfpv3", FPU_ARCH_VFP_V3},
26042 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
26043 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
26044 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26045 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26046 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
26047 {"arm1020t", FPU_ARCH_VFP_V1},
26048 {"arm1020e", FPU_ARCH_VFP_V2},
26049 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
26050 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26051 {"maverick", FPU_ARCH_MAVERICK},
26052 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26053 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26054 {"neon-fp16", FPU_ARCH_NEON_FP16},
26055 {"vfpv4", FPU_ARCH_VFP_V4},
26056 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
26057 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
26058 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26059 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
26060 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
26061 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26062 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26063 {"crypto-neon-fp-armv8",
26064 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
26065 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
26066 {"crypto-neon-fp-armv8.1",
26067 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
26068 {NULL, ARM_ARCH_NONE}
26069 };
26070
26071 struct arm_option_value_table
26072 {
26073 const char *name;
26074 long value;
26075 };
26076
26077 static const struct arm_option_value_table arm_float_abis[] =
26078 {
26079 {"hard", ARM_FLOAT_ABI_HARD},
26080 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26081 {"soft", ARM_FLOAT_ABI_SOFT},
26082 {NULL, 0}
26083 };
26084
26085 #ifdef OBJ_ELF
26086 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
26087 static const struct arm_option_value_table arm_eabis[] =
26088 {
26089 {"gnu", EF_ARM_EABI_UNKNOWN},
26090 {"4", EF_ARM_EABI_VER4},
26091 {"5", EF_ARM_EABI_VER5},
26092 {NULL, 0}
26093 };
26094 #endif
26095
26096 struct arm_long_option_table
26097 {
26098 const char * option; /* Substring to match. */
26099 const char * help; /* Help information. */
26100 int (* func) (const char * subopt); /* Function to decode sub-option. */
26101 const char * deprecated; /* If non-null, print this message. */
26102 };
26103
26104 static bfd_boolean
26105 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
26106 arm_feature_set **ext_set_p)
26107 {
26108 /* We insist on extensions being specified in alphabetical order, and with
26109 extensions being added before being removed. We achieve this by having
26110 the global ARM_EXTENSIONS table in alphabetical order, and using the
26111 ADDING_VALUE variable to indicate whether we are adding an extension (1)
26112 or removing it (0) and only allowing it to change in the order
26113 -1 -> 1 -> 0. */
26114 const struct arm_option_extension_value_table * opt = NULL;
26115 const arm_feature_set arm_any = ARM_ANY;
26116 int adding_value = -1;
26117
26118 if (!*ext_set_p)
26119 {
26120 *ext_set_p = XNEW (arm_feature_set);
26121 **ext_set_p = arm_arch_none;
26122 }
26123
26124 while (str != NULL && *str != 0)
26125 {
26126 const char *ext;
26127 size_t len;
26128
26129 if (*str != '+')
26130 {
26131 as_bad (_("invalid architectural extension"));
26132 return FALSE;
26133 }
26134
26135 str++;
26136 ext = strchr (str, '+');
26137
26138 if (ext != NULL)
26139 len = ext - str;
26140 else
26141 len = strlen (str);
26142
26143 if (len >= 2 && strncmp (str, "no", 2) == 0)
26144 {
26145 if (adding_value != 0)
26146 {
26147 adding_value = 0;
26148 opt = arm_extensions;
26149 }
26150
26151 len -= 2;
26152 str += 2;
26153 }
26154 else if (len > 0)
26155 {
26156 if (adding_value == -1)
26157 {
26158 adding_value = 1;
26159 opt = arm_extensions;
26160 }
26161 else if (adding_value != 1)
26162 {
26163 as_bad (_("must specify extensions to add before specifying "
26164 "those to remove"));
26165 return FALSE;
26166 }
26167 }
26168
26169 if (len == 0)
26170 {
26171 as_bad (_("missing architectural extension"));
26172 return FALSE;
26173 }
26174
26175 gas_assert (adding_value != -1);
26176 gas_assert (opt != NULL);
26177
26178 /* Scan over the options table trying to find an exact match. */
26179 for (; opt->name != NULL; opt++)
26180 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26181 {
26182 int i, nb_allowed_archs =
26183 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26184 /* Check we can apply the extension to this architecture. */
26185 for (i = 0; i < nb_allowed_archs; i++)
26186 {
26187 /* Empty entry. */
