Fix spelling typos.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static arm_feature_set *dyn_mcpu_ext_opt = NULL;
151 static const arm_feature_set *mcpu_fpu_opt = NULL;
152 static const arm_feature_set *march_cpu_opt = NULL;
153 static arm_feature_set *dyn_march_ext_opt = NULL;
154 static const arm_feature_set *march_fpu_opt = NULL;
155 static const arm_feature_set *mfpu_opt = NULL;
156 static const arm_feature_set *object_arch = NULL;
157
158 /* Constants for known architecture features. */
159 static const arm_feature_set fpu_default = FPU_DEFAULT;
160 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
161 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
162 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
163 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
164 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
165 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
166 #ifdef OBJ_ELF
167 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
168 #endif
169 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171 #ifdef CPU_DEFAULT
172 static const arm_feature_set cpu_default = CPU_DEFAULT;
173 #endif
174
175 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
176 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
177 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
178 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
179 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
180 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
181 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
182 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
183 static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
185 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
186 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
187 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
188 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
189 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
190 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
191 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
192 static const arm_feature_set arm_ext_v6_notm =
193 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
194 static const arm_feature_set arm_ext_v6_dsp =
195 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
196 static const arm_feature_set arm_ext_barrier =
197 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
198 static const arm_feature_set arm_ext_msr =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
200 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
201 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
202 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
203 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
204 #ifdef OBJ_ELF
205 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
206 #endif
207 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
208 static const arm_feature_set arm_ext_m =
209 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
210 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
211 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
212 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
213 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
214 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
215 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
216 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
217 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
218 static const arm_feature_set arm_ext_v8m_main =
219 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
220 /* Instructions in ARMv8-M only found in M profile architectures. */
221 static const arm_feature_set arm_ext_v8m_m_only =
222 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
223 static const arm_feature_set arm_ext_v6t2_v8m =
224 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
225 /* Instructions shared between ARMv8-A and ARMv8-M. */
226 static const arm_feature_set arm_ext_atomics =
227 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
228 #ifdef OBJ_ELF
229 /* DSP instructions Tag_DSP_extension refers to. */
230 static const arm_feature_set arm_ext_dsp =
231 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
232 #endif
233 static const arm_feature_set arm_ext_ras =
234 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
235 /* FP16 instructions. */
236 static const arm_feature_set arm_ext_fp16 =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
238 static const arm_feature_set arm_ext_v8_3 =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
240
241 static const arm_feature_set arm_arch_any = ARM_ANY;
242 #ifdef OBJ_ELF
243 static const arm_feature_set fpu_any = FPU_ANY;
244 #endif
245 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
246 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
247 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
248
249 static const arm_feature_set arm_cext_iwmmxt2 =
250 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
251 static const arm_feature_set arm_cext_iwmmxt =
252 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
253 static const arm_feature_set arm_cext_xscale =
254 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
255 static const arm_feature_set arm_cext_maverick =
256 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
257 static const arm_feature_set fpu_fpa_ext_v1 =
258 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
259 static const arm_feature_set fpu_fpa_ext_v2 =
260 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
261 static const arm_feature_set fpu_vfp_ext_v1xd =
262 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
263 static const arm_feature_set fpu_vfp_ext_v1 =
264 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
265 static const arm_feature_set fpu_vfp_ext_v2 =
266 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
267 static const arm_feature_set fpu_vfp_ext_v3xd =
268 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
269 static const arm_feature_set fpu_vfp_ext_v3 =
