[Arm] Add CSDB instruction
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2018 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set * legacy_cpu = NULL;
147 static const arm_feature_set * legacy_fpu = NULL;
148
149 static const arm_feature_set * mcpu_cpu_opt = NULL;
150 static arm_feature_set * dyn_mcpu_ext_opt = NULL;
151 static const arm_feature_set * mcpu_fpu_opt = NULL;
152 static const arm_feature_set * march_cpu_opt = NULL;
153 static arm_feature_set * dyn_march_ext_opt = NULL;
154 static const arm_feature_set * march_fpu_opt = NULL;
155 static const arm_feature_set * mfpu_opt = NULL;
156 static const arm_feature_set * object_arch = NULL;
157
158 /* Constants for known architecture features. */
159 static const arm_feature_set fpu_default = FPU_DEFAULT;
160 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
161 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
162 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
163 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
164 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
165 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
166 #ifdef OBJ_ELF
167 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
168 #endif
169 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171 #ifdef CPU_DEFAULT
172 static const arm_feature_set cpu_default = CPU_DEFAULT;
173 #endif
174
175 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
176 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
177 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
178 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
179 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
180 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
181 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
182 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
183 static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
185 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
186 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
187 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
188 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
189 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
190 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
191 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
192 static const arm_feature_set arm_ext_v6_notm =
193 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
194 static const arm_feature_set arm_ext_v6_dsp =
195 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
196 static const arm_feature_set arm_ext_barrier =
197 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
198 static const arm_feature_set arm_ext_msr =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
200 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
201 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
202 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
203 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
204 #ifdef OBJ_ELF
205 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
206 #endif
207 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
208 static const arm_feature_set arm_ext_m =
209 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
210 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
211 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
212 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
213 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
214 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
215 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
216 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
217 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
218 static const arm_feature_set arm_ext_v8m_main =
219 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
220 /* Instructions in ARMv8-M only found in M profile architectures. */
221 static const arm_feature_set arm_ext_v8m_m_only =
222 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
223 static const arm_feature_set arm_ext_v6t2_v8m =
224 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
225 /* Instructions shared between ARMv8-A and ARMv8-M. */
226 static const arm_feature_set arm_ext_atomics =
227 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
228 #ifdef OBJ_ELF
229 /* DSP instructions Tag_DSP_extension refers to. */
230 static const arm_feature_set arm_ext_dsp =
231 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
232 #endif
233 static const arm_feature_set arm_ext_ras =
234 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
235 /* FP16 instructions. */
236 static const arm_feature_set arm_ext_fp16 =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
238 static const arm_feature_set arm_ext_fp16_fml =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
240 static const arm_feature_set arm_ext_v8_2 =
241 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
242 static const arm_feature_set arm_ext_v8_3 =
243 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
244
245 static const arm_feature_set arm_arch_any = ARM_ANY;
246 #ifdef OBJ_ELF
247 static const arm_feature_set fpu_any = FPU_ANY;
248 #endif
249 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
250 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
251 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
252
253 static const arm_feature_set arm_cext_iwmmxt2 =
254 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
255 static const arm_feature_set arm_cext_iwmmxt =
256 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
257 static const arm_feature_set arm_cext_xscale =
258 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
259 static const arm_feature_set arm_cext_maverick =
260 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
261 static const arm_feature_set fpu_fpa_ext_v1 =
262 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
263 static const arm_feature_set fpu_fpa_ext_v2 =
264 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
265 static const arm_feature_set fpu_vfp_ext_v1xd =
266 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
267 static const arm_feature_set fpu_vfp_ext_v1 =
268 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
269 static const arm_feature_set fpu_vfp_ext_v2 =
270 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
271 static const arm_feature_set fpu_vfp_ext_v3xd =
272 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
273 static const arm_feature_set fpu_vfp_ext_v3 =
274 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
275 static const arm_feature_set fpu_vfp_ext_d32 =
276 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
277 static const arm_feature_set fpu_neon_ext_v1 =
278 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
279 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
280 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
281 #ifdef OBJ_ELF
282 static const arm_feature_set fpu_vfp_fp16 =
283 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
284 static const arm_feature_set fpu_neon_ext_fma =
285 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
286 #endif
287 static const arm_feature_set fpu_vfp_ext_fma =
288 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
289 static const arm_feature_set fpu_vfp_ext_armv8 =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
291 static const arm_feature_set fpu_vfp_ext_armv8xd =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
293 static const arm_feature_set fpu_neon_ext_armv8 =
294 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
295 static const arm_feature_set fpu_crypto_ext_armv8 =
296 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
297 static const arm_feature_set crc_ext_armv8 =
298 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
299 static const arm_feature_set fpu_neon_ext_v8_1 =
300 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
301 static const arm_feature_set fpu_neon_ext_dotprod =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
303
304 static int mfloat_abi_opt = -1;
305 /* Record user cpu selection for object attributes. */
306 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
307 /* Must be long enough to hold any of the names in arm_cpus. */
308 static char selected_cpu_name[20];
309
310 extern FLONUM_TYPE generic_floating_point_number;
311
312 /* Return if no cpu was selected on command-line. */
313 static bfd_boolean
314 no_cpu_selected (void)
315 {
316 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
317 }
318
319 #ifdef OBJ_ELF
320 # ifdef EABI_DEFAULT
321 static int meabi_flags = EABI_DEFAULT;
322 # else
323 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
324 # endif
325
326 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
327
328 bfd_boolean
329 arm_is_eabi (void)
330 {
331 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
332 }
333 #endif
334
335 #ifdef OBJ_ELF
336 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
337 symbolS * GOT_symbol;
338 #endif
339
340 /* 0: assemble for ARM,
341 1: assemble for Thumb,
342 2: assemble for Thumb even though target CPU does not support thumb
343 instructions. */
344 static int thumb_mode = 0;
345 /* A value distinct from the possible values for thumb_mode that we
346 can use to record whether thumb_mode has been copied into the
347 tc_frag_data field of a frag. */
348 #define MODE_RECORDED (1 << 4)
349
350 /* Specifies the intrinsic IT insn behavior mode. */
351 enum implicit_it_mode
352 {
353 IMPLICIT_IT_MODE_NEVER = 0x00,
354 IMPLICIT_IT_MODE_ARM = 0x01,
355 IMPLICIT_IT_MODE_THUMB = 0x02,
356 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
357 };
358 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
359
360 /* If unified_syntax is true, we are processing the new unified
361 ARM/Thumb syntax. Important differences from the old ARM mode:
362
363 - Immediate operands do not require a # prefix.
364 - Conditional affixes always appear at the end of the
365 instruction. (For backward compatibility, those instructions
366 that formerly had them in the middle, continue to accept them
367 there.)
368 - The IT instruction may appear, and if it does is validated
369 against subsequent conditional affixes. It does not generate
370 machine code.
371
372 Important differences from the old Thumb mode:
373
374 - Immediate operands do not require a # prefix.
375 - Most of the V6T2 instructions are only available in unified mode.
376 - The .N and .W suffixes are recognized and honored (it is an error
377 if they cannot be honored).
378 - All instructions set the flags if and only if they have an 's' affix.
379 - Conditional affixes may be used. They are validated against
380 preceding IT instructions. Unlike ARM mode, you cannot use a
381 conditional affix except in the scope of an IT instruction. */
382
383 static bfd_boolean unified_syntax = FALSE;
384
385 /* An immediate operand can start with #, and ld*, st*, pld operands
386 can contain [ and ]. We need to tell APP not to elide whitespace
387 before a [, which can appear as the first operand for pld.
388 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
389 const char arm_symbol_chars[] = "#[]{}";
390
391 enum neon_el_type
392 {
393 NT_invtype,
394 NT_untyped,
395 NT_integer,
396 NT_float,
397 NT_poly,
398 NT_signed,
399 NT_unsigned
400 };
401
402 struct neon_type_el
403 {
404 enum neon_el_type type;
405 unsigned size;
406 };
407
408 #define NEON_MAX_TYPE_ELS 4
409
410 struct neon_type
411 {
412 struct neon_type_el el[NEON_MAX_TYPE_ELS];
413 unsigned elems;
414 };
415
416 enum it_instruction_type
417 {
418 OUTSIDE_IT_INSN,
419 INSIDE_IT_INSN,
420 INSIDE_IT_LAST_INSN,
421 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
422 if inside, should be the last one. */
423 NEUTRAL_IT_INSN, /* This could be either inside or outside,
424 i.e. BKPT and NOP. */
425 IT_INSN /* The IT insn has been parsed. */
426 };
427
428 /* The maximum number of operands we need. */
429 #define ARM_IT_MAX_OPERANDS 6
430
431 struct arm_it
432 {
433 const char * error;
434 unsigned long instruction;
435 int size;
436 int size_req;
437 int cond;
438 /* "uncond_value" is set to the value in place of the conditional field in
439 unconditional versions of the instruction, or -1 if nothing is
440 appropriate. */
441 int uncond_value;
442 struct neon_type vectype;
443 /* This does not indicate an actual NEON instruction, only that
444 the mnemonic accepts neon-style type suffixes. */
445 int is_neon;
446 /* Set to the opcode if the instruction needs relaxation.
447 Zero if the instruction is not relaxed. */
448 unsigned long relax;
449 struct
450 {
451 bfd_reloc_code_real_type type;
452 expressionS exp;
453 int pc_rel;
454 } reloc;
455
456 enum it_instruction_type it_insn_type;
457
458 struct
459 {
460 unsigned reg;
461 signed int imm;
462 struct neon_type_el vectype;
463 unsigned present : 1; /* Operand present. */
464 unsigned isreg : 1; /* Operand was a register. */
465 unsigned immisreg : 1; /* .imm field is a second register. */
466 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
467 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
468 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
469 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
470 instructions. This allows us to disambiguate ARM <-> vector insns. */
471 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
472 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
473 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
474 unsigned issingle : 1; /* Operand is VFP single-precision register. */
475 unsigned hasreloc : 1; /* Operand has relocation suffix. */
476 unsigned writeback : 1; /* Operand has trailing ! */
477 unsigned preind : 1; /* Preindexed address. */
478 unsigned postind : 1; /* Postindexed address. */
479 unsigned negative : 1; /* Index register was negated. */
480 unsigned shifted : 1; /* Shift applied to operation. */
481 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
482 } operands[ARM_IT_MAX_OPERANDS];
483 };
484
485 static struct arm_it inst;
486
487 #define NUM_FLOAT_VALS 8
488
489 const char * fp_const[] =
490 {
491 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
492 };
493
494 /* Number of littlenums required to hold an extended precision number. */
495 #define MAX_LITTLENUMS 6
496
497 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
498
499 #define FAIL (-1)
500 #define SUCCESS (0)
501
502 #define SUFF_S 1
503 #define SUFF_D 2
504 #define SUFF_E 3
505 #define SUFF_P 4
506
507 #define CP_T_X 0x00008000
508 #define CP_T_Y 0x00400000
509
510 #define CONDS_BIT 0x00100000
511 #define LOAD_BIT 0x00100000
512
513 #define DOUBLE_LOAD_FLAG 0x00000001
514
515 struct asm_cond
516 {
517 const char * template_name;
518 unsigned long value;
519 };
520
521 #define COND_ALWAYS 0xE
522
523 struct asm_psr
524 {
525 const char * template_name;
526 unsigned long field;
527 };
528
529 struct asm_barrier_opt
530 {
531 const char * template_name;
532 unsigned long value;
533 const arm_feature_set arch;
534 };
535
536 /* The bit that distinguishes CPSR and SPSR. */
537 #define SPSR_BIT (1 << 22)
538
539 /* The individual PSR flag bits. */
540 #define PSR_c (1 << 16)
541 #define PSR_x (1 << 17)
542 #define PSR_s (1 << 18)
543 #define PSR_f (1 << 19)
544
545 struct reloc_entry
546 {
547 const char * name;
548 bfd_reloc_code_real_type reloc;
549 };
550
551 enum vfp_reg_pos
552 {
553 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
554 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
555 };
556
557 enum vfp_ldstm_type
558 {
559 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
560 };
561
562 /* Bits for DEFINED field in neon_typed_alias. */
563 #define NTA_HASTYPE 1
564 #define NTA_HASINDEX 2
565
566 struct neon_typed_alias
567 {
568 unsigned char defined;
569 unsigned char index;
570 struct neon_type_el eltype;
571 };
572
573 /* ARM register categories. This includes coprocessor numbers and various
574 architecture extensions' registers. Each entry should have an error message
575 in reg_expected_msgs below. */
576 enum arm_reg_type
577 {
578 REG_TYPE_RN,
579 REG_TYPE_CP,
580 REG_TYPE_CN,
581 REG_TYPE_FN,
582 REG_TYPE_VFS,
583 REG_TYPE_VFD,
584 REG_TYPE_NQ,
585 REG_TYPE_VFSD,
586 REG_TYPE_NDQ,
587 REG_TYPE_NSD,
588 REG_TYPE_NSDQ,
589 REG_TYPE_VFC,
590 REG_TYPE_MVF,
591 REG_TYPE_MVD,
592 REG_TYPE_MVFX,
593 REG_TYPE_MVDX,
594 REG_TYPE_MVAX,
595 REG_TYPE_DSPSC,
596 REG_TYPE_MMXWR,
597 REG_TYPE_MMXWC,
598 REG_TYPE_MMXWCG,
599 REG_TYPE_XSCALE,
600 REG_TYPE_RNB
601 };
602
603 /* Structure for a hash table entry for a register.
604 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
605 information which states whether a vector type or index is specified (for a
606 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
607 struct reg_entry
608 {
609 const char * name;
610 unsigned int number;
611 unsigned char type;
612 unsigned char builtin;
613 struct neon_typed_alias * neon;
614 };
615
616 /* Diagnostics used when we don't get a register of the expected type. */
617 const char * const reg_expected_msgs[] =
618 {
619 [REG_TYPE_RN] = N_("ARM register expected"),
620 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
621 [REG_TYPE_CN] = N_("co-processor register expected"),
622 [REG_TYPE_FN] = N_("FPA register expected"),
623 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
624 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
625 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
626 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
627 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
628 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
629 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
630 " expected"),
631 [REG_TYPE_VFC] = N_("VFP system register expected"),
632 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
633 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
634 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
635 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
636 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
637 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
638 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
639 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
640 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
641 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
642 [REG_TYPE_RNB] = N_("")
643 };
644
645 /* Some well known registers that we refer to directly elsewhere. */
646 #define REG_R12 12
647 #define REG_SP 13
648 #define REG_LR 14
649 #define REG_PC 15
650
651 /* ARM instructions take 4bytes in the object file, Thumb instructions
652 take 2: */
653 #define INSN_SIZE 4
654
655 struct asm_opcode
656 {
657 /* Basic string to match. */
658 const char * template_name;
659
660 /* Parameters to instruction. */
661 unsigned int operands[8];
662
663 /* Conditional tag - see opcode_lookup. */
664 unsigned int tag : 4;
665
666 /* Basic instruction code. */
667 unsigned int avalue : 28;
668
669 /* Thumb-format instruction code. */
670 unsigned int tvalue;
671
672 /* Which architecture variant provides this instruction. */
673 const arm_feature_set * avariant;
674 const arm_feature_set * tvariant;
675
676 /* Function to call to encode instruction in ARM format. */
677 void (* aencode) (void);
678
679 /* Function to call to encode instruction in Thumb format. */
680 void (* tencode) (void);
681 };
682
683 /* Defines for various bits that we will want to toggle. */
684 #define INST_IMMEDIATE 0x02000000
685 #define OFFSET_REG 0x02000000
686 #define HWOFFSET_IMM 0x00400000
687 #define SHIFT_BY_REG 0x00000010
688 #define PRE_INDEX 0x01000000
689 #define INDEX_UP 0x00800000
690 #define WRITE_BACK 0x00200000
691 #define LDM_TYPE_2_OR_3 0x00400000
692 #define CPSI_MMOD 0x00020000
693
694 #define LITERAL_MASK 0xf000f000
695 #define OPCODE_MASK 0xfe1fffff
696 #define V4_STR_BIT 0x00000020
697 #define VLDR_VMOV_SAME 0x0040f000
698
699 #define T2_SUBS_PC_LR 0xf3de8f00
700
701 #define DATA_OP_SHIFT 21
702 #define SBIT_SHIFT 20
703
704 #define T2_OPCODE_MASK 0xfe1fffff
705 #define T2_DATA_OP_SHIFT 21
706 #define T2_SBIT_SHIFT 20
707
708 #define A_COND_MASK 0xf0000000
709 #define A_PUSH_POP_OP_MASK 0x0fff0000
710
711 /* Opcodes for pushing/poping registers to/from the stack. */
712 #define A1_OPCODE_PUSH 0x092d0000
713 #define A2_OPCODE_PUSH 0x052d0004
714 #define A2_OPCODE_POP 0x049d0004
715
716 /* Codes to distinguish the arithmetic instructions. */
717 #define OPCODE_AND 0
718 #define OPCODE_EOR 1
719 #define OPCODE_SUB 2
720 #define OPCODE_RSB 3
721 #define OPCODE_ADD 4
722 #define OPCODE_ADC 5
723 #define OPCODE_SBC 6
724 #define OPCODE_RSC 7
725 #define OPCODE_TST 8
726 #define OPCODE_TEQ 9
727 #define OPCODE_CMP 10
728 #define OPCODE_CMN 11
729 #define OPCODE_ORR 12
730 #define OPCODE_MOV 13
731 #define OPCODE_BIC 14
732 #define OPCODE_MVN 15
733
734 #define T2_OPCODE_AND 0
735 #define T2_OPCODE_BIC 1
736 #define T2_OPCODE_ORR 2
737 #define T2_OPCODE_ORN 3
738 #define T2_OPCODE_EOR 4
739 #define T2_OPCODE_ADD 8
740 #define T2_OPCODE_ADC 10
741 #define T2_OPCODE_SBC 11
742 #define T2_OPCODE_SUB 13
743 #define T2_OPCODE_RSB 14
744
745 #define T_OPCODE_MUL 0x4340
746 #define T_OPCODE_TST 0x4200
747 #define T_OPCODE_CMN 0x42c0
748 #define T_OPCODE_NEG 0x4240
749 #define T_OPCODE_MVN 0x43c0
750
751 #define T_OPCODE_ADD_R3 0x1800
752 #define T_OPCODE_SUB_R3 0x1a00
753 #define T_OPCODE_ADD_HI 0x4400
754 #define T_OPCODE_ADD_ST 0xb000
755 #define T_OPCODE_SUB_ST 0xb080
756 #define T_OPCODE_ADD_SP 0xa800
757 #define T_OPCODE_ADD_PC 0xa000
758 #define T_OPCODE_ADD_I8 0x3000
759 #define T_OPCODE_SUB_I8 0x3800
760 #define T_OPCODE_ADD_I3 0x1c00
761 #define T_OPCODE_SUB_I3 0x1e00
762
763 #define T_OPCODE_ASR_R 0x4100
764 #define T_OPCODE_LSL_R 0x4080
765 #define T_OPCODE_LSR_R 0x40c0
766 #define T_OPCODE_ROR_R 0x41c0
767 #define T_OPCODE_ASR_I 0x1000
768 #define T_OPCODE_LSL_I 0x0000
769 #define T_OPCODE_LSR_I 0x0800
770
771 #define T_OPCODE_MOV_I8 0x2000
772 #define T_OPCODE_CMP_I8 0x2800
773 #define T_OPCODE_CMP_LR 0x4280
774 #define T_OPCODE_MOV_HR 0x4600
775 #define T_OPCODE_CMP_HR 0x4500
776
777 #define T_OPCODE_LDR_PC 0x4800
778 #define T_OPCODE_LDR_SP 0x9800
779 #define T_OPCODE_STR_SP 0x9000
780 #define T_OPCODE_LDR_IW 0x6800
781 #define T_OPCODE_STR_IW 0x6000
782 #define T_OPCODE_LDR_IH 0x8800
783 #define T_OPCODE_STR_IH 0x8000
784 #define T_OPCODE_LDR_IB 0x7800
785 #define T_OPCODE_STR_IB 0x7000
786 #define T_OPCODE_LDR_RW 0x5800
787 #define T_OPCODE_STR_RW 0x5000
788 #define T_OPCODE_LDR_RH 0x5a00
789 #define T_OPCODE_STR_RH 0x5200
790 #define T_OPCODE_LDR_RB 0x5c00
791 #define T_OPCODE_STR_RB 0x5400
792
793 #define T_OPCODE_PUSH 0xb400
794 #define T_OPCODE_POP 0xbc00
795
796 #define T_OPCODE_BRANCH 0xe000
797
798 #define THUMB_SIZE 2 /* Size of thumb instruction. */
799 #define THUMB_PP_PC_LR 0x0100
800 #define THUMB_LOAD_BIT 0x0800
801 #define THUMB2_LOAD_BIT 0x00100000
802
803 #define BAD_ARGS _("bad arguments to instruction")
804 #define BAD_SP _("r13 not allowed here")
805 #define BAD_PC _("r15 not allowed here")
806 #define BAD_COND _("instruction cannot be conditional")
807 #define BAD_OVERLAP _("registers may not be the same")
808 #define BAD_HIREG _("lo register required")
809 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
810 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
811 #define BAD_BRANCH _("branch must be last instruction in IT block")
812 #define BAD_NOT_IT _("instruction not allowed in IT block")
813 #define BAD_FPU _("selected FPU does not support instruction")
814 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
815 #define BAD_IT_COND _("incorrect condition in IT block")
816 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
817 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
818 #define BAD_PC_ADDRESSING \
819 _("cannot use register index with PC-relative addressing")
820 #define BAD_PC_WRITEBACK \
821 _("cannot use writeback with PC-relative addressing")
822 #define BAD_RANGE _("branch out of range")
823 #define BAD_FP16 _("selected processor does not support fp16 instruction")
824 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
825 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
826
827 static struct hash_control * arm_ops_hsh;
828 static struct hash_control * arm_cond_hsh;
829 static struct hash_control * arm_shift_hsh;
830 static struct hash_control * arm_psr_hsh;
831 static struct hash_control * arm_v7m_psr_hsh;
832 static struct hash_control * arm_reg_hsh;
833 static struct hash_control * arm_reloc_hsh;
834 static struct hash_control * arm_barrier_opt_hsh;
835
836 /* Stuff needed to resolve the label ambiguity
837 As:
838 ...
839 label: <insn>
840 may differ from:
841 ...
842 label:
843 <insn> */
844
845 symbolS * last_label_seen;
846 static int label_is_thumb_function_name = FALSE;
847
848 /* Literal pool structure. Held on a per-section
849 and per-sub-section basis. */
850
851 #define MAX_LITERAL_POOL_SIZE 1024
852 typedef struct literal_pool
853 {
854 expressionS literals [MAX_LITERAL_POOL_SIZE];
855 unsigned int next_free_entry;
856 unsigned int id;
857 symbolS * symbol;
858 segT section;
859 subsegT sub_section;
860 #ifdef OBJ_ELF
861 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
862 #endif
863 struct literal_pool * next;
864 unsigned int alignment;
865 } literal_pool;
866
867 /* Pointer to a linked list of literal pools. */
868 literal_pool * list_of_pools = NULL;
869
870 typedef enum asmfunc_states
871 {
872 OUTSIDE_ASMFUNC,
873 WAITING_ASMFUNC_NAME,
874 WAITING_ENDASMFUNC
875 } asmfunc_states;
876
877 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
878
879 #ifdef OBJ_ELF
880 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
881 #else
882 static struct current_it now_it;
883 #endif
884
885 static inline int
886 now_it_compatible (int cond)
887 {
888 return (cond & ~1) == (now_it.cc & ~1);
889 }
890
891 static inline int
892 conditional_insn (void)
893 {
894 return inst.cond != COND_ALWAYS;
895 }
896
897 static int in_it_block (void);
898
899 static int handle_it_state (void);
900
901 static void force_automatic_it_block_close (void);
902
903 static void it_fsm_post_encode (void);
904
905 #define set_it_insn_type(type) \
906 do \
907 { \
908 inst.it_insn_type = type; \
909 if (handle_it_state () == FAIL) \
910 return; \
911 } \
912 while (0)
913
914 #define set_it_insn_type_nonvoid(type, failret) \
915 do \
916 { \
917 inst.it_insn_type = type; \
918 if (handle_it_state () == FAIL) \
919 return failret; \
920 } \
921 while(0)
922
923 #define set_it_insn_type_last() \
924 do \
925 { \
926 if (inst.cond == COND_ALWAYS) \
927 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
928 else \
929 set_it_insn_type (INSIDE_IT_LAST_INSN); \
930 } \
931 while (0)
932
933 /* Pure syntax. */
934
935 /* This array holds the chars that always start a comment. If the
936 pre-processor is disabled, these aren't very useful. */
937 char arm_comment_chars[] = "@";
938
939 /* This array holds the chars that only start a comment at the beginning of
940 a line. If the line seems to have the form '# 123 filename'
941 .line and .file directives will appear in the pre-processed output. */
942 /* Note that input_file.c hand checks for '#' at the beginning of the
943 first line of the input file. This is because the compiler outputs
944 #NO_APP at the beginning of its output. */
945 /* Also note that comments like this one will always work. */
946 const char line_comment_chars[] = "#";
947
948 char arm_line_separator_chars[] = ";";
949
950 /* Chars that can be used to separate mant
951 from exp in floating point numbers. */
952 const char EXP_CHARS[] = "eE";
953
954 /* Chars that mean this number is a floating point constant. */
955 /* As in 0f12.456 */
956 /* or 0d1.2345e12 */
957
958 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
959
960 /* Prefix characters that indicate the start of an immediate
961 value. */
962 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
963
964 /* Separator character handling. */
965
966 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
967
968 static inline int
969 skip_past_char (char ** str, char c)
970 {
971 /* PR gas/14987: Allow for whitespace before the expected character. */
972 skip_whitespace (*str);
973
974 if (**str == c)
975 {
976 (*str)++;
977 return SUCCESS;
978 }
979 else
980 return FAIL;
981 }
982
983 #define skip_past_comma(str) skip_past_char (str, ',')
984
985 /* Arithmetic expressions (possibly involving symbols). */
986
987 /* Return TRUE if anything in the expression is a bignum. */
988
989 static bfd_boolean
990 walk_no_bignums (symbolS * sp)
991 {
992 if (symbol_get_value_expression (sp)->X_op == O_big)
993 return TRUE;
994
995 if (symbol_get_value_expression (sp)->X_add_symbol)
996 {
997 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
998 || (symbol_get_value_expression (sp)->X_op_symbol
999 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1000 }
1001
1002 return FALSE;
1003 }
1004
1005 static bfd_boolean in_my_get_expression = FALSE;
1006
1007 /* Third argument to my_get_expression. */
1008 #define GE_NO_PREFIX 0
1009 #define GE_IMM_PREFIX 1
1010 #define GE_OPT_PREFIX 2
1011 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1012 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1013 #define GE_OPT_PREFIX_BIG 3
1014
1015 static int
1016 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1017 {
1018 char * save_in;
1019 segT seg;
1020
1021 /* In unified syntax, all prefixes are optional. */
1022 if (unified_syntax)
1023 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1024 : GE_OPT_PREFIX;
1025
1026 switch (prefix_mode)
1027 {
1028 case GE_NO_PREFIX: break;
1029 case GE_IMM_PREFIX:
1030 if (!is_immediate_prefix (**str))
1031 {
1032 inst.error = _("immediate expression requires a # prefix");
1033 return FAIL;
1034 }
1035 (*str)++;
1036 break;
1037 case GE_OPT_PREFIX:
1038 case GE_OPT_PREFIX_BIG:
1039 if (is_immediate_prefix (**str))
1040 (*str)++;
1041 break;
1042 default:
1043 abort ();
1044 }
1045
1046 memset (ep, 0, sizeof (expressionS));
1047
1048 save_in = input_line_pointer;
1049 input_line_pointer = *str;
1050 in_my_get_expression = TRUE;
1051 seg = expression (ep);
1052 in_my_get_expression = FALSE;
1053
1054 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1055 {
1056 /* We found a bad or missing expression in md_operand(). */
1057 *str = input_line_pointer;
1058 input_line_pointer = save_in;
1059 if (inst.error == NULL)
1060 inst.error = (ep->X_op == O_absent
1061 ? _("missing expression") :_("bad expression"));
1062 return 1;
1063 }
1064
1065 #ifdef OBJ_AOUT
1066 if (seg != absolute_section
1067 && seg != text_section
1068 && seg != data_section
1069 && seg != bss_section
1070 && seg != undefined_section)
1071 {
1072 inst.error = _("bad segment");
1073 *str = input_line_pointer;
1074 input_line_pointer = save_in;
1075 return 1;
1076 }
1077 #else
1078 (void) seg;
1079 #endif
1080
1081 /* Get rid of any bignums now, so that we don't generate an error for which
1082 we can't establish a line number later on. Big numbers are never valid
1083 in instructions, which is where this routine is always called. */
1084 if (prefix_mode != GE_OPT_PREFIX_BIG
1085 && (ep->X_op == O_big
1086 || (ep->X_add_symbol
1087 && (walk_no_bignums (ep->X_add_symbol)
1088 || (ep->X_op_symbol
1089 && walk_no_bignums (ep->X_op_symbol))))))
1090 {
1091 inst.error = _("invalid constant");
1092 *str = input_line_pointer;
1093 input_line_pointer = save_in;
1094 return 1;
1095 }
1096
1097 *str = input_line_pointer;
1098 input_line_pointer = save_in;
1099 return SUCCESS;
1100 }
1101
1102 /* Turn a string in input_line_pointer into a floating point constant
1103 of type TYPE, and store the appropriate bytes in *LITP. The number
1104 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1105 returned, or NULL on OK.
1106
1107 Note that fp constants aren't represent in the normal way on the ARM.
1108 In big endian mode, things are as expected. However, in little endian
1109 mode fp constants are big-endian word-wise, and little-endian byte-wise
1110 within the words. For example, (double) 1.1 in big endian mode is
1111 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1112 the byte sequence 99 99 f1 3f 9a 99 99 99.
1113
1114 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1115
1116 const char *
1117 md_atof (int type, char * litP, int * sizeP)
1118 {
1119 int prec;
1120 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1121 char *t;
1122 int i;
1123
1124 switch (type)
1125 {
1126 case 'f':
1127 case 'F':
1128 case 's':
1129 case 'S':
1130 prec = 2;
1131 break;
1132
1133 case 'd':
1134 case 'D':
1135 case 'r':
1136 case 'R':
1137 prec = 4;
1138 break;
1139
1140 case 'x':
1141 case 'X':
1142 prec = 5;
1143 break;
1144
1145 case 'p':
1146 case 'P':
1147 prec = 5;
1148 break;
1149
1150 default:
1151 *sizeP = 0;
1152 return _("Unrecognized or unsupported floating point constant");
1153 }
1154
1155 t = atof_ieee (input_line_pointer, type, words);
1156 if (t)
1157 input_line_pointer = t;
1158 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1159
1160 if (target_big_endian)
1161 {
1162 for (i = 0; i < prec; i++)
1163 {
1164 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1165 litP += sizeof (LITTLENUM_TYPE);
1166 }
1167 }
1168 else
1169 {
1170 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1171 for (i = prec - 1; i >= 0; i--)
1172 {
1173 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1174 litP += sizeof (LITTLENUM_TYPE);
1175 }
1176 else
1177 /* For a 4 byte float the order of elements in `words' is 1 0.
1178 For an 8 byte float the order is 1 0 3 2. */
1179 for (i = 0; i < prec; i += 2)
1180 {
1181 md_number_to_chars (litP, (valueT) words[i + 1],
1182 sizeof (LITTLENUM_TYPE));
1183 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1184 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1185 litP += 2 * sizeof (LITTLENUM_TYPE);
1186 }
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* We handle all bad expressions here, so that we can report the faulty
1193 instruction in the error message. */
1194
1195 void
1196 md_operand (expressionS * exp)
1197 {
1198 if (in_my_get_expression)
1199 exp->X_op = O_illegal;
1200 }
1201
1202 /* Immediate values. */
1203
1204 #ifdef OBJ_ELF
1205 /* Generic immediate-value read function for use in directives.
1206 Accepts anything that 'expression' can fold to a constant.
1207 *val receives the number. */
1208
1209 static int
1210 immediate_for_directive (int *val)
1211 {
1212 expressionS exp;
1213 exp.X_op = O_illegal;
1214
1215 if (is_immediate_prefix (*input_line_pointer))
1216 {
1217 input_line_pointer++;
1218 expression (&exp);
1219 }
1220
1221 if (exp.X_op != O_constant)
1222 {
1223 as_bad (_("expected #constant"));
1224 ignore_rest_of_line ();
1225 return FAIL;
1226 }
1227 *val = exp.X_add_number;
1228 return SUCCESS;
1229 }
1230 #endif
1231
1232 /* Register parsing. */
1233
1234 /* Generic register parser. CCP points to what should be the
1235 beginning of a register name. If it is indeed a valid register
1236 name, advance CCP over it and return the reg_entry structure;
1237 otherwise return NULL. Does not issue diagnostics. */
1238
1239 static struct reg_entry *
1240 arm_reg_parse_multi (char **ccp)
1241 {
1242 char *start = *ccp;
1243 char *p;
1244 struct reg_entry *reg;
1245
1246 skip_whitespace (start);
1247
1248 #ifdef REGISTER_PREFIX
1249 if (*start != REGISTER_PREFIX)
1250 return NULL;
1251 start++;
1252 #endif
1253 #ifdef OPTIONAL_REGISTER_PREFIX
1254 if (*start == OPTIONAL_REGISTER_PREFIX)
1255 start++;
1256 #endif
1257
1258 p = start;
1259 if (!ISALPHA (*p) || !is_name_beginner (*p))
1260 return NULL;
1261
1262 do
1263 p++;
1264 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1265
1266 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1267
1268 if (!reg)
1269 return NULL;
1270
1271 *ccp = p;
1272 return reg;
1273 }
1274
1275 static int
1276 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1277 enum arm_reg_type type)
1278 {
1279 /* Alternative syntaxes are accepted for a few register classes. */
1280 switch (type)
1281 {
1282 case REG_TYPE_MVF:
1283 case REG_TYPE_MVD:
1284 case REG_TYPE_MVFX:
1285 case REG_TYPE_MVDX:
1286 /* Generic coprocessor register names are allowed for these. */
1287 if (reg && reg->type == REG_TYPE_CN)
1288 return reg->number;
1289 break;
1290
1291 case REG_TYPE_CP:
1292 /* For backward compatibility, a bare number is valid here. */
1293 {
1294 unsigned long processor = strtoul (start, ccp, 10);
1295 if (*ccp != start && processor <= 15)
1296 return processor;
1297 }
1298 /* Fall through. */
1299
1300 case REG_TYPE_MMXWC:
1301 /* WC includes WCG. ??? I'm not sure this is true for all
1302 instructions that take WC registers. */
1303 if (reg && reg->type == REG_TYPE_MMXWCG)
1304 return reg->number;
1305 break;
1306
1307 default:
1308 break;
1309 }
1310
1311 return FAIL;
1312 }
1313
1314 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1315 return value is the register number or FAIL. */
1316
1317 static int
1318 arm_reg_parse (char **ccp, enum arm_reg_type type)
1319 {
1320 char *start = *ccp;
1321 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1322 int ret;
1323
1324 /* Do not allow a scalar (reg+index) to parse as a register. */
1325 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1326 return FAIL;
1327
1328 if (reg && reg->type == type)
1329 return reg->number;
1330
1331 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1332 return ret;
1333
1334 *ccp = start;
1335 return FAIL;
1336 }
1337
1338 /* Parse a Neon type specifier. *STR should point at the leading '.'
1339 character. Does no verification at this stage that the type fits the opcode
1340 properly. E.g.,
1341
1342 .i32.i32.s16
1343 .s32.f32
1344 .u16
1345
1346 Can all be legally parsed by this function.
1347
1348 Fills in neon_type struct pointer with parsed information, and updates STR
1349 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1350 type, FAIL if not. */
1351
1352 static int
1353 parse_neon_type (struct neon_type *type, char **str)
1354 {
1355 char *ptr = *str;
1356
1357 if (type)
1358 type->elems = 0;
1359
1360 while (type->elems < NEON_MAX_TYPE_ELS)
1361 {
1362 enum neon_el_type thistype = NT_untyped;
1363 unsigned thissize = -1u;
1364
1365 if (*ptr != '.')
1366 break;
1367
1368 ptr++;
1369
1370 /* Just a size without an explicit type. */
1371 if (ISDIGIT (*ptr))
1372 goto parsesize;
1373
1374 switch (TOLOWER (*ptr))
1375 {
1376 case 'i': thistype = NT_integer; break;
1377 case 'f': thistype = NT_float; break;
1378 case 'p': thistype = NT_poly; break;
1379 case 's': thistype = NT_signed; break;
1380 case 'u': thistype = NT_unsigned; break;
1381 case 'd':
1382 thistype = NT_float;
1383 thissize = 64;
1384 ptr++;
1385 goto done;
1386 default:
1387 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1388 return FAIL;
1389 }
1390
1391 ptr++;
1392
1393 /* .f is an abbreviation for .f32. */
1394 if (thistype == NT_float && !ISDIGIT (*ptr))
1395 thissize = 32;
1396 else
1397 {
1398 parsesize:
1399 thissize = strtoul (ptr, &ptr, 10);
1400
1401 if (thissize != 8 && thissize != 16 && thissize != 32
1402 && thissize != 64)
1403 {
1404 as_bad (_("bad size %d in type specifier"), thissize);
1405 return FAIL;
1406 }
1407 }
1408
1409 done:
1410 if (type)
1411 {
1412 type->el[type->elems].type = thistype;
1413 type->el[type->elems].size = thissize;
1414 type->elems++;
1415 }
1416 }
1417
1418 /* Empty/missing type is not a successful parse. */
1419 if (type->elems == 0)
1420 return FAIL;
1421
1422 *str = ptr;
1423
1424 return SUCCESS;
1425 }
1426
1427 /* Errors may be set multiple times during parsing or bit encoding
1428 (particularly in the Neon bits), but usually the earliest error which is set
1429 will be the most meaningful. Avoid overwriting it with later (cascading)
1430 errors by calling this function. */
1431
1432 static void
1433 first_error (const char *err)
1434 {
1435 if (!inst.error)
1436 inst.error = err;
1437 }
1438
1439 /* Parse a single type, e.g. ".s32", leading period included. */
1440 static int
1441 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1442 {
1443 char *str = *ccp;
1444 struct neon_type optype;
1445
1446 if (*str == '.')
1447 {
1448 if (parse_neon_type (&optype, &str) == SUCCESS)
1449 {
1450 if (optype.elems == 1)
1451 *vectype = optype.el[0];
1452 else
1453 {
1454 first_error (_("only one type should be specified for operand"));
1455 return FAIL;
1456 }
1457 }
1458 else
1459 {
1460 first_error (_("vector type expected"));
1461 return FAIL;
1462 }
1463 }
1464 else
1465 return FAIL;
1466
1467 *ccp = str;
1468
1469 return SUCCESS;
1470 }
1471
1472 /* Special meanings for indices (which have a range of 0-7), which will fit into
1473 a 4-bit integer. */
1474
1475 #define NEON_ALL_LANES 15
1476 #define NEON_INTERLEAVE_LANES 14
1477
1478 /* Parse either a register or a scalar, with an optional type. Return the
1479 register number, and optionally fill in the actual type of the register
1480 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1481 type/index information in *TYPEINFO. */
1482
1483 static int
1484 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1485 enum arm_reg_type *rtype,
1486 struct neon_typed_alias *typeinfo)
1487 {
1488 char *str = *ccp;
1489 struct reg_entry *reg = arm_reg_parse_multi (&str);
1490 struct neon_typed_alias atype;
1491 struct neon_type_el parsetype;
1492
1493 atype.defined = 0;
1494 atype.index = -1;
1495 atype.eltype.type = NT_invtype;
1496 atype.eltype.size = -1;
1497
1498 /* Try alternate syntax for some types of register. Note these are mutually
1499 exclusive with the Neon syntax extensions. */
1500 if (reg == NULL)
1501 {
1502 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1503 if (altreg != FAIL)
1504 *ccp = str;
1505 if (typeinfo)
1506 *typeinfo = atype;
1507 return altreg;
1508 }
1509
1510 /* Undo polymorphism when a set of register types may be accepted. */
1511 if ((type == REG_TYPE_NDQ
1512 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1513 || (type == REG_TYPE_VFSD
1514 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1515 || (type == REG_TYPE_NSDQ
1516 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1517 || reg->type == REG_TYPE_NQ))
1518 || (type == REG_TYPE_NSD
1519 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1520 || (type == REG_TYPE_MMXWC
1521 && (reg->type == REG_TYPE_MMXWCG)))
1522 type = (enum arm_reg_type) reg->type;
1523
1524 if (type != reg->type)
1525 return FAIL;
1526
1527 if (reg->neon)
1528 atype = *reg->neon;
1529
1530 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1531 {
1532 if ((atype.defined & NTA_HASTYPE) != 0)
1533 {
1534 first_error (_("can't redefine type for operand"));
1535 return FAIL;
1536 }
1537 atype.defined |= NTA_HASTYPE;
1538 atype.eltype = parsetype;
1539 }
1540
1541 if (skip_past_char (&str, '[') == SUCCESS)
1542 {
1543 if (type != REG_TYPE_VFD
1544 && !(type == REG_TYPE_VFS
1545 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
1546 {
1547 first_error (_("only D registers may be indexed"));
1548 return FAIL;
1549 }
1550
1551 if ((atype.defined & NTA_HASINDEX) != 0)
1552 {
1553 first_error (_("can't change index for operand"));
1554 return FAIL;
1555 }
1556
1557 atype.defined |= NTA_HASINDEX;
1558
1559 if (skip_past_char (&str, ']') == SUCCESS)
1560 atype.index = NEON_ALL_LANES;
1561 else
1562 {
1563 expressionS exp;
1564
1565 my_get_expression (&exp, &str, GE_NO_PREFIX);
1566
1567 if (exp.X_op != O_constant)
1568 {
1569 first_error (_("constant expression required"));
1570 return FAIL;
1571 }
1572
1573 if (skip_past_char (&str, ']') == FAIL)
1574 return FAIL;
1575
1576 atype.index = exp.X_add_number;
1577 }
1578 }
1579
1580 if (typeinfo)
1581 *typeinfo = atype;
1582
1583 if (rtype)
1584 *rtype = type;
1585
1586 *ccp = str;
1587
1588 return reg->number;
1589 }
1590
1591 /* Like arm_reg_parse, but allow allow the following extra features:
1592 - If RTYPE is non-zero, return the (possibly restricted) type of the
1593 register (e.g. Neon double or quad reg when either has been requested).
1594 - If this is a Neon vector type with additional type information, fill
1595 in the struct pointed to by VECTYPE (if non-NULL).
1596 This function will fault on encountering a scalar. */
1597
1598 static int
1599 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1600 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1601 {
1602 struct neon_typed_alias atype;
1603 char *str = *ccp;
1604 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1605
1606 if (reg == FAIL)
1607 return FAIL;
1608
1609 /* Do not allow regname(... to parse as a register. */
1610 if (*str == '(')
1611 return FAIL;
1612
1613 /* Do not allow a scalar (reg+index) to parse as a register. */
1614 if ((atype.defined & NTA_HASINDEX) != 0)
1615 {
1616 first_error (_("register operand expected, but got scalar"));
1617 return FAIL;
1618 }
1619
1620 if (vectype)
1621 *vectype = atype.eltype;
1622
1623 *ccp = str;
1624
1625 return reg;
1626 }
1627
1628 #define NEON_SCALAR_REG(X) ((X) >> 4)
1629 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1630
1631 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1632 have enough information to be able to do a good job bounds-checking. So, we
1633 just do easy checks here, and do further checks later. */
1634
1635 static int
1636 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1637 {
1638 int reg;
1639 char *str = *ccp;
1640 struct neon_typed_alias atype;
1641 enum arm_reg_type reg_type = REG_TYPE_VFD;
1642
1643 if (elsize == 4)
1644 reg_type = REG_TYPE_VFS;
1645
1646 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1647
1648 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1649 return FAIL;
1650
1651 if (atype.index == NEON_ALL_LANES)
1652 {
1653 first_error (_("scalar must have an index"));
1654 return FAIL;
1655 }
1656 else if (atype.index >= 64 / elsize)
1657 {
1658 first_error (_("scalar index out of range"));
1659 return FAIL;
1660 }
1661
1662 if (type)
1663 *type = atype.eltype;
1664
1665 *ccp = str;
1666
1667 return reg * 16 + atype.index;
1668 }
1669
1670 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1671
1672 static long
1673 parse_reg_list (char ** strp)
1674 {
1675 char * str = * strp;
1676 long range = 0;
1677 int another_range;
1678
1679 /* We come back here if we get ranges concatenated by '+' or '|'. */
1680 do
1681 {
1682 skip_whitespace (str);
1683
1684 another_range = 0;
1685
1686 if (*str == '{')
1687 {
1688 int in_range = 0;
1689 int cur_reg = -1;
1690
1691 str++;
1692 do
1693 {
1694 int reg;
1695
1696 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1697 {
1698 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1699 return FAIL;
1700 }
1701
1702 if (in_range)
1703 {
1704 int i;
1705
1706 if (reg <= cur_reg)
1707 {
1708 first_error (_("bad range in register list"));
1709 return FAIL;
1710 }
1711
1712 for (i = cur_reg + 1; i < reg; i++)
1713 {
1714 if (range & (1 << i))
1715 as_tsktsk
1716 (_("Warning: duplicated register (r%d) in register list"),
1717 i);
1718 else
1719 range |= 1 << i;
1720 }
1721 in_range = 0;
1722 }
1723
1724 if (range & (1 << reg))
1725 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1726 reg);
1727 else if (reg <= cur_reg)
1728 as_tsktsk (_("Warning: register range not in ascending order"));
1729
1730 range |= 1 << reg;
1731 cur_reg = reg;
1732 }
1733 while (skip_past_comma (&str) != FAIL
1734 || (in_range = 1, *str++ == '-'));
1735 str--;
1736
1737 if (skip_past_char (&str, '}') == FAIL)
1738 {
1739 first_error (_("missing `}'"));
1740 return FAIL;
1741 }
1742 }
1743 else
1744 {
1745 expressionS exp;
1746
1747 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1748 return FAIL;
1749
1750 if (exp.X_op == O_constant)
1751 {
1752 if (exp.X_add_number
1753 != (exp.X_add_number & 0x0000ffff))
1754 {
1755 inst.error = _("invalid register mask");
1756 return FAIL;
1757 }
1758
1759 if ((range & exp.X_add_number) != 0)
1760 {
1761 int regno = range & exp.X_add_number;
1762
1763 regno &= -regno;
1764 regno = (1 << regno) - 1;
1765 as_tsktsk
1766 (_("Warning: duplicated register (r%d) in register list"),
1767 regno);
1768 }
1769
1770 range |= exp.X_add_number;
1771 }
1772 else
1773 {
1774 if (inst.reloc.type != 0)
1775 {
1776 inst.error = _("expression too complex");
1777 return FAIL;
1778 }
1779
1780 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1781 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1782 inst.reloc.pc_rel = 0;
1783 }
1784 }
1785
1786 if (*str == '|' || *str == '+')
1787 {
1788 str++;
1789 another_range = 1;
1790 }
1791 }
1792 while (another_range);
1793
1794 *strp = str;
1795 return range;
1796 }
1797
1798 /* Types of registers in a list. */
1799
1800 enum reg_list_els
1801 {
1802 REGLIST_VFP_S,
1803 REGLIST_VFP_D,
1804 REGLIST_NEON_D
1805 };
1806
1807 /* Parse a VFP register list. If the string is invalid return FAIL.
1808 Otherwise return the number of registers, and set PBASE to the first
1809 register. Parses registers of type ETYPE.
1810 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1811 - Q registers can be used to specify pairs of D registers
1812 - { } can be omitted from around a singleton register list
1813 FIXME: This is not implemented, as it would require backtracking in
1814 some cases, e.g.:
1815 vtbl.8 d3,d4,d5
1816 This could be done (the meaning isn't really ambiguous), but doesn't
1817 fit in well with the current parsing framework.
1818 - 32 D registers may be used (also true for VFPv3).
1819 FIXME: Types are ignored in these register lists, which is probably a
1820 bug. */
1821
1822 static int
1823 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1824 {
1825 char *str = *ccp;
1826 int base_reg;
1827 int new_base;
1828 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1829 int max_regs = 0;
1830 int count = 0;
1831 int warned = 0;
1832 unsigned long mask = 0;
1833 int i;
1834
1835 if (skip_past_char (&str, '{') == FAIL)
1836 {
1837 inst.error = _("expecting {");
1838 return FAIL;
1839 }
1840
1841 switch (etype)
1842 {
1843 case REGLIST_VFP_S:
1844 regtype = REG_TYPE_VFS;
1845 max_regs = 32;
1846 break;
1847
1848 case REGLIST_VFP_D:
1849 regtype = REG_TYPE_VFD;
1850 break;
1851
1852 case REGLIST_NEON_D:
1853 regtype = REG_TYPE_NDQ;
1854 break;
1855 }
1856
1857 if (etype != REGLIST_VFP_S)
1858 {
1859 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1860 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1861 {
1862 max_regs = 32;
1863 if (thumb_mode)
1864 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1865 fpu_vfp_ext_d32);
1866 else
1867 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1868 fpu_vfp_ext_d32);
1869 }
1870 else
1871 max_regs = 16;
1872 }
1873
1874 base_reg = max_regs;
1875
1876 do
1877 {
1878 int setmask = 1, addregs = 1;
1879
1880 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1881
1882 if (new_base == FAIL)
1883 {
1884 first_error (_(reg_expected_msgs[regtype]));
1885 return FAIL;
1886 }
1887
1888 if (new_base >= max_regs)
1889 {
1890 first_error (_("register out of range in list"));
1891 return FAIL;
1892 }
1893
1894 /* Note: a value of 2 * n is returned for the register Q<n>. */
1895 if (regtype == REG_TYPE_NQ)
1896 {
1897 setmask = 3;
1898 addregs = 2;
1899 }
1900
1901 if (new_base < base_reg)
1902 base_reg = new_base;
1903
1904 if (mask & (setmask << new_base))
1905 {
1906 first_error (_("invalid register list"));
1907 return FAIL;
1908 }
1909
1910 if ((mask >> new_base) != 0 && ! warned)
1911 {
1912 as_tsktsk (_("register list not in ascending order"));
1913 warned = 1;
1914 }
1915
1916 mask |= setmask << new_base;
1917 count += addregs;
1918
1919 if (*str == '-') /* We have the start of a range expression */
1920 {
1921 int high_range;
1922
1923 str++;
1924
1925 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1926 == FAIL)
1927 {
1928 inst.error = gettext (reg_expected_msgs[regtype]);
1929 return FAIL;
1930 }
1931
1932 if (high_range >= max_regs)
1933 {
1934 first_error (_("register out of range in list"));
1935 return FAIL;
1936 }
1937
1938 if (regtype == REG_TYPE_NQ)
1939 high_range = high_range + 1;
1940
1941 if (high_range <= new_base)
1942 {
1943 inst.error = _("register range not in ascending order");
1944 return FAIL;
1945 }
1946
1947 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1948 {
1949 if (mask & (setmask << new_base))
1950 {
1951 inst.error = _("invalid register list");
1952 return FAIL;
1953 }
1954
1955 mask |= setmask << new_base;
1956 count += addregs;
1957 }
1958 }
1959 }
1960 while (skip_past_comma (&str) != FAIL);
1961
1962 str++;
1963
1964 /* Sanity check -- should have raised a parse error above. */
1965 if (count == 0 || count > max_regs)
1966 abort ();
1967
1968 *pbase = base_reg;
1969
1970 /* Final test -- the registers must be consecutive. */
1971 mask >>= base_reg;
1972 for (i = 0; i < count; i++)
1973 {
1974 if ((mask & (1u << i)) == 0)
1975 {
1976 inst.error = _("non-contiguous register range");
1977 return FAIL;
1978 }
1979 }
1980
1981 *ccp = str;
1982
1983 return count;
1984 }
1985
1986 /* True if two alias types are the same. */
1987
1988 static bfd_boolean
1989 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1990 {
1991 if (!a && !b)
1992 return TRUE;
1993
1994 if (!a || !b)
1995 return FALSE;
1996
1997 if (a->defined != b->defined)
1998 return FALSE;
1999
2000 if ((a->defined & NTA_HASTYPE) != 0
2001 && (a->eltype.type != b->eltype.type
2002 || a->eltype.size != b->eltype.size))
2003 return FALSE;
2004
2005 if ((a->defined & NTA_HASINDEX) != 0
2006 && (a->index != b->index))
2007 return FALSE;
2008
2009 return TRUE;
2010 }
2011
2012 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2013 The base register is put in *PBASE.
2014 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2015 the return value.
2016 The register stride (minus one) is put in bit 4 of the return value.
2017 Bits [6:5] encode the list length (minus one).
2018 The type of the list elements is put in *ELTYPE, if non-NULL. */
2019
2020 #define NEON_LANE(X) ((X) & 0xf)
2021 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2022 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2023
2024 static int
2025 parse_neon_el_struct_list (char **str, unsigned *pbase,
2026 struct neon_type_el *eltype)
2027 {
2028 char *ptr = *str;
2029 int base_reg = -1;
2030 int reg_incr = -1;
2031 int count = 0;
2032 int lane = -1;
2033 int leading_brace = 0;
2034 enum arm_reg_type rtype = REG_TYPE_NDQ;
2035 const char *const incr_error = _("register stride must be 1 or 2");
2036 const char *const type_error = _("mismatched element/structure types in list");
2037 struct neon_typed_alias firsttype;
2038 firsttype.defined = 0;
2039 firsttype.eltype.type = NT_invtype;
2040 firsttype.eltype.size = -1;
2041 firsttype.index = -1;
2042
2043 if (skip_past_char (&ptr, '{') == SUCCESS)
2044 leading_brace = 1;
2045
2046 do
2047 {
2048 struct neon_typed_alias atype;
2049 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2050
2051 if (getreg == FAIL)
2052 {
2053 first_error (_(reg_expected_msgs[rtype]));
2054 return FAIL;
2055 }
2056
2057 if (base_reg == -1)
2058 {
2059 base_reg = getreg;
2060 if (rtype == REG_TYPE_NQ)
2061 {
2062 reg_incr = 1;
2063 }
2064 firsttype = atype;
2065 }
2066 else if (reg_incr == -1)
2067 {
2068 reg_incr = getreg - base_reg;
2069 if (reg_incr < 1 || reg_incr > 2)
2070 {
2071 first_error (_(incr_error));
2072 return FAIL;
2073 }
2074 }
2075 else if (getreg != base_reg + reg_incr * count)
2076 {
2077 first_error (_(incr_error));
2078 return FAIL;
2079 }
2080
2081 if (! neon_alias_types_same (&atype, &firsttype))
2082 {
2083 first_error (_(type_error));
2084 return FAIL;
2085 }
2086
2087 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2088 modes. */
2089 if (ptr[0] == '-')
2090 {
2091 struct neon_typed_alias htype;
2092 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2093 if (lane == -1)
2094 lane = NEON_INTERLEAVE_LANES;
2095 else if (lane != NEON_INTERLEAVE_LANES)
2096 {
2097 first_error (_(type_error));
2098 return FAIL;
2099 }
2100 if (reg_incr == -1)
2101 reg_incr = 1;
2102 else if (reg_incr != 1)
2103 {
2104 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2105 return FAIL;
2106 }
2107 ptr++;
2108 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2109 if (hireg == FAIL)
2110 {
2111 first_error (_(reg_expected_msgs[rtype]));
2112 return FAIL;
2113 }
2114 if (! neon_alias_types_same (&htype, &firsttype))
2115 {
2116 first_error (_(type_error));
2117 return FAIL;
2118 }
2119 count += hireg + dregs - getreg;
2120 continue;
2121 }
2122
2123 /* If we're using Q registers, we can't use [] or [n] syntax. */
2124 if (rtype == REG_TYPE_NQ)
2125 {
2126 count += 2;
2127 continue;
2128 }
2129
2130 if ((atype.defined & NTA_HASINDEX) != 0)
2131 {
2132 if (lane == -1)
2133 lane = atype.index;
2134 else if (lane != atype.index)
2135 {
2136 first_error (_(type_error));
2137 return FAIL;
2138 }
2139 }
2140 else if (lane == -1)
2141 lane = NEON_INTERLEAVE_LANES;
2142 else if (lane != NEON_INTERLEAVE_LANES)
2143 {
2144 first_error (_(type_error));
2145 return FAIL;
2146 }
2147 count++;
2148 }
2149 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2150
2151 /* No lane set by [x]. We must be interleaving structures. */
2152 if (lane == -1)
2153 lane = NEON_INTERLEAVE_LANES;
2154
2155 /* Sanity check. */
2156 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2157 || (count > 1 && reg_incr == -1))
2158 {
2159 first_error (_("error parsing element/structure list"));
2160 return FAIL;
2161 }
2162
2163 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2164 {
2165 first_error (_("expected }"));
2166 return FAIL;
2167 }
2168
2169 if (reg_incr == -1)
2170 reg_incr = 1;
2171
2172 if (eltype)
2173 *eltype = firsttype.eltype;
2174
2175 *pbase = base_reg;
2176 *str = ptr;
2177
2178 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2179 }
2180
2181 /* Parse an explicit relocation suffix on an expression. This is
2182 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2183 arm_reloc_hsh contains no entries, so this function can only
2184 succeed if there is no () after the word. Returns -1 on error,
2185 BFD_RELOC_UNUSED if there wasn't any suffix. */
2186
2187 static int
2188 parse_reloc (char **str)
2189 {
2190 struct reloc_entry *r;
2191 char *p, *q;
2192
2193 if (**str != '(')
2194 return BFD_RELOC_UNUSED;
2195
2196 p = *str + 1;
2197 q = p;
2198
2199 while (*q && *q != ')' && *q != ',')
2200 q++;
2201 if (*q != ')')
2202 return -1;
2203
2204 if ((r = (struct reloc_entry *)
2205 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2206 return -1;
2207
2208 *str = q + 1;
2209 return r->reloc;
2210 }
2211
2212 /* Directives: register aliases. */
2213
2214 static struct reg_entry *
2215 insert_reg_alias (char *str, unsigned number, int type)
2216 {
2217 struct reg_entry *new_reg;
2218 const char *name;
2219
2220 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2221 {
2222 if (new_reg->builtin)
2223 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2224
2225 /* Only warn about a redefinition if it's not defined as the
2226 same register. */
2227 else if (new_reg->number != number || new_reg->type != type)
2228 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2229
2230 return NULL;
2231 }
2232
2233 name = xstrdup (str);
2234 new_reg = XNEW (struct reg_entry);
2235
2236 new_reg->name = name;
2237 new_reg->number = number;
2238 new_reg->type = type;
2239 new_reg->builtin = FALSE;
2240 new_reg->neon = NULL;
2241
2242 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2243 abort ();
2244
2245 return new_reg;
2246 }
2247
2248 static void
2249 insert_neon_reg_alias (char *str, int number, int type,
2250 struct neon_typed_alias *atype)
2251 {
2252 struct reg_entry *reg = insert_reg_alias (str, number, type);
2253
2254 if (!reg)
2255 {
2256 first_error (_("attempt to redefine typed alias"));
2257 return;
2258 }
2259
2260 if (atype)
2261 {
2262 reg->neon = XNEW (struct neon_typed_alias);
2263 *reg->neon = *atype;
2264 }
2265 }
2266
2267 /* Look for the .req directive. This is of the form:
2268
2269 new_register_name .req existing_register_name
2270
2271 If we find one, or if it looks sufficiently like one that we want to
2272 handle any error here, return TRUE. Otherwise return FALSE. */
2273
2274 static bfd_boolean
2275 create_register_alias (char * newname, char *p)
2276 {
2277 struct reg_entry *old;
2278 char *oldname, *nbuf;
2279 size_t nlen;
2280
2281 /* The input scrubber ensures that whitespace after the mnemonic is
2282 collapsed to single spaces. */
2283 oldname = p;
2284 if (strncmp (oldname, " .req ", 6) != 0)
2285 return FALSE;
2286
2287 oldname += 6;
2288 if (*oldname == '\0')
2289 return FALSE;
2290
2291 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2292 if (!old)
2293 {
2294 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2295 return TRUE;
2296 }
2297
2298 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2299 the desired alias name, and p points to its end. If not, then
2300 the desired alias name is in the global original_case_string. */
2301 #ifdef TC_CASE_SENSITIVE
2302 nlen = p - newname;
2303 #else
2304 newname = original_case_string;
2305 nlen = strlen (newname);
2306 #endif
2307
2308 nbuf = xmemdup0 (newname, nlen);
2309
2310 /* Create aliases under the new name as stated; an all-lowercase
2311 version of the new name; and an all-uppercase version of the new
2312 name. */
2313 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2314 {
2315 for (p = nbuf; *p; p++)
2316 *p = TOUPPER (*p);
2317
2318 if (strncmp (nbuf, newname, nlen))
2319 {
2320 /* If this attempt to create an additional alias fails, do not bother
2321 trying to create the all-lower case alias. We will fail and issue
2322 a second, duplicate error message. This situation arises when the
2323 programmer does something like:
2324 foo .req r0
2325 Foo .req r1
2326 The second .req creates the "Foo" alias but then fails to create
2327 the artificial FOO alias because it has already been created by the
2328 first .req. */
2329 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2330 {
2331 free (nbuf);
2332 return TRUE;
2333 }
2334 }
2335
2336 for (p = nbuf; *p; p++)
2337 *p = TOLOWER (*p);
2338
2339 if (strncmp (nbuf, newname, nlen))
2340 insert_reg_alias (nbuf, old->number, old->type);
2341 }
2342
2343 free (nbuf);
2344 return TRUE;
2345 }
2346
2347 /* Create a Neon typed/indexed register alias using directives, e.g.:
2348 X .dn d5.s32[1]
2349 Y .qn 6.s16
2350 Z .dn d7
2351 T .dn Z[0]
2352 These typed registers can be used instead of the types specified after the
2353 Neon mnemonic, so long as all operands given have types. Types can also be
2354 specified directly, e.g.:
2355 vadd d0.s32, d1.s32, d2.s32 */
2356
2357 static bfd_boolean
2358 create_neon_reg_alias (char *newname, char *p)
2359 {
2360 enum arm_reg_type basetype;
2361 struct reg_entry *basereg;
2362 struct reg_entry mybasereg;
2363 struct neon_type ntype;
2364 struct neon_typed_alias typeinfo;
2365 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2366 int namelen;
2367
2368 typeinfo.defined = 0;
2369 typeinfo.eltype.type = NT_invtype;
2370 typeinfo.eltype.size = -1;
2371 typeinfo.index = -1;
2372
2373 nameend = p;
2374
2375 if (strncmp (p, " .dn ", 5) == 0)
2376 basetype = REG_TYPE_VFD;
2377 else if (strncmp (p, " .qn ", 5) == 0)
2378 basetype = REG_TYPE_NQ;
2379 else
2380 return FALSE;
2381
2382 p += 5;
2383
2384 if (*p == '\0')
2385 return FALSE;
2386
2387 basereg = arm_reg_parse_multi (&p);
2388
2389 if (basereg && basereg->type != basetype)
2390 {
2391 as_bad (_("bad type for register"));
2392 return FALSE;
2393 }
2394
2395 if (basereg == NULL)
2396 {
2397 expressionS exp;
2398 /* Try parsing as an integer. */
2399 my_get_expression (&exp, &p, GE_NO_PREFIX);
2400 if (exp.X_op != O_constant)
2401 {
2402 as_bad (_("expression must be constant"));
2403 return FALSE;
2404 }
2405 basereg = &mybasereg;
2406 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2407 : exp.X_add_number;
2408 basereg->neon = 0;
2409 }
2410
2411 if (basereg->neon)
2412 typeinfo = *basereg->neon;
2413
2414 if (parse_neon_type (&ntype, &p) == SUCCESS)
2415 {
2416 /* We got a type. */
2417 if (typeinfo.defined & NTA_HASTYPE)
2418 {
2419 as_bad (_("can't redefine the type of a register alias"));
2420 return FALSE;
2421 }
2422
2423 typeinfo.defined |= NTA_HASTYPE;
2424 if (ntype.elems != 1)
2425 {
2426 as_bad (_("you must specify a single type only"));
2427 return FALSE;
2428 }
2429 typeinfo.eltype = ntype.el[0];
2430 }
2431
2432 if (skip_past_char (&p, '[') == SUCCESS)
2433 {
2434 expressionS exp;
2435 /* We got a scalar index. */
2436
2437 if (typeinfo.defined & NTA_HASINDEX)
2438 {
2439 as_bad (_("can't redefine the index of a scalar alias"));
2440 return FALSE;
2441 }
2442
2443 my_get_expression (&exp, &p, GE_NO_PREFIX);
2444
2445 if (exp.X_op != O_constant)
2446 {
2447 as_bad (_("scalar index must be constant"));
2448 return FALSE;
2449 }
2450
2451 typeinfo.defined |= NTA_HASINDEX;
2452 typeinfo.index = exp.X_add_number;
2453
2454 if (skip_past_char (&p, ']') == FAIL)
2455 {
2456 as_bad (_("expecting ]"));
2457 return FALSE;
2458 }
2459 }
2460
2461 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2462 the desired alias name, and p points to its end. If not, then
2463 the desired alias name is in the global original_case_string. */
2464 #ifdef TC_CASE_SENSITIVE
2465 namelen = nameend - newname;
2466 #else
2467 newname = original_case_string;
2468 namelen = strlen (newname);
2469 #endif
2470
2471 namebuf = xmemdup0 (newname, namelen);
2472
2473 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2474 typeinfo.defined != 0 ? &typeinfo : NULL);
2475
2476 /* Insert name in all uppercase. */
2477 for (p = namebuf; *p; p++)
2478 *p = TOUPPER (*p);
2479
2480 if (strncmp (namebuf, newname, namelen))
2481 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2482 typeinfo.defined != 0 ? &typeinfo : NULL);
2483
2484 /* Insert name in all lowercase. */
2485 for (p = namebuf; *p; p++)
2486 *p = TOLOWER (*p);
2487
2488 if (strncmp (namebuf, newname, namelen))
2489 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2490 typeinfo.defined != 0 ? &typeinfo : NULL);
2491
2492 free (namebuf);
2493 return TRUE;
2494 }
2495
2496 /* Should never be called, as .req goes between the alias and the
2497 register name, not at the beginning of the line. */
2498
2499 static void
2500 s_req (int a ATTRIBUTE_UNUSED)
2501 {
2502 as_bad (_("invalid syntax for .req directive"));
2503 }
2504
2505 static void
2506 s_dn (int a ATTRIBUTE_UNUSED)
2507 {
2508 as_bad (_("invalid syntax for .dn directive"));
2509 }
2510
2511 static void
2512 s_qn (int a ATTRIBUTE_UNUSED)
2513 {
2514 as_bad (_("invalid syntax for .qn directive"));
2515 }
2516
2517 /* The .unreq directive deletes an alias which was previously defined
2518 by .req. For example:
2519
2520 my_alias .req r11
2521 .unreq my_alias */
2522
2523 static void
2524 s_unreq (int a ATTRIBUTE_UNUSED)
2525 {
2526 char * name;
2527 char saved_char;
2528
2529 name = input_line_pointer;
2530
2531 while (*input_line_pointer != 0
2532 && *input_line_pointer != ' '
2533 && *input_line_pointer != '\n')
2534 ++input_line_pointer;
2535
2536 saved_char = *input_line_pointer;
2537 *input_line_pointer = 0;
2538
2539 if (!*name)
2540 as_bad (_("invalid syntax for .unreq directive"));
2541 else
2542 {
2543 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2544 name);
2545
2546 if (!reg)
2547 as_bad (_("unknown register alias '%s'"), name);
2548 else if (reg->builtin)
2549 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2550 name);
2551 else
2552 {
2553 char * p;
2554 char * nbuf;
2555
2556 hash_delete (arm_reg_hsh, name, FALSE);
2557 free ((char *) reg->name);
2558 if (reg->neon)
2559 free (reg->neon);
2560 free (reg);
2561
2562 /* Also locate the all upper case and all lower case versions.
2563 Do not complain if we cannot find one or the other as it
2564 was probably deleted above. */
2565
2566 nbuf = strdup (name);
2567 for (p = nbuf; *p; p++)
2568 *p = TOUPPER (*p);
2569 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2570 if (reg)
2571 {
2572 hash_delete (arm_reg_hsh, nbuf, FALSE);
2573 free ((char *) reg->name);
2574 if (reg->neon)
2575 free (reg->neon);
2576 free (reg);
2577 }
2578
2579 for (p = nbuf; *p; p++)
2580 *p = TOLOWER (*p);
2581 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2582 if (reg)
2583 {
2584 hash_delete (arm_reg_hsh, nbuf, FALSE);
2585 free ((char *) reg->name);
2586 if (reg->neon)
2587 free (reg->neon);
2588 free (reg);
2589 }
2590
2591 free (nbuf);
2592 }
2593 }
2594
2595 *input_line_pointer = saved_char;
2596 demand_empty_rest_of_line ();
2597 }
2598
2599 /* Directives: Instruction set selection. */
2600
2601 #ifdef OBJ_ELF
2602 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2603 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2604 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2605 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2606
2607 /* Create a new mapping symbol for the transition to STATE. */
2608
2609 static void
2610 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2611 {
2612 symbolS * symbolP;
2613 const char * symname;
2614 int type;
2615
2616 switch (state)
2617 {
2618 case MAP_DATA:
2619 symname = "$d";
2620 type = BSF_NO_FLAGS;
2621 break;
2622 case MAP_ARM:
2623 symname = "$a";
2624 type = BSF_NO_FLAGS;
2625 break;
2626 case MAP_THUMB:
2627 symname = "$t";
2628 type = BSF_NO_FLAGS;
2629 break;
2630 default:
2631 abort ();
2632 }
2633
2634 symbolP = symbol_new (symname, now_seg, value, frag);
2635 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2636
2637 switch (state)
2638 {
2639 case MAP_ARM:
2640 THUMB_SET_FUNC (symbolP, 0);
2641 ARM_SET_THUMB (symbolP, 0);
2642 ARM_SET_INTERWORK (symbolP, support_interwork);
2643 break;
2644
2645 case MAP_THUMB:
2646 THUMB_SET_FUNC (symbolP, 1);
2647 ARM_SET_THUMB (symbolP, 1);
2648 ARM_SET_INTERWORK (symbolP, support_interwork);
2649 break;
2650
2651 case MAP_DATA:
2652 default:
2653 break;
2654 }
2655
2656 /* Save the mapping symbols for future reference. Also check that
2657 we do not place two mapping symbols at the same offset within a
2658 frag. We'll handle overlap between frags in
2659 check_mapping_symbols.
2660
2661 If .fill or other data filling directive generates zero sized data,
2662 the mapping symbol for the following code will have the same value
2663 as the one generated for the data filling directive. In this case,
2664 we replace the old symbol with the new one at the same address. */
2665 if (value == 0)
2666 {
2667 if (frag->tc_frag_data.first_map != NULL)
2668 {
2669 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2670 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2671 }
2672 frag->tc_frag_data.first_map = symbolP;
2673 }
2674 if (frag->tc_frag_data.last_map != NULL)
2675 {
2676 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2677 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2678 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2679 }
2680 frag->tc_frag_data.last_map = symbolP;
2681 }
2682
2683 /* We must sometimes convert a region marked as code to data during
2684 code alignment, if an odd number of bytes have to be padded. The
2685 code mapping symbol is pushed to an aligned address. */
2686
2687 static void
2688 insert_data_mapping_symbol (enum mstate state,
2689 valueT value, fragS *frag, offsetT bytes)
2690 {
2691 /* If there was already a mapping symbol, remove it. */
2692 if (frag->tc_frag_data.last_map != NULL
2693 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2694 {
2695 symbolS *symp = frag->tc_frag_data.last_map;
2696
2697 if (value == 0)
2698 {
2699 know (frag->tc_frag_data.first_map == symp);
2700 frag->tc_frag_data.first_map = NULL;
2701 }
2702 frag->tc_frag_data.last_map = NULL;
2703 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2704 }
2705
2706 make_mapping_symbol (MAP_DATA, value, frag);
2707 make_mapping_symbol (state, value + bytes, frag);
2708 }
2709
2710 static void mapping_state_2 (enum mstate state, int max_chars);
2711
2712 /* Set the mapping state to STATE. Only call this when about to
2713 emit some STATE bytes to the file. */
2714
2715 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2716 void
2717 mapping_state (enum mstate state)
2718 {
2719 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2720
2721 if (mapstate == state)
2722 /* The mapping symbol has already been emitted.
2723 There is nothing else to do. */
2724 return;
2725
2726 if (state == MAP_ARM || state == MAP_THUMB)
2727 /* PR gas/12931
2728 All ARM instructions require 4-byte alignment.
2729 (Almost) all Thumb instructions require 2-byte alignment.
2730
2731 When emitting instructions into any section, mark the section
2732 appropriately.
2733
2734 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2735 but themselves require 2-byte alignment; this applies to some
2736 PC- relative forms. However, these cases will involve implicit
2737 literal pool generation or an explicit .align >=2, both of
2738 which will cause the section to me marked with sufficient
2739 alignment. Thus, we don't handle those cases here. */
2740 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2741
2742 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2743 /* This case will be evaluated later. */
2744 return;
2745
2746 mapping_state_2 (state, 0);
2747 }
2748
2749 /* Same as mapping_state, but MAX_CHARS bytes have already been
2750 allocated. Put the mapping symbol that far back. */
2751
2752 static void
2753 mapping_state_2 (enum mstate state, int max_chars)
2754 {
2755 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2756
2757 if (!SEG_NORMAL (now_seg))
2758 return;
2759
2760 if (mapstate == state)
2761 /* The mapping symbol has already been emitted.
2762 There is nothing else to do. */
2763 return;
2764
2765 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2766 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2767 {
2768 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2769 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2770
2771 if (add_symbol)
2772 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2773 }
2774
2775 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2776 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2777 }
2778 #undef TRANSITION
2779 #else
2780 #define mapping_state(x) ((void)0)
2781 #define mapping_state_2(x, y) ((void)0)
2782 #endif
2783
2784 /* Find the real, Thumb encoded start of a Thumb function. */
2785
2786 #ifdef OBJ_COFF
2787 static symbolS *
2788 find_real_start (symbolS * symbolP)
2789 {
2790 char * real_start;
2791 const char * name = S_GET_NAME (symbolP);
2792 symbolS * new_target;
2793
2794 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2795 #define STUB_NAME ".real_start_of"
2796
2797 if (name == NULL)
2798 abort ();
2799
2800 /* The compiler may generate BL instructions to local labels because
2801 it needs to perform a branch to a far away location. These labels
2802 do not have a corresponding ".real_start_of" label. We check
2803 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2804 the ".real_start_of" convention for nonlocal branches. */
2805 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2806 return symbolP;
2807
2808 real_start = concat (STUB_NAME, name, NULL);
2809 new_target = symbol_find (real_start);
2810 free (real_start);
2811
2812 if (new_target == NULL)
2813 {
2814 as_warn (_("Failed to find real start of function: %s\n"), name);
2815 new_target = symbolP;
2816 }
2817
2818 return new_target;
2819 }
2820 #endif
2821
2822 static void
2823 opcode_select (int width)
2824 {
2825 switch (width)
2826 {
2827 case 16:
2828 if (! thumb_mode)
2829 {
2830 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2831 as_bad (_("selected processor does not support THUMB opcodes"));
2832
2833 thumb_mode = 1;
2834 /* No need to force the alignment, since we will have been
2835 coming from ARM mode, which is word-aligned. */
2836 record_alignment (now_seg, 1);
2837 }
2838 break;
2839
2840 case 32:
2841 if (thumb_mode)
2842 {
2843 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2844 as_bad (_("selected processor does not support ARM opcodes"));
2845
2846 thumb_mode = 0;
2847
2848 if (!need_pass_2)
2849 frag_align (2, 0, 0);
2850
2851 record_alignment (now_seg, 1);
2852 }
2853 break;
2854
2855 default:
2856 as_bad (_("invalid instruction size selected (%d)"), width);
2857 }
2858 }
2859
2860 static void
2861 s_arm (int ignore ATTRIBUTE_UNUSED)
2862 {
2863 opcode_select (32);
2864 demand_empty_rest_of_line ();
2865 }
2866
2867 static void
2868 s_thumb (int ignore ATTRIBUTE_UNUSED)
2869 {
2870 opcode_select (16);
2871 demand_empty_rest_of_line ();
2872 }
2873
2874 static void
2875 s_code (int unused ATTRIBUTE_UNUSED)
2876 {
2877 int temp;
2878
2879 temp = get_absolute_expression ();
2880 switch (temp)
2881 {
2882 case 16:
2883 case 32:
2884 opcode_select (temp);
2885 break;
2886
2887 default:
2888 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2889 }
2890 }
2891
2892 static void
2893 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2894 {
2895 /* If we are not already in thumb mode go into it, EVEN if
2896 the target processor does not support thumb instructions.
2897 This is used by gcc/config/arm/lib1funcs.asm for example
2898 to compile interworking support functions even if the
2899 target processor should not support interworking. */
2900 if (! thumb_mode)
2901 {
2902 thumb_mode = 2;
2903 record_alignment (now_seg, 1);
2904 }
2905
2906 demand_empty_rest_of_line ();
2907 }
2908
2909 static void
2910 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2911 {
2912 s_thumb (0);
2913
2914 /* The following label is the name/address of the start of a Thumb function.
2915 We need to know this for the interworking support. */
2916 label_is_thumb_function_name = TRUE;
2917 }
2918
2919 /* Perform a .set directive, but also mark the alias as
2920 being a thumb function. */
2921
2922 static void
2923 s_thumb_set (int equiv)
2924 {
2925 /* XXX the following is a duplicate of the code for s_set() in read.c
2926 We cannot just call that code as we need to get at the symbol that
2927 is created. */
2928 char * name;
2929 char delim;
2930 char * end_name;
2931 symbolS * symbolP;
2932
2933 /* Especial apologies for the random logic:
2934 This just grew, and could be parsed much more simply!
2935 Dean - in haste. */
2936 delim = get_symbol_name (& name);
2937 end_name = input_line_pointer;
2938 (void) restore_line_pointer (delim);
2939
2940 if (*input_line_pointer != ',')
2941 {
2942 *end_name = 0;
2943 as_bad (_("expected comma after name \"%s\""), name);
2944 *end_name = delim;
2945 ignore_rest_of_line ();
2946 return;
2947 }
2948
2949 input_line_pointer++;
2950 *end_name = 0;
2951
2952 if (name[0] == '.' && name[1] == '\0')
2953 {
2954 /* XXX - this should not happen to .thumb_set. */
2955 abort ();
2956 }
2957
2958 if ((symbolP = symbol_find (name)) == NULL
2959 && (symbolP = md_undefined_symbol (name)) == NULL)
2960 {
2961 #ifndef NO_LISTING
2962 /* When doing symbol listings, play games with dummy fragments living
2963 outside the normal fragment chain to record the file and line info
2964 for this symbol. */
2965 if (listing & LISTING_SYMBOLS)
2966 {
2967 extern struct list_info_struct * listing_tail;
2968 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2969
2970 memset (dummy_frag, 0, sizeof (fragS));
2971 dummy_frag->fr_type = rs_fill;
2972 dummy_frag->line = listing_tail;
2973 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2974 dummy_frag->fr_symbol = symbolP;
2975 }
2976 else
2977 #endif
2978 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2979
2980 #ifdef OBJ_COFF
2981 /* "set" symbols are local unless otherwise specified. */
2982 SF_SET_LOCAL (symbolP);
2983 #endif /* OBJ_COFF */
2984 } /* Make a new symbol. */
2985
2986 symbol_table_insert (symbolP);
2987
2988 * end_name = delim;
2989
2990 if (equiv
2991 && S_IS_DEFINED (symbolP)
2992 && S_GET_SEGMENT (symbolP) != reg_section)
2993 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2994
2995 pseudo_set (symbolP);
2996
2997 demand_empty_rest_of_line ();
2998
2999 /* XXX Now we come to the Thumb specific bit of code. */
3000
3001 THUMB_SET_FUNC (symbolP, 1);
3002 ARM_SET_THUMB (symbolP, 1);
3003 #if defined OBJ_ELF || defined OBJ_COFF
3004 ARM_SET_INTERWORK (symbolP, support_interwork);
3005 #endif
3006 }
3007
3008 /* Directives: Mode selection. */
3009
3010 /* .syntax [unified|divided] - choose the new unified syntax
3011 (same for Arm and Thumb encoding, modulo slight differences in what
3012 can be represented) or the old divergent syntax for each mode. */
3013 static void
3014 s_syntax (int unused ATTRIBUTE_UNUSED)
3015 {
3016 char *name, delim;
3017
3018 delim = get_symbol_name (& name);
3019
3020 if (!strcasecmp (name, "unified"))
3021 unified_syntax = TRUE;
3022 else if (!strcasecmp (name, "divided"))
3023 unified_syntax = FALSE;
3024 else
3025 {
3026 as_bad (_("unrecognized syntax mode \"%s\""), name);
3027 return;
3028 }
3029 (void) restore_line_pointer (delim);
3030 demand_empty_rest_of_line ();
3031 }
3032
3033 /* Directives: sectioning and alignment. */
3034
3035 static void
3036 s_bss (int ignore ATTRIBUTE_UNUSED)
3037 {
3038 /* We don't support putting frags in the BSS segment, we fake it by
3039 marking in_bss, then looking at s_skip for clues. */
3040 subseg_set (bss_section, 0);
3041 demand_empty_rest_of_line ();
3042
3043 #ifdef md_elf_section_change_hook
3044 md_elf_section_change_hook ();
3045 #endif
3046 }
3047
3048 static void
3049 s_even (int ignore ATTRIBUTE_UNUSED)
3050 {
3051 /* Never make frag if expect extra pass. */
3052 if (!need_pass_2)
3053 frag_align (1, 0, 0);
3054
3055 record_alignment (now_seg, 1);
3056
3057 demand_empty_rest_of_line ();
3058 }
3059
3060 /* Directives: CodeComposer Studio. */
3061
3062 /* .ref (for CodeComposer Studio syntax only). */
3063 static void
3064 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3065 {
3066 if (codecomposer_syntax)
3067 ignore_rest_of_line ();
3068 else
3069 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3070 }
3071
3072 /* If name is not NULL, then it is used for marking the beginning of a
3073 function, whereas if it is NULL then it means the function end. */
3074 static void
3075 asmfunc_debug (const char * name)
3076 {
3077 static const char * last_name = NULL;
3078
3079 if (name != NULL)
3080 {
3081 gas_assert (last_name == NULL);
3082 last_name = name;
3083
3084 if (debug_type == DEBUG_STABS)
3085 stabs_generate_asm_func (name, name);
3086 }
3087 else
3088 {
3089 gas_assert (last_name != NULL);
3090
3091 if (debug_type == DEBUG_STABS)
3092 stabs_generate_asm_endfunc (last_name, last_name);
3093
3094 last_name = NULL;
3095 }
3096 }
3097
3098 static void
3099 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3100 {
3101 if (codecomposer_syntax)
3102 {
3103 switch (asmfunc_state)
3104 {
3105 case OUTSIDE_ASMFUNC:
3106 asmfunc_state = WAITING_ASMFUNC_NAME;
3107 break;
3108
3109 case WAITING_ASMFUNC_NAME:
3110 as_bad (_(".asmfunc repeated."));
3111 break;
3112
3113 case WAITING_ENDASMFUNC:
3114 as_bad (_(".asmfunc without function."));
3115 break;
3116 }
3117 demand_empty_rest_of_line ();
3118 }
3119 else
3120 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3121 }
3122
3123 static void
3124 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3125 {
3126 if (codecomposer_syntax)
3127 {
3128 switch (asmfunc_state)
3129 {
3130 case OUTSIDE_ASMFUNC:
3131 as_bad (_(".endasmfunc without a .asmfunc."));
3132 break;
3133
3134 case WAITING_ASMFUNC_NAME:
3135 as_bad (_(".endasmfunc without function."));
3136 break;
3137
3138 case WAITING_ENDASMFUNC:
3139 asmfunc_state = OUTSIDE_ASMFUNC;
3140 asmfunc_debug (NULL);
3141 break;
3142 }
3143 demand_empty_rest_of_line ();
3144 }
3145 else
3146 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3147 }
3148
3149 static void
3150 s_ccs_def (int name)
3151 {
3152 if (codecomposer_syntax)
3153 s_globl (name);
3154 else
3155 as_bad (_(".def pseudo-op only available with -mccs flag."));
3156 }
3157
3158 /* Directives: Literal pools. */
3159
3160 static literal_pool *
3161 find_literal_pool (void)
3162 {
3163 literal_pool * pool;
3164
3165 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3166 {
3167 if (pool->section == now_seg
3168 && pool->sub_section == now_subseg)
3169 break;
3170 }
3171
3172 return pool;
3173 }
3174
3175 static literal_pool *
3176 find_or_make_literal_pool (void)
3177 {
3178 /* Next literal pool ID number. */
3179 static unsigned int latest_pool_num = 1;
3180 literal_pool * pool;
3181
3182 pool = find_literal_pool ();
3183
3184 if (pool == NULL)
3185 {
3186 /* Create a new pool. */
3187 pool = XNEW (literal_pool);
3188 if (! pool)
3189 return NULL;
3190
3191 pool->next_free_entry = 0;
3192 pool->section = now_seg;
3193 pool->sub_section = now_subseg;
3194 pool->next = list_of_pools;
3195 pool->symbol = NULL;
3196 pool->alignment = 2;
3197
3198 /* Add it to the list. */
3199 list_of_pools = pool;
3200 }
3201
3202 /* New pools, and emptied pools, will have a NULL symbol. */
3203 if (pool->symbol == NULL)
3204 {
3205 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3206 (valueT) 0, &zero_address_frag);
3207 pool->id = latest_pool_num ++;
3208 }
3209
3210 /* Done. */
3211 return pool;
3212 }
3213
3214 /* Add the literal in the global 'inst'
3215 structure to the relevant literal pool. */
3216
3217 static int
3218 add_to_lit_pool (unsigned int nbytes)
3219 {
3220 #define PADDING_SLOT 0x1
3221 #define LIT_ENTRY_SIZE_MASK 0xFF
3222 literal_pool * pool;
3223 unsigned int entry, pool_size = 0;
3224 bfd_boolean padding_slot_p = FALSE;
3225 unsigned imm1 = 0;
3226 unsigned imm2 = 0;
3227
3228 if (nbytes == 8)
3229 {
3230 imm1 = inst.operands[1].imm;
3231 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3232 : inst.reloc.exp.X_unsigned ? 0
3233 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3234 if (target_big_endian)
3235 {
3236 imm1 = imm2;
3237 imm2 = inst.operands[1].imm;
3238 }
3239 }
3240
3241 pool = find_or_make_literal_pool ();
3242
3243 /* Check if this literal value is already in the pool. */
3244 for (entry = 0; entry < pool->next_free_entry; entry ++)
3245 {
3246 if (nbytes == 4)
3247 {
3248 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3249 && (inst.reloc.exp.X_op == O_constant)
3250 && (pool->literals[entry].X_add_number
3251 == inst.reloc.exp.X_add_number)
3252 && (pool->literals[entry].X_md == nbytes)
3253 && (pool->literals[entry].X_unsigned
3254 == inst.reloc.exp.X_unsigned))
3255 break;
3256
3257 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3258 && (inst.reloc.exp.X_op == O_symbol)
3259 && (pool->literals[entry].X_add_number
3260 == inst.reloc.exp.X_add_number)
3261 && (pool->literals[entry].X_add_symbol
3262 == inst.reloc.exp.X_add_symbol)
3263 && (pool->literals[entry].X_op_symbol
3264 == inst.reloc.exp.X_op_symbol)
3265 && (pool->literals[entry].X_md == nbytes))
3266 break;
3267 }
3268 else if ((nbytes == 8)
3269 && !(pool_size & 0x7)
3270 && ((entry + 1) != pool->next_free_entry)
3271 && (pool->literals[entry].X_op == O_constant)
3272 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3273 && (pool->literals[entry].X_unsigned
3274 == inst.reloc.exp.X_unsigned)
3275 && (pool->literals[entry + 1].X_op == O_constant)
3276 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3277 && (pool->literals[entry + 1].X_unsigned
3278 == inst.reloc.exp.X_unsigned))
3279 break;
3280
3281 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3282 if (padding_slot_p && (nbytes == 4))
3283 break;
3284
3285 pool_size += 4;
3286 }
3287
3288 /* Do we need to create a new entry? */
3289 if (entry == pool->next_free_entry)
3290 {
3291 if (entry >= MAX_LITERAL_POOL_SIZE)
3292 {
3293 inst.error = _("literal pool overflow");
3294 return FAIL;
3295 }
3296
3297 if (nbytes == 8)
3298 {
3299 /* For 8-byte entries, we align to an 8-byte boundary,
3300 and split it into two 4-byte entries, because on 32-bit
3301 host, 8-byte constants are treated as big num, thus
3302 saved in "generic_bignum" which will be overwritten
3303 by later assignments.
3304
3305 We also need to make sure there is enough space for
3306 the split.
3307
3308 We also check to make sure the literal operand is a
3309 constant number. */
3310 if (!(inst.reloc.exp.X_op == O_constant
3311 || inst.reloc.exp.X_op == O_big))
3312 {
3313 inst.error = _("invalid type for literal pool");
3314 return FAIL;
3315 }
3316 else if (pool_size & 0x7)
3317 {
3318 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3319 {
3320 inst.error = _("literal pool overflow");
3321 return FAIL;
3322 }
3323
3324 pool->literals[entry] = inst.reloc.exp;
3325 pool->literals[entry].X_op = O_constant;
3326 pool->literals[entry].X_add_number = 0;
3327 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3328 pool->next_free_entry += 1;
3329 pool_size += 4;
3330 }
3331 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3332 {
3333 inst.error = _("literal pool overflow");
3334 return FAIL;
3335 }
3336
3337 pool->literals[entry] = inst.reloc.exp;
3338 pool->literals[entry].X_op = O_constant;
3339 pool->literals[entry].X_add_number = imm1;
3340 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3341 pool->literals[entry++].X_md = 4;
3342 pool->literals[entry] = inst.reloc.exp;
3343 pool->literals[entry].X_op = O_constant;
3344 pool->literals[entry].X_add_number = imm2;
3345 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3346 pool->literals[entry].X_md = 4;
3347 pool->alignment = 3;
3348 pool->next_free_entry += 1;
3349 }
3350 else
3351 {
3352 pool->literals[entry] = inst.reloc.exp;
3353 pool->literals[entry].X_md = 4;
3354 }
3355
3356 #ifdef OBJ_ELF
3357 /* PR ld/12974: Record the location of the first source line to reference
3358 this entry in the literal pool. If it turns out during linking that the
3359 symbol does not exist we will be able to give an accurate line number for
3360 the (first use of the) missing reference. */
3361 if (debug_type == DEBUG_DWARF2)
3362 dwarf2_where (pool->locs + entry);
3363 #endif
3364 pool->next_free_entry += 1;
3365 }
3366 else if (padding_slot_p)
3367 {
3368 pool->literals[entry] = inst.reloc.exp;
3369 pool->literals[entry].X_md = nbytes;
3370 }
3371
3372 inst.reloc.exp.X_op = O_symbol;
3373 inst.reloc.exp.X_add_number = pool_size;
3374 inst.reloc.exp.X_add_symbol = pool->symbol;
3375
3376 return SUCCESS;
3377 }
3378
3379 bfd_boolean
3380 tc_start_label_without_colon (void)
3381 {
3382 bfd_boolean ret = TRUE;
3383
3384 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3385 {
3386 const char *label = input_line_pointer;
3387
3388 while (!is_end_of_line[(int) label[-1]])
3389 --label;
3390
3391 if (*label == '.')
3392 {
3393 as_bad (_("Invalid label '%s'"), label);
3394 ret = FALSE;
3395 }
3396
3397 asmfunc_debug (label);
3398
3399 asmfunc_state = WAITING_ENDASMFUNC;
3400 }
3401
3402 return ret;
3403 }
3404
3405 /* Can't use symbol_new here, so have to create a symbol and then at
3406 a later date assign it a value. That's what these functions do. */
3407
3408 static void
3409 symbol_locate (symbolS * symbolP,
3410 const char * name, /* It is copied, the caller can modify. */
3411 segT segment, /* Segment identifier (SEG_<something>). */
3412 valueT valu, /* Symbol value. */
3413 fragS * frag) /* Associated fragment. */
3414 {
3415 size_t name_length;
3416 char * preserved_copy_of_name;
3417
3418 name_length = strlen (name) + 1; /* +1 for \0. */
3419 obstack_grow (&notes, name, name_length);
3420 preserved_copy_of_name = (char *) obstack_finish (&notes);
3421
3422 #ifdef tc_canonicalize_symbol_name
3423 preserved_copy_of_name =
3424 tc_canonicalize_symbol_name (preserved_copy_of_name);
3425 #endif
3426
3427 S_SET_NAME (symbolP, preserved_copy_of_name);
3428
3429 S_SET_SEGMENT (symbolP, segment);
3430 S_SET_VALUE (symbolP, valu);
3431 symbol_clear_list_pointers (symbolP);
3432
3433 symbol_set_frag (symbolP, frag);
3434
3435 /* Link to end of symbol chain. */
3436 {
3437 extern int symbol_table_frozen;
3438
3439 if (symbol_table_frozen)
3440 abort ();
3441 }
3442
3443 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3444
3445 obj_symbol_new_hook (symbolP);
3446
3447 #ifdef tc_symbol_new_hook
3448 tc_symbol_new_hook (symbolP);
3449 #endif
3450
3451 #ifdef DEBUG_SYMS
3452 verify_symbol_chain (symbol_rootP, symbol_lastP);
3453 #endif /* DEBUG_SYMS */
3454 }
3455
3456 static void
3457 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3458 {
3459 unsigned int entry;
3460 literal_pool * pool;
3461 char sym_name[20];
3462
3463 pool = find_literal_pool ();
3464 if (pool == NULL
3465 || pool->symbol == NULL
3466 || pool->next_free_entry == 0)
3467 return;
3468
3469 /* Align pool as you have word accesses.