26188 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26189 continue;
26190 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
26191 break;
26192 }
26193 if (i == nb_allowed_archs)
26194 {
26195 as_bad (_("extension does not apply to the base architecture"));
26196 return FALSE;
26197 }
26198
26199 /* Add or remove the extension. */
26200 if (adding_value)
26201 ARM_MERGE_FEATURE_SETS (**ext_set_p, **ext_set_p,
26202 opt->merge_value);
26203 else
26204 ARM_CLEAR_FEATURE (**ext_set_p, **ext_set_p, opt->clear_value);
26205
26206 /* Allowing Thumb division instructions for ARMv7 in autodetection
26207 rely on this break so that duplicate extensions (extensions
26208 with the same name as a previous extension in the list) are not
26209 considered for command-line parsing. */
26210 break;
26211 }
26212
26213 if (opt->name == NULL)
26214 {
26215 /* Did we fail to find an extension because it wasn't specified in
26216 alphabetical order, or because it does not exist? */
26217
26218 for (opt = arm_extensions; opt->name != NULL; opt++)
26219 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26220 break;
26221
26222 if (opt->name == NULL)
26223 as_bad (_("unknown architectural extension `%s'"), str);
26224 else
26225 as_bad (_("architectural extensions must be specified in "
26226 "alphabetical order"));
26227
26228 return FALSE;
26229 }
26230 else
26231 {
26232 /* We should skip the extension we've just matched the next time
26233 round. */
26234 opt++;
26235 }
26236
26237 str = ext;
26238 };
26239
26240 return TRUE;
26241 }
26242
26243 static bfd_boolean
26244 arm_parse_cpu (const char *str)
26245 {
26246 const struct arm_cpu_option_table *opt;
26247 const char *ext = strchr (str, '+');
26248 size_t len;
26249
26250 if (ext != NULL)
26251 len = ext - str;
26252 else
26253 len = strlen (str);
26254
26255 if (len == 0)
26256 {
26257 as_bad (_("missing cpu name `%s'"), str);
26258 return FALSE;
26259 }
26260
26261 for (opt = arm_cpus; opt->name != NULL; opt++)
26262 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26263 {
26264 mcpu_cpu_opt = &opt->value;
26265 if (!dyn_mcpu_ext_opt)
26266 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
26267 *dyn_mcpu_ext_opt = opt->ext;
26268 mcpu_fpu_opt = &opt->default_fpu;
26269 if (opt->canonical_name)
26270 {
26271 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
26272 strcpy (selected_cpu_name, opt->canonical_name);
26273 }
26274 else
26275 {
26276 size_t i;
26277
26278 if (len >= sizeof selected_cpu_name)
26279 len = (sizeof selected_cpu_name) - 1;
26280
26281 for (i = 0; i < len; i++)
26282 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26283 selected_cpu_name[i] = 0;
26284 }
26285
26286 if (ext != NULL)
26287 return arm_parse_extension (ext, mcpu_cpu_opt, &dyn_mcpu_ext_opt);
26288
26289 return TRUE;
26290 }
26291
26292 as_bad (_("unknown cpu `%s'"), str);
26293 return FALSE;
26294 }
26295
26296 static bfd_boolean
26297 arm_parse_arch (const char *str)
26298 {
26299 const struct arm_arch_option_table *opt;
26300 const char *ext = strchr (str, '+');
26301 size_t len;
26302
26303 if (ext != NULL)
26304 len = ext - str;
26305 else
26306 len = strlen (str);
26307
26308 if (len == 0)
26309 {
26310 as_bad (_("missing architecture name `%s'"), str);
26311 return FALSE;
26312 }
26313
26314 for (opt = arm_archs; opt->name != NULL; opt++)
26315 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26316 {
26317 march_cpu_opt = &opt->value;
26318 march_fpu_opt = &opt->default_fpu;
26319 strcpy (selected_cpu_name, opt->name);
26320
26321 if (ext != NULL)
26322 return arm_parse_extension (ext, march_cpu_opt, &dyn_march_ext_opt);
26323
26324 return TRUE;
26325 }
26326
26327 as_bad (_("unknown architecture `%s'\n"), str);
26328 return FALSE;
26329 }
26330
26331 static bfd_boolean
26332 arm_parse_fpu (const char * str)
26333 {
26334 const struct arm_option_fpu_value_table * opt;
26335
26336 for (opt = arm_fpus; opt->name != NULL; opt++)
26337 if (streq (opt->name, str))
26338 {
26339 mfpu_opt = &opt->value;
26340 return TRUE;
26341 }
26342
26343 as_bad (_("unknown floating point format `%s'\n"), str);
26344 return FALSE;
26345 }
26346
26347 static bfd_boolean
26348 arm_parse_float_abi (const char * str)
26349 {
26350 const struct arm_option_value_table * opt;
26351
26352 for (opt = arm_float_abis; opt->name != NULL; opt++)
26353 if (streq (opt->name, str))
26354 {
26355 mfloat_abi_opt = opt->value;
26356 return TRUE;
26357 }
26358
26359 as_bad (_("unknown floating point abi `%s'\n"), str);
26360 return FALSE;
26361 }
26362
26363 #ifdef OBJ_ELF
26364 static bfd_boolean
26365 arm_parse_eabi (const char * str)
26366 {
26367 const struct arm_option_value_table *opt;
26368