270 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
271 static const arm_feature_set fpu_vfp_ext_d32 =
272 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
273 static const arm_feature_set fpu_neon_ext_v1 =
274 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
275 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
276 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
277 #ifdef OBJ_ELF
278 static const arm_feature_set fpu_vfp_fp16 =
279 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
280 static const arm_feature_set fpu_neon_ext_fma =
281 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
282 #endif
283 static const arm_feature_set fpu_vfp_ext_fma =
284 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
285 static const arm_feature_set fpu_vfp_ext_armv8 =
286 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
287 static const arm_feature_set fpu_vfp_ext_armv8xd =
288 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
289 static const arm_feature_set fpu_neon_ext_armv8 =
290 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
291 static const arm_feature_set fpu_crypto_ext_armv8 =
292 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
293 static const arm_feature_set crc_ext_armv8 =
294 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
295 static const arm_feature_set fpu_neon_ext_v8_1 =
296 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
297 static const arm_feature_set fpu_neon_ext_dotprod =
298 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
299
300 static int mfloat_abi_opt = -1;
301 /* Record user cpu selection for object attributes. */
302 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
303 /* Must be long enough to hold any of the names in arm_cpus. */
304 static char selected_cpu_name[20];
305
306 extern FLONUM_TYPE generic_floating_point_number;
307
308 /* Return if no cpu was selected on command-line. */
309 static bfd_boolean
310 no_cpu_selected (void)
311 {
312 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
313 }
314
315 #ifdef OBJ_ELF
316 # ifdef EABI_DEFAULT
317 static int meabi_flags = EABI_DEFAULT;
318 # else
319 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
320 # endif
321
322 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
323
324 bfd_boolean
325 arm_is_eabi (void)
326 {
327 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
328 }
329 #endif
330
331 #ifdef OBJ_ELF
332 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
333 symbolS * GOT_symbol;
334 #endif
335
336 /* 0: assemble for ARM,
337 1: assemble for Thumb,
338 2: assemble for Thumb even though target CPU does not support thumb
339 instructions. */
340 static int thumb_mode = 0;
341 /* A value distinct from the possible values for thumb_mode that we
342 can use to record whether thumb_mode has been copied into the
343 tc_frag_data field of a frag. */
344 #define MODE_RECORDED (1 << 4)
345
346 /* Specifies the intrinsic IT insn behavior mode. */
347 enum implicit_it_mode
348 {
349 IMPLICIT_IT_MODE_NEVER = 0x00,
350 IMPLICIT_IT_MODE_ARM = 0x01,
351 IMPLICIT_IT_MODE_THUMB = 0x02,
352 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
353 };
354 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
355
356 /* If unified_syntax is true, we are processing the new unified
357 ARM/Thumb syntax. Important differences from the old ARM mode:
358
359 - Immediate operands do not require a # prefix.
360 - Conditional affixes always appear at the end of the
361 instruction. (For backward compatibility, those instructions
362 that formerly had them in the middle, continue to accept them
363 there.)
364 - The IT instruction may appear, and if it does is validated
365 against subsequent conditional affixes. It does not generate
366 machine code.
367
368 Important differences from the old Thumb mode:
369
370 - Immediate operands do not require a # prefix.
371 - Most of the V6T2 instructions are only available in unified mode.
372 - The .N and .W suffixes are recognized and honored (it is an error
373 if they cannot be honored).
374 - All instructions set the flags if and only if they have an 's' affix.
375 - Conditional affixes may be used. They are validated against
376 preceding IT instructions. Unlike ARM mode, you cannot use a
377 conditional affix except in the scope of an IT instruction. */
378
379 static bfd_boolean unified_syntax = FALSE;
380
381 /* An immediate operand can start with #, and ld*, st*, pld operands
382 can contain [ and ]. We need to tell APP not to elide whitespace
383 before a [, which can appear as the first operand for pld.
384 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
385 const char arm_symbol_chars[] = "#[]{}";
386
387 enum neon_el_type
388 {
389 NT_invtype,
390 NT_untyped,
391 NT_integer,
392 NT_float,
393 NT_poly,
394 NT_signed,
395 NT_unsigned
396 };
397
398 struct neon_type_el
399 {
400 enum neon_el_type type;
401 unsigned size;
402 };
403
404 #define NEON_MAX_TYPE_ELS 4
405
406 struct neon_type
407 {
408 struct neon_type_el el[NEON_MAX_TYPE_ELS];
409 unsigned elems;
410 };
411
412 enum it_instruction_type
413 {
414 OUTSIDE_IT_INSN,
415 INSIDE_IT_INSN,
416 INSIDE_IT_LAST_INSN,
417 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
418 if inside, should be the last one. */
419 NEUTRAL_IT_INSN, /* This could be either inside or outside,
420 i.e. BKPT and NOP. */
421 IT_INSN /* The IT insn has been parsed. */
422 };
423
424 /* The maximum number of operands we need. */
425 #define ARM_IT_MAX_OPERANDS 6
426
427 struct arm_it
428 {
429 const char * error;
430 unsigned long instruction;
431 int size;
432 int size_req;
433 int cond;
434 /* "uncond_value" is set to the value in place of the conditional field in
435 unconditional versions of the instruction, or -1 if nothing is
436 appropriate. */
437 int uncond_value;
438 struct neon_type vectype;
439 /* This does not indicate an actual NEON instruction, only that
440 the mnemonic accepts neon-style type suffixes. */
441 int is_neon;
442 /* Set to the opcode if the instruction needs relaxation.