3470 Only make a frag if we have to. */
3471 if (!need_pass_2)
3472 frag_align (pool->alignment, 0, 0);
3473
3474 record_alignment (now_seg, 2);
3475
3476 #ifdef OBJ_ELF
3477 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3478 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3479 #endif
3480 sprintf (sym_name, "$$lit_\002%x", pool->id);
3481
3482 symbol_locate (pool->symbol, sym_name, now_seg,
3483 (valueT) frag_now_fix (), frag_now);
3484 symbol_table_insert (pool->symbol);
3485
3486 ARM_SET_THUMB (pool->symbol, thumb_mode);
3487
3488 #if defined OBJ_COFF || defined OBJ_ELF
3489 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3490 #endif
3491
3492 for (entry = 0; entry < pool->next_free_entry; entry ++)
3493 {
3494 #ifdef OBJ_ELF
3495 if (debug_type == DEBUG_DWARF2)
3496 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3497 #endif
3498 /* First output the expression in the instruction to the pool. */
3499 emit_expr (&(pool->literals[entry]),
3500 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3501 }
3502
3503 /* Mark the pool as empty. */
3504 pool->next_free_entry = 0;
3505 pool->symbol = NULL;
3506 }
3507
3508 #ifdef OBJ_ELF
3509 /* Forward declarations for functions below, in the MD interface
3510 section. */
3511 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3512 static valueT create_unwind_entry (int);
3513 static void start_unwind_section (const segT, int);
3514 static void add_unwind_opcode (valueT, int);
3515 static void flush_pending_unwind (void);
3516
3517 /* Directives: Data. */
3518
3519 static void
3520 s_arm_elf_cons (int nbytes)
3521 {
3522 expressionS exp;
3523
3524 #ifdef md_flush_pending_output
3525 md_flush_pending_output ();
3526 #endif
3527
3528 if (is_it_end_of_statement ())
3529 {
3530 demand_empty_rest_of_line ();
3531 return;
3532 }
3533
3534 #ifdef md_cons_align
3535 md_cons_align (nbytes);
3536 #endif
3537
3538 mapping_state (MAP_DATA);
3539 do
3540 {
3541 int reloc;
3542 char *base = input_line_pointer;
3543
3544 expression (& exp);
3545
3546 if (exp.X_op != O_symbol)
3547 emit_expr (&exp, (unsigned int) nbytes);
3548 else
3549 {
3550 char *before_reloc = input_line_pointer;
3551 reloc = parse_reloc (&input_line_pointer);
3552 if (reloc == -1)
3553 {
3554 as_bad (_("unrecognized relocation suffix"));
3555 ignore_rest_of_line ();
3556 return;
3557 }
3558 else if (reloc == BFD_RELOC_UNUSED)
3559 emit_expr (&exp, (unsigned int) nbytes);
3560 else
3561 {
3562 reloc_howto_type *howto = (reloc_howto_type *)
3563 bfd_reloc_type_lookup (stdoutput,
3564 (bfd_reloc_code_real_type) reloc);
3565 int size = bfd_get_reloc_size (howto);
3566
3567 if (reloc == BFD_RELOC_ARM_PLT32)
3568 {
3569 as_bad (_("(plt) is only valid on branch targets"));
3570 reloc = BFD_RELOC_UNUSED;
3571 size = 0;
3572 }
3573
3574 if (size > nbytes)
3575 as_bad (ngettext ("%s relocations do not fit in %d byte",
3576 "%s relocations do not fit in %d bytes",
3577 nbytes),
3578 howto->name, nbytes);
3579 else
3580 {
3581 /* We've parsed an expression stopping at O_symbol.
3582 But there may be more expression left now that we
3583 have parsed the relocation marker. Parse it again.
3584 XXX Surely there is a cleaner way to do this. */
3585 char *p = input_line_pointer;
3586 int offset;
3587 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3588
3589 memcpy (save_buf, base, input_line_pointer - base);
3590 memmove (base + (input_line_pointer - before_reloc),
3591 base, before_reloc - base);
3592
3593 input_line_pointer = base + (input_line_pointer-before_reloc);
3594 expression (&exp);
3595 memcpy (base, save_buf, p - base);
3596
3597 offset = nbytes - size;
3598 p = frag_more (nbytes);
3599 memset (p, 0, nbytes);
3600 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3601 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3602 free (save_buf);
3603 }
3604 }
3605 }
3606 }
3607 while (*input_line_pointer++ == ',');
3608
3609 /* Put terminator back into stream. */
3610 input_line_pointer --;
3611 demand_empty_rest_of_line ();
3612 }
3613
3614 /* Emit an expression containing a 32-bit thumb instruction.
3615 Implementation based on put_thumb32_insn. */
3616
3617 static void
3618 emit_thumb32_expr (expressionS * exp)
3619 {
3620 expressionS exp_high = *exp;
3621
3622 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3623 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3624 exp->X_add_number &= 0xffff;
3625 emit_expr (exp, (unsigned int) THUMB_SIZE);
3626 }
3627
3628 /* Guess the instruction size based on the opcode. */
3629
3630 static int
3631 thumb_insn_size (int opcode)
3632 {
3633 if ((unsigned int) opcode < 0xe800u)
3634 return 2;
3635 else if ((unsigned int) opcode >= 0xe8000000u)
3636 return 4;
3637 else
3638 return 0;
3639 }
3640
3641 static bfd_boolean
3642 emit_insn (expressionS *exp, int nbytes)
3643 {
3644 int size = 0;
3645
3646 if (exp->X_op == O_constant)
3647 {
3648 size = nbytes;
3649
3650 if (size == 0)
3651 size = thumb_insn_size (exp->X_add_number);
3652
3653 if (size != 0)
3654 {
3655 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3656 {
3657 as_bad (_(".inst.n operand too big. "\
3658 "Use .inst.w instead"));
3659 size = 0;
3660 }
3661 else
3662 {
3663 if (now_it.state == AUTOMATIC_IT_BLOCK)
3664 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3665 else
3666 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3667
3668 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3669 emit_thumb32_expr (exp);
3670 else
3671 emit_expr (exp, (unsigned int) size);
3672
3673 it_fsm_post_encode ();
3674 }
3675 }
3676 else
3677 as_bad (_("cannot determine Thumb instruction size. " \
3678 "Use .inst.n/.inst.w instead"));
3679 }
3680 else
3681 as_bad (_("constant expression required"));
3682
3683 return (size != 0);
3684 }
3685
3686 /* Like s_arm_elf_cons but do not use md_cons_align and
3687 set the mapping state to MAP_ARM/MAP_THUMB. */
3688
3689 static void
3690 s_arm_elf_inst (int nbytes)
3691 {
3692 if (is_it_end_of_statement ())
3693 {
3694 demand_empty_rest_of_line ();
3695 return;
3696 }
3697
3698 /* Calling mapping_state () here will not change ARM/THUMB,
3699 but will ensure not to be in DATA state. */
3700
3701 if (thumb_mode)
3702 mapping_state (MAP_THUMB);
3703 else
3704 {
3705 if (nbytes != 0)
3706 {
3707 as_bad (_("width suffixes are invalid in ARM mode"));
3708 ignore_rest_of_line ();
3709 return;
3710 }
3711
3712 nbytes = 4;
3713
3714 mapping_state (MAP_ARM);
3715 }
3716
3717 do
3718 {
3719 expressionS exp;
3720
3721 expression (& exp);
3722
3723 if (! emit_insn (& exp, nbytes))
3724 {
3725 ignore_rest_of_line ();
3726 return;
3727 }
3728 }
3729 while (*input_line_pointer++ == ',');
3730
3731 /* Put terminator back into stream. */
3732 input_line_pointer --;
3733 demand_empty_rest_of_line ();
3734 }
3735
3736 /* Parse a .rel31 directive. */
3737
3738 static void
3739 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3740 {
3741 expressionS exp;
3742 char *p;
3743 valueT highbit;
3744
3745 highbit = 0;
3746 if (*input_line_pointer == '1')
3747 highbit = 0x80000000;
3748 else if (*input_line_pointer != '0')
3749 as_bad (_("expected 0 or 1"));
3750
3751 input_line_pointer++;
3752 if (*input_line_pointer != ',')
3753 as_bad (_("missing comma"));
3754 input_line_pointer++;
3755
3756 #ifdef md_flush_pending_output
3757 md_flush_pending_output ();
3758 #endif
3759
3760 #ifdef md_cons_align
3761 md_cons_align (4);
3762 #endif
3763
3764 mapping_state (MAP_DATA);
3765
3766 expression (&exp);
3767
3768 p = frag_more (4);
3769 md_number_to_chars (p, highbit, 4);
3770 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3771 BFD_RELOC_ARM_PREL31);
3772
3773 demand_empty_rest_of_line ();
3774 }
3775
3776 /* Directives: AEABI stack-unwind tables. */
3777
3778 /* Parse an unwind_fnstart directive. Simply records the current location. */
3779
3780 static void
3781 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3782 {
3783 demand_empty_rest_of_line ();
3784 if (unwind.proc_start)
3785 {
3786 as_bad (_("duplicate .fnstart directive"));
3787 return;
3788 }
3789
3790 /* Mark the start of the function. */
3791 unwind.proc_start = expr_build_dot ();
3792
3793 /* Reset the rest of the unwind info. */
3794 unwind.opcode_count = 0;
3795 unwind.table_entry = NULL;
3796 unwind.personality_routine = NULL;
3797 unwind.personality_index = -1;
3798 unwind.frame_size = 0;
3799 unwind.fp_offset = 0;
3800 unwind.fp_reg = REG_SP;
3801 unwind.fp_used = 0;
3802 unwind.sp_restored = 0;
3803 }
3804
3805
3806 /* Parse a handlerdata directive. Creates the exception handling table entry
3807 for the function. */
3808
3809 static void
3810 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3811 {
3812 demand_empty_rest_of_line ();
3813 if (!unwind.proc_start)
3814 as_bad (MISSING_FNSTART);
3815
3816 if (unwind.table_entry)
3817 as_bad (_("duplicate .handlerdata directive"));
3818
3819 create_unwind_entry (1);
3820 }
3821
3822 /* Parse an unwind_fnend directive. Generates the index table entry. */
3823
3824 static void
3825 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3826 {
3827 long where;
3828 char *ptr;
3829 valueT val;
3830 unsigned int marked_pr_dependency;
3831
3832 demand_empty_rest_of_line ();
3833
3834 if (!unwind.proc_start)
3835 {
3836 as_bad (_(".fnend directive without .fnstart"));
3837 return;
3838 }
3839
3840 /* Add eh table entry. */
3841 if (unwind.table_entry == NULL)
3842 val = create_unwind_entry (0);
3843 else
3844 val = 0;
3845
3846 /* Add index table entry. This is two words. */
3847 start_unwind_section (unwind.saved_seg, 1);
3848 frag_align (2, 0, 0);
3849 record_alignment (now_seg, 2);
3850
3851 ptr = frag_more (8);
3852 memset (ptr, 0, 8);
3853 where = frag_now_fix () - 8;
3854
3855 /* Self relative offset of the function start. */
3856 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3857 BFD_RELOC_ARM_PREL31);
3858
3859 /* Indicate dependency on EHABI-defined personality routines to the
3860 linker, if it hasn't been done already. */
3861 marked_pr_dependency
3862 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3863 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3864 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3865 {
3866 static const char *const name[] =
3867 {
3868 "__aeabi_unwind_cpp_pr0",
3869 "__aeabi_unwind_cpp_pr1",
3870 "__aeabi_unwind_cpp_pr2"
3871 };
3872 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3873 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3874 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3875 |= 1 << unwind.personality_index;
3876 }
3877
3878 if (val)
3879 /* Inline exception table entry. */
3880 md_number_to_chars (ptr + 4, val, 4);
3881 else
3882 /* Self relative offset of the table entry. */
3883 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3884 BFD_RELOC_ARM_PREL31);
3885
3886 /* Restore the original section. */
3887 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3888
3889 unwind.proc_start = NULL;
3890 }
3891
3892
3893 /* Parse an unwind_cantunwind directive. */
3894
3895 static void
3896 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3897 {
3898 demand_empty_rest_of_line ();
3899 if (!unwind.proc_start)
3900 as_bad (MISSING_FNSTART);
3901
3902 if (unwind.personality_routine || unwind.personality_index != -1)
3903 as_bad (_("personality routine specified for cantunwind frame"));
3904
3905 unwind.personality_index = -2;
3906 }
3907
3908
3909 /* Parse a personalityindex directive. */
3910
3911 static void
3912 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3913 {
3914 expressionS exp;
3915
3916 if (!unwind.proc_start)
3917 as_bad (MISSING_FNSTART);
3918
3919 if (unwind.personality_routine || unwind.personality_index != -1)
3920 as_bad (_("duplicate .personalityindex directive"));
3921
3922 expression (&exp);
3923
3924 if (exp.X_op != O_constant
3925 || exp.X_add_number < 0 || exp.X_add_number > 15)
3926 {
3927 as_bad (_("bad personality routine number"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 unwind.personality_index = exp.X_add_number;
3933
3934 demand_empty_rest_of_line ();
3935 }
3936
3937
3938 /* Parse a personality directive. */
3939
3940 static void
3941 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3942 {
3943 char *name, *p, c;
3944
3945 if (!unwind.proc_start)
3946 as_bad (MISSING_FNSTART);
3947
3948 if (unwind.personality_routine || unwind.personality_index != -1)
3949 as_bad (_("duplicate .personality directive"));
3950
3951 c = get_symbol_name (& name);
3952 p = input_line_pointer;
3953 if (c == '"')
3954 ++ input_line_pointer;
3955 unwind.personality_routine = symbol_find_or_make (name);
3956 *p = c;
3957 demand_empty_rest_of_line ();
3958 }
3959
3960
3961 /* Parse a directive saving core registers. */
3962
3963 static void
3964 s_arm_unwind_save_core (void)
3965 {
3966 valueT op;
3967 long range;
3968 int n;
3969
3970 range = parse_reg_list (&input_line_pointer);
3971 if (range == FAIL)
3972 {
3973 as_bad (_("expected register list"));
3974 ignore_rest_of_line ();
3975 return;
3976 }
3977
3978 demand_empty_rest_of_line ();
3979
3980 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3981 into .unwind_save {..., sp...}. We aren't bothered about the value of
3982 ip because it is clobbered by calls. */
3983 if (unwind.sp_restored && unwind.fp_reg == 12
3984 && (range & 0x3000) == 0x1000)
3985 {
3986 unwind.opcode_count--;
3987 unwind.sp_restored = 0;
3988 range = (range | 0x2000) & ~0x1000;
3989 unwind.pending_offset = 0;
3990 }
3991
3992 /* Pop r4-r15. */
3993 if (range & 0xfff0)
3994 {
3995 /* See if we can use the short opcodes. These pop a block of up to 8
3996 registers starting with r4, plus maybe r14. */
3997 for (n = 0; n < 8; n++)
3998 {
3999 /* Break at the first non-saved register. */
4000 if ((range & (1 << (n + 4))) == 0)
4001 break;
4002 }
4003 /* See if there are any other bits set. */
4004 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4005 {
4006 /* Use the long form. */
4007 op = 0x8000 | ((range >> 4) & 0xfff);
4008 add_unwind_opcode (op, 2);
4009 }
4010 else
4011 {
4012 /* Use the short form. */
4013 if (range & 0x4000)
4014 op = 0xa8; /* Pop r14. */
4015 else
4016 op = 0xa0; /* Do not pop r14. */
4017 op |= (n - 1);
4018 add_unwind_opcode (op, 1);
4019 }
4020 }
4021
4022 /* Pop r0-r3. */
4023 if (range & 0xf)
4024 {
4025 op = 0xb100 | (range & 0xf);
4026 add_unwind_opcode (op, 2);
4027 }
4028
4029 /* Record the number of bytes pushed. */
4030 for (n = 0; n < 16; n++)
4031 {
4032 if (range & (1 << n))
4033 unwind.frame_size += 4;
4034 }
4035 }
4036
4037
4038 /* Parse a directive saving FPA registers. */
4039
4040 static void
4041 s_arm_unwind_save_fpa (int reg)
4042 {
4043 expressionS exp;
4044 int num_regs;
4045 valueT op;
4046
4047 /* Get Number of registers to transfer. */
4048 if (skip_past_comma (&input_line_pointer) != FAIL)
4049 expression (&exp);
4050 else
4051 exp.X_op = O_illegal;
4052
4053 if (exp.X_op != O_constant)
4054 {
4055 as_bad (_("expected , <constant>"));
4056 ignore_rest_of_line ();
4057 return;
4058 }
4059
4060 num_regs = exp.X_add_number;
4061
4062 if (num_regs < 1 || num_regs > 4)
4063 {
4064 as_bad (_("number of registers must be in the range [1:4]"));
4065 ignore_rest_of_line ();
4066 return;
4067 }
4068
4069 demand_empty_rest_of_line ();
4070
4071 if (reg == 4)
4072 {
4073 /* Short form. */
4074 op = 0xb4 | (num_regs - 1);
4075 add_unwind_opcode (op, 1);
4076 }
4077 else
4078 {
4079 /* Long form. */
4080 op = 0xc800 | (reg << 4) | (num_regs - 1);
4081 add_unwind_opcode (op, 2);
4082 }
4083 unwind.frame_size += num_regs * 12;
4084 }
4085
4086
4087 /* Parse a directive saving VFP registers for ARMv6 and above. */
4088
4089 static void
4090 s_arm_unwind_save_vfp_armv6 (void)
4091 {
4092 int count;
4093 unsigned int start;
4094 valueT op;
4095 int num_vfpv3_regs = 0;
4096 int num_regs_below_16;
4097
4098 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4099 if (count == FAIL)
4100 {
4101 as_bad (_("expected register list"));
4102 ignore_rest_of_line ();
4103 return;
4104 }
4105
4106 demand_empty_rest_of_line ();
4107
4108 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4109 than FSTMX/FLDMX-style ones). */
4110
4111 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4112 if (start >= 16)
4113 num_vfpv3_regs = count;
4114 else if (start + count > 16)
4115 num_vfpv3_regs = start + count - 16;
4116
4117 if (num_vfpv3_regs > 0)
4118 {
4119 int start_offset = start > 16 ? start - 16 : 0;
4120 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4121 add_unwind_opcode (op, 2);
4122 }
4123
4124 /* Generate opcode for registers numbered in the range 0 .. 15. */
4125 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4126 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4127 if (num_regs_below_16 > 0)
4128 {
4129 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4130 add_unwind_opcode (op, 2);
4131 }
4132
4133 unwind.frame_size += count * 8;
4134 }
4135
4136
4137 /* Parse a directive saving VFP registers for pre-ARMv6. */
4138
4139 static void
4140 s_arm_unwind_save_vfp (void)
4141 {
4142 int count;
4143 unsigned int reg;
4144 valueT op;
4145
4146 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4147 if (count == FAIL)
4148 {
4149 as_bad (_("expected register list"));
4150 ignore_rest_of_line ();
4151 return;
4152 }
4153
4154 demand_empty_rest_of_line ();
4155
4156 if (reg == 8)
4157 {
4158 /* Short form. */
4159 op = 0xb8 | (count - 1);
4160 add_unwind_opcode (op, 1);
4161 }
4162 else
4163 {
4164 /* Long form. */
4165 op = 0xb300 | (reg << 4) | (count - 1);
4166 add_unwind_opcode (op, 2);
4167 }
4168 unwind.frame_size += count * 8 + 4;
4169 }
4170
4171
4172 /* Parse a directive saving iWMMXt data registers. */
4173
4174 static void
4175 s_arm_unwind_save_mmxwr (void)
4176 {
4177 int reg;
4178 int hi_reg;
4179 int i;
4180 unsigned mask = 0;
4181 valueT op;
4182
4183 if (*input_line_pointer == '{')
4184 input_line_pointer++;
4185
4186 do
4187 {
4188 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4189
4190 if (reg == FAIL)
4191 {
4192 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4193 goto error;
4194 }
4195
4196 if (mask >> reg)
4197 as_tsktsk (_("register list not in ascending order"));
4198 mask |= 1 << reg;
4199
4200 if (*input_line_pointer == '-')
4201 {
4202 input_line_pointer++;
4203 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4204 if (hi_reg == FAIL)
4205 {
4206 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4207 goto error;
4208 }
4209 else if (reg >= hi_reg)
4210 {
4211 as_bad (_("bad register range"));
4212 goto error;
4213 }
4214 for (; reg < hi_reg; reg++)
4215 mask |= 1 << reg;
4216 }
4217 }
4218 while (skip_past_comma (&input_line_pointer) != FAIL);
4219
4220 skip_past_char (&input_line_pointer, '}');
4221
4222 demand_empty_rest_of_line ();
4223
4224 /* Generate any deferred opcodes because we're going to be looking at
4225 the list. */
4226 flush_pending_unwind ();
4227
4228 for (i = 0; i < 16; i++)
4229 {
4230 if (mask & (1 << i))
4231 unwind.frame_size += 8;
4232 }
4233
4234 /* Attempt to combine with a previous opcode. We do this because gcc
4235 likes to output separate unwind directives for a single block of
4236 registers. */
4237 if (unwind.opcode_count > 0)
4238 {
4239 i = unwind.opcodes[unwind.opcode_count - 1];
4240 if ((i & 0xf8) == 0xc0)
4241 {
4242 i &= 7;
4243 /* Only merge if the blocks are contiguous. */
4244 if (i < 6)
4245 {
4246 if ((mask & 0xfe00) == (1 << 9))
4247 {
4248 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4249 unwind.opcode_count--;
4250 }
4251 }
4252 else if (i == 6 && unwind.opcode_count >= 2)
4253 {
4254 i = unwind.opcodes[unwind.opcode_count - 2];
4255 reg = i >> 4;
4256 i &= 0xf;
4257
4258 op = 0xffff << (reg - 1);
4259 if (reg > 0
4260 && ((mask & op) == (1u << (reg - 1))))
4261 {
4262 op = (1 << (reg + i + 1)) - 1;
4263 op &= ~((1 << reg) - 1);
4264 mask |= op;
4265 unwind.opcode_count -= 2;
4266 }
4267 }
4268 }
4269 }
4270
4271 hi_reg = 15;
4272 /* We want to generate opcodes in the order the registers have been
4273 saved, ie. descending order. */
4274 for (reg = 15; reg >= -1; reg--)
4275 {
4276 /* Save registers in blocks. */
4277 if (reg < 0
4278 || !(mask & (1 << reg)))
4279 {
4280 /* We found an unsaved reg. Generate opcodes to save the
4281 preceding block. */
4282 if (reg != hi_reg)
4283 {
4284 if (reg == 9)
4285 {
4286 /* Short form. */
4287 op = 0xc0 | (hi_reg - 10);
4288 add_unwind_opcode (op, 1);
4289 }
4290 else
4291 {
4292 /* Long form. */
4293 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4294 add_unwind_opcode (op, 2);
4295 }
4296 }
4297 hi_reg = reg - 1;
4298 }
4299 }
4300
4301 return;
4302 error:
4303 ignore_rest_of_line ();
4304 }
4305
4306 static void
4307 s_arm_unwind_save_mmxwcg (void)
4308 {
4309 int reg;
4310 int hi_reg;
4311 unsigned mask = 0;
4312 valueT op;
4313
4314 if (*input_line_pointer == '{')
4315 input_line_pointer++;
4316
4317 skip_whitespace (input_line_pointer);
4318
4319 do
4320 {
4321 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4322
4323 if (reg == FAIL)
4324 {
4325 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4326 goto error;
4327 }
4328
4329 reg -= 8;
4330 if (mask >> reg)
4331 as_tsktsk (_("register list not in ascending order"));
4332 mask |= 1 << reg;
4333
4334 if (*input_line_pointer == '-')
4335 {
4336 input_line_pointer++;
4337 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4338 if (hi_reg == FAIL)
4339 {
4340 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4341 goto error;
4342 }
4343 else if (reg >= hi_reg)
4344 {
4345 as_bad (_("bad register range"));
4346 goto error;
4347 }
4348 for (; reg < hi_reg; reg++)
4349 mask |= 1 << reg;
4350 }
4351 }
4352 while (skip_past_comma (&input_line_pointer) != FAIL);
4353
4354 skip_past_char (&input_line_pointer, '}');
4355
4356 demand_empty_rest_of_line ();
4357
4358 /* Generate any deferred opcodes because we're going to be looking at
4359 the list. */
4360 flush_pending_unwind ();
4361
4362 for (reg = 0; reg < 16; reg++)
4363 {
4364 if (mask & (1 << reg))
4365 unwind.frame_size += 4;
4366 }
4367 op = 0xc700 | mask;
4368 add_unwind_opcode (op, 2);
4369 return;
4370 error:
4371 ignore_rest_of_line ();
4372 }
4373
4374
4375 /* Parse an unwind_save directive.
4376 If the argument is non-zero, this is a .vsave directive. */
4377
4378 static void
4379 s_arm_unwind_save (int arch_v6)
4380 {
4381 char *peek;
4382 struct reg_entry *reg;
4383 bfd_boolean had_brace = FALSE;
4384
4385 if (!unwind.proc_start)
4386 as_bad (MISSING_FNSTART);
4387
4388 /* Figure out what sort of save we have. */
4389 peek = input_line_pointer;
4390
4391 if (*peek == '{')
4392 {
4393 had_brace = TRUE;
4394 peek++;
4395 }
4396
4397 reg = arm_reg_parse_multi (&peek);
4398
4399 if (!reg)
4400 {
4401 as_bad (_("register expected"));
4402 ignore_rest_of_line ();
4403 return;
4404 }
4405
4406 switch (reg->type)
4407 {
4408 case REG_TYPE_FN:
4409 if (had_brace)
4410 {
4411 as_bad (_("FPA .unwind_save does not take a register list"));
4412 ignore_rest_of_line ();
4413 return;
4414 }
4415 input_line_pointer = peek;
4416 s_arm_unwind_save_fpa (reg->number);
4417 return;
4418
4419 case REG_TYPE_RN:
4420 s_arm_unwind_save_core ();
4421 return;
4422
4423 case REG_TYPE_VFD:
4424 if (arch_v6)
4425 s_arm_unwind_save_vfp_armv6 ();
4426 else
4427 s_arm_unwind_save_vfp ();
4428 return;
4429
4430 case REG_TYPE_MMXWR:
4431 s_arm_unwind_save_mmxwr ();
4432 return;
4433
4434 case REG_TYPE_MMXWCG:
4435 s_arm_unwind_save_mmxwcg ();
4436 return;
4437
4438 default:
4439 as_bad (_(".unwind_save does not support this kind of register"));
4440 ignore_rest_of_line ();
4441 }
4442 }
4443
4444
4445 /* Parse an unwind_movsp directive. */
4446
4447 static void
4448 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4449 {
4450 int reg;
4451 valueT op;
4452 int offset;
4453
4454 if (!unwind.proc_start)
4455 as_bad (MISSING_FNSTART);
4456
4457 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4458 if (reg == FAIL)
4459 {
4460 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4461 ignore_rest_of_line ();
4462 return;
4463 }
4464
4465 /* Optional constant. */
4466 if (skip_past_comma (&input_line_pointer) != FAIL)
4467 {
4468 if (immediate_for_directive (&offset) == FAIL)
4469 return;
4470 }
4471 else
4472 offset = 0;
4473
4474 demand_empty_rest_of_line ();
4475
4476 if (reg == REG_SP || reg == REG_PC)
4477 {
4478 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4479 return;
4480 }
4481
4482 if (unwind.fp_reg != REG_SP)
4483 as_bad (_("unexpected .unwind_movsp directive"));
4484
4485 /* Generate opcode to restore the value. */
4486 op = 0x90 | reg;
4487 add_unwind_opcode (op, 1);
4488
4489 /* Record the information for later. */
4490 unwind.fp_reg = reg;
4491 unwind.fp_offset = unwind.frame_size - offset;
4492 unwind.sp_restored = 1;
4493 }
4494
4495 /* Parse an unwind_pad directive. */
4496
4497 static void
4498 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4499 {
4500 int offset;
4501
4502 if (!unwind.proc_start)
4503 as_bad (MISSING_FNSTART);
4504
4505 if (immediate_for_directive (&offset) == FAIL)
4506 return;
4507
4508 if (offset & 3)
4509 {
4510 as_bad (_("stack increment must be multiple of 4"));
4511 ignore_rest_of_line ();
4512 return;
4513 }
4514
4515 /* Don't generate any opcodes, just record the details for later. */
4516 unwind.frame_size += offset;
4517 unwind.pending_offset += offset;
4518
4519 demand_empty_rest_of_line ();
4520 }
4521
4522 /* Parse an unwind_setfp directive. */
4523
4524 static void
4525 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4526 {
4527 int sp_reg;
4528 int fp_reg;
4529 int offset;
4530
4531 if (!unwind.proc_start)
4532 as_bad (MISSING_FNSTART);
4533
4534 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4535 if (skip_past_comma (&input_line_pointer) == FAIL)
4536 sp_reg = FAIL;
4537 else
4538 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4539
4540 if (fp_reg == FAIL || sp_reg == FAIL)
4541 {
4542 as_bad (_("expected <reg>, <reg>"));
4543 ignore_rest_of_line ();
4544 return;
4545 }
4546
4547 /* Optional constant. */
4548 if (skip_past_comma (&input_line_pointer) != FAIL)
4549 {
4550 if (immediate_for_directive (&offset) == FAIL)
4551 return;
4552 }
4553 else
4554 offset = 0;
4555
4556 demand_empty_rest_of_line ();
4557
4558 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4559 {
4560 as_bad (_("register must be either sp or set by a previous"
4561 "unwind_movsp directive"));
4562 return;
4563 }
4564
4565 /* Don't generate any opcodes, just record the information for later. */
4566 unwind.fp_reg = fp_reg;
4567 unwind.fp_used = 1;
4568 if (sp_reg == REG_SP)
4569 unwind.fp_offset = unwind.frame_size - offset;
4570 else
4571 unwind.fp_offset -= offset;
4572 }
4573
4574 /* Parse an unwind_raw directive. */
4575
4576 static void
4577 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4578 {
4579 expressionS exp;
4580 /* This is an arbitrary limit. */
4581 unsigned char op[16];
4582 int count;
4583
4584 if (!unwind.proc_start)
4585 as_bad (MISSING_FNSTART);
4586
4587 expression (&exp);
4588 if (exp.X_op == O_constant
4589 && skip_past_comma (&input_line_pointer) != FAIL)
4590 {
4591 unwind.frame_size += exp.X_add_number;
4592 expression (&exp);
4593 }
4594 else
4595 exp.X_op = O_illegal;
4596
4597 if (exp.X_op != O_constant)
4598 {
4599 as_bad (_("expected <offset>, <opcode>"));
4600 ignore_rest_of_line ();
4601 return;
4602 }
4603
4604 count = 0;
4605
4606 /* Parse the opcode. */
4607 for (;;)
4608 {
4609 if (count >= 16)
4610 {
4611 as_bad (_("unwind opcode too long"));
4612 ignore_rest_of_line ();
4613 }
4614 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4615 {
4616 as_bad (_("invalid unwind opcode"));
4617 ignore_rest_of_line ();
4618 return;
4619 }
4620 op[count++] = exp.X_add_number;
4621
4622 /* Parse the next byte. */
4623 if (skip_past_comma (&input_line_pointer) == FAIL)
4624 break;
4625
4626 expression (&exp);
4627 }
4628
4629 /* Add the opcode bytes in reverse order. */
4630 while (count--)
4631 add_unwind_opcode (op[count], 1);
4632
4633 demand_empty_rest_of_line ();
4634 }
4635
4636
4637 /* Parse a .eabi_attribute directive. */
4638
4639 static void
4640 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4641 {
4642 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4643
4644 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4645 attributes_set_explicitly[tag] = 1;
4646 }
4647
4648 /* Emit a tls fix for the symbol. */
4649
4650 static void
4651 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4652 {
4653 char *p;
4654 expressionS exp;
4655 #ifdef md_flush_pending_output
4656 md_flush_pending_output ();
4657 #endif
4658
4659 #ifdef md_cons_align
4660 md_cons_align (4);
4661 #endif
4662
4663 /* Since we're just labelling the code, there's no need to define a
4664 mapping symbol. */
4665 expression (&exp);
4666 p = obstack_next_free (&frchain_now->frch_obstack);
4667 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4668 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4669 : BFD_RELOC_ARM_TLS_DESCSEQ);
4670 }
4671 #endif /* OBJ_ELF */
4672
4673 static void s_arm_arch (int);
4674 static void s_arm_object_arch (int);
4675 static void s_arm_cpu (int);
4676 static void s_arm_fpu (int);
4677 static void s_arm_arch_extension (int);
4678
4679 #ifdef TE_PE
4680
4681 static void
4682 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4683 {
4684 expressionS exp;
4685
4686 do
4687 {
4688 expression (&exp);
4689 if (exp.X_op == O_symbol)
4690 exp.X_op = O_secrel;
4691
4692 emit_expr (&exp, 4);
4693 }
4694 while (*input_line_pointer++ == ',');
4695
4696 input_line_pointer--;
4697 demand_empty_rest_of_line ();
4698 }
4699 #endif /* TE_PE */
4700
4701 /* This table describes all the machine specific pseudo-ops the assembler
4702 has to support. The fields are:
4703 pseudo-op name without dot
4704 function to call to execute this pseudo-op
4705 Integer arg to pass to the function. */
4706
4707 const pseudo_typeS md_pseudo_table[] =
4708 {
4709 /* Never called because '.req' does not start a line. */
4710 { "req", s_req, 0 },
4711 /* Following two are likewise never called. */
4712 { "dn", s_dn, 0 },
4713 { "qn", s_qn, 0 },
4714 { "unreq", s_unreq, 0 },
4715 { "bss", s_bss, 0 },
4716 { "align", s_align_ptwo, 2 },
4717 { "arm", s_arm, 0 },
4718 { "thumb", s_thumb, 0 },
4719 { "code", s_code, 0 },
4720 { "force_thumb", s_force_thumb, 0 },
4721 { "thumb_func", s_thumb_func, 0 },
4722 { "thumb_set", s_thumb_set, 0 },
4723 { "even", s_even, 0 },
4724 { "ltorg", s_ltorg, 0 },
4725 { "pool", s_ltorg, 0 },
4726 { "syntax", s_syntax, 0 },
4727 { "cpu", s_arm_cpu, 0 },
4728 { "arch", s_arm_arch, 0 },
4729 { "object_arch", s_arm_object_arch, 0 },
4730 { "fpu", s_arm_fpu, 0 },
4731 { "arch_extension", s_arm_arch_extension, 0 },
4732 #ifdef OBJ_ELF
4733 { "word", s_arm_elf_cons, 4 },
4734 { "long", s_arm_elf_cons, 4 },
4735 { "inst.n", s_arm_elf_inst, 2 },
4736 { "inst.w", s_arm_elf_inst, 4 },
4737 { "inst", s_arm_elf_inst, 0 },
4738 { "rel31", s_arm_rel31, 0 },
4739 { "fnstart", s_arm_unwind_fnstart, 0 },
4740 { "fnend", s_arm_unwind_fnend, 0 },
4741 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4742 { "personality", s_arm_unwind_personality, 0 },
4743 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4744 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4745 { "save", s_arm_unwind_save, 0 },
4746 { "vsave", s_arm_unwind_save, 1 },
4747 { "movsp", s_arm_unwind_movsp, 0 },
4748 { "pad", s_arm_unwind_pad, 0 },
4749 { "setfp", s_arm_unwind_setfp, 0 },
4750 { "unwind_raw", s_arm_unwind_raw, 0 },
4751 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4752 { "tlsdescseq", s_arm_tls_descseq, 0 },
4753 #else
4754 { "word", cons, 4},
4755
4756 /* These are used for dwarf. */
4757 {"2byte", cons, 2},
4758 {"4byte", cons, 4},
4759 {"8byte", cons, 8},
4760 /* These are used for dwarf2. */
4761 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4762 { "loc", dwarf2_directive_loc, 0 },
4763 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4764 #endif
4765 { "extend", float_cons, 'x' },
4766 { "ldouble", float_cons, 'x' },
4767 { "packed", float_cons, 'p' },
4768 #ifdef TE_PE
4769 {"secrel32", pe_directive_secrel, 0},
4770 #endif
4771
4772 /* These are for compatibility with CodeComposer Studio. */
4773 {"ref", s_ccs_ref, 0},
4774 {"def", s_ccs_def, 0},
4775 {"asmfunc", s_ccs_asmfunc, 0},
4776 {"endasmfunc", s_ccs_endasmfunc, 0},
4777
4778 { 0, 0, 0 }
4779 };
4780 \f
4781 /* Parser functions used exclusively in instruction operands. */
4782
4783 /* Generic immediate-value read function for use in insn parsing.
4784 STR points to the beginning of the immediate (the leading #);
4785 VAL receives the value; if the value is outside [MIN, MAX]
4786 issue an error. PREFIX_OPT is true if the immediate prefix is
4787 optional. */
4788
4789 static int
4790 parse_immediate (char **str, int *val, int min, int max,
4791 bfd_boolean prefix_opt)
4792 {
4793 expressionS exp;
4794
4795 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4796 if (exp.X_op != O_constant)
4797 {
4798 inst.error = _("constant expression required");
4799 return FAIL;
4800 }
4801
4802 if (exp.X_add_number < min || exp.X_add_number > max)
4803 {
4804 inst.error = _("immediate value out of range");
4805 return FAIL;
4806 }
4807
4808 *val = exp.X_add_number;
4809 return SUCCESS;
4810 }
4811
4812 /* Less-generic immediate-value read function with the possibility of loading a
4813 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4814 instructions. Puts the result directly in inst.operands[i]. */
4815
4816 static int
4817 parse_big_immediate (char **str, int i, expressionS *in_exp,
4818 bfd_boolean allow_symbol_p)
4819 {
4820 expressionS exp;
4821 expressionS *exp_p = in_exp ? in_exp : &exp;
4822 char *ptr = *str;
4823
4824 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4825
4826 if (exp_p->X_op == O_constant)
4827 {
4828 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4829 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4830 O_constant. We have to be careful not to break compilation for
4831 32-bit X_add_number, though. */
4832 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4833 {
4834 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4835 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4836 & 0xffffffff);
4837 inst.operands[i].regisimm = 1;
4838 }
4839 }
4840 else if (exp_p->X_op == O_big
4841 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4842 {
4843 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4844
4845 /* Bignums have their least significant bits in
4846 generic_bignum[0]. Make sure we put 32 bits in imm and
4847 32 bits in reg, in a (hopefully) portable way. */
4848 gas_assert (parts != 0);
4849
4850 /* Make sure that the number is not too big.
4851 PR 11972: Bignums can now be sign-extended to the
4852 size of a .octa so check that the out of range bits
4853 are all zero or all one. */
4854 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4855 {
4856 LITTLENUM_TYPE m = -1;
4857
4858 if (generic_bignum[parts * 2] != 0
4859 && generic_bignum[parts * 2] != m)
4860 return FAIL;
4861
4862 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4863 if (generic_bignum[j] != generic_bignum[j-1])
4864 return FAIL;
4865 }
4866
4867 inst.operands[i].imm = 0;
4868 for (j = 0; j < parts; j++, idx++)
4869 inst.operands[i].imm |= generic_bignum[idx]
4870 << (LITTLENUM_NUMBER_OF_BITS * j);
4871 inst.operands[i].reg = 0;
4872 for (j = 0; j < parts; j++, idx++)
4873 inst.operands[i].reg |= generic_bignum[idx]
4874 << (LITTLENUM_NUMBER_OF_BITS * j);
4875 inst.operands[i].regisimm = 1;
4876 }
4877 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4878 return FAIL;
4879
4880 *str = ptr;
4881
4882 return SUCCESS;
4883 }
4884
4885 /* Returns the pseudo-register number of an FPA immediate constant,
4886 or FAIL if there isn't a valid constant here. */
4887
4888 static int
4889 parse_fpa_immediate (char ** str)
4890 {
4891 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4892 char * save_in;
4893 expressionS exp;
4894 int i;
4895 int j;
4896
4897 /* First try and match exact strings, this is to guarantee
4898 that some formats will work even for cross assembly. */
4899
4900 for (i = 0; fp_const[i]; i++)
4901 {
4902 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4903 {
4904 char *start = *str;
4905
4906 *str += strlen (fp_const[i]);
4907 if (is_end_of_line[(unsigned char) **str])
4908 return i + 8;
4909 *str = start;
4910 }
4911 }
4912
4913 /* Just because we didn't get a match doesn't mean that the constant
4914 isn't valid, just that it is in a format that we don't
4915 automatically recognize. Try parsing it with the standard
4916 expression routines. */
4917
4918 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4919
4920 /* Look for a raw floating point number. */
4921 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4922 && is_end_of_line[(unsigned char) *save_in])
4923 {
4924 for (i = 0; i < NUM_FLOAT_VALS; i++)
4925 {
4926 for (j = 0; j < MAX_LITTLENUMS; j++)
4927 {
4928 if (words[j] != fp_values[i][j])
4929 break;
4930 }
4931
4932 if (j == MAX_LITTLENUMS)
4933 {
4934 *str = save_in;
4935 return i + 8;
4936 }
4937 }
4938 }
4939
4940 /* Try and parse a more complex expression, this will probably fail
4941 unless the code uses a floating point prefix (eg "0f"). */
4942 save_in = input_line_pointer;
4943 input_line_pointer = *str;
4944 if (expression (&exp) == absolute_section
4945 && exp.X_op == O_big
4946 && exp.X_add_number < 0)
4947 {
4948 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4949 Ditto for 15. */
4950 #define X_PRECISION 5
4951 #define E_PRECISION 15L
4952 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4953 {
4954 for (i = 0; i < NUM_FLOAT_VALS; i++)
4955 {
4956 for (j = 0; j < MAX_LITTLENUMS; j++)
4957 {
4958 if (words[j] != fp_values[i][j])
4959 break;
4960 }
4961
4962 if (j == MAX_LITTLENUMS)
4963 {
4964 *str = input_line_pointer;
4965 input_line_pointer = save_in;
4966 return i + 8;
4967 }
4968 }
4969 }
4970 }
4971
4972 *str = input_line_pointer;
4973 input_line_pointer = save_in;
4974 inst.error = _("invalid FPA immediate expression");
4975 return FAIL;
4976 }
4977
4978 /* Returns 1 if a number has "quarter-precision" float format
4979 0baBbbbbbc defgh000 00000000 00000000. */
4980
4981 static int
4982 is_quarter_float (unsigned imm)
4983 {
4984 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4985 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4986 }
4987
4988
4989 /* Detect the presence of a floating point or integer zero constant,
4990 i.e. #0.0 or #0. */
4991
4992 static bfd_boolean
4993 parse_ifimm_zero (char **in)
4994 {
4995 int error_code;
4996
4997 if (!is_immediate_prefix (**in))
4998 {
4999 /* In unified syntax, all prefixes are optional. */
5000 if (!unified_syntax)
5001 return FALSE;
5002 }
5003 else
5004 ++*in;
5005
5006 /* Accept #0x0 as a synonym for #0. */
5007 if (strncmp (*in, "0x", 2) == 0)
5008 {
5009 int val;
5010 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5011 return FALSE;
5012 return TRUE;
5013 }
5014
5015 error_code = atof_generic (in, ".", EXP_CHARS,
5016 &generic_floating_point_number);
5017
5018 if (!error_code
5019 && generic_floating_point_number.sign == '+'
5020 && (generic_floating_point_number.low
5021 > generic_floating_point_number.leader))
5022 return TRUE;
5023
5024 return FALSE;
5025 }
5026
5027 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5028 0baBbbbbbc defgh000 00000000 00000000.
5029 The zero and minus-zero cases need special handling, since they can't be
5030 encoded in the "quarter-precision" float format, but can nonetheless be
5031 loaded as integer constants. */
5032
5033 static unsigned
5034 parse_qfloat_immediate (char **ccp, int *immed)
5035 {
5036 char *str = *ccp;
5037 char *fpnum;
5038 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5039 int found_fpchar = 0;
5040
5041 skip_past_char (&str, '#');
5042
5043 /* We must not accidentally parse an integer as a floating-point number. Make
5044 sure that the value we parse is not an integer by checking for special
5045 characters '.' or 'e'.
5046 FIXME: This is a horrible hack, but doing better is tricky because type
5047 information isn't in a very usable state at parse time. */
5048 fpnum = str;
5049 skip_whitespace (fpnum);
5050
5051 if (strncmp (fpnum, "0x", 2) == 0)
5052 return FAIL;
5053 else
5054 {
5055 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5056 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5057 {
5058 found_fpchar = 1;
5059 break;
5060 }
5061
5062 if (!found_fpchar)
5063 return FAIL;
5064 }
5065
5066 if ((str = atof_ieee (str, 's', words)) != NULL)
5067 {
5068 unsigned fpword = 0;
5069 int i;
5070
5071 /* Our FP word must be 32 bits (single-precision FP). */
5072 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5073 {
5074 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5075 fpword |= words[i];
5076 }
5077
5078 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5079 *immed = fpword;
5080 else
5081 return FAIL;
5082
5083 *ccp = str;
5084
5085 return SUCCESS;
5086 }
5087
5088 return FAIL;
5089 }
5090
5091 /* Shift operands. */
5092 enum shift_kind
5093 {
5094 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5095 };
5096
5097 struct asm_shift_name
5098 {
5099 const char *name;
5100 enum shift_kind kind;
5101 };
5102
5103 /* Third argument to parse_shift. */
5104 enum parse_shift_mode
5105 {
5106 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5107 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5108 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5109 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5110 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5111 };
5112
5113 /* Parse a <shift> specifier on an ARM data processing instruction.
5114 This has three forms:
5115
5116 (LSL|LSR|ASL|ASR|ROR) Rs
5117 (LSL|LSR|ASL|ASR|ROR) #imm
5118 RRX
5119
5120 Note that ASL is assimilated to LSL in the instruction encoding, and
5121 RRX to ROR #0 (which cannot be written as such). */
5122
5123 static int
5124 parse_shift (char **str, int i, enum parse_shift_mode mode)
5125 {
5126 const struct asm_shift_name *shift_name;
5127 enum shift_kind shift;
5128 char *s = *str;
5129 char *p = s;
5130 int reg;
5131
5132 for (p = *str; ISALPHA (*p); p++)
5133 ;
5134
5135 if (p == *str)
5136 {
5137 inst.error = _("shift expression expected");
5138 return FAIL;
5139 }
5140
5141 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5142 p - *str);
5143
5144 if (shift_name == NULL)
5145 {
5146 inst.error = _("shift expression expected");
5147 return FAIL;
5148 }
5149
5150 shift = shift_name->kind;
5151
5152 switch (mode)
5153 {
5154 case NO_SHIFT_RESTRICT:
5155 case SHIFT_IMMEDIATE: break;
5156
5157 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5158 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5159 {
5160 inst.error = _("'LSL' or 'ASR' required");
5161 return FAIL;
5162 }
5163 break;
5164
5165 case SHIFT_LSL_IMMEDIATE:
5166 if (shift != SHIFT_LSL)
5167 {
5168 inst.error = _("'LSL' required");
5169 return FAIL;
5170 }
5171 break;
5172
5173 case SHIFT_ASR_IMMEDIATE:
5174 if (shift != SHIFT_ASR)
5175 {
5176 inst.error = _("'ASR' required");
5177 return FAIL;
5178 }
5179 break;
5180
5181 default: abort ();
5182 }
5183
5184 if (shift != SHIFT_RRX)
5185 {
5186 /* Whitespace can appear here if the next thing is a bare digit. */
5187 skip_whitespace (p);
5188
5189 if (mode == NO_SHIFT_RESTRICT
5190 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5191 {
5192 inst.operands[i].imm = reg;
5193 inst.operands[i].immisreg = 1;
5194 }
5195 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5196 return FAIL;
5197 }
5198 inst.operands[i].shift_kind = shift;
5199 inst.operands[i].shifted = 1;
5200 *str = p;
5201 return SUCCESS;
5202 }
5203
5204 /* Parse a <shifter_operand> for an ARM data processing instruction:
5205
5206 #<immediate>
5207 #<immediate>, <rotate>
5208 <Rm>
5209 <Rm>, <shift>
5210
5211 where <shift> is defined by parse_shift above, and <rotate> is a
5212 multiple of 2 between 0 and 30. Validation of immediate operands
5213 is deferred to md_apply_fix. */
5214
5215 static int
5216 parse_shifter_operand (char **str, int i)
5217 {
5218 int value;
5219 expressionS exp;
5220
5221 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5222 {
5223 inst.operands[i].reg = value;
5224 inst.operands[i].isreg = 1;
5225
5226 /* parse_shift will override this if appropriate */
5227 inst.reloc.exp.X_op = O_constant;
5228 inst.reloc.exp.X_add_number = 0;
5229
5230 if (skip_past_comma (str) == FAIL)
5231 return SUCCESS;
5232
5233 /* Shift operation on register. */
5234 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5235 }
5236
5237 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5238 return FAIL;
5239
5240 if (skip_past_comma (str) == SUCCESS)
5241 {
5242 /* #x, y -- ie explicit rotation by Y. */
5243 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5244 return FAIL;
5245
5246 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5247 {
5248 inst.error = _("constant expression expected");
5249 return FAIL;
5250 }
5251
5252 value = exp.X_add_number;
5253 if (value < 0 || value > 30 || value % 2 != 0)
5254 {
5255 inst.error = _("invalid rotation");
5256 return FAIL;
5257 }
5258 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5259 {
5260 inst.error = _("invalid constant");
5261 return FAIL;
5262 }
5263
5264 /* Encode as specified. */
5265 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5266 return SUCCESS;
5267 }
5268
5269 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5270 inst.reloc.pc_rel = 0;
5271 return SUCCESS;
5272 }
5273
5274 /* Group relocation information. Each entry in the table contains the
5275 textual name of the relocation as may appear in assembler source
5276 and must end with a colon.
5277 Along with this textual name are the relocation codes to be used if
5278 the corresponding instruction is an ALU instruction (ADD or SUB only),
5279 an LDR, an LDRS, or an LDC. */
5280
5281 struct group_reloc_table_entry
5282 {
5283 const char *name;
5284 int alu_code;
5285 int ldr_code;
5286 int ldrs_code;
5287 int ldc_code;
5288 };
5289
5290 typedef enum
5291 {
5292 /* Varieties of non-ALU group relocation. */
5293
5294 GROUP_LDR,
5295 GROUP_LDRS,
5296 GROUP_LDC
5297 } group_reloc_type;
5298
5299 static struct group_reloc_table_entry group_reloc_table[] =
5300 { /* Program counter relative: */
5301 { "pc_g0_nc",
5302 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5303 0, /* LDR */
5304 0, /* LDRS */
5305 0 }, /* LDC */
5306 { "pc_g0",
5307 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5308 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5309 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5310 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5311 { "pc_g1_nc",
5312 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5313 0, /* LDR */
5314 0, /* LDRS */
5315 0 }, /* LDC */
5316 { "pc_g1",
5317 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5318 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5319 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5320 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5321 { "pc_g2",
5322 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5323 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5324 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5325 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5326 /* Section base relative */
5327 { "sb_g0_nc",
5328 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5329 0, /* LDR */
5330 0, /* LDRS */
5331 0 }, /* LDC */
5332 { "sb_g0",
5333 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5334 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5335 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5336 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5337 { "sb_g1_nc",
5338 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5339 0, /* LDR */
5340 0, /* LDRS */
5341 0 }, /* LDC */
5342 { "sb_g1",
5343 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5344 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5345 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5346 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5347 { "sb_g2",
5348 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5349 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5350 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5351 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5352 /* Absolute thumb alu relocations. */
5353 { "lower0_7",
5354 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5355 0, /* LDR. */
5356 0, /* LDRS. */
5357 0 }, /* LDC. */
5358 { "lower8_15",
5359 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5360 0, /* LDR. */
5361 0, /* LDRS. */
5362 0 }, /* LDC. */
5363 { "upper0_7",
5364 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5365 0, /* LDR. */
5366 0, /* LDRS. */
5367 0 }, /* LDC. */
5368 { "upper8_15",
5369 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5370 0, /* LDR. */
5371 0, /* LDRS. */
5372 0 } }; /* LDC. */
5373
5374 /* Given the address of a pointer pointing to the textual name of a group
5375 relocation as may appear in assembler source, attempt to find its details
5376 in group_reloc_table. The pointer will be updated to the character after
5377 the trailing colon. On failure, FAIL will be returned; SUCCESS
5378 otherwise. On success, *entry will be updated to point at the relevant
5379 group_reloc_table entry. */
5380
5381 static int
5382 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5383 {
5384 unsigned int i;
5385 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5386 {
5387 int length = strlen (group_reloc_table[i].name);
5388
5389 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5390 && (*str)[length] == ':')
5391 {
5392 *out = &group_reloc_table[i];
5393 *str += (length + 1);
5394 return SUCCESS;
5395 }
5396 }
5397
5398 return FAIL;
5399 }
5400
5401 /* Parse a <shifter_operand> for an ARM data processing instruction
5402 (as for parse_shifter_operand) where group relocations are allowed:
5403
5404 #<immediate>
5405 #<immediate>, <rotate>
5406 #:<group_reloc>:<expression>
5407 <Rm>
5408 <Rm>, <shift>
5409
5410 where <group_reloc> is one of the strings defined in group_reloc_table.
5411 The hashes are optional.
5412
5413 Everything else is as for parse_shifter_operand. */
5414
5415 static parse_operand_result
5416 parse_shifter_operand_group_reloc (char **str, int i)
5417 {
5418 /* Determine if we have the sequence of characters #: or just :
5419 coming next. If we do, then we check for a group relocation.
5420 If we don't, punt the whole lot to parse_shifter_operand. */
5421
5422 if (((*str)[0] == '#' && (*str)[1] == ':')
5423 || (*str)[0] == ':')
5424 {
5425 struct group_reloc_table_entry *entry;
5426
5427 if ((*str)[0] == '#')
5428 (*str) += 2;
5429 else
5430 (*str)++;
5431
5432 /* Try to parse a group relocation. Anything else is an error. */
5433 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5434 {
5435 inst.error = _("unknown group relocation");
5436 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5437 }
5438
5439 /* We now have the group relocation table entry corresponding to
5440 the name in the assembler source. Next, we parse the expression. */
5441 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5442 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5443
5444 /* Record the relocation type (always the ALU variant here). */
5445 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5446 gas_assert (inst.reloc.type != 0);
5447
5448 return PARSE_OPERAND_SUCCESS;
5449 }
5450 else
5451 return parse_shifter_operand (str, i) == SUCCESS
5452 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5453
5454 /* Never reached. */
5455 }
5456
5457 /* Parse a Neon alignment expression. Information is written to
5458 inst.operands[i]. We assume the initial ':' has been skipped.
5459
5460 align .imm = align << 8, .immisalign=1, .preind=0 */
5461 static parse_operand_result
5462 parse_neon_alignment (char **str, int i)
5463 {
5464 char *p = *str;
5465 expressionS exp;
5466
5467 my_get_expression (&exp, &p, GE_NO_PREFIX);
5468
5469 if (exp.X_op != O_constant)
5470 {
5471 inst.error = _("alignment must be constant");
5472 return PARSE_OPERAND_FAIL;
5473 }
5474
5475 inst.operands[i].imm = exp.X_add_number << 8;
5476 inst.operands[i].immisalign = 1;
5477 /* Alignments are not pre-indexes. */
5478 inst.operands[i].preind = 0;
5479
5480 *str = p;
5481 return PARSE_OPERAND_SUCCESS;
5482 }
5483
5484 /* Parse all forms of an ARM address expression. Information is written
5485 to inst.operands[i] and/or inst.reloc.
5486
5487 Preindexed addressing (.preind=1):
5488
5489 [Rn, #offset] .reg=Rn .reloc.exp=offset
5490 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5491 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5492 .shift_kind=shift .reloc.exp=shift_imm
5493
5494 These three may have a trailing ! which causes .writeback to be set also.
5495
5496 Postindexed addressing (.postind=1, .writeback=1):
5497
5498 [Rn], #offset .reg=Rn .reloc.exp=offset
5499 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5500 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5501 .shift_kind=shift .reloc.exp=shift_imm
5502
5503 Unindexed addressing (.preind=0, .postind=0):
5504
5505 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5506
5507 Other:
5508
5509 [Rn]{!} shorthand for [Rn,#0]{!}
5510 =immediate .isreg=0 .reloc.exp=immediate
5511 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5512
5513 It is the caller's responsibility to check for addressing modes not
5514 supported by the instruction, and to set inst.reloc.type. */
5515
5516 static parse_operand_result
5517 parse_address_main (char **str, int i, int group_relocations,
5518 group_reloc_type group_type)
5519 {
5520 char *p = *str;
5521 int reg;
5522
5523 if (skip_past_char (&p, '[') == FAIL)
5524 {
5525 if (skip_past_char (&p, '=') == FAIL)
5526 {
5527 /* Bare address - translate to PC-relative offset. */
5528 inst.reloc.pc_rel = 1;
5529 inst.operands[i].reg = REG_PC;
5530 inst.operands[i].isreg = 1;
5531 inst.operands[i].preind = 1;
5532
5533 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5534 return PARSE_OPERAND_FAIL;
5535 }
5536 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5537 /*allow_symbol_p=*/TRUE))
5538 return PARSE_OPERAND_FAIL;
5539
5540 *str = p;
5541 return PARSE_OPERAND_SUCCESS;
5542 }
5543
5544 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5545 skip_whitespace (p);
5546
5547 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5548 {
5549 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5550 return PARSE_OPERAND_FAIL;
5551 }
5552 inst.operands[i].reg = reg;
5553 inst.operands[i].isreg = 1;
5554
5555 if (skip_past_comma (&p) == SUCCESS)
5556 {
5557 inst.operands[i].preind = 1;
5558
5559 if (*p == '+') p++;
5560 else if (*p == '-') p++, inst.operands[i].negative = 1;
5561
5562 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5563 {
5564 inst.operands[i].imm = reg;
5565 inst.operands[i].immisreg = 1;
5566
5567 if (skip_past_comma (&p) == SUCCESS)
5568 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5569 return PARSE_OPERAND_FAIL;
5570 }
5571 else if (skip_past_char (&p, ':') == SUCCESS)
5572 {
5573 /* FIXME: '@' should be used here, but it's filtered out by generic
5574 code before we get to see it here. This may be subject to
5575 change. */
5576 parse_operand_result result = parse_neon_alignment (&p, i);
5577
5578 if (result != PARSE_OPERAND_SUCCESS)
5579 return result;
5580 }
5581 else
5582 {
5583 if (inst.operands[i].negative)
5584 {
5585 inst.operands[i].negative = 0;
5586 p--;
5587 }
5588
5589 if (group_relocations
5590 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5591 {
5592 struct group_reloc_table_entry *entry;
5593
5594 /* Skip over the #: or : sequence. */
5595 if (*p == '#')
5596 p += 2;
5597 else
5598 p++;
5599
5600 /* Try to parse a group relocation. Anything else is an
5601 error. */
5602 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5603 {
5604 inst.error = _("unknown group relocation");
5605 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5606 }
5607
5608 /* We now have the group relocation table entry corresponding to
5609 the name in the assembler source. Next, we parse the
5610 expression. */
5611 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5612 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5613
5614 /* Record the relocation type. */
5615 switch (group_type)
5616 {
5617 case GROUP_LDR:
5618 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5619 break;
5620
5621 case GROUP_LDRS:
5622 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5623 break;
5624
5625 case GROUP_LDC:
5626 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5627 break;
5628
5629 default:
5630 gas_assert (0);
5631 }
5632
5633 if (inst.reloc.type == 0)
5634 {
5635 inst.error = _("this group relocation is not allowed on this instruction");
5636 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5637 }
5638 }
5639 else
5640 {
5641 char *q = p;
5642
5643 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5644 return PARSE_OPERAND_FAIL;
5645 /* If the offset is 0, find out if it's a +0 or -0. */
5646 if (inst.reloc.exp.X_op == O_constant
5647 && inst.reloc.exp.X_add_number == 0)
5648 {
5649 skip_whitespace (q);
5650 if (*q == '#')
5651 {
5652 q++;
5653 skip_whitespace (q);
5654 }
5655 if (*q == '-')
5656 inst.operands[i].negative = 1;
5657 }
5658 }
5659 }
5660 }
5661 else if (skip_past_char (&p, ':') == SUCCESS)
5662 {
5663 /* FIXME: '@' should be used here, but it's filtered out by generic code
5664 before we get to see it here. This may be subject to change. */
5665 parse_operand_result result = parse_neon_alignment (&p, i);
5666
5667 if (result != PARSE_OPERAND_SUCCESS)
5668 return result;
5669 }
5670
5671 if (skip_past_char (&p, ']') == FAIL)
5672 {
5673 inst.error = _("']' expected");
5674 return PARSE_OPERAND_FAIL;
5675 }
5676
5677 if (skip_past_char (&p, '!') == SUCCESS)
5678 inst.operands[i].writeback = 1;
5679
5680 else if (skip_past_comma (&p) == SUCCESS)
5681 {
5682 if (skip_past_char (&p, '{') == SUCCESS)
5683 {
5684 /* [Rn], {expr} - unindexed, with option */
5685 if (parse_immediate (&p, &inst.operands[i].imm,
5686 0, 255, TRUE) == FAIL)
5687 return PARSE_OPERAND_FAIL;
5688
5689 if (skip_past_char (&p, '}') == FAIL)
5690 {
5691 inst.error = _("'}' expected at end of 'option' field");
5692 return PARSE_OPERAND_FAIL;
5693 }
5694 if (inst.operands[i].preind)
5695 {
5696 inst.error = _("cannot combine index with option");
5697 return PARSE_OPERAND_FAIL;
5698 }
5699 *str = p;
5700 return PARSE_OPERAND_SUCCESS;
5701 }
5702 else
5703 {
5704 inst.operands[i].postind = 1;
5705 inst.operands[i].writeback = 1;
5706
5707 if (inst.operands[i].preind)
5708 {
5709 inst.error = _("cannot combine pre- and post-indexing");
5710 return PARSE_OPERAND_FAIL;
5711 }
5712
5713 if (*p == '+') p++;
5714 else if (*p == '-') p++, inst.operands[i].negative = 1;
5715
5716 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5717 {
5718 /* We might be using the immediate for alignment already. If we
5719 are, OR the register number into the low-order bits. */
5720 if (inst.operands[i].immisalign)
5721 inst.operands[i].imm |= reg;
5722 else
5723 inst.operands[i].imm = reg;
5724 inst.operands[i].immisreg = 1;
5725
5726 if (skip_past_comma (&p) == SUCCESS)
5727 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5728 return PARSE_OPERAND_FAIL;
5729 }
5730 else
5731 {
5732 char *q = p;
5733
5734 if (inst.operands[i].negative)
5735 {
5736 inst.operands[i].negative = 0;
5737 p--;
5738 }
5739 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5740 return PARSE_OPERAND_FAIL;
5741 /* If the offset is 0, find out if it's a +0 or -0. */
5742 if (inst.reloc.exp.X_op == O_constant
5743 && inst.reloc.exp.X_add_number == 0)
5744 {
5745 skip_whitespace (q);
5746 if (*q == '#')
5747 {
5748 q++;
5749 skip_whitespace (q);
5750 }
5751 if (*q == '-')
5752 inst.operands[i].negative = 1;
5753 }
5754 }
5755 }
5756 }
5757
5758 /* If at this point neither .preind nor .postind is set, we have a
5759 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5760 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5761 {
5762 inst.operands[i].preind = 1;
5763 inst.reloc.exp.X_op = O_constant;
5764 inst.reloc.exp.X_add_number = 0;
5765 }
5766 *str = p;
5767 return PARSE_OPERAND_SUCCESS;
5768 }
5769
5770 static int
5771 parse_address (char **str, int i)
5772 {
5773 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5774 ? SUCCESS : FAIL;
5775 }
5776
5777 static parse_operand_result
5778 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5779 {
5780 return parse_address_main (str, i, 1, type);
5781 }
5782
5783 /* Parse an operand for a MOVW or MOVT instruction. */
5784 static int
5785 parse_half (char **str)
5786 {
5787 char * p;
5788
5789 p = *str;
5790 skip_past_char (&p, '#');
5791 if (strncasecmp (p, ":lower16:", 9) == 0)
5792 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5793 else if (strncasecmp (p, ":upper16:", 9) == 0)
5794 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5795
5796 if (inst.reloc.type != BFD_RELOC_UNUSED)
5797 {
5798 p += 9;
5799 skip_whitespace (p);
5800 }
5801
5802 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5803 return FAIL;
5804
5805 if (inst.reloc.type == BFD_RELOC_UNUSED)
5806 {
5807 if (inst.reloc.exp.X_op != O_constant)
5808 {
5809 inst.error = _("constant expression expected");
5810 return FAIL;
5811 }
5812 if (inst.reloc.exp.X_add_number < 0
5813 || inst.reloc.exp.X_add_number > 0xffff)
5814 {
5815 inst.error = _("immediate value out of range");
5816 return FAIL;
5817 }
5818 }
5819 *str = p;
5820 return SUCCESS;
5821 }
5822
5823 /* Miscellaneous. */
5824
5825 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5826 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5827 static int
5828 parse_psr (char **str, bfd_boolean lhs)
5829 {
5830 char *p;
5831 unsigned long psr_field;
5832 const struct asm_psr *psr;
5833 char *start;
5834 bfd_boolean is_apsr = FALSE;
5835 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5836
5837 /* PR gas/12698: If the user has specified -march=all then m_profile will
5838 be TRUE, but we want to ignore it in this case as we are building for any
5839 CPU type, including non-m variants. */
5840 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5841 m_profile = FALSE;
5842
5843 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5844 feature for ease of use and backwards compatibility. */
5845 p = *str;
5846 if (strncasecmp (p, "SPSR", 4) == 0)
5847 {
5848 if (m_profile)
5849 goto unsupported_psr;
5850
5851 psr_field = SPSR_BIT;
5852 }
5853 else if (strncasecmp (p, "CPSR", 4) == 0)
5854 {
5855 if (m_profile)
5856 goto unsupported_psr;
5857
5858 psr_field = 0;
5859 }
5860 else if (strncasecmp (p, "APSR", 4) == 0)
5861 {
5862 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5863 and ARMv7-R architecture CPUs. */
5864 is_apsr = TRUE;
5865 psr_field = 0;
5866 }
5867 else if (m_profile)
5868 {
5869 start = p;
5870 do
5871 p++;
5872 while (ISALNUM (*p) || *p == '_');
5873
5874 if (strncasecmp (start, "iapsr", 5) == 0
5875 || strncasecmp (start, "eapsr", 5) == 0
5876 || strncasecmp (start, "xpsr", 4) == 0
5877 || strncasecmp (start, "psr", 3) == 0)
5878 p = start + strcspn (start, "rR") + 1;
5879
5880 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5881 p - start);
5882
5883 if (!psr)
5884 return FAIL;
5885
5886 /* If APSR is being written, a bitfield may be specified. Note that
5887 APSR itself is handled above. */
5888 if (psr->field <= 3)
5889 {
5890 psr_field = psr->field;
5891 is_apsr = TRUE;
5892 goto check_suffix;
5893 }
5894
5895 *str = p;
5896 /* M-profile MSR instructions have the mask field set to "10", except
5897 *PSR variants which modify APSR, which may use a different mask (and
5898 have been handled already). Do that by setting the PSR_f field
5899 here. */
5900 return psr->field | (lhs ? PSR_f : 0);
5901 }
5902 else
5903 goto unsupported_psr;
5904
5905 p += 4;
5906 check_suffix:
5907 if (*p == '_')
5908 {
5909 /* A suffix follows. */
5910 p++;
5911 start = p;
5912
5913 do
5914 p++;
5915 while (ISALNUM (*p) || *p == '_');
5916
5917 if (is_apsr)
5918 {
5919 /* APSR uses a notation for bits, rather than fields. */
5920 unsigned int nzcvq_bits = 0;
5921 unsigned int g_bit = 0;
5922 char *bit;
5923
5924 for (bit = start; bit != p; bit++)
5925 {
5926 switch (TOLOWER (*bit))
5927 {
5928 case 'n':
5929 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5930 break;
5931
5932 case 'z':
5933 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5934 break;
5935
5936 case 'c':
5937 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5938 break;
5939
5940 case 'v':
5941 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5942 break;
5943
5944 case 'q':
5945 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5946 break;
5947
5948 case 'g':
5949 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5950 break;
5951
5952 default:
5953 inst.error = _("unexpected bit specified after APSR");
5954 return FAIL;
5955 }
5956 }
5957
5958 if (nzcvq_bits == 0x1f)
5959 psr_field |= PSR_f;
5960
5961 if (g_bit == 0x1)
5962 {
5963 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5964 {
5965 inst.error = _("selected processor does not "
5966 "support DSP extension");
5967 return FAIL;
5968 }
5969
5970 psr_field |= PSR_s;
5971 }
5972
5973 if ((nzcvq_bits & 0x20) != 0
5974 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5975 || (g_bit & 0x2) != 0)
5976 {
5977 inst.error = _("bad bitmask specified after APSR");
5978 return FAIL;
5979 }
5980 }
5981 else
5982 {
5983 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5984 p - start);
5985 if (!psr)
5986 goto error;
5987
5988 psr_field |= psr->field;
5989 }
5990 }
5991 else
5992 {
5993 if (ISALNUM (*p))
5994 goto error; /* Garbage after "[CS]PSR". */
5995
5996 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5997 is deprecated, but allow it anyway. */
5998 if (is_apsr && lhs)
5999 {
6000 psr_field |= PSR_f;
6001 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6002 "deprecated"));
6003 }
6004 else if (!m_profile)
6005 /* These bits are never right for M-profile devices: don't set them
6006 (only code paths which read/write APSR reach here). */
6007 psr_field |= (PSR_c | PSR_f);
6008 }
6009 *str = p;
6010 return psr_field;
6011
6012 unsupported_psr:
6013 inst.error = _("selected processor does not support requested special "
6014 "purpose register");
6015 return FAIL;
6016
6017 error:
6018 inst.error = _("flag for {c}psr instruction expected");
6019 return FAIL;
6020 }
6021
6022 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6023 value suitable for splatting into the AIF field of the instruction. */
6024
6025 static int
6026 parse_cps_flags (char **str)
6027 {
6028 int val = 0;
6029 int saw_a_flag = 0;
6030 char *s = *str;
6031
6032 for (;;)
6033 switch (*s++)
6034 {
6035 case '\0': case ',':
6036 goto done;
6037
6038 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6039 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6040 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6041
6042 default:
6043 inst.error = _("unrecognized CPS flag");
6044 return FAIL;
6045 }
6046
6047 done:
6048 if (saw_a_flag == 0)
6049 {
6050 inst.error = _("missing CPS flags");
6051 return FAIL;
6052 }
6053
6054 *str = s - 1;
6055 return val;
6056 }
6057
6058 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6059 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6060
6061 static int
6062 parse_endian_specifier (char **str)
6063 {
6064 int little_endian;
6065 char *s = *str;
6066
6067 if (strncasecmp (s, "BE", 2))
6068 little_endian = 0;
6069 else if (strncasecmp (s, "LE", 2))
6070 little_endian = 1;
6071 else
6072 {
6073 inst.error = _("valid endian specifiers are be or le");
6074 return FAIL;
6075 }
6076
6077 if (ISALNUM (s[2]) || s[2] == '_')
6078 {
6079 inst.error = _("valid endian specifiers are be or le");
6080 return FAIL;
6081 }
6082
6083 *str = s + 2;
6084 return little_endian;
6085 }
6086
6087 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6088 value suitable for poking into the rotate field of an sxt or sxta
6089 instruction, or FAIL on error. */
6090
6091 static int
6092 parse_ror (char **str)
6093 {
6094 int rot;
6095 char *s = *str;
6096
6097 if (strncasecmp (s, "ROR", 3) == 0)
6098 s += 3;
6099 else
6100 {
6101 inst.error = _("missing rotation field after comma");
6102 return FAIL;
6103 }
6104
6105 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6106 return FAIL;
6107
6108 switch (rot)
6109 {
6110 case 0: *str = s; return 0x0;
6111 case 8: *str = s; return 0x1;
6112 case 16: *str = s; return 0x2;
6113 case 24: *str = s; return 0x3;
6114
6115 default:
6116 inst.error = _("rotation can only be 0, 8, 16, or 24");
6117 return FAIL;
6118 }
6119 }
6120
6121 /* Parse a conditional code (from conds[] below). The value returned is in the
6122 range 0 .. 14, or FAIL. */
6123 static int
6124 parse_cond (char **str)
6125 {
6126 char *q;
6127 const struct asm_cond *c;
6128 int n;
6129 /* Condition codes are always 2 characters, so matching up to
6130 3 characters is sufficient. */
6131 char cond[3];
6132
6133 q = *str;
6134 n = 0;
6135 while (ISALPHA (*q) && n < 3)
6136 {
6137 cond[n] = TOLOWER (*q);
6138 q++;
6139 n++;
6140 }
6141
6142 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6143 if (!c)
6144 {
6145 inst.error = _("condition required");
6146 return FAIL;
6147 }
6148
6149 *str = q;
6150 return c->value;
6151 }
6152
6153 /* Record a use of the given feature. */
6154 static void
6155 record_feature_use (const arm_feature_set *feature)
6156 {
6157 if (thumb_mode)
6158 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6159 else
6160 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6161 }
6162
6163 /* If the given feature available in the selected CPU, mark it as used.
6164 Returns TRUE iff feature is available. */
6165 static bfd_boolean
6166 mark_feature_used (const arm_feature_set *feature)
6167 {
6168 /* Ensure the option is valid on the current architecture. */
6169 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6170 return FALSE;
6171
6172 /* Add the appropriate architecture feature for the barrier option used.
6173 */
6174 record_feature_use (feature);
6175
6176 return TRUE;
6177 }
6178
6179 /* Parse an option for a barrier instruction. Returns the encoding for the
6180 option, or FAIL. */
6181 static int
6182 parse_barrier (char **str)
6183 {
6184 char *p, *q;
6185 const struct asm_barrier_opt *o;
6186
6187 p = q = *str;
6188 while (ISALPHA (*q))
6189 q++;
6190
6191 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6192 q - p);
6193 if (!o)
6194 return FAIL;
6195
6196 if (!mark_feature_used (&o->arch))
6197 return FAIL;
6198
6199 *str = q;
6200 return o->value;
6201 }
6202
6203 /* Parse the operands of a table branch instruction. Similar to a memory
6204 operand. */
6205 static int
6206 parse_tb (char **str)
6207 {
6208 char * p = *str;
6209 int reg;
6210
6211 if (skip_past_char (&p, '[') == FAIL)
6212 {
6213 inst.error = _("'[' expected");
6214 return FAIL;
6215 }
6216
6217 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6218 {
6219 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6220 return FAIL;
6221 }
6222 inst.operands[0].reg = reg;
6223
6224 if (skip_past_comma (&p) == FAIL)
6225 {
6226 inst.error = _("',' expected");
6227 return FAIL;
6228 }
6229
6230 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6231 {
6232 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6233 return FAIL;
6234 }
6235 inst.operands[0].imm = reg;
6236
6237 if (skip_past_comma (&p) == SUCCESS)
6238 {
6239 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6240 return FAIL;
6241 if (inst.reloc.exp.X_add_number != 1)
6242 {
6243 inst.error = _("invalid shift");
6244 return FAIL;
6245 }
6246 inst.operands[0].shifted = 1;
6247 }
6248
6249 if (skip_past_char (&p, ']') == FAIL)
6250 {
6251 inst.error = _("']' expected");
6252 return FAIL;
6253 }
6254 *str = p;
6255 return SUCCESS;
6256 }
6257
6258 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6259 information on the types the operands can take and how they are encoded.
6260 Up to four operands may be read; this function handles setting the
6261 ".present" field for each read operand itself.
6262 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6263 else returns FAIL. */
6264
6265 static int
6266 parse_neon_mov (char **str, int *which_operand)
6267 {
6268 int i = *which_operand, val;
6269 enum arm_reg_type rtype;
6270 char *ptr = *str;
6271 struct neon_type_el optype;
6272
6273 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6274 {
6275 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6276 inst.operands[i].reg = val;
6277 inst.operands[i].isscalar = 1;
6278 inst.operands[i].vectype = optype;
6279 inst.operands[i++].present = 1;
6280
6281 if (skip_past_comma (&ptr) == FAIL)
6282 goto wanted_comma;
6283
6284 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6285 goto wanted_arm;
6286
6287 inst.operands[i].reg = val;
6288 inst.operands[i].isreg = 1;
6289 inst.operands[i].present = 1;
6290 }
6291 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6292 != FAIL)
6293 {
6294 /* Cases 0, 1, 2, 3, 5 (D only). */
6295 if (skip_past_comma (&ptr) == FAIL)
6296 goto wanted_comma;
6297
6298 inst.operands[i].reg = val;
6299 inst.operands[i].isreg = 1;
6300 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6301 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6302 inst.operands[i].isvec = 1;
6303 inst.operands[i].vectype = optype;
6304 inst.operands[i++].present = 1;
6305
6306 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6307 {
6308 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6309 Case 13: VMOV <Sd>, <Rm> */
6310 inst.operands[i].reg = val;
6311 inst.operands[i].isreg = 1;
6312 inst.operands[i].present = 1;
6313
6314 if (rtype == REG_TYPE_NQ)
6315 {
6316 first_error (_("can't use Neon quad register here"));
6317 return FAIL;
6318 }
6319 else if (rtype != REG_TYPE_VFS)
6320 {
6321 i++;
6322 if (skip_past_comma (&ptr) == FAIL)
6323 goto wanted_comma;
6324 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6325 goto wanted_arm;
6326 inst.operands[i].reg = val;
6327 inst.operands[i].isreg = 1;
6328 inst.operands[i].present = 1;
6329 }
6330 }
6331 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6332 &optype)) != FAIL)
6333 {
6334 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6335 Case 1: VMOV<c><q> <Dd>, <Dm>
6336 Case 8: VMOV.F32 <Sd>, <Sm>
6337 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6338
6339 inst.operands[i].reg = val;
6340 inst.operands[i].isreg = 1;
6341 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6342 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6343 inst.operands[i].isvec = 1;
6344 inst.operands[i].vectype = optype;
6345 inst.operands[i].present = 1;
6346
6347 if (skip_past_comma (&ptr) == SUCCESS)
6348 {
6349 /* Case 15. */
6350 i++;
6351
6352 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6353 goto wanted_arm;
6354
6355 inst.operands[i].reg = val;
6356 inst.operands[i].isreg = 1;
6357 inst.operands[i++].present = 1;
6358
6359 if (skip_past_comma (&ptr) == FAIL)
6360 goto wanted_comma;
6361
6362 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6363 goto wanted_arm;
6364
6365 inst.operands[i].reg = val;
6366 inst.operands[i].isreg = 1;
6367 inst.operands[i].present = 1;
6368 }
6369 }
6370 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6371 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6372 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6373 Case 10: VMOV.F32 <Sd>, #<imm>
6374 Case 11: VMOV.F64 <Dd>, #<imm> */
6375 inst.operands[i].immisfloat = 1;
6376 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6377 == SUCCESS)
6378 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6379 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6380 ;
6381 else
6382 {
6383 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6384 return FAIL;
6385 }
6386 }
6387 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6388 {
6389 /* Cases 6, 7. */
6390 inst.operands[i].reg = val;
6391 inst.operands[i].isreg = 1;
6392 inst.operands[i++].present = 1;
6393
6394 if (skip_past_comma (&ptr) == FAIL)
6395 goto wanted_comma;
6396
6397 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6398 {
6399 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6400 inst.operands[i].reg = val;
6401 inst.operands[i].isscalar = 1;
6402 inst.operands[i].present = 1;
6403 inst.operands[i].vectype = optype;
6404 }
6405 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6406 {
6407 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6408 inst.operands[i].reg = val;
6409 inst.operands[i].isreg = 1;
6410 inst.operands[i++].present = 1;
6411
6412 if (skip_past_comma (&ptr) == FAIL)
6413 goto wanted_comma;
6414
6415 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6416 == FAIL)
6417 {
6418 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6419 return FAIL;
6420 }
6421
6422 inst.operands[i].reg = val;
6423 inst.operands[i].isreg = 1;
6424 inst.operands[i].isvec = 1;
6425 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6426 inst.operands[i].vectype = optype;
6427 inst.operands[i].present = 1;
6428
6429 if (rtype == REG_TYPE_VFS)
6430 {
6431 /* Case 14. */
6432 i++;
6433 if (skip_past_comma (&ptr) == FAIL)
6434 goto wanted_comma;
6435 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6436 &optype)) == FAIL)
6437 {
6438 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6439 return FAIL;
6440 }
6441 inst.operands[i].reg = val;
6442 inst.operands[i].isreg = 1;
6443 inst.operands[i].isvec = 1;
6444 inst.operands[i].issingle = 1;
6445 inst.operands[i].vectype = optype;
6446 inst.operands[i].present = 1;
6447 }
6448 }
6449 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6450 != FAIL)
6451 {
6452 /* Case 13. */
6453 inst.operands[i].reg = val;
6454 inst.operands[i].isreg = 1;
6455 inst.operands[i].isvec = 1;
6456 inst.operands[i].issingle = 1;
6457 inst.operands[i].vectype = optype;
6458 inst.operands[i].present = 1;
6459 }
6460 }
6461 else
6462 {
6463 first_error (_("parse error"));
6464 return FAIL;
6465 }
6466
6467 /* Successfully parsed the operands. Update args. */
6468 *which_operand = i;
6469 *str = ptr;
6470 return SUCCESS;
6471
6472 wanted_comma:
6473 first_error (_("expected comma"));
6474 return FAIL;
6475
6476 wanted_arm:
6477 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6478 return FAIL;
6479 }
6480
6481 /* Use this macro when the operand constraints are different
6482 for ARM and THUMB (e.g. ldrd). */
6483 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6484 ((arm_operand) | ((thumb_operand) << 16))
6485
6486 /* Matcher codes for parse_operands. */
6487 enum operand_parse_code
6488 {
6489 OP_stop, /* end of line */
6490
6491 OP_RR, /* ARM register */
6492 OP_RRnpc, /* ARM register, not r15 */
6493 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6494 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6495 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6496 optional trailing ! */
6497 OP_RRw, /* ARM register, not r15, optional trailing ! */
6498 OP_RCP, /* Coprocessor number */
6499 OP_RCN, /* Coprocessor register */
6500 OP_RF, /* FPA register */
6501 OP_RVS, /* VFP single precision register */
6502 OP_RVD, /* VFP double precision register (0..15) */
6503 OP_RND, /* Neon double precision register (0..31) */
6504 OP_RNQ, /* Neon quad precision register */
6505 OP_RVSD, /* VFP single or double precision register */
6506 OP_RNSD, /* Neon single or double precision register */
6507 OP_RNDQ, /* Neon double or quad precision register */
6508 OP_RNSDQ, /* Neon single, double or quad precision register */
6509 OP_RNSC, /* Neon scalar D[X] */
6510 OP_RVC, /* VFP control register */
6511 OP_RMF, /* Maverick F register */
6512 OP_RMD, /* Maverick D register */
6513 OP_RMFX, /* Maverick FX register */
6514 OP_RMDX, /* Maverick DX register */
6515 OP_RMAX, /* Maverick AX register */
6516 OP_RMDS, /* Maverick DSPSC register */
6517 OP_RIWR, /* iWMMXt wR register */
6518 OP_RIWC, /* iWMMXt wC register */
6519 OP_RIWG, /* iWMMXt wCG register */
6520 OP_RXA, /* XScale accumulator register */
6521
6522 OP_REGLST, /* ARM register list */
6523 OP_VRSLST, /* VFP single-precision register list */
6524 OP_VRDLST, /* VFP double-precision register list */
6525 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6526 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6527 OP_NSTRLST, /* Neon element/structure list */
6528
6529 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6530 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6531 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6532 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6533 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6534 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6535 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6536 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6537 OP_VMOV, /* Neon VMOV operands. */
6538 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6539 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6540 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6541
6542 OP_I0, /* immediate zero */
6543 OP_I7, /* immediate value 0 .. 7 */
6544 OP_I15, /* 0 .. 15 */
6545 OP_I16, /* 1 .. 16 */
6546 OP_I16z, /* 0 .. 16 */
6547 OP_I31, /* 0 .. 31 */
6548 OP_I31w, /* 0 .. 31, optional trailing ! */
6549 OP_I32, /* 1 .. 32 */
6550 OP_I32z, /* 0 .. 32 */
6551 OP_I63, /* 0 .. 63 */
6552 OP_I63s, /* -64 .. 63 */
6553 OP_I64, /* 1 .. 64 */
6554 OP_I64z, /* 0 .. 64 */
6555 OP_I255, /* 0 .. 255 */
6556
6557 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6558 OP_I7b, /* 0 .. 7 */
6559 OP_I15b, /* 0 .. 15 */
6560 OP_I31b, /* 0 .. 31 */
6561
6562 OP_SH, /* shifter operand */
6563 OP_SHG, /* shifter operand with possible group relocation */
6564 OP_ADDR, /* Memory address expression (any mode) */
6565 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6566 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6567 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6568 OP_EXP, /* arbitrary expression */
6569 OP_EXPi, /* same, with optional immediate prefix */
6570 OP_EXPr, /* same, with optional relocation suffix */
6571 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6572 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6573 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6574
6575 OP_CPSF, /* CPS flags */
6576 OP_ENDI, /* Endianness specifier */
6577 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6578 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6579 OP_COND, /* conditional code */
6580 OP_TB, /* Table branch. */
6581
6582 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6583
6584 OP_RRnpc_I0, /* ARM register or literal 0 */
6585 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
6586 OP_RR_EXi, /* ARM register or expression with imm prefix */
6587 OP_RF_IF, /* FPA register or immediate */
6588 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6589 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6590
6591 /* Optional operands. */
6592 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6593 OP_oI31b, /* 0 .. 31 */
6594 OP_oI32b, /* 1 .. 32 */
6595 OP_oI32z, /* 0 .. 32 */
6596 OP_oIffffb, /* 0 .. 65535 */
6597 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6598
6599 OP_oRR, /* ARM register */
6600 OP_oRRnpc, /* ARM register, not the PC */
6601 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6602 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6603 OP_oRND, /* Optional Neon double precision register */
6604 OP_oRNQ, /* Optional Neon quad precision register */
6605 OP_oRNDQ, /* Optional Neon double or quad precision register */
6606 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6607 OP_oSHll, /* LSL immediate */
6608 OP_oSHar, /* ASR immediate */
6609 OP_oSHllar, /* LSL or ASR immediate */
6610 OP_oROR, /* ROR 0/8/16/24 */
6611 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6612
6613 /* Some pre-defined mixed (ARM/THUMB) operands. */
6614 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6615 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6616 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6617
6618 OP_FIRST_OPTIONAL = OP_oI7b
6619 };
6620
6621 /* Generic instruction operand parser. This does no encoding and no
6622 semantic validation; it merely squirrels values away in the inst
6623 structure. Returns SUCCESS or FAIL depending on whether the
6624 specified grammar matched. */
6625 static int
6626 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6627 {
6628 unsigned const int *upat = pattern;
6629 char *backtrack_pos = 0;
6630 const char *backtrack_error = 0;
6631 int i, val = 0, backtrack_index = 0;
6632 enum arm_reg_type rtype;
6633 parse_operand_result result;
6634 unsigned int op_parse_code;
6635
6636 #define po_char_or_fail(chr) \
6637 do \
6638 { \
6639 if (skip_past_char (&str, chr) == FAIL) \
6640 goto bad_args; \
6641 } \
6642 while (0)
6643
6644 #define po_reg_or_fail(regtype) \
6645 do \
6646 { \
6647 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6648 & inst.operands[i].vectype); \
6649 if (val == FAIL) \
6650 { \
6651 first_error (_(reg_expected_msgs[regtype])); \
6652 goto failure; \
6653 } \
6654 inst.operands[i].reg = val; \
6655 inst.operands[i].isreg = 1; \
6656 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6657 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6658 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6659 || rtype == REG_TYPE_VFD \
6660 || rtype == REG_TYPE_NQ); \
6661 } \
6662 while (0)
6663
6664 #define po_reg_or_goto(regtype, label) \
6665 do \
6666 { \
6667 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6668 & inst.operands[i].vectype); \
6669 if (val == FAIL) \
6670 goto label; \
6671 \
6672 inst.operands[i].reg = val; \
6673 inst.operands[i].isreg = 1; \
6674 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6675 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6676 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6677 || rtype == REG_TYPE_VFD \
6678 || rtype == REG_TYPE_NQ); \
6679 } \
6680 while (0)
6681
6682 #define po_imm_or_fail(min, max, popt) \
6683 do \
6684 { \
6685 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6686 goto failure; \
6687 inst.operands[i].imm = val; \
6688 } \
6689 while (0)
6690
6691 #define po_scalar_or_goto(elsz, label) \
6692 do \
6693 { \
6694 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6695 if (val == FAIL) \
6696 goto label; \
6697 inst.operands[i].reg = val; \
6698 inst.operands[i].isscalar = 1; \
6699 } \
6700 while (0)
6701
6702 #define po_misc_or_fail(expr) \
6703 do \
6704 { \
6705 if (expr) \
6706 goto failure; \
6707 } \
6708 while (0)
6709
6710 #define po_misc_or_fail_no_backtrack(expr) \
6711 do \
6712 { \
6713 result = expr; \
6714 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6715 backtrack_pos = 0; \
6716 if (result != PARSE_OPERAND_SUCCESS) \
6717 goto failure; \
6718 } \
6719 while (0)
6720
6721 #define po_barrier_or_imm(str) \
6722 do \
6723 { \
6724 val = parse_barrier (&str); \
6725 if (val == FAIL && ! ISALPHA (*str)) \
6726 goto immediate; \
6727 if (val == FAIL \
6728 /* ISB can only take SY as an option. */ \
6729 || ((inst.instruction & 0xf0) == 0x60 \
6730 && val != 0xf)) \
6731 { \
6732 inst.error = _("invalid barrier type"); \
6733 backtrack_pos = 0; \
6734 goto failure; \
6735 } \
6736 } \
6737 while (0)
6738
6739 skip_whitespace (str);
6740
6741 for (i = 0; upat[i] != OP_stop; i++)
6742 {
6743 op_parse_code = upat[i];
6744 if (op_parse_code >= 1<<16)
6745 op_parse_code = thumb ? (op_parse_code >> 16)
6746 : (op_parse_code & ((1<<16)-1));
6747
6748 if (op_parse_code >= OP_FIRST_OPTIONAL)
6749 {
6750 /* Remember where we are in case we need to backtrack. */
6751 gas_assert (!backtrack_pos);
6752 backtrack_pos = str;
6753 backtrack_error = inst.error;
6754 backtrack_index = i;
6755 }
6756
6757 if (i > 0 && (i > 1 || inst.operands[0].present))
6758 po_char_or_fail (',');
6759
6760 switch (op_parse_code)
6761 {
6762 /* Registers */
6763 case OP_oRRnpc:
6764 case OP_oRRnpcsp:
6765 case OP_RRnpc:
6766 case OP_RRnpcsp:
6767 case OP_oRR:
6768 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6769 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6770 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6771 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6772 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6773 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6774 case OP_oRND:
6775 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6776 case OP_RVC:
6777 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6778 break;
6779 /* Also accept generic coprocessor regs for unknown registers. */
6780 coproc_reg:
6781 po_reg_or_fail (REG_TYPE_CN);
6782 break;
6783 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6784 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6785 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6786 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6787 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6788 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6789 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6790 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6791 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6792 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6793 case OP_oRNQ:
6794 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6795 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
6796 case OP_oRNDQ:
6797 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6798 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6799 case OP_oRNSDQ:
6800 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6801
6802 /* Neon scalar. Using an element size of 8 means that some invalid
6803 scalars are accepted here, so deal with those in later code. */
6804 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6805
6806 case OP_RNDQ_I0:
6807 {
6808 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6809 break;
6810 try_imm0:
6811 po_imm_or_fail (0, 0, TRUE);
6812 }
6813 break;
6814
6815 case OP_RVSD_I0:
6816 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6817 break;
6818
6819 case OP_RSVD_FI0:
6820 {
6821 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6822 break;
6823 try_ifimm0:
6824 if (parse_ifimm_zero (&str))
6825 inst.operands[i].imm = 0;
6826 else
6827 {
6828 inst.error
6829 = _("only floating point zero is allowed as immediate value");
6830 goto failure;
6831 }
6832 }
6833 break;
6834
6835 case OP_RR_RNSC:
6836 {
6837 po_scalar_or_goto (8, try_rr);
6838 break;
6839 try_rr:
6840 po_reg_or_fail (REG_TYPE_RN);
6841 }
6842 break;
6843
6844 case OP_RNSDQ_RNSC:
6845 {
6846 po_scalar_or_goto (8, try_nsdq);
6847 break;
6848 try_nsdq:
6849 po_reg_or_fail (REG_TYPE_NSDQ);
6850 }
6851 break;
6852
6853 case OP_RNSD_RNSC:
6854 {
6855 po_scalar_or_goto (8, try_s_scalar);
6856 break;
6857 try_s_scalar:
6858 po_scalar_or_goto (4, try_nsd);
6859 break;
6860 try_nsd:
6861 po_reg_or_fail (REG_TYPE_NSD);
6862 }
6863 break;
6864
6865 case OP_RNDQ_RNSC:
6866 {
6867 po_scalar_or_goto (8, try_ndq);
6868 break;
6869 try_ndq:
6870 po_reg_or_fail (REG_TYPE_NDQ);
6871 }
6872 break;
6873
6874 case OP_RND_RNSC:
6875 {
6876 po_scalar_or_goto (8, try_vfd);
6877 break;
6878 try_vfd:
6879 po_reg_or_fail (REG_TYPE_VFD);
6880 }
6881 break;
6882
6883 case OP_VMOV:
6884 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6885 not careful then bad things might happen. */
6886 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6887 break;
6888
6889 case OP_RNDQ_Ibig:
6890 {
6891 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6892 break;
6893 try_immbig:
6894 /* There's a possibility of getting a 64-bit immediate here, so
6895 we need special handling. */
6896 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6897 == FAIL)
6898 {
6899 inst.error = _("immediate value is out of range");
6900 goto failure;
6901 }
6902 }
6903 break;
6904
6905 case OP_RNDQ_I63b:
6906 {
6907 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6908 break;
6909 try_shimm:
6910 po_imm_or_fail (0, 63, TRUE);
6911 }
6912 break;
6913
6914 case OP_RRnpcb:
6915 po_char_or_fail ('[');
6916 po_reg_or_fail (REG_TYPE_RN);
6917 po_char_or_fail (']');
6918 break;
6919
6920 case OP_RRnpctw:
6921 case OP_RRw:
6922 case OP_oRRw:
6923 po_reg_or_fail (REG_TYPE_RN);
6924 if (skip_past_char (&str, '!') == SUCCESS)
6925 inst.operands[i].writeback = 1;
6926 break;
6927
6928 /* Immediates */
6929 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6930 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6931 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6932 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6933 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6934 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6935 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6936 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6937 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6938 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6939 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6940 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6941
6942 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6943 case OP_oI7b:
6944 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6945 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6946 case OP_oI31b:
6947 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6948 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6949 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6950 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6951
6952 /* Immediate variants */
6953 case OP_oI255c:
6954 po_char_or_fail ('{');
6955 po_imm_or_fail (0, 255, TRUE);
6956 po_char_or_fail ('}');
6957 break;
6958
6959 case OP_I31w:
6960 /* The expression parser chokes on a trailing !, so we have
6961 to find it first and zap it. */
6962 {
6963 char *s = str;
6964 while (*s && *s != ',')
6965 s++;
6966 if (s[-1] == '!')
6967 {
6968 s[-1] = '\0';
6969 inst.operands[i].writeback = 1;
6970 }
6971 po_imm_or_fail (0, 31, TRUE);
6972 if (str == s - 1)
6973 str = s;
6974 }
6975 break;
6976
6977 /* Expressions */
6978 case OP_EXPi: EXPi:
6979 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6980 GE_OPT_PREFIX));
6981 break;
6982
6983 case OP_EXP:
6984 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6985 GE_NO_PREFIX));
6986 break;
6987
6988 case OP_EXPr: EXPr:
6989 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6990 GE_NO_PREFIX));
6991 if (inst.reloc.exp.X_op == O_symbol)
6992 {
6993 val = parse_reloc (&str);
6994 if (val == -1)
6995 {
6996 inst.error = _("unrecognized relocation suffix");
6997 goto failure;
6998 }
6999 else if (val != BFD_RELOC_UNUSED)
7000 {
7001 inst.operands[i].imm = val;
7002 inst.operands[i].hasreloc = 1;
7003 }
7004 }
7005 break;
7006
7007 /* Operand for MOVW or MOVT. */
7008 case OP_HALF:
7009 po_misc_or_fail (parse_half (&str));
7010 break;
7011
7012 /* Register or expression. */
7013 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7014 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7015
7016 /* Register or immediate. */
7017 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7018 I0: po_imm_or_fail (0, 0, FALSE); break;
7019
7020 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7021 IF:
7022 if (!is_immediate_prefix (*str))
7023 goto bad_args;
7024 str++;
7025 val = parse_fpa_immediate (&str);
7026 if (val == FAIL)
7027 goto failure;
7028 /* FPA immediates are encoded as registers 8-15.
