Adds the speculation barrier instructions to the ARM assembler and disassembler.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2018 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 static const arm_feature_set arm_ext_v6_notm =
208 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
209 static const arm_feature_set arm_ext_v6_dsp =
210 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
211 static const arm_feature_set arm_ext_barrier =
212 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
213 static const arm_feature_set arm_ext_msr =
214 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
215 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
216 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
217 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
218 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
219 #ifdef OBJ_ELF
220 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
221 #endif
222 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
223 static const arm_feature_set arm_ext_m =
224 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
225 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
226 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
227 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
228 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
229 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
230 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
231 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
232 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
233 static const arm_feature_set arm_ext_v8m_main =
234 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
235 /* Instructions in ARMv8-M only found in M profile architectures. */
236 static const arm_feature_set arm_ext_v8m_m_only =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v6t2_v8m =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
240 /* Instructions shared between ARMv8-A and ARMv8-M. */
241 static const arm_feature_set arm_ext_atomics =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
243 #ifdef OBJ_ELF
244 /* DSP instructions Tag_DSP_extension refers to. */
245 static const arm_feature_set arm_ext_dsp =
246 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
247 #endif
248 static const arm_feature_set arm_ext_ras =
249 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
250 /* FP16 instructions. */
251 static const arm_feature_set arm_ext_fp16 =
252 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
253 static const arm_feature_set arm_ext_fp16_fml =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
255 static const arm_feature_set arm_ext_v8_2 =
256 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
257 static const arm_feature_set arm_ext_v8_3 =
258 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
259
260 static const arm_feature_set arm_arch_any = ARM_ANY;
261 #ifdef OBJ_ELF
262 static const arm_feature_set fpu_any = FPU_ANY;
263 #endif
264 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
265 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
266 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
267
268 static const arm_feature_set arm_cext_iwmmxt2 =
269 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
270 static const arm_feature_set arm_cext_iwmmxt =
271 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
272 static const arm_feature_set arm_cext_xscale =
273 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
274 static const arm_feature_set arm_cext_maverick =
275 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
276 static const arm_feature_set fpu_fpa_ext_v1 =
277 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
278 static const arm_feature_set fpu_fpa_ext_v2 =
279 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
280 static const arm_feature_set fpu_vfp_ext_v1xd =
281 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
282 static const arm_feature_set fpu_vfp_ext_v1 =
283 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
284 static const arm_feature_set fpu_vfp_ext_v2 =
285 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
286 static const arm_feature_set fpu_vfp_ext_v3xd =
287 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
288 static const arm_feature_set fpu_vfp_ext_v3 =
289 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
290 static const arm_feature_set fpu_vfp_ext_d32 =
291 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
292 static const arm_feature_set fpu_neon_ext_v1 =
293 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
294 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
295 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
296 #ifdef OBJ_ELF
297 static const arm_feature_set fpu_vfp_fp16 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
299 static const arm_feature_set fpu_neon_ext_fma =
300 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
301 #endif
302 static const arm_feature_set fpu_vfp_ext_fma =
303 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
304 static const arm_feature_set fpu_vfp_ext_armv8 =
305 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
306 static const arm_feature_set fpu_vfp_ext_armv8xd =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
308 static const arm_feature_set fpu_neon_ext_armv8 =
309 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
310 static const arm_feature_set fpu_crypto_ext_armv8 =
311 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
312 static const arm_feature_set crc_ext_armv8 =
313 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
314 static const arm_feature_set fpu_neon_ext_v8_1 =
315 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
316 static const arm_feature_set fpu_neon_ext_dotprod =
317 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
318
319 static int mfloat_abi_opt = -1;
320 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
321 directive. */
322 static arm_feature_set selected_arch = ARM_ARCH_NONE;
323 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
324 directive. */
325 static arm_feature_set selected_ext = ARM_ARCH_NONE;
326 /* Feature bits selected by the last -mcpu/-march or by the combination of the
327 last .cpu/.arch directive .arch_extension directives since that
328 directive. */
329 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
330 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
331 static arm_feature_set selected_fpu = FPU_NONE;
332 /* Feature bits selected by the last .object_arch directive. */
333 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
334 /* Must be long enough to hold any of the names in arm_cpus. */
335 static char selected_cpu_name[20];
336
337 extern FLONUM_TYPE generic_floating_point_number;
338
339 /* Return if no cpu was selected on command-line. */
340 static bfd_boolean
341 no_cpu_selected (void)
342 {
343 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
344 }
345
346 #ifdef OBJ_ELF
347 # ifdef EABI_DEFAULT
348 static int meabi_flags = EABI_DEFAULT;
349 # else
350 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
351 # endif
352
353 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
354
355 bfd_boolean
356 arm_is_eabi (void)
357 {
358 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
359 }
360 #endif
361
362 #ifdef OBJ_ELF
363 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
364 symbolS * GOT_symbol;
365 #endif
366
367 /* 0: assemble for ARM,
368 1: assemble for Thumb,
369 2: assemble for Thumb even though target CPU does not support thumb
370 instructions. */
371 static int thumb_mode = 0;
372 /* A value distinct from the possible values for thumb_mode that we
373 can use to record whether thumb_mode has been copied into the
374 tc_frag_data field of a frag. */
375 #define MODE_RECORDED (1 << 4)
376
377 /* Specifies the intrinsic IT insn behavior mode. */
378 enum implicit_it_mode
379 {
380 IMPLICIT_IT_MODE_NEVER = 0x00,
381 IMPLICIT_IT_MODE_ARM = 0x01,
382 IMPLICIT_IT_MODE_THUMB = 0x02,
383 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
384 };
385 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
386
387 /* If unified_syntax is true, we are processing the new unified
388 ARM/Thumb syntax. Important differences from the old ARM mode:
389
390 - Immediate operands do not require a # prefix.
391 - Conditional affixes always appear at the end of the
392 instruction. (For backward compatibility, those instructions
393 that formerly had them in the middle, continue to accept them
394 there.)
395 - The IT instruction may appear, and if it does is validated
396 against subsequent conditional affixes. It does not generate
397 machine code.
398
399 Important differences from the old Thumb mode:
400
401 - Immediate operands do not require a # prefix.
402 - Most of the V6T2 instructions are only available in unified mode.
403 - The .N and .W suffixes are recognized and honored (it is an error
404 if they cannot be honored).
405 - All instructions set the flags if and only if they have an 's' affix.
406 - Conditional affixes may be used. They are validated against
407 preceding IT instructions. Unlike ARM mode, you cannot use a
408 conditional affix except in the scope of an IT instruction. */
409
410 static bfd_boolean unified_syntax = FALSE;
411
412 /* An immediate operand can start with #, and ld*, st*, pld operands
413 can contain [ and ]. We need to tell APP not to elide whitespace
414 before a [, which can appear as the first operand for pld.
415 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
416 const char arm_symbol_chars[] = "#[]{}";
417
418 enum neon_el_type
419 {
420 NT_invtype,
421 NT_untyped,
422 NT_integer,
423 NT_float,
424 NT_poly,
425 NT_signed,
426 NT_unsigned
427 };
428
429 struct neon_type_el
430 {
431 enum neon_el_type type;
432 unsigned size;
433 };
434
435 #define NEON_MAX_TYPE_ELS 4
436
437 struct neon_type
438 {
439 struct neon_type_el el[NEON_MAX_TYPE_ELS];
440 unsigned elems;
441 };
442
443 enum it_instruction_type
444 {
445 OUTSIDE_IT_INSN,
446 INSIDE_IT_INSN,
447 INSIDE_IT_LAST_INSN,
448 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
449 if inside, should be the last one. */
450 NEUTRAL_IT_INSN, /* This could be either inside or outside,
451 i.e. BKPT and NOP. */
452 IT_INSN /* The IT insn has been parsed. */
453 };
454
455 /* The maximum number of operands we need. */
456 #define ARM_IT_MAX_OPERANDS 6
457
458 struct arm_it
459 {
460 const char * error;
461 unsigned long instruction;
462 int size;
463 int size_req;
464 int cond;
465 /* "uncond_value" is set to the value in place of the conditional field in
466 unconditional versions of the instruction, or -1 if nothing is
467 appropriate. */
468 int uncond_value;
469 struct neon_type vectype;
470 /* This does not indicate an actual NEON instruction, only that
471 the mnemonic accepts neon-style type suffixes. */
472 int is_neon;
473 /* Set to the opcode if the instruction needs relaxation.
474 Zero if the instruction is not relaxed. */
475 unsigned long relax;
476 struct
477 {
478 bfd_reloc_code_real_type type;
479 expressionS exp;
480 int pc_rel;
481 } reloc;
482
483 enum it_instruction_type it_insn_type;
484
485 struct
486 {
487 unsigned reg;
488 signed int imm;
489 struct neon_type_el vectype;
490 unsigned present : 1; /* Operand present. */
491 unsigned isreg : 1; /* Operand was a register. */
492 unsigned immisreg : 1; /* .imm field is a second register. */
493 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
494 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
495 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
496 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
497 instructions. This allows us to disambiguate ARM <-> vector insns. */
498 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
499 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
500 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
501 unsigned issingle : 1; /* Operand is VFP single-precision register. */
502 unsigned hasreloc : 1; /* Operand has relocation suffix. */
503 unsigned writeback : 1; /* Operand has trailing ! */
504 unsigned preind : 1; /* Preindexed address. */
505 unsigned postind : 1; /* Postindexed address. */
506 unsigned negative : 1; /* Index register was negated. */
507 unsigned shifted : 1; /* Shift applied to operation. */
508 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
509 } operands[ARM_IT_MAX_OPERANDS];
510 };
511
512 static struct arm_it inst;
513
514 #define NUM_FLOAT_VALS 8
515
516 const char * fp_const[] =
517 {
518 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
519 };
520
521 /* Number of littlenums required to hold an extended precision number. */
522 #define MAX_LITTLENUMS 6
523
524 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
525
526 #define FAIL (-1)
527 #define SUCCESS (0)
528
529 #define SUFF_S 1
530 #define SUFF_D 2
531 #define SUFF_E 3
532 #define SUFF_P 4
533
534 #define CP_T_X 0x00008000
535 #define CP_T_Y 0x00400000
536
537 #define CONDS_BIT 0x00100000
538 #define LOAD_BIT 0x00100000
539
540 #define DOUBLE_LOAD_FLAG 0x00000001
541
542 struct asm_cond
543 {
544 const char * template_name;
545 unsigned long value;
546 };
547
548 #define COND_ALWAYS 0xE
549
550 struct asm_psr
551 {
552 const char * template_name;
553 unsigned long field;
554 };
555
556 struct asm_barrier_opt
557 {
558 const char * template_name;
559 unsigned long value;
560 const arm_feature_set arch;
561 };
562
563 /* The bit that distinguishes CPSR and SPSR. */
564 #define SPSR_BIT (1 << 22)
565
566 /* The individual PSR flag bits. */
567 #define PSR_c (1 << 16)
568 #define PSR_x (1 << 17)
569 #define PSR_s (1 << 18)
570 #define PSR_f (1 << 19)
571
572 struct reloc_entry
573 {
574 const char * name;
575 bfd_reloc_code_real_type reloc;
576 };
577
578 enum vfp_reg_pos
579 {
580 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
581 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
582 };
583
584 enum vfp_ldstm_type
585 {
586 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
587 };
588
589 /* Bits for DEFINED field in neon_typed_alias. */
590 #define NTA_HASTYPE 1
591 #define NTA_HASINDEX 2
592
593 struct neon_typed_alias
594 {
595 unsigned char defined;
596 unsigned char index;
597 struct neon_type_el eltype;
598 };
599
600 /* ARM register categories. This includes coprocessor numbers and various
601 architecture extensions' registers. Each entry should have an error message
602 in reg_expected_msgs below. */
603 enum arm_reg_type
604 {
605 REG_TYPE_RN,
606 REG_TYPE_CP,
607 REG_TYPE_CN,
608 REG_TYPE_FN,
609 REG_TYPE_VFS,
610 REG_TYPE_VFD,
611 REG_TYPE_NQ,
612 REG_TYPE_VFSD,
613 REG_TYPE_NDQ,
614 REG_TYPE_NSD,
615 REG_TYPE_NSDQ,
616 REG_TYPE_VFC,
617 REG_TYPE_MVF,
618 REG_TYPE_MVD,
619 REG_TYPE_MVFX,
620 REG_TYPE_MVDX,
621 REG_TYPE_MVAX,
622 REG_TYPE_DSPSC,
623 REG_TYPE_MMXWR,
624 REG_TYPE_MMXWC,
625 REG_TYPE_MMXWCG,
626 REG_TYPE_XSCALE,
627 REG_TYPE_RNB
628 };
629
630 /* Structure for a hash table entry for a register.
631 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
632 information which states whether a vector type or index is specified (for a
633 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
634 struct reg_entry
635 {
636 const char * name;
637 unsigned int number;
638 unsigned char type;
639 unsigned char builtin;
640 struct neon_typed_alias * neon;
641 };
642
643 /* Diagnostics used when we don't get a register of the expected type. */
644 const char * const reg_expected_msgs[] =
645 {
646 [REG_TYPE_RN] = N_("ARM register expected"),
647 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
648 [REG_TYPE_CN] = N_("co-processor register expected"),
649 [REG_TYPE_FN] = N_("FPA register expected"),
650 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
651 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
652 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
653 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
654 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
655 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
656 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
657 " expected"),
658 [REG_TYPE_VFC] = N_("VFP system register expected"),
659 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
660 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
661 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
662 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
663 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
664 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
665 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
666 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
667 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
668 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
669 [REG_TYPE_RNB] = N_("")
670 };
671
672 /* Some well known registers that we refer to directly elsewhere. */
673 #define REG_R12 12
674 #define REG_SP 13
675 #define REG_LR 14
676 #define REG_PC 15
677
678 /* ARM instructions take 4bytes in the object file, Thumb instructions
679 take 2: */
680 #define INSN_SIZE 4
681
682 struct asm_opcode
683 {
684 /* Basic string to match. */
685 const char * template_name;
686
687 /* Parameters to instruction. */
688 unsigned int operands[8];
689
690 /* Conditional tag - see opcode_lookup. */
691 unsigned int tag : 4;
692
693 /* Basic instruction code. */
694 unsigned int avalue : 28;
695
696 /* Thumb-format instruction code. */
697 unsigned int tvalue;
698
699 /* Which architecture variant provides this instruction. */
700 const arm_feature_set * avariant;
701 const arm_feature_set * tvariant;
702
703 /* Function to call to encode instruction in ARM format. */
704 void (* aencode) (void);
705
706 /* Function to call to encode instruction in Thumb format. */
707 void (* tencode) (void);
708 };
709
710 /* Defines for various bits that we will want to toggle. */
711 #define INST_IMMEDIATE 0x02000000
712 #define OFFSET_REG 0x02000000
713 #define HWOFFSET_IMM 0x00400000
714 #define SHIFT_BY_REG 0x00000010
715 #define PRE_INDEX 0x01000000
716 #define INDEX_UP 0x00800000
717 #define WRITE_BACK 0x00200000
718 #define LDM_TYPE_2_OR_3 0x00400000
719 #define CPSI_MMOD 0x00020000
720
721 #define LITERAL_MASK 0xf000f000
722 #define OPCODE_MASK 0xfe1fffff
723 #define V4_STR_BIT 0x00000020
724 #define VLDR_VMOV_SAME 0x0040f000
725
726 #define T2_SUBS_PC_LR 0xf3de8f00
727
728 #define DATA_OP_SHIFT 21
729 #define SBIT_SHIFT 20
730
731 #define T2_OPCODE_MASK 0xfe1fffff
732 #define T2_DATA_OP_SHIFT 21
733 #define T2_SBIT_SHIFT 20
734
735 #define A_COND_MASK 0xf0000000
736 #define A_PUSH_POP_OP_MASK 0x0fff0000
737
738 /* Opcodes for pushing/poping registers to/from the stack. */
739 #define A1_OPCODE_PUSH 0x092d0000
740 #define A2_OPCODE_PUSH 0x052d0004
741 #define A2_OPCODE_POP 0x049d0004
742
743 /* Codes to distinguish the arithmetic instructions. */
744 #define OPCODE_AND 0
745 #define OPCODE_EOR 1
746 #define OPCODE_SUB 2
747 #define OPCODE_RSB 3
748 #define OPCODE_ADD 4
749 #define OPCODE_ADC 5
750 #define OPCODE_SBC 6
751 #define OPCODE_RSC 7
752 #define OPCODE_TST 8
753 #define OPCODE_TEQ 9
754 #define OPCODE_CMP 10
755 #define OPCODE_CMN 11
756 #define OPCODE_ORR 12
757 #define OPCODE_MOV 13
758 #define OPCODE_BIC 14
759 #define OPCODE_MVN 15
760
761 #define T2_OPCODE_AND 0
762 #define T2_OPCODE_BIC 1
763 #define T2_OPCODE_ORR 2
764 #define T2_OPCODE_ORN 3
765 #define T2_OPCODE_EOR 4
766 #define T2_OPCODE_ADD 8
767 #define T2_OPCODE_ADC 10
768 #define T2_OPCODE_SBC 11
769 #define T2_OPCODE_SUB 13
770 #define T2_OPCODE_RSB 14
771
772 #define T_OPCODE_MUL 0x4340
773 #define T_OPCODE_TST 0x4200
774 #define T_OPCODE_CMN 0x42c0
775 #define T_OPCODE_NEG 0x4240
776 #define T_OPCODE_MVN 0x43c0
777
778 #define T_OPCODE_ADD_R3 0x1800
779 #define T_OPCODE_SUB_R3 0x1a00
780 #define T_OPCODE_ADD_HI 0x4400
781 #define T_OPCODE_ADD_ST 0xb000
782 #define T_OPCODE_SUB_ST 0xb080
783 #define T_OPCODE_ADD_SP 0xa800
784 #define T_OPCODE_ADD_PC 0xa000
785 #define T_OPCODE_ADD_I8 0x3000
786 #define T_OPCODE_SUB_I8 0x3800
787 #define T_OPCODE_ADD_I3 0x1c00
788 #define T_OPCODE_SUB_I3 0x1e00
789
790 #define T_OPCODE_ASR_R 0x4100
791 #define T_OPCODE_LSL_R 0x4080
792 #define T_OPCODE_LSR_R 0x40c0
793 #define T_OPCODE_ROR_R 0x41c0
794 #define T_OPCODE_ASR_I 0x1000
795 #define T_OPCODE_LSL_I 0x0000
796 #define T_OPCODE_LSR_I 0x0800
797
798 #define T_OPCODE_MOV_I8 0x2000
799 #define T_OPCODE_CMP_I8 0x2800
800 #define T_OPCODE_CMP_LR 0x4280
801 #define T_OPCODE_MOV_HR 0x4600
802 #define T_OPCODE_CMP_HR 0x4500
803
804 #define T_OPCODE_LDR_PC 0x4800
805 #define T_OPCODE_LDR_SP 0x9800
806 #define T_OPCODE_STR_SP 0x9000
807 #define T_OPCODE_LDR_IW 0x6800
808 #define T_OPCODE_STR_IW 0x6000
809 #define T_OPCODE_LDR_IH 0x8800
810 #define T_OPCODE_STR_IH 0x8000
811 #define T_OPCODE_LDR_IB 0x7800
812 #define T_OPCODE_STR_IB 0x7000
813 #define T_OPCODE_LDR_RW 0x5800
814 #define T_OPCODE_STR_RW 0x5000
815 #define T_OPCODE_LDR_RH 0x5a00
816 #define T_OPCODE_STR_RH 0x5200
817 #define T_OPCODE_LDR_RB 0x5c00
818 #define T_OPCODE_STR_RB 0x5400
819
820 #define T_OPCODE_PUSH 0xb400
821 #define T_OPCODE_POP 0xbc00
822
823 #define T_OPCODE_BRANCH 0xe000
824
825 #define THUMB_SIZE 2 /* Size of thumb instruction. */
826 #define THUMB_PP_PC_LR 0x0100
827 #define THUMB_LOAD_BIT 0x0800
828 #define THUMB2_LOAD_BIT 0x00100000
829
830 #define BAD_ARGS _("bad arguments to instruction")
831 #define BAD_SP _("r13 not allowed here")
832 #define BAD_PC _("r15 not allowed here")
833 #define BAD_COND _("instruction cannot be conditional")
834 #define BAD_OVERLAP _("registers may not be the same")
835 #define BAD_HIREG _("lo register required")
836 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
837 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
838 #define BAD_BRANCH _("branch must be last instruction in IT block")
839 #define BAD_NOT_IT _("instruction not allowed in IT block")
840 #define BAD_FPU _("selected FPU does not support instruction")
841 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
842 #define BAD_IT_COND _("incorrect condition in IT block")
843 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
844 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
845 #define BAD_PC_ADDRESSING \
846 _("cannot use register index with PC-relative addressing")
847 #define BAD_PC_WRITEBACK \
848 _("cannot use writeback with PC-relative addressing")
849 #define BAD_RANGE _("branch out of range")
850 #define BAD_FP16 _("selected processor does not support fp16 instruction")
851 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
852 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
853
854 static struct hash_control * arm_ops_hsh;
855 static struct hash_control * arm_cond_hsh;
856 static struct hash_control * arm_shift_hsh;
857 static struct hash_control * arm_psr_hsh;
858 static struct hash_control * arm_v7m_psr_hsh;
859 static struct hash_control * arm_reg_hsh;
860 static struct hash_control * arm_reloc_hsh;
861 static struct hash_control * arm_barrier_opt_hsh;
862
863 /* Stuff needed to resolve the label ambiguity
864 As:
865 ...
866 label: <insn>
867 may differ from:
868 ...
869 label:
870 <insn> */
871
872 symbolS * last_label_seen;
873 static int label_is_thumb_function_name = FALSE;
874
875 /* Literal pool structure. Held on a per-section
876 and per-sub-section basis. */
877
878 #define MAX_LITERAL_POOL_SIZE 1024
879 typedef struct literal_pool
880 {
881 expressionS literals [MAX_LITERAL_POOL_SIZE];
882 unsigned int next_free_entry;
883 unsigned int id;
884 symbolS * symbol;
885 segT section;
886 subsegT sub_section;
887 #ifdef OBJ_ELF
888 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
889 #endif
890 struct literal_pool * next;
891 unsigned int alignment;
892 } literal_pool;
893
894 /* Pointer to a linked list of literal pools. */
895 literal_pool * list_of_pools = NULL;
896
897 typedef enum asmfunc_states
898 {
899 OUTSIDE_ASMFUNC,
900 WAITING_ASMFUNC_NAME,
901 WAITING_ENDASMFUNC
902 } asmfunc_states;
903
904 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
905
906 #ifdef OBJ_ELF
907 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
908 #else
909 static struct current_it now_it;
910 #endif
911
912 static inline int
913 now_it_compatible (int cond)
914 {
915 return (cond & ~1) == (now_it.cc & ~1);
916 }
917
918 static inline int
919 conditional_insn (void)
920 {
921 return inst.cond != COND_ALWAYS;
922 }
923
924 static int in_it_block (void);
925
926 static int handle_it_state (void);
927
928 static void force_automatic_it_block_close (void);
929
930 static void it_fsm_post_encode (void);
931
932 #define set_it_insn_type(type) \
933 do \
934 { \
935 inst.it_insn_type = type; \
936 if (handle_it_state () == FAIL) \
937 return; \
938 } \
939 while (0)
940
941 #define set_it_insn_type_nonvoid(type, failret) \
942 do \
943 { \
944 inst.it_insn_type = type; \
945 if (handle_it_state () == FAIL) \
946 return failret; \
947 } \
948 while(0)
949
950 #define set_it_insn_type_last() \
951 do \
952 { \
953 if (inst.cond == COND_ALWAYS) \
954 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
955 else \
956 set_it_insn_type (INSIDE_IT_LAST_INSN); \
957 } \
958 while (0)
959
960 /* Pure syntax. */
961
962 /* This array holds the chars that always start a comment. If the
963 pre-processor is disabled, these aren't very useful. */
964 char arm_comment_chars[] = "@";
965
966 /* This array holds the chars that only start a comment at the beginning of
967 a line. If the line seems to have the form '# 123 filename'
968 .line and .file directives will appear in the pre-processed output. */
969 /* Note that input_file.c hand checks for '#' at the beginning of the
970 first line of the input file. This is because the compiler outputs
971 #NO_APP at the beginning of its output. */
972 /* Also note that comments like this one will always work. */
973 const char line_comment_chars[] = "#";
974
975 char arm_line_separator_chars[] = ";";
976
977 /* Chars that can be used to separate mant
978 from exp in floating point numbers. */
979 const char EXP_CHARS[] = "eE";
980
981 /* Chars that mean this number is a floating point constant. */
982 /* As in 0f12.456 */
983 /* or 0d1.2345e12 */
984
985 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
986
987 /* Prefix characters that indicate the start of an immediate
988 value. */
989 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
990
991 /* Separator character handling. */
992
993 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
994
995 static inline int
996 skip_past_char (char ** str, char c)
997 {
998 /* PR gas/14987: Allow for whitespace before the expected character. */
999 skip_whitespace (*str);
1000
1001 if (**str == c)
1002 {
1003 (*str)++;
1004 return SUCCESS;
1005 }
1006 else
1007 return FAIL;
1008 }
1009
1010 #define skip_past_comma(str) skip_past_char (str, ',')
1011
1012 /* Arithmetic expressions (possibly involving symbols). */
1013
1014 /* Return TRUE if anything in the expression is a bignum. */
1015
1016 static bfd_boolean
1017 walk_no_bignums (symbolS * sp)
1018 {
1019 if (symbol_get_value_expression (sp)->X_op == O_big)
1020 return TRUE;
1021
1022 if (symbol_get_value_expression (sp)->X_add_symbol)
1023 {
1024 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1025 || (symbol_get_value_expression (sp)->X_op_symbol
1026 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1027 }
1028
1029 return FALSE;
1030 }
1031
1032 static bfd_boolean in_my_get_expression = FALSE;
1033
1034 /* Third argument to my_get_expression. */
1035 #define GE_NO_PREFIX 0
1036 #define GE_IMM_PREFIX 1
1037 #define GE_OPT_PREFIX 2
1038 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1039 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1040 #define GE_OPT_PREFIX_BIG 3
1041
1042 static int
1043 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1044 {
1045 char * save_in;
1046
1047 /* In unified syntax, all prefixes are optional. */
1048 if (unified_syntax)
1049 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1050 : GE_OPT_PREFIX;
1051
1052 switch (prefix_mode)
1053 {
1054 case GE_NO_PREFIX: break;
1055 case GE_IMM_PREFIX:
1056 if (!is_immediate_prefix (**str))
1057 {
1058 inst.error = _("immediate expression requires a # prefix");
1059 return FAIL;
1060 }
1061 (*str)++;
1062 break;
1063 case GE_OPT_PREFIX:
1064 case GE_OPT_PREFIX_BIG:
1065 if (is_immediate_prefix (**str))
1066 (*str)++;
1067 break;
1068 default:
1069 abort ();
1070 }
1071
1072 memset (ep, 0, sizeof (expressionS));
1073
1074 save_in = input_line_pointer;
1075 input_line_pointer = *str;
1076 in_my_get_expression = TRUE;
1077 expression (ep);
1078 in_my_get_expression = FALSE;
1079
1080 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1081 {
1082 /* We found a bad or missing expression in md_operand(). */
1083 *str = input_line_pointer;
1084 input_line_pointer = save_in;
1085 if (inst.error == NULL)
1086 inst.error = (ep->X_op == O_absent
1087 ? _("missing expression") :_("bad expression"));
1088 return 1;
1089 }
1090
1091 /* Get rid of any bignums now, so that we don't generate an error for which
1092 we can't establish a line number later on. Big numbers are never valid
1093 in instructions, which is where this routine is always called. */
1094 if (prefix_mode != GE_OPT_PREFIX_BIG
1095 && (ep->X_op == O_big
1096 || (ep->X_add_symbol
1097 && (walk_no_bignums (ep->X_add_symbol)
1098 || (ep->X_op_symbol
1099 && walk_no_bignums (ep->X_op_symbol))))))
1100 {
1101 inst.error = _("invalid constant");
1102 *str = input_line_pointer;
1103 input_line_pointer = save_in;
1104 return 1;
1105 }
1106
1107 *str = input_line_pointer;
1108 input_line_pointer = save_in;
1109 return SUCCESS;
1110 }
1111
1112 /* Turn a string in input_line_pointer into a floating point constant
1113 of type TYPE, and store the appropriate bytes in *LITP. The number
1114 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1115 returned, or NULL on OK.
1116
1117 Note that fp constants aren't represent in the normal way on the ARM.
1118 In big endian mode, things are as expected. However, in little endian
1119 mode fp constants are big-endian word-wise, and little-endian byte-wise
1120 within the words. For example, (double) 1.1 in big endian mode is
1121 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1122 the byte sequence 99 99 f1 3f 9a 99 99 99.
1123
1124 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1125
1126 const char *
1127 md_atof (int type, char * litP, int * sizeP)
1128 {
1129 int prec;
1130 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1131 char *t;
1132 int i;
1133
1134 switch (type)
1135 {
1136 case 'f':
1137 case 'F':
1138 case 's':
1139 case 'S':
1140 prec = 2;
1141 break;
1142
1143 case 'd':
1144 case 'D':
1145 case 'r':
1146 case 'R':
1147 prec = 4;
1148 break;
1149
1150 case 'x':
1151 case 'X':
1152 prec = 5;
1153 break;
1154
1155 case 'p':
1156 case 'P':
1157 prec = 5;
1158 break;
1159
1160 default:
1161 *sizeP = 0;
1162 return _("Unrecognized or unsupported floating point constant");
1163 }
1164
1165 t = atof_ieee (input_line_pointer, type, words);
1166 if (t)
1167 input_line_pointer = t;
1168 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1169
1170 if (target_big_endian)
1171 {
1172 for (i = 0; i < prec; i++)
1173 {
1174 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1175 litP += sizeof (LITTLENUM_TYPE);
1176 }
1177 }
1178 else
1179 {
1180 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1181 for (i = prec - 1; i >= 0; i--)
1182 {
1183 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1184 litP += sizeof (LITTLENUM_TYPE);
1185 }
1186 else
1187 /* For a 4 byte float the order of elements in `words' is 1 0.
1188 For an 8 byte float the order is 1 0 3 2. */
1189 for (i = 0; i < prec; i += 2)
1190 {
1191 md_number_to_chars (litP, (valueT) words[i + 1],
1192 sizeof (LITTLENUM_TYPE));
1193 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1194 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1195 litP += 2 * sizeof (LITTLENUM_TYPE);
1196 }
1197 }
1198
1199 return NULL;
1200 }
1201
1202 /* We handle all bad expressions here, so that we can report the faulty
1203 instruction in the error message. */
1204
1205 void
1206 md_operand (expressionS * exp)
1207 {
1208 if (in_my_get_expression)
1209 exp->X_op = O_illegal;
1210 }
1211
1212 /* Immediate values. */
1213
1214 #ifdef OBJ_ELF
1215 /* Generic immediate-value read function for use in directives.
1216 Accepts anything that 'expression' can fold to a constant.
1217 *val receives the number. */
1218
1219 static int
1220 immediate_for_directive (int *val)
1221 {
1222 expressionS exp;
1223 exp.X_op = O_illegal;
1224
1225 if (is_immediate_prefix (*input_line_pointer))
1226 {
1227 input_line_pointer++;
1228 expression (&exp);
1229 }
1230
1231 if (exp.X_op != O_constant)
1232 {
1233 as_bad (_("expected #constant"));
1234 ignore_rest_of_line ();
1235 return FAIL;
1236 }
1237 *val = exp.X_add_number;
1238 return SUCCESS;
1239 }
1240 #endif
1241
1242 /* Register parsing. */
1243
1244 /* Generic register parser. CCP points to what should be the
1245 beginning of a register name. If it is indeed a valid register
1246 name, advance CCP over it and return the reg_entry structure;
1247 otherwise return NULL. Does not issue diagnostics. */
1248
1249 static struct reg_entry *
1250 arm_reg_parse_multi (char **ccp)
1251 {
1252 char *start = *ccp;
1253 char *p;
1254 struct reg_entry *reg;
1255
1256 skip_whitespace (start);
1257
1258 #ifdef REGISTER_PREFIX
1259 if (*start != REGISTER_PREFIX)
1260 return NULL;
1261 start++;
1262 #endif
1263 #ifdef OPTIONAL_REGISTER_PREFIX
1264 if (*start == OPTIONAL_REGISTER_PREFIX)
1265 start++;
1266 #endif
1267
1268 p = start;
1269 if (!ISALPHA (*p) || !is_name_beginner (*p))
1270 return NULL;
1271
1272 do
1273 p++;
1274 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1275
1276 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1277
1278 if (!reg)
1279 return NULL;
1280
1281 *ccp = p;
1282 return reg;
1283 }
1284
1285 static int
1286 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1287 enum arm_reg_type type)
1288 {
1289 /* Alternative syntaxes are accepted for a few register classes. */
1290 switch (type)
1291 {
1292 case REG_TYPE_MVF:
1293 case REG_TYPE_MVD:
1294 case REG_TYPE_MVFX:
1295 case REG_TYPE_MVDX:
1296 /* Generic coprocessor register names are allowed for these. */
1297 if (reg && reg->type == REG_TYPE_CN)
1298 return reg->number;
1299 break;
1300
1301 case REG_TYPE_CP:
1302 /* For backward compatibility, a bare number is valid here. */
1303 {
1304 unsigned long processor = strtoul (start, ccp, 10);
1305 if (*ccp != start && processor <= 15)
1306 return processor;
1307 }
1308 /* Fall through. */
1309
1310 case REG_TYPE_MMXWC:
1311 /* WC includes WCG. ??? I'm not sure this is true for all
1312 instructions that take WC registers. */
1313 if (reg && reg->type == REG_TYPE_MMXWCG)
1314 return reg->number;
1315 break;
1316
1317 default:
1318 break;
1319 }
1320
1321 return FAIL;
1322 }
1323
1324 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1325 return value is the register number or FAIL. */
1326
1327 static int
1328 arm_reg_parse (char **ccp, enum arm_reg_type type)
1329 {
1330 char *start = *ccp;
1331 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1332 int ret;
1333
1334 /* Do not allow a scalar (reg+index) to parse as a register. */
1335 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1336 return FAIL;
1337
1338 if (reg && reg->type == type)
1339 return reg->number;
1340
1341 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1342 return ret;
1343
1344 *ccp = start;
1345 return FAIL;
1346 }
1347
1348 /* Parse a Neon type specifier. *STR should point at the leading '.'
1349 character. Does no verification at this stage that the type fits the opcode
1350 properly. E.g.,
1351
1352 .i32.i32.s16
1353 .s32.f32
1354 .u16
1355
1356 Can all be legally parsed by this function.
1357
1358 Fills in neon_type struct pointer with parsed information, and updates STR
1359 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1360 type, FAIL if not. */
1361
1362 static int
1363 parse_neon_type (struct neon_type *type, char **str)
1364 {
1365 char *ptr = *str;
1366
1367 if (type)
1368 type->elems = 0;
1369
1370 while (type->elems < NEON_MAX_TYPE_ELS)
1371 {
1372 enum neon_el_type thistype = NT_untyped;
1373 unsigned thissize = -1u;
1374
1375 if (*ptr != '.')
1376 break;
1377
1378 ptr++;
1379
1380 /* Just a size without an explicit type. */
1381 if (ISDIGIT (*ptr))
1382 goto parsesize;
1383
1384 switch (TOLOWER (*ptr))
1385 {
1386 case 'i': thistype = NT_integer; break;
1387 case 'f': thistype = NT_float; break;
1388 case 'p': thistype = NT_poly; break;
1389 case 's': thistype = NT_signed; break;
1390 case 'u': thistype = NT_unsigned; break;
1391 case 'd':
1392 thistype = NT_float;
1393 thissize = 64;
1394 ptr++;
1395 goto done;
1396 default:
1397 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1398 return FAIL;
1399 }
1400
1401 ptr++;
1402
1403 /* .f is an abbreviation for .f32. */
1404 if (thistype == NT_float && !ISDIGIT (*ptr))
1405 thissize = 32;
1406 else
1407 {
1408 parsesize:
1409 thissize = strtoul (ptr, &ptr, 10);
1410
1411 if (thissize != 8 && thissize != 16 && thissize != 32
1412 && thissize != 64)
1413 {
1414 as_bad (_("bad size %d in type specifier"), thissize);
1415 return FAIL;
1416 }
1417 }
1418
1419 done:
1420 if (type)
1421 {
1422 type->el[type->elems].type = thistype;
1423 type->el[type->elems].size = thissize;
1424 type->elems++;
1425 }
1426 }
1427
1428 /* Empty/missing type is not a successful parse. */
1429 if (type->elems == 0)
1430 return FAIL;
1431
1432 *str = ptr;
1433
1434 return SUCCESS;
1435 }
1436
1437 /* Errors may be set multiple times during parsing or bit encoding
1438 (particularly in the Neon bits), but usually the earliest error which is set
1439 will be the most meaningful. Avoid overwriting it with later (cascading)
1440 errors by calling this function. */
1441
1442 static void
1443 first_error (const char *err)
1444 {
1445 if (!inst.error)
1446 inst.error = err;
1447 }
1448
1449 /* Parse a single type, e.g. ".s32", leading period included. */
1450 static int
1451 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1452 {
1453 char *str = *ccp;
1454 struct neon_type optype;
1455
1456 if (*str == '.')
1457 {
1458 if (parse_neon_type (&optype, &str) == SUCCESS)
1459 {
1460 if (optype.elems == 1)
1461 *vectype = optype.el[0];
1462 else
1463 {
1464 first_error (_("only one type should be specified for operand"));
1465 return FAIL;
1466 }
1467 }
1468 else
1469 {
1470 first_error (_("vector type expected"));
1471 return FAIL;
1472 }
1473 }
1474 else
1475 return FAIL;
1476
1477 *ccp = str;
1478
1479 return SUCCESS;
1480 }
1481
1482 /* Special meanings for indices (which have a range of 0-7), which will fit into
1483 a 4-bit integer. */
1484
1485 #define NEON_ALL_LANES 15
1486 #define NEON_INTERLEAVE_LANES 14
1487
1488 /* Parse either a register or a scalar, with an optional type. Return the
1489 register number, and optionally fill in the actual type of the register
1490 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1491 type/index information in *TYPEINFO. */
1492
1493 static int
1494 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1495 enum arm_reg_type *rtype,
1496 struct neon_typed_alias *typeinfo)
1497 {
1498 char *str = *ccp;
1499 struct reg_entry *reg = arm_reg_parse_multi (&str);
1500 struct neon_typed_alias atype;
1501 struct neon_type_el parsetype;
1502
1503 atype.defined = 0;
1504 atype.index = -1;
1505 atype.eltype.type = NT_invtype;
1506 atype.eltype.size = -1;
1507
1508 /* Try alternate syntax for some types of register. Note these are mutually
1509 exclusive with the Neon syntax extensions. */
1510 if (reg == NULL)
1511 {
1512 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1513 if (altreg != FAIL)
1514 *ccp = str;
1515 if (typeinfo)
1516 *typeinfo = atype;
1517 return altreg;
1518 }
1519
1520 /* Undo polymorphism when a set of register types may be accepted. */
1521 if ((type == REG_TYPE_NDQ
1522 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1523 || (type == REG_TYPE_VFSD
1524 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1525 || (type == REG_TYPE_NSDQ
1526 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1527 || reg->type == REG_TYPE_NQ))
1528 || (type == REG_TYPE_NSD
1529 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1530 || (type == REG_TYPE_MMXWC
1531 && (reg->type == REG_TYPE_MMXWCG)))
1532 type = (enum arm_reg_type) reg->type;
1533
1534 if (type != reg->type)
1535 return FAIL;
1536
1537 if (reg->neon)
1538 atype = *reg->neon;
1539
1540 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1541 {
1542 if ((atype.defined & NTA_HASTYPE) != 0)
1543 {
1544 first_error (_("can't redefine type for operand"));
1545 return FAIL;
1546 }
1547 atype.defined |= NTA_HASTYPE;
1548 atype.eltype = parsetype;
1549 }
1550
1551 if (skip_past_char (&str, '[') == SUCCESS)
1552 {
1553 if (type != REG_TYPE_VFD
1554 && !(type == REG_TYPE_VFS
1555 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
1556 {
1557 first_error (_("only D registers may be indexed"));
1558 return FAIL;
1559 }
1560
1561 if ((atype.defined & NTA_HASINDEX) != 0)
1562 {
1563 first_error (_("can't change index for operand"));
1564 return FAIL;
1565 }
1566
1567 atype.defined |= NTA_HASINDEX;
1568
1569 if (skip_past_char (&str, ']') == SUCCESS)
1570 atype.index = NEON_ALL_LANES;
1571 else
1572 {
1573 expressionS exp;
1574
1575 my_get_expression (&exp, &str, GE_NO_PREFIX);
1576
1577 if (exp.X_op != O_constant)
1578 {
1579 first_error (_("constant expression required"));
1580 return FAIL;
1581 }
1582
1583 if (skip_past_char (&str, ']') == FAIL)
1584 return FAIL;
1585
1586 atype.index = exp.X_add_number;
1587 }
1588 }
1589
1590 if (typeinfo)
1591 *typeinfo = atype;
1592
1593 if (rtype)
1594 *rtype = type;
1595
1596 *ccp = str;
1597
1598 return reg->number;
1599 }
1600
1601 /* Like arm_reg_parse, but allow allow the following extra features:
1602 - If RTYPE is non-zero, return the (possibly restricted) type of the
1603 register (e.g. Neon double or quad reg when either has been requested).
1604 - If this is a Neon vector type with additional type information, fill
1605 in the struct pointed to by VECTYPE (if non-NULL).
1606 This function will fault on encountering a scalar. */
1607
1608 static int
1609 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1610 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1611 {
1612 struct neon_typed_alias atype;
1613 char *str = *ccp;
1614 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1615
1616 if (reg == FAIL)
1617 return FAIL;
1618
1619 /* Do not allow regname(... to parse as a register. */
1620 if (*str == '(')
1621 return FAIL;
1622
1623 /* Do not allow a scalar (reg+index) to parse as a register. */
1624 if ((atype.defined & NTA_HASINDEX) != 0)
1625 {
1626 first_error (_("register operand expected, but got scalar"));
1627 return FAIL;
1628 }
1629
1630 if (vectype)
1631 *vectype = atype.eltype;
1632
1633 *ccp = str;
1634
1635 return reg;
1636 }
1637
1638 #define NEON_SCALAR_REG(X) ((X) >> 4)
1639 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1640
1641 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1642 have enough information to be able to do a good job bounds-checking. So, we
1643 just do easy checks here, and do further checks later. */
1644
1645 static int
1646 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1647 {
1648 int reg;
1649 char *str = *ccp;
1650 struct neon_typed_alias atype;
1651 enum arm_reg_type reg_type = REG_TYPE_VFD;
1652
1653 if (elsize == 4)
1654 reg_type = REG_TYPE_VFS;
1655
1656 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1657
1658 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1659 return FAIL;
1660
1661 if (atype.index == NEON_ALL_LANES)
1662 {
1663 first_error (_("scalar must have an index"));
1664 return FAIL;
1665 }
1666 else if (atype.index >= 64 / elsize)
1667 {
1668 first_error (_("scalar index out of range"));
1669 return FAIL;
1670 }
1671
1672 if (type)
1673 *type = atype.eltype;
1674
1675 *ccp = str;
1676
1677 return reg * 16 + atype.index;
1678 }
1679
1680 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1681
1682 static long
1683 parse_reg_list (char ** strp)
1684 {
1685 char * str = * strp;
1686 long range = 0;
1687 int another_range;
1688
1689 /* We come back here if we get ranges concatenated by '+' or '|'. */
1690 do
1691 {
1692 skip_whitespace (str);
1693
1694 another_range = 0;
1695
1696 if (*str == '{')
1697 {
1698 int in_range = 0;
1699 int cur_reg = -1;
1700
1701 str++;
1702 do
1703 {
1704 int reg;
1705
1706 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1707 {
1708 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1709 return FAIL;
1710 }
1711
1712 if (in_range)
1713 {
1714 int i;
1715
1716 if (reg <= cur_reg)
1717 {
1718 first_error (_("bad range in register list"));
1719 return FAIL;
1720 }
1721
1722 for (i = cur_reg + 1; i < reg; i++)
1723 {
1724 if (range & (1 << i))
1725 as_tsktsk
1726 (_("Warning: duplicated register (r%d) in register list"),
1727 i);
1728 else
1729 range |= 1 << i;
1730 }
1731 in_range = 0;
1732 }
1733
1734 if (range & (1 << reg))
1735 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1736 reg);
1737 else if (reg <= cur_reg)
1738 as_tsktsk (_("Warning: register range not in ascending order"));
1739
1740 range |= 1 << reg;
1741 cur_reg = reg;
1742 }
1743 while (skip_past_comma (&str) != FAIL
1744 || (in_range = 1, *str++ == '-'));
1745 str--;
1746
1747 if (skip_past_char (&str, '}') == FAIL)
1748 {
1749 first_error (_("missing `}'"));
1750 return FAIL;
1751 }
1752 }
1753 else
1754 {
1755 expressionS exp;
1756
1757 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1758 return FAIL;
1759
1760 if (exp.X_op == O_constant)
1761 {
1762 if (exp.X_add_number
1763 != (exp.X_add_number & 0x0000ffff))
1764 {
1765 inst.error = _("invalid register mask");
1766 return FAIL;
1767 }
1768
1769 if ((range & exp.X_add_number) != 0)
1770 {
1771 int regno = range & exp.X_add_number;
1772
1773 regno &= -regno;
1774 regno = (1 << regno) - 1;
1775 as_tsktsk
1776 (_("Warning: duplicated register (r%d) in register list"),
1777 regno);
1778 }
1779
1780 range |= exp.X_add_number;
1781 }
1782 else
1783 {
1784 if (inst.reloc.type != 0)
1785 {
1786 inst.error = _("expression too complex");
1787 return FAIL;
1788 }
1789
1790 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1791 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1792 inst.reloc.pc_rel = 0;
1793 }
1794 }
1795
1796 if (*str == '|' || *str == '+')
1797 {
1798 str++;
1799 another_range = 1;
1800 }
1801 }
1802 while (another_range);
1803
1804 *strp = str;
1805 return range;
1806 }
1807
1808 /* Types of registers in a list. */
1809
1810 enum reg_list_els
1811 {
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_D,
1814 REGLIST_NEON_D
1815 };
1816
1817 /* Parse a VFP register list. If the string is invalid return FAIL.
1818 Otherwise return the number of registers, and set PBASE to the first
1819 register. Parses registers of type ETYPE.
1820 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1821 - Q registers can be used to specify pairs of D registers
1822 - { } can be omitted from around a singleton register list
1823 FIXME: This is not implemented, as it would require backtracking in
1824 some cases, e.g.:
1825 vtbl.8 d3,d4,d5
1826 This could be done (the meaning isn't really ambiguous), but doesn't
1827 fit in well with the current parsing framework.
1828 - 32 D registers may be used (also true for VFPv3).
1829 FIXME: Types are ignored in these register lists, which is probably a
1830 bug. */
1831
1832 static int
1833 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1834 {
1835 char *str = *ccp;
1836 int base_reg;
1837 int new_base;
1838 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1839 int max_regs = 0;
1840 int count = 0;
1841 int warned = 0;
1842 unsigned long mask = 0;
1843 int i;
1844
1845 if (skip_past_char (&str, '{') == FAIL)
1846 {
1847 inst.error = _("expecting {");
1848 return FAIL;
1849 }
1850
1851 switch (etype)
1852 {
1853 case REGLIST_VFP_S:
1854 regtype = REG_TYPE_VFS;
1855 max_regs = 32;
1856 break;
1857
1858 case REGLIST_VFP_D:
1859 regtype = REG_TYPE_VFD;
1860 break;
1861
1862 case REGLIST_NEON_D:
1863 regtype = REG_TYPE_NDQ;
1864 break;
1865 }
1866
1867 if (etype != REGLIST_VFP_S)
1868 {
1869 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1870 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1871 {
1872 max_regs = 32;
1873 if (thumb_mode)
1874 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1875 fpu_vfp_ext_d32);
1876 else
1877 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1878 fpu_vfp_ext_d32);
1879 }
1880 else
1881 max_regs = 16;
1882 }
1883
1884 base_reg = max_regs;
1885
1886 do
1887 {
1888 int setmask = 1, addregs = 1;
1889
1890 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1891
1892 if (new_base == FAIL)
1893 {
1894 first_error (_(reg_expected_msgs[regtype]));
1895 return FAIL;
1896 }
1897
1898 if (new_base >= max_regs)
1899 {
1900 first_error (_("register out of range in list"));
1901 return FAIL;
1902 }
1903
1904 /* Note: a value of 2 * n is returned for the register Q<n>. */
1905 if (regtype == REG_TYPE_NQ)
1906 {
1907 setmask = 3;
1908 addregs = 2;
1909 }
1910
1911 if (new_base < base_reg)
1912 base_reg = new_base;
1913
1914 if (mask & (setmask << new_base))
1915 {
1916 first_error (_("invalid register list"));
1917 return FAIL;
1918 }
1919
1920 if ((mask >> new_base) != 0 && ! warned)
1921 {
1922 as_tsktsk (_("register list not in ascending order"));
1923 warned = 1;
1924 }
1925
1926 mask |= setmask << new_base;
1927 count += addregs;
1928
1929 if (*str == '-') /* We have the start of a range expression */
1930 {
1931 int high_range;
1932
1933 str++;
1934
1935 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1936 == FAIL)
1937 {
1938 inst.error = gettext (reg_expected_msgs[regtype]);
1939 return FAIL;
1940 }
1941
1942 if (high_range >= max_regs)
1943 {
1944 first_error (_("register out of range in list"));
1945 return FAIL;
1946 }
1947
1948 if (regtype == REG_TYPE_NQ)
1949 high_range = high_range + 1;
1950
1951 if (high_range <= new_base)
1952 {
1953 inst.error = _("register range not in ascending order");
1954 return FAIL;
1955 }
1956
1957 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1958 {
1959 if (mask & (setmask << new_base))
1960 {
1961 inst.error = _("invalid register list");
1962 return FAIL;
1963 }
1964
1965 mask |= setmask << new_base;
1966 count += addregs;
1967 }
1968 }
1969 }
1970 while (skip_past_comma (&str) != FAIL);
1971
1972 str++;
1973
1974 /* Sanity check -- should have raised a parse error above. */
1975 if (count == 0 || count > max_regs)
1976 abort ();
1977
1978 *pbase = base_reg;
1979
1980 /* Final test -- the registers must be consecutive. */
1981 mask >>= base_reg;
1982 for (i = 0; i < count; i++)
1983 {
1984 if ((mask & (1u << i)) == 0)
1985 {
1986 inst.error = _("non-contiguous register range");
1987 return FAIL;
1988 }
1989 }
1990
1991 *ccp = str;
1992
1993 return count;
1994 }
1995
1996 /* True if two alias types are the same. */
1997
1998 static bfd_boolean
1999 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2000 {
2001 if (!a && !b)
2002 return TRUE;
2003
2004 if (!a || !b)
2005 return FALSE;
2006
2007 if (a->defined != b->defined)
2008 return FALSE;
2009
2010 if ((a->defined & NTA_HASTYPE) != 0
2011 && (a->eltype.type != b->eltype.type
2012 || a->eltype.size != b->eltype.size))
2013 return FALSE;
2014
2015 if ((a->defined & NTA_HASINDEX) != 0
2016 && (a->index != b->index))
2017 return FALSE;
2018
2019 return TRUE;
2020 }
2021
2022 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2023 The base register is put in *PBASE.
2024 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2025 the return value.
2026 The register stride (minus one) is put in bit 4 of the return value.
2027 Bits [6:5] encode the list length (minus one).
2028 The type of the list elements is put in *ELTYPE, if non-NULL. */
2029
2030 #define NEON_LANE(X) ((X) & 0xf)
2031 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2032 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2033
2034 static int
2035 parse_neon_el_struct_list (char **str, unsigned *pbase,
2036 struct neon_type_el *eltype)
2037 {
2038 char *ptr = *str;
2039 int base_reg = -1;
2040 int reg_incr = -1;
2041 int count = 0;
2042 int lane = -1;
2043 int leading_brace = 0;
2044 enum arm_reg_type rtype = REG_TYPE_NDQ;
2045 const char *const incr_error = _("register stride must be 1 or 2");
2046 const char *const type_error = _("mismatched element/structure types in list");
2047 struct neon_typed_alias firsttype;
2048 firsttype.defined = 0;
2049 firsttype.eltype.type = NT_invtype;
2050 firsttype.eltype.size = -1;
2051 firsttype.index = -1;
2052
2053 if (skip_past_char (&ptr, '{') == SUCCESS)
2054 leading_brace = 1;
2055
2056 do
2057 {
2058 struct neon_typed_alias atype;
2059 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2060
2061 if (getreg == FAIL)
2062 {
2063 first_error (_(reg_expected_msgs[rtype]));
2064 return FAIL;
2065 }
2066
2067 if (base_reg == -1)
2068 {
2069 base_reg = getreg;
2070 if (rtype == REG_TYPE_NQ)
2071 {
2072 reg_incr = 1;
2073 }
2074 firsttype = atype;
2075 }
2076 else if (reg_incr == -1)
2077 {
2078 reg_incr = getreg - base_reg;
2079 if (reg_incr < 1 || reg_incr > 2)
2080 {
2081 first_error (_(incr_error));
2082 return FAIL;
2083 }
2084 }
2085 else if (getreg != base_reg + reg_incr * count)
2086 {
2087 first_error (_(incr_error));
2088 return FAIL;
2089 }
2090
2091 if (! neon_alias_types_same (&atype, &firsttype))
2092 {
2093 first_error (_(type_error));
2094 return FAIL;
2095 }
2096
2097 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2098 modes. */
2099 if (ptr[0] == '-')
2100 {
2101 struct neon_typed_alias htype;
2102 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2103 if (lane == -1)
2104 lane = NEON_INTERLEAVE_LANES;
2105 else if (lane != NEON_INTERLEAVE_LANES)
2106 {
2107 first_error (_(type_error));
2108 return FAIL;
2109 }
2110 if (reg_incr == -1)
2111 reg_incr = 1;
2112 else if (reg_incr != 1)
2113 {
2114 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2115 return FAIL;
2116 }
2117 ptr++;
2118 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2119 if (hireg == FAIL)
2120 {
2121 first_error (_(reg_expected_msgs[rtype]));
2122 return FAIL;
2123 }
2124 if (! neon_alias_types_same (&htype, &firsttype))
2125 {
2126 first_error (_(type_error));
2127 return FAIL;
2128 }
2129 count += hireg + dregs - getreg;
2130 continue;
2131 }
2132
2133 /* If we're using Q registers, we can't use [] or [n] syntax. */
2134 if (rtype == REG_TYPE_NQ)
2135 {
2136 count += 2;
2137 continue;
2138 }
2139
2140 if ((atype.defined & NTA_HASINDEX) != 0)
2141 {
2142 if (lane == -1)
2143 lane = atype.index;
2144 else if (lane != atype.index)
2145 {
2146 first_error (_(type_error));
2147 return FAIL;
2148 }
2149 }
2150 else if (lane == -1)
2151 lane = NEON_INTERLEAVE_LANES;
2152 else if (lane != NEON_INTERLEAVE_LANES)
2153 {
2154 first_error (_(type_error));
2155 return FAIL;
2156 }
2157 count++;
2158 }
2159 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2160
2161 /* No lane set by [x]. We must be interleaving structures. */
2162 if (lane == -1)
2163 lane = NEON_INTERLEAVE_LANES;
2164
2165 /* Sanity check. */
2166 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2167 || (count > 1 && reg_incr == -1))
2168 {
2169 first_error (_("error parsing element/structure list"));
2170 return FAIL;
2171 }
2172
2173 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2174 {
2175 first_error (_("expected }"));
2176 return FAIL;
2177 }
2178
2179 if (reg_incr == -1)
2180 reg_incr = 1;
2181
2182 if (eltype)
2183 *eltype = firsttype.eltype;
2184
2185 *pbase = base_reg;
2186 *str = ptr;
2187
2188 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2189 }
2190
2191 /* Parse an explicit relocation suffix on an expression. This is
2192 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2193 arm_reloc_hsh contains no entries, so this function can only
2194 succeed if there is no () after the word. Returns -1 on error,
2195 BFD_RELOC_UNUSED if there wasn't any suffix. */
2196
2197 static int
2198 parse_reloc (char **str)
2199 {
2200 struct reloc_entry *r;
2201 char *p, *q;
2202
2203 if (**str != '(')
2204 return BFD_RELOC_UNUSED;
2205
2206 p = *str + 1;
2207 q = p;
2208
2209 while (*q && *q != ')' && *q != ',')
2210 q++;
2211 if (*q != ')')
2212 return -1;
2213
2214 if ((r = (struct reloc_entry *)
2215 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2216 return -1;
2217
2218 *str = q + 1;
2219 return r->reloc;
2220 }
2221
2222 /* Directives: register aliases. */
2223
2224 static struct reg_entry *
2225 insert_reg_alias (char *str, unsigned number, int type)
2226 {
2227 struct reg_entry *new_reg;
2228 const char *name;
2229
2230 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2231 {
2232 if (new_reg->builtin)
2233 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2234
2235 /* Only warn about a redefinition if it's not defined as the
2236 same register. */
2237 else if (new_reg->number != number || new_reg->type != type)
2238 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2239
2240 return NULL;
2241 }
2242
2243 name = xstrdup (str);
2244 new_reg = XNEW (struct reg_entry);
2245
2246 new_reg->name = name;
2247 new_reg->number = number;
2248 new_reg->type = type;
2249 new_reg->builtin = FALSE;
2250 new_reg->neon = NULL;
2251
2252 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2253 abort ();
2254
2255 return new_reg;
2256 }
2257
2258 static void
2259 insert_neon_reg_alias (char *str, int number, int type,
2260 struct neon_typed_alias *atype)
2261 {
2262 struct reg_entry *reg = insert_reg_alias (str, number, type);
2263
2264 if (!reg)
2265 {
2266 first_error (_("attempt to redefine typed alias"));
2267 return;
2268 }
2269
2270 if (atype)
2271 {
2272 reg->neon = XNEW (struct neon_typed_alias);
2273 *reg->neon = *atype;
2274 }
2275 }
2276
2277 /* Look for the .req directive. This is of the form:
2278
2279 new_register_name .req existing_register_name
2280
2281 If we find one, or if it looks sufficiently like one that we want to
2282 handle any error here, return TRUE. Otherwise return FALSE. */
2283
2284 static bfd_boolean
2285 create_register_alias (char * newname, char *p)
2286 {
2287 struct reg_entry *old;
2288 char *oldname, *nbuf;
2289 size_t nlen;
2290
2291 /* The input scrubber ensures that whitespace after the mnemonic is
2292 collapsed to single spaces. */
2293 oldname = p;
2294 if (strncmp (oldname, " .req ", 6) != 0)
2295 return FALSE;
2296
2297 oldname += 6;
2298 if (*oldname == '\0')
2299 return FALSE;
2300
2301 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2302 if (!old)
2303 {
2304 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2305 return TRUE;
2306 }
2307
2308 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2309 the desired alias name, and p points to its end. If not, then
2310 the desired alias name is in the global original_case_string. */
2311 #ifdef TC_CASE_SENSITIVE
2312 nlen = p - newname;
2313 #else
2314 newname = original_case_string;
2315 nlen = strlen (newname);
2316 #endif
2317
2318 nbuf = xmemdup0 (newname, nlen);
2319
2320 /* Create aliases under the new name as stated; an all-lowercase
2321 version of the new name; and an all-uppercase version of the new
2322 name. */
2323 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2324 {
2325 for (p = nbuf; *p; p++)
2326 *p = TOUPPER (*p);
2327
2328 if (strncmp (nbuf, newname, nlen))
2329 {
2330 /* If this attempt to create an additional alias fails, do not bother
2331 trying to create the all-lower case alias. We will fail and issue
2332 a second, duplicate error message. This situation arises when the
2333 programmer does something like:
2334 foo .req r0
2335 Foo .req r1
2336 The second .req creates the "Foo" alias but then fails to create
2337 the artificial FOO alias because it has already been created by the
2338 first .req. */
2339 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2340 {
2341 free (nbuf);
2342 return TRUE;
2343 }
2344 }
2345
2346 for (p = nbuf; *p; p++)
2347 *p = TOLOWER (*p);
2348
2349 if (strncmp (nbuf, newname, nlen))
2350 insert_reg_alias (nbuf, old->number, old->type);
2351 }
2352
2353 free (nbuf);
2354 return TRUE;
2355 }
2356
2357 /* Create a Neon typed/indexed register alias using directives, e.g.:
2358 X .dn d5.s32[1]
2359 Y .qn 6.s16
2360 Z .dn d7
2361 T .dn Z[0]
2362 These typed registers can be used instead of the types specified after the
2363 Neon mnemonic, so long as all operands given have types. Types can also be
2364 specified directly, e.g.:
2365 vadd d0.s32, d1.s32, d2.s32 */
2366
2367 static bfd_boolean
2368 create_neon_reg_alias (char *newname, char *p)
2369 {
2370 enum arm_reg_type basetype;
2371 struct reg_entry *basereg;
2372 struct reg_entry mybasereg;
2373 struct neon_type ntype;
2374 struct neon_typed_alias typeinfo;
2375 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2376 int namelen;
2377
2378 typeinfo.defined = 0;
2379 typeinfo.eltype.type = NT_invtype;
2380 typeinfo.eltype.size = -1;
2381 typeinfo.index = -1;
2382
2383 nameend = p;
2384
2385 if (strncmp (p, " .dn ", 5) == 0)
2386 basetype = REG_TYPE_VFD;
2387 else if (strncmp (p, " .qn ", 5) == 0)
2388 basetype = REG_TYPE_NQ;
2389 else
2390 return FALSE;
2391
2392 p += 5;
2393
2394 if (*p == '\0')
2395 return FALSE;
2396
2397 basereg = arm_reg_parse_multi (&p);
2398
2399 if (basereg && basereg->type != basetype)
2400 {
2401 as_bad (_("bad type for register"));
2402 return FALSE;
2403 }
2404
2405 if (basereg == NULL)
2406 {
2407 expressionS exp;
2408 /* Try parsing as an integer. */
2409 my_get_expression (&exp, &p, GE_NO_PREFIX);
2410 if (exp.X_op != O_constant)
2411 {
2412 as_bad (_("expression must be constant"));
2413 return FALSE;
2414 }
2415 basereg = &mybasereg;
2416 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2417 : exp.X_add_number;
2418 basereg->neon = 0;
2419 }
2420
2421 if (basereg->neon)
2422 typeinfo = *basereg->neon;
2423
2424 if (parse_neon_type (&ntype, &p) == SUCCESS)
2425 {
2426 /* We got a type. */
2427 if (typeinfo.defined & NTA_HASTYPE)
2428 {
2429 as_bad (_("can't redefine the type of a register alias"));
2430 return FALSE;
2431 }
2432
2433 typeinfo.defined |= NTA_HASTYPE;
2434 if (ntype.elems != 1)
2435 {
2436 as_bad (_("you must specify a single type only"));
2437 return FALSE;
2438 }
2439 typeinfo.eltype = ntype.el[0];
2440 }
2441
2442 if (skip_past_char (&p, '[') == SUCCESS)
2443 {
2444 expressionS exp;
2445 /* We got a scalar index. */
2446
2447 if (typeinfo.defined & NTA_HASINDEX)
2448 {
2449 as_bad (_("can't redefine the index of a scalar alias"));
2450 return FALSE;
2451 }
2452
2453 my_get_expression (&exp, &p, GE_NO_PREFIX);
2454
2455 if (exp.X_op != O_constant)
2456 {
2457 as_bad (_("scalar index must be constant"));
2458 return FALSE;
2459 }
2460
2461 typeinfo.defined |= NTA_HASINDEX;
2462 typeinfo.index = exp.X_add_number;
2463
2464 if (skip_past_char (&p, ']') == FAIL)
2465 {
2466 as_bad (_("expecting ]"));
2467 return FALSE;
2468 }
2469 }
2470
2471 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2472 the desired alias name, and p points to its end. If not, then
2473 the desired alias name is in the global original_case_string. */
2474 #ifdef TC_CASE_SENSITIVE
2475 namelen = nameend - newname;
2476 #else
2477 newname = original_case_string;
2478 namelen = strlen (newname);
2479 #endif
2480
2481 namebuf = xmemdup0 (newname, namelen);
2482
2483 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2484 typeinfo.defined != 0 ? &typeinfo : NULL);
2485
2486 /* Insert name in all uppercase. */
2487 for (p = namebuf; *p; p++)
2488 *p = TOUPPER (*p);
2489
2490 if (strncmp (namebuf, newname, namelen))
2491 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2492 typeinfo.defined != 0 ? &typeinfo : NULL);
2493
2494 /* Insert name in all lowercase. */
2495 for (p = namebuf; *p; p++)
2496 *p = TOLOWER (*p);
2497
2498 if (strncmp (namebuf, newname, namelen))
2499 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2500 typeinfo.defined != 0 ? &typeinfo : NULL);
2501
2502 free (namebuf);
2503 return TRUE;
2504 }
2505
2506 /* Should never be called, as .req goes between the alias and the
2507 register name, not at the beginning of the line. */
2508
2509 static void
2510 s_req (int a ATTRIBUTE_UNUSED)
2511 {
2512 as_bad (_("invalid syntax for .req directive"));
2513 }
2514
2515 static void
2516 s_dn (int a ATTRIBUTE_UNUSED)
2517 {
2518 as_bad (_("invalid syntax for .dn directive"));
2519 }
2520
2521 static void
2522 s_qn (int a ATTRIBUTE_UNUSED)
2523 {
2524 as_bad (_("invalid syntax for .qn directive"));
2525 }
2526
2527 /* The .unreq directive deletes an alias which was previously defined
2528 by .req. For example:
2529
2530 my_alias .req r11
2531 .unreq my_alias */
2532
2533 static void
2534 s_unreq (int a ATTRIBUTE_UNUSED)
2535 {
2536 char * name;
2537 char saved_char;
2538
2539 name = input_line_pointer;
2540
2541 while (*input_line_pointer != 0
2542 && *input_line_pointer != ' '
2543 && *input_line_pointer != '\n')
2544 ++input_line_pointer;
2545
2546 saved_char = *input_line_pointer;
2547 *input_line_pointer = 0;
2548
2549 if (!*name)
2550 as_bad (_("invalid syntax for .unreq directive"));
2551 else
2552 {
2553 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2554 name);
2555
2556 if (!reg)
2557 as_bad (_("unknown register alias '%s'"), name);
2558 else if (reg->builtin)
2559 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2560 name);
2561 else
2562 {
2563 char * p;
2564 char * nbuf;
2565
2566 hash_delete (arm_reg_hsh, name, FALSE);
2567 free ((char *) reg->name);
2568 if (reg->neon)
2569 free (reg->neon);
2570 free (reg);
2571
2572 /* Also locate the all upper case and all lower case versions.
2573 Do not complain if we cannot find one or the other as it
2574 was probably deleted above. */
2575
2576 nbuf = strdup (name);
2577 for (p = nbuf; *p; p++)
2578 *p = TOUPPER (*p);
2579 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2580 if (reg)
2581 {
2582 hash_delete (arm_reg_hsh, nbuf, FALSE);
2583 free ((char *) reg->name);
2584 if (reg->neon)
2585 free (reg->neon);
2586 free (reg);
2587 }
2588
2589 for (p = nbuf; *p; p++)
2590 *p = TOLOWER (*p);
2591 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2592 if (reg)
2593 {
2594 hash_delete (arm_reg_hsh, nbuf, FALSE);
2595 free ((char *) reg->name);
2596 if (reg->neon)
2597 free (reg->neon);
2598 free (reg);
2599 }
2600
2601 free (nbuf);
2602 }
2603 }
2604
2605 *input_line_pointer = saved_char;
2606 demand_empty_rest_of_line ();
2607 }
2608
2609 /* Directives: Instruction set selection. */
2610
2611 #ifdef OBJ_ELF
2612 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2613 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2614 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2615 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2616
2617 /* Create a new mapping symbol for the transition to STATE. */
2618
2619 static void
2620 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2621 {
2622 symbolS * symbolP;
2623 const char * symname;
2624 int type;
2625
2626 switch (state)
2627 {
2628 case MAP_DATA:
2629 symname = "$d";
2630 type = BSF_NO_FLAGS;
2631 break;
2632 case MAP_ARM:
2633 symname = "$a";
2634 type = BSF_NO_FLAGS;
2635 break;
2636 case MAP_THUMB:
2637 symname = "$t";
2638 type = BSF_NO_FLAGS;
2639 break;
2640 default:
2641 abort ();
2642 }
2643
2644 symbolP = symbol_new (symname, now_seg, value, frag);
2645 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2646
2647 switch (state)
2648 {
2649 case MAP_ARM:
2650 THUMB_SET_FUNC (symbolP, 0);
2651 ARM_SET_THUMB (symbolP, 0);
2652 ARM_SET_INTERWORK (symbolP, support_interwork);
2653 break;
2654
2655 case MAP_THUMB:
2656 THUMB_SET_FUNC (symbolP, 1);
2657 ARM_SET_THUMB (symbolP, 1);
2658 ARM_SET_INTERWORK (symbolP, support_interwork);
2659 break;
2660
2661 case MAP_DATA:
2662 default:
2663 break;
2664 }
2665
2666 /* Save the mapping symbols for future reference. Also check that
2667 we do not place two mapping symbols at the same offset within a
2668 frag. We'll handle overlap between frags in
2669 check_mapping_symbols.
2670
2671 If .fill or other data filling directive generates zero sized data,
2672 the mapping symbol for the following code will have the same value
2673 as the one generated for the data filling directive. In this case,
2674 we replace the old symbol with the new one at the same address. */
2675 if (value == 0)
2676 {
2677 if (frag->tc_frag_data.first_map != NULL)
2678 {
2679 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2680 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2681 }
2682 frag->tc_frag_data.first_map = symbolP;
2683 }
2684 if (frag->tc_frag_data.last_map != NULL)
2685 {
2686 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2687 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2688 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2689 }
2690 frag->tc_frag_data.last_map = symbolP;
2691 }
2692
2693 /* We must sometimes convert a region marked as code to data during
2694 code alignment, if an odd number of bytes have to be padded. The
2695 code mapping symbol is pushed to an aligned address. */
2696
2697 static void
2698 insert_data_mapping_symbol (enum mstate state,
2699 valueT value, fragS *frag, offsetT bytes)
2700 {
2701 /* If there was already a mapping symbol, remove it. */
2702 if (frag->tc_frag_data.last_map != NULL
2703 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2704 {
2705 symbolS *symp = frag->tc_frag_data.last_map;
2706
2707 if (value == 0)
2708 {
2709 know (frag->tc_frag_data.first_map == symp);
2710 frag->tc_frag_data.first_map = NULL;
2711 }
2712 frag->tc_frag_data.last_map = NULL;
2713 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2714 }
2715
2716 make_mapping_symbol (MAP_DATA, value, frag);
2717 make_mapping_symbol (state, value + bytes, frag);
2718 }
2719
2720 static void mapping_state_2 (enum mstate state, int max_chars);
2721
2722 /* Set the mapping state to STATE. Only call this when about to
2723 emit some STATE bytes to the file. */
2724
2725 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2726 void
2727 mapping_state (enum mstate state)
2728 {
2729 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2730
2731 if (mapstate == state)
2732 /* The mapping symbol has already been emitted.
2733 There is nothing else to do. */
2734 return;
2735
2736 if (state == MAP_ARM || state == MAP_THUMB)
2737 /* PR gas/12931
2738 All ARM instructions require 4-byte alignment.
2739 (Almost) all Thumb instructions require 2-byte alignment.
2740
2741 When emitting instructions into any section, mark the section
2742 appropriately.
2743
2744 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2745 but themselves require 2-byte alignment; this applies to some
2746 PC- relative forms. However, these cases will involve implicit
2747 literal pool generation or an explicit .align >=2, both of
2748 which will cause the section to me marked with sufficient
2749 alignment. Thus, we don't handle those cases here. */
2750 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2751
2752 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2753 /* This case will be evaluated later. */
2754 return;
2755
2756 mapping_state_2 (state, 0);
2757 }
2758
2759 /* Same as mapping_state, but MAX_CHARS bytes have already been
2760 allocated. Put the mapping symbol that far back. */
2761
2762 static void
2763 mapping_state_2 (enum mstate state, int max_chars)
2764 {
2765 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2766
2767 if (!SEG_NORMAL (now_seg))
2768 return;
2769
2770 if (mapstate == state)
2771 /* The mapping symbol has already been emitted.
2772 There is nothing else to do. */
2773 return;
2774
2775 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2776 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2777 {
2778 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2779 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2780
2781 if (add_symbol)
2782 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2783 }
2784
2785 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2786 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2787 }
2788 #undef TRANSITION
2789 #else
2790 #define mapping_state(x) ((void)0)
2791 #define mapping_state_2(x, y) ((void)0)
2792 #endif
2793
2794 /* Find the real, Thumb encoded start of a Thumb function. */
2795
2796 #ifdef OBJ_COFF
2797 static symbolS *
2798 find_real_start (symbolS * symbolP)
2799 {
2800 char * real_start;
2801 const char * name = S_GET_NAME (symbolP);
2802 symbolS * new_target;
2803
2804 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2805 #define STUB_NAME ".real_start_of"
2806
2807 if (name == NULL)
2808 abort ();
2809
2810 /* The compiler may generate BL instructions to local labels because
2811 it needs to perform a branch to a far away location. These labels
2812 do not have a corresponding ".real_start_of" label. We check
2813 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2814 the ".real_start_of" convention for nonlocal branches. */
2815 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2816 return symbolP;
2817
2818 real_start = concat (STUB_NAME, name, NULL);
2819 new_target = symbol_find (real_start);
2820 free (real_start);
2821
2822 if (new_target == NULL)
2823 {
2824 as_warn (_("Failed to find real start of function: %s\n"), name);
2825 new_target = symbolP;
2826 }
2827
2828 return new_target;
2829 }
2830 #endif
2831
2832 static void
2833 opcode_select (int width)
2834 {
2835 switch (width)
2836 {
2837 case 16:
2838 if (! thumb_mode)
2839 {
2840 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2841 as_bad (_("selected processor does not support THUMB opcodes"));
2842
2843 thumb_mode = 1;
2844 /* No need to force the alignment, since we will have been
2845 coming from ARM mode, which is word-aligned. */
2846 record_alignment (now_seg, 1);
2847 }
2848 break;
2849
2850 case 32:
2851 if (thumb_mode)
2852 {
2853 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2854 as_bad (_("selected processor does not support ARM opcodes"));
2855
2856 thumb_mode = 0;
2857
2858 if (!need_pass_2)
2859 frag_align (2, 0, 0);
2860
2861 record_alignment (now_seg, 1);
2862 }
2863 break;
2864
2865 default:
2866 as_bad (_("invalid instruction size selected (%d)"), width);
2867 }
2868 }
2869
2870 static void
2871 s_arm (int ignore ATTRIBUTE_UNUSED)
2872 {
2873 opcode_select (32);
2874 demand_empty_rest_of_line ();
2875 }
2876
2877 static void
2878 s_thumb (int ignore ATTRIBUTE_UNUSED)
2879 {
2880 opcode_select (16);
2881 demand_empty_rest_of_line ();
2882 }
2883
2884 static void
2885 s_code (int unused ATTRIBUTE_UNUSED)
2886 {
2887 int temp;
2888
2889 temp = get_absolute_expression ();
2890 switch (temp)
2891 {
2892 case 16:
2893 case 32:
2894 opcode_select (temp);
2895 break;
2896
2897 default:
2898 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2899 }
2900 }
2901
2902 static void
2903 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2904 {
2905 /* If we are not already in thumb mode go into it, EVEN if
2906 the target processor does not support thumb instructions.
2907 This is used by gcc/config/arm/lib1funcs.asm for example
2908 to compile interworking support functions even if the
2909 target processor should not support interworking. */
2910 if (! thumb_mode)
2911 {
2912 thumb_mode = 2;
2913 record_alignment (now_seg, 1);
2914 }
2915
2916 demand_empty_rest_of_line ();
2917 }
2918
2919 static void
2920 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2921 {
2922 s_thumb (0);
2923
2924 /* The following label is the name/address of the start of a Thumb function.
2925 We need to know this for the interworking support. */
2926 label_is_thumb_function_name = TRUE;
2927 }
2928
2929 /* Perform a .set directive, but also mark the alias as
2930 being a thumb function. */
2931
2932 static void
2933 s_thumb_set (int equiv)
2934 {
2935 /* XXX the following is a duplicate of the code for s_set() in read.c
2936 We cannot just call that code as we need to get at the symbol that
2937 is created. */
2938 char * name;
2939 char delim;
2940 char * end_name;
2941 symbolS * symbolP;
2942
2943 /* Especial apologies for the random logic:
2944 This just grew, and could be parsed much more simply!
2945 Dean - in haste. */
2946 delim = get_symbol_name (& name);
2947 end_name = input_line_pointer;
2948 (void) restore_line_pointer (delim);
2949
2950 if (*input_line_pointer != ',')
2951 {
2952 *end_name = 0;
2953 as_bad (_("expected comma after name \"%s\""), name);
2954 *end_name = delim;
2955 ignore_rest_of_line ();
2956 return;
2957 }
2958
2959 input_line_pointer++;
2960 *end_name = 0;
2961
2962 if (name[0] == '.' && name[1] == '\0')
2963 {
2964 /* XXX - this should not happen to .thumb_set. */
2965 abort ();
2966 }
2967
2968 if ((symbolP = symbol_find (name)) == NULL
2969 && (symbolP = md_undefined_symbol (name)) == NULL)
2970 {
2971 #ifndef NO_LISTING
2972 /* When doing symbol listings, play games with dummy fragments living
2973 outside the normal fragment chain to record the file and line info
2974 for this symbol. */
2975 if (listing & LISTING_SYMBOLS)
2976 {
2977 extern struct list_info_struct * listing_tail;
2978 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2979
2980 memset (dummy_frag, 0, sizeof (fragS));
2981 dummy_frag->fr_type = rs_fill;
2982 dummy_frag->line = listing_tail;
2983 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2984 dummy_frag->fr_symbol = symbolP;
2985 }
2986 else
2987 #endif
2988 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2989
2990 #ifdef OBJ_COFF
2991 /* "set" symbols are local unless otherwise specified. */
2992 SF_SET_LOCAL (symbolP);
2993 #endif /* OBJ_COFF */
2994 } /* Make a new symbol. */
2995
2996 symbol_table_insert (symbolP);
2997
2998 * end_name = delim;
2999
3000 if (equiv
3001 && S_IS_DEFINED (symbolP)
3002 && S_GET_SEGMENT (symbolP) != reg_section)
3003 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3004
3005 pseudo_set (symbolP);
3006
3007 demand_empty_rest_of_line ();
3008
3009 /* XXX Now we come to the Thumb specific bit of code. */
3010
3011 THUMB_SET_FUNC (symbolP, 1);
3012 ARM_SET_THUMB (symbolP, 1);
3013 #if defined OBJ_ELF || defined OBJ_COFF
3014 ARM_SET_INTERWORK (symbolP, support_interwork);
3015 #endif
3016 }
3017
3018 /* Directives: Mode selection. */
3019
3020 /* .syntax [unified|divided] - choose the new unified syntax
3021 (same for Arm and Thumb encoding, modulo slight differences in what
3022 can be represented) or the old divergent syntax for each mode. */
3023 static void
3024 s_syntax (int unused ATTRIBUTE_UNUSED)
3025 {
3026 char *name, delim;
3027
3028 delim = get_symbol_name (& name);
3029
3030 if (!strcasecmp (name, "unified"))
3031 unified_syntax = TRUE;
3032 else if (!strcasecmp (name, "divided"))
3033 unified_syntax = FALSE;
3034 else
3035 {
3036 as_bad (_("unrecognized syntax mode \"%s\""), name);
3037 return;
3038 }
3039 (void) restore_line_pointer (delim);
3040 demand_empty_rest_of_line ();
3041 }
3042
3043 /* Directives: sectioning and alignment. */
3044
3045 static void
3046 s_bss (int ignore ATTRIBUTE_UNUSED)
3047 {
3048 /* We don't support putting frags in the BSS segment, we fake it by
3049 marking in_bss, then looking at s_skip for clues. */
3050 subseg_set (bss_section, 0);
3051 demand_empty_rest_of_line ();
3052
3053 #ifdef md_elf_section_change_hook
3054 md_elf_section_change_hook ();
3055 #endif
3056 }
3057
3058 static void
3059 s_even (int ignore ATTRIBUTE_UNUSED)
3060 {
3061 /* Never make frag if expect extra pass. */
3062 if (!need_pass_2)
3063 frag_align (1, 0, 0);
3064
3065 record_alignment (now_seg, 1);
3066
3067 demand_empty_rest_of_line ();
3068 }
3069
3070 /* Directives: CodeComposer Studio. */
3071
3072 /* .ref (for CodeComposer Studio syntax only). */
3073 static void
3074 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3075 {
3076 if (codecomposer_syntax)
3077 ignore_rest_of_line ();
3078 else
3079 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3080 }
3081
3082 /* If name is not NULL, then it is used for marking the beginning of a
3083 function, whereas if it is NULL then it means the function end. */
3084 static void
3085 asmfunc_debug (const char * name)
3086 {
3087 static const char * last_name = NULL;
3088
3089 if (name != NULL)
3090 {
3091 gas_assert (last_name == NULL);
3092 last_name = name;
3093
3094 if (debug_type == DEBUG_STABS)
3095 stabs_generate_asm_func (name, name);
3096 }
3097 else
3098 {
3099 gas_assert (last_name != NULL);
3100
3101 if (debug_type == DEBUG_STABS)
3102 stabs_generate_asm_endfunc (last_name, last_name);
3103
3104 last_name = NULL;
3105 }
3106 }
3107
3108 static void
3109 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3110 {
3111 if (codecomposer_syntax)
3112 {
3113 switch (asmfunc_state)
3114 {
3115 case OUTSIDE_ASMFUNC:
3116 asmfunc_state = WAITING_ASMFUNC_NAME;
3117 break;
3118
3119 case WAITING_ASMFUNC_NAME:
3120 as_bad (_(".asmfunc repeated."));
3121 break;
3122
3123 case WAITING_ENDASMFUNC:
3124 as_bad (_(".asmfunc without function."));
3125 break;
3126 }
3127 demand_empty_rest_of_line ();
3128 }
3129 else
3130 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3131 }
3132
3133 static void
3134 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3135 {
3136 if (codecomposer_syntax)
3137 {
3138 switch (asmfunc_state)
3139 {
3140 case OUTSIDE_ASMFUNC:
3141 as_bad (_(".endasmfunc without a .asmfunc."));
3142 break;
3143
3144 case WAITING_ASMFUNC_NAME:
3145 as_bad (_(".endasmfunc without function."));
3146 break;
3147
3148 case WAITING_ENDASMFUNC:
3149 asmfunc_state = OUTSIDE_ASMFUNC;
3150 asmfunc_debug (NULL);
3151 break;
3152 }
3153 demand_empty_rest_of_line ();
3154 }
3155 else
3156 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3157 }
3158
3159 static void
3160 s_ccs_def (int name)
3161 {
3162 if (codecomposer_syntax)
3163 s_globl (name);
3164 else
3165 as_bad (_(".def pseudo-op only available with -mccs flag."));
3166 }
3167
3168 /* Directives: Literal pools. */
3169
3170 static literal_pool *
3171 find_literal_pool (void)
3172 {
3173 literal_pool * pool;
3174
3175 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3176 {
3177 if (pool->section == now_seg
3178 && pool->sub_section == now_subseg)
3179 break;
3180 }
3181
3182 return pool;
3183 }
3184
3185 static literal_pool *
3186 find_or_make_literal_pool (void)
3187 {
3188 /* Next literal pool ID number. */
3189 static unsigned int latest_pool_num = 1;
3190 literal_pool * pool;
3191
3192 pool = find_literal_pool ();
3193
3194 if (pool == NULL)
3195 {
3196 /* Create a new pool. */
3197 pool = XNEW (literal_pool);
3198 if (! pool)
3199 return NULL;
3200
3201 pool->next_free_entry = 0;
3202 pool->section = now_seg;
3203 pool->sub_section = now_subseg;
3204 pool->next = list_of_pools;
3205 pool->symbol = NULL;
3206 pool->alignment = 2;
3207
3208 /* Add it to the list. */
3209 list_of_pools = pool;
3210 }
3211
3212 /* New pools, and emptied pools, will have a NULL symbol. */
3213 if (pool->symbol == NULL)
3214 {
3215 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3216 (valueT) 0, &zero_address_frag);
3217 pool->id = latest_pool_num ++;
3218 }
3219
3220 /* Done. */
3221 return pool;
3222 }
3223
3224 /* Add the literal in the global 'inst'
3225 structure to the relevant literal pool. */
3226
3227 static int
3228 add_to_lit_pool (unsigned int nbytes)
3229 {
3230 #define PADDING_SLOT 0x1
3231 #define LIT_ENTRY_SIZE_MASK 0xFF
3232 literal_pool * pool;
3233 unsigned int entry, pool_size = 0;
3234 bfd_boolean padding_slot_p = FALSE;
3235 unsigned imm1 = 0;
3236 unsigned imm2 = 0;
3237
3238 if (nbytes == 8)
3239 {
3240 imm1 = inst.operands[1].imm;
3241 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3242 : inst.reloc.exp.X_unsigned ? 0
3243 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3244 if (target_big_endian)
3245 {
3246 imm1 = imm2;
3247 imm2 = inst.operands[1].imm;
3248 }
3249 }
3250
3251 pool = find_or_make_literal_pool ();
3252
3253 /* Check if this literal value is already in the pool. */
3254 for (entry = 0; entry < pool->next_free_entry; entry ++)
3255 {
3256 if (nbytes == 4)
3257 {
3258 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3259 && (inst.reloc.exp.X_op == O_constant)
3260 && (pool->literals[entry].X_add_number
3261 == inst.reloc.exp.X_add_number)
3262 && (pool->literals[entry].X_md == nbytes)
3263 && (pool->literals[entry].X_unsigned
3264 == inst.reloc.exp.X_unsigned))
3265 break;
3266
3267 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3268 && (inst.reloc.exp.X_op == O_symbol)
3269 && (pool->literals[entry].X_add_number
3270 == inst.reloc.exp.X_add_number)
3271 && (pool->literals[entry].X_add_symbol
3272 == inst.reloc.exp.X_add_symbol)
3273 && (pool->literals[entry].X_op_symbol
3274 == inst.reloc.exp.X_op_symbol)
3275 && (pool->literals[entry].X_md == nbytes))
3276 break;
3277 }
3278 else if ((nbytes == 8)
3279 && !(pool_size & 0x7)
3280 && ((entry + 1) != pool->next_free_entry)
3281 && (pool->literals[entry].X_op == O_constant)
3282 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3283 && (pool->literals[entry].X_unsigned
3284 == inst.reloc.exp.X_unsigned)
3285 && (pool->literals[entry + 1].X_op == O_constant)
3286 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3287 && (pool->literals[entry + 1].X_unsigned
3288 == inst.reloc.exp.X_unsigned))
3289 break;
3290
3291 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3292 if (padding_slot_p && (nbytes == 4))
3293 break;
3294
3295 pool_size += 4;
3296 }
3297
3298 /* Do we need to create a new entry? */
3299 if (entry == pool->next_free_entry)
3300 {
3301 if (entry >= MAX_LITERAL_POOL_SIZE)
3302 {
3303 inst.error = _("literal pool overflow");
3304 return FAIL;
3305 }
3306
3307 if (nbytes == 8)
3308 {
3309 /* For 8-byte entries, we align to an 8-byte boundary,
3310 and split it into two 4-byte entries, because on 32-bit
3311 host, 8-byte constants are treated as big num, thus
3312 saved in "generic_bignum" which will be overwritten
3313 by later assignments.
3314
3315 We also need to make sure there is enough space for
3316 the split.
3317
3318 We also check to make sure the literal operand is a
3319 constant number. */
3320 if (!(inst.reloc.exp.X_op == O_constant
3321 || inst.reloc.exp.X_op == O_big))
3322 {
3323 inst.error = _("invalid type for literal pool");
3324 return FAIL;
3325 }
3326 else if (pool_size & 0x7)
3327 {
3328 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3329 {
3330 inst.error = _("literal pool overflow");
3331 return FAIL;
3332 }
3333
3334 pool->literals[entry] = inst.reloc.exp;
3335 pool->literals[entry].X_op = O_constant;
3336 pool->literals[entry].X_add_number = 0;
3337 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3338 pool->next_free_entry += 1;
3339 pool_size += 4;
3340 }
3341 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3342 {
3343 inst.error = _("literal pool overflow");
3344 return FAIL;
3345 }
3346
3347 pool->literals[entry] = inst.reloc.exp;
3348 pool->literals[entry].X_op = O_constant;
3349 pool->literals[entry].X_add_number = imm1;
3350 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3351 pool->literals[entry++].X_md = 4;
3352 pool->literals[entry] = inst.reloc.exp;
3353 pool->literals[entry].X_op = O_constant;
3354 pool->literals[entry].X_add_number = imm2;
3355 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3356 pool->literals[entry].X_md = 4;
3357 pool->alignment = 3;
3358 pool->next_free_entry += 1;
3359 }
3360 else
3361 {
3362 pool->literals[entry] = inst.reloc.exp;
3363 pool->literals[entry].X_md = 4;
3364 }
3365
3366 #ifdef OBJ_ELF
3367 /* PR ld/12974: Record the location of the first source line to reference
3368 this entry in the literal pool. If it turns out during linking that the
3369 symbol does not exist we will be able to give an accurate line number for
3370 the (first use of the) missing reference. */
3371 if (debug_type == DEBUG_DWARF2)
3372 dwarf2_where (pool->locs + entry);
3373 #endif
3374 pool->next_free_entry += 1;
3375 }
3376 else if (padding_slot_p)
3377 {
3378 pool->literals[entry] = inst.reloc.exp;
3379 pool->literals[entry].X_md = nbytes;
3380 }
3381
3382 inst.reloc.exp.X_op = O_symbol;
3383 inst.reloc.exp.X_add_number = pool_size;
3384 inst.reloc.exp.X_add_symbol = pool->symbol;
3385
3386 return SUCCESS;
3387 }
3388
3389 bfd_boolean
3390 tc_start_label_without_colon (void)
3391 {
3392 bfd_boolean ret = TRUE;
3393
3394 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3395 {
3396 const char *label = input_line_pointer;
3397
3398 while (!is_end_of_line[(int) label[-1]])
3399 --label;
3400
3401 if (*label == '.')
3402 {
3403 as_bad (_("Invalid label '%s'"), label);
3404 ret = FALSE;
3405 }
3406
3407 asmfunc_debug (label);
3408
3409 asmfunc_state = WAITING_ENDASMFUNC;
3410 }
3411
3412 return ret;
3413 }
3414
3415 /* Can't use symbol_new here, so have to create a symbol and then at
3416 a later date assign it a value. That's what these functions do. */
3417
3418 static void
3419 symbol_locate (symbolS * symbolP,
3420 const char * name, /* It is copied, the caller can modify. */
3421 segT segment, /* Segment identifier (SEG_<something>). */
3422 valueT valu, /* Symbol value. */
3423 fragS * frag) /* Associated fragment. */
3424 {
3425 size_t name_length;
3426 char * preserved_copy_of_name;
3427
3428 name_length = strlen (name) + 1; /* +1 for \0. */
3429 obstack_grow (&notes, name, name_length);
3430 preserved_copy_of_name = (char *) obstack_finish (&notes);
3431
3432 #ifdef tc_canonicalize_symbol_name
3433 preserved_copy_of_name =
3434 tc_canonicalize_symbol_name (preserved_copy_of_name);
3435 #endif
3436
3437 S_SET_NAME (symbolP, preserved_copy_of_name);
3438
3439 S_SET_SEGMENT (symbolP, segment);
3440 S_SET_VALUE (symbolP, valu);
3441 symbol_clear_list_pointers (symbolP);
3442
3443 symbol_set_frag (symbolP, frag);
3444
3445 /* Link to end of symbol chain. */
3446 {
3447 extern int symbol_table_frozen;
3448
3449 if (symbol_table_frozen)
3450 abort ();
3451 }
3452
3453 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3454
3455 obj_symbol_new_hook (symbolP);
3456
3457 #ifdef tc_symbol_new_hook
3458 tc_symbol_new_hook (symbolP);
3459 #endif
3460
3461 #ifdef DEBUG_SYMS
3462 verify_symbol_chain (symbol_rootP, symbol_lastP);
3463 #endif /* DEBUG_SYMS */
3464 }
3465
3466 static void
3467 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3468 {
3469 unsigned int entry;
3470 literal_pool * pool;
3471 char sym_name[20];
3472
3473 pool = find_literal_pool ();
3474 if (pool == NULL
3475 || pool->symbol == NULL
3476 || pool->next_free_entry == 0)
3477 return;
3478
3479 /* Align pool as you have word accesses.
3480 Only make a frag if we have to. */
3481 if (!need_pass_2)
3482 frag_align (pool->alignment, 0, 0);
3483
3484 record_alignment (now_seg, 2);
3485
3486 #ifdef OBJ_ELF
3487 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3488 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3489 #endif
3490 sprintf (sym_name, "$$lit_\002%x", pool->id);
3491
3492 symbol_locate (pool->symbol, sym_name, now_seg,
3493 (valueT) frag_now_fix (), frag_now);
3494 symbol_table_insert (pool->symbol);
3495
3496 ARM_SET_THUMB (pool->symbol, thumb_mode);
3497
3498 #if defined OBJ_COFF || defined OBJ_ELF
3499 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3500 #endif
3501
3502 for (entry = 0; entry < pool->next_free_entry; entry ++)
3503 {
3504 #ifdef OBJ_ELF
3505 if (debug_type == DEBUG_DWARF2)
3506 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3507 #endif
3508 /* First output the expression in the instruction to the pool. */
3509 emit_expr (&(pool->literals[entry]),
3510 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3511 }
3512
3513 /* Mark the pool as empty. */
3514 pool->next_free_entry = 0;
3515 pool->symbol = NULL;
3516 }
3517
3518 #ifdef OBJ_ELF
3519 /* Forward declarations for functions below, in the MD interface
3520 section. */
3521 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3522 static valueT create_unwind_entry (int);
3523 static void start_unwind_section (const segT, int);
3524 static void add_unwind_opcode (valueT, int);
3525 static void flush_pending_unwind (void);
3526
3527 /* Directives: Data. */
3528
3529 static void
3530 s_arm_elf_cons (int nbytes)
3531 {
3532 expressionS exp;
3533
3534 #ifdef md_flush_pending_output
3535 md_flush_pending_output ();
3536 #endif
3537
3538 if (is_it_end_of_statement ())
3539 {
3540 demand_empty_rest_of_line ();
3541 return;
3542 }
3543
3544 #ifdef md_cons_align
3545 md_cons_align (nbytes);
3546 #endif
3547
3548 mapping_state (MAP_DATA);
3549 do
3550 {
3551 int reloc;
3552 char *base = input_line_pointer;
3553
3554 expression (& exp);
3555
3556 if (exp.X_op != O_symbol)
3557 emit_expr (&exp, (unsigned int) nbytes);
3558 else
3559 {
3560 char *before_reloc = input_line_pointer;
3561 reloc = parse_reloc (&input_line_pointer);
3562 if (reloc == -1)
3563 {
3564 as_bad (_("unrecognized relocation suffix"));
3565 ignore_rest_of_line ();
3566 return;
3567 }
3568 else if (reloc == BFD_RELOC_UNUSED)
3569 emit_expr (&exp, (unsigned int) nbytes);
3570 else
3571 {
3572 reloc_howto_type *howto = (reloc_howto_type *)
3573 bfd_reloc_type_lookup (stdoutput,
3574 (bfd_reloc_code_real_type) reloc);
3575 int size = bfd_get_reloc_size (howto);
3576
3577 if (reloc == BFD_RELOC_ARM_PLT32)
3578 {
3579 as_bad (_("(plt) is only valid on branch targets"));
3580 reloc = BFD_RELOC_UNUSED;
3581 size = 0;
3582 }
3583
3584 if (size > nbytes)
3585 as_bad (ngettext ("%s relocations do not fit in %d byte",
3586 "%s relocations do not fit in %d bytes",
3587 nbytes),
3588 howto->name, nbytes);
3589 else
3590 {
3591 /* We've parsed an expression stopping at O_symbol.