26369 for (opt = arm_eabis; opt->name != NULL; opt++)
26370 if (streq (opt->name, str))
26371 {
26372 meabi_flags = opt->value;
26373 return TRUE;
26374 }
26375 as_bad (_("unknown EABI `%s'\n"), str);
26376 return FALSE;
26377 }
26378 #endif
26379
26380 static bfd_boolean
26381 arm_parse_it_mode (const char * str)
26382 {
26383 bfd_boolean ret = TRUE;
26384
26385 if (streq ("arm", str))
26386 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
26387 else if (streq ("thumb", str))
26388 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
26389 else if (streq ("always", str))
26390 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
26391 else if (streq ("never", str))
26392 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
26393 else
26394 {
26395 as_bad (_("unknown implicit IT mode `%s', should be "\
26396 "arm, thumb, always, or never."), str);
26397 ret = FALSE;
26398 }
26399
26400 return ret;
26401 }
26402
26403 static bfd_boolean
26404 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
26405 {
26406 codecomposer_syntax = TRUE;
26407 arm_comment_chars[0] = ';';
26408 arm_line_separator_chars[0] = 0;
26409 return TRUE;
26410 }
26411
26412 struct arm_long_option_table arm_long_opts[] =
26413 {
26414 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
26415 arm_parse_cpu, NULL},
26416 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
26417 arm_parse_arch, NULL},
26418 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
26419 arm_parse_fpu, NULL},
26420 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
26421 arm_parse_float_abi, NULL},
26422 #ifdef OBJ_ELF
26423 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
26424 arm_parse_eabi, NULL},
26425 #endif
26426 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
26427 arm_parse_it_mode, NULL},
26428 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
26429 arm_ccs_mode, NULL},
26430 {NULL, NULL, 0, NULL}
26431 };
26432
26433 int
26434 md_parse_option (int c, const char * arg)
26435 {
26436 struct arm_option_table *opt;
26437 const struct arm_legacy_option_table *fopt;
26438 struct arm_long_option_table *lopt;
26439
26440 switch (c)
26441 {
26442 #ifdef OPTION_EB
26443 case OPTION_EB:
26444 target_big_endian = 1;
26445 break;
26446 #endif
26447
26448 #ifdef OPTION_EL
26449 case OPTION_EL:
26450 target_big_endian = 0;
26451 break;
26452 #endif
26453
26454 case OPTION_FIX_V4BX:
26455 fix_v4bx = TRUE;
26456 break;
26457
26458 case 'a':
26459 /* Listing option. Just ignore these, we don't support additional
26460 ones. */
26461 return 0;
26462
26463 default:
26464 for (opt = arm_opts; opt->option != NULL; opt++)
26465 {
26466 if (c == opt->option[0]
26467 && ((arg == NULL && opt->option[1] == 0)
26468 || streq (arg, opt->option + 1)))
26469 {
26470 /* If the option is deprecated, tell the user. */
26471 if (warn_on_deprecated && opt->deprecated != NULL)
26472 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26473 arg ? arg : "", _(opt->deprecated));
26474
26475 if (opt->var != NULL)
26476 *opt->var = opt->value;
26477
26478 return 1;
26479 }
26480 }
26481
26482 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
26483 {
26484 if (c == fopt->option[0]
26485 && ((arg == NULL && fopt->option[1] == 0)
26486 || streq (arg, fopt->option + 1)))
26487 {
26488 /* If the option is deprecated, tell the user. */
26489 if (warn_on_deprecated && fopt->deprecated != NULL)
26490 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26491 arg ? arg : "", _(fopt->deprecated));
26492
26493 if (fopt->var != NULL)
26494 *fopt->var = &fopt->value;
26495
26496 return 1;
26497 }
26498 }
26499
26500 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26501 {
26502 /* These options are expected to have an argument. */
26503 if (c == lopt->option[0]
26504 && arg != NULL
26505 && strncmp (arg, lopt->option + 1,
26506 strlen (lopt->option + 1)) == 0)
26507 {
26508 /* If the option is deprecated, tell the user. */
26509 if (warn_on_deprecated && lopt->deprecated != NULL)
26510 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
26511 _(lopt->deprecated));
26512
26513 /* Call the sup-option parser. */
26514 return lopt->func (arg + strlen (lopt->option) - 1);
26515 }
26516 }
26517
26518 return 0;
26519 }
26520
26521 return 1;
26522 }
26523
26524 void
26525 md_show_usage (FILE * fp)
26526 {
26527 struct arm_option_table *opt;
26528 struct arm_long_option_table *lopt;
26529
26530 fprintf (fp, _(" ARM-specific assembler options:\n"));
26531
26532 for (opt = arm_opts; opt->option != NULL; opt++)
26533 if (opt->help != NULL)
26534 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
26535
26536 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26537 if (lopt->help != NULL)