7029 parse_fpa_immediate has already applied the offset. */
7030 inst.operands[i].reg = val;
7031 inst.operands[i].isreg = 1;
7032 break;
7033
7034 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7035 I32z: po_imm_or_fail (0, 32, FALSE); break;
7036
7037 /* Two kinds of register. */
7038 case OP_RIWR_RIWC:
7039 {
7040 struct reg_entry *rege = arm_reg_parse_multi (&str);
7041 if (!rege
7042 || (rege->type != REG_TYPE_MMXWR
7043 && rege->type != REG_TYPE_MMXWC
7044 && rege->type != REG_TYPE_MMXWCG))
7045 {
7046 inst.error = _("iWMMXt data or control register expected");
7047 goto failure;
7048 }
7049 inst.operands[i].reg = rege->number;
7050 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7051 }
7052 break;
7053
7054 case OP_RIWC_RIWG:
7055 {
7056 struct reg_entry *rege = arm_reg_parse_multi (&str);
7057 if (!rege
7058 || (rege->type != REG_TYPE_MMXWC
7059 && rege->type != REG_TYPE_MMXWCG))
7060 {
7061 inst.error = _("iWMMXt control register expected");
7062 goto failure;
7063 }
7064 inst.operands[i].reg = rege->number;
7065 inst.operands[i].isreg = 1;
7066 }
7067 break;
7068
7069 /* Misc */
7070 case OP_CPSF: val = parse_cps_flags (&str); break;
7071 case OP_ENDI: val = parse_endian_specifier (&str); break;
7072 case OP_oROR: val = parse_ror (&str); break;
7073 case OP_COND: val = parse_cond (&str); break;
7074 case OP_oBARRIER_I15:
7075 po_barrier_or_imm (str); break;
7076 immediate:
7077 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7078 goto failure;
7079 break;
7080
7081 case OP_wPSR:
7082 case OP_rPSR:
7083 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7084 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7085 {
7086 inst.error = _("Banked registers are not available with this "
7087 "architecture.");
7088 goto failure;
7089 }
7090 break;
7091 try_psr:
7092 val = parse_psr (&str, op_parse_code == OP_wPSR);
7093 break;
7094
7095 case OP_APSR_RR:
7096 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7097 break;
7098 try_apsr:
7099 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7100 instruction). */
7101 if (strncasecmp (str, "APSR_", 5) == 0)
7102 {
7103 unsigned found = 0;
7104 str += 5;
7105 while (found < 15)
7106 switch (*str++)
7107 {
7108 case 'c': found = (found & 1) ? 16 : found | 1; break;
7109 case 'n': found = (found & 2) ? 16 : found | 2; break;
7110 case 'z': found = (found & 4) ? 16 : found | 4; break;
7111 case 'v': found = (found & 8) ? 16 : found | 8; break;
7112 default: found = 16;
7113 }
7114 if (found != 15)
7115 goto failure;
7116 inst.operands[i].isvec = 1;
7117 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7118 inst.operands[i].reg = REG_PC;
7119 }
7120 else
7121 goto failure;
7122 break;
7123
7124 case OP_TB:
7125 po_misc_or_fail (parse_tb (&str));
7126 break;
7127
7128 /* Register lists. */
7129 case OP_REGLST:
7130 val = parse_reg_list (&str);
7131 if (*str == '^')
7132 {
7133 inst.operands[i].writeback = 1;
7134 str++;
7135 }
7136 break;
7137
7138 case OP_VRSLST:
7139 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7140 break;
7141
7142 case OP_VRDLST:
7143 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7144 break;
7145
7146 case OP_VRSDLST:
7147 /* Allow Q registers too. */
7148 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7149 REGLIST_NEON_D);
7150 if (val == FAIL)
7151 {
7152 inst.error = NULL;
7153 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7154 REGLIST_VFP_S);
7155 inst.operands[i].issingle = 1;
7156 }
7157 break;
7158
7159 case OP_NRDLST:
7160 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7161 REGLIST_NEON_D);
7162 break;
7163
7164 case OP_NSTRLST:
7165 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7166 &inst.operands[i].vectype);
7167 break;
7168
7169 /* Addressing modes */
7170 case OP_ADDR:
7171 po_misc_or_fail (parse_address (&str, i));
7172 break;
7173
7174 case OP_ADDRGLDR:
7175 po_misc_or_fail_no_backtrack (
7176 parse_address_group_reloc (&str, i, GROUP_LDR));
7177 break;
7178
7179 case OP_ADDRGLDRS:
7180 po_misc_or_fail_no_backtrack (
7181 parse_address_group_reloc (&str, i, GROUP_LDRS));
7182 break;
7183
7184 case OP_ADDRGLDC:
7185 po_misc_or_fail_no_backtrack (
7186 parse_address_group_reloc (&str, i, GROUP_LDC));
7187 break;
7188
7189 case OP_SH:
7190 po_misc_or_fail (parse_shifter_operand (&str, i));
7191 break;
7192
7193 case OP_SHG:
7194 po_misc_or_fail_no_backtrack (
7195 parse_shifter_operand_group_reloc (&str, i));
7196 break;
7197
7198 case OP_oSHll:
7199 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7200 break;
7201
7202 case OP_oSHar:
7203 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7204 break;
7205
7206 case OP_oSHllar:
7207 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7208 break;
7209
7210 default:
7211 as_fatal (_("unhandled operand code %d"), op_parse_code);
7212 }
7213
7214 /* Various value-based sanity checks and shared operations. We
7215 do not signal immediate failures for the register constraints;
7216 this allows a syntax error to take precedence. */
7217 switch (op_parse_code)
7218 {
7219 case OP_oRRnpc:
7220 case OP_RRnpc:
7221 case OP_RRnpcb:
7222 case OP_RRw:
7223 case OP_oRRw:
7224 case OP_RRnpc_I0:
7225 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7226 inst.error = BAD_PC;
7227 break;
7228
7229 case OP_oRRnpcsp:
7230 case OP_RRnpcsp:
7231 if (inst.operands[i].isreg)
7232 {
7233 if (inst.operands[i].reg == REG_PC)
7234 inst.error = BAD_PC;
7235 else if (inst.operands[i].reg == REG_SP
7236 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7237 relaxed since ARMv8-A. */
7238 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7239 {
7240 gas_assert (thumb);
7241 inst.error = BAD_SP;
7242 }
7243 }
7244 break;
7245
7246 case OP_RRnpctw:
7247 if (inst.operands[i].isreg
7248 && inst.operands[i].reg == REG_PC
7249 && (inst.operands[i].writeback || thumb))
7250 inst.error = BAD_PC;
7251 break;
7252
7253 case OP_CPSF:
7254 case OP_ENDI:
7255 case OP_oROR:
7256 case OP_wPSR:
7257 case OP_rPSR:
7258 case OP_COND:
7259 case OP_oBARRIER_I15:
7260 case OP_REGLST:
7261 case OP_VRSLST:
7262 case OP_VRDLST:
7263 case OP_VRSDLST:
7264 case OP_NRDLST:
7265 case OP_NSTRLST:
7266 if (val == FAIL)
7267 goto failure;
7268 inst.operands[i].imm = val;
7269 break;
7270
7271 default:
7272 break;
7273 }
7274
7275 /* If we get here, this operand was successfully parsed. */
7276 inst.operands[i].present = 1;
7277 continue;
7278
7279 bad_args:
7280 inst.error = BAD_ARGS;
7281
7282 failure:
7283 if (!backtrack_pos)
7284 {
7285 /* The parse routine should already have set inst.error, but set a
7286 default here just in case. */
7287 if (!inst.error)
7288 inst.error = _("syntax error");
7289 return FAIL;
7290 }
7291
7292 /* Do not backtrack over a trailing optional argument that
7293 absorbed some text. We will only fail again, with the
7294 'garbage following instruction' error message, which is
7295 probably less helpful than the current one. */
7296 if (backtrack_index == i && backtrack_pos != str
7297 && upat[i+1] == OP_stop)
7298 {
7299 if (!inst.error)
7300 inst.error = _("syntax error");
7301 return FAIL;
7302 }
7303
7304 /* Try again, skipping the optional argument at backtrack_pos. */
7305 str = backtrack_pos;
7306 inst.error = backtrack_error;
7307 inst.operands[backtrack_index].present = 0;
7308 i = backtrack_index;
7309 backtrack_pos = 0;
7310 }
7311
7312 /* Check that we have parsed all the arguments. */
7313 if (*str != '\0' && !inst.error)
7314 inst.error = _("garbage following instruction");
7315
7316 return inst.error ? FAIL : SUCCESS;
7317 }
7318
7319 #undef po_char_or_fail
7320 #undef po_reg_or_fail
7321 #undef po_reg_or_goto
7322 #undef po_imm_or_fail
7323 #undef po_scalar_or_fail
7324 #undef po_barrier_or_imm
7325
7326 /* Shorthand macro for instruction encoding functions issuing errors. */
7327 #define constraint(expr, err) \
7328 do \
7329 { \
7330 if (expr) \
7331 { \
7332 inst.error = err; \
7333 return; \
7334 } \
7335 } \
7336 while (0)
7337
7338 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7339 instructions are unpredictable if these registers are used. This
7340 is the BadReg predicate in ARM's Thumb-2 documentation.
7341
7342 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7343 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7344 #define reject_bad_reg(reg) \
7345 do \
7346 if (reg == REG_PC) \
7347 { \
7348 inst.error = BAD_PC; \
7349 return; \
7350 } \
7351 else if (reg == REG_SP \
7352 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7353 { \
7354 inst.error = BAD_SP; \
7355 return; \
7356 } \
7357 while (0)
7358
7359 /* If REG is R13 (the stack pointer), warn that its use is
7360 deprecated. */
7361 #define warn_deprecated_sp(reg) \
7362 do \
7363 if (warn_on_deprecated && reg == REG_SP) \
7364 as_tsktsk (_("use of r13 is deprecated")); \
7365 while (0)
7366
7367 /* Functions for operand encoding. ARM, then Thumb. */
7368
7369 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7370
7371 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7372
7373 The only binary encoding difference is the Coprocessor number. Coprocessor
7374 9 is used for half-precision calculations or conversions. The format of the
7375 instruction is the same as the equivalent Coprocessor 10 instruction that
7376 exists for Single-Precision operation. */
7377
7378 static void
7379 do_scalar_fp16_v82_encode (void)
7380 {
7381 if (inst.cond != COND_ALWAYS)
7382 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7383 " the behaviour is UNPREDICTABLE"));
7384 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7385 _(BAD_FP16));
7386
7387 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7388 mark_feature_used (&arm_ext_fp16);
7389 }
7390
7391 /* If VAL can be encoded in the immediate field of an ARM instruction,
7392 return the encoded form. Otherwise, return FAIL. */
7393
7394 static unsigned int
7395 encode_arm_immediate (unsigned int val)
7396 {
7397 unsigned int a, i;
7398
7399 if (val <= 0xff)
7400 return val;
7401
7402 for (i = 2; i < 32; i += 2)
7403 if ((a = rotate_left (val, i)) <= 0xff)
7404 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7405
7406 return FAIL;
7407 }
7408
7409 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7410 return the encoded form. Otherwise, return FAIL. */
7411 static unsigned int
7412 encode_thumb32_immediate (unsigned int val)
7413 {
7414 unsigned int a, i;
7415
7416 if (val <= 0xff)
7417 return val;
7418
7419 for (i = 1; i <= 24; i++)
7420 {
7421 a = val >> i;
7422 if ((val & ~(0xff << i)) == 0)
7423 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7424 }
7425
7426 a = val & 0xff;
7427 if (val == ((a << 16) | a))
7428 return 0x100 | a;
7429 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7430 return 0x300 | a;
7431
7432 a = val & 0xff00;
7433 if (val == ((a << 16) | a))
7434 return 0x200 | (a >> 8);
7435
7436 return FAIL;
7437 }
7438 /* Encode a VFP SP or DP register number into inst.instruction. */
7439
7440 static void
7441 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7442 {
7443 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7444 && reg > 15)
7445 {
7446 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7447 {
7448 if (thumb_mode)
7449 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7450 fpu_vfp_ext_d32);
7451 else
7452 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7453 fpu_vfp_ext_d32);
7454 }
7455 else
7456 {
7457 first_error (_("D register out of range for selected VFP version"));
7458 return;
7459 }
7460 }
7461
7462 switch (pos)
7463 {
7464 case VFP_REG_Sd:
7465 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7466 break;
7467
7468 case VFP_REG_Sn:
7469 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7470 break;
7471
7472 case VFP_REG_Sm:
7473 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7474 break;
7475
7476 case VFP_REG_Dd:
7477 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7478 break;
7479
7480 case VFP_REG_Dn:
7481 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7482 break;
7483
7484 case VFP_REG_Dm:
7485 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7486 break;
7487
7488 default:
7489 abort ();
7490 }
7491 }
7492
7493 /* Encode a <shift> in an ARM-format instruction. The immediate,
7494 if any, is handled by md_apply_fix. */
7495 static void
7496 encode_arm_shift (int i)
7497 {
7498 /* register-shifted register. */
7499 if (inst.operands[i].immisreg)
7500 {
7501 int op_index;
7502 for (op_index = 0; op_index <= i; ++op_index)
7503 {
7504 /* Check the operand only when it's presented. In pre-UAL syntax,
7505 if the destination register is the same as the first operand, two
7506 register form of the instruction can be used. */
7507 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7508 && inst.operands[op_index].reg == REG_PC)
7509 as_warn (UNPRED_REG ("r15"));
7510 }
7511
7512 if (inst.operands[i].imm == REG_PC)
7513 as_warn (UNPRED_REG ("r15"));
7514 }
7515
7516 if (inst.operands[i].shift_kind == SHIFT_RRX)
7517 inst.instruction |= SHIFT_ROR << 5;
7518 else
7519 {
7520 inst.instruction |= inst.operands[i].shift_kind << 5;
7521 if (inst.operands[i].immisreg)
7522 {
7523 inst.instruction |= SHIFT_BY_REG;
7524 inst.instruction |= inst.operands[i].imm << 8;
7525 }
7526 else
7527 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7528 }
7529 }
7530
7531 static void
7532 encode_arm_shifter_operand (int i)
7533 {
7534 if (inst.operands[i].isreg)
7535 {
7536 inst.instruction |= inst.operands[i].reg;
7537 encode_arm_shift (i);
7538 }
7539 else
7540 {
7541 inst.instruction |= INST_IMMEDIATE;
7542 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7543 inst.instruction |= inst.operands[i].imm;
7544 }
7545 }
7546
7547 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7548 static void
7549 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7550 {
7551 /* PR 14260:
7552 Generate an error if the operand is not a register. */
7553 constraint (!inst.operands[i].isreg,
7554 _("Instruction does not support =N addresses"));
7555
7556 inst.instruction |= inst.operands[i].reg << 16;
7557
7558 if (inst.operands[i].preind)
7559 {
7560 if (is_t)
7561 {
7562 inst.error = _("instruction does not accept preindexed addressing");
7563 return;
7564 }
7565 inst.instruction |= PRE_INDEX;
7566 if (inst.operands[i].writeback)
7567 inst.instruction |= WRITE_BACK;
7568
7569 }
7570 else if (inst.operands[i].postind)
7571 {
7572 gas_assert (inst.operands[i].writeback);
7573 if (is_t)
7574 inst.instruction |= WRITE_BACK;
7575 }
7576 else /* unindexed - only for coprocessor */
7577 {
7578 inst.error = _("instruction does not accept unindexed addressing");
7579 return;
7580 }
7581
7582 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7583 && (((inst.instruction & 0x000f0000) >> 16)
7584 == ((inst.instruction & 0x0000f000) >> 12)))
7585 as_warn ((inst.instruction & LOAD_BIT)
7586 ? _("destination register same as write-back base")
7587 : _("source register same as write-back base"));
7588 }
7589
7590 /* inst.operands[i] was set up by parse_address. Encode it into an
7591 ARM-format mode 2 load or store instruction. If is_t is true,
7592 reject forms that cannot be used with a T instruction (i.e. not
7593 post-indexed). */
7594 static void
7595 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7596 {
7597 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7598
7599 encode_arm_addr_mode_common (i, is_t);
7600
7601 if (inst.operands[i].immisreg)
7602 {
7603 constraint ((inst.operands[i].imm == REG_PC
7604 || (is_pc && inst.operands[i].writeback)),
7605 BAD_PC_ADDRESSING);
7606 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7607 inst.instruction |= inst.operands[i].imm;
7608 if (!inst.operands[i].negative)
7609 inst.instruction |= INDEX_UP;
7610 if (inst.operands[i].shifted)
7611 {
7612 if (inst.operands[i].shift_kind == SHIFT_RRX)
7613 inst.instruction |= SHIFT_ROR << 5;
7614 else
7615 {
7616 inst.instruction |= inst.operands[i].shift_kind << 5;
7617 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7618 }
7619 }
7620 }
7621 else /* immediate offset in inst.reloc */
7622 {
7623 if (is_pc && !inst.reloc.pc_rel)
7624 {
7625 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7626
7627 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7628 cannot use PC in addressing.
7629 PC cannot be used in writeback addressing, either. */
7630 constraint ((is_t || inst.operands[i].writeback),
7631 BAD_PC_ADDRESSING);
7632
7633 /* Use of PC in str is deprecated for ARMv7. */
7634 if (warn_on_deprecated
7635 && !is_load
7636 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7637 as_tsktsk (_("use of PC in this instruction is deprecated"));
7638 }
7639
7640 if (inst.reloc.type == BFD_RELOC_UNUSED)
7641 {
7642 /* Prefer + for zero encoded value. */
7643 if (!inst.operands[i].negative)
7644 inst.instruction |= INDEX_UP;
7645 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7646 }
7647 }
7648 }
7649
7650 /* inst.operands[i] was set up by parse_address. Encode it into an
7651 ARM-format mode 3 load or store instruction. Reject forms that
7652 cannot be used with such instructions. If is_t is true, reject
7653 forms that cannot be used with a T instruction (i.e. not
7654 post-indexed). */
7655 static void
7656 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7657 {
7658 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7659 {
7660 inst.error = _("instruction does not accept scaled register index");
7661 return;
7662 }
7663
7664 encode_arm_addr_mode_common (i, is_t);
7665
7666 if (inst.operands[i].immisreg)
7667 {
7668 constraint ((inst.operands[i].imm == REG_PC
7669 || (is_t && inst.operands[i].reg == REG_PC)),
7670 BAD_PC_ADDRESSING);
7671 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7672 BAD_PC_WRITEBACK);
7673 inst.instruction |= inst.operands[i].imm;
7674 if (!inst.operands[i].negative)
7675 inst.instruction |= INDEX_UP;
7676 }
7677 else /* immediate offset in inst.reloc */
7678 {
7679 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7680 && inst.operands[i].writeback),
7681 BAD_PC_WRITEBACK);
7682 inst.instruction |= HWOFFSET_IMM;
7683 if (inst.reloc.type == BFD_RELOC_UNUSED)
7684 {
7685 /* Prefer + for zero encoded value. */
7686 if (!inst.operands[i].negative)
7687 inst.instruction |= INDEX_UP;
7688
7689 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7690 }
7691 }
7692 }
7693
7694 /* Write immediate bits [7:0] to the following locations:
7695
7696 |28/24|23 19|18 16|15 4|3 0|
7697 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7698
7699 This function is used by VMOV/VMVN/VORR/VBIC. */
7700
7701 static void
7702 neon_write_immbits (unsigned immbits)
7703 {
7704 inst.instruction |= immbits & 0xf;
7705 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7706 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7707 }
7708
7709 /* Invert low-order SIZE bits of XHI:XLO. */
7710
7711 static void
7712 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7713 {
7714 unsigned immlo = xlo ? *xlo : 0;
7715 unsigned immhi = xhi ? *xhi : 0;
7716
7717 switch (size)
7718 {
7719 case 8:
7720 immlo = (~immlo) & 0xff;
7721 break;
7722
7723 case 16:
7724 immlo = (~immlo) & 0xffff;
7725 break;
7726
7727 case 64:
7728 immhi = (~immhi) & 0xffffffff;
7729 /* fall through. */
7730
7731 case 32:
7732 immlo = (~immlo) & 0xffffffff;
7733 break;
7734
7735 default:
7736 abort ();
7737 }
7738
7739 if (xlo)
7740 *xlo = immlo;
7741
7742 if (xhi)
7743 *xhi = immhi;
7744 }
7745
7746 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7747 A, B, C, D. */
7748
7749 static int
7750 neon_bits_same_in_bytes (unsigned imm)
7751 {
7752 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7753 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7754 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7755 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7756 }
7757
7758 /* For immediate of above form, return 0bABCD. */
7759
7760 static unsigned
7761 neon_squash_bits (unsigned imm)
7762 {
7763 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7764 | ((imm & 0x01000000) >> 21);
7765 }
7766
7767 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7768
7769 static unsigned
7770 neon_qfloat_bits (unsigned imm)
7771 {
7772 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7773 }
7774
7775 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7776 the instruction. *OP is passed as the initial value of the op field, and
7777 may be set to a different value depending on the constant (i.e.
7778 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7779 MVN). If the immediate looks like a repeated pattern then also
7780 try smaller element sizes. */
7781
7782 static int
7783 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7784 unsigned *immbits, int *op, int size,
7785 enum neon_el_type type)
7786 {
7787 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7788 float. */
7789 if (type == NT_float && !float_p)
7790 return FAIL;
7791
7792 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7793 {
7794 if (size != 32 || *op == 1)
7795 return FAIL;
7796 *immbits = neon_qfloat_bits (immlo);
7797 return 0xf;
7798 }
7799
7800 if (size == 64)
7801 {
7802 if (neon_bits_same_in_bytes (immhi)
7803 && neon_bits_same_in_bytes (immlo))
7804 {
7805 if (*op == 1)
7806 return FAIL;
7807 *immbits = (neon_squash_bits (immhi) << 4)
7808 | neon_squash_bits (immlo);
7809 *op = 1;
7810 return 0xe;
7811 }
7812
7813 if (immhi != immlo)
7814 return FAIL;
7815 }
7816
7817 if (size >= 32)
7818 {
7819 if (immlo == (immlo & 0x000000ff))
7820 {
7821 *immbits = immlo;
7822 return 0x0;
7823 }
7824 else if (immlo == (immlo & 0x0000ff00))
7825 {
7826 *immbits = immlo >> 8;
7827 return 0x2;
7828 }
7829 else if (immlo == (immlo & 0x00ff0000))
7830 {
7831 *immbits = immlo >> 16;
7832 return 0x4;
7833 }
7834 else if (immlo == (immlo & 0xff000000))
7835 {
7836 *immbits = immlo >> 24;
7837 return 0x6;
7838 }
7839 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7840 {
7841 *immbits = (immlo >> 8) & 0xff;
7842 return 0xc;
7843 }
7844 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7845 {
7846 *immbits = (immlo >> 16) & 0xff;
7847 return 0xd;
7848 }
7849
7850 if ((immlo & 0xffff) != (immlo >> 16))
7851 return FAIL;
7852 immlo &= 0xffff;
7853 }
7854
7855 if (size >= 16)
7856 {
7857 if (immlo == (immlo & 0x000000ff))
7858 {
7859 *immbits = immlo;
7860 return 0x8;
7861 }
7862 else if (immlo == (immlo & 0x0000ff00))
7863 {
7864 *immbits = immlo >> 8;
7865 return 0xa;
7866 }
7867
7868 if ((immlo & 0xff) != (immlo >> 8))
7869 return FAIL;
7870 immlo &= 0xff;
7871 }
7872
7873 if (immlo == (immlo & 0x000000ff))
7874 {
7875 /* Don't allow MVN with 8-bit immediate. */
7876 if (*op == 1)
7877 return FAIL;
7878 *immbits = immlo;
7879 return 0xe;
7880 }
7881
7882 return FAIL;
7883 }
7884
7885 #if defined BFD_HOST_64_BIT
7886 /* Returns TRUE if double precision value V may be cast
7887 to single precision without loss of accuracy. */
7888
7889 static bfd_boolean
7890 is_double_a_single (bfd_int64_t v)
7891 {
7892 int exp = (int)((v >> 52) & 0x7FF);
7893 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7894
7895 return (exp == 0 || exp == 0x7FF
7896 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7897 && (mantissa & 0x1FFFFFFFl) == 0;
7898 }
7899
7900 /* Returns a double precision value casted to single precision
7901 (ignoring the least significant bits in exponent and mantissa). */
7902
7903 static int
7904 double_to_single (bfd_int64_t v)
7905 {
7906 int sign = (int) ((v >> 63) & 1l);
7907 int exp = (int) ((v >> 52) & 0x7FF);
7908 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7909
7910 if (exp == 0x7FF)
7911 exp = 0xFF;
7912 else
7913 {
7914 exp = exp - 1023 + 127;
7915 if (exp >= 0xFF)
7916 {
7917 /* Infinity. */
7918 exp = 0x7F;
7919 mantissa = 0;
7920 }
7921 else if (exp < 0)
7922 {
7923 /* No denormalized numbers. */
7924 exp = 0;
7925 mantissa = 0;
7926 }
7927 }
7928 mantissa >>= 29;
7929 return (sign << 31) | (exp << 23) | mantissa;
7930 }
7931 #endif /* BFD_HOST_64_BIT */
7932
7933 enum lit_type
7934 {
7935 CONST_THUMB,
7936 CONST_ARM,
7937 CONST_VEC
7938 };
7939
7940 static void do_vfp_nsyn_opcode (const char *);
7941
7942 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7943 Determine whether it can be performed with a move instruction; if
7944 it can, convert inst.instruction to that move instruction and
7945 return TRUE; if it can't, convert inst.instruction to a literal-pool
7946 load and return FALSE. If this is not a valid thing to do in the
7947 current context, set inst.error and return TRUE.
7948
7949 inst.operands[i] describes the destination register. */
7950
7951 static bfd_boolean
7952 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7953 {
7954 unsigned long tbit;
7955 bfd_boolean thumb_p = (t == CONST_THUMB);
7956 bfd_boolean arm_p = (t == CONST_ARM);
7957
7958 if (thumb_p)
7959 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7960 else
7961 tbit = LOAD_BIT;
7962
7963 if ((inst.instruction & tbit) == 0)
7964 {
7965 inst.error = _("invalid pseudo operation");
7966 return TRUE;
7967 }
7968
7969 if (inst.reloc.exp.X_op != O_constant
7970 && inst.reloc.exp.X_op != O_symbol
7971 && inst.reloc.exp.X_op != O_big)
7972 {
7973 inst.error = _("constant expression expected");
7974 return TRUE;
7975 }
7976
7977 if (inst.reloc.exp.X_op == O_constant
7978 || inst.reloc.exp.X_op == O_big)
7979 {
7980 #if defined BFD_HOST_64_BIT
7981 bfd_int64_t v;
7982 #else
7983 offsetT v;
7984 #endif
7985 if (inst.reloc.exp.X_op == O_big)
7986 {
7987 LITTLENUM_TYPE w[X_PRECISION];
7988 LITTLENUM_TYPE * l;
7989
7990 if (inst.reloc.exp.X_add_number == -1)
7991 {
7992 gen_to_words (w, X_PRECISION, E_PRECISION);
7993 l = w;
7994 /* FIXME: Should we check words w[2..5] ? */
7995 }
7996 else
7997 l = generic_bignum;
7998
7999 #if defined BFD_HOST_64_BIT
8000 v =
8001 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8002 << LITTLENUM_NUMBER_OF_BITS)
8003 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8004 << LITTLENUM_NUMBER_OF_BITS)
8005 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8006 << LITTLENUM_NUMBER_OF_BITS)
8007 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8008 #else
8009 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8010 | (l[0] & LITTLENUM_MASK);
8011 #endif
8012 }
8013 else
8014 v = inst.reloc.exp.X_add_number;
8015
8016 if (!inst.operands[i].issingle)
8017 {
8018 if (thumb_p)
8019 {
8020 /* LDR should not use lead in a flag-setting instruction being
8021 chosen so we do not check whether movs can be used. */
8022
8023 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8024 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8025 && inst.operands[i].reg != 13
8026 && inst.operands[i].reg != 15)
8027 {
8028 /* Check if on thumb2 it can be done with a mov.w, mvn or
8029 movw instruction. */
8030 unsigned int newimm;
8031 bfd_boolean isNegated;
8032
8033 newimm = encode_thumb32_immediate (v);
8034 if (newimm != (unsigned int) FAIL)
8035 isNegated = FALSE;
8036 else
8037 {
8038 newimm = encode_thumb32_immediate (~v);
8039 if (newimm != (unsigned int) FAIL)
8040 isNegated = TRUE;
8041 }
8042
8043 /* The number can be loaded with a mov.w or mvn
8044 instruction. */
8045 if (newimm != (unsigned int) FAIL
8046 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8047 {
8048 inst.instruction = (0xf04f0000 /* MOV.W. */
8049 | (inst.operands[i].reg << 8));
8050 /* Change to MOVN. */
8051 inst.instruction |= (isNegated ? 0x200000 : 0);
8052 inst.instruction |= (newimm & 0x800) << 15;
8053 inst.instruction |= (newimm & 0x700) << 4;
8054 inst.instruction |= (newimm & 0x0ff);
8055 return TRUE;
8056 }
8057 /* The number can be loaded with a movw instruction. */
8058 else if ((v & ~0xFFFF) == 0
8059 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8060 {
8061 int imm = v & 0xFFFF;
8062
8063 inst.instruction = 0xf2400000; /* MOVW. */
8064 inst.instruction |= (inst.operands[i].reg << 8);
8065 inst.instruction |= (imm & 0xf000) << 4;
8066 inst.instruction |= (imm & 0x0800) << 15;
8067 inst.instruction |= (imm & 0x0700) << 4;
8068 inst.instruction |= (imm & 0x00ff);
8069 return TRUE;
8070 }
8071 }
8072 }
8073 else if (arm_p)
8074 {
8075 int value = encode_arm_immediate (v);
8076
8077 if (value != FAIL)
8078 {
8079 /* This can be done with a mov instruction. */
8080 inst.instruction &= LITERAL_MASK;
8081 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8082 inst.instruction |= value & 0xfff;
8083 return TRUE;
8084 }
8085
8086 value = encode_arm_immediate (~ v);
8087 if (value != FAIL)
8088 {
8089 /* This can be done with a mvn instruction. */
8090 inst.instruction &= LITERAL_MASK;
8091 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8092 inst.instruction |= value & 0xfff;
8093 return TRUE;
8094 }
8095 }
8096 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8097 {
8098 int op = 0;
8099 unsigned immbits = 0;
8100 unsigned immlo = inst.operands[1].imm;
8101 unsigned immhi = inst.operands[1].regisimm
8102 ? inst.operands[1].reg
8103 : inst.reloc.exp.X_unsigned
8104 ? 0
8105 : ((bfd_int64_t)((int) immlo)) >> 32;
8106 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8107 &op, 64, NT_invtype);
8108
8109 if (cmode == FAIL)
8110 {
8111 neon_invert_size (&immlo, &immhi, 64);
8112 op = !op;
8113 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8114 &op, 64, NT_invtype);
8115 }
8116
8117 if (cmode != FAIL)
8118 {
8119 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8120 | (1 << 23)
8121 | (cmode << 8)
8122 | (op << 5)
8123 | (1 << 4);
8124
8125 /* Fill other bits in vmov encoding for both thumb and arm. */
8126 if (thumb_mode)
8127 inst.instruction |= (0x7U << 29) | (0xF << 24);
8128 else
8129 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8130 neon_write_immbits (immbits);
8131 return TRUE;
8132 }
8133 }
8134 }
8135
8136 if (t == CONST_VEC)
8137 {
8138 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8139 if (inst.operands[i].issingle
8140 && is_quarter_float (inst.operands[1].imm)
8141 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8142 {
8143 inst.operands[1].imm =
8144 neon_qfloat_bits (v);
8145 do_vfp_nsyn_opcode ("fconsts");
8146 return TRUE;
8147 }
8148
8149 /* If our host does not support a 64-bit type then we cannot perform
8150 the following optimization. This mean that there will be a
8151 discrepancy between the output produced by an assembler built for
8152 a 32-bit-only host and the output produced from a 64-bit host, but
8153 this cannot be helped. */
8154 #if defined BFD_HOST_64_BIT
8155 else if (!inst.operands[1].issingle
8156 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8157 {
8158 if (is_double_a_single (v)
8159 && is_quarter_float (double_to_single (v)))
8160 {
8161 inst.operands[1].imm =
8162 neon_qfloat_bits (double_to_single (v));
8163 do_vfp_nsyn_opcode ("fconstd");
8164 return TRUE;
8165 }
8166 }
8167 #endif
8168 }
8169 }
8170
8171 if (add_to_lit_pool ((!inst.operands[i].isvec
8172 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8173 return TRUE;
8174
8175 inst.operands[1].reg = REG_PC;
8176 inst.operands[1].isreg = 1;
8177 inst.operands[1].preind = 1;
8178 inst.reloc.pc_rel = 1;
8179 inst.reloc.type = (thumb_p
8180 ? BFD_RELOC_ARM_THUMB_OFFSET
8181 : (mode_3
8182 ? BFD_RELOC_ARM_HWLITERAL
8183 : BFD_RELOC_ARM_LITERAL));
8184 return FALSE;
8185 }
8186
8187 /* inst.operands[i] was set up by parse_address. Encode it into an
8188 ARM-format instruction. Reject all forms which cannot be encoded
8189 into a coprocessor load/store instruction. If wb_ok is false,
8190 reject use of writeback; if unind_ok is false, reject use of
8191 unindexed addressing. If reloc_override is not 0, use it instead
8192 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8193 (in which case it is preserved). */
8194
8195 static int
8196 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8197 {
8198 if (!inst.operands[i].isreg)
8199 {
8200 /* PR 18256 */
8201 if (! inst.operands[0].isvec)
8202 {
8203 inst.error = _("invalid co-processor operand");
8204 return FAIL;
8205 }
8206 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8207 return SUCCESS;
8208 }
8209
8210 inst.instruction |= inst.operands[i].reg << 16;
8211
8212 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8213
8214 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8215 {
8216 gas_assert (!inst.operands[i].writeback);
8217 if (!unind_ok)
8218 {
8219 inst.error = _("instruction does not support unindexed addressing");
8220 return FAIL;
8221 }
8222 inst.instruction |= inst.operands[i].imm;
8223 inst.instruction |= INDEX_UP;
8224 return SUCCESS;
8225 }
8226
8227 if (inst.operands[i].preind)
8228 inst.instruction |= PRE_INDEX;
8229
8230 if (inst.operands[i].writeback)
8231 {
8232 if (inst.operands[i].reg == REG_PC)
8233 {
8234 inst.error = _("pc may not be used with write-back");
8235 return FAIL;
8236 }
8237 if (!wb_ok)
8238 {
8239 inst.error = _("instruction does not support writeback");
8240 return FAIL;
8241 }
8242 inst.instruction |= WRITE_BACK;
8243 }
8244
8245 if (reloc_override)
8246 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8247 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8248 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8249 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
8250 {
8251 if (thumb_mode)
8252 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8253 else
8254 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
8255 }
8256
8257 /* Prefer + for zero encoded value. */
8258 if (!inst.operands[i].negative)
8259 inst.instruction |= INDEX_UP;
8260
8261 return SUCCESS;
8262 }
8263
8264 /* Functions for instruction encoding, sorted by sub-architecture.
8265 First some generics; their names are taken from the conventional
8266 bit positions for register arguments in ARM format instructions. */
8267
8268 static void
8269 do_noargs (void)
8270 {
8271 }
8272
8273 static void
8274 do_rd (void)
8275 {
8276 inst.instruction |= inst.operands[0].reg << 12;
8277 }
8278
8279 static void
8280 do_rn (void)
8281 {
8282 inst.instruction |= inst.operands[0].reg << 16;
8283 }
8284
8285 static void
8286 do_rd_rm (void)
8287 {
8288 inst.instruction |= inst.operands[0].reg << 12;
8289 inst.instruction |= inst.operands[1].reg;
8290 }
8291
8292 static void
8293 do_rm_rn (void)
8294 {
8295 inst.instruction |= inst.operands[0].reg;
8296 inst.instruction |= inst.operands[1].reg << 16;
8297 }
8298
8299 static void
8300 do_rd_rn (void)
8301 {
8302 inst.instruction |= inst.operands[0].reg << 12;
8303 inst.instruction |= inst.operands[1].reg << 16;
8304 }
8305
8306 static void
8307 do_rn_rd (void)
8308 {
8309 inst.instruction |= inst.operands[0].reg << 16;
8310 inst.instruction |= inst.operands[1].reg << 12;
8311 }
8312
8313 static void
8314 do_tt (void)
8315 {
8316 inst.instruction |= inst.operands[0].reg << 8;
8317 inst.instruction |= inst.operands[1].reg << 16;
8318 }
8319
8320 static bfd_boolean
8321 check_obsolete (const arm_feature_set *feature, const char *msg)
8322 {
8323 if (ARM_CPU_IS_ANY (cpu_variant))
8324 {
8325 as_tsktsk ("%s", msg);
8326 return TRUE;
8327 }
8328 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8329 {
8330 as_bad ("%s", msg);
8331 return TRUE;
8332 }
8333
8334 return FALSE;
8335 }
8336
8337 static void
8338 do_rd_rm_rn (void)
8339 {
8340 unsigned Rn = inst.operands[2].reg;
8341 /* Enforce restrictions on SWP instruction. */
8342 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8343 {
8344 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8345 _("Rn must not overlap other operands"));
8346
8347 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8348 */
8349 if (!check_obsolete (&arm_ext_v8,
8350 _("swp{b} use is obsoleted for ARMv8 and later"))
8351 && warn_on_deprecated
8352 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8353 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8354 }
8355
8356 inst.instruction |= inst.operands[0].reg << 12;
8357 inst.instruction |= inst.operands[1].reg;
8358 inst.instruction |= Rn << 16;
8359 }
8360
8361 static void
8362 do_rd_rn_rm (void)
8363 {
8364 inst.instruction |= inst.operands[0].reg << 12;
8365 inst.instruction |= inst.operands[1].reg << 16;
8366 inst.instruction |= inst.operands[2].reg;
8367 }
8368
8369 static void
8370 do_rm_rd_rn (void)
8371 {
8372 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8373 constraint (((inst.reloc.exp.X_op != O_constant
8374 && inst.reloc.exp.X_op != O_illegal)
8375 || inst.reloc.exp.X_add_number != 0),
8376 BAD_ADDR_MODE);
8377 inst.instruction |= inst.operands[0].reg;
8378 inst.instruction |= inst.operands[1].reg << 12;
8379 inst.instruction |= inst.operands[2].reg << 16;
8380 }
8381
8382 static void
8383 do_imm0 (void)
8384 {
8385 inst.instruction |= inst.operands[0].imm;
8386 }
8387
8388 static void
8389 do_rd_cpaddr (void)
8390 {
8391 inst.instruction |= inst.operands[0].reg << 12;
8392 encode_arm_cp_address (1, TRUE, TRUE, 0);
8393 }
8394
8395 /* ARM instructions, in alphabetical order by function name (except
8396 that wrapper functions appear immediately after the function they
8397 wrap). */
8398
8399 /* This is a pseudo-op of the form "adr rd, label" to be converted
8400 into a relative address of the form "add rd, pc, #label-.-8". */
8401
8402 static void
8403 do_adr (void)
8404 {
8405 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8406
8407 /* Frag hacking will turn this into a sub instruction if the offset turns
8408 out to be negative. */
8409 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8410 inst.reloc.pc_rel = 1;
8411 inst.reloc.exp.X_add_number -= 8;
8412
8413 if (inst.reloc.exp.X_op == O_symbol
8414 && inst.reloc.exp.X_add_symbol != NULL
8415 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8416 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8417 inst.reloc.exp.X_add_number += 1;
8418 }
8419
8420 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8421 into a relative address of the form:
8422 add rd, pc, #low(label-.-8)"
8423 add rd, rd, #high(label-.-8)" */
8424
8425 static void
8426 do_adrl (void)
8427 {
8428 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8429
8430 /* Frag hacking will turn this into a sub instruction if the offset turns
8431 out to be negative. */
8432 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8433 inst.reloc.pc_rel = 1;
8434 inst.size = INSN_SIZE * 2;
8435 inst.reloc.exp.X_add_number -= 8;
8436
8437 if (inst.reloc.exp.X_op == O_symbol
8438 && inst.reloc.exp.X_add_symbol != NULL
8439 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8440 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8441 inst.reloc.exp.X_add_number += 1;
8442 }
8443
8444 static void
8445 do_arit (void)
8446 {
8447 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8448 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8449 THUMB1_RELOC_ONLY);
8450 if (!inst.operands[1].present)
8451 inst.operands[1].reg = inst.operands[0].reg;
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 inst.instruction |= inst.operands[1].reg << 16;
8454 encode_arm_shifter_operand (2);
8455 }
8456
8457 static void
8458 do_barrier (void)
8459 {
8460 if (inst.operands[0].present)
8461 inst.instruction |= inst.operands[0].imm;
8462 else
8463 inst.instruction |= 0xf;
8464 }
8465
8466 static void
8467 do_bfc (void)
8468 {
8469 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8470 constraint (msb > 32, _("bit-field extends past end of register"));
8471 /* The instruction encoding stores the LSB and MSB,
8472 not the LSB and width. */
8473 inst.instruction |= inst.operands[0].reg << 12;
8474 inst.instruction |= inst.operands[1].imm << 7;
8475 inst.instruction |= (msb - 1) << 16;
8476 }
8477
8478 static void
8479 do_bfi (void)
8480 {
8481 unsigned int msb;
8482
8483 /* #0 in second position is alternative syntax for bfc, which is
8484 the same instruction but with REG_PC in the Rm field. */
8485 if (!inst.operands[1].isreg)
8486 inst.operands[1].reg = REG_PC;
8487
8488 msb = inst.operands[2].imm + inst.operands[3].imm;
8489 constraint (msb > 32, _("bit-field extends past end of register"));
8490 /* The instruction encoding stores the LSB and MSB,
8491 not the LSB and width. */
8492 inst.instruction |= inst.operands[0].reg << 12;
8493 inst.instruction |= inst.operands[1].reg;
8494 inst.instruction |= inst.operands[2].imm << 7;
8495 inst.instruction |= (msb - 1) << 16;
8496 }
8497
8498 static void
8499 do_bfx (void)
8500 {
8501 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8502 _("bit-field extends past end of register"));
8503 inst.instruction |= inst.operands[0].reg << 12;
8504 inst.instruction |= inst.operands[1].reg;
8505 inst.instruction |= inst.operands[2].imm << 7;
8506 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8507 }
8508
8509 /* ARM V5 breakpoint instruction (argument parse)
8510 BKPT <16 bit unsigned immediate>
8511 Instruction is not conditional.
8512 The bit pattern given in insns[] has the COND_ALWAYS condition,
8513 and it is an error if the caller tried to override that. */
8514
8515 static void
8516 do_bkpt (void)
8517 {
8518 /* Top 12 of 16 bits to bits 19:8. */
8519 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8520
8521 /* Bottom 4 of 16 bits to bits 3:0. */
8522 inst.instruction |= inst.operands[0].imm & 0xf;
8523 }
8524
8525 static void
8526 encode_branch (int default_reloc)
8527 {
8528 if (inst.operands[0].hasreloc)
8529 {
8530 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8531 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8532 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8533 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8534 ? BFD_RELOC_ARM_PLT32
8535 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8536 }
8537 else
8538 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8539 inst.reloc.pc_rel = 1;
8540 }
8541
8542 static void
8543 do_branch (void)
8544 {
8545 #ifdef OBJ_ELF
8546 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8547 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8548 else
8549 #endif
8550 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8551 }
8552
8553 static void
8554 do_bl (void)
8555 {
8556 #ifdef OBJ_ELF
8557 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8558 {
8559 if (inst.cond == COND_ALWAYS)
8560 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8561 else
8562 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8563 }
8564 else
8565 #endif
8566 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8567 }
8568
8569 /* ARM V5 branch-link-exchange instruction (argument parse)
8570 BLX <target_addr> ie BLX(1)
8571 BLX{<condition>} <Rm> ie BLX(2)
8572 Unfortunately, there are two different opcodes for this mnemonic.
8573 So, the insns[].value is not used, and the code here zaps values
8574 into inst.instruction.
8575 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8576
8577 static void
8578 do_blx (void)
8579 {
8580 if (inst.operands[0].isreg)
8581 {
8582 /* Arg is a register; the opcode provided by insns[] is correct.
8583 It is not illegal to do "blx pc", just useless. */
8584 if (inst.operands[0].reg == REG_PC)
8585 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8586
8587 inst.instruction |= inst.operands[0].reg;
8588 }
8589 else
8590 {
8591 /* Arg is an address; this instruction cannot be executed
8592 conditionally, and the opcode must be adjusted.
8593 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8594 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8595 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8596 inst.instruction = 0xfa000000;
8597 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8598 }
8599 }
8600
8601 static void
8602 do_bx (void)
8603 {
8604 bfd_boolean want_reloc;
8605
8606 if (inst.operands[0].reg == REG_PC)
8607 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8608
8609 inst.instruction |= inst.operands[0].reg;
8610 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8611 it is for ARMv4t or earlier. */
8612 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8613 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8614 want_reloc = TRUE;
8615
8616 #ifdef OBJ_ELF
8617 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8618 #endif
8619 want_reloc = FALSE;
8620
8621 if (want_reloc)
8622 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8623 }
8624
8625
8626 /* ARM v5TEJ. Jump to Jazelle code. */
8627
8628 static void
8629 do_bxj (void)
8630 {
8631 if (inst.operands[0].reg == REG_PC)
8632 as_tsktsk (_("use of r15 in bxj is not really useful"));
8633
8634 inst.instruction |= inst.operands[0].reg;
8635 }
8636
8637 /* Co-processor data operation:
8638 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8639 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8640 static void
8641 do_cdp (void)
8642 {
8643 inst.instruction |= inst.operands[0].reg << 8;
8644 inst.instruction |= inst.operands[1].imm << 20;
8645 inst.instruction |= inst.operands[2].reg << 12;
8646 inst.instruction |= inst.operands[3].reg << 16;
8647 inst.instruction |= inst.operands[4].reg;
8648 inst.instruction |= inst.operands[5].imm << 5;
8649 }
8650
8651 static void
8652 do_cmp (void)
8653 {
8654 inst.instruction |= inst.operands[0].reg << 16;
8655 encode_arm_shifter_operand (1);
8656 }
8657
8658 /* Transfer between coprocessor and ARM registers.
8659 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8660 MRC2
8661 MCR{cond}
8662 MCR2
8663
8664 No special properties. */
8665
8666 struct deprecated_coproc_regs_s
8667 {
8668 unsigned cp;
8669 int opc1;
8670 unsigned crn;
8671 unsigned crm;
8672 int opc2;
8673 arm_feature_set deprecated;
8674 arm_feature_set obsoleted;
8675 const char *dep_msg;
8676 const char *obs_msg;
8677 };
8678
8679 #define DEPR_ACCESS_V8 \
8680 N_("This coprocessor register access is deprecated in ARMv8")
8681
8682 /* Table of all deprecated coprocessor registers. */
8683 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8684 {
8685 {15, 0, 7, 10, 5, /* CP15DMB. */
8686 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8687 DEPR_ACCESS_V8, NULL},
8688 {15, 0, 7, 10, 4, /* CP15DSB. */
8689 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8690 DEPR_ACCESS_V8, NULL},
8691 {15, 0, 7, 5, 4, /* CP15ISB. */
8692 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8693 DEPR_ACCESS_V8, NULL},
8694 {14, 6, 1, 0, 0, /* TEEHBR. */
8695 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8696 DEPR_ACCESS_V8, NULL},
8697 {14, 6, 0, 0, 0, /* TEECR. */
8698 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8699 DEPR_ACCESS_V8, NULL},
8700 };
8701
8702 #undef DEPR_ACCESS_V8
8703
8704 static const size_t deprecated_coproc_reg_count =
8705 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8706
8707 static void
8708 do_co_reg (void)
8709 {
8710 unsigned Rd;
8711 size_t i;
8712
8713 Rd = inst.operands[2].reg;
8714 if (thumb_mode)
8715 {
8716 if (inst.instruction == 0xee000010
8717 || inst.instruction == 0xfe000010)
8718 /* MCR, MCR2 */
8719 reject_bad_reg (Rd);
8720 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8721 /* MRC, MRC2 */
8722 constraint (Rd == REG_SP, BAD_SP);
8723 }
8724 else
8725 {
8726 /* MCR */
8727 if (inst.instruction == 0xe000010)
8728 constraint (Rd == REG_PC, BAD_PC);
8729 }
8730
8731 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8732 {
8733 const struct deprecated_coproc_regs_s *r =
8734 deprecated_coproc_regs + i;
8735
8736 if (inst.operands[0].reg == r->cp
8737 && inst.operands[1].imm == r->opc1
8738 && inst.operands[3].reg == r->crn
8739 && inst.operands[4].reg == r->crm
8740 && inst.operands[5].imm == r->opc2)
8741 {
8742 if (! ARM_CPU_IS_ANY (cpu_variant)
8743 && warn_on_deprecated
8744 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8745 as_tsktsk ("%s", r->dep_msg);
8746 }
8747 }
8748
8749 inst.instruction |= inst.operands[0].reg << 8;
8750 inst.instruction |= inst.operands[1].imm << 21;
8751 inst.instruction |= Rd << 12;
8752 inst.instruction |= inst.operands[3].reg << 16;
8753 inst.instruction |= inst.operands[4].reg;
8754 inst.instruction |= inst.operands[5].imm << 5;
8755 }
8756
8757 /* Transfer between coprocessor register and pair of ARM registers.
8758 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8759 MCRR2
8760 MRRC{cond}
8761 MRRC2
8762
8763 Two XScale instructions are special cases of these:
8764
8765 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8766 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8767
8768 Result unpredictable if Rd or Rn is R15. */
8769
8770 static void
8771 do_co_reg2c (void)
8772 {
8773 unsigned Rd, Rn;
8774
8775 Rd = inst.operands[2].reg;
8776 Rn = inst.operands[3].reg;
8777
8778 if (thumb_mode)
8779 {
8780 reject_bad_reg (Rd);
8781 reject_bad_reg (Rn);
8782 }
8783 else
8784 {
8785 constraint (Rd == REG_PC, BAD_PC);
8786 constraint (Rn == REG_PC, BAD_PC);
8787 }
8788
8789 /* Only check the MRRC{2} variants. */
8790 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8791 {
8792 /* If Rd == Rn, error that the operation is
8793 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8794 constraint (Rd == Rn, BAD_OVERLAP);
8795 }
8796
8797 inst.instruction |= inst.operands[0].reg << 8;
8798 inst.instruction |= inst.operands[1].imm << 4;
8799 inst.instruction |= Rd << 12;
8800 inst.instruction |= Rn << 16;
8801 inst.instruction |= inst.operands[4].reg;
8802 }
8803
8804 static void
8805 do_cpsi (void)
8806 {
8807 inst.instruction |= inst.operands[0].imm << 6;
8808 if (inst.operands[1].present)
8809 {
8810 inst.instruction |= CPSI_MMOD;
8811 inst.instruction |= inst.operands[1].imm;
8812 }
8813 }
8814
8815 static void
8816 do_dbg (void)
8817 {
8818 inst.instruction |= inst.operands[0].imm;
8819 }
8820
8821 static void
8822 do_div (void)
8823 {
8824 unsigned Rd, Rn, Rm;
8825
8826 Rd = inst.operands[0].reg;
8827 Rn = (inst.operands[1].present
8828 ? inst.operands[1].reg : Rd);
8829 Rm = inst.operands[2].reg;
8830
8831 constraint ((Rd == REG_PC), BAD_PC);
8832 constraint ((Rn == REG_PC), BAD_PC);
8833 constraint ((Rm == REG_PC), BAD_PC);
8834
8835 inst.instruction |= Rd << 16;
8836 inst.instruction |= Rn << 0;
8837 inst.instruction |= Rm << 8;
8838 }
8839
8840 static void
8841 do_it (void)
8842 {
8843 /* There is no IT instruction in ARM mode. We
8844 process it to do the validation as if in
8845 thumb mode, just in case the code gets
8846 assembled for thumb using the unified syntax. */
8847
8848 inst.size = 0;
8849 if (unified_syntax)
8850 {
8851 set_it_insn_type (IT_INSN);
8852 now_it.mask = (inst.instruction & 0xf) | 0x10;
8853 now_it.cc = inst.operands[0].imm;
8854 }
8855 }
8856
8857 /* If there is only one register in the register list,
8858 then return its register number. Otherwise return -1. */
8859 static int
8860 only_one_reg_in_list (int range)
8861 {
8862 int i = ffs (range) - 1;
8863 return (i > 15 || range != (1 << i)) ? -1 : i;
8864 }
8865
8866 static void
8867 encode_ldmstm(int from_push_pop_mnem)
8868 {
8869 int base_reg = inst.operands[0].reg;
8870 int range = inst.operands[1].imm;
8871 int one_reg;
8872
8873 inst.instruction |= base_reg << 16;
8874 inst.instruction |= range;
8875
8876 if (inst.operands[1].writeback)
8877 inst.instruction |= LDM_TYPE_2_OR_3;
8878
8879 if (inst.operands[0].writeback)
8880 {
8881 inst.instruction |= WRITE_BACK;
8882 /* Check for unpredictable uses of writeback. */
8883 if (inst.instruction & LOAD_BIT)
8884 {
8885 /* Not allowed in LDM type 2. */
8886 if ((inst.instruction & LDM_TYPE_2_OR_3)
8887 && ((range & (1 << REG_PC)) == 0))
8888 as_warn (_("writeback of base register is UNPREDICTABLE"));
8889 /* Only allowed if base reg not in list for other types. */
8890 else if (range & (1 << base_reg))
8891 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8892 }
8893 else /* STM. */
8894 {
8895 /* Not allowed for type 2. */
8896 if (inst.instruction & LDM_TYPE_2_OR_3)
8897 as_warn (_("writeback of base register is UNPREDICTABLE"));
8898 /* Only allowed if base reg not in list, or first in list. */
8899 else if ((range & (1 << base_reg))
8900 && (range & ((1 << base_reg) - 1)))
8901 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8902 }
8903 }
8904
8905 /* If PUSH/POP has only one register, then use the A2 encoding. */
8906 one_reg = only_one_reg_in_list (range);
8907 if (from_push_pop_mnem && one_reg >= 0)
8908 {
8909 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8910
8911 if (is_push && one_reg == 13 /* SP */)
8912 /* PR 22483: The A2 encoding cannot be used when
8913 pushing the stack pointer as this is UNPREDICTABLE. */
8914 return;
8915
8916 inst.instruction &= A_COND_MASK;
8917 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8918 inst.instruction |= one_reg << 12;
8919 }
8920 }
8921
8922 static void
8923 do_ldmstm (void)
8924 {
8925 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8926 }
8927
8928 /* ARMv5TE load-consecutive (argument parse)
8929 Mode is like LDRH.
8930
8931 LDRccD R, mode
8932 STRccD R, mode. */
8933
8934 static void
8935 do_ldrd (void)
8936 {
8937 constraint (inst.operands[0].reg % 2 != 0,
8938 _("first transfer register must be even"));
8939 constraint (inst.operands[1].present
8940 && inst.operands[1].reg != inst.operands[0].reg + 1,
8941 _("can only transfer two consecutive registers"));
8942 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8943 constraint (!inst.operands[2].isreg, _("'[' expected"));
8944
8945 if (!inst.operands[1].present)
8946 inst.operands[1].reg = inst.operands[0].reg + 1;
8947
8948 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8949 register and the first register written; we have to diagnose
8950 overlap between the base and the second register written here. */
8951
8952 if (inst.operands[2].reg == inst.operands[1].reg
8953 && (inst.operands[2].writeback || inst.operands[2].postind))
8954 as_warn (_("base register written back, and overlaps "
8955 "second transfer register"));
8956
8957 if (!(inst.instruction & V4_STR_BIT))
8958 {
8959 /* For an index-register load, the index register must not overlap the
8960 destination (even if not write-back). */
8961 if (inst.operands[2].immisreg
8962 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8963 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8964 as_warn (_("index register overlaps transfer register"));
8965 }
8966 inst.instruction |= inst.operands[0].reg << 12;
8967 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8968 }
8969
8970 static void
8971 do_ldrex (void)
8972 {
8973 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8974 || inst.operands[1].postind || inst.operands[1].writeback
8975 || inst.operands[1].immisreg || inst.operands[1].shifted
8976 || inst.operands[1].negative
8977 /* This can arise if the programmer has written
8978 strex rN, rM, foo
8979 or if they have mistakenly used a register name as the last
8980 operand, eg:
8981 strex rN, rM, rX
8982 It is very difficult to distinguish between these two cases
8983 because "rX" might actually be a label. ie the register
8984 name has been occluded by a symbol of the same name. So we
8985 just generate a general 'bad addressing mode' type error
8986 message and leave it up to the programmer to discover the
8987 true cause and fix their mistake. */
8988 || (inst.operands[1].reg == REG_PC),
8989 BAD_ADDR_MODE);
8990
8991 constraint (inst.reloc.exp.X_op != O_constant
8992 || inst.reloc.exp.X_add_number != 0,
8993 _("offset must be zero in ARM encoding"));
8994
8995 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8996
8997 inst.instruction |= inst.operands[0].reg << 12;
8998 inst.instruction |= inst.operands[1].reg << 16;
8999 inst.reloc.type = BFD_RELOC_UNUSED;
9000 }
9001
9002 static void
9003 do_ldrexd (void)
9004 {
9005 constraint (inst.operands[0].reg % 2 != 0,
9006 _("even register required"));
9007 constraint (inst.operands[1].present
9008 && inst.operands[1].reg != inst.operands[0].reg + 1,
9009 _("can only load two consecutive registers"));
9010 /* If op 1 were present and equal to PC, this function wouldn't
9011 have been called in the first place. */
9012 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9013
9014 inst.instruction |= inst.operands[0].reg << 12;
9015 inst.instruction |= inst.operands[2].reg << 16;
9016 }
9017
9018 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9019 which is not a multiple of four is UNPREDICTABLE. */
9020 static void
9021 check_ldr_r15_aligned (void)
9022 {
9023 constraint (!(inst.operands[1].immisreg)
9024 && (inst.operands[0].reg == REG_PC
9025 && inst.operands[1].reg == REG_PC
9026 && (inst.reloc.exp.X_add_number & 0x3)),
9027 _("ldr to register 15 must be 4-byte aligned"));
9028 }
9029
9030 static void
9031 do_ldst (void)
9032 {
9033 inst.instruction |= inst.operands[0].reg << 12;
9034 if (!inst.operands[1].isreg)
9035 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9036 return;
9037 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9038 check_ldr_r15_aligned ();
9039 }
9040
9041 static void
9042 do_ldstt (void)
9043 {
9044 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9045 reject [Rn,...]. */
9046 if (inst.operands[1].preind)
9047 {
9048 constraint (inst.reloc.exp.X_op != O_constant
9049 || inst.reloc.exp.X_add_number != 0,
9050 _("this instruction requires a post-indexed address"));
9051
9052 inst.operands[1].preind = 0;
9053 inst.operands[1].postind = 1;
9054 inst.operands[1].writeback = 1;
9055 }
9056 inst.instruction |= inst.operands[0].reg << 12;
9057 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9058 }
9059
9060 /* Halfword and signed-byte load/store operations. */
9061
9062 static void
9063 do_ldstv4 (void)
9064 {
9065 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9066 inst.instruction |= inst.operands[0].reg << 12;
9067 if (!inst.operands[1].isreg)
9068 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9069 return;
9070 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9071 }
9072
9073 static void
9074 do_ldsttv4 (void)
9075 {
9076 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9077 reject [Rn,...]. */
9078 if (inst.operands[1].preind)
9079 {
9080 constraint (inst.reloc.exp.X_op != O_constant
9081 || inst.reloc.exp.X_add_number != 0,
9082 _("this instruction requires a post-indexed address"));
9083
9084 inst.operands[1].preind = 0;
9085 inst.operands[1].postind = 1;
9086 inst.operands[1].writeback = 1;
9087 }
9088 inst.instruction |= inst.operands[0].reg << 12;
9089 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9090 }
9091
9092 /* Co-processor register load/store.
9093 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9094 static void
9095 do_lstc (void)
9096 {
9097 inst.instruction |= inst.operands[0].reg << 8;
9098 inst.instruction |= inst.operands[1].reg << 12;
9099 encode_arm_cp_address (2, TRUE, TRUE, 0);
9100 }
9101
9102 static void
9103 do_mlas (void)
9104 {
9105 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9106 if (inst.operands[0].reg == inst.operands[1].reg
9107 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9108 && !(inst.instruction & 0x00400000))
9109 as_tsktsk (_("Rd and Rm should be different in mla"));
9110
9111 inst.instruction |= inst.operands[0].reg << 16;
9112 inst.instruction |= inst.operands[1].reg;
9113 inst.instruction |= inst.operands[2].reg << 8;
9114 inst.instruction |= inst.operands[3].reg << 12;
9115 }
9116
9117 static void
9118 do_mov (void)
9119 {
9120 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9121 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9122 THUMB1_RELOC_ONLY);
9123 inst.instruction |= inst.operands[0].reg << 12;
9124 encode_arm_shifter_operand (1);
9125 }
9126
9127 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9128 static void
9129 do_mov16 (void)
9130 {
9131 bfd_vma imm;
9132 bfd_boolean top;
9133
9134 top = (inst.instruction & 0x00400000) != 0;
9135 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
9136 _(":lower16: not allowed in this instruction"));
9137 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
9138 _(":upper16: not allowed in this instruction"));
9139 inst.instruction |= inst.operands[0].reg << 12;
9140 if (inst.reloc.type == BFD_RELOC_UNUSED)
9141 {
9142 imm = inst.reloc.exp.X_add_number;
9143 /* The value is in two pieces: 0:11, 16:19. */
9144 inst.instruction |= (imm & 0x00000fff);
9145 inst.instruction |= (imm & 0x0000f000) << 4;
9146 }
9147 }
9148
9149 static int
9150 do_vfp_nsyn_mrs (void)
9151 {
9152 if (inst.operands[0].isvec)
9153 {
9154 if (inst.operands[1].reg != 1)
9155 first_error (_("operand 1 must be FPSCR"));
9156 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9157 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9158 do_vfp_nsyn_opcode ("fmstat");
9159 }
9160 else if (inst.operands[1].isvec)
9161 do_vfp_nsyn_opcode ("fmrx");
9162 else
9163 return FAIL;
9164
9165 return SUCCESS;
9166 }
9167
9168 static int
9169 do_vfp_nsyn_msr (void)
9170 {
9171 if (inst.operands[0].isvec)
9172 do_vfp_nsyn_opcode ("fmxr");
9173 else
9174 return FAIL;
9175
9176 return SUCCESS;
9177 }
9178
9179 static void
9180 do_vmrs (void)
9181 {
9182 unsigned Rt = inst.operands[0].reg;
9183
9184 if (thumb_mode && Rt == REG_SP)
9185 {
9186 inst.error = BAD_SP;
9187 return;
9188 }
9189
9190 /* MVFR2 is only valid at ARMv8-A. */
9191 if (inst.operands[1].reg == 5)
9192 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9193 _(BAD_FPU));
9194
9195 /* APSR_ sets isvec. All other refs to PC are illegal. */
9196 if (!inst.operands[0].isvec && Rt == REG_PC)
9197 {
9198 inst.error = BAD_PC;
9199 return;
9200 }
9201
9202 /* If we get through parsing the register name, we just insert the number
9203 generated into the instruction without further validation. */
9204 inst.instruction |= (inst.operands[1].reg << 16);
9205 inst.instruction |= (Rt << 12);
9206 }
9207
9208 static void
9209 do_vmsr (void)
9210 {
9211 unsigned Rt = inst.operands[1].reg;
9212
9213 if (thumb_mode)
9214 reject_bad_reg (Rt);
9215 else if (Rt == REG_PC)
9216 {
9217 inst.error = BAD_PC;
9218 return;
9219 }
9220
9221 /* MVFR2 is only valid for ARMv8-A. */
9222 if (inst.operands[0].reg == 5)
9223 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9224 _(BAD_FPU));
9225
9226 /* If we get through parsing the register name, we just insert the number
9227 generated into the instruction without further validation. */
9228 inst.instruction |= (inst.operands[0].reg << 16);
9229 inst.instruction |= (Rt << 12);
9230 }
9231
9232 static void
9233 do_mrs (void)
9234 {
9235 unsigned br;
9236
9237 if (do_vfp_nsyn_mrs () == SUCCESS)
9238 return;
9239
9240 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9241 inst.instruction |= inst.operands[0].reg << 12;
9242
9243 if (inst.operands[1].isreg)
9244 {
9245 br = inst.operands[1].reg;
9246 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9247 as_bad (_("bad register for mrs"));
9248 }
9249 else
9250 {
9251 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9252 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9253 != (PSR_c|PSR_f),
9254 _("'APSR', 'CPSR' or 'SPSR' expected"));
9255 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9256 }
9257
9258 inst.instruction |= br;
9259 }
9260
9261 /* Two possible forms:
9262 "{C|S}PSR_<field>, Rm",
9263 "{C|S}PSR_f, #expression". */
9264
9265 static void
9266 do_msr (void)
9267 {
9268 if (do_vfp_nsyn_msr () == SUCCESS)
9269 return;
9270
9271 inst.instruction |= inst.operands[0].imm;
9272 if (inst.operands[1].isreg)
9273 inst.instruction |= inst.operands[1].reg;
9274 else
9275 {
9276 inst.instruction |= INST_IMMEDIATE;
9277 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9278 inst.reloc.pc_rel = 0;
9279 }
9280 }
9281
9282 static void
9283 do_mul (void)
9284 {
9285 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9286
9287 if (!inst.operands[2].present)
9288 inst.operands[2].reg = inst.operands[0].reg;
9289 inst.instruction |= inst.operands[0].reg << 16;
9290 inst.instruction |= inst.operands[1].reg;
9291 inst.instruction |= inst.operands[2].reg << 8;
9292
9293 if (inst.operands[0].reg == inst.operands[1].reg
9294 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9295 as_tsktsk (_("Rd and Rm should be different in mul"));
9296 }
9297
9298 /* Long Multiply Parser
9299 UMULL RdLo, RdHi, Rm, Rs
9300 SMULL RdLo, RdHi, Rm, Rs
9301 UMLAL RdLo, RdHi, Rm, Rs
9302 SMLAL RdLo, RdHi, Rm, Rs. */
9303
9304 static void
9305 do_mull (void)
9306 {
9307 inst.instruction |= inst.operands[0].reg << 12;
9308 inst.instruction |= inst.operands[1].reg << 16;
9309 inst.instruction |= inst.operands[2].reg;
9310 inst.instruction |= inst.operands[3].reg << 8;
9311
9312 /* rdhi and rdlo must be different. */
9313 if (inst.operands[0].reg == inst.operands[1].reg)
9314 as_tsktsk (_("rdhi and rdlo must be different"));
9315
9316 /* rdhi, rdlo and rm must all be different before armv6. */
9317 if ((inst.operands[0].reg == inst.operands[2].reg
9318 || inst.operands[1].reg == inst.operands[2].reg)
9319 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9320 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9321 }
9322
9323 static void
9324 do_nop (void)
9325 {
9326 if (inst.operands[0].present
9327 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9328 {
9329 /* Architectural NOP hints are CPSR sets with no bits selected. */
9330 inst.instruction &= 0xf0000000;
9331 inst.instruction |= 0x0320f000;
9332 if (inst.operands[0].present)
9333 inst.instruction |= inst.operands[0].imm;
9334 }
9335 }
9336
9337 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9338 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9339 Condition defaults to COND_ALWAYS.
9340 Error if Rd, Rn or Rm are R15. */
9341
9342 static void
9343 do_pkhbt (void)
9344 {
9345 inst.instruction |= inst.operands[0].reg << 12;
9346 inst.instruction |= inst.operands[1].reg << 16;
9347 inst.instruction |= inst.operands[2].reg;
9348 if (inst.operands[3].present)
9349 encode_arm_shift (3);
9350 }
9351
9352 /* ARM V6 PKHTB (Argument Parse). */
9353
9354 static void
9355 do_pkhtb (void)
9356 {
9357 if (!inst.operands[3].present)
9358 {
9359 /* If the shift specifier is omitted, turn the instruction
9360 into pkhbt rd, rm, rn. */
9361 inst.instruction &= 0xfff00010;
9362 inst.instruction |= inst.operands[0].reg << 12;
9363 inst.instruction |= inst.operands[1].reg;
9364 inst.instruction |= inst.operands[2].reg << 16;
9365 }
9366 else
9367 {
9368 inst.instruction |= inst.operands[0].reg << 12;
9369 inst.instruction |= inst.operands[1].reg << 16;
9370 inst.instruction |= inst.operands[2].reg;
9371 encode_arm_shift (3);
9372 }
9373 }
9374
9375 /* ARMv5TE: Preload-Cache
9376 MP Extensions: Preload for write
9377
9378 PLD(W) <addr_mode>
9379
9380 Syntactically, like LDR with B=1, W=0, L=1. */
9381
9382 static void
9383 do_pld (void)
9384 {
9385 constraint (!inst.operands[0].isreg,
9386 _("'[' expected after PLD mnemonic"));
9387 constraint (inst.operands[0].postind,
9388 _("post-indexed expression used in preload instruction"));
9389 constraint (inst.operands[0].writeback,
9390 _("writeback used in preload instruction"));
9391 constraint (!inst.operands[0].preind,
9392 _("unindexed addressing used in preload instruction"));
9393 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9394 }
9395
9396 /* ARMv7: PLI <addr_mode> */
9397 static void
9398 do_pli (void)
9399 {
9400 constraint (!inst.operands[0].isreg,
9401 _("'[' expected after PLI mnemonic"));
9402 constraint (inst.operands[0].postind,
9403 _("post-indexed expression used in preload instruction"));
9404 constraint (inst.operands[0].writeback,
9405 _("writeback used in preload instruction"));
9406 constraint (!inst.operands[0].preind,
9407 _("unindexed addressing used in preload instruction"));
9408 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9409 inst.instruction &= ~PRE_INDEX;
9410 }
9411
9412 static void
9413 do_push_pop (void)
9414 {
9415 constraint (inst.operands[0].writeback,
9416 _("push/pop do not support {reglist}^"));
9417 inst.operands[1] = inst.operands[0];
9418 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9419 inst.operands[0].isreg = 1;
9420 inst.operands[0].writeback = 1;
9421 inst.operands[0].reg = REG_SP;
9422 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9423 }
9424
9425 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9426 word at the specified address and the following word
9427 respectively.
9428 Unconditionally executed.
9429 Error if Rn is R15. */
9430
9431 static void
9432 do_rfe (void)
9433 {
9434 inst.instruction |= inst.operands[0].reg << 16;
9435 if (inst.operands[0].writeback)
9436 inst.instruction |= WRITE_BACK;
9437 }
9438
9439 /* ARM V6 ssat (argument parse). */
9440
9441 static void
9442 do_ssat (void)
9443 {
9444 inst.instruction |= inst.operands[0].reg << 12;
9445 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9446 inst.instruction |= inst.operands[2].reg;
9447
9448 if (inst.operands[3].present)
9449 encode_arm_shift (3);
9450 }
9451
9452 /* ARM V6 usat (argument parse). */
9453
9454 static void
9455 do_usat (void)
9456 {
9457 inst.instruction |= inst.operands[0].reg << 12;
9458 inst.instruction |= inst.operands[1].imm << 16;
9459 inst.instruction |= inst.operands[2].reg;
9460
9461 if (inst.operands[3].present)
9462 encode_arm_shift (3);
9463 }
9464
9465 /* ARM V6 ssat16 (argument parse). */
9466
9467 static void
9468 do_ssat16 (void)
9469 {
9470 inst.instruction |= inst.operands[0].reg << 12;
9471 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9472 inst.instruction |= inst.operands[2].reg;
9473 }
9474
9475 static void
9476 do_usat16 (void)
9477 {
9478 inst.instruction |= inst.operands[0].reg << 12;
9479 inst.instruction |= inst.operands[1].imm << 16;
9480 inst.instruction |= inst.operands[2].reg;
9481 }
9482
9483 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9484 preserving the other bits.
9485
9486 setend <endian_specifier>, where <endian_specifier> is either
9487 BE or LE. */
9488
9489 static void
9490 do_setend (void)
9491 {
9492 if (warn_on_deprecated
9493 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9494 as_tsktsk (_("setend use is deprecated for ARMv8"));
9495
9496 if (inst.operands[0].imm)
9497 inst.instruction |= 0x200;
9498 }
9499
9500 static void
9501 do_shift (void)
9502 {
9503 unsigned int Rm = (inst.operands[1].present
9504 ? inst.operands[1].reg
9505 : inst.operands[0].reg);
9506
9507 inst.instruction |= inst.operands[0].reg << 12;
9508 inst.instruction |= Rm;
9509 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9510 {
9511 inst.instruction |= inst.operands[2].reg << 8;
9512 inst.instruction |= SHIFT_BY_REG;
9513 /* PR 12854: Error on extraneous shifts. */
9514 constraint (inst.operands[2].shifted,
9515 _("extraneous shift as part of operand to shift insn"));
9516 }
9517 else
9518 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9519 }
9520
9521 static void
9522 do_smc (void)
9523 {
9524 inst.reloc.type = BFD_RELOC_ARM_SMC;
9525 inst.reloc.pc_rel = 0;
9526 }
9527
9528 static void
9529 do_hvc (void)
9530 {
9531 inst.reloc.type = BFD_RELOC_ARM_HVC;
9532 inst.reloc.pc_rel = 0;
9533 }
9534
9535 static void
9536 do_swi (void)
9537 {
9538 inst.reloc.type = BFD_RELOC_ARM_SWI;
9539 inst.reloc.pc_rel = 0;
9540 }
9541
9542 static void
9543 do_setpan (void)
9544 {
9545 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9546 _("selected processor does not support SETPAN instruction"));
9547
9548 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9549 }
9550
9551 static void
9552 do_t_setpan (void)
9553 {
9554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9555 _("selected processor does not support SETPAN instruction"));
9556
9557 inst.instruction |= (inst.operands[0].imm << 3);
9558 }
9559
9560 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9561 SMLAxy{cond} Rd,Rm,Rs,Rn
9562 SMLAWy{cond} Rd,Rm,Rs,Rn
9563 Error if any register is R15. */
9564
9565 static void
9566 do_smla (void)
9567 {
9568 inst.instruction |= inst.operands[0].reg << 16;
9569 inst.instruction |= inst.operands[1].reg;
9570 inst.instruction |= inst.operands[2].reg << 8;
9571 inst.instruction |= inst.operands[3].reg << 12;
9572 }
9573
9574 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9575 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9576 Error if any register is R15.
9577 Warning if Rdlo == Rdhi. */
9578
9579 static void
9580 do_smlal (void)
9581 {
9582 inst.instruction |= inst.operands[0].reg << 12;
9583 inst.instruction |= inst.operands[1].reg << 16;
9584 inst.instruction |= inst.operands[2].reg;
9585 inst.instruction |= inst.operands[3].reg << 8;
9586
9587 if (inst.operands[0].reg == inst.operands[1].reg)
9588 as_tsktsk (_("rdhi and rdlo must be different"));
9589 }
9590
9591 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9592 SMULxy{cond} Rd,Rm,Rs
9593 Error if any register is R15. */
9594
9595 static void
9596 do_smul (void)
9597 {
9598 inst.instruction |= inst.operands[0].reg << 16;
9599 inst.instruction |= inst.operands[1].reg;
9600 inst.instruction |= inst.operands[2].reg << 8;
9601 }
9602
9603 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9604 the same for both ARM and Thumb-2. */
9605
9606 static void
9607 do_srs (void)
9608 {
9609 int reg;
9610
9611 if (inst.operands[0].present)
9612 {
9613 reg = inst.operands[0].reg;
9614 constraint (reg != REG_SP, _("SRS base register must be r13"));
9615 }
9616 else
9617 reg = REG_SP;
9618
9619 inst.instruction |= reg << 16;
9620 inst.instruction |= inst.operands[1].imm;
9621 if (inst.operands[0].writeback || inst.operands[1].writeback)
9622 inst.instruction |= WRITE_BACK;
9623 }
9624
9625 /* ARM V6 strex (argument parse). */
9626
9627 static void
9628 do_strex (void)
9629 {
9630 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9631 || inst.operands[2].postind || inst.operands[2].writeback
9632 || inst.operands[2].immisreg || inst.operands[2].shifted
9633 || inst.operands[2].negative
9634 /* See comment in do_ldrex(). */
9635 || (inst.operands[2].reg == REG_PC),
9636 BAD_ADDR_MODE);
9637
9638 constraint (inst.operands[0].reg == inst.operands[1].reg
9639 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9640
9641 constraint (inst.reloc.exp.X_op != O_constant
9642 || inst.reloc.exp.X_add_number != 0,
9643 _("offset must be zero in ARM encoding"));
9644
9645 inst.instruction |= inst.operands[0].reg << 12;
9646 inst.instruction |= inst.operands[1].reg;
9647 inst.instruction |= inst.operands[2].reg << 16;
9648 inst.reloc.type = BFD_RELOC_UNUSED;
9649 }
9650
9651 static void
9652 do_t_strexbh (void)
9653 {
9654 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9655 || inst.operands[2].postind || inst.operands[2].writeback
9656 || inst.operands[2].immisreg || inst.operands[2].shifted
9657 || inst.operands[2].negative,
9658 BAD_ADDR_MODE);
9659
9660 constraint (inst.operands[0].reg == inst.operands[1].reg
9661 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9662
9663 do_rm_rd_rn ();
9664 }
9665
9666 static void
9667 do_strexd (void)
9668 {
9669 constraint (inst.operands[1].reg % 2 != 0,
9670 _("even register required"));
9671 constraint (inst.operands[2].present
9672 && inst.operands[2].reg != inst.operands[1].reg + 1,
9673 _("can only store two consecutive registers"));
9674 /* If op 2 were present and equal to PC, this function wouldn't
9675 have been called in the first place. */
9676 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9677
9678 constraint (inst.operands[0].reg == inst.operands[1].reg
9679 || inst.operands[0].reg == inst.operands[1].reg + 1
9680 || inst.operands[0].reg == inst.operands[3].reg,
9681 BAD_OVERLAP);
9682
9683 inst.instruction |= inst.operands[0].reg << 12;
9684 inst.instruction |= inst.operands[1].reg;
9685 inst.instruction |= inst.operands[3].reg << 16;
9686 }
9687
9688 /* ARM V8 STRL. */
9689 static void
9690 do_stlex (void)
9691 {
9692 constraint (inst.operands[0].reg == inst.operands[1].reg
9693 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9694
9695 do_rd_rm_rn ();
9696 }
9697
9698 static void
9699 do_t_stlex (void)
9700 {
9701 constraint (inst.operands[0].reg == inst.operands[1].reg
9702 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9703
9704 do_rm_rd_rn ();
9705 }
9706
9707 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9708 extends it to 32-bits, and adds the result to a value in another
9709 register. You can specify a rotation by 0, 8, 16, or 24 bits
9710 before extracting the 16-bit value.
9711 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9712 Condition defaults to COND_ALWAYS.
9713 Error if any register uses R15. */
9714
9715 static void
9716 do_sxtah (void)
9717 {
9718 inst.instruction |= inst.operands[0].reg << 12;
9719 inst.instruction |= inst.operands[1].reg << 16;
9720 inst.instruction |= inst.operands[2].reg;
9721 inst.instruction |= inst.operands[3].imm << 10;
9722 }
9723
9724 /* ARM V6 SXTH.
9725
9726 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9727 Condition defaults to COND_ALWAYS.
9728 Error if any register uses R15. */
9729
9730 static void
9731 do_sxth (void)
9732 {
9733 inst.instruction |= inst.operands[0].reg << 12;
9734 inst.instruction |= inst.operands[1].reg;
9735 inst.instruction |= inst.operands[2].imm << 10;
9736 }
9737 \f
9738 /* VFP instructions. In a logical order: SP variant first, monad
9739 before dyad, arithmetic then move then load/store. */
9740
9741 static void
9742 do_vfp_sp_monadic (void)
9743 {
9744 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9745 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9746 }
9747
9748 static void
9749 do_vfp_sp_dyadic (void)
9750 {
9751 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9752 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9753 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9754 }
9755
9756 static void
9757 do_vfp_sp_compare_z (void)
9758 {
9759 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9760 }
9761
9762 static void
9763 do_vfp_dp_sp_cvt (void)
9764 {
9765 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9766 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9767 }
9768
9769 static void
9770 do_vfp_sp_dp_cvt (void)
9771 {
9772 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9773 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9774 }
9775
9776 static void
9777 do_vfp_reg_from_sp (void)
9778 {
9779 inst.instruction |= inst.operands[0].reg << 12;
9780 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9781 }
9782
9783 static void
9784 do_vfp_reg2_from_sp2 (void)
9785 {
9786 constraint (inst.operands[2].imm != 2,
9787 _("only two consecutive VFP SP registers allowed here"));
9788 inst.instruction |= inst.operands[0].reg << 12;
9789 inst.instruction |= inst.operands[1].reg << 16;
9790 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9791 }
9792
9793 static void
9794 do_vfp_sp_from_reg (void)
9795 {
9796 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9797 inst.instruction |= inst.operands[1].reg << 12;
9798 }
9799
9800 static void
9801 do_vfp_sp2_from_reg2 (void)
9802 {
9803 constraint (inst.operands[0].imm != 2,
9804 _("only two consecutive VFP SP registers allowed here"));
9805 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9806 inst.instruction |= inst.operands[1].reg << 12;
9807 inst.instruction |= inst.operands[2].reg << 16;
9808 }
9809
9810 static void
9811 do_vfp_sp_ldst (void)
9812 {
9813 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9814 encode_arm_cp_address (1, FALSE, TRUE, 0);
9815 }
9816
9817 static void
9818 do_vfp_dp_ldst (void)
9819 {
9820 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9821 encode_arm_cp_address (1, FALSE, TRUE, 0);
9822 }
9823
9824
9825 static void
9826 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9827 {
9828 if (inst.operands[0].writeback)
9829 inst.instruction |= WRITE_BACK;
9830 else
9831 constraint (ldstm_type != VFP_LDSTMIA,
9832 _("this addressing mode requires base-register writeback"));
9833 inst.instruction |= inst.operands[0].reg << 16;
9834 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9835 inst.instruction |= inst.operands[1].imm;
9836 }
9837
9838 static void
9839 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9840 {
9841 int count;
9842
9843 if (inst.operands[0].writeback)
9844 inst.instruction |= WRITE_BACK;
9845 else
9846 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9847 _("this addressing mode requires base-register writeback"));
9848
9849 inst.instruction |= inst.operands[0].reg << 16;
9850 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9851
9852 count = inst.operands[1].imm << 1;
9853 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9854 count += 1;
9855
9856 inst.instruction |= count;
9857 }
9858
9859 static void
9860 do_vfp_sp_ldstmia (void)
9861 {
9862 vfp_sp_ldstm (VFP_LDSTMIA);
9863 }
9864
9865 static void
9866 do_vfp_sp_ldstmdb (void)
9867 {
9868 vfp_sp_ldstm (VFP_LDSTMDB);
9869 }
9870
9871 static void
9872 do_vfp_dp_ldstmia (void)
9873 {
9874 vfp_dp_ldstm (VFP_LDSTMIA);
9875 }
9876
9877 static void
9878 do_vfp_dp_ldstmdb (void)
9879 {
9880 vfp_dp_ldstm (VFP_LDSTMDB);
9881 }
9882
9883 static void
9884 do_vfp_xp_ldstmia (void)
9885 {
9886 vfp_dp_ldstm (VFP_LDSTMIAX);
9887 }
9888
9889 static void
9890 do_vfp_xp_ldstmdb (void)
9891 {
9892 vfp_dp_ldstm (VFP_LDSTMDBX);
9893 }
9894
9895 static void
9896 do_vfp_dp_rd_rm (void)
9897 {
9898 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9899 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9900 }
9901
9902 static void
9903 do_vfp_dp_rn_rd (void)
9904 {
9905 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9906 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9907 }
9908
9909 static void
9910 do_vfp_dp_rd_rn (void)
9911 {
9912 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9913 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9914 }
9915
9916 static void
9917 do_vfp_dp_rd_rn_rm (void)
9918 {
9919 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9920 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9921 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9922 }
9923
9924 static void
9925 do_vfp_dp_rd (void)
9926 {
9927 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9928 }
9929
9930 static void
9931 do_vfp_dp_rm_rd_rn (void)
9932 {
9933 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9934 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9935 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9936 }
9937
9938 /* VFPv3 instructions. */
9939 static void
9940 do_vfp_sp_const (void)
9941 {
9942 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9943 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9944 inst.instruction |= (inst.operands[1].imm & 0x0f);
9945 }
9946
9947 static void
9948 do_vfp_dp_const (void)
9949 {
9950 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9951 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9952 inst.instruction |= (inst.operands[1].imm & 0x0f);
9953 }
9954
9955 static void
9956 vfp_conv (int srcsize)
9957 {
9958 int immbits = srcsize - inst.operands[1].imm;
9959
9960 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9961 {
9962 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9963 i.e. immbits must be in range 0 - 16. */
9964 inst.error = _("immediate value out of range, expected range [0, 16]");
9965 return;
9966 }
9967 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9968 {
9969 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9970 i.e. immbits must be in range 0 - 31. */
9971 inst.error = _("immediate value out of range, expected range [1, 32]");
9972 return;
9973 }
9974
9975 inst.instruction |= (immbits & 1) << 5;
9976 inst.instruction |= (immbits >> 1);
9977 }
9978
9979 static void
9980 do_vfp_sp_conv_16 (void)
9981 {
9982 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9983 vfp_conv (16);
9984 }
9985
9986 static void
9987 do_vfp_dp_conv_16 (void)
9988 {
9989 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9990 vfp_conv (16);
9991 }
9992
9993 static void
9994 do_vfp_sp_conv_32 (void)
9995 {
9996 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9997 vfp_conv (32);
9998 }
9999
10000 static void
10001 do_vfp_dp_conv_32 (void)
10002 {
10003 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10004 vfp_conv (32);
10005 }
10006 \f
10007 /* FPA instructions. Also in a logical order. */
10008
10009 static void
10010 do_fpa_cmp (void)
10011 {
10012 inst.instruction |= inst.operands[0].reg << 16;
10013 inst.instruction |= inst.operands[1].reg;
10014 }
10015
10016 static void
10017 do_fpa_ldmstm (void)
10018 {
10019 inst.instruction |= inst.operands[0].reg << 12;
10020 switch (inst.operands[1].imm)
10021 {
10022 case 1: inst.instruction |= CP_T_X; break;
10023 case 2: inst.instruction |= CP_T_Y; break;
10024 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10025 case 4: break;
10026 default: abort ();
10027 }
10028
10029 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10030 {
10031 /* The instruction specified "ea" or "fd", so we can only accept
10032 [Rn]{!}. The instruction does not really support stacking or
10033 unstacking, so we have to emulate these by setting appropriate
10034 bits and offsets. */
10035 constraint (inst.reloc.exp.X_op != O_constant
10036 || inst.reloc.exp.X_add_number != 0,
10037 _("this instruction does not support indexing"));
10038
10039 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10040 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
10041
10042 if (!(inst.instruction & INDEX_UP))
10043 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
10044
10045 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10046 {
10047 inst.operands[2].preind = 0;
10048 inst.operands[2].postind = 1;
10049 }
10050 }
10051
10052 encode_arm_cp_address (2, TRUE, TRUE, 0);
10053 }
10054 \f
10055 /* iWMMXt instructions: strictly in alphabetical order. */
10056
10057 static void
10058 do_iwmmxt_tandorc (void)
10059 {
10060 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10061 }
10062
10063 static void
10064 do_iwmmxt_textrc (void)
10065 {
10066 inst.instruction |= inst.operands[0].reg << 12;
10067 inst.instruction |= inst.operands[1].imm;
10068 }
10069
10070 static void
10071 do_iwmmxt_textrm (void)
10072 {
10073 inst.instruction |= inst.operands[0].reg << 12;
10074 inst.instruction |= inst.operands[1].reg << 16;
10075 inst.instruction |= inst.operands[2].imm;
10076 }
10077
10078 static void
10079 do_iwmmxt_tinsr (void)
10080 {
10081 inst.instruction |= inst.operands[0].reg << 16;
10082 inst.instruction |= inst.operands[1].reg << 12;
10083 inst.instruction |= inst.operands[2].imm;
10084 }
10085
10086 static void
10087 do_iwmmxt_tmia (void)
10088 {
10089 inst.instruction |= inst.operands[0].reg << 5;
10090 inst.instruction |= inst.operands[1].reg;
10091 inst.instruction |= inst.operands[2].reg << 12;
10092 }
10093
10094 static void
10095 do_iwmmxt_waligni (void)
10096 {
10097 inst.instruction |= inst.operands[0].reg << 12;
10098 inst.instruction |= inst.operands[1].reg << 16;
10099 inst.instruction |= inst.operands[2].reg;
10100 inst.instruction |= inst.operands[3].imm << 20;
10101 }
10102
10103 static void
10104 do_iwmmxt_wmerge (void)
10105 {
10106 inst.instruction |= inst.operands[0].reg << 12;
10107 inst.instruction |= inst.operands[1].reg << 16;
10108 inst.instruction |= inst.operands[2].reg;
10109 inst.instruction |= inst.operands[3].imm << 21;
10110 }
10111
10112 static void
10113 do_iwmmxt_wmov (void)
10114 {
10115 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10116 inst.instruction |= inst.operands[0].reg << 12;
10117 inst.instruction |= inst.operands[1].reg << 16;
10118 inst.instruction |= inst.operands[1].reg;
10119 }
10120
10121 static void
10122 do_iwmmxt_wldstbh (void)
10123 {
10124 int reloc;
10125 inst.instruction |= inst.operands[0].reg << 12;
10126 if (thumb_mode)
10127 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10128 else
10129 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10130 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10131 }
10132
10133 static void
10134 do_iwmmxt_wldstw (void)
10135 {
10136 /* RIWR_RIWC clears .isreg for a control register. */
10137 if (!inst.operands[0].isreg)
10138 {
10139 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10140 inst.instruction |= 0xf0000000;
10141 }
10142
10143 inst.instruction |= inst.operands[0].reg << 12;
10144 encode_arm_cp_address (1, TRUE, TRUE, 0);
10145 }
10146
10147 static void
10148 do_iwmmxt_wldstd (void)
10149 {
10150 inst.instruction |= inst.operands[0].reg << 12;
10151 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10152 && inst.operands[1].immisreg)
10153 {
10154 inst.instruction &= ~0x1a000ff;
10155 inst.instruction |= (0xfU << 28);
10156 if (inst.operands[1].preind)
10157 inst.instruction |= PRE_INDEX;
10158 if (!inst.operands[1].negative)
10159 inst.instruction |= INDEX_UP;
10160 if (inst.operands[1].writeback)
10161 inst.instruction |= WRITE_BACK;
10162 inst.instruction |= inst.operands[1].reg << 16;
10163 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10164 inst.instruction |= inst.operands[1].imm;
10165 }
10166 else
10167 encode_arm_cp_address (1, TRUE, FALSE, 0);
10168 }
10169
10170 static void
10171 do_iwmmxt_wshufh (void)
10172 {
10173 inst.instruction |= inst.operands[0].reg << 12;
10174 inst.instruction |= inst.operands[1].reg << 16;
10175 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10176 inst.instruction |= (inst.operands[2].imm & 0x0f);
10177 }
10178
10179 static void
10180 do_iwmmxt_wzero (void)
10181 {
10182 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10183 inst.instruction |= inst.operands[0].reg;
10184 inst.instruction |= inst.operands[0].reg << 12;
10185 inst.instruction |= inst.operands[0].reg << 16;
10186 }
10187
10188 static void
10189 do_iwmmxt_wrwrwr_or_imm5 (void)
10190 {
10191 if (inst.operands[2].isreg)
10192 do_rd_rn_rm ();
10193 else {
10194 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10195 _("immediate operand requires iWMMXt2"));
10196 do_rd_rn ();
10197 if (inst.operands[2].imm == 0)
10198 {
10199 switch ((inst.instruction >> 20) & 0xf)
10200 {
10201 case 4:
10202 case 5:
10203 case 6:
10204 case 7:
10205 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10206 inst.operands[2].imm = 16;
10207 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10208 break;
10209 case 8:
10210 case 9:
10211 case 10:
10212 case 11:
10213 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10214 inst.operands[2].imm = 32;
10215 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10216 break;
10217 case 12:
10218 case 13:
10219 case 14:
10220 case 15:
10221 {
10222 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10223 unsigned long wrn;
10224 wrn = (inst.instruction >> 16) & 0xf;
10225 inst.instruction &= 0xff0fff0f;
10226 inst.instruction |= wrn;
10227 /* Bail out here; the instruction is now assembled. */
10228 return;
10229 }
10230 }
10231 }
10232 /* Map 32 -> 0, etc. */
10233 inst.operands[2].imm &= 0x1f;
10234 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10235 }
10236 }
10237 \f
10238 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10239 operations first, then control, shift, and load/store. */
10240
10241 /* Insns like "foo X,Y,Z". */
10242
10243 static void
10244 do_mav_triple (void)
10245 {
10246 inst.instruction |= inst.operands[0].reg << 16;
10247 inst.instruction |= inst.operands[1].reg;
10248 inst.instruction |= inst.operands[2].reg << 12;
10249 }
10250
10251 /* Insns like "foo W,X,Y,Z".
10252 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10253
10254 static void
10255 do_mav_quad (void)
10256 {
10257 inst.instruction |= inst.operands[0].reg << 5;
10258 inst.instruction |= inst.operands[1].reg << 12;
10259 inst.instruction |= inst.operands[2].reg << 16;
10260 inst.instruction |= inst.operands[3].reg;
10261 }
10262
10263 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10264 static void
10265 do_mav_dspsc (void)
10266 {
10267 inst.instruction |= inst.operands[1].reg << 12;
10268 }
10269
10270 /* Maverick shift immediate instructions.