443 Zero if the instruction is not relaxed. */
444 unsigned long relax;
445 struct
446 {
447 bfd_reloc_code_real_type type;
448 expressionS exp;
449 int pc_rel;
450 } reloc;
451
452 enum it_instruction_type it_insn_type;
453
454 struct
455 {
456 unsigned reg;
457 signed int imm;
458 struct neon_type_el vectype;
459 unsigned present : 1; /* Operand present. */
460 unsigned isreg : 1; /* Operand was a register. */
461 unsigned immisreg : 1; /* .imm field is a second register. */
462 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
463 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
464 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
465 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
466 instructions. This allows us to disambiguate ARM <-> vector insns. */
467 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
468 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
469 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
470 unsigned issingle : 1; /* Operand is VFP single-precision register. */
471 unsigned hasreloc : 1; /* Operand has relocation suffix. */
472 unsigned writeback : 1; /* Operand has trailing ! */
473 unsigned preind : 1; /* Preindexed address. */
474 unsigned postind : 1; /* Postindexed address. */
475 unsigned negative : 1; /* Index register was negated. */
476 unsigned shifted : 1; /* Shift applied to operation. */
477 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
478 } operands[ARM_IT_MAX_OPERANDS];
479 };
480
481 static struct arm_it inst;
482
483 #define NUM_FLOAT_VALS 8
484
485 const char * fp_const[] =
486 {
487 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
488 };
489
490 /* Number of littlenums required to hold an extended precision number. */
491 #define MAX_LITTLENUMS 6
492
493 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
494
495 #define FAIL (-1)
496 #define SUCCESS (0)
497
498 #define SUFF_S 1
499 #define SUFF_D 2
500 #define SUFF_E 3
501 #define SUFF_P 4
502
503 #define CP_T_X 0x00008000
504 #define CP_T_Y 0x00400000
505
506 #define CONDS_BIT 0x00100000
507 #define LOAD_BIT 0x00100000
508
509 #define DOUBLE_LOAD_FLAG 0x00000001
510
511 struct asm_cond
512 {
513 const char * template_name;
514 unsigned long value;
515 };
516
517 #define COND_ALWAYS 0xE
518
519 struct asm_psr
520 {
521 const char * template_name;
522 unsigned long field;
523 };
524
525 struct asm_barrier_opt
526 {
527 const char * template_name;
528 unsigned long value;
529 const arm_feature_set arch;
530 };
531
532 /* The bit that distinguishes CPSR and SPSR. */
533 #define SPSR_BIT (1 << 22)
534
535 /* The individual PSR flag bits. */
536 #define PSR_c (1 << 16)
537 #define PSR_x (1 << 17)
538 #define PSR_s (1 << 18)
539 #define PSR_f (1 << 19)
540
541 struct reloc_entry
542 {
543 const char * name;
544 bfd_reloc_code_real_type reloc;
545 };
546
547 enum vfp_reg_pos
548 {
549 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
550 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
551 };
552
553 enum vfp_ldstm_type
554 {
555 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
556 };
557
558 /* Bits for DEFINED field in neon_typed_alias. */
559 #define NTA_HASTYPE 1
560 #define NTA_HASINDEX 2
561
562 struct neon_typed_alias
563 {
564 unsigned char defined;
565 unsigned char index;
566 struct neon_type_el eltype;
567 };
568
569 /* ARM register categories. This includes coprocessor numbers and various
570 architecture extensions' registers. */
571 enum arm_reg_type
572 {
573 REG_TYPE_RN,
574 REG_TYPE_CP,
575 REG_TYPE_CN,
576 REG_TYPE_FN,
577 REG_TYPE_VFS,
578 REG_TYPE_VFD,
579 REG_TYPE_NQ,
580 REG_TYPE_VFSD,
581 REG_TYPE_NDQ,
582 REG_TYPE_NSDQ,
583 REG_TYPE_VFC,
584 REG_TYPE_MVF,
585 REG_TYPE_MVD,
586 REG_TYPE_MVFX,
587 REG_TYPE_MVDX,
588 REG_TYPE_MVAX,
589 REG_TYPE_DSPSC,
590 REG_TYPE_MMXWR,
591 REG_TYPE_MMXWC,
592 REG_TYPE_MMXWCG,
593 REG_TYPE_XSCALE,
594 REG_TYPE_RNB
595 };
596
597 /* Structure for a hash table entry for a register.