3592 But there may be more expression left now that we
3593 have parsed the relocation marker. Parse it again.
3594 XXX Surely there is a cleaner way to do this. */
3595 char *p = input_line_pointer;
3596 int offset;
3597 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3598
3599 memcpy (save_buf, base, input_line_pointer - base);
3600 memmove (base + (input_line_pointer - before_reloc),
3601 base, before_reloc - base);
3602
3603 input_line_pointer = base + (input_line_pointer-before_reloc);
3604 expression (&exp);
3605 memcpy (base, save_buf, p - base);
3606
3607 offset = nbytes - size;
3608 p = frag_more (nbytes);
3609 memset (p, 0, nbytes);
3610 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3611 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3612 free (save_buf);
3613 }
3614 }
3615 }
3616 }
3617 while (*input_line_pointer++ == ',');
3618
3619 /* Put terminator back into stream. */
3620 input_line_pointer --;
3621 demand_empty_rest_of_line ();
3622 }
3623
3624 /* Emit an expression containing a 32-bit thumb instruction.
3625 Implementation based on put_thumb32_insn. */
3626
3627 static void
3628 emit_thumb32_expr (expressionS * exp)
3629 {
3630 expressionS exp_high = *exp;
3631
3632 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3633 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3634 exp->X_add_number &= 0xffff;
3635 emit_expr (exp, (unsigned int) THUMB_SIZE);
3636 }
3637
3638 /* Guess the instruction size based on the opcode. */
3639
3640 static int
3641 thumb_insn_size (int opcode)
3642 {
3643 if ((unsigned int) opcode < 0xe800u)
3644 return 2;
3645 else if ((unsigned int) opcode >= 0xe8000000u)
3646 return 4;
3647 else
3648 return 0;
3649 }
3650
3651 static bfd_boolean
3652 emit_insn (expressionS *exp, int nbytes)
3653 {
3654 int size = 0;
3655
3656 if (exp->X_op == O_constant)
3657 {
3658 size = nbytes;
3659
3660 if (size == 0)
3661 size = thumb_insn_size (exp->X_add_number);
3662
3663 if (size != 0)
3664 {
3665 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3666 {
3667 as_bad (_(".inst.n operand too big. "\
3668 "Use .inst.w instead"));
3669 size = 0;
3670 }
3671 else
3672 {
3673 if (now_it.state == AUTOMATIC_IT_BLOCK)
3674 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3675 else
3676 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3677
3678 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3679 emit_thumb32_expr (exp);
3680 else
3681 emit_expr (exp, (unsigned int) size);
3682
3683 it_fsm_post_encode ();
3684 }
3685 }
3686 else
3687 as_bad (_("cannot determine Thumb instruction size. " \
3688 "Use .inst.n/.inst.w instead"));
3689 }
3690 else
3691 as_bad (_("constant expression required"));
3692
3693 return (size != 0);
3694 }
3695
3696 /* Like s_arm_elf_cons but do not use md_cons_align and
3697 set the mapping state to MAP_ARM/MAP_THUMB. */
3698
3699 static void
3700 s_arm_elf_inst (int nbytes)
3701 {
3702 if (is_it_end_of_statement ())
3703 {
3704 demand_empty_rest_of_line ();
3705 return;
3706 }
3707
3708 /* Calling mapping_state () here will not change ARM/THUMB,
3709 but will ensure not to be in DATA state. */
3710
3711 if (thumb_mode)
3712 mapping_state (MAP_THUMB);
3713 else
3714 {
3715 if (nbytes != 0)
3716 {
3717 as_bad (_("width suffixes are invalid in ARM mode"));
3718 ignore_rest_of_line ();
3719 return;
3720 }
3721
3722 nbytes = 4;
3723
3724 mapping_state (MAP_ARM);
3725 }
3726
3727 do
3728 {
3729 expressionS exp;
3730
3731 expression (& exp);
3732
3733 if (! emit_insn (& exp, nbytes))
3734 {
3735 ignore_rest_of_line ();
3736 return;
3737 }
3738 }
3739 while (*input_line_pointer++ == ',');
3740
3741 /* Put terminator back into stream. */
3742 input_line_pointer --;
3743 demand_empty_rest_of_line ();
3744 }
3745
3746 /* Parse a .rel31 directive. */
3747
3748 static void
3749 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3750 {
3751 expressionS exp;
3752 char *p;
3753 valueT highbit;
3754
3755 highbit = 0;
3756 if (*input_line_pointer == '1')
3757 highbit = 0x80000000;
3758 else if (*input_line_pointer != '0')
3759 as_bad (_("expected 0 or 1"));
3760
3761 input_line_pointer++;
3762 if (*input_line_pointer != ',')
3763 as_bad (_("missing comma"));
3764 input_line_pointer++;
3765
3766 #ifdef md_flush_pending_output
3767 md_flush_pending_output ();
3768 #endif
3769
3770 #ifdef md_cons_align
3771 md_cons_align (4);
3772 #endif
3773
3774 mapping_state (MAP_DATA);
3775
3776 expression (&exp);
3777
3778 p = frag_more (4);
3779 md_number_to_chars (p, highbit, 4);
3780 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3781 BFD_RELOC_ARM_PREL31);
3782
3783 demand_empty_rest_of_line ();
3784 }
3785
3786 /* Directives: AEABI stack-unwind tables. */
3787
3788 /* Parse an unwind_fnstart directive. Simply records the current location. */
3789
3790 static void
3791 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3792 {
3793 demand_empty_rest_of_line ();
3794 if (unwind.proc_start)
3795 {
3796 as_bad (_("duplicate .fnstart directive"));
3797 return;
3798 }
3799
3800 /* Mark the start of the function. */
3801 unwind.proc_start = expr_build_dot ();
3802
3803 /* Reset the rest of the unwind info. */
3804 unwind.opcode_count = 0;
3805 unwind.table_entry = NULL;
3806 unwind.personality_routine = NULL;
3807 unwind.personality_index = -1;
3808 unwind.frame_size = 0;
3809 unwind.fp_offset = 0;
3810 unwind.fp_reg = REG_SP;
3811 unwind.fp_used = 0;
3812 unwind.sp_restored = 0;
3813 }
3814
3815
3816 /* Parse a handlerdata directive. Creates the exception handling table entry
3817 for the function. */
3818
3819 static void
3820 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3821 {
3822 demand_empty_rest_of_line ();
3823 if (!unwind.proc_start)
3824 as_bad (MISSING_FNSTART);
3825
3826 if (unwind.table_entry)
3827 as_bad (_("duplicate .handlerdata directive"));
3828
3829 create_unwind_entry (1);
3830 }
3831
3832 /* Parse an unwind_fnend directive. Generates the index table entry. */
3833
3834 static void
3835 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3836 {
3837 long where;
3838 char *ptr;
3839 valueT val;
3840 unsigned int marked_pr_dependency;
3841
3842 demand_empty_rest_of_line ();
3843
3844 if (!unwind.proc_start)
3845 {
3846 as_bad (_(".fnend directive without .fnstart"));
3847 return;
3848 }
3849
3850 /* Add eh table entry. */
3851 if (unwind.table_entry == NULL)
3852 val = create_unwind_entry (0);
3853 else
3854 val = 0;
3855
3856 /* Add index table entry. This is two words. */
3857 start_unwind_section (unwind.saved_seg, 1);
3858 frag_align (2, 0, 0);
3859 record_alignment (now_seg, 2);
3860
3861 ptr = frag_more (8);
3862 memset (ptr, 0, 8);
3863 where = frag_now_fix () - 8;
3864
3865 /* Self relative offset of the function start. */
3866 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3867 BFD_RELOC_ARM_PREL31);
3868
3869 /* Indicate dependency on EHABI-defined personality routines to the
3870 linker, if it hasn't been done already. */
3871 marked_pr_dependency
3872 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3873 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3874 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3875 {
3876 static const char *const name[] =
3877 {
3878 "__aeabi_unwind_cpp_pr0",
3879 "__aeabi_unwind_cpp_pr1",
3880 "__aeabi_unwind_cpp_pr2"
3881 };
3882 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3883 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3884 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3885 |= 1 << unwind.personality_index;
3886 }
3887
3888 if (val)
3889 /* Inline exception table entry. */
3890 md_number_to_chars (ptr + 4, val, 4);
3891 else
3892 /* Self relative offset of the table entry. */
3893 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3894 BFD_RELOC_ARM_PREL31);
3895
3896 /* Restore the original section. */
3897 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3898
3899 unwind.proc_start = NULL;
3900 }
3901
3902
3903 /* Parse an unwind_cantunwind directive. */
3904
3905 static void
3906 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3907 {
3908 demand_empty_rest_of_line ();
3909 if (!unwind.proc_start)
3910 as_bad (MISSING_FNSTART);
3911
3912 if (unwind.personality_routine || unwind.personality_index != -1)
3913 as_bad (_("personality routine specified for cantunwind frame"));
3914
3915 unwind.personality_index = -2;
3916 }
3917
3918
3919 /* Parse a personalityindex directive. */
3920
3921 static void
3922 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3923 {
3924 expressionS exp;
3925
3926 if (!unwind.proc_start)
3927 as_bad (MISSING_FNSTART);
3928
3929 if (unwind.personality_routine || unwind.personality_index != -1)
3930 as_bad (_("duplicate .personalityindex directive"));
3931
3932 expression (&exp);
3933
3934 if (exp.X_op != O_constant
3935 || exp.X_add_number < 0 || exp.X_add_number > 15)
3936 {
3937 as_bad (_("bad personality routine number"));
3938 ignore_rest_of_line ();
3939 return;
3940 }
3941
3942 unwind.personality_index = exp.X_add_number;
3943
3944 demand_empty_rest_of_line ();
3945 }
3946
3947
3948 /* Parse a personality directive. */
3949
3950 static void
3951 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3952 {
3953 char *name, *p, c;
3954
3955 if (!unwind.proc_start)
3956 as_bad (MISSING_FNSTART);
3957
3958 if (unwind.personality_routine || unwind.personality_index != -1)
3959 as_bad (_("duplicate .personality directive"));
3960
3961 c = get_symbol_name (& name);
3962 p = input_line_pointer;
3963 if (c == '"')
3964 ++ input_line_pointer;
3965 unwind.personality_routine = symbol_find_or_make (name);
3966 *p = c;
3967 demand_empty_rest_of_line ();
3968 }
3969
3970
3971 /* Parse a directive saving core registers. */
3972
3973 static void
3974 s_arm_unwind_save_core (void)
3975 {
3976 valueT op;
3977 long range;
3978 int n;
3979
3980 range = parse_reg_list (&input_line_pointer);
3981 if (range == FAIL)
3982 {
3983 as_bad (_("expected register list"));
3984 ignore_rest_of_line ();
3985 return;
3986 }
3987
3988 demand_empty_rest_of_line ();
3989
3990 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3991 into .unwind_save {..., sp...}. We aren't bothered about the value of
3992 ip because it is clobbered by calls. */
3993 if (unwind.sp_restored && unwind.fp_reg == 12
3994 && (range & 0x3000) == 0x1000)
3995 {
3996 unwind.opcode_count--;
3997 unwind.sp_restored = 0;
3998 range = (range | 0x2000) & ~0x1000;
3999 unwind.pending_offset = 0;
4000 }
4001
4002 /* Pop r4-r15. */
4003 if (range & 0xfff0)
4004 {
4005 /* See if we can use the short opcodes. These pop a block of up to 8
4006 registers starting with r4, plus maybe r14. */
4007 for (n = 0; n < 8; n++)
4008 {
4009 /* Break at the first non-saved register. */
4010 if ((range & (1 << (n + 4))) == 0)
4011 break;
4012 }
4013 /* See if there are any other bits set. */
4014 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4015 {
4016 /* Use the long form. */
4017 op = 0x8000 | ((range >> 4) & 0xfff);
4018 add_unwind_opcode (op, 2);
4019 }
4020 else
4021 {
4022 /* Use the short form. */
4023 if (range & 0x4000)
4024 op = 0xa8; /* Pop r14. */
4025 else
4026 op = 0xa0; /* Do not pop r14. */
4027 op |= (n - 1);
4028 add_unwind_opcode (op, 1);
4029 }
4030 }
4031
4032 /* Pop r0-r3. */
4033 if (range & 0xf)
4034 {
4035 op = 0xb100 | (range & 0xf);
4036 add_unwind_opcode (op, 2);
4037 }
4038
4039 /* Record the number of bytes pushed. */
4040 for (n = 0; n < 16; n++)
4041 {
4042 if (range & (1 << n))
4043 unwind.frame_size += 4;
4044 }
4045 }
4046
4047
4048 /* Parse a directive saving FPA registers. */
4049
4050 static void
4051 s_arm_unwind_save_fpa (int reg)
4052 {
4053 expressionS exp;
4054 int num_regs;
4055 valueT op;
4056
4057 /* Get Number of registers to transfer. */
4058 if (skip_past_comma (&input_line_pointer) != FAIL)
4059 expression (&exp);
4060 else
4061 exp.X_op = O_illegal;
4062
4063 if (exp.X_op != O_constant)
4064 {
4065 as_bad (_("expected , <constant>"));
4066 ignore_rest_of_line ();
4067 return;
4068 }
4069
4070 num_regs = exp.X_add_number;
4071
4072 if (num_regs < 1 || num_regs > 4)
4073 {
4074 as_bad (_("number of registers must be in the range [1:4]"));
4075 ignore_rest_of_line ();
4076 return;
4077 }
4078
4079 demand_empty_rest_of_line ();
4080
4081 if (reg == 4)
4082 {
4083 /* Short form. */
4084 op = 0xb4 | (num_regs - 1);
4085 add_unwind_opcode (op, 1);
4086 }
4087 else
4088 {
4089 /* Long form. */
4090 op = 0xc800 | (reg << 4) | (num_regs - 1);
4091 add_unwind_opcode (op, 2);
4092 }
4093 unwind.frame_size += num_regs * 12;
4094 }
4095
4096
4097 /* Parse a directive saving VFP registers for ARMv6 and above. */
4098
4099 static void
4100 s_arm_unwind_save_vfp_armv6 (void)
4101 {
4102 int count;
4103 unsigned int start;
4104 valueT op;
4105 int num_vfpv3_regs = 0;
4106 int num_regs_below_16;
4107
4108 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4109 if (count == FAIL)
4110 {
4111 as_bad (_("expected register list"));
4112 ignore_rest_of_line ();
4113 return;
4114 }
4115
4116 demand_empty_rest_of_line ();
4117
4118 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4119 than FSTMX/FLDMX-style ones). */
4120
4121 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4122 if (start >= 16)
4123 num_vfpv3_regs = count;
4124 else if (start + count > 16)
4125 num_vfpv3_regs = start + count - 16;
4126
4127 if (num_vfpv3_regs > 0)
4128 {
4129 int start_offset = start > 16 ? start - 16 : 0;
4130 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4131 add_unwind_opcode (op, 2);
4132 }
4133
4134 /* Generate opcode for registers numbered in the range 0 .. 15. */
4135 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4136 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4137 if (num_regs_below_16 > 0)
4138 {
4139 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4140 add_unwind_opcode (op, 2);
4141 }
4142
4143 unwind.frame_size += count * 8;
4144 }
4145
4146
4147 /* Parse a directive saving VFP registers for pre-ARMv6. */
4148
4149 static void
4150 s_arm_unwind_save_vfp (void)
4151 {
4152 int count;
4153 unsigned int reg;
4154 valueT op;
4155
4156 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4157 if (count == FAIL)
4158 {
4159 as_bad (_("expected register list"));
4160 ignore_rest_of_line ();
4161 return;
4162 }
4163
4164 demand_empty_rest_of_line ();
4165
4166 if (reg == 8)
4167 {
4168 /* Short form. */
4169 op = 0xb8 | (count - 1);
4170 add_unwind_opcode (op, 1);
4171 }
4172 else
4173 {
4174 /* Long form. */
4175 op = 0xb300 | (reg << 4) | (count - 1);
4176 add_unwind_opcode (op, 2);
4177 }
4178 unwind.frame_size += count * 8 + 4;
4179 }
4180
4181
4182 /* Parse a directive saving iWMMXt data registers. */
4183
4184 static void
4185 s_arm_unwind_save_mmxwr (void)
4186 {
4187 int reg;
4188 int hi_reg;
4189 int i;
4190 unsigned mask = 0;
4191 valueT op;
4192
4193 if (*input_line_pointer == '{')
4194 input_line_pointer++;
4195
4196 do
4197 {
4198 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4199
4200 if (reg == FAIL)
4201 {
4202 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4203 goto error;
4204 }
4205
4206 if (mask >> reg)
4207 as_tsktsk (_("register list not in ascending order"));
4208 mask |= 1 << reg;
4209
4210 if (*input_line_pointer == '-')
4211 {
4212 input_line_pointer++;
4213 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4214 if (hi_reg == FAIL)
4215 {
4216 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4217 goto error;
4218 }
4219 else if (reg >= hi_reg)
4220 {
4221 as_bad (_("bad register range"));
4222 goto error;
4223 }
4224 for (; reg < hi_reg; reg++)
4225 mask |= 1 << reg;
4226 }
4227 }
4228 while (skip_past_comma (&input_line_pointer) != FAIL);
4229
4230 skip_past_char (&input_line_pointer, '}');
4231
4232 demand_empty_rest_of_line ();
4233
4234 /* Generate any deferred opcodes because we're going to be looking at
4235 the list. */
4236 flush_pending_unwind ();
4237
4238 for (i = 0; i < 16; i++)
4239 {
4240 if (mask & (1 << i))
4241 unwind.frame_size += 8;
4242 }
4243
4244 /* Attempt to combine with a previous opcode. We do this because gcc
4245 likes to output separate unwind directives for a single block of
4246 registers. */
4247 if (unwind.opcode_count > 0)
4248 {
4249 i = unwind.opcodes[unwind.opcode_count - 1];
4250 if ((i & 0xf8) == 0xc0)
4251 {
4252 i &= 7;
4253 /* Only merge if the blocks are contiguous. */
4254 if (i < 6)
4255 {
4256 if ((mask & 0xfe00) == (1 << 9))
4257 {
4258 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4259 unwind.opcode_count--;
4260 }
4261 }
4262 else if (i == 6 && unwind.opcode_count >= 2)
4263 {
4264 i = unwind.opcodes[unwind.opcode_count - 2];
4265 reg = i >> 4;
4266 i &= 0xf;
4267
4268 op = 0xffff << (reg - 1);
4269 if (reg > 0
4270 && ((mask & op) == (1u << (reg - 1))))
4271 {
4272 op = (1 << (reg + i + 1)) - 1;
4273 op &= ~((1 << reg) - 1);
4274 mask |= op;
4275 unwind.opcode_count -= 2;
4276 }
4277 }
4278 }
4279 }
4280
4281 hi_reg = 15;
4282 /* We want to generate opcodes in the order the registers have been
4283 saved, ie. descending order. */
4284 for (reg = 15; reg >= -1; reg--)
4285 {
4286 /* Save registers in blocks. */
4287 if (reg < 0
4288 || !(mask & (1 << reg)))
4289 {
4290 /* We found an unsaved reg. Generate opcodes to save the
4291 preceding block. */
4292 if (reg != hi_reg)
4293 {
4294 if (reg == 9)
4295 {
4296 /* Short form. */
4297 op = 0xc0 | (hi_reg - 10);
4298 add_unwind_opcode (op, 1);
4299 }
4300 else
4301 {
4302 /* Long form. */
4303 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4304 add_unwind_opcode (op, 2);
4305 }
4306 }
4307 hi_reg = reg - 1;
4308 }
4309 }
4310
4311 return;
4312 error:
4313 ignore_rest_of_line ();
4314 }
4315
4316 static void
4317 s_arm_unwind_save_mmxwcg (void)
4318 {
4319 int reg;
4320 int hi_reg;
4321 unsigned mask = 0;
4322 valueT op;
4323
4324 if (*input_line_pointer == '{')
4325 input_line_pointer++;
4326
4327 skip_whitespace (input_line_pointer);
4328
4329 do
4330 {
4331 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4332
4333 if (reg == FAIL)
4334 {
4335 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4336 goto error;
4337 }
4338
4339 reg -= 8;
4340 if (mask >> reg)
4341 as_tsktsk (_("register list not in ascending order"));
4342 mask |= 1 << reg;
4343
4344 if (*input_line_pointer == '-')
4345 {
4346 input_line_pointer++;
4347 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4348 if (hi_reg == FAIL)
4349 {
4350 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4351 goto error;
4352 }
4353 else if (reg >= hi_reg)
4354 {
4355 as_bad (_("bad register range"));
4356 goto error;
4357 }
4358 for (; reg < hi_reg; reg++)
4359 mask |= 1 << reg;
4360 }
4361 }
4362 while (skip_past_comma (&input_line_pointer) != FAIL);
4363
4364 skip_past_char (&input_line_pointer, '}');
4365
4366 demand_empty_rest_of_line ();
4367
4368 /* Generate any deferred opcodes because we're going to be looking at
4369 the list. */
4370 flush_pending_unwind ();
4371
4372 for (reg = 0; reg < 16; reg++)
4373 {
4374 if (mask & (1 << reg))
4375 unwind.frame_size += 4;
4376 }
4377 op = 0xc700 | mask;
4378 add_unwind_opcode (op, 2);
4379 return;
4380 error:
4381 ignore_rest_of_line ();
4382 }
4383
4384
4385 /* Parse an unwind_save directive.
4386 If the argument is non-zero, this is a .vsave directive. */
4387
4388 static void
4389 s_arm_unwind_save (int arch_v6)
4390 {
4391 char *peek;
4392 struct reg_entry *reg;
4393 bfd_boolean had_brace = FALSE;
4394
4395 if (!unwind.proc_start)
4396 as_bad (MISSING_FNSTART);
4397
4398 /* Figure out what sort of save we have. */
4399 peek = input_line_pointer;
4400
4401 if (*peek == '{')
4402 {
4403 had_brace = TRUE;
4404 peek++;
4405 }
4406
4407 reg = arm_reg_parse_multi (&peek);
4408
4409 if (!reg)
4410 {
4411 as_bad (_("register expected"));
4412 ignore_rest_of_line ();
4413 return;
4414 }
4415
4416 switch (reg->type)
4417 {
4418 case REG_TYPE_FN:
4419 if (had_brace)
4420 {
4421 as_bad (_("FPA .unwind_save does not take a register list"));
4422 ignore_rest_of_line ();
4423 return;
4424 }
4425 input_line_pointer = peek;
4426 s_arm_unwind_save_fpa (reg->number);
4427 return;
4428
4429 case REG_TYPE_RN:
4430 s_arm_unwind_save_core ();
4431 return;
4432
4433 case REG_TYPE_VFD:
4434 if (arch_v6)
4435 s_arm_unwind_save_vfp_armv6 ();
4436 else
4437 s_arm_unwind_save_vfp ();
4438 return;
4439
4440 case REG_TYPE_MMXWR:
4441 s_arm_unwind_save_mmxwr ();
4442 return;
4443
4444 case REG_TYPE_MMXWCG:
4445 s_arm_unwind_save_mmxwcg ();
4446 return;
4447
4448 default:
4449 as_bad (_(".unwind_save does not support this kind of register"));
4450 ignore_rest_of_line ();
4451 }
4452 }
4453
4454
4455 /* Parse an unwind_movsp directive. */
4456
4457 static void
4458 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4459 {
4460 int reg;
4461 valueT op;
4462 int offset;
4463
4464 if (!unwind.proc_start)
4465 as_bad (MISSING_FNSTART);
4466
4467 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4468 if (reg == FAIL)
4469 {
4470 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4471 ignore_rest_of_line ();
4472 return;
4473 }
4474
4475 /* Optional constant. */
4476 if (skip_past_comma (&input_line_pointer) != FAIL)
4477 {
4478 if (immediate_for_directive (&offset) == FAIL)
4479 return;
4480 }
4481 else
4482 offset = 0;
4483
4484 demand_empty_rest_of_line ();
4485
4486 if (reg == REG_SP || reg == REG_PC)
4487 {
4488 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4489 return;
4490 }
4491
4492 if (unwind.fp_reg != REG_SP)
4493 as_bad (_("unexpected .unwind_movsp directive"));
4494
4495 /* Generate opcode to restore the value. */
4496 op = 0x90 | reg;
4497 add_unwind_opcode (op, 1);
4498
4499 /* Record the information for later. */
4500 unwind.fp_reg = reg;
4501 unwind.fp_offset = unwind.frame_size - offset;
4502 unwind.sp_restored = 1;
4503 }
4504
4505 /* Parse an unwind_pad directive. */
4506
4507 static void
4508 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4509 {
4510 int offset;
4511
4512 if (!unwind.proc_start)
4513 as_bad (MISSING_FNSTART);
4514
4515 if (immediate_for_directive (&offset) == FAIL)
4516 return;
4517
4518 if (offset & 3)
4519 {
4520 as_bad (_("stack increment must be multiple of 4"));
4521 ignore_rest_of_line ();
4522 return;
4523 }
4524
4525 /* Don't generate any opcodes, just record the details for later. */
4526 unwind.frame_size += offset;
4527 unwind.pending_offset += offset;
4528
4529 demand_empty_rest_of_line ();
4530 }
4531
4532 /* Parse an unwind_setfp directive. */
4533
4534 static void
4535 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4536 {
4537 int sp_reg;
4538 int fp_reg;
4539 int offset;
4540
4541 if (!unwind.proc_start)
4542 as_bad (MISSING_FNSTART);
4543
4544 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4545 if (skip_past_comma (&input_line_pointer) == FAIL)
4546 sp_reg = FAIL;
4547 else
4548 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4549
4550 if (fp_reg == FAIL || sp_reg == FAIL)
4551 {
4552 as_bad (_("expected <reg>, <reg>"));
4553 ignore_rest_of_line ();
4554 return;
4555 }
4556
4557 /* Optional constant. */
4558 if (skip_past_comma (&input_line_pointer) != FAIL)
4559 {
4560 if (immediate_for_directive (&offset) == FAIL)
4561 return;
4562 }
4563 else
4564 offset = 0;
4565
4566 demand_empty_rest_of_line ();
4567
4568 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4569 {
4570 as_bad (_("register must be either sp or set by a previous"
4571 "unwind_movsp directive"));
4572 return;
4573 }
4574
4575 /* Don't generate any opcodes, just record the information for later. */
4576 unwind.fp_reg = fp_reg;
4577 unwind.fp_used = 1;
4578 if (sp_reg == REG_SP)
4579 unwind.fp_offset = unwind.frame_size - offset;
4580 else
4581 unwind.fp_offset -= offset;
4582 }
4583
4584 /* Parse an unwind_raw directive. */
4585
4586 static void
4587 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4588 {
4589 expressionS exp;
4590 /* This is an arbitrary limit. */
4591 unsigned char op[16];
4592 int count;
4593
4594 if (!unwind.proc_start)
4595 as_bad (MISSING_FNSTART);
4596
4597 expression (&exp);
4598 if (exp.X_op == O_constant
4599 && skip_past_comma (&input_line_pointer) != FAIL)
4600 {
4601 unwind.frame_size += exp.X_add_number;
4602 expression (&exp);
4603 }
4604 else
4605 exp.X_op = O_illegal;
4606
4607 if (exp.X_op != O_constant)
4608 {
4609 as_bad (_("expected <offset>, <opcode>"));
4610 ignore_rest_of_line ();
4611 return;
4612 }
4613
4614 count = 0;
4615
4616 /* Parse the opcode. */
4617 for (;;)
4618 {
4619 if (count >= 16)
4620 {
4621 as_bad (_("unwind opcode too long"));
4622 ignore_rest_of_line ();
4623 }
4624 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4625 {
4626 as_bad (_("invalid unwind opcode"));
4627 ignore_rest_of_line ();
4628 return;
4629 }
4630 op[count++] = exp.X_add_number;
4631
4632 /* Parse the next byte. */
4633 if (skip_past_comma (&input_line_pointer) == FAIL)
4634 break;
4635
4636 expression (&exp);
4637 }
4638
4639 /* Add the opcode bytes in reverse order. */
4640 while (count--)
4641 add_unwind_opcode (op[count], 1);
4642
4643 demand_empty_rest_of_line ();
4644 }
4645
4646
4647 /* Parse a .eabi_attribute directive. */
4648
4649 static void
4650 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4651 {
4652 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4653
4654 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4655 attributes_set_explicitly[tag] = 1;
4656 }
4657
4658 /* Emit a tls fix for the symbol. */
4659
4660 static void
4661 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4662 {
4663 char *p;
4664 expressionS exp;
4665 #ifdef md_flush_pending_output
4666 md_flush_pending_output ();
4667 #endif
4668
4669 #ifdef md_cons_align
4670 md_cons_align (4);
4671 #endif
4672
4673 /* Since we're just labelling the code, there's no need to define a
4674 mapping symbol. */
4675 expression (&exp);
4676 p = obstack_next_free (&frchain_now->frch_obstack);
4677 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4678 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4679 : BFD_RELOC_ARM_TLS_DESCSEQ);
4680 }
4681 #endif /* OBJ_ELF */
4682
4683 static void s_arm_arch (int);
4684 static void s_arm_object_arch (int);
4685 static void s_arm_cpu (int);
4686 static void s_arm_fpu (int);
4687 static void s_arm_arch_extension (int);
4688
4689 #ifdef TE_PE
4690
4691 static void
4692 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4693 {
4694 expressionS exp;
4695
4696 do
4697 {
4698 expression (&exp);
4699 if (exp.X_op == O_symbol)
4700 exp.X_op = O_secrel;
4701
4702 emit_expr (&exp, 4);
4703 }
4704 while (*input_line_pointer++ == ',');
4705
4706 input_line_pointer--;
4707 demand_empty_rest_of_line ();
4708 }
4709 #endif /* TE_PE */
4710
4711 /* This table describes all the machine specific pseudo-ops the assembler
4712 has to support. The fields are:
4713 pseudo-op name without dot
4714 function to call to execute this pseudo-op
4715 Integer arg to pass to the function. */
4716
4717 const pseudo_typeS md_pseudo_table[] =
4718 {
4719 /* Never called because '.req' does not start a line. */
4720 { "req", s_req, 0 },
4721 /* Following two are likewise never called. */
4722 { "dn", s_dn, 0 },
4723 { "qn", s_qn, 0 },
4724 { "unreq", s_unreq, 0 },
4725 { "bss", s_bss, 0 },
4726 { "align", s_align_ptwo, 2 },
4727 { "arm", s_arm, 0 },
4728 { "thumb", s_thumb, 0 },
4729 { "code", s_code, 0 },
4730 { "force_thumb", s_force_thumb, 0 },
4731 { "thumb_func", s_thumb_func, 0 },
4732 { "thumb_set", s_thumb_set, 0 },
4733 { "even", s_even, 0 },
4734 { "ltorg", s_ltorg, 0 },
4735 { "pool", s_ltorg, 0 },
4736 { "syntax", s_syntax, 0 },
4737 { "cpu", s_arm_cpu, 0 },
4738 { "arch", s_arm_arch, 0 },
4739 { "object_arch", s_arm_object_arch, 0 },
4740 { "fpu", s_arm_fpu, 0 },
4741 { "arch_extension", s_arm_arch_extension, 0 },
4742 #ifdef OBJ_ELF
4743 { "word", s_arm_elf_cons, 4 },
4744 { "long", s_arm_elf_cons, 4 },
4745 { "inst.n", s_arm_elf_inst, 2 },
4746 { "inst.w", s_arm_elf_inst, 4 },
4747 { "inst", s_arm_elf_inst, 0 },
4748 { "rel31", s_arm_rel31, 0 },
4749 { "fnstart", s_arm_unwind_fnstart, 0 },
4750 { "fnend", s_arm_unwind_fnend, 0 },
4751 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4752 { "personality", s_arm_unwind_personality, 0 },
4753 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4754 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4755 { "save", s_arm_unwind_save, 0 },
4756 { "vsave", s_arm_unwind_save, 1 },
4757 { "movsp", s_arm_unwind_movsp, 0 },
4758 { "pad", s_arm_unwind_pad, 0 },
4759 { "setfp", s_arm_unwind_setfp, 0 },
4760 { "unwind_raw", s_arm_unwind_raw, 0 },
4761 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4762 { "tlsdescseq", s_arm_tls_descseq, 0 },
4763 #else
4764 { "word", cons, 4},
4765
4766 /* These are used for dwarf. */
4767 {"2byte", cons, 2},
4768 {"4byte", cons, 4},
4769 {"8byte", cons, 8},
4770 /* These are used for dwarf2. */
4771 { "file", dwarf2_directive_file, 0 },
4772 { "loc", dwarf2_directive_loc, 0 },
4773 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4774 #endif
4775 { "extend", float_cons, 'x' },
4776 { "ldouble", float_cons, 'x' },
4777 { "packed", float_cons, 'p' },
4778 #ifdef TE_PE
4779 {"secrel32", pe_directive_secrel, 0},
4780 #endif
4781
4782 /* These are for compatibility with CodeComposer Studio. */
4783 {"ref", s_ccs_ref, 0},
4784 {"def", s_ccs_def, 0},
4785 {"asmfunc", s_ccs_asmfunc, 0},
4786 {"endasmfunc", s_ccs_endasmfunc, 0},
4787
4788 { 0, 0, 0 }
4789 };
4790 \f
4791 /* Parser functions used exclusively in instruction operands. */
4792
4793 /* Generic immediate-value read function for use in insn parsing.
4794 STR points to the beginning of the immediate (the leading #);
4795 VAL receives the value; if the value is outside [MIN, MAX]
4796 issue an error. PREFIX_OPT is true if the immediate prefix is
4797 optional. */
4798
4799 static int
4800 parse_immediate (char **str, int *val, int min, int max,
4801 bfd_boolean prefix_opt)
4802 {
4803 expressionS exp;
4804
4805 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4806 if (exp.X_op != O_constant)
4807 {
4808 inst.error = _("constant expression required");
4809 return FAIL;
4810 }
4811
4812 if (exp.X_add_number < min || exp.X_add_number > max)
4813 {
4814 inst.error = _("immediate value out of range");
4815 return FAIL;
4816 }
4817
4818 *val = exp.X_add_number;
4819 return SUCCESS;
4820 }
4821
4822 /* Less-generic immediate-value read function with the possibility of loading a
4823 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4824 instructions. Puts the result directly in inst.operands[i]. */
4825
4826 static int
4827 parse_big_immediate (char **str, int i, expressionS *in_exp,
4828 bfd_boolean allow_symbol_p)
4829 {
4830 expressionS exp;
4831 expressionS *exp_p = in_exp ? in_exp : &exp;
4832 char *ptr = *str;
4833
4834 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4835
4836 if (exp_p->X_op == O_constant)
4837 {
4838 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4839 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4840 O_constant. We have to be careful not to break compilation for
4841 32-bit X_add_number, though. */
4842 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4843 {
4844 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4845 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4846 & 0xffffffff);
4847 inst.operands[i].regisimm = 1;
4848 }
4849 }
4850 else if (exp_p->X_op == O_big
4851 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4852 {
4853 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4854
4855 /* Bignums have their least significant bits in
4856 generic_bignum[0]. Make sure we put 32 bits in imm and
4857 32 bits in reg, in a (hopefully) portable way. */
4858 gas_assert (parts != 0);
4859
4860 /* Make sure that the number is not too big.
4861 PR 11972: Bignums can now be sign-extended to the
4862 size of a .octa so check that the out of range bits
4863 are all zero or all one. */
4864 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4865 {
4866 LITTLENUM_TYPE m = -1;
4867
4868 if (generic_bignum[parts * 2] != 0
4869 && generic_bignum[parts * 2] != m)
4870 return FAIL;
4871
4872 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4873 if (generic_bignum[j] != generic_bignum[j-1])
4874 return FAIL;
4875 }
4876
4877 inst.operands[i].imm = 0;
4878 for (j = 0; j < parts; j++, idx++)
4879 inst.operands[i].imm |= generic_bignum[idx]
4880 << (LITTLENUM_NUMBER_OF_BITS * j);
4881 inst.operands[i].reg = 0;
4882 for (j = 0; j < parts; j++, idx++)
4883 inst.operands[i].reg |= generic_bignum[idx]
4884 << (LITTLENUM_NUMBER_OF_BITS * j);
4885 inst.operands[i].regisimm = 1;
4886 }
4887 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4888 return FAIL;
4889
4890 *str = ptr;
4891
4892 return SUCCESS;
4893 }
4894
4895 /* Returns the pseudo-register number of an FPA immediate constant,
4896 or FAIL if there isn't a valid constant here. */
4897
4898 static int
4899 parse_fpa_immediate (char ** str)
4900 {
4901 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4902 char * save_in;
4903 expressionS exp;
4904 int i;
4905 int j;
4906
4907 /* First try and match exact strings, this is to guarantee
4908 that some formats will work even for cross assembly. */
4909
4910 for (i = 0; fp_const[i]; i++)
4911 {
4912 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4913 {
4914 char *start = *str;
4915
4916 *str += strlen (fp_const[i]);
4917 if (is_end_of_line[(unsigned char) **str])
4918 return i + 8;
4919 *str = start;
4920 }
4921 }
4922
4923 /* Just because we didn't get a match doesn't mean that the constant
4924 isn't valid, just that it is in a format that we don't
4925 automatically recognize. Try parsing it with the standard
4926 expression routines. */
4927
4928 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4929
4930 /* Look for a raw floating point number. */
4931 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4932 && is_end_of_line[(unsigned char) *save_in])
4933 {
4934 for (i = 0; i < NUM_FLOAT_VALS; i++)
4935 {
4936 for (j = 0; j < MAX_LITTLENUMS; j++)
4937 {
4938 if (words[j] != fp_values[i][j])
4939 break;
4940 }
4941
4942 if (j == MAX_LITTLENUMS)
4943 {
4944 *str = save_in;
4945 return i + 8;
4946 }
4947 }
4948 }
4949
4950 /* Try and parse a more complex expression, this will probably fail
4951 unless the code uses a floating point prefix (eg "0f"). */
4952 save_in = input_line_pointer;
4953 input_line_pointer = *str;
4954 if (expression (&exp) == absolute_section
4955 && exp.X_op == O_big
4956 && exp.X_add_number < 0)
4957 {
4958 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4959 Ditto for 15. */
4960 #define X_PRECISION 5
4961 #define E_PRECISION 15L
4962 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4963 {
4964 for (i = 0; i < NUM_FLOAT_VALS; i++)
4965 {
4966 for (j = 0; j < MAX_LITTLENUMS; j++)
4967 {
4968 if (words[j] != fp_values[i][j])
4969 break;
4970 }
4971
4972 if (j == MAX_LITTLENUMS)
4973 {
4974 *str = input_line_pointer;
4975 input_line_pointer = save_in;
4976 return i + 8;
4977 }
4978 }
4979 }
4980 }
4981
4982 *str = input_line_pointer;
4983 input_line_pointer = save_in;
4984 inst.error = _("invalid FPA immediate expression");
4985 return FAIL;
4986 }
4987
4988 /* Returns 1 if a number has "quarter-precision" float format
4989 0baBbbbbbc defgh000 00000000 00000000. */
4990
4991 static int
4992 is_quarter_float (unsigned imm)
4993 {
4994 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4995 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4996 }
4997
4998
4999 /* Detect the presence of a floating point or integer zero constant,
5000 i.e. #0.0 or #0. */
5001
5002 static bfd_boolean
5003 parse_ifimm_zero (char **in)
5004 {
5005 int error_code;
5006
5007 if (!is_immediate_prefix (**in))
5008 {
5009 /* In unified syntax, all prefixes are optional. */
5010 if (!unified_syntax)
5011 return FALSE;
5012 }
5013 else
5014 ++*in;
5015
5016 /* Accept #0x0 as a synonym for #0. */
5017 if (strncmp (*in, "0x", 2) == 0)
5018 {
5019 int val;
5020 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5021 return FALSE;
5022 return TRUE;
5023 }
5024
5025 error_code = atof_generic (in, ".", EXP_CHARS,
5026 &generic_floating_point_number);
5027
5028 if (!error_code
5029 && generic_floating_point_number.sign == '+'
5030 && (generic_floating_point_number.low
5031 > generic_floating_point_number.leader))
5032 return TRUE;
5033
5034 return FALSE;
5035 }
5036
5037 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5038 0baBbbbbbc defgh000 00000000 00000000.
5039 The zero and minus-zero cases need special handling, since they can't be
5040 encoded in the "quarter-precision" float format, but can nonetheless be
5041 loaded as integer constants. */
5042
5043 static unsigned
5044 parse_qfloat_immediate (char **ccp, int *immed)
5045 {
5046 char *str = *ccp;
5047 char *fpnum;
5048 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5049 int found_fpchar = 0;
5050
5051 skip_past_char (&str, '#');
5052
5053 /* We must not accidentally parse an integer as a floating-point number. Make
5054 sure that the value we parse is not an integer by checking for special
5055 characters '.' or 'e'.
5056 FIXME: This is a horrible hack, but doing better is tricky because type
5057 information isn't in a very usable state at parse time. */
5058 fpnum = str;
5059 skip_whitespace (fpnum);
5060
5061 if (strncmp (fpnum, "0x", 2) == 0)
5062 return FAIL;
5063 else
5064 {
5065 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5066 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5067 {
5068 found_fpchar = 1;
5069 break;
5070 }
5071
5072 if (!found_fpchar)
5073 return FAIL;
5074 }
5075
5076 if ((str = atof_ieee (str, 's', words)) != NULL)
5077 {
5078 unsigned fpword = 0;
5079 int i;
5080
5081 /* Our FP word must be 32 bits (single-precision FP). */
5082 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5083 {
5084 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5085 fpword |= words[i];
5086 }
5087
5088 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5089 *immed = fpword;
5090 else
5091 return FAIL;
5092
5093 *ccp = str;
5094
5095 return SUCCESS;
5096 }
5097
5098 return FAIL;
5099 }
5100
5101 /* Shift operands. */
5102 enum shift_kind
5103 {
5104 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5105 };
5106
5107 struct asm_shift_name
5108 {
5109 const char *name;
5110 enum shift_kind kind;
5111 };
5112
5113 /* Third argument to parse_shift. */
5114 enum parse_shift_mode
5115 {
5116 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5117 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5118 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5119 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5120 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5121 };
5122
5123 /* Parse a <shift> specifier on an ARM data processing instruction.
5124 This has three forms:
5125
5126 (LSL|LSR|ASL|ASR|ROR) Rs
5127 (LSL|LSR|ASL|ASR|ROR) #imm
5128 RRX
5129
5130 Note that ASL is assimilated to LSL in the instruction encoding, and
5131 RRX to ROR #0 (which cannot be written as such). */
5132
5133 static int
5134 parse_shift (char **str, int i, enum parse_shift_mode mode)
5135 {
5136 const struct asm_shift_name *shift_name;
5137 enum shift_kind shift;
5138 char *s = *str;
5139 char *p = s;
5140 int reg;
5141
5142 for (p = *str; ISALPHA (*p); p++)
5143 ;
5144
5145 if (p == *str)
5146 {
5147 inst.error = _("shift expression expected");
5148 return FAIL;
5149 }
5150
5151 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5152 p - *str);
5153
5154 if (shift_name == NULL)
5155 {
5156 inst.error = _("shift expression expected");
5157 return FAIL;
5158 }
5159
5160 shift = shift_name->kind;
5161
5162 switch (mode)
5163 {
5164 case NO_SHIFT_RESTRICT:
5165 case SHIFT_IMMEDIATE: break;
5166
5167 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5168 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5169 {
5170 inst.error = _("'LSL' or 'ASR' required");
5171 return FAIL;
5172 }
5173 break;
5174
5175 case SHIFT_LSL_IMMEDIATE:
5176 if (shift != SHIFT_LSL)
5177 {
5178 inst.error = _("'LSL' required");
5179 return FAIL;
5180 }
5181 break;
5182
5183 case SHIFT_ASR_IMMEDIATE:
5184 if (shift != SHIFT_ASR)
5185 {
5186 inst.error = _("'ASR' required");
5187 return FAIL;
5188 }
5189 break;
5190
5191 default: abort ();
5192 }
5193
5194 if (shift != SHIFT_RRX)
5195 {
5196 /* Whitespace can appear here if the next thing is a bare digit. */
5197 skip_whitespace (p);
5198
5199 if (mode == NO_SHIFT_RESTRICT
5200 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5201 {
5202 inst.operands[i].imm = reg;
5203 inst.operands[i].immisreg = 1;
5204 }
5205 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5206 return FAIL;
5207 }
5208 inst.operands[i].shift_kind = shift;
5209 inst.operands[i].shifted = 1;
5210 *str = p;
5211 return SUCCESS;
5212 }
5213
5214 /* Parse a <shifter_operand> for an ARM data processing instruction:
5215
5216 #<immediate>
5217 #<immediate>, <rotate>
5218 <Rm>
5219 <Rm>, <shift>
5220
5221 where <shift> is defined by parse_shift above, and <rotate> is a
5222 multiple of 2 between 0 and 30. Validation of immediate operands
5223 is deferred to md_apply_fix. */
5224
5225 static int
5226 parse_shifter_operand (char **str, int i)
5227 {
5228 int value;
5229 expressionS exp;
5230
5231 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5232 {
5233 inst.operands[i].reg = value;
5234 inst.operands[i].isreg = 1;
5235
5236 /* parse_shift will override this if appropriate */
5237 inst.reloc.exp.X_op = O_constant;
5238 inst.reloc.exp.X_add_number = 0;
5239
5240 if (skip_past_comma (str) == FAIL)
5241 return SUCCESS;
5242
5243 /* Shift operation on register. */
5244 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5245 }
5246
5247 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5248 return FAIL;
5249
5250 if (skip_past_comma (str) == SUCCESS)
5251 {
5252 /* #x, y -- ie explicit rotation by Y. */
5253 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5254 return FAIL;
5255
5256 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5257 {
5258 inst.error = _("constant expression expected");
5259 return FAIL;
5260 }
5261
5262 value = exp.X_add_number;
5263 if (value < 0 || value > 30 || value % 2 != 0)
5264 {
5265 inst.error = _("invalid rotation");
5266 return FAIL;
5267 }
5268 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5269 {
5270 inst.error = _("invalid constant");
5271 return FAIL;
5272 }
5273
5274 /* Encode as specified. */
5275 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5276 return SUCCESS;
5277 }
5278
5279 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5280 inst.reloc.pc_rel = 0;
5281 return SUCCESS;
5282 }
5283
5284 /* Group relocation information. Each entry in the table contains the
5285 textual name of the relocation as may appear in assembler source
5286 and must end with a colon.
5287 Along with this textual name are the relocation codes to be used if
5288 the corresponding instruction is an ALU instruction (ADD or SUB only),
5289 an LDR, an LDRS, or an LDC. */
5290
5291 struct group_reloc_table_entry
5292 {
5293 const char *name;
5294 int alu_code;
5295 int ldr_code;
5296 int ldrs_code;
5297 int ldc_code;
5298 };
5299
5300 typedef enum
5301 {
5302 /* Varieties of non-ALU group relocation. */
5303
5304 GROUP_LDR,
5305 GROUP_LDRS,
5306 GROUP_LDC
5307 } group_reloc_type;
5308
5309 static struct group_reloc_table_entry group_reloc_table[] =
5310 { /* Program counter relative: */
5311 { "pc_g0_nc",
5312 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5313 0, /* LDR */
5314 0, /* LDRS */
5315 0 }, /* LDC */
5316 { "pc_g0",
5317 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5318 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5319 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5320 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5321 { "pc_g1_nc",
5322 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5323 0, /* LDR */
5324 0, /* LDRS */
5325 0 }, /* LDC */
5326 { "pc_g1",
5327 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5328 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5329 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5330 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5331 { "pc_g2",
5332 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5333 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5334 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5335 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5336 /* Section base relative */
5337 { "sb_g0_nc",
5338 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5339 0, /* LDR */
5340 0, /* LDRS */
5341 0 }, /* LDC */
5342 { "sb_g0",
5343 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5344 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5345 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5346 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5347 { "sb_g1_nc",
5348 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5349 0, /* LDR */
5350 0, /* LDRS */
5351 0 }, /* LDC */
5352 { "sb_g1",
5353 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5354 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5355 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5356 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5357 { "sb_g2",
5358 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5359 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5360 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5361 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5362 /* Absolute thumb alu relocations. */
5363 { "lower0_7",
5364 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5365 0, /* LDR. */
5366 0, /* LDRS. */
5367 0 }, /* LDC. */
5368 { "lower8_15",
5369 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5370 0, /* LDR. */
5371 0, /* LDRS. */
5372 0 }, /* LDC. */
5373 { "upper0_7",
5374 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5375 0, /* LDR. */
5376 0, /* LDRS. */
5377 0 }, /* LDC. */
5378 { "upper8_15",
5379 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5380 0, /* LDR. */
5381 0, /* LDRS. */
5382 0 } }; /* LDC. */
5383
5384 /* Given the address of a pointer pointing to the textual name of a group
5385 relocation as may appear in assembler source, attempt to find its details
5386 in group_reloc_table. The pointer will be updated to the character after
5387 the trailing colon. On failure, FAIL will be returned; SUCCESS
5388 otherwise. On success, *entry will be updated to point at the relevant
5389 group_reloc_table entry. */
5390
5391 static int
5392 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5393 {
5394 unsigned int i;
5395 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5396 {
5397 int length = strlen (group_reloc_table[i].name);
5398
5399 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5400 && (*str)[length] == ':')
5401 {
5402 *out = &group_reloc_table[i];
5403 *str += (length + 1);
5404 return SUCCESS;
5405 }
5406 }
5407
5408 return FAIL;
5409 }
5410
5411 /* Parse a <shifter_operand> for an ARM data processing instruction
5412 (as for parse_shifter_operand) where group relocations are allowed:
5413
5414 #<immediate>
5415 #<immediate>, <rotate>
5416 #:<group_reloc>:<expression>
5417 <Rm>
5418 <Rm>, <shift>
5419
5420 where <group_reloc> is one of the strings defined in group_reloc_table.
5421 The hashes are optional.
5422
5423 Everything else is as for parse_shifter_operand. */
5424
5425 static parse_operand_result
5426 parse_shifter_operand_group_reloc (char **str, int i)
5427 {
5428 /* Determine if we have the sequence of characters #: or just :
5429 coming next. If we do, then we check for a group relocation.
5430 If we don't, punt the whole lot to parse_shifter_operand. */
5431
5432 if (((*str)[0] == '#' && (*str)[1] == ':')
5433 || (*str)[0] == ':')
5434 {
5435 struct group_reloc_table_entry *entry;
5436
5437 if ((*str)[0] == '#')
5438 (*str) += 2;
5439 else
5440 (*str)++;
5441
5442 /* Try to parse a group relocation. Anything else is an error. */
5443 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5444 {
5445 inst.error = _("unknown group relocation");
5446 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5447 }
5448
5449 /* We now have the group relocation table entry corresponding to
5450 the name in the assembler source. Next, we parse the expression. */
5451 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5452 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5453
5454 /* Record the relocation type (always the ALU variant here). */
5455 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5456 gas_assert (inst.reloc.type != 0);
5457
5458 return PARSE_OPERAND_SUCCESS;
5459 }
5460 else
5461 return parse_shifter_operand (str, i) == SUCCESS
5462 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5463
5464 /* Never reached. */
5465 }
5466
5467 /* Parse a Neon alignment expression. Information is written to
5468 inst.operands[i]. We assume the initial ':' has been skipped.
5469
5470 align .imm = align << 8, .immisalign=1, .preind=0 */
5471 static parse_operand_result
5472 parse_neon_alignment (char **str, int i)
5473 {
5474 char *p = *str;
5475 expressionS exp;
5476
5477 my_get_expression (&exp, &p, GE_NO_PREFIX);
5478
5479 if (exp.X_op != O_constant)
5480 {
5481 inst.error = _("alignment must be constant");
5482 return PARSE_OPERAND_FAIL;
5483 }
5484
5485 inst.operands[i].imm = exp.X_add_number << 8;
5486 inst.operands[i].immisalign = 1;
5487 /* Alignments are not pre-indexes. */
5488 inst.operands[i].preind = 0;
5489
5490 *str = p;
5491 return PARSE_OPERAND_SUCCESS;
5492 }
5493
5494 /* Parse all forms of an ARM address expression. Information is written
5495 to inst.operands[i] and/or inst.reloc.
5496
5497 Preindexed addressing (.preind=1):
5498
5499 [Rn, #offset] .reg=Rn .reloc.exp=offset
5500 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5501 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5502 .shift_kind=shift .reloc.exp=shift_imm
5503
5504 These three may have a trailing ! which causes .writeback to be set also.
5505
5506 Postindexed addressing (.postind=1, .writeback=1):
5507
5508 [Rn], #offset .reg=Rn .reloc.exp=offset
5509 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5510 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5511 .shift_kind=shift .reloc.exp=shift_imm
5512
5513 Unindexed addressing (.preind=0, .postind=0):
5514
5515 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5516
5517 Other:
5518
5519 [Rn]{!} shorthand for [Rn,#0]{!}
5520 =immediate .isreg=0 .reloc.exp=immediate
5521 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5522
5523 It is the caller's responsibility to check for addressing modes not
5524 supported by the instruction, and to set inst.reloc.type. */
5525
5526 static parse_operand_result
5527 parse_address_main (char **str, int i, int group_relocations,
5528 group_reloc_type group_type)
5529 {
5530 char *p = *str;
5531 int reg;
5532
5533 if (skip_past_char (&p, '[') == FAIL)
5534 {
5535 if (skip_past_char (&p, '=') == FAIL)
5536 {
5537 /* Bare address - translate to PC-relative offset. */
5538 inst.reloc.pc_rel = 1;
5539 inst.operands[i].reg = REG_PC;
5540 inst.operands[i].isreg = 1;
5541 inst.operands[i].preind = 1;
5542
5543 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5544 return PARSE_OPERAND_FAIL;
5545 }
5546 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5547 /*allow_symbol_p=*/TRUE))
5548 return PARSE_OPERAND_FAIL;
5549
5550 *str = p;
5551 return PARSE_OPERAND_SUCCESS;
5552 }
5553
5554 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5555 skip_whitespace (p);
5556
5557 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5558 {
5559 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5560 return PARSE_OPERAND_FAIL;
5561 }
5562 inst.operands[i].reg = reg;
5563 inst.operands[i].isreg = 1;
5564
5565 if (skip_past_comma (&p) == SUCCESS)
5566 {
5567 inst.operands[i].preind = 1;
5568
5569 if (*p == '+') p++;
5570 else if (*p == '-') p++, inst.operands[i].negative = 1;
5571
5572 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5573 {
5574 inst.operands[i].imm = reg;
5575 inst.operands[i].immisreg = 1;
5576
5577 if (skip_past_comma (&p) == SUCCESS)
5578 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5579 return PARSE_OPERAND_FAIL;
5580 }
5581 else if (skip_past_char (&p, ':') == SUCCESS)
5582 {
5583 /* FIXME: '@' should be used here, but it's filtered out by generic
5584 code before we get to see it here. This may be subject to
5585 change. */
5586 parse_operand_result result = parse_neon_alignment (&p, i);
5587
5588 if (result != PARSE_OPERAND_SUCCESS)
5589 return result;
5590 }
5591 else
5592 {
5593 if (inst.operands[i].negative)
5594 {
5595 inst.operands[i].negative = 0;
5596 p--;
5597 }
5598
5599 if (group_relocations
5600 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5601 {
5602 struct group_reloc_table_entry *entry;
5603
5604 /* Skip over the #: or : sequence. */
5605 if (*p == '#')
5606 p += 2;
5607 else
5608 p++;
5609
5610 /* Try to parse a group relocation. Anything else is an
5611 error. */
5612 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5613 {
5614 inst.error = _("unknown group relocation");
5615 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5616 }
5617
5618 /* We now have the group relocation table entry corresponding to
5619 the name in the assembler source. Next, we parse the
5620 expression. */
5621 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5622 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5623
5624 /* Record the relocation type. */
5625 switch (group_type)
5626 {
5627 case GROUP_LDR:
5628 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5629 break;
5630
5631 case GROUP_LDRS:
5632 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5633 break;
5634
5635 case GROUP_LDC:
5636 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5637 break;
5638
5639 default:
5640 gas_assert (0);
5641 }
5642
5643 if (inst.reloc.type == 0)
5644 {
5645 inst.error = _("this group relocation is not allowed on this instruction");
5646 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5647 }
5648 }
5649 else
5650 {
5651 char *q = p;
5652
5653 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5654 return PARSE_OPERAND_FAIL;
5655 /* If the offset is 0, find out if it's a +0 or -0. */
5656 if (inst.reloc.exp.X_op == O_constant
5657 && inst.reloc.exp.X_add_number == 0)
5658 {
5659 skip_whitespace (q);
5660 if (*q == '#')
5661 {
5662 q++;
5663 skip_whitespace (q);
5664 }
5665 if (*q == '-')
5666 inst.operands[i].negative = 1;
5667 }
5668 }
5669 }
5670 }
5671 else if (skip_past_char (&p, ':') == SUCCESS)
5672 {
5673 /* FIXME: '@' should be used here, but it's filtered out by generic code
5674 before we get to see it here. This may be subject to change. */
5675 parse_operand_result result = parse_neon_alignment (&p, i);
5676
5677 if (result != PARSE_OPERAND_SUCCESS)
5678 return result;
5679 }
5680
5681 if (skip_past_char (&p, ']') == FAIL)
5682 {
5683 inst.error = _("']' expected");
5684 return PARSE_OPERAND_FAIL;
5685 }
5686
5687 if (skip_past_char (&p, '!') == SUCCESS)
5688 inst.operands[i].writeback = 1;
5689
5690 else if (skip_past_comma (&p) == SUCCESS)
5691 {
5692 if (skip_past_char (&p, '{') == SUCCESS)
5693 {
5694 /* [Rn], {expr} - unindexed, with option */
5695 if (parse_immediate (&p, &inst.operands[i].imm,
5696 0, 255, TRUE) == FAIL)
5697 return PARSE_OPERAND_FAIL;
5698
5699 if (skip_past_char (&p, '}') == FAIL)
5700 {
5701 inst.error = _("'}' expected at end of 'option' field");
5702 return PARSE_OPERAND_FAIL;
5703 }
5704 if (inst.operands[i].preind)
5705 {
5706 inst.error = _("cannot combine index with option");
5707 return PARSE_OPERAND_FAIL;
5708 }
5709 *str = p;
5710 return PARSE_OPERAND_SUCCESS;
5711 }
5712 else
5713 {
5714 inst.operands[i].postind = 1;
5715 inst.operands[i].writeback = 1;
5716
5717 if (inst.operands[i].preind)
5718 {
5719 inst.error = _("cannot combine pre- and post-indexing");
5720 return PARSE_OPERAND_FAIL;
5721 }
5722
5723 if (*p == '+') p++;
5724 else if (*p == '-') p++, inst.operands[i].negative = 1;
5725
5726 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5727 {
5728 /* We might be using the immediate for alignment already. If we
5729 are, OR the register number into the low-order bits. */
5730 if (inst.operands[i].immisalign)
5731 inst.operands[i].imm |= reg;
5732 else
5733 inst.operands[i].imm = reg;
5734 inst.operands[i].immisreg = 1;
5735
5736 if (skip_past_comma (&p) == SUCCESS)
5737 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5738 return PARSE_OPERAND_FAIL;
5739 }
5740 else
5741 {
5742 char *q = p;
5743
5744 if (inst.operands[i].negative)
5745 {
5746 inst.operands[i].negative = 0;
5747 p--;
5748 }
5749 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5750 return PARSE_OPERAND_FAIL;
5751 /* If the offset is 0, find out if it's a +0 or -0. */
5752 if (inst.reloc.exp.X_op == O_constant
5753 && inst.reloc.exp.X_add_number == 0)
5754 {
5755 skip_whitespace (q);
5756 if (*q == '#')
5757 {
5758 q++;
5759 skip_whitespace (q);
5760 }
5761 if (*q == '-')
5762 inst.operands[i].negative = 1;
5763 }
5764 }
5765 }
5766 }
5767
5768 /* If at this point neither .preind nor .postind is set, we have a
5769 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5770 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5771 {
5772 inst.operands[i].preind = 1;
5773 inst.reloc.exp.X_op = O_constant;
5774 inst.reloc.exp.X_add_number = 0;
5775 }
5776 *str = p;
5777 return PARSE_OPERAND_SUCCESS;
5778 }
5779
5780 static int
5781 parse_address (char **str, int i)
5782 {
5783 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5784 ? SUCCESS : FAIL;
5785 }
5786
5787 static parse_operand_result
5788 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5789 {
5790 return parse_address_main (str, i, 1, type);
5791 }
5792
5793 /* Parse an operand for a MOVW or MOVT instruction. */
5794 static int
5795 parse_half (char **str)
5796 {
5797 char * p;
5798
5799 p = *str;
5800 skip_past_char (&p, '#');
5801 if (strncasecmp (p, ":lower16:", 9) == 0)
5802 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5803 else if (strncasecmp (p, ":upper16:", 9) == 0)
5804 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5805
5806 if (inst.reloc.type != BFD_RELOC_UNUSED)
5807 {
5808 p += 9;
5809 skip_whitespace (p);
5810 }
5811
5812 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5813 return FAIL;
5814
5815 if (inst.reloc.type == BFD_RELOC_UNUSED)
5816 {
5817 if (inst.reloc.exp.X_op != O_constant)
5818 {
5819 inst.error = _("constant expression expected");
5820 return FAIL;
5821 }
5822 if (inst.reloc.exp.X_add_number < 0
5823 || inst.reloc.exp.X_add_number > 0xffff)
5824 {
5825 inst.error = _("immediate value out of range");
5826 return FAIL;
5827 }
5828 }
5829 *str = p;
5830 return SUCCESS;
5831 }
5832
5833 /* Miscellaneous. */
5834
5835 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5836 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5837 static int
5838 parse_psr (char **str, bfd_boolean lhs)
5839 {
5840 char *p;
5841 unsigned long psr_field;
5842 const struct asm_psr *psr;
5843 char *start;
5844 bfd_boolean is_apsr = FALSE;
5845 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5846
5847 /* PR gas/12698: If the user has specified -march=all then m_profile will
5848 be TRUE, but we want to ignore it in this case as we are building for any
5849 CPU type, including non-m variants. */
5850 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5851 m_profile = FALSE;
5852
5853 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5854 feature for ease of use and backwards compatibility. */
5855 p = *str;
5856 if (strncasecmp (p, "SPSR", 4) == 0)
5857 {
5858 if (m_profile)
5859 goto unsupported_psr;
5860
5861 psr_field = SPSR_BIT;
5862 }
5863 else if (strncasecmp (p, "CPSR", 4) == 0)
5864 {
5865 if (m_profile)
5866 goto unsupported_psr;
5867
5868 psr_field = 0;
5869 }
5870 else if (strncasecmp (p, "APSR", 4) == 0)
5871 {
5872 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5873 and ARMv7-R architecture CPUs. */
5874 is_apsr = TRUE;
5875 psr_field = 0;
5876 }
5877 else if (m_profile)
5878 {
5879 start = p;
5880 do
5881 p++;
5882 while (ISALNUM (*p) || *p == '_');
5883
5884 if (strncasecmp (start, "iapsr", 5) == 0
5885 || strncasecmp (start, "eapsr", 5) == 0
5886 || strncasecmp (start, "xpsr", 4) == 0
5887 || strncasecmp (start, "psr", 3) == 0)
5888 p = start + strcspn (start, "rR") + 1;
5889
5890 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5891 p - start);
5892
5893 if (!psr)
5894 return FAIL;
5895
5896 /* If APSR is being written, a bitfield may be specified. Note that
5897 APSR itself is handled above. */
5898 if (psr->field <= 3)
5899 {
5900 psr_field = psr->field;
5901 is_apsr = TRUE;
5902 goto check_suffix;
5903 }
5904
5905 *str = p;
5906 /* M-profile MSR instructions have the mask field set to "10", except
5907 *PSR variants which modify APSR, which may use a different mask (and
5908 have been handled already). Do that by setting the PSR_f field
5909 here. */
5910 return psr->field | (lhs ? PSR_f : 0);
5911 }
5912 else
5913 goto unsupported_psr;
5914
5915 p += 4;
5916 check_suffix:
5917 if (*p == '_')
5918 {
5919 /* A suffix follows. */
5920 p++;
5921 start = p;
5922
5923 do
5924 p++;
5925 while (ISALNUM (*p) || *p == '_');
5926
5927 if (is_apsr)
5928 {
5929 /* APSR uses a notation for bits, rather than fields. */
5930 unsigned int nzcvq_bits = 0;
5931 unsigned int g_bit = 0;
5932 char *bit;
5933
5934 for (bit = start; bit != p; bit++)
5935 {
5936 switch (TOLOWER (*bit))
5937 {
5938 case 'n':
5939 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5940 break;
5941
5942 case 'z':
5943 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5944 break;
5945
5946 case 'c':
5947 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5948 break;
5949
5950 case 'v':
5951 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5952 break;
5953
5954 case 'q':
5955 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5956 break;
5957
5958 case 'g':
5959 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5960 break;
5961
5962 default:
5963 inst.error = _("unexpected bit specified after APSR");
5964 return FAIL;
5965 }
5966 }
5967
5968 if (nzcvq_bits == 0x1f)
5969 psr_field |= PSR_f;
5970
5971 if (g_bit == 0x1)
5972 {
5973 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5974 {
5975 inst.error = _("selected processor does not "
5976 "support DSP extension");
5977 return FAIL;
5978 }
5979
5980 psr_field |= PSR_s;
5981 }
5982
5983 if ((nzcvq_bits & 0x20) != 0
5984 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5985 || (g_bit & 0x2) != 0)
5986 {
5987 inst.error = _("bad bitmask specified after APSR");
5988 return FAIL;
5989 }
5990 }
5991 else
5992 {
5993 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5994 p - start);
5995 if (!psr)
5996 goto error;
5997
5998 psr_field |= psr->field;
5999 }
6000 }
6001 else
6002 {
6003 if (ISALNUM (*p))
6004 goto error; /* Garbage after "[CS]PSR". */
6005
6006 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6007 is deprecated, but allow it anyway. */
6008 if (is_apsr && lhs)
6009 {
6010 psr_field |= PSR_f;
6011 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6012 "deprecated"));
6013 }
6014 else if (!m_profile)
6015 /* These bits are never right for M-profile devices: don't set them
6016 (only code paths which read/write APSR reach here). */
6017 psr_field |= (PSR_c | PSR_f);
6018 }
6019 *str = p;
6020 return psr_field;
6021
6022 unsupported_psr:
6023 inst.error = _("selected processor does not support requested special "
6024 "purpose register");
6025 return FAIL;
6026
6027 error:
6028 inst.error = _("flag for {c}psr instruction expected");
6029 return FAIL;
6030 }
6031
6032 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6033 value suitable for splatting into the AIF field of the instruction. */
6034
6035 static int
6036 parse_cps_flags (char **str)
6037 {
6038 int val = 0;
6039 int saw_a_flag = 0;
6040 char *s = *str;
6041
6042 for (;;)
6043 switch (*s++)
6044 {
6045 case '\0': case ',':
6046 goto done;
6047
6048 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6049 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6050 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6051
6052 default:
6053 inst.error = _("unrecognized CPS flag");
6054 return FAIL;
6055 }
6056
6057 done:
6058 if (saw_a_flag == 0)
6059 {
6060 inst.error = _("missing CPS flags");
6061 return FAIL;
6062 }
6063
6064 *str = s - 1;
6065 return val;
6066 }
6067
6068 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6069 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6070
6071 static int
6072 parse_endian_specifier (char **str)
6073 {
6074 int little_endian;
6075 char *s = *str;
6076
6077 if (strncasecmp (s, "BE", 2))
6078 little_endian = 0;
6079 else if (strncasecmp (s, "LE", 2))
6080 little_endian = 1;
6081 else
6082 {
6083 inst.error = _("valid endian specifiers are be or le");
6084 return FAIL;
6085 }
6086
6087 if (ISALNUM (s[2]) || s[2] == '_')
6088 {
6089 inst.error = _("valid endian specifiers are be or le");
6090 return FAIL;
6091 }
6092
6093 *str = s + 2;
6094 return little_endian;
6095 }
6096
6097 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6098 value suitable for poking into the rotate field of an sxt or sxta
6099 instruction, or FAIL on error. */
6100
6101 static int
6102 parse_ror (char **str)
6103 {
6104 int rot;
6105 char *s = *str;
6106
6107 if (strncasecmp (s, "ROR", 3) == 0)
6108 s += 3;
6109 else
6110 {
6111 inst.error = _("missing rotation field after comma");
6112 return FAIL;
6113 }
6114
6115 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6116 return FAIL;
6117
6118 switch (rot)
6119 {
6120 case 0: *str = s; return 0x0;
6121 case 8: *str = s; return 0x1;
6122 case 16: *str = s; return 0x2;
6123 case 24: *str = s; return 0x3;
6124
6125 default:
6126 inst.error = _("rotation can only be 0, 8, 16, or 24");
6127 return FAIL;
6128 }
6129 }
6130
6131 /* Parse a conditional code (from conds[] below). The value returned is in the
6132 range 0 .. 14, or FAIL. */
6133 static int
6134 parse_cond (char **str)
6135 {
6136 char *q;
6137 const struct asm_cond *c;
6138 int n;
6139 /* Condition codes are always 2 characters, so matching up to
6140 3 characters is sufficient. */
6141 char cond[3];
6142
6143 q = *str;
6144 n = 0;
6145 while (ISALPHA (*q) && n < 3)
6146 {
6147 cond[n] = TOLOWER (*q);
6148 q++;
6149 n++;
6150 }
6151
6152 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6153 if (!c)
6154 {
6155 inst.error = _("condition required");
6156 return FAIL;
6157 }
6158
6159 *str = q;
6160 return c->value;
6161 }
6162
6163 /* Record a use of the given feature. */
6164 static void
6165 record_feature_use (const arm_feature_set *feature)
6166 {
6167 if (thumb_mode)
6168 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6169 else
6170 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6171 }
6172
6173 /* If the given feature is currently allowed, mark it as used and return TRUE.
6174 Return FALSE otherwise. */
6175 static bfd_boolean
6176 mark_feature_used (const arm_feature_set *feature)
6177 {
6178 /* Ensure the option is currently allowed. */
6179 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6180 return FALSE;
6181
6182 /* Add the appropriate architecture feature for the barrier option used. */
6183 record_feature_use (feature);
6184
6185 return TRUE;
6186 }
6187
6188 /* Parse an option for a barrier instruction. Returns the encoding for the
6189 option, or FAIL. */
6190 static int
6191 parse_barrier (char **str)
6192 {
6193 char *p, *q;
6194 const struct asm_barrier_opt *o;
6195
6196 p = q = *str;
6197 while (ISALPHA (*q))
6198 q++;
6199
6200 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6201 q - p);
6202 if (!o)
6203 return FAIL;
6204
6205 if (!mark_feature_used (&o->arch))
6206 return FAIL;
6207
6208 *str = q;
6209 return o->value;
6210 }
6211
6212 /* Parse the operands of a table branch instruction. Similar to a memory
6213 operand. */
6214 static int
6215 parse_tb (char **str)
6216 {
6217 char * p = *str;
6218 int reg;
6219
6220 if (skip_past_char (&p, '[') == FAIL)
6221 {
6222 inst.error = _("'[' expected");
6223 return FAIL;
6224 }
6225
6226 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6227 {
6228 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6229 return FAIL;
6230 }
6231 inst.operands[0].reg = reg;
6232
6233 if (skip_past_comma (&p) == FAIL)
6234 {
6235 inst.error = _("',' expected");
6236 return FAIL;
6237 }
6238
6239 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6240 {
6241 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6242 return FAIL;
6243 }
6244 inst.operands[0].imm = reg;
6245
6246 if (skip_past_comma (&p) == SUCCESS)
6247 {
6248 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6249 return FAIL;
6250 if (inst.reloc.exp.X_add_number != 1)
6251 {
6252 inst.error = _("invalid shift");
6253 return FAIL;
6254 }
6255 inst.operands[0].shifted = 1;
6256 }
6257
6258 if (skip_past_char (&p, ']') == FAIL)
6259 {
6260 inst.error = _("']' expected");
6261 return FAIL;
6262 }
6263 *str = p;
6264 return SUCCESS;
6265 }
6266
6267 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6268 information on the types the operands can take and how they are encoded.
6269 Up to four operands may be read; this function handles setting the
6270 ".present" field for each read operand itself.
6271 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6272 else returns FAIL. */
6273
6274 static int
6275 parse_neon_mov (char **str, int *which_operand)
6276 {
6277 int i = *which_operand, val;
6278 enum arm_reg_type rtype;
6279 char *ptr = *str;
6280 struct neon_type_el optype;
6281
6282 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6283 {
6284 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6285 inst.operands[i].reg = val;
6286 inst.operands[i].isscalar = 1;
6287 inst.operands[i].vectype = optype;
6288 inst.operands[i++].present = 1;
6289
6290 if (skip_past_comma (&ptr) == FAIL)
6291 goto wanted_comma;
6292
6293 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6294 goto wanted_arm;
6295
6296 inst.operands[i].reg = val;
6297 inst.operands[i].isreg = 1;
6298 inst.operands[i].present = 1;
6299 }
6300 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6301 != FAIL)
6302 {
6303 /* Cases 0, 1, 2, 3, 5 (D only). */
6304 if (skip_past_comma (&ptr) == FAIL)
6305 goto wanted_comma;
6306
6307 inst.operands[i].reg = val;
6308 inst.operands[i].isreg = 1;
6309 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6310 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6311 inst.operands[i].isvec = 1;
6312 inst.operands[i].vectype = optype;
6313 inst.operands[i++].present = 1;
6314
6315 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6316 {
6317 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6318 Case 13: VMOV <Sd>, <Rm> */
6319 inst.operands[i].reg = val;
6320 inst.operands[i].isreg = 1;
6321 inst.operands[i].present = 1;
6322
6323 if (rtype == REG_TYPE_NQ)
6324 {
6325 first_error (_("can't use Neon quad register here"));
6326 return FAIL;
6327 }
6328 else if (rtype != REG_TYPE_VFS)
6329 {
6330 i++;
6331 if (skip_past_comma (&ptr) == FAIL)
6332 goto wanted_comma;
6333 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6334 goto wanted_arm;
6335 inst.operands[i].reg = val;
6336 inst.operands[i].isreg = 1;
6337 inst.operands[i].present = 1;
6338 }
6339 }
6340 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6341 &optype)) != FAIL)
6342 {
6343 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6344 Case 1: VMOV<c><q> <Dd>, <Dm>
6345 Case 8: VMOV.F32 <Sd>, <Sm>
6346 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6347
6348 inst.operands[i].reg = val;
6349 inst.operands[i].isreg = 1;
6350 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6351 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6352 inst.operands[i].isvec = 1;
6353 inst.operands[i].vectype = optype;
6354 inst.operands[i].present = 1;
6355
6356 if (skip_past_comma (&ptr) == SUCCESS)
6357 {
6358 /* Case 15. */
6359 i++;
6360
6361 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6362 goto wanted_arm;
6363
6364 inst.operands[i].reg = val;
6365 inst.operands[i].isreg = 1;
6366 inst.operands[i++].present = 1;
6367
6368 if (skip_past_comma (&ptr) == FAIL)
6369 goto wanted_comma;
6370
6371 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6372 goto wanted_arm;
6373
6374 inst.operands[i].reg = val;
6375 inst.operands[i].isreg = 1;
6376 inst.operands[i].present = 1;
6377 }
6378 }
6379 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6380 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6381 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6382 Case 10: VMOV.F32 <Sd>, #<imm>
6383 Case 11: VMOV.F64 <Dd>, #<imm> */
6384 inst.operands[i].immisfloat = 1;
6385 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6386 == SUCCESS)
6387 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6388 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6389 ;
6390 else
6391 {
6392 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6393 return FAIL;
6394 }
6395 }
6396 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6397 {
6398 /* Cases 6, 7. */
6399 inst.operands[i].reg = val;
6400 inst.operands[i].isreg = 1;
6401 inst.operands[i++].present = 1;
6402
6403 if (skip_past_comma (&ptr) == FAIL)
6404 goto wanted_comma;
6405
6406 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6407 {
6408 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6409 inst.operands[i].reg = val;
6410 inst.operands[i].isscalar = 1;
6411 inst.operands[i].present = 1;
6412 inst.operands[i].vectype = optype;
6413 }
6414 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6415 {
6416 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6417 inst.operands[i].reg = val;
6418 inst.operands[i].isreg = 1;
6419 inst.operands[i++].present = 1;
6420
6421 if (skip_past_comma (&ptr) == FAIL)
6422 goto wanted_comma;
6423
6424 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6425 == FAIL)
6426 {
6427 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6428 return FAIL;
6429 }
6430
6431 inst.operands[i].reg = val;
6432 inst.operands[i].isreg = 1;
6433 inst.operands[i].isvec = 1;
6434 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6435 inst.operands[i].vectype = optype;
6436 inst.operands[i].present = 1;
6437
6438 if (rtype == REG_TYPE_VFS)
6439 {
6440 /* Case 14. */
6441 i++;
6442 if (skip_past_comma (&ptr) == FAIL)
6443 goto wanted_comma;
6444 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6445 &optype)) == FAIL)
6446 {
6447 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6448 return FAIL;
6449 }
6450 inst.operands[i].reg = val;
6451 inst.operands[i].isreg = 1;
6452 inst.operands[i].isvec = 1;
6453 inst.operands[i].issingle = 1;
6454 inst.operands[i].vectype = optype;
6455 inst.operands[i].present = 1;
6456 }
6457 }
6458 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6459 != FAIL)
6460 {
6461 /* Case 13. */
6462 inst.operands[i].reg = val;
6463 inst.operands[i].isreg = 1;
6464 inst.operands[i].isvec = 1;
6465 inst.operands[i].issingle = 1;
6466 inst.operands[i].vectype = optype;
6467 inst.operands[i].present = 1;
6468 }
6469 }
6470 else
6471 {
6472 first_error (_("parse error"));
6473 return FAIL;
6474 }
6475
6476 /* Successfully parsed the operands. Update args. */
6477 *which_operand = i;
6478 *str = ptr;
6479 return SUCCESS;
6480
6481 wanted_comma:
6482 first_error (_("expected comma"));
6483 return FAIL;
6484
6485 wanted_arm:
6486 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6487 return FAIL;
6488 }
6489
6490 /* Use this macro when the operand constraints are different
6491 for ARM and THUMB (e.g. ldrd). */
6492 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6493 ((arm_operand) | ((thumb_operand) << 16))
6494
6495 /* Matcher codes for parse_operands. */
6496 enum operand_parse_code
6497 {
6498 OP_stop, /* end of line */
6499
6500 OP_RR, /* ARM register */
6501 OP_RRnpc, /* ARM register, not r15 */
6502 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6503 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6504 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6505 optional trailing ! */
6506 OP_RRw, /* ARM register, not r15, optional trailing ! */
6507 OP_RCP, /* Coprocessor number */
6508 OP_RCN, /* Coprocessor register */
6509 OP_RF, /* FPA register */
6510 OP_RVS, /* VFP single precision register */
6511 OP_RVD, /* VFP double precision register (0..15) */
6512 OP_RND, /* Neon double precision register (0..31) */
6513 OP_RNQ, /* Neon quad precision register */
6514 OP_RVSD, /* VFP single or double precision register */
6515 OP_RNSD, /* Neon single or double precision register */
6516 OP_RNDQ, /* Neon double or quad precision register */
6517 OP_RNSDQ, /* Neon single, double or quad precision register */
6518 OP_RNSC, /* Neon scalar D[X] */
6519 OP_RVC, /* VFP control register */
6520 OP_RMF, /* Maverick F register */
6521 OP_RMD, /* Maverick D register */
6522 OP_RMFX, /* Maverick FX register */
6523 OP_RMDX, /* Maverick DX register */
6524 OP_RMAX, /* Maverick AX register */
6525 OP_RMDS, /* Maverick DSPSC register */
6526 OP_RIWR, /* iWMMXt wR register */
6527 OP_RIWC, /* iWMMXt wC register */
6528 OP_RIWG, /* iWMMXt wCG register */
6529 OP_RXA, /* XScale accumulator register */
6530
6531 OP_REGLST, /* ARM register list */
6532 OP_VRSLST, /* VFP single-precision register list */
6533 OP_VRDLST, /* VFP double-precision register list */
6534 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6535 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6536 OP_NSTRLST, /* Neon element/structure list */
6537
6538 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6539 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6540 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6541 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6542 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6543 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6544 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6545 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6546 OP_VMOV, /* Neon VMOV operands. */
6547 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6548 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6549 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6550
6551 OP_I0, /* immediate zero */
6552 OP_I7, /* immediate value 0 .. 7 */
6553 OP_I15, /* 0 .. 15 */
6554 OP_I16, /* 1 .. 16 */
6555 OP_I16z, /* 0 .. 16 */
6556 OP_I31, /* 0 .. 31 */
6557 OP_I31w, /* 0 .. 31, optional trailing ! */
6558 OP_I32, /* 1 .. 32 */
6559 OP_I32z, /* 0 .. 32 */
6560 OP_I63, /* 0 .. 63 */
6561 OP_I63s, /* -64 .. 63 */
6562 OP_I64, /* 1 .. 64 */
6563 OP_I64z, /* 0 .. 64 */
6564 OP_I255, /* 0 .. 255 */
6565
6566 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6567 OP_I7b, /* 0 .. 7 */
6568 OP_I15b, /* 0 .. 15 */
6569 OP_I31b, /* 0 .. 31 */
6570
6571 OP_SH, /* shifter operand */
6572 OP_SHG, /* shifter operand with possible group relocation */
6573 OP_ADDR, /* Memory address expression (any mode) */
6574 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6575 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6576 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6577 OP_EXP, /* arbitrary expression */
6578 OP_EXPi, /* same, with optional immediate prefix */
6579 OP_EXPr, /* same, with optional relocation suffix */
6580 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6581 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6582 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6583
6584 OP_CPSF, /* CPS flags */
6585 OP_ENDI, /* Endianness specifier */
6586 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6587 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6588 OP_COND, /* conditional code */
6589 OP_TB, /* Table branch. */
6590
6591 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6592
6593 OP_RRnpc_I0, /* ARM register or literal 0 */
6594 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
6595 OP_RR_EXi, /* ARM register or expression with imm prefix */
6596 OP_RF_IF, /* FPA register or immediate */
6597 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6598 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6599
6600 /* Optional operands. */
6601 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6602 OP_oI31b, /* 0 .. 31 */
6603 OP_oI32b, /* 1 .. 32 */
6604 OP_oI32z, /* 0 .. 32 */
6605 OP_oIffffb, /* 0 .. 65535 */
6606 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6607
6608 OP_oRR, /* ARM register */
6609 OP_oRRnpc, /* ARM register, not the PC */
6610 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6611 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6612 OP_oRND, /* Optional Neon double precision register */
6613 OP_oRNQ, /* Optional Neon quad precision register */
6614 OP_oRNDQ, /* Optional Neon double or quad precision register */
6615 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6616 OP_oSHll, /* LSL immediate */
6617 OP_oSHar, /* ASR immediate */
6618 OP_oSHllar, /* LSL or ASR immediate */
6619 OP_oROR, /* ROR 0/8/16/24 */
6620 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6621
6622 /* Some pre-defined mixed (ARM/THUMB) operands. */
6623 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6624 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6625 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6626
6627 OP_FIRST_OPTIONAL = OP_oI7b
6628 };
6629
6630 /* Generic instruction operand parser. This does no encoding and no
6631 semantic validation; it merely squirrels values away in the inst
6632 structure. Returns SUCCESS or FAIL depending on whether the
6633 specified grammar matched. */
6634 static int
6635 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6636 {
6637 unsigned const int *upat = pattern;
6638 char *backtrack_pos = 0;
6639 const char *backtrack_error = 0;
6640 int i, val = 0, backtrack_index = 0;
6641 enum arm_reg_type rtype;
6642 parse_operand_result result;
6643 unsigned int op_parse_code;
6644
6645 #define po_char_or_fail(chr) \
6646 do \
6647 { \
6648 if (skip_past_char (&str, chr) == FAIL) \
6649 goto bad_args; \
6650 } \
6651 while (0)
6652
6653 #define po_reg_or_fail(regtype) \
6654 do \
6655 { \
6656 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6657 & inst.operands[i].vectype); \
6658 if (val == FAIL) \
6659 { \
6660 first_error (_(reg_expected_msgs[regtype])); \
6661 goto failure; \
6662 } \
6663 inst.operands[i].reg = val; \
6664 inst.operands[i].isreg = 1; \
6665 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6666 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6667 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6668 || rtype == REG_TYPE_VFD \
6669 || rtype == REG_TYPE_NQ); \
6670 } \
6671 while (0)
6672
6673 #define po_reg_or_goto(regtype, label) \
6674 do \
6675 { \
6676 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6677 & inst.operands[i].vectype); \
6678 if (val == FAIL) \
6679 goto label; \
6680 \
6681 inst.operands[i].reg = val; \
6682 inst.operands[i].isreg = 1; \
6683 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6684 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6685 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6686 || rtype == REG_TYPE_VFD \
6687 || rtype == REG_TYPE_NQ); \
6688 } \
6689 while (0)
6690
6691 #define po_imm_or_fail(min, max, popt) \
6692 do \
6693 { \
6694 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6695 goto failure; \
6696 inst.operands[i].imm = val; \
6697 } \
6698 while (0)
6699
6700 #define po_scalar_or_goto(elsz, label) \
6701 do \
6702 { \
6703 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6704 if (val == FAIL) \
6705 goto label; \
6706 inst.operands[i].reg = val; \
6707 inst.operands[i].isscalar = 1; \
6708 } \
6709 while (0)
6710
6711 #define po_misc_or_fail(expr) \
6712 do \
6713 { \
6714 if (expr) \
6715 goto failure; \
6716 } \
6717 while (0)
6718
6719 #define po_misc_or_fail_no_backtrack(expr) \
6720 do \
6721 { \
6722 result = expr; \
6723 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6724 backtrack_pos = 0; \
6725 if (result != PARSE_OPERAND_SUCCESS) \
6726 goto failure; \
6727 } \
6728 while (0)
6729
6730 #define po_barrier_or_imm(str) \
6731 do \
6732 { \
6733 val = parse_barrier (&str); \
6734 if (val == FAIL && ! ISALPHA (*str)) \
6735 goto immediate; \
6736 if (val == FAIL \
6737 /* ISB can only take SY as an option. */ \
6738 || ((inst.instruction & 0xf0) == 0x60 \
6739 && val != 0xf)) \
6740 { \
6741 inst.error = _("invalid barrier type"); \
6742 backtrack_pos = 0; \
6743 goto failure; \
6744 } \
6745 } \
6746 while (0)
6747
6748 skip_whitespace (str);
6749
6750 for (i = 0; upat[i] != OP_stop; i++)
6751 {
6752 op_parse_code = upat[i];
6753 if (op_parse_code >= 1<<16)
6754 op_parse_code = thumb ? (op_parse_code >> 16)
6755 : (op_parse_code & ((1<<16)-1));
6756
6757 if (op_parse_code >= OP_FIRST_OPTIONAL)
6758 {
6759 /* Remember where we are in case we need to backtrack. */
6760 gas_assert (!backtrack_pos);
6761 backtrack_pos = str;
6762 backtrack_error = inst.error;
6763 backtrack_index = i;
6764 }
6765
6766 if (i > 0 && (i > 1 || inst.operands[0].present))
6767 po_char_or_fail (',');
6768
6769 switch (op_parse_code)
6770 {
6771 /* Registers */
6772 case OP_oRRnpc:
6773 case OP_oRRnpcsp:
6774 case OP_RRnpc:
6775 case OP_RRnpcsp:
6776 case OP_oRR:
6777 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6778 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6779 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6780 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6781 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6782 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6783 case OP_oRND:
6784 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6785 case OP_RVC:
6786 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6787 break;
6788 /* Also accept generic coprocessor regs for unknown registers. */
6789 coproc_reg:
6790 po_reg_or_fail (REG_TYPE_CN);
6791 break;
6792 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6793 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6794 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6795 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6796 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6797 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6798 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6799 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6800 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6801 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6802 case OP_oRNQ:
6803 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6804 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
6805 case OP_oRNDQ:
6806 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6807 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6808 case OP_oRNSDQ:
6809 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6810
6811 /* Neon scalar. Using an element size of 8 means that some invalid
6812 scalars are accepted here, so deal with those in later code. */
6813 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6814
6815 case OP_RNDQ_I0:
6816 {
6817 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6818 break;
6819 try_imm0:
6820 po_imm_or_fail (0, 0, TRUE);
6821 }
6822 break;
6823
6824 case OP_RVSD_I0:
6825 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6826 break;
6827
6828 case OP_RSVD_FI0:
6829 {
6830 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6831 break;
6832 try_ifimm0:
6833 if (parse_ifimm_zero (&str))
6834 inst.operands[i].imm = 0;
6835 else
6836 {
6837 inst.error
6838 = _("only floating point zero is allowed as immediate value");
6839 goto failure;
6840 }
6841 }
6842 break;
6843
6844 case OP_RR_RNSC:
6845 {
6846 po_scalar_or_goto (8, try_rr);
6847 break;
6848 try_rr:
6849 po_reg_or_fail (REG_TYPE_RN);
6850 }
6851 break;
6852
6853 case OP_RNSDQ_RNSC:
6854 {
6855 po_scalar_or_goto (8, try_nsdq);
6856 break;
6857 try_nsdq:
6858 po_reg_or_fail (REG_TYPE_NSDQ);
6859 }
6860 break;
6861
6862 case OP_RNSD_RNSC:
6863 {
6864 po_scalar_or_goto (8, try_s_scalar);
6865 break;
6866 try_s_scalar:
6867 po_scalar_or_goto (4, try_nsd);
6868 break;
6869 try_nsd:
6870 po_reg_or_fail (REG_TYPE_NSD);
6871 }
6872 break;
6873
6874 case OP_RNDQ_RNSC:
6875 {
6876 po_scalar_or_goto (8, try_ndq);
6877 break;
6878 try_ndq:
6879 po_reg_or_fail (REG_TYPE_NDQ);
6880 }
6881 break;
6882
6883 case OP_RND_RNSC:
6884 {
6885 po_scalar_or_goto (8, try_vfd);
6886 break;
6887 try_vfd:
6888 po_reg_or_fail (REG_TYPE_VFD);
6889 }
6890 break;
6891
6892 case OP_VMOV:
6893 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6894 not careful then bad things might happen. */
6895 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6896 break;
6897
6898 case OP_RNDQ_Ibig:
6899 {
6900 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6901 break;
6902 try_immbig:
6903 /* There's a possibility of getting a 64-bit immediate here, so
6904 we need special handling. */
6905 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6906 == FAIL)
6907 {
6908 inst.error = _("immediate value is out of range");
6909 goto failure;
6910 }
6911 }
6912 break;
6913
6914 case OP_RNDQ_I63b:
6915 {
6916 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6917 break;
6918 try_shimm:
6919 po_imm_or_fail (0, 63, TRUE);
6920 }
6921 break;
6922
6923 case OP_RRnpcb:
6924 po_char_or_fail ('[');
6925 po_reg_or_fail (REG_TYPE_RN);
6926 po_char_or_fail (']');
6927 break;
6928
6929 case OP_RRnpctw:
6930 case OP_RRw:
6931 case OP_oRRw:
6932 po_reg_or_fail (REG_TYPE_RN);
6933 if (skip_past_char (&str, '!') == SUCCESS)
6934 inst.operands[i].writeback = 1;
6935 break;
6936
6937 /* Immediates */
6938 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6939 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6940 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6941 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6942 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6943 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6944 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6945 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6946 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6947 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6948 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6949 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6950
6951 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6952 case OP_oI7b:
6953 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6954 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6955 case OP_oI31b:
6956 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6957 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6958 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6959 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6960
6961 /* Immediate variants */
6962 case OP_oI255c:
6963 po_char_or_fail ('{');
6964 po_imm_or_fail (0, 255, TRUE);
6965 po_char_or_fail ('}');
6966 break;
6967
6968 case OP_I31w:
6969 /* The expression parser chokes on a trailing !, so we have
6970 to find it first and zap it. */
6971 {
6972 char *s = str;
6973 while (*s && *s != ',')
6974 s++;
6975 if (s[-1] == '!')
6976 {
6977 s[-1] = '\0';
6978 inst.operands[i].writeback = 1;
6979 }
6980 po_imm_or_fail (0, 31, TRUE);
6981 if (str == s - 1)
6982 str = s;
6983 }
6984 break;
6985
6986 /* Expressions */
6987 case OP_EXPi: EXPi:
6988 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6989 GE_OPT_PREFIX));
6990 break;
6991
6992 case OP_EXP:
6993 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6994 GE_NO_PREFIX));
6995 break;
6996
6997 case OP_EXPr: EXPr:
6998 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6999 GE_NO_PREFIX));
7000 if (inst.reloc.exp.X_op == O_symbol)
7001 {
7002 val = parse_reloc (&str);
7003 if (val == -1)
7004 {
7005 inst.error = _("unrecognized relocation suffix");
7006 goto failure;
7007 }
7008 else if (val != BFD_RELOC_UNUSED)
7009 {
7010 inst.operands[i].imm = val;
7011 inst.operands[i].hasreloc = 1;
7012 }
7013 }
7014 break;
7015
7016 /* Operand for MOVW or MOVT. */
7017 case OP_HALF:
7018 po_misc_or_fail (parse_half (&str));
7019 break;
7020
7021 /* Register or expression. */
7022 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7023 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7024
7025 /* Register or immediate. */
7026 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7027 I0: po_imm_or_fail (0, 0, FALSE); break;
7028
7029 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7030 IF:
7031 if (!is_immediate_prefix (*str))
7032 goto bad_args;
7033 str++;
7034 val = parse_fpa_immediate (&str);
7035 if (val == FAIL)
7036 goto failure;
7037 /* FPA immediates are encoded as registers 8-15.