10271 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10272 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10273
10274 static void
10275 do_mav_shift (void)
10276 {
10277 int imm = inst.operands[2].imm;
10278
10279 inst.instruction |= inst.operands[0].reg << 12;
10280 inst.instruction |= inst.operands[1].reg << 16;
10281
10282 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10283 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10284 Bit 4 should be 0. */
10285 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10286
10287 inst.instruction |= imm;
10288 }
10289 \f
10290 /* XScale instructions. Also sorted arithmetic before move. */
10291
10292 /* Xscale multiply-accumulate (argument parse)
10293 MIAcc acc0,Rm,Rs
10294 MIAPHcc acc0,Rm,Rs
10295 MIAxycc acc0,Rm,Rs. */
10296
10297 static void
10298 do_xsc_mia (void)
10299 {
10300 inst.instruction |= inst.operands[1].reg;
10301 inst.instruction |= inst.operands[2].reg << 12;
10302 }
10303
10304 /* Xscale move-accumulator-register (argument parse)
10305
10306 MARcc acc0,RdLo,RdHi. */
10307
10308 static void
10309 do_xsc_mar (void)
10310 {
10311 inst.instruction |= inst.operands[1].reg << 12;
10312 inst.instruction |= inst.operands[2].reg << 16;
10313 }
10314
10315 /* Xscale move-register-accumulator (argument parse)
10316
10317 MRAcc RdLo,RdHi,acc0. */
10318
10319 static void
10320 do_xsc_mra (void)
10321 {
10322 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10323 inst.instruction |= inst.operands[0].reg << 12;
10324 inst.instruction |= inst.operands[1].reg << 16;
10325 }
10326 \f
10327 /* Encoding functions relevant only to Thumb. */
10328
10329 /* inst.operands[i] is a shifted-register operand; encode
10330 it into inst.instruction in the format used by Thumb32. */
10331
10332 static void
10333 encode_thumb32_shifted_operand (int i)
10334 {
10335 unsigned int value = inst.reloc.exp.X_add_number;
10336 unsigned int shift = inst.operands[i].shift_kind;
10337
10338 constraint (inst.operands[i].immisreg,
10339 _("shift by register not allowed in thumb mode"));
10340 inst.instruction |= inst.operands[i].reg;
10341 if (shift == SHIFT_RRX)
10342 inst.instruction |= SHIFT_ROR << 4;
10343 else
10344 {
10345 constraint (inst.reloc.exp.X_op != O_constant,
10346 _("expression too complex"));
10347
10348 constraint (value > 32
10349 || (value == 32 && (shift == SHIFT_LSL
10350 || shift == SHIFT_ROR)),
10351 _("shift expression is too large"));
10352
10353 if (value == 0)
10354 shift = SHIFT_LSL;
10355 else if (value == 32)
10356 value = 0;
10357
10358 inst.instruction |= shift << 4;
10359 inst.instruction |= (value & 0x1c) << 10;
10360 inst.instruction |= (value & 0x03) << 6;
10361 }
10362 }
10363
10364
10365 /* inst.operands[i] was set up by parse_address. Encode it into a
10366 Thumb32 format load or store instruction. Reject forms that cannot
10367 be used with such instructions. If is_t is true, reject forms that
10368 cannot be used with a T instruction; if is_d is true, reject forms
10369 that cannot be used with a D instruction. If it is a store insn,
10370 reject PC in Rn. */
10371
10372 static void
10373 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10374 {
10375 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10376
10377 constraint (!inst.operands[i].isreg,
10378 _("Instruction does not support =N addresses"));
10379
10380 inst.instruction |= inst.operands[i].reg << 16;
10381 if (inst.operands[i].immisreg)
10382 {
10383 constraint (is_pc, BAD_PC_ADDRESSING);
10384 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10385 constraint (inst.operands[i].negative,
10386 _("Thumb does not support negative register indexing"));
10387 constraint (inst.operands[i].postind,
10388 _("Thumb does not support register post-indexing"));
10389 constraint (inst.operands[i].writeback,
10390 _("Thumb does not support register indexing with writeback"));
10391 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10392 _("Thumb supports only LSL in shifted register indexing"));
10393
10394 inst.instruction |= inst.operands[i].imm;
10395 if (inst.operands[i].shifted)
10396 {
10397 constraint (inst.reloc.exp.X_op != O_constant,
10398 _("expression too complex"));
10399 constraint (inst.reloc.exp.X_add_number < 0
10400 || inst.reloc.exp.X_add_number > 3,
10401 _("shift out of range"));
10402 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10403 }
10404 inst.reloc.type = BFD_RELOC_UNUSED;
10405 }
10406 else if (inst.operands[i].preind)
10407 {
10408 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10409 constraint (is_t && inst.operands[i].writeback,
10410 _("cannot use writeback with this instruction"));
10411 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10412 BAD_PC_ADDRESSING);
10413
10414 if (is_d)
10415 {
10416 inst.instruction |= 0x01000000;
10417 if (inst.operands[i].writeback)
10418 inst.instruction |= 0x00200000;
10419 }
10420 else
10421 {
10422 inst.instruction |= 0x00000c00;
10423 if (inst.operands[i].writeback)
10424 inst.instruction |= 0x00000100;
10425 }
10426 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10427 }
10428 else if (inst.operands[i].postind)
10429 {
10430 gas_assert (inst.operands[i].writeback);
10431 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10432 constraint (is_t, _("cannot use post-indexing with this instruction"));
10433
10434 if (is_d)
10435 inst.instruction |= 0x00200000;
10436 else
10437 inst.instruction |= 0x00000900;
10438 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10439 }
10440 else /* unindexed - only for coprocessor */
10441 inst.error = _("instruction does not accept unindexed addressing");
10442 }
10443
10444 /* Table of Thumb instructions which exist in both 16- and 32-bit
10445 encodings (the latter only in post-V6T2 cores). The index is the
10446 value used in the insns table below. When there is more than one
10447 possible 16-bit encoding for the instruction, this table always
10448 holds variant (1).
10449 Also contains several pseudo-instructions used during relaxation. */
10450 #define T16_32_TAB \
10451 X(_adc, 4140, eb400000), \
10452 X(_adcs, 4140, eb500000), \
10453 X(_add, 1c00, eb000000), \
10454 X(_adds, 1c00, eb100000), \
10455 X(_addi, 0000, f1000000), \
10456 X(_addis, 0000, f1100000), \
10457 X(_add_pc,000f, f20f0000), \
10458 X(_add_sp,000d, f10d0000), \
10459 X(_adr, 000f, f20f0000), \
10460 X(_and, 4000, ea000000), \
10461 X(_ands, 4000, ea100000), \
10462 X(_asr, 1000, fa40f000), \
10463 X(_asrs, 1000, fa50f000), \
10464 X(_b, e000, f000b000), \
10465 X(_bcond, d000, f0008000), \
10466 X(_bic, 4380, ea200000), \
10467 X(_bics, 4380, ea300000), \
10468 X(_cmn, 42c0, eb100f00), \
10469 X(_cmp, 2800, ebb00f00), \
10470 X(_cpsie, b660, f3af8400), \
10471 X(_cpsid, b670, f3af8600), \
10472 X(_cpy, 4600, ea4f0000), \
10473 X(_dec_sp,80dd, f1ad0d00), \
10474 X(_eor, 4040, ea800000), \
10475 X(_eors, 4040, ea900000), \
10476 X(_inc_sp,00dd, f10d0d00), \
10477 X(_ldmia, c800, e8900000), \
10478 X(_ldr, 6800, f8500000), \
10479 X(_ldrb, 7800, f8100000), \
10480 X(_ldrh, 8800, f8300000), \
10481 X(_ldrsb, 5600, f9100000), \
10482 X(_ldrsh, 5e00, f9300000), \
10483 X(_ldr_pc,4800, f85f0000), \
10484 X(_ldr_pc2,4800, f85f0000), \
10485 X(_ldr_sp,9800, f85d0000), \
10486 X(_lsl, 0000, fa00f000), \
10487 X(_lsls, 0000, fa10f000), \
10488 X(_lsr, 0800, fa20f000), \
10489 X(_lsrs, 0800, fa30f000), \
10490 X(_mov, 2000, ea4f0000), \
10491 X(_movs, 2000, ea5f0000), \
10492 X(_mul, 4340, fb00f000), \
10493 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10494 X(_mvn, 43c0, ea6f0000), \
10495 X(_mvns, 43c0, ea7f0000), \
10496 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10497 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10498 X(_orr, 4300, ea400000), \
10499 X(_orrs, 4300, ea500000), \
10500 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10501 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10502 X(_rev, ba00, fa90f080), \
10503 X(_rev16, ba40, fa90f090), \
10504 X(_revsh, bac0, fa90f0b0), \
10505 X(_ror, 41c0, fa60f000), \
10506 X(_rors, 41c0, fa70f000), \
10507 X(_sbc, 4180, eb600000), \
10508 X(_sbcs, 4180, eb700000), \
10509 X(_stmia, c000, e8800000), \
10510 X(_str, 6000, f8400000), \
10511 X(_strb, 7000, f8000000), \
10512 X(_strh, 8000, f8200000), \
10513 X(_str_sp,9000, f84d0000), \
10514 X(_sub, 1e00, eba00000), \
10515 X(_subs, 1e00, ebb00000), \
10516 X(_subi, 8000, f1a00000), \
10517 X(_subis, 8000, f1b00000), \
10518 X(_sxtb, b240, fa4ff080), \
10519 X(_sxth, b200, fa0ff080), \
10520 X(_tst, 4200, ea100f00), \
10521 X(_uxtb, b2c0, fa5ff080), \
10522 X(_uxth, b280, fa1ff080), \
10523 X(_nop, bf00, f3af8000), \
10524 X(_yield, bf10, f3af8001), \
10525 X(_wfe, bf20, f3af8002), \
10526 X(_wfi, bf30, f3af8003), \
10527 X(_sev, bf40, f3af8004), \
10528 X(_sevl, bf50, f3af8005), \
10529 X(_udf, de00, f7f0a000)
10530
10531 /* To catch errors in encoding functions, the codes are all offset by
10532 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10533 as 16-bit instructions. */
10534 #define X(a,b,c) T_MNEM##a
10535 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10536 #undef X
10537
10538 #define X(a,b,c) 0x##b
10539 static const unsigned short thumb_op16[] = { T16_32_TAB };
10540 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10541 #undef X
10542
10543 #define X(a,b,c) 0x##c
10544 static const unsigned int thumb_op32[] = { T16_32_TAB };
10545 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10546 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10547 #undef X
10548 #undef T16_32_TAB
10549
10550 /* Thumb instruction encoders, in alphabetical order. */
10551
10552 /* ADDW or SUBW. */
10553
10554 static void
10555 do_t_add_sub_w (void)
10556 {
10557 int Rd, Rn;
10558
10559 Rd = inst.operands[0].reg;
10560 Rn = inst.operands[1].reg;
10561
10562 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10563 is the SP-{plus,minus}-immediate form of the instruction. */
10564 if (Rn == REG_SP)
10565 constraint (Rd == REG_PC, BAD_PC);
10566 else
10567 reject_bad_reg (Rd);
10568
10569 inst.instruction |= (Rn << 16) | (Rd << 8);
10570 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10571 }
10572
10573 /* Parse an add or subtract instruction. We get here with inst.instruction
10574 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
10575
10576 static void
10577 do_t_add_sub (void)
10578 {
10579 int Rd, Rs, Rn;
10580
10581 Rd = inst.operands[0].reg;
10582 Rs = (inst.operands[1].present
10583 ? inst.operands[1].reg /* Rd, Rs, foo */
10584 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10585
10586 if (Rd == REG_PC)
10587 set_it_insn_type_last ();
10588
10589 if (unified_syntax)
10590 {
10591 bfd_boolean flags;
10592 bfd_boolean narrow;
10593 int opcode;
10594
10595 flags = (inst.instruction == T_MNEM_adds
10596 || inst.instruction == T_MNEM_subs);
10597 if (flags)
10598 narrow = !in_it_block ();
10599 else
10600 narrow = in_it_block ();
10601 if (!inst.operands[2].isreg)
10602 {
10603 int add;
10604
10605 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10606 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10607
10608 add = (inst.instruction == T_MNEM_add
10609 || inst.instruction == T_MNEM_adds);
10610 opcode = 0;
10611 if (inst.size_req != 4)
10612 {
10613 /* Attempt to use a narrow opcode, with relaxation if
10614 appropriate. */
10615 if (Rd == REG_SP && Rs == REG_SP && !flags)
10616 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10617 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10618 opcode = T_MNEM_add_sp;
10619 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10620 opcode = T_MNEM_add_pc;
10621 else if (Rd <= 7 && Rs <= 7 && narrow)
10622 {
10623 if (flags)
10624 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10625 else
10626 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10627 }
10628 if (opcode)
10629 {
10630 inst.instruction = THUMB_OP16(opcode);
10631 inst.instruction |= (Rd << 4) | Rs;
10632 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10633 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
10634 {
10635 if (inst.size_req == 2)
10636 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10637 else
10638 inst.relax = opcode;
10639 }
10640 }
10641 else
10642 constraint (inst.size_req == 2, BAD_HIREG);
10643 }
10644 if (inst.size_req == 4
10645 || (inst.size_req != 2 && !opcode))
10646 {
10647 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10648 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10649 THUMB1_RELOC_ONLY);
10650 if (Rd == REG_PC)
10651 {
10652 constraint (add, BAD_PC);
10653 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10654 _("only SUBS PC, LR, #const allowed"));
10655 constraint (inst.reloc.exp.X_op != O_constant,
10656 _("expression too complex"));
10657 constraint (inst.reloc.exp.X_add_number < 0
10658 || inst.reloc.exp.X_add_number > 0xff,
10659 _("immediate value out of range"));
10660 inst.instruction = T2_SUBS_PC_LR
10661 | inst.reloc.exp.X_add_number;
10662 inst.reloc.type = BFD_RELOC_UNUSED;
10663 return;
10664 }
10665 else if (Rs == REG_PC)
10666 {
10667 /* Always use addw/subw. */
10668 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10670 }
10671 else
10672 {
10673 inst.instruction = THUMB_OP32 (inst.instruction);
10674 inst.instruction = (inst.instruction & 0xe1ffffff)
10675 | 0x10000000;
10676 if (flags)
10677 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10678 else
10679 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10680 }
10681 inst.instruction |= Rd << 8;
10682 inst.instruction |= Rs << 16;
10683 }
10684 }
10685 else
10686 {
10687 unsigned int value = inst.reloc.exp.X_add_number;
10688 unsigned int shift = inst.operands[2].shift_kind;
10689
10690 Rn = inst.operands[2].reg;
10691 /* See if we can do this with a 16-bit instruction. */
10692 if (!inst.operands[2].shifted && inst.size_req != 4)
10693 {
10694 if (Rd > 7 || Rs > 7 || Rn > 7)
10695 narrow = FALSE;
10696
10697 if (narrow)
10698 {
10699 inst.instruction = ((inst.instruction == T_MNEM_adds
10700 || inst.instruction == T_MNEM_add)
10701 ? T_OPCODE_ADD_R3
10702 : T_OPCODE_SUB_R3);
10703 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10704 return;
10705 }
10706
10707 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10708 {
10709 /* Thumb-1 cores (except v6-M) require at least one high
10710 register in a narrow non flag setting add. */
10711 if (Rd > 7 || Rn > 7
10712 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10713 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10714 {
10715 if (Rd == Rn)
10716 {
10717 Rn = Rs;
10718 Rs = Rd;
10719 }
10720 inst.instruction = T_OPCODE_ADD_HI;
10721 inst.instruction |= (Rd & 8) << 4;
10722 inst.instruction |= (Rd & 7);
10723 inst.instruction |= Rn << 3;
10724 return;
10725 }
10726 }
10727 }
10728
10729 constraint (Rd == REG_PC, BAD_PC);
10730 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10731 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10732 constraint (Rs == REG_PC, BAD_PC);
10733 reject_bad_reg (Rn);
10734
10735 /* If we get here, it can't be done in 16 bits. */
10736 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10737 _("shift must be constant"));
10738 inst.instruction = THUMB_OP32 (inst.instruction);
10739 inst.instruction |= Rd << 8;
10740 inst.instruction |= Rs << 16;
10741 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10742 _("shift value over 3 not allowed in thumb mode"));
10743 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10744 _("only LSL shift allowed in thumb mode"));
10745 encode_thumb32_shifted_operand (2);
10746 }
10747 }
10748 else
10749 {
10750 constraint (inst.instruction == T_MNEM_adds
10751 || inst.instruction == T_MNEM_subs,
10752 BAD_THUMB32);
10753
10754 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10755 {
10756 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10757 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10758 BAD_HIREG);
10759
10760 inst.instruction = (inst.instruction == T_MNEM_add
10761 ? 0x0000 : 0x8000);
10762 inst.instruction |= (Rd << 4) | Rs;
10763 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10764 return;
10765 }
10766
10767 Rn = inst.operands[2].reg;
10768 constraint (inst.operands[2].shifted, _("unshifted register required"));
10769
10770 /* We now have Rd, Rs, and Rn set to registers. */
10771 if (Rd > 7 || Rs > 7 || Rn > 7)
10772 {
10773 /* Can't do this for SUB. */
10774 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10775 inst.instruction = T_OPCODE_ADD_HI;
10776 inst.instruction |= (Rd & 8) << 4;
10777 inst.instruction |= (Rd & 7);
10778 if (Rs == Rd)
10779 inst.instruction |= Rn << 3;
10780 else if (Rn == Rd)
10781 inst.instruction |= Rs << 3;
10782 else
10783 constraint (1, _("dest must overlap one source register"));
10784 }
10785 else
10786 {
10787 inst.instruction = (inst.instruction == T_MNEM_add
10788 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10789 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10790 }
10791 }
10792 }
10793
10794 static void
10795 do_t_adr (void)
10796 {
10797 unsigned Rd;
10798
10799 Rd = inst.operands[0].reg;
10800 reject_bad_reg (Rd);
10801
10802 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10803 {
10804 /* Defer to section relaxation. */
10805 inst.relax = inst.instruction;
10806 inst.instruction = THUMB_OP16 (inst.instruction);
10807 inst.instruction |= Rd << 4;
10808 }
10809 else if (unified_syntax && inst.size_req != 2)
10810 {
10811 /* Generate a 32-bit opcode. */
10812 inst.instruction = THUMB_OP32 (inst.instruction);
10813 inst.instruction |= Rd << 8;
10814 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10815 inst.reloc.pc_rel = 1;
10816 }
10817 else
10818 {
10819 /* Generate a 16-bit opcode. */
10820 inst.instruction = THUMB_OP16 (inst.instruction);
10821 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10822 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10823 inst.reloc.pc_rel = 1;
10824 inst.instruction |= Rd << 4;
10825 }
10826
10827 if (inst.reloc.exp.X_op == O_symbol
10828 && inst.reloc.exp.X_add_symbol != NULL
10829 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10830 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10831 inst.reloc.exp.X_add_number += 1;
10832 }
10833
10834 /* Arithmetic instructions for which there is just one 16-bit
10835 instruction encoding, and it allows only two low registers.
10836 For maximal compatibility with ARM syntax, we allow three register
10837 operands even when Thumb-32 instructions are not available, as long
10838 as the first two are identical. For instance, both "sbc r0,r1" and
10839 "sbc r0,r0,r1" are allowed. */
10840 static void
10841 do_t_arit3 (void)
10842 {
10843 int Rd, Rs, Rn;
10844
10845 Rd = inst.operands[0].reg;
10846 Rs = (inst.operands[1].present
10847 ? inst.operands[1].reg /* Rd, Rs, foo */
10848 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10849 Rn = inst.operands[2].reg;
10850
10851 reject_bad_reg (Rd);
10852 reject_bad_reg (Rs);
10853 if (inst.operands[2].isreg)
10854 reject_bad_reg (Rn);
10855
10856 if (unified_syntax)
10857 {
10858 if (!inst.operands[2].isreg)
10859 {
10860 /* For an immediate, we always generate a 32-bit opcode;
10861 section relaxation will shrink it later if possible. */
10862 inst.instruction = THUMB_OP32 (inst.instruction);
10863 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10864 inst.instruction |= Rd << 8;
10865 inst.instruction |= Rs << 16;
10866 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10867 }
10868 else
10869 {
10870 bfd_boolean narrow;
10871
10872 /* See if we can do this with a 16-bit instruction. */
10873 if (THUMB_SETS_FLAGS (inst.instruction))
10874 narrow = !in_it_block ();
10875 else
10876 narrow = in_it_block ();
10877
10878 if (Rd > 7 || Rn > 7 || Rs > 7)
10879 narrow = FALSE;
10880 if (inst.operands[2].shifted)
10881 narrow = FALSE;
10882 if (inst.size_req == 4)
10883 narrow = FALSE;
10884
10885 if (narrow
10886 && Rd == Rs)
10887 {
10888 inst.instruction = THUMB_OP16 (inst.instruction);
10889 inst.instruction |= Rd;
10890 inst.instruction |= Rn << 3;
10891 return;
10892 }
10893
10894 /* If we get here, it can't be done in 16 bits. */
10895 constraint (inst.operands[2].shifted
10896 && inst.operands[2].immisreg,
10897 _("shift must be constant"));
10898 inst.instruction = THUMB_OP32 (inst.instruction);
10899 inst.instruction |= Rd << 8;
10900 inst.instruction |= Rs << 16;
10901 encode_thumb32_shifted_operand (2);
10902 }
10903 }
10904 else
10905 {
10906 /* On its face this is a lie - the instruction does set the
10907 flags. However, the only supported mnemonic in this mode
10908 says it doesn't. */
10909 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10910
10911 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10912 _("unshifted register required"));
10913 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10914 constraint (Rd != Rs,
10915 _("dest and source1 must be the same register"));
10916
10917 inst.instruction = THUMB_OP16 (inst.instruction);
10918 inst.instruction |= Rd;
10919 inst.instruction |= Rn << 3;
10920 }
10921 }
10922
10923 /* Similarly, but for instructions where the arithmetic operation is
10924 commutative, so we can allow either of them to be different from
10925 the destination operand in a 16-bit instruction. For instance, all
10926 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10927 accepted. */
10928 static void
10929 do_t_arit3c (void)
10930 {
10931 int Rd, Rs, Rn;
10932
10933 Rd = inst.operands[0].reg;
10934 Rs = (inst.operands[1].present
10935 ? inst.operands[1].reg /* Rd, Rs, foo */
10936 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10937 Rn = inst.operands[2].reg;
10938
10939 reject_bad_reg (Rd);
10940 reject_bad_reg (Rs);
10941 if (inst.operands[2].isreg)
10942 reject_bad_reg (Rn);
10943
10944 if (unified_syntax)
10945 {
10946 if (!inst.operands[2].isreg)
10947 {
10948 /* For an immediate, we always generate a 32-bit opcode;
10949 section relaxation will shrink it later if possible. */
10950 inst.instruction = THUMB_OP32 (inst.instruction);
10951 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10952 inst.instruction |= Rd << 8;
10953 inst.instruction |= Rs << 16;
10954 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10955 }
10956 else
10957 {
10958 bfd_boolean narrow;
10959
10960 /* See if we can do this with a 16-bit instruction. */
10961 if (THUMB_SETS_FLAGS (inst.instruction))
10962 narrow = !in_it_block ();
10963 else
10964 narrow = in_it_block ();
10965
10966 if (Rd > 7 || Rn > 7 || Rs > 7)
10967 narrow = FALSE;
10968 if (inst.operands[2].shifted)
10969 narrow = FALSE;
10970 if (inst.size_req == 4)
10971 narrow = FALSE;
10972
10973 if (narrow)
10974 {
10975 if (Rd == Rs)
10976 {
10977 inst.instruction = THUMB_OP16 (inst.instruction);
10978 inst.instruction |= Rd;
10979 inst.instruction |= Rn << 3;
10980 return;
10981 }
10982 if (Rd == Rn)
10983 {
10984 inst.instruction = THUMB_OP16 (inst.instruction);
10985 inst.instruction |= Rd;
10986 inst.instruction |= Rs << 3;
10987 return;
10988 }
10989 }
10990
10991 /* If we get here, it can't be done in 16 bits. */
10992 constraint (inst.operands[2].shifted
10993 && inst.operands[2].immisreg,
10994 _("shift must be constant"));
10995 inst.instruction = THUMB_OP32 (inst.instruction);
10996 inst.instruction |= Rd << 8;
10997 inst.instruction |= Rs << 16;
10998 encode_thumb32_shifted_operand (2);
10999 }
11000 }
11001 else
11002 {
11003 /* On its face this is a lie - the instruction does set the
11004 flags. However, the only supported mnemonic in this mode
11005 says it doesn't. */
11006 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11007
11008 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11009 _("unshifted register required"));
11010 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11011
11012 inst.instruction = THUMB_OP16 (inst.instruction);
11013 inst.instruction |= Rd;
11014
11015 if (Rd == Rs)
11016 inst.instruction |= Rn << 3;
11017 else if (Rd == Rn)
11018 inst.instruction |= Rs << 3;
11019 else
11020 constraint (1, _("dest must overlap one source register"));
11021 }
11022 }
11023
11024 static void
11025 do_t_bfc (void)
11026 {
11027 unsigned Rd;
11028 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11029 constraint (msb > 32, _("bit-field extends past end of register"));
11030 /* The instruction encoding stores the LSB and MSB,
11031 not the LSB and width. */
11032 Rd = inst.operands[0].reg;
11033 reject_bad_reg (Rd);
11034 inst.instruction |= Rd << 8;
11035 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11036 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11037 inst.instruction |= msb - 1;
11038 }
11039
11040 static void
11041 do_t_bfi (void)
11042 {
11043 int Rd, Rn;
11044 unsigned int msb;
11045
11046 Rd = inst.operands[0].reg;
11047 reject_bad_reg (Rd);
11048
11049 /* #0 in second position is alternative syntax for bfc, which is
11050 the same instruction but with REG_PC in the Rm field. */
11051 if (!inst.operands[1].isreg)
11052 Rn = REG_PC;
11053 else
11054 {
11055 Rn = inst.operands[1].reg;
11056 reject_bad_reg (Rn);
11057 }
11058
11059 msb = inst.operands[2].imm + inst.operands[3].imm;
11060 constraint (msb > 32, _("bit-field extends past end of register"));
11061 /* The instruction encoding stores the LSB and MSB,
11062 not the LSB and width. */
11063 inst.instruction |= Rd << 8;
11064 inst.instruction |= Rn << 16;
11065 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11066 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11067 inst.instruction |= msb - 1;
11068 }
11069
11070 static void
11071 do_t_bfx (void)
11072 {
11073 unsigned Rd, Rn;
11074
11075 Rd = inst.operands[0].reg;
11076 Rn = inst.operands[1].reg;
11077
11078 reject_bad_reg (Rd);
11079 reject_bad_reg (Rn);
11080
11081 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11082 _("bit-field extends past end of register"));
11083 inst.instruction |= Rd << 8;
11084 inst.instruction |= Rn << 16;
11085 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11086 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11087 inst.instruction |= inst.operands[3].imm - 1;
11088 }
11089
11090 /* ARM V5 Thumb BLX (argument parse)
11091 BLX <target_addr> which is BLX(1)
11092 BLX <Rm> which is BLX(2)
11093 Unfortunately, there are two different opcodes for this mnemonic.
11094 So, the insns[].value is not used, and the code here zaps values
11095 into inst.instruction.
11096
11097 ??? How to take advantage of the additional two bits of displacement
11098 available in Thumb32 mode? Need new relocation? */
11099
11100 static void
11101 do_t_blx (void)
11102 {
11103 set_it_insn_type_last ();
11104
11105 if (inst.operands[0].isreg)
11106 {
11107 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11108 /* We have a register, so this is BLX(2). */
11109 inst.instruction |= inst.operands[0].reg << 3;
11110 }
11111 else
11112 {
11113 /* No register. This must be BLX(1). */
11114 inst.instruction = 0xf000e800;
11115 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11116 }
11117 }
11118
11119 static void
11120 do_t_branch (void)
11121 {
11122 int opcode;
11123 int cond;
11124 bfd_reloc_code_real_type reloc;
11125
11126 cond = inst.cond;
11127 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11128
11129 if (in_it_block ())
11130 {
11131 /* Conditional branches inside IT blocks are encoded as unconditional
11132 branches. */
11133 cond = COND_ALWAYS;
11134 }
11135 else
11136 cond = inst.cond;
11137
11138 if (cond != COND_ALWAYS)
11139 opcode = T_MNEM_bcond;
11140 else
11141 opcode = inst.instruction;
11142
11143 if (unified_syntax
11144 && (inst.size_req == 4
11145 || (inst.size_req != 2
11146 && (inst.operands[0].hasreloc
11147 || inst.reloc.exp.X_op == O_constant))))
11148 {
11149 inst.instruction = THUMB_OP32(opcode);
11150 if (cond == COND_ALWAYS)
11151 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11152 else
11153 {
11154 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11155 _("selected architecture does not support "
11156 "wide conditional branch instruction"));
11157
11158 gas_assert (cond != 0xF);
11159 inst.instruction |= cond << 22;
11160 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11161 }
11162 }
11163 else
11164 {
11165 inst.instruction = THUMB_OP16(opcode);
11166 if (cond == COND_ALWAYS)
11167 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11168 else
11169 {
11170 inst.instruction |= cond << 8;
11171 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11172 }
11173 /* Allow section relaxation. */
11174 if (unified_syntax && inst.size_req != 2)
11175 inst.relax = opcode;
11176 }
11177 inst.reloc.type = reloc;
11178 inst.reloc.pc_rel = 1;
11179 }
11180
11181 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11182 between the two is the maximum immediate allowed - which is passed in
11183 RANGE. */
11184 static void
11185 do_t_bkpt_hlt1 (int range)
11186 {
11187 constraint (inst.cond != COND_ALWAYS,
11188 _("instruction is always unconditional"));
11189 if (inst.operands[0].present)
11190 {
11191 constraint (inst.operands[0].imm > range,
11192 _("immediate value out of range"));
11193 inst.instruction |= inst.operands[0].imm;
11194 }
11195
11196 set_it_insn_type (NEUTRAL_IT_INSN);
11197 }
11198
11199 static void
11200 do_t_hlt (void)
11201 {
11202 do_t_bkpt_hlt1 (63);
11203 }
11204
11205 static void
11206 do_t_bkpt (void)
11207 {
11208 do_t_bkpt_hlt1 (255);
11209 }
11210
11211 static void
11212 do_t_branch23 (void)
11213 {
11214 set_it_insn_type_last ();
11215 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11216
11217 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11218 this file. We used to simply ignore the PLT reloc type here --
11219 the branch encoding is now needed to deal with TLSCALL relocs.
11220 So if we see a PLT reloc now, put it back to how it used to be to
11221 keep the preexisting behaviour. */
11222 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11223 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11224
11225 #if defined(OBJ_COFF)
11226 /* If the destination of the branch is a defined symbol which does not have
11227 the THUMB_FUNC attribute, then we must be calling a function which has
11228 the (interfacearm) attribute. We look for the Thumb entry point to that
11229 function and change the branch to refer to that function instead. */
11230 if ( inst.reloc.exp.X_op == O_symbol
11231 && inst.reloc.exp.X_add_symbol != NULL
11232 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11233 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11234 inst.reloc.exp.X_add_symbol =
11235 find_real_start (inst.reloc.exp.X_add_symbol);
11236 #endif
11237 }
11238
11239 static void
11240 do_t_bx (void)
11241 {
11242 set_it_insn_type_last ();
11243 inst.instruction |= inst.operands[0].reg << 3;
11244 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11245 should cause the alignment to be checked once it is known. This is
11246 because BX PC only works if the instruction is word aligned. */
11247 }
11248
11249 static void
11250 do_t_bxj (void)
11251 {
11252 int Rm;
11253
11254 set_it_insn_type_last ();
11255 Rm = inst.operands[0].reg;
11256 reject_bad_reg (Rm);
11257 inst.instruction |= Rm << 16;
11258 }
11259
11260 static void
11261 do_t_clz (void)
11262 {
11263 unsigned Rd;
11264 unsigned Rm;
11265
11266 Rd = inst.operands[0].reg;
11267 Rm = inst.operands[1].reg;
11268
11269 reject_bad_reg (Rd);
11270 reject_bad_reg (Rm);
11271
11272 inst.instruction |= Rd << 8;
11273 inst.instruction |= Rm << 16;
11274 inst.instruction |= Rm;
11275 }
11276
11277 static void
11278 do_t_csdb (void)
11279 {
11280 set_it_insn_type (OUTSIDE_IT_INSN);
11281 }
11282
11283 static void
11284 do_t_cps (void)
11285 {
11286 set_it_insn_type (OUTSIDE_IT_INSN);
11287 inst.instruction |= inst.operands[0].imm;
11288 }
11289
11290 static void
11291 do_t_cpsi (void)
11292 {
11293 set_it_insn_type (OUTSIDE_IT_INSN);
11294 if (unified_syntax
11295 && (inst.operands[1].present || inst.size_req == 4)
11296 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11297 {
11298 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11299 inst.instruction = 0xf3af8000;
11300 inst.instruction |= imod << 9;
11301 inst.instruction |= inst.operands[0].imm << 5;
11302 if (inst.operands[1].present)
11303 inst.instruction |= 0x100 | inst.operands[1].imm;
11304 }
11305 else
11306 {
11307 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11308 && (inst.operands[0].imm & 4),
11309 _("selected processor does not support 'A' form "
11310 "of this instruction"));
11311 constraint (inst.operands[1].present || inst.size_req == 4,
11312 _("Thumb does not support the 2-argument "
11313 "form of this instruction"));
11314 inst.instruction |= inst.operands[0].imm;
11315 }
11316 }
11317
11318 /* THUMB CPY instruction (argument parse). */
11319
11320 static void
11321 do_t_cpy (void)
11322 {
11323 if (inst.size_req == 4)
11324 {
11325 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11326 inst.instruction |= inst.operands[0].reg << 8;
11327 inst.instruction |= inst.operands[1].reg;
11328 }
11329 else
11330 {
11331 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11332 inst.instruction |= (inst.operands[0].reg & 0x7);
11333 inst.instruction |= inst.operands[1].reg << 3;
11334 }
11335 }
11336
11337 static void
11338 do_t_cbz (void)
11339 {
11340 set_it_insn_type (OUTSIDE_IT_INSN);
11341 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11342 inst.instruction |= inst.operands[0].reg;
11343 inst.reloc.pc_rel = 1;
11344 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11345 }
11346
11347 static void
11348 do_t_dbg (void)
11349 {
11350 inst.instruction |= inst.operands[0].imm;
11351 }
11352
11353 static void
11354 do_t_div (void)
11355 {
11356 unsigned Rd, Rn, Rm;
11357
11358 Rd = inst.operands[0].reg;
11359 Rn = (inst.operands[1].present
11360 ? inst.operands[1].reg : Rd);
11361 Rm = inst.operands[2].reg;
11362
11363 reject_bad_reg (Rd);
11364 reject_bad_reg (Rn);
11365 reject_bad_reg (Rm);
11366
11367 inst.instruction |= Rd << 8;
11368 inst.instruction |= Rn << 16;
11369 inst.instruction |= Rm;
11370 }
11371
11372 static void
11373 do_t_hint (void)
11374 {
11375 if (unified_syntax && inst.size_req == 4)
11376 inst.instruction = THUMB_OP32 (inst.instruction);
11377 else
11378 inst.instruction = THUMB_OP16 (inst.instruction);
11379 }
11380
11381 static void
11382 do_t_it (void)
11383 {
11384 unsigned int cond = inst.operands[0].imm;
11385
11386 set_it_insn_type (IT_INSN);
11387 now_it.mask = (inst.instruction & 0xf) | 0x10;
11388 now_it.cc = cond;
11389 now_it.warn_deprecated = FALSE;
11390
11391 /* If the condition is a negative condition, invert the mask. */
11392 if ((cond & 0x1) == 0x0)
11393 {
11394 unsigned int mask = inst.instruction & 0x000f;
11395
11396 if ((mask & 0x7) == 0)
11397 {
11398 /* No conversion needed. */
11399 now_it.block_length = 1;
11400 }
11401 else if ((mask & 0x3) == 0)
11402 {
11403 mask ^= 0x8;
11404 now_it.block_length = 2;
11405 }
11406 else if ((mask & 0x1) == 0)
11407 {
11408 mask ^= 0xC;
11409 now_it.block_length = 3;
11410 }
11411 else
11412 {
11413 mask ^= 0xE;
11414 now_it.block_length = 4;
11415 }
11416
11417 inst.instruction &= 0xfff0;
11418 inst.instruction |= mask;
11419 }
11420
11421 inst.instruction |= cond << 4;
11422 }
11423
11424 /* Helper function used for both push/pop and ldm/stm. */
11425 static void
11426 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11427 {
11428 bfd_boolean load;
11429
11430 load = (inst.instruction & (1 << 20)) != 0;
11431
11432 if (mask & (1 << 13))
11433 inst.error = _("SP not allowed in register list");
11434
11435 if ((mask & (1 << base)) != 0
11436 && writeback)
11437 inst.error = _("having the base register in the register list when "
11438 "using write back is UNPREDICTABLE");
11439
11440 if (load)
11441 {
11442 if (mask & (1 << 15))
11443 {
11444 if (mask & (1 << 14))
11445 inst.error = _("LR and PC should not both be in register list");
11446 else
11447 set_it_insn_type_last ();
11448 }
11449 }
11450 else
11451 {
11452 if (mask & (1 << 15))
11453 inst.error = _("PC not allowed in register list");
11454 }
11455
11456 if ((mask & (mask - 1)) == 0)
11457 {
11458 /* Single register transfers implemented as str/ldr. */
11459 if (writeback)
11460 {
11461 if (inst.instruction & (1 << 23))
11462 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11463 else
11464 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11465 }
11466 else
11467 {
11468 if (inst.instruction & (1 << 23))
11469 inst.instruction = 0x00800000; /* ia -> [base] */
11470 else
11471 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11472 }
11473
11474 inst.instruction |= 0xf8400000;
11475 if (load)
11476 inst.instruction |= 0x00100000;
11477
11478 mask = ffs (mask) - 1;
11479 mask <<= 12;
11480 }
11481 else if (writeback)
11482 inst.instruction |= WRITE_BACK;
11483
11484 inst.instruction |= mask;
11485 inst.instruction |= base << 16;
11486 }
11487
11488 static void
11489 do_t_ldmstm (void)
11490 {
11491 /* This really doesn't seem worth it. */
11492 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11493 _("expression too complex"));
11494 constraint (inst.operands[1].writeback,
11495 _("Thumb load/store multiple does not support {reglist}^"));
11496
11497 if (unified_syntax)
11498 {
11499 bfd_boolean narrow;
11500 unsigned mask;
11501
11502 narrow = FALSE;
11503 /* See if we can use a 16-bit instruction. */
11504 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11505 && inst.size_req != 4
11506 && !(inst.operands[1].imm & ~0xff))
11507 {
11508 mask = 1 << inst.operands[0].reg;
11509
11510 if (inst.operands[0].reg <= 7)
11511 {
11512 if (inst.instruction == T_MNEM_stmia
11513 ? inst.operands[0].writeback
11514 : (inst.operands[0].writeback
11515 == !(inst.operands[1].imm & mask)))
11516 {
11517 if (inst.instruction == T_MNEM_stmia
11518 && (inst.operands[1].imm & mask)
11519 && (inst.operands[1].imm & (mask - 1)))
11520 as_warn (_("value stored for r%d is UNKNOWN"),
11521 inst.operands[0].reg);
11522
11523 inst.instruction = THUMB_OP16 (inst.instruction);
11524 inst.instruction |= inst.operands[0].reg << 8;
11525 inst.instruction |= inst.operands[1].imm;
11526 narrow = TRUE;
11527 }
11528 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11529 {
11530 /* This means 1 register in reg list one of 3 situations:
11531 1. Instruction is stmia, but without writeback.
11532 2. lmdia without writeback, but with Rn not in
11533 reglist.
11534 3. ldmia with writeback, but with Rn in reglist.
11535 Case 3 is UNPREDICTABLE behaviour, so we handle
11536 case 1 and 2 which can be converted into a 16-bit
11537 str or ldr. The SP cases are handled below. */
11538 unsigned long opcode;
11539 /* First, record an error for Case 3. */
11540 if (inst.operands[1].imm & mask
11541 && inst.operands[0].writeback)
11542 inst.error =
11543 _("having the base register in the register list when "
11544 "using write back is UNPREDICTABLE");
11545
11546 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11547 : T_MNEM_ldr);
11548 inst.instruction = THUMB_OP16 (opcode);
11549 inst.instruction |= inst.operands[0].reg << 3;
11550 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11551 narrow = TRUE;
11552 }
11553 }
11554 else if (inst.operands[0] .reg == REG_SP)
11555 {
11556 if (inst.operands[0].writeback)
11557 {
11558 inst.instruction =
11559 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11560 ? T_MNEM_push : T_MNEM_pop);
11561 inst.instruction |= inst.operands[1].imm;
11562 narrow = TRUE;
11563 }
11564 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11565 {
11566 inst.instruction =
11567 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11568 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11569 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11570 narrow = TRUE;
11571 }
11572 }
11573 }
11574
11575 if (!narrow)
11576 {
11577 if (inst.instruction < 0xffff)
11578 inst.instruction = THUMB_OP32 (inst.instruction);
11579
11580 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11581 inst.operands[0].writeback);
11582 }
11583 }
11584 else
11585 {
11586 constraint (inst.operands[0].reg > 7
11587 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11588 constraint (inst.instruction != T_MNEM_ldmia
11589 && inst.instruction != T_MNEM_stmia,
11590 _("Thumb-2 instruction only valid in unified syntax"));
11591 if (inst.instruction == T_MNEM_stmia)
11592 {
11593 if (!inst.operands[0].writeback)
11594 as_warn (_("this instruction will write back the base register"));
11595 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11596 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11597 as_warn (_("value stored for r%d is UNKNOWN"),
11598 inst.operands[0].reg);
11599 }
11600 else
11601 {
11602 if (!inst.operands[0].writeback
11603 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11604 as_warn (_("this instruction will write back the base register"));
11605 else if (inst.operands[0].writeback
11606 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11607 as_warn (_("this instruction will not write back the base register"));
11608 }
11609
11610 inst.instruction = THUMB_OP16 (inst.instruction);
11611 inst.instruction |= inst.operands[0].reg << 8;
11612 inst.instruction |= inst.operands[1].imm;
11613 }
11614 }
11615
11616 static void
11617 do_t_ldrex (void)
11618 {
11619 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11620 || inst.operands[1].postind || inst.operands[1].writeback
11621 || inst.operands[1].immisreg || inst.operands[1].shifted
11622 || inst.operands[1].negative,
11623 BAD_ADDR_MODE);
11624
11625 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11626
11627 inst.instruction |= inst.operands[0].reg << 12;
11628 inst.instruction |= inst.operands[1].reg << 16;
11629 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11630 }
11631
11632 static void
11633 do_t_ldrexd (void)
11634 {
11635 if (!inst.operands[1].present)
11636 {
11637 constraint (inst.operands[0].reg == REG_LR,
11638 _("r14 not allowed as first register "
11639 "when second register is omitted"));
11640 inst.operands[1].reg = inst.operands[0].reg + 1;
11641 }
11642 constraint (inst.operands[0].reg == inst.operands[1].reg,
11643 BAD_OVERLAP);
11644
11645 inst.instruction |= inst.operands[0].reg << 12;
11646 inst.instruction |= inst.operands[1].reg << 8;
11647 inst.instruction |= inst.operands[2].reg << 16;
11648 }
11649
11650 static void
11651 do_t_ldst (void)
11652 {
11653 unsigned long opcode;
11654 int Rn;
11655
11656 if (inst.operands[0].isreg
11657 && !inst.operands[0].preind
11658 && inst.operands[0].reg == REG_PC)
11659 set_it_insn_type_last ();
11660
11661 opcode = inst.instruction;
11662 if (unified_syntax)
11663 {
11664 if (!inst.operands[1].isreg)
11665 {
11666 if (opcode <= 0xffff)
11667 inst.instruction = THUMB_OP32 (opcode);
11668 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11669 return;
11670 }
11671 if (inst.operands[1].isreg
11672 && !inst.operands[1].writeback
11673 && !inst.operands[1].shifted && !inst.operands[1].postind
11674 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11675 && opcode <= 0xffff
11676 && inst.size_req != 4)
11677 {
11678 /* Insn may have a 16-bit form. */
11679 Rn = inst.operands[1].reg;
11680 if (inst.operands[1].immisreg)
11681 {
11682 inst.instruction = THUMB_OP16 (opcode);
11683 /* [Rn, Rik] */
11684 if (Rn <= 7 && inst.operands[1].imm <= 7)
11685 goto op16;
11686 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11687 reject_bad_reg (inst.operands[1].imm);
11688 }
11689 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11690 && opcode != T_MNEM_ldrsb)
11691 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11692 || (Rn == REG_SP && opcode == T_MNEM_str))
11693 {
11694 /* [Rn, #const] */
11695 if (Rn > 7)
11696 {
11697 if (Rn == REG_PC)
11698 {
11699 if (inst.reloc.pc_rel)
11700 opcode = T_MNEM_ldr_pc2;
11701 else
11702 opcode = T_MNEM_ldr_pc;
11703 }
11704 else
11705 {
11706 if (opcode == T_MNEM_ldr)
11707 opcode = T_MNEM_ldr_sp;
11708 else
11709 opcode = T_MNEM_str_sp;
11710 }
11711 inst.instruction = inst.operands[0].reg << 8;
11712 }
11713 else
11714 {
11715 inst.instruction = inst.operands[0].reg;
11716 inst.instruction |= inst.operands[1].reg << 3;
11717 }
11718 inst.instruction |= THUMB_OP16 (opcode);
11719 if (inst.size_req == 2)
11720 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11721 else
11722 inst.relax = opcode;
11723 return;
11724 }
11725 }
11726 /* Definitely a 32-bit variant. */
11727
11728 /* Warning for Erratum 752419. */
11729 if (opcode == T_MNEM_ldr
11730 && inst.operands[0].reg == REG_SP
11731 && inst.operands[1].writeback == 1
11732 && !inst.operands[1].immisreg)
11733 {
11734 if (no_cpu_selected ()
11735 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11736 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11737 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11738 as_warn (_("This instruction may be unpredictable "
11739 "if executed on M-profile cores "
11740 "with interrupts enabled."));
11741 }
11742
11743 /* Do some validations regarding addressing modes. */
11744 if (inst.operands[1].immisreg)
11745 reject_bad_reg (inst.operands[1].imm);
11746
11747 constraint (inst.operands[1].writeback == 1
11748 && inst.operands[0].reg == inst.operands[1].reg,
11749 BAD_OVERLAP);
11750
11751 inst.instruction = THUMB_OP32 (opcode);
11752 inst.instruction |= inst.operands[0].reg << 12;
11753 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11754 check_ldr_r15_aligned ();
11755 return;
11756 }
11757
11758 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11759
11760 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11761 {
11762 /* Only [Rn,Rm] is acceptable. */
11763 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11764 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11765 || inst.operands[1].postind || inst.operands[1].shifted
11766 || inst.operands[1].negative,
11767 _("Thumb does not support this addressing mode"));
11768 inst.instruction = THUMB_OP16 (inst.instruction);
11769 goto op16;
11770 }
11771
11772 inst.instruction = THUMB_OP16 (inst.instruction);
11773 if (!inst.operands[1].isreg)
11774 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11775 return;
11776
11777 constraint (!inst.operands[1].preind
11778 || inst.operands[1].shifted
11779 || inst.operands[1].writeback,
11780 _("Thumb does not support this addressing mode"));
11781 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11782 {
11783 constraint (inst.instruction & 0x0600,
11784 _("byte or halfword not valid for base register"));
11785 constraint (inst.operands[1].reg == REG_PC
11786 && !(inst.instruction & THUMB_LOAD_BIT),
11787 _("r15 based store not allowed"));
11788 constraint (inst.operands[1].immisreg,
11789 _("invalid base register for register offset"));
11790
11791 if (inst.operands[1].reg == REG_PC)
11792 inst.instruction = T_OPCODE_LDR_PC;
11793 else if (inst.instruction & THUMB_LOAD_BIT)
11794 inst.instruction = T_OPCODE_LDR_SP;
11795 else
11796 inst.instruction = T_OPCODE_STR_SP;
11797
11798 inst.instruction |= inst.operands[0].reg << 8;
11799 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11800 return;
11801 }
11802
11803 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11804 if (!inst.operands[1].immisreg)
11805 {
11806 /* Immediate offset. */
11807 inst.instruction |= inst.operands[0].reg;
11808 inst.instruction |= inst.operands[1].reg << 3;
11809 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11810 return;
11811 }
11812
11813 /* Register offset. */
11814 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11815 constraint (inst.operands[1].negative,
11816 _("Thumb does not support this addressing mode"));
11817
11818 op16:
11819 switch (inst.instruction)
11820 {
11821 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11822 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11823 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11824 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11825 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11826 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11827 case 0x5600 /* ldrsb */:
11828 case 0x5e00 /* ldrsh */: break;
11829 default: abort ();
11830 }
11831
11832 inst.instruction |= inst.operands[0].reg;
11833 inst.instruction |= inst.operands[1].reg << 3;
11834 inst.instruction |= inst.operands[1].imm << 6;
11835 }
11836
11837 static void
11838 do_t_ldstd (void)
11839 {
11840 if (!inst.operands[1].present)
11841 {
11842 inst.operands[1].reg = inst.operands[0].reg + 1;
11843 constraint (inst.operands[0].reg == REG_LR,
11844 _("r14 not allowed here"));
11845 constraint (inst.operands[0].reg == REG_R12,
11846 _("r12 not allowed here"));
11847 }
11848
11849 if (inst.operands[2].writeback
11850 && (inst.operands[0].reg == inst.operands[2].reg
11851 || inst.operands[1].reg == inst.operands[2].reg))
11852 as_warn (_("base register written back, and overlaps "
11853 "one of transfer registers"));
11854
11855 inst.instruction |= inst.operands[0].reg << 12;
11856 inst.instruction |= inst.operands[1].reg << 8;
11857 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11858 }
11859
11860 static void
11861 do_t_ldstt (void)
11862 {
11863 inst.instruction |= inst.operands[0].reg << 12;
11864 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11865 }
11866
11867 static void
11868 do_t_mla (void)
11869 {
11870 unsigned Rd, Rn, Rm, Ra;
11871
11872 Rd = inst.operands[0].reg;
11873 Rn = inst.operands[1].reg;
11874 Rm = inst.operands[2].reg;
11875 Ra = inst.operands[3].reg;
11876
11877 reject_bad_reg (Rd);
11878 reject_bad_reg (Rn);
11879 reject_bad_reg (Rm);
11880 reject_bad_reg (Ra);
11881
11882 inst.instruction |= Rd << 8;
11883 inst.instruction |= Rn << 16;
11884 inst.instruction |= Rm;
11885 inst.instruction |= Ra << 12;
11886 }
11887
11888 static void
11889 do_t_mlal (void)
11890 {
11891 unsigned RdLo, RdHi, Rn, Rm;
11892
11893 RdLo = inst.operands[0].reg;
11894 RdHi = inst.operands[1].reg;
11895 Rn = inst.operands[2].reg;
11896 Rm = inst.operands[3].reg;
11897
11898 reject_bad_reg (RdLo);
11899 reject_bad_reg (RdHi);
11900 reject_bad_reg (Rn);
11901 reject_bad_reg (Rm);
11902
11903 inst.instruction |= RdLo << 12;
11904 inst.instruction |= RdHi << 8;
11905 inst.instruction |= Rn << 16;
11906 inst.instruction |= Rm;
11907 }
11908
11909 static void
11910 do_t_mov_cmp (void)
11911 {
11912 unsigned Rn, Rm;
11913
11914 Rn = inst.operands[0].reg;
11915 Rm = inst.operands[1].reg;
11916
11917 if (Rn == REG_PC)
11918 set_it_insn_type_last ();
11919
11920 if (unified_syntax)
11921 {
11922 int r0off = (inst.instruction == T_MNEM_mov
11923 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11924 unsigned long opcode;
11925 bfd_boolean narrow;
11926 bfd_boolean low_regs;
11927
11928 low_regs = (Rn <= 7 && Rm <= 7);
11929 opcode = inst.instruction;
11930 if (in_it_block ())
11931 narrow = opcode != T_MNEM_movs;
11932 else
11933 narrow = opcode != T_MNEM_movs || low_regs;
11934 if (inst.size_req == 4
11935 || inst.operands[1].shifted)
11936 narrow = FALSE;
11937
11938 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11939 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11940 && !inst.operands[1].shifted
11941 && Rn == REG_PC
11942 && Rm == REG_LR)
11943 {
11944 inst.instruction = T2_SUBS_PC_LR;
11945 return;
11946 }
11947
11948 if (opcode == T_MNEM_cmp)
11949 {
11950 constraint (Rn == REG_PC, BAD_PC);
11951 if (narrow)
11952 {
11953 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11954 but valid. */
11955 warn_deprecated_sp (Rm);
11956 /* R15 was documented as a valid choice for Rm in ARMv6,
11957 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11958 tools reject R15, so we do too. */
11959 constraint (Rm == REG_PC, BAD_PC);
11960 }
11961 else
11962 reject_bad_reg (Rm);
11963 }
11964 else if (opcode == T_MNEM_mov
11965 || opcode == T_MNEM_movs)
11966 {
11967 if (inst.operands[1].isreg)
11968 {
11969 if (opcode == T_MNEM_movs)
11970 {
11971 reject_bad_reg (Rn);
11972 reject_bad_reg (Rm);
11973 }
11974 else if (narrow)
11975 {
11976 /* This is mov.n. */
11977 if ((Rn == REG_SP || Rn == REG_PC)
11978 && (Rm == REG_SP || Rm == REG_PC))
11979 {
11980 as_tsktsk (_("Use of r%u as a source register is "
11981 "deprecated when r%u is the destination "
11982 "register."), Rm, Rn);
11983 }
11984 }
11985 else
11986 {
11987 /* This is mov.w. */
11988 constraint (Rn == REG_PC, BAD_PC);
11989 constraint (Rm == REG_PC, BAD_PC);
11990 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11991 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11992 }
11993 }
11994 else
11995 reject_bad_reg (Rn);
11996 }
11997
11998 if (!inst.operands[1].isreg)
11999 {
12000 /* Immediate operand. */
12001 if (!in_it_block () && opcode == T_MNEM_mov)
12002 narrow = 0;
12003 if (low_regs && narrow)
12004 {
12005 inst.instruction = THUMB_OP16 (opcode);
12006 inst.instruction |= Rn << 8;
12007 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12008 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12009 {
12010 if (inst.size_req == 2)
12011 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12012 else
12013 inst.relax = opcode;
12014 }
12015 }
12016 else
12017 {
12018 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12019 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
12020 THUMB1_RELOC_ONLY);
12021
12022 inst.instruction = THUMB_OP32 (inst.instruction);
12023 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12024 inst.instruction |= Rn << r0off;
12025 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12026 }
12027 }
12028 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12029 && (inst.instruction == T_MNEM_mov
12030 || inst.instruction == T_MNEM_movs))
12031 {
12032 /* Register shifts are encoded as separate shift instructions. */
12033 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12034
12035 if (in_it_block ())
12036 narrow = !flags;
12037 else
12038 narrow = flags;
12039
12040 if (inst.size_req == 4)
12041 narrow = FALSE;
12042
12043 if (!low_regs || inst.operands[1].imm > 7)
12044 narrow = FALSE;
12045
12046 if (Rn != Rm)
12047 narrow = FALSE;
12048
12049 switch (inst.operands[1].shift_kind)
12050 {
12051 case SHIFT_LSL:
12052 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12053 break;
12054 case SHIFT_ASR:
12055 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12056 break;
12057 case SHIFT_LSR:
12058 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12059 break;
12060 case SHIFT_ROR:
12061 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12062 break;
12063 default:
12064 abort ();
12065 }
12066
12067 inst.instruction = opcode;
12068 if (narrow)
12069 {
12070 inst.instruction |= Rn;
12071 inst.instruction |= inst.operands[1].imm << 3;
12072 }
12073 else
12074 {
12075 if (flags)
12076 inst.instruction |= CONDS_BIT;
12077
12078 inst.instruction |= Rn << 8;
12079 inst.instruction |= Rm << 16;
12080 inst.instruction |= inst.operands[1].imm;
12081 }
12082 }
12083 else if (!narrow)
12084 {
12085 /* Some mov with immediate shift have narrow variants.
12086 Register shifts are handled above. */
12087 if (low_regs && inst.operands[1].shifted
12088 && (inst.instruction == T_MNEM_mov
12089 || inst.instruction == T_MNEM_movs))
12090 {
12091 if (in_it_block ())
12092 narrow = (inst.instruction == T_MNEM_mov);
12093 else
12094 narrow = (inst.instruction == T_MNEM_movs);
12095 }
12096
12097 if (narrow)
12098 {
12099 switch (inst.operands[1].shift_kind)
12100 {
12101 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12102 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12103 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12104 default: narrow = FALSE; break;
12105 }
12106 }
12107
12108 if (narrow)
12109 {
12110 inst.instruction |= Rn;
12111 inst.instruction |= Rm << 3;
12112 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12113 }
12114 else
12115 {
12116 inst.instruction = THUMB_OP32 (inst.instruction);
12117 inst.instruction |= Rn << r0off;
12118 encode_thumb32_shifted_operand (1);
12119 }
12120 }
12121 else
12122 switch (inst.instruction)
12123 {
12124 case T_MNEM_mov:
12125 /* In v4t or v5t a move of two lowregs produces unpredictable
12126 results. Don't allow this. */
12127 if (low_regs)
12128 {
12129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12130 "MOV Rd, Rs with two low registers is not "
12131 "permitted on this architecture");
12132 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12133 arm_ext_v6);
12134 }
12135
12136 inst.instruction = T_OPCODE_MOV_HR;
12137 inst.instruction |= (Rn & 0x8) << 4;
12138 inst.instruction |= (Rn & 0x7);
12139 inst.instruction |= Rm << 3;
12140 break;
12141
12142 case T_MNEM_movs:
12143 /* We know we have low registers at this point.
12144 Generate LSLS Rd, Rs, #0. */
12145 inst.instruction = T_OPCODE_LSL_I;
12146 inst.instruction |= Rn;
12147 inst.instruction |= Rm << 3;
12148 break;
12149
12150 case T_MNEM_cmp:
12151 if (low_regs)
12152 {
12153 inst.instruction = T_OPCODE_CMP_LR;
12154 inst.instruction |= Rn;
12155 inst.instruction |= Rm << 3;
12156 }
12157 else
12158 {
12159 inst.instruction = T_OPCODE_CMP_HR;
12160 inst.instruction |= (Rn & 0x8) << 4;
12161 inst.instruction |= (Rn & 0x7);
12162 inst.instruction |= Rm << 3;
12163 }
12164 break;
12165 }
12166 return;
12167 }
12168
12169 inst.instruction = THUMB_OP16 (inst.instruction);
12170
12171 /* PR 10443: Do not silently ignore shifted operands. */
12172 constraint (inst.operands[1].shifted,
12173 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12174
12175 if (inst.operands[1].isreg)
12176 {
12177 if (Rn < 8 && Rm < 8)
12178 {
12179 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12180 since a MOV instruction produces unpredictable results. */
12181 if (inst.instruction == T_OPCODE_MOV_I8)
12182 inst.instruction = T_OPCODE_ADD_I3;
12183 else
12184 inst.instruction = T_OPCODE_CMP_LR;
12185
12186 inst.instruction |= Rn;
12187 inst.instruction |= Rm << 3;
12188 }
12189 else
12190 {
12191 if (inst.instruction == T_OPCODE_MOV_I8)
12192 inst.instruction = T_OPCODE_MOV_HR;
12193 else
12194 inst.instruction = T_OPCODE_CMP_HR;
12195 do_t_cpy ();
12196 }
12197 }
12198 else
12199 {
12200 constraint (Rn > 7,
12201 _("only lo regs allowed with immediate"));
12202 inst.instruction |= Rn << 8;
12203 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12204 }
12205 }
12206
12207 static void
12208 do_t_mov16 (void)
12209 {
12210 unsigned Rd;
12211 bfd_vma imm;
12212 bfd_boolean top;
12213
12214 top = (inst.instruction & 0x00800000) != 0;
12215 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12216 {
12217 constraint (top, _(":lower16: not allowed in this instruction"));
12218 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12219 }
12220 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12221 {
12222 constraint (!top, _(":upper16: not allowed in this instruction"));
12223 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12224 }
12225
12226 Rd = inst.operands[0].reg;
12227 reject_bad_reg (Rd);
12228
12229 inst.instruction |= Rd << 8;
12230 if (inst.reloc.type == BFD_RELOC_UNUSED)
12231 {
12232 imm = inst.reloc.exp.X_add_number;
12233 inst.instruction |= (imm & 0xf000) << 4;
12234 inst.instruction |= (imm & 0x0800) << 15;
12235 inst.instruction |= (imm & 0x0700) << 4;
12236 inst.instruction |= (imm & 0x00ff);
12237 }
12238 }
12239
12240 static void
12241 do_t_mvn_tst (void)
12242 {
12243 unsigned Rn, Rm;
12244
12245 Rn = inst.operands[0].reg;
12246 Rm = inst.operands[1].reg;
12247
12248 if (inst.instruction == T_MNEM_cmp
12249 || inst.instruction == T_MNEM_cmn)
12250 constraint (Rn == REG_PC, BAD_PC);
12251 else
12252 reject_bad_reg (Rn);
12253 reject_bad_reg (Rm);
12254
12255 if (unified_syntax)
12256 {
12257 int r0off = (inst.instruction == T_MNEM_mvn
12258 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12259 bfd_boolean narrow;
12260
12261 if (inst.size_req == 4
12262 || inst.instruction > 0xffff
12263 || inst.operands[1].shifted
12264 || Rn > 7 || Rm > 7)
12265 narrow = FALSE;
12266 else if (inst.instruction == T_MNEM_cmn
12267 || inst.instruction == T_MNEM_tst)
12268 narrow = TRUE;
12269 else if (THUMB_SETS_FLAGS (inst.instruction))
12270 narrow = !in_it_block ();
12271 else
12272 narrow = in_it_block ();
12273
12274 if (!inst.operands[1].isreg)
12275 {
12276 /* For an immediate, we always generate a 32-bit opcode;
12277 section relaxation will shrink it later if possible. */
12278 if (inst.instruction < 0xffff)
12279 inst.instruction = THUMB_OP32 (inst.instruction);
12280 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12281 inst.instruction |= Rn << r0off;
12282 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12283 }
12284 else
12285 {
12286 /* See if we can do this with a 16-bit instruction. */
12287 if (narrow)
12288 {
12289 inst.instruction = THUMB_OP16 (inst.instruction);
12290 inst.instruction |= Rn;
12291 inst.instruction |= Rm << 3;
12292 }
12293 else
12294 {
12295 constraint (inst.operands[1].shifted
12296 && inst.operands[1].immisreg,
12297 _("shift must be constant"));
12298 if (inst.instruction < 0xffff)
12299 inst.instruction = THUMB_OP32 (inst.instruction);
12300 inst.instruction |= Rn << r0off;
12301 encode_thumb32_shifted_operand (1);
12302 }
12303 }
12304 }
12305 else
12306 {
12307 constraint (inst.instruction > 0xffff
12308 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12309 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12310 _("unshifted register required"));
12311 constraint (Rn > 7 || Rm > 7,
12312 BAD_HIREG);
12313
12314 inst.instruction = THUMB_OP16 (inst.instruction);
12315 inst.instruction |= Rn;
12316 inst.instruction |= Rm << 3;
12317 }
12318 }
12319
12320 static void
12321 do_t_mrs (void)
12322 {
12323 unsigned Rd;
12324
12325 if (do_vfp_nsyn_mrs () == SUCCESS)
12326 return;
12327
12328 Rd = inst.operands[0].reg;
12329 reject_bad_reg (Rd);
12330 inst.instruction |= Rd << 8;
12331
12332 if (inst.operands[1].isreg)
12333 {
12334 unsigned br = inst.operands[1].reg;
12335 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12336 as_bad (_("bad register for mrs"));
12337
12338 inst.instruction |= br & (0xf << 16);
12339 inst.instruction |= (br & 0x300) >> 4;
12340 inst.instruction |= (br & SPSR_BIT) >> 2;
12341 }
12342 else
12343 {
12344 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12345
12346 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12347 {
12348 /* PR gas/12698: The constraint is only applied for m_profile.
12349 If the user has specified -march=all, we want to ignore it as
12350 we are building for any CPU type, including non-m variants. */
12351 bfd_boolean m_profile =
12352 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12353 constraint ((flags != 0) && m_profile, _("selected processor does "
12354 "not support requested special purpose register"));
12355 }
12356 else
12357 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12358 devices). */
12359 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12360 _("'APSR', 'CPSR' or 'SPSR' expected"));
12361
12362 inst.instruction |= (flags & SPSR_BIT) >> 2;
12363 inst.instruction |= inst.operands[1].imm & 0xff;
12364 inst.instruction |= 0xf0000;
12365 }
12366 }
12367
12368 static void
12369 do_t_msr (void)
12370 {
12371 int flags;
12372 unsigned Rn;
12373
12374 if (do_vfp_nsyn_msr () == SUCCESS)
12375 return;
12376
12377 constraint (!inst.operands[1].isreg,
12378 _("Thumb encoding does not support an immediate here"));
12379
12380 if (inst.operands[0].isreg)
12381 flags = (int)(inst.operands[0].reg);
12382 else
12383 flags = inst.operands[0].imm;
12384
12385 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12386 {
12387 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12388
12389 /* PR gas/12698: The constraint is only applied for m_profile.
12390 If the user has specified -march=all, we want to ignore it as
12391 we are building for any CPU type, including non-m variants. */
12392 bfd_boolean m_profile =
12393 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12394 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12395 && (bits & ~(PSR_s | PSR_f)) != 0)
12396 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12397 && bits != PSR_f)) && m_profile,
12398 _("selected processor does not support requested special "
12399 "purpose register"));
12400 }
12401 else
12402 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12403 "requested special purpose register"));
12404
12405 Rn = inst.operands[1].reg;
12406 reject_bad_reg (Rn);
12407
12408 inst.instruction |= (flags & SPSR_BIT) >> 2;
12409 inst.instruction |= (flags & 0xf0000) >> 8;
12410 inst.instruction |= (flags & 0x300) >> 4;
12411 inst.instruction |= (flags & 0xff);
12412 inst.instruction |= Rn << 16;
12413 }
12414
12415 static void
12416 do_t_mul (void)
12417 {
12418 bfd_boolean narrow;
12419 unsigned Rd, Rn, Rm;
12420
12421 if (!inst.operands[2].present)
12422 inst.operands[2].reg = inst.operands[0].reg;
12423
12424 Rd = inst.operands[0].reg;
12425 Rn = inst.operands[1].reg;
12426 Rm = inst.operands[2].reg;
12427
12428 if (unified_syntax)
12429 {
12430 if (inst.size_req == 4
12431 || (Rd != Rn
12432 && Rd != Rm)
12433 || Rn > 7
12434 || Rm > 7)
12435 narrow = FALSE;
12436 else if (inst.instruction == T_MNEM_muls)
12437 narrow = !in_it_block ();
12438 else
12439 narrow = in_it_block ();
12440 }
12441 else
12442 {
12443 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12444 constraint (Rn > 7 || Rm > 7,
12445 BAD_HIREG);
12446 narrow = TRUE;
12447 }
12448
12449 if (narrow)
12450 {
12451 /* 16-bit MULS/Conditional MUL. */
12452 inst.instruction = THUMB_OP16 (inst.instruction);
12453 inst.instruction |= Rd;
12454
12455 if (Rd == Rn)
12456 inst.instruction |= Rm << 3;
12457 else if (Rd == Rm)
12458 inst.instruction |= Rn << 3;
12459 else
12460 constraint (1, _("dest must overlap one source register"));
12461 }
12462 else
12463 {
12464 constraint (inst.instruction != T_MNEM_mul,
12465 _("Thumb-2 MUL must not set flags"));
12466 /* 32-bit MUL. */
12467 inst.instruction = THUMB_OP32 (inst.instruction);
12468 inst.instruction |= Rd << 8;
12469 inst.instruction |= Rn << 16;
12470 inst.instruction |= Rm << 0;
12471
12472 reject_bad_reg (Rd);
12473 reject_bad_reg (Rn);
12474 reject_bad_reg (Rm);
12475 }
12476 }
12477
12478 static void
12479 do_t_mull (void)
12480 {
12481 unsigned RdLo, RdHi, Rn, Rm;
12482
12483 RdLo = inst.operands[0].reg;
12484 RdHi = inst.operands[1].reg;
12485 Rn = inst.operands[2].reg;
12486 Rm = inst.operands[3].reg;
12487
12488 reject_bad_reg (RdLo);
12489 reject_bad_reg (RdHi);
12490 reject_bad_reg (Rn);
12491 reject_bad_reg (Rm);
12492
12493 inst.instruction |= RdLo << 12;
12494 inst.instruction |= RdHi << 8;
12495 inst.instruction |= Rn << 16;
12496 inst.instruction |= Rm;
12497
12498 if (RdLo == RdHi)
12499 as_tsktsk (_("rdhi and rdlo must be different"));
12500 }
12501
12502 static void
12503 do_t_nop (void)
12504 {
12505 set_it_insn_type (NEUTRAL_IT_INSN);
12506
12507 if (unified_syntax)
12508 {
12509 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12510 {
12511 inst.instruction = THUMB_OP32 (inst.instruction);
12512 inst.instruction |= inst.operands[0].imm;
12513 }
12514 else
12515 {
12516 /* PR9722: Check for Thumb2 availability before
12517 generating a thumb2 nop instruction. */
12518 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12519 {
12520 inst.instruction = THUMB_OP16 (inst.instruction);
12521 inst.instruction |= inst.operands[0].imm << 4;
12522 }
12523 else
12524 inst.instruction = 0x46c0;
12525 }
12526 }
12527 else
12528 {
12529 constraint (inst.operands[0].present,
12530 _("Thumb does not support NOP with hints"));
12531 inst.instruction = 0x46c0;
12532 }
12533 }
12534
12535 static void
12536 do_t_neg (void)
12537 {
12538 if (unified_syntax)
12539 {
12540 bfd_boolean narrow;
12541
12542 if (THUMB_SETS_FLAGS (inst.instruction))
12543 narrow = !in_it_block ();
12544 else
12545 narrow = in_it_block ();
12546 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12547 narrow = FALSE;
12548 if (inst.size_req == 4)
12549 narrow = FALSE;
12550
12551 if (!narrow)
12552 {
12553 inst.instruction = THUMB_OP32 (inst.instruction);
12554 inst.instruction |= inst.operands[0].reg << 8;
12555 inst.instruction |= inst.operands[1].reg << 16;
12556 }
12557 else
12558 {
12559 inst.instruction = THUMB_OP16 (inst.instruction);
12560 inst.instruction |= inst.operands[0].reg;
12561 inst.instruction |= inst.operands[1].reg << 3;
12562 }
12563 }
12564 else
12565 {
12566 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12567 BAD_HIREG);
12568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12569
12570 inst.instruction = THUMB_OP16 (inst.instruction);
12571 inst.instruction |= inst.operands[0].reg;
12572 inst.instruction |= inst.operands[1].reg << 3;
12573 }
12574 }
12575
12576 static void
12577 do_t_orn (void)
12578 {
12579 unsigned Rd, Rn;
12580
12581 Rd = inst.operands[0].reg;
12582 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12583
12584 reject_bad_reg (Rd);
12585 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12586 reject_bad_reg (Rn);
12587
12588 inst.instruction |= Rd << 8;
12589 inst.instruction |= Rn << 16;
12590
12591 if (!inst.operands[2].isreg)
12592 {
12593 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12594 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12595 }
12596 else
12597 {
12598 unsigned Rm;
12599
12600 Rm = inst.operands[2].reg;
12601 reject_bad_reg (Rm);
12602
12603 constraint (inst.operands[2].shifted
12604 && inst.operands[2].immisreg,
12605 _("shift must be constant"));
12606 encode_thumb32_shifted_operand (2);
12607 }
12608 }
12609
12610 static void
12611 do_t_pkhbt (void)
12612 {
12613 unsigned Rd, Rn, Rm;
12614
12615 Rd = inst.operands[0].reg;
12616 Rn = inst.operands[1].reg;
12617 Rm = inst.operands[2].reg;
12618
12619 reject_bad_reg (Rd);
12620 reject_bad_reg (Rn);
12621 reject_bad_reg (Rm);
12622
12623 inst.instruction |= Rd << 8;
12624 inst.instruction |= Rn << 16;
12625 inst.instruction |= Rm;
12626 if (inst.operands[3].present)
12627 {
12628 unsigned int val = inst.reloc.exp.X_add_number;
12629 constraint (inst.reloc.exp.X_op != O_constant,
12630 _("expression too complex"));
12631 inst.instruction |= (val & 0x1c) << 10;
12632 inst.instruction |= (val & 0x03) << 6;
12633 }
12634 }
12635
12636 static void
12637 do_t_pkhtb (void)
12638 {
12639 if (!inst.operands[3].present)
12640 {
12641 unsigned Rtmp;
12642
12643 inst.instruction &= ~0x00000020;
12644
12645 /* PR 10168. Swap the Rm and Rn registers. */
12646 Rtmp = inst.operands[1].reg;
12647 inst.operands[1].reg = inst.operands[2].reg;
12648 inst.operands[2].reg = Rtmp;
12649 }
12650 do_t_pkhbt ();
12651 }
12652
12653 static void
12654 do_t_pld (void)
12655 {
12656 if (inst.operands[0].immisreg)
12657 reject_bad_reg (inst.operands[0].imm);
12658
12659 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12660 }
12661
12662 static void
12663 do_t_push_pop (void)
12664 {
12665 unsigned mask;
12666
12667 constraint (inst.operands[0].writeback,
12668 _("push/pop do not support {reglist}^"));
12669 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12670 _("expression too complex"));
12671
12672 mask = inst.operands[0].imm;
12673 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12674 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12675 else if (inst.size_req != 4
12676 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
12677 ? REG_LR : REG_PC)))
12678 {
12679 inst.instruction = THUMB_OP16 (inst.instruction);
12680 inst.instruction |= THUMB_PP_PC_LR;
12681 inst.instruction |= mask & 0xff;
12682 }
12683 else if (unified_syntax)
12684 {
12685 inst.instruction = THUMB_OP32 (inst.instruction);
12686 encode_thumb2_ldmstm (13, mask, TRUE);
12687 }
12688 else
12689 {
12690 inst.error = _("invalid register list to push/pop instruction");
12691 return;
12692 }
12693 }
12694
12695 static void
12696 do_t_rbit (void)
12697 {
12698 unsigned Rd, Rm;
12699
12700 Rd = inst.operands[0].reg;
12701 Rm = inst.operands[1].reg;
12702
12703 reject_bad_reg (Rd);
12704 reject_bad_reg (Rm);
12705
12706 inst.instruction |= Rd << 8;
12707 inst.instruction |= Rm << 16;
12708 inst.instruction |= Rm;
12709 }
12710
12711 static void
12712 do_t_rev (void)
12713 {
12714 unsigned Rd, Rm;
12715
12716 Rd = inst.operands[0].reg;
12717 Rm = inst.operands[1].reg;
12718
12719 reject_bad_reg (Rd);
12720 reject_bad_reg (Rm);
12721
12722 if (Rd <= 7 && Rm <= 7
12723 && inst.size_req != 4)
12724 {
12725 inst.instruction = THUMB_OP16 (inst.instruction);
12726 inst.instruction |= Rd;
12727 inst.instruction |= Rm << 3;
12728 }
12729 else if (unified_syntax)
12730 {
12731 inst.instruction = THUMB_OP32 (inst.instruction);
12732 inst.instruction |= Rd << 8;
12733 inst.instruction |= Rm << 16;
12734 inst.instruction |= Rm;
12735 }
12736 else
12737 inst.error = BAD_HIREG;
12738 }
12739
12740 static void
12741 do_t_rrx (void)
12742 {
12743 unsigned Rd, Rm;
12744
12745 Rd = inst.operands[0].reg;
12746 Rm = inst.operands[1].reg;
12747
12748 reject_bad_reg (Rd);
12749 reject_bad_reg (Rm);
12750
12751 inst.instruction |= Rd << 8;
12752 inst.instruction |= Rm;
12753 }
12754
12755 static void
12756 do_t_rsb (void)
12757 {
12758 unsigned Rd, Rs;
12759
12760 Rd = inst.operands[0].reg;
12761 Rs = (inst.operands[1].present
12762 ? inst.operands[1].reg /* Rd, Rs, foo */
12763 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12764
12765 reject_bad_reg (Rd);
12766 reject_bad_reg (Rs);
12767 if (inst.operands[2].isreg)
12768 reject_bad_reg (inst.operands[2].reg);
12769
12770 inst.instruction |= Rd << 8;
12771 inst.instruction |= Rs << 16;
12772 if (!inst.operands[2].isreg)
12773 {
12774 bfd_boolean narrow;
12775
12776 if ((inst.instruction & 0x00100000) != 0)
12777 narrow = !in_it_block ();
12778 else
12779 narrow = in_it_block ();
12780
12781 if (Rd > 7 || Rs > 7)
12782 narrow = FALSE;
12783
12784 if (inst.size_req == 4 || !unified_syntax)
12785 narrow = FALSE;
12786
12787 if (inst.reloc.exp.X_op != O_constant
12788 || inst.reloc.exp.X_add_number != 0)
12789 narrow = FALSE;
12790
12791 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12792 relaxation, but it doesn't seem worth the hassle. */
12793 if (narrow)
12794 {
12795 inst.reloc.type = BFD_RELOC_UNUSED;
12796 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12797 inst.instruction |= Rs << 3;
12798 inst.instruction |= Rd;
12799 }
12800 else
12801 {
12802 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12803 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12804 }
12805 }
12806 else
12807 encode_thumb32_shifted_operand (2);
12808 }
12809
12810 static void
12811 do_t_setend (void)
12812 {
12813 if (warn_on_deprecated
12814 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12815 as_tsktsk (_("setend use is deprecated for ARMv8"));
12816
12817 set_it_insn_type (OUTSIDE_IT_INSN);
12818 if (inst.operands[0].imm)
12819 inst.instruction |= 0x8;
12820 }
12821
12822 static void
12823 do_t_shift (void)
12824 {
12825 if (!inst.operands[1].present)
12826 inst.operands[1].reg = inst.operands[0].reg;
12827
12828 if (unified_syntax)
12829 {
12830 bfd_boolean narrow;
12831 int shift_kind;
12832
12833 switch (inst.instruction)
12834 {
12835 case T_MNEM_asr:
12836 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12837 case T_MNEM_lsl:
12838 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12839 case T_MNEM_lsr:
12840 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12841 case T_MNEM_ror:
12842 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12843 default: abort ();
12844 }
12845
12846 if (THUMB_SETS_FLAGS (inst.instruction))
12847 narrow = !in_it_block ();
12848 else
12849 narrow = in_it_block ();
12850 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12851 narrow = FALSE;
12852 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12853 narrow = FALSE;
12854 if (inst.operands[2].isreg
12855 && (inst.operands[1].reg != inst.operands[0].reg
12856 || inst.operands[2].reg > 7))
12857 narrow = FALSE;
12858 if (inst.size_req == 4)
12859 narrow = FALSE;
12860
12861 reject_bad_reg (inst.operands[0].reg);
12862 reject_bad_reg (inst.operands[1].reg);
12863
12864 if (!narrow)
12865 {
12866 if (inst.operands[2].isreg)
12867 {
12868 reject_bad_reg (inst.operands[2].reg);
12869 inst.instruction = THUMB_OP32 (inst.instruction);
12870 inst.instruction |= inst.operands[0].reg << 8;
12871 inst.instruction |= inst.operands[1].reg << 16;
12872 inst.instruction |= inst.operands[2].reg;
12873
12874 /* PR 12854: Error on extraneous shifts. */
12875 constraint (inst.operands[2].shifted,
12876 _("extraneous shift as part of operand to shift insn"));
12877 }
12878 else
12879 {
12880 inst.operands[1].shifted = 1;
12881 inst.operands[1].shift_kind = shift_kind;
12882 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12883 ? T_MNEM_movs : T_MNEM_mov);
12884 inst.instruction |= inst.operands[0].reg << 8;
12885 encode_thumb32_shifted_operand (1);
12886 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12887 inst.reloc.type = BFD_RELOC_UNUSED;
12888 }
12889 }
12890 else
12891 {
12892 if (inst.operands[2].isreg)
12893 {
12894 switch (shift_kind)
12895 {
12896 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12897 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12898 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12899 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12900 default: abort ();
12901 }
12902
12903 inst.instruction |= inst.operands[0].reg;
12904 inst.instruction |= inst.operands[2].reg << 3;
12905
12906 /* PR 12854: Error on extraneous shifts. */
12907 constraint (inst.operands[2].shifted,
12908 _("extraneous shift as part of operand to shift insn"));
12909 }
12910 else
12911 {
12912 switch (shift_kind)
12913 {
12914 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12915 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12916 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12917 default: abort ();
12918 }
12919 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12920 inst.instruction |= inst.operands[0].reg;
12921 inst.instruction |= inst.operands[1].reg << 3;
12922 }
12923 }
12924 }
12925 else
12926 {
12927 constraint (inst.operands[0].reg > 7
12928 || inst.operands[1].reg > 7, BAD_HIREG);
12929 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12930
12931 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12932 {
12933 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12934 constraint (inst.operands[0].reg != inst.operands[1].reg,
12935 _("source1 and dest must be same register"));
12936
12937 switch (inst.instruction)
12938 {
12939 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12940 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12941 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12942 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12943 default: abort ();
12944 }
12945
12946 inst.instruction |= inst.operands[0].reg;
12947 inst.instruction |= inst.operands[2].reg << 3;
12948
12949 /* PR 12854: Error on extraneous shifts. */
12950 constraint (inst.operands[2].shifted,
12951 _("extraneous shift as part of operand to shift insn"));
12952 }
12953 else
12954 {
12955 switch (inst.instruction)
12956 {
12957 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12958 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12959 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12960 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12961 default: abort ();
12962 }
12963 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12964 inst.instruction |= inst.operands[0].reg;
12965 inst.instruction |= inst.operands[1].reg << 3;
12966 }
12967 }
12968 }
12969
12970 static void
12971 do_t_simd (void)
12972 {
12973 unsigned Rd, Rn, Rm;
12974
12975 Rd = inst.operands[0].reg;
12976 Rn = inst.operands[1].reg;
12977 Rm = inst.operands[2].reg;
12978
12979 reject_bad_reg (Rd);
12980 reject_bad_reg (Rn);
12981 reject_bad_reg (Rm);
12982
12983 inst.instruction |= Rd << 8;
12984 inst.instruction |= Rn << 16;
12985 inst.instruction |= Rm;
12986 }
12987
12988 static void
12989 do_t_simd2 (void)
12990 {
12991 unsigned Rd, Rn, Rm;
12992
12993 Rd = inst.operands[0].reg;
12994 Rm = inst.operands[1].reg;
12995 Rn = inst.operands[2].reg;
12996
12997 reject_bad_reg (Rd);
12998 reject_bad_reg (Rn);
12999 reject_bad_reg (Rm);
13000
13001 inst.instruction |= Rd << 8;
13002 inst.instruction |= Rn << 16;
13003 inst.instruction |= Rm;
13004 }
13005
13006 static void
13007 do_t_smc (void)
13008 {
13009 unsigned int value = inst.reloc.exp.X_add_number;
13010 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13011 _("SMC is not permitted on this architecture"));
13012 constraint (inst.reloc.exp.X_op != O_constant,
13013 _("expression too complex"));
13014 inst.reloc.type = BFD_RELOC_UNUSED;
13015 inst.instruction |= (value & 0xf000) >> 12;
13016 inst.instruction |= (value & 0x0ff0);
13017 inst.instruction |= (value & 0x000f) << 16;
13018 /* PR gas/15623: SMC instructions must be last in an IT block. */
13019 set_it_insn_type_last ();
13020 }
13021
13022 static void
13023 do_t_hvc (void)
13024 {
13025 unsigned int value = inst.reloc.exp.X_add_number;
13026
13027 inst.reloc.type = BFD_RELOC_UNUSED;
13028 inst.instruction |= (value & 0x0fff);
13029 inst.instruction |= (value & 0xf000) << 4;
13030 }
13031
13032 static void
13033 do_t_ssat_usat (int bias)
13034 {
13035 unsigned Rd, Rn;
13036
13037 Rd = inst.operands[0].reg;
13038 Rn = inst.operands[2].reg;
13039
13040 reject_bad_reg (Rd);
13041 reject_bad_reg (Rn);
13042
13043 inst.instruction |= Rd << 8;
13044 inst.instruction |= inst.operands[1].imm - bias;
13045 inst.instruction |= Rn << 16;
13046
13047 if (inst.operands[3].present)
13048 {
13049 offsetT shift_amount = inst.reloc.exp.X_add_number;
13050
13051 inst.reloc.type = BFD_RELOC_UNUSED;
13052
13053 constraint (inst.reloc.exp.X_op != O_constant,
13054 _("expression too complex"));
13055
13056 if (shift_amount != 0)
13057 {
13058 constraint (shift_amount > 31,
13059 _("shift expression is too large"));
13060
13061 if (inst.operands[3].shift_kind == SHIFT_ASR)
13062 inst.instruction |= 0x00200000; /* sh bit. */
13063
13064 inst.instruction |= (shift_amount & 0x1c) << 10;
13065 inst.instruction |= (shift_amount & 0x03) << 6;
13066 }
13067 }
13068 }
13069
13070 static void
13071 do_t_ssat (void)
13072 {
13073 do_t_ssat_usat (1);
13074 }
13075
13076 static void
13077 do_t_ssat16 (void)
13078 {
13079 unsigned Rd, Rn;
13080
13081 Rd = inst.operands[0].reg;
13082 Rn = inst.operands[2].reg;
13083
13084 reject_bad_reg (Rd);
13085 reject_bad_reg (Rn);
13086
13087 inst.instruction |= Rd << 8;
13088 inst.instruction |= inst.operands[1].imm - 1;
13089 inst.instruction |= Rn << 16;
13090 }
13091
13092 static void
13093 do_t_strex (void)
13094 {
13095 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13096 || inst.operands[2].postind || inst.operands[2].writeback
13097 || inst.operands[2].immisreg || inst.operands[2].shifted
13098 || inst.operands[2].negative,
13099 BAD_ADDR_MODE);
13100
13101 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13102
13103 inst.instruction |= inst.operands[0].reg << 8;
13104 inst.instruction |= inst.operands[1].reg << 12;
13105 inst.instruction |= inst.operands[2].reg << 16;
13106 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
13107 }
13108
13109 static void
13110 do_t_strexd (void)
13111 {
13112 if (!inst.operands[2].present)
13113 inst.operands[2].reg = inst.operands[1].reg + 1;
13114
13115 constraint (inst.operands[0].reg == inst.operands[1].reg
13116 || inst.operands[0].reg == inst.operands[2].reg
13117 || inst.operands[0].reg == inst.operands[3].reg,
13118 BAD_OVERLAP);
13119
13120 inst.instruction |= inst.operands[0].reg;
13121 inst.instruction |= inst.operands[1].reg << 12;
13122 inst.instruction |= inst.operands[2].reg << 8;
13123 inst.instruction |= inst.operands[3].reg << 16;
13124 }
13125
13126 static void
13127 do_t_sxtah (void)
13128 {
13129 unsigned Rd, Rn, Rm;
13130
13131 Rd = inst.operands[0].reg;
13132 Rn = inst.operands[1].reg;
13133 Rm = inst.operands[2].reg;
13134
13135 reject_bad_reg (Rd);
13136 reject_bad_reg (Rn);
13137 reject_bad_reg (Rm);
13138
13139 inst.instruction |= Rd << 8;
13140 inst.instruction |= Rn << 16;
13141 inst.instruction |= Rm;
13142 inst.instruction |= inst.operands[3].imm << 4;
13143 }
13144
13145 static void
13146 do_t_sxth (void)
13147 {
13148 unsigned Rd, Rm;
13149
13150 Rd = inst.operands[0].reg;
13151 Rm = inst.operands[1].reg;
13152
13153 reject_bad_reg (Rd);
13154 reject_bad_reg (Rm);
13155
13156 if (inst.instruction <= 0xffff
13157 && inst.size_req != 4
13158 && Rd <= 7 && Rm <= 7
13159 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13160 {
13161 inst.instruction = THUMB_OP16 (inst.instruction);
13162 inst.instruction |= Rd;
13163 inst.instruction |= Rm << 3;
13164 }
13165 else if (unified_syntax)
13166 {
13167 if (inst.instruction <= 0xffff)
13168 inst.instruction = THUMB_OP32 (inst.instruction);
13169 inst.instruction |= Rd << 8;
13170 inst.instruction |= Rm;
13171 inst.instruction |= inst.operands[2].imm << 4;
13172 }
13173 else
13174 {
13175 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13176 _("Thumb encoding does not support rotation"));
13177 constraint (1, BAD_HIREG);
13178 }
13179 }
13180
13181 static void
13182 do_t_swi (void)
13183 {
13184 inst.reloc.type = BFD_RELOC_ARM_SWI;
13185 }
13186
13187 static void
13188 do_t_tb (void)
13189 {
13190 unsigned Rn, Rm;
13191 int half;
13192
13193 half = (inst.instruction & 0x10) != 0;
13194 set_it_insn_type_last ();
13195 constraint (inst.operands[0].immisreg,
13196 _("instruction requires register index"));
13197
13198 Rn = inst.operands[0].reg;
13199 Rm = inst.operands[0].imm;
13200
13201 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13202 constraint (Rn == REG_SP, BAD_SP);
13203 reject_bad_reg (Rm);
13204
13205 constraint (!half && inst.operands[0].shifted,
13206 _("instruction does not allow shifted index"));
13207 inst.instruction |= (Rn << 16) | Rm;
13208 }
13209
13210 static void
13211 do_t_udf (void)
13212 {
13213 if (!inst.operands[0].present)
13214 inst.operands[0].imm = 0;
13215
13216 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13217 {
13218 constraint (inst.size_req == 2,
13219 _("immediate value out of range"));
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13222 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13223 }
13224 else
13225 {
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].imm;
13228 }
13229
13230 set_it_insn_type (NEUTRAL_IT_INSN);
13231 }
13232
13233
13234 static void
13235 do_t_usat (void)
13236 {
13237 do_t_ssat_usat (0);
13238 }
13239
13240 static void
13241 do_t_usat16 (void)
13242 {
13243 unsigned Rd, Rn;
13244
13245 Rd = inst.operands[0].reg;
13246 Rn = inst.operands[2].reg;
13247
13248 reject_bad_reg (Rd);
13249 reject_bad_reg (Rn);
13250
13251 inst.instruction |= Rd << 8;
13252 inst.instruction |= inst.operands[1].imm;
13253 inst.instruction |= Rn << 16;
13254 }
13255
13256 /* Neon instruction encoder helpers. */
13257
13258 /* Encodings for the different types for various Neon opcodes. */
13259
13260 /* An "invalid" code for the following tables. */
13261 #define N_INV -1u
13262
13263 struct neon_tab_entry
13264 {
13265 unsigned integer;
13266 unsigned float_or_poly;
13267 unsigned scalar_or_imm;
13268 };
13269
13270 /* Map overloaded Neon opcodes to their respective encodings. */
13271 #define NEON_ENC_TAB \
13272 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13273 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13274 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13275 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13276 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13277 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13278 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13279 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13280 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13281 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13282 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13283 /* Register variants of the following two instructions are encoded as
13284 vcge / vcgt with the operands reversed. */ \
13285 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13286 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13287 X(vfma, N_INV, 0x0000c10, N_INV), \
13288 X(vfms, N_INV, 0x0200c10, N_INV), \
13289 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13290 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13291 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13292 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13293 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13294 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13295 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13296 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13297 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13298 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13299 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13300 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13301 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13302 X(vshl, 0x0000400, N_INV, 0x0800510), \
13303 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13304 X(vand, 0x0000110, N_INV, 0x0800030), \
13305 X(vbic, 0x0100110, N_INV, 0x0800030), \
13306 X(veor, 0x1000110, N_INV, N_INV), \
13307 X(vorn, 0x0300110, N_INV, 0x0800010), \
13308 X(vorr, 0x0200110, N_INV, 0x0800010), \
13309 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13310 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13311 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13312 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13313 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13314 X(vst1, 0x0000000, 0x0800000, N_INV), \
13315 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13316 X(vst2, 0x0000100, 0x0800100, N_INV), \
13317 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13318 X(vst3, 0x0000200, 0x0800200, N_INV), \
13319 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13320 X(vst4, 0x0000300, 0x0800300, N_INV), \
13321 X(vmovn, 0x1b20200, N_INV, N_INV), \
13322 X(vtrn, 0x1b20080, N_INV, N_INV), \
13323 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13324 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13325 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13326 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13327 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13328 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13329 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13330 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13331 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13332 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13333 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13334 X(vseleq, 0xe000a00, N_INV, N_INV), \
13335 X(vselvs, 0xe100a00, N_INV, N_INV), \
13336 X(vselge, 0xe200a00, N_INV, N_INV), \
13337 X(vselgt, 0xe300a00, N_INV, N_INV), \
13338 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13339 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13340 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13341 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13342 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13343 X(aes, 0x3b00300, N_INV, N_INV), \
13344 X(sha3op, 0x2000c00, N_INV, N_INV), \
13345 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13346 X(sha2op, 0x3ba0380, N_INV, N_INV)
13347
13348 enum neon_opc
13349 {
13350 #define X(OPC,I,F,S) N_MNEM_##OPC
13351 NEON_ENC_TAB
13352 #undef X
13353 };
13354
13355 static const struct neon_tab_entry neon_enc_tab[] =
13356 {
13357 #define X(OPC,I,F,S) { (I), (F), (S) }
13358 NEON_ENC_TAB
13359 #undef X
13360 };
13361
13362 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13363 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13364 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13365 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13366 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13367 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13368 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13369 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13370 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13371 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13372 #define NEON_ENC_SINGLE_(X) \
13373 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13374 #define NEON_ENC_DOUBLE_(X) \
13375 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13376 #define NEON_ENC_FPV8_(X) \
13377 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13378
13379 #define NEON_ENCODE(type, inst) \
13380 do \
13381 { \
13382 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13383 inst.is_neon = 1; \
13384 } \
13385 while (0)
13386
13387 #define check_neon_suffixes \
13388 do \
13389 { \
13390 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13391 { \
13392 as_bad (_("invalid neon suffix for non neon instruction")); \
13393 return; \
13394 } \
13395 } \
13396 while (0)
13397
13398 /* Define shapes for instruction operands. The following mnemonic characters
13399 are used in this table:
13400
13401 F - VFP S<n> register
13402 D - Neon D<n> register
13403 Q - Neon Q<n> register
13404 I - Immediate
13405 S - Scalar
13406 R - ARM register
13407 L - D<n> register list
13408
13409 This table is used to generate various data:
13410 - enumerations of the form NS_DDR to be used as arguments to
13411 neon_select_shape.
13412 - a table classifying shapes into single, double, quad, mixed.
13413 - a table used to drive neon_select_shape. */
13414
13415 #define NEON_SHAPE_DEF \
13416 X(3, (D, D, D), DOUBLE), \
13417 X(3, (Q, Q, Q), QUAD), \
13418 X(3, (D, D, I), DOUBLE), \
13419 X(3, (Q, Q, I), QUAD), \
13420 X(3, (D, D, S), DOUBLE), \
13421 X(3, (Q, Q, S), QUAD), \
13422 X(2, (D, D), DOUBLE), \
13423 X(2, (Q, Q), QUAD), \
13424 X(2, (D, S), DOUBLE), \
13425 X(2, (Q, S), QUAD), \
13426 X(2, (D, R), DOUBLE), \
13427 X(2, (Q, R), QUAD), \
13428 X(2, (D, I), DOUBLE), \
13429 X(2, (Q, I), QUAD), \
13430 X(3, (D, L, D), DOUBLE), \
13431 X(2, (D, Q), MIXED), \
13432 X(2, (Q, D), MIXED), \
13433 X(3, (D, Q, I), MIXED), \
13434 X(3, (Q, D, I), MIXED), \
13435 X(3, (Q, D, D), MIXED), \
13436 X(3, (D, Q, Q), MIXED), \
13437 X(3, (Q, Q, D), MIXED), \
13438 X(3, (Q, D, S), MIXED), \
13439 X(3, (D, Q, S), MIXED), \
13440 X(4, (D, D, D, I), DOUBLE), \
13441 X(4, (Q, Q, Q, I), QUAD), \
13442 X(4, (D, D, S, I), DOUBLE), \
13443 X(4, (Q, Q, S, I), QUAD), \
13444 X(2, (F, F), SINGLE), \
13445 X(3, (F, F, F), SINGLE), \
13446 X(2, (F, I), SINGLE), \
13447 X(2, (F, D), MIXED), \
13448 X(2, (D, F), MIXED), \
13449 X(3, (F, F, I), MIXED), \
13450 X(4, (R, R, F, F), SINGLE), \
13451 X(4, (F, F, R, R), SINGLE), \
13452 X(3, (D, R, R), DOUBLE), \
13453 X(3, (R, R, D), DOUBLE), \
13454 X(2, (S, R), SINGLE), \
13455 X(2, (R, S), SINGLE), \
13456 X(2, (F, R), SINGLE), \
13457 X(2, (R, F), SINGLE), \
13458 /* Half float shape supported so far. */\
13459 X (2, (H, D), MIXED), \
13460 X (2, (D, H), MIXED), \
13461 X (2, (H, F), MIXED), \
13462 X (2, (F, H), MIXED), \
13463 X (2, (H, H), HALF), \
13464 X (2, (H, R), HALF), \
13465 X (2, (R, H), HALF), \
13466 X (2, (H, I), HALF), \
13467 X (3, (H, H, H), HALF), \
13468 X (3, (H, F, I), MIXED), \
13469 X (3, (F, H, I), MIXED), \
13470 X (3, (D, H, H), MIXED), \
13471 X (3, (D, H, S), MIXED)
13472
13473 #define S2(A,B) NS_##A##B
13474 #define S3(A,B,C) NS_##A##B##C
13475 #define S4(A,B,C,D) NS_##A##B##C##D
13476
13477 #define X(N, L, C) S##N L
13478
13479 enum neon_shape
13480 {
13481 NEON_SHAPE_DEF,
13482 NS_NULL
13483 };
13484
13485 #undef X
13486 #undef S2
13487 #undef S3
13488 #undef S4
13489
13490 enum neon_shape_class
13491 {
13492 SC_HALF,
13493 SC_SINGLE,
13494 SC_DOUBLE,
13495 SC_QUAD,
13496 SC_MIXED
13497 };
13498
13499 #define X(N, L, C) SC_##C
13500
13501 static enum neon_shape_class neon_shape_class[] =
13502 {
13503 NEON_SHAPE_DEF
13504 };
13505
13506 #undef X
13507
13508 enum neon_shape_el
13509 {
13510 SE_H,
13511 SE_F,
13512 SE_D,
13513 SE_Q,
13514 SE_I,
13515 SE_S,
13516 SE_R,
13517 SE_L
13518 };
13519
13520 /* Register widths of above. */
13521 static unsigned neon_shape_el_size[] =
13522 {
13523 16,
13524 32,
13525 64,
13526 128,
13527 0,
13528 32,
13529 32,
13530 0
13531 };
13532
13533 struct neon_shape_info
13534 {
13535 unsigned els;
13536 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13537 };
13538
13539 #define S2(A,B) { SE_##A, SE_##B }
13540 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13541 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13542
13543 #define X(N, L, C) { N, S##N L }
13544
13545 static struct neon_shape_info neon_shape_tab[] =
13546 {
13547 NEON_SHAPE_DEF
13548 };
13549
13550 #undef X
13551 #undef S2
13552 #undef S3
13553 #undef S4
13554
13555 /* Bit masks used in type checking given instructions.