26538 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
26539
26540 #ifdef OPTION_EB
26541 fprintf (fp, _("\
26542 -EB assemble code for a big-endian cpu\n"));
26543 #endif
26544
26545 #ifdef OPTION_EL
26546 fprintf (fp, _("\
26547 -EL assemble code for a little-endian cpu\n"));
26548 #endif
26549
26550 fprintf (fp, _("\
26551 --fix-v4bx Allow BX in ARMv4 code\n"));
26552 }
26553
26554
26555 #ifdef OBJ_ELF
26556 typedef struct
26557 {
26558 int val;
26559 arm_feature_set flags;
26560 } cpu_arch_ver_table;
26561
26562 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
26563 chronologically for architectures, with an exception for ARMv6-M and
26564 ARMv6S-M due to legacy reasons. No new architecture should have a
26565 special case. This allows for build attribute selection results to be
26566 stable when new architectures are added. */
26567 static const cpu_arch_ver_table cpu_arch_ver[] =
26568 {
26569 {0, ARM_ARCH_V1},
26570 {0, ARM_ARCH_V2},
26571 {0, ARM_ARCH_V2S},
26572 {0, ARM_ARCH_V3},
26573 {0, ARM_ARCH_V3M},
26574 {1, ARM_ARCH_V4xM},
26575 {1, ARM_ARCH_V4},
26576 {2, ARM_ARCH_V4TxM},
26577 {2, ARM_ARCH_V4T},
26578 {3, ARM_ARCH_V5xM},
26579 {3, ARM_ARCH_V5},
26580 {3, ARM_ARCH_V5TxM},
26581 {3, ARM_ARCH_V5T},
26582 {4, ARM_ARCH_V5TExP},
26583 {4, ARM_ARCH_V5TE},
26584 {5, ARM_ARCH_V5TEJ},
26585 {6, ARM_ARCH_V6},
26586 {7, ARM_ARCH_V6Z},
26587 {7, ARM_ARCH_V6KZ},
26588 {9, ARM_ARCH_V6K},
26589 {8, ARM_ARCH_V6T2},
26590 {8, ARM_ARCH_V6KT2},
26591 {8, ARM_ARCH_V6ZT2},
26592 {8, ARM_ARCH_V6KZT2},
26593
26594 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
26595 always selected build attributes to match those of ARMv6-M
26596 (resp. ARMv6S-M). However, due to these architectures being a strict
26597 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
26598 would be selected when fully respecting chronology of architectures.
26599 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
26600 move them before ARMv7 architectures. */
26601 {11, ARM_ARCH_V6M},
26602 {12, ARM_ARCH_V6SM},
26603
26604 {10, ARM_ARCH_V7},
26605 {10, ARM_ARCH_V7A},
26606 {10, ARM_ARCH_V7R},
26607 {10, ARM_ARCH_V7M},
26608 {10, ARM_ARCH_V7VE},
26609 {13, ARM_ARCH_V7EM},
26610 {14, ARM_ARCH_V8A},
26611 {14, ARM_ARCH_V8_1A},
26612 {14, ARM_ARCH_V8_2A},
26613 {14, ARM_ARCH_V8_3A},
26614 {16, ARM_ARCH_V8M_BASE},
26615 {17, ARM_ARCH_V8M_MAIN},
26616 {-1, ARM_ARCH_NONE}
26617 };
26618
26619 /* Set an attribute if it has not already been set by the user. */
26620 static void
26621 aeabi_set_attribute_int (int tag, int value)
26622 {
26623 if (tag < 1
26624 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26625 || !attributes_set_explicitly[tag])
26626 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
26627 }
26628
26629 static void
26630 aeabi_set_attribute_string (int tag, const char *value)
26631 {
26632 if (tag < 1
26633 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26634 || !attributes_set_explicitly[tag])
26635 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
26636 }
26637
26638 /* Return whether features in the *NEEDED feature set are available via
26639 extensions for the architecture whose feature set is *ARCH_FSET. */
26640 static bfd_boolean
26641 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
26642 const arm_feature_set *needed)
26643 {
26644 int i, nb_allowed_archs;
26645 arm_feature_set ext_fset;
26646 const struct arm_option_extension_value_table *opt;
26647
26648 ext_fset = arm_arch_none;
26649 for (opt = arm_extensions; opt->name != NULL; opt++)
26650 {
26651 /* Extension does not provide any feature we need. */
26652 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
26653 continue;
26654
26655 nb_allowed_archs =
26656 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26657 for (i = 0; i < nb_allowed_archs; i++)
26658 {
26659 /* Empty entry. */
26660 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
26661 break;
26662
26663 /* Extension is available, add it. */
26664 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
26665 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
26666 }
26667 }
26668
26669 /* Can we enable all features in *needed? */
26670 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
26671 }
26672
26673 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
26674 a given architecture feature set *ARCH_EXT_FSET including extension feature
26675 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
26676 - if true, check for an exact match of the architecture modulo extensions;
26677 - otherwise, select build attribute value of the first superset
26678 architecture released so that results remains stable when new architectures
26679 are added.