598 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
599 information which states whether a vector type or index is specified (for a
600 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
601 struct reg_entry
602 {
603 const char * name;
604 unsigned int number;
605 unsigned char type;
606 unsigned char builtin;
607 struct neon_typed_alias * neon;
608 };
609
610 /* Diagnostics used when we don't get a register of the expected type. */
611 const char * const reg_expected_msgs[] =
612 {
613 N_("ARM register expected"),
614 N_("bad or missing co-processor number"),
615 N_("co-processor register expected"),
616 N_("FPA register expected"),
617 N_("VFP single precision register expected"),
618 N_("VFP/Neon double precision register expected"),
619 N_("Neon quad precision register expected"),
620 N_("VFP single or double precision register expected"),
621 N_("Neon double or quad precision register expected"),
622 N_("VFP single, double or Neon quad precision register expected"),
623 N_("VFP system register expected"),
624 N_("Maverick MVF register expected"),
625 N_("Maverick MVD register expected"),
626 N_("Maverick MVFX register expected"),
627 N_("Maverick MVDX register expected"),
628 N_("Maverick MVAX register expected"),
629 N_("Maverick DSPSC register expected"),
630 N_("iWMMXt data register expected"),
631 N_("iWMMXt control register expected"),
632 N_("iWMMXt scalar register expected"),
633 N_("XScale accumulator register expected"),
634 };
635
636 /* Some well known registers that we refer to directly elsewhere. */
637 #define REG_R12 12
638 #define REG_SP 13
639 #define REG_LR 14
640 #define REG_PC 15
641
642 /* ARM instructions take 4bytes in the object file, Thumb instructions
643 take 2: */
644 #define INSN_SIZE 4
645
646 struct asm_opcode
647 {
648 /* Basic string to match. */
649 const char * template_name;
650
651 /* Parameters to instruction. */
652 unsigned int operands[8];
653
654 /* Conditional tag - see opcode_lookup. */
655 unsigned int tag : 4;
656
657 /* Basic instruction code. */
658 unsigned int avalue : 28;
659
660 /* Thumb-format instruction code. */
661 unsigned int tvalue;
662
663 /* Which architecture variant provides this instruction. */
664 const arm_feature_set * avariant;
665 const arm_feature_set * tvariant;
666
667 /* Function to call to encode instruction in ARM format. */
668 void (* aencode) (void);
669
670 /* Function to call to encode instruction in Thumb format. */
671 void (* tencode) (void);
672 };
673
674 /* Defines for various bits that we will want to toggle. */
675 #define INST_IMMEDIATE 0x02000000
676 #define OFFSET_REG 0x02000000
677 #define HWOFFSET_IMM 0x00400000
678 #define SHIFT_BY_REG 0x00000010
679 #define PRE_INDEX 0x01000000
680 #define INDEX_UP 0x00800000
681 #define WRITE_BACK 0x00200000
682 #define LDM_TYPE_2_OR_3 0x00400000
683 #define CPSI_MMOD 0x00020000
684
685 #define LITERAL_MASK 0xf000f000
686 #define OPCODE_MASK 0xfe1fffff
687 #define V4_STR_BIT 0x00000020
688 #define VLDR_VMOV_SAME 0x0040f000
689
690 #define T2_SUBS_PC_LR 0xf3de8f00
691
692 #define DATA_OP_SHIFT 21
693 #define SBIT_SHIFT 20
694
695 #define T2_OPCODE_MASK 0xfe1fffff
696 #define T2_DATA_OP_SHIFT 21
697 #define T2_SBIT_SHIFT 20
698
699 #define A_COND_MASK 0xf0000000
700 #define A_PUSH_POP_OP_MASK 0x0fff0000
701
702 /* Opcodes for pushing/poping registers to/from the stack. */
703 #define A1_OPCODE_PUSH 0x092d0000
704 #define A2_OPCODE_PUSH 0x052d0004
705 #define A2_OPCODE_POP 0x049d0004
706
707 /* Codes to distinguish the arithmetic instructions. */
708 #define OPCODE_AND 0
709 #define OPCODE_EOR 1
710 #define OPCODE_SUB 2
711 #define OPCODE_RSB 3
712 #define OPCODE_ADD 4
713 #define OPCODE_ADC 5
714 #define OPCODE_SBC 6