13556 'N_EQK' means the type must be the same as (or based on in some way) the key
13557 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13558 set, various other bits can be set as well in order to modify the meaning of
13559 the type constraint. */
13560
13561 enum neon_type_mask
13562 {
13563 N_S8 = 0x0000001,
13564 N_S16 = 0x0000002,
13565 N_S32 = 0x0000004,
13566 N_S64 = 0x0000008,
13567 N_U8 = 0x0000010,
13568 N_U16 = 0x0000020,
13569 N_U32 = 0x0000040,
13570 N_U64 = 0x0000080,
13571 N_I8 = 0x0000100,
13572 N_I16 = 0x0000200,
13573 N_I32 = 0x0000400,
13574 N_I64 = 0x0000800,
13575 N_8 = 0x0001000,
13576 N_16 = 0x0002000,
13577 N_32 = 0x0004000,
13578 N_64 = 0x0008000,
13579 N_P8 = 0x0010000,
13580 N_P16 = 0x0020000,
13581 N_F16 = 0x0040000,
13582 N_F32 = 0x0080000,
13583 N_F64 = 0x0100000,
13584 N_P64 = 0x0200000,
13585 N_KEY = 0x1000000, /* Key element (main type specifier). */
13586 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13587 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13588 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13589 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13590 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13591 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13592 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13593 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13594 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13595 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13596 N_UTYP = 0,
13597 N_MAX_NONSPECIAL = N_P64
13598 };
13599
13600 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13601
13602 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13603 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13604 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13605 #define N_S_32 (N_S8 | N_S16 | N_S32)
13606 #define N_F_16_32 (N_F16 | N_F32)
13607 #define N_SUF_32 (N_SU_32 | N_F_16_32)
13608 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13609 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
13610 #define N_F_ALL (N_F16 | N_F32 | N_F64)
13611
13612 /* Pass this as the first type argument to neon_check_type to ignore types
13613 altogether. */
13614 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13615
13616 /* Select a "shape" for the current instruction (describing register types or
13617 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13618 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13619 function of operand parsing, so this function doesn't need to be called.
13620 Shapes should be listed in order of decreasing length. */
13621
13622 static enum neon_shape
13623 neon_select_shape (enum neon_shape shape, ...)
13624 {
13625 va_list ap;
13626 enum neon_shape first_shape = shape;
13627
13628 /* Fix missing optional operands. FIXME: we don't know at this point how
13629 many arguments we should have, so this makes the assumption that we have
13630 > 1. This is true of all current Neon opcodes, I think, but may not be
13631 true in the future. */
13632 if (!inst.operands[1].present)
13633 inst.operands[1] = inst.operands[0];
13634
13635 va_start (ap, shape);
13636
13637 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13638 {
13639 unsigned j;
13640 int matches = 1;
13641
13642 for (j = 0; j < neon_shape_tab[shape].els; j++)
13643 {
13644 if (!inst.operands[j].present)
13645 {
13646 matches = 0;
13647 break;
13648 }
13649
13650 switch (neon_shape_tab[shape].el[j])
13651 {
13652 /* If a .f16, .16, .u16, .s16 type specifier is given over
13653 a VFP single precision register operand, it's essentially
13654 means only half of the register is used.
13655
13656 If the type specifier is given after the mnemonics, the
13657 information is stored in inst.vectype. If the type specifier
13658 is given after register operand, the information is stored
13659 in inst.operands[].vectype.
13660
13661 When there is only one type specifier, and all the register
13662 operands are the same type of hardware register, the type
13663 specifier applies to all register operands.
13664
13665 If no type specifier is given, the shape is inferred from
13666 operand information.
13667
13668 for example:
13669 vadd.f16 s0, s1, s2: NS_HHH
13670 vabs.f16 s0, s1: NS_HH
13671 vmov.f16 s0, r1: NS_HR
13672 vmov.f16 r0, s1: NS_RH
13673 vcvt.f16 r0, s1: NS_RH
13674 vcvt.f16.s32 s2, s2, #29: NS_HFI
13675 vcvt.f16.s32 s2, s2: NS_HF
13676 */
13677 case SE_H:
13678 if (!(inst.operands[j].isreg
13679 && inst.operands[j].isvec
13680 && inst.operands[j].issingle
13681 && !inst.operands[j].isquad
13682 && ((inst.vectype.elems == 1
13683 && inst.vectype.el[0].size == 16)
13684 || (inst.vectype.elems > 1
13685 && inst.vectype.el[j].size == 16)
13686 || (inst.vectype.elems == 0
13687 && inst.operands[j].vectype.type != NT_invtype
13688 && inst.operands[j].vectype.size == 16))))
13689 matches = 0;
13690 break;
13691
13692 case SE_F:
13693 if (!(inst.operands[j].isreg
13694 && inst.operands[j].isvec
13695 && inst.operands[j].issingle
13696 && !inst.operands[j].isquad
13697 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13698 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13699 || (inst.vectype.elems == 0
13700 && (inst.operands[j].vectype.size == 32
13701 || inst.operands[j].vectype.type == NT_invtype)))))
13702 matches = 0;
13703 break;
13704
13705 case SE_D:
13706 if (!(inst.operands[j].isreg
13707 && inst.operands[j].isvec
13708 && !inst.operands[j].isquad
13709 && !inst.operands[j].issingle))
13710 matches = 0;
13711 break;
13712
13713 case SE_R:
13714 if (!(inst.operands[j].isreg
13715 && !inst.operands[j].isvec))
13716 matches = 0;
13717 break;
13718
13719 case SE_Q:
13720 if (!(inst.operands[j].isreg
13721 && inst.operands[j].isvec
13722 && inst.operands[j].isquad
13723 && !inst.operands[j].issingle))
13724 matches = 0;
13725 break;
13726
13727 case SE_I:
13728 if (!(!inst.operands[j].isreg
13729 && !inst.operands[j].isscalar))
13730 matches = 0;
13731 break;
13732
13733 case SE_S:
13734 if (!(!inst.operands[j].isreg
13735 && inst.operands[j].isscalar))
13736 matches = 0;
13737 break;
13738
13739 case SE_L:
13740 break;
13741 }
13742 if (!matches)
13743 break;
13744 }
13745 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13746 /* We've matched all the entries in the shape table, and we don't
13747 have any left over operands which have not been matched. */
13748 break;
13749 }
13750
13751 va_end (ap);
13752
13753 if (shape == NS_NULL && first_shape != NS_NULL)
13754 first_error (_("invalid instruction shape"));
13755
13756 return shape;
13757 }
13758
13759 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13760 means the Q bit should be set). */
13761
13762 static int
13763 neon_quad (enum neon_shape shape)
13764 {
13765 return neon_shape_class[shape] == SC_QUAD;
13766 }
13767
13768 static void
13769 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13770 unsigned *g_size)
13771 {
13772 /* Allow modification to be made to types which are constrained to be
13773 based on the key element, based on bits set alongside N_EQK. */
13774 if ((typebits & N_EQK) != 0)
13775 {
13776 if ((typebits & N_HLF) != 0)
13777 *g_size /= 2;
13778 else if ((typebits & N_DBL) != 0)
13779 *g_size *= 2;
13780 if ((typebits & N_SGN) != 0)
13781 *g_type = NT_signed;
13782 else if ((typebits & N_UNS) != 0)
13783 *g_type = NT_unsigned;
13784 else if ((typebits & N_INT) != 0)
13785 *g_type = NT_integer;
13786 else if ((typebits & N_FLT) != 0)
13787 *g_type = NT_float;
13788 else if ((typebits & N_SIZ) != 0)
13789 *g_type = NT_untyped;
13790 }
13791 }
13792
13793 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13794 operand type, i.e. the single type specified in a Neon instruction when it
13795 is the only one given. */
13796
13797 static struct neon_type_el
13798 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13799 {
13800 struct neon_type_el dest = *key;
13801
13802 gas_assert ((thisarg & N_EQK) != 0);
13803
13804 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13805
13806 return dest;
13807 }
13808
13809 /* Convert Neon type and size into compact bitmask representation. */
13810
13811 static enum neon_type_mask
13812 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13813 {
13814 switch (type)
13815 {
13816 case NT_untyped:
13817 switch (size)
13818 {
13819 case 8: return N_8;
13820 case 16: return N_16;
13821 case 32: return N_32;
13822 case 64: return N_64;
13823 default: ;
13824 }
13825 break;
13826
13827 case NT_integer:
13828 switch (size)
13829 {
13830 case 8: return N_I8;
13831 case 16: return N_I16;
13832 case 32: return N_I32;
13833 case 64: return N_I64;
13834 default: ;
13835 }
13836 break;
13837
13838 case NT_float:
13839 switch (size)
13840 {
13841 case 16: return N_F16;
13842 case 32: return N_F32;
13843 case 64: return N_F64;
13844 default: ;
13845 }
13846 break;
13847
13848 case NT_poly:
13849 switch (size)
13850 {
13851 case 8: return N_P8;
13852 case 16: return N_P16;
13853 case 64: return N_P64;
13854 default: ;
13855 }
13856 break;
13857
13858 case NT_signed:
13859 switch (size)
13860 {
13861 case 8: return N_S8;
13862 case 16: return N_S16;
13863 case 32: return N_S32;
13864 case 64: return N_S64;
13865 default: ;
13866 }
13867 break;
13868
13869 case NT_unsigned:
13870 switch (size)
13871 {
13872 case 8: return N_U8;
13873 case 16: return N_U16;
13874 case 32: return N_U32;
13875 case 64: return N_U64;
13876 default: ;
13877 }
13878 break;
13879
13880 default: ;
13881 }
13882
13883 return N_UTYP;
13884 }
13885
13886 /* Convert compact Neon bitmask type representation to a type and size. Only
13887 handles the case where a single bit is set in the mask. */
13888
13889 static int
13890 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13891 enum neon_type_mask mask)
13892 {
13893 if ((mask & N_EQK) != 0)
13894 return FAIL;
13895
13896 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13897 *size = 8;
13898 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13899 *size = 16;
13900 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13901 *size = 32;
13902 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13903 *size = 64;
13904 else
13905 return FAIL;
13906
13907 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13908 *type = NT_signed;
13909 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13910 *type = NT_unsigned;
13911 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13912 *type = NT_integer;
13913 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13914 *type = NT_untyped;
13915 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13916 *type = NT_poly;
13917 else if ((mask & (N_F_ALL)) != 0)
13918 *type = NT_float;
13919 else
13920 return FAIL;
13921
13922 return SUCCESS;
13923 }
13924
13925 /* Modify a bitmask of allowed types. This is only needed for type
13926 relaxation. */
13927
13928 static unsigned
13929 modify_types_allowed (unsigned allowed, unsigned mods)
13930 {
13931 unsigned size;
13932 enum neon_el_type type;
13933 unsigned destmask;
13934 int i;
13935
13936 destmask = 0;
13937
13938 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13939 {
13940 if (el_type_of_type_chk (&type, &size,
13941 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13942 {
13943 neon_modify_type_size (mods, &type, &size);
13944 destmask |= type_chk_of_el_type (type, size);
13945 }
13946 }
13947
13948 return destmask;
13949 }
13950
13951 /* Check type and return type classification.
13952 The manual states (paraphrase): If one datatype is given, it indicates the
13953 type given in:
13954 - the second operand, if there is one
13955 - the operand, if there is no second operand
13956 - the result, if there are no operands.
13957 This isn't quite good enough though, so we use a concept of a "key" datatype
13958 which is set on a per-instruction basis, which is the one which matters when
13959 only one data type is written.
13960 Note: this function has side-effects (e.g. filling in missing operands). All
13961 Neon instructions should call it before performing bit encoding. */
13962
13963 static struct neon_type_el
13964 neon_check_type (unsigned els, enum neon_shape ns, ...)
13965 {
13966 va_list ap;
13967 unsigned i, pass, key_el = 0;
13968 unsigned types[NEON_MAX_TYPE_ELS];
13969 enum neon_el_type k_type = NT_invtype;
13970 unsigned k_size = -1u;
13971 struct neon_type_el badtype = {NT_invtype, -1};
13972 unsigned key_allowed = 0;
13973
13974 /* Optional registers in Neon instructions are always (not) in operand 1.
13975 Fill in the missing operand here, if it was omitted. */
13976 if (els > 1 && !inst.operands[1].present)
13977 inst.operands[1] = inst.operands[0];
13978
13979 /* Suck up all the varargs. */
13980 va_start (ap, ns);
13981 for (i = 0; i < els; i++)
13982 {
13983 unsigned thisarg = va_arg (ap, unsigned);
13984 if (thisarg == N_IGNORE_TYPE)
13985 {
13986 va_end (ap);
13987 return badtype;
13988 }
13989 types[i] = thisarg;
13990 if ((thisarg & N_KEY) != 0)
13991 key_el = i;
13992 }
13993 va_end (ap);
13994
13995 if (inst.vectype.elems > 0)
13996 for (i = 0; i < els; i++)
13997 if (inst.operands[i].vectype.type != NT_invtype)
13998 {
13999 first_error (_("types specified in both the mnemonic and operands"));
14000 return badtype;
14001 }
14002
14003 /* Duplicate inst.vectype elements here as necessary.
14004 FIXME: No idea if this is exactly the same as the ARM assembler,
14005 particularly when an insn takes one register and one non-register
14006 operand. */
14007 if (inst.vectype.elems == 1 && els > 1)
14008 {
14009 unsigned j;
14010 inst.vectype.elems = els;
14011 inst.vectype.el[key_el] = inst.vectype.el[0];
14012 for (j = 0; j < els; j++)
14013 if (j != key_el)
14014 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14015 types[j]);
14016 }
14017 else if (inst.vectype.elems == 0 && els > 0)
14018 {
14019 unsigned j;
14020 /* No types were given after the mnemonic, so look for types specified
14021 after each operand. We allow some flexibility here; as long as the
14022 "key" operand has a type, we can infer the others. */
14023 for (j = 0; j < els; j++)
14024 if (inst.operands[j].vectype.type != NT_invtype)
14025 inst.vectype.el[j] = inst.operands[j].vectype;
14026
14027 if (inst.operands[key_el].vectype.type != NT_invtype)
14028 {
14029 for (j = 0; j < els; j++)
14030 if (inst.operands[j].vectype.type == NT_invtype)
14031 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14032 types[j]);
14033 }
14034 else
14035 {
14036 first_error (_("operand types can't be inferred"));
14037 return badtype;
14038 }
14039 }
14040 else if (inst.vectype.elems != els)
14041 {
14042 first_error (_("type specifier has the wrong number of parts"));
14043 return badtype;
14044 }
14045
14046 for (pass = 0; pass < 2; pass++)
14047 {
14048 for (i = 0; i < els; i++)
14049 {
14050 unsigned thisarg = types[i];
14051 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14052 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14053 enum neon_el_type g_type = inst.vectype.el[i].type;
14054 unsigned g_size = inst.vectype.el[i].size;
14055
14056 /* Decay more-specific signed & unsigned types to sign-insensitive
14057 integer types if sign-specific variants are unavailable. */
14058 if ((g_type == NT_signed || g_type == NT_unsigned)
14059 && (types_allowed & N_SU_ALL) == 0)
14060 g_type = NT_integer;
14061
14062 /* If only untyped args are allowed, decay any more specific types to
14063 them. Some instructions only care about signs for some element
14064 sizes, so handle that properly. */
14065 if (((types_allowed & N_UNT) == 0)
14066 && ((g_size == 8 && (types_allowed & N_8) != 0)
14067 || (g_size == 16 && (types_allowed & N_16) != 0)
14068 || (g_size == 32 && (types_allowed & N_32) != 0)
14069 || (g_size == 64 && (types_allowed & N_64) != 0)))
14070 g_type = NT_untyped;
14071
14072 if (pass == 0)
14073 {
14074 if ((thisarg & N_KEY) != 0)
14075 {
14076 k_type = g_type;
14077 k_size = g_size;
14078 key_allowed = thisarg & ~N_KEY;
14079
14080 /* Check architecture constraint on FP16 extension. */
14081 if (k_size == 16
14082 && k_type == NT_float
14083 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14084 {
14085 inst.error = _(BAD_FP16);
14086 return badtype;
14087 }
14088 }
14089 }
14090 else
14091 {
14092 if ((thisarg & N_VFP) != 0)
14093 {
14094 enum neon_shape_el regshape;
14095 unsigned regwidth, match;
14096
14097 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14098 if (ns == NS_NULL)
14099 {
14100 first_error (_("invalid instruction shape"));
14101 return badtype;
14102 }
14103 regshape = neon_shape_tab[ns].el[i];
14104 regwidth = neon_shape_el_size[regshape];
14105
14106 /* In VFP mode, operands must match register widths. If we
14107 have a key operand, use its width, else use the width of
14108 the current operand. */
14109 if (k_size != -1u)
14110 match = k_size;
14111 else
14112 match = g_size;
14113
14114 /* FP16 will use a single precision register. */
14115 if (regwidth == 32 && match == 16)
14116 {
14117 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14118 match = regwidth;
14119 else
14120 {
14121 inst.error = _(BAD_FP16);
14122 return badtype;
14123 }
14124 }
14125
14126 if (regwidth != match)
14127 {
14128 first_error (_("operand size must match register width"));
14129 return badtype;
14130 }
14131 }
14132
14133 if ((thisarg & N_EQK) == 0)
14134 {
14135 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14136
14137 if ((given_type & types_allowed) == 0)
14138 {
14139 first_error (_("bad type in Neon instruction"));
14140 return badtype;
14141 }
14142 }
14143 else
14144 {
14145 enum neon_el_type mod_k_type = k_type;
14146 unsigned mod_k_size = k_size;
14147 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14148 if (g_type != mod_k_type || g_size != mod_k_size)
14149 {
14150 first_error (_("inconsistent types in Neon instruction"));
14151 return badtype;
14152 }
14153 }
14154 }
14155 }
14156 }
14157
14158 return inst.vectype.el[key_el];
14159 }
14160
14161 /* Neon-style VFP instruction forwarding. */
14162
14163 /* Thumb VFP instructions have 0xE in the condition field. */
14164
14165 static void
14166 do_vfp_cond_or_thumb (void)
14167 {
14168 inst.is_neon = 1;
14169
14170 if (thumb_mode)
14171 inst.instruction |= 0xe0000000;
14172 else
14173 inst.instruction |= inst.cond << 28;
14174 }
14175
14176 /* Look up and encode a simple mnemonic, for use as a helper function for the
14177 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14178 etc. It is assumed that operand parsing has already been done, and that the
14179 operands are in the form expected by the given opcode (this isn't necessarily
14180 the same as the form in which they were parsed, hence some massaging must
14181 take place before this function is called).
14182 Checks current arch version against that in the looked-up opcode. */
14183
14184 static void
14185 do_vfp_nsyn_opcode (const char *opname)
14186 {
14187 const struct asm_opcode *opcode;
14188
14189 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
14190
14191 if (!opcode)
14192 abort ();
14193
14194 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
14195 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14196 _(BAD_FPU));
14197
14198 inst.is_neon = 1;
14199
14200 if (thumb_mode)
14201 {
14202 inst.instruction = opcode->tvalue;
14203 opcode->tencode ();
14204 }
14205 else
14206 {
14207 inst.instruction = (inst.cond << 28) | opcode->avalue;
14208 opcode->aencode ();
14209 }
14210 }
14211
14212 static void
14213 do_vfp_nsyn_add_sub (enum neon_shape rs)
14214 {
14215 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14216
14217 if (rs == NS_FFF || rs == NS_HHH)
14218 {
14219 if (is_add)
14220 do_vfp_nsyn_opcode ("fadds");
14221 else
14222 do_vfp_nsyn_opcode ("fsubs");
14223
14224 /* ARMv8.2 fp16 instruction. */
14225 if (rs == NS_HHH)
14226 do_scalar_fp16_v82_encode ();
14227 }
14228 else
14229 {
14230 if (is_add)
14231 do_vfp_nsyn_opcode ("faddd");
14232 else
14233 do_vfp_nsyn_opcode ("fsubd");
14234 }
14235 }
14236
14237 /* Check operand types to see if this is a VFP instruction, and if so call
14238 PFN (). */
14239
14240 static int
14241 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14242 {
14243 enum neon_shape rs;
14244 struct neon_type_el et;
14245
14246 switch (args)
14247 {
14248 case 2:
14249 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14250 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14251 break;
14252
14253 case 3:
14254 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14255 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14256 N_F_ALL | N_KEY | N_VFP);
14257 break;
14258
14259 default:
14260 abort ();
14261 }
14262
14263 if (et.type != NT_invtype)
14264 {
14265 pfn (rs);
14266 return SUCCESS;
14267 }
14268
14269 inst.error = NULL;
14270 return FAIL;
14271 }
14272
14273 static void
14274 do_vfp_nsyn_mla_mls (enum neon_shape rs)
14275 {
14276 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
14277
14278 if (rs == NS_FFF || rs == NS_HHH)
14279 {
14280 if (is_mla)
14281 do_vfp_nsyn_opcode ("fmacs");
14282 else
14283 do_vfp_nsyn_opcode ("fnmacs");
14284
14285 /* ARMv8.2 fp16 instruction. */
14286 if (rs == NS_HHH)
14287 do_scalar_fp16_v82_encode ();
14288 }
14289 else
14290 {
14291 if (is_mla)
14292 do_vfp_nsyn_opcode ("fmacd");
14293 else
14294 do_vfp_nsyn_opcode ("fnmacd");
14295 }
14296 }
14297
14298 static void
14299 do_vfp_nsyn_fma_fms (enum neon_shape rs)
14300 {
14301 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14302
14303 if (rs == NS_FFF || rs == NS_HHH)
14304 {
14305 if (is_fma)
14306 do_vfp_nsyn_opcode ("ffmas");
14307 else
14308 do_vfp_nsyn_opcode ("ffnmas");
14309
14310 /* ARMv8.2 fp16 instruction. */
14311 if (rs == NS_HHH)
14312 do_scalar_fp16_v82_encode ();
14313 }
14314 else
14315 {
14316 if (is_fma)
14317 do_vfp_nsyn_opcode ("ffmad");
14318 else
14319 do_vfp_nsyn_opcode ("ffnmad");
14320 }
14321 }
14322
14323 static void
14324 do_vfp_nsyn_mul (enum neon_shape rs)
14325 {
14326 if (rs == NS_FFF || rs == NS_HHH)
14327 {
14328 do_vfp_nsyn_opcode ("fmuls");
14329
14330 /* ARMv8.2 fp16 instruction. */
14331 if (rs == NS_HHH)
14332 do_scalar_fp16_v82_encode ();
14333 }
14334 else
14335 do_vfp_nsyn_opcode ("fmuld");
14336 }
14337
14338 static void
14339 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14340 {
14341 int is_neg = (inst.instruction & 0x80) != 0;
14342 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
14343
14344 if (rs == NS_FF || rs == NS_HH)
14345 {
14346 if (is_neg)
14347 do_vfp_nsyn_opcode ("fnegs");
14348 else
14349 do_vfp_nsyn_opcode ("fabss");
14350
14351 /* ARMv8.2 fp16 instruction. */
14352 if (rs == NS_HH)
14353 do_scalar_fp16_v82_encode ();
14354 }
14355 else
14356 {
14357 if (is_neg)
14358 do_vfp_nsyn_opcode ("fnegd");
14359 else
14360 do_vfp_nsyn_opcode ("fabsd");
14361 }
14362 }
14363
14364 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14365 insns belong to Neon, and are handled elsewhere. */
14366
14367 static void
14368 do_vfp_nsyn_ldm_stm (int is_dbmode)
14369 {
14370 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14371 if (is_ldm)
14372 {
14373 if (is_dbmode)
14374 do_vfp_nsyn_opcode ("fldmdbs");
14375 else
14376 do_vfp_nsyn_opcode ("fldmias");
14377 }
14378 else
14379 {
14380 if (is_dbmode)
14381 do_vfp_nsyn_opcode ("fstmdbs");
14382 else
14383 do_vfp_nsyn_opcode ("fstmias");
14384 }
14385 }
14386
14387 static void
14388 do_vfp_nsyn_sqrt (void)
14389 {
14390 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14391 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14392
14393 if (rs == NS_FF || rs == NS_HH)
14394 {
14395 do_vfp_nsyn_opcode ("fsqrts");
14396
14397 /* ARMv8.2 fp16 instruction. */
14398 if (rs == NS_HH)
14399 do_scalar_fp16_v82_encode ();
14400 }
14401 else
14402 do_vfp_nsyn_opcode ("fsqrtd");
14403 }
14404
14405 static void
14406 do_vfp_nsyn_div (void)
14407 {
14408 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14409 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14410 N_F_ALL | N_KEY | N_VFP);
14411
14412 if (rs == NS_FFF || rs == NS_HHH)
14413 {
14414 do_vfp_nsyn_opcode ("fdivs");
14415
14416 /* ARMv8.2 fp16 instruction. */
14417 if (rs == NS_HHH)
14418 do_scalar_fp16_v82_encode ();
14419 }
14420 else
14421 do_vfp_nsyn_opcode ("fdivd");
14422 }
14423
14424 static void
14425 do_vfp_nsyn_nmul (void)
14426 {
14427 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14428 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14429 N_F_ALL | N_KEY | N_VFP);
14430
14431 if (rs == NS_FFF || rs == NS_HHH)
14432 {
14433 NEON_ENCODE (SINGLE, inst);
14434 do_vfp_sp_dyadic ();
14435
14436 /* ARMv8.2 fp16 instruction. */
14437 if (rs == NS_HHH)
14438 do_scalar_fp16_v82_encode ();
14439 }
14440 else
14441 {
14442 NEON_ENCODE (DOUBLE, inst);
14443 do_vfp_dp_rd_rn_rm ();
14444 }
14445 do_vfp_cond_or_thumb ();
14446
14447 }
14448
14449 static void
14450 do_vfp_nsyn_cmp (void)
14451 {
14452 enum neon_shape rs;
14453 if (inst.operands[1].isreg)
14454 {
14455 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14456 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14457
14458 if (rs == NS_FF || rs == NS_HH)
14459 {
14460 NEON_ENCODE (SINGLE, inst);
14461 do_vfp_sp_monadic ();
14462 }
14463 else
14464 {
14465 NEON_ENCODE (DOUBLE, inst);
14466 do_vfp_dp_rd_rm ();
14467 }
14468 }
14469 else
14470 {
14471 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14472 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
14473
14474 switch (inst.instruction & 0x0fffffff)
14475 {
14476 case N_MNEM_vcmp:
14477 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14478 break;
14479 case N_MNEM_vcmpe:
14480 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14481 break;
14482 default:
14483 abort ();
14484 }
14485
14486 if (rs == NS_FI || rs == NS_HI)
14487 {
14488 NEON_ENCODE (SINGLE, inst);
14489 do_vfp_sp_compare_z ();
14490 }
14491 else
14492 {
14493 NEON_ENCODE (DOUBLE, inst);
14494 do_vfp_dp_rd ();
14495 }
14496 }
14497 do_vfp_cond_or_thumb ();
14498
14499 /* ARMv8.2 fp16 instruction. */
14500 if (rs == NS_HI || rs == NS_HH)
14501 do_scalar_fp16_v82_encode ();
14502 }
14503
14504 static void
14505 nsyn_insert_sp (void)
14506 {
14507 inst.operands[1] = inst.operands[0];
14508 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14509 inst.operands[0].reg = REG_SP;
14510 inst.operands[0].isreg = 1;
14511 inst.operands[0].writeback = 1;
14512 inst.operands[0].present = 1;
14513 }
14514
14515 static void
14516 do_vfp_nsyn_push (void)
14517 {
14518 nsyn_insert_sp ();
14519
14520 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14521 _("register list must contain at least 1 and at most 16 "
14522 "registers"));
14523
14524 if (inst.operands[1].issingle)
14525 do_vfp_nsyn_opcode ("fstmdbs");
14526 else
14527 do_vfp_nsyn_opcode ("fstmdbd");
14528 }
14529
14530 static void
14531 do_vfp_nsyn_pop (void)
14532 {
14533 nsyn_insert_sp ();
14534
14535 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14536 _("register list must contain at least 1 and at most 16 "
14537 "registers"));
14538
14539 if (inst.operands[1].issingle)
14540 do_vfp_nsyn_opcode ("fldmias");
14541 else
14542 do_vfp_nsyn_opcode ("fldmiad");
14543 }
14544
14545 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14546 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14547
14548 static void
14549 neon_dp_fixup (struct arm_it* insn)
14550 {
14551 unsigned int i = insn->instruction;
14552 insn->is_neon = 1;
14553
14554 if (thumb_mode)
14555 {
14556 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14557 if (i & (1 << 24))
14558 i |= 1 << 28;
14559
14560 i &= ~(1 << 24);
14561
14562 i |= 0xef000000;
14563 }
14564 else
14565 i |= 0xf2000000;
14566
14567 insn->instruction = i;
14568 }
14569
14570 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14571 (0, 1, 2, 3). */
14572
14573 static unsigned
14574 neon_logbits (unsigned x)
14575 {
14576 return ffs (x) - 4;
14577 }
14578
14579 #define LOW4(R) ((R) & 0xf)
14580 #define HI1(R) (((R) >> 4) & 1)
14581
14582 /* Encode insns with bit pattern:
14583
14584 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14585 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14586
14587 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14588 different meaning for some instruction. */
14589
14590 static void
14591 neon_three_same (int isquad, int ubit, int size)
14592 {
14593 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14594 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14595 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14596 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14597 inst.instruction |= LOW4 (inst.operands[2].reg);
14598 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14599 inst.instruction |= (isquad != 0) << 6;
14600 inst.instruction |= (ubit != 0) << 24;
14601 if (size != -1)
14602 inst.instruction |= neon_logbits (size) << 20;
14603
14604 neon_dp_fixup (&inst);
14605 }
14606
14607 /* Encode instructions of the form:
14608
14609 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14610 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14611
14612 Don't write size if SIZE == -1. */
14613
14614 static void
14615 neon_two_same (int qbit, int ubit, int size)
14616 {
14617 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14618 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14619 inst.instruction |= LOW4 (inst.operands[1].reg);
14620 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14621 inst.instruction |= (qbit != 0) << 6;
14622 inst.instruction |= (ubit != 0) << 24;
14623
14624 if (size != -1)
14625 inst.instruction |= neon_logbits (size) << 18;
14626
14627 neon_dp_fixup (&inst);
14628 }
14629
14630 /* Neon instruction encoders, in approximate order of appearance. */
14631
14632 static void
14633 do_neon_dyadic_i_su (void)
14634 {
14635 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14636 struct neon_type_el et = neon_check_type (3, rs,
14637 N_EQK, N_EQK, N_SU_32 | N_KEY);
14638 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14639 }
14640
14641 static void
14642 do_neon_dyadic_i64_su (void)
14643 {
14644 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14645 struct neon_type_el et = neon_check_type (3, rs,
14646 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14647 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14648 }
14649
14650 static void
14651 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14652 unsigned immbits)
14653 {
14654 unsigned size = et.size >> 3;
14655 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14657 inst.instruction |= LOW4 (inst.operands[1].reg);
14658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14659 inst.instruction |= (isquad != 0) << 6;
14660 inst.instruction |= immbits << 16;
14661 inst.instruction |= (size >> 3) << 7;
14662 inst.instruction |= (size & 0x7) << 19;
14663 if (write_ubit)
14664 inst.instruction |= (uval != 0) << 24;
14665
14666 neon_dp_fixup (&inst);
14667 }
14668
14669 static void
14670 do_neon_shl_imm (void)
14671 {
14672 if (!inst.operands[2].isreg)
14673 {
14674 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14675 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14676 int imm = inst.operands[2].imm;
14677
14678 constraint (imm < 0 || (unsigned)imm >= et.size,
14679 _("immediate out of range for shift"));
14680 NEON_ENCODE (IMMED, inst);
14681 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14682 }
14683 else
14684 {
14685 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14686 struct neon_type_el et = neon_check_type (3, rs,
14687 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14688 unsigned int tmp;
14689
14690 /* VSHL/VQSHL 3-register variants have syntax such as:
14691 vshl.xx Dd, Dm, Dn
14692 whereas other 3-register operations encoded by neon_three_same have
14693 syntax like:
14694 vadd.xx Dd, Dn, Dm
14695 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14696 here. */
14697 tmp = inst.operands[2].reg;
14698 inst.operands[2].reg = inst.operands[1].reg;
14699 inst.operands[1].reg = tmp;
14700 NEON_ENCODE (INTEGER, inst);
14701 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14702 }
14703 }
14704
14705 static void
14706 do_neon_qshl_imm (void)
14707 {
14708 if (!inst.operands[2].isreg)
14709 {
14710 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14711 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14712 int imm = inst.operands[2].imm;
14713
14714 constraint (imm < 0 || (unsigned)imm >= et.size,
14715 _("immediate out of range for shift"));
14716 NEON_ENCODE (IMMED, inst);
14717 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14718 }
14719 else
14720 {
14721 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14722 struct neon_type_el et = neon_check_type (3, rs,
14723 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14724 unsigned int tmp;
14725
14726 /* See note in do_neon_shl_imm. */
14727 tmp = inst.operands[2].reg;
14728 inst.operands[2].reg = inst.operands[1].reg;
14729 inst.operands[1].reg = tmp;
14730 NEON_ENCODE (INTEGER, inst);
14731 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14732 }
14733 }
14734
14735 static void
14736 do_neon_rshl (void)
14737 {
14738 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14739 struct neon_type_el et = neon_check_type (3, rs,
14740 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14741 unsigned int tmp;
14742
14743 tmp = inst.operands[2].reg;
14744 inst.operands[2].reg = inst.operands[1].reg;
14745 inst.operands[1].reg = tmp;
14746 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14747 }
14748
14749 static int
14750 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14751 {
14752 /* Handle .I8 pseudo-instructions. */
14753 if (size == 8)
14754 {
14755 /* Unfortunately, this will make everything apart from zero out-of-range.
14756 FIXME is this the intended semantics? There doesn't seem much point in
14757 accepting .I8 if so. */
14758 immediate |= immediate << 8;
14759 size = 16;
14760 }
14761
14762 if (size >= 32)
14763 {
14764 if (immediate == (immediate & 0x000000ff))
14765 {
14766 *immbits = immediate;
14767 return 0x1;
14768 }
14769 else if (immediate == (immediate & 0x0000ff00))
14770 {
14771 *immbits = immediate >> 8;
14772 return 0x3;
14773 }
14774 else if (immediate == (immediate & 0x00ff0000))
14775 {
14776 *immbits = immediate >> 16;
14777 return 0x5;
14778 }
14779 else if (immediate == (immediate & 0xff000000))
14780 {
14781 *immbits = immediate >> 24;
14782 return 0x7;
14783 }
14784 if ((immediate & 0xffff) != (immediate >> 16))
14785 goto bad_immediate;
14786 immediate &= 0xffff;
14787 }
14788
14789 if (immediate == (immediate & 0x000000ff))
14790 {
14791 *immbits = immediate;
14792 return 0x9;
14793 }
14794 else if (immediate == (immediate & 0x0000ff00))
14795 {
14796 *immbits = immediate >> 8;
14797 return 0xb;
14798 }
14799
14800 bad_immediate:
14801 first_error (_("immediate value out of range"));
14802 return FAIL;
14803 }
14804
14805 static void
14806 do_neon_logic (void)
14807 {
14808 if (inst.operands[2].present && inst.operands[2].isreg)
14809 {
14810 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14811 neon_check_type (3, rs, N_IGNORE_TYPE);
14812 /* U bit and size field were set as part of the bitmask. */
14813 NEON_ENCODE (INTEGER, inst);
14814 neon_three_same (neon_quad (rs), 0, -1);
14815 }
14816 else
14817 {
14818 const int three_ops_form = (inst.operands[2].present
14819 && !inst.operands[2].isreg);
14820 const int immoperand = (three_ops_form ? 2 : 1);
14821 enum neon_shape rs = (three_ops_form
14822 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14823 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14824 struct neon_type_el et = neon_check_type (2, rs,
14825 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14826 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14827 unsigned immbits;
14828 int cmode;
14829
14830 if (et.type == NT_invtype)
14831 return;
14832
14833 if (three_ops_form)
14834 constraint (inst.operands[0].reg != inst.operands[1].reg,
14835 _("first and second operands shall be the same register"));
14836
14837 NEON_ENCODE (IMMED, inst);
14838
14839 immbits = inst.operands[immoperand].imm;
14840 if (et.size == 64)
14841 {
14842 /* .i64 is a pseudo-op, so the immediate must be a repeating
14843 pattern. */
14844 if (immbits != (inst.operands[immoperand].regisimm ?
14845 inst.operands[immoperand].reg : 0))
14846 {
14847 /* Set immbits to an invalid constant. */
14848 immbits = 0xdeadbeef;
14849 }
14850 }
14851
14852 switch (opcode)
14853 {
14854 case N_MNEM_vbic:
14855 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14856 break;
14857
14858 case N_MNEM_vorr:
14859 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14860 break;
14861
14862 case N_MNEM_vand:
14863 /* Pseudo-instruction for VBIC. */
14864 neon_invert_size (&immbits, 0, et.size);
14865 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14866 break;
14867
14868 case N_MNEM_vorn:
14869 /* Pseudo-instruction for VORR. */
14870 neon_invert_size (&immbits, 0, et.size);
14871 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14872 break;
14873
14874 default:
14875 abort ();
14876 }
14877
14878 if (cmode == FAIL)
14879 return;
14880
14881 inst.instruction |= neon_quad (rs) << 6;
14882 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14884 inst.instruction |= cmode << 8;
14885 neon_write_immbits (immbits);
14886
14887 neon_dp_fixup (&inst);
14888 }
14889 }
14890
14891 static void
14892 do_neon_bitfield (void)
14893 {
14894 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14895 neon_check_type (3, rs, N_IGNORE_TYPE);
14896 neon_three_same (neon_quad (rs), 0, -1);
14897 }
14898
14899 static void
14900 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14901 unsigned destbits)
14902 {
14903 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14904 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14905 types | N_KEY);
14906 if (et.type == NT_float)
14907 {
14908 NEON_ENCODE (FLOAT, inst);
14909 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
14910 }
14911 else
14912 {
14913 NEON_ENCODE (INTEGER, inst);
14914 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14915 }
14916 }
14917
14918 static void
14919 do_neon_dyadic_if_su (void)
14920 {
14921 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14922 }
14923
14924 static void
14925 do_neon_dyadic_if_su_d (void)
14926 {
14927 /* This version only allow D registers, but that constraint is enforced during
14928 operand parsing so we don't need to do anything extra here. */
14929 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14930 }
14931
14932 static void
14933 do_neon_dyadic_if_i_d (void)
14934 {
14935 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14936 affected if we specify unsigned args. */
14937 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14938 }
14939
14940 enum vfp_or_neon_is_neon_bits
14941 {
14942 NEON_CHECK_CC = 1,
14943 NEON_CHECK_ARCH = 2,
14944 NEON_CHECK_ARCH8 = 4
14945 };
14946
14947 /* Call this function if an instruction which may have belonged to the VFP or
14948 Neon instruction sets, but turned out to be a Neon instruction (due to the
14949 operand types involved, etc.). We have to check and/or fix-up a couple of
14950 things:
14951
14952 - Make sure the user hasn't attempted to make a Neon instruction
14953 conditional.
14954 - Alter the value in the condition code field if necessary.
14955 - Make sure that the arch supports Neon instructions.
14956
14957 Which of these operations take place depends on bits from enum
14958 vfp_or_neon_is_neon_bits.
14959
14960 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14961 current instruction's condition is COND_ALWAYS, the condition field is
14962 changed to inst.uncond_value. This is necessary because instructions shared
14963 between VFP and Neon may be conditional for the VFP variants only, and the
14964 unconditional Neon version must have, e.g., 0xF in the condition field. */
14965
14966 static int
14967 vfp_or_neon_is_neon (unsigned check)
14968 {
14969 /* Conditions are always legal in Thumb mode (IT blocks). */
14970 if (!thumb_mode && (check & NEON_CHECK_CC))
14971 {
14972 if (inst.cond != COND_ALWAYS)
14973 {
14974 first_error (_(BAD_COND));
14975 return FAIL;
14976 }
14977 if (inst.uncond_value != -1)
14978 inst.instruction |= inst.uncond_value << 28;
14979 }
14980
14981 if ((check & NEON_CHECK_ARCH)
14982 && !mark_feature_used (&fpu_neon_ext_v1))
14983 {
14984 first_error (_(BAD_FPU));
14985 return FAIL;
14986 }
14987
14988 if ((check & NEON_CHECK_ARCH8)
14989 && !mark_feature_used (&fpu_neon_ext_armv8))
14990 {
14991 first_error (_(BAD_FPU));
14992 return FAIL;
14993 }
14994
14995 return SUCCESS;
14996 }
14997
14998 static void
14999 do_neon_addsub_if_i (void)
15000 {
15001 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15002 return;
15003
15004 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15005 return;
15006
15007 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15008 affected if we specify unsigned args. */
15009 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
15010 }
15011
15012 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15013 result to be:
15014 V<op> A,B (A is operand 0, B is operand 2)
15015 to mean:
15016 V<op> A,B,A
15017 not:
15018 V<op> A,B,B
15019 so handle that case specially. */
15020
15021 static void
15022 neon_exchange_operands (void)
15023 {
15024 if (inst.operands[1].present)
15025 {
15026 void *scratch = xmalloc (sizeof (inst.operands[0]));
15027
15028 /* Swap operands[1] and operands[2]. */
15029 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15030 inst.operands[1] = inst.operands[2];
15031 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
15032 free (scratch);
15033 }
15034 else
15035 {
15036 inst.operands[1] = inst.operands[2];
15037 inst.operands[2] = inst.operands[0];
15038 }
15039 }
15040
15041 static void
15042 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15043 {
15044 if (inst.operands[2].isreg)
15045 {
15046 if (invert)
15047 neon_exchange_operands ();
15048 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
15049 }
15050 else
15051 {
15052 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15053 struct neon_type_el et = neon_check_type (2, rs,
15054 N_EQK | N_SIZ, immtypes | N_KEY);
15055
15056 NEON_ENCODE (IMMED, inst);
15057 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15058 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15059 inst.instruction |= LOW4 (inst.operands[1].reg);
15060 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15061 inst.instruction |= neon_quad (rs) << 6;
15062 inst.instruction |= (et.type == NT_float) << 10;
15063 inst.instruction |= neon_logbits (et.size) << 18;
15064
15065 neon_dp_fixup (&inst);
15066 }
15067 }
15068
15069 static void
15070 do_neon_cmp (void)
15071 {
15072 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
15073 }
15074
15075 static void
15076 do_neon_cmp_inv (void)
15077 {
15078 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
15079 }
15080
15081 static void
15082 do_neon_ceq (void)
15083 {
15084 neon_compare (N_IF_32, N_IF_32, FALSE);
15085 }
15086
15087 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
15088 scalars, which are encoded in 5 bits, M : Rm.
15089 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15090 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
15091 index in M.
15092
15093 Dot Product instructions are similar to multiply instructions except elsize
15094 should always be 32.
15095
15096 This function translates SCALAR, which is GAS's internal encoding of indexed
15097 scalar register, to raw encoding. There is also register and index range
15098 check based on ELSIZE. */
15099
15100 static unsigned
15101 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15102 {
15103 unsigned regno = NEON_SCALAR_REG (scalar);
15104 unsigned elno = NEON_SCALAR_INDEX (scalar);
15105
15106 switch (elsize)
15107 {
15108 case 16:
15109 if (regno > 7 || elno > 3)
15110 goto bad_scalar;
15111 return regno | (elno << 3);
15112
15113 case 32:
15114 if (regno > 15 || elno > 1)
15115 goto bad_scalar;
15116 return regno | (elno << 4);
15117
15118 default:
15119 bad_scalar:
15120 first_error (_("scalar out of range for multiply instruction"));
15121 }
15122
15123 return 0;
15124 }
15125
15126 /* Encode multiply / multiply-accumulate scalar instructions. */
15127
15128 static void
15129 neon_mul_mac (struct neon_type_el et, int ubit)
15130 {
15131 unsigned scalar;
15132
15133 /* Give a more helpful error message if we have an invalid type. */
15134 if (et.type == NT_invtype)
15135 return;
15136
15137 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
15138 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15139 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15140 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15141 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15142 inst.instruction |= LOW4 (scalar);
15143 inst.instruction |= HI1 (scalar) << 5;
15144 inst.instruction |= (et.type == NT_float) << 8;
15145 inst.instruction |= neon_logbits (et.size) << 20;
15146 inst.instruction |= (ubit != 0) << 24;
15147
15148 neon_dp_fixup (&inst);
15149 }
15150
15151 static void
15152 do_neon_mac_maybe_scalar (void)
15153 {
15154 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15155 return;
15156
15157 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15158 return;
15159
15160 if (inst.operands[2].isscalar)
15161 {
15162 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15163 struct neon_type_el et = neon_check_type (3, rs,
15164 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
15165 NEON_ENCODE (SCALAR, inst);
15166 neon_mul_mac (et, neon_quad (rs));
15167 }
15168 else
15169 {
15170 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15171 affected if we specify unsigned args. */
15172 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15173 }
15174 }
15175
15176 static void
15177 do_neon_fmac (void)
15178 {
15179 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15180 return;
15181
15182 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15183 return;
15184
15185 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15186 }
15187
15188 static void
15189 do_neon_tst (void)
15190 {
15191 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15192 struct neon_type_el et = neon_check_type (3, rs,
15193 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
15194 neon_three_same (neon_quad (rs), 0, et.size);
15195 }
15196
15197 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
15198 same types as the MAC equivalents. The polynomial type for this instruction
15199 is encoded the same as the integer type. */
15200
15201 static void
15202 do_neon_mul (void)
15203 {
15204 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15205 return;
15206
15207 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15208 return;
15209
15210 if (inst.operands[2].isscalar)
15211 do_neon_mac_maybe_scalar ();
15212 else
15213 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
15214 }
15215
15216 static void
15217 do_neon_qdmulh (void)
15218 {
15219 if (inst.operands[2].isscalar)
15220 {
15221 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15222 struct neon_type_el et = neon_check_type (3, rs,
15223 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15224 NEON_ENCODE (SCALAR, inst);
15225 neon_mul_mac (et, neon_quad (rs));
15226 }
15227 else
15228 {
15229 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15230 struct neon_type_el et = neon_check_type (3, rs,
15231 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15232 NEON_ENCODE (INTEGER, inst);
15233 /* The U bit (rounding) comes from bit mask. */
15234 neon_three_same (neon_quad (rs), 0, et.size);
15235 }
15236 }
15237
15238 static void
15239 do_neon_qrdmlah (void)
15240 {
15241 /* Check we're on the correct architecture. */
15242 if (!mark_feature_used (&fpu_neon_ext_armv8))
15243 inst.error =
15244 _("instruction form not available on this architecture.");
15245 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15246 {
15247 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15248 record_feature_use (&fpu_neon_ext_v8_1);
15249 }
15250
15251 if (inst.operands[2].isscalar)
15252 {
15253 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15254 struct neon_type_el et = neon_check_type (3, rs,
15255 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15256 NEON_ENCODE (SCALAR, inst);
15257 neon_mul_mac (et, neon_quad (rs));
15258 }
15259 else
15260 {
15261 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15262 struct neon_type_el et = neon_check_type (3, rs,
15263 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15264 NEON_ENCODE (INTEGER, inst);
15265 /* The U bit (rounding) comes from bit mask. */
15266 neon_three_same (neon_quad (rs), 0, et.size);
15267 }
15268 }
15269
15270 static void
15271 do_neon_fcmp_absolute (void)
15272 {
15273 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15274 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15275 N_F_16_32 | N_KEY);
15276 /* Size field comes from bit mask. */
15277 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
15278 }
15279
15280 static void
15281 do_neon_fcmp_absolute_inv (void)
15282 {
15283 neon_exchange_operands ();
15284 do_neon_fcmp_absolute ();
15285 }
15286
15287 static void
15288 do_neon_step (void)
15289 {
15290 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15291 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15292 N_F_16_32 | N_KEY);
15293 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15294 }
15295
15296 static void
15297 do_neon_abs_neg (void)
15298 {
15299 enum neon_shape rs;
15300 struct neon_type_el et;
15301
15302 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15303 return;
15304
15305 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15306 return;
15307
15308 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15309 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
15310
15311 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15312 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15313 inst.instruction |= LOW4 (inst.operands[1].reg);
15314 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15315 inst.instruction |= neon_quad (rs) << 6;
15316 inst.instruction |= (et.type == NT_float) << 10;
15317 inst.instruction |= neon_logbits (et.size) << 18;
15318
15319 neon_dp_fixup (&inst);
15320 }
15321
15322 static void
15323 do_neon_sli (void)
15324 {
15325 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15326 struct neon_type_el et = neon_check_type (2, rs,
15327 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15328 int imm = inst.operands[2].imm;
15329 constraint (imm < 0 || (unsigned)imm >= et.size,
15330 _("immediate out of range for insert"));
15331 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15332 }
15333
15334 static void
15335 do_neon_sri (void)
15336 {
15337 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15338 struct neon_type_el et = neon_check_type (2, rs,
15339 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15340 int imm = inst.operands[2].imm;
15341 constraint (imm < 1 || (unsigned)imm > et.size,
15342 _("immediate out of range for insert"));
15343 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
15344 }
15345
15346 static void
15347 do_neon_qshlu_imm (void)
15348 {
15349 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15350 struct neon_type_el et = neon_check_type (2, rs,
15351 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15352 int imm = inst.operands[2].imm;
15353 constraint (imm < 0 || (unsigned)imm >= et.size,
15354 _("immediate out of range for shift"));
15355 /* Only encodes the 'U present' variant of the instruction.
15356 In this case, signed types have OP (bit 8) set to 0.
15357 Unsigned types have OP set to 1. */
15358 inst.instruction |= (et.type == NT_unsigned) << 8;
15359 /* The rest of the bits are the same as other immediate shifts. */
15360 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15361 }
15362
15363 static void
15364 do_neon_qmovn (void)
15365 {
15366 struct neon_type_el et = neon_check_type (2, NS_DQ,
15367 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15368 /* Saturating move where operands can be signed or unsigned, and the
15369 destination has the same signedness. */
15370 NEON_ENCODE (INTEGER, inst);
15371 if (et.type == NT_unsigned)
15372 inst.instruction |= 0xc0;
15373 else
15374 inst.instruction |= 0x80;
15375 neon_two_same (0, 1, et.size / 2);
15376 }
15377
15378 static void
15379 do_neon_qmovun (void)
15380 {
15381 struct neon_type_el et = neon_check_type (2, NS_DQ,
15382 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15383 /* Saturating move with unsigned results. Operands must be signed. */
15384 NEON_ENCODE (INTEGER, inst);
15385 neon_two_same (0, 1, et.size / 2);
15386 }
15387
15388 static void
15389 do_neon_rshift_sat_narrow (void)
15390 {
15391 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15392 or unsigned. If operands are unsigned, results must also be unsigned. */
15393 struct neon_type_el et = neon_check_type (2, NS_DQI,
15394 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15395 int imm = inst.operands[2].imm;
15396 /* This gets the bounds check, size encoding and immediate bits calculation
15397 right. */
15398 et.size /= 2;
15399
15400 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15401 VQMOVN.I<size> <Dd>, <Qm>. */
15402 if (imm == 0)
15403 {
15404 inst.operands[2].present = 0;
15405 inst.instruction = N_MNEM_vqmovn;
15406 do_neon_qmovn ();
15407 return;
15408 }
15409
15410 constraint (imm < 1 || (unsigned)imm > et.size,
15411 _("immediate out of range"));
15412 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15413 }
15414
15415 static void
15416 do_neon_rshift_sat_narrow_u (void)
15417 {
15418 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15419 or unsigned. If operands are unsigned, results must also be unsigned. */
15420 struct neon_type_el et = neon_check_type (2, NS_DQI,
15421 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15422 int imm = inst.operands[2].imm;
15423 /* This gets the bounds check, size encoding and immediate bits calculation
15424 right. */
15425 et.size /= 2;
15426
15427 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15428 VQMOVUN.I<size> <Dd>, <Qm>. */
15429 if (imm == 0)
15430 {
15431 inst.operands[2].present = 0;
15432 inst.instruction = N_MNEM_vqmovun;
15433 do_neon_qmovun ();
15434 return;
15435 }
15436
15437 constraint (imm < 1 || (unsigned)imm > et.size,
15438 _("immediate out of range"));
15439 /* FIXME: The manual is kind of unclear about what value U should have in
15440 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15441 must be 1. */
15442 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15443 }
15444
15445 static void
15446 do_neon_movn (void)
15447 {
15448 struct neon_type_el et = neon_check_type (2, NS_DQ,
15449 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15450 NEON_ENCODE (INTEGER, inst);
15451 neon_two_same (0, 1, et.size / 2);
15452 }
15453
15454 static void
15455 do_neon_rshift_narrow (void)
15456 {
15457 struct neon_type_el et = neon_check_type (2, NS_DQI,
15458 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15459 int imm = inst.operands[2].imm;
15460 /* This gets the bounds check, size encoding and immediate bits calculation
15461 right. */
15462 et.size /= 2;
15463
15464 /* If immediate is zero then we are a pseudo-instruction for
15465 VMOVN.I<size> <Dd>, <Qm> */
15466 if (imm == 0)
15467 {
15468 inst.operands[2].present = 0;
15469 inst.instruction = N_MNEM_vmovn;
15470 do_neon_movn ();
15471 return;
15472 }
15473
15474 constraint (imm < 1 || (unsigned)imm > et.size,
15475 _("immediate out of range for narrowing operation"));
15476 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15477 }
15478
15479 static void
15480 do_neon_shll (void)
15481 {
15482 /* FIXME: Type checking when lengthening. */
15483 struct neon_type_el et = neon_check_type (2, NS_QDI,
15484 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15485 unsigned imm = inst.operands[2].imm;
15486
15487 if (imm == et.size)
15488 {
15489 /* Maximum shift variant. */
15490 NEON_ENCODE (INTEGER, inst);
15491 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15492 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15493 inst.instruction |= LOW4 (inst.operands[1].reg);
15494 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15495 inst.instruction |= neon_logbits (et.size) << 18;
15496
15497 neon_dp_fixup (&inst);
15498 }
15499 else
15500 {
15501 /* A more-specific type check for non-max versions. */
15502 et = neon_check_type (2, NS_QDI,
15503 N_EQK | N_DBL, N_SU_32 | N_KEY);
15504 NEON_ENCODE (IMMED, inst);
15505 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15506 }
15507 }
15508
15509 /* Check the various types for the VCVT instruction, and return which version
15510 the current instruction is. */
15511
15512 #define CVT_FLAVOUR_VAR \
15513 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15514 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15515 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15516 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15517 /* Half-precision conversions. */ \
15518 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15519 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15520 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15521 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
15522 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15523 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15524 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15525 Compared with single/double precision variants, only the co-processor \
15526 field is different, so the encoding flow is reused here. */ \
15527 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15528 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15529 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15530 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
15531 /* VFP instructions. */ \
15532 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15533 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15534 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15535 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15536 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15537 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15538 /* VFP instructions with bitshift. */ \
15539 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15540 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15541 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15542 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15543 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15544 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15545 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15546 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15547
15548 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15549 neon_cvt_flavour_##C,
15550
15551 /* The different types of conversions we can do. */
15552 enum neon_cvt_flavour
15553 {
15554 CVT_FLAVOUR_VAR
15555 neon_cvt_flavour_invalid,
15556 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15557 };
15558
15559 #undef CVT_VAR
15560
15561 static enum neon_cvt_flavour
15562 get_neon_cvt_flavour (enum neon_shape rs)
15563 {
15564 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15565 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15566 if (et.type != NT_invtype) \
15567 { \
15568 inst.error = NULL; \
15569 return (neon_cvt_flavour_##C); \
15570 }
15571
15572 struct neon_type_el et;
15573 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15574 || rs == NS_FF) ? N_VFP : 0;
15575 /* The instruction versions which take an immediate take one register
15576 argument, which is extended to the width of the full register. Thus the
15577 "source" and "destination" registers must have the same width. Hack that
15578 here by making the size equal to the key (wider, in this case) operand. */
15579 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15580
15581 CVT_FLAVOUR_VAR;
15582
15583 return neon_cvt_flavour_invalid;
15584 #undef CVT_VAR
15585 }
15586
15587 enum neon_cvt_mode
15588 {
15589 neon_cvt_mode_a,
15590 neon_cvt_mode_n,
15591 neon_cvt_mode_p,
15592 neon_cvt_mode_m,
15593 neon_cvt_mode_z,
15594 neon_cvt_mode_x,
15595 neon_cvt_mode_r
15596 };
15597
15598 /* Neon-syntax VFP conversions. */
15599
15600 static void
15601 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15602 {
15603 const char *opname = 0;
15604
15605 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15606 || rs == NS_FHI || rs == NS_HFI)
15607 {
15608 /* Conversions with immediate bitshift. */
15609 const char *enc[] =
15610 {
15611 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15612 CVT_FLAVOUR_VAR
15613 NULL
15614 #undef CVT_VAR
15615 };
15616
15617 if (flavour < (int) ARRAY_SIZE (enc))
15618 {
15619 opname = enc[flavour];
15620 constraint (inst.operands[0].reg != inst.operands[1].reg,
15621 _("operands 0 and 1 must be the same register"));
15622 inst.operands[1] = inst.operands[2];
15623 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15624 }
15625 }
15626 else
15627 {
15628 /* Conversions without bitshift. */
15629 const char *enc[] =
15630 {
15631 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15632 CVT_FLAVOUR_VAR
15633 NULL
15634 #undef CVT_VAR
15635 };
15636
15637 if (flavour < (int) ARRAY_SIZE (enc))
15638 opname = enc[flavour];
15639 }
15640
15641 if (opname)
15642 do_vfp_nsyn_opcode (opname);
15643
15644 /* ARMv8.2 fp16 VCVT instruction. */
15645 if (flavour == neon_cvt_flavour_s32_f16
15646 || flavour == neon_cvt_flavour_u32_f16
15647 || flavour == neon_cvt_flavour_f16_u32
15648 || flavour == neon_cvt_flavour_f16_s32)
15649 do_scalar_fp16_v82_encode ();
15650 }
15651
15652 static void
15653 do_vfp_nsyn_cvtz (void)
15654 {
15655 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
15656 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15657 const char *enc[] =
15658 {
15659 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15660 CVT_FLAVOUR_VAR
15661 NULL
15662 #undef CVT_VAR
15663 };
15664
15665 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15666 do_vfp_nsyn_opcode (enc[flavour]);
15667 }
15668
15669 static void
15670 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15671 enum neon_cvt_mode mode)
15672 {
15673 int sz, op;
15674 int rm;
15675
15676 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15677 D register operands. */
15678 if (flavour == neon_cvt_flavour_s32_f64
15679 || flavour == neon_cvt_flavour_u32_f64)
15680 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15681 _(BAD_FPU));
15682
15683 if (flavour == neon_cvt_flavour_s32_f16
15684 || flavour == neon_cvt_flavour_u32_f16)
15685 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15686 _(BAD_FP16));
15687
15688 set_it_insn_type (OUTSIDE_IT_INSN);
15689
15690 switch (flavour)
15691 {
15692 case neon_cvt_flavour_s32_f64:
15693 sz = 1;
15694 op = 1;
15695 break;
15696 case neon_cvt_flavour_s32_f32:
15697 sz = 0;
15698 op = 1;
15699 break;
15700 case neon_cvt_flavour_s32_f16:
15701 sz = 0;
15702 op = 1;
15703 break;
15704 case neon_cvt_flavour_u32_f64:
15705 sz = 1;
15706 op = 0;
15707 break;
15708 case neon_cvt_flavour_u32_f32:
15709 sz = 0;
15710 op = 0;
15711 break;
15712 case neon_cvt_flavour_u32_f16:
15713 sz = 0;
15714 op = 0;
15715 break;
15716 default:
15717 first_error (_("invalid instruction shape"));
15718 return;
15719 }
15720
15721 switch (mode)
15722 {
15723 case neon_cvt_mode_a: rm = 0; break;
15724 case neon_cvt_mode_n: rm = 1; break;
15725 case neon_cvt_mode_p: rm = 2; break;
15726 case neon_cvt_mode_m: rm = 3; break;
15727 default: first_error (_("invalid rounding mode")); return;
15728 }
15729
15730 NEON_ENCODE (FPV8, inst);
15731 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15732 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15733 inst.instruction |= sz << 8;
15734
15735 /* ARMv8.2 fp16 VCVT instruction. */
15736 if (flavour == neon_cvt_flavour_s32_f16
15737 ||flavour == neon_cvt_flavour_u32_f16)
15738 do_scalar_fp16_v82_encode ();
15739 inst.instruction |= op << 7;
15740 inst.instruction |= rm << 16;
15741 inst.instruction |= 0xf0000000;
15742 inst.is_neon = TRUE;
15743 }
15744
15745 static void
15746 do_neon_cvt_1 (enum neon_cvt_mode mode)
15747 {
15748 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15749 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15750 NS_FH, NS_HF, NS_FHI, NS_HFI,
15751 NS_NULL);
15752 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15753
15754 if (flavour == neon_cvt_flavour_invalid)
15755 return;
15756
15757 /* PR11109: Handle round-to-zero for VCVT conversions. */
15758 if (mode == neon_cvt_mode_z
15759 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15760 && (flavour == neon_cvt_flavour_s16_f16
15761 || flavour == neon_cvt_flavour_u16_f16
15762 || flavour == neon_cvt_flavour_s32_f32
15763 || flavour == neon_cvt_flavour_u32_f32
15764 || flavour == neon_cvt_flavour_s32_f64
15765 || flavour == neon_cvt_flavour_u32_f64)
15766 && (rs == NS_FD || rs == NS_FF))
15767 {
15768 do_vfp_nsyn_cvtz ();
15769 return;
15770 }
15771
15772 /* ARMv8.2 fp16 VCVT conversions. */
15773 if (mode == neon_cvt_mode_z
15774 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15775 && (flavour == neon_cvt_flavour_s32_f16
15776 || flavour == neon_cvt_flavour_u32_f16)
15777 && (rs == NS_FH))
15778 {
15779 do_vfp_nsyn_cvtz ();
15780 do_scalar_fp16_v82_encode ();
15781 return;
15782 }
15783
15784 /* VFP rather than Neon conversions. */
15785 if (flavour >= neon_cvt_flavour_first_fp)
15786 {
15787 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15788 do_vfp_nsyn_cvt (rs, flavour);
15789 else
15790 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15791
15792 return;
15793 }
15794
15795 switch (rs)
15796 {
15797 case NS_DDI:
15798 case NS_QQI:
15799 {
15800 unsigned immbits;
15801 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15802 0x0000100, 0x1000100, 0x0, 0x1000000};
15803
15804 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15805 return;
15806
15807 /* Fixed-point conversion with #0 immediate is encoded as an
15808 integer conversion. */
15809 if (inst.operands[2].present && inst.operands[2].imm == 0)
15810 goto int_encode;
15811 NEON_ENCODE (IMMED, inst);
15812 if (flavour != neon_cvt_flavour_invalid)
15813 inst.instruction |= enctab[flavour];
15814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15816 inst.instruction |= LOW4 (inst.operands[1].reg);
15817 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15818 inst.instruction |= neon_quad (rs) << 6;
15819 inst.instruction |= 1 << 21;
15820 if (flavour < neon_cvt_flavour_s16_f16)
15821 {
15822 inst.instruction |= 1 << 21;
15823 immbits = 32 - inst.operands[2].imm;
15824 inst.instruction |= immbits << 16;
15825 }
15826 else
15827 {
15828 inst.instruction |= 3 << 20;
15829 immbits = 16 - inst.operands[2].imm;
15830 inst.instruction |= immbits << 16;
15831 inst.instruction &= ~(1 << 9);
15832 }
15833
15834 neon_dp_fixup (&inst);
15835 }
15836 break;
15837
15838 case NS_DD:
15839 case NS_QQ:
15840 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15841 {
15842 NEON_ENCODE (FLOAT, inst);
15843 set_it_insn_type (OUTSIDE_IT_INSN);
15844
15845 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15846 return;
15847
15848 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15849 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15850 inst.instruction |= LOW4 (inst.operands[1].reg);
15851 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15852 inst.instruction |= neon_quad (rs) << 6;
15853 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15854 || flavour == neon_cvt_flavour_u32_f32) << 7;
15855 inst.instruction |= mode << 8;
15856 if (flavour == neon_cvt_flavour_u16_f16
15857 || flavour == neon_cvt_flavour_s16_f16)
15858 /* Mask off the original size bits and reencode them. */
15859 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15860
15861 if (thumb_mode)
15862 inst.instruction |= 0xfc000000;
15863 else
15864 inst.instruction |= 0xf0000000;
15865 }
15866 else
15867 {
15868 int_encode:
15869 {
15870 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15871 0x100, 0x180, 0x0, 0x080};
15872
15873 NEON_ENCODE (INTEGER, inst);
15874
15875 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15876 return;
15877
15878 if (flavour != neon_cvt_flavour_invalid)
15879 inst.instruction |= enctab[flavour];
15880
15881 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15882 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15883 inst.instruction |= LOW4 (inst.operands[1].reg);
15884 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15885 inst.instruction |= neon_quad (rs) << 6;
15886 if (flavour >= neon_cvt_flavour_s16_f16
15887 && flavour <= neon_cvt_flavour_f16_u16)
15888 /* Half precision. */
15889 inst.instruction |= 1 << 18;
15890 else
15891 inst.instruction |= 2 << 18;
15892
15893 neon_dp_fixup (&inst);
15894 }
15895 }
15896 break;
15897
15898 /* Half-precision conversions for Advanced SIMD -- neon. */
15899 case NS_QD:
15900 case NS_DQ:
15901
15902 if ((rs == NS_DQ)
15903 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15904 {
15905 as_bad (_("operand size must match register width"));
15906 break;
15907 }
15908
15909 if ((rs == NS_QD)
15910 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15911 {
15912 as_bad (_("operand size must match register width"));
15913 break;
15914 }
15915
15916 if (rs == NS_DQ)
15917 inst.instruction = 0x3b60600;
15918 else
15919 inst.instruction = 0x3b60700;
15920
15921 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15922 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15923 inst.instruction |= LOW4 (inst.operands[1].reg);
15924 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15925 neon_dp_fixup (&inst);
15926 break;
15927
15928 default:
15929 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15930 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15931 do_vfp_nsyn_cvt (rs, flavour);
15932 else
15933 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15934 }
15935 }
15936
15937 static void
15938 do_neon_cvtr (void)
15939 {
15940 do_neon_cvt_1 (neon_cvt_mode_x);
15941 }
15942
15943 static void
15944 do_neon_cvt (void)
15945 {
15946 do_neon_cvt_1 (neon_cvt_mode_z);
15947 }
15948
15949 static void
15950 do_neon_cvta (void)
15951 {
15952 do_neon_cvt_1 (neon_cvt_mode_a);
15953 }
15954
15955 static void
15956 do_neon_cvtn (void)
15957 {
15958 do_neon_cvt_1 (neon_cvt_mode_n);
15959 }
15960
15961 static void
15962 do_neon_cvtp (void)
15963 {
15964 do_neon_cvt_1 (neon_cvt_mode_p);
15965 }
15966
15967 static void
15968 do_neon_cvtm (void)
15969 {
15970 do_neon_cvt_1 (neon_cvt_mode_m);
15971 }
15972
15973 static void
15974 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15975 {
15976 if (is_double)
15977 mark_feature_used (&fpu_vfp_ext_armv8);
15978
15979 encode_arm_vfp_reg (inst.operands[0].reg,
15980 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15981 encode_arm_vfp_reg (inst.operands[1].reg,
15982 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15983 inst.instruction |= to ? 0x10000 : 0;
15984 inst.instruction |= t ? 0x80 : 0;
15985 inst.instruction |= is_double ? 0x100 : 0;
15986 do_vfp_cond_or_thumb ();
15987 }
15988
15989 static void
15990 do_neon_cvttb_1 (bfd_boolean t)
15991 {
15992 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
15993 NS_DF, NS_DH, NS_NULL);
15994
15995 if (rs == NS_NULL)
15996 return;
15997 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15998 {
15999 inst.error = NULL;
16000 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16001 }
16002 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16003 {
16004 inst.error = NULL;
16005 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16006 }
16007 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16008 {
16009 /* The VCVTB and VCVTT instructions with D-register operands
16010 don't work for SP only targets. */
16011 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16012 _(BAD_FPU));
16013
16014 inst.error = NULL;
16015 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16016 }
16017 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16018 {
16019 /* The VCVTB and VCVTT instructions with D-register operands
16020 don't work for SP only targets. */
16021 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16022 _(BAD_FPU));
16023
16024 inst.error = NULL;
16025 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16026 }
16027 else
16028 return;
16029 }
16030
16031 static void
16032 do_neon_cvtb (void)
16033 {
16034 do_neon_cvttb_1 (FALSE);
16035 }
16036
16037
16038 static void
16039 do_neon_cvtt (void)
16040 {
16041 do_neon_cvttb_1 (TRUE);
16042 }
16043
16044 static void
16045 neon_move_immediate (void)
16046 {
16047 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16048 struct neon_type_el et = neon_check_type (2, rs,
16049 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
16050 unsigned immlo, immhi = 0, immbits;
16051 int op, cmode, float_p;
16052
16053 constraint (et.type == NT_invtype,
16054 _("operand size must be specified for immediate VMOV"));
16055
16056 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16057 op = (inst.instruction & (1 << 5)) != 0;
16058
16059 immlo = inst.operands[1].imm;
16060 if (inst.operands[1].regisimm)
16061 immhi = inst.operands[1].reg;
16062
16063 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
16064 _("immediate has bits set outside the operand size"));
16065
16066 float_p = inst.operands[1].immisfloat;
16067
16068 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
16069 et.size, et.type)) == FAIL)
16070 {
16071 /* Invert relevant bits only. */
16072 neon_invert_size (&immlo, &immhi, et.size);
16073 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
16074 with one or the other; those cases are caught by
16075 neon_cmode_for_move_imm. */
16076 op = !op;
16077 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16078 &op, et.size, et.type)) == FAIL)
16079 {
16080 first_error (_("immediate out of range"));
16081 return;
16082 }
16083 }
16084
16085 inst.instruction &= ~(1 << 5);
16086 inst.instruction |= op << 5;
16087
16088 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16089 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16090 inst.instruction |= neon_quad (rs) << 6;
16091 inst.instruction |= cmode << 8;
16092
16093 neon_write_immbits (immbits);
16094 }
16095
16096 static void
16097 do_neon_mvn (void)
16098 {
16099 if (inst.operands[1].isreg)
16100 {
16101 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16102
16103 NEON_ENCODE (INTEGER, inst);
16104 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16105 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16106 inst.instruction |= LOW4 (inst.operands[1].reg);
16107 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16108 inst.instruction |= neon_quad (rs) << 6;
16109 }
16110 else
16111 {
16112 NEON_ENCODE (IMMED, inst);
16113 neon_move_immediate ();
16114 }
16115
16116 neon_dp_fixup (&inst);
16117 }
16118
16119 /* Encode instructions of form:
16120
16121 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16122 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
16123
16124 static void
16125 neon_mixed_length (struct neon_type_el et, unsigned size)
16126 {
16127 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16128 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16129 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16130 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16131 inst.instruction |= LOW4 (inst.operands[2].reg);
16132 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16133 inst.instruction |= (et.type == NT_unsigned) << 24;
16134 inst.instruction |= neon_logbits (size) << 20;
16135
16136 neon_dp_fixup (&inst);
16137 }
16138
16139 static void
16140 do_neon_dyadic_long (void)
16141 {
16142 /* FIXME: Type checking for lengthening op. */
16143 struct neon_type_el et = neon_check_type (3, NS_QDD,
16144 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16145 neon_mixed_length (et, et.size);
16146 }
16147
16148 static void
16149 do_neon_abal (void)
16150 {
16151 struct neon_type_el et = neon_check_type (3, NS_QDD,
16152 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16153 neon_mixed_length (et, et.size);
16154 }
16155
16156 static void
16157 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16158 {
16159 if (inst.operands[2].isscalar)
16160 {
16161 struct neon_type_el et = neon_check_type (3, NS_QDS,
16162 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
16163 NEON_ENCODE (SCALAR, inst);
16164 neon_mul_mac (et, et.type == NT_unsigned);
16165 }
16166 else
16167 {
16168 struct neon_type_el et = neon_check_type (3, NS_QDD,
16169 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
16170 NEON_ENCODE (INTEGER, inst);
16171 neon_mixed_length (et, et.size);
16172 }
16173 }
16174
16175 static void
16176 do_neon_mac_maybe_scalar_long (void)
16177 {
16178 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16179 }
16180
16181 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16182 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16183
16184 static unsigned
16185 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16186 {
16187 unsigned regno = NEON_SCALAR_REG (scalar);
16188 unsigned elno = NEON_SCALAR_INDEX (scalar);
16189
16190 if (quad_p)
16191 {
16192 if (regno > 7 || elno > 3)
16193 goto bad_scalar;
16194
16195 return ((regno & 0x7)
16196 | ((elno & 0x1) << 3)
16197 | (((elno >> 1) & 0x1) << 5));
16198 }
16199 else
16200 {
16201 if (regno > 15 || elno > 1)
16202 goto bad_scalar;
16203
16204 return (((regno & 0x1) << 5)
16205 | ((regno >> 1) & 0x7)
16206 | ((elno & 0x1) << 3));
16207 }
16208
16209 bad_scalar:
16210 first_error (_("scalar out of range for multiply instruction"));
16211 return 0;
16212 }
16213
16214 static void
16215 do_neon_fmac_maybe_scalar_long (int subtype)
16216 {
16217 enum neon_shape rs;
16218 int high8;
16219 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16220 field (bits[21:20]) has different meaning. For scalar index variant, it's
16221 used to differentiate add and subtract, otherwise it's with fixed value
16222 0x2. */
16223 int size = -1;
16224
16225 if (inst.cond != COND_ALWAYS)
16226 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16227 "behaviour is UNPREDICTABLE"));
16228
16229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
16230 _(BAD_FP16));
16231
16232 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16233 _(BAD_FPU));
16234
16235 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16236 be a scalar index register. */
16237 if (inst.operands[2].isscalar)
16238 {
16239 high8 = 0xfe000000;
16240 if (subtype)
16241 size = 16;
16242 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16243 }
16244 else
16245 {
16246 high8 = 0xfc000000;
16247 size = 32;
16248 if (subtype)
16249 inst.instruction |= (0x1 << 23);
16250 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16251 }
16252
16253 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16254
16255 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16256 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16257 so we simply pass -1 as size. */
16258 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16259 neon_three_same (quad_p, 0, size);
16260
16261 /* Undo neon_dp_fixup. Redo the high eight bits. */
16262 inst.instruction &= 0x00ffffff;
16263 inst.instruction |= high8;
16264
16265 #define LOW1(R) ((R) & 0x1)
16266 #define HI4(R) (((R) >> 1) & 0xf)
16267 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16268 whether the instruction is in Q form and whether Vm is a scalar indexed
16269 operand. */
16270 if (inst.operands[2].isscalar)
16271 {
16272 unsigned rm
16273 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16274 inst.instruction &= 0xffffffd0;
16275 inst.instruction |= rm;
16276
16277 if (!quad_p)
16278 {
16279 /* Redo Rn as well. */
16280 inst.instruction &= 0xfff0ff7f;
16281 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16282 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16283 }
16284 }
16285 else if (!quad_p)
16286 {
16287 /* Redo Rn and Rm. */
16288 inst.instruction &= 0xfff0ff50;
16289 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16290 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16291 inst.instruction |= HI4 (inst.operands[2].reg);
16292 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16293 }
16294 }
16295
16296 static void
16297 do_neon_vfmal (void)
16298 {
16299 return do_neon_fmac_maybe_scalar_long (0);
16300 }
16301
16302 static void
16303 do_neon_vfmsl (void)
16304 {
16305 return do_neon_fmac_maybe_scalar_long (1);
16306 }
16307
16308 static void
16309 do_neon_dyadic_wide (void)
16310 {
16311 struct neon_type_el et = neon_check_type (3, NS_QQD,
16312 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16313 neon_mixed_length (et, et.size);
16314 }
16315
16316 static void
16317 do_neon_dyadic_narrow (void)
16318 {
16319 struct neon_type_el et = neon_check_type (3, NS_QDD,
16320 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
16321 /* Operand sign is unimportant, and the U bit is part of the opcode,
16322 so force the operand type to integer. */
16323 et.type = NT_integer;
16324 neon_mixed_length (et, et.size / 2);
16325 }
16326
16327 static void
16328 do_neon_mul_sat_scalar_long (void)
16329 {
16330 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16331 }
16332
16333 static void
16334 do_neon_vmull (void)
16335 {
16336 if (inst.operands[2].isscalar)
16337 do_neon_mac_maybe_scalar_long ();
16338 else
16339 {
16340 struct neon_type_el et = neon_check_type (3, NS_QDD,
16341 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
16342
16343 if (et.type == NT_poly)
16344 NEON_ENCODE (POLY, inst);
16345 else
16346 NEON_ENCODE (INTEGER, inst);
16347
16348 /* For polynomial encoding the U bit must be zero, and the size must
16349 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16350 obviously, as 0b10). */
16351 if (et.size == 64)
16352 {
16353 /* Check we're on the correct architecture. */
16354 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16355 inst.error =
16356 _("Instruction form not available on this architecture.");
16357
16358 et.size = 32;
16359 }
16360
16361 neon_mixed_length (et, et.size);
16362 }
16363 }
16364
16365 static void
16366 do_neon_ext (void)
16367 {
16368 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
16369 struct neon_type_el et = neon_check_type (3, rs,
16370 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16371 unsigned imm = (inst.operands[3].imm * et.size) / 8;
16372
16373 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16374 _("shift out of range"));
16375 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16376 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16377 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16378 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16379 inst.instruction |= LOW4 (inst.operands[2].reg);
16380 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16381 inst.instruction |= neon_quad (rs) << 6;
16382 inst.instruction |= imm << 8;
16383
16384 neon_dp_fixup (&inst);
16385 }
16386
16387 static void
16388 do_neon_rev (void)
16389 {
16390 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16391 struct neon_type_el et = neon_check_type (2, rs,
16392 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16393 unsigned op = (inst.instruction >> 7) & 3;
16394 /* N (width of reversed regions) is encoded as part of the bitmask. We
16395 extract it here to check the elements to be reversed are smaller.
16396 Otherwise we'd get a reserved instruction. */
16397 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
16398 gas_assert (elsize != 0);
16399 constraint (et.size >= elsize,
16400 _("elements must be smaller than reversal region"));
16401 neon_two_same (neon_quad (rs), 1, et.size);
16402 }
16403
16404 static void
16405 do_neon_dup (void)
16406 {
16407 if (inst.operands[1].isscalar)
16408 {
16409 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
16410 struct neon_type_el et = neon_check_type (2, rs,
16411 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16412 unsigned sizebits = et.size >> 3;
16413 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
16414 int logsize = neon_logbits (et.size);
16415 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
16416
16417 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
16418 return;
16419
16420 NEON_ENCODE (SCALAR, inst);
16421 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16422 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16423 inst.instruction |= LOW4 (dm);
16424 inst.instruction |= HI1 (dm) << 5;
16425 inst.instruction |= neon_quad (rs) << 6;
16426 inst.instruction |= x << 17;
16427 inst.instruction |= sizebits << 16;
16428
16429 neon_dp_fixup (&inst);
16430 }
16431 else
16432 {
16433 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16434 struct neon_type_el et = neon_check_type (2, rs,
16435 N_8 | N_16 | N_32 | N_KEY, N_EQK);
16436 /* Duplicate ARM register to lanes of vector. */
16437 NEON_ENCODE (ARMREG, inst);
16438 switch (et.size)
16439 {
16440 case 8: inst.instruction |= 0x400000; break;
16441 case 16: inst.instruction |= 0x000020; break;
16442 case 32: inst.instruction |= 0x000000; break;
16443 default: break;
16444 }
16445 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16446 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16447 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
16448 inst.instruction |= neon_quad (rs) << 21;
16449 /* The encoding for this instruction is identical for the ARM and Thumb
16450 variants, except for the condition field. */
16451 do_vfp_cond_or_thumb ();
16452 }
16453 }
16454
16455 /* VMOV has particularly many variations. It can be one of:
16456 0. VMOV<c><q> <Qd>, <Qm>
16457 1. VMOV<c><q> <Dd>, <Dm>
16458 (Register operations, which are VORR with Rm = Rn.)
16459 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16460 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16461 (Immediate loads.)
16462 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16463 (ARM register to scalar.)
16464 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16465 (Two ARM registers to vector.)
16466 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16467 (Scalar to ARM register.)
16468 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16469 (Vector to two ARM registers.)
16470 8. VMOV.F32 <Sd>, <Sm>
16471 9. VMOV.F64 <Dd>, <Dm>
16472 (VFP register moves.)
16473 10. VMOV.F32 <Sd>, #imm
16474 11. VMOV.F64 <Dd>, #imm
16475 (VFP float immediate load.)
16476 12. VMOV <Rd>, <Sm>
16477 (VFP single to ARM reg.)
16478 13. VMOV <Sd>, <Rm>
16479 (ARM reg to VFP single.)
16480 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16481 (Two ARM regs to two VFP singles.)
16482 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16483 (Two VFP singles to two ARM regs.)
16484
16485 These cases can be disambiguated using neon_select_shape, except cases 1/9
16486 and 3/11 which depend on the operand type too.
16487
16488 All the encoded bits are hardcoded by this function.
16489
16490 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16491 Cases 5, 7 may be used with VFPv2 and above.
16492
16493 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
16494 can specify a type where it doesn't make sense to, and is ignored). */
16495
16496 static void
16497 do_neon_mov (void)
16498 {
16499 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
16500 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16501 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16502 NS_HR, NS_RH, NS_HI, NS_NULL);
16503 struct neon_type_el et;
16504 const char *ldconst = 0;
16505
16506 switch (rs)
16507 {
16508 case NS_DD: /* case 1/9. */
16509 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16510 /* It is not an error here if no type is given. */
16511 inst.error = NULL;
16512 if (et.type == NT_float && et.size == 64)
16513 {
16514 do_vfp_nsyn_opcode ("fcpyd");
16515 break;
16516 }
16517 /* fall through. */
16518
16519 case NS_QQ: /* case 0/1. */
16520 {
16521 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16522 return;
16523 /* The architecture manual I have doesn't explicitly state which
16524 value the U bit should have for register->register moves, but
16525 the equivalent VORR instruction has U = 0, so do that. */
16526 inst.instruction = 0x0200110;
16527 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16528 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16529 inst.instruction |= LOW4 (inst.operands[1].reg);
16530 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16531 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16532 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16533 inst.instruction |= neon_quad (rs) << 6;
16534
16535 neon_dp_fixup (&inst);
16536 }
16537 break;
16538
16539 case NS_DI: /* case 3/11. */
16540 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16541 inst.error = NULL;
16542 if (et.type == NT_float && et.size == 64)
16543 {
16544 /* case 11 (fconstd). */
16545 ldconst = "fconstd";
16546 goto encode_fconstd;
16547 }
16548 /* fall through. */
16549
16550 case NS_QI: /* case 2/3. */
16551 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16552 return;
16553 inst.instruction = 0x0800010;
16554 neon_move_immediate ();
16555 neon_dp_fixup (&inst);
16556 break;
16557
16558 case NS_SR: /* case 4. */
16559 {
16560 unsigned bcdebits = 0;
16561 int logsize;
16562 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16563 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
16564
16565 /* .<size> is optional here, defaulting to .32. */
16566 if (inst.vectype.elems == 0
16567 && inst.operands[0].vectype.type == NT_invtype
16568 && inst.operands[1].vectype.type == NT_invtype)
16569 {
16570 inst.vectype.el[0].type = NT_untyped;
16571 inst.vectype.el[0].size = 32;
16572 inst.vectype.elems = 1;
16573 }
16574
16575 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16576 logsize = neon_logbits (et.size);
16577
16578 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16579 _(BAD_FPU));
16580 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16581 && et.size != 32, _(BAD_FPU));
16582 constraint (et.type == NT_invtype, _("bad type for scalar"));
16583 constraint (x >= 64 / et.size, _("scalar index out of range"));
16584
16585 switch (et.size)
16586 {
16587 case 8: bcdebits = 0x8; break;
16588 case 16: bcdebits = 0x1; break;
16589 case 32: bcdebits = 0x0; break;
16590 default: ;
16591 }
16592
16593 bcdebits |= x << logsize;
16594
16595 inst.instruction = 0xe000b10;
16596 do_vfp_cond_or_thumb ();
16597 inst.instruction |= LOW4 (dn) << 16;
16598 inst.instruction |= HI1 (dn) << 7;
16599 inst.instruction |= inst.operands[1].reg << 12;
16600 inst.instruction |= (bcdebits & 3) << 5;
16601 inst.instruction |= (bcdebits >> 2) << 21;
16602 }
16603 break;
16604
16605 case NS_DRR: /* case 5 (fmdrr). */
16606 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16607 _(BAD_FPU));
16608
16609 inst.instruction = 0xc400b10;
16610 do_vfp_cond_or_thumb ();
16611 inst.instruction |= LOW4 (inst.operands[0].reg);
16612 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16613 inst.instruction |= inst.operands[1].reg << 12;
16614 inst.instruction |= inst.operands[2].reg << 16;
16615 break;
16616
16617 case NS_RS: /* case 6. */
16618 {
16619 unsigned logsize;
16620 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16621 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16622 unsigned abcdebits = 0;
16623
16624 /* .<dt> is optional here, defaulting to .32. */
16625 if (inst.vectype.elems == 0
16626 && inst.operands[0].vectype.type == NT_invtype
16627 && inst.operands[1].vectype.type == NT_invtype)
16628 {
16629 inst.vectype.el[0].type = NT_untyped;
16630 inst.vectype.el[0].size = 32;
16631 inst.vectype.elems = 1;
16632 }
16633
16634 et = neon_check_type (2, NS_NULL,
16635 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16636 logsize = neon_logbits (et.size);
16637
16638 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16639 _(BAD_FPU));
16640 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16641 && et.size != 32, _(BAD_FPU));
16642 constraint (et.type == NT_invtype, _("bad type for scalar"));
16643 constraint (x >= 64 / et.size, _("scalar index out of range"));
16644
16645 switch (et.size)
16646 {
16647 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16648 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16649 case 32: abcdebits = 0x00; break;
16650 default: ;
16651 }
16652
16653 abcdebits |= x << logsize;
16654 inst.instruction = 0xe100b10;
16655 do_vfp_cond_or_thumb ();
16656 inst.instruction |= LOW4 (dn) << 16;
16657 inst.instruction |= HI1 (dn) << 7;
16658 inst.instruction |= inst.operands[0].reg << 12;
16659 inst.instruction |= (abcdebits & 3) << 5;
16660 inst.instruction |= (abcdebits >> 2) << 21;
16661 }
16662 break;
16663
16664 case NS_RRD: /* case 7 (fmrrd). */
16665 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16666 _(BAD_FPU));
16667
16668 inst.instruction = 0xc500b10;
16669 do_vfp_cond_or_thumb ();
16670 inst.instruction |= inst.operands[0].reg << 12;
16671 inst.instruction |= inst.operands[1].reg << 16;
16672 inst.instruction |= LOW4 (inst.operands[2].reg);
16673 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16674 break;
16675
16676 case NS_FF: /* case 8 (fcpys). */
16677 do_vfp_nsyn_opcode ("fcpys");
16678 break;
16679
16680 case NS_HI:
16681 case NS_FI: /* case 10 (fconsts). */
16682 ldconst = "fconsts";
16683 encode_fconstd:
16684 if (is_quarter_float (inst.operands[1].imm))
16685 {
16686 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16687 do_vfp_nsyn_opcode (ldconst);
16688
16689 /* ARMv8.2 fp16 vmov.f16 instruction. */
16690 if (rs == NS_HI)
16691 do_scalar_fp16_v82_encode ();
16692 }
16693 else
16694 first_error (_("immediate out of range"));
16695 break;
16696
16697 case NS_RH:
16698 case NS_RF: /* case 12 (fmrs). */
16699 do_vfp_nsyn_opcode ("fmrs");
16700 /* ARMv8.2 fp16 vmov.f16 instruction. */
16701 if (rs == NS_RH)
16702 do_scalar_fp16_v82_encode ();
16703 break;
16704
16705 case NS_HR:
16706 case NS_FR: /* case 13 (fmsr). */
16707 do_vfp_nsyn_opcode ("fmsr");
16708 /* ARMv8.2 fp16 vmov.f16 instruction. */
16709 if (rs == NS_HR)
16710 do_scalar_fp16_v82_encode ();
16711 break;
16712
16713 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16714 (one of which is a list), but we have parsed four. Do some fiddling to
16715 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16716 expect. */
16717 case NS_RRFF: /* case 14 (fmrrs). */
16718 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16719 _("VFP registers must be adjacent"));
16720 inst.operands[2].imm = 2;
16721 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16722 do_vfp_nsyn_opcode ("fmrrs");
16723 break;
16724
16725 case NS_FFRR: /* case 15 (fmsrr). */
16726 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16727 _("VFP registers must be adjacent"));
16728 inst.operands[1] = inst.operands[2];
16729 inst.operands[2] = inst.operands[3];
16730 inst.operands[0].imm = 2;
16731 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16732 do_vfp_nsyn_opcode ("fmsrr");
16733 break;
16734
16735 case NS_NULL:
16736 /* neon_select_shape has determined that the instruction
16737 shape is wrong and has already set the error message. */
16738 break;
16739
16740 default:
16741 abort ();
16742 }
16743 }
16744
16745 static void
16746 do_neon_rshift_round_imm (void)
16747 {
16748 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16749 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16750 int imm = inst.operands[2].imm;
16751
16752 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16753 if (imm == 0)
16754 {
16755 inst.operands[2].present = 0;
16756 do_neon_mov ();
16757 return;
16758 }
16759
16760 constraint (imm < 1 || (unsigned)imm > et.size,
16761 _("immediate out of range for shift"));
16762 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16763 et.size - imm);
16764 }
16765
16766 static void
16767 do_neon_movhf (void)
16768 {
16769 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16770 constraint (rs != NS_HH, _("invalid suffix"));
16771
16772 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16773 _(BAD_FPU));
16774
16775 do_vfp_sp_monadic ();
16776
16777 inst.is_neon = 1;
16778 inst.instruction |= 0xf0000000;
16779 }
16780
16781 static void
16782 do_neon_movl (void)
16783 {
16784 struct neon_type_el et = neon_check_type (2, NS_QD,
16785 N_EQK | N_DBL, N_SU_32 | N_KEY);
16786 unsigned sizebits = et.size >> 3;
16787 inst.instruction |= sizebits << 19;
16788 neon_two_same (0, et.type == NT_unsigned, -1);
16789 }
16790
16791 static void
16792 do_neon_trn (void)
16793 {
16794 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16795 struct neon_type_el et = neon_check_type (2, rs,
16796 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16797 NEON_ENCODE (INTEGER, inst);
16798 neon_two_same (neon_quad (rs), 1, et.size);
16799 }
16800
16801 static void
16802 do_neon_zip_uzp (void)
16803 {
16804 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16805 struct neon_type_el et = neon_check_type (2, rs,
16806 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16807 if (rs == NS_DD && et.size == 32)
16808 {
16809 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16810 inst.instruction = N_MNEM_vtrn;
16811 do_neon_trn ();
16812 return;
16813 }
16814 neon_two_same (neon_quad (rs), 1, et.size);
16815 }
16816
16817 static void
16818 do_neon_sat_abs_neg (void)
16819 {
16820 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16821 struct neon_type_el et = neon_check_type (2, rs,
16822 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16823 neon_two_same (neon_quad (rs), 1, et.size);
16824 }
16825
16826 static void
16827 do_neon_pair_long (void)
16828 {
16829 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16830 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16831 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16832 inst.instruction |= (et.type == NT_unsigned) << 7;
16833 neon_two_same (neon_quad (rs), 1, et.size);
16834 }
16835
16836 static void
16837 do_neon_recip_est (void)
16838 {
16839 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16840 struct neon_type_el et = neon_check_type (2, rs,
16841 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
16842 inst.instruction |= (et.type == NT_float) << 8;
16843 neon_two_same (neon_quad (rs), 1, et.size);
16844 }
16845
16846 static void
16847 do_neon_cls (void)
16848 {
16849 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16850 struct neon_type_el et = neon_check_type (2, rs,
16851 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16852 neon_two_same (neon_quad (rs), 1, et.size);
16853 }
16854
16855 static void
16856 do_neon_clz (void)
16857 {
16858 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16859 struct neon_type_el et = neon_check_type (2, rs,
16860 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16861 neon_two_same (neon_quad (rs), 1, et.size);
16862 }
16863
16864 static void
16865 do_neon_cnt (void)
16866 {
16867 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16868 struct neon_type_el et = neon_check_type (2, rs,
16869 N_EQK | N_INT, N_8 | N_KEY);
16870 neon_two_same (neon_quad (rs), 1, et.size);
16871 }
16872
16873 static void
16874 do_neon_swp (void)
16875 {
16876 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16877 neon_two_same (neon_quad (rs), 1, -1);
16878 }
16879
16880 static void
16881 do_neon_tbl_tbx (void)
16882 {
16883 unsigned listlenbits;
16884 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16885
16886 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16887 {
16888 first_error (_("bad list length for table lookup"));
16889 return;
16890 }
16891
16892 listlenbits = inst.operands[1].imm - 1;
16893 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16894 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16895 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16896 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16897 inst.instruction |= LOW4 (inst.operands[2].reg);
16898 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16899 inst.instruction |= listlenbits << 8;
16900
16901 neon_dp_fixup (&inst);
16902 }
16903
16904 static void
16905 do_neon_ldm_stm (void)
16906 {
16907 /* P, U and L bits are part of bitmask. */
16908 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16909 unsigned offsetbits = inst.operands[1].imm * 2;
16910
16911 if (inst.operands[1].issingle)
16912 {
16913 do_vfp_nsyn_ldm_stm (is_dbmode);
16914 return;
16915 }
16916
16917 constraint (is_dbmode && !inst.operands[0].writeback,
16918 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16919
16920 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16921 _("register list must contain at least 1 and at most 16 "
16922 "registers"));
16923
16924 inst.instruction |= inst.operands[0].reg << 16;
16925 inst.instruction |= inst.operands[0].writeback << 21;
16926 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16927 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16928
16929 inst.instruction |= offsetbits;
16930
16931 do_vfp_cond_or_thumb ();
16932 }
16933
16934 static void
16935 do_neon_ldr_str (void)
16936 {
16937 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16938
16939 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16940 And is UNPREDICTABLE in thumb mode. */
16941 if (!is_ldr
16942 && inst.operands[1].reg == REG_PC
16943 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16944 {
16945 if (thumb_mode)
16946 inst.error = _("Use of PC here is UNPREDICTABLE");
16947 else if (warn_on_deprecated)
16948 as_tsktsk (_("Use of PC here is deprecated"));
16949 }
16950
16951 if (inst.operands[0].issingle)
16952 {
16953 if (is_ldr)
16954 do_vfp_nsyn_opcode ("flds");
16955 else
16956 do_vfp_nsyn_opcode ("fsts");
16957
16958 /* ARMv8.2 vldr.16/vstr.16 instruction. */
16959 if (inst.vectype.el[0].size == 16)
16960 do_scalar_fp16_v82_encode ();
16961 }
16962 else
16963 {
16964 if (is_ldr)
16965 do_vfp_nsyn_opcode ("fldd");
16966 else
16967 do_vfp_nsyn_opcode ("fstd");
16968 }
16969 }
16970
16971 /* "interleave" version also handles non-interleaving register VLD1/VST1
16972 instructions. */
16973
16974 static void
16975 do_neon_ld_st_interleave (void)
16976 {
16977 struct neon_type_el et = neon_check_type (1, NS_NULL,
16978 N_8 | N_16 | N_32 | N_64);
16979 unsigned alignbits = 0;
16980 unsigned idx;
16981 /* The bits in this table go:
16982 0: register stride of one (0) or two (1)
16983 1,2: register list length, minus one (1, 2, 3, 4).