26680 For -march/-mcpu=all the build attribute value of the most featureful
26681 architecture is returned. Tag_CPU_arch_profile result is returned in
26682 PROFILE. */
26683 static int
26684 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
26685 const arm_feature_set *ext_fset,
26686 char *profile, int exact_match)
26687 {
26688 arm_feature_set arch_fset;
26689 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
26690
26691 /* Select most featureful architecture with all its extensions if building
26692 for -march=all as the feature sets used to set build attributes. */
26693 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
26694 {
26695 /* Force revisiting of decision for each new architecture. */
26696 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8M_MAIN);
26697 *profile = 'A';
26698 return TAG_CPU_ARCH_V8;
26699 }
26700
26701 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
26702
26703 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
26704 {
26705 arm_feature_set known_arch_fset;
26706
26707 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
26708 if (exact_match)
26709 {
26710 /* Base architecture match user-specified architecture and
26711 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
26712 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
26713 {
26714 p_ver_ret = p_ver;
26715 goto found;
26716 }
26717 /* Base architecture match user-specified architecture only
26718 (eg. ARMv6-M in the same case as above). Record it in case we
26719 find a match with above condition. */
26720 else if (p_ver_ret == NULL
26721 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
26722 p_ver_ret = p_ver;
26723 }
26724 else
26725 {
26726
26727 /* Architecture has all features wanted. */
26728 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
26729 {
26730 arm_feature_set added_fset;
26731
26732 /* Compute features added by this architecture over the one
26733 recorded in p_ver_ret. */
26734 if (p_ver_ret != NULL)
26735 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
26736 p_ver_ret->flags);
26737 /* First architecture that match incl. with extensions, or the
26738 only difference in features over the recorded match is
26739 features that were optional and are now mandatory. */
26740 if (p_ver_ret == NULL
26741 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
26742 {
26743 p_ver_ret = p_ver;
26744 goto found;
26745 }
26746 }
26747 else if (p_ver_ret == NULL)
26748 {
26749 arm_feature_set needed_ext_fset;
26750
26751 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
26752
26753 /* Architecture has all features needed when using some
26754 extensions. Record it and continue searching in case there
26755 exist an architecture providing all needed features without
26756 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
26757 OS extension). */
26758 if (have_ext_for_needed_feat_p (&known_arch_fset,
26759 &needed_ext_fset))
26760 p_ver_ret = p_ver;
26761 }
26762 }
26763 }
26764
26765 if (p_ver_ret == NULL)
26766 return -1;
26767
26768 found:
26769 /* Tag_CPU_arch_profile. */
26770 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
26771 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
26772 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
26773 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
26774 *profile = 'A';
26775 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
26776 *profile = 'R';
26777 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
26778 *profile = 'M';
26779 else
26780 *profile = '\0';
26781 return p_ver_ret->val;
26782 }
26783
26784 /* Set the public EABI object attributes. */
26785 static void
26786 aeabi_set_public_attributes (void)
26787 {
26788 char profile;
26789 int arch = -1;
26790 int virt_sec = 0;
26791 int fp16_optional = 0;
26792 int skip_exact_match = 0;
26793 arm_feature_set flags, flags_arch, flags_ext;
26794
26795 /* Autodetection mode, choose the architecture based the instructions
26796 actually used. */
26797 if (no_cpu_selected ())
26798 {
26799 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
26800
26801 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
26802 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
26803
26804 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
26805 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
26806
26807 /* We need to make sure that the attributes do not identify us as v6S-M
26808 when the only v6S-M feature in use is the Operating System
26809 Extensions. */
26810 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
26811 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
26812 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
26813
26814 /* Code run during relaxation relies on selected_cpu being set. */
26815 selected_cpu = flags;
26816 }
26817 /* Otherwise, choose the architecture based on the capabilities of the
26818 requested cpu. */
26819 else
26820 flags = selected_cpu;
26821 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
26822
26823 /* Allow the user to override the reported architecture. */
26824 if (object_arch)
26825 {
26826 ARM_CLEAR_FEATURE (flags_arch, *object_arch, fpu_any);
26827 flags_ext = arm_arch_none;
26828 }
26829 else
26830 {
26831 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
26832 flags_ext = dyn_mcpu_ext_opt ? *dyn_mcpu_ext_opt : arm_arch_none;
26833 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
26834 }
26835
26836 /* When this function is run again after relaxation has happened there is no
26837 way to determine whether an architecture or CPU was specified by the user:
26838 - selected_cpu is set above for relaxation to work;
26839 - march_cpu_opt is not set if only -mcpu or .cpu is used;
26840 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
26841 Therefore, if not in -march=all case we first try an exact match and fall
26842 back to autodetection. */
26843 if (!skip_exact_match)
26844 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
26845 if (arch == -1)
26846 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
26847 if (arch == -1)
26848 as_bad (_("no architecture contains all the instructions used\n"));
26849
26850 /* Tag_CPU_name. */
26851 if (selected_cpu_name[0])
26852 {
26853 char *q;
26854
26855 q = selected_cpu_name;