715 #define OPCODE_RSC 7
716 #define OPCODE_TST 8
717 #define OPCODE_TEQ 9
718 #define OPCODE_CMP 10
719 #define OPCODE_CMN 11
720 #define OPCODE_ORR 12
721 #define OPCODE_MOV 13
722 #define OPCODE_BIC 14
723 #define OPCODE_MVN 15
724
725 #define T2_OPCODE_AND 0
726 #define T2_OPCODE_BIC 1
727 #define T2_OPCODE_ORR 2
728 #define T2_OPCODE_ORN 3
729 #define T2_OPCODE_EOR 4
730 #define T2_OPCODE_ADD 8
731 #define T2_OPCODE_ADC 10
732 #define T2_OPCODE_SBC 11
733 #define T2_OPCODE_SUB 13
734 #define T2_OPCODE_RSB 14
735
736 #define T_OPCODE_MUL 0x4340
737 #define T_OPCODE_TST 0x4200
738 #define T_OPCODE_CMN 0x42c0
739 #define T_OPCODE_NEG 0x4240
740 #define T_OPCODE_MVN 0x43c0
741
742 #define T_OPCODE_ADD_R3 0x1800
743 #define T_OPCODE_SUB_R3 0x1a00
744 #define T_OPCODE_ADD_HI 0x4400
745 #define T_OPCODE_ADD_ST 0xb000
746 #define T_OPCODE_SUB_ST 0xb080
747 #define T_OPCODE_ADD_SP 0xa800
748 #define T_OPCODE_ADD_PC 0xa000
749 #define T_OPCODE_ADD_I8 0x3000
750 #define T_OPCODE_SUB_I8 0x3800
751 #define T_OPCODE_ADD_I3 0x1c00
752 #define T_OPCODE_SUB_I3 0x1e00
753
754 #define T_OPCODE_ASR_R 0x4100
755 #define T_OPCODE_LSL_R 0x4080
756 #define T_OPCODE_LSR_R 0x40c0
757 #define T_OPCODE_ROR_R 0x41c0
758 #define T_OPCODE_ASR_I 0x1000
759 #define T_OPCODE_LSL_I 0x0000
760 #define T_OPCODE_LSR_I 0x0800
761
762 #define T_OPCODE_MOV_I8 0x2000
763 #define T_OPCODE_CMP_I8 0x2800
764 #define T_OPCODE_CMP_LR 0x4280
765 #define T_OPCODE_MOV_HR 0x4600
766 #define T_OPCODE_CMP_HR 0x4500
767
768 #define T_OPCODE_LDR_PC 0x4800
769 #define T_OPCODE_LDR_SP 0x9800
770 #define T_OPCODE_STR_SP 0x9000
771 #define T_OPCODE_LDR_IW 0x6800
772 #define T_OPCODE_STR_IW 0x6000
773 #define T_OPCODE_LDR_IH 0x8800
774 #define T_OPCODE_STR_IH 0x8000
775 #define T_OPCODE_LDR_IB 0x7800
776 #define T_OPCODE_STR_IB 0x7000
777 #define T_OPCODE_LDR_RW 0x5800
778 #define T_OPCODE_STR_RW 0x5000
779 #define T_OPCODE_LDR_RH 0x5a00
780 #define T_OPCODE_STR_RH 0x5200
781 #define T_OPCODE_LDR_RB 0x5c00
782 #define T_OPCODE_STR_RB 0x5400
783
784 #define T_OPCODE_PUSH 0xb400
785 #define T_OPCODE_POP 0xbc00
786
787 #define T_OPCODE_BRANCH 0xe000
788
789 #define THUMB_SIZE 2 /* Size of thumb instruction. */
790 #define THUMB_PP_PC_LR 0x0100
791 #define THUMB_LOAD_BIT 0x0800
792 #define THUMB2_LOAD_BIT 0x00100000
793
794 #define BAD_ARGS _("bad arguments to instruction")
795 #define BAD_SP _("r13 not allowed here")
796 #define BAD_PC _("r15 not allowed here")
797 #define BAD_COND _("instruction cannot be conditional")
798 #define BAD_OVERLAP _("registers may not be the same")
799 #define BAD_HIREG _("lo register required")
800 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
801 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
802 #define BAD_BRANCH _("branch must be last instruction in IT block")
803 #define BAD_NOT_IT _("instruction not allowed in IT block")
804 #define BAD_FPU _("selected FPU does not support instruction")
805 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
806 #define BAD_IT_COND _("incorrect condition in IT block")
807 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
808 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
809 #define BAD_PC_ADDRESSING \
810 _("cannot use register index with PC-relative addressing")
811 #define BAD_PC_WRITEBACK \
812 _("cannot use writeback with PC-relative addressing")
813 #define BAD_RANGE _("branch out of range")
814 #define BAD_FP16 _("selected processor does not support fp16 instruction")
815 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
816 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
817
818 static struct hash_control * arm_ops_hsh;
819 static struct hash_control * arm_cond_hsh;
820 static struct hash_control * arm_shift_hsh;