7038 parse_fpa_immediate has already applied the offset. */
7039 inst.operands[i].reg = val;
7040 inst.operands[i].isreg = 1;
7041 break;
7042
7043 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7044 I32z: po_imm_or_fail (0, 32, FALSE); break;
7045
7046 /* Two kinds of register. */
7047 case OP_RIWR_RIWC:
7048 {
7049 struct reg_entry *rege = arm_reg_parse_multi (&str);
7050 if (!rege
7051 || (rege->type != REG_TYPE_MMXWR
7052 && rege->type != REG_TYPE_MMXWC
7053 && rege->type != REG_TYPE_MMXWCG))
7054 {
7055 inst.error = _("iWMMXt data or control register expected");
7056 goto failure;
7057 }
7058 inst.operands[i].reg = rege->number;
7059 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7060 }
7061 break;
7062
7063 case OP_RIWC_RIWG:
7064 {
7065 struct reg_entry *rege = arm_reg_parse_multi (&str);
7066 if (!rege
7067 || (rege->type != REG_TYPE_MMXWC
7068 && rege->type != REG_TYPE_MMXWCG))
7069 {
7070 inst.error = _("iWMMXt control register expected");
7071 goto failure;
7072 }
7073 inst.operands[i].reg = rege->number;
7074 inst.operands[i].isreg = 1;
7075 }
7076 break;
7077
7078 /* Misc */
7079 case OP_CPSF: val = parse_cps_flags (&str); break;
7080 case OP_ENDI: val = parse_endian_specifier (&str); break;
7081 case OP_oROR: val = parse_ror (&str); break;
7082 case OP_COND: val = parse_cond (&str); break;
7083 case OP_oBARRIER_I15:
7084 po_barrier_or_imm (str); break;
7085 immediate:
7086 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7087 goto failure;
7088 break;
7089
7090 case OP_wPSR:
7091 case OP_rPSR:
7092 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7093 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7094 {
7095 inst.error = _("Banked registers are not available with this "
7096 "architecture.");
7097 goto failure;
7098 }
7099 break;
7100 try_psr:
7101 val = parse_psr (&str, op_parse_code == OP_wPSR);
7102 break;
7103
7104 case OP_APSR_RR:
7105 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7106 break;
7107 try_apsr:
7108 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7109 instruction). */
7110 if (strncasecmp (str, "APSR_", 5) == 0)
7111 {
7112 unsigned found = 0;
7113 str += 5;
7114 while (found < 15)
7115 switch (*str++)
7116 {
7117 case 'c': found = (found & 1) ? 16 : found | 1; break;
7118 case 'n': found = (found & 2) ? 16 : found | 2; break;
7119 case 'z': found = (found & 4) ? 16 : found | 4; break;
7120 case 'v': found = (found & 8) ? 16 : found | 8; break;
7121 default: found = 16;
7122 }
7123 if (found != 15)
7124 goto failure;
7125 inst.operands[i].isvec = 1;
7126 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7127 inst.operands[i].reg = REG_PC;
7128 }
7129 else
7130 goto failure;
7131 break;
7132
7133 case OP_TB:
7134 po_misc_or_fail (parse_tb (&str));
7135 break;
7136
7137 /* Register lists. */
7138 case OP_REGLST:
7139 val = parse_reg_list (&str);
7140 if (*str == '^')
7141 {
7142 inst.operands[i].writeback = 1;
7143 str++;
7144 }
7145 break;
7146
7147 case OP_VRSLST:
7148 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7149 break;
7150
7151 case OP_VRDLST:
7152 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7153 break;
7154
7155 case OP_VRSDLST:
7156 /* Allow Q registers too. */
7157 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7158 REGLIST_NEON_D);
7159 if (val == FAIL)
7160 {
7161 inst.error = NULL;
7162 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7163 REGLIST_VFP_S);
7164 inst.operands[i].issingle = 1;
7165 }
7166 break;
7167
7168 case OP_NRDLST:
7169 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7170 REGLIST_NEON_D);
7171 break;
7172
7173 case OP_NSTRLST:
7174 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7175 &inst.operands[i].vectype);
7176 break;
7177
7178 /* Addressing modes */
7179 case OP_ADDR:
7180 po_misc_or_fail (parse_address (&str, i));
7181 break;
7182
7183 case OP_ADDRGLDR:
7184 po_misc_or_fail_no_backtrack (
7185 parse_address_group_reloc (&str, i, GROUP_LDR));
7186 break;
7187
7188 case OP_ADDRGLDRS:
7189 po_misc_or_fail_no_backtrack (
7190 parse_address_group_reloc (&str, i, GROUP_LDRS));
7191 break;
7192
7193 case OP_ADDRGLDC:
7194 po_misc_or_fail_no_backtrack (
7195 parse_address_group_reloc (&str, i, GROUP_LDC));
7196 break;
7197
7198 case OP_SH:
7199 po_misc_or_fail (parse_shifter_operand (&str, i));
7200 break;
7201
7202 case OP_SHG:
7203 po_misc_or_fail_no_backtrack (
7204 parse_shifter_operand_group_reloc (&str, i));
7205 break;
7206
7207 case OP_oSHll:
7208 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7209 break;
7210
7211 case OP_oSHar:
7212 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7213 break;
7214
7215 case OP_oSHllar:
7216 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7217 break;
7218
7219 default:
7220 as_fatal (_("unhandled operand code %d"), op_parse_code);
7221 }
7222
7223 /* Various value-based sanity checks and shared operations. We
7224 do not signal immediate failures for the register constraints;
7225 this allows a syntax error to take precedence. */
7226 switch (op_parse_code)
7227 {
7228 case OP_oRRnpc:
7229 case OP_RRnpc:
7230 case OP_RRnpcb:
7231 case OP_RRw:
7232 case OP_oRRw:
7233 case OP_RRnpc_I0:
7234 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7235 inst.error = BAD_PC;
7236 break;
7237
7238 case OP_oRRnpcsp:
7239 case OP_RRnpcsp:
7240 if (inst.operands[i].isreg)
7241 {
7242 if (inst.operands[i].reg == REG_PC)
7243 inst.error = BAD_PC;
7244 else if (inst.operands[i].reg == REG_SP
7245 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7246 relaxed since ARMv8-A. */
7247 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7248 {
7249 gas_assert (thumb);
7250 inst.error = BAD_SP;
7251 }
7252 }
7253 break;
7254
7255 case OP_RRnpctw:
7256 if (inst.operands[i].isreg
7257 && inst.operands[i].reg == REG_PC
7258 && (inst.operands[i].writeback || thumb))
7259 inst.error = BAD_PC;
7260 break;
7261
7262 case OP_CPSF:
7263 case OP_ENDI:
7264 case OP_oROR:
7265 case OP_wPSR:
7266 case OP_rPSR:
7267 case OP_COND:
7268 case OP_oBARRIER_I15:
7269 case OP_REGLST:
7270 case OP_VRSLST:
7271 case OP_VRDLST:
7272 case OP_VRSDLST:
7273 case OP_NRDLST:
7274 case OP_NSTRLST:
7275 if (val == FAIL)
7276 goto failure;
7277 inst.operands[i].imm = val;
7278 break;
7279
7280 default:
7281 break;
7282 }
7283
7284 /* If we get here, this operand was successfully parsed. */
7285 inst.operands[i].present = 1;
7286 continue;
7287
7288 bad_args:
7289 inst.error = BAD_ARGS;
7290
7291 failure:
7292 if (!backtrack_pos)
7293 {
7294 /* The parse routine should already have set inst.error, but set a
7295 default here just in case. */
7296 if (!inst.error)
7297 inst.error = _("syntax error");
7298 return FAIL;
7299 }
7300
7301 /* Do not backtrack over a trailing optional argument that
7302 absorbed some text. We will only fail again, with the
7303 'garbage following instruction' error message, which is
7304 probably less helpful than the current one. */
7305 if (backtrack_index == i && backtrack_pos != str
7306 && upat[i+1] == OP_stop)
7307 {
7308 if (!inst.error)
7309 inst.error = _("syntax error");
7310 return FAIL;
7311 }
7312
7313 /* Try again, skipping the optional argument at backtrack_pos. */
7314 str = backtrack_pos;
7315 inst.error = backtrack_error;
7316 inst.operands[backtrack_index].present = 0;
7317 i = backtrack_index;
7318 backtrack_pos = 0;
7319 }
7320
7321 /* Check that we have parsed all the arguments. */
7322 if (*str != '\0' && !inst.error)
7323 inst.error = _("garbage following instruction");
7324
7325 return inst.error ? FAIL : SUCCESS;
7326 }
7327
7328 #undef po_char_or_fail
7329 #undef po_reg_or_fail
7330 #undef po_reg_or_goto
7331 #undef po_imm_or_fail
7332 #undef po_scalar_or_fail
7333 #undef po_barrier_or_imm
7334
7335 /* Shorthand macro for instruction encoding functions issuing errors. */
7336 #define constraint(expr, err) \
7337 do \
7338 { \
7339 if (expr) \
7340 { \
7341 inst.error = err; \
7342 return; \
7343 } \
7344 } \
7345 while (0)
7346
7347 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7348 instructions are unpredictable if these registers are used. This
7349 is the BadReg predicate in ARM's Thumb-2 documentation.
7350
7351 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7352 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7353 #define reject_bad_reg(reg) \
7354 do \
7355 if (reg == REG_PC) \
7356 { \
7357 inst.error = BAD_PC; \
7358 return; \
7359 } \
7360 else if (reg == REG_SP \
7361 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7362 { \
7363 inst.error = BAD_SP; \
7364 return; \
7365 } \
7366 while (0)
7367
7368 /* If REG is R13 (the stack pointer), warn that its use is
7369 deprecated. */
7370 #define warn_deprecated_sp(reg) \
7371 do \
7372 if (warn_on_deprecated && reg == REG_SP) \
7373 as_tsktsk (_("use of r13 is deprecated")); \
7374 while (0)
7375
7376 /* Functions for operand encoding. ARM, then Thumb. */
7377
7378 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7379
7380 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7381
7382 The only binary encoding difference is the Coprocessor number. Coprocessor
7383 9 is used for half-precision calculations or conversions. The format of the
7384 instruction is the same as the equivalent Coprocessor 10 instruction that
7385 exists for Single-Precision operation. */
7386
7387 static void
7388 do_scalar_fp16_v82_encode (void)
7389 {
7390 if (inst.cond != COND_ALWAYS)
7391 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7392 " the behaviour is UNPREDICTABLE"));
7393 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7394 _(BAD_FP16));
7395
7396 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7397 mark_feature_used (&arm_ext_fp16);
7398 }
7399
7400 /* If VAL can be encoded in the immediate field of an ARM instruction,
7401 return the encoded form. Otherwise, return FAIL. */
7402
7403 static unsigned int
7404 encode_arm_immediate (unsigned int val)
7405 {
7406 unsigned int a, i;
7407
7408 if (val <= 0xff)
7409 return val;
7410
7411 for (i = 2; i < 32; i += 2)
7412 if ((a = rotate_left (val, i)) <= 0xff)
7413 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7414
7415 return FAIL;
7416 }
7417
7418 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7419 return the encoded form. Otherwise, return FAIL. */
7420 static unsigned int
7421 encode_thumb32_immediate (unsigned int val)
7422 {
7423 unsigned int a, i;
7424
7425 if (val <= 0xff)
7426 return val;
7427
7428 for (i = 1; i <= 24; i++)
7429 {
7430 a = val >> i;
7431 if ((val & ~(0xff << i)) == 0)
7432 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7433 }
7434
7435 a = val & 0xff;
7436 if (val == ((a << 16) | a))
7437 return 0x100 | a;
7438 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7439 return 0x300 | a;
7440
7441 a = val & 0xff00;
7442 if (val == ((a << 16) | a))
7443 return 0x200 | (a >> 8);
7444
7445 return FAIL;
7446 }
7447 /* Encode a VFP SP or DP register number into inst.instruction. */
7448
7449 static void
7450 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7451 {
7452 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7453 && reg > 15)
7454 {
7455 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7456 {
7457 if (thumb_mode)
7458 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7459 fpu_vfp_ext_d32);
7460 else
7461 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7462 fpu_vfp_ext_d32);
7463 }
7464 else
7465 {
7466 first_error (_("D register out of range for selected VFP version"));
7467 return;
7468 }
7469 }
7470
7471 switch (pos)
7472 {
7473 case VFP_REG_Sd:
7474 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7475 break;
7476
7477 case VFP_REG_Sn:
7478 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7479 break;
7480
7481 case VFP_REG_Sm:
7482 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7483 break;
7484
7485 case VFP_REG_Dd:
7486 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7487 break;
7488
7489 case VFP_REG_Dn:
7490 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7491 break;
7492
7493 case VFP_REG_Dm:
7494 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7495 break;
7496
7497 default:
7498 abort ();
7499 }
7500 }
7501
7502 /* Encode a <shift> in an ARM-format instruction. The immediate,
7503 if any, is handled by md_apply_fix. */
7504 static void
7505 encode_arm_shift (int i)
7506 {
7507 /* register-shifted register. */
7508 if (inst.operands[i].immisreg)
7509 {
7510 int op_index;
7511 for (op_index = 0; op_index <= i; ++op_index)
7512 {
7513 /* Check the operand only when it's presented. In pre-UAL syntax,
7514 if the destination register is the same as the first operand, two
7515 register form of the instruction can be used. */
7516 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7517 && inst.operands[op_index].reg == REG_PC)
7518 as_warn (UNPRED_REG ("r15"));
7519 }
7520
7521 if (inst.operands[i].imm == REG_PC)
7522 as_warn (UNPRED_REG ("r15"));
7523 }
7524
7525 if (inst.operands[i].shift_kind == SHIFT_RRX)
7526 inst.instruction |= SHIFT_ROR << 5;
7527 else
7528 {
7529 inst.instruction |= inst.operands[i].shift_kind << 5;
7530 if (inst.operands[i].immisreg)
7531 {
7532 inst.instruction |= SHIFT_BY_REG;
7533 inst.instruction |= inst.operands[i].imm << 8;
7534 }
7535 else
7536 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7537 }
7538 }
7539
7540 static void
7541 encode_arm_shifter_operand (int i)
7542 {
7543 if (inst.operands[i].isreg)
7544 {
7545 inst.instruction |= inst.operands[i].reg;
7546 encode_arm_shift (i);
7547 }
7548 else
7549 {
7550 inst.instruction |= INST_IMMEDIATE;
7551 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7552 inst.instruction |= inst.operands[i].imm;
7553 }
7554 }
7555
7556 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7557 static void
7558 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7559 {
7560 /* PR 14260:
7561 Generate an error if the operand is not a register. */
7562 constraint (!inst.operands[i].isreg,
7563 _("Instruction does not support =N addresses"));
7564
7565 inst.instruction |= inst.operands[i].reg << 16;
7566
7567 if (inst.operands[i].preind)
7568 {
7569 if (is_t)
7570 {
7571 inst.error = _("instruction does not accept preindexed addressing");
7572 return;
7573 }
7574 inst.instruction |= PRE_INDEX;
7575 if (inst.operands[i].writeback)
7576 inst.instruction |= WRITE_BACK;
7577
7578 }
7579 else if (inst.operands[i].postind)
7580 {
7581 gas_assert (inst.operands[i].writeback);
7582 if (is_t)
7583 inst.instruction |= WRITE_BACK;
7584 }
7585 else /* unindexed - only for coprocessor */
7586 {
7587 inst.error = _("instruction does not accept unindexed addressing");
7588 return;
7589 }
7590
7591 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7592 && (((inst.instruction & 0x000f0000) >> 16)
7593 == ((inst.instruction & 0x0000f000) >> 12)))
7594 as_warn ((inst.instruction & LOAD_BIT)
7595 ? _("destination register same as write-back base")
7596 : _("source register same as write-back base"));
7597 }
7598
7599 /* inst.operands[i] was set up by parse_address. Encode it into an
7600 ARM-format mode 2 load or store instruction. If is_t is true,
7601 reject forms that cannot be used with a T instruction (i.e. not
7602 post-indexed). */
7603 static void
7604 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7605 {
7606 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7607
7608 encode_arm_addr_mode_common (i, is_t);
7609
7610 if (inst.operands[i].immisreg)
7611 {
7612 constraint ((inst.operands[i].imm == REG_PC
7613 || (is_pc && inst.operands[i].writeback)),
7614 BAD_PC_ADDRESSING);
7615 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7616 inst.instruction |= inst.operands[i].imm;
7617 if (!inst.operands[i].negative)
7618 inst.instruction |= INDEX_UP;
7619 if (inst.operands[i].shifted)
7620 {
7621 if (inst.operands[i].shift_kind == SHIFT_RRX)
7622 inst.instruction |= SHIFT_ROR << 5;
7623 else
7624 {
7625 inst.instruction |= inst.operands[i].shift_kind << 5;
7626 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7627 }
7628 }
7629 }
7630 else /* immediate offset in inst.reloc */
7631 {
7632 if (is_pc && !inst.reloc.pc_rel)
7633 {
7634 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7635
7636 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7637 cannot use PC in addressing.
7638 PC cannot be used in writeback addressing, either. */
7639 constraint ((is_t || inst.operands[i].writeback),
7640 BAD_PC_ADDRESSING);
7641
7642 /* Use of PC in str is deprecated for ARMv7. */
7643 if (warn_on_deprecated
7644 && !is_load
7645 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7646 as_tsktsk (_("use of PC in this instruction is deprecated"));
7647 }
7648
7649 if (inst.reloc.type == BFD_RELOC_UNUSED)
7650 {
7651 /* Prefer + for zero encoded value. */
7652 if (!inst.operands[i].negative)
7653 inst.instruction |= INDEX_UP;
7654 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7655 }
7656 }
7657 }
7658
7659 /* inst.operands[i] was set up by parse_address. Encode it into an
7660 ARM-format mode 3 load or store instruction. Reject forms that
7661 cannot be used with such instructions. If is_t is true, reject
7662 forms that cannot be used with a T instruction (i.e. not
7663 post-indexed). */
7664 static void
7665 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7666 {
7667 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7668 {
7669 inst.error = _("instruction does not accept scaled register index");
7670 return;
7671 }
7672
7673 encode_arm_addr_mode_common (i, is_t);
7674
7675 if (inst.operands[i].immisreg)
7676 {
7677 constraint ((inst.operands[i].imm == REG_PC
7678 || (is_t && inst.operands[i].reg == REG_PC)),
7679 BAD_PC_ADDRESSING);
7680 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7681 BAD_PC_WRITEBACK);
7682 inst.instruction |= inst.operands[i].imm;
7683 if (!inst.operands[i].negative)
7684 inst.instruction |= INDEX_UP;
7685 }
7686 else /* immediate offset in inst.reloc */
7687 {
7688 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7689 && inst.operands[i].writeback),
7690 BAD_PC_WRITEBACK);
7691 inst.instruction |= HWOFFSET_IMM;
7692 if (inst.reloc.type == BFD_RELOC_UNUSED)
7693 {
7694 /* Prefer + for zero encoded value. */
7695 if (!inst.operands[i].negative)
7696 inst.instruction |= INDEX_UP;
7697
7698 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7699 }
7700 }
7701 }
7702
7703 /* Write immediate bits [7:0] to the following locations:
7704
7705 |28/24|23 19|18 16|15 4|3 0|
7706 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7707
7708 This function is used by VMOV/VMVN/VORR/VBIC. */
7709
7710 static void
7711 neon_write_immbits (unsigned immbits)
7712 {
7713 inst.instruction |= immbits & 0xf;
7714 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7715 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7716 }
7717
7718 /* Invert low-order SIZE bits of XHI:XLO. */
7719
7720 static void
7721 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7722 {
7723 unsigned immlo = xlo ? *xlo : 0;
7724 unsigned immhi = xhi ? *xhi : 0;
7725
7726 switch (size)
7727 {
7728 case 8:
7729 immlo = (~immlo) & 0xff;
7730 break;
7731
7732 case 16:
7733 immlo = (~immlo) & 0xffff;
7734 break;
7735
7736 case 64:
7737 immhi = (~immhi) & 0xffffffff;
7738 /* fall through. */
7739
7740 case 32:
7741 immlo = (~immlo) & 0xffffffff;
7742 break;
7743
7744 default:
7745 abort ();
7746 }
7747
7748 if (xlo)
7749 *xlo = immlo;
7750
7751 if (xhi)
7752 *xhi = immhi;
7753 }
7754
7755 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7756 A, B, C, D. */
7757
7758 static int
7759 neon_bits_same_in_bytes (unsigned imm)
7760 {
7761 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7762 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7763 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7764 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7765 }
7766
7767 /* For immediate of above form, return 0bABCD. */
7768
7769 static unsigned
7770 neon_squash_bits (unsigned imm)
7771 {
7772 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7773 | ((imm & 0x01000000) >> 21);
7774 }
7775
7776 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7777
7778 static unsigned
7779 neon_qfloat_bits (unsigned imm)
7780 {
7781 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7782 }
7783
7784 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7785 the instruction. *OP is passed as the initial value of the op field, and
7786 may be set to a different value depending on the constant (i.e.
7787 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7788 MVN). If the immediate looks like a repeated pattern then also
7789 try smaller element sizes. */
7790
7791 static int
7792 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7793 unsigned *immbits, int *op, int size,
7794 enum neon_el_type type)
7795 {
7796 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7797 float. */
7798 if (type == NT_float && !float_p)
7799 return FAIL;
7800
7801 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7802 {
7803 if (size != 32 || *op == 1)
7804 return FAIL;
7805 *immbits = neon_qfloat_bits (immlo);
7806 return 0xf;
7807 }
7808
7809 if (size == 64)
7810 {
7811 if (neon_bits_same_in_bytes (immhi)
7812 && neon_bits_same_in_bytes (immlo))
7813 {
7814 if (*op == 1)
7815 return FAIL;
7816 *immbits = (neon_squash_bits (immhi) << 4)
7817 | neon_squash_bits (immlo);
7818 *op = 1;
7819 return 0xe;
7820 }
7821
7822 if (immhi != immlo)
7823 return FAIL;
7824 }
7825
7826 if (size >= 32)
7827 {
7828 if (immlo == (immlo & 0x000000ff))
7829 {
7830 *immbits = immlo;
7831 return 0x0;
7832 }
7833 else if (immlo == (immlo & 0x0000ff00))
7834 {
7835 *immbits = immlo >> 8;
7836 return 0x2;
7837 }
7838 else if (immlo == (immlo & 0x00ff0000))
7839 {
7840 *immbits = immlo >> 16;
7841 return 0x4;
7842 }
7843 else if (immlo == (immlo & 0xff000000))
7844 {
7845 *immbits = immlo >> 24;
7846 return 0x6;
7847 }
7848 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7849 {
7850 *immbits = (immlo >> 8) & 0xff;
7851 return 0xc;
7852 }
7853 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7854 {
7855 *immbits = (immlo >> 16) & 0xff;
7856 return 0xd;
7857 }
7858
7859 if ((immlo & 0xffff) != (immlo >> 16))
7860 return FAIL;
7861 immlo &= 0xffff;
7862 }
7863
7864 if (size >= 16)
7865 {
7866 if (immlo == (immlo & 0x000000ff))
7867 {
7868 *immbits = immlo;
7869 return 0x8;
7870 }
7871 else if (immlo == (immlo & 0x0000ff00))
7872 {
7873 *immbits = immlo >> 8;
7874 return 0xa;
7875 }
7876
7877 if ((immlo & 0xff) != (immlo >> 8))
7878 return FAIL;
7879 immlo &= 0xff;
7880 }
7881
7882 if (immlo == (immlo & 0x000000ff))
7883 {
7884 /* Don't allow MVN with 8-bit immediate. */
7885 if (*op == 1)
7886 return FAIL;
7887 *immbits = immlo;
7888 return 0xe;
7889 }
7890
7891 return FAIL;
7892 }
7893
7894 #if defined BFD_HOST_64_BIT
7895 /* Returns TRUE if double precision value V may be cast
7896 to single precision without loss of accuracy. */
7897
7898 static bfd_boolean
7899 is_double_a_single (bfd_int64_t v)
7900 {
7901 int exp = (int)((v >> 52) & 0x7FF);
7902 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7903
7904 return (exp == 0 || exp == 0x7FF
7905 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7906 && (mantissa & 0x1FFFFFFFl) == 0;
7907 }
7908
7909 /* Returns a double precision value casted to single precision
7910 (ignoring the least significant bits in exponent and mantissa). */
7911
7912 static int
7913 double_to_single (bfd_int64_t v)
7914 {
7915 int sign = (int) ((v >> 63) & 1l);
7916 int exp = (int) ((v >> 52) & 0x7FF);
7917 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7918
7919 if (exp == 0x7FF)
7920 exp = 0xFF;
7921 else
7922 {
7923 exp = exp - 1023 + 127;
7924 if (exp >= 0xFF)
7925 {
7926 /* Infinity. */
7927 exp = 0x7F;
7928 mantissa = 0;
7929 }
7930 else if (exp < 0)
7931 {
7932 /* No denormalized numbers. */
7933 exp = 0;
7934 mantissa = 0;
7935 }
7936 }
7937 mantissa >>= 29;
7938 return (sign << 31) | (exp << 23) | mantissa;
7939 }
7940 #endif /* BFD_HOST_64_BIT */
7941
7942 enum lit_type
7943 {
7944 CONST_THUMB,
7945 CONST_ARM,
7946 CONST_VEC
7947 };
7948
7949 static void do_vfp_nsyn_opcode (const char *);
7950
7951 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7952 Determine whether it can be performed with a move instruction; if
7953 it can, convert inst.instruction to that move instruction and
7954 return TRUE; if it can't, convert inst.instruction to a literal-pool
7955 load and return FALSE. If this is not a valid thing to do in the
7956 current context, set inst.error and return TRUE.
7957
7958 inst.operands[i] describes the destination register. */
7959
7960 static bfd_boolean
7961 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7962 {
7963 unsigned long tbit;
7964 bfd_boolean thumb_p = (t == CONST_THUMB);
7965 bfd_boolean arm_p = (t == CONST_ARM);
7966
7967 if (thumb_p)
7968 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7969 else
7970 tbit = LOAD_BIT;
7971
7972 if ((inst.instruction & tbit) == 0)
7973 {
7974 inst.error = _("invalid pseudo operation");
7975 return TRUE;
7976 }
7977
7978 if (inst.reloc.exp.X_op != O_constant
7979 && inst.reloc.exp.X_op != O_symbol
7980 && inst.reloc.exp.X_op != O_big)
7981 {
7982 inst.error = _("constant expression expected");
7983 return TRUE;
7984 }
7985
7986 if (inst.reloc.exp.X_op == O_constant
7987 || inst.reloc.exp.X_op == O_big)
7988 {
7989 #if defined BFD_HOST_64_BIT
7990 bfd_int64_t v;
7991 #else
7992 offsetT v;
7993 #endif
7994 if (inst.reloc.exp.X_op == O_big)
7995 {
7996 LITTLENUM_TYPE w[X_PRECISION];
7997 LITTLENUM_TYPE * l;
7998
7999 if (inst.reloc.exp.X_add_number == -1)
8000 {
8001 gen_to_words (w, X_PRECISION, E_PRECISION);
8002 l = w;
8003 /* FIXME: Should we check words w[2..5] ? */
8004 }
8005 else
8006 l = generic_bignum;
8007
8008 #if defined BFD_HOST_64_BIT
8009 v =
8010 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8011 << LITTLENUM_NUMBER_OF_BITS)
8012 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8013 << LITTLENUM_NUMBER_OF_BITS)
8014 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8015 << LITTLENUM_NUMBER_OF_BITS)
8016 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8017 #else
8018 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8019 | (l[0] & LITTLENUM_MASK);
8020 #endif
8021 }
8022 else
8023 v = inst.reloc.exp.X_add_number;
8024
8025 if (!inst.operands[i].issingle)
8026 {
8027 if (thumb_p)
8028 {
8029 /* LDR should not use lead in a flag-setting instruction being
8030 chosen so we do not check whether movs can be used. */
8031
8032 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8033 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8034 && inst.operands[i].reg != 13
8035 && inst.operands[i].reg != 15)
8036 {
8037 /* Check if on thumb2 it can be done with a mov.w, mvn or
8038 movw instruction. */
8039 unsigned int newimm;
8040 bfd_boolean isNegated;
8041
8042 newimm = encode_thumb32_immediate (v);
8043 if (newimm != (unsigned int) FAIL)
8044 isNegated = FALSE;
8045 else
8046 {
8047 newimm = encode_thumb32_immediate (~v);
8048 if (newimm != (unsigned int) FAIL)
8049 isNegated = TRUE;
8050 }
8051
8052 /* The number can be loaded with a mov.w or mvn
8053 instruction. */
8054 if (newimm != (unsigned int) FAIL
8055 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8056 {
8057 inst.instruction = (0xf04f0000 /* MOV.W. */
8058 | (inst.operands[i].reg << 8));
8059 /* Change to MOVN. */
8060 inst.instruction |= (isNegated ? 0x200000 : 0);
8061 inst.instruction |= (newimm & 0x800) << 15;
8062 inst.instruction |= (newimm & 0x700) << 4;
8063 inst.instruction |= (newimm & 0x0ff);
8064 return TRUE;
8065 }
8066 /* The number can be loaded with a movw instruction. */
8067 else if ((v & ~0xFFFF) == 0
8068 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8069 {
8070 int imm = v & 0xFFFF;
8071
8072 inst.instruction = 0xf2400000; /* MOVW. */
8073 inst.instruction |= (inst.operands[i].reg << 8);
8074 inst.instruction |= (imm & 0xf000) << 4;
8075 inst.instruction |= (imm & 0x0800) << 15;
8076 inst.instruction |= (imm & 0x0700) << 4;
8077 inst.instruction |= (imm & 0x00ff);
8078 return TRUE;
8079 }
8080 }
8081 }
8082 else if (arm_p)
8083 {
8084 int value = encode_arm_immediate (v);
8085
8086 if (value != FAIL)
8087 {
8088 /* This can be done with a mov instruction. */
8089 inst.instruction &= LITERAL_MASK;
8090 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8091 inst.instruction |= value & 0xfff;
8092 return TRUE;
8093 }
8094
8095 value = encode_arm_immediate (~ v);
8096 if (value != FAIL)
8097 {
8098 /* This can be done with a mvn instruction. */
8099 inst.instruction &= LITERAL_MASK;
8100 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8101 inst.instruction |= value & 0xfff;
8102 return TRUE;
8103 }
8104 }
8105 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8106 {
8107 int op = 0;
8108 unsigned immbits = 0;
8109 unsigned immlo = inst.operands[1].imm;
8110 unsigned immhi = inst.operands[1].regisimm
8111 ? inst.operands[1].reg
8112 : inst.reloc.exp.X_unsigned
8113 ? 0
8114 : ((bfd_int64_t)((int) immlo)) >> 32;
8115 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8116 &op, 64, NT_invtype);
8117
8118 if (cmode == FAIL)
8119 {
8120 neon_invert_size (&immlo, &immhi, 64);
8121 op = !op;
8122 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8123 &op, 64, NT_invtype);
8124 }
8125
8126 if (cmode != FAIL)
8127 {
8128 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8129 | (1 << 23)
8130 | (cmode << 8)
8131 | (op << 5)
8132 | (1 << 4);
8133
8134 /* Fill other bits in vmov encoding for both thumb and arm. */
8135 if (thumb_mode)
8136 inst.instruction |= (0x7U << 29) | (0xF << 24);
8137 else
8138 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8139 neon_write_immbits (immbits);
8140 return TRUE;
8141 }
8142 }
8143 }
8144
8145 if (t == CONST_VEC)
8146 {
8147 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8148 if (inst.operands[i].issingle
8149 && is_quarter_float (inst.operands[1].imm)
8150 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8151 {
8152 inst.operands[1].imm =
8153 neon_qfloat_bits (v);
8154 do_vfp_nsyn_opcode ("fconsts");
8155 return TRUE;
8156 }
8157
8158 /* If our host does not support a 64-bit type then we cannot perform
8159 the following optimization. This mean that there will be a
8160 discrepancy between the output produced by an assembler built for
8161 a 32-bit-only host and the output produced from a 64-bit host, but
8162 this cannot be helped. */
8163 #if defined BFD_HOST_64_BIT
8164 else if (!inst.operands[1].issingle
8165 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8166 {
8167 if (is_double_a_single (v)
8168 && is_quarter_float (double_to_single (v)))
8169 {
8170 inst.operands[1].imm =
8171 neon_qfloat_bits (double_to_single (v));
8172 do_vfp_nsyn_opcode ("fconstd");
8173 return TRUE;
8174 }
8175 }
8176 #endif
8177 }
8178 }
8179
8180 if (add_to_lit_pool ((!inst.operands[i].isvec
8181 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8182 return TRUE;
8183
8184 inst.operands[1].reg = REG_PC;
8185 inst.operands[1].isreg = 1;
8186 inst.operands[1].preind = 1;
8187 inst.reloc.pc_rel = 1;
8188 inst.reloc.type = (thumb_p
8189 ? BFD_RELOC_ARM_THUMB_OFFSET
8190 : (mode_3
8191 ? BFD_RELOC_ARM_HWLITERAL
8192 : BFD_RELOC_ARM_LITERAL));
8193 return FALSE;
8194 }
8195
8196 /* inst.operands[i] was set up by parse_address. Encode it into an
8197 ARM-format instruction. Reject all forms which cannot be encoded
8198 into a coprocessor load/store instruction. If wb_ok is false,
8199 reject use of writeback; if unind_ok is false, reject use of
8200 unindexed addressing. If reloc_override is not 0, use it instead
8201 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8202 (in which case it is preserved). */
8203
8204 static int
8205 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8206 {
8207 if (!inst.operands[i].isreg)
8208 {
8209 /* PR 18256 */
8210 if (! inst.operands[0].isvec)
8211 {
8212 inst.error = _("invalid co-processor operand");
8213 return FAIL;
8214 }
8215 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8216 return SUCCESS;
8217 }
8218
8219 inst.instruction |= inst.operands[i].reg << 16;
8220
8221 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8222
8223 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8224 {
8225 gas_assert (!inst.operands[i].writeback);
8226 if (!unind_ok)
8227 {
8228 inst.error = _("instruction does not support unindexed addressing");
8229 return FAIL;
8230 }
8231 inst.instruction |= inst.operands[i].imm;
8232 inst.instruction |= INDEX_UP;
8233 return SUCCESS;
8234 }
8235
8236 if (inst.operands[i].preind)
8237 inst.instruction |= PRE_INDEX;
8238
8239 if (inst.operands[i].writeback)
8240 {
8241 if (inst.operands[i].reg == REG_PC)
8242 {
8243 inst.error = _("pc may not be used with write-back");
8244 return FAIL;
8245 }
8246 if (!wb_ok)
8247 {
8248 inst.error = _("instruction does not support writeback");
8249 return FAIL;
8250 }
8251 inst.instruction |= WRITE_BACK;
8252 }
8253
8254 if (reloc_override)
8255 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8256 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8257 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8258 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
8259 {
8260 if (thumb_mode)
8261 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8262 else
8263 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
8264 }
8265
8266 /* Prefer + for zero encoded value. */
8267 if (!inst.operands[i].negative)
8268 inst.instruction |= INDEX_UP;
8269
8270 return SUCCESS;
8271 }
8272
8273 /* Functions for instruction encoding, sorted by sub-architecture.
8274 First some generics; their names are taken from the conventional
8275 bit positions for register arguments in ARM format instructions. */
8276
8277 static void
8278 do_noargs (void)
8279 {
8280 }
8281
8282 static void
8283 do_rd (void)
8284 {
8285 inst.instruction |= inst.operands[0].reg << 12;
8286 }
8287
8288 static void
8289 do_rn (void)
8290 {
8291 inst.instruction |= inst.operands[0].reg << 16;
8292 }
8293
8294 static void
8295 do_rd_rm (void)
8296 {
8297 inst.instruction |= inst.operands[0].reg << 12;
8298 inst.instruction |= inst.operands[1].reg;
8299 }
8300
8301 static void
8302 do_rm_rn (void)
8303 {
8304 inst.instruction |= inst.operands[0].reg;
8305 inst.instruction |= inst.operands[1].reg << 16;
8306 }
8307
8308 static void
8309 do_rd_rn (void)
8310 {
8311 inst.instruction |= inst.operands[0].reg << 12;
8312 inst.instruction |= inst.operands[1].reg << 16;
8313 }
8314
8315 static void
8316 do_rn_rd (void)
8317 {
8318 inst.instruction |= inst.operands[0].reg << 16;
8319 inst.instruction |= inst.operands[1].reg << 12;
8320 }
8321
8322 static void
8323 do_tt (void)
8324 {
8325 inst.instruction |= inst.operands[0].reg << 8;
8326 inst.instruction |= inst.operands[1].reg << 16;
8327 }
8328
8329 static bfd_boolean
8330 check_obsolete (const arm_feature_set *feature, const char *msg)
8331 {
8332 if (ARM_CPU_IS_ANY (cpu_variant))
8333 {
8334 as_tsktsk ("%s", msg);
8335 return TRUE;
8336 }
8337 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8338 {
8339 as_bad ("%s", msg);
8340 return TRUE;
8341 }
8342
8343 return FALSE;
8344 }
8345
8346 static void
8347 do_rd_rm_rn (void)
8348 {
8349 unsigned Rn = inst.operands[2].reg;
8350 /* Enforce restrictions on SWP instruction. */
8351 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8352 {
8353 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8354 _("Rn must not overlap other operands"));
8355
8356 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8357 */
8358 if (!check_obsolete (&arm_ext_v8,
8359 _("swp{b} use is obsoleted for ARMv8 and later"))
8360 && warn_on_deprecated
8361 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8362 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8363 }
8364
8365 inst.instruction |= inst.operands[0].reg << 12;
8366 inst.instruction |= inst.operands[1].reg;
8367 inst.instruction |= Rn << 16;
8368 }
8369
8370 static void
8371 do_rd_rn_rm (void)
8372 {
8373 inst.instruction |= inst.operands[0].reg << 12;
8374 inst.instruction |= inst.operands[1].reg << 16;
8375 inst.instruction |= inst.operands[2].reg;
8376 }
8377
8378 static void
8379 do_rm_rd_rn (void)
8380 {
8381 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8382 constraint (((inst.reloc.exp.X_op != O_constant
8383 && inst.reloc.exp.X_op != O_illegal)
8384 || inst.reloc.exp.X_add_number != 0),
8385 BAD_ADDR_MODE);
8386 inst.instruction |= inst.operands[0].reg;
8387 inst.instruction |= inst.operands[1].reg << 12;
8388 inst.instruction |= inst.operands[2].reg << 16;
8389 }
8390
8391 static void
8392 do_imm0 (void)
8393 {
8394 inst.instruction |= inst.operands[0].imm;
8395 }
8396
8397 static void
8398 do_rd_cpaddr (void)
8399 {
8400 inst.instruction |= inst.operands[0].reg << 12;
8401 encode_arm_cp_address (1, TRUE, TRUE, 0);
8402 }
8403
8404 /* ARM instructions, in alphabetical order by function name (except
8405 that wrapper functions appear immediately after the function they
8406 wrap). */
8407
8408 /* This is a pseudo-op of the form "adr rd, label" to be converted
8409 into a relative address of the form "add rd, pc, #label-.-8". */
8410
8411 static void
8412 do_adr (void)
8413 {
8414 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8415
8416 /* Frag hacking will turn this into a sub instruction if the offset turns
8417 out to be negative. */
8418 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8419 inst.reloc.pc_rel = 1;
8420 inst.reloc.exp.X_add_number -= 8;
8421
8422 if (support_interwork
8423 && inst.reloc.exp.X_op == O_symbol
8424 && inst.reloc.exp.X_add_symbol != NULL
8425 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8426 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8427 inst.reloc.exp.X_add_number |= 1;
8428 }
8429
8430 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8431 into a relative address of the form:
8432 add rd, pc, #low(label-.-8)"
8433 add rd, rd, #high(label-.-8)" */
8434
8435 static void
8436 do_adrl (void)
8437 {
8438 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8439
8440 /* Frag hacking will turn this into a sub instruction if the offset turns
8441 out to be negative. */
8442 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8443 inst.reloc.pc_rel = 1;
8444 inst.size = INSN_SIZE * 2;
8445 inst.reloc.exp.X_add_number -= 8;
8446
8447 if (support_interwork
8448 && inst.reloc.exp.X_op == O_symbol
8449 && inst.reloc.exp.X_add_symbol != NULL
8450 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8451 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8452 inst.reloc.exp.X_add_number |= 1;
8453 }
8454
8455 static void
8456 do_arit (void)
8457 {
8458 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8459 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8460 THUMB1_RELOC_ONLY);
8461 if (!inst.operands[1].present)
8462 inst.operands[1].reg = inst.operands[0].reg;
8463 inst.instruction |= inst.operands[0].reg << 12;
8464 inst.instruction |= inst.operands[1].reg << 16;
8465 encode_arm_shifter_operand (2);
8466 }
8467
8468 static void
8469 do_barrier (void)
8470 {
8471 if (inst.operands[0].present)
8472 inst.instruction |= inst.operands[0].imm;
8473 else
8474 inst.instruction |= 0xf;
8475 }
8476
8477 static void
8478 do_bfc (void)
8479 {
8480 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8481 constraint (msb > 32, _("bit-field extends past end of register"));
8482 /* The instruction encoding stores the LSB and MSB,
8483 not the LSB and width. */
8484 inst.instruction |= inst.operands[0].reg << 12;
8485 inst.instruction |= inst.operands[1].imm << 7;
8486 inst.instruction |= (msb - 1) << 16;
8487 }
8488
8489 static void
8490 do_bfi (void)
8491 {
8492 unsigned int msb;
8493
8494 /* #0 in second position is alternative syntax for bfc, which is
8495 the same instruction but with REG_PC in the Rm field. */
8496 if (!inst.operands[1].isreg)
8497 inst.operands[1].reg = REG_PC;
8498
8499 msb = inst.operands[2].imm + inst.operands[3].imm;
8500 constraint (msb > 32, _("bit-field extends past end of register"));
8501 /* The instruction encoding stores the LSB and MSB,
8502 not the LSB and width. */
8503 inst.instruction |= inst.operands[0].reg << 12;
8504 inst.instruction |= inst.operands[1].reg;
8505 inst.instruction |= inst.operands[2].imm << 7;
8506 inst.instruction |= (msb - 1) << 16;
8507 }
8508
8509 static void
8510 do_bfx (void)
8511 {
8512 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8513 _("bit-field extends past end of register"));
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].reg;
8516 inst.instruction |= inst.operands[2].imm << 7;
8517 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8518 }
8519
8520 /* ARM V5 breakpoint instruction (argument parse)
8521 BKPT <16 bit unsigned immediate>
8522 Instruction is not conditional.
8523 The bit pattern given in insns[] has the COND_ALWAYS condition,
8524 and it is an error if the caller tried to override that. */
8525
8526 static void
8527 do_bkpt (void)
8528 {
8529 /* Top 12 of 16 bits to bits 19:8. */
8530 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8531
8532 /* Bottom 4 of 16 bits to bits 3:0. */
8533 inst.instruction |= inst.operands[0].imm & 0xf;
8534 }
8535
8536 static void
8537 encode_branch (int default_reloc)
8538 {
8539 if (inst.operands[0].hasreloc)
8540 {
8541 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8542 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8543 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8544 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8545 ? BFD_RELOC_ARM_PLT32
8546 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8547 }
8548 else
8549 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8550 inst.reloc.pc_rel = 1;
8551 }
8552
8553 static void
8554 do_branch (void)
8555 {
8556 #ifdef OBJ_ELF
8557 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8558 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8559 else
8560 #endif
8561 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8562 }
8563
8564 static void
8565 do_bl (void)
8566 {
8567 #ifdef OBJ_ELF
8568 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8569 {
8570 if (inst.cond == COND_ALWAYS)
8571 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8572 else
8573 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8574 }
8575 else
8576 #endif
8577 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8578 }
8579
8580 /* ARM V5 branch-link-exchange instruction (argument parse)
8581 BLX <target_addr> ie BLX(1)
8582 BLX{<condition>} <Rm> ie BLX(2)
8583 Unfortunately, there are two different opcodes for this mnemonic.
8584 So, the insns[].value is not used, and the code here zaps values
8585 into inst.instruction.
8586 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8587
8588 static void
8589 do_blx (void)
8590 {
8591 if (inst.operands[0].isreg)
8592 {
8593 /* Arg is a register; the opcode provided by insns[] is correct.
8594 It is not illegal to do "blx pc", just useless. */
8595 if (inst.operands[0].reg == REG_PC)
8596 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8597
8598 inst.instruction |= inst.operands[0].reg;
8599 }
8600 else
8601 {
8602 /* Arg is an address; this instruction cannot be executed
8603 conditionally, and the opcode must be adjusted.
8604 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8605 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8606 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8607 inst.instruction = 0xfa000000;
8608 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8609 }
8610 }
8611
8612 static void
8613 do_bx (void)
8614 {
8615 bfd_boolean want_reloc;
8616
8617 if (inst.operands[0].reg == REG_PC)
8618 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8619
8620 inst.instruction |= inst.operands[0].reg;
8621 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8622 it is for ARMv4t or earlier. */
8623 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8624 if (!ARM_FEATURE_ZERO (selected_object_arch)
8625 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
8626 want_reloc = TRUE;
8627
8628 #ifdef OBJ_ELF
8629 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8630 #endif
8631 want_reloc = FALSE;
8632
8633 if (want_reloc)
8634 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8635 }
8636
8637
8638 /* ARM v5TEJ. Jump to Jazelle code. */
8639
8640 static void
8641 do_bxj (void)
8642 {
8643 if (inst.operands[0].reg == REG_PC)
8644 as_tsktsk (_("use of r15 in bxj is not really useful"));
8645
8646 inst.instruction |= inst.operands[0].reg;
8647 }
8648
8649 /* Co-processor data operation:
8650 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8651 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8652 static void
8653 do_cdp (void)
8654 {
8655 inst.instruction |= inst.operands[0].reg << 8;
8656 inst.instruction |= inst.operands[1].imm << 20;
8657 inst.instruction |= inst.operands[2].reg << 12;
8658 inst.instruction |= inst.operands[3].reg << 16;
8659 inst.instruction |= inst.operands[4].reg;
8660 inst.instruction |= inst.operands[5].imm << 5;
8661 }
8662
8663 static void
8664 do_cmp (void)
8665 {
8666 inst.instruction |= inst.operands[0].reg << 16;
8667 encode_arm_shifter_operand (1);
8668 }
8669
8670 /* Transfer between coprocessor and ARM registers.
8671 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8672 MRC2
8673 MCR{cond}
8674 MCR2
8675
8676 No special properties. */
8677
8678 struct deprecated_coproc_regs_s
8679 {
8680 unsigned cp;
8681 int opc1;
8682 unsigned crn;
8683 unsigned crm;
8684 int opc2;
8685 arm_feature_set deprecated;
8686 arm_feature_set obsoleted;
8687 const char *dep_msg;
8688 const char *obs_msg;
8689 };
8690
8691 #define DEPR_ACCESS_V8 \
8692 N_("This coprocessor register access is deprecated in ARMv8")
8693
8694 /* Table of all deprecated coprocessor registers. */
8695 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8696 {
8697 {15, 0, 7, 10, 5, /* CP15DMB. */
8698 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8699 DEPR_ACCESS_V8, NULL},
8700 {15, 0, 7, 10, 4, /* CP15DSB. */
8701 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8702 DEPR_ACCESS_V8, NULL},
8703 {15, 0, 7, 5, 4, /* CP15ISB. */
8704 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8705 DEPR_ACCESS_V8, NULL},
8706 {14, 6, 1, 0, 0, /* TEEHBR. */
8707 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8708 DEPR_ACCESS_V8, NULL},
8709 {14, 6, 0, 0, 0, /* TEECR. */
8710 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8711 DEPR_ACCESS_V8, NULL},
8712 };
8713
8714 #undef DEPR_ACCESS_V8
8715
8716 static const size_t deprecated_coproc_reg_count =
8717 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8718
8719 static void
8720 do_co_reg (void)
8721 {
8722 unsigned Rd;
8723 size_t i;
8724
8725 Rd = inst.operands[2].reg;
8726 if (thumb_mode)
8727 {
8728 if (inst.instruction == 0xee000010
8729 || inst.instruction == 0xfe000010)
8730 /* MCR, MCR2 */
8731 reject_bad_reg (Rd);
8732 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8733 /* MRC, MRC2 */
8734 constraint (Rd == REG_SP, BAD_SP);
8735 }
8736 else
8737 {
8738 /* MCR */
8739 if (inst.instruction == 0xe000010)
8740 constraint (Rd == REG_PC, BAD_PC);
8741 }
8742
8743 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8744 {
8745 const struct deprecated_coproc_regs_s *r =
8746 deprecated_coproc_regs + i;
8747
8748 if (inst.operands[0].reg == r->cp
8749 && inst.operands[1].imm == r->opc1
8750 && inst.operands[3].reg == r->crn
8751 && inst.operands[4].reg == r->crm
8752 && inst.operands[5].imm == r->opc2)
8753 {
8754 if (! ARM_CPU_IS_ANY (cpu_variant)
8755 && warn_on_deprecated
8756 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8757 as_tsktsk ("%s", r->dep_msg);
8758 }
8759 }
8760
8761 inst.instruction |= inst.operands[0].reg << 8;
8762 inst.instruction |= inst.operands[1].imm << 21;
8763 inst.instruction |= Rd << 12;
8764 inst.instruction |= inst.operands[3].reg << 16;
8765 inst.instruction |= inst.operands[4].reg;
8766 inst.instruction |= inst.operands[5].imm << 5;
8767 }
8768
8769 /* Transfer between coprocessor register and pair of ARM registers.
8770 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8771 MCRR2
8772 MRRC{cond}
8773 MRRC2
8774
8775 Two XScale instructions are special cases of these:
8776
8777 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8778 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8779
8780 Result unpredictable if Rd or Rn is R15. */
8781
8782 static void
8783 do_co_reg2c (void)
8784 {
8785 unsigned Rd, Rn;
8786
8787 Rd = inst.operands[2].reg;
8788 Rn = inst.operands[3].reg;
8789
8790 if (thumb_mode)
8791 {
8792 reject_bad_reg (Rd);
8793 reject_bad_reg (Rn);
8794 }
8795 else
8796 {
8797 constraint (Rd == REG_PC, BAD_PC);
8798 constraint (Rn == REG_PC, BAD_PC);
8799 }
8800
8801 /* Only check the MRRC{2} variants. */
8802 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8803 {
8804 /* If Rd == Rn, error that the operation is
8805 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8806 constraint (Rd == Rn, BAD_OVERLAP);
8807 }
8808
8809 inst.instruction |= inst.operands[0].reg << 8;
8810 inst.instruction |= inst.operands[1].imm << 4;
8811 inst.instruction |= Rd << 12;
8812 inst.instruction |= Rn << 16;
8813 inst.instruction |= inst.operands[4].reg;
8814 }
8815
8816 static void
8817 do_cpsi (void)
8818 {
8819 inst.instruction |= inst.operands[0].imm << 6;
8820 if (inst.operands[1].present)
8821 {
8822 inst.instruction |= CPSI_MMOD;
8823 inst.instruction |= inst.operands[1].imm;
8824 }
8825 }
8826
8827 static void
8828 do_dbg (void)
8829 {
8830 inst.instruction |= inst.operands[0].imm;
8831 }
8832
8833 static void
8834 do_div (void)
8835 {
8836 unsigned Rd, Rn, Rm;
8837
8838 Rd = inst.operands[0].reg;
8839 Rn = (inst.operands[1].present
8840 ? inst.operands[1].reg : Rd);
8841 Rm = inst.operands[2].reg;
8842
8843 constraint ((Rd == REG_PC), BAD_PC);
8844 constraint ((Rn == REG_PC), BAD_PC);
8845 constraint ((Rm == REG_PC), BAD_PC);
8846
8847 inst.instruction |= Rd << 16;
8848 inst.instruction |= Rn << 0;
8849 inst.instruction |= Rm << 8;
8850 }
8851
8852 static void
8853 do_it (void)
8854 {
8855 /* There is no IT instruction in ARM mode. We
8856 process it to do the validation as if in
8857 thumb mode, just in case the code gets
8858 assembled for thumb using the unified syntax. */
8859
8860 inst.size = 0;
8861 if (unified_syntax)
8862 {
8863 set_it_insn_type (IT_INSN);
8864 now_it.mask = (inst.instruction & 0xf) | 0x10;
8865 now_it.cc = inst.operands[0].imm;
8866 }
8867 }
8868
8869 /* If there is only one register in the register list,
8870 then return its register number. Otherwise return -1. */
8871 static int
8872 only_one_reg_in_list (int range)
8873 {
8874 int i = ffs (range) - 1;
8875 return (i > 15 || range != (1 << i)) ? -1 : i;
8876 }
8877
8878 static void
8879 encode_ldmstm(int from_push_pop_mnem)
8880 {
8881 int base_reg = inst.operands[0].reg;
8882 int range = inst.operands[1].imm;
8883 int one_reg;
8884
8885 inst.instruction |= base_reg << 16;
8886 inst.instruction |= range;
8887
8888 if (inst.operands[1].writeback)
8889 inst.instruction |= LDM_TYPE_2_OR_3;
8890
8891 if (inst.operands[0].writeback)
8892 {
8893 inst.instruction |= WRITE_BACK;
8894 /* Check for unpredictable uses of writeback. */
8895 if (inst.instruction & LOAD_BIT)
8896 {
8897 /* Not allowed in LDM type 2. */
8898 if ((inst.instruction & LDM_TYPE_2_OR_3)
8899 && ((range & (1 << REG_PC)) == 0))
8900 as_warn (_("writeback of base register is UNPREDICTABLE"));
8901 /* Only allowed if base reg not in list for other types. */
8902 else if (range & (1 << base_reg))
8903 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8904 }
8905 else /* STM. */
8906 {
8907 /* Not allowed for type 2. */
8908 if (inst.instruction & LDM_TYPE_2_OR_3)
8909 as_warn (_("writeback of base register is UNPREDICTABLE"));
8910 /* Only allowed if base reg not in list, or first in list. */
8911 else if ((range & (1 << base_reg))
8912 && (range & ((1 << base_reg) - 1)))
8913 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8914 }
8915 }
8916
8917 /* If PUSH/POP has only one register, then use the A2 encoding. */
8918 one_reg = only_one_reg_in_list (range);
8919 if (from_push_pop_mnem && one_reg >= 0)
8920 {
8921 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8922
8923 if (is_push && one_reg == 13 /* SP */)
8924 /* PR 22483: The A2 encoding cannot be used when
8925 pushing the stack pointer as this is UNPREDICTABLE. */
8926 return;
8927
8928 inst.instruction &= A_COND_MASK;
8929 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8930 inst.instruction |= one_reg << 12;
8931 }
8932 }
8933
8934 static void
8935 do_ldmstm (void)
8936 {
8937 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8938 }
8939
8940 /* ARMv5TE load-consecutive (argument parse)
8941 Mode is like LDRH.
8942
8943 LDRccD R, mode
8944 STRccD R, mode. */
8945
8946 static void
8947 do_ldrd (void)
8948 {
8949 constraint (inst.operands[0].reg % 2 != 0,
8950 _("first transfer register must be even"));
8951 constraint (inst.operands[1].present
8952 && inst.operands[1].reg != inst.operands[0].reg + 1,
8953 _("can only transfer two consecutive registers"));
8954 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8955 constraint (!inst.operands[2].isreg, _("'[' expected"));
8956
8957 if (!inst.operands[1].present)
8958 inst.operands[1].reg = inst.operands[0].reg + 1;
8959
8960 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8961 register and the first register written; we have to diagnose
8962 overlap between the base and the second register written here. */
8963
8964 if (inst.operands[2].reg == inst.operands[1].reg
8965 && (inst.operands[2].writeback || inst.operands[2].postind))
8966 as_warn (_("base register written back, and overlaps "
8967 "second transfer register"));
8968
8969 if (!(inst.instruction & V4_STR_BIT))
8970 {
8971 /* For an index-register load, the index register must not overlap the
8972 destination (even if not write-back). */
8973 if (inst.operands[2].immisreg
8974 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8975 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8976 as_warn (_("index register overlaps transfer register"));
8977 }
8978 inst.instruction |= inst.operands[0].reg << 12;
8979 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8980 }
8981
8982 static void
8983 do_ldrex (void)
8984 {
8985 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8986 || inst.operands[1].postind || inst.operands[1].writeback
8987 || inst.operands[1].immisreg || inst.operands[1].shifted
8988 || inst.operands[1].negative
8989 /* This can arise if the programmer has written
8990 strex rN, rM, foo
8991 or if they have mistakenly used a register name as the last
8992 operand, eg:
8993 strex rN, rM, rX
8994 It is very difficult to distinguish between these two cases
8995 because "rX" might actually be a label. ie the register
8996 name has been occluded by a symbol of the same name. So we
8997 just generate a general 'bad addressing mode' type error
8998 message and leave it up to the programmer to discover the
8999 true cause and fix their mistake. */
9000 || (inst.operands[1].reg == REG_PC),
9001 BAD_ADDR_MODE);
9002
9003 constraint (inst.reloc.exp.X_op != O_constant
9004 || inst.reloc.exp.X_add_number != 0,
9005 _("offset must be zero in ARM encoding"));
9006
9007 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9008
9009 inst.instruction |= inst.operands[0].reg << 12;
9010 inst.instruction |= inst.operands[1].reg << 16;
9011 inst.reloc.type = BFD_RELOC_UNUSED;
9012 }
9013
9014 static void
9015 do_ldrexd (void)
9016 {
9017 constraint (inst.operands[0].reg % 2 != 0,
9018 _("even register required"));
9019 constraint (inst.operands[1].present
9020 && inst.operands[1].reg != inst.operands[0].reg + 1,
9021 _("can only load two consecutive registers"));
9022 /* If op 1 were present and equal to PC, this function wouldn't
9023 have been called in the first place. */
9024 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9025
9026 inst.instruction |= inst.operands[0].reg << 12;
9027 inst.instruction |= inst.operands[2].reg << 16;
9028 }
9029
9030 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9031 which is not a multiple of four is UNPREDICTABLE. */
9032 static void
9033 check_ldr_r15_aligned (void)
9034 {
9035 constraint (!(inst.operands[1].immisreg)
9036 && (inst.operands[0].reg == REG_PC
9037 && inst.operands[1].reg == REG_PC
9038 && (inst.reloc.exp.X_add_number & 0x3)),
9039 _("ldr to register 15 must be 4-byte aligned"));
9040 }
9041
9042 static void
9043 do_ldst (void)
9044 {
9045 inst.instruction |= inst.operands[0].reg << 12;
9046 if (!inst.operands[1].isreg)
9047 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9048 return;
9049 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9050 check_ldr_r15_aligned ();
9051 }
9052
9053 static void
9054 do_ldstt (void)
9055 {
9056 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9057 reject [Rn,...]. */
9058 if (inst.operands[1].preind)
9059 {
9060 constraint (inst.reloc.exp.X_op != O_constant
9061 || inst.reloc.exp.X_add_number != 0,
9062 _("this instruction requires a post-indexed address"));
9063
9064 inst.operands[1].preind = 0;
9065 inst.operands[1].postind = 1;
9066 inst.operands[1].writeback = 1;
9067 }
9068 inst.instruction |= inst.operands[0].reg << 12;
9069 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9070 }
9071
9072 /* Halfword and signed-byte load/store operations. */
9073
9074 static void
9075 do_ldstv4 (void)
9076 {
9077 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9078 inst.instruction |= inst.operands[0].reg << 12;
9079 if (!inst.operands[1].isreg)
9080 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9081 return;
9082 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9083 }
9084
9085 static void
9086 do_ldsttv4 (void)
9087 {
9088 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9089 reject [Rn,...]. */
9090 if (inst.operands[1].preind)
9091 {
9092 constraint (inst.reloc.exp.X_op != O_constant
9093 || inst.reloc.exp.X_add_number != 0,
9094 _("this instruction requires a post-indexed address"));
9095
9096 inst.operands[1].preind = 0;
9097 inst.operands[1].postind = 1;
9098 inst.operands[1].writeback = 1;
9099 }
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9102 }
9103
9104 /* Co-processor register load/store.
9105 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9106 static void
9107 do_lstc (void)
9108 {
9109 inst.instruction |= inst.operands[0].reg << 8;
9110 inst.instruction |= inst.operands[1].reg << 12;
9111 encode_arm_cp_address (2, TRUE, TRUE, 0);
9112 }
9113
9114 static void
9115 do_mlas (void)
9116 {
9117 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9118 if (inst.operands[0].reg == inst.operands[1].reg
9119 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9120 && !(inst.instruction & 0x00400000))
9121 as_tsktsk (_("Rd and Rm should be different in mla"));
9122
9123 inst.instruction |= inst.operands[0].reg << 16;
9124 inst.instruction |= inst.operands[1].reg;
9125 inst.instruction |= inst.operands[2].reg << 8;
9126 inst.instruction |= inst.operands[3].reg << 12;
9127 }
9128
9129 static void
9130 do_mov (void)
9131 {
9132 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9133 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9134 THUMB1_RELOC_ONLY);
9135 inst.instruction |= inst.operands[0].reg << 12;
9136 encode_arm_shifter_operand (1);
9137 }
9138
9139 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9140 static void
9141 do_mov16 (void)
9142 {
9143 bfd_vma imm;
9144 bfd_boolean top;
9145
9146 top = (inst.instruction & 0x00400000) != 0;
9147 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
9148 _(":lower16: not allowed in this instruction"));
9149 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
9150 _(":upper16: not allowed in this instruction"));
9151 inst.instruction |= inst.operands[0].reg << 12;
9152 if (inst.reloc.type == BFD_RELOC_UNUSED)
9153 {
9154 imm = inst.reloc.exp.X_add_number;
9155 /* The value is in two pieces: 0:11, 16:19. */
9156 inst.instruction |= (imm & 0x00000fff);
9157 inst.instruction |= (imm & 0x0000f000) << 4;
9158 }
9159 }
9160
9161 static int
9162 do_vfp_nsyn_mrs (void)
9163 {
9164 if (inst.operands[0].isvec)
9165 {
9166 if (inst.operands[1].reg != 1)
9167 first_error (_("operand 1 must be FPSCR"));
9168 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9169 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9170 do_vfp_nsyn_opcode ("fmstat");
9171 }
9172 else if (inst.operands[1].isvec)
9173 do_vfp_nsyn_opcode ("fmrx");
9174 else
9175 return FAIL;
9176
9177 return SUCCESS;
9178 }
9179
9180 static int
9181 do_vfp_nsyn_msr (void)
9182 {
9183 if (inst.operands[0].isvec)
9184 do_vfp_nsyn_opcode ("fmxr");
9185 else
9186 return FAIL;
9187
9188 return SUCCESS;
9189 }
9190
9191 static void
9192 do_vmrs (void)
9193 {
9194 unsigned Rt = inst.operands[0].reg;
9195
9196 if (thumb_mode && Rt == REG_SP)
9197 {
9198 inst.error = BAD_SP;
9199 return;
9200 }
9201
9202 /* MVFR2 is only valid at ARMv8-A. */
9203 if (inst.operands[1].reg == 5)
9204 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9205 _(BAD_FPU));
9206
9207 /* APSR_ sets isvec. All other refs to PC are illegal. */
9208 if (!inst.operands[0].isvec && Rt == REG_PC)
9209 {
9210 inst.error = BAD_PC;
9211 return;
9212 }
9213
9214 /* If we get through parsing the register name, we just insert the number
9215 generated into the instruction without further validation. */
9216 inst.instruction |= (inst.operands[1].reg << 16);
9217 inst.instruction |= (Rt << 12);
9218 }
9219
9220 static void
9221 do_vmsr (void)
9222 {
9223 unsigned Rt = inst.operands[1].reg;
9224
9225 if (thumb_mode)
9226 reject_bad_reg (Rt);
9227 else if (Rt == REG_PC)
9228 {
9229 inst.error = BAD_PC;
9230 return;
9231 }
9232
9233 /* MVFR2 is only valid for ARMv8-A. */
9234 if (inst.operands[0].reg == 5)
9235 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9236 _(BAD_FPU));
9237
9238 /* If we get through parsing the register name, we just insert the number
9239 generated into the instruction without further validation. */
9240 inst.instruction |= (inst.operands[0].reg << 16);
9241 inst.instruction |= (Rt << 12);
9242 }
9243
9244 static void
9245 do_mrs (void)
9246 {
9247 unsigned br;
9248
9249 if (do_vfp_nsyn_mrs () == SUCCESS)
9250 return;
9251
9252 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9253 inst.instruction |= inst.operands[0].reg << 12;
9254
9255 if (inst.operands[1].isreg)
9256 {
9257 br = inst.operands[1].reg;
9258 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9259 as_bad (_("bad register for mrs"));
9260 }
9261 else
9262 {
9263 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9264 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9265 != (PSR_c|PSR_f),
9266 _("'APSR', 'CPSR' or 'SPSR' expected"));
9267 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9268 }
9269
9270 inst.instruction |= br;
9271 }
9272
9273 /* Two possible forms:
9274 "{C|S}PSR_<field>, Rm",
9275 "{C|S}PSR_f, #expression". */
9276
9277 static void
9278 do_msr (void)
9279 {
9280 if (do_vfp_nsyn_msr () == SUCCESS)
9281 return;
9282
9283 inst.instruction |= inst.operands[0].imm;
9284 if (inst.operands[1].isreg)
9285 inst.instruction |= inst.operands[1].reg;
9286 else
9287 {
9288 inst.instruction |= INST_IMMEDIATE;
9289 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9290 inst.reloc.pc_rel = 0;
9291 }
9292 }
9293
9294 static void
9295 do_mul (void)
9296 {
9297 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9298
9299 if (!inst.operands[2].present)
9300 inst.operands[2].reg = inst.operands[0].reg;
9301 inst.instruction |= inst.operands[0].reg << 16;
9302 inst.instruction |= inst.operands[1].reg;
9303 inst.instruction |= inst.operands[2].reg << 8;
9304
9305 if (inst.operands[0].reg == inst.operands[1].reg
9306 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9307 as_tsktsk (_("Rd and Rm should be different in mul"));
9308 }
9309
9310 /* Long Multiply Parser
9311 UMULL RdLo, RdHi, Rm, Rs
9312 SMULL RdLo, RdHi, Rm, Rs
9313 UMLAL RdLo, RdHi, Rm, Rs
9314 SMLAL RdLo, RdHi, Rm, Rs. */
9315
9316 static void
9317 do_mull (void)
9318 {
9319 inst.instruction |= inst.operands[0].reg << 12;
9320 inst.instruction |= inst.operands[1].reg << 16;
9321 inst.instruction |= inst.operands[2].reg;
9322 inst.instruction |= inst.operands[3].reg << 8;
9323
9324 /* rdhi and rdlo must be different. */
9325 if (inst.operands[0].reg == inst.operands[1].reg)
9326 as_tsktsk (_("rdhi and rdlo must be different"));
9327
9328 /* rdhi, rdlo and rm must all be different before armv6. */
9329 if ((inst.operands[0].reg == inst.operands[2].reg
9330 || inst.operands[1].reg == inst.operands[2].reg)
9331 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9332 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9333 }
9334
9335 static void
9336 do_nop (void)
9337 {
9338 if (inst.operands[0].present
9339 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9340 {
9341 /* Architectural NOP hints are CPSR sets with no bits selected. */
9342 inst.instruction &= 0xf0000000;
9343 inst.instruction |= 0x0320f000;
9344 if (inst.operands[0].present)
9345 inst.instruction |= inst.operands[0].imm;
9346 }
9347 }
9348
9349 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9350 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9351 Condition defaults to COND_ALWAYS.
9352 Error if Rd, Rn or Rm are R15. */
9353
9354 static void
9355 do_pkhbt (void)
9356 {
9357 inst.instruction |= inst.operands[0].reg << 12;
9358 inst.instruction |= inst.operands[1].reg << 16;
9359 inst.instruction |= inst.operands[2].reg;
9360 if (inst.operands[3].present)
9361 encode_arm_shift (3);
9362 }
9363
9364 /* ARM V6 PKHTB (Argument Parse). */
9365
9366 static void
9367 do_pkhtb (void)
9368 {
9369 if (!inst.operands[3].present)
9370 {
9371 /* If the shift specifier is omitted, turn the instruction
9372 into pkhbt rd, rm, rn. */
9373 inst.instruction &= 0xfff00010;
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg;
9376 inst.instruction |= inst.operands[2].reg << 16;
9377 }
9378 else
9379 {
9380 inst.instruction |= inst.operands[0].reg << 12;
9381 inst.instruction |= inst.operands[1].reg << 16;
9382 inst.instruction |= inst.operands[2].reg;
9383 encode_arm_shift (3);
9384 }
9385 }
9386
9387 /* ARMv5TE: Preload-Cache
9388 MP Extensions: Preload for write
9389
9390 PLD(W) <addr_mode>
9391
9392 Syntactically, like LDR with B=1, W=0, L=1. */
9393
9394 static void
9395 do_pld (void)
9396 {
9397 constraint (!inst.operands[0].isreg,
9398 _("'[' expected after PLD mnemonic"));
9399 constraint (inst.operands[0].postind,
9400 _("post-indexed expression used in preload instruction"));
9401 constraint (inst.operands[0].writeback,
9402 _("writeback used in preload instruction"));
9403 constraint (!inst.operands[0].preind,
9404 _("unindexed addressing used in preload instruction"));
9405 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9406 }
9407
9408 /* ARMv7: PLI <addr_mode> */
9409 static void
9410 do_pli (void)
9411 {
9412 constraint (!inst.operands[0].isreg,
9413 _("'[' expected after PLI mnemonic"));
9414 constraint (inst.operands[0].postind,
9415 _("post-indexed expression used in preload instruction"));
9416 constraint (inst.operands[0].writeback,
9417 _("writeback used in preload instruction"));
9418 constraint (!inst.operands[0].preind,
9419 _("unindexed addressing used in preload instruction"));
9420 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9421 inst.instruction &= ~PRE_INDEX;
9422 }
9423
9424 static void
9425 do_push_pop (void)
9426 {
9427 constraint (inst.operands[0].writeback,
9428 _("push/pop do not support {reglist}^"));
9429 inst.operands[1] = inst.operands[0];
9430 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9431 inst.operands[0].isreg = 1;
9432 inst.operands[0].writeback = 1;
9433 inst.operands[0].reg = REG_SP;
9434 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9435 }
9436
9437 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9438 word at the specified address and the following word
9439 respectively.
9440 Unconditionally executed.
9441 Error if Rn is R15. */
9442
9443 static void
9444 do_rfe (void)
9445 {
9446 inst.instruction |= inst.operands[0].reg << 16;
9447 if (inst.operands[0].writeback)
9448 inst.instruction |= WRITE_BACK;
9449 }
9450
9451 /* ARM V6 ssat (argument parse). */
9452
9453 static void
9454 do_ssat (void)
9455 {
9456 inst.instruction |= inst.operands[0].reg << 12;
9457 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9458 inst.instruction |= inst.operands[2].reg;
9459
9460 if (inst.operands[3].present)
9461 encode_arm_shift (3);
9462 }
9463
9464 /* ARM V6 usat (argument parse). */
9465
9466 static void
9467 do_usat (void)
9468 {
9469 inst.instruction |= inst.operands[0].reg << 12;
9470 inst.instruction |= inst.operands[1].imm << 16;
9471 inst.instruction |= inst.operands[2].reg;
9472
9473 if (inst.operands[3].present)
9474 encode_arm_shift (3);
9475 }
9476
9477 /* ARM V6 ssat16 (argument parse). */
9478
9479 static void
9480 do_ssat16 (void)
9481 {
9482 inst.instruction |= inst.operands[0].reg << 12;
9483 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9484 inst.instruction |= inst.operands[2].reg;
9485 }
9486
9487 static void
9488 do_usat16 (void)
9489 {
9490 inst.instruction |= inst.operands[0].reg << 12;
9491 inst.instruction |= inst.operands[1].imm << 16;
9492 inst.instruction |= inst.operands[2].reg;
9493 }
9494
9495 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9496 preserving the other bits.
9497
9498 setend <endian_specifier>, where <endian_specifier> is either
9499 BE or LE. */
9500
9501 static void
9502 do_setend (void)
9503 {
9504 if (warn_on_deprecated
9505 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9506 as_tsktsk (_("setend use is deprecated for ARMv8"));
9507
9508 if (inst.operands[0].imm)
9509 inst.instruction |= 0x200;
9510 }
9511
9512 static void
9513 do_shift (void)
9514 {
9515 unsigned int Rm = (inst.operands[1].present
9516 ? inst.operands[1].reg
9517 : inst.operands[0].reg);
9518
9519 inst.instruction |= inst.operands[0].reg << 12;
9520 inst.instruction |= Rm;
9521 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9522 {
9523 inst.instruction |= inst.operands[2].reg << 8;
9524 inst.instruction |= SHIFT_BY_REG;
9525 /* PR 12854: Error on extraneous shifts. */
9526 constraint (inst.operands[2].shifted,
9527 _("extraneous shift as part of operand to shift insn"));
9528 }
9529 else
9530 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9531 }
9532
9533 static void
9534 do_smc (void)
9535 {
9536 inst.reloc.type = BFD_RELOC_ARM_SMC;
9537 inst.reloc.pc_rel = 0;
9538 }
9539
9540 static void
9541 do_hvc (void)
9542 {
9543 inst.reloc.type = BFD_RELOC_ARM_HVC;
9544 inst.reloc.pc_rel = 0;
9545 }
9546
9547 static void
9548 do_swi (void)
9549 {
9550 inst.reloc.type = BFD_RELOC_ARM_SWI;
9551 inst.reloc.pc_rel = 0;
9552 }
9553
9554 static void
9555 do_setpan (void)
9556 {
9557 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9558 _("selected processor does not support SETPAN instruction"));
9559
9560 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9561 }
9562
9563 static void
9564 do_t_setpan (void)
9565 {
9566 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9567 _("selected processor does not support SETPAN instruction"));
9568
9569 inst.instruction |= (inst.operands[0].imm << 3);
9570 }
9571
9572 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9573 SMLAxy{cond} Rd,Rm,Rs,Rn
9574 SMLAWy{cond} Rd,Rm,Rs,Rn
9575 Error if any register is R15. */
9576
9577 static void
9578 do_smla (void)
9579 {
9580 inst.instruction |= inst.operands[0].reg << 16;
9581 inst.instruction |= inst.operands[1].reg;
9582 inst.instruction |= inst.operands[2].reg << 8;
9583 inst.instruction |= inst.operands[3].reg << 12;
9584 }
9585
9586 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9587 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9588 Error if any register is R15.
9589 Warning if Rdlo == Rdhi. */
9590
9591 static void
9592 do_smlal (void)
9593 {
9594 inst.instruction |= inst.operands[0].reg << 12;
9595 inst.instruction |= inst.operands[1].reg << 16;
9596 inst.instruction |= inst.operands[2].reg;
9597 inst.instruction |= inst.operands[3].reg << 8;
9598
9599 if (inst.operands[0].reg == inst.operands[1].reg)
9600 as_tsktsk (_("rdhi and rdlo must be different"));
9601 }
9602
9603 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9604 SMULxy{cond} Rd,Rm,Rs
9605 Error if any register is R15. */
9606
9607 static void
9608 do_smul (void)
9609 {
9610 inst.instruction |= inst.operands[0].reg << 16;
9611 inst.instruction |= inst.operands[1].reg;
9612 inst.instruction |= inst.operands[2].reg << 8;
9613 }
9614
9615 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9616 the same for both ARM and Thumb-2. */
9617
9618 static void
9619 do_srs (void)
9620 {
9621 int reg;
9622
9623 if (inst.operands[0].present)
9624 {
9625 reg = inst.operands[0].reg;
9626 constraint (reg != REG_SP, _("SRS base register must be r13"));
9627 }
9628 else
9629 reg = REG_SP;
9630
9631 inst.instruction |= reg << 16;
9632 inst.instruction |= inst.operands[1].imm;
9633 if (inst.operands[0].writeback || inst.operands[1].writeback)
9634 inst.instruction |= WRITE_BACK;
9635 }
9636
9637 /* ARM V6 strex (argument parse). */
9638
9639 static void
9640 do_strex (void)
9641 {
9642 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9643 || inst.operands[2].postind || inst.operands[2].writeback
9644 || inst.operands[2].immisreg || inst.operands[2].shifted
9645 || inst.operands[2].negative
9646 /* See comment in do_ldrex(). */
9647 || (inst.operands[2].reg == REG_PC),
9648 BAD_ADDR_MODE);
9649
9650 constraint (inst.operands[0].reg == inst.operands[1].reg
9651 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9652
9653 constraint (inst.reloc.exp.X_op != O_constant
9654 || inst.reloc.exp.X_add_number != 0,
9655 _("offset must be zero in ARM encoding"));
9656
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 inst.instruction |= inst.operands[1].reg;
9659 inst.instruction |= inst.operands[2].reg << 16;
9660 inst.reloc.type = BFD_RELOC_UNUSED;
9661 }
9662
9663 static void
9664 do_t_strexbh (void)
9665 {
9666 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9667 || inst.operands[2].postind || inst.operands[2].writeback
9668 || inst.operands[2].immisreg || inst.operands[2].shifted
9669 || inst.operands[2].negative,
9670 BAD_ADDR_MODE);
9671
9672 constraint (inst.operands[0].reg == inst.operands[1].reg
9673 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9674
9675 do_rm_rd_rn ();
9676 }
9677
9678 static void
9679 do_strexd (void)
9680 {
9681 constraint (inst.operands[1].reg % 2 != 0,
9682 _("even register required"));
9683 constraint (inst.operands[2].present
9684 && inst.operands[2].reg != inst.operands[1].reg + 1,
9685 _("can only store two consecutive registers"));
9686 /* If op 2 were present and equal to PC, this function wouldn't
9687 have been called in the first place. */
9688 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9689
9690 constraint (inst.operands[0].reg == inst.operands[1].reg
9691 || inst.operands[0].reg == inst.operands[1].reg + 1
9692 || inst.operands[0].reg == inst.operands[3].reg,
9693 BAD_OVERLAP);
9694
9695 inst.instruction |= inst.operands[0].reg << 12;
9696 inst.instruction |= inst.operands[1].reg;
9697 inst.instruction |= inst.operands[3].reg << 16;
9698 }
9699
9700 /* ARM V8 STRL. */
9701 static void
9702 do_stlex (void)
9703 {
9704 constraint (inst.operands[0].reg == inst.operands[1].reg
9705 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9706
9707 do_rd_rm_rn ();
9708 }
9709
9710 static void
9711 do_t_stlex (void)
9712 {
9713 constraint (inst.operands[0].reg == inst.operands[1].reg
9714 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9715
9716 do_rm_rd_rn ();
9717 }
9718
9719 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9720 extends it to 32-bits, and adds the result to a value in another
9721 register. You can specify a rotation by 0, 8, 16, or 24 bits
9722 before extracting the 16-bit value.
9723 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9724 Condition defaults to COND_ALWAYS.
9725 Error if any register uses R15. */
9726
9727 static void
9728 do_sxtah (void)
9729 {
9730 inst.instruction |= inst.operands[0].reg << 12;
9731 inst.instruction |= inst.operands[1].reg << 16;
9732 inst.instruction |= inst.operands[2].reg;
9733 inst.instruction |= inst.operands[3].imm << 10;
9734 }
9735
9736 /* ARM V6 SXTH.
9737
9738 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9739 Condition defaults to COND_ALWAYS.
9740 Error if any register uses R15. */
9741
9742 static void
9743 do_sxth (void)
9744 {
9745 inst.instruction |= inst.operands[0].reg << 12;
9746 inst.instruction |= inst.operands[1].reg;
9747 inst.instruction |= inst.operands[2].imm << 10;
9748 }
9749 \f
9750 /* VFP instructions. In a logical order: SP variant first, monad
9751 before dyad, arithmetic then move then load/store. */
9752
9753 static void
9754 do_vfp_sp_monadic (void)
9755 {
9756 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9757 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9758 }
9759
9760 static void
9761 do_vfp_sp_dyadic (void)
9762 {
9763 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9764 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9765 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9766 }
9767
9768 static void
9769 do_vfp_sp_compare_z (void)
9770 {
9771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9772 }
9773
9774 static void
9775 do_vfp_dp_sp_cvt (void)
9776 {
9777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9778 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9779 }
9780
9781 static void
9782 do_vfp_sp_dp_cvt (void)
9783 {
9784 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9785 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9786 }
9787
9788 static void
9789 do_vfp_reg_from_sp (void)
9790 {
9791 inst.instruction |= inst.operands[0].reg << 12;
9792 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9793 }
9794
9795 static void
9796 do_vfp_reg2_from_sp2 (void)
9797 {
9798 constraint (inst.operands[2].imm != 2,
9799 _("only two consecutive VFP SP registers allowed here"));
9800 inst.instruction |= inst.operands[0].reg << 12;
9801 inst.instruction |= inst.operands[1].reg << 16;
9802 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9803 }
9804
9805 static void
9806 do_vfp_sp_from_reg (void)
9807 {
9808 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9809 inst.instruction |= inst.operands[1].reg << 12;
9810 }
9811
9812 static void
9813 do_vfp_sp2_from_reg2 (void)
9814 {
9815 constraint (inst.operands[0].imm != 2,
9816 _("only two consecutive VFP SP registers allowed here"));
9817 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9818 inst.instruction |= inst.operands[1].reg << 12;
9819 inst.instruction |= inst.operands[2].reg << 16;
9820 }
9821
9822 static void
9823 do_vfp_sp_ldst (void)
9824 {
9825 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9826 encode_arm_cp_address (1, FALSE, TRUE, 0);
9827 }
9828
9829 static void
9830 do_vfp_dp_ldst (void)
9831 {
9832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9833 encode_arm_cp_address (1, FALSE, TRUE, 0);
9834 }
9835
9836
9837 static void
9838 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9839 {
9840 if (inst.operands[0].writeback)
9841 inst.instruction |= WRITE_BACK;
9842 else
9843 constraint (ldstm_type != VFP_LDSTMIA,
9844 _("this addressing mode requires base-register writeback"));
9845 inst.instruction |= inst.operands[0].reg << 16;
9846 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9847 inst.instruction |= inst.operands[1].imm;
9848 }
9849
9850 static void
9851 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9852 {
9853 int count;
9854
9855 if (inst.operands[0].writeback)
9856 inst.instruction |= WRITE_BACK;
9857 else
9858 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9859 _("this addressing mode requires base-register writeback"));
9860
9861 inst.instruction |= inst.operands[0].reg << 16;
9862 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9863
9864 count = inst.operands[1].imm << 1;
9865 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9866 count += 1;
9867
9868 inst.instruction |= count;
9869 }
9870
9871 static void
9872 do_vfp_sp_ldstmia (void)
9873 {
9874 vfp_sp_ldstm (VFP_LDSTMIA);
9875 }
9876
9877 static void
9878 do_vfp_sp_ldstmdb (void)
9879 {
9880 vfp_sp_ldstm (VFP_LDSTMDB);
9881 }
9882
9883 static void
9884 do_vfp_dp_ldstmia (void)
9885 {
9886 vfp_dp_ldstm (VFP_LDSTMIA);
9887 }
9888
9889 static void
9890 do_vfp_dp_ldstmdb (void)
9891 {
9892 vfp_dp_ldstm (VFP_LDSTMDB);
9893 }
9894
9895 static void
9896 do_vfp_xp_ldstmia (void)
9897 {
9898 vfp_dp_ldstm (VFP_LDSTMIAX);
9899 }
9900
9901 static void
9902 do_vfp_xp_ldstmdb (void)
9903 {
9904 vfp_dp_ldstm (VFP_LDSTMDBX);
9905 }
9906
9907 static void
9908 do_vfp_dp_rd_rm (void)
9909 {
9910 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9911 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9912 }
9913
9914 static void
9915 do_vfp_dp_rn_rd (void)
9916 {
9917 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9918 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9919 }
9920
9921 static void
9922 do_vfp_dp_rd_rn (void)
9923 {
9924 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9925 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9926 }
9927
9928 static void
9929 do_vfp_dp_rd_rn_rm (void)
9930 {
9931 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9932 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9933 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9934 }
9935
9936 static void
9937 do_vfp_dp_rd (void)
9938 {
9939 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9940 }
9941
9942 static void
9943 do_vfp_dp_rm_rd_rn (void)
9944 {
9945 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9946 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9947 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9948 }
9949
9950 /* VFPv3 instructions. */
9951 static void
9952 do_vfp_sp_const (void)
9953 {
9954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9955 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9956 inst.instruction |= (inst.operands[1].imm & 0x0f);
9957 }
9958
9959 static void
9960 do_vfp_dp_const (void)
9961 {
9962 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9963 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9964 inst.instruction |= (inst.operands[1].imm & 0x0f);
9965 }
9966
9967 static void
9968 vfp_conv (int srcsize)
9969 {
9970 int immbits = srcsize - inst.operands[1].imm;
9971
9972 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9973 {
9974 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9975 i.e. immbits must be in range 0 - 16. */
9976 inst.error = _("immediate value out of range, expected range [0, 16]");
9977 return;
9978 }
9979 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9980 {
9981 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9982 i.e. immbits must be in range 0 - 31. */
9983 inst.error = _("immediate value out of range, expected range [1, 32]");
9984 return;
9985 }
9986
9987 inst.instruction |= (immbits & 1) << 5;
9988 inst.instruction |= (immbits >> 1);
9989 }
9990
9991 static void
9992 do_vfp_sp_conv_16 (void)
9993 {
9994 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9995 vfp_conv (16);
9996 }
9997
9998 static void
9999 do_vfp_dp_conv_16 (void)
10000 {
10001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10002 vfp_conv (16);
10003 }
10004
10005 static void
10006 do_vfp_sp_conv_32 (void)
10007 {
10008 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10009 vfp_conv (32);
10010 }
10011
10012 static void
10013 do_vfp_dp_conv_32 (void)
10014 {
10015 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10016 vfp_conv (32);
10017 }
10018 \f
10019 /* FPA instructions. Also in a logical order. */
10020
10021 static void
10022 do_fpa_cmp (void)
10023 {
10024 inst.instruction |= inst.operands[0].reg << 16;
10025 inst.instruction |= inst.operands[1].reg;
10026 }
10027
10028 static void
10029 do_fpa_ldmstm (void)
10030 {
10031 inst.instruction |= inst.operands[0].reg << 12;
10032 switch (inst.operands[1].imm)
10033 {
10034 case 1: inst.instruction |= CP_T_X; break;
10035 case 2: inst.instruction |= CP_T_Y; break;
10036 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10037 case 4: break;
10038 default: abort ();
10039 }
10040
10041 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10042 {
10043 /* The instruction specified "ea" or "fd", so we can only accept
10044 [Rn]{!}. The instruction does not really support stacking or
10045 unstacking, so we have to emulate these by setting appropriate
10046 bits and offsets. */
10047 constraint (inst.reloc.exp.X_op != O_constant
10048 || inst.reloc.exp.X_add_number != 0,
10049 _("this instruction does not support indexing"));
10050
10051 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10052 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
10053
10054 if (!(inst.instruction & INDEX_UP))
10055 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
10056
10057 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10058 {
10059 inst.operands[2].preind = 0;
10060 inst.operands[2].postind = 1;
10061 }
10062 }
10063
10064 encode_arm_cp_address (2, TRUE, TRUE, 0);
10065 }
10066 \f
10067 /* iWMMXt instructions: strictly in alphabetical order. */
10068
10069 static void
10070 do_iwmmxt_tandorc (void)
10071 {
10072 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10073 }
10074
10075 static void
10076 do_iwmmxt_textrc (void)
10077 {
10078 inst.instruction |= inst.operands[0].reg << 12;
10079 inst.instruction |= inst.operands[1].imm;
10080 }
10081
10082 static void
10083 do_iwmmxt_textrm (void)
10084 {
10085 inst.instruction |= inst.operands[0].reg << 12;
10086 inst.instruction |= inst.operands[1].reg << 16;
10087 inst.instruction |= inst.operands[2].imm;
10088 }
10089
10090 static void
10091 do_iwmmxt_tinsr (void)
10092 {
10093 inst.instruction |= inst.operands[0].reg << 16;
10094 inst.instruction |= inst.operands[1].reg << 12;
10095 inst.instruction |= inst.operands[2].imm;
10096 }
10097
10098 static void
10099 do_iwmmxt_tmia (void)
10100 {
10101 inst.instruction |= inst.operands[0].reg << 5;
10102 inst.instruction |= inst.operands[1].reg;
10103 inst.instruction |= inst.operands[2].reg << 12;
10104 }
10105
10106 static void
10107 do_iwmmxt_waligni (void)
10108 {
10109 inst.instruction |= inst.operands[0].reg << 12;
10110 inst.instruction |= inst.operands[1].reg << 16;
10111 inst.instruction |= inst.operands[2].reg;
10112 inst.instruction |= inst.operands[3].imm << 20;
10113 }
10114
10115 static void
10116 do_iwmmxt_wmerge (void)
10117 {
10118 inst.instruction |= inst.operands[0].reg << 12;
10119 inst.instruction |= inst.operands[1].reg << 16;
10120 inst.instruction |= inst.operands[2].reg;
10121 inst.instruction |= inst.operands[3].imm << 21;
10122 }
10123
10124 static void
10125 do_iwmmxt_wmov (void)
10126 {
10127 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10128 inst.instruction |= inst.operands[0].reg << 12;
10129 inst.instruction |= inst.operands[1].reg << 16;
10130 inst.instruction |= inst.operands[1].reg;
10131 }
10132
10133 static void
10134 do_iwmmxt_wldstbh (void)
10135 {
10136 int reloc;
10137 inst.instruction |= inst.operands[0].reg << 12;
10138 if (thumb_mode)
10139 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10140 else
10141 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10142 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10143 }
10144
10145 static void
10146 do_iwmmxt_wldstw (void)
10147 {
10148 /* RIWR_RIWC clears .isreg for a control register. */
10149 if (!inst.operands[0].isreg)
10150 {
10151 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10152 inst.instruction |= 0xf0000000;
10153 }
10154
10155 inst.instruction |= inst.operands[0].reg << 12;
10156 encode_arm_cp_address (1, TRUE, TRUE, 0);
10157 }
10158
10159 static void
10160 do_iwmmxt_wldstd (void)
10161 {
10162 inst.instruction |= inst.operands[0].reg << 12;
10163 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10164 && inst.operands[1].immisreg)
10165 {
10166 inst.instruction &= ~0x1a000ff;
10167 inst.instruction |= (0xfU << 28);
10168 if (inst.operands[1].preind)
10169 inst.instruction |= PRE_INDEX;
10170 if (!inst.operands[1].negative)
10171 inst.instruction |= INDEX_UP;
10172 if (inst.operands[1].writeback)
10173 inst.instruction |= WRITE_BACK;
10174 inst.instruction |= inst.operands[1].reg << 16;
10175 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10176 inst.instruction |= inst.operands[1].imm;
10177 }
10178 else
10179 encode_arm_cp_address (1, TRUE, FALSE, 0);
10180 }
10181
10182 static void
10183 do_iwmmxt_wshufh (void)
10184 {
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 inst.instruction |= inst.operands[1].reg << 16;
10187 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10188 inst.instruction |= (inst.operands[2].imm & 0x0f);
10189 }
10190
10191 static void
10192 do_iwmmxt_wzero (void)
10193 {
10194 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10195 inst.instruction |= inst.operands[0].reg;
10196 inst.instruction |= inst.operands[0].reg << 12;
10197 inst.instruction |= inst.operands[0].reg << 16;
10198 }
10199
10200 static void
10201 do_iwmmxt_wrwrwr_or_imm5 (void)
10202 {
10203 if (inst.operands[2].isreg)
10204 do_rd_rn_rm ();
10205 else {
10206 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10207 _("immediate operand requires iWMMXt2"));
10208 do_rd_rn ();
10209 if (inst.operands[2].imm == 0)
10210 {
10211 switch ((inst.instruction >> 20) & 0xf)
10212 {
10213 case 4:
10214 case 5:
10215 case 6:
10216 case 7:
10217 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10218 inst.operands[2].imm = 16;
10219 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10220 break;
10221 case 8:
10222 case 9:
10223 case 10:
10224 case 11:
10225 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10226 inst.operands[2].imm = 32;
10227 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10228 break;
10229 case 12:
10230 case 13:
10231 case 14:
10232 case 15:
10233 {
10234 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10235 unsigned long wrn;
10236 wrn = (inst.instruction >> 16) & 0xf;
10237 inst.instruction &= 0xff0fff0f;
10238 inst.instruction |= wrn;
10239 /* Bail out here; the instruction is now assembled. */
10240 return;
10241 }
10242 }
10243 }
10244 /* Map 32 -> 0, etc. */
10245 inst.operands[2].imm &= 0x1f;
10246 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10247 }
10248 }
10249 \f
10250 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10251 operations first, then control, shift, and load/store. */
10252
10253 /* Insns like "foo X,Y,Z". */
10254
10255 static void
10256 do_mav_triple (void)
10257 {
10258 inst.instruction |= inst.operands[0].reg << 16;
10259 inst.instruction |= inst.operands[1].reg;
10260 inst.instruction |= inst.operands[2].reg << 12;
10261 }
10262
10263 /* Insns like "foo W,X,Y,Z".
10264 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10265
10266 static void
10267 do_mav_quad (void)
10268 {
10269 inst.instruction |= inst.operands[0].reg << 5;
10270 inst.instruction |= inst.operands[1].reg << 12;
10271 inst.instruction |= inst.operands[2].reg << 16;
10272 inst.instruction |= inst.operands[3].reg;
10273 }
10274
10275 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10276 static void
10277 do_mav_dspsc (void)
10278 {
10279 inst.instruction |= inst.operands[1].reg << 12;
10280 }
10281
10282 /* Maverick shift immediate instructions.