16984 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16985 We use -1 for invalid entries. */
16986 const int typetable[] =
16987 {
16988 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16989 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16990 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16991 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16992 };
16993 int typebits;
16994
16995 if (et.type == NT_invtype)
16996 return;
16997
16998 if (inst.operands[1].immisalign)
16999 switch (inst.operands[1].imm >> 8)
17000 {
17001 case 64: alignbits = 1; break;
17002 case 128:
17003 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
17004 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17005 goto bad_alignment;
17006 alignbits = 2;
17007 break;
17008 case 256:
17009 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17010 goto bad_alignment;
17011 alignbits = 3;
17012 break;
17013 default:
17014 bad_alignment:
17015 first_error (_("bad alignment"));
17016 return;
17017 }
17018
17019 inst.instruction |= alignbits << 4;
17020 inst.instruction |= neon_logbits (et.size) << 6;
17021
17022 /* Bits [4:6] of the immediate in a list specifier encode register stride
17023 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17024 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17025 up the right value for "type" in a table based on this value and the given
17026 list style, then stick it back. */
17027 idx = ((inst.operands[0].imm >> 4) & 7)
17028 | (((inst.instruction >> 8) & 3) << 3);
17029
17030 typebits = typetable[idx];
17031
17032 constraint (typebits == -1, _("bad list type for instruction"));
17033 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17034 _("bad element type for instruction"));
17035
17036 inst.instruction &= ~0xf00;
17037 inst.instruction |= typebits << 8;
17038 }
17039
17040 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17041 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17042 otherwise. The variable arguments are a list of pairs of legal (size, align)
17043 values, terminated with -1. */
17044
17045 static int
17046 neon_alignment_bit (int size, int align, int *do_alignment, ...)
17047 {
17048 va_list ap;
17049 int result = FAIL, thissize, thisalign;
17050
17051 if (!inst.operands[1].immisalign)
17052 {
17053 *do_alignment = 0;
17054 return SUCCESS;
17055 }
17056
17057 va_start (ap, do_alignment);
17058
17059 do
17060 {
17061 thissize = va_arg (ap, int);
17062 if (thissize == -1)
17063 break;
17064 thisalign = va_arg (ap, int);
17065
17066 if (size == thissize && align == thisalign)
17067 result = SUCCESS;
17068 }
17069 while (result != SUCCESS);
17070
17071 va_end (ap);
17072
17073 if (result == SUCCESS)
17074 *do_alignment = 1;
17075 else
17076 first_error (_("unsupported alignment for instruction"));
17077
17078 return result;
17079 }
17080
17081 static void
17082 do_neon_ld_st_lane (void)
17083 {
17084 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17085 int align_good, do_alignment = 0;
17086 int logsize = neon_logbits (et.size);
17087 int align = inst.operands[1].imm >> 8;
17088 int n = (inst.instruction >> 8) & 3;
17089 int max_el = 64 / et.size;
17090
17091 if (et.type == NT_invtype)
17092 return;
17093
17094 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
17095 _("bad list length"));
17096 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
17097 _("scalar index out of range"));
17098 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
17099 && et.size == 8,
17100 _("stride of 2 unavailable when element size is 8"));
17101
17102 switch (n)
17103 {
17104 case 0: /* VLD1 / VST1. */
17105 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
17106 32, 32, -1);
17107 if (align_good == FAIL)
17108 return;
17109 if (do_alignment)
17110 {
17111 unsigned alignbits = 0;
17112 switch (et.size)
17113 {
17114 case 16: alignbits = 0x1; break;
17115 case 32: alignbits = 0x3; break;
17116 default: ;
17117 }
17118 inst.instruction |= alignbits << 4;
17119 }
17120 break;
17121
17122 case 1: /* VLD2 / VST2. */
17123 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17124 16, 32, 32, 64, -1);
17125 if (align_good == FAIL)
17126 return;
17127 if (do_alignment)
17128 inst.instruction |= 1 << 4;
17129 break;
17130
17131 case 2: /* VLD3 / VST3. */
17132 constraint (inst.operands[1].immisalign,
17133 _("can't use alignment with this instruction"));
17134 break;
17135
17136 case 3: /* VLD4 / VST4. */
17137 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17138 16, 64, 32, 64, 32, 128, -1);
17139 if (align_good == FAIL)
17140 return;
17141 if (do_alignment)
17142 {
17143 unsigned alignbits = 0;
17144 switch (et.size)
17145 {
17146 case 8: alignbits = 0x1; break;
17147 case 16: alignbits = 0x1; break;
17148 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17149 default: ;
17150 }
17151 inst.instruction |= alignbits << 4;
17152 }
17153 break;
17154
17155 default: ;
17156 }
17157
17158 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17159 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17160 inst.instruction |= 1 << (4 + logsize);
17161
17162 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17163 inst.instruction |= logsize << 10;
17164 }
17165
17166 /* Encode single n-element structure to all lanes VLD<n> instructions. */
17167
17168 static void
17169 do_neon_ld_dup (void)
17170 {
17171 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17172 int align_good, do_alignment = 0;
17173
17174 if (et.type == NT_invtype)
17175 return;
17176
17177 switch ((inst.instruction >> 8) & 3)
17178 {
17179 case 0: /* VLD1. */
17180 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
17181 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17182 &do_alignment, 16, 16, 32, 32, -1);
17183 if (align_good == FAIL)
17184 return;
17185 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
17186 {
17187 case 1: break;
17188 case 2: inst.instruction |= 1 << 5; break;
17189 default: first_error (_("bad list length")); return;
17190 }
17191 inst.instruction |= neon_logbits (et.size) << 6;
17192 break;
17193
17194 case 1: /* VLD2. */
17195 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17196 &do_alignment, 8, 16, 16, 32, 32, 64,
17197 -1);
17198 if (align_good == FAIL)
17199 return;
17200 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
17201 _("bad list length"));
17202 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17203 inst.instruction |= 1 << 5;
17204 inst.instruction |= neon_logbits (et.size) << 6;
17205 break;
17206
17207 case 2: /* VLD3. */
17208 constraint (inst.operands[1].immisalign,
17209 _("can't use alignment with this instruction"));
17210 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
17211 _("bad list length"));
17212 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17213 inst.instruction |= 1 << 5;
17214 inst.instruction |= neon_logbits (et.size) << 6;
17215 break;
17216
17217 case 3: /* VLD4. */
17218 {
17219 int align = inst.operands[1].imm >> 8;
17220 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17221 16, 64, 32, 64, 32, 128, -1);
17222 if (align_good == FAIL)
17223 return;
17224 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17225 _("bad list length"));
17226 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17227 inst.instruction |= 1 << 5;
17228 if (et.size == 32 && align == 128)
17229 inst.instruction |= 0x3 << 6;
17230 else
17231 inst.instruction |= neon_logbits (et.size) << 6;
17232 }
17233 break;
17234
17235 default: ;
17236 }
17237
17238 inst.instruction |= do_alignment << 4;
17239 }
17240
17241 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17242 apart from bits [11:4]. */
17243
17244 static void
17245 do_neon_ldx_stx (void)
17246 {
17247 if (inst.operands[1].isreg)
17248 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17249
17250 switch (NEON_LANE (inst.operands[0].imm))
17251 {
17252 case NEON_INTERLEAVE_LANES:
17253 NEON_ENCODE (INTERLV, inst);
17254 do_neon_ld_st_interleave ();
17255 break;
17256
17257 case NEON_ALL_LANES:
17258 NEON_ENCODE (DUP, inst);
17259 if (inst.instruction == N_INV)
17260 {
17261 first_error ("only loads support such operands");
17262 break;
17263 }
17264 do_neon_ld_dup ();
17265 break;
17266
17267 default:
17268 NEON_ENCODE (LANE, inst);
17269 do_neon_ld_st_lane ();
17270 }
17271
17272 /* L bit comes from bit mask. */
17273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17274 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17275 inst.instruction |= inst.operands[1].reg << 16;
17276
17277 if (inst.operands[1].postind)
17278 {
17279 int postreg = inst.operands[1].imm & 0xf;
17280 constraint (!inst.operands[1].immisreg,
17281 _("post-index must be a register"));
17282 constraint (postreg == 0xd || postreg == 0xf,
17283 _("bad register for post-index"));
17284 inst.instruction |= postreg;
17285 }
17286 else
17287 {
17288 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17289 constraint (inst.reloc.exp.X_op != O_constant
17290 || inst.reloc.exp.X_add_number != 0,
17291 BAD_ADDR_MODE);
17292
17293 if (inst.operands[1].writeback)
17294 {
17295 inst.instruction |= 0xd;
17296 }
17297 else
17298 inst.instruction |= 0xf;
17299 }
17300
17301 if (thumb_mode)
17302 inst.instruction |= 0xf9000000;
17303 else
17304 inst.instruction |= 0xf4000000;
17305 }
17306
17307 /* FP v8. */
17308 static void
17309 do_vfp_nsyn_fpv8 (enum neon_shape rs)
17310 {
17311 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17312 D register operands. */
17313 if (neon_shape_class[rs] == SC_DOUBLE)
17314 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17315 _(BAD_FPU));
17316
17317 NEON_ENCODE (FPV8, inst);
17318
17319 if (rs == NS_FFF || rs == NS_HHH)
17320 {
17321 do_vfp_sp_dyadic ();
17322
17323 /* ARMv8.2 fp16 instruction. */
17324 if (rs == NS_HHH)
17325 do_scalar_fp16_v82_encode ();
17326 }
17327 else
17328 do_vfp_dp_rd_rn_rm ();
17329
17330 if (rs == NS_DDD)
17331 inst.instruction |= 0x100;
17332
17333 inst.instruction |= 0xf0000000;
17334 }
17335
17336 static void
17337 do_vsel (void)
17338 {
17339 set_it_insn_type (OUTSIDE_IT_INSN);
17340
17341 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17342 first_error (_("invalid instruction shape"));
17343 }
17344
17345 static void
17346 do_vmaxnm (void)
17347 {
17348 set_it_insn_type (OUTSIDE_IT_INSN);
17349
17350 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17351 return;
17352
17353 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17354 return;
17355
17356 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
17357 }
17358
17359 static void
17360 do_vrint_1 (enum neon_cvt_mode mode)
17361 {
17362 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
17363 struct neon_type_el et;
17364
17365 if (rs == NS_NULL)
17366 return;
17367
17368 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17369 D register operands. */
17370 if (neon_shape_class[rs] == SC_DOUBLE)
17371 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17372 _(BAD_FPU));
17373
17374 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17375 | N_VFP);
17376 if (et.type != NT_invtype)
17377 {
17378 /* VFP encodings. */
17379 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17380 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17381 set_it_insn_type (OUTSIDE_IT_INSN);
17382
17383 NEON_ENCODE (FPV8, inst);
17384 if (rs == NS_FF || rs == NS_HH)
17385 do_vfp_sp_monadic ();
17386 else
17387 do_vfp_dp_rd_rm ();
17388
17389 switch (mode)
17390 {
17391 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17392 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17393 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17394 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17395 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17396 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17397 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17398 default: abort ();
17399 }
17400
17401 inst.instruction |= (rs == NS_DD) << 8;
17402 do_vfp_cond_or_thumb ();
17403
17404 /* ARMv8.2 fp16 vrint instruction. */
17405 if (rs == NS_HH)
17406 do_scalar_fp16_v82_encode ();
17407 }
17408 else
17409 {
17410 /* Neon encodings (or something broken...). */
17411 inst.error = NULL;
17412 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
17413
17414 if (et.type == NT_invtype)
17415 return;
17416
17417 set_it_insn_type (OUTSIDE_IT_INSN);
17418 NEON_ENCODE (FLOAT, inst);
17419
17420 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17421 return;
17422
17423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17424 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17425 inst.instruction |= LOW4 (inst.operands[1].reg);
17426 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17427 inst.instruction |= neon_quad (rs) << 6;
17428 /* Mask off the original size bits and reencode them. */
17429 inst.instruction = ((inst.instruction & 0xfff3ffff)
17430 | neon_logbits (et.size) << 18);
17431
17432 switch (mode)
17433 {
17434 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17435 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17436 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17437 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17438 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17439 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17440 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17441 default: abort ();
17442 }
17443
17444 if (thumb_mode)
17445 inst.instruction |= 0xfc000000;
17446 else
17447 inst.instruction |= 0xf0000000;
17448 }
17449 }
17450
17451 static void
17452 do_vrintx (void)
17453 {
17454 do_vrint_1 (neon_cvt_mode_x);
17455 }
17456
17457 static void
17458 do_vrintz (void)
17459 {
17460 do_vrint_1 (neon_cvt_mode_z);
17461 }
17462
17463 static void
17464 do_vrintr (void)
17465 {
17466 do_vrint_1 (neon_cvt_mode_r);
17467 }
17468
17469 static void
17470 do_vrinta (void)
17471 {
17472 do_vrint_1 (neon_cvt_mode_a);
17473 }
17474
17475 static void
17476 do_vrintn (void)
17477 {
17478 do_vrint_1 (neon_cvt_mode_n);
17479 }
17480
17481 static void
17482 do_vrintp (void)
17483 {
17484 do_vrint_1 (neon_cvt_mode_p);
17485 }
17486
17487 static void
17488 do_vrintm (void)
17489 {
17490 do_vrint_1 (neon_cvt_mode_m);
17491 }
17492
17493 static unsigned
17494 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17495 {
17496 unsigned regno = NEON_SCALAR_REG (opnd);
17497 unsigned elno = NEON_SCALAR_INDEX (opnd);
17498
17499 if (elsize == 16 && elno < 2 && regno < 16)
17500 return regno | (elno << 4);
17501 else if (elsize == 32 && elno == 0)
17502 return regno;
17503
17504 first_error (_("scalar out of range"));
17505 return 0;
17506 }
17507
17508 static void
17509 do_vcmla (void)
17510 {
17511 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17512 _(BAD_FPU));
17513 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17514 unsigned rot = inst.reloc.exp.X_add_number;
17515 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17516 _("immediate out of range"));
17517 rot /= 90;
17518 if (inst.operands[2].isscalar)
17519 {
17520 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17521 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17522 N_KEY | N_F16 | N_F32).size;
17523 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17524 inst.is_neon = 1;
17525 inst.instruction = 0xfe000800;
17526 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17527 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17528 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17529 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17530 inst.instruction |= LOW4 (m);
17531 inst.instruction |= HI1 (m) << 5;
17532 inst.instruction |= neon_quad (rs) << 6;
17533 inst.instruction |= rot << 20;
17534 inst.instruction |= (size == 32) << 23;
17535 }
17536 else
17537 {
17538 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17539 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17540 N_KEY | N_F16 | N_F32).size;
17541 neon_three_same (neon_quad (rs), 0, -1);
17542 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17543 inst.instruction |= 0xfc200800;
17544 inst.instruction |= rot << 23;
17545 inst.instruction |= (size == 32) << 20;
17546 }
17547 }
17548
17549 static void
17550 do_vcadd (void)
17551 {
17552 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17553 _(BAD_FPU));
17554 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17555 unsigned rot = inst.reloc.exp.X_add_number;
17556 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17557 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17558 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17559 N_KEY | N_F16 | N_F32).size;
17560 neon_three_same (neon_quad (rs), 0, -1);
17561 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17562 inst.instruction |= 0xfc800800;
17563 inst.instruction |= (rot == 270) << 24;
17564 inst.instruction |= (size == 32) << 20;
17565 }
17566
17567 /* Dot Product instructions encoding support. */
17568
17569 static void
17570 do_neon_dotproduct (int unsigned_p)
17571 {
17572 enum neon_shape rs;
17573 unsigned scalar_oprd2 = 0;
17574 int high8;
17575
17576 if (inst.cond != COND_ALWAYS)
17577 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17578 "is UNPREDICTABLE"));
17579
17580 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17581 _(BAD_FPU));
17582
17583 /* Dot Product instructions are in three-same D/Q register format or the third
17584 operand can be a scalar index register. */
17585 if (inst.operands[2].isscalar)
17586 {
17587 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17588 high8 = 0xfe000000;
17589 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17590 }
17591 else
17592 {
17593 high8 = 0xfc000000;
17594 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17595 }
17596
17597 if (unsigned_p)
17598 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17599 else
17600 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17601
17602 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17603 Product instruction, so we pass 0 as the "ubit" parameter. And the
17604 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17605 neon_three_same (neon_quad (rs), 0, 32);
17606
17607 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17608 different NEON three-same encoding. */
17609 inst.instruction &= 0x00ffffff;
17610 inst.instruction |= high8;
17611 /* Encode 'U' bit which indicates signedness. */
17612 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17613 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17614 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17615 the instruction encoding. */
17616 if (inst.operands[2].isscalar)
17617 {
17618 inst.instruction &= 0xffffffd0;
17619 inst.instruction |= LOW4 (scalar_oprd2);
17620 inst.instruction |= HI1 (scalar_oprd2) << 5;
17621 }
17622 }
17623
17624 /* Dot Product instructions for signed integer. */
17625
17626 static void
17627 do_neon_dotproduct_s (void)
17628 {
17629 return do_neon_dotproduct (0);
17630 }
17631
17632 /* Dot Product instructions for unsigned integer. */
17633
17634 static void
17635 do_neon_dotproduct_u (void)
17636 {
17637 return do_neon_dotproduct (1);
17638 }
17639
17640 /* Crypto v1 instructions. */
17641 static void
17642 do_crypto_2op_1 (unsigned elttype, int op)
17643 {
17644 set_it_insn_type (OUTSIDE_IT_INSN);
17645
17646 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17647 == NT_invtype)
17648 return;
17649
17650 inst.error = NULL;
17651
17652 NEON_ENCODE (INTEGER, inst);
17653 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17654 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17655 inst.instruction |= LOW4 (inst.operands[1].reg);
17656 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17657 if (op != -1)
17658 inst.instruction |= op << 6;
17659
17660 if (thumb_mode)
17661 inst.instruction |= 0xfc000000;
17662 else
17663 inst.instruction |= 0xf0000000;
17664 }
17665
17666 static void
17667 do_crypto_3op_1 (int u, int op)
17668 {
17669 set_it_insn_type (OUTSIDE_IT_INSN);
17670
17671 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17672 N_32 | N_UNT | N_KEY).type == NT_invtype)
17673 return;
17674
17675 inst.error = NULL;
17676
17677 NEON_ENCODE (INTEGER, inst);
17678 neon_three_same (1, u, 8 << op);
17679 }
17680
17681 static void
17682 do_aese (void)
17683 {
17684 do_crypto_2op_1 (N_8, 0);
17685 }
17686
17687 static void
17688 do_aesd (void)
17689 {
17690 do_crypto_2op_1 (N_8, 1);
17691 }
17692
17693 static void
17694 do_aesmc (void)
17695 {
17696 do_crypto_2op_1 (N_8, 2);
17697 }
17698
17699 static void
17700 do_aesimc (void)
17701 {
17702 do_crypto_2op_1 (N_8, 3);
17703 }
17704
17705 static void
17706 do_sha1c (void)
17707 {
17708 do_crypto_3op_1 (0, 0);
17709 }
17710
17711 static void
17712 do_sha1p (void)
17713 {
17714 do_crypto_3op_1 (0, 1);
17715 }
17716
17717 static void
17718 do_sha1m (void)
17719 {
17720 do_crypto_3op_1 (0, 2);
17721 }
17722
17723 static void
17724 do_sha1su0 (void)
17725 {
17726 do_crypto_3op_1 (0, 3);
17727 }
17728
17729 static void
17730 do_sha256h (void)
17731 {
17732 do_crypto_3op_1 (1, 0);
17733 }
17734
17735 static void
17736 do_sha256h2 (void)
17737 {
17738 do_crypto_3op_1 (1, 1);
17739 }
17740
17741 static void
17742 do_sha256su1 (void)
17743 {
17744 do_crypto_3op_1 (1, 2);
17745 }
17746
17747 static void
17748 do_sha1h (void)
17749 {
17750 do_crypto_2op_1 (N_32, -1);
17751 }
17752
17753 static void
17754 do_sha1su1 (void)
17755 {
17756 do_crypto_2op_1 (N_32, 0);
17757 }
17758
17759 static void
17760 do_sha256su0 (void)
17761 {
17762 do_crypto_2op_1 (N_32, 1);
17763 }
17764
17765 static void
17766 do_crc32_1 (unsigned int poly, unsigned int sz)
17767 {
17768 unsigned int Rd = inst.operands[0].reg;
17769 unsigned int Rn = inst.operands[1].reg;
17770 unsigned int Rm = inst.operands[2].reg;
17771
17772 set_it_insn_type (OUTSIDE_IT_INSN);
17773 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17774 inst.instruction |= LOW4 (Rn) << 16;
17775 inst.instruction |= LOW4 (Rm);
17776 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17777 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17778
17779 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17780 as_warn (UNPRED_REG ("r15"));
17781 }
17782
17783 static void
17784 do_crc32b (void)
17785 {
17786 do_crc32_1 (0, 0);
17787 }
17788
17789 static void
17790 do_crc32h (void)
17791 {
17792 do_crc32_1 (0, 1);
17793 }
17794
17795 static void
17796 do_crc32w (void)
17797 {
17798 do_crc32_1 (0, 2);
17799 }
17800
17801 static void
17802 do_crc32cb (void)
17803 {
17804 do_crc32_1 (1, 0);
17805 }
17806
17807 static void
17808 do_crc32ch (void)
17809 {
17810 do_crc32_1 (1, 1);
17811 }
17812
17813 static void
17814 do_crc32cw (void)
17815 {
17816 do_crc32_1 (1, 2);
17817 }
17818
17819 static void
17820 do_vjcvt (void)
17821 {
17822 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17823 _(BAD_FPU));
17824 neon_check_type (2, NS_FD, N_S32, N_F64);
17825 do_vfp_sp_dp_cvt ();
17826 do_vfp_cond_or_thumb ();
17827 }
17828
17829 \f
17830 /* Overall per-instruction processing. */
17831
17832 /* We need to be able to fix up arbitrary expressions in some statements.
17833 This is so that we can handle symbols that are an arbitrary distance from
17834 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17835 which returns part of an address in a form which will be valid for
17836 a data instruction. We do this by pushing the expression into a symbol
17837 in the expr_section, and creating a fix for that. */
17838
17839 static void
17840 fix_new_arm (fragS * frag,
17841 int where,
17842 short int size,
17843 expressionS * exp,
17844 int pc_rel,
17845 int reloc)
17846 {
17847 fixS * new_fix;
17848
17849 switch (exp->X_op)
17850 {
17851 case O_constant:
17852 if (pc_rel)
17853 {
17854 /* Create an absolute valued symbol, so we have something to
17855 refer to in the object file. Unfortunately for us, gas's
17856 generic expression parsing will already have folded out
17857 any use of .set foo/.type foo %function that may have
17858 been used to set type information of the target location,
17859 that's being specified symbolically. We have to presume
17860 the user knows what they are doing. */
17861 char name[16 + 8];
17862 symbolS *symbol;
17863
17864 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17865
17866 symbol = symbol_find_or_make (name);
17867 S_SET_SEGMENT (symbol, absolute_section);
17868 symbol_set_frag (symbol, &zero_address_frag);
17869 S_SET_VALUE (symbol, exp->X_add_number);
17870 exp->X_op = O_symbol;
17871 exp->X_add_symbol = symbol;
17872 exp->X_add_number = 0;
17873 }
17874 /* FALLTHROUGH */
17875 case O_symbol:
17876 case O_add:
17877 case O_subtract:
17878 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
17879 (enum bfd_reloc_code_real) reloc);
17880 break;
17881
17882 default:
17883 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
17884 pc_rel, (enum bfd_reloc_code_real) reloc);
17885 break;
17886 }
17887
17888 /* Mark whether the fix is to a THUMB instruction, or an ARM
17889 instruction. */
17890 new_fix->tc_fix_data = thumb_mode;
17891 }
17892
17893 /* Create a frg for an instruction requiring relaxation. */
17894 static void
17895 output_relax_insn (void)
17896 {
17897 char * to;
17898 symbolS *sym;
17899 int offset;
17900
17901 /* The size of the instruction is unknown, so tie the debug info to the
17902 start of the instruction. */
17903 dwarf2_emit_insn (0);
17904
17905 switch (inst.reloc.exp.X_op)
17906 {
17907 case O_symbol:
17908 sym = inst.reloc.exp.X_add_symbol;
17909 offset = inst.reloc.exp.X_add_number;
17910 break;
17911 case O_constant:
17912 sym = NULL;
17913 offset = inst.reloc.exp.X_add_number;
17914 break;
17915 default:
17916 sym = make_expr_symbol (&inst.reloc.exp);
17917 offset = 0;
17918 break;
17919 }
17920 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17921 inst.relax, sym, offset, NULL/*offset, opcode*/);
17922 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
17923 }
17924
17925 /* Write a 32-bit thumb instruction to buf. */
17926 static void
17927 put_thumb32_insn (char * buf, unsigned long insn)
17928 {
17929 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17930 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17931 }
17932
17933 static void
17934 output_inst (const char * str)
17935 {
17936 char * to = NULL;
17937
17938 if (inst.error)
17939 {
17940 as_bad ("%s -- `%s'", inst.error, str);
17941 return;
17942 }
17943 if (inst.relax)
17944 {
17945 output_relax_insn ();
17946 return;
17947 }
17948 if (inst.size == 0)
17949 return;
17950
17951 to = frag_more (inst.size);
17952 /* PR 9814: Record the thumb mode into the current frag so that we know
17953 what type of NOP padding to use, if necessary. We override any previous
17954 setting so that if the mode has changed then the NOPS that we use will
17955 match the encoding of the last instruction in the frag. */
17956 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
17957
17958 if (thumb_mode && (inst.size > THUMB_SIZE))
17959 {
17960 gas_assert (inst.size == (2 * THUMB_SIZE));
17961 put_thumb32_insn (to, inst.instruction);
17962 }
17963 else if (inst.size > INSN_SIZE)
17964 {
17965 gas_assert (inst.size == (2 * INSN_SIZE));
17966 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17967 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
17968 }
17969 else
17970 md_number_to_chars (to, inst.instruction, inst.size);
17971
17972 if (inst.reloc.type != BFD_RELOC_UNUSED)
17973 fix_new_arm (frag_now, to - frag_now->fr_literal,
17974 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17975 inst.reloc.type);
17976
17977 dwarf2_emit_insn (inst.size);
17978 }
17979
17980 static char *
17981 output_it_inst (int cond, int mask, char * to)
17982 {
17983 unsigned long instruction = 0xbf00;
17984
17985 mask &= 0xf;
17986 instruction |= mask;
17987 instruction |= cond << 4;
17988
17989 if (to == NULL)
17990 {
17991 to = frag_more (2);
17992 #ifdef OBJ_ELF
17993 dwarf2_emit_insn (2);
17994 #endif
17995 }
17996
17997 md_number_to_chars (to, instruction, 2);
17998
17999 return to;
18000 }
18001
18002 /* Tag values used in struct asm_opcode's tag field. */
18003 enum opcode_tag
18004 {
18005 OT_unconditional, /* Instruction cannot be conditionalized.
18006 The ARM condition field is still 0xE. */
18007 OT_unconditionalF, /* Instruction cannot be conditionalized
18008 and carries 0xF in its ARM condition field. */
18009 OT_csuffix, /* Instruction takes a conditional suffix. */
18010 OT_csuffixF, /* Some forms of the instruction take a conditional
18011 suffix, others place 0xF where the condition field
18012 would be. */
18013 OT_cinfix3, /* Instruction takes a conditional infix,
18014 beginning at character index 3. (In
18015 unified mode, it becomes a suffix.) */
18016 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18017 tsts, cmps, cmns, and teqs. */
18018 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18019 character index 3, even in unified mode. Used for
18020 legacy instructions where suffix and infix forms
18021 may be ambiguous. */
18022 OT_csuf_or_in3, /* Instruction takes either a conditional
18023 suffix or an infix at character index 3. */
18024 OT_odd_infix_unc, /* This is the unconditional variant of an
18025 instruction that takes a conditional infix
18026 at an unusual position. In unified mode,
18027 this variant will accept a suffix. */
18028 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18029 are the conditional variants of instructions that
18030 take conditional infixes in unusual positions.
18031 The infix appears at character index
18032 (tag - OT_odd_infix_0). These are not accepted
18033 in unified mode. */
18034 };
18035
18036 /* Subroutine of md_assemble, responsible for looking up the primary
18037 opcode from the mnemonic the user wrote. STR points to the
18038 beginning of the mnemonic.
18039
18040 This is not simply a hash table lookup, because of conditional
18041 variants. Most instructions have conditional variants, which are
18042 expressed with a _conditional affix_ to the mnemonic. If we were
18043 to encode each conditional variant as a literal string in the opcode
18044 table, it would have approximately 20,000 entries.
18045
18046 Most mnemonics take this affix as a suffix, and in unified syntax,
18047 'most' is upgraded to 'all'. However, in the divided syntax, some
18048 instructions take the affix as an infix, notably the s-variants of
18049 the arithmetic instructions. Of those instructions, all but six
18050 have the infix appear after the third character of the mnemonic.
18051
18052 Accordingly, the algorithm for looking up primary opcodes given
18053 an identifier is:
18054
18055 1. Look up the identifier in the opcode table.
18056 If we find a match, go to step U.
18057
18058 2. Look up the last two characters of the identifier in the
18059 conditions table. If we find a match, look up the first N-2
18060 characters of the identifier in the opcode table. If we
18061 find a match, go to step CE.
18062
18063 3. Look up the fourth and fifth characters of the identifier in
18064 the conditions table. If we find a match, extract those
18065 characters from the identifier, and look up the remaining
18066 characters in the opcode table. If we find a match, go
18067 to step CM.
18068
18069 4. Fail.
18070
18071 U. Examine the tag field of the opcode structure, in case this is
18072 one of the six instructions with its conditional infix in an
18073 unusual place. If it is, the tag tells us where to find the
18074 infix; look it up in the conditions table and set inst.cond
18075 accordingly. Otherwise, this is an unconditional instruction.
18076 Again set inst.cond accordingly. Return the opcode structure.
18077
18078 CE. Examine the tag field to make sure this is an instruction that
18079 should receive a conditional suffix. If it is not, fail.
18080 Otherwise, set inst.cond from the suffix we already looked up,
18081 and return the opcode structure.
18082
18083 CM. Examine the tag field to make sure this is an instruction that
18084 should receive a conditional infix after the third character.
18085 If it is not, fail. Otherwise, undo the edits to the current
18086 line of input and proceed as for case CE. */
18087
18088 static const struct asm_opcode *
18089 opcode_lookup (char **str)
18090 {
18091 char *end, *base;
18092 char *affix;
18093 const struct asm_opcode *opcode;
18094 const struct asm_cond *cond;
18095 char save[2];
18096
18097 /* Scan up to the end of the mnemonic, which must end in white space,
18098 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
18099 for (base = end = *str; *end != '\0'; end++)
18100 if (*end == ' ' || *end == '.')
18101 break;
18102
18103 if (end == base)
18104 return NULL;
18105
18106 /* Handle a possible width suffix and/or Neon type suffix. */
18107 if (end[0] == '.')
18108 {
18109 int offset = 2;
18110
18111 /* The .w and .n suffixes are only valid if the unified syntax is in
18112 use. */
18113 if (unified_syntax && end[1] == 'w')
18114 inst.size_req = 4;
18115 else if (unified_syntax && end[1] == 'n')
18116 inst.size_req = 2;
18117 else
18118 offset = 0;
18119
18120 inst.vectype.elems = 0;
18121
18122 *str = end + offset;
18123
18124 if (end[offset] == '.')
18125 {
18126 /* See if we have a Neon type suffix (possible in either unified or
18127 non-unified ARM syntax mode). */
18128 if (parse_neon_type (&inst.vectype, str) == FAIL)
18129 return NULL;
18130 }
18131 else if (end[offset] != '\0' && end[offset] != ' ')
18132 return NULL;
18133 }
18134 else
18135 *str = end;
18136
18137 /* Look for unaffixed or special-case affixed mnemonic. */
18138 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18139 end - base);
18140 if (opcode)
18141 {
18142 /* step U */
18143 if (opcode->tag < OT_odd_infix_0)
18144 {
18145 inst.cond = COND_ALWAYS;
18146 return opcode;
18147 }
18148
18149 if (warn_on_deprecated && unified_syntax)
18150 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18151 affix = base + (opcode->tag - OT_odd_infix_0);
18152 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18153 gas_assert (cond);
18154
18155 inst.cond = cond->value;
18156 return opcode;
18157 }
18158
18159 /* Cannot have a conditional suffix on a mnemonic of less than two
18160 characters. */
18161 if (end - base < 3)
18162 return NULL;
18163
18164 /* Look for suffixed mnemonic. */
18165 affix = end - 2;
18166 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18167 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18168 affix - base);
18169 if (opcode && cond)
18170 {
18171 /* step CE */
18172 switch (opcode->tag)
18173 {
18174 case OT_cinfix3_legacy:
18175 /* Ignore conditional suffixes matched on infix only mnemonics. */
18176 break;
18177
18178 case OT_cinfix3:
18179 case OT_cinfix3_deprecated:
18180 case OT_odd_infix_unc:
18181 if (!unified_syntax)
18182 return NULL;
18183 /* Fall through. */
18184
18185 case OT_csuffix:
18186 case OT_csuffixF:
18187 case OT_csuf_or_in3:
18188 inst.cond = cond->value;
18189 return opcode;
18190
18191 case OT_unconditional:
18192 case OT_unconditionalF:
18193 if (thumb_mode)
18194 inst.cond = cond->value;
18195 else
18196 {
18197 /* Delayed diagnostic. */
18198 inst.error = BAD_COND;
18199 inst.cond = COND_ALWAYS;
18200 }
18201 return opcode;
18202
18203 default:
18204 return NULL;
18205 }
18206 }
18207
18208 /* Cannot have a usual-position infix on a mnemonic of less than
18209 six characters (five would be a suffix). */
18210 if (end - base < 6)
18211 return NULL;
18212
18213 /* Look for infixed mnemonic in the usual position. */
18214 affix = base + 3;
18215 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18216 if (!cond)
18217 return NULL;
18218
18219 memcpy (save, affix, 2);
18220 memmove (affix, affix + 2, (end - affix) - 2);
18221 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18222 (end - base) - 2);
18223 memmove (affix + 2, affix, (end - affix) - 2);
18224 memcpy (affix, save, 2);
18225
18226 if (opcode
18227 && (opcode->tag == OT_cinfix3
18228 || opcode->tag == OT_cinfix3_deprecated
18229 || opcode->tag == OT_csuf_or_in3
18230 || opcode->tag == OT_cinfix3_legacy))
18231 {
18232 /* Step CM. */
18233 if (warn_on_deprecated && unified_syntax
18234 && (opcode->tag == OT_cinfix3
18235 || opcode->tag == OT_cinfix3_deprecated))
18236 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18237
18238 inst.cond = cond->value;
18239 return opcode;
18240 }
18241
18242 return NULL;
18243 }
18244
18245 /* This function generates an initial IT instruction, leaving its block
18246 virtually open for the new instructions. Eventually,
18247 the mask will be updated by now_it_add_mask () each time
18248 a new instruction needs to be included in the IT block.
18249 Finally, the block is closed with close_automatic_it_block ().
18250 The block closure can be requested either from md_assemble (),
18251 a tencode (), or due to a label hook. */
18252
18253 static void
18254 new_automatic_it_block (int cond)
18255 {
18256 now_it.state = AUTOMATIC_IT_BLOCK;
18257 now_it.mask = 0x18;
18258 now_it.cc = cond;
18259 now_it.block_length = 1;
18260 mapping_state (MAP_THUMB);
18261 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
18262 now_it.warn_deprecated = FALSE;
18263 now_it.insn_cond = TRUE;
18264 }
18265
18266 /* Close an automatic IT block.
18267 See comments in new_automatic_it_block (). */
18268
18269 static void
18270 close_automatic_it_block (void)
18271 {
18272 now_it.mask = 0x10;
18273 now_it.block_length = 0;
18274 }
18275
18276 /* Update the mask of the current automatically-generated IT
18277 instruction. See comments in new_automatic_it_block (). */
18278
18279 static void
18280 now_it_add_mask (int cond)
18281 {
18282 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18283 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
18284 | ((bitvalue) << (nbit)))
18285 const int resulting_bit = (cond & 1);
18286
18287 now_it.mask &= 0xf;
18288 now_it.mask = SET_BIT_VALUE (now_it.mask,
18289 resulting_bit,
18290 (5 - now_it.block_length));
18291 now_it.mask = SET_BIT_VALUE (now_it.mask,
18292 1,
18293 ((5 - now_it.block_length) - 1) );
18294 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18295
18296 #undef CLEAR_BIT
18297 #undef SET_BIT_VALUE
18298 }
18299
18300 /* The IT blocks handling machinery is accessed through the these functions:
18301 it_fsm_pre_encode () from md_assemble ()
18302 set_it_insn_type () optional, from the tencode functions
18303 set_it_insn_type_last () ditto
18304 in_it_block () ditto
18305 it_fsm_post_encode () from md_assemble ()
18306 force_automatic_it_block_close () from label handling functions
18307
18308 Rationale:
18309 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
18310 initializing the IT insn type with a generic initial value depending
18311 on the inst.condition.
18312 2) During the tencode function, two things may happen:
18313 a) The tencode function overrides the IT insn type by
18314 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18315 b) The tencode function queries the IT block state by
18316 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18317
18318 Both set_it_insn_type and in_it_block run the internal FSM state
18319 handling function (handle_it_state), because: a) setting the IT insn
18320 type may incur in an invalid state (exiting the function),
18321 and b) querying the state requires the FSM to be updated.
18322 Specifically we want to avoid creating an IT block for conditional
18323 branches, so it_fsm_pre_encode is actually a guess and we can't
18324 determine whether an IT block is required until the tencode () routine
18325 has decided what type of instruction this actually it.
18326 Because of this, if set_it_insn_type and in_it_block have to be used,
18327 set_it_insn_type has to be called first.
18328
18329 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18330 determines the insn IT type depending on the inst.cond code.
18331 When a tencode () routine encodes an instruction that can be
18332 either outside an IT block, or, in the case of being inside, has to be
18333 the last one, set_it_insn_type_last () will determine the proper
18334 IT instruction type based on the inst.cond code. Otherwise,
18335 set_it_insn_type can be called for overriding that logic or
18336 for covering other cases.
18337
18338 Calling handle_it_state () may not transition the IT block state to
18339 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
18340 still queried. Instead, if the FSM determines that the state should
18341 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18342 after the tencode () function: that's what it_fsm_post_encode () does.
18343
18344 Since in_it_block () calls the state handling function to get an
18345 updated state, an error may occur (due to invalid insns combination).
18346 In that case, inst.error is set.
18347 Therefore, inst.error has to be checked after the execution of
18348 the tencode () routine.
18349
18350 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
18351 any pending state change (if any) that didn't take place in
18352 handle_it_state () as explained above. */
18353
18354 static void
18355 it_fsm_pre_encode (void)
18356 {
18357 if (inst.cond != COND_ALWAYS)
18358 inst.it_insn_type = INSIDE_IT_INSN;
18359 else
18360 inst.it_insn_type = OUTSIDE_IT_INSN;
18361
18362 now_it.state_handled = 0;
18363 }
18364
18365 /* IT state FSM handling function. */
18366
18367 static int
18368 handle_it_state (void)
18369 {
18370 now_it.state_handled = 1;
18371 now_it.insn_cond = FALSE;
18372
18373 switch (now_it.state)
18374 {
18375 case OUTSIDE_IT_BLOCK:
18376 switch (inst.it_insn_type)
18377 {
18378 case OUTSIDE_IT_INSN:
18379 break;
18380
18381 case INSIDE_IT_INSN:
18382 case INSIDE_IT_LAST_INSN:
18383 if (thumb_mode == 0)
18384 {
18385 if (unified_syntax
18386 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18387 as_tsktsk (_("Warning: conditional outside an IT block"\
18388 " for Thumb."));
18389 }
18390 else
18391 {
18392 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
18393 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
18394 {
18395 /* Automatically generate the IT instruction. */
18396 new_automatic_it_block (inst.cond);
18397 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18398 close_automatic_it_block ();
18399 }
18400 else
18401 {
18402 inst.error = BAD_OUT_IT;
18403 return FAIL;
18404 }
18405 }
18406 break;
18407
18408 case IF_INSIDE_IT_LAST_INSN:
18409 case NEUTRAL_IT_INSN:
18410 break;
18411
18412 case IT_INSN:
18413 now_it.state = MANUAL_IT_BLOCK;
18414 now_it.block_length = 0;
18415 break;
18416 }
18417 break;
18418
18419 case AUTOMATIC_IT_BLOCK:
18420 /* Three things may happen now:
18421 a) We should increment current it block size;
18422 b) We should close current it block (closing insn or 4 insns);
18423 c) We should close current it block and start a new one (due
18424 to incompatible conditions or
18425 4 insns-length block reached). */
18426
18427 switch (inst.it_insn_type)
18428 {
18429 case OUTSIDE_IT_INSN:
18430 /* The closure of the block shall happen immediately,
18431 so any in_it_block () call reports the block as closed. */
18432 force_automatic_it_block_close ();
18433 break;
18434
18435 case INSIDE_IT_INSN:
18436 case INSIDE_IT_LAST_INSN:
18437 case IF_INSIDE_IT_LAST_INSN:
18438 now_it.block_length++;
18439
18440 if (now_it.block_length > 4
18441 || !now_it_compatible (inst.cond))
18442 {
18443 force_automatic_it_block_close ();
18444 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18445 new_automatic_it_block (inst.cond);
18446 }
18447 else
18448 {
18449 now_it.insn_cond = TRUE;
18450 now_it_add_mask (inst.cond);
18451 }
18452
18453 if (now_it.state == AUTOMATIC_IT_BLOCK
18454 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18455 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18456 close_automatic_it_block ();
18457 break;
18458
18459 case NEUTRAL_IT_INSN:
18460 now_it.block_length++;
18461 now_it.insn_cond = TRUE;
18462
18463 if (now_it.block_length > 4)
18464 force_automatic_it_block_close ();
18465 else
18466 now_it_add_mask (now_it.cc & 1);
18467 break;
18468
18469 case IT_INSN:
18470 close_automatic_it_block ();
18471 now_it.state = MANUAL_IT_BLOCK;
18472 break;
18473 }
18474 break;
18475
18476 case MANUAL_IT_BLOCK:
18477 {
18478 /* Check conditional suffixes. */
18479 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18480 int is_last;
18481 now_it.mask <<= 1;
18482 now_it.mask &= 0x1f;
18483 is_last = (now_it.mask == 0x10);
18484 now_it.insn_cond = TRUE;
18485
18486 switch (inst.it_insn_type)
18487 {
18488 case OUTSIDE_IT_INSN:
18489 inst.error = BAD_NOT_IT;
18490 return FAIL;
18491
18492 case INSIDE_IT_INSN:
18493 if (cond != inst.cond)
18494 {
18495 inst.error = BAD_IT_COND;
18496 return FAIL;
18497 }
18498 break;
18499
18500 case INSIDE_IT_LAST_INSN:
18501 case IF_INSIDE_IT_LAST_INSN:
18502 if (cond != inst.cond)
18503 {
18504 inst.error = BAD_IT_COND;
18505 return FAIL;
18506 }
18507 if (!is_last)
18508 {
18509 inst.error = BAD_BRANCH;
18510 return FAIL;
18511 }
18512 break;
18513
18514 case NEUTRAL_IT_INSN:
18515 /* The BKPT instruction is unconditional even in an IT block. */
18516 break;
18517
18518 case IT_INSN:
18519 inst.error = BAD_IT_IT;
18520 return FAIL;
18521 }
18522 }
18523 break;
18524 }
18525
18526 return SUCCESS;
18527 }
18528
18529 struct depr_insn_mask
18530 {
18531 unsigned long pattern;
18532 unsigned long mask;
18533 const char* description;
18534 };
18535
18536 /* List of 16-bit instruction patterns deprecated in an IT block in
18537 ARMv8. */
18538 static const struct depr_insn_mask depr_it_insns[] = {
18539 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18540 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18541 { 0xa000, 0xb800, N_("ADR") },
18542 { 0x4800, 0xf800, N_("Literal loads") },
18543 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18544 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
18545 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18546 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18547 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
18548 { 0, 0, NULL }
18549 };
18550
18551 static void
18552 it_fsm_post_encode (void)
18553 {
18554 int is_last;
18555
18556 if (!now_it.state_handled)
18557 handle_it_state ();
18558
18559 if (now_it.insn_cond
18560 && !now_it.warn_deprecated
18561 && warn_on_deprecated
18562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
18563 {
18564 if (inst.instruction >= 0x10000)
18565 {
18566 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
18567 "deprecated in ARMv8"));
18568 now_it.warn_deprecated = TRUE;
18569 }
18570 else
18571 {
18572 const struct depr_insn_mask *p = depr_it_insns;
18573
18574 while (p->mask != 0)
18575 {
18576 if ((inst.instruction & p->mask) == p->pattern)
18577 {
18578 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
18579 "of the following class are deprecated in ARMv8: "
18580 "%s"), p->description);
18581 now_it.warn_deprecated = TRUE;
18582 break;
18583 }
18584
18585 ++p;
18586 }
18587 }
18588
18589 if (now_it.block_length > 1)
18590 {
18591 as_tsktsk (_("IT blocks containing more than one conditional "
18592 "instruction are deprecated in ARMv8"));
18593 now_it.warn_deprecated = TRUE;
18594 }
18595 }
18596
18597 is_last = (now_it.mask == 0x10);
18598 if (is_last)
18599 {
18600 now_it.state = OUTSIDE_IT_BLOCK;
18601 now_it.mask = 0;
18602 }
18603 }
18604
18605 static void
18606 force_automatic_it_block_close (void)
18607 {
18608 if (now_it.state == AUTOMATIC_IT_BLOCK)
18609 {
18610 close_automatic_it_block ();
18611 now_it.state = OUTSIDE_IT_BLOCK;
18612 now_it.mask = 0;
18613 }
18614 }
18615
18616 static int
18617 in_it_block (void)
18618 {
18619 if (!now_it.state_handled)
18620 handle_it_state ();
18621
18622 return now_it.state != OUTSIDE_IT_BLOCK;
18623 }
18624
18625 /* Whether OPCODE only has T32 encoding. Since this function is only used by
18626 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18627 here, hence the "known" in the function name. */
18628
18629 static bfd_boolean
18630 known_t32_only_insn (const struct asm_opcode *opcode)
18631 {
18632 /* Original Thumb-1 wide instruction. */
18633 if (opcode->tencode == do_t_blx
18634 || opcode->tencode == do_t_branch23
18635 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18636 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18637 return TRUE;
18638
18639 /* Wide-only instruction added to ARMv8-M Baseline. */
18640 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
18641 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18642 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18643 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18644 return TRUE;
18645
18646 return FALSE;
18647 }
18648
18649 /* Whether wide instruction variant can be used if available for a valid OPCODE
18650 in ARCH. */
18651
18652 static bfd_boolean
18653 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18654 {
18655 if (known_t32_only_insn (opcode))
18656 return TRUE;
18657
18658 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18659 of variant T3 of B.W is checked in do_t_branch. */
18660 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18661 && opcode->tencode == do_t_branch)
18662 return TRUE;
18663
18664 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18665 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18666 && opcode->tencode == do_t_mov_cmp
18667 /* Make sure CMP instruction is not affected. */
18668 && opcode->aencode == do_mov)
18669 return TRUE;
18670
18671 /* Wide instruction variants of all instructions with narrow *and* wide
18672 variants become available with ARMv6t2. Other opcodes are either
18673 narrow-only or wide-only and are thus available if OPCODE is valid. */
18674 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18675 return TRUE;
18676
18677 /* OPCODE with narrow only instruction variant or wide variant not
18678 available. */
18679 return FALSE;
18680 }
18681
18682 void
18683 md_assemble (char *str)
18684 {
18685 char *p = str;
18686 const struct asm_opcode * opcode;
18687
18688 /* Align the previous label if needed. */
18689 if (last_label_seen != NULL)
18690 {
18691 symbol_set_frag (last_label_seen, frag_now);
18692 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18693 S_SET_SEGMENT (last_label_seen, now_seg);
18694 }
18695
18696 memset (&inst, '\0', sizeof (inst));
18697 inst.reloc.type = BFD_RELOC_UNUSED;
18698
18699 opcode = opcode_lookup (&p);
18700 if (!opcode)
18701 {
18702 /* It wasn't an instruction, but it might be a register alias of
18703 the form alias .req reg, or a Neon .dn/.qn directive. */
18704 if (! create_register_alias (str, p)
18705 && ! create_neon_reg_alias (str, p))
18706 as_bad (_("bad instruction `%s'"), str);
18707
18708 return;
18709 }
18710
18711 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
18712 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
18713
18714 /* The value which unconditional instructions should have in place of the
18715 condition field. */
18716 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18717
18718 if (thumb_mode)
18719 {
18720 arm_feature_set variant;
18721
18722 variant = cpu_variant;
18723 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
18724 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18725 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
18726 /* Check that this instruction is supported for this CPU. */
18727 if (!opcode->tvariant
18728 || (thumb_mode == 1
18729 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
18730 {
18731 if (opcode->tencode == do_t_swi)
18732 as_bad (_("SVC is not permitted on this architecture"));
18733 else
18734 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
18735 return;
18736 }
18737 if (inst.cond != COND_ALWAYS && !unified_syntax
18738 && opcode->tencode != do_t_branch)
18739 {
18740 as_bad (_("Thumb does not support conditional execution"));
18741 return;
18742 }
18743
18744 /* Two things are addressed here:
18745 1) Implicit require narrow instructions on Thumb-1.
18746 This avoids relaxation accidentally introducing Thumb-2
18747 instructions.
18748 2) Reject wide instructions in non Thumb-2 cores.
18749
18750 Only instructions with narrow and wide variants need to be handled
18751 but selecting all non wide-only instructions is easier. */
18752 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
18753 && !t32_insn_ok (variant, opcode))
18754 {
18755 if (inst.size_req == 0)
18756 inst.size_req = 2;
18757 else if (inst.size_req == 4)
18758 {
18759 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18760 as_bad (_("selected processor does not support 32bit wide "
18761 "variant of instruction `%s'"), str);
18762 else
18763 as_bad (_("selected processor does not support `%s' in "
18764 "Thumb-2 mode"), str);
18765 return;
18766 }
18767 }
18768
18769 inst.instruction = opcode->tvalue;
18770
18771 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
18772 {
18773 /* Prepare the it_insn_type for those encodings that don't set
18774 it. */
18775 it_fsm_pre_encode ();
18776
18777 opcode->tencode ();
18778
18779 it_fsm_post_encode ();
18780 }
18781
18782 if (!(inst.error || inst.relax))
18783 {
18784 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
18785 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18786 if (inst.size_req && inst.size_req != inst.size)
18787 {
18788 as_bad (_("cannot honor width suffix -- `%s'"), str);
18789 return;
18790 }
18791 }
18792
18793 /* Something has gone badly wrong if we try to relax a fixed size
18794 instruction. */
18795 gas_assert (inst.size_req == 0 || !inst.relax);
18796
18797 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18798 *opcode->tvariant);
18799 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
18800 set those bits when Thumb-2 32-bit instructions are seen. The impact
18801 of relaxable instructions will be considered later after we finish all
18802 relaxation. */
18803 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18804 variant = arm_arch_none;
18805 else
18806 variant = cpu_variant;
18807 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
18808 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18809 arm_ext_v6t2);
18810
18811 check_neon_suffixes;
18812
18813 if (!inst.error)
18814 {
18815 mapping_state (MAP_THUMB);
18816 }
18817 }
18818 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
18819 {
18820 bfd_boolean is_bx;
18821
18822 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18823 is_bx = (opcode->aencode == do_bx);
18824
18825 /* Check that this instruction is supported for this CPU. */
18826 if (!(is_bx && fix_v4bx)
18827 && !(opcode->avariant &&
18828 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
18829 {
18830 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
18831 return;
18832 }
18833 if (inst.size_req)
18834 {
18835 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18836 return;
18837 }
18838
18839 inst.instruction = opcode->avalue;
18840 if (opcode->tag == OT_unconditionalF)
18841 inst.instruction |= 0xFU << 28;
18842 else
18843 inst.instruction |= inst.cond << 28;
18844 inst.size = INSN_SIZE;
18845 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
18846 {
18847 it_fsm_pre_encode ();
18848 opcode->aencode ();
18849 it_fsm_post_encode ();
18850 }
18851 /* Arm mode bx is marked as both v4T and v5 because it's still required
18852 on a hypothetical non-thumb v5 core. */
18853 if (is_bx)
18854 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
18855 else
18856 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18857 *opcode->avariant);
18858
18859 check_neon_suffixes;
18860
18861 if (!inst.error)
18862 {
18863 mapping_state (MAP_ARM);
18864 }
18865 }
18866 else
18867 {
18868 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18869 "-- `%s'"), str);
18870 return;
18871 }
18872 output_inst (str);
18873 }
18874
18875 static void
18876 check_it_blocks_finished (void)
18877 {
18878 #ifdef OBJ_ELF
18879 asection *sect;
18880
18881 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18882 if (seg_info (sect)->tc_segment_info_data.current_it.state
18883 == MANUAL_IT_BLOCK)
18884 {
18885 as_warn (_("section '%s' finished with an open IT block."),
18886 sect->name);
18887 }
18888 #else
18889 if (now_it.state == MANUAL_IT_BLOCK)
18890 as_warn (_("file finished with an open IT block."));
18891 #endif
18892 }
18893
18894 /* Various frobbings of labels and their addresses. */
18895
18896 void
18897 arm_start_line_hook (void)
18898 {
18899 last_label_seen = NULL;
18900 }
18901
18902 void
18903 arm_frob_label (symbolS * sym)
18904 {
18905 last_label_seen = sym;
18906
18907 ARM_SET_THUMB (sym, thumb_mode);
18908
18909 #if defined OBJ_COFF || defined OBJ_ELF
18910 ARM_SET_INTERWORK (sym, support_interwork);
18911 #endif
18912
18913 force_automatic_it_block_close ();
18914
18915 /* Note - do not allow local symbols (.Lxxx) to be labelled
18916 as Thumb functions. This is because these labels, whilst
18917 they exist inside Thumb code, are not the entry points for
18918 possible ARM->Thumb calls. Also, these labels can be used
18919 as part of a computed goto or switch statement. eg gcc
18920 can generate code that looks like this:
18921
18922 ldr r2, [pc, .Laaa]
18923 lsl r3, r3, #2
18924 ldr r2, [r3, r2]
18925 mov pc, r2
18926
18927 .Lbbb: .word .Lxxx
18928 .Lccc: .word .Lyyy
18929 ..etc...
18930 .Laaa: .word Lbbb
18931
18932 The first instruction loads the address of the jump table.
18933 The second instruction converts a table index into a byte offset.
18934 The third instruction gets the jump address out of the table.
18935 The fourth instruction performs the jump.
18936
18937 If the address stored at .Laaa is that of a symbol which has the
18938 Thumb_Func bit set, then the linker will arrange for this address
18939 to have the bottom bit set, which in turn would mean that the
18940 address computation performed by the third instruction would end
18941 up with the bottom bit set. Since the ARM is capable of unaligned
18942 word loads, the instruction would then load the incorrect address
18943 out of the jump table, and chaos would ensue. */
18944 if (label_is_thumb_function_name
18945 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18946 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
18947 {
18948 /* When the address of a Thumb function is taken the bottom
18949 bit of that address should be set. This will allow
18950 interworking between Arm and Thumb functions to work
18951 correctly. */
18952
18953 THUMB_SET_FUNC (sym, 1);
18954
18955 label_is_thumb_function_name = FALSE;
18956 }
18957
18958 dwarf2_emit_label (sym);
18959 }
18960
18961 bfd_boolean
18962 arm_data_in_code (void)
18963 {
18964 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
18965 {
18966 *input_line_pointer = '/';
18967 input_line_pointer += 5;
18968 *input_line_pointer = 0;
18969 return TRUE;
18970 }
18971
18972 return FALSE;
18973 }
18974
18975 char *
18976 arm_canonicalize_symbol_name (char * name)
18977 {
18978 int len;
18979
18980 if (thumb_mode && (len = strlen (name)) > 5
18981 && streq (name + len - 5, "/data"))
18982 *(name + len - 5) = 0;
18983
18984 return name;
18985 }
18986 \f
18987 /* Table of all register names defined by default. The user can
18988 define additional names with .req. Note that all register names
18989 should appear in both upper and lowercase variants. Some registers
18990 also have mixed-case names. */
18991
18992 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
18993 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
18994 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
18995 #define REGSET(p,t) \
18996 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18997 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18998 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18999 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
19000 #define REGSETH(p,t) \
19001 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19002 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19003 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19004 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19005 #define REGSET2(p,t) \
19006 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19007 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19008 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19009 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
19010 #define SPLRBANK(base,bank,t) \
19011 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19012 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19013 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19014 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19015 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19016 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
19017
19018 static const struct reg_entry reg_names[] =
19019 {
19020 /* ARM integer registers. */
19021 REGSET(r, RN), REGSET(R, RN),
19022
19023 /* ATPCS synonyms. */
19024 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19025 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19026 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
19027
19028 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19029 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19030 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
19031
19032 /* Well-known aliases. */
19033 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19034 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19035
19036 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19037 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19038
19039 /* Coprocessor numbers. */
19040 REGSET(p, CP), REGSET(P, CP),
19041
19042 /* Coprocessor register numbers. The "cr" variants are for backward
19043 compatibility. */
19044 REGSET(c, CN), REGSET(C, CN),
19045 REGSET(cr, CN), REGSET(CR, CN),
19046
19047 /* ARM banked registers. */
19048 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19049 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19050 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19051 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19052 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19053 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19054 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19055
19056 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19057 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19058 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19059 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19060 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
19061 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
19062 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19063 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19064
19065 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19066 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19067 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19068 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19069 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19070 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19071 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
19072 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
19073 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19074
19075 /* FPA registers. */
19076 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19077 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19078
19079 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19080 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19081
19082 /* VFP SP registers. */
19083 REGSET(s,VFS), REGSET(S,VFS),
19084 REGSETH(s,VFS), REGSETH(S,VFS),
19085
19086 /* VFP DP Registers. */
19087 REGSET(d,VFD), REGSET(D,VFD),
19088 /* Extra Neon DP registers. */
19089 REGSETH(d,VFD), REGSETH(D,VFD),
19090
19091 /* Neon QP registers. */
19092 REGSET2(q,NQ), REGSET2(Q,NQ),
19093
19094 /* VFP control registers. */
19095 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19096 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
19097 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19098 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19099 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19100 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
19101 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
19102
19103 /* Maverick DSP coprocessor registers. */
19104 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19105 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19106
19107 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19108 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19109 REGDEF(dspsc,0,DSPSC),
19110
19111 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19112 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19113 REGDEF(DSPSC,0,DSPSC),
19114
19115 /* iWMMXt data registers - p0, c0-15. */
19116 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19117
19118 /* iWMMXt control registers - p1, c0-3. */
19119 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19120 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19121 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19122 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19123
19124 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19125 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19126 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19127 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19128 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19129
19130 /* XScale accumulator registers. */
19131 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19132 };
19133 #undef REGDEF
19134 #undef REGNUM
19135 #undef REGSET
19136
19137 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19138 within psr_required_here. */
19139 static const struct asm_psr psrs[] =
19140 {
19141 /* Backward compatibility notation. Note that "all" is no longer
19142 truly all possible PSR bits. */
19143 {"all", PSR_c | PSR_f},
19144 {"flg", PSR_f},
19145 {"ctl", PSR_c},
19146
19147 /* Individual flags. */
19148 {"f", PSR_f},
19149 {"c", PSR_c},
19150 {"x", PSR_x},
19151 {"s", PSR_s},
19152
19153 /* Combinations of flags. */
19154 {"fs", PSR_f | PSR_s},
19155 {"fx", PSR_f | PSR_x},
19156 {"fc", PSR_f | PSR_c},
19157 {"sf", PSR_s | PSR_f},
19158 {"sx", PSR_s | PSR_x},
19159 {"sc", PSR_s | PSR_c},
19160 {"xf", PSR_x | PSR_f},
19161 {"xs", PSR_x | PSR_s},
19162 {"xc", PSR_x | PSR_c},
19163 {"cf", PSR_c | PSR_f},
19164 {"cs", PSR_c | PSR_s},
19165 {"cx", PSR_c | PSR_x},
19166 {"fsx", PSR_f | PSR_s | PSR_x},
19167 {"fsc", PSR_f | PSR_s | PSR_c},
19168 {"fxs", PSR_f | PSR_x | PSR_s},
19169 {"fxc", PSR_f | PSR_x | PSR_c},
19170 {"fcs", PSR_f | PSR_c | PSR_s},
19171 {"fcx", PSR_f | PSR_c | PSR_x},
19172 {"sfx", PSR_s | PSR_f | PSR_x},
19173 {"sfc", PSR_s | PSR_f | PSR_c},
19174 {"sxf", PSR_s | PSR_x | PSR_f},
19175 {"sxc", PSR_s | PSR_x | PSR_c},
19176 {"scf", PSR_s | PSR_c | PSR_f},
19177 {"scx", PSR_s | PSR_c | PSR_x},
19178 {"xfs", PSR_x | PSR_f | PSR_s},
19179 {"xfc", PSR_x | PSR_f | PSR_c},
19180 {"xsf", PSR_x | PSR_s | PSR_f},
19181 {"xsc", PSR_x | PSR_s | PSR_c},
19182 {"xcf", PSR_x | PSR_c | PSR_f},
19183 {"xcs", PSR_x | PSR_c | PSR_s},
19184 {"cfs", PSR_c | PSR_f | PSR_s},
19185 {"cfx", PSR_c | PSR_f | PSR_x},
19186 {"csf", PSR_c | PSR_s | PSR_f},
19187 {"csx", PSR_c | PSR_s | PSR_x},
19188 {"cxf", PSR_c | PSR_x | PSR_f},
19189 {"cxs", PSR_c | PSR_x | PSR_s},
19190 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19191 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19192 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19193 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19194 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19195 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19196 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19197 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19198 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19199 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19200 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19201 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19202 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19203 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19204 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19205 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19206 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19207 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19208 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19209 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19210 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19211 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19212 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19213 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19214 };
19215
19216 /* Table of V7M psr names. */
19217 static const struct asm_psr v7m_psrs[] =
19218 {
19219 {"apsr", 0x0 }, {"APSR", 0x0 },
19220 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19221 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19222 {"psr", 0x3 }, {"PSR", 0x3 },
19223 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19224 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19225 {"epsr", 0x6 }, {"EPSR", 0x6 },
19226 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19227 {"msp", 0x8 }, {"MSP", 0x8 },
19228 {"psp", 0x9 }, {"PSP", 0x9 },
19229 {"msplim", 0xa }, {"MSPLIM", 0xa },
19230 {"psplim", 0xb }, {"PSPLIM", 0xb },
19231 {"primask", 0x10}, {"PRIMASK", 0x10},
19232 {"basepri", 0x11}, {"BASEPRI", 0x11},
19233 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
19234 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19235 {"control", 0x14}, {"CONTROL", 0x14},
19236 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19237 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19238 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19239 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19240 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19241 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19242 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19243 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19244 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
19245 };
19246
19247 /* Table of all shift-in-operand names. */
19248 static const struct asm_shift_name shift_names [] =
19249 {
19250 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19251 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19252 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19253 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19254 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19255 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19256 };
19257
19258 /* Table of all explicit relocation names. */
19259 #ifdef OBJ_ELF
19260 static struct reloc_entry reloc_names[] =
19261 {
19262 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19263 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19264 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19265 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19266 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19267 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19268 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19269 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19270 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19271 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
19272 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
19273 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19274 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
19275 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
19276 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
19277 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
19278 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
19279 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
19280 };
19281 #endif
19282
19283 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
19284 static const struct asm_cond conds[] =
19285 {
19286 {"eq", 0x0},
19287 {"ne", 0x1},
19288 {"cs", 0x2}, {"hs", 0x2},
19289 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19290 {"mi", 0x4},
19291 {"pl", 0x5},
19292 {"vs", 0x6},
19293 {"vc", 0x7},
19294 {"hi", 0x8},
19295 {"ls", 0x9},
19296 {"ge", 0xa},
19297 {"lt", 0xb},
19298 {"gt", 0xc},
19299 {"le", 0xd},
19300 {"al", 0xe}
19301 };
19302
19303 #define UL_BARRIER(L,U,CODE,FEAT) \
19304 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19305 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
19306
19307 static struct asm_barrier_opt barrier_opt_names[] =
19308 {
19309 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19310 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19311 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19312 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19313 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19314 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19315 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19316 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19317 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19318 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19319 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19320 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19321 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19322 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19323 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19324 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
19325 };
19326
19327 #undef UL_BARRIER
19328
19329 /* Table of ARM-format instructions. */
19330
19331 /* Macros for gluing together operand strings. N.B. In all cases
19332 other than OPS0, the trailing OP_stop comes from default
19333 zero-initialization of the unspecified elements of the array. */
19334 #define OPS0() { OP_stop, }
19335 #define OPS1(a) { OP_##a, }
19336 #define OPS2(a,b) { OP_##a,OP_##b, }
19337 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19338 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19339 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19340 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19341
19342 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19343 This is useful when mixing operands for ARM and THUMB, i.e. using the
19344 MIX_ARM_THUMB_OPERANDS macro.
19345 In order to use these macros, prefix the number of operands with _
19346 e.g. _3. */
19347 #define OPS_1(a) { a, }
19348 #define OPS_2(a,b) { a,b, }
19349 #define OPS_3(a,b,c) { a,b,c, }
19350 #define OPS_4(a,b,c,d) { a,b,c,d, }
19351 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19352 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19353
19354 /* These macros abstract out the exact format of the mnemonic table and
19355 save some repeated characters. */
19356
19357 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19358 #define TxCE(mnem, op, top, nops, ops, ae, te) \
19359 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
19360 THUMB_VARIANT, do_##ae, do_##te }
19361
19362 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19363 a T_MNEM_xyz enumerator. */
19364 #define TCE(mnem, aop, top, nops, ops, ae, te) \
19365 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
19366 #define tCE(mnem, aop, top, nops, ops, ae, te) \
19367 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19368
19369 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19370 infix after the third character. */
19371 #define TxC3(mnem, op, top, nops, ops, ae, te) \
19372 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
19373 THUMB_VARIANT, do_##ae, do_##te }
19374 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
19375 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
19376 THUMB_VARIANT, do_##ae, do_##te }
19377 #define TC3(mnem, aop, top, nops, ops, ae, te) \
19378 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
19379 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
19380 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
19381 #define tC3(mnem, aop, top, nops, ops, ae, te) \
19382 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19383 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
19384 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19385
19386 /* Mnemonic that cannot be conditionalized. The ARM condition-code
19387 field is still 0xE. Many of the Thumb variants can be executed
19388 conditionally, so this is checked separately. */
19389 #define TUE(mnem, op, top, nops, ops, ae, te) \
19390 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19391 THUMB_VARIANT, do_##ae, do_##te }
19392
19393 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19394 Used by mnemonics that have very minimal differences in the encoding for
19395 ARM and Thumb variants and can be handled in a common function. */
19396 #define TUEc(mnem, op, top, nops, ops, en) \
19397 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19398 THUMB_VARIANT, do_##en, do_##en }
19399
19400 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19401 condition code field. */
19402 #define TUF(mnem, op, top, nops, ops, ae, te) \
19403 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
19404 THUMB_VARIANT, do_##ae, do_##te }
19405
19406 /* ARM-only variants of all the above. */
19407 #define CE(mnem, op, nops, ops, ae) \
19408 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19409
19410 #define C3(mnem, op, nops, ops, ae) \
19411 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19412
19413 /* Legacy mnemonics that always have conditional infix after the third
19414 character. */
19415 #define CL(mnem, op, nops, ops, ae) \
19416 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19417 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19418
19419 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19420 #define cCE(mnem, op, nops, ops, ae) \
19421 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19422
19423 /* Legacy coprocessor instructions where conditional infix and conditional
19424 suffix are ambiguous. For consistency this includes all FPA instructions,
19425 not just the potentially ambiguous ones. */
19426 #define cCL(mnem, op, nops, ops, ae) \
19427 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19428 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19429
19430 /* Coprocessor, takes either a suffix or a position-3 infix
19431 (for an FPA corner case). */
19432 #define C3E(mnem, op, nops, ops, ae) \
19433 { mnem, OPS##nops ops, OT_csuf_or_in3, \
19434 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19435
19436 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
19437 { m1 #m2 m3, OPS##nops ops, \
19438 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
19439 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19440
19441 #define CM(m1, m2, op, nops, ops, ae) \
19442 xCM_ (m1, , m2, op, nops, ops, ae), \
19443 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19444 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19445 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19446 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19447 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19448 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19449 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19450 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19451 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19452 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19453 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19454 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19455 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19456 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19457 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19458 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19459 xCM_ (m1, le, m2, op, nops, ops, ae), \
19460 xCM_ (m1, al, m2, op, nops, ops, ae)
19461
19462 #define UE(mnem, op, nops, ops, ae) \
19463 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19464
19465 #define UF(mnem, op, nops, ops, ae) \
19466 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19467
19468 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
19469 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19470 use the same encoding function for each. */
19471 #define NUF(mnem, op, nops, ops, enc) \
19472 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19473 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19474
19475 /* Neon data processing, version which indirects through neon_enc_tab for
19476 the various overloaded versions of opcodes. */
19477 #define nUF(mnem, op, nops, ops, enc) \
19478 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
19479 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19480
19481 /* Neon insn with conditional suffix for the ARM version, non-overloaded
19482 version. */
19483 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
19484 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
19485 THUMB_VARIANT, do_##enc, do_##enc }
19486
19487 #define NCE(mnem, op, nops, ops, enc) \
19488 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19489
19490 #define NCEF(mnem, op, nops, ops, enc) \
19491 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19492
19493 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
19494 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
19495 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
19496 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19497
19498 #define nCE(mnem, op, nops, ops, enc) \
19499 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19500
19501 #define nCEF(mnem, op, nops, ops, enc) \
19502 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19503
19504 #define do_0 0
19505
19506 static const struct asm_opcode insns[] =
19507 {
19508 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19509 #define THUMB_VARIANT & arm_ext_v4t
19510 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19511 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19512 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19513 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19514 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19515 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19516 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19517 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19518 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19519 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19520 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19521 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19522 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19523 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19524 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19525 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
19526
19527 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19528 for setting PSR flag bits. They are obsolete in V6 and do not
19529 have Thumb equivalents. */
19530 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19531 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19532 CL("tstp", 110f000, 2, (RR, SH), cmp),
19533 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19534 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19535 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19536 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19537 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19538 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19539
19540 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
19541 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
19542 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19543 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19544
19545 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
19546 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19547 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19548 OP_RRnpc),
19549 OP_ADDRGLDR),ldst, t_ldst),
19550 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19551
19552 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19553 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19554 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19555 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19556 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19557 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19558
19559 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19560 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
19561
19562 /* Pseudo ops. */
19563 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
19564 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
19565 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
19566 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
19567
19568 /* Thumb-compatibility pseudo ops. */
19569 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19570 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19571 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19572 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19573 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19574 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19575 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19576 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19577 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19578 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19579 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19580 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
19581
19582 /* These may simplify to neg. */
19583 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19584 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
19585
19586 #undef THUMB_VARIANT
19587 #define THUMB_VARIANT & arm_ext_os
19588
19589 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19590 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19591
19592 #undef THUMB_VARIANT
19593 #define THUMB_VARIANT & arm_ext_v6
19594
19595 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
19596
19597 /* V1 instructions with no Thumb analogue prior to V6T2. */
19598 #undef THUMB_VARIANT
19599 #define THUMB_VARIANT & arm_ext_v6t2
19600
19601 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19602 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19603 CL("teqp", 130f000, 2, (RR, SH), cmp),
19604
19605 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19606 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19607 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19608 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19609
19610 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19611 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19612
19613 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19614 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19615
19616 /* V1 instructions with no Thumb analogue at all. */
19617 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
19618 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19619
19620 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19621 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19622 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19623 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19624 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19625 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19626 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19627 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19628
19629 #undef ARM_VARIANT
19630 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19631 #undef THUMB_VARIANT
19632 #define THUMB_VARIANT & arm_ext_v4t
19633
19634 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19635 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19636
19637 #undef THUMB_VARIANT
19638 #define THUMB_VARIANT & arm_ext_v6t2
19639
19640 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19641 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19642
19643 /* Generic coprocessor instructions. */
19644 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19645 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19646 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19647 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19648 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19649 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19650 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
19651
19652 #undef ARM_VARIANT
19653 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19654
19655 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19656 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19657
19658 #undef ARM_VARIANT
19659 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19660 #undef THUMB_VARIANT
19661 #define THUMB_VARIANT & arm_ext_msr
19662
19663 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19664 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
19665
19666 #undef ARM_VARIANT
19667 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19668 #undef THUMB_VARIANT
19669 #define THUMB_VARIANT & arm_ext_v6t2
19670
19671 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19672 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19673 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19674 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19675 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19676 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19677 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19678 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19679
19680 #undef ARM_VARIANT
19681 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19682 #undef THUMB_VARIANT
19683 #define THUMB_VARIANT & arm_ext_v4t
19684
19685 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19686 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19687 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19688 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19689 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19690 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19691
19692 #undef ARM_VARIANT
19693 #define ARM_VARIANT & arm_ext_v4t_5
19694
19695 /* ARM Architecture 4T. */
19696 /* Note: bx (and blx) are required on V5, even if the processor does
19697 not support Thumb. */
19698 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
19699
19700 #undef ARM_VARIANT
19701 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19702 #undef THUMB_VARIANT
19703 #define THUMB_VARIANT & arm_ext_v5t
19704
19705 /* Note: blx has 2 variants; the .value coded here is for
19706 BLX(2). Only this variant has conditional execution. */
19707 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19708 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
19709
19710 #undef THUMB_VARIANT
19711 #define THUMB_VARIANT & arm_ext_v6t2
19712
19713 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19714 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19715 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19716 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19717 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19718 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19719 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19720 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19721
19722 #undef ARM_VARIANT
19723 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19724 #undef THUMB_VARIANT
19725 #define THUMB_VARIANT & arm_ext_v5exp
19726
19727 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19728 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19729 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19730 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19731
19732 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19733 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19734
19735 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19736 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19737 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19738 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19739
19740 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19741 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19742 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19743 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19744
19745 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19746 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19747
19748 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19749 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19750 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19751 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19752
19753 #undef ARM_VARIANT
19754 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19755 #undef THUMB_VARIANT
19756 #define THUMB_VARIANT & arm_ext_v6t2
19757
19758 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
19759 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19760 ldrd, t_ldstd),
19761 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19762 ADDRGLDRS), ldrd, t_ldstd),
19763
19764 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19765 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19766
19767 #undef ARM_VARIANT
19768 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19769
19770 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
19771
19772 #undef ARM_VARIANT
19773 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19774 #undef THUMB_VARIANT
19775 #define THUMB_VARIANT & arm_ext_v6
19776
19777 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19778 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19779 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19780 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19781 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19782 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19783 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19784 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19785 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19786 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
19787
19788 #undef THUMB_VARIANT
19789 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19790
19791 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19792 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19793 strex, t_strex),
19794 #undef THUMB_VARIANT
19795 #define THUMB_VARIANT & arm_ext_v6t2
19796
19797 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19798 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19799
19800 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19801 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
19802
19803 /* ARM V6 not included in V7M. */
19804 #undef THUMB_VARIANT
19805 #define THUMB_VARIANT & arm_ext_v6_notm
19806 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19807 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19808 UF(rfeib, 9900a00, 1, (RRw), rfe),
19809 UF(rfeda, 8100a00, 1, (RRw), rfe),
19810 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19811 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19812 UF(rfefa, 8100a00, 1, (RRw), rfe),
19813 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19814 UF(rfeed, 9900a00, 1, (RRw), rfe),
19815 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19816 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19817 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19818 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
19819 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
19820 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
19821 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
19822 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19823 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19824 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
19825
19826 /* ARM V6 not included in V7M (eg. integer SIMD). */
19827 #undef THUMB_VARIANT
19828 #define THUMB_VARIANT & arm_ext_v6_dsp
19829 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19830 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19831 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19832 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19833 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19834 /* Old name for QASX. */
19835 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19836 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19837 /* Old name for QSAX. */
19838 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19839 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19840 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19841 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19842 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19843 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19844 /* Old name for SASX. */
19845 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19846 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19847 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19848 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19849 /* Old name for SHASX. */
19850 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19851 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19852 /* Old name for SHSAX. */
19853 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19854 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19855 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19856 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19857 /* Old name for SSAX. */
19858 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19859 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19860 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19861 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19862 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19863 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19864 /* Old name for UASX. */
19865 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19866 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19867 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19868 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19869 /* Old name for UHASX. */
19870 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19871 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19872 /* Old name for UHSAX. */
19873 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19874 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19875 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19876 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19877 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19878 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19879 /* Old name for UQASX. */
19880 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19881 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19882 /* Old name for UQSAX. */
19883 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19884 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19885 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19886 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19887 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19888 /* Old name for USAX. */
19889 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19890 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19891 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19892 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19893 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19894 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19895 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19896 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19897 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19898 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19899 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19900 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19901 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19902 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19903 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19904 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19905 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19906 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19907 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19908 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19909 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19910 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19911 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19912 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19913 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19914 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19915 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19916 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19917 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19918 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19919 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19920 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19921 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19922 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
19923
19924 #undef ARM_VARIANT
19925 #define ARM_VARIANT & arm_ext_v6k
19926 #undef THUMB_VARIANT
19927 #define THUMB_VARIANT & arm_ext_v6k
19928
19929 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19930 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19931 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19932 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
19933
19934 #undef THUMB_VARIANT
19935 #define THUMB_VARIANT & arm_ext_v6_notm
19936 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19937 ldrexd, t_ldrexd),
19938 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19939 RRnpcb), strexd, t_strexd),
19940
19941 #undef THUMB_VARIANT
19942 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19943 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19944 rd_rn, rd_rn),
19945 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19946 rd_rn, rd_rn),
19947 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19948 strex, t_strexbh),
19949 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19950 strex, t_strexbh),
19951 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
19952
19953 #undef ARM_VARIANT
19954 #define ARM_VARIANT & arm_ext_sec
19955 #undef THUMB_VARIANT
19956 #define THUMB_VARIANT & arm_ext_sec
19957
19958 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
19959
19960 #undef ARM_VARIANT
19961 #define ARM_VARIANT & arm_ext_virt
19962 #undef THUMB_VARIANT
19963 #define THUMB_VARIANT & arm_ext_virt
19964
19965 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19966 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19967
19968 #undef ARM_VARIANT
19969 #define ARM_VARIANT & arm_ext_pan
19970 #undef THUMB_VARIANT
19971 #define THUMB_VARIANT & arm_ext_pan
19972
19973 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19974
19975 #undef ARM_VARIANT
19976 #define ARM_VARIANT & arm_ext_v6t2
19977 #undef THUMB_VARIANT
19978 #define THUMB_VARIANT & arm_ext_v6t2
19979
19980 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19981 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19982 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19983 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19984
19985 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19986 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
19987
19988 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19989 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19990 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19991 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19992
19993 #undef ARM_VARIANT
19994 #define ARM_VARIANT & arm_ext_v3
19995 #undef THUMB_VARIANT
19996 #define THUMB_VARIANT & arm_ext_v6t2
19997
19998 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
19999
20000 #undef ARM_VARIANT
20001 #define ARM_VARIANT & arm_ext_v6t2
20002 #undef THUMB_VARIANT
20003 #define THUMB_VARIANT & arm_ext_v6t2_v8m
20004 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20005 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20006
20007 /* Thumb-only instructions. */
20008 #undef ARM_VARIANT
20009 #define ARM_VARIANT NULL
20010 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20011 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
20012
20013 /* ARM does not really have an IT instruction, so always allow it.
20014 The opcode is copied from Thumb in order to allow warnings in
20015 -mimplicit-it=[never | arm] modes. */
20016 #undef ARM_VARIANT
20017 #define ARM_VARIANT & arm_ext_v1
20018 #undef THUMB_VARIANT
20019 #define THUMB_VARIANT & arm_ext_v6t2
20020
20021 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20022 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20023 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20024 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20025 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20026 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20027 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20028 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20029 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20030 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20031 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20032 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20033 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20034 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20035 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
20036 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
20037 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20038 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
20039
20040 /* Thumb2 only instructions. */
20041 #undef ARM_VARIANT
20042 #define ARM_VARIANT NULL
20043
20044 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20045 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20046 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20047 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20048 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20049 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
20050
20051 /* Hardware division instructions. */
20052 #undef ARM_VARIANT
20053 #define ARM_VARIANT & arm_ext_adiv
20054 #undef THUMB_VARIANT
20055 #define THUMB_VARIANT & arm_ext_div
20056
20057 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20058 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
20059
20060 /* ARM V6M/V7 instructions. */
20061 #undef ARM_VARIANT
20062 #define ARM_VARIANT & arm_ext_barrier
20063 #undef THUMB_VARIANT
20064 #define THUMB_VARIANT & arm_ext_barrier
20065
20066 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20067 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20068 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
20069
20070 /* ARM V7 instructions. */
20071 #undef ARM_VARIANT
20072 #define ARM_VARIANT & arm_ext_v7
20073 #undef THUMB_VARIANT
20074 #define THUMB_VARIANT & arm_ext_v7
20075
20076 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20077 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
20078
20079 #undef ARM_VARIANT
20080 #define ARM_VARIANT & arm_ext_mp
20081 #undef THUMB_VARIANT
20082 #define THUMB_VARIANT & arm_ext_mp
20083
20084 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20085
20086 /* AArchv8 instructions. */
20087 #undef ARM_VARIANT
20088 #define ARM_VARIANT & arm_ext_v8
20089
20090 /* Instructions shared between armv8-a and armv8-m. */
20091 #undef THUMB_VARIANT
20092 #define THUMB_VARIANT & arm_ext_atomics
20093
20094 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20095 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20096 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20097 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20098 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20099 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20100 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20101 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20102 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20103 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20104 stlex, t_stlex),
20105 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20106 stlex, t_stlex),
20107 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20108 stlex, t_stlex),
20109 #undef THUMB_VARIANT
20110 #define THUMB_VARIANT & arm_ext_v8
20111
20112 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
20113 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20114 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20115 ldrexd, t_ldrexd),
20116 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20117 strexd, t_strexd),
20118 /* ARMv8 T32 only. */
20119 #undef ARM_VARIANT
20120 #define ARM_VARIANT NULL
20121 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20122 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20123 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20124
20125 /* FP for ARMv8. */
20126 #undef ARM_VARIANT
20127 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
20128 #undef THUMB_VARIANT
20129 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
20130
20131 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20132 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20133 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20134 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
20135 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20136 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20137 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20138 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20139 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20140 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
20141 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20142 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20143 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20144 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20145 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20146 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20147 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
20148
20149 /* Crypto v1 extensions. */
20150 #undef ARM_VARIANT
20151 #define ARM_VARIANT & fpu_crypto_ext_armv8
20152 #undef THUMB_VARIANT
20153 #define THUMB_VARIANT & fpu_crypto_ext_armv8
20154
20155 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20156 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20157 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20158 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
20159 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20160 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20161 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20162 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20163 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20164 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20165 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
20166 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20167 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20168 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
20169
20170 #undef ARM_VARIANT
20171 #define ARM_VARIANT & crc_ext_armv8
20172 #undef THUMB_VARIANT
20173 #define THUMB_VARIANT & crc_ext_armv8
20174 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20175 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20176 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20177 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20178 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20179 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20180
20181 /* ARMv8.2 RAS extension. */
20182 #undef ARM_VARIANT
20183 #define ARM_VARIANT & arm_ext_ras
20184 #undef THUMB_VARIANT
20185 #define THUMB_VARIANT & arm_ext_ras
20186 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20187
20188 #undef ARM_VARIANT
20189 #define ARM_VARIANT & arm_ext_v8_3
20190 #undef THUMB_VARIANT
20191 #define THUMB_VARIANT & arm_ext_v8_3
20192 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
20193 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20194 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
20195
20196 #undef ARM_VARIANT
20197 #define ARM_VARIANT & fpu_neon_ext_dotprod
20198 #undef THUMB_VARIANT
20199 #define THUMB_VARIANT & fpu_neon_ext_dotprod
20200 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20201 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20202
20203 #undef ARM_VARIANT
20204 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
20205 #undef THUMB_VARIANT
20206 #define THUMB_VARIANT NULL
20207
20208 cCE("wfs", e200110, 1, (RR), rd),
20209 cCE("rfs", e300110, 1, (RR), rd),
20210 cCE("wfc", e400110, 1, (RR), rd),
20211 cCE("rfc", e500110, 1, (RR), rd),
20212
20213 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20214 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20215 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20216 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20217
20218 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20219 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20220 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20221 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20222
20223 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20224 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20225 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20226 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20227 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20228 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20229 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20230 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20231 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20232 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20233 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20234 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20235
20236 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20237 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20238 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20239 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20240 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20241 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20242 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20243 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20244 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20245 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20246 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20247 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20248
20249 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20250 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20251 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20252 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20253 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20254 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20255 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20256 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20257 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20258 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20259 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20260 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20261
20262 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20263 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20264 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20265 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20266 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20267 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20268 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20269 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20270 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20271 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20272 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20273 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20274
20275 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20276 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20277 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20278 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20279 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20280 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20281 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20282 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20283 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20284 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20285 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20286 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20287
20288 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20289 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20290 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20291 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20292 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20293 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20294 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20295 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20296 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20297 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20298 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20299 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20300
20301 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20302 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20303 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20304 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20305 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20306 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20307 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20308 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20309 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20310 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20311 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20312 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20313
20314 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20315 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20316 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20317 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20318 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20319 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20320 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20321 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20322 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20323 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20324 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20325 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20326
20327 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20328 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20329 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20330 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20331 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20332 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20333 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20334 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20335 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20336 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20337 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20338 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20339
20340 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20341 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20342 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20343 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20344 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20345 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20346 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20347 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20348 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20349 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20350 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20351 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20352
20353 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20354 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20355 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20356 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20357 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20358 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20359 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20360 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20361 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20362 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20363 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20364 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20365
20366 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20367 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20368 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20369 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20370 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20371 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20372 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20373 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20374 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20375 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20376 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20377 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20378
20379 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20380 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20381 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20382 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20383 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20384 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20385 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20386 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20387 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20388 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20389 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20390 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20391
20392 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20393 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20394 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20395 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20396 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20397 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20398 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20399 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20400 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20401 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20402 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20403 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20404
20405 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20406 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20407 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20408 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20409 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20410 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20411 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20412 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20413 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20414 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20415 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20416 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20417
20418 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20419 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20420 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20421 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20422 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20423 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20424 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20425 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20426 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20427 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20428 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20429 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20430
20431 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20432 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20433 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20434 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20435 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20436 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20437 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20438 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20439 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20440 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20441 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20442 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20443
20444 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20445 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20446 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20447 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20448 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20449 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20450 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20451 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20452 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20453 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20454 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20455 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20456
20457 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20458 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20459 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20460 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20461 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20462 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20463 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20464 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20465 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20466 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20467 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20468 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20469
20470 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20471 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20472 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20473 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20474 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20475 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20476 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20477 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20478 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20479 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20480 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20481 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20482
20483 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20484 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20485 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20486 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20487 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20488 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20489 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20490 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20491 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20492 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20493 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20494 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20495
20496 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20497 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20498 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20499 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20500 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20501 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20502 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20503 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20504 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20505 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20506 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20507 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20508
20509 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20510 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20511 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20512 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20513 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20514 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20515 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20516 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20517 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20518 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20519 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20520 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20521
20522 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20523 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20524 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20525 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20526 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20527 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20528 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20529 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20530 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20531 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20532 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20533 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20534
20535 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20536 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20537 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20538 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20539 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20540 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20541 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20542 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20543 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20544 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20545 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20546 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20547
20548 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20549 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20550 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20551 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20552 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20553 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20554 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20555 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20556 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20557 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20558 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20559 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20560
20561 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20562 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20563 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20564 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20565 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20566 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20567 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20568 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20569 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20570 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20571 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20572 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20573
20574 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20575 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20576 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20577 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20578 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20579 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20580 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20581 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20582 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20583 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20584 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20585 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20586
20587 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20588 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20589 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20590 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20591 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20592 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20593 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20594 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20595 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20596 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20597 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20598 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20599
20600 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20601 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20602 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20603 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20604
20605 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20606 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20607 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20608 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20609 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20610 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20611 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20612 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20613 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20614 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20615 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20616 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
20617
20618 /* The implementation of the FIX instruction is broken on some
20619 assemblers, in that it accepts a precision specifier as well as a
20620 rounding specifier, despite the fact that this is meaningless.
20621 To be more compatible, we accept it as well, though of course it
20622 does not set any bits. */
20623 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20624 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20625 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20626 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20627 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20628 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20629 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20630 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20631 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20632 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20633 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20634 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20635 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
20636
20637 /* Instructions that were new with the real FPA, call them V2. */
20638 #undef ARM_VARIANT
20639 #define ARM_VARIANT & fpu_fpa_ext_v2
20640
20641 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20642 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20643 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20644 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20645 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20646 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20647
20648 #undef ARM_VARIANT
20649 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20650
20651 /* Moves and type conversions. */
20652 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20653 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20654 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20655 cCE("fmstat", ef1fa10, 0, (), noargs),
20656 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20657 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
20658 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20659 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20660 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20661 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20662 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20663 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20664 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20665 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
20666
20667 /* Memory operations. */
20668 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20669 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20670 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20671 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20672 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20673 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20674 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20675 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20676 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20677 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20678 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20679 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20680 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20681 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20682 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20683 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20684 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20685 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20686
20687 /* Monadic operations. */
20688 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20689 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20690 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
20691
20692 /* Dyadic operations. */
20693 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20694 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20695 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20696 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20697 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20698 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20699 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20700 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20701 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20702
20703 /* Comparisons. */
20704 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20705 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20706 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20707 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
20708
20709 /* Double precision load/store are still present on single precision
20710 implementations. */
20711 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20712 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20713 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20714 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20715 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20716 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20717 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20718 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20719 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20720 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20721
20722 #undef ARM_VARIANT
20723 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20724
20725 /* Moves and type conversions. */
20726 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20727 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20728 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20729 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20730 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20731 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20732 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20733 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20734 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20735 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20736 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20737 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20738 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20739
20740 /* Monadic operations. */
20741 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20742 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20743 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20744
20745 /* Dyadic operations. */
20746 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20747 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20748 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20749 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20750 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20751 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20752 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20753 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20754 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20755
20756 /* Comparisons. */
20757 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20758 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20759 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20760 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
20761
20762 #undef ARM_VARIANT
20763 #define ARM_VARIANT & fpu_vfp_ext_v2
20764
20765 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20766 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20767 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20768 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
20769
20770 /* Instructions which may belong to either the Neon or VFP instruction sets.
20771 Individual encoder functions perform additional architecture checks. */
20772 #undef ARM_VARIANT
20773 #define ARM_VARIANT & fpu_vfp_ext_v1xd
20774 #undef THUMB_VARIANT
20775 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
20776
20777 /* These mnemonics are unique to VFP. */
20778 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20779 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
20780 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20781 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20782 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20783 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20784 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20785 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20786 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20787 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20788
20789 /* Mnemonics shared by Neon and VFP. */
20790 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20791 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20792 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20793
20794 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20795 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20796
20797 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20798 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20799
20800 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20801 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20802 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20803 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20804 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20805 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20806 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20807 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20808
20809 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
20810 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
20811 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20812 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
20813
20814
20815 /* NOTE: All VMOV encoding is special-cased! */
20816 NCE(vmov, 0, 1, (VMOV), neon_mov),
20817 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20818
20819 #undef ARM_VARIANT
20820 #define ARM_VARIANT & arm_ext_fp16
20821 #undef THUMB_VARIANT
20822 #define THUMB_VARIANT & arm_ext_fp16
20823 /* New instructions added from v8.2, allowing the extraction and insertion of
20824 the upper 16 bits of a 32-bit vector register. */
20825 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20826 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20827
20828 /* New backported fma/fms instructions optional in v8.2. */
20829 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
20830 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
20831
20832 #undef THUMB_VARIANT
20833 #define THUMB_VARIANT & fpu_neon_ext_v1
20834 #undef ARM_VARIANT
20835 #define ARM_VARIANT & fpu_neon_ext_v1
20836
20837 /* Data processing with three registers of the same length. */
20838 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20839 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20840 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20841 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20842 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20843 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20844 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20845 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20846 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20847 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20848 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20849 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20850 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20851 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20852 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20853 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20854 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20855 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20856 /* If not immediate, fall back to neon_dyadic_i64_su.
20857 shl_imm should accept I8 I16 I32 I64,
20858 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
20859 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20860 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20861 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20862 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
20863 /* Logic ops, types optional & ignored. */
20864 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20865 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20866 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20867 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20868 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20869 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20870 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20871 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20872 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20873 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
20874 /* Bitfield ops, untyped. */
20875 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20876 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20877 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20878 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20879 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20880 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20881 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
20882 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20883 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20884 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20885 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20886 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20887 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20888 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20889 back to neon_dyadic_if_su. */
20890 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20891 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20892 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20893 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20894 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20895 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20896 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20897 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20898 /* Comparison. Type I8 I16 I32 F32. */
20899 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20900 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
20901 /* As above, D registers only. */
20902 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20903 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20904 /* Int and float variants, signedness unimportant. */
20905 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20906 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20907 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
20908 /* Add/sub take types I8 I16 I32 I64 F32. */
20909 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20910 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20911 /* vtst takes sizes 8, 16, 32. */
20912 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20913 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20914 /* VMUL takes I8 I16 I32 F32 P8. */
20915 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
20916 /* VQD{R}MULH takes S16 S32. */
20917 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20918 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20919 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20920 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20921 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20922 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20923 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20924 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20925 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20926 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20927 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20928 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20929 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20930 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20931 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20932 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20933 /* ARM v8.1 extension. */
20934 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20935 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20936 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20937 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20938
20939 /* Two address, int/float. Types S8 S16 S32 F32. */
20940 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
20941 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
20942
20943 /* Data processing with two registers and a shift amount. */
20944 /* Right shifts, and variants with rounding.