26856 if (strncmp (q, "armv", 4) == 0)
26857 {
26858 int i;
26859
26860 q += 4;
26861 for (i = 0; q[i]; i++)
26862 q[i] = TOUPPER (q[i]);
26863 }
26864 aeabi_set_attribute_string (Tag_CPU_name, q);
26865 }
26866
26867 /* Tag_CPU_arch. */
26868 aeabi_set_attribute_int (Tag_CPU_arch, arch);
26869
26870 /* Tag_CPU_arch_profile. */
26871 if (profile != '\0')
26872 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
26873
26874 /* Tag_DSP_extension. */
26875 if (dyn_mcpu_ext_opt && ARM_CPU_HAS_FEATURE (*dyn_mcpu_ext_opt, arm_ext_dsp))
26876 aeabi_set_attribute_int (Tag_DSP_extension, 1);
26877
26878 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
26879 /* Tag_ARM_ISA_use. */
26880 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
26881 || ARM_FEATURE_ZERO (flags_arch))
26882 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
26883
26884 /* Tag_THUMB_ISA_use. */
26885 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
26886 || ARM_FEATURE_ZERO (flags_arch))
26887 {
26888 int thumb_isa_use;
26889
26890 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
26891 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
26892 thumb_isa_use = 3;
26893 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
26894 thumb_isa_use = 2;
26895 else
26896 thumb_isa_use = 1;
26897 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
26898 }
26899
26900 /* Tag_VFP_arch. */
26901 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
26902 aeabi_set_attribute_int (Tag_VFP_arch,
26903 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
26904 ? 7 : 8);
26905 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
26906 aeabi_set_attribute_int (Tag_VFP_arch,
26907 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
26908 ? 5 : 6);
26909 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
26910 {
26911 fp16_optional = 1;
26912 aeabi_set_attribute_int (Tag_VFP_arch, 3);
26913 }
26914 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
26915 {
26916 aeabi_set_attribute_int (Tag_VFP_arch, 4);
26917 fp16_optional = 1;
26918 }
26919 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
26920 aeabi_set_attribute_int (Tag_VFP_arch, 2);
26921 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
26922 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
26923 aeabi_set_attribute_int (Tag_VFP_arch, 1);
26924
26925 /* Tag_ABI_HardFP_use. */
26926 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
26927 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
26928 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
26929
26930 /* Tag_WMMX_arch. */
26931 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
26932 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
26933 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
26934 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
26935
26936 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
26937 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
26938 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
26939 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
26940 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
26941 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
26942 {
26943 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
26944 {
26945 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
26946 }
26947 else
26948 {
26949 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
26950 fp16_optional = 1;
26951 }
26952 }
26953
26954 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
26955 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
26956 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
26957
26958 /* Tag_DIV_use.
26959
26960 We set Tag_DIV_use to two when integer divide instructions have been used
26961 in ARM state, or when Thumb integer divide instructions have been used,
26962 but we have no architecture profile set, nor have we any ARM instructions.
26963
26964 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
26965 by the base architecture.
26966
26967 For new architectures we will have to check these tests. */
26968 gas_assert (arch <= TAG_CPU_ARCH_V8
26969 || (arch >= TAG_CPU_ARCH_V8M_BASE
26970 && arch <= TAG_CPU_ARCH_V8M_MAIN));
26971 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
26972 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
26973 aeabi_set_attribute_int (Tag_DIV_use, 0);
26974 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
26975 || (profile == '\0'
26976 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
26977 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
26978 aeabi_set_attribute_int (Tag_DIV_use, 2);
26979
26980 /* Tag_MP_extension_use. */
26981 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
26982 aeabi_set_attribute_int (Tag_MPextension_use, 1);
26983
26984 /* Tag Virtualization_use. */
26985 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
26986 virt_sec |= 1;
26987 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
26988 virt_sec |= 2;
26989 if (virt_sec != 0)
26990 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
26991 }
26992
26993 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
26994 finished and free extension feature bits which will not be used anymore. */
26995 void
26996 arm_md_post_relax (void)
26997 {
26998 aeabi_set_public_attributes ();
26999 XDELETE (dyn_mcpu_ext_opt);
27000 dyn_mcpu_ext_opt = NULL;
27001 XDELETE (dyn_march_ext_opt);
27002 dyn_march_ext_opt = NULL;
27003 }
27004
27005 /* Add the default contents for the .ARM.attributes section. */
27006 void
27007 arm_md_end (void)
27008 {
27009 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27010 return;
27011
27012 aeabi_set_public_attributes ();
27013 }
27014 #endif /* OBJ_ELF */
27015
27016
27017 /* Parse a .cpu directive. */
27018
27019 static void
27020 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27021 {
27022 const struct arm_cpu_option_table *opt;
27023 char *name;
27024 char saved_char;
27025
27026 name = input_line_pointer;
27027 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27028 input_line_pointer++;
27029 saved_char = *input_line_pointer;
27030 *input_line_pointer = 0;
27031
27032 /* Skip the first "all" entry. */
27033 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27034 if (streq (opt->name, name))
27035 {