10283 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10284 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10285
10286 static void
10287 do_mav_shift (void)
10288 {
10289 int imm = inst.operands[2].imm;
10290
10291 inst.instruction |= inst.operands[0].reg << 12;
10292 inst.instruction |= inst.operands[1].reg << 16;
10293
10294 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10295 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10296 Bit 4 should be 0. */
10297 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10298
10299 inst.instruction |= imm;
10300 }
10301 \f
10302 /* XScale instructions. Also sorted arithmetic before move. */
10303
10304 /* Xscale multiply-accumulate (argument parse)
10305 MIAcc acc0,Rm,Rs
10306 MIAPHcc acc0,Rm,Rs
10307 MIAxycc acc0,Rm,Rs. */
10308
10309 static void
10310 do_xsc_mia (void)
10311 {
10312 inst.instruction |= inst.operands[1].reg;
10313 inst.instruction |= inst.operands[2].reg << 12;
10314 }
10315
10316 /* Xscale move-accumulator-register (argument parse)
10317
10318 MARcc acc0,RdLo,RdHi. */
10319
10320 static void
10321 do_xsc_mar (void)
10322 {
10323 inst.instruction |= inst.operands[1].reg << 12;
10324 inst.instruction |= inst.operands[2].reg << 16;
10325 }
10326
10327 /* Xscale move-register-accumulator (argument parse)
10328
10329 MRAcc RdLo,RdHi,acc0. */
10330
10331 static void
10332 do_xsc_mra (void)
10333 {
10334 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10335 inst.instruction |= inst.operands[0].reg << 12;
10336 inst.instruction |= inst.operands[1].reg << 16;
10337 }
10338 \f
10339 /* Encoding functions relevant only to Thumb. */
10340
10341 /* inst.operands[i] is a shifted-register operand; encode
10342 it into inst.instruction in the format used by Thumb32. */
10343
10344 static void
10345 encode_thumb32_shifted_operand (int i)
10346 {
10347 unsigned int value = inst.reloc.exp.X_add_number;
10348 unsigned int shift = inst.operands[i].shift_kind;
10349
10350 constraint (inst.operands[i].immisreg,
10351 _("shift by register not allowed in thumb mode"));
10352 inst.instruction |= inst.operands[i].reg;
10353 if (shift == SHIFT_RRX)
10354 inst.instruction |= SHIFT_ROR << 4;
10355 else
10356 {
10357 constraint (inst.reloc.exp.X_op != O_constant,
10358 _("expression too complex"));
10359
10360 constraint (value > 32
10361 || (value == 32 && (shift == SHIFT_LSL
10362 || shift == SHIFT_ROR)),
10363 _("shift expression is too large"));
10364
10365 if (value == 0)
10366 shift = SHIFT_LSL;
10367 else if (value == 32)
10368 value = 0;
10369
10370 inst.instruction |= shift << 4;
10371 inst.instruction |= (value & 0x1c) << 10;
10372 inst.instruction |= (value & 0x03) << 6;
10373 }
10374 }
10375
10376
10377 /* inst.operands[i] was set up by parse_address. Encode it into a
10378 Thumb32 format load or store instruction. Reject forms that cannot
10379 be used with such instructions. If is_t is true, reject forms that
10380 cannot be used with a T instruction; if is_d is true, reject forms
10381 that cannot be used with a D instruction. If it is a store insn,
10382 reject PC in Rn. */
10383
10384 static void
10385 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10386 {
10387 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10388
10389 constraint (!inst.operands[i].isreg,
10390 _("Instruction does not support =N addresses"));
10391
10392 inst.instruction |= inst.operands[i].reg << 16;
10393 if (inst.operands[i].immisreg)
10394 {
10395 constraint (is_pc, BAD_PC_ADDRESSING);
10396 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10397 constraint (inst.operands[i].negative,
10398 _("Thumb does not support negative register indexing"));
10399 constraint (inst.operands[i].postind,
10400 _("Thumb does not support register post-indexing"));
10401 constraint (inst.operands[i].writeback,
10402 _("Thumb does not support register indexing with writeback"));
10403 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10404 _("Thumb supports only LSL in shifted register indexing"));
10405
10406 inst.instruction |= inst.operands[i].imm;
10407 if (inst.operands[i].shifted)
10408 {
10409 constraint (inst.reloc.exp.X_op != O_constant,
10410 _("expression too complex"));
10411 constraint (inst.reloc.exp.X_add_number < 0
10412 || inst.reloc.exp.X_add_number > 3,
10413 _("shift out of range"));
10414 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10415 }
10416 inst.reloc.type = BFD_RELOC_UNUSED;
10417 }
10418 else if (inst.operands[i].preind)
10419 {
10420 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10421 constraint (is_t && inst.operands[i].writeback,
10422 _("cannot use writeback with this instruction"));
10423 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10424 BAD_PC_ADDRESSING);
10425
10426 if (is_d)
10427 {
10428 inst.instruction |= 0x01000000;
10429 if (inst.operands[i].writeback)
10430 inst.instruction |= 0x00200000;
10431 }
10432 else
10433 {
10434 inst.instruction |= 0x00000c00;
10435 if (inst.operands[i].writeback)
10436 inst.instruction |= 0x00000100;
10437 }
10438 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10439 }
10440 else if (inst.operands[i].postind)
10441 {
10442 gas_assert (inst.operands[i].writeback);
10443 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10444 constraint (is_t, _("cannot use post-indexing with this instruction"));
10445
10446 if (is_d)
10447 inst.instruction |= 0x00200000;
10448 else
10449 inst.instruction |= 0x00000900;
10450 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10451 }
10452 else /* unindexed - only for coprocessor */
10453 inst.error = _("instruction does not accept unindexed addressing");
10454 }
10455
10456 /* Table of Thumb instructions which exist in both 16- and 32-bit
10457 encodings (the latter only in post-V6T2 cores). The index is the
10458 value used in the insns table below. When there is more than one
10459 possible 16-bit encoding for the instruction, this table always
10460 holds variant (1).
10461 Also contains several pseudo-instructions used during relaxation. */
10462 #define T16_32_TAB \
10463 X(_adc, 4140, eb400000), \
10464 X(_adcs, 4140, eb500000), \
10465 X(_add, 1c00, eb000000), \
10466 X(_adds, 1c00, eb100000), \
10467 X(_addi, 0000, f1000000), \
10468 X(_addis, 0000, f1100000), \
10469 X(_add_pc,000f, f20f0000), \
10470 X(_add_sp,000d, f10d0000), \
10471 X(_adr, 000f, f20f0000), \
10472 X(_and, 4000, ea000000), \
10473 X(_ands, 4000, ea100000), \
10474 X(_asr, 1000, fa40f000), \
10475 X(_asrs, 1000, fa50f000), \
10476 X(_b, e000, f000b000), \
10477 X(_bcond, d000, f0008000), \
10478 X(_bic, 4380, ea200000), \
10479 X(_bics, 4380, ea300000), \
10480 X(_cmn, 42c0, eb100f00), \
10481 X(_cmp, 2800, ebb00f00), \
10482 X(_cpsie, b660, f3af8400), \
10483 X(_cpsid, b670, f3af8600), \
10484 X(_cpy, 4600, ea4f0000), \
10485 X(_dec_sp,80dd, f1ad0d00), \
10486 X(_eor, 4040, ea800000), \
10487 X(_eors, 4040, ea900000), \
10488 X(_inc_sp,00dd, f10d0d00), \
10489 X(_ldmia, c800, e8900000), \
10490 X(_ldr, 6800, f8500000), \
10491 X(_ldrb, 7800, f8100000), \
10492 X(_ldrh, 8800, f8300000), \
10493 X(_ldrsb, 5600, f9100000), \
10494 X(_ldrsh, 5e00, f9300000), \
10495 X(_ldr_pc,4800, f85f0000), \
10496 X(_ldr_pc2,4800, f85f0000), \
10497 X(_ldr_sp,9800, f85d0000), \
10498 X(_lsl, 0000, fa00f000), \
10499 X(_lsls, 0000, fa10f000), \
10500 X(_lsr, 0800, fa20f000), \
10501 X(_lsrs, 0800, fa30f000), \
10502 X(_mov, 2000, ea4f0000), \
10503 X(_movs, 2000, ea5f0000), \
10504 X(_mul, 4340, fb00f000), \
10505 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10506 X(_mvn, 43c0, ea6f0000), \
10507 X(_mvns, 43c0, ea7f0000), \
10508 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10509 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10510 X(_orr, 4300, ea400000), \
10511 X(_orrs, 4300, ea500000), \
10512 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10513 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10514 X(_rev, ba00, fa90f080), \
10515 X(_rev16, ba40, fa90f090), \
10516 X(_revsh, bac0, fa90f0b0), \
10517 X(_ror, 41c0, fa60f000), \
10518 X(_rors, 41c0, fa70f000), \
10519 X(_sbc, 4180, eb600000), \
10520 X(_sbcs, 4180, eb700000), \
10521 X(_stmia, c000, e8800000), \
10522 X(_str, 6000, f8400000), \
10523 X(_strb, 7000, f8000000), \
10524 X(_strh, 8000, f8200000), \
10525 X(_str_sp,9000, f84d0000), \
10526 X(_sub, 1e00, eba00000), \
10527 X(_subs, 1e00, ebb00000), \
10528 X(_subi, 8000, f1a00000), \
10529 X(_subis, 8000, f1b00000), \
10530 X(_sxtb, b240, fa4ff080), \
10531 X(_sxth, b200, fa0ff080), \
10532 X(_tst, 4200, ea100f00), \
10533 X(_uxtb, b2c0, fa5ff080), \
10534 X(_uxth, b280, fa1ff080), \
10535 X(_nop, bf00, f3af8000), \
10536 X(_yield, bf10, f3af8001), \
10537 X(_wfe, bf20, f3af8002), \
10538 X(_wfi, bf30, f3af8003), \
10539 X(_sev, bf40, f3af8004), \
10540 X(_sevl, bf50, f3af8005), \
10541 X(_udf, de00, f7f0a000)
10542
10543 /* To catch errors in encoding functions, the codes are all offset by
10544 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10545 as 16-bit instructions. */
10546 #define X(a,b,c) T_MNEM##a
10547 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10548 #undef X
10549
10550 #define X(a,b,c) 0x##b
10551 static const unsigned short thumb_op16[] = { T16_32_TAB };
10552 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10553 #undef X
10554
10555 #define X(a,b,c) 0x##c
10556 static const unsigned int thumb_op32[] = { T16_32_TAB };
10557 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10558 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10559 #undef X
10560 #undef T16_32_TAB
10561
10562 /* Thumb instruction encoders, in alphabetical order. */
10563
10564 /* ADDW or SUBW. */
10565
10566 static void
10567 do_t_add_sub_w (void)
10568 {
10569 int Rd, Rn;
10570
10571 Rd = inst.operands[0].reg;
10572 Rn = inst.operands[1].reg;
10573
10574 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10575 is the SP-{plus,minus}-immediate form of the instruction. */
10576 if (Rn == REG_SP)
10577 constraint (Rd == REG_PC, BAD_PC);
10578 else
10579 reject_bad_reg (Rd);
10580
10581 inst.instruction |= (Rn << 16) | (Rd << 8);
10582 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10583 }
10584
10585 /* Parse an add or subtract instruction. We get here with inst.instruction
10586 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
10587
10588 static void
10589 do_t_add_sub (void)
10590 {
10591 int Rd, Rs, Rn;
10592
10593 Rd = inst.operands[0].reg;
10594 Rs = (inst.operands[1].present
10595 ? inst.operands[1].reg /* Rd, Rs, foo */
10596 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10597
10598 if (Rd == REG_PC)
10599 set_it_insn_type_last ();
10600
10601 if (unified_syntax)
10602 {
10603 bfd_boolean flags;
10604 bfd_boolean narrow;
10605 int opcode;
10606
10607 flags = (inst.instruction == T_MNEM_adds
10608 || inst.instruction == T_MNEM_subs);
10609 if (flags)
10610 narrow = !in_it_block ();
10611 else
10612 narrow = in_it_block ();
10613 if (!inst.operands[2].isreg)
10614 {
10615 int add;
10616
10617 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10618 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10619
10620 add = (inst.instruction == T_MNEM_add
10621 || inst.instruction == T_MNEM_adds);
10622 opcode = 0;
10623 if (inst.size_req != 4)
10624 {
10625 /* Attempt to use a narrow opcode, with relaxation if
10626 appropriate. */
10627 if (Rd == REG_SP && Rs == REG_SP && !flags)
10628 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10629 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10630 opcode = T_MNEM_add_sp;
10631 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10632 opcode = T_MNEM_add_pc;
10633 else if (Rd <= 7 && Rs <= 7 && narrow)
10634 {
10635 if (flags)
10636 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10637 else
10638 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10639 }
10640 if (opcode)
10641 {
10642 inst.instruction = THUMB_OP16(opcode);
10643 inst.instruction |= (Rd << 4) | Rs;
10644 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10645 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
10646 {
10647 if (inst.size_req == 2)
10648 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10649 else
10650 inst.relax = opcode;
10651 }
10652 }
10653 else
10654 constraint (inst.size_req == 2, BAD_HIREG);
10655 }
10656 if (inst.size_req == 4
10657 || (inst.size_req != 2 && !opcode))
10658 {
10659 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10660 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10661 THUMB1_RELOC_ONLY);
10662 if (Rd == REG_PC)
10663 {
10664 constraint (add, BAD_PC);
10665 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10666 _("only SUBS PC, LR, #const allowed"));
10667 constraint (inst.reloc.exp.X_op != O_constant,
10668 _("expression too complex"));
10669 constraint (inst.reloc.exp.X_add_number < 0
10670 || inst.reloc.exp.X_add_number > 0xff,
10671 _("immediate value out of range"));
10672 inst.instruction = T2_SUBS_PC_LR
10673 | inst.reloc.exp.X_add_number;
10674 inst.reloc.type = BFD_RELOC_UNUSED;
10675 return;
10676 }
10677 else if (Rs == REG_PC)
10678 {
10679 /* Always use addw/subw. */
10680 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10681 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10682 }
10683 else
10684 {
10685 inst.instruction = THUMB_OP32 (inst.instruction);
10686 inst.instruction = (inst.instruction & 0xe1ffffff)
10687 | 0x10000000;
10688 if (flags)
10689 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10690 else
10691 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10692 }
10693 inst.instruction |= Rd << 8;
10694 inst.instruction |= Rs << 16;
10695 }
10696 }
10697 else
10698 {
10699 unsigned int value = inst.reloc.exp.X_add_number;
10700 unsigned int shift = inst.operands[2].shift_kind;
10701
10702 Rn = inst.operands[2].reg;
10703 /* See if we can do this with a 16-bit instruction. */
10704 if (!inst.operands[2].shifted && inst.size_req != 4)
10705 {
10706 if (Rd > 7 || Rs > 7 || Rn > 7)
10707 narrow = FALSE;
10708
10709 if (narrow)
10710 {
10711 inst.instruction = ((inst.instruction == T_MNEM_adds
10712 || inst.instruction == T_MNEM_add)
10713 ? T_OPCODE_ADD_R3
10714 : T_OPCODE_SUB_R3);
10715 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10716 return;
10717 }
10718
10719 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10720 {
10721 /* Thumb-1 cores (except v6-M) require at least one high
10722 register in a narrow non flag setting add. */
10723 if (Rd > 7 || Rn > 7
10724 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10725 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10726 {
10727 if (Rd == Rn)
10728 {
10729 Rn = Rs;
10730 Rs = Rd;
10731 }
10732 inst.instruction = T_OPCODE_ADD_HI;
10733 inst.instruction |= (Rd & 8) << 4;
10734 inst.instruction |= (Rd & 7);
10735 inst.instruction |= Rn << 3;
10736 return;
10737 }
10738 }
10739 }
10740
10741 constraint (Rd == REG_PC, BAD_PC);
10742 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10743 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10744 constraint (Rs == REG_PC, BAD_PC);
10745 reject_bad_reg (Rn);
10746
10747 /* If we get here, it can't be done in 16 bits. */
10748 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10749 _("shift must be constant"));
10750 inst.instruction = THUMB_OP32 (inst.instruction);
10751 inst.instruction |= Rd << 8;
10752 inst.instruction |= Rs << 16;
10753 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10754 _("shift value over 3 not allowed in thumb mode"));
10755 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10756 _("only LSL shift allowed in thumb mode"));
10757 encode_thumb32_shifted_operand (2);
10758 }
10759 }
10760 else
10761 {
10762 constraint (inst.instruction == T_MNEM_adds
10763 || inst.instruction == T_MNEM_subs,
10764 BAD_THUMB32);
10765
10766 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10767 {
10768 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10769 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10770 BAD_HIREG);
10771
10772 inst.instruction = (inst.instruction == T_MNEM_add
10773 ? 0x0000 : 0x8000);
10774 inst.instruction |= (Rd << 4) | Rs;
10775 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10776 return;
10777 }
10778
10779 Rn = inst.operands[2].reg;
10780 constraint (inst.operands[2].shifted, _("unshifted register required"));
10781
10782 /* We now have Rd, Rs, and Rn set to registers. */
10783 if (Rd > 7 || Rs > 7 || Rn > 7)
10784 {
10785 /* Can't do this for SUB. */
10786 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10787 inst.instruction = T_OPCODE_ADD_HI;
10788 inst.instruction |= (Rd & 8) << 4;
10789 inst.instruction |= (Rd & 7);
10790 if (Rs == Rd)
10791 inst.instruction |= Rn << 3;
10792 else if (Rn == Rd)
10793 inst.instruction |= Rs << 3;
10794 else
10795 constraint (1, _("dest must overlap one source register"));
10796 }
10797 else
10798 {
10799 inst.instruction = (inst.instruction == T_MNEM_add
10800 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10801 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10802 }
10803 }
10804 }
10805
10806 static void
10807 do_t_adr (void)
10808 {
10809 unsigned Rd;
10810
10811 Rd = inst.operands[0].reg;
10812 reject_bad_reg (Rd);
10813
10814 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10815 {
10816 /* Defer to section relaxation. */
10817 inst.relax = inst.instruction;
10818 inst.instruction = THUMB_OP16 (inst.instruction);
10819 inst.instruction |= Rd << 4;
10820 }
10821 else if (unified_syntax && inst.size_req != 2)
10822 {
10823 /* Generate a 32-bit opcode. */
10824 inst.instruction = THUMB_OP32 (inst.instruction);
10825 inst.instruction |= Rd << 8;
10826 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10827 inst.reloc.pc_rel = 1;
10828 }
10829 else
10830 {
10831 /* Generate a 16-bit opcode. */
10832 inst.instruction = THUMB_OP16 (inst.instruction);
10833 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10834 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10835 inst.reloc.pc_rel = 1;
10836 inst.instruction |= Rd << 4;
10837 }
10838
10839 if (inst.reloc.exp.X_op == O_symbol
10840 && inst.reloc.exp.X_add_symbol != NULL
10841 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10842 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10843 inst.reloc.exp.X_add_number += 1;
10844 }
10845
10846 /* Arithmetic instructions for which there is just one 16-bit
10847 instruction encoding, and it allows only two low registers.
10848 For maximal compatibility with ARM syntax, we allow three register
10849 operands even when Thumb-32 instructions are not available, as long
10850 as the first two are identical. For instance, both "sbc r0,r1" and
10851 "sbc r0,r0,r1" are allowed. */
10852 static void
10853 do_t_arit3 (void)
10854 {
10855 int Rd, Rs, Rn;
10856
10857 Rd = inst.operands[0].reg;
10858 Rs = (inst.operands[1].present
10859 ? inst.operands[1].reg /* Rd, Rs, foo */
10860 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10861 Rn = inst.operands[2].reg;
10862
10863 reject_bad_reg (Rd);
10864 reject_bad_reg (Rs);
10865 if (inst.operands[2].isreg)
10866 reject_bad_reg (Rn);
10867
10868 if (unified_syntax)
10869 {
10870 if (!inst.operands[2].isreg)
10871 {
10872 /* For an immediate, we always generate a 32-bit opcode;
10873 section relaxation will shrink it later if possible. */
10874 inst.instruction = THUMB_OP32 (inst.instruction);
10875 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10876 inst.instruction |= Rd << 8;
10877 inst.instruction |= Rs << 16;
10878 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10879 }
10880 else
10881 {
10882 bfd_boolean narrow;
10883
10884 /* See if we can do this with a 16-bit instruction. */
10885 if (THUMB_SETS_FLAGS (inst.instruction))
10886 narrow = !in_it_block ();
10887 else
10888 narrow = in_it_block ();
10889
10890 if (Rd > 7 || Rn > 7 || Rs > 7)
10891 narrow = FALSE;
10892 if (inst.operands[2].shifted)
10893 narrow = FALSE;
10894 if (inst.size_req == 4)
10895 narrow = FALSE;
10896
10897 if (narrow
10898 && Rd == Rs)
10899 {
10900 inst.instruction = THUMB_OP16 (inst.instruction);
10901 inst.instruction |= Rd;
10902 inst.instruction |= Rn << 3;
10903 return;
10904 }
10905
10906 /* If we get here, it can't be done in 16 bits. */
10907 constraint (inst.operands[2].shifted
10908 && inst.operands[2].immisreg,
10909 _("shift must be constant"));
10910 inst.instruction = THUMB_OP32 (inst.instruction);
10911 inst.instruction |= Rd << 8;
10912 inst.instruction |= Rs << 16;
10913 encode_thumb32_shifted_operand (2);
10914 }
10915 }
10916 else
10917 {
10918 /* On its face this is a lie - the instruction does set the
10919 flags. However, the only supported mnemonic in this mode
10920 says it doesn't. */
10921 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10922
10923 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10924 _("unshifted register required"));
10925 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10926 constraint (Rd != Rs,
10927 _("dest and source1 must be the same register"));
10928
10929 inst.instruction = THUMB_OP16 (inst.instruction);
10930 inst.instruction |= Rd;
10931 inst.instruction |= Rn << 3;
10932 }
10933 }
10934
10935 /* Similarly, but for instructions where the arithmetic operation is
10936 commutative, so we can allow either of them to be different from
10937 the destination operand in a 16-bit instruction. For instance, all
10938 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10939 accepted. */
10940 static void
10941 do_t_arit3c (void)
10942 {
10943 int Rd, Rs, Rn;
10944
10945 Rd = inst.operands[0].reg;
10946 Rs = (inst.operands[1].present
10947 ? inst.operands[1].reg /* Rd, Rs, foo */
10948 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10949 Rn = inst.operands[2].reg;
10950
10951 reject_bad_reg (Rd);
10952 reject_bad_reg (Rs);
10953 if (inst.operands[2].isreg)
10954 reject_bad_reg (Rn);
10955
10956 if (unified_syntax)
10957 {
10958 if (!inst.operands[2].isreg)
10959 {
10960 /* For an immediate, we always generate a 32-bit opcode;
10961 section relaxation will shrink it later if possible. */
10962 inst.instruction = THUMB_OP32 (inst.instruction);
10963 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10964 inst.instruction |= Rd << 8;
10965 inst.instruction |= Rs << 16;
10966 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10967 }
10968 else
10969 {
10970 bfd_boolean narrow;
10971
10972 /* See if we can do this with a 16-bit instruction. */
10973 if (THUMB_SETS_FLAGS (inst.instruction))
10974 narrow = !in_it_block ();
10975 else
10976 narrow = in_it_block ();
10977
10978 if (Rd > 7 || Rn > 7 || Rs > 7)
10979 narrow = FALSE;
10980 if (inst.operands[2].shifted)
10981 narrow = FALSE;
10982 if (inst.size_req == 4)
10983 narrow = FALSE;
10984
10985 if (narrow)
10986 {
10987 if (Rd == Rs)
10988 {
10989 inst.instruction = THUMB_OP16 (inst.instruction);
10990 inst.instruction |= Rd;
10991 inst.instruction |= Rn << 3;
10992 return;
10993 }
10994 if (Rd == Rn)
10995 {
10996 inst.instruction = THUMB_OP16 (inst.instruction);
10997 inst.instruction |= Rd;
10998 inst.instruction |= Rs << 3;
10999 return;
11000 }
11001 }
11002
11003 /* If we get here, it can't be done in 16 bits. */
11004 constraint (inst.operands[2].shifted
11005 && inst.operands[2].immisreg,
11006 _("shift must be constant"));
11007 inst.instruction = THUMB_OP32 (inst.instruction);
11008 inst.instruction |= Rd << 8;
11009 inst.instruction |= Rs << 16;
11010 encode_thumb32_shifted_operand (2);
11011 }
11012 }
11013 else
11014 {
11015 /* On its face this is a lie - the instruction does set the
11016 flags. However, the only supported mnemonic in this mode
11017 says it doesn't. */
11018 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11019
11020 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11021 _("unshifted register required"));
11022 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11023
11024 inst.instruction = THUMB_OP16 (inst.instruction);
11025 inst.instruction |= Rd;
11026
11027 if (Rd == Rs)
11028 inst.instruction |= Rn << 3;
11029 else if (Rd == Rn)
11030 inst.instruction |= Rs << 3;
11031 else
11032 constraint (1, _("dest must overlap one source register"));
11033 }
11034 }
11035
11036 static void
11037 do_t_bfc (void)
11038 {
11039 unsigned Rd;
11040 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11041 constraint (msb > 32, _("bit-field extends past end of register"));
11042 /* The instruction encoding stores the LSB and MSB,
11043 not the LSB and width. */
11044 Rd = inst.operands[0].reg;
11045 reject_bad_reg (Rd);
11046 inst.instruction |= Rd << 8;
11047 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11048 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11049 inst.instruction |= msb - 1;
11050 }
11051
11052 static void
11053 do_t_bfi (void)
11054 {
11055 int Rd, Rn;
11056 unsigned int msb;
11057
11058 Rd = inst.operands[0].reg;
11059 reject_bad_reg (Rd);
11060
11061 /* #0 in second position is alternative syntax for bfc, which is
11062 the same instruction but with REG_PC in the Rm field. */
11063 if (!inst.operands[1].isreg)
11064 Rn = REG_PC;
11065 else
11066 {
11067 Rn = inst.operands[1].reg;
11068 reject_bad_reg (Rn);
11069 }
11070
11071 msb = inst.operands[2].imm + inst.operands[3].imm;
11072 constraint (msb > 32, _("bit-field extends past end of register"));
11073 /* The instruction encoding stores the LSB and MSB,
11074 not the LSB and width. */
11075 inst.instruction |= Rd << 8;
11076 inst.instruction |= Rn << 16;
11077 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11078 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11079 inst.instruction |= msb - 1;
11080 }
11081
11082 static void
11083 do_t_bfx (void)
11084 {
11085 unsigned Rd, Rn;
11086
11087 Rd = inst.operands[0].reg;
11088 Rn = inst.operands[1].reg;
11089
11090 reject_bad_reg (Rd);
11091 reject_bad_reg (Rn);
11092
11093 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11094 _("bit-field extends past end of register"));
11095 inst.instruction |= Rd << 8;
11096 inst.instruction |= Rn << 16;
11097 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11098 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11099 inst.instruction |= inst.operands[3].imm - 1;
11100 }
11101
11102 /* ARM V5 Thumb BLX (argument parse)
11103 BLX <target_addr> which is BLX(1)
11104 BLX <Rm> which is BLX(2)
11105 Unfortunately, there are two different opcodes for this mnemonic.
11106 So, the insns[].value is not used, and the code here zaps values
11107 into inst.instruction.
11108
11109 ??? How to take advantage of the additional two bits of displacement
11110 available in Thumb32 mode? Need new relocation? */
11111
11112 static void
11113 do_t_blx (void)
11114 {
11115 set_it_insn_type_last ();
11116
11117 if (inst.operands[0].isreg)
11118 {
11119 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11120 /* We have a register, so this is BLX(2). */
11121 inst.instruction |= inst.operands[0].reg << 3;
11122 }
11123 else
11124 {
11125 /* No register. This must be BLX(1). */
11126 inst.instruction = 0xf000e800;
11127 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11128 }
11129 }
11130
11131 static void
11132 do_t_branch (void)
11133 {
11134 int opcode;
11135 int cond;
11136 bfd_reloc_code_real_type reloc;
11137
11138 cond = inst.cond;
11139 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11140
11141 if (in_it_block ())
11142 {
11143 /* Conditional branches inside IT blocks are encoded as unconditional
11144 branches. */
11145 cond = COND_ALWAYS;
11146 }
11147 else
11148 cond = inst.cond;
11149
11150 if (cond != COND_ALWAYS)
11151 opcode = T_MNEM_bcond;
11152 else
11153 opcode = inst.instruction;
11154
11155 if (unified_syntax
11156 && (inst.size_req == 4
11157 || (inst.size_req != 2
11158 && (inst.operands[0].hasreloc
11159 || inst.reloc.exp.X_op == O_constant))))
11160 {
11161 inst.instruction = THUMB_OP32(opcode);
11162 if (cond == COND_ALWAYS)
11163 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11164 else
11165 {
11166 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11167 _("selected architecture does not support "
11168 "wide conditional branch instruction"));
11169
11170 gas_assert (cond != 0xF);
11171 inst.instruction |= cond << 22;
11172 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11173 }
11174 }
11175 else
11176 {
11177 inst.instruction = THUMB_OP16(opcode);
11178 if (cond == COND_ALWAYS)
11179 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11180 else
11181 {
11182 inst.instruction |= cond << 8;
11183 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11184 }
11185 /* Allow section relaxation. */
11186 if (unified_syntax && inst.size_req != 2)
11187 inst.relax = opcode;
11188 }
11189 inst.reloc.type = reloc;
11190 inst.reloc.pc_rel = 1;
11191 }
11192
11193 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11194 between the two is the maximum immediate allowed - which is passed in
11195 RANGE. */
11196 static void
11197 do_t_bkpt_hlt1 (int range)
11198 {
11199 constraint (inst.cond != COND_ALWAYS,
11200 _("instruction is always unconditional"));
11201 if (inst.operands[0].present)
11202 {
11203 constraint (inst.operands[0].imm > range,
11204 _("immediate value out of range"));
11205 inst.instruction |= inst.operands[0].imm;
11206 }
11207
11208 set_it_insn_type (NEUTRAL_IT_INSN);
11209 }
11210
11211 static void
11212 do_t_hlt (void)
11213 {
11214 do_t_bkpt_hlt1 (63);
11215 }
11216
11217 static void
11218 do_t_bkpt (void)
11219 {
11220 do_t_bkpt_hlt1 (255);
11221 }
11222
11223 static void
11224 do_t_branch23 (void)
11225 {
11226 set_it_insn_type_last ();
11227 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11228
11229 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11230 this file. We used to simply ignore the PLT reloc type here --
11231 the branch encoding is now needed to deal with TLSCALL relocs.
11232 So if we see a PLT reloc now, put it back to how it used to be to
11233 keep the preexisting behaviour. */
11234 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11235 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11236
11237 #if defined(OBJ_COFF)
11238 /* If the destination of the branch is a defined symbol which does not have
11239 the THUMB_FUNC attribute, then we must be calling a function which has
11240 the (interfacearm) attribute. We look for the Thumb entry point to that
11241 function and change the branch to refer to that function instead. */
11242 if ( inst.reloc.exp.X_op == O_symbol
11243 && inst.reloc.exp.X_add_symbol != NULL
11244 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11245 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11246 inst.reloc.exp.X_add_symbol =
11247 find_real_start (inst.reloc.exp.X_add_symbol);
11248 #endif
11249 }
11250
11251 static void
11252 do_t_bx (void)
11253 {
11254 set_it_insn_type_last ();
11255 inst.instruction |= inst.operands[0].reg << 3;
11256 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11257 should cause the alignment to be checked once it is known. This is
11258 because BX PC only works if the instruction is word aligned. */
11259 }
11260
11261 static void
11262 do_t_bxj (void)
11263 {
11264 int Rm;
11265
11266 set_it_insn_type_last ();
11267 Rm = inst.operands[0].reg;
11268 reject_bad_reg (Rm);
11269 inst.instruction |= Rm << 16;
11270 }
11271
11272 static void
11273 do_t_clz (void)
11274 {
11275 unsigned Rd;
11276 unsigned Rm;
11277
11278 Rd = inst.operands[0].reg;
11279 Rm = inst.operands[1].reg;
11280
11281 reject_bad_reg (Rd);
11282 reject_bad_reg (Rm);
11283
11284 inst.instruction |= Rd << 8;
11285 inst.instruction |= Rm << 16;
11286 inst.instruction |= Rm;
11287 }
11288
11289 static void
11290 do_t_csdb (void)
11291 {
11292 set_it_insn_type (OUTSIDE_IT_INSN);
11293 }
11294
11295 static void
11296 do_t_cps (void)
11297 {
11298 set_it_insn_type (OUTSIDE_IT_INSN);
11299 inst.instruction |= inst.operands[0].imm;
11300 }
11301
11302 static void
11303 do_t_cpsi (void)
11304 {
11305 set_it_insn_type (OUTSIDE_IT_INSN);
11306 if (unified_syntax
11307 && (inst.operands[1].present || inst.size_req == 4)
11308 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11309 {
11310 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11311 inst.instruction = 0xf3af8000;
11312 inst.instruction |= imod << 9;
11313 inst.instruction |= inst.operands[0].imm << 5;
11314 if (inst.operands[1].present)
11315 inst.instruction |= 0x100 | inst.operands[1].imm;
11316 }
11317 else
11318 {
11319 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11320 && (inst.operands[0].imm & 4),
11321 _("selected processor does not support 'A' form "
11322 "of this instruction"));
11323 constraint (inst.operands[1].present || inst.size_req == 4,
11324 _("Thumb does not support the 2-argument "
11325 "form of this instruction"));
11326 inst.instruction |= inst.operands[0].imm;
11327 }
11328 }
11329
11330 /* THUMB CPY instruction (argument parse). */
11331
11332 static void
11333 do_t_cpy (void)
11334 {
11335 if (inst.size_req == 4)
11336 {
11337 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11338 inst.instruction |= inst.operands[0].reg << 8;
11339 inst.instruction |= inst.operands[1].reg;
11340 }
11341 else
11342 {
11343 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11344 inst.instruction |= (inst.operands[0].reg & 0x7);
11345 inst.instruction |= inst.operands[1].reg << 3;
11346 }
11347 }
11348
11349 static void
11350 do_t_cbz (void)
11351 {
11352 set_it_insn_type (OUTSIDE_IT_INSN);
11353 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11354 inst.instruction |= inst.operands[0].reg;
11355 inst.reloc.pc_rel = 1;
11356 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11357 }
11358
11359 static void
11360 do_t_dbg (void)
11361 {
11362 inst.instruction |= inst.operands[0].imm;
11363 }
11364
11365 static void
11366 do_t_div (void)
11367 {
11368 unsigned Rd, Rn, Rm;
11369
11370 Rd = inst.operands[0].reg;
11371 Rn = (inst.operands[1].present
11372 ? inst.operands[1].reg : Rd);
11373 Rm = inst.operands[2].reg;
11374
11375 reject_bad_reg (Rd);
11376 reject_bad_reg (Rn);
11377 reject_bad_reg (Rm);
11378
11379 inst.instruction |= Rd << 8;
11380 inst.instruction |= Rn << 16;
11381 inst.instruction |= Rm;
11382 }
11383
11384 static void
11385 do_t_hint (void)
11386 {
11387 if (unified_syntax && inst.size_req == 4)
11388 inst.instruction = THUMB_OP32 (inst.instruction);
11389 else
11390 inst.instruction = THUMB_OP16 (inst.instruction);
11391 }
11392
11393 static void
11394 do_t_it (void)
11395 {
11396 unsigned int cond = inst.operands[0].imm;
11397
11398 set_it_insn_type (IT_INSN);
11399 now_it.mask = (inst.instruction & 0xf) | 0x10;
11400 now_it.cc = cond;
11401 now_it.warn_deprecated = FALSE;
11402
11403 /* If the condition is a negative condition, invert the mask. */
11404 if ((cond & 0x1) == 0x0)
11405 {
11406 unsigned int mask = inst.instruction & 0x000f;
11407
11408 if ((mask & 0x7) == 0)
11409 {
11410 /* No conversion needed. */
11411 now_it.block_length = 1;
11412 }
11413 else if ((mask & 0x3) == 0)
11414 {
11415 mask ^= 0x8;
11416 now_it.block_length = 2;
11417 }
11418 else if ((mask & 0x1) == 0)
11419 {
11420 mask ^= 0xC;
11421 now_it.block_length = 3;
11422 }
11423 else
11424 {
11425 mask ^= 0xE;
11426 now_it.block_length = 4;
11427 }
11428
11429 inst.instruction &= 0xfff0;
11430 inst.instruction |= mask;
11431 }
11432
11433 inst.instruction |= cond << 4;
11434 }
11435
11436 /* Helper function used for both push/pop and ldm/stm. */
11437 static void
11438 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11439 {
11440 bfd_boolean load;
11441
11442 load = (inst.instruction & (1 << 20)) != 0;
11443
11444 if (mask & (1 << 13))
11445 inst.error = _("SP not allowed in register list");
11446
11447 if ((mask & (1 << base)) != 0
11448 && writeback)
11449 inst.error = _("having the base register in the register list when "
11450 "using write back is UNPREDICTABLE");
11451
11452 if (load)
11453 {
11454 if (mask & (1 << 15))
11455 {
11456 if (mask & (1 << 14))
11457 inst.error = _("LR and PC should not both be in register list");
11458 else
11459 set_it_insn_type_last ();
11460 }
11461 }
11462 else
11463 {
11464 if (mask & (1 << 15))
11465 inst.error = _("PC not allowed in register list");
11466 }
11467
11468 if ((mask & (mask - 1)) == 0)
11469 {
11470 /* Single register transfers implemented as str/ldr. */
11471 if (writeback)
11472 {
11473 if (inst.instruction & (1 << 23))
11474 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11475 else
11476 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11477 }
11478 else
11479 {
11480 if (inst.instruction & (1 << 23))
11481 inst.instruction = 0x00800000; /* ia -> [base] */
11482 else
11483 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11484 }
11485
11486 inst.instruction |= 0xf8400000;
11487 if (load)
11488 inst.instruction |= 0x00100000;
11489
11490 mask = ffs (mask) - 1;
11491 mask <<= 12;
11492 }
11493 else if (writeback)
11494 inst.instruction |= WRITE_BACK;
11495
11496 inst.instruction |= mask;
11497 inst.instruction |= base << 16;
11498 }
11499
11500 static void
11501 do_t_ldmstm (void)
11502 {
11503 /* This really doesn't seem worth it. */
11504 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11505 _("expression too complex"));
11506 constraint (inst.operands[1].writeback,
11507 _("Thumb load/store multiple does not support {reglist}^"));
11508
11509 if (unified_syntax)
11510 {
11511 bfd_boolean narrow;
11512 unsigned mask;
11513
11514 narrow = FALSE;
11515 /* See if we can use a 16-bit instruction. */
11516 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11517 && inst.size_req != 4
11518 && !(inst.operands[1].imm & ~0xff))
11519 {
11520 mask = 1 << inst.operands[0].reg;
11521
11522 if (inst.operands[0].reg <= 7)
11523 {
11524 if (inst.instruction == T_MNEM_stmia
11525 ? inst.operands[0].writeback
11526 : (inst.operands[0].writeback
11527 == !(inst.operands[1].imm & mask)))
11528 {
11529 if (inst.instruction == T_MNEM_stmia
11530 && (inst.operands[1].imm & mask)
11531 && (inst.operands[1].imm & (mask - 1)))
11532 as_warn (_("value stored for r%d is UNKNOWN"),
11533 inst.operands[0].reg);
11534
11535 inst.instruction = THUMB_OP16 (inst.instruction);
11536 inst.instruction |= inst.operands[0].reg << 8;
11537 inst.instruction |= inst.operands[1].imm;
11538 narrow = TRUE;
11539 }
11540 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11541 {
11542 /* This means 1 register in reg list one of 3 situations:
11543 1. Instruction is stmia, but without writeback.
11544 2. lmdia without writeback, but with Rn not in
11545 reglist.
11546 3. ldmia with writeback, but with Rn in reglist.
11547 Case 3 is UNPREDICTABLE behaviour, so we handle
11548 case 1 and 2 which can be converted into a 16-bit
11549 str or ldr. The SP cases are handled below. */
11550 unsigned long opcode;
11551 /* First, record an error for Case 3. */
11552 if (inst.operands[1].imm & mask
11553 && inst.operands[0].writeback)
11554 inst.error =
11555 _("having the base register in the register list when "
11556 "using write back is UNPREDICTABLE");
11557
11558 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11559 : T_MNEM_ldr);
11560 inst.instruction = THUMB_OP16 (opcode);
11561 inst.instruction |= inst.operands[0].reg << 3;
11562 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11563 narrow = TRUE;
11564 }
11565 }
11566 else if (inst.operands[0] .reg == REG_SP)
11567 {
11568 if (inst.operands[0].writeback)
11569 {
11570 inst.instruction =
11571 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11572 ? T_MNEM_push : T_MNEM_pop);
11573 inst.instruction |= inst.operands[1].imm;
11574 narrow = TRUE;
11575 }
11576 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11577 {
11578 inst.instruction =
11579 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11580 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11581 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11582 narrow = TRUE;
11583 }
11584 }
11585 }
11586
11587 if (!narrow)
11588 {
11589 if (inst.instruction < 0xffff)
11590 inst.instruction = THUMB_OP32 (inst.instruction);
11591
11592 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11593 inst.operands[0].writeback);
11594 }
11595 }
11596 else
11597 {
11598 constraint (inst.operands[0].reg > 7
11599 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11600 constraint (inst.instruction != T_MNEM_ldmia
11601 && inst.instruction != T_MNEM_stmia,
11602 _("Thumb-2 instruction only valid in unified syntax"));
11603 if (inst.instruction == T_MNEM_stmia)
11604 {
11605 if (!inst.operands[0].writeback)
11606 as_warn (_("this instruction will write back the base register"));
11607 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11608 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11609 as_warn (_("value stored for r%d is UNKNOWN"),
11610 inst.operands[0].reg);
11611 }
11612 else
11613 {
11614 if (!inst.operands[0].writeback
11615 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11616 as_warn (_("this instruction will write back the base register"));
11617 else if (inst.operands[0].writeback
11618 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11619 as_warn (_("this instruction will not write back the base register"));
11620 }
11621
11622 inst.instruction = THUMB_OP16 (inst.instruction);
11623 inst.instruction |= inst.operands[0].reg << 8;
11624 inst.instruction |= inst.operands[1].imm;
11625 }
11626 }
11627
11628 static void
11629 do_t_ldrex (void)
11630 {
11631 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11632 || inst.operands[1].postind || inst.operands[1].writeback
11633 || inst.operands[1].immisreg || inst.operands[1].shifted
11634 || inst.operands[1].negative,
11635 BAD_ADDR_MODE);
11636
11637 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11638
11639 inst.instruction |= inst.operands[0].reg << 12;
11640 inst.instruction |= inst.operands[1].reg << 16;
11641 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11642 }
11643
11644 static void
11645 do_t_ldrexd (void)
11646 {
11647 if (!inst.operands[1].present)
11648 {
11649 constraint (inst.operands[0].reg == REG_LR,
11650 _("r14 not allowed as first register "
11651 "when second register is omitted"));
11652 inst.operands[1].reg = inst.operands[0].reg + 1;
11653 }
11654 constraint (inst.operands[0].reg == inst.operands[1].reg,
11655 BAD_OVERLAP);
11656
11657 inst.instruction |= inst.operands[0].reg << 12;
11658 inst.instruction |= inst.operands[1].reg << 8;
11659 inst.instruction |= inst.operands[2].reg << 16;
11660 }
11661
11662 static void
11663 do_t_ldst (void)
11664 {
11665 unsigned long opcode;
11666 int Rn;
11667
11668 if (inst.operands[0].isreg
11669 && !inst.operands[0].preind
11670 && inst.operands[0].reg == REG_PC)
11671 set_it_insn_type_last ();
11672
11673 opcode = inst.instruction;
11674 if (unified_syntax)
11675 {
11676 if (!inst.operands[1].isreg)
11677 {
11678 if (opcode <= 0xffff)
11679 inst.instruction = THUMB_OP32 (opcode);
11680 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11681 return;
11682 }
11683 if (inst.operands[1].isreg
11684 && !inst.operands[1].writeback
11685 && !inst.operands[1].shifted && !inst.operands[1].postind
11686 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11687 && opcode <= 0xffff
11688 && inst.size_req != 4)
11689 {
11690 /* Insn may have a 16-bit form. */
11691 Rn = inst.operands[1].reg;
11692 if (inst.operands[1].immisreg)
11693 {
11694 inst.instruction = THUMB_OP16 (opcode);
11695 /* [Rn, Rik] */
11696 if (Rn <= 7 && inst.operands[1].imm <= 7)
11697 goto op16;
11698 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11699 reject_bad_reg (inst.operands[1].imm);
11700 }
11701 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11702 && opcode != T_MNEM_ldrsb)
11703 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11704 || (Rn == REG_SP && opcode == T_MNEM_str))
11705 {
11706 /* [Rn, #const] */
11707 if (Rn > 7)
11708 {
11709 if (Rn == REG_PC)
11710 {
11711 if (inst.reloc.pc_rel)
11712 opcode = T_MNEM_ldr_pc2;
11713 else
11714 opcode = T_MNEM_ldr_pc;
11715 }
11716 else
11717 {
11718 if (opcode == T_MNEM_ldr)
11719 opcode = T_MNEM_ldr_sp;
11720 else
11721 opcode = T_MNEM_str_sp;
11722 }
11723 inst.instruction = inst.operands[0].reg << 8;
11724 }
11725 else
11726 {
11727 inst.instruction = inst.operands[0].reg;
11728 inst.instruction |= inst.operands[1].reg << 3;
11729 }
11730 inst.instruction |= THUMB_OP16 (opcode);
11731 if (inst.size_req == 2)
11732 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11733 else
11734 inst.relax = opcode;
11735 return;
11736 }
11737 }
11738 /* Definitely a 32-bit variant. */
11739
11740 /* Warning for Erratum 752419. */
11741 if (opcode == T_MNEM_ldr
11742 && inst.operands[0].reg == REG_SP
11743 && inst.operands[1].writeback == 1
11744 && !inst.operands[1].immisreg)
11745 {
11746 if (no_cpu_selected ()
11747 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11748 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11749 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11750 as_warn (_("This instruction may be unpredictable "
11751 "if executed on M-profile cores "
11752 "with interrupts enabled."));
11753 }
11754
11755 /* Do some validations regarding addressing modes. */
11756 if (inst.operands[1].immisreg)
11757 reject_bad_reg (inst.operands[1].imm);
11758
11759 constraint (inst.operands[1].writeback == 1
11760 && inst.operands[0].reg == inst.operands[1].reg,
11761 BAD_OVERLAP);
11762
11763 inst.instruction = THUMB_OP32 (opcode);
11764 inst.instruction |= inst.operands[0].reg << 12;
11765 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11766 check_ldr_r15_aligned ();
11767 return;
11768 }
11769
11770 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11771
11772 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11773 {
11774 /* Only [Rn,Rm] is acceptable. */
11775 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11776 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11777 || inst.operands[1].postind || inst.operands[1].shifted
11778 || inst.operands[1].negative,
11779 _("Thumb does not support this addressing mode"));
11780 inst.instruction = THUMB_OP16 (inst.instruction);
11781 goto op16;
11782 }
11783
11784 inst.instruction = THUMB_OP16 (inst.instruction);
11785 if (!inst.operands[1].isreg)
11786 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11787 return;
11788
11789 constraint (!inst.operands[1].preind
11790 || inst.operands[1].shifted
11791 || inst.operands[1].writeback,
11792 _("Thumb does not support this addressing mode"));
11793 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11794 {
11795 constraint (inst.instruction & 0x0600,
11796 _("byte or halfword not valid for base register"));
11797 constraint (inst.operands[1].reg == REG_PC
11798 && !(inst.instruction & THUMB_LOAD_BIT),
11799 _("r15 based store not allowed"));
11800 constraint (inst.operands[1].immisreg,
11801 _("invalid base register for register offset"));
11802
11803 if (inst.operands[1].reg == REG_PC)
11804 inst.instruction = T_OPCODE_LDR_PC;
11805 else if (inst.instruction & THUMB_LOAD_BIT)
11806 inst.instruction = T_OPCODE_LDR_SP;
11807 else
11808 inst.instruction = T_OPCODE_STR_SP;
11809
11810 inst.instruction |= inst.operands[0].reg << 8;
11811 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11812 return;
11813 }
11814
11815 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11816 if (!inst.operands[1].immisreg)
11817 {
11818 /* Immediate offset. */
11819 inst.instruction |= inst.operands[0].reg;
11820 inst.instruction |= inst.operands[1].reg << 3;
11821 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11822 return;
11823 }
11824
11825 /* Register offset. */
11826 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11827 constraint (inst.operands[1].negative,
11828 _("Thumb does not support this addressing mode"));
11829
11830 op16:
11831 switch (inst.instruction)
11832 {
11833 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11834 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11835 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11836 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11837 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11838 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11839 case 0x5600 /* ldrsb */:
11840 case 0x5e00 /* ldrsh */: break;
11841 default: abort ();
11842 }
11843
11844 inst.instruction |= inst.operands[0].reg;
11845 inst.instruction |= inst.operands[1].reg << 3;
11846 inst.instruction |= inst.operands[1].imm << 6;
11847 }
11848
11849 static void
11850 do_t_ldstd (void)
11851 {
11852 if (!inst.operands[1].present)
11853 {
11854 inst.operands[1].reg = inst.operands[0].reg + 1;
11855 constraint (inst.operands[0].reg == REG_LR,
11856 _("r14 not allowed here"));
11857 constraint (inst.operands[0].reg == REG_R12,
11858 _("r12 not allowed here"));
11859 }
11860
11861 if (inst.operands[2].writeback
11862 && (inst.operands[0].reg == inst.operands[2].reg
11863 || inst.operands[1].reg == inst.operands[2].reg))
11864 as_warn (_("base register written back, and overlaps "
11865 "one of transfer registers"));
11866
11867 inst.instruction |= inst.operands[0].reg << 12;
11868 inst.instruction |= inst.operands[1].reg << 8;
11869 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11870 }
11871
11872 static void
11873 do_t_ldstt (void)
11874 {
11875 inst.instruction |= inst.operands[0].reg << 12;
11876 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11877 }
11878
11879 static void
11880 do_t_mla (void)
11881 {
11882 unsigned Rd, Rn, Rm, Ra;
11883
11884 Rd = inst.operands[0].reg;
11885 Rn = inst.operands[1].reg;
11886 Rm = inst.operands[2].reg;
11887 Ra = inst.operands[3].reg;
11888
11889 reject_bad_reg (Rd);
11890 reject_bad_reg (Rn);
11891 reject_bad_reg (Rm);
11892 reject_bad_reg (Ra);
11893
11894 inst.instruction |= Rd << 8;
11895 inst.instruction |= Rn << 16;
11896 inst.instruction |= Rm;
11897 inst.instruction |= Ra << 12;
11898 }
11899
11900 static void
11901 do_t_mlal (void)
11902 {
11903 unsigned RdLo, RdHi, Rn, Rm;
11904
11905 RdLo = inst.operands[0].reg;
11906 RdHi = inst.operands[1].reg;
11907 Rn = inst.operands[2].reg;
11908 Rm = inst.operands[3].reg;
11909
11910 reject_bad_reg (RdLo);
11911 reject_bad_reg (RdHi);
11912 reject_bad_reg (Rn);
11913 reject_bad_reg (Rm);
11914
11915 inst.instruction |= RdLo << 12;
11916 inst.instruction |= RdHi << 8;
11917 inst.instruction |= Rn << 16;
11918 inst.instruction |= Rm;
11919 }
11920
11921 static void
11922 do_t_mov_cmp (void)
11923 {
11924 unsigned Rn, Rm;
11925
11926 Rn = inst.operands[0].reg;
11927 Rm = inst.operands[1].reg;
11928
11929 if (Rn == REG_PC)
11930 set_it_insn_type_last ();
11931
11932 if (unified_syntax)
11933 {
11934 int r0off = (inst.instruction == T_MNEM_mov
11935 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11936 unsigned long opcode;
11937 bfd_boolean narrow;
11938 bfd_boolean low_regs;
11939
11940 low_regs = (Rn <= 7 && Rm <= 7);
11941 opcode = inst.instruction;
11942 if (in_it_block ())
11943 narrow = opcode != T_MNEM_movs;
11944 else
11945 narrow = opcode != T_MNEM_movs || low_regs;
11946 if (inst.size_req == 4
11947 || inst.operands[1].shifted)
11948 narrow = FALSE;
11949
11950 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11951 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11952 && !inst.operands[1].shifted
11953 && Rn == REG_PC
11954 && Rm == REG_LR)
11955 {
11956 inst.instruction = T2_SUBS_PC_LR;
11957 return;
11958 }
11959
11960 if (opcode == T_MNEM_cmp)
11961 {
11962 constraint (Rn == REG_PC, BAD_PC);
11963 if (narrow)
11964 {
11965 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11966 but valid. */
11967 warn_deprecated_sp (Rm);
11968 /* R15 was documented as a valid choice for Rm in ARMv6,
11969 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11970 tools reject R15, so we do too. */
11971 constraint (Rm == REG_PC, BAD_PC);
11972 }
11973 else
11974 reject_bad_reg (Rm);
11975 }
11976 else if (opcode == T_MNEM_mov
11977 || opcode == T_MNEM_movs)
11978 {
11979 if (inst.operands[1].isreg)
11980 {
11981 if (opcode == T_MNEM_movs)
11982 {
11983 reject_bad_reg (Rn);
11984 reject_bad_reg (Rm);
11985 }
11986 else if (narrow)
11987 {
11988 /* This is mov.n. */
11989 if ((Rn == REG_SP || Rn == REG_PC)
11990 && (Rm == REG_SP || Rm == REG_PC))
11991 {
11992 as_tsktsk (_("Use of r%u as a source register is "
11993 "deprecated when r%u is the destination "
11994 "register."), Rm, Rn);
11995 }
11996 }
11997 else
11998 {
11999 /* This is mov.w. */
12000 constraint (Rn == REG_PC, BAD_PC);
12001 constraint (Rm == REG_PC, BAD_PC);
12002 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12003 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12004 }
12005 }
12006 else
12007 reject_bad_reg (Rn);
12008 }
12009
12010 if (!inst.operands[1].isreg)
12011 {
12012 /* Immediate operand. */
12013 if (!in_it_block () && opcode == T_MNEM_mov)
12014 narrow = 0;
12015 if (low_regs && narrow)
12016 {
12017 inst.instruction = THUMB_OP16 (opcode);
12018 inst.instruction |= Rn << 8;
12019 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12020 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12021 {
12022 if (inst.size_req == 2)
12023 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12024 else
12025 inst.relax = opcode;
12026 }
12027 }
12028 else
12029 {
12030 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12031 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
12032 THUMB1_RELOC_ONLY);
12033
12034 inst.instruction = THUMB_OP32 (inst.instruction);
12035 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12036 inst.instruction |= Rn << r0off;
12037 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12038 }
12039 }
12040 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12041 && (inst.instruction == T_MNEM_mov
12042 || inst.instruction == T_MNEM_movs))
12043 {
12044 /* Register shifts are encoded as separate shift instructions. */
12045 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12046
12047 if (in_it_block ())
12048 narrow = !flags;
12049 else
12050 narrow = flags;
12051
12052 if (inst.size_req == 4)
12053 narrow = FALSE;
12054
12055 if (!low_regs || inst.operands[1].imm > 7)
12056 narrow = FALSE;
12057
12058 if (Rn != Rm)
12059 narrow = FALSE;
12060
12061 switch (inst.operands[1].shift_kind)
12062 {
12063 case SHIFT_LSL:
12064 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12065 break;
12066 case SHIFT_ASR:
12067 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12068 break;
12069 case SHIFT_LSR:
12070 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12071 break;
12072 case SHIFT_ROR:
12073 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12074 break;
12075 default:
12076 abort ();
12077 }
12078
12079 inst.instruction = opcode;
12080 if (narrow)
12081 {
12082 inst.instruction |= Rn;
12083 inst.instruction |= inst.operands[1].imm << 3;
12084 }
12085 else
12086 {
12087 if (flags)
12088 inst.instruction |= CONDS_BIT;
12089
12090 inst.instruction |= Rn << 8;
12091 inst.instruction |= Rm << 16;
12092 inst.instruction |= inst.operands[1].imm;
12093 }
12094 }
12095 else if (!narrow)
12096 {
12097 /* Some mov with immediate shift have narrow variants.
12098 Register shifts are handled above. */
12099 if (low_regs && inst.operands[1].shifted
12100 && (inst.instruction == T_MNEM_mov
12101 || inst.instruction == T_MNEM_movs))
12102 {
12103 if (in_it_block ())
12104 narrow = (inst.instruction == T_MNEM_mov);
12105 else
12106 narrow = (inst.instruction == T_MNEM_movs);
12107 }
12108
12109 if (narrow)
12110 {
12111 switch (inst.operands[1].shift_kind)
12112 {
12113 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12114 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12115 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12116 default: narrow = FALSE; break;
12117 }
12118 }
12119
12120 if (narrow)
12121 {
12122 inst.instruction |= Rn;
12123 inst.instruction |= Rm << 3;
12124 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12125 }
12126 else
12127 {
12128 inst.instruction = THUMB_OP32 (inst.instruction);
12129 inst.instruction |= Rn << r0off;
12130 encode_thumb32_shifted_operand (1);
12131 }
12132 }
12133 else
12134 switch (inst.instruction)
12135 {
12136 case T_MNEM_mov:
12137 /* In v4t or v5t a move of two lowregs produces unpredictable
12138 results. Don't allow this. */
12139 if (low_regs)
12140 {
12141 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12142 "MOV Rd, Rs with two low registers is not "
12143 "permitted on this architecture");
12144 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12145 arm_ext_v6);
12146 }
12147
12148 inst.instruction = T_OPCODE_MOV_HR;
12149 inst.instruction |= (Rn & 0x8) << 4;
12150 inst.instruction |= (Rn & 0x7);
12151 inst.instruction |= Rm << 3;
12152 break;
12153
12154 case T_MNEM_movs:
12155 /* We know we have low registers at this point.
12156 Generate LSLS Rd, Rs, #0. */
12157 inst.instruction = T_OPCODE_LSL_I;
12158 inst.instruction |= Rn;
12159 inst.instruction |= Rm << 3;
12160 break;
12161
12162 case T_MNEM_cmp:
12163 if (low_regs)
12164 {
12165 inst.instruction = T_OPCODE_CMP_LR;
12166 inst.instruction |= Rn;
12167 inst.instruction |= Rm << 3;
12168 }
12169 else
12170 {
12171 inst.instruction = T_OPCODE_CMP_HR;
12172 inst.instruction |= (Rn & 0x8) << 4;
12173 inst.instruction |= (Rn & 0x7);
12174 inst.instruction |= Rm << 3;
12175 }
12176 break;
12177 }
12178 return;
12179 }
12180
12181 inst.instruction = THUMB_OP16 (inst.instruction);
12182
12183 /* PR 10443: Do not silently ignore shifted operands. */
12184 constraint (inst.operands[1].shifted,
12185 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12186
12187 if (inst.operands[1].isreg)
12188 {
12189 if (Rn < 8 && Rm < 8)
12190 {
12191 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12192 since a MOV instruction produces unpredictable results. */
12193 if (inst.instruction == T_OPCODE_MOV_I8)
12194 inst.instruction = T_OPCODE_ADD_I3;
12195 else
12196 inst.instruction = T_OPCODE_CMP_LR;
12197
12198 inst.instruction |= Rn;
12199 inst.instruction |= Rm << 3;
12200 }
12201 else
12202 {
12203 if (inst.instruction == T_OPCODE_MOV_I8)
12204 inst.instruction = T_OPCODE_MOV_HR;
12205 else
12206 inst.instruction = T_OPCODE_CMP_HR;
12207 do_t_cpy ();
12208 }
12209 }
12210 else
12211 {
12212 constraint (Rn > 7,
12213 _("only lo regs allowed with immediate"));
12214 inst.instruction |= Rn << 8;
12215 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12216 }
12217 }
12218
12219 static void
12220 do_t_mov16 (void)
12221 {
12222 unsigned Rd;
12223 bfd_vma imm;
12224 bfd_boolean top;
12225
12226 top = (inst.instruction & 0x00800000) != 0;
12227 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12228 {
12229 constraint (top, _(":lower16: not allowed in this instruction"));
12230 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12231 }
12232 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12233 {
12234 constraint (!top, _(":upper16: not allowed in this instruction"));
12235 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12236 }
12237
12238 Rd = inst.operands[0].reg;
12239 reject_bad_reg (Rd);
12240
12241 inst.instruction |= Rd << 8;
12242 if (inst.reloc.type == BFD_RELOC_UNUSED)
12243 {
12244 imm = inst.reloc.exp.X_add_number;
12245 inst.instruction |= (imm & 0xf000) << 4;
12246 inst.instruction |= (imm & 0x0800) << 15;
12247 inst.instruction |= (imm & 0x0700) << 4;
12248 inst.instruction |= (imm & 0x00ff);
12249 }
12250 }
12251
12252 static void
12253 do_t_mvn_tst (void)
12254 {
12255 unsigned Rn, Rm;
12256
12257 Rn = inst.operands[0].reg;
12258 Rm = inst.operands[1].reg;
12259
12260 if (inst.instruction == T_MNEM_cmp
12261 || inst.instruction == T_MNEM_cmn)
12262 constraint (Rn == REG_PC, BAD_PC);
12263 else
12264 reject_bad_reg (Rn);
12265 reject_bad_reg (Rm);
12266
12267 if (unified_syntax)
12268 {
12269 int r0off = (inst.instruction == T_MNEM_mvn
12270 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12271 bfd_boolean narrow;
12272
12273 if (inst.size_req == 4
12274 || inst.instruction > 0xffff
12275 || inst.operands[1].shifted
12276 || Rn > 7 || Rm > 7)
12277 narrow = FALSE;
12278 else if (inst.instruction == T_MNEM_cmn
12279 || inst.instruction == T_MNEM_tst)
12280 narrow = TRUE;
12281 else if (THUMB_SETS_FLAGS (inst.instruction))
12282 narrow = !in_it_block ();
12283 else
12284 narrow = in_it_block ();
12285
12286 if (!inst.operands[1].isreg)
12287 {
12288 /* For an immediate, we always generate a 32-bit opcode;
12289 section relaxation will shrink it later if possible. */
12290 if (inst.instruction < 0xffff)
12291 inst.instruction = THUMB_OP32 (inst.instruction);
12292 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12293 inst.instruction |= Rn << r0off;
12294 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12295 }
12296 else
12297 {
12298 /* See if we can do this with a 16-bit instruction. */
12299 if (narrow)
12300 {
12301 inst.instruction = THUMB_OP16 (inst.instruction);
12302 inst.instruction |= Rn;
12303 inst.instruction |= Rm << 3;
12304 }
12305 else
12306 {
12307 constraint (inst.operands[1].shifted
12308 && inst.operands[1].immisreg,
12309 _("shift must be constant"));
12310 if (inst.instruction < 0xffff)
12311 inst.instruction = THUMB_OP32 (inst.instruction);
12312 inst.instruction |= Rn << r0off;
12313 encode_thumb32_shifted_operand (1);
12314 }
12315 }
12316 }
12317 else
12318 {
12319 constraint (inst.instruction > 0xffff
12320 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12321 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12322 _("unshifted register required"));
12323 constraint (Rn > 7 || Rm > 7,
12324 BAD_HIREG);
12325
12326 inst.instruction = THUMB_OP16 (inst.instruction);
12327 inst.instruction |= Rn;
12328 inst.instruction |= Rm << 3;
12329 }
12330 }
12331
12332 static void
12333 do_t_mrs (void)
12334 {
12335 unsigned Rd;
12336
12337 if (do_vfp_nsyn_mrs () == SUCCESS)
12338 return;
12339
12340 Rd = inst.operands[0].reg;
12341 reject_bad_reg (Rd);
12342 inst.instruction |= Rd << 8;
12343
12344 if (inst.operands[1].isreg)
12345 {
12346 unsigned br = inst.operands[1].reg;
12347 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12348 as_bad (_("bad register for mrs"));
12349
12350 inst.instruction |= br & (0xf << 16);
12351 inst.instruction |= (br & 0x300) >> 4;
12352 inst.instruction |= (br & SPSR_BIT) >> 2;
12353 }
12354 else
12355 {
12356 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12357
12358 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12359 {
12360 /* PR gas/12698: The constraint is only applied for m_profile.
12361 If the user has specified -march=all, we want to ignore it as
12362 we are building for any CPU type, including non-m variants. */
12363 bfd_boolean m_profile =
12364 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12365 constraint ((flags != 0) && m_profile, _("selected processor does "
12366 "not support requested special purpose register"));
12367 }
12368 else
12369 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12370 devices). */
12371 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12372 _("'APSR', 'CPSR' or 'SPSR' expected"));
12373
12374 inst.instruction |= (flags & SPSR_BIT) >> 2;
12375 inst.instruction |= inst.operands[1].imm & 0xff;
12376 inst.instruction |= 0xf0000;
12377 }
12378 }
12379
12380 static void
12381 do_t_msr (void)
12382 {
12383 int flags;
12384 unsigned Rn;
12385
12386 if (do_vfp_nsyn_msr () == SUCCESS)
12387 return;
12388
12389 constraint (!inst.operands[1].isreg,
12390 _("Thumb encoding does not support an immediate here"));
12391
12392 if (inst.operands[0].isreg)
12393 flags = (int)(inst.operands[0].reg);
12394 else
12395 flags = inst.operands[0].imm;
12396
12397 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12398 {
12399 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12400
12401 /* PR gas/12698: The constraint is only applied for m_profile.
12402 If the user has specified -march=all, we want to ignore it as
12403 we are building for any CPU type, including non-m variants. */
12404 bfd_boolean m_profile =
12405 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12406 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12407 && (bits & ~(PSR_s | PSR_f)) != 0)
12408 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12409 && bits != PSR_f)) && m_profile,
12410 _("selected processor does not support requested special "
12411 "purpose register"));
12412 }
12413 else
12414 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12415 "requested special purpose register"));
12416
12417 Rn = inst.operands[1].reg;
12418 reject_bad_reg (Rn);
12419
12420 inst.instruction |= (flags & SPSR_BIT) >> 2;
12421 inst.instruction |= (flags & 0xf0000) >> 8;
12422 inst.instruction |= (flags & 0x300) >> 4;
12423 inst.instruction |= (flags & 0xff);
12424 inst.instruction |= Rn << 16;
12425 }
12426
12427 static void
12428 do_t_mul (void)
12429 {
12430 bfd_boolean narrow;
12431 unsigned Rd, Rn, Rm;
12432
12433 if (!inst.operands[2].present)
12434 inst.operands[2].reg = inst.operands[0].reg;
12435
12436 Rd = inst.operands[0].reg;
12437 Rn = inst.operands[1].reg;
12438 Rm = inst.operands[2].reg;
12439
12440 if (unified_syntax)
12441 {
12442 if (inst.size_req == 4
12443 || (Rd != Rn
12444 && Rd != Rm)
12445 || Rn > 7
12446 || Rm > 7)
12447 narrow = FALSE;
12448 else if (inst.instruction == T_MNEM_muls)
12449 narrow = !in_it_block ();
12450 else
12451 narrow = in_it_block ();
12452 }
12453 else
12454 {
12455 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12456 constraint (Rn > 7 || Rm > 7,
12457 BAD_HIREG);
12458 narrow = TRUE;
12459 }
12460
12461 if (narrow)
12462 {
12463 /* 16-bit MULS/Conditional MUL. */
12464 inst.instruction = THUMB_OP16 (inst.instruction);
12465 inst.instruction |= Rd;
12466
12467 if (Rd == Rn)
12468 inst.instruction |= Rm << 3;
12469 else if (Rd == Rm)
12470 inst.instruction |= Rn << 3;
12471 else
12472 constraint (1, _("dest must overlap one source register"));
12473 }
12474 else
12475 {
12476 constraint (inst.instruction != T_MNEM_mul,
12477 _("Thumb-2 MUL must not set flags"));
12478 /* 32-bit MUL. */
12479 inst.instruction = THUMB_OP32 (inst.instruction);
12480 inst.instruction |= Rd << 8;
12481 inst.instruction |= Rn << 16;
12482 inst.instruction |= Rm << 0;
12483
12484 reject_bad_reg (Rd);
12485 reject_bad_reg (Rn);
12486 reject_bad_reg (Rm);
12487 }
12488 }
12489
12490 static void
12491 do_t_mull (void)
12492 {
12493 unsigned RdLo, RdHi, Rn, Rm;
12494
12495 RdLo = inst.operands[0].reg;
12496 RdHi = inst.operands[1].reg;
12497 Rn = inst.operands[2].reg;
12498 Rm = inst.operands[3].reg;
12499
12500 reject_bad_reg (RdLo);
12501 reject_bad_reg (RdHi);
12502 reject_bad_reg (Rn);
12503 reject_bad_reg (Rm);
12504
12505 inst.instruction |= RdLo << 12;
12506 inst.instruction |= RdHi << 8;
12507 inst.instruction |= Rn << 16;
12508 inst.instruction |= Rm;
12509
12510 if (RdLo == RdHi)
12511 as_tsktsk (_("rdhi and rdlo must be different"));
12512 }
12513
12514 static void
12515 do_t_nop (void)
12516 {
12517 set_it_insn_type (NEUTRAL_IT_INSN);
12518
12519 if (unified_syntax)
12520 {
12521 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12522 {
12523 inst.instruction = THUMB_OP32 (inst.instruction);
12524 inst.instruction |= inst.operands[0].imm;
12525 }
12526 else
12527 {
12528 /* PR9722: Check for Thumb2 availability before
12529 generating a thumb2 nop instruction. */
12530 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12531 {
12532 inst.instruction = THUMB_OP16 (inst.instruction);
12533 inst.instruction |= inst.operands[0].imm << 4;
12534 }
12535 else
12536 inst.instruction = 0x46c0;
12537 }
12538 }
12539 else
12540 {
12541 constraint (inst.operands[0].present,
12542 _("Thumb does not support NOP with hints"));
12543 inst.instruction = 0x46c0;
12544 }
12545 }
12546
12547 static void
12548 do_t_neg (void)
12549 {
12550 if (unified_syntax)
12551 {
12552 bfd_boolean narrow;
12553
12554 if (THUMB_SETS_FLAGS (inst.instruction))
12555 narrow = !in_it_block ();
12556 else
12557 narrow = in_it_block ();
12558 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12559 narrow = FALSE;
12560 if (inst.size_req == 4)
12561 narrow = FALSE;
12562
12563 if (!narrow)
12564 {
12565 inst.instruction = THUMB_OP32 (inst.instruction);
12566 inst.instruction |= inst.operands[0].reg << 8;
12567 inst.instruction |= inst.operands[1].reg << 16;
12568 }
12569 else
12570 {
12571 inst.instruction = THUMB_OP16 (inst.instruction);
12572 inst.instruction |= inst.operands[0].reg;
12573 inst.instruction |= inst.operands[1].reg << 3;
12574 }
12575 }
12576 else
12577 {
12578 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12579 BAD_HIREG);
12580 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12581
12582 inst.instruction = THUMB_OP16 (inst.instruction);
12583 inst.instruction |= inst.operands[0].reg;
12584 inst.instruction |= inst.operands[1].reg << 3;
12585 }
12586 }
12587
12588 static void
12589 do_t_orn (void)
12590 {
12591 unsigned Rd, Rn;
12592
12593 Rd = inst.operands[0].reg;
12594 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12595
12596 reject_bad_reg (Rd);
12597 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12598 reject_bad_reg (Rn);
12599
12600 inst.instruction |= Rd << 8;
12601 inst.instruction |= Rn << 16;
12602
12603 if (!inst.operands[2].isreg)
12604 {
12605 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12606 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12607 }
12608 else
12609 {
12610 unsigned Rm;
12611
12612 Rm = inst.operands[2].reg;
12613 reject_bad_reg (Rm);
12614
12615 constraint (inst.operands[2].shifted
12616 && inst.operands[2].immisreg,
12617 _("shift must be constant"));
12618 encode_thumb32_shifted_operand (2);
12619 }
12620 }
12621
12622 static void
12623 do_t_pkhbt (void)
12624 {
12625 unsigned Rd, Rn, Rm;
12626
12627 Rd = inst.operands[0].reg;
12628 Rn = inst.operands[1].reg;
12629 Rm = inst.operands[2].reg;
12630
12631 reject_bad_reg (Rd);
12632 reject_bad_reg (Rn);
12633 reject_bad_reg (Rm);
12634
12635 inst.instruction |= Rd << 8;
12636 inst.instruction |= Rn << 16;
12637 inst.instruction |= Rm;
12638 if (inst.operands[3].present)
12639 {
12640 unsigned int val = inst.reloc.exp.X_add_number;
12641 constraint (inst.reloc.exp.X_op != O_constant,
12642 _("expression too complex"));
12643 inst.instruction |= (val & 0x1c) << 10;
12644 inst.instruction |= (val & 0x03) << 6;
12645 }
12646 }
12647
12648 static void
12649 do_t_pkhtb (void)
12650 {
12651 if (!inst.operands[3].present)
12652 {
12653 unsigned Rtmp;
12654
12655 inst.instruction &= ~0x00000020;
12656
12657 /* PR 10168. Swap the Rm and Rn registers. */
12658 Rtmp = inst.operands[1].reg;
12659 inst.operands[1].reg = inst.operands[2].reg;
12660 inst.operands[2].reg = Rtmp;
12661 }
12662 do_t_pkhbt ();
12663 }
12664
12665 static void
12666 do_t_pld (void)
12667 {
12668 if (inst.operands[0].immisreg)
12669 reject_bad_reg (inst.operands[0].imm);
12670
12671 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12672 }
12673
12674 static void
12675 do_t_push_pop (void)
12676 {
12677 unsigned mask;
12678
12679 constraint (inst.operands[0].writeback,
12680 _("push/pop do not support {reglist}^"));
12681 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12682 _("expression too complex"));
12683
12684 mask = inst.operands[0].imm;
12685 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12686 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12687 else if (inst.size_req != 4
12688 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
12689 ? REG_LR : REG_PC)))
12690 {
12691 inst.instruction = THUMB_OP16 (inst.instruction);
12692 inst.instruction |= THUMB_PP_PC_LR;
12693 inst.instruction |= mask & 0xff;
12694 }
12695 else if (unified_syntax)
12696 {
12697 inst.instruction = THUMB_OP32 (inst.instruction);
12698 encode_thumb2_ldmstm (13, mask, TRUE);
12699 }
12700 else
12701 {
12702 inst.error = _("invalid register list to push/pop instruction");
12703 return;
12704 }
12705 }
12706
12707 static void
12708 do_t_rbit (void)
12709 {
12710 unsigned Rd, Rm;
12711
12712 Rd = inst.operands[0].reg;
12713 Rm = inst.operands[1].reg;
12714
12715 reject_bad_reg (Rd);
12716 reject_bad_reg (Rm);
12717
12718 inst.instruction |= Rd << 8;
12719 inst.instruction |= Rm << 16;
12720 inst.instruction |= Rm;
12721 }
12722
12723 static void
12724 do_t_rev (void)
12725 {
12726 unsigned Rd, Rm;
12727
12728 Rd = inst.operands[0].reg;
12729 Rm = inst.operands[1].reg;
12730
12731 reject_bad_reg (Rd);
12732 reject_bad_reg (Rm);
12733
12734 if (Rd <= 7 && Rm <= 7
12735 && inst.size_req != 4)
12736 {
12737 inst.instruction = THUMB_OP16 (inst.instruction);
12738 inst.instruction |= Rd;
12739 inst.instruction |= Rm << 3;
12740 }
12741 else if (unified_syntax)
12742 {
12743 inst.instruction = THUMB_OP32 (inst.instruction);
12744 inst.instruction |= Rd << 8;
12745 inst.instruction |= Rm << 16;
12746 inst.instruction |= Rm;
12747 }
12748 else
12749 inst.error = BAD_HIREG;
12750 }
12751
12752 static void
12753 do_t_rrx (void)
12754 {
12755 unsigned Rd, Rm;
12756
12757 Rd = inst.operands[0].reg;
12758 Rm = inst.operands[1].reg;
12759
12760 reject_bad_reg (Rd);
12761 reject_bad_reg (Rm);
12762
12763 inst.instruction |= Rd << 8;
12764 inst.instruction |= Rm;
12765 }
12766
12767 static void
12768 do_t_rsb (void)
12769 {
12770 unsigned Rd, Rs;
12771
12772 Rd = inst.operands[0].reg;
12773 Rs = (inst.operands[1].present
12774 ? inst.operands[1].reg /* Rd, Rs, foo */
12775 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12776
12777 reject_bad_reg (Rd);
12778 reject_bad_reg (Rs);
12779 if (inst.operands[2].isreg)
12780 reject_bad_reg (inst.operands[2].reg);
12781
12782 inst.instruction |= Rd << 8;
12783 inst.instruction |= Rs << 16;
12784 if (!inst.operands[2].isreg)
12785 {
12786 bfd_boolean narrow;
12787
12788 if ((inst.instruction & 0x00100000) != 0)
12789 narrow = !in_it_block ();
12790 else
12791 narrow = in_it_block ();
12792
12793 if (Rd > 7 || Rs > 7)
12794 narrow = FALSE;
12795
12796 if (inst.size_req == 4 || !unified_syntax)
12797 narrow = FALSE;
12798
12799 if (inst.reloc.exp.X_op != O_constant
12800 || inst.reloc.exp.X_add_number != 0)
12801 narrow = FALSE;
12802
12803 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12804 relaxation, but it doesn't seem worth the hassle. */
12805 if (narrow)
12806 {
12807 inst.reloc.type = BFD_RELOC_UNUSED;
12808 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12809 inst.instruction |= Rs << 3;
12810 inst.instruction |= Rd;
12811 }
12812 else
12813 {
12814 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12815 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12816 }
12817 }
12818 else
12819 encode_thumb32_shifted_operand (2);
12820 }
12821
12822 static void
12823 do_t_setend (void)
12824 {
12825 if (warn_on_deprecated
12826 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12827 as_tsktsk (_("setend use is deprecated for ARMv8"));
12828
12829 set_it_insn_type (OUTSIDE_IT_INSN);
12830 if (inst.operands[0].imm)
12831 inst.instruction |= 0x8;
12832 }
12833
12834 static void
12835 do_t_shift (void)
12836 {
12837 if (!inst.operands[1].present)
12838 inst.operands[1].reg = inst.operands[0].reg;
12839
12840 if (unified_syntax)
12841 {
12842 bfd_boolean narrow;
12843 int shift_kind;
12844
12845 switch (inst.instruction)
12846 {
12847 case T_MNEM_asr:
12848 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12849 case T_MNEM_lsl:
12850 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12851 case T_MNEM_lsr:
12852 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12853 case T_MNEM_ror:
12854 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12855 default: abort ();
12856 }
12857
12858 if (THUMB_SETS_FLAGS (inst.instruction))
12859 narrow = !in_it_block ();
12860 else
12861 narrow = in_it_block ();
12862 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12863 narrow = FALSE;
12864 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12865 narrow = FALSE;
12866 if (inst.operands[2].isreg
12867 && (inst.operands[1].reg != inst.operands[0].reg
12868 || inst.operands[2].reg > 7))
12869 narrow = FALSE;
12870 if (inst.size_req == 4)
12871 narrow = FALSE;
12872
12873 reject_bad_reg (inst.operands[0].reg);
12874 reject_bad_reg (inst.operands[1].reg);
12875
12876 if (!narrow)
12877 {
12878 if (inst.operands[2].isreg)
12879 {
12880 reject_bad_reg (inst.operands[2].reg);
12881 inst.instruction = THUMB_OP32 (inst.instruction);
12882 inst.instruction |= inst.operands[0].reg << 8;
12883 inst.instruction |= inst.operands[1].reg << 16;
12884 inst.instruction |= inst.operands[2].reg;
12885
12886 /* PR 12854: Error on extraneous shifts. */
12887 constraint (inst.operands[2].shifted,
12888 _("extraneous shift as part of operand to shift insn"));
12889 }
12890 else
12891 {
12892 inst.operands[1].shifted = 1;
12893 inst.operands[1].shift_kind = shift_kind;
12894 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12895 ? T_MNEM_movs : T_MNEM_mov);
12896 inst.instruction |= inst.operands[0].reg << 8;
12897 encode_thumb32_shifted_operand (1);
12898 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12899 inst.reloc.type = BFD_RELOC_UNUSED;
12900 }
12901 }
12902 else
12903 {
12904 if (inst.operands[2].isreg)
12905 {
12906 switch (shift_kind)
12907 {
12908 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12909 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12910 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12911 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12912 default: abort ();
12913 }
12914
12915 inst.instruction |= inst.operands[0].reg;
12916 inst.instruction |= inst.operands[2].reg << 3;
12917
12918 /* PR 12854: Error on extraneous shifts. */
12919 constraint (inst.operands[2].shifted,
12920 _("extraneous shift as part of operand to shift insn"));
12921 }
12922 else
12923 {
12924 switch (shift_kind)
12925 {
12926 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12927 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12928 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12929 default: abort ();
12930 }
12931 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12932 inst.instruction |= inst.operands[0].reg;
12933 inst.instruction |= inst.operands[1].reg << 3;
12934 }
12935 }
12936 }
12937 else
12938 {
12939 constraint (inst.operands[0].reg > 7
12940 || inst.operands[1].reg > 7, BAD_HIREG);
12941 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12942
12943 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12944 {
12945 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12946 constraint (inst.operands[0].reg != inst.operands[1].reg,
12947 _("source1 and dest must be same register"));
12948
12949 switch (inst.instruction)
12950 {
12951 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12952 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12953 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12954 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12955 default: abort ();
12956 }
12957
12958 inst.instruction |= inst.operands[0].reg;
12959 inst.instruction |= inst.operands[2].reg << 3;
12960
12961 /* PR 12854: Error on extraneous shifts. */
12962 constraint (inst.operands[2].shifted,
12963 _("extraneous shift as part of operand to shift insn"));
12964 }
12965 else
12966 {
12967 switch (inst.instruction)
12968 {
12969 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12970 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12971 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12972 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12973 default: abort ();
12974 }
12975 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12976 inst.instruction |= inst.operands[0].reg;
12977 inst.instruction |= inst.operands[1].reg << 3;
12978 }
12979 }
12980 }
12981
12982 static void
12983 do_t_simd (void)
12984 {
12985 unsigned Rd, Rn, Rm;
12986
12987 Rd = inst.operands[0].reg;
12988 Rn = inst.operands[1].reg;
12989 Rm = inst.operands[2].reg;
12990
12991 reject_bad_reg (Rd);
12992 reject_bad_reg (Rn);
12993 reject_bad_reg (Rm);
12994
12995 inst.instruction |= Rd << 8;
12996 inst.instruction |= Rn << 16;
12997 inst.instruction |= Rm;
12998 }
12999
13000 static void
13001 do_t_simd2 (void)
13002 {
13003 unsigned Rd, Rn, Rm;
13004
13005 Rd = inst.operands[0].reg;
13006 Rm = inst.operands[1].reg;
13007 Rn = inst.operands[2].reg;
13008
13009 reject_bad_reg (Rd);
13010 reject_bad_reg (Rn);
13011 reject_bad_reg (Rm);
13012
13013 inst.instruction |= Rd << 8;
13014 inst.instruction |= Rn << 16;
13015 inst.instruction |= Rm;
13016 }
13017
13018 static void
13019 do_t_smc (void)
13020 {
13021 unsigned int value = inst.reloc.exp.X_add_number;
13022 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13023 _("SMC is not permitted on this architecture"));
13024 constraint (inst.reloc.exp.X_op != O_constant,
13025 _("expression too complex"));
13026 inst.reloc.type = BFD_RELOC_UNUSED;
13027 inst.instruction |= (value & 0xf000) >> 12;
13028 inst.instruction |= (value & 0x0ff0);
13029 inst.instruction |= (value & 0x000f) << 16;
13030 /* PR gas/15623: SMC instructions must be last in an IT block. */
13031 set_it_insn_type_last ();
13032 }
13033
13034 static void
13035 do_t_hvc (void)
13036 {
13037 unsigned int value = inst.reloc.exp.X_add_number;
13038
13039 inst.reloc.type = BFD_RELOC_UNUSED;
13040 inst.instruction |= (value & 0x0fff);
13041 inst.instruction |= (value & 0xf000) << 4;
13042 }
13043
13044 static void
13045 do_t_ssat_usat (int bias)
13046 {
13047 unsigned Rd, Rn;
13048
13049 Rd = inst.operands[0].reg;
13050 Rn = inst.operands[2].reg;
13051
13052 reject_bad_reg (Rd);
13053 reject_bad_reg (Rn);
13054
13055 inst.instruction |= Rd << 8;
13056 inst.instruction |= inst.operands[1].imm - bias;
13057 inst.instruction |= Rn << 16;
13058
13059 if (inst.operands[3].present)
13060 {
13061 offsetT shift_amount = inst.reloc.exp.X_add_number;
13062
13063 inst.reloc.type = BFD_RELOC_UNUSED;
13064
13065 constraint (inst.reloc.exp.X_op != O_constant,
13066 _("expression too complex"));
13067
13068 if (shift_amount != 0)
13069 {
13070 constraint (shift_amount > 31,
13071 _("shift expression is too large"));
13072
13073 if (inst.operands[3].shift_kind == SHIFT_ASR)
13074 inst.instruction |= 0x00200000; /* sh bit. */
13075
13076 inst.instruction |= (shift_amount & 0x1c) << 10;
13077 inst.instruction |= (shift_amount & 0x03) << 6;
13078 }
13079 }
13080 }
13081
13082 static void
13083 do_t_ssat (void)
13084 {
13085 do_t_ssat_usat (1);
13086 }
13087
13088 static void
13089 do_t_ssat16 (void)
13090 {
13091 unsigned Rd, Rn;
13092
13093 Rd = inst.operands[0].reg;
13094 Rn = inst.operands[2].reg;
13095
13096 reject_bad_reg (Rd);
13097 reject_bad_reg (Rn);
13098
13099 inst.instruction |= Rd << 8;
13100 inst.instruction |= inst.operands[1].imm - 1;
13101 inst.instruction |= Rn << 16;
13102 }
13103
13104 static void
13105 do_t_strex (void)
13106 {
13107 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13108 || inst.operands[2].postind || inst.operands[2].writeback
13109 || inst.operands[2].immisreg || inst.operands[2].shifted
13110 || inst.operands[2].negative,
13111 BAD_ADDR_MODE);
13112
13113 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13114
13115 inst.instruction |= inst.operands[0].reg << 8;
13116 inst.instruction |= inst.operands[1].reg << 12;
13117 inst.instruction |= inst.operands[2].reg << 16;
13118 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
13119 }
13120
13121 static void
13122 do_t_strexd (void)
13123 {
13124 if (!inst.operands[2].present)
13125 inst.operands[2].reg = inst.operands[1].reg + 1;
13126
13127 constraint (inst.operands[0].reg == inst.operands[1].reg
13128 || inst.operands[0].reg == inst.operands[2].reg
13129 || inst.operands[0].reg == inst.operands[3].reg,
13130 BAD_OVERLAP);
13131
13132 inst.instruction |= inst.operands[0].reg;
13133 inst.instruction |= inst.operands[1].reg << 12;
13134 inst.instruction |= inst.operands[2].reg << 8;
13135 inst.instruction |= inst.operands[3].reg << 16;
13136 }
13137
13138 static void
13139 do_t_sxtah (void)
13140 {
13141 unsigned Rd, Rn, Rm;
13142
13143 Rd = inst.operands[0].reg;
13144 Rn = inst.operands[1].reg;
13145 Rm = inst.operands[2].reg;
13146
13147 reject_bad_reg (Rd);
13148 reject_bad_reg (Rn);
13149 reject_bad_reg (Rm);
13150
13151 inst.instruction |= Rd << 8;
13152 inst.instruction |= Rn << 16;
13153 inst.instruction |= Rm;
13154 inst.instruction |= inst.operands[3].imm << 4;
13155 }
13156
13157 static void
13158 do_t_sxth (void)
13159 {
13160 unsigned Rd, Rm;
13161
13162 Rd = inst.operands[0].reg;
13163 Rm = inst.operands[1].reg;
13164
13165 reject_bad_reg (Rd);
13166 reject_bad_reg (Rm);
13167
13168 if (inst.instruction <= 0xffff
13169 && inst.size_req != 4
13170 && Rd <= 7 && Rm <= 7
13171 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13172 {
13173 inst.instruction = THUMB_OP16 (inst.instruction);
13174 inst.instruction |= Rd;
13175 inst.instruction |= Rm << 3;
13176 }
13177 else if (unified_syntax)
13178 {
13179 if (inst.instruction <= 0xffff)
13180 inst.instruction = THUMB_OP32 (inst.instruction);
13181 inst.instruction |= Rd << 8;
13182 inst.instruction |= Rm;
13183 inst.instruction |= inst.operands[2].imm << 4;
13184 }
13185 else
13186 {
13187 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13188 _("Thumb encoding does not support rotation"));
13189 constraint (1, BAD_HIREG);
13190 }
13191 }
13192
13193 static void
13194 do_t_swi (void)
13195 {
13196 inst.reloc.type = BFD_RELOC_ARM_SWI;
13197 }
13198
13199 static void
13200 do_t_tb (void)
13201 {
13202 unsigned Rn, Rm;
13203 int half;
13204
13205 half = (inst.instruction & 0x10) != 0;
13206 set_it_insn_type_last ();
13207 constraint (inst.operands[0].immisreg,
13208 _("instruction requires register index"));
13209
13210 Rn = inst.operands[0].reg;
13211 Rm = inst.operands[0].imm;
13212
13213 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13214 constraint (Rn == REG_SP, BAD_SP);
13215 reject_bad_reg (Rm);
13216
13217 constraint (!half && inst.operands[0].shifted,
13218 _("instruction does not allow shifted index"));
13219 inst.instruction |= (Rn << 16) | Rm;
13220 }
13221
13222 static void
13223 do_t_udf (void)
13224 {
13225 if (!inst.operands[0].present)
13226 inst.operands[0].imm = 0;
13227
13228 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13229 {
13230 constraint (inst.size_req == 2,
13231 _("immediate value out of range"));
13232 inst.instruction = THUMB_OP32 (inst.instruction);
13233 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13234 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13235 }
13236 else
13237 {
13238 inst.instruction = THUMB_OP16 (inst.instruction);
13239 inst.instruction |= inst.operands[0].imm;
13240 }
13241
13242 set_it_insn_type (NEUTRAL_IT_INSN);
13243 }
13244
13245
13246 static void
13247 do_t_usat (void)
13248 {
13249 do_t_ssat_usat (0);
13250 }
13251
13252 static void
13253 do_t_usat16 (void)
13254 {
13255 unsigned Rd, Rn;
13256
13257 Rd = inst.operands[0].reg;
13258 Rn = inst.operands[2].reg;
13259
13260 reject_bad_reg (Rd);
13261 reject_bad_reg (Rn);
13262
13263 inst.instruction |= Rd << 8;
13264 inst.instruction |= inst.operands[1].imm;
13265 inst.instruction |= Rn << 16;
13266 }
13267
13268 /* Neon instruction encoder helpers. */
13269
13270 /* Encodings for the different types for various Neon opcodes. */
13271
13272 /* An "invalid" code for the following tables. */
13273 #define N_INV -1u
13274
13275 struct neon_tab_entry
13276 {
13277 unsigned integer;
13278 unsigned float_or_poly;
13279 unsigned scalar_or_imm;
13280 };
13281
13282 /* Map overloaded Neon opcodes to their respective encodings. */
13283 #define NEON_ENC_TAB \
13284 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13285 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13286 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13287 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13288 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13289 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13290 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13291 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13292 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13293 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13294 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13295 /* Register variants of the following two instructions are encoded as
13296 vcge / vcgt with the operands reversed. */ \
13297 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13298 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13299 X(vfma, N_INV, 0x0000c10, N_INV), \
13300 X(vfms, N_INV, 0x0200c10, N_INV), \
13301 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13302 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13303 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13304 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13305 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13306 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13307 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13308 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13309 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13310 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13311 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13312 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13313 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13314 X(vshl, 0x0000400, N_INV, 0x0800510), \
13315 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13316 X(vand, 0x0000110, N_INV, 0x0800030), \
13317 X(vbic, 0x0100110, N_INV, 0x0800030), \
13318 X(veor, 0x1000110, N_INV, N_INV), \
13319 X(vorn, 0x0300110, N_INV, 0x0800010), \
13320 X(vorr, 0x0200110, N_INV, 0x0800010), \
13321 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13322 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13323 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13324 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13325 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13326 X(vst1, 0x0000000, 0x0800000, N_INV), \
13327 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13328 X(vst2, 0x0000100, 0x0800100, N_INV), \
13329 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13330 X(vst3, 0x0000200, 0x0800200, N_INV), \
13331 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13332 X(vst4, 0x0000300, 0x0800300, N_INV), \
13333 X(vmovn, 0x1b20200, N_INV, N_INV), \
13334 X(vtrn, 0x1b20080, N_INV, N_INV), \
13335 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13336 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13337 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13338 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13339 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13340 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13341 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13342 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13343 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13344 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13345 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13346 X(vseleq, 0xe000a00, N_INV, N_INV), \
13347 X(vselvs, 0xe100a00, N_INV, N_INV), \
13348 X(vselge, 0xe200a00, N_INV, N_INV), \
13349 X(vselgt, 0xe300a00, N_INV, N_INV), \
13350 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13351 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13352 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13353 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13354 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13355 X(aes, 0x3b00300, N_INV, N_INV), \
13356 X(sha3op, 0x2000c00, N_INV, N_INV), \
13357 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13358 X(sha2op, 0x3ba0380, N_INV, N_INV)
13359
13360 enum neon_opc
13361 {
13362 #define X(OPC,I,F,S) N_MNEM_##OPC
13363 NEON_ENC_TAB
13364 #undef X
13365 };
13366
13367 static const struct neon_tab_entry neon_enc_tab[] =
13368 {
13369 #define X(OPC,I,F,S) { (I), (F), (S) }
13370 NEON_ENC_TAB
13371 #undef X
13372 };
13373
13374 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13375 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13376 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13377 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13378 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13379 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13380 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13381 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13382 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13383 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13384 #define NEON_ENC_SINGLE_(X) \
13385 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13386 #define NEON_ENC_DOUBLE_(X) \
13387 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13388 #define NEON_ENC_FPV8_(X) \
13389 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13390
13391 #define NEON_ENCODE(type, inst) \
13392 do \
13393 { \
13394 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13395 inst.is_neon = 1; \
13396 } \
13397 while (0)
13398
13399 #define check_neon_suffixes \
13400 do \
13401 { \
13402 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13403 { \
13404 as_bad (_("invalid neon suffix for non neon instruction")); \
13405 return; \
13406 } \
13407 } \
13408 while (0)
13409
13410 /* Define shapes for instruction operands. The following mnemonic characters
13411 are used in this table:
13412
13413 F - VFP S<n> register
13414 D - Neon D<n> register
13415 Q - Neon Q<n> register
13416 I - Immediate
13417 S - Scalar
13418 R - ARM register
13419 L - D<n> register list
13420
13421 This table is used to generate various data:
13422 - enumerations of the form NS_DDR to be used as arguments to
13423 neon_select_shape.
13424 - a table classifying shapes into single, double, quad, mixed.
13425 - a table used to drive neon_select_shape. */
13426
13427 #define NEON_SHAPE_DEF \
13428 X(3, (D, D, D), DOUBLE), \
13429 X(3, (Q, Q, Q), QUAD), \
13430 X(3, (D, D, I), DOUBLE), \
13431 X(3, (Q, Q, I), QUAD), \
13432 X(3, (D, D, S), DOUBLE), \
13433 X(3, (Q, Q, S), QUAD), \
13434 X(2, (D, D), DOUBLE), \
13435 X(2, (Q, Q), QUAD), \
13436 X(2, (D, S), DOUBLE), \
13437 X(2, (Q, S), QUAD), \
13438 X(2, (D, R), DOUBLE), \
13439 X(2, (Q, R), QUAD), \
13440 X(2, (D, I), DOUBLE), \
13441 X(2, (Q, I), QUAD), \
13442 X(3, (D, L, D), DOUBLE), \
13443 X(2, (D, Q), MIXED), \
13444 X(2, (Q, D), MIXED), \
13445 X(3, (D, Q, I), MIXED), \
13446 X(3, (Q, D, I), MIXED), \
13447 X(3, (Q, D, D), MIXED), \
13448 X(3, (D, Q, Q), MIXED), \
13449 X(3, (Q, Q, D), MIXED), \
13450 X(3, (Q, D, S), MIXED), \
13451 X(3, (D, Q, S), MIXED), \
13452 X(4, (D, D, D, I), DOUBLE), \
13453 X(4, (Q, Q, Q, I), QUAD), \
13454 X(4, (D, D, S, I), DOUBLE), \
13455 X(4, (Q, Q, S, I), QUAD), \
13456 X(2, (F, F), SINGLE), \
13457 X(3, (F, F, F), SINGLE), \
13458 X(2, (F, I), SINGLE), \
13459 X(2, (F, D), MIXED), \
13460 X(2, (D, F), MIXED), \
13461 X(3, (F, F, I), MIXED), \
13462 X(4, (R, R, F, F), SINGLE), \
13463 X(4, (F, F, R, R), SINGLE), \
13464 X(3, (D, R, R), DOUBLE), \
13465 X(3, (R, R, D), DOUBLE), \
13466 X(2, (S, R), SINGLE), \
13467 X(2, (R, S), SINGLE), \
13468 X(2, (F, R), SINGLE), \
13469 X(2, (R, F), SINGLE), \
13470 /* Half float shape supported so far. */\
13471 X (2, (H, D), MIXED), \
13472 X (2, (D, H), MIXED), \
13473 X (2, (H, F), MIXED), \
13474 X (2, (F, H), MIXED), \
13475 X (2, (H, H), HALF), \
13476 X (2, (H, R), HALF), \
13477 X (2, (R, H), HALF), \
13478 X (2, (H, I), HALF), \
13479 X (3, (H, H, H), HALF), \
13480 X (3, (H, F, I), MIXED), \
13481 X (3, (F, H, I), MIXED), \
13482 X (3, (D, H, H), MIXED), \
13483 X (3, (D, H, S), MIXED)
13484
13485 #define S2(A,B) NS_##A##B
13486 #define S3(A,B,C) NS_##A##B##C
13487 #define S4(A,B,C,D) NS_##A##B##C##D
13488
13489 #define X(N, L, C) S##N L
13490
13491 enum neon_shape
13492 {
13493 NEON_SHAPE_DEF,
13494 NS_NULL
13495 };
13496
13497 #undef X
13498 #undef S2
13499 #undef S3
13500 #undef S4
13501
13502 enum neon_shape_class
13503 {
13504 SC_HALF,
13505 SC_SINGLE,
13506 SC_DOUBLE,
13507 SC_QUAD,
13508 SC_MIXED
13509 };
13510
13511 #define X(N, L, C) SC_##C
13512
13513 static enum neon_shape_class neon_shape_class[] =
13514 {
13515 NEON_SHAPE_DEF
13516 };
13517
13518 #undef X
13519
13520 enum neon_shape_el
13521 {
13522 SE_H,
13523 SE_F,
13524 SE_D,
13525 SE_Q,
13526 SE_I,
13527 SE_S,
13528 SE_R,
13529 SE_L
13530 };
13531
13532 /* Register widths of above. */
13533 static unsigned neon_shape_el_size[] =
13534 {
13535 16,
13536 32,
13537 64,
13538 128,
13539 0,
13540 32,
13541 32,
13542 0
13543 };
13544
13545 struct neon_shape_info
13546 {
13547 unsigned els;
13548 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13549 };
13550
13551 #define S2(A,B) { SE_##A, SE_##B }
13552 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13553 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13554
13555 #define X(N, L, C) { N, S##N L }
13556
13557 static struct neon_shape_info neon_shape_tab[] =
13558 {
13559 NEON_SHAPE_DEF
13560 };
13561
13562 #undef X
13563 #undef S2
13564 #undef S3
13565 #undef S4
13566
13567 /* Bit masks used in type checking given instructions.