20945 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
20946 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20947 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20948 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20949 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20950 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20951 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20952 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20953 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20954 /* Shift and insert. Sizes accepted 8 16 32 64. */
20955 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
20956 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
20957 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
20958 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
20959 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
20960 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
20961 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
20962 /* Right shift immediate, saturating & narrowing, with rounding variants.
20963 Types accepted S16 S32 S64 U16 U32 U64. */
20964 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20965 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20966 /* As above, unsigned. Types accepted S16 S32 S64. */
20967 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20968 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20969 /* Right shift narrowing. Types accepted I16 I32 I64. */
20970 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20971 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20972 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
20973 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
20974 /* CVT with optional immediate for fixed-point variant. */
20975 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
20976
20977 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
20978 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
20979
20980 /* Data processing, three registers of different lengths. */
20981 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
20982 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
20983 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
20984 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
20985 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
20986 /* If not scalar, fall back to neon_dyadic_long.
20987 Vector types as above, scalar types S16 S32 U16 U32. */
20988 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20989 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20990 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20991 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20992 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20993 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20994 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20995 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20996 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20997 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20998 /* Saturating doubling multiplies. Types S16 S32. */
20999 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21000 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21001 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21002 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21003 S16 S32 U16 U32. */
21004 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
21005
21006 /* Extract. Size 8. */
21007 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21008 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
21009
21010 /* Two registers, miscellaneous. */
21011 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21012 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21013 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21014 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21015 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21016 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21017 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21018 /* Vector replicate. Sizes 8 16 32. */
21019 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21020 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
21021 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21022 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21023 /* VMOVN. Types I16 I32 I64. */
21024 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
21025 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21026 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
21027 /* VQMOVUN. Types S16 S32 S64. */
21028 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
21029 /* VZIP / VUZP. Sizes 8 16 32. */
21030 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21031 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21032 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21033 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21034 /* VQABS / VQNEG. Types S8 S16 S32. */
21035 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21036 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21037 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21038 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21039 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21040 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21041 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21042 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21043 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
21044 /* Reciprocal estimates. Types U32 F16 F32. */
21045 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21046 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21047 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21048 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21049 /* VCLS. Types S8 S16 S32. */
21050 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21051 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21052 /* VCLZ. Types I8 I16 I32. */
21053 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21054 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21055 /* VCNT. Size 8. */
21056 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21057 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21058 /* Two address, untyped. */
21059 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21060 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21061 /* VTRN. Sizes 8 16 32. */
21062 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21063 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
21064
21065 /* Table lookup. Size 8. */
21066 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21067 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21068
21069 #undef THUMB_VARIANT
21070 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21071 #undef ARM_VARIANT
21072 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21073
21074 /* Neon element/structure load/store. */
21075 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21076 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21077 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21078 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21079 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21080 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21081 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21082 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21083
21084 #undef THUMB_VARIANT
21085 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
21086 #undef ARM_VARIANT
21087 #define ARM_VARIANT & fpu_vfp_ext_v3xd
21088 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21089 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21090 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21091 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21092 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21093 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21094 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21095 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21096 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21097
21098 #undef THUMB_VARIANT
21099 #define THUMB_VARIANT & fpu_vfp_ext_v3
21100 #undef ARM_VARIANT
21101 #define ARM_VARIANT & fpu_vfp_ext_v3
21102
21103 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21104 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21105 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21106 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21107 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21108 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21109 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21110 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21111 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21112
21113 #undef ARM_VARIANT
21114 #define ARM_VARIANT & fpu_vfp_ext_fma
21115 #undef THUMB_VARIANT
21116 #define THUMB_VARIANT & fpu_vfp_ext_fma
21117 /* Mnemonics shared by Neon and VFP. These are included in the
21118 VFP FMA variant; NEON and VFP FMA always includes the NEON
21119 FMA instructions. */
21120 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21121 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21122 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21123 the v form should always be used. */
21124 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21125 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21126 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21127 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21128 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21129 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21130
21131 #undef THUMB_VARIANT
21132 #undef ARM_VARIANT
21133 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21134
21135 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21136 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21137 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21138 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21139 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21140 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21141 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21142 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
21143
21144 #undef ARM_VARIANT
21145 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21146
21147 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21148 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21149 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21150 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21151 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21152 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21153 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21154 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21155 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
21156 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21157 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21158 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21159 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21160 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21161 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21162 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21163 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21164 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21165 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21166 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21167 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21168 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21169 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21170 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21171 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21172 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21173 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21174 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21175 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21176 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21177 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21178 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21179 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21180 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21181 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21182 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21183 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21184 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21185 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21186 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21187 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21188 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21189 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21190 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21191 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21192 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21193 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
21194 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21195 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21196 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21197 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21198 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21199 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21200 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21201 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21202 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21203 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21204 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21205 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21206 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21207 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21208 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21209 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21210 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21211 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21212 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21213 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21214 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21215 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21216 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21217 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21218 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21219 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21220 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21221 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21222 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21223 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21224 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21225 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21226 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21227 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21228 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21229 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21230 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21231 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21232 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21233 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21234 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21235 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21236 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21237 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21238 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21239 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21240 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21241 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21242 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21243 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21244 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21245 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21246 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21247 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21248 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21249 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21250 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21251 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21252 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21253 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21254 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21255 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21256 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21257 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21258 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21259 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21260 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21261 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21262 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21263 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21264 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21265 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21266 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21267 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21268 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21269 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21270 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21271 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21272 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21273 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21274 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21275 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21276 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21277 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21278 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21279 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21280 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21281 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21282 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21283 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21284 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21285 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21286 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21287 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21288 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21289 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21290 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21291 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21292 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21293 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21294 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21295 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21296 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21297 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21298 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21299 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21300 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21301 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21302 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21303 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21304 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21305 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21306 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21307 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21308 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
21309
21310 #undef ARM_VARIANT
21311 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21312
21313 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21314 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21315 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21316 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21317 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21318 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21319 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21320 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21321 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21322 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21323 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21324 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21325 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21326 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21327 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21328 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21329 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21330 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21331 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21332 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21333 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21334 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21335 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21336 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21337 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21338 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21339 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21340 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21341 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21342 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21343 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21344 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21345 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21346 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21347 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21348 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21349 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21350 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21351 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21352 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21353 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21354 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21355 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21356 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21357 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21358 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21359 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21360 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21361 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21362 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21363 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21364 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21365 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21366 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21367 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21368 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21369 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21370
21371 #undef ARM_VARIANT
21372 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21373
21374 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21375 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21376 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21377 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21378 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21379 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21380 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21381 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21382 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21383 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21384 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21385 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21386 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21387 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
21388 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21389 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21390 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21391 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21392 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21393 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21394 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21395 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21396 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21397 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21398 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21399 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21400 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21401 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
21402 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21403 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21404 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21405 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21406 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21407 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
21408 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21409 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21410 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21411 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21412 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21413 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21414 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21415 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
21416 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21417 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21418 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21419 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21420 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21421 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21422 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21423 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21424 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21425 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21426 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21427 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21428 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21429 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21430 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21431 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21432 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21433 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21434 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21435 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21436 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21437 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21438 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21439 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21440 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21441 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21442 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21443 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21444 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21445 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21446 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21447 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21448 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21449 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21450
21451 /* ARMv8-M instructions. */
21452 #undef ARM_VARIANT
21453 #define ARM_VARIANT NULL
21454 #undef THUMB_VARIANT
21455 #define THUMB_VARIANT & arm_ext_v8m
21456 TUE("sg", 0, e97fe97f, 0, (), 0, noargs),
21457 TUE("blxns", 0, 4784, 1, (RRnpc), 0, t_blx),
21458 TUE("bxns", 0, 4704, 1, (RRnpc), 0, t_bx),
21459 TUE("tt", 0, e840f000, 2, (RRnpc, RRnpc), 0, tt),
21460 TUE("ttt", 0, e840f040, 2, (RRnpc, RRnpc), 0, tt),
21461 TUE("tta", 0, e840f080, 2, (RRnpc, RRnpc), 0, tt),
21462 TUE("ttat", 0, e840f0c0, 2, (RRnpc, RRnpc), 0, tt),
21463
21464 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21465 instructions behave as nop if no VFP is present. */
21466 #undef THUMB_VARIANT
21467 #define THUMB_VARIANT & arm_ext_v8m_main
21468 TUEc("vlldm", 0, ec300a00, 1, (RRnpc), rn),
21469 TUEc("vlstm", 0, ec200a00, 1, (RRnpc), rn),
21470 };
21471 #undef ARM_VARIANT
21472 #undef THUMB_VARIANT
21473 #undef TCE
21474 #undef TUE
21475 #undef TUF
21476 #undef TCC
21477 #undef cCE
21478 #undef cCL
21479 #undef C3E
21480 #undef CE
21481 #undef CM
21482 #undef UE
21483 #undef UF
21484 #undef UT
21485 #undef NUF
21486 #undef nUF
21487 #undef NCE
21488 #undef nCE
21489 #undef OPS0
21490 #undef OPS1
21491 #undef OPS2
21492 #undef OPS3
21493 #undef OPS4
21494 #undef OPS5
21495 #undef OPS6
21496 #undef do_0
21497 \f
21498 /* MD interface: bits in the object file. */
21499
21500 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21501 for use in the a.out file, and stores them in the array pointed to by buf.
21502 This knows about the endian-ness of the target machine and does
21503 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21504 2 (short) and 4 (long) Floating numbers are put out as a series of
21505 LITTLENUMS (shorts, here at least). */
21506
21507 void
21508 md_number_to_chars (char * buf, valueT val, int n)
21509 {
21510 if (target_big_endian)
21511 number_to_chars_bigendian (buf, val, n);
21512 else
21513 number_to_chars_littleendian (buf, val, n);
21514 }
21515
21516 static valueT
21517 md_chars_to_number (char * buf, int n)
21518 {
21519 valueT result = 0;
21520 unsigned char * where = (unsigned char *) buf;
21521
21522 if (target_big_endian)
21523 {
21524 while (n--)
21525 {
21526 result <<= 8;
21527 result |= (*where++ & 255);
21528 }
21529 }
21530 else
21531 {
21532 while (n--)
21533 {
21534 result <<= 8;
21535 result |= (where[n] & 255);
21536 }
21537 }
21538
21539 return result;
21540 }
21541
21542 /* MD interface: Sections. */
21543
21544 /* Calculate the maximum variable size (i.e., excluding fr_fix)
21545 that an rs_machine_dependent frag may reach. */
21546
21547 unsigned int
21548 arm_frag_max_var (fragS *fragp)
21549 {
21550 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21551 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21552
21553 Note that we generate relaxable instructions even for cases that don't
21554 really need it, like an immediate that's a trivial constant. So we're
21555 overestimating the instruction size for some of those cases. Rather
21556 than putting more intelligence here, it would probably be better to
21557 avoid generating a relaxation frag in the first place when it can be
21558 determined up front that a short instruction will suffice. */
21559
21560 gas_assert (fragp->fr_type == rs_machine_dependent);
21561 return INSN_SIZE;
21562 }
21563
21564 /* Estimate the size of a frag before relaxing. Assume everything fits in
21565 2 bytes. */
21566
21567 int
21568 md_estimate_size_before_relax (fragS * fragp,
21569 segT segtype ATTRIBUTE_UNUSED)
21570 {
21571 fragp->fr_var = 2;
21572 return 2;
21573 }
21574
21575 /* Convert a machine dependent frag. */
21576
21577 void
21578 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21579 {
21580 unsigned long insn;
21581 unsigned long old_op;
21582 char *buf;
21583 expressionS exp;
21584 fixS *fixp;
21585 int reloc_type;
21586 int pc_rel;
21587 int opcode;
21588
21589 buf = fragp->fr_literal + fragp->fr_fix;
21590
21591 old_op = bfd_get_16(abfd, buf);
21592 if (fragp->fr_symbol)
21593 {
21594 exp.X_op = O_symbol;
21595 exp.X_add_symbol = fragp->fr_symbol;
21596 }
21597 else
21598 {
21599 exp.X_op = O_constant;
21600 }
21601 exp.X_add_number = fragp->fr_offset;
21602 opcode = fragp->fr_subtype;
21603 switch (opcode)
21604 {
21605 case T_MNEM_ldr_pc:
21606 case T_MNEM_ldr_pc2:
21607 case T_MNEM_ldr_sp:
21608 case T_MNEM_str_sp:
21609 case T_MNEM_ldr:
21610 case T_MNEM_ldrb:
21611 case T_MNEM_ldrh:
21612 case T_MNEM_str:
21613 case T_MNEM_strb:
21614 case T_MNEM_strh:
21615 if (fragp->fr_var == 4)
21616 {
21617 insn = THUMB_OP32 (opcode);
21618 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21619 {
21620 insn |= (old_op & 0x700) << 4;
21621 }
21622 else
21623 {
21624 insn |= (old_op & 7) << 12;
21625 insn |= (old_op & 0x38) << 13;
21626 }
21627 insn |= 0x00000c00;
21628 put_thumb32_insn (buf, insn);
21629 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21630 }
21631 else
21632 {
21633 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21634 }
21635 pc_rel = (opcode == T_MNEM_ldr_pc2);
21636 break;
21637 case T_MNEM_adr:
21638 if (fragp->fr_var == 4)
21639 {
21640 insn = THUMB_OP32 (opcode);
21641 insn |= (old_op & 0xf0) << 4;
21642 put_thumb32_insn (buf, insn);
21643 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21644 }
21645 else
21646 {
21647 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21648 exp.X_add_number -= 4;
21649 }
21650 pc_rel = 1;
21651 break;
21652 case T_MNEM_mov:
21653 case T_MNEM_movs:
21654 case T_MNEM_cmp:
21655 case T_MNEM_cmn:
21656 if (fragp->fr_var == 4)
21657 {
21658 int r0off = (opcode == T_MNEM_mov
21659 || opcode == T_MNEM_movs) ? 0 : 8;
21660 insn = THUMB_OP32 (opcode);
21661 insn = (insn & 0xe1ffffff) | 0x10000000;
21662 insn |= (old_op & 0x700) << r0off;
21663 put_thumb32_insn (buf, insn);
21664 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21665 }
21666 else
21667 {
21668 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21669 }
21670 pc_rel = 0;
21671 break;
21672 case T_MNEM_b:
21673 if (fragp->fr_var == 4)
21674 {
21675 insn = THUMB_OP32(opcode);
21676 put_thumb32_insn (buf, insn);
21677 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21678 }
21679 else
21680 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21681 pc_rel = 1;
21682 break;
21683 case T_MNEM_bcond:
21684 if (fragp->fr_var == 4)
21685 {
21686 insn = THUMB_OP32(opcode);
21687 insn |= (old_op & 0xf00) << 14;
21688 put_thumb32_insn (buf, insn);
21689 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21690 }
21691 else
21692 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21693 pc_rel = 1;
21694 break;
21695 case T_MNEM_add_sp:
21696 case T_MNEM_add_pc:
21697 case T_MNEM_inc_sp:
21698 case T_MNEM_dec_sp:
21699 if (fragp->fr_var == 4)
21700 {
21701 /* ??? Choose between add and addw. */
21702 insn = THUMB_OP32 (opcode);
21703 insn |= (old_op & 0xf0) << 4;
21704 put_thumb32_insn (buf, insn);
21705 if (opcode == T_MNEM_add_pc)
21706 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21707 else
21708 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21709 }
21710 else
21711 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21712 pc_rel = 0;
21713 break;
21714
21715 case T_MNEM_addi:
21716 case T_MNEM_addis:
21717 case T_MNEM_subi:
21718 case T_MNEM_subis:
21719 if (fragp->fr_var == 4)
21720 {
21721 insn = THUMB_OP32 (opcode);
21722 insn |= (old_op & 0xf0) << 4;
21723 insn |= (old_op & 0xf) << 16;
21724 put_thumb32_insn (buf, insn);
21725 if (insn & (1 << 20))
21726 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21727 else
21728 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21729 }
21730 else
21731 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21732 pc_rel = 0;
21733 break;
21734 default:
21735 abort ();
21736 }
21737 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21738 (enum bfd_reloc_code_real) reloc_type);
21739 fixp->fx_file = fragp->fr_file;
21740 fixp->fx_line = fragp->fr_line;
21741 fragp->fr_fix += fragp->fr_var;
21742
21743 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21744 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21745 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21746 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
21747 }
21748
21749 /* Return the size of a relaxable immediate operand instruction.
21750 SHIFT and SIZE specify the form of the allowable immediate. */
21751 static int
21752 relax_immediate (fragS *fragp, int size, int shift)
21753 {
21754 offsetT offset;
21755 offsetT mask;
21756 offsetT low;
21757
21758 /* ??? Should be able to do better than this. */
21759 if (fragp->fr_symbol)
21760 return 4;
21761
21762 low = (1 << shift) - 1;
21763 mask = (1 << (shift + size)) - (1 << shift);
21764 offset = fragp->fr_offset;
21765 /* Force misaligned offsets to 32-bit variant. */
21766 if (offset & low)
21767 return 4;
21768 if (offset & ~mask)
21769 return 4;
21770 return 2;
21771 }
21772
21773 /* Get the address of a symbol during relaxation. */
21774 static addressT
21775 relaxed_symbol_addr (fragS *fragp, long stretch)
21776 {
21777 fragS *sym_frag;
21778 addressT addr;
21779 symbolS *sym;
21780
21781 sym = fragp->fr_symbol;
21782 sym_frag = symbol_get_frag (sym);
21783 know (S_GET_SEGMENT (sym) != absolute_section
21784 || sym_frag == &zero_address_frag);
21785 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21786
21787 /* If frag has yet to be reached on this pass, assume it will
21788 move by STRETCH just as we did. If this is not so, it will
21789 be because some frag between grows, and that will force
21790 another pass. */
21791
21792 if (stretch != 0
21793 && sym_frag->relax_marker != fragp->relax_marker)
21794 {
21795 fragS *f;
21796
21797 /* Adjust stretch for any alignment frag. Note that if have
21798 been expanding the earlier code, the symbol may be
21799 defined in what appears to be an earlier frag. FIXME:
21800 This doesn't handle the fr_subtype field, which specifies
21801 a maximum number of bytes to skip when doing an
21802 alignment. */
21803 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21804 {
21805 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21806 {
21807 if (stretch < 0)
21808 stretch = - ((- stretch)
21809 & ~ ((1 << (int) f->fr_offset) - 1));
21810 else
21811 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21812 if (stretch == 0)
21813 break;
21814 }
21815 }
21816 if (f != NULL)
21817 addr += stretch;
21818 }
21819
21820 return addr;
21821 }
21822
21823 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
21824 load. */
21825 static int
21826 relax_adr (fragS *fragp, asection *sec, long stretch)
21827 {
21828 addressT addr;
21829 offsetT val;
21830
21831 /* Assume worst case for symbols not known to be in the same section. */
21832 if (fragp->fr_symbol == NULL
21833 || !S_IS_DEFINED (fragp->fr_symbol)
21834 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21835 || S_IS_WEAK (fragp->fr_symbol))
21836 return 4;
21837
21838 val = relaxed_symbol_addr (fragp, stretch);
21839 addr = fragp->fr_address + fragp->fr_fix;
21840 addr = (addr + 4) & ~3;
21841 /* Force misaligned targets to 32-bit variant. */
21842 if (val & 3)
21843 return 4;
21844 val -= addr;
21845 if (val < 0 || val > 1020)
21846 return 4;
21847 return 2;
21848 }
21849
21850 /* Return the size of a relaxable add/sub immediate instruction. */
21851 static int
21852 relax_addsub (fragS *fragp, asection *sec)
21853 {
21854 char *buf;
21855 int op;
21856
21857 buf = fragp->fr_literal + fragp->fr_fix;
21858 op = bfd_get_16(sec->owner, buf);
21859 if ((op & 0xf) == ((op >> 4) & 0xf))
21860 return relax_immediate (fragp, 8, 0);
21861 else
21862 return relax_immediate (fragp, 3, 0);
21863 }
21864
21865 /* Return TRUE iff the definition of symbol S could be pre-empted
21866 (overridden) at link or load time. */
21867 static bfd_boolean
21868 symbol_preemptible (symbolS *s)
21869 {
21870 /* Weak symbols can always be pre-empted. */
21871 if (S_IS_WEAK (s))
21872 return TRUE;
21873
21874 /* Non-global symbols cannot be pre-empted. */
21875 if (! S_IS_EXTERNAL (s))
21876 return FALSE;
21877
21878 #ifdef OBJ_ELF
21879 /* In ELF, a global symbol can be marked protected, or private. In that
21880 case it can't be pre-empted (other definitions in the same link unit
21881 would violate the ODR). */
21882 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21883 return FALSE;
21884 #endif
21885
21886 /* Other global symbols might be pre-empted. */
21887 return TRUE;
21888 }
21889
21890 /* Return the size of a relaxable branch instruction. BITS is the
21891 size of the offset field in the narrow instruction. */
21892
21893 static int
21894 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
21895 {
21896 addressT addr;
21897 offsetT val;
21898 offsetT limit;
21899
21900 /* Assume worst case for symbols not known to be in the same section. */
21901 if (!S_IS_DEFINED (fragp->fr_symbol)
21902 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21903 || S_IS_WEAK (fragp->fr_symbol))
21904 return 4;
21905
21906 #ifdef OBJ_ELF
21907 /* A branch to a function in ARM state will require interworking. */
21908 if (S_IS_DEFINED (fragp->fr_symbol)
21909 && ARM_IS_FUNC (fragp->fr_symbol))
21910 return 4;
21911 #endif
21912
21913 if (symbol_preemptible (fragp->fr_symbol))
21914 return 4;
21915
21916 val = relaxed_symbol_addr (fragp, stretch);
21917 addr = fragp->fr_address + fragp->fr_fix + 4;
21918 val -= addr;
21919
21920 /* Offset is a signed value *2 */
21921 limit = 1 << bits;
21922 if (val >= limit || val < -limit)
21923 return 4;
21924 return 2;
21925 }
21926
21927
21928 /* Relax a machine dependent frag. This returns the amount by which
21929 the current size of the frag should change. */
21930
21931 int
21932 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
21933 {
21934 int oldsize;
21935 int newsize;
21936
21937 oldsize = fragp->fr_var;
21938 switch (fragp->fr_subtype)
21939 {
21940 case T_MNEM_ldr_pc2:
21941 newsize = relax_adr (fragp, sec, stretch);
21942 break;
21943 case T_MNEM_ldr_pc:
21944 case T_MNEM_ldr_sp:
21945 case T_MNEM_str_sp:
21946 newsize = relax_immediate (fragp, 8, 2);
21947 break;
21948 case T_MNEM_ldr:
21949 case T_MNEM_str:
21950 newsize = relax_immediate (fragp, 5, 2);
21951 break;
21952 case T_MNEM_ldrh:
21953 case T_MNEM_strh:
21954 newsize = relax_immediate (fragp, 5, 1);
21955 break;
21956 case T_MNEM_ldrb:
21957 case T_MNEM_strb:
21958 newsize = relax_immediate (fragp, 5, 0);
21959 break;
21960 case T_MNEM_adr:
21961 newsize = relax_adr (fragp, sec, stretch);
21962 break;
21963 case T_MNEM_mov:
21964 case T_MNEM_movs:
21965 case T_MNEM_cmp:
21966 case T_MNEM_cmn:
21967 newsize = relax_immediate (fragp, 8, 0);
21968 break;
21969 case T_MNEM_b:
21970 newsize = relax_branch (fragp, sec, 11, stretch);
21971 break;
21972 case T_MNEM_bcond:
21973 newsize = relax_branch (fragp, sec, 8, stretch);
21974 break;
21975 case T_MNEM_add_sp:
21976 case T_MNEM_add_pc:
21977 newsize = relax_immediate (fragp, 8, 2);
21978 break;
21979 case T_MNEM_inc_sp:
21980 case T_MNEM_dec_sp:
21981 newsize = relax_immediate (fragp, 7, 2);
21982 break;
21983 case T_MNEM_addi:
21984 case T_MNEM_addis:
21985 case T_MNEM_subi:
21986 case T_MNEM_subis:
21987 newsize = relax_addsub (fragp, sec);
21988 break;
21989 default:
21990 abort ();
21991 }
21992
21993 fragp->fr_var = newsize;
21994 /* Freeze wide instructions that are at or before the same location as
21995 in the previous pass. This avoids infinite loops.
21996 Don't freeze them unconditionally because targets may be artificially
21997 misaligned by the expansion of preceding frags. */
21998 if (stretch <= 0 && newsize > 2)
21999 {
22000 md_convert_frag (sec->owner, sec, fragp);
22001 frag_wane (fragp);
22002 }
22003
22004 return newsize - oldsize;
22005 }
22006
22007 /* Round up a section size to the appropriate boundary. */
22008
22009 valueT
22010 md_section_align (segT segment ATTRIBUTE_UNUSED,
22011 valueT size)
22012 {
22013 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
22014 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
22015 {
22016 /* For a.out, force the section size to be aligned. If we don't do
22017 this, BFD will align it for us, but it will not write out the
22018 final bytes of the section. This may be a bug in BFD, but it is
22019 easier to fix it here since that is how the other a.out targets
22020 work. */
22021 int align;
22022
22023 align = bfd_get_section_alignment (stdoutput, segment);
22024 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
22025 }
22026 #endif
22027
22028 return size;
22029 }
22030
22031 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22032 of an rs_align_code fragment. */
22033
22034 void
22035 arm_handle_align (fragS * fragP)
22036 {
22037 static unsigned char const arm_noop[2][2][4] =
22038 {
22039 { /* ARMv1 */
22040 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22041 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22042 },
22043 { /* ARMv6k */
22044 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22045 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22046 },
22047 };
22048 static unsigned char const thumb_noop[2][2][2] =
22049 {
22050 { /* Thumb-1 */
22051 {0xc0, 0x46}, /* LE */
22052 {0x46, 0xc0}, /* BE */
22053 },
22054 { /* Thumb-2 */
22055 {0x00, 0xbf}, /* LE */
22056 {0xbf, 0x00} /* BE */
22057 }
22058 };
22059 static unsigned char const wide_thumb_noop[2][4] =
22060 { /* Wide Thumb-2 */
22061 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22062 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22063 };
22064
22065 unsigned bytes, fix, noop_size;
22066 char * p;
22067 const unsigned char * noop;
22068 const unsigned char *narrow_noop = NULL;
22069 #ifdef OBJ_ELF
22070 enum mstate state;
22071 #endif
22072
22073 if (fragP->fr_type != rs_align_code)
22074 return;
22075
22076 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22077 p = fragP->fr_literal + fragP->fr_fix;
22078 fix = 0;
22079
22080 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22081 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
22082
22083 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
22084
22085 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
22086 {
22087 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22088 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
22089 {
22090 narrow_noop = thumb_noop[1][target_big_endian];
22091 noop = wide_thumb_noop[target_big_endian];
22092 }
22093 else
22094 noop = thumb_noop[0][target_big_endian];
22095 noop_size = 2;
22096 #ifdef OBJ_ELF
22097 state = MAP_THUMB;
22098 #endif
22099 }
22100 else
22101 {
22102 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22103 ? selected_cpu : arm_arch_none,
22104 arm_ext_v6k) != 0]
22105 [target_big_endian];
22106 noop_size = 4;
22107 #ifdef OBJ_ELF
22108 state = MAP_ARM;
22109 #endif
22110 }
22111
22112 fragP->fr_var = noop_size;
22113
22114 if (bytes & (noop_size - 1))
22115 {
22116 fix = bytes & (noop_size - 1);
22117 #ifdef OBJ_ELF
22118 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22119 #endif
22120 memset (p, 0, fix);
22121 p += fix;
22122 bytes -= fix;
22123 }
22124
22125 if (narrow_noop)
22126 {
22127 if (bytes & noop_size)
22128 {
22129 /* Insert a narrow noop. */
22130 memcpy (p, narrow_noop, noop_size);
22131 p += noop_size;
22132 bytes -= noop_size;
22133 fix += noop_size;
22134 }
22135
22136 /* Use wide noops for the remainder */
22137 noop_size = 4;
22138 }
22139
22140 while (bytes >= noop_size)
22141 {
22142 memcpy (p, noop, noop_size);
22143 p += noop_size;
22144 bytes -= noop_size;
22145 fix += noop_size;
22146 }
22147
22148 fragP->fr_fix += fix;
22149 }
22150
22151 /* Called from md_do_align. Used to create an alignment
22152 frag in a code section. */
22153
22154 void
22155 arm_frag_align_code (int n, int max)
22156 {
22157 char * p;
22158
22159 /* We assume that there will never be a requirement
22160 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
22161 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
22162 {
22163 char err_msg[128];
22164
22165 sprintf (err_msg,
22166 _("alignments greater than %d bytes not supported in .text sections."),
22167 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
22168 as_fatal ("%s", err_msg);
22169 }
22170
22171 p = frag_var (rs_align_code,
22172 MAX_MEM_FOR_RS_ALIGN_CODE,
22173 1,
22174 (relax_substateT) max,
22175 (symbolS *) NULL,
22176 (offsetT) n,
22177 (char *) NULL);
22178 *p = 0;
22179 }
22180
22181 /* Perform target specific initialisation of a frag.
22182 Note - despite the name this initialisation is not done when the frag
22183 is created, but only when its type is assigned. A frag can be created
22184 and used a long time before its type is set, so beware of assuming that
22185 this initialisation is performed first. */
22186
22187 #ifndef OBJ_ELF
22188 void
22189 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22190 {
22191 /* Record whether this frag is in an ARM or a THUMB area. */
22192 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22193 }
22194
22195 #else /* OBJ_ELF is defined. */
22196 void
22197 arm_init_frag (fragS * fragP, int max_chars)
22198 {
22199 bfd_boolean frag_thumb_mode;
22200
22201 /* If the current ARM vs THUMB mode has not already
22202 been recorded into this frag then do so now. */
22203 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
22204 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22205
22206 /* PR 21809: Do not set a mapping state for debug sections
22207 - it just confuses other tools. */
22208 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22209 return;
22210
22211 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
22212
22213 /* Record a mapping symbol for alignment frags. We will delete this
22214 later if the alignment ends up empty. */
22215 switch (fragP->fr_type)
22216 {
22217 case rs_align:
22218 case rs_align_test:
22219 case rs_fill:
22220 mapping_state_2 (MAP_DATA, max_chars);
22221 break;
22222 case rs_align_code:
22223 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
22224 break;
22225 default:
22226 break;
22227 }
22228 }
22229
22230 /* When we change sections we need to issue a new mapping symbol. */
22231
22232 void
22233 arm_elf_change_section (void)
22234 {
22235 /* Link an unlinked unwind index table section to the .text section. */
22236 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22237 && elf_linked_to_section (now_seg) == NULL)
22238 elf_linked_to_section (now_seg) = text_section;
22239 }
22240
22241 int
22242 arm_elf_section_type (const char * str, size_t len)
22243 {
22244 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22245 return SHT_ARM_EXIDX;
22246
22247 return -1;
22248 }
22249 \f
22250 /* Code to deal with unwinding tables. */
22251
22252 static void add_unwind_adjustsp (offsetT);
22253
22254 /* Generate any deferred unwind frame offset. */
22255
22256 static void
22257 flush_pending_unwind (void)
22258 {
22259 offsetT offset;
22260
22261 offset = unwind.pending_offset;
22262 unwind.pending_offset = 0;
22263 if (offset != 0)
22264 add_unwind_adjustsp (offset);
22265 }
22266
22267 /* Add an opcode to this list for this function. Two-byte opcodes should
22268 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22269 order. */
22270
22271 static void
22272 add_unwind_opcode (valueT op, int length)
22273 {
22274 /* Add any deferred stack adjustment. */
22275 if (unwind.pending_offset)
22276 flush_pending_unwind ();
22277
22278 unwind.sp_restored = 0;
22279
22280 if (unwind.opcode_count + length > unwind.opcode_alloc)
22281 {
22282 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22283 if (unwind.opcodes)
22284 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22285 unwind.opcode_alloc);
22286 else
22287 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
22288 }
22289 while (length > 0)
22290 {
22291 length--;
22292 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22293 op >>= 8;
22294 unwind.opcode_count++;
22295 }
22296 }
22297
22298 /* Add unwind opcodes to adjust the stack pointer. */
22299
22300 static void
22301 add_unwind_adjustsp (offsetT offset)
22302 {
22303 valueT op;
22304
22305 if (offset > 0x200)
22306 {
22307 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22308 char bytes[5];
22309 int n;
22310 valueT o;
22311
22312 /* Long form: 0xb2, uleb128. */
22313 /* This might not fit in a word so add the individual bytes,
22314 remembering the list is built in reverse order. */
22315 o = (valueT) ((offset - 0x204) >> 2);
22316 if (o == 0)
22317 add_unwind_opcode (0, 1);
22318
22319 /* Calculate the uleb128 encoding of the offset. */
22320 n = 0;
22321 while (o)
22322 {
22323 bytes[n] = o & 0x7f;
22324 o >>= 7;
22325 if (o)
22326 bytes[n] |= 0x80;
22327 n++;
22328 }
22329 /* Add the insn. */
22330 for (; n; n--)
22331 add_unwind_opcode (bytes[n - 1], 1);
22332 add_unwind_opcode (0xb2, 1);
22333 }
22334 else if (offset > 0x100)
22335 {
22336 /* Two short opcodes. */
22337 add_unwind_opcode (0x3f, 1);
22338 op = (offset - 0x104) >> 2;
22339 add_unwind_opcode (op, 1);
22340 }
22341 else if (offset > 0)
22342 {
22343 /* Short opcode. */
22344 op = (offset - 4) >> 2;
22345 add_unwind_opcode (op, 1);
22346 }
22347 else if (offset < 0)
22348 {
22349 offset = -offset;
22350 while (offset > 0x100)
22351 {
22352 add_unwind_opcode (0x7f, 1);
22353 offset -= 0x100;
22354 }
22355 op = ((offset - 4) >> 2) | 0x40;
22356 add_unwind_opcode (op, 1);
22357 }
22358 }
22359
22360 /* Finish the list of unwind opcodes for this function. */
22361
22362 static void
22363 finish_unwind_opcodes (void)
22364 {
22365 valueT op;
22366
22367 if (unwind.fp_used)
22368 {
22369 /* Adjust sp as necessary. */
22370 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22371 flush_pending_unwind ();
22372
22373 /* After restoring sp from the frame pointer. */
22374 op = 0x90 | unwind.fp_reg;
22375 add_unwind_opcode (op, 1);
22376 }
22377 else
22378 flush_pending_unwind ();
22379 }
22380
22381
22382 /* Start an exception table entry. If idx is nonzero this is an index table
22383 entry. */
22384
22385 static void
22386 start_unwind_section (const segT text_seg, int idx)
22387 {
22388 const char * text_name;
22389 const char * prefix;
22390 const char * prefix_once;
22391 const char * group_name;
22392 char * sec_name;
22393 int type;
22394 int flags;
22395 int linkonce;
22396
22397 if (idx)
22398 {
22399 prefix = ELF_STRING_ARM_unwind;
22400 prefix_once = ELF_STRING_ARM_unwind_once;
22401 type = SHT_ARM_EXIDX;
22402 }
22403 else
22404 {
22405 prefix = ELF_STRING_ARM_unwind_info;
22406 prefix_once = ELF_STRING_ARM_unwind_info_once;
22407 type = SHT_PROGBITS;
22408 }
22409
22410 text_name = segment_name (text_seg);
22411 if (streq (text_name, ".text"))
22412 text_name = "";
22413
22414 if (strncmp (text_name, ".gnu.linkonce.t.",
22415 strlen (".gnu.linkonce.t.")) == 0)
22416 {
22417 prefix = prefix_once;
22418 text_name += strlen (".gnu.linkonce.t.");
22419 }
22420
22421 sec_name = concat (prefix, text_name, (char *) NULL);
22422
22423 flags = SHF_ALLOC;
22424 linkonce = 0;
22425 group_name = 0;
22426
22427 /* Handle COMDAT group. */
22428 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
22429 {
22430 group_name = elf_group_name (text_seg);
22431 if (group_name == NULL)
22432 {
22433 as_bad (_("Group section `%s' has no group signature"),
22434 segment_name (text_seg));
22435 ignore_rest_of_line ();
22436 return;
22437 }
22438 flags |= SHF_GROUP;
22439 linkonce = 1;
22440 }
22441
22442 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22443 linkonce, 0);
22444
22445 /* Set the section link for index tables. */
22446 if (idx)
22447 elf_linked_to_section (now_seg) = text_seg;
22448 }
22449
22450
22451 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22452 personality routine data. Returns zero, or the index table value for
22453 an inline entry. */
22454
22455 static valueT
22456 create_unwind_entry (int have_data)
22457 {
22458 int size;
22459 addressT where;
22460 char *ptr;
22461 /* The current word of data. */
22462 valueT data;
22463 /* The number of bytes left in this word. */
22464 int n;
22465
22466 finish_unwind_opcodes ();
22467
22468 /* Remember the current text section. */
22469 unwind.saved_seg = now_seg;
22470 unwind.saved_subseg = now_subseg;
22471
22472 start_unwind_section (now_seg, 0);
22473
22474 if (unwind.personality_routine == NULL)
22475 {
22476 if (unwind.personality_index == -2)
22477 {
22478 if (have_data)
22479 as_bad (_("handlerdata in cantunwind frame"));
22480 return 1; /* EXIDX_CANTUNWIND. */
22481 }
22482
22483 /* Use a default personality routine if none is specified. */
22484 if (unwind.personality_index == -1)
22485 {
22486 if (unwind.opcode_count > 3)
22487 unwind.personality_index = 1;
22488 else
22489 unwind.personality_index = 0;
22490 }
22491
22492 /* Space for the personality routine entry. */
22493 if (unwind.personality_index == 0)
22494 {
22495 if (unwind.opcode_count > 3)
22496 as_bad (_("too many unwind opcodes for personality routine 0"));
22497
22498 if (!have_data)
22499 {
22500 /* All the data is inline in the index table. */
22501 data = 0x80;
22502 n = 3;
22503 while (unwind.opcode_count > 0)
22504 {
22505 unwind.opcode_count--;
22506 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22507 n--;
22508 }
22509
22510 /* Pad with "finish" opcodes. */
22511 while (n--)
22512 data = (data << 8) | 0xb0;
22513
22514 return data;
22515 }
22516 size = 0;
22517 }
22518 else
22519 /* We get two opcodes "free" in the first word. */
22520 size = unwind.opcode_count - 2;
22521 }
22522 else
22523 {
22524 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22525 if (unwind.personality_index != -1)
22526 {
22527 as_bad (_("attempt to recreate an unwind entry"));
22528 return 1;
22529 }
22530
22531 /* An extra byte is required for the opcode count. */
22532 size = unwind.opcode_count + 1;
22533 }
22534
22535 size = (size + 3) >> 2;
22536 if (size > 0xff)
22537 as_bad (_("too many unwind opcodes"));
22538
22539 frag_align (2, 0, 0);
22540 record_alignment (now_seg, 2);
22541 unwind.table_entry = expr_build_dot ();
22542
22543 /* Allocate the table entry. */
22544 ptr = frag_more ((size << 2) + 4);
22545 /* PR 13449: Zero the table entries in case some of them are not used. */
22546 memset (ptr, 0, (size << 2) + 4);
22547 where = frag_now_fix () - ((size << 2) + 4);
22548
22549 switch (unwind.personality_index)
22550 {
22551 case -1:
22552 /* ??? Should this be a PLT generating relocation? */
22553 /* Custom personality routine. */
22554 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22555 BFD_RELOC_ARM_PREL31);
22556
22557 where += 4;
22558 ptr += 4;
22559
22560 /* Set the first byte to the number of additional words. */
22561 data = size > 0 ? size - 1 : 0;
22562 n = 3;
22563 break;
22564
22565 /* ABI defined personality routines. */
22566 case 0:
22567 /* Three opcodes bytes are packed into the first word. */
22568 data = 0x80;
22569 n = 3;
22570 break;
22571
22572 case 1:
22573 case 2:
22574 /* The size and first two opcode bytes go in the first word. */
22575 data = ((0x80 + unwind.personality_index) << 8) | size;
22576 n = 2;
22577 break;
22578
22579 default:
22580 /* Should never happen. */
22581 abort ();
22582 }
22583
22584 /* Pack the opcodes into words (MSB first), reversing the list at the same
22585 time. */
22586 while (unwind.opcode_count > 0)
22587 {
22588 if (n == 0)
22589 {
22590 md_number_to_chars (ptr, data, 4);
22591 ptr += 4;
22592 n = 4;
22593 data = 0;
22594 }
22595 unwind.opcode_count--;
22596 n--;
22597 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22598 }
22599
22600 /* Finish off the last word. */
22601 if (n < 4)
22602 {
22603 /* Pad with "finish" opcodes. */
22604 while (n--)
22605 data = (data << 8) | 0xb0;
22606
22607 md_number_to_chars (ptr, data, 4);
22608 }
22609
22610 if (!have_data)
22611 {
22612 /* Add an empty descriptor if there is no user-specified data. */
22613 ptr = frag_more (4);
22614 md_number_to_chars (ptr, 0, 4);
22615 }
22616
22617 return 0;
22618 }
22619
22620
22621 /* Initialize the DWARF-2 unwind information for this procedure. */
22622
22623 void
22624 tc_arm_frame_initial_instructions (void)
22625 {
22626 cfi_add_CFA_def_cfa (REG_SP, 0);
22627 }
22628 #endif /* OBJ_ELF */
22629
22630 /* Convert REGNAME to a DWARF-2 register number. */
22631
22632 int
22633 tc_arm_regname_to_dw2regnum (char *regname)
22634 {
22635 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
22636 if (reg != FAIL)
22637 return reg;
22638
22639 /* PR 16694: Allow VFP registers as well. */
22640 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22641 if (reg != FAIL)
22642 return 64 + reg;
22643
22644 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22645 if (reg != FAIL)
22646 return reg + 256;
22647
22648 return FAIL;
22649 }
22650
22651 #ifdef TE_PE
22652 void
22653 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
22654 {
22655 expressionS exp;
22656
22657 exp.X_op = O_secrel;
22658 exp.X_add_symbol = symbol;
22659 exp.X_add_number = 0;
22660 emit_expr (&exp, size);
22661 }
22662 #endif
22663
22664 /* MD interface: Symbol and relocation handling. */
22665
22666 /* Return the address within the segment that a PC-relative fixup is
22667 relative to. For ARM, PC-relative fixups applied to instructions
22668 are generally relative to the location of the fixup plus 8 bytes.
22669 Thumb branches are offset by 4, and Thumb loads relative to PC
22670 require special handling. */
22671
22672 long
22673 md_pcrel_from_section (fixS * fixP, segT seg)
22674 {
22675 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22676
22677 /* If this is pc-relative and we are going to emit a relocation
22678 then we just want to put out any pipeline compensation that the linker
22679 will need. Otherwise we want to use the calculated base.
22680 For WinCE we skip the bias for externals as well, since this
22681 is how the MS ARM-CE assembler behaves and we want to be compatible. */
22682 if (fixP->fx_pcrel
22683 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
22684 || (arm_force_relocation (fixP)
22685 #ifdef TE_WINCE
22686 && !S_IS_EXTERNAL (fixP->fx_addsy)
22687 #endif
22688 )))
22689 base = 0;
22690
22691
22692 switch (fixP->fx_r_type)
22693 {
22694 /* PC relative addressing on the Thumb is slightly odd as the
22695 bottom two bits of the PC are forced to zero for the
22696 calculation. This happens *after* application of the
22697 pipeline offset. However, Thumb adrl already adjusts for
22698 this, so we need not do it again. */
22699 case BFD_RELOC_ARM_THUMB_ADD:
22700 return base & ~3;
22701
22702 case BFD_RELOC_ARM_THUMB_OFFSET:
22703 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22704 case BFD_RELOC_ARM_T32_ADD_PC12:
22705 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22706 return (base + 4) & ~3;
22707
22708 /* Thumb branches are simply offset by +4. */
22709 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22710 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22711 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22712 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22713 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22714 return base + 4;
22715
22716 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22717 if (fixP->fx_addsy
22718 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22719 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22720 && ARM_IS_FUNC (fixP->fx_addsy)
22721 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22722 base = fixP->fx_where + fixP->fx_frag->fr_address;
22723 return base + 4;
22724
22725 /* BLX is like branches above, but forces the low two bits of PC to
22726 zero. */
22727 case BFD_RELOC_THUMB_PCREL_BLX:
22728 if (fixP->fx_addsy
22729 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22730 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22731 && THUMB_IS_FUNC (fixP->fx_addsy)
22732 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22733 base = fixP->fx_where + fixP->fx_frag->fr_address;
22734 return (base + 4) & ~3;
22735
22736 /* ARM mode branches are offset by +8. However, the Windows CE
22737 loader expects the relocation not to take this into account. */
22738 case BFD_RELOC_ARM_PCREL_BLX:
22739 if (fixP->fx_addsy
22740 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22741 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22742 && ARM_IS_FUNC (fixP->fx_addsy)
22743 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22744 base = fixP->fx_where + fixP->fx_frag->fr_address;
22745 return base + 8;
22746
22747 case BFD_RELOC_ARM_PCREL_CALL:
22748 if (fixP->fx_addsy
22749 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22750 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22751 && THUMB_IS_FUNC (fixP->fx_addsy)
22752 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22753 base = fixP->fx_where + fixP->fx_frag->fr_address;
22754 return base + 8;
22755
22756 case BFD_RELOC_ARM_PCREL_BRANCH:
22757 case BFD_RELOC_ARM_PCREL_JUMP:
22758 case BFD_RELOC_ARM_PLT32:
22759 #ifdef TE_WINCE
22760 /* When handling fixups immediately, because we have already
22761 discovered the value of a symbol, or the address of the frag involved
22762 we must account for the offset by +8, as the OS loader will never see the reloc.
22763 see fixup_segment() in write.c
22764 The S_IS_EXTERNAL test handles the case of global symbols.
22765 Those need the calculated base, not just the pipe compensation the linker will need. */
22766 if (fixP->fx_pcrel
22767 && fixP->fx_addsy != NULL
22768 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22769 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22770 return base + 8;
22771 return base;
22772 #else
22773 return base + 8;
22774 #endif
22775
22776
22777 /* ARM mode loads relative to PC are also offset by +8. Unlike
22778 branches, the Windows CE loader *does* expect the relocation
22779 to take this into account. */
22780 case BFD_RELOC_ARM_OFFSET_IMM:
22781 case BFD_RELOC_ARM_OFFSET_IMM8:
22782 case BFD_RELOC_ARM_HWLITERAL:
22783 case BFD_RELOC_ARM_LITERAL:
22784 case BFD_RELOC_ARM_CP_OFF_IMM:
22785 return base + 8;
22786
22787
22788 /* Other PC-relative relocations are un-offset. */
22789 default:
22790 return base;
22791 }
22792 }
22793
22794 static bfd_boolean flag_warn_syms = TRUE;
22795
22796 bfd_boolean
22797 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
22798 {
22799 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22800 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22801 does mean that the resulting code might be very confusing to the reader.
22802 Also this warning can be triggered if the user omits an operand before
22803 an immediate address, eg:
22804
22805 LDR =foo
22806
22807 GAS treats this as an assignment of the value of the symbol foo to a
22808 symbol LDR, and so (without this code) it will not issue any kind of
22809 warning or error message.
22810
22811 Note - ARM instructions are case-insensitive but the strings in the hash
22812 table are all stored in lower case, so we must first ensure that name is
22813 lower case too. */
22814 if (flag_warn_syms && arm_ops_hsh)
22815 {
22816 char * nbuf = strdup (name);
22817 char * p;
22818
22819 for (p = nbuf; *p; p++)
22820 *p = TOLOWER (*p);
22821 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22822 {
22823 static struct hash_control * already_warned = NULL;
22824
22825 if (already_warned == NULL)
22826 already_warned = hash_new ();
22827 /* Only warn about the symbol once. To keep the code
22828 simple we let hash_insert do the lookup for us. */
22829 if (hash_insert (already_warned, name, NULL) == NULL)
22830 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
22831 }
22832 else
22833 free (nbuf);
22834 }
22835
22836 return FALSE;
22837 }
22838
22839 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22840 Otherwise we have no need to default values of symbols. */
22841
22842 symbolS *
22843 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22844 {
22845 #ifdef OBJ_ELF
22846 if (name[0] == '_' && name[1] == 'G'
22847 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22848 {
22849 if (!GOT_symbol)
22850 {
22851 if (symbol_find (name))
22852 as_bad (_("GOT already in the symbol table"));
22853
22854 GOT_symbol = symbol_new (name, undefined_section,
22855 (valueT) 0, & zero_address_frag);
22856 }
22857
22858 return GOT_symbol;
22859 }
22860 #endif
22861
22862 return NULL;
22863 }
22864
22865 /* Subroutine of md_apply_fix. Check to see if an immediate can be
22866 computed as two separate immediate values, added together. We
22867 already know that this value cannot be computed by just one ARM
22868 instruction. */
22869
22870 static unsigned int
22871 validate_immediate_twopart (unsigned int val,
22872 unsigned int * highpart)
22873 {
22874 unsigned int a;
22875 unsigned int i;
22876
22877 for (i = 0; i < 32; i += 2)
22878 if (((a = rotate_left (val, i)) & 0xff) != 0)
22879 {
22880 if (a & 0xff00)
22881 {
22882 if (a & ~ 0xffff)
22883 continue;
22884 * highpart = (a >> 8) | ((i + 24) << 7);
22885 }
22886 else if (a & 0xff0000)
22887 {
22888 if (a & 0xff000000)
22889 continue;
22890 * highpart = (a >> 16) | ((i + 16) << 7);
22891 }
22892 else
22893 {
22894 gas_assert (a & 0xff000000);
22895 * highpart = (a >> 24) | ((i + 8) << 7);
22896 }
22897
22898 return (a & 0xff) | (i << 7);
22899 }
22900
22901 return FAIL;
22902 }
22903
22904 static int
22905 validate_offset_imm (unsigned int val, int hwse)
22906 {
22907 if ((hwse && val > 255) || val > 4095)
22908 return FAIL;
22909 return val;
22910 }
22911
22912 /* Subroutine of md_apply_fix. Do those data_ops which can take a
22913 negative immediate constant by altering the instruction. A bit of
22914 a hack really.
22915 MOV <-> MVN
22916 AND <-> BIC
22917 ADC <-> SBC
22918 by inverting the second operand, and
22919 ADD <-> SUB
22920 CMP <-> CMN
22921 by negating the second operand. */
22922
22923 static int
22924 negate_data_op (unsigned long * instruction,
22925 unsigned long value)
22926 {
22927 int op, new_inst;
22928 unsigned long negated, inverted;
22929
22930 negated = encode_arm_immediate (-value);
22931 inverted = encode_arm_immediate (~value);
22932
22933 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
22934 switch (op)
22935 {
22936 /* First negates. */
22937 case OPCODE_SUB: /* ADD <-> SUB */
22938 new_inst = OPCODE_ADD;
22939 value = negated;
22940 break;
22941
22942 case OPCODE_ADD:
22943 new_inst = OPCODE_SUB;
22944 value = negated;
22945 break;
22946
22947 case OPCODE_CMP: /* CMP <-> CMN */
22948 new_inst = OPCODE_CMN;
22949 value = negated;
22950 break;
22951
22952 case OPCODE_CMN:
22953 new_inst = OPCODE_CMP;
22954 value = negated;
22955 break;
22956
22957 /* Now Inverted ops. */
22958 case OPCODE_MOV: /* MOV <-> MVN */
22959 new_inst = OPCODE_MVN;
22960 value = inverted;
22961 break;
22962
22963 case OPCODE_MVN:
22964 new_inst = OPCODE_MOV;
22965 value = inverted;
22966 break;
22967
22968 case OPCODE_AND: /* AND <-> BIC */
22969 new_inst = OPCODE_BIC;
22970 value = inverted;
22971 break;
22972
22973 case OPCODE_BIC:
22974 new_inst = OPCODE_AND;
22975 value = inverted;
22976 break;
22977
22978 case OPCODE_ADC: /* ADC <-> SBC */
22979 new_inst = OPCODE_SBC;
22980 value = inverted;
22981 break;
22982
22983 case OPCODE_SBC:
22984 new_inst = OPCODE_ADC;
22985 value = inverted;
22986 break;
22987
22988 /* We cannot do anything. */
22989 default:
22990 return FAIL;
22991 }
22992
22993 if (value == (unsigned) FAIL)
22994 return FAIL;
22995
22996 *instruction &= OPCODE_MASK;
22997 *instruction |= new_inst << DATA_OP_SHIFT;
22998 return value;
22999 }
23000
23001 /* Like negate_data_op, but for Thumb-2. */
23002
23003 static unsigned int
23004 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
23005 {
23006 int op, new_inst;
23007 int rd;
23008 unsigned int negated, inverted;
23009
23010 negated = encode_thumb32_immediate (-value);
23011 inverted = encode_thumb32_immediate (~value);
23012
23013 rd = (*instruction >> 8) & 0xf;
23014 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23015 switch (op)
23016 {
23017 /* ADD <-> SUB. Includes CMP <-> CMN. */
23018 case T2_OPCODE_SUB:
23019 new_inst = T2_OPCODE_ADD;
23020 value = negated;
23021 break;
23022
23023 case T2_OPCODE_ADD:
23024 new_inst = T2_OPCODE_SUB;
23025 value = negated;
23026 break;
23027
23028 /* ORR <-> ORN. Includes MOV <-> MVN. */
23029 case T2_OPCODE_ORR:
23030 new_inst = T2_OPCODE_ORN;
23031 value = inverted;
23032 break;
23033
23034 case T2_OPCODE_ORN:
23035 new_inst = T2_OPCODE_ORR;
23036 value = inverted;
23037 break;
23038
23039 /* AND <-> BIC. TST has no inverted equivalent. */
23040 case T2_OPCODE_AND:
23041 new_inst = T2_OPCODE_BIC;
23042 if (rd == 15)
23043 value = FAIL;
23044 else
23045 value = inverted;
23046 break;
23047
23048 case T2_OPCODE_BIC:
23049 new_inst = T2_OPCODE_AND;
23050 value = inverted;
23051 break;
23052
23053 /* ADC <-> SBC */
23054 case T2_OPCODE_ADC:
23055 new_inst = T2_OPCODE_SBC;
23056 value = inverted;
23057 break;
23058
23059 case T2_OPCODE_SBC:
23060 new_inst = T2_OPCODE_ADC;
23061 value = inverted;
23062 break;
23063
23064 /* We cannot do anything. */
23065 default:
23066 return FAIL;
23067 }
23068
23069 if (value == (unsigned int)FAIL)
23070 return FAIL;
23071
23072 *instruction &= T2_OPCODE_MASK;
23073 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23074 return value;
23075 }
23076
23077 /* Read a 32-bit thumb instruction from buf. */
23078
23079 static unsigned long
23080 get_thumb32_insn (char * buf)
23081 {
23082 unsigned long insn;
23083 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23084 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23085
23086 return insn;
23087 }
23088
23089 /* We usually want to set the low bit on the address of thumb function
23090 symbols. In particular .word foo - . should have the low bit set.
23091 Generic code tries to fold the difference of two symbols to
23092 a constant. Prevent this and force a relocation when the first symbols
23093 is a thumb function. */
23094
23095 bfd_boolean
23096 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23097 {
23098 if (op == O_subtract
23099 && l->X_op == O_symbol
23100 && r->X_op == O_symbol
23101 && THUMB_IS_FUNC (l->X_add_symbol))
23102 {
23103 l->X_op = O_subtract;
23104 l->X_op_symbol = r->X_add_symbol;
23105 l->X_add_number -= r->X_add_number;
23106 return TRUE;
23107 }
23108
23109 /* Process as normal. */
23110 return FALSE;
23111 }
23112
23113 /* Encode Thumb2 unconditional branches and calls. The encoding
23114 for the 2 are identical for the immediate values. */
23115
23116 static void
23117 encode_thumb2_b_bl_offset (char * buf, offsetT value)
23118 {
23119 #define T2I1I2MASK ((1 << 13) | (1 << 11))
23120 offsetT newval;
23121 offsetT newval2;
23122 addressT S, I1, I2, lo, hi;
23123
23124 S = (value >> 24) & 0x01;
23125 I1 = (value >> 23) & 0x01;
23126 I2 = (value >> 22) & 0x01;
23127 hi = (value >> 12) & 0x3ff;
23128 lo = (value >> 1) & 0x7ff;
23129 newval = md_chars_to_number (buf, THUMB_SIZE);
23130 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23131 newval |= (S << 10) | hi;
23132 newval2 &= ~T2I1I2MASK;
23133 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23134 md_number_to_chars (buf, newval, THUMB_SIZE);
23135 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23136 }
23137
23138 void
23139 md_apply_fix (fixS * fixP,
23140 valueT * valP,
23141 segT seg)
23142 {
23143 offsetT value = * valP;
23144 offsetT newval;
23145 unsigned int newimm;
23146 unsigned long temp;
23147 int sign;
23148 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
23149
23150 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
23151
23152 /* Note whether this will delete the relocation. */
23153
23154 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23155 fixP->fx_done = 1;
23156
23157 /* On a 64-bit host, silently truncate 'value' to 32 bits for
23158 consistency with the behaviour on 32-bit hosts. Remember value
23159 for emit_reloc. */
23160 value &= 0xffffffff;
23161 value ^= 0x80000000;
23162 value -= 0x80000000;
23163
23164 *valP = value;
23165 fixP->fx_addnumber = value;
23166
23167 /* Same treatment for fixP->fx_offset. */
23168 fixP->fx_offset &= 0xffffffff;
23169 fixP->fx_offset ^= 0x80000000;
23170 fixP->fx_offset -= 0x80000000;
23171
23172 switch (fixP->fx_r_type)
23173 {
23174 case BFD_RELOC_NONE:
23175 /* This will need to go in the object file. */
23176 fixP->fx_done = 0;
23177 break;
23178
23179 case BFD_RELOC_ARM_IMMEDIATE:
23180 /* We claim that this fixup has been processed here,
23181 even if in fact we generate an error because we do
23182 not have a reloc for it, so tc_gen_reloc will reject it. */
23183 fixP->fx_done = 1;
23184
23185 if (fixP->fx_addsy)
23186 {
23187 const char *msg = 0;
23188
23189 if (! S_IS_DEFINED (fixP->fx_addsy))
23190 msg = _("undefined symbol %s used as an immediate value");
23191 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23192 msg = _("symbol %s is in a different section");
23193 else if (S_IS_WEAK (fixP->fx_addsy))
23194 msg = _("symbol %s is weak and may be overridden later");
23195
23196 if (msg)
23197 {
23198 as_bad_where (fixP->fx_file, fixP->fx_line,
23199 msg, S_GET_NAME (fixP->fx_addsy));
23200 break;
23201 }
23202 }
23203
23204 temp = md_chars_to_number (buf, INSN_SIZE);
23205
23206 /* If the offset is negative, we should use encoding A2 for ADR. */
23207 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23208 newimm = negate_data_op (&temp, value);
23209 else
23210 {
23211 newimm = encode_arm_immediate (value);
23212
23213 /* If the instruction will fail, see if we can fix things up by
23214 changing the opcode. */
23215 if (newimm == (unsigned int) FAIL)
23216 newimm = negate_data_op (&temp, value);
23217 /* MOV accepts both ARM modified immediate (A1 encoding) and
23218 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23219 When disassembling, MOV is preferred when there is no encoding
23220 overlap. */
23221 if (newimm == (unsigned int) FAIL
23222 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23223 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23224 && !((temp >> SBIT_SHIFT) & 0x1)
23225 && value >= 0 && value <= 0xffff)
23226 {
23227 /* Clear bits[23:20] to change encoding from A1 to A2. */
23228 temp &= 0xff0fffff;
23229 /* Encoding high 4bits imm. Code below will encode the remaining
23230 low 12bits. */
23231 temp |= (value & 0x0000f000) << 4;
23232 newimm = value & 0x00000fff;
23233 }
23234 }
23235
23236 if (newimm == (unsigned int) FAIL)
23237 {
23238 as_bad_where (fixP->fx_file, fixP->fx_line,
23239 _("invalid constant (%lx) after fixup"),
23240 (unsigned long) value);
23241 break;
23242 }
23243
23244 newimm |= (temp & 0xfffff000);
23245 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23246 break;
23247
23248 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23249 {
23250 unsigned int highpart = 0;
23251 unsigned int newinsn = 0xe1a00000; /* nop. */
23252
23253 if (fixP->fx_addsy)
23254 {
23255 const char *msg = 0;
23256
23257 if (! S_IS_DEFINED (fixP->fx_addsy))
23258 msg = _("undefined symbol %s used as an immediate value");
23259 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23260 msg = _("symbol %s is in a different section");
23261 else if (S_IS_WEAK (fixP->fx_addsy))
23262 msg = _("symbol %s is weak and may be overridden later");
23263
23264 if (msg)
23265 {
23266 as_bad_where (fixP->fx_file, fixP->fx_line,
23267 msg, S_GET_NAME (fixP->fx_addsy));
23268 break;
23269 }
23270 }
23271
23272 newimm = encode_arm_immediate (value);
23273 temp = md_chars_to_number (buf, INSN_SIZE);
23274
23275 /* If the instruction will fail, see if we can fix things up by
23276 changing the opcode. */
23277 if (newimm == (unsigned int) FAIL
23278 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23279 {
23280 /* No ? OK - try using two ADD instructions to generate
23281 the value. */
23282 newimm = validate_immediate_twopart (value, & highpart);
23283
23284 /* Yes - then make sure that the second instruction is
23285 also an add. */
23286 if (newimm != (unsigned int) FAIL)
23287 newinsn = temp;
23288 /* Still No ? Try using a negated value. */
23289 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23290 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23291 /* Otherwise - give up. */
23292 else
23293 {
23294 as_bad_where (fixP->fx_file, fixP->fx_line,
23295 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23296 (long) value);
23297 break;
23298 }
23299
23300 /* Replace the first operand in the 2nd instruction (which
23301 is the PC) with the destination register. We have
23302 already added in the PC in the first instruction and we
23303 do not want to do it again. */
23304 newinsn &= ~ 0xf0000;
23305 newinsn |= ((newinsn & 0x0f000) << 4);
23306 }
23307
23308 newimm |= (temp & 0xfffff000);
23309 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23310
23311 highpart |= (newinsn & 0xfffff000);
23312 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23313 }
23314 break;
23315
23316 case BFD_RELOC_ARM_OFFSET_IMM:
23317 if (!fixP->fx_done && seg->use_rela_p)
23318 value = 0;
23319 /* Fall through. */
23320
23321 case BFD_RELOC_ARM_LITERAL:
23322 sign = value > 0;
23323
23324 if (value < 0)
23325 value = - value;
23326
23327 if (validate_offset_imm (value, 0) == FAIL)
23328 {
23329 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23330 as_bad_where (fixP->fx_file, fixP->fx_line,
23331 _("invalid literal constant: pool needs to be closer"));
23332 else
23333 as_bad_where (fixP->fx_file, fixP->fx_line,
23334 _("bad immediate value for offset (%ld)"),
23335 (long) value);
23336 break;
23337 }
23338
23339 newval = md_chars_to_number (buf, INSN_SIZE);
23340 if (value == 0)
23341 newval &= 0xfffff000;
23342 else
23343 {
23344 newval &= 0xff7ff000;
23345 newval |= value | (sign ? INDEX_UP : 0);
23346 }
23347 md_number_to_chars (buf, newval, INSN_SIZE);
23348 break;
23349
23350 case BFD_RELOC_ARM_OFFSET_IMM8:
23351 case BFD_RELOC_ARM_HWLITERAL:
23352 sign = value > 0;
23353
23354 if (value < 0)
23355 value = - value;
23356
23357 if (validate_offset_imm (value, 1) == FAIL)
23358 {
23359 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23360 as_bad_where (fixP->fx_file, fixP->fx_line,
23361 _("invalid literal constant: pool needs to be closer"));
23362 else
23363 as_bad_where (fixP->fx_file, fixP->fx_line,
23364 _("bad immediate value for 8-bit offset (%ld)"),
23365 (long) value);
23366 break;
23367 }
23368
23369 newval = md_chars_to_number (buf, INSN_SIZE);
23370 if (value == 0)
23371 newval &= 0xfffff0f0;
23372 else
23373 {
23374 newval &= 0xff7ff0f0;
23375 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23376 }
23377 md_number_to_chars (buf, newval, INSN_SIZE);
23378 break;
23379
23380 case BFD_RELOC_ARM_T32_OFFSET_U8:
23381 if (value < 0 || value > 1020 || value % 4 != 0)
23382 as_bad_where (fixP->fx_file, fixP->fx_line,
23383 _("bad immediate value for offset (%ld)"), (long) value);
23384 value /= 4;
23385
23386 newval = md_chars_to_number (buf+2, THUMB_SIZE);
23387 newval |= value;
23388 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23389 break;
23390
23391 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23392 /* This is a complicated relocation used for all varieties of Thumb32
23393 load/store instruction with immediate offset:
23394
23395 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
23396 *4, optional writeback(W)
23397 (doubleword load/store)
23398
23399 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23400 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23401 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23402 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23403 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23404
23405 Uppercase letters indicate bits that are already encoded at
23406 this point. Lowercase letters are our problem. For the
23407 second block of instructions, the secondary opcode nybble
23408 (bits 8..11) is present, and bit 23 is zero, even if this is
23409 a PC-relative operation. */
23410 newval = md_chars_to_number (buf, THUMB_SIZE);
23411 newval <<= 16;
23412 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
23413
23414 if ((newval & 0xf0000000) == 0xe0000000)
23415 {
23416 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23417 if (value >= 0)
23418 newval |= (1 << 23);
23419 else
23420 value = -value;
23421 if (value % 4 != 0)
23422 {
23423 as_bad_where (fixP->fx_file, fixP->fx_line,
23424 _("offset not a multiple of 4"));
23425 break;
23426 }
23427 value /= 4;
23428 if (value > 0xff)
23429 {
23430 as_bad_where (fixP->fx_file, fixP->fx_line,
23431 _("offset out of range"));
23432 break;
23433 }
23434 newval &= ~0xff;
23435 }
23436 else if ((newval & 0x000f0000) == 0x000f0000)
23437 {
23438 /* PC-relative, 12-bit offset. */
23439 if (value >= 0)
23440 newval |= (1 << 23);
23441 else
23442 value = -value;
23443 if (value > 0xfff)
23444 {
23445 as_bad_where (fixP->fx_file, fixP->fx_line,
23446 _("offset out of range"));
23447 break;
23448 }
23449 newval &= ~0xfff;
23450 }
23451 else if ((newval & 0x00000100) == 0x00000100)
23452 {
23453 /* Writeback: 8-bit, +/- offset. */
23454 if (value >= 0)
23455 newval |= (1 << 9);
23456 else
23457 value = -value;
23458 if (value > 0xff)
23459 {
23460 as_bad_where (fixP->fx_file, fixP->fx_line,
23461 _("offset out of range"));
23462 break;
23463 }
23464 newval &= ~0xff;
23465 }
23466 else if ((newval & 0x00000f00) == 0x00000e00)
23467 {
23468 /* T-instruction: positive 8-bit offset. */
23469 if (value < 0 || value > 0xff)
23470 {
23471 as_bad_where (fixP->fx_file, fixP->fx_line,
23472 _("offset out of range"));
23473 break;
23474 }
23475 newval &= ~0xff;
23476 newval |= value;
23477 }
23478 else
23479 {
23480 /* Positive 12-bit or negative 8-bit offset. */
23481 int limit;
23482 if (value >= 0)
23483 {
23484 newval |= (1 << 23);
23485 limit = 0xfff;
23486 }
23487 else
23488 {
23489 value = -value;
23490 limit = 0xff;
23491 }
23492 if (value > limit)
23493 {
23494 as_bad_where (fixP->fx_file, fixP->fx_line,
23495 _("offset out of range"));
23496 break;
23497 }
23498 newval &= ~limit;
23499 }
23500
23501 newval |= value;
23502 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23503 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23504 break;
23505
23506 case BFD_RELOC_ARM_SHIFT_IMM:
23507 newval = md_chars_to_number (buf, INSN_SIZE);
23508 if (((unsigned long) value) > 32
23509 || (value == 32
23510 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23511 {
23512 as_bad_where (fixP->fx_file, fixP->fx_line,
23513 _("shift expression is too large"));
23514 break;
23515 }
23516
23517 if (value == 0)
23518 /* Shifts of zero must be done as lsl. */
23519 newval &= ~0x60;
23520 else if (value == 32)
23521 value = 0;
23522 newval &= 0xfffff07f;
23523 newval |= (value & 0x1f) << 7;
23524 md_number_to_chars (buf, newval, INSN_SIZE);
23525 break;
23526
23527 case BFD_RELOC_ARM_T32_IMMEDIATE:
23528 case BFD_RELOC_ARM_T32_ADD_IMM:
23529 case BFD_RELOC_ARM_T32_IMM12:
23530 case BFD_RELOC_ARM_T32_ADD_PC12:
23531 /* We claim that this fixup has been processed here,
23532 even if in fact we generate an error because we do
23533 not have a reloc for it, so tc_gen_reloc will reject it. */
23534 fixP->fx_done = 1;
23535
23536 if (fixP->fx_addsy
23537 && ! S_IS_DEFINED (fixP->fx_addsy))
23538 {
23539 as_bad_where (fixP->fx_file, fixP->fx_line,
23540 _("undefined symbol %s used as an immediate value"),
23541 S_GET_NAME (fixP->fx_addsy));
23542 break;
23543 }
23544
23545 newval = md_chars_to_number (buf, THUMB_SIZE);
23546 newval <<= 16;
23547 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
23548
23549 newimm = FAIL;
23550 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23551 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23552 Thumb2 modified immediate encoding (T2). */
23553 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
23554 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23555 {
23556 newimm = encode_thumb32_immediate (value);
23557 if (newimm == (unsigned int) FAIL)
23558 newimm = thumb32_negate_data_op (&newval, value);
23559 }
23560 if (newimm == (unsigned int) FAIL)
23561 {
23562 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
23563 {
23564 /* Turn add/sum into addw/subw. */
23565 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23566 newval = (newval & 0xfeffffff) | 0x02000000;
23567 /* No flat 12-bit imm encoding for addsw/subsw. */
23568 if ((newval & 0x00100000) == 0)
23569 {
23570 /* 12 bit immediate for addw/subw. */
23571 if (value < 0)
23572 {
23573 value = -value;
23574 newval ^= 0x00a00000;
23575 }
23576 if (value > 0xfff)
23577 newimm = (unsigned int) FAIL;
23578 else
23579 newimm = value;
23580 }
23581 }
23582 else
23583 {
23584 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23585 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23586 disassembling, MOV is preferred when there is no encoding
23587 overlap.
23588 NOTE: MOV is using ORR opcode under Thumb 2 mode. */
23589 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23590 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23591 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23592 && value >= 0 && value <=0xffff)
23593 {
23594 /* Toggle bit[25] to change encoding from T2 to T3. */
23595 newval ^= 1 << 25;
23596 /* Clear bits[19:16]. */
23597 newval &= 0xfff0ffff;
23598 /* Encoding high 4bits imm. Code below will encode the
23599 remaining low 12bits. */
23600 newval |= (value & 0x0000f000) << 4;
23601 newimm = value & 0x00000fff;
23602 }
23603 }
23604 }
23605
23606 if (newimm == (unsigned int)FAIL)
23607 {
23608 as_bad_where (fixP->fx_file, fixP->fx_line,
23609 _("invalid constant (%lx) after fixup"),
23610 (unsigned long) value);
23611 break;
23612 }
23613
23614 newval |= (newimm & 0x800) << 15;
23615 newval |= (newimm & 0x700) << 4;
23616 newval |= (newimm & 0x0ff);
23617
23618 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23619 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23620 break;
23621
23622 case BFD_RELOC_ARM_SMC:
23623 if (((unsigned long) value) > 0xffff)
23624 as_bad_where (fixP->fx_file, fixP->fx_line,
23625 _("invalid smc expression"));
23626 newval = md_chars_to_number (buf, INSN_SIZE);
23627 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23628 md_number_to_chars (buf, newval, INSN_SIZE);
23629 break;
23630
23631 case BFD_RELOC_ARM_HVC:
23632 if (((unsigned long) value) > 0xffff)
23633 as_bad_where (fixP->fx_file, fixP->fx_line,
23634 _("invalid hvc expression"));
23635 newval = md_chars_to_number (buf, INSN_SIZE);
23636 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23637 md_number_to_chars (buf, newval, INSN_SIZE);
23638 break;
23639
23640 case BFD_RELOC_ARM_SWI:
23641 if (fixP->tc_fix_data != 0)
23642 {
23643 if (((unsigned long) value) > 0xff)
23644 as_bad_where (fixP->fx_file, fixP->fx_line,
23645 _("invalid swi expression"));
23646 newval = md_chars_to_number (buf, THUMB_SIZE);
23647 newval |= value;
23648 md_number_to_chars (buf, newval, THUMB_SIZE);
23649 }
23650 else
23651 {
23652 if (((unsigned long) value) > 0x00ffffff)
23653 as_bad_where (fixP->fx_file, fixP->fx_line,
23654 _("invalid swi expression"));
23655 newval = md_chars_to_number (buf, INSN_SIZE);
23656 newval |= value;
23657 md_number_to_chars (buf, newval, INSN_SIZE);
23658 }
23659 break;
23660
23661 case BFD_RELOC_ARM_MULTI:
23662 if (((unsigned long) value) > 0xffff)
23663 as_bad_where (fixP->fx_file, fixP->fx_line,
23664 _("invalid expression in load/store multiple"));
23665 newval = value | md_chars_to_number (buf, INSN_SIZE);
23666 md_number_to_chars (buf, newval, INSN_SIZE);
23667 break;
23668
23669 #ifdef OBJ_ELF
23670 case BFD_RELOC_ARM_PCREL_CALL:
23671
23672 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23673 && fixP->fx_addsy
23674 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23675 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23676 && THUMB_IS_FUNC (fixP->fx_addsy))
23677 /* Flip the bl to blx. This is a simple flip
23678 bit here because we generate PCREL_CALL for
23679 unconditional bls. */
23680 {
23681 newval = md_chars_to_number (buf, INSN_SIZE);
23682 newval = newval | 0x10000000;
23683 md_number_to_chars (buf, newval, INSN_SIZE);
23684 temp = 1;
23685 fixP->fx_done = 1;
23686 }
23687 else
23688 temp = 3;
23689 goto arm_branch_common;
23690
23691 case BFD_RELOC_ARM_PCREL_JUMP:
23692 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23693 && fixP->fx_addsy
23694 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23695 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23696 && THUMB_IS_FUNC (fixP->fx_addsy))
23697 {
23698 /* This would map to a bl<cond>, b<cond>,
23699 b<always> to a Thumb function. We
23700 need to force a relocation for this particular
23701 case. */
23702 newval = md_chars_to_number (buf, INSN_SIZE);
23703 fixP->fx_done = 0;
23704 }
23705 /* Fall through. */
23706
23707 case BFD_RELOC_ARM_PLT32:
23708 #endif
23709 case BFD_RELOC_ARM_PCREL_BRANCH:
23710 temp = 3;
23711 goto arm_branch_common;
23712
23713 case BFD_RELOC_ARM_PCREL_BLX:
23714
23715 temp = 1;
23716 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23717 && fixP->fx_addsy
23718 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23719 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23720 && ARM_IS_FUNC (fixP->fx_addsy))
23721 {
23722 /* Flip the blx to a bl and warn. */
23723 const char *name = S_GET_NAME (fixP->fx_addsy);
23724 newval = 0xeb000000;
23725 as_warn_where (fixP->fx_file, fixP->fx_line,
23726 _("blx to '%s' an ARM ISA state function changed to bl"),
23727 name);
23728 md_number_to_chars (buf, newval, INSN_SIZE);
23729 temp = 3;
23730 fixP->fx_done = 1;
23731 }
23732
23733 #ifdef OBJ_ELF
23734 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23735 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
23736 #endif
23737
23738 arm_branch_common:
23739 /* We are going to store value (shifted right by two) in the
23740 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23741 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
23742 also be clear. */
23743 if (value & temp)
23744 as_bad_where (fixP->fx_file, fixP->fx_line,
23745 _("misaligned branch destination"));
23746 if ((value & (offsetT)0xfe000000) != (offsetT)0
23747 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
23748 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23749
23750 if (fixP->fx_done || !seg->use_rela_p)
23751 {
23752 newval = md_chars_to_number (buf, INSN_SIZE);
23753 newval |= (value >> 2) & 0x00ffffff;
23754 /* Set the H bit on BLX instructions. */
23755 if (temp == 1)
23756 {
23757 if (value & 2)
23758 newval |= 0x01000000;
23759 else
23760 newval &= ~0x01000000;
23761 }
23762 md_number_to_chars (buf, newval, INSN_SIZE);
23763 }
23764 break;
23765
23766 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23767 /* CBZ can only branch forward. */
23768
23769 /* Attempts to use CBZ to branch to the next instruction
23770 (which, strictly speaking, are prohibited) will be turned into
23771 no-ops.
23772
23773 FIXME: It may be better to remove the instruction completely and
23774 perform relaxation. */
23775 if (value == -2)
23776 {
23777 newval = md_chars_to_number (buf, THUMB_SIZE);
23778 newval = 0xbf00; /* NOP encoding T1 */
23779 md_number_to_chars (buf, newval, THUMB_SIZE);
23780 }
23781 else
23782 {
23783 if (value & ~0x7e)
23784 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23785
23786 if (fixP->fx_done || !seg->use_rela_p)
23787 {
23788 newval = md_chars_to_number (buf, THUMB_SIZE);
23789 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23790 md_number_to_chars (buf, newval, THUMB_SIZE);
23791 }
23792 }
23793 break;
23794
23795 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
23796 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
23797 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23798
23799 if (fixP->fx_done || !seg->use_rela_p)
23800 {
23801 newval = md_chars_to_number (buf, THUMB_SIZE);
23802 newval |= (value & 0x1ff) >> 1;
23803 md_number_to_chars (buf, newval, THUMB_SIZE);
23804 }
23805 break;
23806
23807 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
23808 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
23809 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23810
23811 if (fixP->fx_done || !seg->use_rela_p)
23812 {
23813 newval = md_chars_to_number (buf, THUMB_SIZE);
23814 newval |= (value & 0xfff) >> 1;
23815 md_number_to_chars (buf, newval, THUMB_SIZE);
23816 }
23817 break;
23818
23819 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23820 if (fixP->fx_addsy
23821 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23822 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23823 && ARM_IS_FUNC (fixP->fx_addsy)
23824 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23825 {
23826 /* Force a relocation for a branch 20 bits wide. */
23827 fixP->fx_done = 0;
23828 }
23829 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
23830 as_bad_where (fixP->fx_file, fixP->fx_line,
23831 _("conditional branch out of range"));
23832
23833 if (fixP->fx_done || !seg->use_rela_p)
23834 {
23835 offsetT newval2;
23836 addressT S, J1, J2, lo, hi;
23837
23838 S = (value & 0x00100000) >> 20;
23839 J2 = (value & 0x00080000) >> 19;
23840 J1 = (value & 0x00040000) >> 18;
23841 hi = (value & 0x0003f000) >> 12;
23842 lo = (value & 0x00000ffe) >> 1;
23843
23844 newval = md_chars_to_number (buf, THUMB_SIZE);
23845 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23846 newval |= (S << 10) | hi;
23847 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23848 md_number_to_chars (buf, newval, THUMB_SIZE);
23849 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23850 }
23851 break;
23852
23853 case BFD_RELOC_THUMB_PCREL_BLX:
23854 /* If there is a blx from a thumb state function to
23855 another thumb function flip this to a bl and warn
23856 about it. */
23857
23858 if (fixP->fx_addsy
23859 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23860 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23861 && THUMB_IS_FUNC (fixP->fx_addsy))
23862 {
23863 const char *name = S_GET_NAME (fixP->fx_addsy);
23864 as_warn_where (fixP->fx_file, fixP->fx_line,
23865 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23866 name);
23867 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23868 newval = newval | 0x1000;
23869 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23870 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23871 fixP->fx_done = 1;
23872 }
23873
23874
23875 goto thumb_bl_common;
23876
23877 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23878 /* A bl from Thumb state ISA to an internal ARM state function
23879 is converted to a blx. */
23880 if (fixP->fx_addsy
23881 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23882 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23883 && ARM_IS_FUNC (fixP->fx_addsy)
23884 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23885 {
23886 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23887 newval = newval & ~0x1000;
23888 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23889 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23890 fixP->fx_done = 1;
23891 }
23892
23893 thumb_bl_common:
23894
23895 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23896 /* For a BLX instruction, make sure that the relocation is rounded up
23897 to a word boundary. This follows the semantics of the instruction
23898 which specifies that bit 1 of the target address will come from bit
23899 1 of the base address. */
23900 value = (value + 3) & ~ 3;
23901
23902 #ifdef OBJ_ELF
23903 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23904 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23905 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23906 #endif
23907
23908 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23909 {
23910 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
23911 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23912 else if ((value & ~0x1ffffff)
23913 && ((value & ~0x1ffffff) != ~0x1ffffff))
23914 as_bad_where (fixP->fx_file, fixP->fx_line,
23915 _("Thumb2 branch out of range"));
23916 }
23917
23918 if (fixP->fx_done || !seg->use_rela_p)
23919 encode_thumb2_b_bl_offset (buf, value);
23920
23921 break;
23922
23923 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23924 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
23925 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23926
23927 if (fixP->fx_done || !seg->use_rela_p)
23928 encode_thumb2_b_bl_offset (buf, value);
23929
23930 break;
23931
23932 case BFD_RELOC_8:
23933 if (fixP->fx_done || !seg->use_rela_p)
23934 *buf = value;
23935 break;
23936
23937 case BFD_RELOC_16:
23938 if (fixP->fx_done || !seg->use_rela_p)
23939 md_number_to_chars (buf, value, 2);
23940 break;
23941
23942 #ifdef OBJ_ELF
23943 case BFD_RELOC_ARM_TLS_CALL:
23944 case BFD_RELOC_ARM_THM_TLS_CALL:
23945 case BFD_RELOC_ARM_TLS_DESCSEQ:
23946 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23947 case BFD_RELOC_ARM_TLS_GOTDESC:
23948 case BFD_RELOC_ARM_TLS_GD32:
23949 case BFD_RELOC_ARM_TLS_LE32:
23950 case BFD_RELOC_ARM_TLS_IE32:
23951 case BFD_RELOC_ARM_TLS_LDM32:
23952 case BFD_RELOC_ARM_TLS_LDO32:
23953 S_SET_THREAD_LOCAL (fixP->fx_addsy);
23954 break;
23955
23956 case BFD_RELOC_ARM_GOT32:
23957 case BFD_RELOC_ARM_GOTOFF:
23958 break;
23959
23960 case BFD_RELOC_ARM_GOT_PREL:
23961 if (fixP->fx_done || !seg->use_rela_p)
23962 md_number_to_chars (buf, value, 4);
23963 break;
23964
23965 case BFD_RELOC_ARM_TARGET2:
23966 /* TARGET2 is not partial-inplace, so we need to write the
23967 addend here for REL targets, because it won't be written out
23968 during reloc processing later. */
23969 if (fixP->fx_done || !seg->use_rela_p)
23970 md_number_to_chars (buf, fixP->fx_offset, 4);
23971 break;
23972 #endif
23973
23974 case BFD_RELOC_RVA:
23975 case BFD_RELOC_32:
23976 case BFD_RELOC_ARM_TARGET1:
23977 case BFD_RELOC_ARM_ROSEGREL32:
23978 case BFD_RELOC_ARM_SBREL32:
23979 case BFD_RELOC_32_PCREL:
23980 #ifdef TE_PE
23981 case BFD_RELOC_32_SECREL:
23982 #endif
23983 if (fixP->fx_done || !seg->use_rela_p)
23984 #ifdef TE_WINCE
23985 /* For WinCE we only do this for pcrel fixups. */
23986 if (fixP->fx_done || fixP->fx_pcrel)
23987 #endif
23988 md_number_to_chars (buf, value, 4);
23989 break;
23990
23991 #ifdef OBJ_ELF
23992 case BFD_RELOC_ARM_PREL31:
23993 if (fixP->fx_done || !seg->use_rela_p)
23994 {
23995 newval = md_chars_to_number (buf, 4) & 0x80000000;
23996 if ((value ^ (value >> 1)) & 0x40000000)
23997 {
23998 as_bad_where (fixP->fx_file, fixP->fx_line,
23999 _("rel31 relocation overflow"));
24000 }
24001 newval |= value & 0x7fffffff;
24002 md_number_to_chars (buf, newval, 4);
24003 }
24004 break;
24005 #endif
24006
24007 case BFD_RELOC_ARM_CP_OFF_IMM:
24008 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
24009 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24010 newval = md_chars_to_number (buf, INSN_SIZE);
24011 else
24012 newval = get_thumb32_insn (buf);
24013 if ((newval & 0x0f200f00) == 0x0d000900)
24014 {
24015 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24016 has permitted values that are multiples of 2, in the range 0
24017 to 510. */
24018 if (value < -510 || value > 510 || (value & 1))
24019 as_bad_where (fixP->fx_file, fixP->fx_line,
24020 _("co-processor offset out of range"));
24021 }
24022 else if (value < -1023 || value > 1023 || (value & 3))
24023 as_bad_where (fixP->fx_file, fixP->fx_line,
24024 _("co-processor offset out of range"));
24025 cp_off_common:
24026 sign = value > 0;
24027 if (value < 0)
24028 value = -value;
24029 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24030 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24031 newval = md_chars_to_number (buf, INSN_SIZE);
24032 else
24033 newval = get_thumb32_insn (buf);
24034 if (value == 0)
24035 newval &= 0xffffff00;
24036 else
24037 {
24038 newval &= 0xff7fff00;
24039 if ((newval & 0x0f200f00) == 0x0d000900)
24040 {
24041 /* This is a fp16 vstr/vldr.
24042
24043 It requires the immediate offset in the instruction is shifted
24044 left by 1 to be a half-word offset.
24045
24046 Here, left shift by 1 first, and later right shift by 2
24047 should get the right offset. */
24048 value <<= 1;
24049 }
24050 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24051 }
24052 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24053 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24054 md_number_to_chars (buf, newval, INSN_SIZE);
24055 else
24056 put_thumb32_insn (buf, newval);
24057 break;
24058
24059 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
24060 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
24061 if (value < -255 || value > 255)
24062 as_bad_where (fixP->fx_file, fixP->fx_line,
24063 _("co-processor offset out of range"));
24064 value *= 4;
24065 goto cp_off_common;
24066
24067 case BFD_RELOC_ARM_THUMB_OFFSET:
24068 newval = md_chars_to_number (buf, THUMB_SIZE);
24069 /* Exactly what ranges, and where the offset is inserted depends
24070 on the type of instruction, we can establish this from the
24071 top 4 bits. */
24072 switch (newval >> 12)
24073 {
24074 case 4: /* PC load. */
24075 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24076 forced to zero for these loads; md_pcrel_from has already
24077 compensated for this. */
24078 if (value & 3)
24079 as_bad_where (fixP->fx_file, fixP->fx_line,
24080 _("invalid offset, target not word aligned (0x%08lX)"),
24081 (((unsigned long) fixP->fx_frag->fr_address
24082 + (unsigned long) fixP->fx_where) & ~3)
24083 + (unsigned long) value);
24084
24085 if (value & ~0x3fc)
24086 as_bad_where (fixP->fx_file, fixP->fx_line,
24087 _("invalid offset, value too big (0x%08lX)"),
24088 (long) value);
24089
24090 newval |= value >> 2;
24091 break;
24092
24093 case 9: /* SP load/store. */
24094 if (value & ~0x3fc)
24095 as_bad_where (fixP->fx_file, fixP->fx_line,
24096 _("invalid offset, value too big (0x%08lX)"),
24097 (long) value);
24098 newval |= value >> 2;
24099 break;
24100
24101 case 6: /* Word load/store. */
24102 if (value & ~0x7c)
24103 as_bad_where (fixP->fx_file, fixP->fx_line,
24104 _("invalid offset, value too big (0x%08lX)"),
24105 (long) value);
24106 newval |= value << 4; /* 6 - 2. */
24107 break;
24108
24109 case 7: /* Byte load/store. */
24110 if (value & ~0x1f)
24111 as_bad_where (fixP->fx_file, fixP->fx_line,
24112 _("invalid offset, value too big (0x%08lX)"),
24113 (long) value);
24114 newval |= value << 6;
24115 break;
24116
24117 case 8: /* Halfword load/store. */
24118 if (value & ~0x3e)
24119 as_bad_where (fixP->fx_file, fixP->fx_line,
24120 _("invalid offset, value too big (0x%08lX)"),
24121 (long) value);
24122 newval |= value << 5; /* 6 - 1. */
24123 break;
24124
24125 default:
24126 as_bad_where (fixP->fx_file, fixP->fx_line,
24127 "Unable to process relocation for thumb opcode: %lx",
24128 (unsigned long) newval);
24129 break;
24130 }
24131 md_number_to_chars (buf, newval, THUMB_SIZE);
24132 break;
24133
24134 case BFD_RELOC_ARM_THUMB_ADD:
24135 /* This is a complicated relocation, since we use it for all of
24136 the following immediate relocations:
24137
24138 3bit ADD/SUB
24139 8bit ADD/SUB
24140 9bit ADD/SUB SP word-aligned
24141 10bit ADD PC/SP word-aligned
24142
24143 The type of instruction being processed is encoded in the
24144 instruction field:
24145
24146 0x8000 SUB
24147 0x00F0 Rd
24148 0x000F Rs
24149 */
24150 newval = md_chars_to_number (buf, THUMB_SIZE);
24151 {
24152 int rd = (newval >> 4) & 0xf;
24153 int rs = newval & 0xf;
24154 int subtract = !!(newval & 0x8000);
24155
24156 /* Check for HI regs, only very restricted cases allowed:
24157 Adjusting SP, and using PC or SP to get an address. */
24158 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24159 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24160 as_bad_where (fixP->fx_file, fixP->fx_line,
24161 _("invalid Hi register with immediate"));
24162
24163 /* If value is negative, choose the opposite instruction. */
24164 if (value < 0)
24165 {
24166 value = -value;
24167 subtract = !subtract;
24168 if (value < 0)
24169 as_bad_where (fixP->fx_file, fixP->fx_line,
24170 _("immediate value out of range"));
24171 }
24172
24173 if (rd == REG_SP)
24174 {
24175 if (value & ~0x1fc)
24176 as_bad_where (fixP->fx_file, fixP->fx_line,
24177 _("invalid immediate for stack address calculation"));
24178 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24179 newval |= value >> 2;
24180 }
24181 else if (rs == REG_PC || rs == REG_SP)
24182 {
24183 /* PR gas/18541. If the addition is for a defined symbol
24184 within range of an ADR instruction then accept it. */
24185 if (subtract
24186 && value == 4
24187 && fixP->fx_addsy != NULL)
24188 {
24189 subtract = 0;
24190
24191 if (! S_IS_DEFINED (fixP->fx_addsy)
24192 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24193 || S_IS_WEAK (fixP->fx_addsy))
24194 {
24195 as_bad_where (fixP->fx_file, fixP->fx_line,
24196 _("address calculation needs a strongly defined nearby symbol"));
24197 }
24198 else
24199 {
24200 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24201
24202 /* Round up to the next 4-byte boundary. */
24203 if (v & 3)
24204 v = (v + 3) & ~ 3;
24205 else
24206 v += 4;
24207 v = S_GET_VALUE (fixP->fx_addsy) - v;
24208
24209 if (v & ~0x3fc)
24210 {
24211 as_bad_where (fixP->fx_file, fixP->fx_line,
24212 _("symbol too far away"));
24213 }
24214 else
24215 {
24216 fixP->fx_done = 1;
24217 value = v;
24218 }
24219 }
24220 }
24221
24222 if (subtract || value & ~0x3fc)
24223 as_bad_where (fixP->fx_file, fixP->fx_line,
24224 _("invalid immediate for address calculation (value = 0x%08lX)"),
24225 (unsigned long) (subtract ? - value : value));
24226 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24227 newval |= rd << 8;
24228 newval |= value >> 2;
24229 }
24230 else if (rs == rd)
24231 {
24232 if (value & ~0xff)
24233 as_bad_where (fixP->fx_file, fixP->fx_line,
24234 _("immediate value out of range"));
24235 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24236 newval |= (rd << 8) | value;
24237 }
24238 else
24239 {
24240 if (value & ~0x7)
24241 as_bad_where (fixP->fx_file, fixP->fx_line,
24242 _("immediate value out of range"));
24243 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24244 newval |= rd | (rs << 3) | (value << 6);
24245 }
24246 }
24247 md_number_to_chars (buf, newval, THUMB_SIZE);
24248 break;
24249
24250 case BFD_RELOC_ARM_THUMB_IMM:
24251 newval = md_chars_to_number (buf, THUMB_SIZE);
24252 if (value < 0 || value > 255)
24253 as_bad_where (fixP->fx_file, fixP->fx_line,
24254 _("invalid immediate: %ld is out of range"),
24255 (long) value);
24256 newval |= value;
24257 md_number_to_chars (buf, newval, THUMB_SIZE);
24258 break;
24259
24260 case BFD_RELOC_ARM_THUMB_SHIFT:
24261 /* 5bit shift value (0..32). LSL cannot take 32. */
24262 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24263 temp = newval & 0xf800;
24264 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24265 as_bad_where (fixP->fx_file, fixP->fx_line,
24266 _("invalid shift value: %ld"), (long) value);
24267 /* Shifts of zero must be encoded as LSL. */
24268 if (value == 0)
24269 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24270 /* Shifts of 32 are encoded as zero. */
24271 else if (value == 32)
24272 value = 0;
24273 newval |= value << 6;
24274 md_number_to_chars (buf, newval, THUMB_SIZE);
24275 break;
24276
24277 case BFD_RELOC_VTABLE_INHERIT:
24278 case BFD_RELOC_VTABLE_ENTRY:
24279 fixP->fx_done = 0;
24280 return;
24281
24282 case BFD_RELOC_ARM_MOVW:
24283 case BFD_RELOC_ARM_MOVT:
24284 case BFD_RELOC_ARM_THUMB_MOVW:
24285 case BFD_RELOC_ARM_THUMB_MOVT:
24286 if (fixP->fx_done || !seg->use_rela_p)
24287 {
24288 /* REL format relocations are limited to a 16-bit addend. */
24289 if (!fixP->fx_done)
24290 {
24291 if (value < -0x8000 || value > 0x7fff)
24292 as_bad_where (fixP->fx_file, fixP->fx_line,
24293 _("offset out of range"));
24294 }
24295 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24296 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24297 {
24298 value >>= 16;
24299 }
24300
24301 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24302 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24303 {
24304 newval = get_thumb32_insn (buf);
24305 newval &= 0xfbf08f00;
24306 newval |= (value & 0xf000) << 4;
24307 newval |= (value & 0x0800) << 15;
24308 newval |= (value & 0x0700) << 4;
24309 newval |= (value & 0x00ff);
24310 put_thumb32_insn (buf, newval);
24311 }
24312 else
24313 {
24314 newval = md_chars_to_number (buf, 4);
24315 newval &= 0xfff0f000;
24316 newval |= value & 0x0fff;
24317 newval |= (value & 0xf000) << 4;
24318 md_number_to_chars (buf, newval, 4);
24319 }
24320 }
24321 return;
24322
24323 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24324 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24325 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24326 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24327 gas_assert (!fixP->fx_done);
24328 {
24329 bfd_vma insn;
24330 bfd_boolean is_mov;
24331 bfd_vma encoded_addend = value;
24332
24333 /* Check that addend can be encoded in instruction. */
24334 if (!seg->use_rela_p && (value < 0 || value > 255))
24335 as_bad_where (fixP->fx_file, fixP->fx_line,
24336 _("the offset 0x%08lX is not representable"),
24337 (unsigned long) encoded_addend);
24338
24339 /* Extract the instruction. */
24340 insn = md_chars_to_number (buf, THUMB_SIZE);
24341 is_mov = (insn & 0xf800) == 0x2000;
24342
24343 /* Encode insn. */
24344 if (is_mov)
24345 {
24346 if (!seg->use_rela_p)
24347 insn |= encoded_addend;
24348 }
24349 else
24350 {
24351 int rd, rs;
24352
24353 /* Extract the instruction. */
24354 /* Encoding is the following
24355 0x8000 SUB
24356 0x00F0 Rd
24357 0x000F Rs
24358 */
24359 /* The following conditions must be true :
24360 - ADD
24361 - Rd == Rs
24362 - Rd <= 7
24363 */
24364 rd = (insn >> 4) & 0xf;
24365 rs = insn & 0xf;
24366 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24367 as_bad_where (fixP->fx_file, fixP->fx_line,
24368 _("Unable to process relocation for thumb opcode: %lx"),
24369 (unsigned long) insn);
24370
24371 /* Encode as ADD immediate8 thumb 1 code. */
24372 insn = 0x3000 | (rd << 8);
24373
24374 /* Place the encoded addend into the first 8 bits of the
24375 instruction. */
24376 if (!seg->use_rela_p)
24377 insn |= encoded_addend;
24378 }
24379
24380 /* Update the instruction. */
24381 md_number_to_chars (buf, insn, THUMB_SIZE);
24382 }
24383 break;
24384
24385 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24386 case BFD_RELOC_ARM_ALU_PC_G0:
24387 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24388 case BFD_RELOC_ARM_ALU_PC_G1:
24389 case BFD_RELOC_ARM_ALU_PC_G2:
24390 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24391 case BFD_RELOC_ARM_ALU_SB_G0:
24392 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24393 case BFD_RELOC_ARM_ALU_SB_G1:
24394 case BFD_RELOC_ARM_ALU_SB_G2:
24395 gas_assert (!fixP->fx_done);
24396 if (!seg->use_rela_p)
24397 {
24398 bfd_vma insn;
24399 bfd_vma encoded_addend;
24400 bfd_vma addend_abs = abs (value);
24401
24402 /* Check that the absolute value of the addend can be
24403 expressed as an 8-bit constant plus a rotation. */
24404 encoded_addend = encode_arm_immediate (addend_abs);
24405 if (encoded_addend == (unsigned int) FAIL)
24406 as_bad_where (fixP->fx_file, fixP->fx_line,
24407 _("the offset 0x%08lX is not representable"),
24408 (unsigned long) addend_abs);
24409
24410 /* Extract the instruction. */
24411 insn = md_chars_to_number (buf, INSN_SIZE);
24412
24413 /* If the addend is positive, use an ADD instruction.