821 static struct hash_control * arm_psr_hsh;
822 static struct hash_control * arm_v7m_psr_hsh;
823 static struct hash_control * arm_reg_hsh;
824 static struct hash_control * arm_reloc_hsh;
825 static struct hash_control * arm_barrier_opt_hsh;
826
827 /* Stuff needed to resolve the label ambiguity
828 As:
829 ...
830 label: <insn>
831 may differ from:
832 ...
833 label:
834 <insn> */
835
836 symbolS * last_label_seen;
837 static int label_is_thumb_function_name = FALSE;
838
839 /* Literal pool structure. Held on a per-section
840 and per-sub-section basis. */
841
842 #define MAX_LITERAL_POOL_SIZE 1024
843 typedef struct literal_pool
844 {
845 expressionS literals [MAX_LITERAL_POOL_SIZE];
846 unsigned int next_free_entry;
847 unsigned int id;
848 symbolS * symbol;
849 segT section;
850 subsegT sub_section;
851 #ifdef OBJ_ELF
852 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
853 #endif
854 struct literal_pool * next;
855 unsigned int alignment;
856 } literal_pool;
857
858 /* Pointer to a linked list of literal pools. */
859 literal_pool * list_of_pools = NULL;
860
861 typedef enum asmfunc_states
862 {
863 OUTSIDE_ASMFUNC,
864 WAITING_ASMFUNC_NAME,
865 WAITING_ENDASMFUNC
866 } asmfunc_states;
867
868 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
869
870 #ifdef OBJ_ELF
871 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
872 #else
873 static struct current_it now_it;
874 #endif
875
876 static inline int
877 now_it_compatible (int cond)
878 {
879 return (cond & ~1) == (now_it.cc & ~1);
880 }
881
882 static inline int
883 conditional_insn (void)
884 {
885 return inst.cond != COND_ALWAYS;
886 }
887
888 static int in_it_block (void);
889
890 static int handle_it_state (void);
891
892 static void force_automatic_it_block_close (void);
893
894 static void it_fsm_post_encode (void);
895
896 #define set_it_insn_type(type) \
897 do \
898 { \
899 inst.it_insn_type = type; \
900 if (handle_it_state () == FAIL) \
901 return; \
902 } \
903 while (0)
904
905 #define set_it_insn_type_nonvoid(type, failret) \
906 do \
907 { \
908 inst.it_insn_type = type; \
909 if (handle_it_state () == FAIL) \
910 return failret; \
911 } \
912 while(0)
913
914 #define set_it_insn_type_last() \
915 do \
916 { \
917 if (inst.cond == COND_ALWAYS) \
918 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
919 else \
920 set_it_insn_type (INSIDE_IT_LAST_INSN); \
921 } \
922 while (0)
923
924 /* Pure syntax. */
925
926 /* This array holds the chars that always start a comment. If the
927 pre-processor is disabled, these aren't very useful. */
928 char arm_comment_chars[] = "@";
929
930 /* This array holds the chars that only start a comment at the beginning of
931 a line. If the line seems to have the form '# 123 filename'
932 .line and .file directives will appear in the pre-processed output. */
933 /* Note that input_file.c hand checks for '#' at the beginning of the
934 first line of the input file. This is because the compiler outputs
935 #NO_APP at the beginning of its output. */
936 /* Also note that comments like this one will always work. */
937 const char line_comment_chars[] = "#";
938
939 char arm_line_separator_chars[] = ";";
940
941 /* Chars that can be used to separate mant
942 from exp in floating point numbers. */
943 const char EXP_CHARS[] = "eE";
944
945 /* Chars that mean this number is a floating point constant. */
946 /* As in 0f12.456 */
947 /* or 0d1.2345e12 */
948
949 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
950
951 /* Prefix characters that indicate the start of an immediate
952 value. */
953 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
954
955 /* Separator character handling. */
956
957 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