13568 'N_EQK' means the type must be the same as (or based on in some way) the key
13569 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13570 set, various other bits can be set as well in order to modify the meaning of
13571 the type constraint. */
13572
13573 enum neon_type_mask
13574 {
13575 N_S8 = 0x0000001,
13576 N_S16 = 0x0000002,
13577 N_S32 = 0x0000004,
13578 N_S64 = 0x0000008,
13579 N_U8 = 0x0000010,
13580 N_U16 = 0x0000020,
13581 N_U32 = 0x0000040,
13582 N_U64 = 0x0000080,
13583 N_I8 = 0x0000100,
13584 N_I16 = 0x0000200,
13585 N_I32 = 0x0000400,
13586 N_I64 = 0x0000800,
13587 N_8 = 0x0001000,
13588 N_16 = 0x0002000,
13589 N_32 = 0x0004000,
13590 N_64 = 0x0008000,
13591 N_P8 = 0x0010000,
13592 N_P16 = 0x0020000,
13593 N_F16 = 0x0040000,
13594 N_F32 = 0x0080000,
13595 N_F64 = 0x0100000,
13596 N_P64 = 0x0200000,
13597 N_KEY = 0x1000000, /* Key element (main type specifier). */
13598 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13599 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13600 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13601 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13602 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13603 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13604 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13605 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13606 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13607 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13608 N_UTYP = 0,
13609 N_MAX_NONSPECIAL = N_P64
13610 };
13611
13612 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13613
13614 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13615 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13616 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13617 #define N_S_32 (N_S8 | N_S16 | N_S32)
13618 #define N_F_16_32 (N_F16 | N_F32)
13619 #define N_SUF_32 (N_SU_32 | N_F_16_32)
13620 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13621 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
13622 #define N_F_ALL (N_F16 | N_F32 | N_F64)
13623
13624 /* Pass this as the first type argument to neon_check_type to ignore types
13625 altogether. */
13626 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13627
13628 /* Select a "shape" for the current instruction (describing register types or
13629 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13630 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13631 function of operand parsing, so this function doesn't need to be called.
13632 Shapes should be listed in order of decreasing length. */
13633
13634 static enum neon_shape
13635 neon_select_shape (enum neon_shape shape, ...)
13636 {
13637 va_list ap;
13638 enum neon_shape first_shape = shape;
13639
13640 /* Fix missing optional operands. FIXME: we don't know at this point how
13641 many arguments we should have, so this makes the assumption that we have
13642 > 1. This is true of all current Neon opcodes, I think, but may not be
13643 true in the future. */
13644 if (!inst.operands[1].present)
13645 inst.operands[1] = inst.operands[0];
13646
13647 va_start (ap, shape);
13648
13649 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13650 {
13651 unsigned j;
13652 int matches = 1;
13653
13654 for (j = 0; j < neon_shape_tab[shape].els; j++)
13655 {
13656 if (!inst.operands[j].present)
13657 {
13658 matches = 0;
13659 break;
13660 }
13661
13662 switch (neon_shape_tab[shape].el[j])
13663 {
13664 /* If a .f16, .16, .u16, .s16 type specifier is given over
13665 a VFP single precision register operand, it's essentially
13666 means only half of the register is used.
13667
13668 If the type specifier is given after the mnemonics, the
13669 information is stored in inst.vectype. If the type specifier
13670 is given after register operand, the information is stored
13671 in inst.operands[].vectype.
13672
13673 When there is only one type specifier, and all the register
13674 operands are the same type of hardware register, the type
13675 specifier applies to all register operands.
13676
13677 If no type specifier is given, the shape is inferred from
13678 operand information.
13679
13680 for example:
13681 vadd.f16 s0, s1, s2: NS_HHH
13682 vabs.f16 s0, s1: NS_HH
13683 vmov.f16 s0, r1: NS_HR
13684 vmov.f16 r0, s1: NS_RH
13685 vcvt.f16 r0, s1: NS_RH
13686 vcvt.f16.s32 s2, s2, #29: NS_HFI
13687 vcvt.f16.s32 s2, s2: NS_HF
13688 */
13689 case SE_H:
13690 if (!(inst.operands[j].isreg
13691 && inst.operands[j].isvec
13692 && inst.operands[j].issingle
13693 && !inst.operands[j].isquad
13694 && ((inst.vectype.elems == 1
13695 && inst.vectype.el[0].size == 16)
13696 || (inst.vectype.elems > 1
13697 && inst.vectype.el[j].size == 16)
13698 || (inst.vectype.elems == 0
13699 && inst.operands[j].vectype.type != NT_invtype
13700 && inst.operands[j].vectype.size == 16))))
13701 matches = 0;
13702 break;
13703
13704 case SE_F:
13705 if (!(inst.operands[j].isreg
13706 && inst.operands[j].isvec
13707 && inst.operands[j].issingle
13708 && !inst.operands[j].isquad
13709 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13710 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13711 || (inst.vectype.elems == 0
13712 && (inst.operands[j].vectype.size == 32
13713 || inst.operands[j].vectype.type == NT_invtype)))))
13714 matches = 0;
13715 break;
13716
13717 case SE_D:
13718 if (!(inst.operands[j].isreg
13719 && inst.operands[j].isvec
13720 && !inst.operands[j].isquad
13721 && !inst.operands[j].issingle))
13722 matches = 0;
13723 break;
13724
13725 case SE_R:
13726 if (!(inst.operands[j].isreg
13727 && !inst.operands[j].isvec))
13728 matches = 0;
13729 break;
13730
13731 case SE_Q:
13732 if (!(inst.operands[j].isreg
13733 && inst.operands[j].isvec
13734 && inst.operands[j].isquad
13735 && !inst.operands[j].issingle))
13736 matches = 0;
13737 break;
13738
13739 case SE_I:
13740 if (!(!inst.operands[j].isreg
13741 && !inst.operands[j].isscalar))
13742 matches = 0;
13743 break;
13744
13745 case SE_S:
13746 if (!(!inst.operands[j].isreg
13747 && inst.operands[j].isscalar))
13748 matches = 0;
13749 break;
13750
13751 case SE_L:
13752 break;
13753 }
13754 if (!matches)
13755 break;
13756 }
13757 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13758 /* We've matched all the entries in the shape table, and we don't
13759 have any left over operands which have not been matched. */
13760 break;
13761 }
13762
13763 va_end (ap);
13764
13765 if (shape == NS_NULL && first_shape != NS_NULL)
13766 first_error (_("invalid instruction shape"));
13767
13768 return shape;
13769 }
13770
13771 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13772 means the Q bit should be set). */
13773
13774 static int
13775 neon_quad (enum neon_shape shape)
13776 {
13777 return neon_shape_class[shape] == SC_QUAD;
13778 }
13779
13780 static void
13781 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13782 unsigned *g_size)
13783 {
13784 /* Allow modification to be made to types which are constrained to be
13785 based on the key element, based on bits set alongside N_EQK. */
13786 if ((typebits & N_EQK) != 0)
13787 {
13788 if ((typebits & N_HLF) != 0)
13789 *g_size /= 2;
13790 else if ((typebits & N_DBL) != 0)
13791 *g_size *= 2;
13792 if ((typebits & N_SGN) != 0)
13793 *g_type = NT_signed;
13794 else if ((typebits & N_UNS) != 0)
13795 *g_type = NT_unsigned;
13796 else if ((typebits & N_INT) != 0)
13797 *g_type = NT_integer;
13798 else if ((typebits & N_FLT) != 0)
13799 *g_type = NT_float;
13800 else if ((typebits & N_SIZ) != 0)
13801 *g_type = NT_untyped;
13802 }
13803 }
13804
13805 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13806 operand type, i.e. the single type specified in a Neon instruction when it
13807 is the only one given. */
13808
13809 static struct neon_type_el
13810 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13811 {
13812 struct neon_type_el dest = *key;
13813
13814 gas_assert ((thisarg & N_EQK) != 0);
13815
13816 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13817
13818 return dest;
13819 }
13820
13821 /* Convert Neon type and size into compact bitmask representation. */
13822
13823 static enum neon_type_mask
13824 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13825 {
13826 switch (type)
13827 {
13828 case NT_untyped:
13829 switch (size)
13830 {
13831 case 8: return N_8;
13832 case 16: return N_16;
13833 case 32: return N_32;
13834 case 64: return N_64;
13835 default: ;
13836 }
13837 break;
13838
13839 case NT_integer:
13840 switch (size)
13841 {
13842 case 8: return N_I8;
13843 case 16: return N_I16;
13844 case 32: return N_I32;
13845 case 64: return N_I64;
13846 default: ;
13847 }
13848 break;
13849
13850 case NT_float:
13851 switch (size)
13852 {
13853 case 16: return N_F16;
13854 case 32: return N_F32;
13855 case 64: return N_F64;
13856 default: ;
13857 }
13858 break;
13859
13860 case NT_poly:
13861 switch (size)
13862 {
13863 case 8: return N_P8;
13864 case 16: return N_P16;
13865 case 64: return N_P64;
13866 default: ;
13867 }
13868 break;
13869
13870 case NT_signed:
13871 switch (size)
13872 {
13873 case 8: return N_S8;
13874 case 16: return N_S16;
13875 case 32: return N_S32;
13876 case 64: return N_S64;
13877 default: ;
13878 }
13879 break;
13880
13881 case NT_unsigned:
13882 switch (size)
13883 {
13884 case 8: return N_U8;
13885 case 16: return N_U16;
13886 case 32: return N_U32;
13887 case 64: return N_U64;
13888 default: ;
13889 }
13890 break;
13891
13892 default: ;
13893 }
13894
13895 return N_UTYP;
13896 }
13897
13898 /* Convert compact Neon bitmask type representation to a type and size. Only
13899 handles the case where a single bit is set in the mask. */
13900
13901 static int
13902 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13903 enum neon_type_mask mask)
13904 {
13905 if ((mask & N_EQK) != 0)
13906 return FAIL;
13907
13908 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13909 *size = 8;
13910 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13911 *size = 16;
13912 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13913 *size = 32;
13914 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13915 *size = 64;
13916 else
13917 return FAIL;
13918
13919 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13920 *type = NT_signed;
13921 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13922 *type = NT_unsigned;
13923 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13924 *type = NT_integer;
13925 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13926 *type = NT_untyped;
13927 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13928 *type = NT_poly;
13929 else if ((mask & (N_F_ALL)) != 0)
13930 *type = NT_float;
13931 else
13932 return FAIL;
13933
13934 return SUCCESS;
13935 }
13936
13937 /* Modify a bitmask of allowed types. This is only needed for type
13938 relaxation. */
13939
13940 static unsigned
13941 modify_types_allowed (unsigned allowed, unsigned mods)
13942 {
13943 unsigned size;
13944 enum neon_el_type type;
13945 unsigned destmask;
13946 int i;
13947
13948 destmask = 0;
13949
13950 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13951 {
13952 if (el_type_of_type_chk (&type, &size,
13953 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13954 {
13955 neon_modify_type_size (mods, &type, &size);
13956 destmask |= type_chk_of_el_type (type, size);
13957 }
13958 }
13959
13960 return destmask;
13961 }
13962
13963 /* Check type and return type classification.
13964 The manual states (paraphrase): If one datatype is given, it indicates the
13965 type given in:
13966 - the second operand, if there is one
13967 - the operand, if there is no second operand
13968 - the result, if there are no operands.
13969 This isn't quite good enough though, so we use a concept of a "key" datatype
13970 which is set on a per-instruction basis, which is the one which matters when
13971 only one data type is written.
13972 Note: this function has side-effects (e.g. filling in missing operands). All
13973 Neon instructions should call it before performing bit encoding. */
13974
13975 static struct neon_type_el
13976 neon_check_type (unsigned els, enum neon_shape ns, ...)
13977 {
13978 va_list ap;
13979 unsigned i, pass, key_el = 0;
13980 unsigned types[NEON_MAX_TYPE_ELS];
13981 enum neon_el_type k_type = NT_invtype;
13982 unsigned k_size = -1u;
13983 struct neon_type_el badtype = {NT_invtype, -1};
13984 unsigned key_allowed = 0;
13985
13986 /* Optional registers in Neon instructions are always (not) in operand 1.
13987 Fill in the missing operand here, if it was omitted. */
13988 if (els > 1 && !inst.operands[1].present)
13989 inst.operands[1] = inst.operands[0];
13990
13991 /* Suck up all the varargs. */
13992 va_start (ap, ns);
13993 for (i = 0; i < els; i++)
13994 {
13995 unsigned thisarg = va_arg (ap, unsigned);
13996 if (thisarg == N_IGNORE_TYPE)
13997 {
13998 va_end (ap);
13999 return badtype;
14000 }
14001 types[i] = thisarg;
14002 if ((thisarg & N_KEY) != 0)
14003 key_el = i;
14004 }
14005 va_end (ap);
14006
14007 if (inst.vectype.elems > 0)
14008 for (i = 0; i < els; i++)
14009 if (inst.operands[i].vectype.type != NT_invtype)
14010 {
14011 first_error (_("types specified in both the mnemonic and operands"));
14012 return badtype;
14013 }
14014
14015 /* Duplicate inst.vectype elements here as necessary.
14016 FIXME: No idea if this is exactly the same as the ARM assembler,
14017 particularly when an insn takes one register and one non-register
14018 operand. */
14019 if (inst.vectype.elems == 1 && els > 1)
14020 {
14021 unsigned j;
14022 inst.vectype.elems = els;
14023 inst.vectype.el[key_el] = inst.vectype.el[0];
14024 for (j = 0; j < els; j++)
14025 if (j != key_el)
14026 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14027 types[j]);
14028 }
14029 else if (inst.vectype.elems == 0 && els > 0)
14030 {
14031 unsigned j;
14032 /* No types were given after the mnemonic, so look for types specified
14033 after each operand. We allow some flexibility here; as long as the
14034 "key" operand has a type, we can infer the others. */
14035 for (j = 0; j < els; j++)
14036 if (inst.operands[j].vectype.type != NT_invtype)
14037 inst.vectype.el[j] = inst.operands[j].vectype;
14038
14039 if (inst.operands[key_el].vectype.type != NT_invtype)
14040 {
14041 for (j = 0; j < els; j++)
14042 if (inst.operands[j].vectype.type == NT_invtype)
14043 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14044 types[j]);
14045 }
14046 else
14047 {
14048 first_error (_("operand types can't be inferred"));
14049 return badtype;
14050 }
14051 }
14052 else if (inst.vectype.elems != els)
14053 {
14054 first_error (_("type specifier has the wrong number of parts"));
14055 return badtype;
14056 }
14057
14058 for (pass = 0; pass < 2; pass++)
14059 {
14060 for (i = 0; i < els; i++)
14061 {
14062 unsigned thisarg = types[i];
14063 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14064 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14065 enum neon_el_type g_type = inst.vectype.el[i].type;
14066 unsigned g_size = inst.vectype.el[i].size;
14067
14068 /* Decay more-specific signed & unsigned types to sign-insensitive
14069 integer types if sign-specific variants are unavailable. */
14070 if ((g_type == NT_signed || g_type == NT_unsigned)
14071 && (types_allowed & N_SU_ALL) == 0)
14072 g_type = NT_integer;
14073
14074 /* If only untyped args are allowed, decay any more specific types to
14075 them. Some instructions only care about signs for some element
14076 sizes, so handle that properly. */
14077 if (((types_allowed & N_UNT) == 0)
14078 && ((g_size == 8 && (types_allowed & N_8) != 0)
14079 || (g_size == 16 && (types_allowed & N_16) != 0)
14080 || (g_size == 32 && (types_allowed & N_32) != 0)
14081 || (g_size == 64 && (types_allowed & N_64) != 0)))
14082 g_type = NT_untyped;
14083
14084 if (pass == 0)
14085 {
14086 if ((thisarg & N_KEY) != 0)
14087 {
14088 k_type = g_type;
14089 k_size = g_size;
14090 key_allowed = thisarg & ~N_KEY;
14091
14092 /* Check architecture constraint on FP16 extension. */
14093 if (k_size == 16
14094 && k_type == NT_float
14095 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14096 {
14097 inst.error = _(BAD_FP16);
14098 return badtype;
14099 }
14100 }
14101 }
14102 else
14103 {
14104 if ((thisarg & N_VFP) != 0)
14105 {
14106 enum neon_shape_el regshape;
14107 unsigned regwidth, match;
14108
14109 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14110 if (ns == NS_NULL)
14111 {
14112 first_error (_("invalid instruction shape"));
14113 return badtype;
14114 }
14115 regshape = neon_shape_tab[ns].el[i];
14116 regwidth = neon_shape_el_size[regshape];
14117
14118 /* In VFP mode, operands must match register widths. If we
14119 have a key operand, use its width, else use the width of
14120 the current operand. */
14121 if (k_size != -1u)
14122 match = k_size;
14123 else
14124 match = g_size;
14125
14126 /* FP16 will use a single precision register. */
14127 if (regwidth == 32 && match == 16)
14128 {
14129 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14130 match = regwidth;
14131 else
14132 {
14133 inst.error = _(BAD_FP16);
14134 return badtype;
14135 }
14136 }
14137
14138 if (regwidth != match)
14139 {
14140 first_error (_("operand size must match register width"));
14141 return badtype;
14142 }
14143 }
14144
14145 if ((thisarg & N_EQK) == 0)
14146 {
14147 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14148
14149 if ((given_type & types_allowed) == 0)
14150 {
14151 first_error (_("bad type in Neon instruction"));
14152 return badtype;
14153 }
14154 }
14155 else
14156 {
14157 enum neon_el_type mod_k_type = k_type;
14158 unsigned mod_k_size = k_size;
14159 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14160 if (g_type != mod_k_type || g_size != mod_k_size)
14161 {
14162 first_error (_("inconsistent types in Neon instruction"));
14163 return badtype;
14164 }
14165 }
14166 }
14167 }
14168 }
14169
14170 return inst.vectype.el[key_el];
14171 }
14172
14173 /* Neon-style VFP instruction forwarding. */
14174
14175 /* Thumb VFP instructions have 0xE in the condition field. */
14176
14177 static void
14178 do_vfp_cond_or_thumb (void)
14179 {
14180 inst.is_neon = 1;
14181
14182 if (thumb_mode)
14183 inst.instruction |= 0xe0000000;
14184 else
14185 inst.instruction |= inst.cond << 28;
14186 }
14187
14188 /* Look up and encode a simple mnemonic, for use as a helper function for the
14189 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14190 etc. It is assumed that operand parsing has already been done, and that the
14191 operands are in the form expected by the given opcode (this isn't necessarily
14192 the same as the form in which they were parsed, hence some massaging must
14193 take place before this function is called).
14194 Checks current arch version against that in the looked-up opcode. */
14195
14196 static void
14197 do_vfp_nsyn_opcode (const char *opname)
14198 {
14199 const struct asm_opcode *opcode;
14200
14201 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
14202
14203 if (!opcode)
14204 abort ();
14205
14206 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
14207 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14208 _(BAD_FPU));
14209
14210 inst.is_neon = 1;
14211
14212 if (thumb_mode)
14213 {
14214 inst.instruction = opcode->tvalue;
14215 opcode->tencode ();
14216 }
14217 else
14218 {
14219 inst.instruction = (inst.cond << 28) | opcode->avalue;
14220 opcode->aencode ();
14221 }
14222 }
14223
14224 static void
14225 do_vfp_nsyn_add_sub (enum neon_shape rs)
14226 {
14227 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14228
14229 if (rs == NS_FFF || rs == NS_HHH)
14230 {
14231 if (is_add)
14232 do_vfp_nsyn_opcode ("fadds");
14233 else
14234 do_vfp_nsyn_opcode ("fsubs");
14235
14236 /* ARMv8.2 fp16 instruction. */
14237 if (rs == NS_HHH)
14238 do_scalar_fp16_v82_encode ();
14239 }
14240 else
14241 {
14242 if (is_add)
14243 do_vfp_nsyn_opcode ("faddd");
14244 else
14245 do_vfp_nsyn_opcode ("fsubd");
14246 }
14247 }
14248
14249 /* Check operand types to see if this is a VFP instruction, and if so call
14250 PFN (). */
14251
14252 static int
14253 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14254 {
14255 enum neon_shape rs;
14256 struct neon_type_el et;
14257
14258 switch (args)
14259 {
14260 case 2:
14261 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14262 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14263 break;
14264
14265 case 3:
14266 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14267 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14268 N_F_ALL | N_KEY | N_VFP);
14269 break;
14270
14271 default:
14272 abort ();
14273 }
14274
14275 if (et.type != NT_invtype)
14276 {
14277 pfn (rs);
14278 return SUCCESS;
14279 }
14280
14281 inst.error = NULL;
14282 return FAIL;
14283 }
14284
14285 static void
14286 do_vfp_nsyn_mla_mls (enum neon_shape rs)
14287 {
14288 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
14289
14290 if (rs == NS_FFF || rs == NS_HHH)
14291 {
14292 if (is_mla)
14293 do_vfp_nsyn_opcode ("fmacs");
14294 else
14295 do_vfp_nsyn_opcode ("fnmacs");
14296
14297 /* ARMv8.2 fp16 instruction. */
14298 if (rs == NS_HHH)
14299 do_scalar_fp16_v82_encode ();
14300 }
14301 else
14302 {
14303 if (is_mla)
14304 do_vfp_nsyn_opcode ("fmacd");
14305 else
14306 do_vfp_nsyn_opcode ("fnmacd");
14307 }
14308 }
14309
14310 static void
14311 do_vfp_nsyn_fma_fms (enum neon_shape rs)
14312 {
14313 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14314
14315 if (rs == NS_FFF || rs == NS_HHH)
14316 {
14317 if (is_fma)
14318 do_vfp_nsyn_opcode ("ffmas");
14319 else
14320 do_vfp_nsyn_opcode ("ffnmas");
14321
14322 /* ARMv8.2 fp16 instruction. */
14323 if (rs == NS_HHH)
14324 do_scalar_fp16_v82_encode ();
14325 }
14326 else
14327 {
14328 if (is_fma)
14329 do_vfp_nsyn_opcode ("ffmad");
14330 else
14331 do_vfp_nsyn_opcode ("ffnmad");
14332 }
14333 }
14334
14335 static void
14336 do_vfp_nsyn_mul (enum neon_shape rs)
14337 {
14338 if (rs == NS_FFF || rs == NS_HHH)
14339 {
14340 do_vfp_nsyn_opcode ("fmuls");
14341
14342 /* ARMv8.2 fp16 instruction. */
14343 if (rs == NS_HHH)
14344 do_scalar_fp16_v82_encode ();
14345 }
14346 else
14347 do_vfp_nsyn_opcode ("fmuld");
14348 }
14349
14350 static void
14351 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14352 {
14353 int is_neg = (inst.instruction & 0x80) != 0;
14354 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
14355
14356 if (rs == NS_FF || rs == NS_HH)
14357 {
14358 if (is_neg)
14359 do_vfp_nsyn_opcode ("fnegs");
14360 else
14361 do_vfp_nsyn_opcode ("fabss");
14362
14363 /* ARMv8.2 fp16 instruction. */
14364 if (rs == NS_HH)
14365 do_scalar_fp16_v82_encode ();
14366 }
14367 else
14368 {
14369 if (is_neg)
14370 do_vfp_nsyn_opcode ("fnegd");
14371 else
14372 do_vfp_nsyn_opcode ("fabsd");
14373 }
14374 }
14375
14376 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14377 insns belong to Neon, and are handled elsewhere. */
14378
14379 static void
14380 do_vfp_nsyn_ldm_stm (int is_dbmode)
14381 {
14382 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14383 if (is_ldm)
14384 {
14385 if (is_dbmode)
14386 do_vfp_nsyn_opcode ("fldmdbs");
14387 else
14388 do_vfp_nsyn_opcode ("fldmias");
14389 }
14390 else
14391 {
14392 if (is_dbmode)
14393 do_vfp_nsyn_opcode ("fstmdbs");
14394 else
14395 do_vfp_nsyn_opcode ("fstmias");
14396 }
14397 }
14398
14399 static void
14400 do_vfp_nsyn_sqrt (void)
14401 {
14402 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14403 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14404
14405 if (rs == NS_FF || rs == NS_HH)
14406 {
14407 do_vfp_nsyn_opcode ("fsqrts");
14408
14409 /* ARMv8.2 fp16 instruction. */
14410 if (rs == NS_HH)
14411 do_scalar_fp16_v82_encode ();
14412 }
14413 else
14414 do_vfp_nsyn_opcode ("fsqrtd");
14415 }
14416
14417 static void
14418 do_vfp_nsyn_div (void)
14419 {
14420 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14421 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14422 N_F_ALL | N_KEY | N_VFP);
14423
14424 if (rs == NS_FFF || rs == NS_HHH)
14425 {
14426 do_vfp_nsyn_opcode ("fdivs");
14427
14428 /* ARMv8.2 fp16 instruction. */
14429 if (rs == NS_HHH)
14430 do_scalar_fp16_v82_encode ();
14431 }
14432 else
14433 do_vfp_nsyn_opcode ("fdivd");
14434 }
14435
14436 static void
14437 do_vfp_nsyn_nmul (void)
14438 {
14439 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14440 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14441 N_F_ALL | N_KEY | N_VFP);
14442
14443 if (rs == NS_FFF || rs == NS_HHH)
14444 {
14445 NEON_ENCODE (SINGLE, inst);
14446 do_vfp_sp_dyadic ();
14447
14448 /* ARMv8.2 fp16 instruction. */
14449 if (rs == NS_HHH)
14450 do_scalar_fp16_v82_encode ();
14451 }
14452 else
14453 {
14454 NEON_ENCODE (DOUBLE, inst);
14455 do_vfp_dp_rd_rn_rm ();
14456 }
14457 do_vfp_cond_or_thumb ();
14458
14459 }
14460
14461 static void
14462 do_vfp_nsyn_cmp (void)
14463 {
14464 enum neon_shape rs;
14465 if (inst.operands[1].isreg)
14466 {
14467 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14468 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14469
14470 if (rs == NS_FF || rs == NS_HH)
14471 {
14472 NEON_ENCODE (SINGLE, inst);
14473 do_vfp_sp_monadic ();
14474 }
14475 else
14476 {
14477 NEON_ENCODE (DOUBLE, inst);
14478 do_vfp_dp_rd_rm ();
14479 }
14480 }
14481 else
14482 {
14483 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14484 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
14485
14486 switch (inst.instruction & 0x0fffffff)
14487 {
14488 case N_MNEM_vcmp:
14489 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14490 break;
14491 case N_MNEM_vcmpe:
14492 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14493 break;
14494 default:
14495 abort ();
14496 }
14497
14498 if (rs == NS_FI || rs == NS_HI)
14499 {
14500 NEON_ENCODE (SINGLE, inst);
14501 do_vfp_sp_compare_z ();
14502 }
14503 else
14504 {
14505 NEON_ENCODE (DOUBLE, inst);
14506 do_vfp_dp_rd ();
14507 }
14508 }
14509 do_vfp_cond_or_thumb ();
14510
14511 /* ARMv8.2 fp16 instruction. */
14512 if (rs == NS_HI || rs == NS_HH)
14513 do_scalar_fp16_v82_encode ();
14514 }
14515
14516 static void
14517 nsyn_insert_sp (void)
14518 {
14519 inst.operands[1] = inst.operands[0];
14520 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14521 inst.operands[0].reg = REG_SP;
14522 inst.operands[0].isreg = 1;
14523 inst.operands[0].writeback = 1;
14524 inst.operands[0].present = 1;
14525 }
14526
14527 static void
14528 do_vfp_nsyn_push (void)
14529 {
14530 nsyn_insert_sp ();
14531
14532 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14533 _("register list must contain at least 1 and at most 16 "
14534 "registers"));
14535
14536 if (inst.operands[1].issingle)
14537 do_vfp_nsyn_opcode ("fstmdbs");
14538 else
14539 do_vfp_nsyn_opcode ("fstmdbd");
14540 }
14541
14542 static void
14543 do_vfp_nsyn_pop (void)
14544 {
14545 nsyn_insert_sp ();
14546
14547 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14548 _("register list must contain at least 1 and at most 16 "
14549 "registers"));
14550
14551 if (inst.operands[1].issingle)
14552 do_vfp_nsyn_opcode ("fldmias");
14553 else
14554 do_vfp_nsyn_opcode ("fldmiad");
14555 }
14556
14557 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14558 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14559
14560 static void
14561 neon_dp_fixup (struct arm_it* insn)
14562 {
14563 unsigned int i = insn->instruction;
14564 insn->is_neon = 1;
14565
14566 if (thumb_mode)
14567 {
14568 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14569 if (i & (1 << 24))
14570 i |= 1 << 28;
14571
14572 i &= ~(1 << 24);
14573
14574 i |= 0xef000000;
14575 }
14576 else
14577 i |= 0xf2000000;
14578
14579 insn->instruction = i;
14580 }
14581
14582 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14583 (0, 1, 2, 3). */
14584
14585 static unsigned
14586 neon_logbits (unsigned x)
14587 {
14588 return ffs (x) - 4;
14589 }
14590
14591 #define LOW4(R) ((R) & 0xf)
14592 #define HI1(R) (((R) >> 4) & 1)
14593
14594 /* Encode insns with bit pattern:
14595
14596 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14597 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14598
14599 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14600 different meaning for some instruction. */
14601
14602 static void
14603 neon_three_same (int isquad, int ubit, int size)
14604 {
14605 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14606 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14607 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14608 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14609 inst.instruction |= LOW4 (inst.operands[2].reg);
14610 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14611 inst.instruction |= (isquad != 0) << 6;
14612 inst.instruction |= (ubit != 0) << 24;
14613 if (size != -1)
14614 inst.instruction |= neon_logbits (size) << 20;
14615
14616 neon_dp_fixup (&inst);
14617 }
14618
14619 /* Encode instructions of the form:
14620
14621 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14622 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14623
14624 Don't write size if SIZE == -1. */
14625
14626 static void
14627 neon_two_same (int qbit, int ubit, int size)
14628 {
14629 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14631 inst.instruction |= LOW4 (inst.operands[1].reg);
14632 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14633 inst.instruction |= (qbit != 0) << 6;
14634 inst.instruction |= (ubit != 0) << 24;
14635
14636 if (size != -1)
14637 inst.instruction |= neon_logbits (size) << 18;
14638
14639 neon_dp_fixup (&inst);
14640 }
14641
14642 /* Neon instruction encoders, in approximate order of appearance. */
14643
14644 static void
14645 do_neon_dyadic_i_su (void)
14646 {
14647 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14648 struct neon_type_el et = neon_check_type (3, rs,
14649 N_EQK, N_EQK, N_SU_32 | N_KEY);
14650 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14651 }
14652
14653 static void
14654 do_neon_dyadic_i64_su (void)
14655 {
14656 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14657 struct neon_type_el et = neon_check_type (3, rs,
14658 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14659 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14660 }
14661
14662 static void
14663 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14664 unsigned immbits)
14665 {
14666 unsigned size = et.size >> 3;
14667 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14668 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14669 inst.instruction |= LOW4 (inst.operands[1].reg);
14670 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14671 inst.instruction |= (isquad != 0) << 6;
14672 inst.instruction |= immbits << 16;
14673 inst.instruction |= (size >> 3) << 7;
14674 inst.instruction |= (size & 0x7) << 19;
14675 if (write_ubit)
14676 inst.instruction |= (uval != 0) << 24;
14677
14678 neon_dp_fixup (&inst);
14679 }
14680
14681 static void
14682 do_neon_shl_imm (void)
14683 {
14684 if (!inst.operands[2].isreg)
14685 {
14686 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14687 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14688 int imm = inst.operands[2].imm;
14689
14690 constraint (imm < 0 || (unsigned)imm >= et.size,
14691 _("immediate out of range for shift"));
14692 NEON_ENCODE (IMMED, inst);
14693 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14694 }
14695 else
14696 {
14697 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14698 struct neon_type_el et = neon_check_type (3, rs,
14699 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14700 unsigned int tmp;
14701
14702 /* VSHL/VQSHL 3-register variants have syntax such as:
14703 vshl.xx Dd, Dm, Dn
14704 whereas other 3-register operations encoded by neon_three_same have
14705 syntax like:
14706 vadd.xx Dd, Dn, Dm
14707 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14708 here. */
14709 tmp = inst.operands[2].reg;
14710 inst.operands[2].reg = inst.operands[1].reg;
14711 inst.operands[1].reg = tmp;
14712 NEON_ENCODE (INTEGER, inst);
14713 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14714 }
14715 }
14716
14717 static void
14718 do_neon_qshl_imm (void)
14719 {
14720 if (!inst.operands[2].isreg)
14721 {
14722 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14723 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14724 int imm = inst.operands[2].imm;
14725
14726 constraint (imm < 0 || (unsigned)imm >= et.size,
14727 _("immediate out of range for shift"));
14728 NEON_ENCODE (IMMED, inst);
14729 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14730 }
14731 else
14732 {
14733 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14734 struct neon_type_el et = neon_check_type (3, rs,
14735 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14736 unsigned int tmp;
14737
14738 /* See note in do_neon_shl_imm. */
14739 tmp = inst.operands[2].reg;
14740 inst.operands[2].reg = inst.operands[1].reg;
14741 inst.operands[1].reg = tmp;
14742 NEON_ENCODE (INTEGER, inst);
14743 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14744 }
14745 }
14746
14747 static void
14748 do_neon_rshl (void)
14749 {
14750 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14751 struct neon_type_el et = neon_check_type (3, rs,
14752 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14753 unsigned int tmp;
14754
14755 tmp = inst.operands[2].reg;
14756 inst.operands[2].reg = inst.operands[1].reg;
14757 inst.operands[1].reg = tmp;
14758 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14759 }
14760
14761 static int
14762 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14763 {
14764 /* Handle .I8 pseudo-instructions. */
14765 if (size == 8)
14766 {
14767 /* Unfortunately, this will make everything apart from zero out-of-range.
14768 FIXME is this the intended semantics? There doesn't seem much point in
14769 accepting .I8 if so. */
14770 immediate |= immediate << 8;
14771 size = 16;
14772 }
14773
14774 if (size >= 32)
14775 {
14776 if (immediate == (immediate & 0x000000ff))
14777 {
14778 *immbits = immediate;
14779 return 0x1;
14780 }
14781 else if (immediate == (immediate & 0x0000ff00))
14782 {
14783 *immbits = immediate >> 8;
14784 return 0x3;
14785 }
14786 else if (immediate == (immediate & 0x00ff0000))
14787 {
14788 *immbits = immediate >> 16;
14789 return 0x5;
14790 }
14791 else if (immediate == (immediate & 0xff000000))
14792 {
14793 *immbits = immediate >> 24;
14794 return 0x7;
14795 }
14796 if ((immediate & 0xffff) != (immediate >> 16))
14797 goto bad_immediate;
14798 immediate &= 0xffff;
14799 }
14800
14801 if (immediate == (immediate & 0x000000ff))
14802 {
14803 *immbits = immediate;
14804 return 0x9;
14805 }
14806 else if (immediate == (immediate & 0x0000ff00))
14807 {
14808 *immbits = immediate >> 8;
14809 return 0xb;
14810 }
14811
14812 bad_immediate:
14813 first_error (_("immediate value out of range"));
14814 return FAIL;
14815 }
14816
14817 static void
14818 do_neon_logic (void)
14819 {
14820 if (inst.operands[2].present && inst.operands[2].isreg)
14821 {
14822 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14823 neon_check_type (3, rs, N_IGNORE_TYPE);
14824 /* U bit and size field were set as part of the bitmask. */
14825 NEON_ENCODE (INTEGER, inst);
14826 neon_three_same (neon_quad (rs), 0, -1);
14827 }
14828 else
14829 {
14830 const int three_ops_form = (inst.operands[2].present
14831 && !inst.operands[2].isreg);
14832 const int immoperand = (three_ops_form ? 2 : 1);
14833 enum neon_shape rs = (three_ops_form
14834 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14835 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14836 struct neon_type_el et = neon_check_type (2, rs,
14837 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14838 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14839 unsigned immbits;
14840 int cmode;
14841
14842 if (et.type == NT_invtype)
14843 return;
14844
14845 if (three_ops_form)
14846 constraint (inst.operands[0].reg != inst.operands[1].reg,
14847 _("first and second operands shall be the same register"));
14848
14849 NEON_ENCODE (IMMED, inst);
14850
14851 immbits = inst.operands[immoperand].imm;
14852 if (et.size == 64)
14853 {
14854 /* .i64 is a pseudo-op, so the immediate must be a repeating
14855 pattern. */
14856 if (immbits != (inst.operands[immoperand].regisimm ?
14857 inst.operands[immoperand].reg : 0))
14858 {
14859 /* Set immbits to an invalid constant. */
14860 immbits = 0xdeadbeef;
14861 }
14862 }
14863
14864 switch (opcode)
14865 {
14866 case N_MNEM_vbic:
14867 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14868 break;
14869
14870 case N_MNEM_vorr:
14871 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14872 break;
14873
14874 case N_MNEM_vand:
14875 /* Pseudo-instruction for VBIC. */
14876 neon_invert_size (&immbits, 0, et.size);
14877 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14878 break;
14879
14880 case N_MNEM_vorn:
14881 /* Pseudo-instruction for VORR. */
14882 neon_invert_size (&immbits, 0, et.size);
14883 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14884 break;
14885
14886 default:
14887 abort ();
14888 }
14889
14890 if (cmode == FAIL)
14891 return;
14892
14893 inst.instruction |= neon_quad (rs) << 6;
14894 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14895 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14896 inst.instruction |= cmode << 8;
14897 neon_write_immbits (immbits);
14898
14899 neon_dp_fixup (&inst);
14900 }
14901 }
14902
14903 static void
14904 do_neon_bitfield (void)
14905 {
14906 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14907 neon_check_type (3, rs, N_IGNORE_TYPE);
14908 neon_three_same (neon_quad (rs), 0, -1);
14909 }
14910
14911 static void
14912 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14913 unsigned destbits)
14914 {
14915 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14916 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14917 types | N_KEY);
14918 if (et.type == NT_float)
14919 {
14920 NEON_ENCODE (FLOAT, inst);
14921 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
14922 }
14923 else
14924 {
14925 NEON_ENCODE (INTEGER, inst);
14926 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14927 }
14928 }
14929
14930 static void
14931 do_neon_dyadic_if_su (void)
14932 {
14933 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14934 }
14935
14936 static void
14937 do_neon_dyadic_if_su_d (void)
14938 {
14939 /* This version only allow D registers, but that constraint is enforced during
14940 operand parsing so we don't need to do anything extra here. */
14941 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14942 }
14943
14944 static void
14945 do_neon_dyadic_if_i_d (void)
14946 {
14947 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14948 affected if we specify unsigned args. */
14949 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14950 }
14951
14952 enum vfp_or_neon_is_neon_bits
14953 {
14954 NEON_CHECK_CC = 1,
14955 NEON_CHECK_ARCH = 2,
14956 NEON_CHECK_ARCH8 = 4
14957 };
14958
14959 /* Call this function if an instruction which may have belonged to the VFP or
14960 Neon instruction sets, but turned out to be a Neon instruction (due to the
14961 operand types involved, etc.). We have to check and/or fix-up a couple of
14962 things:
14963
14964 - Make sure the user hasn't attempted to make a Neon instruction
14965 conditional.
14966 - Alter the value in the condition code field if necessary.
14967 - Make sure that the arch supports Neon instructions.
14968
14969 Which of these operations take place depends on bits from enum
14970 vfp_or_neon_is_neon_bits.
14971
14972 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14973 current instruction's condition is COND_ALWAYS, the condition field is
14974 changed to inst.uncond_value. This is necessary because instructions shared
14975 between VFP and Neon may be conditional for the VFP variants only, and the
14976 unconditional Neon version must have, e.g., 0xF in the condition field. */
14977
14978 static int
14979 vfp_or_neon_is_neon (unsigned check)
14980 {
14981 /* Conditions are always legal in Thumb mode (IT blocks). */
14982 if (!thumb_mode && (check & NEON_CHECK_CC))
14983 {
14984 if (inst.cond != COND_ALWAYS)
14985 {
14986 first_error (_(BAD_COND));
14987 return FAIL;
14988 }
14989 if (inst.uncond_value != -1)
14990 inst.instruction |= inst.uncond_value << 28;
14991 }
14992
14993 if ((check & NEON_CHECK_ARCH)
14994 && !mark_feature_used (&fpu_neon_ext_v1))
14995 {
14996 first_error (_(BAD_FPU));
14997 return FAIL;
14998 }
14999
15000 if ((check & NEON_CHECK_ARCH8)
15001 && !mark_feature_used (&fpu_neon_ext_armv8))
15002 {
15003 first_error (_(BAD_FPU));
15004 return FAIL;
15005 }
15006
15007 return SUCCESS;
15008 }
15009
15010 static void
15011 do_neon_addsub_if_i (void)
15012 {
15013 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15014 return;
15015
15016 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15017 return;
15018
15019 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15020 affected if we specify unsigned args. */
15021 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
15022 }
15023
15024 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15025 result to be:
15026 V<op> A,B (A is operand 0, B is operand 2)
15027 to mean:
15028 V<op> A,B,A
15029 not:
15030 V<op> A,B,B
15031 so handle that case specially. */
15032
15033 static void
15034 neon_exchange_operands (void)
15035 {
15036 if (inst.operands[1].present)
15037 {
15038 void *scratch = xmalloc (sizeof (inst.operands[0]));
15039
15040 /* Swap operands[1] and operands[2]. */
15041 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15042 inst.operands[1] = inst.operands[2];
15043 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
15044 free (scratch);
15045 }
15046 else
15047 {
15048 inst.operands[1] = inst.operands[2];
15049 inst.operands[2] = inst.operands[0];
15050 }
15051 }
15052
15053 static void
15054 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15055 {
15056 if (inst.operands[2].isreg)
15057 {
15058 if (invert)
15059 neon_exchange_operands ();
15060 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
15061 }
15062 else
15063 {
15064 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15065 struct neon_type_el et = neon_check_type (2, rs,
15066 N_EQK | N_SIZ, immtypes | N_KEY);
15067
15068 NEON_ENCODE (IMMED, inst);
15069 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15070 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15071 inst.instruction |= LOW4 (inst.operands[1].reg);
15072 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15073 inst.instruction |= neon_quad (rs) << 6;
15074 inst.instruction |= (et.type == NT_float) << 10;
15075 inst.instruction |= neon_logbits (et.size) << 18;
15076
15077 neon_dp_fixup (&inst);
15078 }
15079 }
15080
15081 static void
15082 do_neon_cmp (void)
15083 {
15084 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
15085 }
15086
15087 static void
15088 do_neon_cmp_inv (void)
15089 {
15090 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
15091 }
15092
15093 static void
15094 do_neon_ceq (void)
15095 {
15096 neon_compare (N_IF_32, N_IF_32, FALSE);
15097 }
15098
15099 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
15100 scalars, which are encoded in 5 bits, M : Rm.
15101 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15102 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
15103 index in M.
15104
15105 Dot Product instructions are similar to multiply instructions except elsize
15106 should always be 32.
15107
15108 This function translates SCALAR, which is GAS's internal encoding of indexed
15109 scalar register, to raw encoding. There is also register and index range
15110 check based on ELSIZE. */
15111
15112 static unsigned
15113 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15114 {
15115 unsigned regno = NEON_SCALAR_REG (scalar);
15116 unsigned elno = NEON_SCALAR_INDEX (scalar);
15117
15118 switch (elsize)
15119 {
15120 case 16:
15121 if (regno > 7 || elno > 3)
15122 goto bad_scalar;
15123 return regno | (elno << 3);
15124
15125 case 32:
15126 if (regno > 15 || elno > 1)
15127 goto bad_scalar;
15128 return regno | (elno << 4);
15129
15130 default:
15131 bad_scalar:
15132 first_error (_("scalar out of range for multiply instruction"));
15133 }
15134
15135 return 0;
15136 }
15137
15138 /* Encode multiply / multiply-accumulate scalar instructions. */
15139
15140 static void
15141 neon_mul_mac (struct neon_type_el et, int ubit)
15142 {
15143 unsigned scalar;
15144
15145 /* Give a more helpful error message if we have an invalid type. */
15146 if (et.type == NT_invtype)
15147 return;
15148
15149 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
15150 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15151 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15152 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15153 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15154 inst.instruction |= LOW4 (scalar);
15155 inst.instruction |= HI1 (scalar) << 5;
15156 inst.instruction |= (et.type == NT_float) << 8;
15157 inst.instruction |= neon_logbits (et.size) << 20;
15158 inst.instruction |= (ubit != 0) << 24;
15159
15160 neon_dp_fixup (&inst);
15161 }
15162
15163 static void
15164 do_neon_mac_maybe_scalar (void)
15165 {
15166 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15167 return;
15168
15169 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15170 return;
15171
15172 if (inst.operands[2].isscalar)
15173 {
15174 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15175 struct neon_type_el et = neon_check_type (3, rs,
15176 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
15177 NEON_ENCODE (SCALAR, inst);
15178 neon_mul_mac (et, neon_quad (rs));
15179 }
15180 else
15181 {
15182 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15183 affected if we specify unsigned args. */
15184 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15185 }
15186 }
15187
15188 static void
15189 do_neon_fmac (void)
15190 {
15191 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15192 return;
15193
15194 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15195 return;
15196
15197 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15198 }
15199
15200 static void
15201 do_neon_tst (void)
15202 {
15203 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15204 struct neon_type_el et = neon_check_type (3, rs,
15205 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
15206 neon_three_same (neon_quad (rs), 0, et.size);
15207 }
15208
15209 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
15210 same types as the MAC equivalents. The polynomial type for this instruction
15211 is encoded the same as the integer type. */
15212
15213 static void
15214 do_neon_mul (void)
15215 {
15216 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15217 return;
15218
15219 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15220 return;
15221
15222 if (inst.operands[2].isscalar)
15223 do_neon_mac_maybe_scalar ();
15224 else
15225 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
15226 }
15227
15228 static void
15229 do_neon_qdmulh (void)
15230 {
15231 if (inst.operands[2].isscalar)
15232 {
15233 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15234 struct neon_type_el et = neon_check_type (3, rs,
15235 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15236 NEON_ENCODE (SCALAR, inst);
15237 neon_mul_mac (et, neon_quad (rs));
15238 }
15239 else
15240 {
15241 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15242 struct neon_type_el et = neon_check_type (3, rs,
15243 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15244 NEON_ENCODE (INTEGER, inst);
15245 /* The U bit (rounding) comes from bit mask. */
15246 neon_three_same (neon_quad (rs), 0, et.size);
15247 }
15248 }
15249
15250 static void
15251 do_neon_qrdmlah (void)
15252 {
15253 /* Check we're on the correct architecture. */
15254 if (!mark_feature_used (&fpu_neon_ext_armv8))
15255 inst.error =
15256 _("instruction form not available on this architecture.");
15257 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15258 {
15259 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15260 record_feature_use (&fpu_neon_ext_v8_1);
15261 }
15262
15263 if (inst.operands[2].isscalar)
15264 {
15265 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15266 struct neon_type_el et = neon_check_type (3, rs,
15267 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15268 NEON_ENCODE (SCALAR, inst);
15269 neon_mul_mac (et, neon_quad (rs));
15270 }
15271 else
15272 {
15273 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15274 struct neon_type_el et = neon_check_type (3, rs,
15275 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15276 NEON_ENCODE (INTEGER, inst);
15277 /* The U bit (rounding) comes from bit mask. */
15278 neon_three_same (neon_quad (rs), 0, et.size);
15279 }
15280 }
15281
15282 static void
15283 do_neon_fcmp_absolute (void)
15284 {
15285 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15286 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15287 N_F_16_32 | N_KEY);
15288 /* Size field comes from bit mask. */
15289 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
15290 }
15291
15292 static void
15293 do_neon_fcmp_absolute_inv (void)
15294 {
15295 neon_exchange_operands ();
15296 do_neon_fcmp_absolute ();
15297 }
15298
15299 static void
15300 do_neon_step (void)
15301 {
15302 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15303 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15304 N_F_16_32 | N_KEY);
15305 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15306 }
15307
15308 static void
15309 do_neon_abs_neg (void)
15310 {
15311 enum neon_shape rs;
15312 struct neon_type_el et;
15313
15314 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15315 return;
15316
15317 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15318 return;
15319
15320 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15321 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
15322
15323 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15324 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15325 inst.instruction |= LOW4 (inst.operands[1].reg);
15326 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15327 inst.instruction |= neon_quad (rs) << 6;
15328 inst.instruction |= (et.type == NT_float) << 10;
15329 inst.instruction |= neon_logbits (et.size) << 18;
15330
15331 neon_dp_fixup (&inst);
15332 }
15333
15334 static void
15335 do_neon_sli (void)
15336 {
15337 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15338 struct neon_type_el et = neon_check_type (2, rs,
15339 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15340 int imm = inst.operands[2].imm;
15341 constraint (imm < 0 || (unsigned)imm >= et.size,
15342 _("immediate out of range for insert"));
15343 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15344 }
15345
15346 static void
15347 do_neon_sri (void)
15348 {
15349 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15350 struct neon_type_el et = neon_check_type (2, rs,
15351 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15352 int imm = inst.operands[2].imm;
15353 constraint (imm < 1 || (unsigned)imm > et.size,
15354 _("immediate out of range for insert"));
15355 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
15356 }
15357
15358 static void
15359 do_neon_qshlu_imm (void)
15360 {
15361 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15362 struct neon_type_el et = neon_check_type (2, rs,
15363 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15364 int imm = inst.operands[2].imm;
15365 constraint (imm < 0 || (unsigned)imm >= et.size,
15366 _("immediate out of range for shift"));
15367 /* Only encodes the 'U present' variant of the instruction.
15368 In this case, signed types have OP (bit 8) set to 0.
15369 Unsigned types have OP set to 1. */
15370 inst.instruction |= (et.type == NT_unsigned) << 8;
15371 /* The rest of the bits are the same as other immediate shifts. */
15372 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15373 }
15374
15375 static void
15376 do_neon_qmovn (void)
15377 {
15378 struct neon_type_el et = neon_check_type (2, NS_DQ,
15379 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15380 /* Saturating move where operands can be signed or unsigned, and the
15381 destination has the same signedness. */
15382 NEON_ENCODE (INTEGER, inst);
15383 if (et.type == NT_unsigned)
15384 inst.instruction |= 0xc0;
15385 else
15386 inst.instruction |= 0x80;
15387 neon_two_same (0, 1, et.size / 2);
15388 }
15389
15390 static void
15391 do_neon_qmovun (void)
15392 {
15393 struct neon_type_el et = neon_check_type (2, NS_DQ,
15394 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15395 /* Saturating move with unsigned results. Operands must be signed. */
15396 NEON_ENCODE (INTEGER, inst);
15397 neon_two_same (0, 1, et.size / 2);
15398 }
15399
15400 static void
15401 do_neon_rshift_sat_narrow (void)
15402 {
15403 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15404 or unsigned. If operands are unsigned, results must also be unsigned. */
15405 struct neon_type_el et = neon_check_type (2, NS_DQI,
15406 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15407 int imm = inst.operands[2].imm;
15408 /* This gets the bounds check, size encoding and immediate bits calculation
15409 right. */
15410 et.size /= 2;
15411
15412 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15413 VQMOVN.I<size> <Dd>, <Qm>. */
15414 if (imm == 0)
15415 {
15416 inst.operands[2].present = 0;
15417 inst.instruction = N_MNEM_vqmovn;
15418 do_neon_qmovn ();
15419 return;
15420 }
15421
15422 constraint (imm < 1 || (unsigned)imm > et.size,
15423 _("immediate out of range"));
15424 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15425 }
15426
15427 static void
15428 do_neon_rshift_sat_narrow_u (void)
15429 {
15430 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15431 or unsigned. If operands are unsigned, results must also be unsigned. */
15432 struct neon_type_el et = neon_check_type (2, NS_DQI,
15433 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15434 int imm = inst.operands[2].imm;
15435 /* This gets the bounds check, size encoding and immediate bits calculation
15436 right. */
15437 et.size /= 2;
15438
15439 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15440 VQMOVUN.I<size> <Dd>, <Qm>. */
15441 if (imm == 0)
15442 {
15443 inst.operands[2].present = 0;
15444 inst.instruction = N_MNEM_vqmovun;
15445 do_neon_qmovun ();
15446 return;
15447 }
15448
15449 constraint (imm < 1 || (unsigned)imm > et.size,
15450 _("immediate out of range"));
15451 /* FIXME: The manual is kind of unclear about what value U should have in
15452 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15453 must be 1. */
15454 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15455 }
15456
15457 static void
15458 do_neon_movn (void)
15459 {
15460 struct neon_type_el et = neon_check_type (2, NS_DQ,
15461 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15462 NEON_ENCODE (INTEGER, inst);
15463 neon_two_same (0, 1, et.size / 2);
15464 }
15465
15466 static void
15467 do_neon_rshift_narrow (void)
15468 {
15469 struct neon_type_el et = neon_check_type (2, NS_DQI,
15470 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15471 int imm = inst.operands[2].imm;
15472 /* This gets the bounds check, size encoding and immediate bits calculation
15473 right. */
15474 et.size /= 2;
15475
15476 /* If immediate is zero then we are a pseudo-instruction for
15477 VMOVN.I<size> <Dd>, <Qm> */
15478 if (imm == 0)
15479 {
15480 inst.operands[2].present = 0;
15481 inst.instruction = N_MNEM_vmovn;
15482 do_neon_movn ();
15483 return;
15484 }
15485
15486 constraint (imm < 1 || (unsigned)imm > et.size,
15487 _("immediate out of range for narrowing operation"));
15488 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15489 }
15490
15491 static void
15492 do_neon_shll (void)
15493 {
15494 /* FIXME: Type checking when lengthening. */
15495 struct neon_type_el et = neon_check_type (2, NS_QDI,
15496 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15497 unsigned imm = inst.operands[2].imm;
15498
15499 if (imm == et.size)
15500 {
15501 /* Maximum shift variant. */
15502 NEON_ENCODE (INTEGER, inst);
15503 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15504 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15505 inst.instruction |= LOW4 (inst.operands[1].reg);
15506 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15507 inst.instruction |= neon_logbits (et.size) << 18;
15508
15509 neon_dp_fixup (&inst);
15510 }
15511 else
15512 {
15513 /* A more-specific type check for non-max versions. */
15514 et = neon_check_type (2, NS_QDI,
15515 N_EQK | N_DBL, N_SU_32 | N_KEY);
15516 NEON_ENCODE (IMMED, inst);
15517 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15518 }
15519 }
15520
15521 /* Check the various types for the VCVT instruction, and return which version
15522 the current instruction is. */
15523
15524 #define CVT_FLAVOUR_VAR \
15525 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15526 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15527 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15528 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15529 /* Half-precision conversions. */ \
15530 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15531 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15532 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15533 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
15534 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15535 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15536 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15537 Compared with single/double precision variants, only the co-processor \
15538 field is different, so the encoding flow is reused here. */ \
15539 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15540 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15541 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15542 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
15543 /* VFP instructions. */ \
15544 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15545 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15546 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15547 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15548 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15549 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15550 /* VFP instructions with bitshift. */ \
15551 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15552 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15553 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15554 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15555 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15556 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15557 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15558 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15559
15560 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15561 neon_cvt_flavour_##C,
15562
15563 /* The different types of conversions we can do. */
15564 enum neon_cvt_flavour
15565 {
15566 CVT_FLAVOUR_VAR
15567 neon_cvt_flavour_invalid,
15568 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15569 };
15570
15571 #undef CVT_VAR
15572
15573 static enum neon_cvt_flavour
15574 get_neon_cvt_flavour (enum neon_shape rs)
15575 {
15576 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15577 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15578 if (et.type != NT_invtype) \
15579 { \
15580 inst.error = NULL; \
15581 return (neon_cvt_flavour_##C); \
15582 }
15583
15584 struct neon_type_el et;
15585 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15586 || rs == NS_FF) ? N_VFP : 0;
15587 /* The instruction versions which take an immediate take one register
15588 argument, which is extended to the width of the full register. Thus the
15589 "source" and "destination" registers must have the same width. Hack that
15590 here by making the size equal to the key (wider, in this case) operand. */
15591 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15592
15593 CVT_FLAVOUR_VAR;
15594
15595 return neon_cvt_flavour_invalid;
15596 #undef CVT_VAR
15597 }
15598
15599 enum neon_cvt_mode
15600 {
15601 neon_cvt_mode_a,
15602 neon_cvt_mode_n,
15603 neon_cvt_mode_p,
15604 neon_cvt_mode_m,
15605 neon_cvt_mode_z,
15606 neon_cvt_mode_x,
15607 neon_cvt_mode_r
15608 };
15609
15610 /* Neon-syntax VFP conversions. */
15611
15612 static void
15613 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15614 {
15615 const char *opname = 0;
15616
15617 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15618 || rs == NS_FHI || rs == NS_HFI)
15619 {
15620 /* Conversions with immediate bitshift. */
15621 const char *enc[] =
15622 {
15623 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15624 CVT_FLAVOUR_VAR
15625 NULL
15626 #undef CVT_VAR
15627 };
15628
15629 if (flavour < (int) ARRAY_SIZE (enc))
15630 {
15631 opname = enc[flavour];
15632 constraint (inst.operands[0].reg != inst.operands[1].reg,
15633 _("operands 0 and 1 must be the same register"));
15634 inst.operands[1] = inst.operands[2];
15635 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15636 }
15637 }
15638 else
15639 {
15640 /* Conversions without bitshift. */
15641 const char *enc[] =
15642 {
15643 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15644 CVT_FLAVOUR_VAR
15645 NULL
15646 #undef CVT_VAR
15647 };
15648
15649 if (flavour < (int) ARRAY_SIZE (enc))
15650 opname = enc[flavour];
15651 }
15652
15653 if (opname)
15654 do_vfp_nsyn_opcode (opname);
15655
15656 /* ARMv8.2 fp16 VCVT instruction. */
15657 if (flavour == neon_cvt_flavour_s32_f16
15658 || flavour == neon_cvt_flavour_u32_f16
15659 || flavour == neon_cvt_flavour_f16_u32
15660 || flavour == neon_cvt_flavour_f16_s32)
15661 do_scalar_fp16_v82_encode ();
15662 }
15663
15664 static void
15665 do_vfp_nsyn_cvtz (void)
15666 {
15667 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
15668 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15669 const char *enc[] =
15670 {
15671 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15672 CVT_FLAVOUR_VAR
15673 NULL
15674 #undef CVT_VAR
15675 };
15676
15677 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15678 do_vfp_nsyn_opcode (enc[flavour]);
15679 }
15680
15681 static void
15682 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15683 enum neon_cvt_mode mode)
15684 {
15685 int sz, op;
15686 int rm;
15687
15688 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15689 D register operands. */
15690 if (flavour == neon_cvt_flavour_s32_f64
15691 || flavour == neon_cvt_flavour_u32_f64)
15692 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15693 _(BAD_FPU));
15694
15695 if (flavour == neon_cvt_flavour_s32_f16
15696 || flavour == neon_cvt_flavour_u32_f16)
15697 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15698 _(BAD_FP16));
15699
15700 set_it_insn_type (OUTSIDE_IT_INSN);
15701
15702 switch (flavour)
15703 {
15704 case neon_cvt_flavour_s32_f64:
15705 sz = 1;
15706 op = 1;
15707 break;
15708 case neon_cvt_flavour_s32_f32:
15709 sz = 0;
15710 op = 1;
15711 break;
15712 case neon_cvt_flavour_s32_f16:
15713 sz = 0;
15714 op = 1;
15715 break;
15716 case neon_cvt_flavour_u32_f64:
15717 sz = 1;
15718 op = 0;
15719 break;
15720 case neon_cvt_flavour_u32_f32:
15721 sz = 0;
15722 op = 0;
15723 break;
15724 case neon_cvt_flavour_u32_f16:
15725 sz = 0;
15726 op = 0;
15727 break;
15728 default:
15729 first_error (_("invalid instruction shape"));
15730 return;
15731 }
15732
15733 switch (mode)
15734 {
15735 case neon_cvt_mode_a: rm = 0; break;
15736 case neon_cvt_mode_n: rm = 1; break;
15737 case neon_cvt_mode_p: rm = 2; break;
15738 case neon_cvt_mode_m: rm = 3; break;
15739 default: first_error (_("invalid rounding mode")); return;
15740 }
15741
15742 NEON_ENCODE (FPV8, inst);
15743 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15744 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15745 inst.instruction |= sz << 8;
15746
15747 /* ARMv8.2 fp16 VCVT instruction. */
15748 if (flavour == neon_cvt_flavour_s32_f16
15749 ||flavour == neon_cvt_flavour_u32_f16)
15750 do_scalar_fp16_v82_encode ();
15751 inst.instruction |= op << 7;
15752 inst.instruction |= rm << 16;
15753 inst.instruction |= 0xf0000000;
15754 inst.is_neon = TRUE;
15755 }
15756
15757 static void
15758 do_neon_cvt_1 (enum neon_cvt_mode mode)
15759 {
15760 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15761 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15762 NS_FH, NS_HF, NS_FHI, NS_HFI,
15763 NS_NULL);
15764 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15765
15766 if (flavour == neon_cvt_flavour_invalid)
15767 return;
15768
15769 /* PR11109: Handle round-to-zero for VCVT conversions. */
15770 if (mode == neon_cvt_mode_z
15771 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15772 && (flavour == neon_cvt_flavour_s16_f16
15773 || flavour == neon_cvt_flavour_u16_f16
15774 || flavour == neon_cvt_flavour_s32_f32
15775 || flavour == neon_cvt_flavour_u32_f32
15776 || flavour == neon_cvt_flavour_s32_f64
15777 || flavour == neon_cvt_flavour_u32_f64)
15778 && (rs == NS_FD || rs == NS_FF))
15779 {
15780 do_vfp_nsyn_cvtz ();
15781 return;
15782 }
15783
15784 /* ARMv8.2 fp16 VCVT conversions. */
15785 if (mode == neon_cvt_mode_z
15786 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15787 && (flavour == neon_cvt_flavour_s32_f16
15788 || flavour == neon_cvt_flavour_u32_f16)
15789 && (rs == NS_FH))
15790 {
15791 do_vfp_nsyn_cvtz ();
15792 do_scalar_fp16_v82_encode ();
15793 return;
15794 }
15795
15796 /* VFP rather than Neon conversions. */
15797 if (flavour >= neon_cvt_flavour_first_fp)
15798 {
15799 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15800 do_vfp_nsyn_cvt (rs, flavour);
15801 else
15802 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15803
15804 return;
15805 }
15806
15807 switch (rs)
15808 {
15809 case NS_DDI:
15810 case NS_QQI:
15811 {
15812 unsigned immbits;
15813 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15814 0x0000100, 0x1000100, 0x0, 0x1000000};
15815
15816 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15817 return;
15818
15819 /* Fixed-point conversion with #0 immediate is encoded as an
15820 integer conversion. */
15821 if (inst.operands[2].present && inst.operands[2].imm == 0)
15822 goto int_encode;
15823 NEON_ENCODE (IMMED, inst);
15824 if (flavour != neon_cvt_flavour_invalid)
15825 inst.instruction |= enctab[flavour];
15826 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15827 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15828 inst.instruction |= LOW4 (inst.operands[1].reg);
15829 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15830 inst.instruction |= neon_quad (rs) << 6;
15831 inst.instruction |= 1 << 21;
15832 if (flavour < neon_cvt_flavour_s16_f16)
15833 {
15834 inst.instruction |= 1 << 21;
15835 immbits = 32 - inst.operands[2].imm;
15836 inst.instruction |= immbits << 16;
15837 }
15838 else
15839 {
15840 inst.instruction |= 3 << 20;
15841 immbits = 16 - inst.operands[2].imm;
15842 inst.instruction |= immbits << 16;
15843 inst.instruction &= ~(1 << 9);
15844 }
15845
15846 neon_dp_fixup (&inst);
15847 }
15848 break;
15849
15850 case NS_DD:
15851 case NS_QQ:
15852 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15853 {
15854 NEON_ENCODE (FLOAT, inst);
15855 set_it_insn_type (OUTSIDE_IT_INSN);
15856
15857 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15858 return;
15859
15860 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15861 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15862 inst.instruction |= LOW4 (inst.operands[1].reg);
15863 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15864 inst.instruction |= neon_quad (rs) << 6;
15865 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15866 || flavour == neon_cvt_flavour_u32_f32) << 7;
15867 inst.instruction |= mode << 8;
15868 if (flavour == neon_cvt_flavour_u16_f16
15869 || flavour == neon_cvt_flavour_s16_f16)
15870 /* Mask off the original size bits and reencode them. */
15871 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15872
15873 if (thumb_mode)
15874 inst.instruction |= 0xfc000000;
15875 else
15876 inst.instruction |= 0xf0000000;
15877 }
15878 else
15879 {
15880 int_encode:
15881 {
15882 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15883 0x100, 0x180, 0x0, 0x080};
15884
15885 NEON_ENCODE (INTEGER, inst);
15886
15887 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15888 return;
15889
15890 if (flavour != neon_cvt_flavour_invalid)
15891 inst.instruction |= enctab[flavour];
15892
15893 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15894 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15895 inst.instruction |= LOW4 (inst.operands[1].reg);
15896 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15897 inst.instruction |= neon_quad (rs) << 6;
15898 if (flavour >= neon_cvt_flavour_s16_f16
15899 && flavour <= neon_cvt_flavour_f16_u16)
15900 /* Half precision. */
15901 inst.instruction |= 1 << 18;
15902 else
15903 inst.instruction |= 2 << 18;
15904
15905 neon_dp_fixup (&inst);
15906 }
15907 }
15908 break;
15909
15910 /* Half-precision conversions for Advanced SIMD -- neon. */
15911 case NS_QD:
15912 case NS_DQ:
15913
15914 if ((rs == NS_DQ)
15915 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15916 {
15917 as_bad (_("operand size must match register width"));
15918 break;
15919 }
15920
15921 if ((rs == NS_QD)
15922 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15923 {
15924 as_bad (_("operand size must match register width"));
15925 break;
15926 }
15927
15928 if (rs == NS_DQ)
15929 inst.instruction = 0x3b60600;
15930 else
15931 inst.instruction = 0x3b60700;
15932
15933 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15934 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15935 inst.instruction |= LOW4 (inst.operands[1].reg);
15936 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15937 neon_dp_fixup (&inst);
15938 break;
15939
15940 default:
15941 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15942 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15943 do_vfp_nsyn_cvt (rs, flavour);
15944 else
15945 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15946 }
15947 }
15948
15949 static void
15950 do_neon_cvtr (void)
15951 {
15952 do_neon_cvt_1 (neon_cvt_mode_x);
15953 }
15954
15955 static void
15956 do_neon_cvt (void)
15957 {
15958 do_neon_cvt_1 (neon_cvt_mode_z);
15959 }
15960
15961 static void
15962 do_neon_cvta (void)
15963 {
15964 do_neon_cvt_1 (neon_cvt_mode_a);
15965 }
15966
15967 static void
15968 do_neon_cvtn (void)
15969 {
15970 do_neon_cvt_1 (neon_cvt_mode_n);
15971 }
15972
15973 static void
15974 do_neon_cvtp (void)
15975 {
15976 do_neon_cvt_1 (neon_cvt_mode_p);
15977 }
15978
15979 static void
15980 do_neon_cvtm (void)
15981 {
15982 do_neon_cvt_1 (neon_cvt_mode_m);
15983 }
15984
15985 static void
15986 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15987 {
15988 if (is_double)
15989 mark_feature_used (&fpu_vfp_ext_armv8);
15990
15991 encode_arm_vfp_reg (inst.operands[0].reg,
15992 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15993 encode_arm_vfp_reg (inst.operands[1].reg,
15994 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15995 inst.instruction |= to ? 0x10000 : 0;
15996 inst.instruction |= t ? 0x80 : 0;
15997 inst.instruction |= is_double ? 0x100 : 0;
15998 do_vfp_cond_or_thumb ();
15999 }
16000
16001 static void
16002 do_neon_cvttb_1 (bfd_boolean t)
16003 {
16004 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
16005 NS_DF, NS_DH, NS_NULL);
16006
16007 if (rs == NS_NULL)
16008 return;
16009 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
16010 {
16011 inst.error = NULL;
16012 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16013 }
16014 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16015 {
16016 inst.error = NULL;
16017 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16018 }
16019 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16020 {
16021 /* The VCVTB and VCVTT instructions with D-register operands
16022 don't work for SP only targets. */
16023 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16024 _(BAD_FPU));
16025
16026 inst.error = NULL;
16027 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16028 }
16029 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16030 {
16031 /* The VCVTB and VCVTT instructions with D-register operands
16032 don't work for SP only targets. */
16033 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16034 _(BAD_FPU));
16035
16036 inst.error = NULL;
16037 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16038 }
16039 else
16040 return;
16041 }
16042
16043 static void
16044 do_neon_cvtb (void)
16045 {
16046 do_neon_cvttb_1 (FALSE);
16047 }
16048
16049
16050 static void
16051 do_neon_cvtt (void)
16052 {
16053 do_neon_cvttb_1 (TRUE);
16054 }
16055
16056 static void
16057 neon_move_immediate (void)
16058 {
16059 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16060 struct neon_type_el et = neon_check_type (2, rs,
16061 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
16062 unsigned immlo, immhi = 0, immbits;
16063 int op, cmode, float_p;
16064
16065 constraint (et.type == NT_invtype,
16066 _("operand size must be specified for immediate VMOV"));
16067
16068 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16069 op = (inst.instruction & (1 << 5)) != 0;
16070
16071 immlo = inst.operands[1].imm;
16072 if (inst.operands[1].regisimm)
16073 immhi = inst.operands[1].reg;
16074
16075 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
16076 _("immediate has bits set outside the operand size"));
16077
16078 float_p = inst.operands[1].immisfloat;
16079
16080 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
16081 et.size, et.type)) == FAIL)
16082 {
16083 /* Invert relevant bits only. */
16084 neon_invert_size (&immlo, &immhi, et.size);
16085 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
16086 with one or the other; those cases are caught by
16087 neon_cmode_for_move_imm. */
16088 op = !op;
16089 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16090 &op, et.size, et.type)) == FAIL)
16091 {
16092 first_error (_("immediate out of range"));
16093 return;
16094 }
16095 }
16096
16097 inst.instruction &= ~(1 << 5);
16098 inst.instruction |= op << 5;
16099
16100 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16102 inst.instruction |= neon_quad (rs) << 6;
16103 inst.instruction |= cmode << 8;
16104
16105 neon_write_immbits (immbits);
16106 }
16107
16108 static void
16109 do_neon_mvn (void)
16110 {
16111 if (inst.operands[1].isreg)
16112 {
16113 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16114
16115 NEON_ENCODE (INTEGER, inst);
16116 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16117 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16118 inst.instruction |= LOW4 (inst.operands[1].reg);
16119 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16120 inst.instruction |= neon_quad (rs) << 6;
16121 }
16122 else
16123 {
16124 NEON_ENCODE (IMMED, inst);
16125 neon_move_immediate ();
16126 }
16127
16128 neon_dp_fixup (&inst);
16129 }
16130
16131 /* Encode instructions of form:
16132
16133 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16134 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
16135
16136 static void
16137 neon_mixed_length (struct neon_type_el et, unsigned size)
16138 {
16139 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16140 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16141 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16142 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16143 inst.instruction |= LOW4 (inst.operands[2].reg);
16144 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16145 inst.instruction |= (et.type == NT_unsigned) << 24;
16146 inst.instruction |= neon_logbits (size) << 20;
16147
16148 neon_dp_fixup (&inst);
16149 }
16150
16151 static void
16152 do_neon_dyadic_long (void)
16153 {
16154 /* FIXME: Type checking for lengthening op. */
16155 struct neon_type_el et = neon_check_type (3, NS_QDD,
16156 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16157 neon_mixed_length (et, et.size);
16158 }
16159
16160 static void
16161 do_neon_abal (void)
16162 {
16163 struct neon_type_el et = neon_check_type (3, NS_QDD,
16164 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16165 neon_mixed_length (et, et.size);
16166 }
16167
16168 static void
16169 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16170 {
16171 if (inst.operands[2].isscalar)
16172 {
16173 struct neon_type_el et = neon_check_type (3, NS_QDS,
16174 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
16175 NEON_ENCODE (SCALAR, inst);
16176 neon_mul_mac (et, et.type == NT_unsigned);
16177 }
16178 else
16179 {
16180 struct neon_type_el et = neon_check_type (3, NS_QDD,
16181 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
16182 NEON_ENCODE (INTEGER, inst);
16183 neon_mixed_length (et, et.size);
16184 }
16185 }
16186
16187 static void
16188 do_neon_mac_maybe_scalar_long (void)
16189 {
16190 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16191 }
16192
16193 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16194 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16195
16196 static unsigned
16197 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16198 {
16199 unsigned regno = NEON_SCALAR_REG (scalar);
16200 unsigned elno = NEON_SCALAR_INDEX (scalar);
16201
16202 if (quad_p)
16203 {
16204 if (regno > 7 || elno > 3)
16205 goto bad_scalar;
16206
16207 return ((regno & 0x7)
16208 | ((elno & 0x1) << 3)
16209 | (((elno >> 1) & 0x1) << 5));
16210 }
16211 else
16212 {
16213 if (regno > 15 || elno > 1)
16214 goto bad_scalar;
16215
16216 return (((regno & 0x1) << 5)
16217 | ((regno >> 1) & 0x7)
16218 | ((elno & 0x1) << 3));
16219 }
16220
16221 bad_scalar:
16222 first_error (_("scalar out of range for multiply instruction"));
16223 return 0;
16224 }
16225
16226 static void
16227 do_neon_fmac_maybe_scalar_long (int subtype)
16228 {
16229 enum neon_shape rs;
16230 int high8;
16231 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16232 field (bits[21:20]) has different meaning. For scalar index variant, it's
16233 used to differentiate add and subtract, otherwise it's with fixed value
16234 0x2. */
16235 int size = -1;
16236
16237 if (inst.cond != COND_ALWAYS)
16238 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16239 "behaviour is UNPREDICTABLE"));
16240
16241 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
16242 _(BAD_FP16));
16243
16244 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16245 _(BAD_FPU));
16246
16247 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16248 be a scalar index register. */
16249 if (inst.operands[2].isscalar)
16250 {
16251 high8 = 0xfe000000;
16252 if (subtype)
16253 size = 16;
16254 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16255 }
16256 else
16257 {
16258 high8 = 0xfc000000;
16259 size = 32;
16260 if (subtype)
16261 inst.instruction |= (0x1 << 23);
16262 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16263 }
16264
16265 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16266
16267 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16268 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16269 so we simply pass -1 as size. */
16270 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16271 neon_three_same (quad_p, 0, size);
16272
16273 /* Undo neon_dp_fixup. Redo the high eight bits. */
16274 inst.instruction &= 0x00ffffff;
16275 inst.instruction |= high8;
16276
16277 #define LOW1(R) ((R) & 0x1)
16278 #define HI4(R) (((R) >> 1) & 0xf)
16279 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16280 whether the instruction is in Q form and whether Vm is a scalar indexed
16281 operand. */
16282 if (inst.operands[2].isscalar)
16283 {
16284 unsigned rm
16285 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16286 inst.instruction &= 0xffffffd0;
16287 inst.instruction |= rm;
16288
16289 if (!quad_p)
16290 {
16291 /* Redo Rn as well. */
16292 inst.instruction &= 0xfff0ff7f;
16293 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16294 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16295 }
16296 }
16297 else if (!quad_p)
16298 {
16299 /* Redo Rn and Rm. */
16300 inst.instruction &= 0xfff0ff50;
16301 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16302 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16303 inst.instruction |= HI4 (inst.operands[2].reg);
16304 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16305 }
16306 }
16307
16308 static void
16309 do_neon_vfmal (void)
16310 {
16311 return do_neon_fmac_maybe_scalar_long (0);
16312 }
16313
16314 static void
16315 do_neon_vfmsl (void)
16316 {
16317 return do_neon_fmac_maybe_scalar_long (1);
16318 }
16319
16320 static void
16321 do_neon_dyadic_wide (void)
16322 {
16323 struct neon_type_el et = neon_check_type (3, NS_QQD,
16324 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16325 neon_mixed_length (et, et.size);
16326 }
16327
16328 static void
16329 do_neon_dyadic_narrow (void)
16330 {
16331 struct neon_type_el et = neon_check_type (3, NS_QDD,
16332 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
16333 /* Operand sign is unimportant, and the U bit is part of the opcode,
16334 so force the operand type to integer. */
16335 et.type = NT_integer;
16336 neon_mixed_length (et, et.size / 2);
16337 }
16338
16339 static void
16340 do_neon_mul_sat_scalar_long (void)
16341 {
16342 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16343 }
16344
16345 static void
16346 do_neon_vmull (void)
16347 {
16348 if (inst.operands[2].isscalar)
16349 do_neon_mac_maybe_scalar_long ();
16350 else
16351 {
16352 struct neon_type_el et = neon_check_type (3, NS_QDD,
16353 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
16354
16355 if (et.type == NT_poly)
16356 NEON_ENCODE (POLY, inst);
16357 else
16358 NEON_ENCODE (INTEGER, inst);
16359
16360 /* For polynomial encoding the U bit must be zero, and the size must
16361 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16362 obviously, as 0b10). */
16363 if (et.size == 64)
16364 {
16365 /* Check we're on the correct architecture. */
16366 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16367 inst.error =
16368 _("Instruction form not available on this architecture.");
16369
16370 et.size = 32;
16371 }
16372
16373 neon_mixed_length (et, et.size);
16374 }
16375 }
16376
16377 static void
16378 do_neon_ext (void)
16379 {
16380 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
16381 struct neon_type_el et = neon_check_type (3, rs,
16382 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16383 unsigned imm = (inst.operands[3].imm * et.size) / 8;
16384
16385 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16386 _("shift out of range"));
16387 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16388 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16389 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16390 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16391 inst.instruction |= LOW4 (inst.operands[2].reg);
16392 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16393 inst.instruction |= neon_quad (rs) << 6;
16394 inst.instruction |= imm << 8;
16395
16396 neon_dp_fixup (&inst);
16397 }
16398
16399 static void
16400 do_neon_rev (void)
16401 {
16402 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16403 struct neon_type_el et = neon_check_type (2, rs,
16404 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16405 unsigned op = (inst.instruction >> 7) & 3;
16406 /* N (width of reversed regions) is encoded as part of the bitmask. We
16407 extract it here to check the elements to be reversed are smaller.
16408 Otherwise we'd get a reserved instruction. */
16409 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
16410 gas_assert (elsize != 0);
16411 constraint (et.size >= elsize,
16412 _("elements must be smaller than reversal region"));
16413 neon_two_same (neon_quad (rs), 1, et.size);
16414 }
16415
16416 static void
16417 do_neon_dup (void)
16418 {
16419 if (inst.operands[1].isscalar)
16420 {
16421 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
16422 struct neon_type_el et = neon_check_type (2, rs,
16423 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16424 unsigned sizebits = et.size >> 3;
16425 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
16426 int logsize = neon_logbits (et.size);
16427 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
16428
16429 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
16430 return;
16431
16432 NEON_ENCODE (SCALAR, inst);
16433 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16434 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16435 inst.instruction |= LOW4 (dm);
16436 inst.instruction |= HI1 (dm) << 5;
16437 inst.instruction |= neon_quad (rs) << 6;
16438 inst.instruction |= x << 17;
16439 inst.instruction |= sizebits << 16;
16440
16441 neon_dp_fixup (&inst);
16442 }
16443 else
16444 {
16445 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16446 struct neon_type_el et = neon_check_type (2, rs,
16447 N_8 | N_16 | N_32 | N_KEY, N_EQK);
16448 /* Duplicate ARM register to lanes of vector. */
16449 NEON_ENCODE (ARMREG, inst);
16450 switch (et.size)
16451 {
16452 case 8: inst.instruction |= 0x400000; break;
16453 case 16: inst.instruction |= 0x000020; break;
16454 case 32: inst.instruction |= 0x000000; break;
16455 default: break;
16456 }
16457 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16458 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16459 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
16460 inst.instruction |= neon_quad (rs) << 21;
16461 /* The encoding for this instruction is identical for the ARM and Thumb
16462 variants, except for the condition field. */
16463 do_vfp_cond_or_thumb ();
16464 }
16465 }
16466
16467 /* VMOV has particularly many variations. It can be one of:
16468 0. VMOV<c><q> <Qd>, <Qm>
16469 1. VMOV<c><q> <Dd>, <Dm>
16470 (Register operations, which are VORR with Rm = Rn.)
16471 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16472 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16473 (Immediate loads.)
16474 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16475 (ARM register to scalar.)
16476 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16477 (Two ARM registers to vector.)
16478 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16479 (Scalar to ARM register.)
16480 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16481 (Vector to two ARM registers.)
16482 8. VMOV.F32 <Sd>, <Sm>
16483 9. VMOV.F64 <Dd>, <Dm>
16484 (VFP register moves.)
16485 10. VMOV.F32 <Sd>, #imm
16486 11. VMOV.F64 <Dd>, #imm
16487 (VFP float immediate load.)
16488 12. VMOV <Rd>, <Sm>
16489 (VFP single to ARM reg.)
16490 13. VMOV <Sd>, <Rm>
16491 (ARM reg to VFP single.)
16492 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16493 (Two ARM regs to two VFP singles.)
16494 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16495 (Two VFP singles to two ARM regs.)
16496
16497 These cases can be disambiguated using neon_select_shape, except cases 1/9
16498 and 3/11 which depend on the operand type too.
16499
16500 All the encoded bits are hardcoded by this function.
16501
16502 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16503 Cases 5, 7 may be used with VFPv2 and above.
16504
16505 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
16506 can specify a type where it doesn't make sense to, and is ignored). */
16507
16508 static void
16509 do_neon_mov (void)
16510 {
16511 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
16512 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16513 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16514 NS_HR, NS_RH, NS_HI, NS_NULL);
16515 struct neon_type_el et;
16516 const char *ldconst = 0;
16517
16518 switch (rs)
16519 {
16520 case NS_DD: /* case 1/9. */
16521 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16522 /* It is not an error here if no type is given. */
16523 inst.error = NULL;
16524 if (et.type == NT_float && et.size == 64)
16525 {
16526 do_vfp_nsyn_opcode ("fcpyd");
16527 break;
16528 }
16529 /* fall through. */
16530
16531 case NS_QQ: /* case 0/1. */
16532 {
16533 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16534 return;
16535 /* The architecture manual I have doesn't explicitly state which
16536 value the U bit should have for register->register moves, but
16537 the equivalent VORR instruction has U = 0, so do that. */
16538 inst.instruction = 0x0200110;
16539 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16540 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16541 inst.instruction |= LOW4 (inst.operands[1].reg);
16542 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16543 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16544 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16545 inst.instruction |= neon_quad (rs) << 6;
16546
16547 neon_dp_fixup (&inst);
16548 }
16549 break;
16550
16551 case NS_DI: /* case 3/11. */
16552 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16553 inst.error = NULL;
16554 if (et.type == NT_float && et.size == 64)
16555 {
16556 /* case 11 (fconstd). */
16557 ldconst = "fconstd";
16558 goto encode_fconstd;
16559 }
16560 /* fall through. */
16561
16562 case NS_QI: /* case 2/3. */
16563 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16564 return;
16565 inst.instruction = 0x0800010;
16566 neon_move_immediate ();
16567 neon_dp_fixup (&inst);
16568 break;
16569
16570 case NS_SR: /* case 4. */
16571 {
16572 unsigned bcdebits = 0;
16573 int logsize;
16574 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16575 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
16576
16577 /* .<size> is optional here, defaulting to .32. */
16578 if (inst.vectype.elems == 0
16579 && inst.operands[0].vectype.type == NT_invtype
16580 && inst.operands[1].vectype.type == NT_invtype)
16581 {
16582 inst.vectype.el[0].type = NT_untyped;
16583 inst.vectype.el[0].size = 32;
16584 inst.vectype.elems = 1;
16585 }
16586
16587 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16588 logsize = neon_logbits (et.size);
16589
16590 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16591 _(BAD_FPU));
16592 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16593 && et.size != 32, _(BAD_FPU));
16594 constraint (et.type == NT_invtype, _("bad type for scalar"));
16595 constraint (x >= 64 / et.size, _("scalar index out of range"));
16596
16597 switch (et.size)
16598 {
16599 case 8: bcdebits = 0x8; break;
16600 case 16: bcdebits = 0x1; break;
16601 case 32: bcdebits = 0x0; break;
16602 default: ;
16603 }
16604
16605 bcdebits |= x << logsize;
16606
16607 inst.instruction = 0xe000b10;
16608 do_vfp_cond_or_thumb ();
16609 inst.instruction |= LOW4 (dn) << 16;
16610 inst.instruction |= HI1 (dn) << 7;
16611 inst.instruction |= inst.operands[1].reg << 12;
16612 inst.instruction |= (bcdebits & 3) << 5;
16613 inst.instruction |= (bcdebits >> 2) << 21;
16614 }
16615 break;
16616
16617 case NS_DRR: /* case 5 (fmdrr). */
16618 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16619 _(BAD_FPU));
16620
16621 inst.instruction = 0xc400b10;
16622 do_vfp_cond_or_thumb ();
16623 inst.instruction |= LOW4 (inst.operands[0].reg);
16624 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16625 inst.instruction |= inst.operands[1].reg << 12;
16626 inst.instruction |= inst.operands[2].reg << 16;
16627 break;
16628
16629 case NS_RS: /* case 6. */
16630 {
16631 unsigned logsize;
16632 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16633 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16634 unsigned abcdebits = 0;
16635
16636 /* .<dt> is optional here, defaulting to .32. */
16637 if (inst.vectype.elems == 0
16638 && inst.operands[0].vectype.type == NT_invtype
16639 && inst.operands[1].vectype.type == NT_invtype)
16640 {
16641 inst.vectype.el[0].type = NT_untyped;
16642 inst.vectype.el[0].size = 32;
16643 inst.vectype.elems = 1;
16644 }
16645
16646 et = neon_check_type (2, NS_NULL,
16647 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16648 logsize = neon_logbits (et.size);
16649
16650 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16651 _(BAD_FPU));
16652 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16653 && et.size != 32, _(BAD_FPU));
16654 constraint (et.type == NT_invtype, _("bad type for scalar"));
16655 constraint (x >= 64 / et.size, _("scalar index out of range"));
16656
16657 switch (et.size)
16658 {
16659 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16660 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16661 case 32: abcdebits = 0x00; break;
16662 default: ;
16663 }
16664
16665 abcdebits |= x << logsize;
16666 inst.instruction = 0xe100b10;
16667 do_vfp_cond_or_thumb ();
16668 inst.instruction |= LOW4 (dn) << 16;
16669 inst.instruction |= HI1 (dn) << 7;
16670 inst.instruction |= inst.operands[0].reg << 12;
16671 inst.instruction |= (abcdebits & 3) << 5;
16672 inst.instruction |= (abcdebits >> 2) << 21;
16673 }
16674 break;
16675
16676 case NS_RRD: /* case 7 (fmrrd). */
16677 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16678 _(BAD_FPU));
16679
16680 inst.instruction = 0xc500b10;
16681 do_vfp_cond_or_thumb ();
16682 inst.instruction |= inst.operands[0].reg << 12;
16683 inst.instruction |= inst.operands[1].reg << 16;
16684 inst.instruction |= LOW4 (inst.operands[2].reg);
16685 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16686 break;
16687
16688 case NS_FF: /* case 8 (fcpys). */
16689 do_vfp_nsyn_opcode ("fcpys");
16690 break;
16691
16692 case NS_HI:
16693 case NS_FI: /* case 10 (fconsts). */
16694 ldconst = "fconsts";
16695 encode_fconstd:
16696 if (!inst.operands[1].immisfloat)
16697 {
16698 /* Immediate has to fit in 8 bits so float is enough. */
16699 float imm = (float)inst.operands[1].imm;
16700 memcpy (&inst.operands[1].imm, &imm, sizeof (float));
16701 inst.operands[1].immisfloat = 1;
16702 }
16703
16704 if (is_quarter_float (inst.operands[1].imm))
16705 {
16706 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16707 do_vfp_nsyn_opcode (ldconst);
16708
16709 /* ARMv8.2 fp16 vmov.f16 instruction. */
16710 if (rs == NS_HI)
16711 do_scalar_fp16_v82_encode ();
16712 }
16713 else
16714 first_error (_("immediate out of range"));
16715 break;
16716
16717 case NS_RH:
16718 case NS_RF: /* case 12 (fmrs). */
16719 do_vfp_nsyn_opcode ("fmrs");
16720 /* ARMv8.2 fp16 vmov.f16 instruction. */
16721 if (rs == NS_RH)
16722 do_scalar_fp16_v82_encode ();
16723 break;
16724
16725 case NS_HR:
16726 case NS_FR: /* case 13 (fmsr). */
16727 do_vfp_nsyn_opcode ("fmsr");
16728 /* ARMv8.2 fp16 vmov.f16 instruction. */
16729 if (rs == NS_HR)
16730 do_scalar_fp16_v82_encode ();
16731 break;
16732
16733 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16734 (one of which is a list), but we have parsed four. Do some fiddling to
16735 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16736 expect. */
16737 case NS_RRFF: /* case 14 (fmrrs). */
16738 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16739 _("VFP registers must be adjacent"));
16740 inst.operands[2].imm = 2;
16741 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16742 do_vfp_nsyn_opcode ("fmrrs");
16743 break;
16744
16745 case NS_FFRR: /* case 15 (fmsrr). */
16746 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16747 _("VFP registers must be adjacent"));
16748 inst.operands[1] = inst.operands[2];
16749 inst.operands[2] = inst.operands[3];
16750 inst.operands[0].imm = 2;
16751 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16752 do_vfp_nsyn_opcode ("fmsrr");
16753 break;
16754
16755 case NS_NULL:
16756 /* neon_select_shape has determined that the instruction
16757 shape is wrong and has already set the error message. */
16758 break;
16759
16760 default:
16761 abort ();
16762 }
16763 }
16764
16765 static void
16766 do_neon_rshift_round_imm (void)
16767 {
16768 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16769 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16770 int imm = inst.operands[2].imm;
16771
16772 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16773 if (imm == 0)
16774 {
16775 inst.operands[2].present = 0;
16776 do_neon_mov ();
16777 return;
16778 }
16779
16780 constraint (imm < 1 || (unsigned)imm > et.size,
16781 _("immediate out of range for shift"));
16782 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16783 et.size - imm);
16784 }
16785
16786 static void
16787 do_neon_movhf (void)
16788 {
16789 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16790 constraint (rs != NS_HH, _("invalid suffix"));
16791
16792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16793 _(BAD_FPU));
16794
16795 if (inst.cond != COND_ALWAYS)
16796 {
16797 if (thumb_mode)
16798 {
16799 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
16800 " the behaviour is UNPREDICTABLE"));
16801 }
16802 else
16803 {
16804 inst.error = BAD_COND;
16805 return;
16806 }
16807 }
16808
16809 do_vfp_sp_monadic ();
16810
16811 inst.is_neon = 1;
16812 inst.instruction |= 0xf0000000;
16813 }
16814
16815 static void
16816 do_neon_movl (void)
16817 {
16818 struct neon_type_el et = neon_check_type (2, NS_QD,
16819 N_EQK | N_DBL, N_SU_32 | N_KEY);
16820 unsigned sizebits = et.size >> 3;
16821 inst.instruction |= sizebits << 19;
16822 neon_two_same (0, et.type == NT_unsigned, -1);
16823 }
16824
16825 static void
16826 do_neon_trn (void)
16827 {
16828 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16829 struct neon_type_el et = neon_check_type (2, rs,
16830 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16831 NEON_ENCODE (INTEGER, inst);
16832 neon_two_same (neon_quad (rs), 1, et.size);
16833 }
16834
16835 static void
16836 do_neon_zip_uzp (void)
16837 {
16838 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16839 struct neon_type_el et = neon_check_type (2, rs,
16840 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16841 if (rs == NS_DD && et.size == 32)
16842 {
16843 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16844 inst.instruction = N_MNEM_vtrn;
16845 do_neon_trn ();
16846 return;
16847 }
16848 neon_two_same (neon_quad (rs), 1, et.size);
16849 }
16850
16851 static void
16852 do_neon_sat_abs_neg (void)
16853 {
16854 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16855 struct neon_type_el et = neon_check_type (2, rs,
16856 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16857 neon_two_same (neon_quad (rs), 1, et.size);
16858 }
16859
16860 static void
16861 do_neon_pair_long (void)
16862 {
16863 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16864 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16865 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16866 inst.instruction |= (et.type == NT_unsigned) << 7;
16867 neon_two_same (neon_quad (rs), 1, et.size);
16868 }
16869
16870 static void
16871 do_neon_recip_est (void)
16872 {
16873 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16874 struct neon_type_el et = neon_check_type (2, rs,
16875 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
16876 inst.instruction |= (et.type == NT_float) << 8;
16877 neon_two_same (neon_quad (rs), 1, et.size);
16878 }
16879
16880 static void
16881 do_neon_cls (void)
16882 {
16883 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16884 struct neon_type_el et = neon_check_type (2, rs,
16885 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16886 neon_two_same (neon_quad (rs), 1, et.size);
16887 }
16888
16889 static void
16890 do_neon_clz (void)
16891 {
16892 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16893 struct neon_type_el et = neon_check_type (2, rs,
16894 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16895 neon_two_same (neon_quad (rs), 1, et.size);
16896 }
16897
16898 static void
16899 do_neon_cnt (void)
16900 {
16901 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16902 struct neon_type_el et = neon_check_type (2, rs,
16903 N_EQK | N_INT, N_8 | N_KEY);
16904 neon_two_same (neon_quad (rs), 1, et.size);
16905 }
16906
16907 static void
16908 do_neon_swp (void)
16909 {
16910 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16911 neon_two_same (neon_quad (rs), 1, -1);
16912 }
16913
16914 static void
16915 do_neon_tbl_tbx (void)
16916 {
16917 unsigned listlenbits;
16918 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16919
16920 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16921 {
16922 first_error (_("bad list length for table lookup"));
16923 return;
16924 }
16925
16926 listlenbits = inst.operands[1].imm - 1;
16927 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16928 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16929 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16930 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16931 inst.instruction |= LOW4 (inst.operands[2].reg);
16932 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16933 inst.instruction |= listlenbits << 8;
16934
16935 neon_dp_fixup (&inst);
16936 }
16937
16938 static void
16939 do_neon_ldm_stm (void)
16940 {
16941 /* P, U and L bits are part of bitmask. */
16942 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16943 unsigned offsetbits = inst.operands[1].imm * 2;
16944
16945 if (inst.operands[1].issingle)
16946 {
16947 do_vfp_nsyn_ldm_stm (is_dbmode);
16948 return;
16949 }
16950
16951 constraint (is_dbmode && !inst.operands[0].writeback,
16952 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16953
16954 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16955 _("register list must contain at least 1 and at most 16 "
16956 "registers"));
16957
16958 inst.instruction |= inst.operands[0].reg << 16;
16959 inst.instruction |= inst.operands[0].writeback << 21;
16960 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16961 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16962
16963 inst.instruction |= offsetbits;
16964
16965 do_vfp_cond_or_thumb ();
16966 }
16967
16968 static void
16969 do_neon_ldr_str (void)
16970 {
16971 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16972
16973 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16974 And is UNPREDICTABLE in thumb mode. */
16975 if (!is_ldr
16976 && inst.operands[1].reg == REG_PC
16977 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16978 {
16979 if (thumb_mode)
16980 inst.error = _("Use of PC here is UNPREDICTABLE");
16981 else if (warn_on_deprecated)
16982 as_tsktsk (_("Use of PC here is deprecated"));
16983 }
16984
16985 if (inst.operands[0].issingle)
16986 {
16987 if (is_ldr)
16988 do_vfp_nsyn_opcode ("flds");
16989 else
16990 do_vfp_nsyn_opcode ("fsts");
16991
16992 /* ARMv8.2 vldr.16/vstr.16 instruction. */
16993 if (inst.vectype.el[0].size == 16)
16994 do_scalar_fp16_v82_encode ();
16995 }
16996 else
16997 {
16998 if (is_ldr)
16999 do_vfp_nsyn_opcode ("fldd");
17000 else
17001 do_vfp_nsyn_opcode ("fstd");
17002 }
17003 }
17004
17005 /* "interleave" version also handles non-interleaving register VLD1/VST1
17006 instructions. */
17007
17008 static void
17009 do_neon_ld_st_interleave (void)
17010 {
17011 struct neon_type_el et = neon_check_type (1, NS_NULL,
17012 N_8 | N_16 | N_32 | N_64);
17013 unsigned alignbits = 0;
17014 unsigned idx;
17015 /* The bits in this table go:
17016 0: register stride of one (0) or two (1)
17017 1,2: register list length, minus one (1, 2, 3, 4).