24414 Otherwise use a SUB. Take care not to destroy the S bit. */
24415 insn &= 0xff1fffff;
24416 if (value < 0)
24417 insn |= 1 << 22;
24418 else
24419 insn |= 1 << 23;
24420
24421 /* Place the encoded addend into the first 12 bits of the
24422 instruction. */
24423 insn &= 0xfffff000;
24424 insn |= encoded_addend;
24425
24426 /* Update the instruction. */
24427 md_number_to_chars (buf, insn, INSN_SIZE);
24428 }
24429 break;
24430
24431 case BFD_RELOC_ARM_LDR_PC_G0:
24432 case BFD_RELOC_ARM_LDR_PC_G1:
24433 case BFD_RELOC_ARM_LDR_PC_G2:
24434 case BFD_RELOC_ARM_LDR_SB_G0:
24435 case BFD_RELOC_ARM_LDR_SB_G1:
24436 case BFD_RELOC_ARM_LDR_SB_G2:
24437 gas_assert (!fixP->fx_done);
24438 if (!seg->use_rela_p)
24439 {
24440 bfd_vma insn;
24441 bfd_vma addend_abs = abs (value);
24442
24443 /* Check that the absolute value of the addend can be
24444 encoded in 12 bits. */
24445 if (addend_abs >= 0x1000)
24446 as_bad_where (fixP->fx_file, fixP->fx_line,
24447 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24448 (unsigned long) addend_abs);
24449
24450 /* Extract the instruction. */
24451 insn = md_chars_to_number (buf, INSN_SIZE);
24452
24453 /* If the addend is negative, clear bit 23 of the instruction.
24454 Otherwise set it. */
24455 if (value < 0)
24456 insn &= ~(1 << 23);
24457 else
24458 insn |= 1 << 23;
24459
24460 /* Place the absolute value of the addend into the first 12 bits
24461 of the instruction. */
24462 insn &= 0xfffff000;
24463 insn |= addend_abs;
24464
24465 /* Update the instruction. */
24466 md_number_to_chars (buf, insn, INSN_SIZE);
24467 }
24468 break;
24469
24470 case BFD_RELOC_ARM_LDRS_PC_G0:
24471 case BFD_RELOC_ARM_LDRS_PC_G1:
24472 case BFD_RELOC_ARM_LDRS_PC_G2:
24473 case BFD_RELOC_ARM_LDRS_SB_G0:
24474 case BFD_RELOC_ARM_LDRS_SB_G1:
24475 case BFD_RELOC_ARM_LDRS_SB_G2:
24476 gas_assert (!fixP->fx_done);
24477 if (!seg->use_rela_p)
24478 {
24479 bfd_vma insn;
24480 bfd_vma addend_abs = abs (value);
24481
24482 /* Check that the absolute value of the addend can be
24483 encoded in 8 bits. */
24484 if (addend_abs >= 0x100)
24485 as_bad_where (fixP->fx_file, fixP->fx_line,
24486 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24487 (unsigned long) addend_abs);
24488
24489 /* Extract the instruction. */
24490 insn = md_chars_to_number (buf, INSN_SIZE);
24491
24492 /* If the addend is negative, clear bit 23 of the instruction.
24493 Otherwise set it. */
24494 if (value < 0)
24495 insn &= ~(1 << 23);
24496 else
24497 insn |= 1 << 23;
24498
24499 /* Place the first four bits of the absolute value of the addend
24500 into the first 4 bits of the instruction, and the remaining
24501 four into bits 8 .. 11. */
24502 insn &= 0xfffff0f0;
24503 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24504
24505 /* Update the instruction. */
24506 md_number_to_chars (buf, insn, INSN_SIZE);
24507 }
24508 break;
24509
24510 case BFD_RELOC_ARM_LDC_PC_G0:
24511 case BFD_RELOC_ARM_LDC_PC_G1:
24512 case BFD_RELOC_ARM_LDC_PC_G2:
24513 case BFD_RELOC_ARM_LDC_SB_G0:
24514 case BFD_RELOC_ARM_LDC_SB_G1:
24515 case BFD_RELOC_ARM_LDC_SB_G2:
24516 gas_assert (!fixP->fx_done);
24517 if (!seg->use_rela_p)
24518 {
24519 bfd_vma insn;
24520 bfd_vma addend_abs = abs (value);
24521
24522 /* Check that the absolute value of the addend is a multiple of
24523 four and, when divided by four, fits in 8 bits. */
24524 if (addend_abs & 0x3)
24525 as_bad_where (fixP->fx_file, fixP->fx_line,
24526 _("bad offset 0x%08lX (must be word-aligned)"),
24527 (unsigned long) addend_abs);
24528
24529 if ((addend_abs >> 2) > 0xff)
24530 as_bad_where (fixP->fx_file, fixP->fx_line,
24531 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24532 (unsigned long) addend_abs);
24533
24534 /* Extract the instruction. */
24535 insn = md_chars_to_number (buf, INSN_SIZE);
24536
24537 /* If the addend is negative, clear bit 23 of the instruction.
24538 Otherwise set it. */
24539 if (value < 0)
24540 insn &= ~(1 << 23);
24541 else
24542 insn |= 1 << 23;
24543
24544 /* Place the addend (divided by four) into the first eight
24545 bits of the instruction. */
24546 insn &= 0xfffffff0;
24547 insn |= addend_abs >> 2;
24548
24549 /* Update the instruction. */
24550 md_number_to_chars (buf, insn, INSN_SIZE);
24551 }
24552 break;
24553
24554 case BFD_RELOC_ARM_V4BX:
24555 /* This will need to go in the object file. */
24556 fixP->fx_done = 0;
24557 break;
24558
24559 case BFD_RELOC_UNUSED:
24560 default:
24561 as_bad_where (fixP->fx_file, fixP->fx_line,
24562 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24563 }
24564 }
24565
24566 /* Translate internal representation of relocation info to BFD target
24567 format. */
24568
24569 arelent *
24570 tc_gen_reloc (asection *section, fixS *fixp)
24571 {
24572 arelent * reloc;
24573 bfd_reloc_code_real_type code;
24574
24575 reloc = XNEW (arelent);
24576
24577 reloc->sym_ptr_ptr = XNEW (asymbol *);
24578 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24579 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
24580
24581 if (fixp->fx_pcrel)
24582 {
24583 if (section->use_rela_p)
24584 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24585 else
24586 fixp->fx_offset = reloc->address;
24587 }
24588 reloc->addend = fixp->fx_offset;
24589
24590 switch (fixp->fx_r_type)
24591 {
24592 case BFD_RELOC_8:
24593 if (fixp->fx_pcrel)
24594 {
24595 code = BFD_RELOC_8_PCREL;
24596 break;
24597 }
24598 /* Fall through. */
24599
24600 case BFD_RELOC_16:
24601 if (fixp->fx_pcrel)
24602 {
24603 code = BFD_RELOC_16_PCREL;
24604 break;
24605 }
24606 /* Fall through. */
24607
24608 case BFD_RELOC_32:
24609 if (fixp->fx_pcrel)
24610 {
24611 code = BFD_RELOC_32_PCREL;
24612 break;
24613 }
24614 /* Fall through. */
24615
24616 case BFD_RELOC_ARM_MOVW:
24617 if (fixp->fx_pcrel)
24618 {
24619 code = BFD_RELOC_ARM_MOVW_PCREL;
24620 break;
24621 }
24622 /* Fall through. */
24623
24624 case BFD_RELOC_ARM_MOVT:
24625 if (fixp->fx_pcrel)
24626 {
24627 code = BFD_RELOC_ARM_MOVT_PCREL;
24628 break;
24629 }
24630 /* Fall through. */
24631
24632 case BFD_RELOC_ARM_THUMB_MOVW:
24633 if (fixp->fx_pcrel)
24634 {
24635 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24636 break;
24637 }
24638 /* Fall through. */
24639
24640 case BFD_RELOC_ARM_THUMB_MOVT:
24641 if (fixp->fx_pcrel)
24642 {
24643 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24644 break;
24645 }
24646 /* Fall through. */
24647
24648 case BFD_RELOC_NONE:
24649 case BFD_RELOC_ARM_PCREL_BRANCH:
24650 case BFD_RELOC_ARM_PCREL_BLX:
24651 case BFD_RELOC_RVA:
24652 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24653 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24654 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24655 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24656 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24657 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24658 case BFD_RELOC_VTABLE_ENTRY:
24659 case BFD_RELOC_VTABLE_INHERIT:
24660 #ifdef TE_PE
24661 case BFD_RELOC_32_SECREL:
24662 #endif
24663 code = fixp->fx_r_type;
24664 break;
24665
24666 case BFD_RELOC_THUMB_PCREL_BLX:
24667 #ifdef OBJ_ELF
24668 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24669 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24670 else
24671 #endif
24672 code = BFD_RELOC_THUMB_PCREL_BLX;
24673 break;
24674
24675 case BFD_RELOC_ARM_LITERAL:
24676 case BFD_RELOC_ARM_HWLITERAL:
24677 /* If this is called then the a literal has
24678 been referenced across a section boundary. */
24679 as_bad_where (fixp->fx_file, fixp->fx_line,
24680 _("literal referenced across section boundary"));
24681 return NULL;
24682
24683 #ifdef OBJ_ELF
24684 case BFD_RELOC_ARM_TLS_CALL:
24685 case BFD_RELOC_ARM_THM_TLS_CALL:
24686 case BFD_RELOC_ARM_TLS_DESCSEQ:
24687 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24688 case BFD_RELOC_ARM_GOT32:
24689 case BFD_RELOC_ARM_GOTOFF:
24690 case BFD_RELOC_ARM_GOT_PREL:
24691 case BFD_RELOC_ARM_PLT32:
24692 case BFD_RELOC_ARM_TARGET1:
24693 case BFD_RELOC_ARM_ROSEGREL32:
24694 case BFD_RELOC_ARM_SBREL32:
24695 case BFD_RELOC_ARM_PREL31:
24696 case BFD_RELOC_ARM_TARGET2:
24697 case BFD_RELOC_ARM_TLS_LDO32:
24698 case BFD_RELOC_ARM_PCREL_CALL:
24699 case BFD_RELOC_ARM_PCREL_JUMP:
24700 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24701 case BFD_RELOC_ARM_ALU_PC_G0:
24702 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24703 case BFD_RELOC_ARM_ALU_PC_G1:
24704 case BFD_RELOC_ARM_ALU_PC_G2:
24705 case BFD_RELOC_ARM_LDR_PC_G0:
24706 case BFD_RELOC_ARM_LDR_PC_G1:
24707 case BFD_RELOC_ARM_LDR_PC_G2:
24708 case BFD_RELOC_ARM_LDRS_PC_G0:
24709 case BFD_RELOC_ARM_LDRS_PC_G1:
24710 case BFD_RELOC_ARM_LDRS_PC_G2:
24711 case BFD_RELOC_ARM_LDC_PC_G0:
24712 case BFD_RELOC_ARM_LDC_PC_G1:
24713 case BFD_RELOC_ARM_LDC_PC_G2:
24714 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24715 case BFD_RELOC_ARM_ALU_SB_G0:
24716 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24717 case BFD_RELOC_ARM_ALU_SB_G1:
24718 case BFD_RELOC_ARM_ALU_SB_G2:
24719 case BFD_RELOC_ARM_LDR_SB_G0:
24720 case BFD_RELOC_ARM_LDR_SB_G1:
24721 case BFD_RELOC_ARM_LDR_SB_G2:
24722 case BFD_RELOC_ARM_LDRS_SB_G0:
24723 case BFD_RELOC_ARM_LDRS_SB_G1:
24724 case BFD_RELOC_ARM_LDRS_SB_G2:
24725 case BFD_RELOC_ARM_LDC_SB_G0:
24726 case BFD_RELOC_ARM_LDC_SB_G1:
24727 case BFD_RELOC_ARM_LDC_SB_G2:
24728 case BFD_RELOC_ARM_V4BX:
24729 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24730 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24731 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24732 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24733 code = fixp->fx_r_type;
24734 break;
24735
24736 case BFD_RELOC_ARM_TLS_GOTDESC:
24737 case BFD_RELOC_ARM_TLS_GD32:
24738 case BFD_RELOC_ARM_TLS_LE32:
24739 case BFD_RELOC_ARM_TLS_IE32:
24740 case BFD_RELOC_ARM_TLS_LDM32:
24741 /* BFD will include the symbol's address in the addend.
24742 But we don't want that, so subtract it out again here. */
24743 if (!S_IS_COMMON (fixp->fx_addsy))
24744 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24745 code = fixp->fx_r_type;
24746 break;
24747 #endif
24748
24749 case BFD_RELOC_ARM_IMMEDIATE:
24750 as_bad_where (fixp->fx_file, fixp->fx_line,
24751 _("internal relocation (type: IMMEDIATE) not fixed up"));
24752 return NULL;
24753
24754 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24755 as_bad_where (fixp->fx_file, fixp->fx_line,
24756 _("ADRL used for a symbol not defined in the same file"));
24757 return NULL;
24758
24759 case BFD_RELOC_ARM_OFFSET_IMM:
24760 if (section->use_rela_p)
24761 {
24762 code = fixp->fx_r_type;
24763 break;
24764 }
24765
24766 if (fixp->fx_addsy != NULL
24767 && !S_IS_DEFINED (fixp->fx_addsy)
24768 && S_IS_LOCAL (fixp->fx_addsy))
24769 {
24770 as_bad_where (fixp->fx_file, fixp->fx_line,
24771 _("undefined local label `%s'"),
24772 S_GET_NAME (fixp->fx_addsy));
24773 return NULL;
24774 }
24775
24776 as_bad_where (fixp->fx_file, fixp->fx_line,
24777 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24778 return NULL;
24779
24780 default:
24781 {
24782 const char * type;
24783
24784 switch (fixp->fx_r_type)
24785 {
24786 case BFD_RELOC_NONE: type = "NONE"; break;
24787 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24788 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
24789 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
24790 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24791 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24792 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
24793 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
24794 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
24795 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24796 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24797 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24798 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24799 default: type = _("<unknown>"); break;
24800 }
24801 as_bad_where (fixp->fx_file, fixp->fx_line,
24802 _("cannot represent %s relocation in this object file format"),
24803 type);
24804 return NULL;
24805 }
24806 }
24807
24808 #ifdef OBJ_ELF
24809 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24810 && GOT_symbol
24811 && fixp->fx_addsy == GOT_symbol)
24812 {
24813 code = BFD_RELOC_ARM_GOTPC;
24814 reloc->addend = fixp->fx_offset = reloc->address;
24815 }
24816 #endif
24817
24818 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
24819
24820 if (reloc->howto == NULL)
24821 {
24822 as_bad_where (fixp->fx_file, fixp->fx_line,
24823 _("cannot represent %s relocation in this object file format"),
24824 bfd_get_reloc_code_name (code));
24825 return NULL;
24826 }
24827
24828 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24829 vtable entry to be used in the relocation's section offset. */
24830 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24831 reloc->address = fixp->fx_offset;
24832
24833 return reloc;
24834 }
24835
24836 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
24837
24838 void
24839 cons_fix_new_arm (fragS * frag,
24840 int where,
24841 int size,
24842 expressionS * exp,
24843 bfd_reloc_code_real_type reloc)
24844 {
24845 int pcrel = 0;
24846
24847 /* Pick a reloc.
24848 FIXME: @@ Should look at CPU word size. */
24849 switch (size)
24850 {
24851 case 1:
24852 reloc = BFD_RELOC_8;
24853 break;
24854 case 2:
24855 reloc = BFD_RELOC_16;
24856 break;
24857 case 4:
24858 default:
24859 reloc = BFD_RELOC_32;
24860 break;
24861 case 8:
24862 reloc = BFD_RELOC_64;
24863 break;
24864 }
24865
24866 #ifdef TE_PE
24867 if (exp->X_op == O_secrel)
24868 {
24869 exp->X_op = O_symbol;
24870 reloc = BFD_RELOC_32_SECREL;
24871 }
24872 #endif
24873
24874 fix_new_exp (frag, where, size, exp, pcrel, reloc);
24875 }
24876
24877 #if defined (OBJ_COFF)
24878 void
24879 arm_validate_fix (fixS * fixP)
24880 {
24881 /* If the destination of the branch is a defined symbol which does not have
24882 the THUMB_FUNC attribute, then we must be calling a function which has
24883 the (interfacearm) attribute. We look for the Thumb entry point to that
24884 function and change the branch to refer to that function instead. */
24885 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24886 && fixP->fx_addsy != NULL
24887 && S_IS_DEFINED (fixP->fx_addsy)
24888 && ! THUMB_IS_FUNC (fixP->fx_addsy))
24889 {
24890 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
24891 }
24892 }
24893 #endif
24894
24895
24896 int
24897 arm_force_relocation (struct fix * fixp)
24898 {
24899 #if defined (OBJ_COFF) && defined (TE_PE)
24900 if (fixp->fx_r_type == BFD_RELOC_RVA)
24901 return 1;
24902 #endif
24903
24904 /* In case we have a call or a branch to a function in ARM ISA mode from
24905 a thumb function or vice-versa force the relocation. These relocations
24906 are cleared off for some cores that might have blx and simple transformations
24907 are possible. */
24908
24909 #ifdef OBJ_ELF
24910 switch (fixp->fx_r_type)
24911 {
24912 case BFD_RELOC_ARM_PCREL_JUMP:
24913 case BFD_RELOC_ARM_PCREL_CALL:
24914 case BFD_RELOC_THUMB_PCREL_BLX:
24915 if (THUMB_IS_FUNC (fixp->fx_addsy))
24916 return 1;
24917 break;
24918
24919 case BFD_RELOC_ARM_PCREL_BLX:
24920 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24921 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24922 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24923 if (ARM_IS_FUNC (fixp->fx_addsy))
24924 return 1;
24925 break;
24926
24927 default:
24928 break;
24929 }
24930 #endif
24931
24932 /* Resolve these relocations even if the symbol is extern or weak.
24933 Technically this is probably wrong due to symbol preemption.
24934 In practice these relocations do not have enough range to be useful
24935 at dynamic link time, and some code (e.g. in the Linux kernel)
24936 expects these references to be resolved. */
24937 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
24938 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
24939 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
24940 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
24941 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24942 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
24943 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
24944 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
24945 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
24946 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
24947 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
24948 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
24949 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
24950 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
24951 return 0;
24952
24953 /* Always leave these relocations for the linker. */
24954 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24955 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24956 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24957 return 1;
24958
24959 /* Always generate relocations against function symbols. */
24960 if (fixp->fx_r_type == BFD_RELOC_32
24961 && fixp->fx_addsy
24962 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
24963 return 1;
24964
24965 return generic_force_reloc (fixp);
24966 }
24967
24968 #if defined (OBJ_ELF) || defined (OBJ_COFF)
24969 /* Relocations against function names must be left unadjusted,
24970 so that the linker can use this information to generate interworking
24971 stubs. The MIPS version of this function
24972 also prevents relocations that are mips-16 specific, but I do not
24973 know why it does this.
24974
24975 FIXME:
24976 There is one other problem that ought to be addressed here, but
24977 which currently is not: Taking the address of a label (rather
24978 than a function) and then later jumping to that address. Such
24979 addresses also ought to have their bottom bit set (assuming that
24980 they reside in Thumb code), but at the moment they will not. */
24981
24982 bfd_boolean
24983 arm_fix_adjustable (fixS * fixP)
24984 {
24985 if (fixP->fx_addsy == NULL)
24986 return 1;
24987
24988 /* Preserve relocations against symbols with function type. */
24989 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
24990 return FALSE;
24991
24992 if (THUMB_IS_FUNC (fixP->fx_addsy)
24993 && fixP->fx_subsy == NULL)
24994 return FALSE;
24995
24996 /* We need the symbol name for the VTABLE entries. */
24997 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
24998 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24999 return FALSE;
25000
25001 /* Don't allow symbols to be discarded on GOT related relocs. */
25002 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25003 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25004 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25005 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
25006 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25007 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
25008 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
25009 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
25010 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25011 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25012 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25013 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25014 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
25015 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
25016 return FALSE;
25017
25018 /* Similarly for group relocations. */
25019 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25020 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25021 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25022 return FALSE;
25023
25024 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25025 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25026 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25027 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25028 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25029 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25030 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25031 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25032 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
25033 return FALSE;
25034
25035 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25036 offsets, so keep these symbols. */
25037 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25038 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25039 return FALSE;
25040
25041 return TRUE;
25042 }
25043 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25044
25045 #ifdef OBJ_ELF
25046 const char *
25047 elf32_arm_target_format (void)
25048 {
25049 #ifdef TE_SYMBIAN
25050 return (target_big_endian
25051 ? "elf32-bigarm-symbian"
25052 : "elf32-littlearm-symbian");
25053 #elif defined (TE_VXWORKS)
25054 return (target_big_endian
25055 ? "elf32-bigarm-vxworks"
25056 : "elf32-littlearm-vxworks");
25057 #elif defined (TE_NACL)
25058 return (target_big_endian
25059 ? "elf32-bigarm-nacl"
25060 : "elf32-littlearm-nacl");
25061 #else
25062 if (target_big_endian)
25063 return "elf32-bigarm";
25064 else
25065 return "elf32-littlearm";
25066 #endif
25067 }
25068
25069 void
25070 armelf_frob_symbol (symbolS * symp,
25071 int * puntp)
25072 {
25073 elf_frob_symbol (symp, puntp);
25074 }
25075 #endif
25076
25077 /* MD interface: Finalization. */
25078
25079 void
25080 arm_cleanup (void)
25081 {
25082 literal_pool * pool;
25083
25084 /* Ensure that all the IT blocks are properly closed. */
25085 check_it_blocks_finished ();
25086
25087 for (pool = list_of_pools; pool; pool = pool->next)
25088 {
25089 /* Put it at the end of the relevant section. */
25090 subseg_set (pool->section, pool->sub_section);
25091 #ifdef OBJ_ELF
25092 arm_elf_change_section ();
25093 #endif
25094 s_ltorg (0);
25095 }
25096 }
25097
25098 #ifdef OBJ_ELF
25099 /* Remove any excess mapping symbols generated for alignment frags in
25100 SEC. We may have created a mapping symbol before a zero byte
25101 alignment; remove it if there's a mapping symbol after the
25102 alignment. */
25103 static void
25104 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25105 void *dummy ATTRIBUTE_UNUSED)
25106 {
25107 segment_info_type *seginfo = seg_info (sec);
25108 fragS *fragp;
25109
25110 if (seginfo == NULL || seginfo->frchainP == NULL)
25111 return;
25112
25113 for (fragp = seginfo->frchainP->frch_root;
25114 fragp != NULL;
25115 fragp = fragp->fr_next)
25116 {
25117 symbolS *sym = fragp->tc_frag_data.last_map;
25118 fragS *next = fragp->fr_next;
25119
25120 /* Variable-sized frags have been converted to fixed size by
25121 this point. But if this was variable-sized to start with,
25122 there will be a fixed-size frag after it. So don't handle
25123 next == NULL. */
25124 if (sym == NULL || next == NULL)
25125 continue;
25126
25127 if (S_GET_VALUE (sym) < next->fr_address)
25128 /* Not at the end of this frag. */
25129 continue;
25130 know (S_GET_VALUE (sym) == next->fr_address);
25131
25132 do
25133 {
25134 if (next->tc_frag_data.first_map != NULL)
25135 {
25136 /* Next frag starts with a mapping symbol. Discard this
25137 one. */
25138 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25139 break;
25140 }
25141
25142 if (next->fr_next == NULL)
25143 {
25144 /* This mapping symbol is at the end of the section. Discard
25145 it. */
25146 know (next->fr_fix == 0 && next->fr_var == 0);
25147 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25148 break;
25149 }
25150
25151 /* As long as we have empty frags without any mapping symbols,
25152 keep looking. */
25153 /* If the next frag is non-empty and does not start with a
25154 mapping symbol, then this mapping symbol is required. */
25155 if (next->fr_address != next->fr_next->fr_address)
25156 break;
25157
25158 next = next->fr_next;
25159 }
25160 while (next != NULL);
25161 }
25162 }
25163 #endif
25164
25165 /* Adjust the symbol table. This marks Thumb symbols as distinct from
25166 ARM ones. */
25167
25168 void
25169 arm_adjust_symtab (void)
25170 {
25171 #ifdef OBJ_COFF
25172 symbolS * sym;
25173
25174 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25175 {
25176 if (ARM_IS_THUMB (sym))
25177 {
25178 if (THUMB_IS_FUNC (sym))
25179 {
25180 /* Mark the symbol as a Thumb function. */
25181 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25182 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25183 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
25184
25185 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25186 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25187 else
25188 as_bad (_("%s: unexpected function type: %d"),
25189 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25190 }
25191 else switch (S_GET_STORAGE_CLASS (sym))
25192 {
25193 case C_EXT:
25194 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25195 break;
25196 case C_STAT:
25197 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25198 break;
25199 case C_LABEL:
25200 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25201 break;
25202 default:
25203 /* Do nothing. */
25204 break;
25205 }
25206 }
25207
25208 if (ARM_IS_INTERWORK (sym))
25209 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
25210 }
25211 #endif
25212 #ifdef OBJ_ELF
25213 symbolS * sym;
25214 char bind;
25215
25216 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25217 {
25218 if (ARM_IS_THUMB (sym))
25219 {
25220 elf_symbol_type * elf_sym;
25221
25222 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25223 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
25224
25225 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25226 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
25227 {
25228 /* If it's a .thumb_func, declare it as so,
25229 otherwise tag label as .code 16. */
25230 if (THUMB_IS_FUNC (sym))
25231 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25232 ST_BRANCH_TO_THUMB);
25233 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25234 elf_sym->internal_elf_sym.st_info =
25235 ELF_ST_INFO (bind, STT_ARM_16BIT);
25236 }
25237 }
25238 }
25239
25240 /* Remove any overlapping mapping symbols generated by alignment frags. */
25241 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
25242 /* Now do generic ELF adjustments. */
25243 elf_adjust_symtab ();
25244 #endif
25245 }
25246
25247 /* MD interface: Initialization. */
25248
25249 static void
25250 set_constant_flonums (void)
25251 {
25252 int i;
25253
25254 for (i = 0; i < NUM_FLOAT_VALS; i++)
25255 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25256 abort ();
25257 }
25258
25259 /* Auto-select Thumb mode if it's the only available instruction set for the
25260 given architecture. */
25261
25262 static void
25263 autoselect_thumb_from_cpu_variant (void)
25264 {
25265 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25266 opcode_select (16);
25267 }
25268
25269 void
25270 md_begin (void)
25271 {
25272 unsigned mach;
25273 unsigned int i;
25274
25275 if ( (arm_ops_hsh = hash_new ()) == NULL
25276 || (arm_cond_hsh = hash_new ()) == NULL
25277 || (arm_shift_hsh = hash_new ()) == NULL
25278 || (arm_psr_hsh = hash_new ()) == NULL
25279 || (arm_v7m_psr_hsh = hash_new ()) == NULL
25280 || (arm_reg_hsh = hash_new ()) == NULL
25281 || (arm_reloc_hsh = hash_new ()) == NULL
25282 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
25283 as_fatal (_("virtual memory exhausted"));
25284
25285 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
25286 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
25287 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
25288 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
25289 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
25290 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
25291 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
25292 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
25293 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
25294 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
25295 (void *) (v7m_psrs + i));
25296 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
25297 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
25298 for (i = 0;
25299 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25300 i++)
25301 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
25302 (void *) (barrier_opt_names + i));
25303 #ifdef OBJ_ELF
25304 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25305 {
25306 struct reloc_entry * entry = reloc_names + i;
25307
25308 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25309 /* This makes encode_branch() use the EABI versions of this relocation. */
25310 entry->reloc = BFD_RELOC_UNUSED;
25311
25312 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25313 }
25314 #endif
25315
25316 set_constant_flonums ();
25317
25318 /* Set the cpu variant based on the command-line options. We prefer
25319 -mcpu= over -march= if both are set (as for GCC); and we prefer
25320 -mfpu= over any other way of setting the floating point unit.
25321 Use of legacy options with new options are faulted. */
25322 if (legacy_cpu)
25323 {
25324 if (mcpu_cpu_opt || march_cpu_opt)
25325 as_bad (_("use of old and new-style options to set CPU type"));
25326
25327 mcpu_cpu_opt = legacy_cpu;
25328 }
25329 else if (!mcpu_cpu_opt)
25330 {
25331 mcpu_cpu_opt = march_cpu_opt;
25332 dyn_mcpu_ext_opt = dyn_march_ext_opt;
25333 /* Avoid double free in arm_md_end. */
25334 dyn_march_ext_opt = NULL;
25335 }
25336
25337 if (legacy_fpu)
25338 {
25339 if (mfpu_opt)
25340 as_bad (_("use of old and new-style options to set FPU type"));
25341
25342 mfpu_opt = legacy_fpu;
25343 }
25344 else if (!mfpu_opt)
25345 {
25346 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25347 || defined (TE_NetBSD) || defined (TE_VXWORKS))
25348 /* Some environments specify a default FPU. If they don't, infer it
25349 from the processor. */
25350 if (mcpu_fpu_opt)
25351 mfpu_opt = mcpu_fpu_opt;
25352 else
25353 mfpu_opt = march_fpu_opt;
25354 #else
25355 mfpu_opt = &fpu_default;
25356 #endif
25357 }
25358
25359 if (!mfpu_opt)
25360 {
25361 if (mcpu_cpu_opt != NULL)
25362 mfpu_opt = &fpu_default;
25363 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
25364 mfpu_opt = &fpu_arch_vfp_v2;
25365 else
25366 mfpu_opt = &fpu_arch_fpa;
25367 }
25368
25369 #ifdef CPU_DEFAULT
25370 if (!mcpu_cpu_opt)
25371 {
25372 mcpu_cpu_opt = &cpu_default;
25373 selected_cpu = cpu_default;
25374 }
25375 else if (dyn_mcpu_ext_opt)
25376 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25377 else
25378 selected_cpu = *mcpu_cpu_opt;
25379 #else
25380 if (mcpu_cpu_opt && dyn_mcpu_ext_opt)
25381 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25382 else if (mcpu_cpu_opt)
25383 selected_cpu = *mcpu_cpu_opt;
25384 else
25385 mcpu_cpu_opt = &arm_arch_any;
25386 #endif
25387
25388 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25389 if (dyn_mcpu_ext_opt)
25390 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
25391
25392 autoselect_thumb_from_cpu_variant ();
25393
25394 arm_arch_used = thumb_arch_used = arm_arch_none;
25395
25396 #if defined OBJ_COFF || defined OBJ_ELF
25397 {
25398 unsigned int flags = 0;
25399
25400 #if defined OBJ_ELF
25401 flags = meabi_flags;
25402
25403 switch (meabi_flags)
25404 {
25405 case EF_ARM_EABI_UNKNOWN:
25406 #endif
25407 /* Set the flags in the private structure. */
25408 if (uses_apcs_26) flags |= F_APCS26;
25409 if (support_interwork) flags |= F_INTERWORK;
25410 if (uses_apcs_float) flags |= F_APCS_FLOAT;
25411 if (pic_code) flags |= F_PIC;
25412 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
25413 flags |= F_SOFT_FLOAT;
25414
25415 switch (mfloat_abi_opt)
25416 {
25417 case ARM_FLOAT_ABI_SOFT:
25418 case ARM_FLOAT_ABI_SOFTFP:
25419 flags |= F_SOFT_FLOAT;
25420 break;
25421
25422 case ARM_FLOAT_ABI_HARD:
25423 if (flags & F_SOFT_FLOAT)
25424 as_bad (_("hard-float conflicts with specified fpu"));
25425 break;
25426 }
25427
25428 /* Using pure-endian doubles (even if soft-float). */
25429 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
25430 flags |= F_VFP_FLOAT;
25431
25432 #if defined OBJ_ELF
25433 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
25434 flags |= EF_ARM_MAVERICK_FLOAT;
25435 break;
25436
25437 case EF_ARM_EABI_VER4:
25438 case EF_ARM_EABI_VER5:
25439 /* No additional flags to set. */
25440 break;
25441
25442 default:
25443 abort ();
25444 }
25445 #endif
25446 bfd_set_private_flags (stdoutput, flags);
25447
25448 /* We have run out flags in the COFF header to encode the
25449 status of ATPCS support, so instead we create a dummy,
25450 empty, debug section called .arm.atpcs. */
25451 if (atpcs)
25452 {
25453 asection * sec;
25454
25455 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25456
25457 if (sec != NULL)
25458 {
25459 bfd_set_section_flags
25460 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25461 bfd_set_section_size (stdoutput, sec, 0);
25462 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25463 }
25464 }
25465 }
25466 #endif
25467
25468 /* Record the CPU type as well. */
25469 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25470 mach = bfd_mach_arm_iWMMXt2;
25471 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
25472 mach = bfd_mach_arm_iWMMXt;
25473 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
25474 mach = bfd_mach_arm_XScale;
25475 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
25476 mach = bfd_mach_arm_ep9312;
25477 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
25478 mach = bfd_mach_arm_5TE;
25479 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
25480 {
25481 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25482 mach = bfd_mach_arm_5T;
25483 else
25484 mach = bfd_mach_arm_5;
25485 }
25486 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
25487 {
25488 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25489 mach = bfd_mach_arm_4T;
25490 else
25491 mach = bfd_mach_arm_4;
25492 }
25493 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
25494 mach = bfd_mach_arm_3M;
25495 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25496 mach = bfd_mach_arm_3;
25497 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25498 mach = bfd_mach_arm_2a;
25499 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25500 mach = bfd_mach_arm_2;
25501 else
25502 mach = bfd_mach_arm_unknown;
25503
25504 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25505 }
25506
25507 /* Command line processing. */
25508
25509 /* md_parse_option
25510 Invocation line includes a switch not recognized by the base assembler.
25511 See if it's a processor-specific option.
25512
25513 This routine is somewhat complicated by the need for backwards
25514 compatibility (since older releases of gcc can't be changed).
25515 The new options try to make the interface as compatible as
25516 possible with GCC.
25517
25518 New options (supported) are:
25519
25520 -mcpu=<cpu name> Assemble for selected processor
25521 -march=<architecture name> Assemble for selected architecture
25522 -mfpu=<fpu architecture> Assemble for selected FPU.
25523 -EB/-mbig-endian Big-endian
25524 -EL/-mlittle-endian Little-endian
25525 -k Generate PIC code
25526 -mthumb Start in Thumb mode
25527 -mthumb-interwork Code supports ARM/Thumb interworking
25528
25529 -m[no-]warn-deprecated Warn about deprecated features
25530 -m[no-]warn-syms Warn when symbols match instructions
25531
25532 For now we will also provide support for:
25533
25534 -mapcs-32 32-bit Program counter
25535 -mapcs-26 26-bit Program counter
25536 -macps-float Floats passed in FP registers
25537 -mapcs-reentrant Reentrant code
25538 -matpcs
25539 (sometime these will probably be replaced with -mapcs=<list of options>
25540 and -matpcs=<list of options>)
25541
25542 The remaining options are only supported for back-wards compatibility.
25543 Cpu variants, the arm part is optional:
25544 -m[arm]1 Currently not supported.
25545 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25546 -m[arm]3 Arm 3 processor
25547 -m[arm]6[xx], Arm 6 processors
25548 -m[arm]7[xx][t][[d]m] Arm 7 processors
25549 -m[arm]8[10] Arm 8 processors
25550 -m[arm]9[20][tdmi] Arm 9 processors
25551 -mstrongarm[110[0]] StrongARM processors
25552 -mxscale XScale processors
25553 -m[arm]v[2345[t[e]]] Arm architectures
25554 -mall All (except the ARM1)
25555 FP variants:
25556 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25557 -mfpe-old (No float load/store multiples)
25558 -mvfpxd VFP Single precision
25559 -mvfp All VFP
25560 -mno-fpu Disable all floating point instructions
25561
25562 The following CPU names are recognized:
25563 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25564 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25565 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25566 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25567 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25568 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25569 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
25570
25571 */
25572
25573 const char * md_shortopts = "m:k";
25574
25575 #ifdef ARM_BI_ENDIAN
25576 #define OPTION_EB (OPTION_MD_BASE + 0)
25577 #define OPTION_EL (OPTION_MD_BASE + 1)
25578 #else
25579 #if TARGET_BYTES_BIG_ENDIAN
25580 #define OPTION_EB (OPTION_MD_BASE + 0)
25581 #else
25582 #define OPTION_EL (OPTION_MD_BASE + 1)
25583 #endif
25584 #endif
25585 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
25586
25587 struct option md_longopts[] =
25588 {
25589 #ifdef OPTION_EB
25590 {"EB", no_argument, NULL, OPTION_EB},
25591 #endif
25592 #ifdef OPTION_EL
25593 {"EL", no_argument, NULL, OPTION_EL},
25594 #endif
25595 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
25596 {NULL, no_argument, NULL, 0}
25597 };
25598
25599 size_t md_longopts_size = sizeof (md_longopts);
25600
25601 struct arm_option_table
25602 {
25603 const char * option; /* Option name to match. */
25604 const char * help; /* Help information. */
25605 int * var; /* Variable to change. */
25606 int value; /* What to change it to. */
25607 const char * deprecated; /* If non-null, print this message. */
25608 };
25609
25610 struct arm_option_table arm_opts[] =
25611 {
25612 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25613 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25614 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25615 &support_interwork, 1, NULL},
25616 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25617 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25618 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25619 1, NULL},
25620 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25621 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25622 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25623 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25624 NULL},
25625
25626 /* These are recognized by the assembler, but have no affect on code. */
25627 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25628 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
25629
25630 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25631 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25632 &warn_on_deprecated, 0, NULL},
25633 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25634 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
25635 {NULL, NULL, NULL, 0, NULL}
25636 };
25637
25638 struct arm_legacy_option_table
25639 {
25640 const char * option; /* Option name to match. */
25641 const arm_feature_set ** var; /* Variable to change. */
25642 const arm_feature_set value; /* What to change it to. */
25643 const char * deprecated; /* If non-null, print this message. */
25644 };
25645
25646 const struct arm_legacy_option_table arm_legacy_opts[] =
25647 {
25648 /* DON'T add any new processors to this list -- we want the whole list
25649 to go away... Add them to the processors table instead. */
25650 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25651 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25652 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25653 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25654 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25655 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25656 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25657 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25658 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25659 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25660 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25661 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25662 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25663 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25664 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25665 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25666 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25667 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25668 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25669 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25670 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25671 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25672 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25673 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25674 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25675 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25676 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25677 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25678 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25679 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25680 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25681 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25682 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25683 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25684 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25685 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25686 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25687 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25688 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25689 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25690 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25691 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25692 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25693 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25694 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25695 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25696 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25697 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25698 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25699 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25700 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25701 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25702 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25703 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25704 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25705 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25706 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25707 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25708 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25709 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25710 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25711 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25712 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25713 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25714 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25715 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25716 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25717 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25718 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25719 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
25720 N_("use -mcpu=strongarm110")},
25721 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
25722 N_("use -mcpu=strongarm1100")},
25723 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
25724 N_("use -mcpu=strongarm1110")},
25725 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25726 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25727 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
25728
25729 /* Architecture variants -- don't add any more to this list either. */
25730 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25731 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25732 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25733 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25734 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25735 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25736 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25737 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25738 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25739 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25740 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25741 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25742 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25743 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25744 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25745 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25746 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25747 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25748
25749 /* Floating point variants -- don't add any more to this list either. */
25750 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25751 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25752 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25753 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
25754 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
25755
25756 {NULL, NULL, ARM_ARCH_NONE, NULL}
25757 };
25758
25759 struct arm_cpu_option_table
25760 {
25761 const char * name;
25762 size_t name_len;
25763 const arm_feature_set value;
25764 const arm_feature_set ext;
25765 /* For some CPUs we assume an FPU unless the user explicitly sets
25766 -mfpu=... */
25767 const arm_feature_set default_fpu;
25768 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25769 case. */
25770 const char * canonical_name;
25771 };
25772
25773 /* This list should, at a minimum, contain all the cpu names
25774 recognized by GCC. */
25775 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
25776
25777 static const struct arm_cpu_option_table arm_cpus[] =
25778 {
25779 ARM_CPU_OPT ("all", NULL, ARM_ANY,
25780 ARM_ARCH_NONE,
25781 FPU_ARCH_FPA),
25782 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
25783 ARM_ARCH_NONE,
25784 FPU_ARCH_FPA),
25785 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
25786 ARM_ARCH_NONE,
25787 FPU_ARCH_FPA),
25788 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
25789 ARM_ARCH_NONE,
25790 FPU_ARCH_FPA),
25791 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
25792 ARM_ARCH_NONE,
25793 FPU_ARCH_FPA),
25794 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
25795 ARM_ARCH_NONE,
25796 FPU_ARCH_FPA),
25797 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
25798 ARM_ARCH_NONE,
25799 FPU_ARCH_FPA),
25800 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
25801 ARM_ARCH_NONE,
25802 FPU_ARCH_FPA),
25803 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
25804 ARM_ARCH_NONE,
25805 FPU_ARCH_FPA),
25806 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
25807 ARM_ARCH_NONE,
25808 FPU_ARCH_FPA),
25809 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
25810 ARM_ARCH_NONE,
25811 FPU_ARCH_FPA),
25812 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
25813 ARM_ARCH_NONE,
25814 FPU_ARCH_FPA),
25815 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
25816 ARM_ARCH_NONE,
25817 FPU_ARCH_FPA),
25818 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
25819 ARM_ARCH_NONE,
25820 FPU_ARCH_FPA),
25821 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
25822 ARM_ARCH_NONE,
25823 FPU_ARCH_FPA),
25824 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
25825 ARM_ARCH_NONE,
25826 FPU_ARCH_FPA),
25827 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
25828 ARM_ARCH_NONE,
25829 FPU_ARCH_FPA),
25830 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
25831 ARM_ARCH_NONE,
25832 FPU_ARCH_FPA),
25833 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
25834 ARM_ARCH_NONE,
25835 FPU_ARCH_FPA),
25836 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
25837 ARM_ARCH_NONE,
25838 FPU_ARCH_FPA),
25839 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
25840 ARM_ARCH_NONE,
25841 FPU_ARCH_FPA),
25842 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
25843 ARM_ARCH_NONE,
25844 FPU_ARCH_FPA),
25845 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
25846 ARM_ARCH_NONE,
25847 FPU_ARCH_FPA),
25848 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
25849 ARM_ARCH_NONE,
25850 FPU_ARCH_FPA),
25851 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
25852 ARM_ARCH_NONE,
25853 FPU_ARCH_FPA),
25854 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
25855 ARM_ARCH_NONE,
25856 FPU_ARCH_FPA),
25857 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
25858 ARM_ARCH_NONE,
25859 FPU_ARCH_FPA),
25860 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
25861 ARM_ARCH_NONE,
25862 FPU_ARCH_FPA),
25863 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
25864 ARM_ARCH_NONE,
25865 FPU_ARCH_FPA),
25866 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
25867 ARM_ARCH_NONE,
25868 FPU_ARCH_FPA),
25869 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
25870 ARM_ARCH_NONE,
25871 FPU_ARCH_FPA),
25872 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
25873 ARM_ARCH_NONE,
25874 FPU_ARCH_FPA),
25875 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
25876 ARM_ARCH_NONE,
25877 FPU_ARCH_FPA),
25878 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
25879 ARM_ARCH_NONE,
25880 FPU_ARCH_FPA),
25881 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
25882 ARM_ARCH_NONE,
25883 FPU_ARCH_FPA),
25884 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
25885 ARM_ARCH_NONE,
25886 FPU_ARCH_FPA),
25887 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
25888 ARM_ARCH_NONE,
25889 FPU_ARCH_FPA),
25890 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
25891 ARM_ARCH_NONE,
25892 FPU_ARCH_FPA),
25893 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
25894 ARM_ARCH_NONE,
25895 FPU_ARCH_FPA),
25896 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
25897 ARM_ARCH_NONE,
25898 FPU_ARCH_FPA),
25899 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
25900 ARM_ARCH_NONE,
25901 FPU_ARCH_FPA),
25902 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
25903 ARM_ARCH_NONE,
25904 FPU_ARCH_FPA),
25905 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
25906 ARM_ARCH_NONE,
25907 FPU_ARCH_FPA),
25908 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
25909 ARM_ARCH_NONE,
25910 FPU_ARCH_FPA),
25911 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
25912 ARM_ARCH_NONE,
25913 FPU_ARCH_FPA),
25914 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
25915 ARM_ARCH_NONE,
25916 FPU_ARCH_FPA),
25917
25918 /* For V5 or later processors we default to using VFP; but the user
25919 should really set the FPU type explicitly. */
25920 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
25921 ARM_ARCH_NONE,
25922 FPU_ARCH_VFP_V2),
25923 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
25924 ARM_ARCH_NONE,
25925 FPU_ARCH_VFP_V2),
25926 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25927 ARM_ARCH_NONE,
25928 FPU_ARCH_VFP_V2),
25929 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25930 ARM_ARCH_NONE,
25931 FPU_ARCH_VFP_V2),
25932 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
25933 ARM_ARCH_NONE,
25934 FPU_ARCH_VFP_V2),
25935 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
25936 ARM_ARCH_NONE,
25937 FPU_ARCH_VFP_V2),
25938 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
25939 ARM_ARCH_NONE,
25940 FPU_ARCH_VFP_V2),
25941 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
25942 ARM_ARCH_NONE,
25943 FPU_ARCH_VFP_V2),
25944 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
25945 ARM_ARCH_NONE,
25946 FPU_ARCH_VFP_V2),
25947 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
25948 ARM_ARCH_NONE,
25949 FPU_ARCH_VFP_V2),
25950 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
25951 ARM_ARCH_NONE,
25952 FPU_ARCH_VFP_V2),
25953 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
25954 ARM_ARCH_NONE,
25955 FPU_ARCH_VFP_V2),
25956 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
25957 ARM_ARCH_NONE,
25958 FPU_ARCH_VFP_V1),
25959 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
25960 ARM_ARCH_NONE,
25961 FPU_ARCH_VFP_V1),
25962 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
25963 ARM_ARCH_NONE,
25964 FPU_ARCH_VFP_V2),
25965 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
25966 ARM_ARCH_NONE,
25967 FPU_ARCH_VFP_V2),
25968 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
25969 ARM_ARCH_NONE,
25970 FPU_ARCH_VFP_V1),
25971 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
25972 ARM_ARCH_NONE,
25973 FPU_ARCH_VFP_V2),
25974 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
25975 ARM_ARCH_NONE,
25976 FPU_ARCH_VFP_V2),
25977 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
25978 ARM_ARCH_NONE,
25979 FPU_ARCH_VFP_V2),
25980 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
25981 ARM_ARCH_NONE,
25982 FPU_ARCH_VFP_V2),
25983 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
25984 ARM_ARCH_NONE,
25985 FPU_ARCH_VFP_V2),
25986 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
25987 ARM_ARCH_NONE,
25988 FPU_ARCH_VFP_V2),
25989 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
25990 ARM_ARCH_NONE,
25991 FPU_ARCH_VFP_V2),
25992 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
25993 ARM_ARCH_NONE,
25994 FPU_ARCH_VFP_V2),
25995 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
25996 ARM_ARCH_NONE,
25997 FPU_ARCH_VFP_V2),
25998 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
25999 ARM_ARCH_NONE,
26000 FPU_NONE),
26001 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26002 ARM_ARCH_NONE,
26003 FPU_NONE),
26004 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26005 ARM_ARCH_NONE,
26006 FPU_ARCH_VFP_V2),
26007 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26008 ARM_ARCH_NONE,
26009 FPU_ARCH_VFP_V2),
26010 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26011 ARM_ARCH_NONE,
26012 FPU_ARCH_VFP_V2),
26013 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26014 ARM_ARCH_NONE,
26015 FPU_NONE),
26016 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26017 ARM_ARCH_NONE,
26018 FPU_NONE),
26019 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26020 ARM_ARCH_NONE,
26021 FPU_ARCH_VFP_V2),
26022 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26023 ARM_ARCH_NONE,
26024 FPU_NONE),
26025 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26026 ARM_ARCH_NONE,
26027 FPU_ARCH_VFP_V2),
26028 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26029 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26030 FPU_NONE),
26031 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26032 ARM_ARCH_NONE,
26033 FPU_ARCH_NEON_VFP_V4),
26034 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26035 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26036 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26037 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26038 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26039 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26040 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26041 ARM_ARCH_NONE,
26042 FPU_ARCH_NEON_VFP_V4),
26043 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26044 ARM_ARCH_NONE,
26045 FPU_ARCH_NEON_VFP_V4),
26046 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26047 ARM_ARCH_NONE,
26048 FPU_ARCH_NEON_VFP_V4),
26049 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26050 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26051 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26052 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26053 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26054 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26055 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26056 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26057 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26058 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26059 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26060 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26061 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26062 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26063 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26064 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26065 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26066 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26067 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26068 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26069 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26070 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26071 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26072 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26073 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26074 ARM_ARCH_NONE,
26075 FPU_NONE),
26076 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26077 ARM_ARCH_NONE,
26078 FPU_ARCH_VFP_V3D16),
26079 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26080 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26081 FPU_NONE),
26082 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26083 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26084 FPU_ARCH_VFP_V3D16),
26085 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26086 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26087 FPU_ARCH_VFP_V3D16),
26088 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26089 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26090 FPU_ARCH_NEON_VFP_ARMV8),
26091 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26092 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26093 FPU_NONE),
26094 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26095 ARM_ARCH_NONE,
26096 FPU_NONE),
26097 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26098 ARM_ARCH_NONE,
26099 FPU_NONE),
26100 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26101 ARM_ARCH_NONE,
26102 FPU_NONE),
26103 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26104 ARM_ARCH_NONE,
26105 FPU_NONE),
26106 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26107 ARM_ARCH_NONE,
26108 FPU_NONE),
26109 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26110 ARM_ARCH_NONE,
26111 FPU_NONE),
26112 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26113 ARM_ARCH_NONE,
26114 FPU_NONE),
26115 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26116 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26117 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26118
26119 /* ??? XSCALE is really an architecture. */
26120 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26121 ARM_ARCH_NONE,
26122 FPU_ARCH_VFP_V2),
26123
26124 /* ??? iwmmxt is not a processor. */
26125 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26126 ARM_ARCH_NONE,
26127 FPU_ARCH_VFP_V2),
26128 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26129 ARM_ARCH_NONE,
26130 FPU_ARCH_VFP_V2),
26131 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26132 ARM_ARCH_NONE,
26133 FPU_ARCH_VFP_V2),
26134
26135 /* Maverick. */
26136 ARM_CPU_OPT ("ep9312", "ARM920T",
26137 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26138 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26139
26140 /* Marvell processors. */
26141 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26142 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26143 FPU_ARCH_VFP_V3D16),
26144 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26145 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26146 FPU_ARCH_NEON_VFP_V4),
26147
26148 /* APM X-Gene family. */
26149 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26150 ARM_ARCH_NONE,
26151 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26152 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26153 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26154 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26155
26156 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
26157 };
26158 #undef ARM_CPU_OPT
26159
26160 struct arm_arch_option_table
26161 {
26162 const char * name;
26163 size_t name_len;
26164 const arm_feature_set value;
26165 const arm_feature_set default_fpu;
26166 };
26167
26168 /* This list should, at a minimum, contain all the architecture names
26169 recognized by GCC. */
26170 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
26171
26172 static const struct arm_arch_option_table arm_archs[] =
26173 {
26174 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26175 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26176 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26177 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26178 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26179 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26180 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26181 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26182 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26183 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26184 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26185 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26186 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26187 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
26188 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
26189 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
26190 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
26191 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
26192 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
26193 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
26194 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
26195 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26196 kept to preserve existing behaviour. */
26197 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26198 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26199 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
26200 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
26201 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
26202 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26203 kept to preserve existing behaviour. */
26204 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26205 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26206 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26207 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26208 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
26209 /* The official spelling of the ARMv7 profile variants is the dashed form.
26210 Accept the non-dashed form for compatibility with old toolchains. */
26211 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26212 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
26213 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26214 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26215 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26216 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26217 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26218 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
26219 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
26220 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
26221 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
26222 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
26223 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
26224 ARM_ARCH_OPT ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP),
26225 ARM_ARCH_OPT ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP),
26226 ARM_ARCH_OPT ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP),
26227 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26228 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26229 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
26230 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26231 };
26232 #undef ARM_ARCH_OPT
26233
26234 /* ISA extensions in the co-processor and main instruction set space. */
26235
26236 struct arm_option_extension_value_table
26237 {
26238 const char * name;
26239 size_t name_len;
26240 const arm_feature_set merge_value;
26241 const arm_feature_set clear_value;
26242 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26243 indicates that an extension is available for all architectures while
26244 ARM_ANY marks an empty entry. */
26245 const arm_feature_set allowed_archs[2];
26246 };
26247
26248 /* The following table must be in alphabetical order with a NULL last entry. */
26249
26250 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26251 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
26252
26253 static const struct arm_option_extension_value_table arm_extensions[] =
26254 {
26255 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26256 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26257 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26258 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26259 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26260 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26261 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26262 ARM_ARCH_V8_2A),
26263 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26264 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26265 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
26266 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26267 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26268 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26269 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26270 ARM_ARCH_V8_2A),
26271 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26272 | ARM_EXT2_FP16_FML),
26273 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26274 | ARM_EXT2_FP16_FML),
26275 ARM_ARCH_V8_2A),
26276 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26277 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26278 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26279 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26280 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26281 Thumb divide instruction. Due to this having the same name as the
26282 previous entry, this will be ignored when doing command-line parsing and
26283 only considered by build attribute selection code. */
26284 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26285 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26286 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
26287 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
26288 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
26289 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
26290 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
26291 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
26292 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26293 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26294 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26295 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26296 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26297 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26298 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26299 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
26300 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26301 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
26302 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26303 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26304 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
26305 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26306 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26307 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
26308 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26309 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26310 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26311 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26312 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26313 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26314 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26315 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26316 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26317 | ARM_EXT_DIV),
26318 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26319 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26320 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
26321 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26322 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
26323 };
26324 #undef ARM_EXT_OPT
26325
26326 /* ISA floating-point and Advanced SIMD extensions. */
26327 struct arm_option_fpu_value_table
26328 {
26329 const char * name;
26330 const arm_feature_set value;
26331 };
26332
26333 /* This list should, at a minimum, contain all the fpu names
26334 recognized by GCC. */
26335 static const struct arm_option_fpu_value_table arm_fpus[] =
26336 {
26337 {"softfpa", FPU_NONE},
26338 {"fpe", FPU_ARCH_FPE},
26339 {"fpe2", FPU_ARCH_FPE},
26340 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26341 {"fpa", FPU_ARCH_FPA},
26342 {"fpa10", FPU_ARCH_FPA},
26343 {"fpa11", FPU_ARCH_FPA},
26344 {"arm7500fe", FPU_ARCH_FPA},
26345 {"softvfp", FPU_ARCH_VFP},
26346 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26347 {"vfp", FPU_ARCH_VFP_V2},
26348 {"vfp9", FPU_ARCH_VFP_V2},
26349 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
26350 {"vfp10", FPU_ARCH_VFP_V2},
26351 {"vfp10-r0", FPU_ARCH_VFP_V1},
26352 {"vfpxd", FPU_ARCH_VFP_V1xD},
26353 {"vfpv2", FPU_ARCH_VFP_V2},
26354 {"vfpv3", FPU_ARCH_VFP_V3},
26355 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
26356 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
26357 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26358 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26359 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
26360 {"arm1020t", FPU_ARCH_VFP_V1},
26361 {"arm1020e", FPU_ARCH_VFP_V2},
26362 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
26363 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26364 {"maverick", FPU_ARCH_MAVERICK},
26365 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26366 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26367 {"neon-fp16", FPU_ARCH_NEON_FP16},
26368 {"vfpv4", FPU_ARCH_VFP_V4},
26369 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
26370 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
26371 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26372 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
26373 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
26374 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26375 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26376 {"crypto-neon-fp-armv8",
26377 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
26378 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
26379 {"crypto-neon-fp-armv8.1",
26380 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
26381 {NULL, ARM_ARCH_NONE}
26382 };
26383
26384 struct arm_option_value_table
26385 {
26386 const char *name;
26387 long value;
26388 };
26389
26390 static const struct arm_option_value_table arm_float_abis[] =
26391 {
26392 {"hard", ARM_FLOAT_ABI_HARD},
26393 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26394 {"soft", ARM_FLOAT_ABI_SOFT},
26395 {NULL, 0}
26396 };
26397
26398 #ifdef OBJ_ELF
26399 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
26400 static const struct arm_option_value_table arm_eabis[] =
26401 {
26402 {"gnu", EF_ARM_EABI_UNKNOWN},
26403 {"4", EF_ARM_EABI_VER4},
26404 {"5", EF_ARM_EABI_VER5},
26405 {NULL, 0}
26406 };
26407 #endif
26408
26409 struct arm_long_option_table
26410 {
26411 const char * option; /* Substring to match. */
26412 const char * help; /* Help information. */
26413 int (* func) (const char * subopt); /* Function to decode sub-option. */
26414 const char * deprecated; /* If non-null, print this message. */
26415 };
26416
26417 static bfd_boolean
26418 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
26419 arm_feature_set **ext_set_p)
26420 {
26421 /* We insist on extensions being specified in alphabetical order, and with
26422 extensions being added before being removed. We achieve this by having
26423 the global ARM_EXTENSIONS table in alphabetical order, and using the
26424 ADDING_VALUE variable to indicate whether we are adding an extension (1)
26425 or removing it (0) and only allowing it to change in the order
26426 -1 -> 1 -> 0. */
26427 const struct arm_option_extension_value_table * opt = NULL;
26428 const arm_feature_set arm_any = ARM_ANY;
26429 int adding_value = -1;
26430
26431 if (!*ext_set_p)
26432 {
26433 *ext_set_p = XNEW (arm_feature_set);
26434 **ext_set_p = arm_arch_none;
26435 }
26436
26437 while (str != NULL && *str != 0)
26438 {
26439 const char *ext;
26440 size_t len;
26441
26442 if (*str != '+')
26443 {
26444 as_bad (_("invalid architectural extension"));
26445 return FALSE;
26446 }
26447
26448 str++;
26449 ext = strchr (str, '+');
26450
26451 if (ext != NULL)
26452 len = ext - str;
26453 else
26454 len = strlen (str);
26455
26456 if (len >= 2 && strncmp (str, "no", 2) == 0)
26457 {
26458 if (adding_value != 0)
26459 {
26460 adding_value = 0;
26461 opt = arm_extensions;
26462 }
26463
26464 len -= 2;
26465 str += 2;
26466 }
26467 else if (len > 0)
26468 {
26469 if (adding_value == -1)
26470 {
26471 adding_value = 1;
26472 opt = arm_extensions;
26473 }
26474 else if (adding_value != 1)
26475 {
26476 as_bad (_("must specify extensions to add before specifying "
26477 "those to remove"));
26478 return FALSE;
26479 }
26480 }
26481
26482 if (len == 0)
26483 {
26484 as_bad (_("missing architectural extension"));
26485 return FALSE;
26486 }
26487
26488 gas_assert (adding_value != -1);
26489 gas_assert (opt != NULL);
26490
26491 /* Scan over the options table trying to find an exact match. */
26492 for (; opt->name != NULL; opt++)
26493 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26494 {
26495 int i, nb_allowed_archs =
26496 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26497 /* Check we can apply the extension to this architecture. */
26498 for (i = 0; i < nb_allowed_archs; i++)
26499 {
26500 /* Empty entry. */
26501 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26502 continue;
26503 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
26504 break;
26505 }
26506 if (i == nb_allowed_archs)
26507 {
26508 as_bad (_("extension does not apply to the base architecture"));
26509 return FALSE;
26510 }
26511
26512 /* Add or remove the extension. */
26513 if (adding_value)
26514 ARM_MERGE_FEATURE_SETS (**ext_set_p, **ext_set_p,
26515 opt->merge_value);
26516 else
26517 ARM_CLEAR_FEATURE (**ext_set_p, **ext_set_p, opt->clear_value);
26518
26519 /* Allowing Thumb division instructions for ARMv7 in autodetection
26520 rely on this break so that duplicate extensions (extensions
26521 with the same name as a previous extension in the list) are not
26522 considered for command-line parsing. */
26523 break;
26524 }
26525
26526 if (opt->name == NULL)
26527 {
26528 /* Did we fail to find an extension because it wasn't specified in
26529 alphabetical order, or because it does not exist? */
26530
26531 for (opt = arm_extensions; opt->name != NULL; opt++)
26532 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26533 break;
26534
26535 if (opt->name == NULL)
26536 as_bad (_("unknown architectural extension `%s'"), str);
26537 else
26538 as_bad (_("architectural extensions must be specified in "
26539 "alphabetical order"));
26540
26541 return FALSE;
26542 }
26543 else
26544 {
26545 /* We should skip the extension we've just matched the next time
26546 round. */
26547 opt++;
26548 }
26549
26550 str = ext;
26551 };
26552
26553 return TRUE;
26554 }
26555
26556 static bfd_boolean
26557 arm_parse_cpu (const char *str)
26558 {
26559 const struct arm_cpu_option_table *opt;
26560 const char *ext = strchr (str, '+');
26561 size_t len;
26562
26563 if (ext != NULL)
26564 len = ext - str;
26565 else
26566 len = strlen (str);
26567
26568 if (len == 0)
26569 {
26570 as_bad (_("missing cpu name `%s'"), str);
26571 return FALSE;
26572 }
26573
26574 for (opt = arm_cpus; opt->name != NULL; opt++)
26575 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26576 {
26577 mcpu_cpu_opt = &opt->value;
26578 if (!dyn_mcpu_ext_opt)
26579 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
26580 *dyn_mcpu_ext_opt = opt->ext;
26581 mcpu_fpu_opt = &opt->default_fpu;
26582 if (opt->canonical_name)
26583 {
26584 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
26585 strcpy (selected_cpu_name, opt->canonical_name);
26586 }
26587 else
26588 {
26589 size_t i;
26590
26591 if (len >= sizeof selected_cpu_name)
26592 len = (sizeof selected_cpu_name) - 1;
26593
26594 for (i = 0; i < len; i++)
26595 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26596 selected_cpu_name[i] = 0;
26597 }
26598
26599 if (ext != NULL)
26600 return arm_parse_extension (ext, mcpu_cpu_opt, &dyn_mcpu_ext_opt);
26601
26602 return TRUE;
26603 }
26604
26605 as_bad (_("unknown cpu `%s'"), str);
26606 return FALSE;
26607 }
26608
26609 static bfd_boolean
26610 arm_parse_arch (const char *str)
26611 {
26612 const struct arm_arch_option_table *opt;
26613 const char *ext = strchr (str, '+');
26614 size_t len;
26615
26616 if (ext != NULL)
26617 len = ext - str;
26618 else
26619 len = strlen (str);
26620
26621 if (len == 0)
26622 {
26623 as_bad (_("missing architecture name `%s'"), str);
26624 return FALSE;
26625 }
26626
26627 for (opt = arm_archs; opt->name != NULL; opt++)
26628 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26629 {
26630 march_cpu_opt = &opt->value;
26631 march_fpu_opt = &opt->default_fpu;
26632 strcpy (selected_cpu_name, opt->name);
26633
26634 if (ext != NULL)
26635 return arm_parse_extension (ext, march_cpu_opt, &dyn_march_ext_opt);
26636
26637 return TRUE;
26638 }
26639
26640 as_bad (_("unknown architecture `%s'\n"), str);
26641 return FALSE;
26642 }
26643
26644 static bfd_boolean
26645 arm_parse_fpu (const char * str)
26646 {
26647 const struct arm_option_fpu_value_table * opt;
26648
26649 for (opt = arm_fpus; opt->name != NULL; opt++)
26650 if (streq (opt->name, str))
26651 {
26652 mfpu_opt = &opt->value;
26653 return TRUE;
26654 }
26655
26656 as_bad (_("unknown floating point format `%s'\n"), str);
26657 return FALSE;
26658 }
26659
26660 static bfd_boolean
26661 arm_parse_float_abi (const char * str)
26662 {
26663 const struct arm_option_value_table * opt;
26664
26665 for (opt = arm_float_abis; opt->name != NULL; opt++)
26666 if (streq (opt->name, str))
26667 {
26668 mfloat_abi_opt = opt->value;
26669 return TRUE;
26670 }
26671
26672 as_bad (_("unknown floating point abi `%s'\n"), str);
26673 return FALSE;
26674 }
26675
26676 #ifdef OBJ_ELF
26677 static bfd_boolean
26678 arm_parse_eabi (const char * str)
26679 {
26680 const struct arm_option_value_table *opt;
26681
26682 for (opt = arm_eabis; opt->name != NULL; opt++)
26683 if (streq (opt->name, str))
26684 {
26685 meabi_flags = opt->value;
26686 return TRUE;
26687 }
26688 as_bad (_("unknown EABI `%s'\n"), str);
26689 return FALSE;
26690 }
26691 #endif
26692
26693 static bfd_boolean
26694 arm_parse_it_mode (const char * str)
26695 {
26696 bfd_boolean ret = TRUE;
26697
26698 if (streq ("arm", str))
26699 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
26700 else if (streq ("thumb", str))
26701 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
26702 else if (streq ("always", str))
26703 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
26704 else if (streq ("never", str))
26705 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
26706 else
26707 {
26708 as_bad (_("unknown implicit IT mode `%s', should be "\
26709 "arm, thumb, always, or never."), str);
26710 ret = FALSE;
26711 }
26712
26713 return ret;
26714 }
26715
26716 static bfd_boolean
26717 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
26718 {
26719 codecomposer_syntax = TRUE;
26720 arm_comment_chars[0] = ';';
26721 arm_line_separator_chars[0] = 0;
26722 return TRUE;
26723 }
26724
26725 struct arm_long_option_table arm_long_opts[] =
26726 {
26727 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
26728 arm_parse_cpu, NULL},
26729 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
26730 arm_parse_arch, NULL},
26731 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
26732 arm_parse_fpu, NULL},
26733 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
26734 arm_parse_float_abi, NULL},
26735 #ifdef OBJ_ELF
26736 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
26737 arm_parse_eabi, NULL},
26738 #endif
26739 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
26740 arm_parse_it_mode, NULL},
26741 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
26742 arm_ccs_mode, NULL},
26743 {NULL, NULL, 0, NULL}
26744 };
26745
26746 int
26747 md_parse_option (int c, const char * arg)
26748 {
26749 struct arm_option_table *opt;
26750 const struct arm_legacy_option_table *fopt;
26751 struct arm_long_option_table *lopt;
26752
26753 switch (c)
26754 {
26755 #ifdef OPTION_EB
26756 case OPTION_EB:
26757 target_big_endian = 1;
26758 break;
26759 #endif
26760
26761 #ifdef OPTION_EL
26762 case OPTION_EL:
26763 target_big_endian = 0;
26764 break;
26765 #endif
26766
26767 case OPTION_FIX_V4BX:
26768 fix_v4bx = TRUE;
26769 break;
26770
26771 case 'a':
26772 /* Listing option. Just ignore these, we don't support additional
26773 ones. */
26774 return 0;
26775
26776 default:
26777 for (opt = arm_opts; opt->option != NULL; opt++)
26778 {
26779 if (c == opt->option[0]
26780 && ((arg == NULL && opt->option[1] == 0)
26781 || streq (arg, opt->option + 1)))
26782 {
26783 /* If the option is deprecated, tell the user. */
26784 if (warn_on_deprecated && opt->deprecated != NULL)
26785 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26786 arg ? arg : "", _(opt->deprecated));
26787
26788 if (opt->var != NULL)
26789 *opt->var = opt->value;
26790
26791 return 1;
26792 }
26793 }
26794
26795 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
26796 {
26797 if (c == fopt->option[0]
26798 && ((arg == NULL && fopt->option[1] == 0)
26799 || streq (arg, fopt->option + 1)))
26800 {
26801 /* If the option is deprecated, tell the user. */
26802 if (warn_on_deprecated && fopt->deprecated != NULL)
26803 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26804 arg ? arg : "", _(fopt->deprecated));
26805
26806 if (fopt->var != NULL)
26807 *fopt->var = &fopt->value;
26808
26809 return 1;
26810 }
26811 }
26812
26813 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26814 {
26815 /* These options are expected to have an argument. */
26816 if (c == lopt->option[0]
26817 && arg != NULL
26818 && strncmp (arg, lopt->option + 1,
26819 strlen (lopt->option + 1)) == 0)
26820 {
26821 /* If the option is deprecated, tell the user. */
26822 if (warn_on_deprecated && lopt->deprecated != NULL)
26823 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
26824 _(lopt->deprecated));
26825
26826 /* Call the sup-option parser. */
26827 return lopt->func (arg + strlen (lopt->option) - 1);
26828 }
26829 }
26830
26831 return 0;
26832 }
26833
26834 return 1;
26835 }
26836
26837 void
26838 md_show_usage (FILE * fp)
26839 {
26840 struct arm_option_table *opt;
26841 struct arm_long_option_table *lopt;
26842
26843 fprintf (fp, _(" ARM-specific assembler options:\n"));
26844
26845 for (opt = arm_opts; opt->option != NULL; opt++)
26846 if (opt->help != NULL)
26847 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
26848
26849 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26850 if (lopt->help != NULL)
26851 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
26852
26853 #ifdef OPTION_EB
26854 fprintf (fp, _("\
26855 -EB assemble code for a big-endian cpu\n"));
26856 #endif
26857
26858 #ifdef OPTION_EL
26859 fprintf (fp, _("\
26860 -EL assemble code for a little-endian cpu\n"));
26861 #endif
26862
26863 fprintf (fp, _("\
26864 --fix-v4bx Allow BX in ARMv4 code\n"));
26865 }
26866
26867 #ifdef OBJ_ELF
26868
26869 typedef struct
26870 {
26871 int val;
26872 arm_feature_set flags;
26873 } cpu_arch_ver_table;
26874
26875 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
26876 chronologically for architectures, with an exception for ARMv6-M and
26877 ARMv6S-M due to legacy reasons. No new architecture should have a
26878 special case. This allows for build attribute selection results to be
26879 stable when new architectures are added. */
26880 static const cpu_arch_ver_table cpu_arch_ver[] =
26881 {
26882 {0, ARM_ARCH_V1},
26883 {0, ARM_ARCH_V2},
26884 {0, ARM_ARCH_V2S},
26885 {0, ARM_ARCH_V3},
26886 {0, ARM_ARCH_V3M},
26887 {1, ARM_ARCH_V4xM},
26888 {1, ARM_ARCH_V4},
26889 {2, ARM_ARCH_V4TxM},
26890 {2, ARM_ARCH_V4T},
26891 {3, ARM_ARCH_V5xM},
26892 {3, ARM_ARCH_V5},
26893 {3, ARM_ARCH_V5TxM},
26894 {3, ARM_ARCH_V5T},
26895 {4, ARM_ARCH_V5TExP},
26896 {4, ARM_ARCH_V5TE},
26897 {5, ARM_ARCH_V5TEJ},
26898 {6, ARM_ARCH_V6},
26899 {7, ARM_ARCH_V6Z},
26900 {7, ARM_ARCH_V6KZ},
26901 {9, ARM_ARCH_V6K},
26902 {8, ARM_ARCH_V6T2},
26903 {8, ARM_ARCH_V6KT2},
26904 {8, ARM_ARCH_V6ZT2},
26905 {8, ARM_ARCH_V6KZT2},
26906
26907 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
26908 always selected build attributes to match those of ARMv6-M
26909 (resp. ARMv6S-M). However, due to these architectures being a strict
26910 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
26911 would be selected when fully respecting chronology of architectures.
26912 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
26913 move them before ARMv7 architectures. */
26914 {11, ARM_ARCH_V6M},
26915 {12, ARM_ARCH_V6SM},
26916
26917 {10, ARM_ARCH_V7},
26918 {10, ARM_ARCH_V7A},
26919 {10, ARM_ARCH_V7R},
26920 {10, ARM_ARCH_V7M},
26921 {10, ARM_ARCH_V7VE},
26922 {13, ARM_ARCH_V7EM},
26923 {14, ARM_ARCH_V8A},
26924 {14, ARM_ARCH_V8_1A},
26925 {14, ARM_ARCH_V8_2A},
26926 {14, ARM_ARCH_V8_3A},
26927 {16, ARM_ARCH_V8M_BASE},
26928 {17, ARM_ARCH_V8M_MAIN},
26929 {15, ARM_ARCH_V8R},
26930 {16, ARM_ARCH_V8_4A},
26931 {-1, ARM_ARCH_NONE}
26932 };
26933
26934 /* Set an attribute if it has not already been set by the user. */
26935
26936 static void
26937 aeabi_set_attribute_int (int tag, int value)
26938 {
26939 if (tag < 1
26940 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26941 || !attributes_set_explicitly[tag])
26942 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
26943 }
26944
26945 static void
26946 aeabi_set_attribute_string (int tag, const char *value)
26947 {
26948 if (tag < 1
26949 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26950 || !attributes_set_explicitly[tag])
26951 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
26952 }
26953
26954 /* Return whether features in the *NEEDED feature set are available via
26955 extensions for the architecture whose feature set is *ARCH_FSET. */
26956
26957 static bfd_boolean
26958 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
26959 const arm_feature_set *needed)
26960 {
26961 int i, nb_allowed_archs;
26962 arm_feature_set ext_fset;
26963 const struct arm_option_extension_value_table *opt;
26964
26965 ext_fset = arm_arch_none;
26966 for (opt = arm_extensions; opt->name != NULL; opt++)
26967 {
26968 /* Extension does not provide any feature we need. */
26969 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
26970 continue;
26971
26972 nb_allowed_archs =
26973 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26974 for (i = 0; i < nb_allowed_archs; i++)
26975 {
26976 /* Empty entry. */
26977 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
26978 break;
26979
26980 /* Extension is available, add it. */
26981 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
26982 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
26983 }
26984 }
26985
26986 /* Can we enable all features in *needed? */
26987 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
26988 }
26989
26990 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
26991 a given architecture feature set *ARCH_EXT_FSET including extension feature
26992 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
26993 - if true, check for an exact match of the architecture modulo extensions;
26994 - otherwise, select build attribute value of the first superset
26995 architecture released so that results remains stable when new architectures
26996 are added.
26997 For -march/-mcpu=all the build attribute value of the most featureful
26998 architecture is returned. Tag_CPU_arch_profile result is returned in
26999 PROFILE. */
27000
27001 static int
27002 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27003 const arm_feature_set *ext_fset,
27004 char *profile, int exact_match)
27005 {
27006 arm_feature_set arch_fset;
27007 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27008
27009 /* Select most featureful architecture with all its extensions if building
27010 for -march=all as the feature sets used to set build attributes. */
27011 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27012 {
27013 /* Force revisiting of decision for each new architecture. */
27014 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8M_MAIN);
27015 *profile = 'A';
27016 return TAG_CPU_ARCH_V8;
27017 }
27018
27019 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27020
27021 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27022 {
27023 arm_feature_set known_arch_fset;
27024
27025 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27026 if (exact_match)
27027 {
27028 /* Base architecture match user-specified architecture and
27029 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27030 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27031 {
27032 p_ver_ret = p_ver;
27033 goto found;
27034 }
27035 /* Base architecture match user-specified architecture only
27036 (eg. ARMv6-M in the same case as above). Record it in case we
27037 find a match with above condition. */
27038 else if (p_ver_ret == NULL
27039 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27040 p_ver_ret = p_ver;
27041 }
27042 else
27043 {
27044
27045 /* Architecture has all features wanted. */
27046 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27047 {
27048 arm_feature_set added_fset;
27049
27050 /* Compute features added by this architecture over the one
27051 recorded in p_ver_ret. */
27052 if (p_ver_ret != NULL)
27053 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27054 p_ver_ret->flags);
27055 /* First architecture that match incl. with extensions, or the
27056 only difference in features over the recorded match is
27057 features that were optional and are now mandatory. */
27058 if (p_ver_ret == NULL
27059 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27060 {
27061 p_ver_ret = p_ver;
27062 goto found;
27063 }
27064 }
27065 else if (p_ver_ret == NULL)
27066 {
27067 arm_feature_set needed_ext_fset;
27068
27069 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27070
27071 /* Architecture has all features needed when using some
27072 extensions. Record it and continue searching in case there
27073 exist an architecture providing all needed features without
27074 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27075 OS extension). */
27076 if (have_ext_for_needed_feat_p (&known_arch_fset,
27077 &needed_ext_fset))
27078 p_ver_ret = p_ver;
27079 }
27080 }
27081 }
27082
27083 if (p_ver_ret == NULL)
27084 return -1;
27085
27086 found:
27087 /* Tag_CPU_arch_profile. */
27088 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27089 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27090 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27091 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27092 *profile = 'A';
27093 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27094 *profile = 'R';
27095 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27096 *profile = 'M';
27097 else
27098 *profile = '\0';
27099 return p_ver_ret->val;
27100 }
27101
27102 /* Set the public EABI object attributes. */
27103
27104 static void
27105 aeabi_set_public_attributes (void)
27106 {
27107 char profile;
27108 int arch = -1;
27109 int virt_sec = 0;
27110 int fp16_optional = 0;
27111 int skip_exact_match = 0;
27112 arm_feature_set flags, flags_arch, flags_ext;
27113
27114 /* Autodetection mode, choose the architecture based the instructions
27115 actually used. */
27116 if (no_cpu_selected ())
27117 {
27118 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
27119
27120 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27121 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
27122
27123 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27124 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
27125
27126 /* Code run during relaxation relies on selected_cpu being set. */
27127 selected_cpu = flags;
27128 }
27129 /* Otherwise, choose the architecture based on the capabilities of the
27130 requested cpu. */
27131 else
27132 flags = selected_cpu;
27133 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
27134
27135 /* Allow the user to override the reported architecture. */
27136 if (object_arch)
27137 {
27138 ARM_CLEAR_FEATURE (flags_arch, *object_arch, fpu_any);
27139 flags_ext = arm_arch_none;
27140 }
27141 else
27142 {
27143 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27144 flags_ext = dyn_mcpu_ext_opt ? *dyn_mcpu_ext_opt : arm_arch_none;
27145 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
27146 }
27147
27148 /* When this function is run again after relaxation has happened there is no
27149 way to determine whether an architecture or CPU was specified by the user:
27150 - selected_cpu is set above for relaxation to work;
27151 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27152 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27153 Therefore, if not in -march=all case we first try an exact match and fall
27154 back to autodetection. */
27155 if (!skip_exact_match)
27156 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27157 if (arch == -1)
27158 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27159 if (arch == -1)
27160 as_bad (_("no architecture contains all the instructions used\n"));
27161
27162 /* Tag_CPU_name. */
27163 if (selected_cpu_name[0])
27164 {
27165 char *q;
27166
27167 q = selected_cpu_name;
27168 if (strncmp (q, "armv", 4) == 0)
27169 {
27170 int i;
27171
27172 q += 4;
27173 for (i = 0; q[i]; i++)
27174 q[i] = TOUPPER (q[i]);
27175 }
27176 aeabi_set_attribute_string (Tag_CPU_name, q);
27177 }
27178
27179 /* Tag_CPU_arch. */
27180 aeabi_set_attribute_int (Tag_CPU_arch, arch);
27181
27182 /* Tag_CPU_arch_profile. */
27183 if (profile != '\0')
27184 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
27185
27186 /* Tag_DSP_extension. */
27187 if (dyn_mcpu_ext_opt && ARM_CPU_HAS_FEATURE (*dyn_mcpu_ext_opt, arm_ext_dsp))
27188 aeabi_set_attribute_int (Tag_DSP_extension, 1);
27189
27190 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27191 /* Tag_ARM_ISA_use. */
27192 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
27193 || ARM_FEATURE_ZERO (flags_arch))
27194 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
27195
27196 /* Tag_THUMB_ISA_use. */
27197 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
27198 || ARM_FEATURE_ZERO (flags_arch))
27199 {
27200 int thumb_isa_use;
27201
27202 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27203 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
27204 thumb_isa_use = 3;
27205 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27206 thumb_isa_use = 2;
27207 else
27208 thumb_isa_use = 1;
27209 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27210 }
27211
27212 /* Tag_VFP_arch. */
27213 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27214 aeabi_set_attribute_int (Tag_VFP_arch,
27215 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27216 ? 7 : 8);
27217 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
27218 aeabi_set_attribute_int (Tag_VFP_arch,
27219 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27220 ? 5 : 6);
27221 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
27222 {
27223 fp16_optional = 1;
27224 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27225 }
27226 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
27227 {
27228 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27229 fp16_optional = 1;
27230 }
27231 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27232 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27233 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
27234 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
27235 aeabi_set_attribute_int (Tag_VFP_arch, 1);
27236
27237 /* Tag_ABI_HardFP_use. */
27238 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27239 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27240 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27241
27242 /* Tag_WMMX_arch. */
27243 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27244 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27245 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27246 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
27247
27248 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
27249 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27250 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27251 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
27252 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27253 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27254 {
27255 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27256 {
27257 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27258 }
27259 else
27260 {
27261 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27262 fp16_optional = 1;
27263 }
27264 }
27265
27266 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
27267 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
27268 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
27269
27270 /* Tag_DIV_use.
27271
27272 We set Tag_DIV_use to two when integer divide instructions have been used
27273 in ARM state, or when Thumb integer divide instructions have been used,
27274 but we have no architecture profile set, nor have we any ARM instructions.
27275
27276 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27277 by the base architecture.
27278
27279 For new architectures we will have to check these tests. */
27280 gas_assert (arch <= TAG_CPU_ARCH_V8M_MAIN);
27281 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27282 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
27283 aeabi_set_attribute_int (Tag_DIV_use, 0);
27284 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27285 || (profile == '\0'
27286 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27287 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
27288 aeabi_set_attribute_int (Tag_DIV_use, 2);
27289
27290 /* Tag_MP_extension_use. */
27291 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27292 aeabi_set_attribute_int (Tag_MPextension_use, 1);
27293
27294 /* Tag Virtualization_use. */
27295 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
27296 virt_sec |= 1;
27297 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27298 virt_sec |= 2;
27299 if (virt_sec != 0)
27300 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
27301 }
27302
27303 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
27304 finished and free extension feature bits which will not be used anymore. */
27305
27306 void
27307 arm_md_post_relax (void)
27308 {
27309 aeabi_set_public_attributes ();
27310 XDELETE (dyn_mcpu_ext_opt);
27311 dyn_mcpu_ext_opt = NULL;
27312 XDELETE (dyn_march_ext_opt);
27313 dyn_march_ext_opt = NULL;
27314 }
27315
27316 /* Add the default contents for the .ARM.attributes section. */
27317
27318 void
27319 arm_md_end (void)
27320 {
27321 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27322 return;
27323
27324 aeabi_set_public_attributes ();
27325 }
27326 #endif /* OBJ_ELF */
27327
27328 /* Parse a .cpu directive. */
27329
27330 static void
27331 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27332 {
27333 const struct arm_cpu_option_table *opt;
27334 char *name;
27335 char saved_char;
27336
27337 name = input_line_pointer;
27338 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27339 input_line_pointer++;
27340 saved_char = *input_line_pointer;
27341 *input_line_pointer = 0;
27342
27343 /* Skip the first "all" entry. */
27344 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27345 if (streq (opt->name, name))
27346 {
27347 mcpu_cpu_opt = &opt->value;
27348 if (!dyn_mcpu_ext_opt)
27349 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27350 *dyn_mcpu_ext_opt = opt->ext;
27351 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27352 if (opt->canonical_name)
27353 strcpy (selected_cpu_name, opt->canonical_name);
27354 else
27355 {
27356 int i;
27357 for (i = 0; opt->name[i]; i++)
27358 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27359
27360 selected_cpu_name[i] = 0;
27361 }
27362 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
27363 if (dyn_mcpu_ext_opt)
27364 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
27365 *input_line_pointer = saved_char;
27366 demand_empty_rest_of_line ();
27367 return;
27368 }
27369 as_bad (_("unknown cpu `%s'"), name);
27370 *input_line_pointer = saved_char;
27371 ignore_rest_of_line ();
27372 }
27373
27374 /* Parse a .arch directive. */
27375
27376 static void
27377 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27378 {
27379 const struct arm_arch_option_table *opt;
27380 char saved_char;
27381 char *name;
27382
27383 name = input_line_pointer;
27384 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27385 input_line_pointer++;
27386 saved_char = *input_line_pointer;
27387 *input_line_pointer = 0;
27388
27389 /* Skip the first "all" entry. */
27390 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27391 if (streq (opt->name, name))
27392 {
27393 mcpu_cpu_opt = &opt->value;
27394 XDELETE (dyn_mcpu_ext_opt);
27395 dyn_mcpu_ext_opt = NULL;
27396 selected_cpu = *mcpu_cpu_opt;
27397 strcpy (selected_cpu_name, opt->name);
27398 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
27399 *input_line_pointer = saved_char;
27400 demand_empty_rest_of_line ();
27401 return;
27402 }
27403
27404 as_bad (_("unknown architecture `%s'\n"), name);
27405 *input_line_pointer = saved_char;
27406 ignore_rest_of_line ();
27407 }
27408
27409 /* Parse a .object_arch directive. */
27410
27411 static void
27412 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27413 {
27414 const struct arm_arch_option_table *opt;
27415 char saved_char;
27416 char *name;
27417
27418 name = input_line_pointer;
27419 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27420 input_line_pointer++;
27421 saved_char = *input_line_pointer;
27422 *input_line_pointer = 0;
27423
27424 /* Skip the first "all" entry. */
27425 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27426 if (streq (opt->name, name))
27427 {
27428 object_arch = &opt->value;
27429 *input_line_pointer = saved_char;
27430 demand_empty_rest_of_line ();
27431 return;
27432 }
27433
27434 as_bad (_("unknown architecture `%s'\n"), name);
27435 *input_line_pointer = saved_char;
27436 ignore_rest_of_line ();
27437 }
27438
27439 /* Parse a .arch_extension directive. */
27440
27441 static void
27442 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27443 {
27444 const struct arm_option_extension_value_table *opt;
27445 const arm_feature_set arm_any = ARM_ANY;
27446 char saved_char;
27447 char *name;
27448 int adding_value = 1;
27449
27450 name = input_line_pointer;
27451 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27452 input_line_pointer++;
27453 saved_char = *input_line_pointer;
27454 *input_line_pointer = 0;
27455
27456 if (strlen (name) >= 2
27457 && strncmp (name, "no", 2) == 0)
27458 {
27459 adding_value = 0;
27460 name += 2;
27461 }
27462
27463 for (opt = arm_extensions; opt->name != NULL; opt++)
27464 if (streq (opt->name, name))
27465 {
27466 int i, nb_allowed_archs =
27467 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27468 for (i = 0; i < nb_allowed_archs; i++)
27469 {
27470 /* Empty entry. */
27471 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27472 continue;
27473 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *mcpu_cpu_opt))
27474 break;
27475 }
27476
27477 if (i == nb_allowed_archs)
27478 {
27479 as_bad (_("architectural extension `%s' is not allowed for the "
27480 "current base architecture"), name);
27481 break;
27482 }
27483
27484 if (!dyn_mcpu_ext_opt)
27485 {
27486 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27487 *dyn_mcpu_ext_opt = arm_arch_none;
27488 }
27489 if (adding_value)
27490 ARM_MERGE_FEATURE_SETS (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27491 opt->merge_value);
27492 else
27493 ARM_CLEAR_FEATURE (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27494 opt->clear_value);
27495
27496 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27497 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
27498 *input_line_pointer = saved_char;
27499 demand_empty_rest_of_line ();
27500 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
27501 on this return so that duplicate extensions (extensions with the
27502 same name as a previous extension in the list) are not considered
27503 for command-line parsing. */
27504 return;
27505 }
27506
27507 if (opt->name == NULL)
27508 as_bad (_("unknown architecture extension `%s'\n"), name);
27509
27510 *input_line_pointer = saved_char;
27511 ignore_rest_of_line ();
27512 }
27513
27514 /* Parse a .fpu directive. */
27515
27516 static void
27517 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
27518 {
27519 const struct arm_option_fpu_value_table *opt;
27520 char saved_char;
27521 char *name;
27522
27523 name = input_line_pointer;
27524 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27525 input_line_pointer++;
27526 saved_char = *input_line_pointer;
27527 *input_line_pointer = 0;
27528
27529 for (opt = arm_fpus; opt->name != NULL; opt++)
27530 if (streq (opt->name, name))
27531 {
27532 mfpu_opt = &opt->value;
27533 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
27534 if (dyn_mcpu_ext_opt)
27535 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
27536 *input_line_pointer = saved_char;
27537 demand_empty_rest_of_line ();
27538 return;
27539 }
27540
27541 as_bad (_("unknown floating point format `%s'\n"), name);
27542 *input_line_pointer = saved_char;
27543 ignore_rest_of_line ();
27544 }
27545
27546 /* Copy symbol information. */
27547
27548 void
27549 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
27550 {
27551 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
27552 }
27553
27554 #ifdef OBJ_ELF
27555 /* Given a symbolic attribute NAME, return the proper integer value.
27556 Returns -1 if the attribute is not known. */
27557
27558 int
27559 arm_convert_symbolic_attribute (const char *name)
27560 {
27561 static const struct
27562 {
27563 const char * name;
27564 const int tag;
27565 }
27566 attribute_table[] =
27567 {
27568 /* When you modify this table you should
27569 also modify the list in doc/c-arm.texi. */
27570 #define T(tag) {#tag, tag}
27571 T (Tag_CPU_raw_name),
27572 T (Tag_CPU_name),
27573 T (Tag_CPU_arch),
27574 T (Tag_CPU_arch_profile),
27575 T (Tag_ARM_ISA_use),
27576 T (Tag_THUMB_ISA_use),
27577 T (Tag_FP_arch),
27578 T (Tag_VFP_arch),
27579 T (Tag_WMMX_arch),
27580 T (Tag_Advanced_SIMD_arch),
27581 T (Tag_PCS_config),
27582 T (Tag_ABI_PCS_R9_use),
27583 T (Tag_ABI_PCS_RW_data),
27584 T (Tag_ABI_PCS_RO_data),
27585 T (Tag_ABI_PCS_GOT_use),
27586 T (Tag_ABI_PCS_wchar_t),
27587 T (Tag_ABI_FP_rounding),
27588 T (Tag_ABI_FP_denormal),
27589 T (Tag_ABI_FP_exceptions),
27590 T (Tag_ABI_FP_user_exceptions),
27591 T (Tag_ABI_FP_number_model),
27592 T (Tag_ABI_align_needed),
27593 T (Tag_ABI_align8_needed),
27594 T (Tag_ABI_align_preserved),
27595 T (Tag_ABI_align8_preserved),
27596 T (Tag_ABI_enum_size),
27597 T (Tag_ABI_HardFP_use),
27598 T (Tag_ABI_VFP_args),
27599 T (Tag_ABI_WMMX_args),
27600 T (Tag_ABI_optimization_goals),
27601 T (Tag_ABI_FP_optimization_goals),
27602 T (Tag_compatibility),
27603 T (Tag_CPU_unaligned_access),
27604 T (Tag_FP_HP_extension),
27605 T (Tag_VFP_HP_extension),
27606 T (Tag_ABI_FP_16bit_format),
27607 T (Tag_MPextension_use),
27608 T (Tag_DIV_use),
27609 T (Tag_nodefaults),
27610 T (Tag_also_compatible_with),
27611 T (Tag_conformance),
27612 T (Tag_T2EE_use),
27613 T (Tag_Virtualization_use),
27614 T (Tag_DSP_extension),
27615 /* We deliberately do not include Tag_MPextension_use_legacy. */
27616 #undef T
27617 };
27618 unsigned int i;
27619
27620 if (name == NULL)
27621 return -1;
27622
27623 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
27624 if (streq (name, attribute_table[i].name))
27625 return attribute_table[i].tag;
27626
27627 return -1;
27628 }
27629
27630 /* Apply sym value for relocations only in the case that they are for
27631 local symbols in the same segment as the fixup and you have the
27632 respective architectural feature for blx and simple switches. */
27633
27634 int
27635 arm_apply_sym_value (struct fix * fixP, segT this_seg)
27636 {
27637 if (fixP->fx_addsy
27638 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27639 /* PR 17444: If the local symbol is in a different section then a reloc
27640 will always be generated for it, so applying the symbol value now
27641 will result in a double offset being stored in the relocation. */
27642 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
27643 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
27644 {
27645 switch (fixP->fx_r_type)
27646 {
27647 case BFD_RELOC_ARM_PCREL_BLX:
27648 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27649 if (ARM_IS_FUNC (fixP->fx_addsy))
27650 return 1;
27651 break;
27652
27653 case BFD_RELOC_ARM_PCREL_CALL:
27654 case BFD_RELOC_THUMB_PCREL_BLX:
27655 if (THUMB_IS_FUNC (fixP->fx_addsy))
27656 return 1;
27657 break;
27658
27659 default:
27660 break;
27661 }
27662
27663 }
27664 return 0;
27665 }
27666 #endif /* OBJ_ELF */
This page took 0.950461 seconds and 5 git commands to generate.