958
959 static inline int
960 skip_past_char (char ** str, char c)
961 {
962 /* PR gas/14987: Allow for whitespace before the expected character. */
963 skip_whitespace (*str);
964
965 if (**str == c)
966 {
967 (*str)++;
968 return SUCCESS;
969 }
970 else
971 return FAIL;
972 }
973
974 #define skip_past_comma(str) skip_past_char (str, ',')
975
976 /* Arithmetic expressions (possibly involving symbols). */
977
978 /* Return TRUE if anything in the expression is a bignum. */
979
980 static int
981 walk_no_bignums (symbolS * sp)
982 {
983 if (symbol_get_value_expression (sp)->X_op == O_big)
984 return 1;
985
986 if (symbol_get_value_expression (sp)->X_add_symbol)
987 {
988 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
989 || (symbol_get_value_expression (sp)->X_op_symbol
990 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
991 }
992
993 return 0;
994 }
995
996 static int in_my_get_expression = 0;
997
998 /* Third argument to my_get_expression. */
999 #define GE_NO_PREFIX 0
1000 #define GE_IMM_PREFIX 1
1001 #define GE_OPT_PREFIX 2
1002 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1003 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1004 #define GE_OPT_PREFIX_BIG 3
1005
1006 static int
1007 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1008 {
1009 char * save_in;
1010 segT seg;
1011
1012 /* In unified syntax, all prefixes are optional. */
1013 if (unified_syntax)
1014 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1015 : GE_OPT_PREFIX;
1016
1017 switch (prefix_mode)
1018 {
1019 case GE_NO_PREFIX: break;
1020 case GE_IMM_PREFIX:
1021 if (!is_immediate_prefix (**str))
1022 {
1023 inst.error = _("immediate expression requires a # prefix");
1024 return FAIL;
1025 }
1026 (*str)++;
1027 break;
1028 case GE_OPT_PREFIX:
1029 case GE_OPT_PREFIX_BIG:
1030 if (is_immediate_prefix (**str))
1031 (*str)++;
1032 break;
1033 default: abort ();
1034 }
1035
1036 memset (ep, 0, sizeof (expressionS));
1037
1038 save_in = input_line_pointer;
1039 input_line_pointer = *str;
1040 in_my_get_expression = 1;
1041 seg = expression (ep);
1042 in_my_get_expression = 0;
1043
1044 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1045 {
1046 /* We found a bad or missing expression in md_operand(). */
1047 *str = input_line_pointer;
1048 input_line_pointer = save_in;
1049 if (inst.error == NULL)
1050 inst.error = (ep->X_op == O_absent
1051 ? _("missing expression") :_("bad expression"));
1052 return 1;
1053 }
1054
1055 #ifdef OBJ_AOUT
1056 if (seg != absolute_section
1057 && seg != text_section
1058 && seg != data_section
1059 && seg != bss_section
1060 && seg != undefined_section)
1061 {
1062 inst.error = _("bad segment");
1063 *str = input_line_pointer;
1064 input_line_pointer = save_in;
1065 return 1;
1066 }
1067 #else
1068 (void) seg;
1069 #endif
1070
1071 /* Get rid of any bignums now, so that we don't generate an error for which
1072 we can't establish a line number later on. Big numbers are never valid
1073 in instructions, which is where this routine is always called. */
1074 if (prefix_mode != GE_OPT_PREFIX_BIG
1075 && (ep->X_op == O_big
1076 || (ep->X_add_symbol
1077 && (walk_no_bignums (ep->X_add_symbol)
1078 || (ep->X_op_symbol
1079 && walk_no_bignums (ep->X_op_symbol))))))
1080 {
1081 inst.error = _("invalid constant");
1082 *str = input_line_pointer;
1083 input_line_pointer = save_in;
1084 return 1;
1085 }
1086
1087 *str = input_line_pointer;
1088 input_line_pointer = save_in;
1089 return 0;
1090 }
1091
1092 /* Turn a string in input_line_pointer into a floating point constant
1093 of type TYPE, and store the appropriate bytes in *LITP. The number
1094 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1095 returned, or NULL on OK.