17018 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
17019 We use -1 for invalid entries. */
17020 const int typetable[] =
17021 {
17022 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
17023 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
17024 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
17025 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
17026 };
17027 int typebits;
17028
17029 if (et.type == NT_invtype)
17030 return;
17031
17032 if (inst.operands[1].immisalign)
17033 switch (inst.operands[1].imm >> 8)
17034 {
17035 case 64: alignbits = 1; break;
17036 case 128:
17037 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
17038 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17039 goto bad_alignment;
17040 alignbits = 2;
17041 break;
17042 case 256:
17043 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17044 goto bad_alignment;
17045 alignbits = 3;
17046 break;
17047 default:
17048 bad_alignment:
17049 first_error (_("bad alignment"));
17050 return;
17051 }
17052
17053 inst.instruction |= alignbits << 4;
17054 inst.instruction |= neon_logbits (et.size) << 6;
17055
17056 /* Bits [4:6] of the immediate in a list specifier encode register stride
17057 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17058 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17059 up the right value for "type" in a table based on this value and the given
17060 list style, then stick it back. */
17061 idx = ((inst.operands[0].imm >> 4) & 7)
17062 | (((inst.instruction >> 8) & 3) << 3);
17063
17064 typebits = typetable[idx];
17065
17066 constraint (typebits == -1, _("bad list type for instruction"));
17067 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17068 _("bad element type for instruction"));
17069
17070 inst.instruction &= ~0xf00;
17071 inst.instruction |= typebits << 8;
17072 }
17073
17074 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17075 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17076 otherwise. The variable arguments are a list of pairs of legal (size, align)
17077 values, terminated with -1. */
17078
17079 static int
17080 neon_alignment_bit (int size, int align, int *do_alignment, ...)
17081 {
17082 va_list ap;
17083 int result = FAIL, thissize, thisalign;
17084
17085 if (!inst.operands[1].immisalign)
17086 {
17087 *do_alignment = 0;
17088 return SUCCESS;
17089 }
17090
17091 va_start (ap, do_alignment);
17092
17093 do
17094 {
17095 thissize = va_arg (ap, int);
17096 if (thissize == -1)
17097 break;
17098 thisalign = va_arg (ap, int);
17099
17100 if (size == thissize && align == thisalign)
17101 result = SUCCESS;
17102 }
17103 while (result != SUCCESS);
17104
17105 va_end (ap);
17106
17107 if (result == SUCCESS)
17108 *do_alignment = 1;
17109 else
17110 first_error (_("unsupported alignment for instruction"));
17111
17112 return result;
17113 }
17114
17115 static void
17116 do_neon_ld_st_lane (void)
17117 {
17118 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17119 int align_good, do_alignment = 0;
17120 int logsize = neon_logbits (et.size);
17121 int align = inst.operands[1].imm >> 8;
17122 int n = (inst.instruction >> 8) & 3;
17123 int max_el = 64 / et.size;
17124
17125 if (et.type == NT_invtype)
17126 return;
17127
17128 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
17129 _("bad list length"));
17130 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
17131 _("scalar index out of range"));
17132 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
17133 && et.size == 8,
17134 _("stride of 2 unavailable when element size is 8"));
17135
17136 switch (n)
17137 {
17138 case 0: /* VLD1 / VST1. */
17139 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
17140 32, 32, -1);
17141 if (align_good == FAIL)
17142 return;
17143 if (do_alignment)
17144 {
17145 unsigned alignbits = 0;
17146 switch (et.size)
17147 {
17148 case 16: alignbits = 0x1; break;
17149 case 32: alignbits = 0x3; break;
17150 default: ;
17151 }
17152 inst.instruction |= alignbits << 4;
17153 }
17154 break;
17155
17156 case 1: /* VLD2 / VST2. */
17157 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17158 16, 32, 32, 64, -1);
17159 if (align_good == FAIL)
17160 return;
17161 if (do_alignment)
17162 inst.instruction |= 1 << 4;
17163 break;
17164
17165 case 2: /* VLD3 / VST3. */
17166 constraint (inst.operands[1].immisalign,
17167 _("can't use alignment with this instruction"));
17168 break;
17169
17170 case 3: /* VLD4 / VST4. */
17171 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17172 16, 64, 32, 64, 32, 128, -1);
17173 if (align_good == FAIL)
17174 return;
17175 if (do_alignment)
17176 {
17177 unsigned alignbits = 0;
17178 switch (et.size)
17179 {
17180 case 8: alignbits = 0x1; break;
17181 case 16: alignbits = 0x1; break;
17182 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17183 default: ;
17184 }
17185 inst.instruction |= alignbits << 4;
17186 }
17187 break;
17188
17189 default: ;
17190 }
17191
17192 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17193 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17194 inst.instruction |= 1 << (4 + logsize);
17195
17196 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17197 inst.instruction |= logsize << 10;
17198 }
17199
17200 /* Encode single n-element structure to all lanes VLD<n> instructions. */
17201
17202 static void
17203 do_neon_ld_dup (void)
17204 {
17205 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17206 int align_good, do_alignment = 0;
17207
17208 if (et.type == NT_invtype)
17209 return;
17210
17211 switch ((inst.instruction >> 8) & 3)
17212 {
17213 case 0: /* VLD1. */
17214 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
17215 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17216 &do_alignment, 16, 16, 32, 32, -1);
17217 if (align_good == FAIL)
17218 return;
17219 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
17220 {
17221 case 1: break;
17222 case 2: inst.instruction |= 1 << 5; break;
17223 default: first_error (_("bad list length")); return;
17224 }
17225 inst.instruction |= neon_logbits (et.size) << 6;
17226 break;
17227
17228 case 1: /* VLD2. */
17229 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17230 &do_alignment, 8, 16, 16, 32, 32, 64,
17231 -1);
17232 if (align_good == FAIL)
17233 return;
17234 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
17235 _("bad list length"));
17236 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17237 inst.instruction |= 1 << 5;
17238 inst.instruction |= neon_logbits (et.size) << 6;
17239 break;
17240
17241 case 2: /* VLD3. */
17242 constraint (inst.operands[1].immisalign,
17243 _("can't use alignment with this instruction"));
17244 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
17245 _("bad list length"));
17246 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17247 inst.instruction |= 1 << 5;
17248 inst.instruction |= neon_logbits (et.size) << 6;
17249 break;
17250
17251 case 3: /* VLD4. */
17252 {
17253 int align = inst.operands[1].imm >> 8;
17254 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17255 16, 64, 32, 64, 32, 128, -1);
17256 if (align_good == FAIL)
17257 return;
17258 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17259 _("bad list length"));
17260 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17261 inst.instruction |= 1 << 5;
17262 if (et.size == 32 && align == 128)
17263 inst.instruction |= 0x3 << 6;
17264 else
17265 inst.instruction |= neon_logbits (et.size) << 6;
17266 }
17267 break;
17268
17269 default: ;
17270 }
17271
17272 inst.instruction |= do_alignment << 4;
17273 }
17274
17275 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17276 apart from bits [11:4]. */
17277
17278 static void
17279 do_neon_ldx_stx (void)
17280 {
17281 if (inst.operands[1].isreg)
17282 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17283
17284 switch (NEON_LANE (inst.operands[0].imm))
17285 {
17286 case NEON_INTERLEAVE_LANES:
17287 NEON_ENCODE (INTERLV, inst);
17288 do_neon_ld_st_interleave ();
17289 break;
17290
17291 case NEON_ALL_LANES:
17292 NEON_ENCODE (DUP, inst);
17293 if (inst.instruction == N_INV)
17294 {
17295 first_error ("only loads support such operands");
17296 break;
17297 }
17298 do_neon_ld_dup ();
17299 break;
17300
17301 default:
17302 NEON_ENCODE (LANE, inst);
17303 do_neon_ld_st_lane ();
17304 }
17305
17306 /* L bit comes from bit mask. */
17307 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17308 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17309 inst.instruction |= inst.operands[1].reg << 16;
17310
17311 if (inst.operands[1].postind)
17312 {
17313 int postreg = inst.operands[1].imm & 0xf;
17314 constraint (!inst.operands[1].immisreg,
17315 _("post-index must be a register"));
17316 constraint (postreg == 0xd || postreg == 0xf,
17317 _("bad register for post-index"));
17318 inst.instruction |= postreg;
17319 }
17320 else
17321 {
17322 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17323 constraint (inst.reloc.exp.X_op != O_constant
17324 || inst.reloc.exp.X_add_number != 0,
17325 BAD_ADDR_MODE);
17326
17327 if (inst.operands[1].writeback)
17328 {
17329 inst.instruction |= 0xd;
17330 }
17331 else
17332 inst.instruction |= 0xf;
17333 }
17334
17335 if (thumb_mode)
17336 inst.instruction |= 0xf9000000;
17337 else
17338 inst.instruction |= 0xf4000000;
17339 }
17340
17341 /* FP v8. */
17342 static void
17343 do_vfp_nsyn_fpv8 (enum neon_shape rs)
17344 {
17345 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17346 D register operands. */
17347 if (neon_shape_class[rs] == SC_DOUBLE)
17348 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17349 _(BAD_FPU));
17350
17351 NEON_ENCODE (FPV8, inst);
17352
17353 if (rs == NS_FFF || rs == NS_HHH)
17354 {
17355 do_vfp_sp_dyadic ();
17356
17357 /* ARMv8.2 fp16 instruction. */
17358 if (rs == NS_HHH)
17359 do_scalar_fp16_v82_encode ();
17360 }
17361 else
17362 do_vfp_dp_rd_rn_rm ();
17363
17364 if (rs == NS_DDD)
17365 inst.instruction |= 0x100;
17366
17367 inst.instruction |= 0xf0000000;
17368 }
17369
17370 static void
17371 do_vsel (void)
17372 {
17373 set_it_insn_type (OUTSIDE_IT_INSN);
17374
17375 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17376 first_error (_("invalid instruction shape"));
17377 }
17378
17379 static void
17380 do_vmaxnm (void)
17381 {
17382 set_it_insn_type (OUTSIDE_IT_INSN);
17383
17384 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17385 return;
17386
17387 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17388 return;
17389
17390 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
17391 }
17392
17393 static void
17394 do_vrint_1 (enum neon_cvt_mode mode)
17395 {
17396 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
17397 struct neon_type_el et;
17398
17399 if (rs == NS_NULL)
17400 return;
17401
17402 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17403 D register operands. */
17404 if (neon_shape_class[rs] == SC_DOUBLE)
17405 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17406 _(BAD_FPU));
17407
17408 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17409 | N_VFP);
17410 if (et.type != NT_invtype)
17411 {
17412 /* VFP encodings. */
17413 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17414 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17415 set_it_insn_type (OUTSIDE_IT_INSN);
17416
17417 NEON_ENCODE (FPV8, inst);
17418 if (rs == NS_FF || rs == NS_HH)
17419 do_vfp_sp_monadic ();
17420 else
17421 do_vfp_dp_rd_rm ();
17422
17423 switch (mode)
17424 {
17425 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17426 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17427 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17428 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17429 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17430 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17431 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17432 default: abort ();
17433 }
17434
17435 inst.instruction |= (rs == NS_DD) << 8;
17436 do_vfp_cond_or_thumb ();
17437
17438 /* ARMv8.2 fp16 vrint instruction. */
17439 if (rs == NS_HH)
17440 do_scalar_fp16_v82_encode ();
17441 }
17442 else
17443 {
17444 /* Neon encodings (or something broken...). */
17445 inst.error = NULL;
17446 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
17447
17448 if (et.type == NT_invtype)
17449 return;
17450
17451 set_it_insn_type (OUTSIDE_IT_INSN);
17452 NEON_ENCODE (FLOAT, inst);
17453
17454 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17455 return;
17456
17457 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17458 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17459 inst.instruction |= LOW4 (inst.operands[1].reg);
17460 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17461 inst.instruction |= neon_quad (rs) << 6;
17462 /* Mask off the original size bits and reencode them. */
17463 inst.instruction = ((inst.instruction & 0xfff3ffff)
17464 | neon_logbits (et.size) << 18);
17465
17466 switch (mode)
17467 {
17468 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17469 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17470 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17471 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17472 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17473 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17474 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17475 default: abort ();
17476 }
17477
17478 if (thumb_mode)
17479 inst.instruction |= 0xfc000000;
17480 else
17481 inst.instruction |= 0xf0000000;
17482 }
17483 }
17484
17485 static void
17486 do_vrintx (void)
17487 {
17488 do_vrint_1 (neon_cvt_mode_x);
17489 }
17490
17491 static void
17492 do_vrintz (void)
17493 {
17494 do_vrint_1 (neon_cvt_mode_z);
17495 }
17496
17497 static void
17498 do_vrintr (void)
17499 {
17500 do_vrint_1 (neon_cvt_mode_r);
17501 }
17502
17503 static void
17504 do_vrinta (void)
17505 {
17506 do_vrint_1 (neon_cvt_mode_a);
17507 }
17508
17509 static void
17510 do_vrintn (void)
17511 {
17512 do_vrint_1 (neon_cvt_mode_n);
17513 }
17514
17515 static void
17516 do_vrintp (void)
17517 {
17518 do_vrint_1 (neon_cvt_mode_p);
17519 }
17520
17521 static void
17522 do_vrintm (void)
17523 {
17524 do_vrint_1 (neon_cvt_mode_m);
17525 }
17526
17527 static unsigned
17528 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17529 {
17530 unsigned regno = NEON_SCALAR_REG (opnd);
17531 unsigned elno = NEON_SCALAR_INDEX (opnd);
17532
17533 if (elsize == 16 && elno < 2 && regno < 16)
17534 return regno | (elno << 4);
17535 else if (elsize == 32 && elno == 0)
17536 return regno;
17537
17538 first_error (_("scalar out of range"));
17539 return 0;
17540 }
17541
17542 static void
17543 do_vcmla (void)
17544 {
17545 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17546 _(BAD_FPU));
17547 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17548 unsigned rot = inst.reloc.exp.X_add_number;
17549 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17550 _("immediate out of range"));
17551 rot /= 90;
17552 if (inst.operands[2].isscalar)
17553 {
17554 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17555 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17556 N_KEY | N_F16 | N_F32).size;
17557 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17558 inst.is_neon = 1;
17559 inst.instruction = 0xfe000800;
17560 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17561 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17562 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17563 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17564 inst.instruction |= LOW4 (m);
17565 inst.instruction |= HI1 (m) << 5;
17566 inst.instruction |= neon_quad (rs) << 6;
17567 inst.instruction |= rot << 20;
17568 inst.instruction |= (size == 32) << 23;
17569 }
17570 else
17571 {
17572 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17573 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17574 N_KEY | N_F16 | N_F32).size;
17575 neon_three_same (neon_quad (rs), 0, -1);
17576 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17577 inst.instruction |= 0xfc200800;
17578 inst.instruction |= rot << 23;
17579 inst.instruction |= (size == 32) << 20;
17580 }
17581 }
17582
17583 static void
17584 do_vcadd (void)
17585 {
17586 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17587 _(BAD_FPU));
17588 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17589 unsigned rot = inst.reloc.exp.X_add_number;
17590 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17591 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17592 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17593 N_KEY | N_F16 | N_F32).size;
17594 neon_three_same (neon_quad (rs), 0, -1);
17595 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17596 inst.instruction |= 0xfc800800;
17597 inst.instruction |= (rot == 270) << 24;
17598 inst.instruction |= (size == 32) << 20;
17599 }
17600
17601 /* Dot Product instructions encoding support. */
17602
17603 static void
17604 do_neon_dotproduct (int unsigned_p)
17605 {
17606 enum neon_shape rs;
17607 unsigned scalar_oprd2 = 0;
17608 int high8;
17609
17610 if (inst.cond != COND_ALWAYS)
17611 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17612 "is UNPREDICTABLE"));
17613
17614 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17615 _(BAD_FPU));
17616
17617 /* Dot Product instructions are in three-same D/Q register format or the third
17618 operand can be a scalar index register. */
17619 if (inst.operands[2].isscalar)
17620 {
17621 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17622 high8 = 0xfe000000;
17623 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17624 }
17625 else
17626 {
17627 high8 = 0xfc000000;
17628 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17629 }
17630
17631 if (unsigned_p)
17632 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17633 else
17634 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17635
17636 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17637 Product instruction, so we pass 0 as the "ubit" parameter. And the
17638 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17639 neon_three_same (neon_quad (rs), 0, 32);
17640
17641 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17642 different NEON three-same encoding. */
17643 inst.instruction &= 0x00ffffff;
17644 inst.instruction |= high8;
17645 /* Encode 'U' bit which indicates signedness. */
17646 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17647 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17648 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17649 the instruction encoding. */
17650 if (inst.operands[2].isscalar)
17651 {
17652 inst.instruction &= 0xffffffd0;
17653 inst.instruction |= LOW4 (scalar_oprd2);
17654 inst.instruction |= HI1 (scalar_oprd2) << 5;
17655 }
17656 }
17657
17658 /* Dot Product instructions for signed integer. */
17659
17660 static void
17661 do_neon_dotproduct_s (void)
17662 {
17663 return do_neon_dotproduct (0);
17664 }
17665
17666 /* Dot Product instructions for unsigned integer. */
17667
17668 static void
17669 do_neon_dotproduct_u (void)
17670 {
17671 return do_neon_dotproduct (1);
17672 }
17673
17674 /* Crypto v1 instructions. */
17675 static void
17676 do_crypto_2op_1 (unsigned elttype, int op)
17677 {
17678 set_it_insn_type (OUTSIDE_IT_INSN);
17679
17680 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17681 == NT_invtype)
17682 return;
17683
17684 inst.error = NULL;
17685
17686 NEON_ENCODE (INTEGER, inst);
17687 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17688 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17689 inst.instruction |= LOW4 (inst.operands[1].reg);
17690 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17691 if (op != -1)
17692 inst.instruction |= op << 6;
17693
17694 if (thumb_mode)
17695 inst.instruction |= 0xfc000000;
17696 else
17697 inst.instruction |= 0xf0000000;
17698 }
17699
17700 static void
17701 do_crypto_3op_1 (int u, int op)
17702 {
17703 set_it_insn_type (OUTSIDE_IT_INSN);
17704
17705 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17706 N_32 | N_UNT | N_KEY).type == NT_invtype)
17707 return;
17708
17709 inst.error = NULL;
17710
17711 NEON_ENCODE (INTEGER, inst);
17712 neon_three_same (1, u, 8 << op);
17713 }
17714
17715 static void
17716 do_aese (void)
17717 {
17718 do_crypto_2op_1 (N_8, 0);
17719 }
17720
17721 static void
17722 do_aesd (void)
17723 {
17724 do_crypto_2op_1 (N_8, 1);
17725 }
17726
17727 static void
17728 do_aesmc (void)
17729 {
17730 do_crypto_2op_1 (N_8, 2);
17731 }
17732
17733 static void
17734 do_aesimc (void)
17735 {
17736 do_crypto_2op_1 (N_8, 3);
17737 }
17738
17739 static void
17740 do_sha1c (void)
17741 {
17742 do_crypto_3op_1 (0, 0);
17743 }
17744
17745 static void
17746 do_sha1p (void)
17747 {
17748 do_crypto_3op_1 (0, 1);
17749 }
17750
17751 static void
17752 do_sha1m (void)
17753 {
17754 do_crypto_3op_1 (0, 2);
17755 }
17756
17757 static void
17758 do_sha1su0 (void)
17759 {
17760 do_crypto_3op_1 (0, 3);
17761 }
17762
17763 static void
17764 do_sha256h (void)
17765 {
17766 do_crypto_3op_1 (1, 0);
17767 }
17768
17769 static void
17770 do_sha256h2 (void)
17771 {
17772 do_crypto_3op_1 (1, 1);
17773 }
17774
17775 static void
17776 do_sha256su1 (void)
17777 {
17778 do_crypto_3op_1 (1, 2);
17779 }
17780
17781 static void
17782 do_sha1h (void)
17783 {
17784 do_crypto_2op_1 (N_32, -1);
17785 }
17786
17787 static void
17788 do_sha1su1 (void)
17789 {
17790 do_crypto_2op_1 (N_32, 0);
17791 }
17792
17793 static void
17794 do_sha256su0 (void)
17795 {
17796 do_crypto_2op_1 (N_32, 1);
17797 }
17798
17799 static void
17800 do_crc32_1 (unsigned int poly, unsigned int sz)
17801 {
17802 unsigned int Rd = inst.operands[0].reg;
17803 unsigned int Rn = inst.operands[1].reg;
17804 unsigned int Rm = inst.operands[2].reg;
17805
17806 set_it_insn_type (OUTSIDE_IT_INSN);
17807 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17808 inst.instruction |= LOW4 (Rn) << 16;
17809 inst.instruction |= LOW4 (Rm);
17810 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17811 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17812
17813 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17814 as_warn (UNPRED_REG ("r15"));
17815 }
17816
17817 static void
17818 do_crc32b (void)
17819 {
17820 do_crc32_1 (0, 0);
17821 }
17822
17823 static void
17824 do_crc32h (void)
17825 {
17826 do_crc32_1 (0, 1);
17827 }
17828
17829 static void
17830 do_crc32w (void)
17831 {
17832 do_crc32_1 (0, 2);
17833 }
17834
17835 static void
17836 do_crc32cb (void)
17837 {
17838 do_crc32_1 (1, 0);
17839 }
17840
17841 static void
17842 do_crc32ch (void)
17843 {
17844 do_crc32_1 (1, 1);
17845 }
17846
17847 static void
17848 do_crc32cw (void)
17849 {
17850 do_crc32_1 (1, 2);
17851 }
17852
17853 static void
17854 do_vjcvt (void)
17855 {
17856 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17857 _(BAD_FPU));
17858 neon_check_type (2, NS_FD, N_S32, N_F64);
17859 do_vfp_sp_dp_cvt ();
17860 do_vfp_cond_or_thumb ();
17861 }
17862
17863 \f
17864 /* Overall per-instruction processing. */
17865
17866 /* We need to be able to fix up arbitrary expressions in some statements.
17867 This is so that we can handle symbols that are an arbitrary distance from
17868 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17869 which returns part of an address in a form which will be valid for
17870 a data instruction. We do this by pushing the expression into a symbol
17871 in the expr_section, and creating a fix for that. */
17872
17873 static void
17874 fix_new_arm (fragS * frag,
17875 int where,
17876 short int size,
17877 expressionS * exp,
17878 int pc_rel,
17879 int reloc)
17880 {
17881 fixS * new_fix;
17882
17883 switch (exp->X_op)
17884 {
17885 case O_constant:
17886 if (pc_rel)
17887 {
17888 /* Create an absolute valued symbol, so we have something to
17889 refer to in the object file. Unfortunately for us, gas's
17890 generic expression parsing will already have folded out
17891 any use of .set foo/.type foo %function that may have
17892 been used to set type information of the target location,
17893 that's being specified symbolically. We have to presume
17894 the user knows what they are doing. */
17895 char name[16 + 8];
17896 symbolS *symbol;
17897
17898 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17899
17900 symbol = symbol_find_or_make (name);
17901 S_SET_SEGMENT (symbol, absolute_section);
17902 symbol_set_frag (symbol, &zero_address_frag);
17903 S_SET_VALUE (symbol, exp->X_add_number);
17904 exp->X_op = O_symbol;
17905 exp->X_add_symbol = symbol;
17906 exp->X_add_number = 0;
17907 }
17908 /* FALLTHROUGH */
17909 case O_symbol:
17910 case O_add:
17911 case O_subtract:
17912 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
17913 (enum bfd_reloc_code_real) reloc);
17914 break;
17915
17916 default:
17917 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
17918 pc_rel, (enum bfd_reloc_code_real) reloc);
17919 break;
17920 }
17921
17922 /* Mark whether the fix is to a THUMB instruction, or an ARM
17923 instruction. */
17924 new_fix->tc_fix_data = thumb_mode;
17925 }
17926
17927 /* Create a frg for an instruction requiring relaxation. */
17928 static void
17929 output_relax_insn (void)
17930 {
17931 char * to;
17932 symbolS *sym;
17933 int offset;
17934
17935 /* The size of the instruction is unknown, so tie the debug info to the
17936 start of the instruction. */
17937 dwarf2_emit_insn (0);
17938
17939 switch (inst.reloc.exp.X_op)
17940 {
17941 case O_symbol:
17942 sym = inst.reloc.exp.X_add_symbol;
17943 offset = inst.reloc.exp.X_add_number;
17944 break;
17945 case O_constant:
17946 sym = NULL;
17947 offset = inst.reloc.exp.X_add_number;
17948 break;
17949 default:
17950 sym = make_expr_symbol (&inst.reloc.exp);
17951 offset = 0;
17952 break;
17953 }
17954 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17955 inst.relax, sym, offset, NULL/*offset, opcode*/);
17956 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
17957 }
17958
17959 /* Write a 32-bit thumb instruction to buf. */
17960 static void
17961 put_thumb32_insn (char * buf, unsigned long insn)
17962 {
17963 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17964 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17965 }
17966
17967 static void
17968 output_inst (const char * str)
17969 {
17970 char * to = NULL;
17971
17972 if (inst.error)
17973 {
17974 as_bad ("%s -- `%s'", inst.error, str);
17975 return;
17976 }
17977 if (inst.relax)
17978 {
17979 output_relax_insn ();
17980 return;
17981 }
17982 if (inst.size == 0)
17983 return;
17984
17985 to = frag_more (inst.size);
17986 /* PR 9814: Record the thumb mode into the current frag so that we know
17987 what type of NOP padding to use, if necessary. We override any previous
17988 setting so that if the mode has changed then the NOPS that we use will
17989 match the encoding of the last instruction in the frag. */
17990 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
17991
17992 if (thumb_mode && (inst.size > THUMB_SIZE))
17993 {
17994 gas_assert (inst.size == (2 * THUMB_SIZE));
17995 put_thumb32_insn (to, inst.instruction);
17996 }
17997 else if (inst.size > INSN_SIZE)
17998 {
17999 gas_assert (inst.size == (2 * INSN_SIZE));
18000 md_number_to_chars (to, inst.instruction, INSN_SIZE);
18001 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
18002 }
18003 else
18004 md_number_to_chars (to, inst.instruction, inst.size);
18005
18006 if (inst.reloc.type != BFD_RELOC_UNUSED)
18007 fix_new_arm (frag_now, to - frag_now->fr_literal,
18008 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
18009 inst.reloc.type);
18010
18011 dwarf2_emit_insn (inst.size);
18012 }
18013
18014 static char *
18015 output_it_inst (int cond, int mask, char * to)
18016 {
18017 unsigned long instruction = 0xbf00;
18018
18019 mask &= 0xf;
18020 instruction |= mask;
18021 instruction |= cond << 4;
18022
18023 if (to == NULL)
18024 {
18025 to = frag_more (2);
18026 #ifdef OBJ_ELF
18027 dwarf2_emit_insn (2);
18028 #endif
18029 }
18030
18031 md_number_to_chars (to, instruction, 2);
18032
18033 return to;
18034 }
18035
18036 /* Tag values used in struct asm_opcode's tag field. */
18037 enum opcode_tag
18038 {
18039 OT_unconditional, /* Instruction cannot be conditionalized.
18040 The ARM condition field is still 0xE. */
18041 OT_unconditionalF, /* Instruction cannot be conditionalized
18042 and carries 0xF in its ARM condition field. */
18043 OT_csuffix, /* Instruction takes a conditional suffix. */
18044 OT_csuffixF, /* Some forms of the instruction take a conditional
18045 suffix, others place 0xF where the condition field
18046 would be. */
18047 OT_cinfix3, /* Instruction takes a conditional infix,
18048 beginning at character index 3. (In
18049 unified mode, it becomes a suffix.) */
18050 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18051 tsts, cmps, cmns, and teqs. */
18052 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18053 character index 3, even in unified mode. Used for
18054 legacy instructions where suffix and infix forms
18055 may be ambiguous. */
18056 OT_csuf_or_in3, /* Instruction takes either a conditional
18057 suffix or an infix at character index 3. */
18058 OT_odd_infix_unc, /* This is the unconditional variant of an
18059 instruction that takes a conditional infix
18060 at an unusual position. In unified mode,
18061 this variant will accept a suffix. */
18062 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18063 are the conditional variants of instructions that
18064 take conditional infixes in unusual positions.
18065 The infix appears at character index
18066 (tag - OT_odd_infix_0). These are not accepted
18067 in unified mode. */
18068 };
18069
18070 /* Subroutine of md_assemble, responsible for looking up the primary
18071 opcode from the mnemonic the user wrote. STR points to the
18072 beginning of the mnemonic.
18073
18074 This is not simply a hash table lookup, because of conditional
18075 variants. Most instructions have conditional variants, which are
18076 expressed with a _conditional affix_ to the mnemonic. If we were
18077 to encode each conditional variant as a literal string in the opcode
18078 table, it would have approximately 20,000 entries.
18079
18080 Most mnemonics take this affix as a suffix, and in unified syntax,
18081 'most' is upgraded to 'all'. However, in the divided syntax, some
18082 instructions take the affix as an infix, notably the s-variants of
18083 the arithmetic instructions. Of those instructions, all but six
18084 have the infix appear after the third character of the mnemonic.
18085
18086 Accordingly, the algorithm for looking up primary opcodes given
18087 an identifier is:
18088
18089 1. Look up the identifier in the opcode table.
18090 If we find a match, go to step U.
18091
18092 2. Look up the last two characters of the identifier in the
18093 conditions table. If we find a match, look up the first N-2
18094 characters of the identifier in the opcode table. If we
18095 find a match, go to step CE.
18096
18097 3. Look up the fourth and fifth characters of the identifier in
18098 the conditions table. If we find a match, extract those
18099 characters from the identifier, and look up the remaining
18100 characters in the opcode table. If we find a match, go
18101 to step CM.
18102
18103 4. Fail.
18104
18105 U. Examine the tag field of the opcode structure, in case this is
18106 one of the six instructions with its conditional infix in an
18107 unusual place. If it is, the tag tells us where to find the
18108 infix; look it up in the conditions table and set inst.cond
18109 accordingly. Otherwise, this is an unconditional instruction.
18110 Again set inst.cond accordingly. Return the opcode structure.
18111
18112 CE. Examine the tag field to make sure this is an instruction that
18113 should receive a conditional suffix. If it is not, fail.
18114 Otherwise, set inst.cond from the suffix we already looked up,
18115 and return the opcode structure.
18116
18117 CM. Examine the tag field to make sure this is an instruction that
18118 should receive a conditional infix after the third character.
18119 If it is not, fail. Otherwise, undo the edits to the current
18120 line of input and proceed as for case CE. */
18121
18122 static const struct asm_opcode *
18123 opcode_lookup (char **str)
18124 {
18125 char *end, *base;
18126 char *affix;
18127 const struct asm_opcode *opcode;
18128 const struct asm_cond *cond;
18129 char save[2];
18130
18131 /* Scan up to the end of the mnemonic, which must end in white space,
18132 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
18133 for (base = end = *str; *end != '\0'; end++)
18134 if (*end == ' ' || *end == '.')
18135 break;
18136
18137 if (end == base)
18138 return NULL;
18139
18140 /* Handle a possible width suffix and/or Neon type suffix. */
18141 if (end[0] == '.')
18142 {
18143 int offset = 2;
18144
18145 /* The .w and .n suffixes are only valid if the unified syntax is in
18146 use. */
18147 if (unified_syntax && end[1] == 'w')
18148 inst.size_req = 4;
18149 else if (unified_syntax && end[1] == 'n')
18150 inst.size_req = 2;
18151 else
18152 offset = 0;
18153
18154 inst.vectype.elems = 0;
18155
18156 *str = end + offset;
18157
18158 if (end[offset] == '.')
18159 {
18160 /* See if we have a Neon type suffix (possible in either unified or
18161 non-unified ARM syntax mode). */
18162 if (parse_neon_type (&inst.vectype, str) == FAIL)
18163 return NULL;
18164 }
18165 else if (end[offset] != '\0' && end[offset] != ' ')
18166 return NULL;
18167 }
18168 else
18169 *str = end;
18170
18171 /* Look for unaffixed or special-case affixed mnemonic. */
18172 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18173 end - base);
18174 if (opcode)
18175 {
18176 /* step U */
18177 if (opcode->tag < OT_odd_infix_0)
18178 {
18179 inst.cond = COND_ALWAYS;
18180 return opcode;
18181 }
18182
18183 if (warn_on_deprecated && unified_syntax)
18184 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18185 affix = base + (opcode->tag - OT_odd_infix_0);
18186 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18187 gas_assert (cond);
18188
18189 inst.cond = cond->value;
18190 return opcode;
18191 }
18192
18193 /* Cannot have a conditional suffix on a mnemonic of less than two
18194 characters. */
18195 if (end - base < 3)
18196 return NULL;
18197
18198 /* Look for suffixed mnemonic. */
18199 affix = end - 2;
18200 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18201 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18202 affix - base);
18203 if (opcode && cond)
18204 {
18205 /* step CE */
18206 switch (opcode->tag)
18207 {
18208 case OT_cinfix3_legacy:
18209 /* Ignore conditional suffixes matched on infix only mnemonics. */
18210 break;
18211
18212 case OT_cinfix3:
18213 case OT_cinfix3_deprecated:
18214 case OT_odd_infix_unc:
18215 if (!unified_syntax)
18216 return NULL;
18217 /* Fall through. */
18218
18219 case OT_csuffix:
18220 case OT_csuffixF:
18221 case OT_csuf_or_in3:
18222 inst.cond = cond->value;
18223 return opcode;
18224
18225 case OT_unconditional:
18226 case OT_unconditionalF:
18227 if (thumb_mode)
18228 inst.cond = cond->value;
18229 else
18230 {
18231 /* Delayed diagnostic. */
18232 inst.error = BAD_COND;
18233 inst.cond = COND_ALWAYS;
18234 }
18235 return opcode;
18236
18237 default:
18238 return NULL;
18239 }
18240 }
18241
18242 /* Cannot have a usual-position infix on a mnemonic of less than
18243 six characters (five would be a suffix). */
18244 if (end - base < 6)
18245 return NULL;
18246
18247 /* Look for infixed mnemonic in the usual position. */
18248 affix = base + 3;
18249 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18250 if (!cond)
18251 return NULL;
18252
18253 memcpy (save, affix, 2);
18254 memmove (affix, affix + 2, (end - affix) - 2);
18255 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18256 (end - base) - 2);
18257 memmove (affix + 2, affix, (end - affix) - 2);
18258 memcpy (affix, save, 2);
18259
18260 if (opcode
18261 && (opcode->tag == OT_cinfix3
18262 || opcode->tag == OT_cinfix3_deprecated
18263 || opcode->tag == OT_csuf_or_in3
18264 || opcode->tag == OT_cinfix3_legacy))
18265 {
18266 /* Step CM. */
18267 if (warn_on_deprecated && unified_syntax
18268 && (opcode->tag == OT_cinfix3
18269 || opcode->tag == OT_cinfix3_deprecated))
18270 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18271
18272 inst.cond = cond->value;
18273 return opcode;
18274 }
18275
18276 return NULL;
18277 }
18278
18279 /* This function generates an initial IT instruction, leaving its block
18280 virtually open for the new instructions. Eventually,
18281 the mask will be updated by now_it_add_mask () each time
18282 a new instruction needs to be included in the IT block.
18283 Finally, the block is closed with close_automatic_it_block ().
18284 The block closure can be requested either from md_assemble (),
18285 a tencode (), or due to a label hook. */
18286
18287 static void
18288 new_automatic_it_block (int cond)
18289 {
18290 now_it.state = AUTOMATIC_IT_BLOCK;
18291 now_it.mask = 0x18;
18292 now_it.cc = cond;
18293 now_it.block_length = 1;
18294 mapping_state (MAP_THUMB);
18295 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
18296 now_it.warn_deprecated = FALSE;
18297 now_it.insn_cond = TRUE;
18298 }
18299
18300 /* Close an automatic IT block.
18301 See comments in new_automatic_it_block (). */
18302
18303 static void
18304 close_automatic_it_block (void)
18305 {
18306 now_it.mask = 0x10;
18307 now_it.block_length = 0;
18308 }
18309
18310 /* Update the mask of the current automatically-generated IT
18311 instruction. See comments in new_automatic_it_block (). */
18312
18313 static void
18314 now_it_add_mask (int cond)
18315 {
18316 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18317 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
18318 | ((bitvalue) << (nbit)))
18319 const int resulting_bit = (cond & 1);
18320
18321 now_it.mask &= 0xf;
18322 now_it.mask = SET_BIT_VALUE (now_it.mask,
18323 resulting_bit,
18324 (5 - now_it.block_length));
18325 now_it.mask = SET_BIT_VALUE (now_it.mask,
18326 1,
18327 ((5 - now_it.block_length) - 1) );
18328 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18329
18330 #undef CLEAR_BIT
18331 #undef SET_BIT_VALUE
18332 }
18333
18334 /* The IT blocks handling machinery is accessed through the these functions:
18335 it_fsm_pre_encode () from md_assemble ()
18336 set_it_insn_type () optional, from the tencode functions
18337 set_it_insn_type_last () ditto
18338 in_it_block () ditto
18339 it_fsm_post_encode () from md_assemble ()
18340 force_automatic_it_block_close () from label handling functions
18341
18342 Rationale:
18343 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
18344 initializing the IT insn type with a generic initial value depending
18345 on the inst.condition.
18346 2) During the tencode function, two things may happen:
18347 a) The tencode function overrides the IT insn type by
18348 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18349 b) The tencode function queries the IT block state by
18350 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18351
18352 Both set_it_insn_type and in_it_block run the internal FSM state
18353 handling function (handle_it_state), because: a) setting the IT insn
18354 type may incur in an invalid state (exiting the function),
18355 and b) querying the state requires the FSM to be updated.
18356 Specifically we want to avoid creating an IT block for conditional
18357 branches, so it_fsm_pre_encode is actually a guess and we can't
18358 determine whether an IT block is required until the tencode () routine
18359 has decided what type of instruction this actually it.
18360 Because of this, if set_it_insn_type and in_it_block have to be used,
18361 set_it_insn_type has to be called first.
18362
18363 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18364 determines the insn IT type depending on the inst.cond code.
18365 When a tencode () routine encodes an instruction that can be
18366 either outside an IT block, or, in the case of being inside, has to be
18367 the last one, set_it_insn_type_last () will determine the proper
18368 IT instruction type based on the inst.cond code. Otherwise,
18369 set_it_insn_type can be called for overriding that logic or
18370 for covering other cases.
18371
18372 Calling handle_it_state () may not transition the IT block state to
18373 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
18374 still queried. Instead, if the FSM determines that the state should
18375 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18376 after the tencode () function: that's what it_fsm_post_encode () does.
18377
18378 Since in_it_block () calls the state handling function to get an
18379 updated state, an error may occur (due to invalid insns combination).
18380 In that case, inst.error is set.
18381 Therefore, inst.error has to be checked after the execution of
18382 the tencode () routine.
18383
18384 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
18385 any pending state change (if any) that didn't take place in
18386 handle_it_state () as explained above. */
18387
18388 static void
18389 it_fsm_pre_encode (void)
18390 {
18391 if (inst.cond != COND_ALWAYS)
18392 inst.it_insn_type = INSIDE_IT_INSN;
18393 else
18394 inst.it_insn_type = OUTSIDE_IT_INSN;
18395
18396 now_it.state_handled = 0;
18397 }
18398
18399 /* IT state FSM handling function. */
18400
18401 static int
18402 handle_it_state (void)
18403 {
18404 now_it.state_handled = 1;
18405 now_it.insn_cond = FALSE;
18406
18407 switch (now_it.state)
18408 {
18409 case OUTSIDE_IT_BLOCK:
18410 switch (inst.it_insn_type)
18411 {
18412 case OUTSIDE_IT_INSN:
18413 break;
18414
18415 case INSIDE_IT_INSN:
18416 case INSIDE_IT_LAST_INSN:
18417 if (thumb_mode == 0)
18418 {
18419 if (unified_syntax
18420 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18421 as_tsktsk (_("Warning: conditional outside an IT block"\
18422 " for Thumb."));
18423 }
18424 else
18425 {
18426 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
18427 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
18428 {
18429 /* Automatically generate the IT instruction. */
18430 new_automatic_it_block (inst.cond);
18431 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18432 close_automatic_it_block ();
18433 }
18434 else
18435 {
18436 inst.error = BAD_OUT_IT;
18437 return FAIL;
18438 }
18439 }
18440 break;
18441
18442 case IF_INSIDE_IT_LAST_INSN:
18443 case NEUTRAL_IT_INSN:
18444 break;
18445
18446 case IT_INSN:
18447 now_it.state = MANUAL_IT_BLOCK;
18448 now_it.block_length = 0;
18449 break;
18450 }
18451 break;
18452
18453 case AUTOMATIC_IT_BLOCK:
18454 /* Three things may happen now:
18455 a) We should increment current it block size;
18456 b) We should close current it block (closing insn or 4 insns);
18457 c) We should close current it block and start a new one (due
18458 to incompatible conditions or
18459 4 insns-length block reached). */
18460
18461 switch (inst.it_insn_type)
18462 {
18463 case OUTSIDE_IT_INSN:
18464 /* The closure of the block shall happen immediately,
18465 so any in_it_block () call reports the block as closed. */
18466 force_automatic_it_block_close ();
18467 break;
18468
18469 case INSIDE_IT_INSN:
18470 case INSIDE_IT_LAST_INSN:
18471 case IF_INSIDE_IT_LAST_INSN:
18472 now_it.block_length++;
18473
18474 if (now_it.block_length > 4
18475 || !now_it_compatible (inst.cond))
18476 {
18477 force_automatic_it_block_close ();
18478 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18479 new_automatic_it_block (inst.cond);
18480 }
18481 else
18482 {
18483 now_it.insn_cond = TRUE;
18484 now_it_add_mask (inst.cond);
18485 }
18486
18487 if (now_it.state == AUTOMATIC_IT_BLOCK
18488 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18489 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18490 close_automatic_it_block ();
18491 break;
18492
18493 case NEUTRAL_IT_INSN:
18494 now_it.block_length++;
18495 now_it.insn_cond = TRUE;
18496
18497 if (now_it.block_length > 4)
18498 force_automatic_it_block_close ();
18499 else
18500 now_it_add_mask (now_it.cc & 1);
18501 break;
18502
18503 case IT_INSN:
18504 close_automatic_it_block ();
18505 now_it.state = MANUAL_IT_BLOCK;
18506 break;
18507 }
18508 break;
18509
18510 case MANUAL_IT_BLOCK:
18511 {
18512 /* Check conditional suffixes. */
18513 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18514 int is_last;
18515 now_it.mask <<= 1;
18516 now_it.mask &= 0x1f;
18517 is_last = (now_it.mask == 0x10);
18518 now_it.insn_cond = TRUE;
18519
18520 switch (inst.it_insn_type)
18521 {
18522 case OUTSIDE_IT_INSN:
18523 inst.error = BAD_NOT_IT;
18524 return FAIL;
18525
18526 case INSIDE_IT_INSN:
18527 if (cond != inst.cond)
18528 {
18529 inst.error = BAD_IT_COND;
18530 return FAIL;
18531 }
18532 break;
18533
18534 case INSIDE_IT_LAST_INSN:
18535 case IF_INSIDE_IT_LAST_INSN:
18536 if (cond != inst.cond)
18537 {
18538 inst.error = BAD_IT_COND;
18539 return FAIL;
18540 }
18541 if (!is_last)
18542 {
18543 inst.error = BAD_BRANCH;
18544 return FAIL;
18545 }
18546 break;
18547
18548 case NEUTRAL_IT_INSN:
18549 /* The BKPT instruction is unconditional even in an IT block. */
18550 break;
18551
18552 case IT_INSN:
18553 inst.error = BAD_IT_IT;
18554 return FAIL;
18555 }
18556 }
18557 break;
18558 }
18559
18560 return SUCCESS;
18561 }
18562
18563 struct depr_insn_mask
18564 {
18565 unsigned long pattern;
18566 unsigned long mask;
18567 const char* description;
18568 };
18569
18570 /* List of 16-bit instruction patterns deprecated in an IT block in
18571 ARMv8. */
18572 static const struct depr_insn_mask depr_it_insns[] = {
18573 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18574 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18575 { 0xa000, 0xb800, N_("ADR") },
18576 { 0x4800, 0xf800, N_("Literal loads") },
18577 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18578 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
18579 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18580 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18581 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
18582 { 0, 0, NULL }
18583 };
18584
18585 static void
18586 it_fsm_post_encode (void)
18587 {
18588 int is_last;
18589
18590 if (!now_it.state_handled)
18591 handle_it_state ();
18592
18593 if (now_it.insn_cond
18594 && !now_it.warn_deprecated
18595 && warn_on_deprecated
18596 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
18597 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
18598 {
18599 if (inst.instruction >= 0x10000)
18600 {
18601 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
18602 "performance deprecated in ARMv8-A and ARMv8-R"));
18603 now_it.warn_deprecated = TRUE;
18604 }
18605 else
18606 {
18607 const struct depr_insn_mask *p = depr_it_insns;
18608
18609 while (p->mask != 0)
18610 {
18611 if ((inst.instruction & p->mask) == p->pattern)
18612 {
18613 as_tsktsk (_("IT blocks containing 16-bit Thumb "
18614 "instructions of the following class are "
18615 "performance deprecated in ARMv8-A and "
18616 "ARMv8-R: %s"), p->description);
18617 now_it.warn_deprecated = TRUE;
18618 break;
18619 }
18620
18621 ++p;
18622 }
18623 }
18624
18625 if (now_it.block_length > 1)
18626 {
18627 as_tsktsk (_("IT blocks containing more than one conditional "
18628 "instruction are performance deprecated in ARMv8-A and "
18629 "ARMv8-R"));
18630 now_it.warn_deprecated = TRUE;
18631 }
18632 }
18633
18634 is_last = (now_it.mask == 0x10);
18635 if (is_last)
18636 {
18637 now_it.state = OUTSIDE_IT_BLOCK;
18638 now_it.mask = 0;
18639 }
18640 }
18641
18642 static void
18643 force_automatic_it_block_close (void)
18644 {
18645 if (now_it.state == AUTOMATIC_IT_BLOCK)
18646 {
18647 close_automatic_it_block ();
18648 now_it.state = OUTSIDE_IT_BLOCK;
18649 now_it.mask = 0;
18650 }
18651 }
18652
18653 static int
18654 in_it_block (void)
18655 {
18656 if (!now_it.state_handled)
18657 handle_it_state ();
18658
18659 return now_it.state != OUTSIDE_IT_BLOCK;
18660 }
18661
18662 /* Whether OPCODE only has T32 encoding. Since this function is only used by
18663 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18664 here, hence the "known" in the function name. */
18665
18666 static bfd_boolean
18667 known_t32_only_insn (const struct asm_opcode *opcode)
18668 {
18669 /* Original Thumb-1 wide instruction. */
18670 if (opcode->tencode == do_t_blx
18671 || opcode->tencode == do_t_branch23
18672 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18673 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18674 return TRUE;
18675
18676 /* Wide-only instruction added to ARMv8-M Baseline. */
18677 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
18678 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18679 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18680 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18681 return TRUE;
18682
18683 return FALSE;
18684 }
18685
18686 /* Whether wide instruction variant can be used if available for a valid OPCODE
18687 in ARCH. */
18688
18689 static bfd_boolean
18690 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18691 {
18692 if (known_t32_only_insn (opcode))
18693 return TRUE;
18694
18695 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18696 of variant T3 of B.W is checked in do_t_branch. */
18697 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18698 && opcode->tencode == do_t_branch)
18699 return TRUE;
18700
18701 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18702 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18703 && opcode->tencode == do_t_mov_cmp
18704 /* Make sure CMP instruction is not affected. */
18705 && opcode->aencode == do_mov)
18706 return TRUE;
18707
18708 /* Wide instruction variants of all instructions with narrow *and* wide
18709 variants become available with ARMv6t2. Other opcodes are either
18710 narrow-only or wide-only and are thus available if OPCODE is valid. */
18711 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18712 return TRUE;
18713
18714 /* OPCODE with narrow only instruction variant or wide variant not
18715 available. */
18716 return FALSE;
18717 }
18718
18719 void
18720 md_assemble (char *str)
18721 {
18722 char *p = str;
18723 const struct asm_opcode * opcode;
18724
18725 /* Align the previous label if needed. */
18726 if (last_label_seen != NULL)
18727 {
18728 symbol_set_frag (last_label_seen, frag_now);
18729 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18730 S_SET_SEGMENT (last_label_seen, now_seg);
18731 }
18732
18733 memset (&inst, '\0', sizeof (inst));
18734 inst.reloc.type = BFD_RELOC_UNUSED;
18735
18736 opcode = opcode_lookup (&p);
18737 if (!opcode)
18738 {
18739 /* It wasn't an instruction, but it might be a register alias of
18740 the form alias .req reg, or a Neon .dn/.qn directive. */
18741 if (! create_register_alias (str, p)
18742 && ! create_neon_reg_alias (str, p))
18743 as_bad (_("bad instruction `%s'"), str);
18744
18745 return;
18746 }
18747
18748 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
18749 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
18750
18751 /* The value which unconditional instructions should have in place of the
18752 condition field. */
18753 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18754
18755 if (thumb_mode)
18756 {
18757 arm_feature_set variant;
18758
18759 variant = cpu_variant;
18760 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
18761 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18762 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
18763 /* Check that this instruction is supported for this CPU. */
18764 if (!opcode->tvariant
18765 || (thumb_mode == 1
18766 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
18767 {
18768 if (opcode->tencode == do_t_swi)
18769 as_bad (_("SVC is not permitted on this architecture"));
18770 else
18771 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
18772 return;
18773 }
18774 if (inst.cond != COND_ALWAYS && !unified_syntax
18775 && opcode->tencode != do_t_branch)
18776 {
18777 as_bad (_("Thumb does not support conditional execution"));
18778 return;
18779 }
18780
18781 /* Two things are addressed here:
18782 1) Implicit require narrow instructions on Thumb-1.
18783 This avoids relaxation accidentally introducing Thumb-2
18784 instructions.
18785 2) Reject wide instructions in non Thumb-2 cores.
18786
18787 Only instructions with narrow and wide variants need to be handled
18788 but selecting all non wide-only instructions is easier. */
18789 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
18790 && !t32_insn_ok (variant, opcode))
18791 {
18792 if (inst.size_req == 0)
18793 inst.size_req = 2;
18794 else if (inst.size_req == 4)
18795 {
18796 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18797 as_bad (_("selected processor does not support 32bit wide "
18798 "variant of instruction `%s'"), str);
18799 else
18800 as_bad (_("selected processor does not support `%s' in "
18801 "Thumb-2 mode"), str);
18802 return;
18803 }
18804 }
18805
18806 inst.instruction = opcode->tvalue;
18807
18808 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
18809 {
18810 /* Prepare the it_insn_type for those encodings that don't set
18811 it. */
18812 it_fsm_pre_encode ();
18813
18814 opcode->tencode ();
18815
18816 it_fsm_post_encode ();
18817 }
18818
18819 if (!(inst.error || inst.relax))
18820 {
18821 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
18822 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18823 if (inst.size_req && inst.size_req != inst.size)
18824 {
18825 as_bad (_("cannot honor width suffix -- `%s'"), str);
18826 return;
18827 }
18828 }
18829
18830 /* Something has gone badly wrong if we try to relax a fixed size
18831 instruction. */
18832 gas_assert (inst.size_req == 0 || !inst.relax);
18833
18834 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18835 *opcode->tvariant);
18836 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
18837 set those bits when Thumb-2 32-bit instructions are seen. The impact
18838 of relaxable instructions will be considered later after we finish all
18839 relaxation. */
18840 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18841 variant = arm_arch_none;
18842 else
18843 variant = cpu_variant;
18844 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
18845 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18846 arm_ext_v6t2);
18847
18848 check_neon_suffixes;
18849
18850 if (!inst.error)
18851 {
18852 mapping_state (MAP_THUMB);
18853 }
18854 }
18855 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
18856 {
18857 bfd_boolean is_bx;
18858
18859 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18860 is_bx = (opcode->aencode == do_bx);
18861
18862 /* Check that this instruction is supported for this CPU. */
18863 if (!(is_bx && fix_v4bx)
18864 && !(opcode->avariant &&
18865 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
18866 {
18867 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
18868 return;
18869 }
18870 if (inst.size_req)
18871 {
18872 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18873 return;
18874 }
18875
18876 inst.instruction = opcode->avalue;
18877 if (opcode->tag == OT_unconditionalF)
18878 inst.instruction |= 0xFU << 28;
18879 else
18880 inst.instruction |= inst.cond << 28;
18881 inst.size = INSN_SIZE;
18882 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
18883 {
18884 it_fsm_pre_encode ();
18885 opcode->aencode ();
18886 it_fsm_post_encode ();
18887 }
18888 /* Arm mode bx is marked as both v4T and v5 because it's still required
18889 on a hypothetical non-thumb v5 core. */
18890 if (is_bx)
18891 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
18892 else
18893 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18894 *opcode->avariant);
18895
18896 check_neon_suffixes;
18897
18898 if (!inst.error)
18899 {
18900 mapping_state (MAP_ARM);
18901 }
18902 }
18903 else
18904 {
18905 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18906 "-- `%s'"), str);
18907 return;
18908 }
18909 output_inst (str);
18910 }
18911
18912 static void
18913 check_it_blocks_finished (void)
18914 {
18915 #ifdef OBJ_ELF
18916 asection *sect;
18917
18918 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18919 if (seg_info (sect)->tc_segment_info_data.current_it.state
18920 == MANUAL_IT_BLOCK)
18921 {
18922 as_warn (_("section '%s' finished with an open IT block."),
18923 sect->name);
18924 }
18925 #else
18926 if (now_it.state == MANUAL_IT_BLOCK)
18927 as_warn (_("file finished with an open IT block."));
18928 #endif
18929 }
18930
18931 /* Various frobbings of labels and their addresses. */
18932
18933 void
18934 arm_start_line_hook (void)
18935 {
18936 last_label_seen = NULL;
18937 }
18938
18939 void
18940 arm_frob_label (symbolS * sym)
18941 {
18942 last_label_seen = sym;
18943
18944 ARM_SET_THUMB (sym, thumb_mode);
18945
18946 #if defined OBJ_COFF || defined OBJ_ELF
18947 ARM_SET_INTERWORK (sym, support_interwork);
18948 #endif
18949
18950 force_automatic_it_block_close ();
18951
18952 /* Note - do not allow local symbols (.Lxxx) to be labelled
18953 as Thumb functions. This is because these labels, whilst
18954 they exist inside Thumb code, are not the entry points for
18955 possible ARM->Thumb calls. Also, these labels can be used
18956 as part of a computed goto or switch statement. eg gcc
18957 can generate code that looks like this:
18958
18959 ldr r2, [pc, .Laaa]
18960 lsl r3, r3, #2
18961 ldr r2, [r3, r2]
18962 mov pc, r2
18963
18964 .Lbbb: .word .Lxxx
18965 .Lccc: .word .Lyyy
18966 ..etc...
18967 .Laaa: .word Lbbb
18968
18969 The first instruction loads the address of the jump table.
18970 The second instruction converts a table index into a byte offset.
18971 The third instruction gets the jump address out of the table.
18972 The fourth instruction performs the jump.
18973
18974 If the address stored at .Laaa is that of a symbol which has the
18975 Thumb_Func bit set, then the linker will arrange for this address
18976 to have the bottom bit set, which in turn would mean that the
18977 address computation performed by the third instruction would end
18978 up with the bottom bit set. Since the ARM is capable of unaligned
18979 word loads, the instruction would then load the incorrect address
18980 out of the jump table, and chaos would ensue. */
18981 if (label_is_thumb_function_name
18982 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18983 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
18984 {
18985 /* When the address of a Thumb function is taken the bottom
18986 bit of that address should be set. This will allow
18987 interworking between Arm and Thumb functions to work
18988 correctly. */
18989
18990 THUMB_SET_FUNC (sym, 1);
18991
18992 label_is_thumb_function_name = FALSE;
18993 }
18994
18995 dwarf2_emit_label (sym);
18996 }
18997
18998 bfd_boolean
18999 arm_data_in_code (void)
19000 {
19001 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
19002 {
19003 *input_line_pointer = '/';
19004 input_line_pointer += 5;
19005 *input_line_pointer = 0;
19006 return TRUE;
19007 }
19008
19009 return FALSE;
19010 }
19011
19012 char *
19013 arm_canonicalize_symbol_name (char * name)
19014 {
19015 int len;
19016
19017 if (thumb_mode && (len = strlen (name)) > 5
19018 && streq (name + len - 5, "/data"))
19019 *(name + len - 5) = 0;
19020
19021 return name;
19022 }
19023 \f
19024 /* Table of all register names defined by default. The user can
19025 define additional names with .req. Note that all register names
19026 should appear in both upper and lowercase variants. Some registers
19027 also have mixed-case names. */
19028
19029 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
19030 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
19031 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
19032 #define REGSET(p,t) \
19033 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
19034 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
19035 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
19036 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
19037 #define REGSETH(p,t) \
19038 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19039 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19040 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19041 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19042 #define REGSET2(p,t) \
19043 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19044 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19045 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19046 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
19047 #define SPLRBANK(base,bank,t) \
19048 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19049 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19050 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19051 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19052 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19053 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
19054
19055 static const struct reg_entry reg_names[] =
19056 {
19057 /* ARM integer registers. */
19058 REGSET(r, RN), REGSET(R, RN),
19059
19060 /* ATPCS synonyms. */
19061 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19062 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19063 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
19064
19065 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19066 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19067 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
19068
19069 /* Well-known aliases. */
19070 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19071 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19072
19073 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19074 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19075
19076 /* Coprocessor numbers. */
19077 REGSET(p, CP), REGSET(P, CP),
19078
19079 /* Coprocessor register numbers. The "cr" variants are for backward
19080 compatibility. */
19081 REGSET(c, CN), REGSET(C, CN),
19082 REGSET(cr, CN), REGSET(CR, CN),
19083
19084 /* ARM banked registers. */
19085 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19086 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19087 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19088 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19089 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19090 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19091 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19092
19093 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19094 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19095 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19096 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19097 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
19098 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
19099 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19100 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19101
19102 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19103 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19104 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19105 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19106 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19107 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19108 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
19109 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
19110 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19111
19112 /* FPA registers. */
19113 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19114 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19115
19116 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19117 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19118
19119 /* VFP SP registers. */
19120 REGSET(s,VFS), REGSET(S,VFS),
19121 REGSETH(s,VFS), REGSETH(S,VFS),
19122
19123 /* VFP DP Registers. */
19124 REGSET(d,VFD), REGSET(D,VFD),
19125 /* Extra Neon DP registers. */
19126 REGSETH(d,VFD), REGSETH(D,VFD),
19127
19128 /* Neon QP registers. */
19129 REGSET2(q,NQ), REGSET2(Q,NQ),
19130
19131 /* VFP control registers. */
19132 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19133 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
19134 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19135 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19136 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19137 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
19138 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
19139
19140 /* Maverick DSP coprocessor registers. */
19141 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19142 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19143
19144 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19145 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19146 REGDEF(dspsc,0,DSPSC),
19147
19148 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19149 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19150 REGDEF(DSPSC,0,DSPSC),
19151
19152 /* iWMMXt data registers - p0, c0-15. */
19153 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19154
19155 /* iWMMXt control registers - p1, c0-3. */
19156 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19157 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19158 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19159 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19160
19161 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19162 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19163 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19164 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19165 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19166
19167 /* XScale accumulator registers. */
19168 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19169 };
19170 #undef REGDEF
19171 #undef REGNUM
19172 #undef REGSET
19173
19174 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19175 within psr_required_here. */
19176 static const struct asm_psr psrs[] =
19177 {
19178 /* Backward compatibility notation. Note that "all" is no longer
19179 truly all possible PSR bits. */
19180 {"all", PSR_c | PSR_f},
19181 {"flg", PSR_f},
19182 {"ctl", PSR_c},
19183
19184 /* Individual flags. */
19185 {"f", PSR_f},
19186 {"c", PSR_c},
19187 {"x", PSR_x},
19188 {"s", PSR_s},
19189
19190 /* Combinations of flags. */
19191 {"fs", PSR_f | PSR_s},
19192 {"fx", PSR_f | PSR_x},
19193 {"fc", PSR_f | PSR_c},
19194 {"sf", PSR_s | PSR_f},
19195 {"sx", PSR_s | PSR_x},
19196 {"sc", PSR_s | PSR_c},
19197 {"xf", PSR_x | PSR_f},
19198 {"xs", PSR_x | PSR_s},
19199 {"xc", PSR_x | PSR_c},
19200 {"cf", PSR_c | PSR_f},
19201 {"cs", PSR_c | PSR_s},
19202 {"cx", PSR_c | PSR_x},
19203 {"fsx", PSR_f | PSR_s | PSR_x},
19204 {"fsc", PSR_f | PSR_s | PSR_c},
19205 {"fxs", PSR_f | PSR_x | PSR_s},
19206 {"fxc", PSR_f | PSR_x | PSR_c},
19207 {"fcs", PSR_f | PSR_c | PSR_s},
19208 {"fcx", PSR_f | PSR_c | PSR_x},
19209 {"sfx", PSR_s | PSR_f | PSR_x},
19210 {"sfc", PSR_s | PSR_f | PSR_c},
19211 {"sxf", PSR_s | PSR_x | PSR_f},
19212 {"sxc", PSR_s | PSR_x | PSR_c},
19213 {"scf", PSR_s | PSR_c | PSR_f},
19214 {"scx", PSR_s | PSR_c | PSR_x},
19215 {"xfs", PSR_x | PSR_f | PSR_s},
19216 {"xfc", PSR_x | PSR_f | PSR_c},
19217 {"xsf", PSR_x | PSR_s | PSR_f},
19218 {"xsc", PSR_x | PSR_s | PSR_c},
19219 {"xcf", PSR_x | PSR_c | PSR_f},
19220 {"xcs", PSR_x | PSR_c | PSR_s},
19221 {"cfs", PSR_c | PSR_f | PSR_s},
19222 {"cfx", PSR_c | PSR_f | PSR_x},
19223 {"csf", PSR_c | PSR_s | PSR_f},
19224 {"csx", PSR_c | PSR_s | PSR_x},
19225 {"cxf", PSR_c | PSR_x | PSR_f},
19226 {"cxs", PSR_c | PSR_x | PSR_s},
19227 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19228 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19229 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19230 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19231 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19232 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19233 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19234 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19235 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19236 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19237 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19238 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19239 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19240 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19241 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19242 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19243 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19244 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19245 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19246 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19247 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19248 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19249 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19250 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19251 };
19252
19253 /* Table of V7M psr names. */
19254 static const struct asm_psr v7m_psrs[] =
19255 {
19256 {"apsr", 0x0 }, {"APSR", 0x0 },
19257 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19258 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19259 {"psr", 0x3 }, {"PSR", 0x3 },
19260 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19261 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19262 {"epsr", 0x6 }, {"EPSR", 0x6 },
19263 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19264 {"msp", 0x8 }, {"MSP", 0x8 },
19265 {"psp", 0x9 }, {"PSP", 0x9 },
19266 {"msplim", 0xa }, {"MSPLIM", 0xa },
19267 {"psplim", 0xb }, {"PSPLIM", 0xb },
19268 {"primask", 0x10}, {"PRIMASK", 0x10},
19269 {"basepri", 0x11}, {"BASEPRI", 0x11},
19270 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
19271 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19272 {"control", 0x14}, {"CONTROL", 0x14},
19273 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19274 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19275 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19276 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19277 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19278 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19279 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19280 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19281 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
19282 };
19283
19284 /* Table of all shift-in-operand names. */
19285 static const struct asm_shift_name shift_names [] =
19286 {
19287 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19288 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19289 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19290 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19291 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19292 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19293 };
19294
19295 /* Table of all explicit relocation names. */
19296 #ifdef OBJ_ELF
19297 static struct reloc_entry reloc_names[] =
19298 {
19299 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19300 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19301 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19302 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19303 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19304 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19305 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19306 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19307 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19308 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
19309 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
19310 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19311 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
19312 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
19313 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
19314 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
19315 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
19316 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
19317 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
19318 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
19319 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19320 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19321 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
19322 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
19323 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
19324 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
19325 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
19326 };
19327 #endif
19328
19329 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
19330 static const struct asm_cond conds[] =
19331 {
19332 {"eq", 0x0},
19333 {"ne", 0x1},
19334 {"cs", 0x2}, {"hs", 0x2},
19335 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19336 {"mi", 0x4},
19337 {"pl", 0x5},
19338 {"vs", 0x6},
19339 {"vc", 0x7},
19340 {"hi", 0x8},
19341 {"ls", 0x9},
19342 {"ge", 0xa},
19343 {"lt", 0xb},
19344 {"gt", 0xc},
19345 {"le", 0xd},
19346 {"al", 0xe}
19347 };
19348
19349 #define UL_BARRIER(L,U,CODE,FEAT) \
19350 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19351 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
19352
19353 static struct asm_barrier_opt barrier_opt_names[] =
19354 {
19355 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19356 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19357 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19358 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19359 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19360 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19361 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19362 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19363 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19364 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19365 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19366 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19367 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19368 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19369 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19370 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
19371 };
19372
19373 #undef UL_BARRIER
19374
19375 /* Table of ARM-format instructions. */
19376
19377 /* Macros for gluing together operand strings. N.B. In all cases
19378 other than OPS0, the trailing OP_stop comes from default
19379 zero-initialization of the unspecified elements of the array. */
19380 #define OPS0() { OP_stop, }
19381 #define OPS1(a) { OP_##a, }
19382 #define OPS2(a,b) { OP_##a,OP_##b, }
19383 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19384 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19385 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19386 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19387
19388 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19389 This is useful when mixing operands for ARM and THUMB, i.e. using the
19390 MIX_ARM_THUMB_OPERANDS macro.
19391 In order to use these macros, prefix the number of operands with _
19392 e.g. _3. */
19393 #define OPS_1(a) { a, }
19394 #define OPS_2(a,b) { a,b, }
19395 #define OPS_3(a,b,c) { a,b,c, }
19396 #define OPS_4(a,b,c,d) { a,b,c,d, }
19397 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19398 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19399
19400 /* These macros abstract out the exact format of the mnemonic table and
19401 save some repeated characters. */
19402
19403 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19404 #define TxCE(mnem, op, top, nops, ops, ae, te) \
19405 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
19406 THUMB_VARIANT, do_##ae, do_##te }
19407
19408 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19409 a T_MNEM_xyz enumerator. */
19410 #define TCE(mnem, aop, top, nops, ops, ae, te) \
19411 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
19412 #define tCE(mnem, aop, top, nops, ops, ae, te) \
19413 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19414
19415 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19416 infix after the third character. */
19417 #define TxC3(mnem, op, top, nops, ops, ae, te) \
19418 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
19419 THUMB_VARIANT, do_##ae, do_##te }
19420 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
19421 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
19422 THUMB_VARIANT, do_##ae, do_##te }
19423 #define TC3(mnem, aop, top, nops, ops, ae, te) \
19424 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
19425 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
19426 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
19427 #define tC3(mnem, aop, top, nops, ops, ae, te) \
19428 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19429 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
19430 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19431
19432 /* Mnemonic that cannot be conditionalized. The ARM condition-code
19433 field is still 0xE. Many of the Thumb variants can be executed
19434 conditionally, so this is checked separately. */
19435 #define TUE(mnem, op, top, nops, ops, ae, te) \
19436 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19437 THUMB_VARIANT, do_##ae, do_##te }
19438
19439 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19440 Used by mnemonics that have very minimal differences in the encoding for
19441 ARM and Thumb variants and can be handled in a common function. */
19442 #define TUEc(mnem, op, top, nops, ops, en) \
19443 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19444 THUMB_VARIANT, do_##en, do_##en }
19445
19446 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19447 condition code field. */
19448 #define TUF(mnem, op, top, nops, ops, ae, te) \
19449 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
19450 THUMB_VARIANT, do_##ae, do_##te }
19451
19452 /* ARM-only variants of all the above. */
19453 #define CE(mnem, op, nops, ops, ae) \
19454 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19455
19456 #define C3(mnem, op, nops, ops, ae) \
19457 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19458
19459 /* Thumb-only variants of TCE and TUE. */
19460 #define ToC(mnem, top, nops, ops, te) \
19461 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
19462 do_##te }
19463
19464 #define ToU(mnem, top, nops, ops, te) \
19465 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
19466 NULL, do_##te }
19467
19468 /* Legacy mnemonics that always have conditional infix after the third
19469 character. */
19470 #define CL(mnem, op, nops, ops, ae) \
19471 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19472 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19473
19474 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19475 #define cCE(mnem, op, nops, ops, ae) \
19476 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19477
19478 /* Legacy coprocessor instructions where conditional infix and conditional
19479 suffix are ambiguous. For consistency this includes all FPA instructions,
19480 not just the potentially ambiguous ones. */
19481 #define cCL(mnem, op, nops, ops, ae) \
19482 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19483 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19484
19485 /* Coprocessor, takes either a suffix or a position-3 infix
19486 (for an FPA corner case). */
19487 #define C3E(mnem, op, nops, ops, ae) \
19488 { mnem, OPS##nops ops, OT_csuf_or_in3, \
19489 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19490
19491 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
19492 { m1 #m2 m3, OPS##nops ops, \
19493 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
19494 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19495
19496 #define CM(m1, m2, op, nops, ops, ae) \
19497 xCM_ (m1, , m2, op, nops, ops, ae), \
19498 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19499 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19500 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19501 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19502 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19503 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19504 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19505 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19506 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19507 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19508 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19509 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19510 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19511 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19512 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19513 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19514 xCM_ (m1, le, m2, op, nops, ops, ae), \
19515 xCM_ (m1, al, m2, op, nops, ops, ae)
19516
19517 #define UE(mnem, op, nops, ops, ae) \
19518 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19519
19520 #define UF(mnem, op, nops, ops, ae) \
19521 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19522
19523 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
19524 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19525 use the same encoding function for each. */
19526 #define NUF(mnem, op, nops, ops, enc) \
19527 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19528 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19529
19530 /* Neon data processing, version which indirects through neon_enc_tab for
19531 the various overloaded versions of opcodes. */
19532 #define nUF(mnem, op, nops, ops, enc) \
19533 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
19534 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19535
19536 /* Neon insn with conditional suffix for the ARM version, non-overloaded
19537 version. */
19538 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
19539 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
19540 THUMB_VARIANT, do_##enc, do_##enc }
19541
19542 #define NCE(mnem, op, nops, ops, enc) \
19543 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19544
19545 #define NCEF(mnem, op, nops, ops, enc) \
19546 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19547
19548 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
19549 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
19550 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
19551 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19552
19553 #define nCE(mnem, op, nops, ops, enc) \
19554 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19555
19556 #define nCEF(mnem, op, nops, ops, enc) \
19557 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19558
19559 #define do_0 0
19560
19561 static const struct asm_opcode insns[] =
19562 {
19563 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19564 #define THUMB_VARIANT & arm_ext_v4t
19565 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19566 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19567 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19568 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19569 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19570 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19571 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19572 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19573 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19574 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19575 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19576 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19577 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19578 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19579 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19580 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
19581
19582 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19583 for setting PSR flag bits. They are obsolete in V6 and do not
19584 have Thumb equivalents. */
19585 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19586 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19587 CL("tstp", 110f000, 2, (RR, SH), cmp),
19588 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19589 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19590 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19591 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19592 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19593 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19594
19595 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
19596 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
19597 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19598 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19599
19600 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
19601 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19602 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19603 OP_RRnpc),
19604 OP_ADDRGLDR),ldst, t_ldst),
19605 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19606
19607 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19608 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19609 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19610 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19611 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19612 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19613
19614 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19615 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
19616
19617 /* Pseudo ops. */
19618 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
19619 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
19620 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
19621 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
19622
19623 /* Thumb-compatibility pseudo ops. */
19624 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19625 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19626 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19627 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19628 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19629 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19630 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19631 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19632 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19633 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19634 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19635 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
19636
19637 /* These may simplify to neg. */
19638 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19639 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
19640
19641 #undef THUMB_VARIANT
19642 #define THUMB_VARIANT & arm_ext_os
19643
19644 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19645 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19646
19647 #undef THUMB_VARIANT
19648 #define THUMB_VARIANT & arm_ext_v6
19649
19650 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
19651
19652 /* V1 instructions with no Thumb analogue prior to V6T2. */
19653 #undef THUMB_VARIANT
19654 #define THUMB_VARIANT & arm_ext_v6t2
19655
19656 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19657 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19658 CL("teqp", 130f000, 2, (RR, SH), cmp),
19659
19660 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19661 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19662 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19663 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19664
19665 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19666 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19667
19668 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19669 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19670
19671 /* V1 instructions with no Thumb analogue at all. */
19672 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
19673 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19674
19675 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19676 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19677 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19678 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19679 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19680 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19681 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19682 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19683
19684 #undef ARM_VARIANT
19685 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19686 #undef THUMB_VARIANT
19687 #define THUMB_VARIANT & arm_ext_v4t
19688
19689 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19690 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19691
19692 #undef THUMB_VARIANT
19693 #define THUMB_VARIANT & arm_ext_v6t2
19694
19695 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19696 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19697
19698 /* Generic coprocessor instructions. */
19699 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19700 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19701 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19702 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19703 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19704 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19705 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
19706
19707 #undef ARM_VARIANT
19708 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19709
19710 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19711 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19712
19713 #undef ARM_VARIANT
19714 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19715 #undef THUMB_VARIANT
19716 #define THUMB_VARIANT & arm_ext_msr
19717
19718 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19719 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
19720
19721 #undef ARM_VARIANT
19722 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19723 #undef THUMB_VARIANT
19724 #define THUMB_VARIANT & arm_ext_v6t2
19725
19726 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19727 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19728 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19729 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19730 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19731 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19732 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19733 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19734
19735 #undef ARM_VARIANT
19736 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19737 #undef THUMB_VARIANT
19738 #define THUMB_VARIANT & arm_ext_v4t
19739
19740 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19741 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19742 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19743 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19744 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19745 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19746
19747 #undef ARM_VARIANT
19748 #define ARM_VARIANT & arm_ext_v4t_5
19749
19750 /* ARM Architecture 4T. */
19751 /* Note: bx (and blx) are required on V5, even if the processor does
19752 not support Thumb. */
19753 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
19754
19755 #undef ARM_VARIANT
19756 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19757 #undef THUMB_VARIANT
19758 #define THUMB_VARIANT & arm_ext_v5t
19759
19760 /* Note: blx has 2 variants; the .value coded here is for
19761 BLX(2). Only this variant has conditional execution. */
19762 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19763 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
19764
19765 #undef THUMB_VARIANT
19766 #define THUMB_VARIANT & arm_ext_v6t2
19767
19768 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19769 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19770 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19771 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19772 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19773 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19774 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19775 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19776
19777 #undef ARM_VARIANT
19778 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19779 #undef THUMB_VARIANT
19780 #define THUMB_VARIANT & arm_ext_v5exp
19781
19782 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19783 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19784 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19785 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19786
19787 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19788 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19789
19790 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19791 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19792 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19793 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19794
19795 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19796 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19797 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19798 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19799
19800 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19801 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19802
19803 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19804 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19805 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19806 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19807
19808 #undef ARM_VARIANT
19809 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19810 #undef THUMB_VARIANT
19811 #define THUMB_VARIANT & arm_ext_v6t2
19812
19813 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
19814 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19815 ldrd, t_ldstd),
19816 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19817 ADDRGLDRS), ldrd, t_ldstd),
19818
19819 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19820 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19821
19822 #undef ARM_VARIANT
19823 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19824
19825 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
19826
19827 #undef ARM_VARIANT
19828 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19829 #undef THUMB_VARIANT
19830 #define THUMB_VARIANT & arm_ext_v6
19831
19832 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19833 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19834 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19835 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19836 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19837 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19838 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19839 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19840 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19841 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
19842
19843 #undef THUMB_VARIANT
19844 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19845
19846 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19847 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19848 strex, t_strex),
19849 #undef THUMB_VARIANT
19850 #define THUMB_VARIANT & arm_ext_v6t2
19851
19852 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19853 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19854
19855 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19856 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
19857
19858 /* ARM V6 not included in V7M. */
19859 #undef THUMB_VARIANT
19860 #define THUMB_VARIANT & arm_ext_v6_notm
19861 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19862 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19863 UF(rfeib, 9900a00, 1, (RRw), rfe),
19864 UF(rfeda, 8100a00, 1, (RRw), rfe),
19865 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19866 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19867 UF(rfefa, 8100a00, 1, (RRw), rfe),
19868 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19869 UF(rfeed, 9900a00, 1, (RRw), rfe),
19870 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19871 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19872 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19873 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
19874 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
19875 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
19876 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
19877 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19878 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19879 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
19880
19881 /* ARM V6 not included in V7M (eg. integer SIMD). */
19882 #undef THUMB_VARIANT
19883 #define THUMB_VARIANT & arm_ext_v6_dsp
19884 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19885 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19886 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19887 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19888 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19889 /* Old name for QASX. */
19890 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19891 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19892 /* Old name for QSAX. */
19893 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19894 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19895 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19896 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19897 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19898 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19899 /* Old name for SASX. */
19900 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19901 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19902 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19903 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19904 /* Old name for SHASX. */
19905 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19906 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19907 /* Old name for SHSAX. */
19908 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19909 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19910 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19911 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19912 /* Old name for SSAX. */
19913 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19914 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19915 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19916 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19917 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19918 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19919 /* Old name for UASX. */
19920 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19921 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19922 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19923 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19924 /* Old name for UHASX. */
19925 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19926 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19927 /* Old name for UHSAX. */
19928 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19929 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19930 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19931 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19932 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19933 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19934 /* Old name for UQASX. */
19935 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19936 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19937 /* Old name for UQSAX. */
19938 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19939 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19940 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19941 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19942 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19943 /* Old name for USAX. */
19944 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19945 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19946 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19947 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19948 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19949 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19950 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19951 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19952 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19953 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19954 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19955 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19956 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19957 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19958 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19959 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19960 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19961 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19962 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19963 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19964 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19965 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19966 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19967 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19968 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19969 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19970 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19971 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19972 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19973 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19974 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19975 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19976 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19977 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
19978
19979 #undef ARM_VARIANT
19980 #define ARM_VARIANT & arm_ext_v6k
19981 #undef THUMB_VARIANT
19982 #define THUMB_VARIANT & arm_ext_v6k
19983
19984 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19985 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19986 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19987 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
19988
19989 #undef THUMB_VARIANT
19990 #define THUMB_VARIANT & arm_ext_v6_notm
19991 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19992 ldrexd, t_ldrexd),
19993 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19994 RRnpcb), strexd, t_strexd),
19995
19996 #undef THUMB_VARIANT
19997 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19998 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19999 rd_rn, rd_rn),
20000 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
20001 rd_rn, rd_rn),
20002 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
20003 strex, t_strexbh),
20004 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
20005 strex, t_strexbh),
20006 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
20007
20008 #undef ARM_VARIANT
20009 #define ARM_VARIANT & arm_ext_sec
20010 #undef THUMB_VARIANT
20011 #define THUMB_VARIANT & arm_ext_sec
20012
20013 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
20014
20015 #undef ARM_VARIANT
20016 #define ARM_VARIANT & arm_ext_virt
20017 #undef THUMB_VARIANT
20018 #define THUMB_VARIANT & arm_ext_virt
20019
20020 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
20021 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
20022
20023 #undef ARM_VARIANT
20024 #define ARM_VARIANT & arm_ext_pan
20025 #undef THUMB_VARIANT
20026 #define THUMB_VARIANT & arm_ext_pan
20027
20028 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
20029
20030 #undef ARM_VARIANT
20031 #define ARM_VARIANT & arm_ext_v6t2
20032 #undef THUMB_VARIANT
20033 #define THUMB_VARIANT & arm_ext_v6t2
20034
20035 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
20036 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
20037 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20038 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20039
20040 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
20041 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
20042
20043 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20044 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20045 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20046 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20047
20048 #undef ARM_VARIANT
20049 #define ARM_VARIANT & arm_ext_v3
20050 #undef THUMB_VARIANT
20051 #define THUMB_VARIANT & arm_ext_v6t2
20052
20053 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
20054 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
20055 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
20056
20057 #undef ARM_VARIANT
20058 #define ARM_VARIANT & arm_ext_v6t2
20059 #undef THUMB_VARIANT
20060 #define THUMB_VARIANT & arm_ext_v6t2_v8m
20061 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20062 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20063
20064 /* Thumb-only instructions. */
20065 #undef ARM_VARIANT
20066 #define ARM_VARIANT NULL
20067 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20068 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
20069
20070 /* ARM does not really have an IT instruction, so always allow it.
20071 The opcode is copied from Thumb in order to allow warnings in
20072 -mimplicit-it=[never | arm] modes. */
20073 #undef ARM_VARIANT
20074 #define ARM_VARIANT & arm_ext_v1
20075 #undef THUMB_VARIANT
20076 #define THUMB_VARIANT & arm_ext_v6t2
20077
20078 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20079 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20080 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20081 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20082 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20083 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20084 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20085 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20086 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20087 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20088 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20089 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20090 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20091 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20092 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
20093 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
20094 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20095 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
20096
20097 /* Thumb2 only instructions. */
20098 #undef ARM_VARIANT
20099 #define ARM_VARIANT NULL
20100
20101 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20102 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20103 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20104 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20105 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20106 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
20107
20108 /* Hardware division instructions. */
20109 #undef ARM_VARIANT
20110 #define ARM_VARIANT & arm_ext_adiv
20111 #undef THUMB_VARIANT
20112 #define THUMB_VARIANT & arm_ext_div
20113
20114 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20115 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
20116
20117 /* ARM V6M/V7 instructions. */
20118 #undef ARM_VARIANT
20119 #define ARM_VARIANT & arm_ext_barrier
20120 #undef THUMB_VARIANT
20121 #define THUMB_VARIANT & arm_ext_barrier
20122
20123 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20124 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20125 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
20126
20127 /* ARM V7 instructions. */
20128 #undef ARM_VARIANT
20129 #define ARM_VARIANT & arm_ext_v7
20130 #undef THUMB_VARIANT
20131 #define THUMB_VARIANT & arm_ext_v7
20132
20133 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20134 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
20135
20136 #undef ARM_VARIANT
20137 #define ARM_VARIANT & arm_ext_mp
20138 #undef THUMB_VARIANT
20139 #define THUMB_VARIANT & arm_ext_mp
20140
20141 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20142
20143 /* AArchv8 instructions. */
20144 #undef ARM_VARIANT
20145 #define ARM_VARIANT & arm_ext_v8
20146
20147 /* Instructions shared between armv8-a and armv8-m. */
20148 #undef THUMB_VARIANT
20149 #define THUMB_VARIANT & arm_ext_atomics
20150
20151 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20152 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20153 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20154 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20155 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20156 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20157 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20158 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20159 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20160 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20161 stlex, t_stlex),
20162 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20163 stlex, t_stlex),
20164 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20165 stlex, t_stlex),
20166 #undef THUMB_VARIANT
20167 #define THUMB_VARIANT & arm_ext_v8
20168
20169 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
20170 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20171 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20172 ldrexd, t_ldrexd),
20173 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20174 strexd, t_strexd),
20175 /* ARMv8 T32 only. */
20176 #undef ARM_VARIANT
20177 #define ARM_VARIANT NULL
20178 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20179 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20180 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20181
20182 /* FP for ARMv8. */
20183 #undef ARM_VARIANT
20184 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
20185 #undef THUMB_VARIANT
20186 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
20187
20188 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20189 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20190 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20191 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
20192 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20193 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20194 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20195 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20196 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20197 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
20198 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20199 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20200 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20201 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20202 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20203 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20204 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
20205
20206 /* Crypto v1 extensions. */
20207 #undef ARM_VARIANT
20208 #define ARM_VARIANT & fpu_crypto_ext_armv8
20209 #undef THUMB_VARIANT
20210 #define THUMB_VARIANT & fpu_crypto_ext_armv8
20211
20212 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20213 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20214 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20215 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
20216 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20217 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20218 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20219 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20220 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20221 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20222 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
20223 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20224 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20225 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
20226
20227 #undef ARM_VARIANT
20228 #define ARM_VARIANT & crc_ext_armv8
20229 #undef THUMB_VARIANT
20230 #define THUMB_VARIANT & crc_ext_armv8
20231 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20232 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20233 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20234 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20235 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20236 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20237
20238 /* ARMv8.2 RAS extension. */
20239 #undef ARM_VARIANT
20240 #define ARM_VARIANT & arm_ext_ras
20241 #undef THUMB_VARIANT
20242 #define THUMB_VARIANT & arm_ext_ras
20243 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20244
20245 #undef ARM_VARIANT
20246 #define ARM_VARIANT & arm_ext_v8_3
20247 #undef THUMB_VARIANT
20248 #define THUMB_VARIANT & arm_ext_v8_3
20249 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
20250 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20251 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
20252
20253 #undef ARM_VARIANT
20254 #define ARM_VARIANT & fpu_neon_ext_dotprod
20255 #undef THUMB_VARIANT
20256 #define THUMB_VARIANT & fpu_neon_ext_dotprod
20257 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20258 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20259
20260 #undef ARM_VARIANT
20261 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
20262 #undef THUMB_VARIANT
20263 #define THUMB_VARIANT NULL
20264
20265 cCE("wfs", e200110, 1, (RR), rd),
20266 cCE("rfs", e300110, 1, (RR), rd),
20267 cCE("wfc", e400110, 1, (RR), rd),
20268 cCE("rfc", e500110, 1, (RR), rd),
20269
20270 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20271 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20272 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20273 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20274
20275 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20276 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20277 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20278 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20279
20280 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20281 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20282 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20283 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20284 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20285 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20286 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20287 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20288 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20289 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20290 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20291 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20292
20293 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20294 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20295 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20296 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20297 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20298 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20299 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20300 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20301 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20302 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20303 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20304 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20305
20306 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20307 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20308 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20309 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20310 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20311 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20312 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20313 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20314 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20315 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20316 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20317 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20318
20319 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20320 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20321 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20322 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20323 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20324 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20325 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20326 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20327 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20328 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20329 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20330 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20331
20332 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20333 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20334 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20335 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20336 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20337 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20338 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20339 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20340 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20341 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20342 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20343 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20344
20345 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20346 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20347 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20348 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20349 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20350 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20351 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20352 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20353 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20354 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20355 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20356 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20357
20358 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20359 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20360 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20361 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20362 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20363 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20364 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20365 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20366 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20367 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20368 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20369 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20370
20371 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20372 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20373 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20374 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20375 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20376 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20377 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20378 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20379 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20380 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20381 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20382 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20383
20384 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20385 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20386 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20387 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20388 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20389 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20390 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20391 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20392 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20393 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20394 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20395 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20396
20397 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20398 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20399 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20400 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20401 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20402 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20403 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20404 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20405 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20406 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20407 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20408 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20409
20410 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20411 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20412 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20413 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20414 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20415 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20416 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20417 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20418 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20419 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20420 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20421 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20422
20423 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20424 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20425 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20426 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20427 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20428 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20429 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20430 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20431 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20432 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20433 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20434 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20435
20436 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20437 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20438 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20439 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20440 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20441 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20442 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20443 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20444 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20445 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20446 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20447 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20448
20449 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20450 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20451 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20452 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20453 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20454 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20455 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20456 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20457 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20458 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20459 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20460 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20461
20462 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20463 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20464 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20465 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20466 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20467 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20468 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20469 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20470 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20471 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20472 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20473 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20474
20475 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20476 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20477 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20478 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20479 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20480 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20481 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20482 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20483 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20484 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20485 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20486 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20487
20488 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20489 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20490 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20491 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20492 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20493 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20494 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20495 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20496 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20497 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20498 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20499 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20500
20501 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20502 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20503 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20504 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20505 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20506 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20507 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20508 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20509 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20510 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20511 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20512 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20513
20514 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20515 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20516 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20517 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20518 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20519 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20520 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20521 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20522 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20523 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20524 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20525 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20526
20527 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20528 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20529 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20530 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20531 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20532 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20533 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20534 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20535 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20536 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20537 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20538 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20539
20540 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20541 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20542 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20543 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20544 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20545 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20546 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20547 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20548 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20549 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20550 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20551 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20552
20553 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20554 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20555 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20556 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20557 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20558 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20559 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20560 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20561 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20562 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20563 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20564 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20565
20566 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20567 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20568 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20569 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20570 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20571 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20572 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20573 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20574 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20575 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20576 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20577 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20578
20579 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20580 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20581 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20582 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20583 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20584 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20585 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20586 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20587 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20588 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20589 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20590 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20591
20592 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20593 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20594 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20595 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20596 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20597 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20598 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20599 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20600 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20601 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20602 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20603 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20604
20605 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20606 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20607 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20608 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20609 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20610 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20611 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20612 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20613 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20614 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20615 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20616 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20617
20618 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20619 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20620 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20621 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20622 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20623 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20624 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20625 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20626 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20627 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20628 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20629 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20630
20631 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20632 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20633 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20634 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20635 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20636 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20637 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20638 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20639 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20640 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20641 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20642 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20643
20644 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20645 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20646 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20647 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20648 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20649 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20650 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20651 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20652 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20653 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20654 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20655 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20656
20657 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20658 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20659 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20660 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20661
20662 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20663 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20664 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20665 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20666 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20667 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20668 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20669 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20670 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20671 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20672 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20673 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
20674
20675 /* The implementation of the FIX instruction is broken on some
20676 assemblers, in that it accepts a precision specifier as well as a
20677 rounding specifier, despite the fact that this is meaningless.
20678 To be more compatible, we accept it as well, though of course it
20679 does not set any bits. */
20680 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20681 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20682 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20683 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20684 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20685 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20686 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20687 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20688 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20689 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20690 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20691 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20692 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
20693
20694 /* Instructions that were new with the real FPA, call them V2. */
20695 #undef ARM_VARIANT
20696 #define ARM_VARIANT & fpu_fpa_ext_v2
20697
20698 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20699 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20700 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20701 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20702 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20703 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20704
20705 #undef ARM_VARIANT
20706 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20707
20708 /* Moves and type conversions. */
20709 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20710 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20711 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20712 cCE("fmstat", ef1fa10, 0, (), noargs),
20713 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20714 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
20715 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20716 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20717 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20718 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20719 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20720 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20721 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20722 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
20723
20724 /* Memory operations. */
20725 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20726 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20727 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20728 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20729 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20730 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20731 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20732 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20733 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20734 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20735 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20736 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20737 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20738 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20739 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20740 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20741 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20742 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20743
20744 /* Monadic operations. */
20745 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20746 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20747 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
20748
20749 /* Dyadic operations. */
20750 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20751 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20752 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20753 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20754 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20755 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20756 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20757 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20758 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20759
20760 /* Comparisons. */
20761 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20762 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20763 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20764 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
20765
20766 /* Double precision load/store are still present on single precision
20767 implementations. */
20768 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20769 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20770 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20771 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20772 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20773 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20774 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20775 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20776 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20777 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20778
20779 #undef ARM_VARIANT
20780 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20781
20782 /* Moves and type conversions. */
20783 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20784 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20785 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20786 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20787 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20788 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20789 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20790 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20791 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20792 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20793 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20794 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20795 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20796
20797 /* Monadic operations. */
20798 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20799 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20800 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20801
20802 /* Dyadic operations. */
20803 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20804 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20805 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20806 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20807 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20808 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20809 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20810 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20811 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20812
20813 /* Comparisons. */
20814 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20815 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20816 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20817 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
20818
20819 #undef ARM_VARIANT
20820 #define ARM_VARIANT & fpu_vfp_ext_v2
20821
20822 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20823 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20824 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20825 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
20826
20827 /* Instructions which may belong to either the Neon or VFP instruction sets.
20828 Individual encoder functions perform additional architecture checks. */
20829 #undef ARM_VARIANT
20830 #define ARM_VARIANT & fpu_vfp_ext_v1xd
20831 #undef THUMB_VARIANT
20832 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
20833
20834 /* These mnemonics are unique to VFP. */
20835 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20836 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
20837 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20838 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20839 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20840 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20841 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20842 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20843 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20844 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20845
20846 /* Mnemonics shared by Neon and VFP. */
20847 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20848 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20849 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20850
20851 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20852 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20853
20854 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20855 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20856
20857 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20858 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20859 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20860 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20861 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20862 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20863 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20864 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20865
20866 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
20867 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
20868 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20869 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
20870
20871
20872 /* NOTE: All VMOV encoding is special-cased! */
20873 NCE(vmov, 0, 1, (VMOV), neon_mov),
20874 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20875
20876 #undef ARM_VARIANT
20877 #define ARM_VARIANT & arm_ext_fp16
20878 #undef THUMB_VARIANT
20879 #define THUMB_VARIANT & arm_ext_fp16
20880 /* New instructions added from v8.2, allowing the extraction and insertion of
20881 the upper 16 bits of a 32-bit vector register. */
20882 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20883 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20884
20885 /* New backported fma/fms instructions optional in v8.2. */
20886 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
20887 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
20888
20889 #undef THUMB_VARIANT
20890 #define THUMB_VARIANT & fpu_neon_ext_v1
20891 #undef ARM_VARIANT
20892 #define ARM_VARIANT & fpu_neon_ext_v1
20893
20894 /* Data processing with three registers of the same length. */
20895 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20896 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20897 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20898 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20899 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20900 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20901 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20902 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20903 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20904 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20905 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20906 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20907 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20908 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20909 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20910 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20911 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20912 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20913 /* If not immediate, fall back to neon_dyadic_i64_su.