27036 mcpu_cpu_opt = &opt->value;
27037 if (!dyn_mcpu_ext_opt)
27038 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27039 *dyn_mcpu_ext_opt = opt->ext;
27040 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27041 if (opt->canonical_name)
27042 strcpy (selected_cpu_name, opt->canonical_name);
27043 else
27044 {
27045 int i;
27046 for (i = 0; opt->name[i]; i++)
27047 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27048
27049 selected_cpu_name[i] = 0;
27050 }
27051 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
27052 if (dyn_mcpu_ext_opt)
27053 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
27054 *input_line_pointer = saved_char;
27055 demand_empty_rest_of_line ();
27056 return;
27057 }
27058 as_bad (_("unknown cpu `%s'"), name);
27059 *input_line_pointer = saved_char;
27060 ignore_rest_of_line ();
27061 }
27062
27063
27064 /* Parse a .arch directive. */
27065
27066 static void
27067 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27068 {
27069 const struct arm_arch_option_table *opt;
27070 char saved_char;
27071 char *name;
27072
27073 name = input_line_pointer;
27074 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27075 input_line_pointer++;
27076 saved_char = *input_line_pointer;
27077 *input_line_pointer = 0;
27078
27079 /* Skip the first "all" entry. */
27080 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27081 if (streq (opt->name, name))
27082 {
27083 mcpu_cpu_opt = &opt->value;
27084 XDELETE (dyn_mcpu_ext_opt);
27085 dyn_mcpu_ext_opt = NULL;
27086 selected_cpu = *mcpu_cpu_opt;
27087 strcpy (selected_cpu_name, opt->name);
27088 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
27089 *input_line_pointer = saved_char;
27090 demand_empty_rest_of_line ();
27091 return;
27092 }
27093
27094 as_bad (_("unknown architecture `%s'\n"), name);
27095 *input_line_pointer = saved_char;
27096 ignore_rest_of_line ();
27097 }
27098
27099
27100 /* Parse a .object_arch directive. */
27101
27102 static void
27103 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27104 {
27105 const struct arm_arch_option_table *opt;
27106 char saved_char;
27107 char *name;
27108
27109 name = input_line_pointer;
27110 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27111 input_line_pointer++;
27112 saved_char = *input_line_pointer;
27113 *input_line_pointer = 0;
27114
27115 /* Skip the first "all" entry. */
27116 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27117 if (streq (opt->name, name))
27118 {
27119 object_arch = &opt->value;
27120 *input_line_pointer = saved_char;
27121 demand_empty_rest_of_line ();
27122 return;
27123 }
27124
27125 as_bad (_("unknown architecture `%s'\n"), name);
27126 *input_line_pointer = saved_char;
27127 ignore_rest_of_line ();
27128 }
27129
27130 /* Parse a .arch_extension directive. */
27131
27132 static void
27133 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27134 {
27135 const struct arm_option_extension_value_table *opt;
27136 const arm_feature_set arm_any = ARM_ANY;
27137 char saved_char;
27138 char *name;
27139 int adding_value = 1;
27140
27141 name = input_line_pointer;
27142 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27143 input_line_pointer++;
27144 saved_char = *input_line_pointer;
27145 *input_line_pointer = 0;
27146
27147 if (strlen (name) >= 2
27148 && strncmp (name, "no", 2) == 0)
27149 {
27150 adding_value = 0;
27151 name += 2;
27152 }
27153
27154 for (opt = arm_extensions; opt->name != NULL; opt++)
27155 if (streq (opt->name, name))
27156 {
27157 int i, nb_allowed_archs =
27158 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27159 for (i = 0; i < nb_allowed_archs; i++)
27160 {
27161 /* Empty entry. */
27162 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27163 continue;
27164 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *mcpu_cpu_opt))
27165 break;
27166 }
27167
27168 if (i == nb_allowed_archs)
27169 {
27170 as_bad (_("architectural extension `%s' is not allowed for the "
27171 "current base architecture"), name);
27172 break;
27173 }
27174
27175 if (!dyn_mcpu_ext_opt)
27176 {
27177 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27178 *dyn_mcpu_ext_opt = arm_arch_none;
27179 }
27180 if (adding_value)
27181 ARM_MERGE_FEATURE_SETS (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27182 opt->merge_value);
27183 else
27184 ARM_CLEAR_FEATURE (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27185 opt->clear_value);
27186
27187 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27188 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
27189 *input_line_pointer = saved_char;
27190 demand_empty_rest_of_line ();
27191 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
27192 on this return so that duplicate extensions (extensions with the
27193 same name as a previous extension in the list) are not considered
27194 for command-line parsing. */
27195 return;
27196 }
27197
27198 if (opt->name == NULL)
27199 as_bad (_("unknown architecture extension `%s'\n"), name);
27200
27201 *input_line_pointer = saved_char;
27202 ignore_rest_of_line ();
27203 }
27204
27205 /* Parse a .fpu directive. */
27206
27207 static void
27208 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
27209 {
27210 const struct arm_option_fpu_value_table *opt;
27211 char saved_char;
27212 char *name;
27213
27214 name = input_line_pointer;
27215 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27216 input_line_pointer++;
27217 saved_char = *input_line_pointer;
27218 *input_line_pointer = 0;
27219
27220 for (opt = arm_fpus; opt->name != NULL; opt++)
27221 if (streq (opt->name, name))
27222 {
27223 mfpu_opt = &opt->value;
27224 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
27225 if (dyn_mcpu_ext_opt)
27226 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
27227 *input_line_pointer = saved_char;
27228 demand_empty_rest_of_line ();
27229 return;
27230 }
27231
27232 as_bad (_("unknown floating point format `%s'\n"), name);
27233 *input_line_pointer = saved_char;
27234 ignore_rest_of_line ();
27235 }
27236
27237 /* Copy symbol information. */
27238
27239 void
27240 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
27241 {
27242 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
27243 }
27244
27245 #ifdef OBJ_ELF
27246 /* Given a symbolic attribute NAME, return the proper integer value.