20914 shl_imm should accept I8 I16 I32 I64,
20915 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
20916 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20917 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20918 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20919 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
20920 /* Logic ops, types optional & ignored. */
20921 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20922 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20923 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20924 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20925 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20926 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20927 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20928 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20929 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20930 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
20931 /* Bitfield ops, untyped. */
20932 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20933 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20934 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20935 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20936 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20937 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20938 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
20939 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20940 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20941 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20942 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20943 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20944 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20945 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20946 back to neon_dyadic_if_su. */
20947 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20948 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20949 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20950 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20951 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20952 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20953 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20954 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20955 /* Comparison. Type I8 I16 I32 F32. */
20956 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20957 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
20958 /* As above, D registers only. */
20959 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20960 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20961 /* Int and float variants, signedness unimportant. */
20962 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20963 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20964 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
20965 /* Add/sub take types I8 I16 I32 I64 F32. */
20966 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20967 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20968 /* vtst takes sizes 8, 16, 32. */
20969 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20970 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20971 /* VMUL takes I8 I16 I32 F32 P8. */
20972 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
20973 /* VQD{R}MULH takes S16 S32. */
20974 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20975 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20976 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20977 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20978 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20979 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20980 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20981 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20982 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20983 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20984 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20985 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20986 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20987 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20988 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20989 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20990 /* ARM v8.1 extension. */
20991 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20992 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20993 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20994 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20995
20996 /* Two address, int/float. Types S8 S16 S32 F32. */
20997 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
20998 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
20999
21000 /* Data processing with two registers and a shift amount. */
21001 /* Right shifts, and variants with rounding.
21002 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
21003 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21004 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21005 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21006 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21007 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21008 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21009 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21010 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21011 /* Shift and insert. Sizes accepted 8 16 32 64. */
21012 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
21013 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
21014 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
21015 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
21016 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
21017 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
21018 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
21019 /* Right shift immediate, saturating & narrowing, with rounding variants.
21020 Types accepted S16 S32 S64 U16 U32 U64. */
21021 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21022 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21023 /* As above, unsigned. Types accepted S16 S32 S64. */
21024 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21025 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21026 /* Right shift narrowing. Types accepted I16 I32 I64. */
21027 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21028 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21029 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21030 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
21031 /* CVT with optional immediate for fixed-point variant. */
21032 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
21033
21034 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
21035 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
21036
21037 /* Data processing, three registers of different lengths. */
21038 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
21039 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
21040 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
21041 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
21042 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
21043 /* If not scalar, fall back to neon_dyadic_long.
21044 Vector types as above, scalar types S16 S32 U16 U32. */
21045 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21046 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21047 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
21048 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21049 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21050 /* Dyadic, narrowing insns. Types I16 I32 I64. */
21051 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21052 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21053 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21054 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21055 /* Saturating doubling multiplies. Types S16 S32. */
21056 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21057 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21058 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21059 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21060 S16 S32 U16 U32. */
21061 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
21062
21063 /* Extract. Size 8. */
21064 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21065 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
21066
21067 /* Two registers, miscellaneous. */
21068 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21069 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21070 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21071 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21072 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21073 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21074 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21075 /* Vector replicate. Sizes 8 16 32. */
21076 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21077 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
21078 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21079 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21080 /* VMOVN. Types I16 I32 I64. */
21081 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
21082 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21083 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
21084 /* VQMOVUN. Types S16 S32 S64. */
21085 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
21086 /* VZIP / VUZP. Sizes 8 16 32. */
21087 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21088 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21089 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21090 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21091 /* VQABS / VQNEG. Types S8 S16 S32. */
21092 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21093 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21094 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21095 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21096 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21097 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21098 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21099 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21100 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
21101 /* Reciprocal estimates. Types U32 F16 F32. */
21102 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21103 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21104 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21105 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21106 /* VCLS. Types S8 S16 S32. */
21107 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21108 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21109 /* VCLZ. Types I8 I16 I32. */
21110 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21111 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21112 /* VCNT. Size 8. */
21113 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21114 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21115 /* Two address, untyped. */
21116 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21117 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21118 /* VTRN. Sizes 8 16 32. */
21119 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21120 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
21121
21122 /* Table lookup. Size 8. */
21123 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21124 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21125
21126 #undef THUMB_VARIANT
21127 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21128 #undef ARM_VARIANT
21129 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21130
21131 /* Neon element/structure load/store. */
21132 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21133 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21134 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21135 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21136 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21137 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21138 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21139 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21140
21141 #undef THUMB_VARIANT
21142 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
21143 #undef ARM_VARIANT
21144 #define ARM_VARIANT & fpu_vfp_ext_v3xd
21145 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21146 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21147 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21148 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21149 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21150 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21151 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21152 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21153 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21154
21155 #undef THUMB_VARIANT
21156 #define THUMB_VARIANT & fpu_vfp_ext_v3
21157 #undef ARM_VARIANT
21158 #define ARM_VARIANT & fpu_vfp_ext_v3
21159
21160 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21161 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21162 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21163 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21164 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21165 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21166 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21167 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21168 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21169
21170 #undef ARM_VARIANT
21171 #define ARM_VARIANT & fpu_vfp_ext_fma
21172 #undef THUMB_VARIANT
21173 #define THUMB_VARIANT & fpu_vfp_ext_fma
21174 /* Mnemonics shared by Neon and VFP. These are included in the
21175 VFP FMA variant; NEON and VFP FMA always includes the NEON
21176 FMA instructions. */
21177 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21178 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21179 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21180 the v form should always be used. */
21181 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21182 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21183 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21184 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21185 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21186 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21187
21188 #undef THUMB_VARIANT
21189 #undef ARM_VARIANT
21190 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21191
21192 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21193 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21194 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21195 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21196 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21197 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21198 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21199 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
21200
21201 #undef ARM_VARIANT
21202 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21203
21204 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21205 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21206 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21207 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21208 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21209 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21210 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21211 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21212 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
21213 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21214 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21215 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21216 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21217 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21218 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21219 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21220 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21221 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21222 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21223 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21224 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21225 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21226 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21227 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21228 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21229 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21230 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21231 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21232 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21233 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21234 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21235 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21236 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21237 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21238 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21239 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21240 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21241 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21242 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21243 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21244 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21245 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21246 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21247 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21248 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21249 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21250 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
21251 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21252 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21253 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21254 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21255 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21256 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21257 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21258 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21259 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21260 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21261 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21262 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21263 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21264 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21265 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21266 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21267 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21268 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21269 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21270 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21271 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21272 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21273 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21274 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21275 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21276 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21277 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21278 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21279 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21280 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21281 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21282 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21283 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21284 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21285 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21286 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21287 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21288 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21289 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21290 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21291 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21292 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21293 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21294 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21295 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21296 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21297 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21298 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21299 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21300 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21301 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21302 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21303 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21304 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21305 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21306 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21307 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21308 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21309 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21310 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21311 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21312 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21313 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21314 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21315 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21316 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21317 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21318 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21319 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21320 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21321 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21322 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21323 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21324 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21325 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21326 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21327 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21328 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21329 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21330 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21331 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21332 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21333 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21334 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21335 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21336 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21337 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21338 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21339 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21340 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21341 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21342 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21343 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21344 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21345 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21346 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21347 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21348 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21349 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21350 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21351 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21352 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21353 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21354 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21355 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21356 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21357 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21358 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21359 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21360 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21361 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21362 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21363 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21364 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21365 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
21366
21367 #undef ARM_VARIANT
21368 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21369
21370 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21371 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21372 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21373 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21374 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21375 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21376 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21377 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21378 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21379 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21380 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21381 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21382 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21383 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21384 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21385 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21386 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21387 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21388 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21389 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21390 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21391 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21392 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21393 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21394 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21395 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21396 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21397 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21398 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21399 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21400 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21401 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21402 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21403 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21404 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21405 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21406 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21407 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21408 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21409 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21410 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21411 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21412 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21413 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21414 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21415 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21416 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21417 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21418 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21419 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21420 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21421 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21422 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21423 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21424 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21425 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21426 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21427
21428 #undef ARM_VARIANT
21429 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21430
21431 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21432 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21433 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21434 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21435 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21436 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21437 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21438 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21439 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21440 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21441 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21442 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21443 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21444 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
21445 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21446 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21447 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21448 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21449 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21450 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21451 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21452 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21453 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21454 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21455 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21456 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21457 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21458 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
21459 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21460 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21461 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21462 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21463 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21464 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
21465 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21466 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21467 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21468 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21469 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21470 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21471 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21472 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
21473 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21474 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21475 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21476 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21477 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21478 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21479 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21480 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21481 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21482 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21483 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21484 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21485 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21486 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21487 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21488 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21489 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21490 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21491 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21492 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21493 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21494 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21495 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21496 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21497 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21498 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21499 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21500 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21501 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21502 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21503 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21504 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21505 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21506 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21507
21508 /* ARMv8-M instructions. */
21509 #undef ARM_VARIANT
21510 #define ARM_VARIANT NULL
21511 #undef THUMB_VARIANT
21512 #define THUMB_VARIANT & arm_ext_v8m
21513 ToU("sg", e97fe97f, 0, (), noargs),
21514 ToC("blxns", 4784, 1, (RRnpc), t_blx),
21515 ToC("bxns", 4704, 1, (RRnpc), t_bx),
21516 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
21517 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
21518 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
21519 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
21520
21521 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21522 instructions behave as nop if no VFP is present. */
21523 #undef THUMB_VARIANT
21524 #define THUMB_VARIANT & arm_ext_v8m_main
21525 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
21526 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
21527 };
21528 #undef ARM_VARIANT
21529 #undef THUMB_VARIANT
21530 #undef TCE
21531 #undef TUE
21532 #undef TUF
21533 #undef TCC
21534 #undef cCE
21535 #undef cCL
21536 #undef C3E
21537 #undef CE
21538 #undef CM
21539 #undef UE
21540 #undef UF
21541 #undef UT
21542 #undef NUF
21543 #undef nUF
21544 #undef NCE
21545 #undef nCE
21546 #undef OPS0
21547 #undef OPS1
21548 #undef OPS2
21549 #undef OPS3
21550 #undef OPS4
21551 #undef OPS5
21552 #undef OPS6
21553 #undef do_0
21554 \f
21555 /* MD interface: bits in the object file. */
21556
21557 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21558 for use in the a.out file, and stores them in the array pointed to by buf.
21559 This knows about the endian-ness of the target machine and does
21560 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21561 2 (short) and 4 (long) Floating numbers are put out as a series of
21562 LITTLENUMS (shorts, here at least). */
21563
21564 void
21565 md_number_to_chars (char * buf, valueT val, int n)
21566 {
21567 if (target_big_endian)
21568 number_to_chars_bigendian (buf, val, n);
21569 else
21570 number_to_chars_littleendian (buf, val, n);
21571 }
21572
21573 static valueT
21574 md_chars_to_number (char * buf, int n)
21575 {
21576 valueT result = 0;
21577 unsigned char * where = (unsigned char *) buf;
21578
21579 if (target_big_endian)
21580 {
21581 while (n--)
21582 {
21583 result <<= 8;
21584 result |= (*where++ & 255);
21585 }
21586 }
21587 else
21588 {
21589 while (n--)
21590 {
21591 result <<= 8;
21592 result |= (where[n] & 255);
21593 }
21594 }
21595
21596 return result;
21597 }
21598
21599 /* MD interface: Sections. */
21600
21601 /* Calculate the maximum variable size (i.e., excluding fr_fix)
21602 that an rs_machine_dependent frag may reach. */
21603
21604 unsigned int
21605 arm_frag_max_var (fragS *fragp)
21606 {
21607 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21608 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21609
21610 Note that we generate relaxable instructions even for cases that don't
21611 really need it, like an immediate that's a trivial constant. So we're
21612 overestimating the instruction size for some of those cases. Rather
21613 than putting more intelligence here, it would probably be better to
21614 avoid generating a relaxation frag in the first place when it can be
21615 determined up front that a short instruction will suffice. */
21616
21617 gas_assert (fragp->fr_type == rs_machine_dependent);
21618 return INSN_SIZE;
21619 }
21620
21621 /* Estimate the size of a frag before relaxing. Assume everything fits in
21622 2 bytes. */
21623
21624 int
21625 md_estimate_size_before_relax (fragS * fragp,
21626 segT segtype ATTRIBUTE_UNUSED)
21627 {
21628 fragp->fr_var = 2;
21629 return 2;
21630 }
21631
21632 /* Convert a machine dependent frag. */
21633
21634 void
21635 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21636 {
21637 unsigned long insn;
21638 unsigned long old_op;
21639 char *buf;
21640 expressionS exp;
21641 fixS *fixp;
21642 int reloc_type;
21643 int pc_rel;
21644 int opcode;
21645
21646 buf = fragp->fr_literal + fragp->fr_fix;
21647
21648 old_op = bfd_get_16(abfd, buf);
21649 if (fragp->fr_symbol)
21650 {
21651 exp.X_op = O_symbol;
21652 exp.X_add_symbol = fragp->fr_symbol;
21653 }
21654 else
21655 {
21656 exp.X_op = O_constant;
21657 }
21658 exp.X_add_number = fragp->fr_offset;
21659 opcode = fragp->fr_subtype;
21660 switch (opcode)
21661 {
21662 case T_MNEM_ldr_pc:
21663 case T_MNEM_ldr_pc2:
21664 case T_MNEM_ldr_sp:
21665 case T_MNEM_str_sp:
21666 case T_MNEM_ldr:
21667 case T_MNEM_ldrb:
21668 case T_MNEM_ldrh:
21669 case T_MNEM_str:
21670 case T_MNEM_strb:
21671 case T_MNEM_strh:
21672 if (fragp->fr_var == 4)
21673 {
21674 insn = THUMB_OP32 (opcode);
21675 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21676 {
21677 insn |= (old_op & 0x700) << 4;
21678 }
21679 else
21680 {
21681 insn |= (old_op & 7) << 12;
21682 insn |= (old_op & 0x38) << 13;
21683 }
21684 insn |= 0x00000c00;
21685 put_thumb32_insn (buf, insn);
21686 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21687 }
21688 else
21689 {
21690 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21691 }
21692 pc_rel = (opcode == T_MNEM_ldr_pc2);
21693 break;
21694 case T_MNEM_adr:
21695 if (fragp->fr_var == 4)
21696 {
21697 insn = THUMB_OP32 (opcode);
21698 insn |= (old_op & 0xf0) << 4;
21699 put_thumb32_insn (buf, insn);
21700 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21701 }
21702 else
21703 {
21704 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21705 exp.X_add_number -= 4;
21706 }
21707 pc_rel = 1;
21708 break;
21709 case T_MNEM_mov:
21710 case T_MNEM_movs:
21711 case T_MNEM_cmp:
21712 case T_MNEM_cmn:
21713 if (fragp->fr_var == 4)
21714 {
21715 int r0off = (opcode == T_MNEM_mov
21716 || opcode == T_MNEM_movs) ? 0 : 8;
21717 insn = THUMB_OP32 (opcode);
21718 insn = (insn & 0xe1ffffff) | 0x10000000;
21719 insn |= (old_op & 0x700) << r0off;
21720 put_thumb32_insn (buf, insn);
21721 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21722 }
21723 else
21724 {
21725 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21726 }
21727 pc_rel = 0;
21728 break;
21729 case T_MNEM_b:
21730 if (fragp->fr_var == 4)
21731 {
21732 insn = THUMB_OP32(opcode);
21733 put_thumb32_insn (buf, insn);
21734 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21735 }
21736 else
21737 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21738 pc_rel = 1;
21739 break;
21740 case T_MNEM_bcond:
21741 if (fragp->fr_var == 4)
21742 {
21743 insn = THUMB_OP32(opcode);
21744 insn |= (old_op & 0xf00) << 14;
21745 put_thumb32_insn (buf, insn);
21746 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21747 }
21748 else
21749 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21750 pc_rel = 1;
21751 break;
21752 case T_MNEM_add_sp:
21753 case T_MNEM_add_pc:
21754 case T_MNEM_inc_sp:
21755 case T_MNEM_dec_sp:
21756 if (fragp->fr_var == 4)
21757 {
21758 /* ??? Choose between add and addw. */
21759 insn = THUMB_OP32 (opcode);
21760 insn |= (old_op & 0xf0) << 4;
21761 put_thumb32_insn (buf, insn);
21762 if (opcode == T_MNEM_add_pc)
21763 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21764 else
21765 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21766 }
21767 else
21768 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21769 pc_rel = 0;
21770 break;
21771
21772 case T_MNEM_addi:
21773 case T_MNEM_addis:
21774 case T_MNEM_subi:
21775 case T_MNEM_subis:
21776 if (fragp->fr_var == 4)
21777 {
21778 insn = THUMB_OP32 (opcode);
21779 insn |= (old_op & 0xf0) << 4;
21780 insn |= (old_op & 0xf) << 16;
21781 put_thumb32_insn (buf, insn);
21782 if (insn & (1 << 20))
21783 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21784 else
21785 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21786 }
21787 else
21788 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21789 pc_rel = 0;
21790 break;
21791 default:
21792 abort ();
21793 }
21794 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21795 (enum bfd_reloc_code_real) reloc_type);
21796 fixp->fx_file = fragp->fr_file;
21797 fixp->fx_line = fragp->fr_line;
21798 fragp->fr_fix += fragp->fr_var;
21799
21800 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21801 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21802 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21803 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
21804 }
21805
21806 /* Return the size of a relaxable immediate operand instruction.
21807 SHIFT and SIZE specify the form of the allowable immediate. */
21808 static int
21809 relax_immediate (fragS *fragp, int size, int shift)
21810 {
21811 offsetT offset;
21812 offsetT mask;
21813 offsetT low;
21814
21815 /* ??? Should be able to do better than this. */
21816 if (fragp->fr_symbol)
21817 return 4;
21818
21819 low = (1 << shift) - 1;
21820 mask = (1 << (shift + size)) - (1 << shift);
21821 offset = fragp->fr_offset;
21822 /* Force misaligned offsets to 32-bit variant. */
21823 if (offset & low)
21824 return 4;
21825 if (offset & ~mask)
21826 return 4;
21827 return 2;
21828 }
21829
21830 /* Get the address of a symbol during relaxation. */
21831 static addressT
21832 relaxed_symbol_addr (fragS *fragp, long stretch)
21833 {
21834 fragS *sym_frag;
21835 addressT addr;
21836 symbolS *sym;
21837
21838 sym = fragp->fr_symbol;
21839 sym_frag = symbol_get_frag (sym);
21840 know (S_GET_SEGMENT (sym) != absolute_section
21841 || sym_frag == &zero_address_frag);
21842 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21843
21844 /* If frag has yet to be reached on this pass, assume it will
21845 move by STRETCH just as we did. If this is not so, it will
21846 be because some frag between grows, and that will force
21847 another pass. */
21848
21849 if (stretch != 0
21850 && sym_frag->relax_marker != fragp->relax_marker)
21851 {
21852 fragS *f;
21853
21854 /* Adjust stretch for any alignment frag. Note that if have
21855 been expanding the earlier code, the symbol may be
21856 defined in what appears to be an earlier frag. FIXME:
21857 This doesn't handle the fr_subtype field, which specifies
21858 a maximum number of bytes to skip when doing an
21859 alignment. */
21860 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21861 {
21862 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21863 {
21864 if (stretch < 0)
21865 stretch = - ((- stretch)
21866 & ~ ((1 << (int) f->fr_offset) - 1));
21867 else
21868 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21869 if (stretch == 0)
21870 break;
21871 }
21872 }
21873 if (f != NULL)
21874 addr += stretch;
21875 }
21876
21877 return addr;
21878 }
21879
21880 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
21881 load. */
21882 static int
21883 relax_adr (fragS *fragp, asection *sec, long stretch)
21884 {
21885 addressT addr;
21886 offsetT val;
21887
21888 /* Assume worst case for symbols not known to be in the same section. */
21889 if (fragp->fr_symbol == NULL
21890 || !S_IS_DEFINED (fragp->fr_symbol)
21891 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21892 || S_IS_WEAK (fragp->fr_symbol))
21893 return 4;
21894
21895 val = relaxed_symbol_addr (fragp, stretch);
21896 addr = fragp->fr_address + fragp->fr_fix;
21897 addr = (addr + 4) & ~3;
21898 /* Force misaligned targets to 32-bit variant. */
21899 if (val & 3)
21900 return 4;
21901 val -= addr;
21902 if (val < 0 || val > 1020)
21903 return 4;
21904 return 2;
21905 }
21906
21907 /* Return the size of a relaxable add/sub immediate instruction. */
21908 static int
21909 relax_addsub (fragS *fragp, asection *sec)
21910 {
21911 char *buf;
21912 int op;
21913
21914 buf = fragp->fr_literal + fragp->fr_fix;
21915 op = bfd_get_16(sec->owner, buf);
21916 if ((op & 0xf) == ((op >> 4) & 0xf))
21917 return relax_immediate (fragp, 8, 0);
21918 else
21919 return relax_immediate (fragp, 3, 0);
21920 }
21921
21922 /* Return TRUE iff the definition of symbol S could be pre-empted
21923 (overridden) at link or load time. */
21924 static bfd_boolean
21925 symbol_preemptible (symbolS *s)
21926 {
21927 /* Weak symbols can always be pre-empted. */
21928 if (S_IS_WEAK (s))
21929 return TRUE;
21930
21931 /* Non-global symbols cannot be pre-empted. */
21932 if (! S_IS_EXTERNAL (s))
21933 return FALSE;
21934
21935 #ifdef OBJ_ELF
21936 /* In ELF, a global symbol can be marked protected, or private. In that
21937 case it can't be pre-empted (other definitions in the same link unit
21938 would violate the ODR). */
21939 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21940 return FALSE;
21941 #endif
21942
21943 /* Other global symbols might be pre-empted. */
21944 return TRUE;
21945 }
21946
21947 /* Return the size of a relaxable branch instruction. BITS is the
21948 size of the offset field in the narrow instruction. */
21949
21950 static int
21951 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
21952 {
21953 addressT addr;
21954 offsetT val;
21955 offsetT limit;
21956
21957 /* Assume worst case for symbols not known to be in the same section. */
21958 if (!S_IS_DEFINED (fragp->fr_symbol)
21959 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21960 || S_IS_WEAK (fragp->fr_symbol))
21961 return 4;
21962
21963 #ifdef OBJ_ELF
21964 /* A branch to a function in ARM state will require interworking. */
21965 if (S_IS_DEFINED (fragp->fr_symbol)
21966 && ARM_IS_FUNC (fragp->fr_symbol))
21967 return 4;
21968 #endif
21969
21970 if (symbol_preemptible (fragp->fr_symbol))
21971 return 4;
21972
21973 val = relaxed_symbol_addr (fragp, stretch);
21974 addr = fragp->fr_address + fragp->fr_fix + 4;
21975 val -= addr;
21976
21977 /* Offset is a signed value *2 */
21978 limit = 1 << bits;
21979 if (val >= limit || val < -limit)
21980 return 4;
21981 return 2;
21982 }
21983
21984
21985 /* Relax a machine dependent frag. This returns the amount by which
21986 the current size of the frag should change. */
21987
21988 int
21989 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
21990 {
21991 int oldsize;
21992 int newsize;
21993
21994 oldsize = fragp->fr_var;
21995 switch (fragp->fr_subtype)
21996 {
21997 case T_MNEM_ldr_pc2:
21998 newsize = relax_adr (fragp, sec, stretch);
21999 break;
22000 case T_MNEM_ldr_pc:
22001 case T_MNEM_ldr_sp:
22002 case T_MNEM_str_sp:
22003 newsize = relax_immediate (fragp, 8, 2);
22004 break;
22005 case T_MNEM_ldr:
22006 case T_MNEM_str:
22007 newsize = relax_immediate (fragp, 5, 2);
22008 break;
22009 case T_MNEM_ldrh:
22010 case T_MNEM_strh:
22011 newsize = relax_immediate (fragp, 5, 1);
22012 break;
22013 case T_MNEM_ldrb:
22014 case T_MNEM_strb:
22015 newsize = relax_immediate (fragp, 5, 0);
22016 break;
22017 case T_MNEM_adr:
22018 newsize = relax_adr (fragp, sec, stretch);
22019 break;
22020 case T_MNEM_mov:
22021 case T_MNEM_movs:
22022 case T_MNEM_cmp:
22023 case T_MNEM_cmn:
22024 newsize = relax_immediate (fragp, 8, 0);
22025 break;
22026 case T_MNEM_b:
22027 newsize = relax_branch (fragp, sec, 11, stretch);
22028 break;
22029 case T_MNEM_bcond:
22030 newsize = relax_branch (fragp, sec, 8, stretch);
22031 break;
22032 case T_MNEM_add_sp:
22033 case T_MNEM_add_pc:
22034 newsize = relax_immediate (fragp, 8, 2);
22035 break;
22036 case T_MNEM_inc_sp:
22037 case T_MNEM_dec_sp:
22038 newsize = relax_immediate (fragp, 7, 2);
22039 break;
22040 case T_MNEM_addi:
22041 case T_MNEM_addis:
22042 case T_MNEM_subi:
22043 case T_MNEM_subis:
22044 newsize = relax_addsub (fragp, sec);
22045 break;
22046 default:
22047 abort ();
22048 }
22049
22050 fragp->fr_var = newsize;
22051 /* Freeze wide instructions that are at or before the same location as
22052 in the previous pass. This avoids infinite loops.
22053 Don't freeze them unconditionally because targets may be artificially
22054 misaligned by the expansion of preceding frags. */
22055 if (stretch <= 0 && newsize > 2)
22056 {
22057 md_convert_frag (sec->owner, sec, fragp);
22058 frag_wane (fragp);
22059 }
22060
22061 return newsize - oldsize;
22062 }
22063
22064 /* Round up a section size to the appropriate boundary. */
22065
22066 valueT
22067 md_section_align (segT segment ATTRIBUTE_UNUSED,
22068 valueT size)
22069 {
22070 return size;
22071 }
22072
22073 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22074 of an rs_align_code fragment. */
22075
22076 void
22077 arm_handle_align (fragS * fragP)
22078 {
22079 static unsigned char const arm_noop[2][2][4] =
22080 {
22081 { /* ARMv1 */
22082 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22083 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22084 },
22085 { /* ARMv6k */
22086 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22087 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22088 },
22089 };
22090 static unsigned char const thumb_noop[2][2][2] =
22091 {
22092 { /* Thumb-1 */
22093 {0xc0, 0x46}, /* LE */
22094 {0x46, 0xc0}, /* BE */
22095 },
22096 { /* Thumb-2 */
22097 {0x00, 0xbf}, /* LE */
22098 {0xbf, 0x00} /* BE */
22099 }
22100 };
22101 static unsigned char const wide_thumb_noop[2][4] =
22102 { /* Wide Thumb-2 */
22103 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22104 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22105 };
22106
22107 unsigned bytes, fix, noop_size;
22108 char * p;
22109 const unsigned char * noop;
22110 const unsigned char *narrow_noop = NULL;
22111 #ifdef OBJ_ELF
22112 enum mstate state;
22113 #endif
22114
22115 if (fragP->fr_type != rs_align_code)
22116 return;
22117
22118 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22119 p = fragP->fr_literal + fragP->fr_fix;
22120 fix = 0;
22121
22122 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22123 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
22124
22125 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
22126
22127 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
22128 {
22129 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22130 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
22131 {
22132 narrow_noop = thumb_noop[1][target_big_endian];
22133 noop = wide_thumb_noop[target_big_endian];
22134 }
22135 else
22136 noop = thumb_noop[0][target_big_endian];
22137 noop_size = 2;
22138 #ifdef OBJ_ELF
22139 state = MAP_THUMB;
22140 #endif
22141 }
22142 else
22143 {
22144 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22145 ? selected_cpu : arm_arch_none,
22146 arm_ext_v6k) != 0]
22147 [target_big_endian];
22148 noop_size = 4;
22149 #ifdef OBJ_ELF
22150 state = MAP_ARM;
22151 #endif
22152 }
22153
22154 fragP->fr_var = noop_size;
22155
22156 if (bytes & (noop_size - 1))
22157 {
22158 fix = bytes & (noop_size - 1);
22159 #ifdef OBJ_ELF
22160 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22161 #endif
22162 memset (p, 0, fix);
22163 p += fix;
22164 bytes -= fix;
22165 }
22166
22167 if (narrow_noop)
22168 {
22169 if (bytes & noop_size)
22170 {
22171 /* Insert a narrow noop. */
22172 memcpy (p, narrow_noop, noop_size);
22173 p += noop_size;
22174 bytes -= noop_size;
22175 fix += noop_size;
22176 }
22177
22178 /* Use wide noops for the remainder */
22179 noop_size = 4;
22180 }
22181
22182 while (bytes >= noop_size)
22183 {
22184 memcpy (p, noop, noop_size);
22185 p += noop_size;
22186 bytes -= noop_size;
22187 fix += noop_size;
22188 }
22189
22190 fragP->fr_fix += fix;
22191 }
22192
22193 /* Called from md_do_align. Used to create an alignment
22194 frag in a code section. */
22195
22196 void
22197 arm_frag_align_code (int n, int max)
22198 {
22199 char * p;
22200
22201 /* We assume that there will never be a requirement
22202 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
22203 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
22204 {
22205 char err_msg[128];
22206
22207 sprintf (err_msg,
22208 _("alignments greater than %d bytes not supported in .text sections."),
22209 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
22210 as_fatal ("%s", err_msg);
22211 }
22212
22213 p = frag_var (rs_align_code,
22214 MAX_MEM_FOR_RS_ALIGN_CODE,
22215 1,
22216 (relax_substateT) max,
22217 (symbolS *) NULL,
22218 (offsetT) n,
22219 (char *) NULL);
22220 *p = 0;
22221 }
22222
22223 /* Perform target specific initialisation of a frag.
22224 Note - despite the name this initialisation is not done when the frag
22225 is created, but only when its type is assigned. A frag can be created
22226 and used a long time before its type is set, so beware of assuming that
22227 this initialisation is performed first. */
22228
22229 #ifndef OBJ_ELF
22230 void
22231 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22232 {
22233 /* Record whether this frag is in an ARM or a THUMB area. */
22234 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22235 }
22236
22237 #else /* OBJ_ELF is defined. */
22238 void
22239 arm_init_frag (fragS * fragP, int max_chars)
22240 {
22241 bfd_boolean frag_thumb_mode;
22242
22243 /* If the current ARM vs THUMB mode has not already
22244 been recorded into this frag then do so now. */
22245 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
22246 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22247
22248 /* PR 21809: Do not set a mapping state for debug sections
22249 - it just confuses other tools. */
22250 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22251 return;
22252
22253 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
22254
22255 /* Record a mapping symbol for alignment frags. We will delete this
22256 later if the alignment ends up empty. */
22257 switch (fragP->fr_type)
22258 {
22259 case rs_align:
22260 case rs_align_test:
22261 case rs_fill:
22262 mapping_state_2 (MAP_DATA, max_chars);
22263 break;
22264 case rs_align_code:
22265 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
22266 break;
22267 default:
22268 break;
22269 }
22270 }
22271
22272 /* When we change sections we need to issue a new mapping symbol. */
22273
22274 void
22275 arm_elf_change_section (void)
22276 {
22277 /* Link an unlinked unwind index table section to the .text section. */
22278 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22279 && elf_linked_to_section (now_seg) == NULL)
22280 elf_linked_to_section (now_seg) = text_section;
22281 }
22282
22283 int
22284 arm_elf_section_type (const char * str, size_t len)
22285 {
22286 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22287 return SHT_ARM_EXIDX;
22288
22289 return -1;
22290 }
22291 \f
22292 /* Code to deal with unwinding tables. */
22293
22294 static void add_unwind_adjustsp (offsetT);
22295
22296 /* Generate any deferred unwind frame offset. */
22297
22298 static void
22299 flush_pending_unwind (void)
22300 {
22301 offsetT offset;
22302
22303 offset = unwind.pending_offset;
22304 unwind.pending_offset = 0;
22305 if (offset != 0)
22306 add_unwind_adjustsp (offset);
22307 }
22308
22309 /* Add an opcode to this list for this function. Two-byte opcodes should
22310 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22311 order. */
22312
22313 static void
22314 add_unwind_opcode (valueT op, int length)
22315 {
22316 /* Add any deferred stack adjustment. */
22317 if (unwind.pending_offset)
22318 flush_pending_unwind ();
22319
22320 unwind.sp_restored = 0;
22321
22322 if (unwind.opcode_count + length > unwind.opcode_alloc)
22323 {
22324 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22325 if (unwind.opcodes)
22326 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22327 unwind.opcode_alloc);
22328 else
22329 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
22330 }
22331 while (length > 0)
22332 {
22333 length--;
22334 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22335 op >>= 8;
22336 unwind.opcode_count++;
22337 }
22338 }
22339
22340 /* Add unwind opcodes to adjust the stack pointer. */
22341
22342 static void
22343 add_unwind_adjustsp (offsetT offset)
22344 {
22345 valueT op;
22346
22347 if (offset > 0x200)
22348 {
22349 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22350 char bytes[5];
22351 int n;
22352 valueT o;
22353
22354 /* Long form: 0xb2, uleb128. */
22355 /* This might not fit in a word so add the individual bytes,
22356 remembering the list is built in reverse order. */
22357 o = (valueT) ((offset - 0x204) >> 2);
22358 if (o == 0)
22359 add_unwind_opcode (0, 1);
22360
22361 /* Calculate the uleb128 encoding of the offset. */
22362 n = 0;
22363 while (o)
22364 {
22365 bytes[n] = o & 0x7f;
22366 o >>= 7;
22367 if (o)
22368 bytes[n] |= 0x80;
22369 n++;
22370 }
22371 /* Add the insn. */
22372 for (; n; n--)
22373 add_unwind_opcode (bytes[n - 1], 1);
22374 add_unwind_opcode (0xb2, 1);
22375 }
22376 else if (offset > 0x100)
22377 {
22378 /* Two short opcodes. */
22379 add_unwind_opcode (0x3f, 1);
22380 op = (offset - 0x104) >> 2;
22381 add_unwind_opcode (op, 1);
22382 }
22383 else if (offset > 0)
22384 {
22385 /* Short opcode. */
22386 op = (offset - 4) >> 2;
22387 add_unwind_opcode (op, 1);
22388 }
22389 else if (offset < 0)
22390 {
22391 offset = -offset;
22392 while (offset > 0x100)
22393 {
22394 add_unwind_opcode (0x7f, 1);
22395 offset -= 0x100;
22396 }
22397 op = ((offset - 4) >> 2) | 0x40;
22398 add_unwind_opcode (op, 1);
22399 }
22400 }
22401
22402 /* Finish the list of unwind opcodes for this function. */
22403
22404 static void
22405 finish_unwind_opcodes (void)
22406 {
22407 valueT op;
22408
22409 if (unwind.fp_used)
22410 {
22411 /* Adjust sp as necessary. */
22412 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22413 flush_pending_unwind ();
22414
22415 /* After restoring sp from the frame pointer. */
22416 op = 0x90 | unwind.fp_reg;
22417 add_unwind_opcode (op, 1);
22418 }
22419 else
22420 flush_pending_unwind ();
22421 }
22422
22423
22424 /* Start an exception table entry. If idx is nonzero this is an index table
22425 entry. */
22426
22427 static void
22428 start_unwind_section (const segT text_seg, int idx)
22429 {
22430 const char * text_name;
22431 const char * prefix;
22432 const char * prefix_once;
22433 const char * group_name;
22434 char * sec_name;
22435 int type;
22436 int flags;
22437 int linkonce;
22438
22439 if (idx)
22440 {
22441 prefix = ELF_STRING_ARM_unwind;
22442 prefix_once = ELF_STRING_ARM_unwind_once;
22443 type = SHT_ARM_EXIDX;
22444 }
22445 else
22446 {
22447 prefix = ELF_STRING_ARM_unwind_info;
22448 prefix_once = ELF_STRING_ARM_unwind_info_once;
22449 type = SHT_PROGBITS;
22450 }
22451
22452 text_name = segment_name (text_seg);
22453 if (streq (text_name, ".text"))
22454 text_name = "";
22455
22456 if (strncmp (text_name, ".gnu.linkonce.t.",
22457 strlen (".gnu.linkonce.t.")) == 0)
22458 {
22459 prefix = prefix_once;
22460 text_name += strlen (".gnu.linkonce.t.");
22461 }
22462
22463 sec_name = concat (prefix, text_name, (char *) NULL);
22464
22465 flags = SHF_ALLOC;
22466 linkonce = 0;
22467 group_name = 0;
22468
22469 /* Handle COMDAT group. */
22470 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
22471 {
22472 group_name = elf_group_name (text_seg);
22473 if (group_name == NULL)
22474 {
22475 as_bad (_("Group section `%s' has no group signature"),
22476 segment_name (text_seg));
22477 ignore_rest_of_line ();
22478 return;
22479 }
22480 flags |= SHF_GROUP;
22481 linkonce = 1;
22482 }
22483
22484 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22485 linkonce, 0);
22486
22487 /* Set the section link for index tables. */
22488 if (idx)
22489 elf_linked_to_section (now_seg) = text_seg;
22490 }
22491
22492
22493 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22494 personality routine data. Returns zero, or the index table value for
22495 an inline entry. */
22496
22497 static valueT
22498 create_unwind_entry (int have_data)
22499 {
22500 int size;
22501 addressT where;
22502 char *ptr;
22503 /* The current word of data. */
22504 valueT data;
22505 /* The number of bytes left in this word. */
22506 int n;
22507
22508 finish_unwind_opcodes ();
22509
22510 /* Remember the current text section. */
22511 unwind.saved_seg = now_seg;
22512 unwind.saved_subseg = now_subseg;
22513
22514 start_unwind_section (now_seg, 0);
22515
22516 if (unwind.personality_routine == NULL)
22517 {
22518 if (unwind.personality_index == -2)
22519 {
22520 if (have_data)
22521 as_bad (_("handlerdata in cantunwind frame"));
22522 return 1; /* EXIDX_CANTUNWIND. */
22523 }
22524
22525 /* Use a default personality routine if none is specified. */
22526 if (unwind.personality_index == -1)
22527 {
22528 if (unwind.opcode_count > 3)
22529 unwind.personality_index = 1;
22530 else
22531 unwind.personality_index = 0;
22532 }
22533
22534 /* Space for the personality routine entry. */
22535 if (unwind.personality_index == 0)
22536 {
22537 if (unwind.opcode_count > 3)
22538 as_bad (_("too many unwind opcodes for personality routine 0"));
22539
22540 if (!have_data)
22541 {
22542 /* All the data is inline in the index table. */
22543 data = 0x80;
22544 n = 3;
22545 while (unwind.opcode_count > 0)
22546 {
22547 unwind.opcode_count--;
22548 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22549 n--;
22550 }
22551
22552 /* Pad with "finish" opcodes. */
22553 while (n--)
22554 data = (data << 8) | 0xb0;
22555
22556 return data;
22557 }
22558 size = 0;
22559 }
22560 else
22561 /* We get two opcodes "free" in the first word. */
22562 size = unwind.opcode_count - 2;
22563 }
22564 else
22565 {
22566 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22567 if (unwind.personality_index != -1)
22568 {
22569 as_bad (_("attempt to recreate an unwind entry"));
22570 return 1;
22571 }
22572
22573 /* An extra byte is required for the opcode count. */
22574 size = unwind.opcode_count + 1;
22575 }
22576
22577 size = (size + 3) >> 2;
22578 if (size > 0xff)
22579 as_bad (_("too many unwind opcodes"));
22580
22581 frag_align (2, 0, 0);
22582 record_alignment (now_seg, 2);
22583 unwind.table_entry = expr_build_dot ();
22584
22585 /* Allocate the table entry. */
22586 ptr = frag_more ((size << 2) + 4);
22587 /* PR 13449: Zero the table entries in case some of them are not used. */
22588 memset (ptr, 0, (size << 2) + 4);
22589 where = frag_now_fix () - ((size << 2) + 4);
22590
22591 switch (unwind.personality_index)
22592 {
22593 case -1:
22594 /* ??? Should this be a PLT generating relocation? */
22595 /* Custom personality routine. */
22596 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22597 BFD_RELOC_ARM_PREL31);
22598
22599 where += 4;
22600 ptr += 4;
22601
22602 /* Set the first byte to the number of additional words. */
22603 data = size > 0 ? size - 1 : 0;
22604 n = 3;
22605 break;
22606
22607 /* ABI defined personality routines. */
22608 case 0:
22609 /* Three opcodes bytes are packed into the first word. */
22610 data = 0x80;
22611 n = 3;
22612 break;
22613
22614 case 1:
22615 case 2:
22616 /* The size and first two opcode bytes go in the first word. */
22617 data = ((0x80 + unwind.personality_index) << 8) | size;
22618 n = 2;
22619 break;
22620
22621 default:
22622 /* Should never happen. */
22623 abort ();
22624 }
22625
22626 /* Pack the opcodes into words (MSB first), reversing the list at the same
22627 time. */
22628 while (unwind.opcode_count > 0)
22629 {
22630 if (n == 0)
22631 {
22632 md_number_to_chars (ptr, data, 4);
22633 ptr += 4;
22634 n = 4;
22635 data = 0;
22636 }
22637 unwind.opcode_count--;
22638 n--;
22639 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22640 }
22641
22642 /* Finish off the last word. */
22643 if (n < 4)
22644 {
22645 /* Pad with "finish" opcodes. */
22646 while (n--)
22647 data = (data << 8) | 0xb0;
22648
22649 md_number_to_chars (ptr, data, 4);
22650 }
22651
22652 if (!have_data)
22653 {
22654 /* Add an empty descriptor if there is no user-specified data. */
22655 ptr = frag_more (4);
22656 md_number_to_chars (ptr, 0, 4);
22657 }
22658
22659 return 0;
22660 }
22661
22662
22663 /* Initialize the DWARF-2 unwind information for this procedure. */
22664
22665 void
22666 tc_arm_frame_initial_instructions (void)
22667 {
22668 cfi_add_CFA_def_cfa (REG_SP, 0);
22669 }
22670 #endif /* OBJ_ELF */
22671
22672 /* Convert REGNAME to a DWARF-2 register number. */
22673
22674 int
22675 tc_arm_regname_to_dw2regnum (char *regname)
22676 {
22677 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
22678 if (reg != FAIL)
22679 return reg;
22680
22681 /* PR 16694: Allow VFP registers as well. */
22682 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22683 if (reg != FAIL)
22684 return 64 + reg;
22685
22686 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22687 if (reg != FAIL)
22688 return reg + 256;
22689
22690 return FAIL;
22691 }
22692
22693 #ifdef TE_PE
22694 void
22695 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
22696 {
22697 expressionS exp;
22698
22699 exp.X_op = O_secrel;
22700 exp.X_add_symbol = symbol;
22701 exp.X_add_number = 0;
22702 emit_expr (&exp, size);
22703 }
22704 #endif
22705
22706 /* MD interface: Symbol and relocation handling. */
22707
22708 /* Return the address within the segment that a PC-relative fixup is
22709 relative to. For ARM, PC-relative fixups applied to instructions
22710 are generally relative to the location of the fixup plus 8 bytes.
22711 Thumb branches are offset by 4, and Thumb loads relative to PC
22712 require special handling. */
22713
22714 long
22715 md_pcrel_from_section (fixS * fixP, segT seg)
22716 {
22717 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22718
22719 /* If this is pc-relative and we are going to emit a relocation
22720 then we just want to put out any pipeline compensation that the linker
22721 will need. Otherwise we want to use the calculated base.
22722 For WinCE we skip the bias for externals as well, since this
22723 is how the MS ARM-CE assembler behaves and we want to be compatible. */
22724 if (fixP->fx_pcrel
22725 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
22726 || (arm_force_relocation (fixP)
22727 #ifdef TE_WINCE
22728 && !S_IS_EXTERNAL (fixP->fx_addsy)
22729 #endif
22730 )))
22731 base = 0;
22732
22733
22734 switch (fixP->fx_r_type)
22735 {
22736 /* PC relative addressing on the Thumb is slightly odd as the
22737 bottom two bits of the PC are forced to zero for the
22738 calculation. This happens *after* application of the
22739 pipeline offset. However, Thumb adrl already adjusts for
22740 this, so we need not do it again. */
22741 case BFD_RELOC_ARM_THUMB_ADD:
22742 return base & ~3;
22743
22744 case BFD_RELOC_ARM_THUMB_OFFSET:
22745 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22746 case BFD_RELOC_ARM_T32_ADD_PC12:
22747 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22748 return (base + 4) & ~3;
22749
22750 /* Thumb branches are simply offset by +4. */
22751 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22752 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22753 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22754 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22755 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22756 return base + 4;
22757
22758 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22759 if (fixP->fx_addsy
22760 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22761 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22762 && ARM_IS_FUNC (fixP->fx_addsy)
22763 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22764 base = fixP->fx_where + fixP->fx_frag->fr_address;
22765 return base + 4;
22766
22767 /* BLX is like branches above, but forces the low two bits of PC to
22768 zero. */
22769 case BFD_RELOC_THUMB_PCREL_BLX:
22770 if (fixP->fx_addsy
22771 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22772 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22773 && THUMB_IS_FUNC (fixP->fx_addsy)
22774 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22775 base = fixP->fx_where + fixP->fx_frag->fr_address;
22776 return (base + 4) & ~3;
22777
22778 /* ARM mode branches are offset by +8. However, the Windows CE
22779 loader expects the relocation not to take this into account. */
22780 case BFD_RELOC_ARM_PCREL_BLX:
22781 if (fixP->fx_addsy
22782 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22783 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22784 && ARM_IS_FUNC (fixP->fx_addsy)
22785 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22786 base = fixP->fx_where + fixP->fx_frag->fr_address;
22787 return base + 8;
22788
22789 case BFD_RELOC_ARM_PCREL_CALL:
22790 if (fixP->fx_addsy
22791 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22792 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22793 && THUMB_IS_FUNC (fixP->fx_addsy)
22794 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22795 base = fixP->fx_where + fixP->fx_frag->fr_address;
22796 return base + 8;
22797
22798 case BFD_RELOC_ARM_PCREL_BRANCH:
22799 case BFD_RELOC_ARM_PCREL_JUMP:
22800 case BFD_RELOC_ARM_PLT32:
22801 #ifdef TE_WINCE
22802 /* When handling fixups immediately, because we have already
22803 discovered the value of a symbol, or the address of the frag involved
22804 we must account for the offset by +8, as the OS loader will never see the reloc.
22805 see fixup_segment() in write.c
22806 The S_IS_EXTERNAL test handles the case of global symbols.
22807 Those need the calculated base, not just the pipe compensation the linker will need. */
22808 if (fixP->fx_pcrel
22809 && fixP->fx_addsy != NULL
22810 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22811 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22812 return base + 8;
22813 return base;
22814 #else
22815 return base + 8;
22816 #endif
22817
22818
22819 /* ARM mode loads relative to PC are also offset by +8. Unlike
22820 branches, the Windows CE loader *does* expect the relocation
22821 to take this into account. */
22822 case BFD_RELOC_ARM_OFFSET_IMM:
22823 case BFD_RELOC_ARM_OFFSET_IMM8:
22824 case BFD_RELOC_ARM_HWLITERAL:
22825 case BFD_RELOC_ARM_LITERAL:
22826 case BFD_RELOC_ARM_CP_OFF_IMM:
22827 return base + 8;
22828
22829
22830 /* Other PC-relative relocations are un-offset. */
22831 default:
22832 return base;
22833 }
22834 }
22835
22836 static bfd_boolean flag_warn_syms = TRUE;
22837
22838 bfd_boolean
22839 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
22840 {
22841 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22842 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22843 does mean that the resulting code might be very confusing to the reader.
22844 Also this warning can be triggered if the user omits an operand before
22845 an immediate address, eg:
22846
22847 LDR =foo
22848
22849 GAS treats this as an assignment of the value of the symbol foo to a
22850 symbol LDR, and so (without this code) it will not issue any kind of
22851 warning or error message.
22852
22853 Note - ARM instructions are case-insensitive but the strings in the hash
22854 table are all stored in lower case, so we must first ensure that name is
22855 lower case too. */
22856 if (flag_warn_syms && arm_ops_hsh)
22857 {
22858 char * nbuf = strdup (name);
22859 char * p;
22860
22861 for (p = nbuf; *p; p++)
22862 *p = TOLOWER (*p);
22863 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22864 {
22865 static struct hash_control * already_warned = NULL;
22866
22867 if (already_warned == NULL)
22868 already_warned = hash_new ();
22869 /* Only warn about the symbol once. To keep the code
22870 simple we let hash_insert do the lookup for us. */
22871 if (hash_insert (already_warned, name, NULL) == NULL)
22872 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
22873 }
22874 else
22875 free (nbuf);
22876 }
22877
22878 return FALSE;
22879 }
22880
22881 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22882 Otherwise we have no need to default values of symbols. */
22883
22884 symbolS *
22885 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22886 {
22887 #ifdef OBJ_ELF
22888 if (name[0] == '_' && name[1] == 'G'
22889 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22890 {
22891 if (!GOT_symbol)
22892 {
22893 if (symbol_find (name))
22894 as_bad (_("GOT already in the symbol table"));
22895
22896 GOT_symbol = symbol_new (name, undefined_section,
22897 (valueT) 0, & zero_address_frag);
22898 }
22899
22900 return GOT_symbol;
22901 }
22902 #endif
22903
22904 return NULL;
22905 }
22906
22907 /* Subroutine of md_apply_fix. Check to see if an immediate can be
22908 computed as two separate immediate values, added together. We
22909 already know that this value cannot be computed by just one ARM
22910 instruction. */
22911
22912 static unsigned int
22913 validate_immediate_twopart (unsigned int val,
22914 unsigned int * highpart)
22915 {
22916 unsigned int a;
22917 unsigned int i;
22918
22919 for (i = 0; i < 32; i += 2)
22920 if (((a = rotate_left (val, i)) & 0xff) != 0)
22921 {
22922 if (a & 0xff00)
22923 {
22924 if (a & ~ 0xffff)
22925 continue;
22926 * highpart = (a >> 8) | ((i + 24) << 7);
22927 }
22928 else if (a & 0xff0000)
22929 {
22930 if (a & 0xff000000)
22931 continue;
22932 * highpart = (a >> 16) | ((i + 16) << 7);
22933 }
22934 else
22935 {
22936 gas_assert (a & 0xff000000);
22937 * highpart = (a >> 24) | ((i + 8) << 7);
22938 }
22939
22940 return (a & 0xff) | (i << 7);
22941 }
22942
22943 return FAIL;
22944 }
22945
22946 static int
22947 validate_offset_imm (unsigned int val, int hwse)
22948 {
22949 if ((hwse && val > 255) || val > 4095)
22950 return FAIL;
22951 return val;
22952 }
22953
22954 /* Subroutine of md_apply_fix. Do those data_ops which can take a
22955 negative immediate constant by altering the instruction. A bit of
22956 a hack really.
22957 MOV <-> MVN
22958 AND <-> BIC
22959 ADC <-> SBC
22960 by inverting the second operand, and
22961 ADD <-> SUB
22962 CMP <-> CMN
22963 by negating the second operand. */
22964
22965 static int
22966 negate_data_op (unsigned long * instruction,
22967 unsigned long value)
22968 {
22969 int op, new_inst;
22970 unsigned long negated, inverted;
22971
22972 negated = encode_arm_immediate (-value);
22973 inverted = encode_arm_immediate (~value);
22974
22975 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
22976 switch (op)
22977 {
22978 /* First negates. */
22979 case OPCODE_SUB: /* ADD <-> SUB */
22980 new_inst = OPCODE_ADD;
22981 value = negated;
22982 break;
22983
22984 case OPCODE_ADD:
22985 new_inst = OPCODE_SUB;
22986 value = negated;
22987 break;
22988
22989 case OPCODE_CMP: /* CMP <-> CMN */
22990 new_inst = OPCODE_CMN;
22991 value = negated;
22992 break;
22993
22994 case OPCODE_CMN:
22995 new_inst = OPCODE_CMP;
22996 value = negated;
22997 break;
22998
22999 /* Now Inverted ops. */
23000 case OPCODE_MOV: /* MOV <-> MVN */
23001 new_inst = OPCODE_MVN;
23002 value = inverted;
23003 break;
23004
23005 case OPCODE_MVN:
23006 new_inst = OPCODE_MOV;
23007 value = inverted;
23008 break;
23009
23010 case OPCODE_AND: /* AND <-> BIC */
23011 new_inst = OPCODE_BIC;
23012 value = inverted;
23013 break;
23014
23015 case OPCODE_BIC:
23016 new_inst = OPCODE_AND;
23017 value = inverted;
23018 break;
23019
23020 case OPCODE_ADC: /* ADC <-> SBC */
23021 new_inst = OPCODE_SBC;
23022 value = inverted;
23023 break;
23024
23025 case OPCODE_SBC:
23026 new_inst = OPCODE_ADC;
23027 value = inverted;
23028 break;
23029
23030 /* We cannot do anything. */
23031 default:
23032 return FAIL;
23033 }
23034
23035 if (value == (unsigned) FAIL)
23036 return FAIL;
23037
23038 *instruction &= OPCODE_MASK;
23039 *instruction |= new_inst << DATA_OP_SHIFT;
23040 return value;
23041 }
23042
23043 /* Like negate_data_op, but for Thumb-2. */
23044
23045 static unsigned int
23046 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
23047 {
23048 int op, new_inst;
23049 int rd;
23050 unsigned int negated, inverted;
23051
23052 negated = encode_thumb32_immediate (-value);
23053 inverted = encode_thumb32_immediate (~value);
23054
23055 rd = (*instruction >> 8) & 0xf;
23056 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23057 switch (op)
23058 {
23059 /* ADD <-> SUB. Includes CMP <-> CMN. */
23060 case T2_OPCODE_SUB:
23061 new_inst = T2_OPCODE_ADD;
23062 value = negated;
23063 break;
23064
23065 case T2_OPCODE_ADD:
23066 new_inst = T2_OPCODE_SUB;
23067 value = negated;
23068 break;
23069
23070 /* ORR <-> ORN. Includes MOV <-> MVN. */
23071 case T2_OPCODE_ORR:
23072 new_inst = T2_OPCODE_ORN;
23073 value = inverted;
23074 break;
23075
23076 case T2_OPCODE_ORN:
23077 new_inst = T2_OPCODE_ORR;
23078 value = inverted;
23079 break;
23080
23081 /* AND <-> BIC. TST has no inverted equivalent. */
23082 case T2_OPCODE_AND:
23083 new_inst = T2_OPCODE_BIC;
23084 if (rd == 15)
23085 value = FAIL;
23086 else
23087 value = inverted;
23088 break;
23089
23090 case T2_OPCODE_BIC:
23091 new_inst = T2_OPCODE_AND;
23092 value = inverted;
23093 break;
23094
23095 /* ADC <-> SBC */
23096 case T2_OPCODE_ADC:
23097 new_inst = T2_OPCODE_SBC;
23098 value = inverted;
23099 break;
23100
23101 case T2_OPCODE_SBC:
23102 new_inst = T2_OPCODE_ADC;
23103 value = inverted;
23104 break;
23105
23106 /* We cannot do anything. */
23107 default:
23108 return FAIL;
23109 }
23110
23111 if (value == (unsigned int)FAIL)
23112 return FAIL;
23113
23114 *instruction &= T2_OPCODE_MASK;
23115 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23116 return value;
23117 }
23118
23119 /* Read a 32-bit thumb instruction from buf. */
23120
23121 static unsigned long
23122 get_thumb32_insn (char * buf)
23123 {
23124 unsigned long insn;
23125 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23126 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23127
23128 return insn;
23129 }
23130
23131 /* We usually want to set the low bit on the address of thumb function
23132 symbols. In particular .word foo - . should have the low bit set.
23133 Generic code tries to fold the difference of two symbols to
23134 a constant. Prevent this and force a relocation when the first symbols
23135 is a thumb function. */
23136
23137 bfd_boolean
23138 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23139 {
23140 if (op == O_subtract
23141 && l->X_op == O_symbol
23142 && r->X_op == O_symbol
23143 && THUMB_IS_FUNC (l->X_add_symbol))
23144 {
23145 l->X_op = O_subtract;
23146 l->X_op_symbol = r->X_add_symbol;
23147 l->X_add_number -= r->X_add_number;
23148 return TRUE;
23149 }
23150
23151 /* Process as normal. */
23152 return FALSE;
23153 }
23154
23155 /* Encode Thumb2 unconditional branches and calls. The encoding
23156 for the 2 are identical for the immediate values. */
23157
23158 static void
23159 encode_thumb2_b_bl_offset (char * buf, offsetT value)
23160 {
23161 #define T2I1I2MASK ((1 << 13) | (1 << 11))
23162 offsetT newval;
23163 offsetT newval2;
23164 addressT S, I1, I2, lo, hi;
23165
23166 S = (value >> 24) & 0x01;
23167 I1 = (value >> 23) & 0x01;
23168 I2 = (value >> 22) & 0x01;
23169 hi = (value >> 12) & 0x3ff;
23170 lo = (value >> 1) & 0x7ff;
23171 newval = md_chars_to_number (buf, THUMB_SIZE);
23172 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23173 newval |= (S << 10) | hi;
23174 newval2 &= ~T2I1I2MASK;
23175 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23176 md_number_to_chars (buf, newval, THUMB_SIZE);
23177 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23178 }
23179
23180 void
23181 md_apply_fix (fixS * fixP,
23182 valueT * valP,
23183 segT seg)
23184 {
23185 offsetT value = * valP;
23186 offsetT newval;
23187 unsigned int newimm;
23188 unsigned long temp;
23189 int sign;
23190 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
23191
23192 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
23193
23194 /* Note whether this will delete the relocation. */
23195
23196 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23197 fixP->fx_done = 1;
23198
23199 /* On a 64-bit host, silently truncate 'value' to 32 bits for
23200 consistency with the behaviour on 32-bit hosts. Remember value
23201 for emit_reloc. */
23202 value &= 0xffffffff;
23203 value ^= 0x80000000;
23204 value -= 0x80000000;
23205
23206 *valP = value;
23207 fixP->fx_addnumber = value;
23208
23209 /* Same treatment for fixP->fx_offset. */
23210 fixP->fx_offset &= 0xffffffff;
23211 fixP->fx_offset ^= 0x80000000;
23212 fixP->fx_offset -= 0x80000000;
23213
23214 switch (fixP->fx_r_type)
23215 {
23216 case BFD_RELOC_NONE:
23217 /* This will need to go in the object file. */
23218 fixP->fx_done = 0;
23219 break;
23220
23221 case BFD_RELOC_ARM_IMMEDIATE:
23222 /* We claim that this fixup has been processed here,
23223 even if in fact we generate an error because we do
23224 not have a reloc for it, so tc_gen_reloc will reject it. */
23225 fixP->fx_done = 1;
23226
23227 if (fixP->fx_addsy)
23228 {
23229 const char *msg = 0;
23230
23231 if (! S_IS_DEFINED (fixP->fx_addsy))
23232 msg = _("undefined symbol %s used as an immediate value");
23233 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23234 msg = _("symbol %s is in a different section");
23235 else if (S_IS_WEAK (fixP->fx_addsy))
23236 msg = _("symbol %s is weak and may be overridden later");
23237
23238 if (msg)
23239 {
23240 as_bad_where (fixP->fx_file, fixP->fx_line,
23241 msg, S_GET_NAME (fixP->fx_addsy));
23242 break;
23243 }
23244 }
23245
23246 temp = md_chars_to_number (buf, INSN_SIZE);
23247
23248 /* If the offset is negative, we should use encoding A2 for ADR. */
23249 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23250 newimm = negate_data_op (&temp, value);
23251 else
23252 {
23253 newimm = encode_arm_immediate (value);
23254
23255 /* If the instruction will fail, see if we can fix things up by
23256 changing the opcode. */
23257 if (newimm == (unsigned int) FAIL)
23258 newimm = negate_data_op (&temp, value);
23259 /* MOV accepts both ARM modified immediate (A1 encoding) and
23260 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23261 When disassembling, MOV is preferred when there is no encoding
23262 overlap. */
23263 if (newimm == (unsigned int) FAIL
23264 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23265 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23266 && !((temp >> SBIT_SHIFT) & 0x1)
23267 && value >= 0 && value <= 0xffff)
23268 {
23269 /* Clear bits[23:20] to change encoding from A1 to A2. */
23270 temp &= 0xff0fffff;
23271 /* Encoding high 4bits imm. Code below will encode the remaining
23272 low 12bits. */
23273 temp |= (value & 0x0000f000) << 4;
23274 newimm = value & 0x00000fff;
23275 }
23276 }
23277
23278 if (newimm == (unsigned int) FAIL)
23279 {
23280 as_bad_where (fixP->fx_file, fixP->fx_line,
23281 _("invalid constant (%lx) after fixup"),
23282 (unsigned long) value);
23283 break;
23284 }
23285
23286 newimm |= (temp & 0xfffff000);
23287 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23288 break;
23289
23290 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23291 {
23292 unsigned int highpart = 0;
23293 unsigned int newinsn = 0xe1a00000; /* nop. */
23294
23295 if (fixP->fx_addsy)
23296 {
23297 const char *msg = 0;
23298
23299 if (! S_IS_DEFINED (fixP->fx_addsy))
23300 msg = _("undefined symbol %s used as an immediate value");
23301 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23302 msg = _("symbol %s is in a different section");
23303 else if (S_IS_WEAK (fixP->fx_addsy))
23304 msg = _("symbol %s is weak and may be overridden later");
23305
23306 if (msg)
23307 {
23308 as_bad_where (fixP->fx_file, fixP->fx_line,
23309 msg, S_GET_NAME (fixP->fx_addsy));
23310 break;
23311 }
23312 }
23313
23314 newimm = encode_arm_immediate (value);
23315 temp = md_chars_to_number (buf, INSN_SIZE);
23316
23317 /* If the instruction will fail, see if we can fix things up by
23318 changing the opcode. */
23319 if (newimm == (unsigned int) FAIL
23320 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23321 {
23322 /* No ? OK - try using two ADD instructions to generate
23323 the value. */
23324 newimm = validate_immediate_twopart (value, & highpart);
23325
23326 /* Yes - then make sure that the second instruction is
23327 also an add. */
23328 if (newimm != (unsigned int) FAIL)
23329 newinsn = temp;
23330 /* Still No ? Try using a negated value. */
23331 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23332 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23333 /* Otherwise - give up. */
23334 else
23335 {
23336 as_bad_where (fixP->fx_file, fixP->fx_line,
23337 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23338 (long) value);
23339 break;
23340 }
23341
23342 /* Replace the first operand in the 2nd instruction (which
23343 is the PC) with the destination register. We have
23344 already added in the PC in the first instruction and we
23345 do not want to do it again. */
23346 newinsn &= ~ 0xf0000;
23347 newinsn |= ((newinsn & 0x0f000) << 4);
23348 }
23349
23350 newimm |= (temp & 0xfffff000);
23351 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23352
23353 highpart |= (newinsn & 0xfffff000);
23354 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23355 }
23356 break;
23357
23358 case BFD_RELOC_ARM_OFFSET_IMM:
23359 if (!fixP->fx_done && seg->use_rela_p)
23360 value = 0;
23361 /* Fall through. */
23362
23363 case BFD_RELOC_ARM_LITERAL:
23364 sign = value > 0;
23365
23366 if (value < 0)
23367 value = - value;
23368
23369 if (validate_offset_imm (value, 0) == FAIL)
23370 {
23371 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23372 as_bad_where (fixP->fx_file, fixP->fx_line,
23373 _("invalid literal constant: pool needs to be closer"));
23374 else
23375 as_bad_where (fixP->fx_file, fixP->fx_line,
23376 _("bad immediate value for offset (%ld)"),
23377 (long) value);
23378 break;
23379 }
23380
23381 newval = md_chars_to_number (buf, INSN_SIZE);
23382 if (value == 0)
23383 newval &= 0xfffff000;
23384 else
23385 {
23386 newval &= 0xff7ff000;
23387 newval |= value | (sign ? INDEX_UP : 0);
23388 }
23389 md_number_to_chars (buf, newval, INSN_SIZE);
23390 break;
23391
23392 case BFD_RELOC_ARM_OFFSET_IMM8:
23393 case BFD_RELOC_ARM_HWLITERAL:
23394 sign = value > 0;
23395
23396 if (value < 0)
23397 value = - value;
23398
23399 if (validate_offset_imm (value, 1) == FAIL)
23400 {
23401 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23402 as_bad_where (fixP->fx_file, fixP->fx_line,
23403 _("invalid literal constant: pool needs to be closer"));
23404 else
23405 as_bad_where (fixP->fx_file, fixP->fx_line,
23406 _("bad immediate value for 8-bit offset (%ld)"),
23407 (long) value);
23408 break;
23409 }
23410
23411 newval = md_chars_to_number (buf, INSN_SIZE);
23412 if (value == 0)
23413 newval &= 0xfffff0f0;
23414 else
23415 {
23416 newval &= 0xff7ff0f0;
23417 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23418 }
23419 md_number_to_chars (buf, newval, INSN_SIZE);
23420 break;
23421
23422 case BFD_RELOC_ARM_T32_OFFSET_U8:
23423 if (value < 0 || value > 1020 || value % 4 != 0)
23424 as_bad_where (fixP->fx_file, fixP->fx_line,
23425 _("bad immediate value for offset (%ld)"), (long) value);
23426 value /= 4;
23427
23428 newval = md_chars_to_number (buf+2, THUMB_SIZE);
23429 newval |= value;
23430 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23431 break;
23432
23433 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23434 /* This is a complicated relocation used for all varieties of Thumb32
23435 load/store instruction with immediate offset:
23436
23437 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
23438 *4, optional writeback(W)
23439 (doubleword load/store)
23440
23441 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23442 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23443 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23444 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23445 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23446
23447 Uppercase letters indicate bits that are already encoded at
23448 this point. Lowercase letters are our problem. For the
23449 second block of instructions, the secondary opcode nybble
23450 (bits 8..11) is present, and bit 23 is zero, even if this is
23451 a PC-relative operation. */
23452 newval = md_chars_to_number (buf, THUMB_SIZE);
23453 newval <<= 16;
23454 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
23455
23456 if ((newval & 0xf0000000) == 0xe0000000)
23457 {
23458 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23459 if (value >= 0)
23460 newval |= (1 << 23);
23461 else
23462 value = -value;
23463 if (value % 4 != 0)
23464 {
23465 as_bad_where (fixP->fx_file, fixP->fx_line,
23466 _("offset not a multiple of 4"));
23467 break;
23468 }
23469 value /= 4;
23470 if (value > 0xff)
23471 {
23472 as_bad_where (fixP->fx_file, fixP->fx_line,
23473 _("offset out of range"));
23474 break;
23475 }
23476 newval &= ~0xff;
23477 }
23478 else if ((newval & 0x000f0000) == 0x000f0000)
23479 {
23480 /* PC-relative, 12-bit offset. */
23481 if (value >= 0)
23482 newval |= (1 << 23);
23483 else
23484 value = -value;
23485 if (value > 0xfff)
23486 {
23487 as_bad_where (fixP->fx_file, fixP->fx_line,
23488 _("offset out of range"));
23489 break;
23490 }
23491 newval &= ~0xfff;
23492 }
23493 else if ((newval & 0x00000100) == 0x00000100)
23494 {
23495 /* Writeback: 8-bit, +/- offset. */
23496 if (value >= 0)
23497 newval |= (1 << 9);
23498 else
23499 value = -value;
23500 if (value > 0xff)
23501 {
23502 as_bad_where (fixP->fx_file, fixP->fx_line,
23503 _("offset out of range"));
23504 break;
23505 }
23506 newval &= ~0xff;
23507 }
23508 else if ((newval & 0x00000f00) == 0x00000e00)
23509 {
23510 /* T-instruction: positive 8-bit offset. */
23511 if (value < 0 || value > 0xff)
23512 {
23513 as_bad_where (fixP->fx_file, fixP->fx_line,
23514 _("offset out of range"));
23515 break;
23516 }
23517 newval &= ~0xff;
23518 newval |= value;
23519 }
23520 else
23521 {
23522 /* Positive 12-bit or negative 8-bit offset. */
23523 int limit;
23524 if (value >= 0)
23525 {
23526 newval |= (1 << 23);
23527 limit = 0xfff;
23528 }
23529 else
23530 {
23531 value = -value;
23532 limit = 0xff;
23533 }
23534 if (value > limit)
23535 {
23536 as_bad_where (fixP->fx_file, fixP->fx_line,
23537 _("offset out of range"));
23538 break;
23539 }
23540 newval &= ~limit;
23541 }
23542
23543 newval |= value;
23544 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23545 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23546 break;
23547
23548 case BFD_RELOC_ARM_SHIFT_IMM:
23549 newval = md_chars_to_number (buf, INSN_SIZE);
23550 if (((unsigned long) value) > 32
23551 || (value == 32
23552 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23553 {
23554 as_bad_where (fixP->fx_file, fixP->fx_line,
23555 _("shift expression is too large"));
23556 break;
23557 }
23558
23559 if (value == 0)
23560 /* Shifts of zero must be done as lsl. */
23561 newval &= ~0x60;
23562 else if (value == 32)
23563 value = 0;
23564 newval &= 0xfffff07f;
23565 newval |= (value & 0x1f) << 7;
23566 md_number_to_chars (buf, newval, INSN_SIZE);
23567 break;
23568
23569 case BFD_RELOC_ARM_T32_IMMEDIATE:
23570 case BFD_RELOC_ARM_T32_ADD_IMM:
23571 case BFD_RELOC_ARM_T32_IMM12:
23572 case BFD_RELOC_ARM_T32_ADD_PC12:
23573 /* We claim that this fixup has been processed here,
23574 even if in fact we generate an error because we do
23575 not have a reloc for it, so tc_gen_reloc will reject it. */
23576 fixP->fx_done = 1;
23577
23578 if (fixP->fx_addsy
23579 && ! S_IS_DEFINED (fixP->fx_addsy))
23580 {
23581 as_bad_where (fixP->fx_file, fixP->fx_line,
23582 _("undefined symbol %s used as an immediate value"),
23583 S_GET_NAME (fixP->fx_addsy));
23584 break;
23585 }
23586
23587 newval = md_chars_to_number (buf, THUMB_SIZE);
23588 newval <<= 16;
23589 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
23590
23591 newimm = FAIL;
23592 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23593 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23594 Thumb2 modified immediate encoding (T2). */
23595 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
23596 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23597 {
23598 newimm = encode_thumb32_immediate (value);
23599 if (newimm == (unsigned int) FAIL)
23600 newimm = thumb32_negate_data_op (&newval, value);
23601 }
23602 if (newimm == (unsigned int) FAIL)
23603 {
23604 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
23605 {
23606 /* Turn add/sum into addw/subw. */
23607 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23608 newval = (newval & 0xfeffffff) | 0x02000000;
23609 /* No flat 12-bit imm encoding for addsw/subsw. */
23610 if ((newval & 0x00100000) == 0)
23611 {
23612 /* 12 bit immediate for addw/subw. */
23613 if (value < 0)
23614 {
23615 value = -value;
23616 newval ^= 0x00a00000;
23617 }
23618 if (value > 0xfff)
23619 newimm = (unsigned int) FAIL;
23620 else
23621 newimm = value;
23622 }
23623 }
23624 else
23625 {
23626 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23627 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23628 disassembling, MOV is preferred when there is no encoding
23629 overlap. */
23630 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23631 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
23632 but with the Rn field [19:16] set to 1111. */
23633 && (((newval >> 16) & 0xf) == 0xf)
23634 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23635 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23636 && value >= 0 && value <= 0xffff)
23637 {
23638 /* Toggle bit[25] to change encoding from T2 to T3. */
23639 newval ^= 1 << 25;
23640 /* Clear bits[19:16]. */
23641 newval &= 0xfff0ffff;
23642 /* Encoding high 4bits imm. Code below will encode the
23643 remaining low 12bits. */
23644 newval |= (value & 0x0000f000) << 4;
23645 newimm = value & 0x00000fff;
23646 }
23647 }
23648 }
23649
23650 if (newimm == (unsigned int)FAIL)
23651 {
23652 as_bad_where (fixP->fx_file, fixP->fx_line,
23653 _("invalid constant (%lx) after fixup"),
23654 (unsigned long) value);
23655 break;
23656 }
23657
23658 newval |= (newimm & 0x800) << 15;
23659 newval |= (newimm & 0x700) << 4;
23660 newval |= (newimm & 0x0ff);
23661
23662 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23663 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23664 break;
23665
23666 case BFD_RELOC_ARM_SMC:
23667 if (((unsigned long) value) > 0xffff)
23668 as_bad_where (fixP->fx_file, fixP->fx_line,
23669 _("invalid smc expression"));
23670 newval = md_chars_to_number (buf, INSN_SIZE);
23671 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23672 md_number_to_chars (buf, newval, INSN_SIZE);
23673 break;
23674
23675 case BFD_RELOC_ARM_HVC:
23676 if (((unsigned long) value) > 0xffff)
23677 as_bad_where (fixP->fx_file, fixP->fx_line,
23678 _("invalid hvc expression"));
23679 newval = md_chars_to_number (buf, INSN_SIZE);
23680 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23681 md_number_to_chars (buf, newval, INSN_SIZE);
23682 break;
23683
23684 case BFD_RELOC_ARM_SWI:
23685 if (fixP->tc_fix_data != 0)
23686 {
23687 if (((unsigned long) value) > 0xff)
23688 as_bad_where (fixP->fx_file, fixP->fx_line,
23689 _("invalid swi expression"));
23690 newval = md_chars_to_number (buf, THUMB_SIZE);
23691 newval |= value;
23692 md_number_to_chars (buf, newval, THUMB_SIZE);
23693 }
23694 else
23695 {
23696 if (((unsigned long) value) > 0x00ffffff)
23697 as_bad_where (fixP->fx_file, fixP->fx_line,
23698 _("invalid swi expression"));
23699 newval = md_chars_to_number (buf, INSN_SIZE);
23700 newval |= value;
23701 md_number_to_chars (buf, newval, INSN_SIZE);
23702 }
23703 break;
23704
23705 case BFD_RELOC_ARM_MULTI:
23706 if (((unsigned long) value) > 0xffff)
23707 as_bad_where (fixP->fx_file, fixP->fx_line,
23708 _("invalid expression in load/store multiple"));
23709 newval = value | md_chars_to_number (buf, INSN_SIZE);
23710 md_number_to_chars (buf, newval, INSN_SIZE);
23711 break;
23712
23713 #ifdef OBJ_ELF
23714 case BFD_RELOC_ARM_PCREL_CALL:
23715
23716 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23717 && fixP->fx_addsy
23718 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23719 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23720 && THUMB_IS_FUNC (fixP->fx_addsy))
23721 /* Flip the bl to blx. This is a simple flip
23722 bit here because we generate PCREL_CALL for
23723 unconditional bls. */
23724 {
23725 newval = md_chars_to_number (buf, INSN_SIZE);
23726 newval = newval | 0x10000000;
23727 md_number_to_chars (buf, newval, INSN_SIZE);
23728 temp = 1;
23729 fixP->fx_done = 1;
23730 }
23731 else
23732 temp = 3;
23733 goto arm_branch_common;
23734
23735 case BFD_RELOC_ARM_PCREL_JUMP:
23736 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23737 && fixP->fx_addsy
23738 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23739 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23740 && THUMB_IS_FUNC (fixP->fx_addsy))
23741 {
23742 /* This would map to a bl<cond>, b<cond>,
23743 b<always> to a Thumb function. We
23744 need to force a relocation for this particular
23745 case. */
23746 newval = md_chars_to_number (buf, INSN_SIZE);
23747 fixP->fx_done = 0;
23748 }
23749 /* Fall through. */
23750
23751 case BFD_RELOC_ARM_PLT32:
23752 #endif
23753 case BFD_RELOC_ARM_PCREL_BRANCH:
23754 temp = 3;
23755 goto arm_branch_common;
23756
23757 case BFD_RELOC_ARM_PCREL_BLX:
23758
23759 temp = 1;
23760 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23761 && fixP->fx_addsy
23762 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23763 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23764 && ARM_IS_FUNC (fixP->fx_addsy))
23765 {
23766 /* Flip the blx to a bl and warn. */
23767 const char *name = S_GET_NAME (fixP->fx_addsy);
23768 newval = 0xeb000000;
23769 as_warn_where (fixP->fx_file, fixP->fx_line,
23770 _("blx to '%s' an ARM ISA state function changed to bl"),
23771 name);
23772 md_number_to_chars (buf, newval, INSN_SIZE);
23773 temp = 3;
23774 fixP->fx_done = 1;
23775 }
23776
23777 #ifdef OBJ_ELF
23778 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23779 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
23780 #endif
23781
23782 arm_branch_common:
23783 /* We are going to store value (shifted right by two) in the
23784 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23785 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
23786 also be clear. */
23787 if (value & temp)
23788 as_bad_where (fixP->fx_file, fixP->fx_line,
23789 _("misaligned branch destination"));
23790 if ((value & (offsetT)0xfe000000) != (offsetT)0
23791 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
23792 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23793
23794 if (fixP->fx_done || !seg->use_rela_p)
23795 {
23796 newval = md_chars_to_number (buf, INSN_SIZE);
23797 newval |= (value >> 2) & 0x00ffffff;
23798 /* Set the H bit on BLX instructions. */
23799 if (temp == 1)
23800 {
23801 if (value & 2)
23802 newval |= 0x01000000;
23803 else
23804 newval &= ~0x01000000;
23805 }
23806 md_number_to_chars (buf, newval, INSN_SIZE);
23807 }
23808 break;
23809
23810 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23811 /* CBZ can only branch forward. */
23812
23813 /* Attempts to use CBZ to branch to the next instruction
23814 (which, strictly speaking, are prohibited) will be turned into
23815 no-ops.
23816
23817 FIXME: It may be better to remove the instruction completely and
23818 perform relaxation. */
23819 if (value == -2)
23820 {
23821 newval = md_chars_to_number (buf, THUMB_SIZE);
23822 newval = 0xbf00; /* NOP encoding T1 */
23823 md_number_to_chars (buf, newval, THUMB_SIZE);
23824 }
23825 else
23826 {
23827 if (value & ~0x7e)
23828 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23829
23830 if (fixP->fx_done || !seg->use_rela_p)
23831 {
23832 newval = md_chars_to_number (buf, THUMB_SIZE);
23833 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23834 md_number_to_chars (buf, newval, THUMB_SIZE);
23835 }
23836 }
23837 break;
23838
23839 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
23840 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
23841 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23842
23843 if (fixP->fx_done || !seg->use_rela_p)
23844 {
23845 newval = md_chars_to_number (buf, THUMB_SIZE);
23846 newval |= (value & 0x1ff) >> 1;
23847 md_number_to_chars (buf, newval, THUMB_SIZE);
23848 }
23849 break;
23850
23851 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
23852 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
23853 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23854
23855 if (fixP->fx_done || !seg->use_rela_p)
23856 {
23857 newval = md_chars_to_number (buf, THUMB_SIZE);
23858 newval |= (value & 0xfff) >> 1;
23859 md_number_to_chars (buf, newval, THUMB_SIZE);
23860 }
23861 break;
23862
23863 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23864 if (fixP->fx_addsy
23865 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23866 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23867 && ARM_IS_FUNC (fixP->fx_addsy)
23868 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23869 {
23870 /* Force a relocation for a branch 20 bits wide. */
23871 fixP->fx_done = 0;
23872 }
23873 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
23874 as_bad_where (fixP->fx_file, fixP->fx_line,
23875 _("conditional branch out of range"));
23876
23877 if (fixP->fx_done || !seg->use_rela_p)
23878 {
23879 offsetT newval2;
23880 addressT S, J1, J2, lo, hi;
23881
23882 S = (value & 0x00100000) >> 20;
23883 J2 = (value & 0x00080000) >> 19;
23884 J1 = (value & 0x00040000) >> 18;
23885 hi = (value & 0x0003f000) >> 12;
23886 lo = (value & 0x00000ffe) >> 1;
23887
23888 newval = md_chars_to_number (buf, THUMB_SIZE);
23889 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23890 newval |= (S << 10) | hi;
23891 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23892 md_number_to_chars (buf, newval, THUMB_SIZE);
23893 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23894 }
23895 break;
23896
23897 case BFD_RELOC_THUMB_PCREL_BLX:
23898 /* If there is a blx from a thumb state function to
23899 another thumb function flip this to a bl and warn
23900 about it. */
23901
23902 if (fixP->fx_addsy
23903 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23904 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23905 && THUMB_IS_FUNC (fixP->fx_addsy))
23906 {
23907 const char *name = S_GET_NAME (fixP->fx_addsy);
23908 as_warn_where (fixP->fx_file, fixP->fx_line,
23909 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23910 name);
23911 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23912 newval = newval | 0x1000;
23913 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23914 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23915 fixP->fx_done = 1;
23916 }
23917
23918
23919 goto thumb_bl_common;
23920
23921 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23922 /* A bl from Thumb state ISA to an internal ARM state function
23923 is converted to a blx. */
23924 if (fixP->fx_addsy
23925 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23926 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23927 && ARM_IS_FUNC (fixP->fx_addsy)
23928 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23929 {
23930 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23931 newval = newval & ~0x1000;
23932 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23933 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23934 fixP->fx_done = 1;
23935 }
23936
23937 thumb_bl_common:
23938
23939 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23940 /* For a BLX instruction, make sure that the relocation is rounded up
23941 to a word boundary. This follows the semantics of the instruction
23942 which specifies that bit 1 of the target address will come from bit
23943 1 of the base address. */
23944 value = (value + 3) & ~ 3;
23945
23946 #ifdef OBJ_ELF
23947 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23948 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23949 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23950 #endif
23951
23952 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23953 {
23954 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
23955 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23956 else if ((value & ~0x1ffffff)
23957 && ((value & ~0x1ffffff) != ~0x1ffffff))
23958 as_bad_where (fixP->fx_file, fixP->fx_line,
23959 _("Thumb2 branch out of range"));
23960 }
23961
23962 if (fixP->fx_done || !seg->use_rela_p)
23963 encode_thumb2_b_bl_offset (buf, value);
23964
23965 break;
23966
23967 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23968 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
23969 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23970
23971 if (fixP->fx_done || !seg->use_rela_p)
23972 encode_thumb2_b_bl_offset (buf, value);
23973
23974 break;
23975
23976 case BFD_RELOC_8:
23977 if (fixP->fx_done || !seg->use_rela_p)
23978 *buf = value;
23979 break;
23980
23981 case BFD_RELOC_16:
23982 if (fixP->fx_done || !seg->use_rela_p)
23983 md_number_to_chars (buf, value, 2);
23984 break;
23985
23986 #ifdef OBJ_ELF
23987 case BFD_RELOC_ARM_TLS_CALL:
23988 case BFD_RELOC_ARM_THM_TLS_CALL:
23989 case BFD_RELOC_ARM_TLS_DESCSEQ:
23990 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23991 case BFD_RELOC_ARM_TLS_GOTDESC:
23992 case BFD_RELOC_ARM_TLS_GD32:
23993 case BFD_RELOC_ARM_TLS_LE32:
23994 case BFD_RELOC_ARM_TLS_IE32:
23995 case BFD_RELOC_ARM_TLS_LDM32:
23996 case BFD_RELOC_ARM_TLS_LDO32:
23997 S_SET_THREAD_LOCAL (fixP->fx_addsy);
23998 break;
23999
24000 /* Same handling as above, but with the arm_fdpic guard. */
24001 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24002 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24003 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24004 if (arm_fdpic)
24005 {
24006 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24007 }
24008 else
24009 {
24010 as_bad_where (fixP->fx_file, fixP->fx_line,
24011 _("Relocation supported only in FDPIC mode"));
24012 }
24013 break;
24014
24015 case BFD_RELOC_ARM_GOT32:
24016 case BFD_RELOC_ARM_GOTOFF:
24017 break;
24018
24019 case BFD_RELOC_ARM_GOT_PREL:
24020 if (fixP->fx_done || !seg->use_rela_p)
24021 md_number_to_chars (buf, value, 4);
24022 break;
24023
24024 case BFD_RELOC_ARM_TARGET2:
24025 /* TARGET2 is not partial-inplace, so we need to write the
24026 addend here for REL targets, because it won't be written out
24027 during reloc processing later. */
24028 if (fixP->fx_done || !seg->use_rela_p)
24029 md_number_to_chars (buf, fixP->fx_offset, 4);
24030 break;
24031
24032 /* Relocations for FDPIC. */
24033 case BFD_RELOC_ARM_GOTFUNCDESC:
24034 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24035 case BFD_RELOC_ARM_FUNCDESC:
24036 if (arm_fdpic)
24037 {
24038 if (fixP->fx_done || !seg->use_rela_p)
24039 md_number_to_chars (buf, 0, 4);
24040 }
24041 else
24042 {
24043 as_bad_where (fixP->fx_file, fixP->fx_line,
24044 _("Relocation supported only in FDPIC mode"));
24045 }
24046 break;
24047 #endif
24048
24049 case BFD_RELOC_RVA:
24050 case BFD_RELOC_32:
24051 case BFD_RELOC_ARM_TARGET1:
24052 case BFD_RELOC_ARM_ROSEGREL32:
24053 case BFD_RELOC_ARM_SBREL32:
24054 case BFD_RELOC_32_PCREL:
24055 #ifdef TE_PE
24056 case BFD_RELOC_32_SECREL:
24057 #endif
24058 if (fixP->fx_done || !seg->use_rela_p)
24059 #ifdef TE_WINCE
24060 /* For WinCE we only do this for pcrel fixups. */
24061 if (fixP->fx_done || fixP->fx_pcrel)
24062 #endif
24063 md_number_to_chars (buf, value, 4);
24064 break;
24065
24066 #ifdef OBJ_ELF
24067 case BFD_RELOC_ARM_PREL31:
24068 if (fixP->fx_done || !seg->use_rela_p)
24069 {
24070 newval = md_chars_to_number (buf, 4) & 0x80000000;
24071 if ((value ^ (value >> 1)) & 0x40000000)
24072 {
24073 as_bad_where (fixP->fx_file, fixP->fx_line,
24074 _("rel31 relocation overflow"));
24075 }
24076 newval |= value & 0x7fffffff;
24077 md_number_to_chars (buf, newval, 4);
24078 }
24079 break;
24080 #endif
24081
24082 case BFD_RELOC_ARM_CP_OFF_IMM:
24083 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
24084 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24085 newval = md_chars_to_number (buf, INSN_SIZE);
24086 else
24087 newval = get_thumb32_insn (buf);
24088 if ((newval & 0x0f200f00) == 0x0d000900)
24089 {
24090 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24091 has permitted values that are multiples of 2, in the range 0
24092 to 510. */
24093 if (value < -510 || value > 510 || (value & 1))
24094 as_bad_where (fixP->fx_file, fixP->fx_line,
24095 _("co-processor offset out of range"));
24096 }
24097 else if (value < -1023 || value > 1023 || (value & 3))
24098 as_bad_where (fixP->fx_file, fixP->fx_line,
24099 _("co-processor offset out of range"));
24100 cp_off_common:
24101 sign = value > 0;
24102 if (value < 0)
24103 value = -value;
24104 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24105 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24106 newval = md_chars_to_number (buf, INSN_SIZE);
24107 else
24108 newval = get_thumb32_insn (buf);
24109 if (value == 0)
24110 newval &= 0xffffff00;
24111 else
24112 {
24113 newval &= 0xff7fff00;
24114 if ((newval & 0x0f200f00) == 0x0d000900)
24115 {
24116 /* This is a fp16 vstr/vldr.
24117
24118 It requires the immediate offset in the instruction is shifted
24119 left by 1 to be a half-word offset.
24120
24121 Here, left shift by 1 first, and later right shift by 2
24122 should get the right offset. */
24123 value <<= 1;
24124 }
24125 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24126 }
24127 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24128 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24129 md_number_to_chars (buf, newval, INSN_SIZE);
24130 else
24131 put_thumb32_insn (buf, newval);
24132 break;
24133
24134 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
24135 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
24136 if (value < -255 || value > 255)
24137 as_bad_where (fixP->fx_file, fixP->fx_line,
24138 _("co-processor offset out of range"));
24139 value *= 4;
24140 goto cp_off_common;
24141
24142 case BFD_RELOC_ARM_THUMB_OFFSET:
24143 newval = md_chars_to_number (buf, THUMB_SIZE);
24144 /* Exactly what ranges, and where the offset is inserted depends
24145 on the type of instruction, we can establish this from the
24146 top 4 bits. */
24147 switch (newval >> 12)
24148 {
24149 case 4: /* PC load. */
24150 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24151 forced to zero for these loads; md_pcrel_from has already
24152 compensated for this. */
24153 if (value & 3)
24154 as_bad_where (fixP->fx_file, fixP->fx_line,
24155 _("invalid offset, target not word aligned (0x%08lX)"),
24156 (((unsigned long) fixP->fx_frag->fr_address
24157 + (unsigned long) fixP->fx_where) & ~3)
24158 + (unsigned long) value);
24159
24160 if (value & ~0x3fc)
24161 as_bad_where (fixP->fx_file, fixP->fx_line,
24162 _("invalid offset, value too big (0x%08lX)"),
24163 (long) value);
24164
24165 newval |= value >> 2;
24166 break;
24167
24168 case 9: /* SP load/store. */
24169 if (value & ~0x3fc)
24170 as_bad_where (fixP->fx_file, fixP->fx_line,
24171 _("invalid offset, value too big (0x%08lX)"),
24172 (long) value);
24173 newval |= value >> 2;
24174 break;
24175
24176 case 6: /* Word load/store. */
24177 if (value & ~0x7c)
24178 as_bad_where (fixP->fx_file, fixP->fx_line,
24179 _("invalid offset, value too big (0x%08lX)"),
24180 (long) value);
24181 newval |= value << 4; /* 6 - 2. */
24182 break;
24183
24184 case 7: /* Byte load/store. */
24185 if (value & ~0x1f)
24186 as_bad_where (fixP->fx_file, fixP->fx_line,
24187 _("invalid offset, value too big (0x%08lX)"),
24188 (long) value);
24189 newval |= value << 6;
24190 break;
24191
24192 case 8: /* Halfword load/store. */
24193 if (value & ~0x3e)
24194 as_bad_where (fixP->fx_file, fixP->fx_line,
24195 _("invalid offset, value too big (0x%08lX)"),
24196 (long) value);
24197 newval |= value << 5; /* 6 - 1. */
24198 break;
24199
24200 default:
24201 as_bad_where (fixP->fx_file, fixP->fx_line,
24202 "Unable to process relocation for thumb opcode: %lx",
24203 (unsigned long) newval);
24204 break;
24205 }
24206 md_number_to_chars (buf, newval, THUMB_SIZE);
24207 break;
24208
24209 case BFD_RELOC_ARM_THUMB_ADD:
24210 /* This is a complicated relocation, since we use it for all of
24211 the following immediate relocations:
24212
24213 3bit ADD/SUB
24214 8bit ADD/SUB
24215 9bit ADD/SUB SP word-aligned
24216 10bit ADD PC/SP word-aligned
24217
24218 The type of instruction being processed is encoded in the
24219 instruction field:
24220
24221 0x8000 SUB
24222 0x00F0 Rd
24223 0x000F Rs
24224 */
24225 newval = md_chars_to_number (buf, THUMB_SIZE);
24226 {
24227 int rd = (newval >> 4) & 0xf;
24228 int rs = newval & 0xf;
24229 int subtract = !!(newval & 0x8000);
24230
24231 /* Check for HI regs, only very restricted cases allowed:
24232 Adjusting SP, and using PC or SP to get an address. */
24233 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24234 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24235 as_bad_where (fixP->fx_file, fixP->fx_line,
24236 _("invalid Hi register with immediate"));
24237
24238 /* If value is negative, choose the opposite instruction. */
24239 if (value < 0)
24240 {
24241 value = -value;
24242 subtract = !subtract;
24243 if (value < 0)
24244 as_bad_where (fixP->fx_file, fixP->fx_line,
24245 _("immediate value out of range"));
24246 }
24247
24248 if (rd == REG_SP)
24249 {
24250 if (value & ~0x1fc)
24251 as_bad_where (fixP->fx_file, fixP->fx_line,
24252 _("invalid immediate for stack address calculation"));
24253 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24254 newval |= value >> 2;
24255 }
24256 else if (rs == REG_PC || rs == REG_SP)
24257 {
24258 /* PR gas/18541. If the addition is for a defined symbol
24259 within range of an ADR instruction then accept it. */
24260 if (subtract
24261 && value == 4
24262 && fixP->fx_addsy != NULL)
24263 {
24264 subtract = 0;
24265
24266 if (! S_IS_DEFINED (fixP->fx_addsy)
24267 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24268 || S_IS_WEAK (fixP->fx_addsy))
24269 {
24270 as_bad_where (fixP->fx_file, fixP->fx_line,
24271 _("address calculation needs a strongly defined nearby symbol"));
24272 }
24273 else
24274 {
24275 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24276
24277 /* Round up to the next 4-byte boundary. */
24278 if (v & 3)
24279 v = (v + 3) & ~ 3;
24280 else
24281 v += 4;
24282 v = S_GET_VALUE (fixP->fx_addsy) - v;
24283
24284 if (v & ~0x3fc)
24285 {
24286 as_bad_where (fixP->fx_file, fixP->fx_line,
24287 _("symbol too far away"));
24288 }
24289 else
24290 {
24291 fixP->fx_done = 1;
24292 value = v;
24293 }
24294 }
24295 }
24296
24297 if (subtract || value & ~0x3fc)
24298 as_bad_where (fixP->fx_file, fixP->fx_line,
24299 _("invalid immediate for address calculation (value = 0x%08lX)"),
24300 (unsigned long) (subtract ? - value : value));
24301 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24302 newval |= rd << 8;
24303 newval |= value >> 2;
24304 }
24305 else if (rs == rd)
24306 {
24307 if (value & ~0xff)
24308 as_bad_where (fixP->fx_file, fixP->fx_line,
24309 _("immediate value out of range"));
24310 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24311 newval |= (rd << 8) | value;
24312 }
24313 else
24314 {
24315 if (value & ~0x7)
24316 as_bad_where (fixP->fx_file, fixP->fx_line,
24317 _("immediate value out of range"));
24318 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24319 newval |= rd | (rs << 3) | (value << 6);
24320 }
24321 }
24322 md_number_to_chars (buf, newval, THUMB_SIZE);
24323 break;
24324
24325 case BFD_RELOC_ARM_THUMB_IMM:
24326 newval = md_chars_to_number (buf, THUMB_SIZE);
24327 if (value < 0 || value > 255)
24328 as_bad_where (fixP->fx_file, fixP->fx_line,
24329 _("invalid immediate: %ld is out of range"),
24330 (long) value);
24331 newval |= value;
24332 md_number_to_chars (buf, newval, THUMB_SIZE);
24333 break;
24334
24335 case BFD_RELOC_ARM_THUMB_SHIFT:
24336 /* 5bit shift value (0..32). LSL cannot take 32. */
24337 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24338 temp = newval & 0xf800;
24339 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24340 as_bad_where (fixP->fx_file, fixP->fx_line,
24341 _("invalid shift value: %ld"), (long) value);
24342 /* Shifts of zero must be encoded as LSL. */
24343 if (value == 0)
24344 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24345 /* Shifts of 32 are encoded as zero. */
24346 else if (value == 32)
24347 value = 0;
24348 newval |= value << 6;
24349 md_number_to_chars (buf, newval, THUMB_SIZE);
24350 break;
24351
24352 case BFD_RELOC_VTABLE_INHERIT:
24353 case BFD_RELOC_VTABLE_ENTRY:
24354 fixP->fx_done = 0;
24355 return;
24356
24357 case BFD_RELOC_ARM_MOVW:
24358 case BFD_RELOC_ARM_MOVT:
24359 case BFD_RELOC_ARM_THUMB_MOVW:
24360 case BFD_RELOC_ARM_THUMB_MOVT:
24361 if (fixP->fx_done || !seg->use_rela_p)
24362 {
24363 /* REL format relocations are limited to a 16-bit addend. */
24364 if (!fixP->fx_done)
24365 {
24366 if (value < -0x8000 || value > 0x7fff)
24367 as_bad_where (fixP->fx_file, fixP->fx_line,
24368 _("offset out of range"));
24369 }
24370 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24371 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24372 {
24373 value >>= 16;
24374 }
24375
24376 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24377 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24378 {
24379 newval = get_thumb32_insn (buf);
24380 newval &= 0xfbf08f00;
24381 newval |= (value & 0xf000) << 4;
24382 newval |= (value & 0x0800) << 15;
24383 newval |= (value & 0x0700) << 4;
24384 newval |= (value & 0x00ff);
24385 put_thumb32_insn (buf, newval);
24386 }
24387 else
24388 {
24389 newval = md_chars_to_number (buf, 4);
24390 newval &= 0xfff0f000;
24391 newval |= value & 0x0fff;
24392 newval |= (value & 0xf000) << 4;
24393 md_number_to_chars (buf, newval, 4);
24394 }
24395 }
24396 return;
24397
24398 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24399 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24400 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24401 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24402 gas_assert (!fixP->fx_done);
24403 {
24404 bfd_vma insn;
24405 bfd_boolean is_mov;
24406 bfd_vma encoded_addend = value;
24407
24408 /* Check that addend can be encoded in instruction. */
24409 if (!seg->use_rela_p && (value < 0 || value > 255))
24410 as_bad_where (fixP->fx_file, fixP->fx_line,
24411 _("the offset 0x%08lX is not representable"),
24412 (unsigned long) encoded_addend);
24413
24414 /* Extract the instruction. */
24415 insn = md_chars_to_number (buf, THUMB_SIZE);
24416 is_mov = (insn & 0xf800) == 0x2000;
24417
24418 /* Encode insn. */
24419 if (is_mov)
24420 {
24421 if (!seg->use_rela_p)
24422 insn |= encoded_addend;
24423 }
24424 else
24425 {
24426 int rd, rs;
24427
24428 /* Extract the instruction. */
24429 /* Encoding is the following
24430 0x8000 SUB
24431 0x00F0 Rd
24432 0x000F Rs
24433 */
24434 /* The following conditions must be true :
24435 - ADD
24436 - Rd == Rs
24437 - Rd <= 7
24438 */
24439 rd = (insn >> 4) & 0xf;
24440 rs = insn & 0xf;
24441 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24442 as_bad_where (fixP->fx_file, fixP->fx_line,
24443 _("Unable to process relocation for thumb opcode: %lx"),
24444 (unsigned long) insn);
24445
24446 /* Encode as ADD immediate8 thumb 1 code. */
24447 insn = 0x3000 | (rd << 8);
24448
24449 /* Place the encoded addend into the first 8 bits of the
24450 instruction. */
24451 if (!seg->use_rela_p)
24452 insn |= encoded_addend;
24453 }
24454
24455 /* Update the instruction. */
24456 md_number_to_chars (buf, insn, THUMB_SIZE);
24457 }
24458 break;
24459
24460 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24461 case BFD_RELOC_ARM_ALU_PC_G0:
24462 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24463 case BFD_RELOC_ARM_ALU_PC_G1:
24464 case BFD_RELOC_ARM_ALU_PC_G2:
24465 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24466 case BFD_RELOC_ARM_ALU_SB_G0:
24467 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24468 case BFD_RELOC_ARM_ALU_SB_G1:
24469 case BFD_RELOC_ARM_ALU_SB_G2:
24470 gas_assert (!fixP->fx_done);
24471 if (!seg->use_rela_p)
24472 {
24473 bfd_vma insn;
24474 bfd_vma encoded_addend;
24475 bfd_vma addend_abs = abs (value);
24476
24477 /* Check that the absolute value of the addend can be
24478 expressed as an 8-bit constant plus a rotation. */
24479 encoded_addend = encode_arm_immediate (addend_abs);
24480 if (encoded_addend == (unsigned int) FAIL)
24481 as_bad_where (fixP->fx_file, fixP->fx_line,
24482 _("the offset 0x%08lX is not representable"),
24483 (unsigned long) addend_abs);
24484
24485 /* Extract the instruction. */
24486 insn = md_chars_to_number (buf, INSN_SIZE);
24487
24488 /* If the addend is positive, use an ADD instruction.