27247 Returns -1 if the attribute is not known. */
27248
27249 int
27250 arm_convert_symbolic_attribute (const char *name)
27251 {
27252 static const struct
27253 {
27254 const char * name;
27255 const int tag;
27256 }
27257 attribute_table[] =
27258 {
27259 /* When you modify this table you should
27260 also modify the list in doc/c-arm.texi. */
27261 #define T(tag) {#tag, tag}
27262 T (Tag_CPU_raw_name),
27263 T (Tag_CPU_name),
27264 T (Tag_CPU_arch),
27265 T (Tag_CPU_arch_profile),
27266 T (Tag_ARM_ISA_use),
27267 T (Tag_THUMB_ISA_use),
27268 T (Tag_FP_arch),
27269 T (Tag_VFP_arch),
27270 T (Tag_WMMX_arch),
27271 T (Tag_Advanced_SIMD_arch),
27272 T (Tag_PCS_config),
27273 T (Tag_ABI_PCS_R9_use),
27274 T (Tag_ABI_PCS_RW_data),
27275 T (Tag_ABI_PCS_RO_data),
27276 T (Tag_ABI_PCS_GOT_use),
27277 T (Tag_ABI_PCS_wchar_t),
27278 T (Tag_ABI_FP_rounding),
27279 T (Tag_ABI_FP_denormal),
27280 T (Tag_ABI_FP_exceptions),
27281 T (Tag_ABI_FP_user_exceptions),
27282 T (Tag_ABI_FP_number_model),
27283 T (Tag_ABI_align_needed),
27284 T (Tag_ABI_align8_needed),
27285 T (Tag_ABI_align_preserved),
27286 T (Tag_ABI_align8_preserved),
27287 T (Tag_ABI_enum_size),
27288 T (Tag_ABI_HardFP_use),
27289 T (Tag_ABI_VFP_args),
27290 T (Tag_ABI_WMMX_args),
27291 T (Tag_ABI_optimization_goals),
27292 T (Tag_ABI_FP_optimization_goals),
27293 T (Tag_compatibility),
27294 T (Tag_CPU_unaligned_access),
27295 T (Tag_FP_HP_extension),
27296 T (Tag_VFP_HP_extension),
27297 T (Tag_ABI_FP_16bit_format),
27298 T (Tag_MPextension_use),
27299 T (Tag_DIV_use),
27300 T (Tag_nodefaults),
27301 T (Tag_also_compatible_with),
27302 T (Tag_conformance),
27303 T (Tag_T2EE_use),
27304 T (Tag_Virtualization_use),
27305 T (Tag_DSP_extension),
27306 /* We deliberately do not include Tag_MPextension_use_legacy. */
27307 #undef T
27308 };
27309 unsigned int i;
27310
27311 if (name == NULL)
27312 return -1;
27313
27314 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
27315 if (streq (name, attribute_table[i].name))
27316 return attribute_table[i].tag;
27317
27318 return -1;
27319 }
27320
27321
27322 /* Apply sym value for relocations only in the case that they are for
27323 local symbols in the same segment as the fixup and you have the
27324 respective architectural feature for blx and simple switches. */
27325 int
27326 arm_apply_sym_value (struct fix * fixP, segT this_seg)
27327 {
27328 if (fixP->fx_addsy
27329 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27330 /* PR 17444: If the local symbol is in a different section then a reloc
27331 will always be generated for it, so applying the symbol value now
27332 will result in a double offset being stored in the relocation. */
27333 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
27334 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
27335 {
27336 switch (fixP->fx_r_type)
27337 {
27338 case BFD_RELOC_ARM_PCREL_BLX:
27339 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27340 if (ARM_IS_FUNC (fixP->fx_addsy))
27341 return 1;
27342 break;
27343
27344 case BFD_RELOC_ARM_PCREL_CALL:
27345 case BFD_RELOC_THUMB_PCREL_BLX:
27346 if (THUMB_IS_FUNC (fixP->fx_addsy))
27347 return 1;
27348 break;
27349
27350 default:
27351 break;
27352 }
27353
27354 }
27355 return 0;
27356 }
27357 #endif /* OBJ_ELF */
This page took 0.785502 seconds and 5 git commands to generate.