24489 Otherwise use a SUB. Take care not to destroy the S bit. */
24490 insn &= 0xff1fffff;
24491 if (value < 0)
24492 insn |= 1 << 22;
24493 else
24494 insn |= 1 << 23;
24495
24496 /* Place the encoded addend into the first 12 bits of the
24497 instruction. */
24498 insn &= 0xfffff000;
24499 insn |= encoded_addend;
24500
24501 /* Update the instruction. */
24502 md_number_to_chars (buf, insn, INSN_SIZE);
24503 }
24504 break;
24505
24506 case BFD_RELOC_ARM_LDR_PC_G0:
24507 case BFD_RELOC_ARM_LDR_PC_G1:
24508 case BFD_RELOC_ARM_LDR_PC_G2:
24509 case BFD_RELOC_ARM_LDR_SB_G0:
24510 case BFD_RELOC_ARM_LDR_SB_G1:
24511 case BFD_RELOC_ARM_LDR_SB_G2:
24512 gas_assert (!fixP->fx_done);
24513 if (!seg->use_rela_p)
24514 {
24515 bfd_vma insn;
24516 bfd_vma addend_abs = abs (value);
24517
24518 /* Check that the absolute value of the addend can be
24519 encoded in 12 bits. */
24520 if (addend_abs >= 0x1000)
24521 as_bad_where (fixP->fx_file, fixP->fx_line,
24522 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24523 (unsigned long) addend_abs);
24524
24525 /* Extract the instruction. */
24526 insn = md_chars_to_number (buf, INSN_SIZE);
24527
24528 /* If the addend is negative, clear bit 23 of the instruction.
24529 Otherwise set it. */
24530 if (value < 0)
24531 insn &= ~(1 << 23);
24532 else
24533 insn |= 1 << 23;
24534
24535 /* Place the absolute value of the addend into the first 12 bits
24536 of the instruction. */
24537 insn &= 0xfffff000;
24538 insn |= addend_abs;
24539
24540 /* Update the instruction. */
24541 md_number_to_chars (buf, insn, INSN_SIZE);
24542 }
24543 break;
24544
24545 case BFD_RELOC_ARM_LDRS_PC_G0:
24546 case BFD_RELOC_ARM_LDRS_PC_G1:
24547 case BFD_RELOC_ARM_LDRS_PC_G2:
24548 case BFD_RELOC_ARM_LDRS_SB_G0:
24549 case BFD_RELOC_ARM_LDRS_SB_G1:
24550 case BFD_RELOC_ARM_LDRS_SB_G2:
24551 gas_assert (!fixP->fx_done);
24552 if (!seg->use_rela_p)
24553 {
24554 bfd_vma insn;
24555 bfd_vma addend_abs = abs (value);
24556
24557 /* Check that the absolute value of the addend can be
24558 encoded in 8 bits. */
24559 if (addend_abs >= 0x100)
24560 as_bad_where (fixP->fx_file, fixP->fx_line,
24561 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24562 (unsigned long) addend_abs);
24563
24564 /* Extract the instruction. */
24565 insn = md_chars_to_number (buf, INSN_SIZE);
24566
24567 /* If the addend is negative, clear bit 23 of the instruction.
24568 Otherwise set it. */
24569 if (value < 0)
24570 insn &= ~(1 << 23);
24571 else
24572 insn |= 1 << 23;
24573
24574 /* Place the first four bits of the absolute value of the addend
24575 into the first 4 bits of the instruction, and the remaining
24576 four into bits 8 .. 11. */
24577 insn &= 0xfffff0f0;
24578 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24579
24580 /* Update the instruction. */
24581 md_number_to_chars (buf, insn, INSN_SIZE);
24582 }
24583 break;
24584
24585 case BFD_RELOC_ARM_LDC_PC_G0:
24586 case BFD_RELOC_ARM_LDC_PC_G1:
24587 case BFD_RELOC_ARM_LDC_PC_G2:
24588 case BFD_RELOC_ARM_LDC_SB_G0:
24589 case BFD_RELOC_ARM_LDC_SB_G1:
24590 case BFD_RELOC_ARM_LDC_SB_G2:
24591 gas_assert (!fixP->fx_done);
24592 if (!seg->use_rela_p)
24593 {
24594 bfd_vma insn;
24595 bfd_vma addend_abs = abs (value);
24596
24597 /* Check that the absolute value of the addend is a multiple of
24598 four and, when divided by four, fits in 8 bits. */
24599 if (addend_abs & 0x3)
24600 as_bad_where (fixP->fx_file, fixP->fx_line,
24601 _("bad offset 0x%08lX (must be word-aligned)"),
24602 (unsigned long) addend_abs);
24603
24604 if ((addend_abs >> 2) > 0xff)
24605 as_bad_where (fixP->fx_file, fixP->fx_line,
24606 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24607 (unsigned long) addend_abs);
24608
24609 /* Extract the instruction. */
24610 insn = md_chars_to_number (buf, INSN_SIZE);
24611
24612 /* If the addend is negative, clear bit 23 of the instruction.
24613 Otherwise set it. */
24614 if (value < 0)
24615 insn &= ~(1 << 23);
24616 else
24617 insn |= 1 << 23;
24618
24619 /* Place the addend (divided by four) into the first eight
24620 bits of the instruction. */
24621 insn &= 0xfffffff0;
24622 insn |= addend_abs >> 2;
24623
24624 /* Update the instruction. */
24625 md_number_to_chars (buf, insn, INSN_SIZE);
24626 }
24627 break;
24628
24629 case BFD_RELOC_ARM_V4BX:
24630 /* This will need to go in the object file. */
24631 fixP->fx_done = 0;
24632 break;
24633
24634 case BFD_RELOC_UNUSED:
24635 default:
24636 as_bad_where (fixP->fx_file, fixP->fx_line,
24637 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24638 }
24639 }
24640
24641 /* Translate internal representation of relocation info to BFD target
24642 format. */
24643
24644 arelent *
24645 tc_gen_reloc (asection *section, fixS *fixp)
24646 {
24647 arelent * reloc;
24648 bfd_reloc_code_real_type code;
24649
24650 reloc = XNEW (arelent);
24651
24652 reloc->sym_ptr_ptr = XNEW (asymbol *);
24653 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24654 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
24655
24656 if (fixp->fx_pcrel)
24657 {
24658 if (section->use_rela_p)
24659 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24660 else
24661 fixp->fx_offset = reloc->address;
24662 }
24663 reloc->addend = fixp->fx_offset;
24664
24665 switch (fixp->fx_r_type)
24666 {
24667 case BFD_RELOC_8:
24668 if (fixp->fx_pcrel)
24669 {
24670 code = BFD_RELOC_8_PCREL;
24671 break;
24672 }
24673 /* Fall through. */
24674
24675 case BFD_RELOC_16:
24676 if (fixp->fx_pcrel)
24677 {
24678 code = BFD_RELOC_16_PCREL;
24679 break;
24680 }
24681 /* Fall through. */
24682
24683 case BFD_RELOC_32:
24684 if (fixp->fx_pcrel)
24685 {
24686 code = BFD_RELOC_32_PCREL;
24687 break;
24688 }
24689 /* Fall through. */
24690
24691 case BFD_RELOC_ARM_MOVW:
24692 if (fixp->fx_pcrel)
24693 {
24694 code = BFD_RELOC_ARM_MOVW_PCREL;
24695 break;
24696 }
24697 /* Fall through. */
24698
24699 case BFD_RELOC_ARM_MOVT:
24700 if (fixp->fx_pcrel)
24701 {
24702 code = BFD_RELOC_ARM_MOVT_PCREL;
24703 break;
24704 }
24705 /* Fall through. */
24706
24707 case BFD_RELOC_ARM_THUMB_MOVW:
24708 if (fixp->fx_pcrel)
24709 {
24710 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24711 break;
24712 }
24713 /* Fall through. */
24714
24715 case BFD_RELOC_ARM_THUMB_MOVT:
24716 if (fixp->fx_pcrel)
24717 {
24718 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24719 break;
24720 }
24721 /* Fall through. */
24722
24723 case BFD_RELOC_NONE:
24724 case BFD_RELOC_ARM_PCREL_BRANCH:
24725 case BFD_RELOC_ARM_PCREL_BLX:
24726 case BFD_RELOC_RVA:
24727 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24728 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24729 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24730 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24731 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24732 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24733 case BFD_RELOC_VTABLE_ENTRY:
24734 case BFD_RELOC_VTABLE_INHERIT:
24735 #ifdef TE_PE
24736 case BFD_RELOC_32_SECREL:
24737 #endif
24738 code = fixp->fx_r_type;
24739 break;
24740
24741 case BFD_RELOC_THUMB_PCREL_BLX:
24742 #ifdef OBJ_ELF
24743 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24744 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24745 else
24746 #endif
24747 code = BFD_RELOC_THUMB_PCREL_BLX;
24748 break;
24749
24750 case BFD_RELOC_ARM_LITERAL:
24751 case BFD_RELOC_ARM_HWLITERAL:
24752 /* If this is called then the a literal has
24753 been referenced across a section boundary. */
24754 as_bad_where (fixp->fx_file, fixp->fx_line,
24755 _("literal referenced across section boundary"));
24756 return NULL;
24757
24758 #ifdef OBJ_ELF
24759 case BFD_RELOC_ARM_TLS_CALL:
24760 case BFD_RELOC_ARM_THM_TLS_CALL:
24761 case BFD_RELOC_ARM_TLS_DESCSEQ:
24762 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24763 case BFD_RELOC_ARM_GOT32:
24764 case BFD_RELOC_ARM_GOTOFF:
24765 case BFD_RELOC_ARM_GOT_PREL:
24766 case BFD_RELOC_ARM_PLT32:
24767 case BFD_RELOC_ARM_TARGET1:
24768 case BFD_RELOC_ARM_ROSEGREL32:
24769 case BFD_RELOC_ARM_SBREL32:
24770 case BFD_RELOC_ARM_PREL31:
24771 case BFD_RELOC_ARM_TARGET2:
24772 case BFD_RELOC_ARM_TLS_LDO32:
24773 case BFD_RELOC_ARM_PCREL_CALL:
24774 case BFD_RELOC_ARM_PCREL_JUMP:
24775 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24776 case BFD_RELOC_ARM_ALU_PC_G0:
24777 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24778 case BFD_RELOC_ARM_ALU_PC_G1:
24779 case BFD_RELOC_ARM_ALU_PC_G2:
24780 case BFD_RELOC_ARM_LDR_PC_G0:
24781 case BFD_RELOC_ARM_LDR_PC_G1:
24782 case BFD_RELOC_ARM_LDR_PC_G2:
24783 case BFD_RELOC_ARM_LDRS_PC_G0:
24784 case BFD_RELOC_ARM_LDRS_PC_G1:
24785 case BFD_RELOC_ARM_LDRS_PC_G2:
24786 case BFD_RELOC_ARM_LDC_PC_G0:
24787 case BFD_RELOC_ARM_LDC_PC_G1:
24788 case BFD_RELOC_ARM_LDC_PC_G2:
24789 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24790 case BFD_RELOC_ARM_ALU_SB_G0:
24791 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24792 case BFD_RELOC_ARM_ALU_SB_G1:
24793 case BFD_RELOC_ARM_ALU_SB_G2:
24794 case BFD_RELOC_ARM_LDR_SB_G0:
24795 case BFD_RELOC_ARM_LDR_SB_G1:
24796 case BFD_RELOC_ARM_LDR_SB_G2:
24797 case BFD_RELOC_ARM_LDRS_SB_G0:
24798 case BFD_RELOC_ARM_LDRS_SB_G1:
24799 case BFD_RELOC_ARM_LDRS_SB_G2:
24800 case BFD_RELOC_ARM_LDC_SB_G0:
24801 case BFD_RELOC_ARM_LDC_SB_G1:
24802 case BFD_RELOC_ARM_LDC_SB_G2:
24803 case BFD_RELOC_ARM_V4BX:
24804 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24805 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24806 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24807 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24808 case BFD_RELOC_ARM_GOTFUNCDESC:
24809 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24810 case BFD_RELOC_ARM_FUNCDESC:
24811 code = fixp->fx_r_type;
24812 break;
24813
24814 case BFD_RELOC_ARM_TLS_GOTDESC:
24815 case BFD_RELOC_ARM_TLS_GD32:
24816 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24817 case BFD_RELOC_ARM_TLS_LE32:
24818 case BFD_RELOC_ARM_TLS_IE32:
24819 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24820 case BFD_RELOC_ARM_TLS_LDM32:
24821 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24822 /* BFD will include the symbol's address in the addend.
24823 But we don't want that, so subtract it out again here. */
24824 if (!S_IS_COMMON (fixp->fx_addsy))
24825 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24826 code = fixp->fx_r_type;
24827 break;
24828 #endif
24829
24830 case BFD_RELOC_ARM_IMMEDIATE:
24831 as_bad_where (fixp->fx_file, fixp->fx_line,
24832 _("internal relocation (type: IMMEDIATE) not fixed up"));
24833 return NULL;
24834
24835 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24836 as_bad_where (fixp->fx_file, fixp->fx_line,
24837 _("ADRL used for a symbol not defined in the same file"));
24838 return NULL;
24839
24840 case BFD_RELOC_ARM_OFFSET_IMM:
24841 if (section->use_rela_p)
24842 {
24843 code = fixp->fx_r_type;
24844 break;
24845 }
24846
24847 if (fixp->fx_addsy != NULL
24848 && !S_IS_DEFINED (fixp->fx_addsy)
24849 && S_IS_LOCAL (fixp->fx_addsy))
24850 {
24851 as_bad_where (fixp->fx_file, fixp->fx_line,
24852 _("undefined local label `%s'"),
24853 S_GET_NAME (fixp->fx_addsy));
24854 return NULL;
24855 }
24856
24857 as_bad_where (fixp->fx_file, fixp->fx_line,
24858 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24859 return NULL;
24860
24861 default:
24862 {
24863 const char * type;
24864
24865 switch (fixp->fx_r_type)
24866 {
24867 case BFD_RELOC_NONE: type = "NONE"; break;
24868 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24869 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
24870 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
24871 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24872 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24873 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
24874 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
24875 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
24876 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24877 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24878 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24879 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24880 default: type = _("<unknown>"); break;
24881 }
24882 as_bad_where (fixp->fx_file, fixp->fx_line,
24883 _("cannot represent %s relocation in this object file format"),
24884 type);
24885 return NULL;
24886 }
24887 }
24888
24889 #ifdef OBJ_ELF
24890 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24891 && GOT_symbol
24892 && fixp->fx_addsy == GOT_symbol)
24893 {
24894 code = BFD_RELOC_ARM_GOTPC;
24895 reloc->addend = fixp->fx_offset = reloc->address;
24896 }
24897 #endif
24898
24899 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
24900
24901 if (reloc->howto == NULL)
24902 {
24903 as_bad_where (fixp->fx_file, fixp->fx_line,
24904 _("cannot represent %s relocation in this object file format"),
24905 bfd_get_reloc_code_name (code));
24906 return NULL;
24907 }
24908
24909 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24910 vtable entry to be used in the relocation's section offset. */
24911 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24912 reloc->address = fixp->fx_offset;
24913
24914 return reloc;
24915 }
24916
24917 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
24918
24919 void
24920 cons_fix_new_arm (fragS * frag,
24921 int where,
24922 int size,
24923 expressionS * exp,
24924 bfd_reloc_code_real_type reloc)
24925 {
24926 int pcrel = 0;
24927
24928 /* Pick a reloc.
24929 FIXME: @@ Should look at CPU word size. */
24930 switch (size)
24931 {
24932 case 1:
24933 reloc = BFD_RELOC_8;
24934 break;
24935 case 2:
24936 reloc = BFD_RELOC_16;
24937 break;
24938 case 4:
24939 default:
24940 reloc = BFD_RELOC_32;
24941 break;
24942 case 8:
24943 reloc = BFD_RELOC_64;
24944 break;
24945 }
24946
24947 #ifdef TE_PE
24948 if (exp->X_op == O_secrel)
24949 {
24950 exp->X_op = O_symbol;
24951 reloc = BFD_RELOC_32_SECREL;
24952 }
24953 #endif
24954
24955 fix_new_exp (frag, where, size, exp, pcrel, reloc);
24956 }
24957
24958 #if defined (OBJ_COFF)
24959 void
24960 arm_validate_fix (fixS * fixP)
24961 {
24962 /* If the destination of the branch is a defined symbol which does not have
24963 the THUMB_FUNC attribute, then we must be calling a function which has
24964 the (interfacearm) attribute. We look for the Thumb entry point to that
24965 function and change the branch to refer to that function instead. */
24966 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24967 && fixP->fx_addsy != NULL
24968 && S_IS_DEFINED (fixP->fx_addsy)
24969 && ! THUMB_IS_FUNC (fixP->fx_addsy))
24970 {
24971 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
24972 }
24973 }
24974 #endif
24975
24976
24977 int
24978 arm_force_relocation (struct fix * fixp)
24979 {
24980 #if defined (OBJ_COFF) && defined (TE_PE)
24981 if (fixp->fx_r_type == BFD_RELOC_RVA)
24982 return 1;
24983 #endif
24984
24985 /* In case we have a call or a branch to a function in ARM ISA mode from
24986 a thumb function or vice-versa force the relocation. These relocations
24987 are cleared off for some cores that might have blx and simple transformations
24988 are possible. */
24989
24990 #ifdef OBJ_ELF
24991 switch (fixp->fx_r_type)
24992 {
24993 case BFD_RELOC_ARM_PCREL_JUMP:
24994 case BFD_RELOC_ARM_PCREL_CALL:
24995 case BFD_RELOC_THUMB_PCREL_BLX:
24996 if (THUMB_IS_FUNC (fixp->fx_addsy))
24997 return 1;
24998 break;
24999
25000 case BFD_RELOC_ARM_PCREL_BLX:
25001 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25002 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25003 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25004 if (ARM_IS_FUNC (fixp->fx_addsy))
25005 return 1;
25006 break;
25007
25008 default:
25009 break;
25010 }
25011 #endif
25012
25013 /* Resolve these relocations even if the symbol is extern or weak.
25014 Technically this is probably wrong due to symbol preemption.
25015 In practice these relocations do not have enough range to be useful
25016 at dynamic link time, and some code (e.g. in the Linux kernel)
25017 expects these references to be resolved. */
25018 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
25019 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
25020 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
25021 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
25022 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
25023 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
25024 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
25025 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
25026 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
25027 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
25028 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
25029 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
25030 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
25031 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
25032 return 0;
25033
25034 /* Always leave these relocations for the linker. */
25035 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25036 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25037 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25038 return 1;
25039
25040 /* Always generate relocations against function symbols. */
25041 if (fixp->fx_r_type == BFD_RELOC_32
25042 && fixp->fx_addsy
25043 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
25044 return 1;
25045
25046 return generic_force_reloc (fixp);
25047 }
25048
25049 #if defined (OBJ_ELF) || defined (OBJ_COFF)
25050 /* Relocations against function names must be left unadjusted,
25051 so that the linker can use this information to generate interworking
25052 stubs. The MIPS version of this function
25053 also prevents relocations that are mips-16 specific, but I do not
25054 know why it does this.
25055
25056 FIXME:
25057 There is one other problem that ought to be addressed here, but
25058 which currently is not: Taking the address of a label (rather
25059 than a function) and then later jumping to that address. Such
25060 addresses also ought to have their bottom bit set (assuming that
25061 they reside in Thumb code), but at the moment they will not. */
25062
25063 bfd_boolean
25064 arm_fix_adjustable (fixS * fixP)
25065 {
25066 if (fixP->fx_addsy == NULL)
25067 return 1;
25068
25069 /* Preserve relocations against symbols with function type. */
25070 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
25071 return FALSE;
25072
25073 if (THUMB_IS_FUNC (fixP->fx_addsy)
25074 && fixP->fx_subsy == NULL)
25075 return FALSE;
25076
25077 /* We need the symbol name for the VTABLE entries. */
25078 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
25079 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25080 return FALSE;
25081
25082 /* Don't allow symbols to be discarded on GOT related relocs. */
25083 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25084 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25085 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25086 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
25087 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
25088 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25089 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
25090 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
25091 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
25092 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
25093 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
25094 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25095 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25096 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25097 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25098 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
25099 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
25100 return FALSE;
25101
25102 /* Similarly for group relocations. */
25103 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25104 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25105 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25106 return FALSE;
25107
25108 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25109 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25110 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25111 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25112 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25113 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25114 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25115 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25116 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
25117 return FALSE;
25118
25119 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25120 offsets, so keep these symbols. */
25121 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25122 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25123 return FALSE;
25124
25125 return TRUE;
25126 }
25127 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25128
25129 #ifdef OBJ_ELF
25130 const char *
25131 elf32_arm_target_format (void)
25132 {
25133 #ifdef TE_SYMBIAN
25134 return (target_big_endian
25135 ? "elf32-bigarm-symbian"
25136 : "elf32-littlearm-symbian");
25137 #elif defined (TE_VXWORKS)
25138 return (target_big_endian
25139 ? "elf32-bigarm-vxworks"
25140 : "elf32-littlearm-vxworks");
25141 #elif defined (TE_NACL)
25142 return (target_big_endian
25143 ? "elf32-bigarm-nacl"
25144 : "elf32-littlearm-nacl");
25145 #else
25146 if (arm_fdpic)
25147 {
25148 if (target_big_endian)
25149 return "elf32-bigarm-fdpic";
25150 else
25151 return "elf32-littlearm-fdpic";
25152 }
25153 else
25154 {
25155 if (target_big_endian)
25156 return "elf32-bigarm";
25157 else
25158 return "elf32-littlearm";
25159 }
25160 #endif
25161 }
25162
25163 void
25164 armelf_frob_symbol (symbolS * symp,
25165 int * puntp)
25166 {
25167 elf_frob_symbol (symp, puntp);
25168 }
25169 #endif
25170
25171 /* MD interface: Finalization. */
25172
25173 void
25174 arm_cleanup (void)
25175 {
25176 literal_pool * pool;
25177
25178 /* Ensure that all the IT blocks are properly closed. */
25179 check_it_blocks_finished ();
25180
25181 for (pool = list_of_pools; pool; pool = pool->next)
25182 {
25183 /* Put it at the end of the relevant section. */
25184 subseg_set (pool->section, pool->sub_section);
25185 #ifdef OBJ_ELF
25186 arm_elf_change_section ();
25187 #endif
25188 s_ltorg (0);
25189 }
25190 }
25191
25192 #ifdef OBJ_ELF
25193 /* Remove any excess mapping symbols generated for alignment frags in
25194 SEC. We may have created a mapping symbol before a zero byte
25195 alignment; remove it if there's a mapping symbol after the
25196 alignment. */
25197 static void
25198 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25199 void *dummy ATTRIBUTE_UNUSED)
25200 {
25201 segment_info_type *seginfo = seg_info (sec);
25202 fragS *fragp;
25203
25204 if (seginfo == NULL || seginfo->frchainP == NULL)
25205 return;
25206
25207 for (fragp = seginfo->frchainP->frch_root;
25208 fragp != NULL;
25209 fragp = fragp->fr_next)
25210 {
25211 symbolS *sym = fragp->tc_frag_data.last_map;
25212 fragS *next = fragp->fr_next;
25213
25214 /* Variable-sized frags have been converted to fixed size by
25215 this point. But if this was variable-sized to start with,
25216 there will be a fixed-size frag after it. So don't handle
25217 next == NULL. */
25218 if (sym == NULL || next == NULL)
25219 continue;
25220
25221 if (S_GET_VALUE (sym) < next->fr_address)
25222 /* Not at the end of this frag. */
25223 continue;
25224 know (S_GET_VALUE (sym) == next->fr_address);
25225
25226 do
25227 {
25228 if (next->tc_frag_data.first_map != NULL)
25229 {
25230 /* Next frag starts with a mapping symbol. Discard this
25231 one. */
25232 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25233 break;
25234 }
25235
25236 if (next->fr_next == NULL)
25237 {
25238 /* This mapping symbol is at the end of the section. Discard
25239 it. */
25240 know (next->fr_fix == 0 && next->fr_var == 0);
25241 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25242 break;
25243 }
25244
25245 /* As long as we have empty frags without any mapping symbols,
25246 keep looking. */
25247 /* If the next frag is non-empty and does not start with a
25248 mapping symbol, then this mapping symbol is required. */
25249 if (next->fr_address != next->fr_next->fr_address)
25250 break;
25251
25252 next = next->fr_next;
25253 }
25254 while (next != NULL);
25255 }
25256 }
25257 #endif
25258
25259 /* Adjust the symbol table. This marks Thumb symbols as distinct from
25260 ARM ones. */
25261
25262 void
25263 arm_adjust_symtab (void)
25264 {
25265 #ifdef OBJ_COFF
25266 symbolS * sym;
25267
25268 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25269 {
25270 if (ARM_IS_THUMB (sym))
25271 {
25272 if (THUMB_IS_FUNC (sym))
25273 {
25274 /* Mark the symbol as a Thumb function. */
25275 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25276 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25277 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
25278
25279 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25280 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25281 else
25282 as_bad (_("%s: unexpected function type: %d"),
25283 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25284 }
25285 else switch (S_GET_STORAGE_CLASS (sym))
25286 {
25287 case C_EXT:
25288 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25289 break;
25290 case C_STAT:
25291 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25292 break;
25293 case C_LABEL:
25294 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25295 break;
25296 default:
25297 /* Do nothing. */
25298 break;
25299 }
25300 }
25301
25302 if (ARM_IS_INTERWORK (sym))
25303 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
25304 }
25305 #endif
25306 #ifdef OBJ_ELF
25307 symbolS * sym;
25308 char bind;
25309
25310 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25311 {
25312 if (ARM_IS_THUMB (sym))
25313 {
25314 elf_symbol_type * elf_sym;
25315
25316 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25317 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
25318
25319 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25320 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
25321 {
25322 /* If it's a .thumb_func, declare it as so,
25323 otherwise tag label as .code 16. */
25324 if (THUMB_IS_FUNC (sym))
25325 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25326 ST_BRANCH_TO_THUMB);
25327 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25328 elf_sym->internal_elf_sym.st_info =
25329 ELF_ST_INFO (bind, STT_ARM_16BIT);
25330 }
25331 }
25332 }
25333
25334 /* Remove any overlapping mapping symbols generated by alignment frags. */
25335 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
25336 /* Now do generic ELF adjustments. */
25337 elf_adjust_symtab ();
25338 #endif
25339 }
25340
25341 /* MD interface: Initialization. */
25342
25343 static void
25344 set_constant_flonums (void)
25345 {
25346 int i;
25347
25348 for (i = 0; i < NUM_FLOAT_VALS; i++)
25349 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25350 abort ();
25351 }
25352
25353 /* Auto-select Thumb mode if it's the only available instruction set for the
25354 given architecture. */
25355
25356 static void
25357 autoselect_thumb_from_cpu_variant (void)
25358 {
25359 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25360 opcode_select (16);
25361 }
25362
25363 void
25364 md_begin (void)
25365 {
25366 unsigned mach;
25367 unsigned int i;
25368
25369 if ( (arm_ops_hsh = hash_new ()) == NULL
25370 || (arm_cond_hsh = hash_new ()) == NULL
25371 || (arm_shift_hsh = hash_new ()) == NULL
25372 || (arm_psr_hsh = hash_new ()) == NULL
25373 || (arm_v7m_psr_hsh = hash_new ()) == NULL
25374 || (arm_reg_hsh = hash_new ()) == NULL
25375 || (arm_reloc_hsh = hash_new ()) == NULL
25376 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
25377 as_fatal (_("virtual memory exhausted"));
25378
25379 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
25380 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
25381 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
25382 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
25383 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
25384 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
25385 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
25386 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
25387 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
25388 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
25389 (void *) (v7m_psrs + i));
25390 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
25391 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
25392 for (i = 0;
25393 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25394 i++)
25395 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
25396 (void *) (barrier_opt_names + i));
25397 #ifdef OBJ_ELF
25398 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25399 {
25400 struct reloc_entry * entry = reloc_names + i;
25401
25402 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25403 /* This makes encode_branch() use the EABI versions of this relocation. */
25404 entry->reloc = BFD_RELOC_UNUSED;
25405
25406 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25407 }
25408 #endif
25409
25410 set_constant_flonums ();
25411
25412 /* Set the cpu variant based on the command-line options. We prefer
25413 -mcpu= over -march= if both are set (as for GCC); and we prefer
25414 -mfpu= over any other way of setting the floating point unit.
25415 Use of legacy options with new options are faulted. */
25416 if (legacy_cpu)
25417 {
25418 if (mcpu_cpu_opt || march_cpu_opt)
25419 as_bad (_("use of old and new-style options to set CPU type"));
25420
25421 selected_arch = *legacy_cpu;
25422 }
25423 else if (mcpu_cpu_opt)
25424 {
25425 selected_arch = *mcpu_cpu_opt;
25426 selected_ext = *mcpu_ext_opt;
25427 }
25428 else if (march_cpu_opt)
25429 {
25430 selected_arch = *march_cpu_opt;
25431 selected_ext = *march_ext_opt;
25432 }
25433 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
25434
25435 if (legacy_fpu)
25436 {
25437 if (mfpu_opt)
25438 as_bad (_("use of old and new-style options to set FPU type"));
25439
25440 selected_fpu = *legacy_fpu;
25441 }
25442 else if (mfpu_opt)
25443 selected_fpu = *mfpu_opt;
25444 else
25445 {
25446 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25447 || defined (TE_NetBSD) || defined (TE_VXWORKS))
25448 /* Some environments specify a default FPU. If they don't, infer it
25449 from the processor. */
25450 if (mcpu_fpu_opt)
25451 selected_fpu = *mcpu_fpu_opt;
25452 else if (march_fpu_opt)
25453 selected_fpu = *march_fpu_opt;
25454 #else
25455 selected_fpu = fpu_default;
25456 #endif
25457 }
25458
25459 if (ARM_FEATURE_ZERO (selected_fpu))
25460 {
25461 if (!no_cpu_selected ())
25462 selected_fpu = fpu_default;
25463 else
25464 selected_fpu = fpu_arch_fpa;
25465 }
25466
25467 #ifdef CPU_DEFAULT
25468 if (ARM_FEATURE_ZERO (selected_arch))
25469 {
25470 selected_arch = cpu_default;
25471 selected_cpu = selected_arch;
25472 }
25473 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
25474 #else
25475 /* Autodection of feature mode: allow all features in cpu_variant but leave
25476 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
25477 after all instruction have been processed and we can decide what CPU
25478 should be selected. */
25479 if (ARM_FEATURE_ZERO (selected_arch))
25480 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
25481 else
25482 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
25483 #endif
25484
25485 autoselect_thumb_from_cpu_variant ();
25486
25487 arm_arch_used = thumb_arch_used = arm_arch_none;
25488
25489 #if defined OBJ_COFF || defined OBJ_ELF
25490 {
25491 unsigned int flags = 0;
25492
25493 #if defined OBJ_ELF
25494 flags = meabi_flags;
25495
25496 switch (meabi_flags)
25497 {
25498 case EF_ARM_EABI_UNKNOWN:
25499 #endif
25500 /* Set the flags in the private structure. */
25501 if (uses_apcs_26) flags |= F_APCS26;
25502 if (support_interwork) flags |= F_INTERWORK;
25503 if (uses_apcs_float) flags |= F_APCS_FLOAT;
25504 if (pic_code) flags |= F_PIC;
25505 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
25506 flags |= F_SOFT_FLOAT;
25507
25508 switch (mfloat_abi_opt)
25509 {
25510 case ARM_FLOAT_ABI_SOFT:
25511 case ARM_FLOAT_ABI_SOFTFP:
25512 flags |= F_SOFT_FLOAT;
25513 break;
25514
25515 case ARM_FLOAT_ABI_HARD:
25516 if (flags & F_SOFT_FLOAT)
25517 as_bad (_("hard-float conflicts with specified fpu"));
25518 break;
25519 }
25520
25521 /* Using pure-endian doubles (even if soft-float). */
25522 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
25523 flags |= F_VFP_FLOAT;
25524
25525 #if defined OBJ_ELF
25526 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
25527 flags |= EF_ARM_MAVERICK_FLOAT;
25528 break;
25529
25530 case EF_ARM_EABI_VER4:
25531 case EF_ARM_EABI_VER5:
25532 /* No additional flags to set. */
25533 break;
25534
25535 default:
25536 abort ();
25537 }
25538 #endif
25539 bfd_set_private_flags (stdoutput, flags);
25540
25541 /* We have run out flags in the COFF header to encode the
25542 status of ATPCS support, so instead we create a dummy,
25543 empty, debug section called .arm.atpcs. */
25544 if (atpcs)
25545 {
25546 asection * sec;
25547
25548 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25549
25550 if (sec != NULL)
25551 {
25552 bfd_set_section_flags
25553 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25554 bfd_set_section_size (stdoutput, sec, 0);
25555 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25556 }
25557 }
25558 }
25559 #endif
25560
25561 /* Record the CPU type as well. */
25562 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25563 mach = bfd_mach_arm_iWMMXt2;
25564 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
25565 mach = bfd_mach_arm_iWMMXt;
25566 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
25567 mach = bfd_mach_arm_XScale;
25568 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
25569 mach = bfd_mach_arm_ep9312;
25570 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
25571 mach = bfd_mach_arm_5TE;
25572 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
25573 {
25574 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25575 mach = bfd_mach_arm_5T;
25576 else
25577 mach = bfd_mach_arm_5;
25578 }
25579 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
25580 {
25581 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25582 mach = bfd_mach_arm_4T;
25583 else
25584 mach = bfd_mach_arm_4;
25585 }
25586 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
25587 mach = bfd_mach_arm_3M;
25588 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25589 mach = bfd_mach_arm_3;
25590 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25591 mach = bfd_mach_arm_2a;
25592 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25593 mach = bfd_mach_arm_2;
25594 else
25595 mach = bfd_mach_arm_unknown;
25596
25597 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25598 }
25599
25600 /* Command line processing. */
25601
25602 /* md_parse_option
25603 Invocation line includes a switch not recognized by the base assembler.
25604 See if it's a processor-specific option.
25605
25606 This routine is somewhat complicated by the need for backwards
25607 compatibility (since older releases of gcc can't be changed).
25608 The new options try to make the interface as compatible as
25609 possible with GCC.
25610
25611 New options (supported) are:
25612
25613 -mcpu=<cpu name> Assemble for selected processor
25614 -march=<architecture name> Assemble for selected architecture
25615 -mfpu=<fpu architecture> Assemble for selected FPU.
25616 -EB/-mbig-endian Big-endian
25617 -EL/-mlittle-endian Little-endian
25618 -k Generate PIC code
25619 -mthumb Start in Thumb mode
25620 -mthumb-interwork Code supports ARM/Thumb interworking
25621
25622 -m[no-]warn-deprecated Warn about deprecated features
25623 -m[no-]warn-syms Warn when symbols match instructions
25624
25625 For now we will also provide support for:
25626
25627 -mapcs-32 32-bit Program counter
25628 -mapcs-26 26-bit Program counter
25629 -macps-float Floats passed in FP registers
25630 -mapcs-reentrant Reentrant code
25631 -matpcs
25632 (sometime these will probably be replaced with -mapcs=<list of options>
25633 and -matpcs=<list of options>)
25634
25635 The remaining options are only supported for back-wards compatibility.
25636 Cpu variants, the arm part is optional:
25637 -m[arm]1 Currently not supported.
25638 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25639 -m[arm]3 Arm 3 processor
25640 -m[arm]6[xx], Arm 6 processors
25641 -m[arm]7[xx][t][[d]m] Arm 7 processors
25642 -m[arm]8[10] Arm 8 processors
25643 -m[arm]9[20][tdmi] Arm 9 processors
25644 -mstrongarm[110[0]] StrongARM processors
25645 -mxscale XScale processors
25646 -m[arm]v[2345[t[e]]] Arm architectures
25647 -mall All (except the ARM1)
25648 FP variants:
25649 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25650 -mfpe-old (No float load/store multiples)
25651 -mvfpxd VFP Single precision
25652 -mvfp All VFP
25653 -mno-fpu Disable all floating point instructions
25654
25655 The following CPU names are recognized:
25656 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25657 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25658 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25659 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25660 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25661 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25662 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
25663
25664 */
25665
25666 const char * md_shortopts = "m:k";
25667
25668 #ifdef ARM_BI_ENDIAN
25669 #define OPTION_EB (OPTION_MD_BASE + 0)
25670 #define OPTION_EL (OPTION_MD_BASE + 1)
25671 #else
25672 #if TARGET_BYTES_BIG_ENDIAN
25673 #define OPTION_EB (OPTION_MD_BASE + 0)
25674 #else
25675 #define OPTION_EL (OPTION_MD_BASE + 1)
25676 #endif
25677 #endif
25678 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
25679 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
25680
25681 struct option md_longopts[] =
25682 {
25683 #ifdef OPTION_EB
25684 {"EB", no_argument, NULL, OPTION_EB},
25685 #endif
25686 #ifdef OPTION_EL
25687 {"EL", no_argument, NULL, OPTION_EL},
25688 #endif
25689 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
25690 #ifdef OBJ_ELF
25691 {"fdpic", no_argument, NULL, OPTION_FDPIC},
25692 #endif
25693 {NULL, no_argument, NULL, 0}
25694 };
25695
25696 size_t md_longopts_size = sizeof (md_longopts);
25697
25698 struct arm_option_table
25699 {
25700 const char * option; /* Option name to match. */
25701 const char * help; /* Help information. */
25702 int * var; /* Variable to change. */
25703 int value; /* What to change it to. */
25704 const char * deprecated; /* If non-null, print this message. */
25705 };
25706
25707 struct arm_option_table arm_opts[] =
25708 {
25709 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25710 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25711 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25712 &support_interwork, 1, NULL},
25713 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25714 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25715 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25716 1, NULL},
25717 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25718 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25719 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25720 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25721 NULL},
25722
25723 /* These are recognized by the assembler, but have no affect on code. */
25724 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25725 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
25726
25727 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25728 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25729 &warn_on_deprecated, 0, NULL},
25730 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25731 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
25732 {NULL, NULL, NULL, 0, NULL}
25733 };
25734
25735 struct arm_legacy_option_table
25736 {
25737 const char * option; /* Option name to match. */
25738 const arm_feature_set ** var; /* Variable to change. */
25739 const arm_feature_set value; /* What to change it to. */
25740 const char * deprecated; /* If non-null, print this message. */
25741 };
25742
25743 const struct arm_legacy_option_table arm_legacy_opts[] =
25744 {
25745 /* DON'T add any new processors to this list -- we want the whole list
25746 to go away... Add them to the processors table instead. */
25747 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25748 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25749 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25750 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25751 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25752 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25753 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25754 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25755 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25756 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25757 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25758 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25759 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25760 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25761 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25762 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25763 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25764 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25765 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25766 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25767 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25768 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25769 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25770 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25771 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25772 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25773 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25774 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25775 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25776 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25777 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25778 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25779 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25780 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25781 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25782 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25783 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25784 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25785 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25786 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25787 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25788 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25789 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25790 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25791 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25792 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25793 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25794 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25795 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25796 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25797 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25798 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25799 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25800 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25801 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25802 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25803 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25804 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25805 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25806 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25807 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25808 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25809 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25810 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25811 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25812 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25813 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25814 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25815 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25816 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
25817 N_("use -mcpu=strongarm110")},
25818 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
25819 N_("use -mcpu=strongarm1100")},
25820 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
25821 N_("use -mcpu=strongarm1110")},
25822 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25823 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25824 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
25825
25826 /* Architecture variants -- don't add any more to this list either. */
25827 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25828 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25829 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25830 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25831 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25832 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25833 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25834 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25835 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25836 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25837 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25838 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25839 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25840 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25841 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25842 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25843 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25844 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25845
25846 /* Floating point variants -- don't add any more to this list either. */
25847 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25848 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25849 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25850 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
25851 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
25852
25853 {NULL, NULL, ARM_ARCH_NONE, NULL}
25854 };
25855
25856 struct arm_cpu_option_table
25857 {
25858 const char * name;
25859 size_t name_len;
25860 const arm_feature_set value;
25861 const arm_feature_set ext;
25862 /* For some CPUs we assume an FPU unless the user explicitly sets
25863 -mfpu=... */
25864 const arm_feature_set default_fpu;
25865 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25866 case. */
25867 const char * canonical_name;
25868 };
25869
25870 /* This list should, at a minimum, contain all the cpu names
25871 recognized by GCC. */
25872 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
25873
25874 static const struct arm_cpu_option_table arm_cpus[] =
25875 {
25876 ARM_CPU_OPT ("all", NULL, ARM_ANY,
25877 ARM_ARCH_NONE,
25878 FPU_ARCH_FPA),
25879 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
25880 ARM_ARCH_NONE,
25881 FPU_ARCH_FPA),
25882 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
25883 ARM_ARCH_NONE,
25884 FPU_ARCH_FPA),
25885 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
25886 ARM_ARCH_NONE,
25887 FPU_ARCH_FPA),
25888 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
25889 ARM_ARCH_NONE,
25890 FPU_ARCH_FPA),
25891 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
25892 ARM_ARCH_NONE,
25893 FPU_ARCH_FPA),
25894 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
25895 ARM_ARCH_NONE,
25896 FPU_ARCH_FPA),
25897 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
25898 ARM_ARCH_NONE,
25899 FPU_ARCH_FPA),
25900 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
25901 ARM_ARCH_NONE,
25902 FPU_ARCH_FPA),
25903 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
25904 ARM_ARCH_NONE,
25905 FPU_ARCH_FPA),
25906 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
25907 ARM_ARCH_NONE,
25908 FPU_ARCH_FPA),
25909 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
25910 ARM_ARCH_NONE,
25911 FPU_ARCH_FPA),
25912 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
25913 ARM_ARCH_NONE,
25914 FPU_ARCH_FPA),
25915 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
25916 ARM_ARCH_NONE,
25917 FPU_ARCH_FPA),
25918 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
25919 ARM_ARCH_NONE,
25920 FPU_ARCH_FPA),
25921 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
25922 ARM_ARCH_NONE,
25923 FPU_ARCH_FPA),
25924 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
25925 ARM_ARCH_NONE,
25926 FPU_ARCH_FPA),
25927 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
25928 ARM_ARCH_NONE,
25929 FPU_ARCH_FPA),
25930 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
25931 ARM_ARCH_NONE,
25932 FPU_ARCH_FPA),
25933 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
25934 ARM_ARCH_NONE,
25935 FPU_ARCH_FPA),
25936 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
25937 ARM_ARCH_NONE,
25938 FPU_ARCH_FPA),
25939 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
25940 ARM_ARCH_NONE,
25941 FPU_ARCH_FPA),
25942 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
25943 ARM_ARCH_NONE,
25944 FPU_ARCH_FPA),
25945 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
25946 ARM_ARCH_NONE,
25947 FPU_ARCH_FPA),
25948 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
25949 ARM_ARCH_NONE,
25950 FPU_ARCH_FPA),
25951 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
25952 ARM_ARCH_NONE,
25953 FPU_ARCH_FPA),
25954 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
25955 ARM_ARCH_NONE,
25956 FPU_ARCH_FPA),
25957 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
25958 ARM_ARCH_NONE,
25959 FPU_ARCH_FPA),
25960 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
25961 ARM_ARCH_NONE,
25962 FPU_ARCH_FPA),
25963 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
25964 ARM_ARCH_NONE,
25965 FPU_ARCH_FPA),
25966 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
25967 ARM_ARCH_NONE,
25968 FPU_ARCH_FPA),
25969 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
25970 ARM_ARCH_NONE,
25971 FPU_ARCH_FPA),
25972 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
25973 ARM_ARCH_NONE,
25974 FPU_ARCH_FPA),
25975 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
25976 ARM_ARCH_NONE,
25977 FPU_ARCH_FPA),
25978 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
25979 ARM_ARCH_NONE,
25980 FPU_ARCH_FPA),
25981 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
25982 ARM_ARCH_NONE,
25983 FPU_ARCH_FPA),
25984 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
25985 ARM_ARCH_NONE,
25986 FPU_ARCH_FPA),
25987 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
25988 ARM_ARCH_NONE,
25989 FPU_ARCH_FPA),
25990 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
25991 ARM_ARCH_NONE,
25992 FPU_ARCH_FPA),
25993 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
25994 ARM_ARCH_NONE,
25995 FPU_ARCH_FPA),
25996 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
25997 ARM_ARCH_NONE,
25998 FPU_ARCH_FPA),
25999 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
26000 ARM_ARCH_NONE,
26001 FPU_ARCH_FPA),
26002 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
26003 ARM_ARCH_NONE,
26004 FPU_ARCH_FPA),
26005 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
26006 ARM_ARCH_NONE,
26007 FPU_ARCH_FPA),
26008 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
26009 ARM_ARCH_NONE,
26010 FPU_ARCH_FPA),
26011 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
26012 ARM_ARCH_NONE,
26013 FPU_ARCH_FPA),
26014
26015 /* For V5 or later processors we default to using VFP; but the user
26016 should really set the FPU type explicitly. */
26017 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
26018 ARM_ARCH_NONE,
26019 FPU_ARCH_VFP_V2),
26020 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
26021 ARM_ARCH_NONE,
26022 FPU_ARCH_VFP_V2),
26023 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26024 ARM_ARCH_NONE,
26025 FPU_ARCH_VFP_V2),
26026 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26027 ARM_ARCH_NONE,
26028 FPU_ARCH_VFP_V2),
26029 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
26030 ARM_ARCH_NONE,
26031 FPU_ARCH_VFP_V2),
26032 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
26033 ARM_ARCH_NONE,
26034 FPU_ARCH_VFP_V2),
26035 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
26036 ARM_ARCH_NONE,
26037 FPU_ARCH_VFP_V2),
26038 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
26039 ARM_ARCH_NONE,
26040 FPU_ARCH_VFP_V2),
26041 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
26042 ARM_ARCH_NONE,
26043 FPU_ARCH_VFP_V2),
26044 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
26045 ARM_ARCH_NONE,
26046 FPU_ARCH_VFP_V2),
26047 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
26048 ARM_ARCH_NONE,
26049 FPU_ARCH_VFP_V2),
26050 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
26051 ARM_ARCH_NONE,
26052 FPU_ARCH_VFP_V2),
26053 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
26054 ARM_ARCH_NONE,
26055 FPU_ARCH_VFP_V1),
26056 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
26057 ARM_ARCH_NONE,
26058 FPU_ARCH_VFP_V1),
26059 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
26060 ARM_ARCH_NONE,
26061 FPU_ARCH_VFP_V2),
26062 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
26063 ARM_ARCH_NONE,
26064 FPU_ARCH_VFP_V2),
26065 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
26066 ARM_ARCH_NONE,
26067 FPU_ARCH_VFP_V1),
26068 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
26069 ARM_ARCH_NONE,
26070 FPU_ARCH_VFP_V2),
26071 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
26072 ARM_ARCH_NONE,
26073 FPU_ARCH_VFP_V2),
26074 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
26075 ARM_ARCH_NONE,
26076 FPU_ARCH_VFP_V2),
26077 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
26078 ARM_ARCH_NONE,
26079 FPU_ARCH_VFP_V2),
26080 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
26081 ARM_ARCH_NONE,
26082 FPU_ARCH_VFP_V2),
26083 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
26084 ARM_ARCH_NONE,
26085 FPU_ARCH_VFP_V2),
26086 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
26087 ARM_ARCH_NONE,
26088 FPU_ARCH_VFP_V2),
26089 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
26090 ARM_ARCH_NONE,
26091 FPU_ARCH_VFP_V2),
26092 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
26093 ARM_ARCH_NONE,
26094 FPU_ARCH_VFP_V2),
26095 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
26096 ARM_ARCH_NONE,
26097 FPU_NONE),
26098 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26099 ARM_ARCH_NONE,
26100 FPU_NONE),
26101 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26102 ARM_ARCH_NONE,
26103 FPU_ARCH_VFP_V2),
26104 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26105 ARM_ARCH_NONE,
26106 FPU_ARCH_VFP_V2),
26107 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26108 ARM_ARCH_NONE,
26109 FPU_ARCH_VFP_V2),
26110 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26111 ARM_ARCH_NONE,
26112 FPU_NONE),
26113 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26114 ARM_ARCH_NONE,
26115 FPU_NONE),
26116 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26117 ARM_ARCH_NONE,
26118 FPU_ARCH_VFP_V2),
26119 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26120 ARM_ARCH_NONE,
26121 FPU_NONE),
26122 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26123 ARM_ARCH_NONE,
26124 FPU_ARCH_VFP_V2),
26125 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26126 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26127 FPU_NONE),
26128 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26129 ARM_ARCH_NONE,
26130 FPU_ARCH_NEON_VFP_V4),
26131 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26132 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26133 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26134 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26135 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26136 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26137 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26138 ARM_ARCH_NONE,
26139 FPU_ARCH_NEON_VFP_V4),
26140 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26141 ARM_ARCH_NONE,
26142 FPU_ARCH_NEON_VFP_V4),
26143 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26144 ARM_ARCH_NONE,
26145 FPU_ARCH_NEON_VFP_V4),
26146 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26147 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26148 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26149 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26150 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26151 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26152 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26153 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26154 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26155 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26156 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26157 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26158 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26159 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26160 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26161 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26162 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26163 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26164 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26165 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26166 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26167 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26168 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26169 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26170 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
26171 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26172 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26173 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26174 ARM_ARCH_NONE,
26175 FPU_NONE),
26176 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26177 ARM_ARCH_NONE,
26178 FPU_ARCH_VFP_V3D16),
26179 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26180 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26181 FPU_NONE),
26182 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26183 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26184 FPU_ARCH_VFP_V3D16),
26185 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26186 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26187 FPU_ARCH_VFP_V3D16),
26188 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26189 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26190 FPU_ARCH_NEON_VFP_ARMV8),
26191 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26192 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26193 FPU_NONE),
26194 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26195 ARM_ARCH_NONE,
26196 FPU_NONE),
26197 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26198 ARM_ARCH_NONE,
26199 FPU_NONE),
26200 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26201 ARM_ARCH_NONE,
26202 FPU_NONE),
26203 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26204 ARM_ARCH_NONE,
26205 FPU_NONE),
26206 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26207 ARM_ARCH_NONE,
26208 FPU_NONE),
26209 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26210 ARM_ARCH_NONE,
26211 FPU_NONE),
26212 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26213 ARM_ARCH_NONE,
26214 FPU_NONE),
26215 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26216 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26217 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26218
26219 /* ??? XSCALE is really an architecture. */
26220 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26221 ARM_ARCH_NONE,
26222 FPU_ARCH_VFP_V2),
26223
26224 /* ??? iwmmxt is not a processor. */
26225 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26226 ARM_ARCH_NONE,
26227 FPU_ARCH_VFP_V2),
26228 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26229 ARM_ARCH_NONE,
26230 FPU_ARCH_VFP_V2),
26231 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26232 ARM_ARCH_NONE,
26233 FPU_ARCH_VFP_V2),
26234
26235 /* Maverick. */
26236 ARM_CPU_OPT ("ep9312", "ARM920T",
26237 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26238 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26239
26240 /* Marvell processors. */
26241 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26242 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26243 FPU_ARCH_VFP_V3D16),
26244 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26245 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26246 FPU_ARCH_NEON_VFP_V4),
26247
26248 /* APM X-Gene family. */
26249 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26250 ARM_ARCH_NONE,
26251 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26252 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26253 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26254 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26255
26256 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
26257 };
26258 #undef ARM_CPU_OPT
26259
26260 struct arm_arch_option_table
26261 {
26262 const char * name;
26263 size_t name_len;
26264 const arm_feature_set value;
26265 const arm_feature_set default_fpu;
26266 };
26267
26268 /* This list should, at a minimum, contain all the architecture names
26269 recognized by GCC. */
26270 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
26271
26272 static const struct arm_arch_option_table arm_archs[] =
26273 {
26274 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26275 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26276 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26277 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26278 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26279 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26280 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26281 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26282 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26283 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26284 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26285 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26286 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26287 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
26288 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
26289 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
26290 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
26291 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
26292 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
26293 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
26294 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
26295 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26296 kept to preserve existing behaviour. */
26297 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26298 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26299 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
26300 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
26301 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
26302 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26303 kept to preserve existing behaviour. */
26304 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26305 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26306 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26307 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26308 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
26309 /* The official spelling of the ARMv7 profile variants is the dashed form.
26310 Accept the non-dashed form for compatibility with old toolchains. */
26311 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26312 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
26313 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26314 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26315 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26316 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26317 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26318 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
26319 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
26320 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
26321 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
26322 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
26323 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
26324 ARM_ARCH_OPT ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP),
26325 ARM_ARCH_OPT ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP),
26326 ARM_ARCH_OPT ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP),
26327 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26328 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26329 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
26330 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26331 };
26332 #undef ARM_ARCH_OPT
26333
26334 /* ISA extensions in the co-processor and main instruction set space. */
26335
26336 struct arm_option_extension_value_table
26337 {
26338 const char * name;
26339 size_t name_len;
26340 const arm_feature_set merge_value;
26341 const arm_feature_set clear_value;
26342 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26343 indicates that an extension is available for all architectures while
26344 ARM_ANY marks an empty entry. */
26345 const arm_feature_set allowed_archs[2];
26346 };
26347
26348 /* The following table must be in alphabetical order with a NULL last entry. */
26349
26350 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26351 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
26352
26353 static const struct arm_option_extension_value_table arm_extensions[] =
26354 {
26355 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26356 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26357 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26358 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26359 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26360 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26361 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26362 ARM_ARCH_V8_2A),
26363 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26364 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26365 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
26366 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26367 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26368 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26369 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26370 ARM_ARCH_V8_2A),
26371 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26372 | ARM_EXT2_FP16_FML),
26373 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26374 | ARM_EXT2_FP16_FML),
26375 ARM_ARCH_V8_2A),
26376 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26377 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26378 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26379 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26380 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26381 Thumb divide instruction. Due to this having the same name as the
26382 previous entry, this will be ignored when doing command-line parsing and
26383 only considered by build attribute selection code. */
26384 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26385 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26386 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
26387 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
26388 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
26389 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
26390 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
26391 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
26392 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26393 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26394 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26395 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26396 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26397 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26398 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26399 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
26400 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26401 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
26402 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26403 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26404 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
26405 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26406 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26407 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
26408 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26409 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26410 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26411 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26412 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26413 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26414 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26415 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26416 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26417 | ARM_EXT_DIV),
26418 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26419 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26420 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
26421 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26422 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
26423 };
26424 #undef ARM_EXT_OPT
26425
26426 /* ISA floating-point and Advanced SIMD extensions. */
26427 struct arm_option_fpu_value_table
26428 {
26429 const char * name;
26430 const arm_feature_set value;
26431 };
26432
26433 /* This list should, at a minimum, contain all the fpu names
26434 recognized by GCC. */
26435 static const struct arm_option_fpu_value_table arm_fpus[] =
26436 {
26437 {"softfpa", FPU_NONE},
26438 {"fpe", FPU_ARCH_FPE},
26439 {"fpe2", FPU_ARCH_FPE},
26440 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26441 {"fpa", FPU_ARCH_FPA},
26442 {"fpa10", FPU_ARCH_FPA},
26443 {"fpa11", FPU_ARCH_FPA},
26444 {"arm7500fe", FPU_ARCH_FPA},
26445 {"softvfp", FPU_ARCH_VFP},
26446 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26447 {"vfp", FPU_ARCH_VFP_V2},
26448 {"vfp9", FPU_ARCH_VFP_V2},
26449 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
26450 {"vfp10", FPU_ARCH_VFP_V2},
26451 {"vfp10-r0", FPU_ARCH_VFP_V1},
26452 {"vfpxd", FPU_ARCH_VFP_V1xD},
26453 {"vfpv2", FPU_ARCH_VFP_V2},
26454 {"vfpv3", FPU_ARCH_VFP_V3},
26455 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
26456 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
26457 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26458 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26459 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
26460 {"arm1020t", FPU_ARCH_VFP_V1},
26461 {"arm1020e", FPU_ARCH_VFP_V2},
26462 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
26463 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26464 {"maverick", FPU_ARCH_MAVERICK},
26465 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26466 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26467 {"neon-fp16", FPU_ARCH_NEON_FP16},
26468 {"vfpv4", FPU_ARCH_VFP_V4},
26469 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
26470 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
26471 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26472 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
26473 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
26474 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26475 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26476 {"crypto-neon-fp-armv8",
26477 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
26478 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
26479 {"crypto-neon-fp-armv8.1",
26480 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
26481 {NULL, ARM_ARCH_NONE}
26482 };
26483
26484 struct arm_option_value_table
26485 {
26486 const char *name;
26487 long value;
26488 };
26489
26490 static const struct arm_option_value_table arm_float_abis[] =
26491 {
26492 {"hard", ARM_FLOAT_ABI_HARD},
26493 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26494 {"soft", ARM_FLOAT_ABI_SOFT},
26495 {NULL, 0}
26496 };
26497
26498 #ifdef OBJ_ELF
26499 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
26500 static const struct arm_option_value_table arm_eabis[] =
26501 {
26502 {"gnu", EF_ARM_EABI_UNKNOWN},
26503 {"4", EF_ARM_EABI_VER4},
26504 {"5", EF_ARM_EABI_VER5},
26505 {NULL, 0}
26506 };
26507 #endif
26508
26509 struct arm_long_option_table
26510 {
26511 const char * option; /* Substring to match. */
26512 const char * help; /* Help information. */
26513 int (* func) (const char * subopt); /* Function to decode sub-option. */
26514 const char * deprecated; /* If non-null, print this message. */
26515 };
26516
26517 static bfd_boolean
26518 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
26519 arm_feature_set *ext_set)
26520 {
26521 /* We insist on extensions being specified in alphabetical order, and with
26522 extensions being added before being removed. We achieve this by having
26523 the global ARM_EXTENSIONS table in alphabetical order, and using the
26524 ADDING_VALUE variable to indicate whether we are adding an extension (1)
26525 or removing it (0) and only allowing it to change in the order
26526 -1 -> 1 -> 0. */
26527 const struct arm_option_extension_value_table * opt = NULL;
26528 const arm_feature_set arm_any = ARM_ANY;
26529 int adding_value = -1;
26530
26531 while (str != NULL && *str != 0)
26532 {
26533 const char *ext;
26534 size_t len;
26535
26536 if (*str != '+')
26537 {
26538 as_bad (_("invalid architectural extension"));
26539 return FALSE;
26540 }
26541
26542 str++;
26543 ext = strchr (str, '+');
26544
26545 if (ext != NULL)
26546 len = ext - str;
26547 else
26548 len = strlen (str);
26549
26550 if (len >= 2 && strncmp (str, "no", 2) == 0)
26551 {
26552 if (adding_value != 0)
26553 {
26554 adding_value = 0;
26555 opt = arm_extensions;
26556 }
26557
26558 len -= 2;
26559 str += 2;
26560 }
26561 else if (len > 0)
26562 {
26563 if (adding_value == -1)
26564 {
26565 adding_value = 1;
26566 opt = arm_extensions;
26567 }
26568 else if (adding_value != 1)
26569 {
26570 as_bad (_("must specify extensions to add before specifying "
26571 "those to remove"));
26572 return FALSE;
26573 }
26574 }
26575
26576 if (len == 0)
26577 {
26578 as_bad (_("missing architectural extension"));
26579 return FALSE;
26580 }
26581
26582 gas_assert (adding_value != -1);
26583 gas_assert (opt != NULL);
26584
26585 /* Scan over the options table trying to find an exact match. */
26586 for (; opt->name != NULL; opt++)
26587 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26588 {
26589 int i, nb_allowed_archs =
26590 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26591 /* Check we can apply the extension to this architecture. */
26592 for (i = 0; i < nb_allowed_archs; i++)
26593 {
26594 /* Empty entry. */
26595 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26596 continue;
26597 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
26598 break;
26599 }
26600 if (i == nb_allowed_archs)
26601 {
26602 as_bad (_("extension does not apply to the base architecture"));
26603 return FALSE;
26604 }
26605
26606 /* Add or remove the extension. */
26607 if (adding_value)
26608 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
26609 else
26610 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
26611
26612 /* Allowing Thumb division instructions for ARMv7 in autodetection
26613 rely on this break so that duplicate extensions (extensions
26614 with the same name as a previous extension in the list) are not
26615 considered for command-line parsing. */
26616 break;
26617 }
26618
26619 if (opt->name == NULL)
26620 {
26621 /* Did we fail to find an extension because it wasn't specified in
26622 alphabetical order, or because it does not exist? */
26623
26624 for (opt = arm_extensions; opt->name != NULL; opt++)
26625 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26626 break;
26627
26628 if (opt->name == NULL)
26629 as_bad (_("unknown architectural extension `%s'"), str);
26630 else
26631 as_bad (_("architectural extensions must be specified in "
26632 "alphabetical order"));
26633
26634 return FALSE;
26635 }
26636 else
26637 {
26638 /* We should skip the extension we've just matched the next time
26639 round. */
26640 opt++;
26641 }
26642
26643 str = ext;
26644 };
26645
26646 return TRUE;
26647 }
26648
26649 static bfd_boolean
26650 arm_parse_cpu (const char *str)
26651 {
26652 const struct arm_cpu_option_table *opt;
26653 const char *ext = strchr (str, '+');
26654 size_t len;
26655
26656 if (ext != NULL)
26657 len = ext - str;
26658 else
26659 len = strlen (str);
26660
26661 if (len == 0)
26662 {
26663 as_bad (_("missing cpu name `%s'"), str);
26664 return FALSE;
26665 }
26666
26667 for (opt = arm_cpus; opt->name != NULL; opt++)
26668 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26669 {
26670 mcpu_cpu_opt = &opt->value;
26671 if (mcpu_ext_opt == NULL)
26672 mcpu_ext_opt = XNEW (arm_feature_set);
26673 *mcpu_ext_opt = opt->ext;
26674 mcpu_fpu_opt = &opt->default_fpu;
26675 if (opt->canonical_name)
26676 {
26677 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
26678 strcpy (selected_cpu_name, opt->canonical_name);
26679 }
26680 else
26681 {
26682 size_t i;
26683
26684 if (len >= sizeof selected_cpu_name)
26685 len = (sizeof selected_cpu_name) - 1;
26686
26687 for (i = 0; i < len; i++)
26688 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26689 selected_cpu_name[i] = 0;
26690 }
26691
26692 if (ext != NULL)
26693 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt);
26694
26695 return TRUE;
26696 }
26697
26698 as_bad (_("unknown cpu `%s'"), str);
26699 return FALSE;
26700 }
26701
26702 static bfd_boolean
26703 arm_parse_arch (const char *str)
26704 {
26705 const struct arm_arch_option_table *opt;
26706 const char *ext = strchr (str, '+');
26707 size_t len;
26708
26709 if (ext != NULL)
26710 len = ext - str;
26711 else
26712 len = strlen (str);
26713
26714 if (len == 0)
26715 {
26716 as_bad (_("missing architecture name `%s'"), str);
26717 return FALSE;
26718 }
26719
26720 for (opt = arm_archs; opt->name != NULL; opt++)
26721 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26722 {
26723 march_cpu_opt = &opt->value;
26724 if (march_ext_opt == NULL)
26725 march_ext_opt = XNEW (arm_feature_set);
26726 *march_ext_opt = arm_arch_none;
26727 march_fpu_opt = &opt->default_fpu;
26728 strcpy (selected_cpu_name, opt->name);
26729
26730 if (ext != NULL)
26731 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt);
26732
26733 return TRUE;
26734 }
26735
26736 as_bad (_("unknown architecture `%s'\n"), str);
26737 return FALSE;
26738 }
26739
26740 static bfd_boolean
26741 arm_parse_fpu (const char * str)
26742 {
26743 const struct arm_option_fpu_value_table * opt;
26744
26745 for (opt = arm_fpus; opt->name != NULL; opt++)
26746 if (streq (opt->name, str))
26747 {
26748 mfpu_opt = &opt->value;
26749 return TRUE;
26750 }
26751
26752 as_bad (_("unknown floating point format `%s'\n"), str);
26753 return FALSE;
26754 }
26755
26756 static bfd_boolean
26757 arm_parse_float_abi (const char * str)
26758 {
26759 const struct arm_option_value_table * opt;
26760
26761 for (opt = arm_float_abis; opt->name != NULL; opt++)
26762 if (streq (opt->name, str))
26763 {
26764 mfloat_abi_opt = opt->value;
26765 return TRUE;
26766 }
26767
26768 as_bad (_("unknown floating point abi `%s'\n"), str);
26769 return FALSE;
26770 }
26771
26772 #ifdef OBJ_ELF
26773 static bfd_boolean
26774 arm_parse_eabi (const char * str)
26775 {
26776 const struct arm_option_value_table *opt;
26777
26778 for (opt = arm_eabis; opt->name != NULL; opt++)
26779 if (streq (opt->name, str))
26780 {
26781 meabi_flags = opt->value;
26782 return TRUE;
26783 }
26784 as_bad (_("unknown EABI `%s'\n"), str);
26785 return FALSE;
26786 }
26787 #endif
26788
26789 static bfd_boolean
26790 arm_parse_it_mode (const char * str)
26791 {
26792 bfd_boolean ret = TRUE;
26793
26794 if (streq ("arm", str))
26795 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
26796 else if (streq ("thumb", str))
26797 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
26798 else if (streq ("always", str))
26799 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
26800 else if (streq ("never", str))
26801 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
26802 else
26803 {
26804 as_bad (_("unknown implicit IT mode `%s', should be "\
26805 "arm, thumb, always, or never."), str);
26806 ret = FALSE;
26807 }
26808
26809 return ret;
26810 }
26811
26812 static bfd_boolean
26813 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
26814 {
26815 codecomposer_syntax = TRUE;
26816 arm_comment_chars[0] = ';';
26817 arm_line_separator_chars[0] = 0;
26818 return TRUE;
26819 }
26820
26821 struct arm_long_option_table arm_long_opts[] =
26822 {
26823 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
26824 arm_parse_cpu, NULL},
26825 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
26826 arm_parse_arch, NULL},
26827 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
26828 arm_parse_fpu, NULL},
26829 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
26830 arm_parse_float_abi, NULL},
26831 #ifdef OBJ_ELF
26832 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
26833 arm_parse_eabi, NULL},
26834 #endif
26835 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
26836 arm_parse_it_mode, NULL},
26837 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
26838 arm_ccs_mode, NULL},
26839 {NULL, NULL, 0, NULL}
26840 };
26841
26842 int
26843 md_parse_option (int c, const char * arg)
26844 {
26845 struct arm_option_table *opt;
26846 const struct arm_legacy_option_table *fopt;
26847 struct arm_long_option_table *lopt;
26848
26849 switch (c)
26850 {
26851 #ifdef OPTION_EB
26852 case OPTION_EB:
26853 target_big_endian = 1;
26854 break;
26855 #endif
26856
26857 #ifdef OPTION_EL
26858 case OPTION_EL:
26859 target_big_endian = 0;
26860 break;
26861 #endif
26862
26863 case OPTION_FIX_V4BX:
26864 fix_v4bx = TRUE;
26865 break;
26866
26867 #ifdef OBJ_ELF
26868 case OPTION_FDPIC:
26869 arm_fdpic = TRUE;
26870 break;
26871 #endif /* OBJ_ELF */
26872
26873 case 'a':
26874 /* Listing option. Just ignore these, we don't support additional
26875 ones. */
26876 return 0;
26877
26878 default:
26879 for (opt = arm_opts; opt->option != NULL; opt++)
26880 {
26881 if (c == opt->option[0]
26882 && ((arg == NULL && opt->option[1] == 0)
26883 || streq (arg, opt->option + 1)))
26884 {
26885 /* If the option is deprecated, tell the user. */
26886 if (warn_on_deprecated && opt->deprecated != NULL)
26887 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26888 arg ? arg : "", _(opt->deprecated));
26889
26890 if (opt->var != NULL)
26891 *opt->var = opt->value;
26892
26893 return 1;
26894 }
26895 }
26896
26897 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
26898 {
26899 if (c == fopt->option[0]
26900 && ((arg == NULL && fopt->option[1] == 0)
26901 || streq (arg, fopt->option + 1)))
26902 {
26903 /* If the option is deprecated, tell the user. */
26904 if (warn_on_deprecated && fopt->deprecated != NULL)
26905 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26906 arg ? arg : "", _(fopt->deprecated));
26907
26908 if (fopt->var != NULL)
26909 *fopt->var = &fopt->value;
26910
26911 return 1;
26912 }
26913 }
26914
26915 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26916 {
26917 /* These options are expected to have an argument. */
26918 if (c == lopt->option[0]
26919 && arg != NULL
26920 && strncmp (arg, lopt->option + 1,
26921 strlen (lopt->option + 1)) == 0)
26922 {
26923 /* If the option is deprecated, tell the user. */
26924 if (warn_on_deprecated && lopt->deprecated != NULL)
26925 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
26926 _(lopt->deprecated));
26927
26928 /* Call the sup-option parser. */
26929 return lopt->func (arg + strlen (lopt->option) - 1);
26930 }
26931 }
26932
26933 return 0;
26934 }
26935
26936 return 1;
26937 }
26938
26939 void
26940 md_show_usage (FILE * fp)
26941 {
26942 struct arm_option_table *opt;
26943 struct arm_long_option_table *lopt;
26944
26945 fprintf (fp, _(" ARM-specific assembler options:\n"));
26946
26947 for (opt = arm_opts; opt->option != NULL; opt++)
26948 if (opt->help != NULL)
26949 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
26950
26951 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26952 if (lopt->help != NULL)
26953 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
26954
26955 #ifdef OPTION_EB
26956 fprintf (fp, _("\
26957 -EB assemble code for a big-endian cpu\n"));
26958 #endif
26959
26960 #ifdef OPTION_EL
26961 fprintf (fp, _("\
26962 -EL assemble code for a little-endian cpu\n"));
26963 #endif
26964
26965 fprintf (fp, _("\
26966 --fix-v4bx Allow BX in ARMv4 code\n"));
26967
26968 #ifdef OBJ_ELF
26969 fprintf (fp, _("\
26970 --fdpic generate an FDPIC object file\n"));
26971 #endif /* OBJ_ELF */
26972 }
26973
26974 #ifdef OBJ_ELF
26975
26976 typedef struct
26977 {
26978 int val;
26979 arm_feature_set flags;
26980 } cpu_arch_ver_table;
26981
26982 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
26983 chronologically for architectures, with an exception for ARMv6-M and
26984 ARMv6S-M due to legacy reasons. No new architecture should have a
26985 special case. This allows for build attribute selection results to be
26986 stable when new architectures are added. */
26987 static const cpu_arch_ver_table cpu_arch_ver[] =
26988 {
26989 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
26990 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
26991 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
26992 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
26993 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
26994 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
26995 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
26996 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
26997 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
26998 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
26999 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
27000 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
27001 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
27002 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
27003 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
27004 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
27005 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
27006 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
27007 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
27008 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
27009 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
27010 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
27011 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
27012 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
27013
27014 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
27015 always selected build attributes to match those of ARMv6-M
27016 (resp. ARMv6S-M). However, due to these architectures being a strict
27017 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
27018 would be selected when fully respecting chronology of architectures.
27019 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
27020 move them before ARMv7 architectures. */
27021 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
27022 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
27023
27024 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
27025 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
27026 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
27027 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
27028 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
27029 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
27030 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
27031 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
27032 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
27033 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
27034 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
27035 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
27036 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
27037 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
27038 {-1, ARM_ARCH_NONE}
27039 };
27040
27041 /* Set an attribute if it has not already been set by the user. */
27042
27043 static void
27044 aeabi_set_attribute_int (int tag, int value)
27045 {
27046 if (tag < 1
27047 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27048 || !attributes_set_explicitly[tag])
27049 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
27050 }
27051
27052 static void
27053 aeabi_set_attribute_string (int tag, const char *value)
27054 {
27055 if (tag < 1
27056 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27057 || !attributes_set_explicitly[tag])
27058 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
27059 }
27060
27061 /* Return whether features in the *NEEDED feature set are available via
27062 extensions for the architecture whose feature set is *ARCH_FSET. */
27063
27064 static bfd_boolean
27065 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
27066 const arm_feature_set *needed)
27067 {
27068 int i, nb_allowed_archs;
27069 arm_feature_set ext_fset;
27070 const struct arm_option_extension_value_table *opt;
27071
27072 ext_fset = arm_arch_none;
27073 for (opt = arm_extensions; opt->name != NULL; opt++)
27074 {
27075 /* Extension does not provide any feature we need. */
27076 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
27077 continue;
27078
27079 nb_allowed_archs =
27080 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27081 for (i = 0; i < nb_allowed_archs; i++)
27082 {
27083 /* Empty entry. */
27084 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
27085 break;
27086
27087 /* Extension is available, add it. */
27088 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
27089 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
27090 }
27091 }
27092
27093 /* Can we enable all features in *needed? */
27094 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
27095 }
27096
27097 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
27098 a given architecture feature set *ARCH_EXT_FSET including extension feature
27099 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
27100 - if true, check for an exact match of the architecture modulo extensions;
27101 - otherwise, select build attribute value of the first superset
27102 architecture released so that results remains stable when new architectures
27103 are added.
27104 For -march/-mcpu=all the build attribute value of the most featureful
27105 architecture is returned. Tag_CPU_arch_profile result is returned in
27106 PROFILE. */
27107
27108 static int
27109 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27110 const arm_feature_set *ext_fset,
27111 char *profile, int exact_match)
27112 {
27113 arm_feature_set arch_fset;
27114 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27115
27116 /* Select most featureful architecture with all its extensions if building
27117 for -march=all as the feature sets used to set build attributes. */
27118 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27119 {
27120 /* Force revisiting of decision for each new architecture. */
27121 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8M_MAIN);
27122 *profile = 'A';
27123 return TAG_CPU_ARCH_V8;
27124 }
27125
27126 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27127
27128 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27129 {
27130 arm_feature_set known_arch_fset;
27131
27132 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27133 if (exact_match)
27134 {
27135 /* Base architecture match user-specified architecture and
27136 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27137 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27138 {
27139 p_ver_ret = p_ver;
27140 goto found;
27141 }
27142 /* Base architecture match user-specified architecture only
27143 (eg. ARMv6-M in the same case as above). Record it in case we
27144 find a match with above condition. */
27145 else if (p_ver_ret == NULL
27146 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27147 p_ver_ret = p_ver;
27148 }
27149 else
27150 {
27151
27152 /* Architecture has all features wanted. */
27153 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27154 {
27155 arm_feature_set added_fset;
27156
27157 /* Compute features added by this architecture over the one
27158 recorded in p_ver_ret. */
27159 if (p_ver_ret != NULL)
27160 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27161 p_ver_ret->flags);
27162 /* First architecture that match incl. with extensions, or the
27163 only difference in features over the recorded match is
27164 features that were optional and are now mandatory. */
27165 if (p_ver_ret == NULL
27166 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27167 {
27168 p_ver_ret = p_ver;
27169 goto found;
27170 }
27171 }
27172 else if (p_ver_ret == NULL)
27173 {
27174 arm_feature_set needed_ext_fset;
27175
27176 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27177
27178 /* Architecture has all features needed when using some
27179 extensions. Record it and continue searching in case there
27180 exist an architecture providing all needed features without
27181 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27182 OS extension). */
27183 if (have_ext_for_needed_feat_p (&known_arch_fset,
27184 &needed_ext_fset))
27185 p_ver_ret = p_ver;
27186 }
27187 }
27188 }
27189
27190 if (p_ver_ret == NULL)
27191 return -1;
27192
27193 found:
27194 /* Tag_CPU_arch_profile. */
27195 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27196 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27197 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27198 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27199 *profile = 'A';
27200 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27201 *profile = 'R';
27202 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27203 *profile = 'M';
27204 else
27205 *profile = '\0';
27206 return p_ver_ret->val;
27207 }
27208
27209 /* Set the public EABI object attributes. */
27210
27211 static void
27212 aeabi_set_public_attributes (void)
27213 {
27214 char profile = '\0';
27215 int arch = -1;
27216 int virt_sec = 0;
27217 int fp16_optional = 0;
27218 int skip_exact_match = 0;
27219 arm_feature_set flags, flags_arch, flags_ext;
27220
27221 /* Autodetection mode, choose the architecture based the instructions
27222 actually used. */
27223 if (no_cpu_selected ())
27224 {
27225 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
27226
27227 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27228 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
27229
27230 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27231 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
27232
27233 /* Code run during relaxation relies on selected_cpu being set. */
27234 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27235 flags_ext = arm_arch_none;
27236 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
27237 selected_ext = flags_ext;
27238 selected_cpu = flags;
27239 }
27240 /* Otherwise, choose the architecture based on the capabilities of the
27241 requested cpu. */
27242 else
27243 {
27244 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
27245 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
27246 flags_ext = selected_ext;
27247 flags = selected_cpu;
27248 }
27249 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
27250
27251 /* Allow the user to override the reported architecture. */
27252 if (!ARM_FEATURE_ZERO (selected_object_arch))
27253 {
27254 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
27255 flags_ext = arm_arch_none;
27256 }
27257 else
27258 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
27259
27260 /* When this function is run again after relaxation has happened there is no
27261 way to determine whether an architecture or CPU was specified by the user:
27262 - selected_cpu is set above for relaxation to work;
27263 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27264 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27265 Therefore, if not in -march=all case we first try an exact match and fall
27266 back to autodetection. */
27267 if (!skip_exact_match)
27268 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27269 if (arch == -1)
27270 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27271 if (arch == -1)
27272 as_bad (_("no architecture contains all the instructions used\n"));
27273
27274 /* Tag_CPU_name. */
27275 if (selected_cpu_name[0])
27276 {
27277 char *q;
27278
27279 q = selected_cpu_name;
27280 if (strncmp (q, "armv", 4) == 0)
27281 {
27282 int i;
27283
27284 q += 4;
27285 for (i = 0; q[i]; i++)
27286 q[i] = TOUPPER (q[i]);
27287 }
27288 aeabi_set_attribute_string (Tag_CPU_name, q);
27289 }
27290
27291 /* Tag_CPU_arch. */
27292 aeabi_set_attribute_int (Tag_CPU_arch, arch);
27293
27294 /* Tag_CPU_arch_profile. */
27295 if (profile != '\0')
27296 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
27297
27298 /* Tag_DSP_extension. */
27299 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
27300 aeabi_set_attribute_int (Tag_DSP_extension, 1);
27301
27302 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27303 /* Tag_ARM_ISA_use. */
27304 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
27305 || ARM_FEATURE_ZERO (flags_arch))
27306 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
27307
27308 /* Tag_THUMB_ISA_use. */
27309 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
27310 || ARM_FEATURE_ZERO (flags_arch))
27311 {
27312 int thumb_isa_use;
27313
27314 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27315 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
27316 thumb_isa_use = 3;
27317 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27318 thumb_isa_use = 2;
27319 else
27320 thumb_isa_use = 1;
27321 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27322 }
27323
27324 /* Tag_VFP_arch. */
27325 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27326 aeabi_set_attribute_int (Tag_VFP_arch,
27327 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27328 ? 7 : 8);
27329 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
27330 aeabi_set_attribute_int (Tag_VFP_arch,
27331 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27332 ? 5 : 6);
27333 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
27334 {
27335 fp16_optional = 1;
27336 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27337 }
27338 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
27339 {
27340 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27341 fp16_optional = 1;
27342 }
27343 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27344 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27345 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
27346 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
27347 aeabi_set_attribute_int (Tag_VFP_arch, 1);
27348
27349 /* Tag_ABI_HardFP_use. */
27350 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27351 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27352 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27353
27354 /* Tag_WMMX_arch. */
27355 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27356 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27357 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27358 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
27359
27360 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
27361 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27362 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27363 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
27364 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27365 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27366 {
27367 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27368 {
27369 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27370 }
27371 else
27372 {
27373 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27374 fp16_optional = 1;
27375 }
27376 }
27377
27378 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
27379 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
27380 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
27381
27382 /* Tag_DIV_use.
27383
27384 We set Tag_DIV_use to two when integer divide instructions have been used
27385 in ARM state, or when Thumb integer divide instructions have been used,
27386 but we have no architecture profile set, nor have we any ARM instructions.
27387
27388 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27389 by the base architecture.
27390
27391 For new architectures we will have to check these tests. */
27392 gas_assert (arch <= TAG_CPU_ARCH_V8M_MAIN);
27393 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27394 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
27395 aeabi_set_attribute_int (Tag_DIV_use, 0);
27396 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27397 || (profile == '\0'
27398 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27399 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
27400 aeabi_set_attribute_int (Tag_DIV_use, 2);
27401
27402 /* Tag_MP_extension_use. */
27403 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27404 aeabi_set_attribute_int (Tag_MPextension_use, 1);
27405
27406 /* Tag Virtualization_use. */
27407 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
27408 virt_sec |= 1;
27409 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27410 virt_sec |= 2;
27411 if (virt_sec != 0)
27412 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
27413 }
27414
27415 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
27416 finished and free extension feature bits which will not be used anymore. */
27417
27418 void
27419 arm_md_post_relax (void)
27420 {
27421 aeabi_set_public_attributes ();
27422 XDELETE (mcpu_ext_opt);
27423 mcpu_ext_opt = NULL;
27424 XDELETE (march_ext_opt);
27425 march_ext_opt = NULL;
27426 }
27427
27428 /* Add the default contents for the .ARM.attributes section. */
27429
27430 void
27431 arm_md_end (void)
27432 {
27433 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27434 return;
27435
27436 aeabi_set_public_attributes ();
27437 }
27438 #endif /* OBJ_ELF */
27439
27440 /* Parse a .cpu directive. */
27441
27442 static void
27443 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27444 {
27445 const struct arm_cpu_option_table *opt;
27446 char *name;
27447 char saved_char;
27448
27449 name = input_line_pointer;
27450 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27451 input_line_pointer++;
27452 saved_char = *input_line_pointer;
27453 *input_line_pointer = 0;
27454
27455 /* Skip the first "all" entry. */
27456 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27457 if (streq (opt->name, name))
27458 {
27459 selected_arch = opt->value;
27460 selected_ext = opt->ext;
27461 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
27462 if (opt->canonical_name)
27463 strcpy (selected_cpu_name, opt->canonical_name);
27464 else
27465 {
27466 int i;
27467 for (i = 0; opt->name[i]; i++)
27468 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27469
27470 selected_cpu_name[i] = 0;
27471 }
27472 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27473
27474 *input_line_pointer = saved_char;
27475 demand_empty_rest_of_line ();
27476 return;
27477 }
27478 as_bad (_("unknown cpu `%s'"), name);
27479 *input_line_pointer = saved_char;
27480 ignore_rest_of_line ();
27481 }
27482
27483 /* Parse a .arch directive. */
27484
27485 static void
27486 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27487 {
27488 const struct arm_arch_option_table *opt;
27489 char saved_char;
27490 char *name;
27491
27492 name = input_line_pointer;
27493 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27494 input_line_pointer++;
27495 saved_char = *input_line_pointer;
27496 *input_line_pointer = 0;
27497
27498 /* Skip the first "all" entry. */
27499 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27500 if (streq (opt->name, name))
27501 {
27502 selected_arch = opt->value;
27503 selected_ext = arm_arch_none;
27504 selected_cpu = selected_arch;
27505 strcpy (selected_cpu_name, opt->name);
27506 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27507 *input_line_pointer = saved_char;
27508 demand_empty_rest_of_line ();
27509 return;
27510 }
27511
27512 as_bad (_("unknown architecture `%s'\n"), name);
27513 *input_line_pointer = saved_char;
27514 ignore_rest_of_line ();
27515 }
27516
27517 /* Parse a .object_arch directive. */
27518
27519 static void
27520 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27521 {
27522 const struct arm_arch_option_table *opt;
27523 char saved_char;
27524 char *name;
27525
27526 name = input_line_pointer;
27527 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27528 input_line_pointer++;
27529 saved_char = *input_line_pointer;
27530 *input_line_pointer = 0;
27531
27532 /* Skip the first "all" entry. */
27533 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27534 if (streq (opt->name, name))
27535 {
27536 selected_object_arch = opt->value;
27537 *input_line_pointer = saved_char;
27538 demand_empty_rest_of_line ();
27539 return;
27540 }
27541
27542 as_bad (_("unknown architecture `%s'\n"), name);
27543 *input_line_pointer = saved_char;
27544 ignore_rest_of_line ();
27545 }
27546
27547 /* Parse a .arch_extension directive. */
27548
27549 static void
27550 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27551 {
27552 const struct arm_option_extension_value_table *opt;
27553 char saved_char;
27554 char *name;
27555 int adding_value = 1;
27556
27557 name = input_line_pointer;
27558 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27559 input_line_pointer++;
27560 saved_char = *input_line_pointer;
27561 *input_line_pointer = 0;
27562
27563 if (strlen (name) >= 2
27564 && strncmp (name, "no", 2) == 0)
27565 {
27566 adding_value = 0;
27567 name += 2;
27568 }
27569
27570 for (opt = arm_extensions; opt->name != NULL; opt++)
27571 if (streq (opt->name, name))
27572 {
27573 int i, nb_allowed_archs =
27574 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27575 for (i = 0; i < nb_allowed_archs; i++)
27576 {
27577 /* Empty entry. */
27578 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
27579 continue;
27580 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
27581 break;
27582 }
27583
27584 if (i == nb_allowed_archs)
27585 {
27586 as_bad (_("architectural extension `%s' is not allowed for the "
27587 "current base architecture"), name);
27588 break;
27589 }
27590
27591 if (adding_value)
27592 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
27593 opt->merge_value);
27594 else
27595 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
27596
27597 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
27598 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27599 *input_line_pointer = saved_char;
27600 demand_empty_rest_of_line ();
27601 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
27602 on this return so that duplicate extensions (extensions with the
27603 same name as a previous extension in the list) are not considered
27604 for command-line parsing. */
27605 return;
27606 }
27607
27608 if (opt->name == NULL)
27609 as_bad (_("unknown architecture extension `%s'\n"), name);
27610
27611 *input_line_pointer = saved_char;
27612 ignore_rest_of_line ();
27613 }
27614
27615 /* Parse a .fpu directive. */
27616
27617 static void
27618 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
27619 {
27620 const struct arm_option_fpu_value_table *opt;
27621 char saved_char;
27622 char *name;
27623
27624 name = input_line_pointer;
27625 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27626 input_line_pointer++;
27627 saved_char = *input_line_pointer;
27628 *input_line_pointer = 0;
27629
27630 for (opt = arm_fpus; opt->name != NULL; opt++)
27631 if (streq (opt->name, name))
27632 {
27633 selected_fpu = opt->value;
27634 #ifndef CPU_DEFAULT
27635 if (no_cpu_selected ())
27636 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
27637 else
27638 #endif
27639 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27640 *input_line_pointer = saved_char;
27641 demand_empty_rest_of_line ();
27642 return;
27643 }
27644
27645 as_bad (_("unknown floating point format `%s'\n"), name);
27646 *input_line_pointer = saved_char;
27647 ignore_rest_of_line ();
27648 }
27649
27650 /* Copy symbol information. */
27651
27652 void
27653 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
27654 {
27655 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
27656 }
27657
27658 #ifdef OBJ_ELF
27659 /* Given a symbolic attribute NAME, return the proper integer value.
27660 Returns -1 if the attribute is not known. */
27661
27662 int
27663 arm_convert_symbolic_attribute (const char *name)
27664 {
27665 static const struct
27666 {
27667 const char * name;
27668 const int tag;
27669 }
27670 attribute_table[] =
27671 {
27672 /* When you modify this table you should
27673 also modify the list in doc/c-arm.texi. */
27674 #define T(tag) {#tag, tag}
27675 T (Tag_CPU_raw_name),
27676 T (Tag_CPU_name),
27677 T (Tag_CPU_arch),
27678 T (Tag_CPU_arch_profile),
27679 T (Tag_ARM_ISA_use),
27680 T (Tag_THUMB_ISA_use),
27681 T (Tag_FP_arch),
27682 T (Tag_VFP_arch),
27683 T (Tag_WMMX_arch),
27684 T (Tag_Advanced_SIMD_arch),
27685 T (Tag_PCS_config),
27686 T (Tag_ABI_PCS_R9_use),
27687 T (Tag_ABI_PCS_RW_data),
27688 T (Tag_ABI_PCS_RO_data),
27689 T (Tag_ABI_PCS_GOT_use),
27690 T (Tag_ABI_PCS_wchar_t),
27691 T (Tag_ABI_FP_rounding),
27692 T (Tag_ABI_FP_denormal),
27693 T (Tag_ABI_FP_exceptions),
27694 T (Tag_ABI_FP_user_exceptions),
27695 T (Tag_ABI_FP_number_model),
27696 T (Tag_ABI_align_needed),
27697 T (Tag_ABI_align8_needed),
27698 T (Tag_ABI_align_preserved),
27699 T (Tag_ABI_align8_preserved),
27700 T (Tag_ABI_enum_size),
27701 T (Tag_ABI_HardFP_use),
27702 T (Tag_ABI_VFP_args),
27703 T (Tag_ABI_WMMX_args),
27704 T (Tag_ABI_optimization_goals),
27705 T (Tag_ABI_FP_optimization_goals),
27706 T (Tag_compatibility),
27707 T (Tag_CPU_unaligned_access),
27708 T (Tag_FP_HP_extension),
27709 T (Tag_VFP_HP_extension),
27710 T (Tag_ABI_FP_16bit_format),
27711 T (Tag_MPextension_use),
27712 T (Tag_DIV_use),
27713 T (Tag_nodefaults),
27714 T (Tag_also_compatible_with),
27715 T (Tag_conformance),
27716 T (Tag_T2EE_use),
27717 T (Tag_Virtualization_use),
27718 T (Tag_DSP_extension),
27719 /* We deliberately do not include Tag_MPextension_use_legacy. */
27720 #undef T
27721 };
27722 unsigned int i;
27723
27724 if (name == NULL)
27725 return -1;
27726
27727 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
27728 if (streq (name, attribute_table[i].name))
27729 return attribute_table[i].tag;
27730
27731 return -1;
27732 }
27733
27734 /* Apply sym value for relocations only in the case that they are for
27735 local symbols in the same segment as the fixup and you have the
27736 respective architectural feature for blx and simple switches. */
27737
27738 int
27739 arm_apply_sym_value (struct fix * fixP, segT this_seg)
27740 {
27741 if (fixP->fx_addsy
27742 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27743 /* PR 17444: If the local symbol is in a different section then a reloc
27744 will always be generated for it, so applying the symbol value now
27745 will result in a double offset being stored in the relocation. */
27746 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
27747 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
27748 {
27749 switch (fixP->fx_r_type)
27750 {
27751 case BFD_RELOC_ARM_PCREL_BLX:
27752 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27753 if (ARM_IS_FUNC (fixP->fx_addsy))
27754 return 1;
27755 break;
27756
27757 case BFD_RELOC_ARM_PCREL_CALL:
27758 case BFD_RELOC_THUMB_PCREL_BLX:
27759 if (THUMB_IS_FUNC (fixP->fx_addsy))
27760 return 1;
27761 break;
27762
27763 default:
27764 break;
27765 }
27766
27767 }
27768 return 0;
27769 }
27770 #endif /* OBJ_ELF */
This page took 0.78097 seconds and 5 git commands to generate.