1096
1097 Note that fp constants aren't represent in the normal way on the ARM.
1098 In big endian mode, things are as expected. However, in little endian
1099 mode fp constants are big-endian word-wise, and little-endian byte-wise
1100 within the words. For example, (double) 1.1 in big endian mode is
1101 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1102 the byte sequence 99 99 f1 3f 9a 99 99 99.
1103
1104 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1105
1106 const char *
1107 md_atof (int type, char * litP, int * sizeP)
1108 {
1109 int prec;
1110 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1111 char *t;
1112 int i;
1113
1114 switch (type)
1115 {
1116 case 'f':
1117 case 'F':
1118 case 's':
1119 case 'S':
1120 prec = 2;
1121 break;
1122
1123 case 'd':
1124 case 'D':
1125 case 'r':
1126 case 'R':
1127 prec = 4;
1128 break;
1129
1130 case 'x':
1131 case 'X':
1132 prec = 5;
1133 break;
1134
1135 case 'p':
1136 case 'P':
1137 prec = 5;
1138 break;
1139
1140 default:
1141 *sizeP = 0;
1142 return _("Unrecognized or unsupported floating point constant");
1143 }
1144
1145 t = atof_ieee (input_line_pointer, type, words);
1146 if (t)
1147 input_line_pointer = t;
1148 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1149
1150 if (target_big_endian)
1151 {
1152 for (i = 0; i < prec; i++)
1153 {
1154 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1155 litP += sizeof (LITTLENUM_TYPE);
1156 }
1157 }
1158 else
1159 {
1160 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1161 for (i = prec - 1; i >= 0; i--)
1162 {
1163 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1164 litP += sizeof (LITTLENUM_TYPE);
1165 }
1166 else
1167 /* For a 4 byte float the order of elements in `words' is 1 0.
1168 For an 8 byte float the order is 1 0 3 2. */
1169 for (i = 0; i < prec; i += 2)
1170 {
1171 md_number_to_chars (litP, (valueT) words[i + 1],
1172 sizeof (LITTLENUM_TYPE));
1173 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1174 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1175 litP += 2 * sizeof (LITTLENUM_TYPE);
1176 }
1177 }
1178
1179 return NULL;
1180 }
1181
1182 /* We handle all bad expressions here, so that we can report the faulty
1183 instruction in the error message. */
1184 void
1185 md_operand (expressionS * exp)
1186 {
1187 if (in_my_get_expression)
1188 exp->X_op = O_illegal;
1189 }
1190
1191 /* Immediate values. */
1192
1193 /* Generic immediate-value read function for use in directives.
1194 Accepts anything that 'expression' can fold to a constant.
1195 *val receives the number. */
1196 #ifdef OBJ_ELF
1197 static int
1198 immediate_for_directive (int *val)
1199 {
1200 expressionS exp;
1201 exp.X_op = O_illegal;
1202
1203 if (is_immediate_prefix (*input_line_pointer))
1204 {
1205 input_line_pointer++;
1206 expression (&exp);
1207 }
1208
1209 if (exp.X_op != O_constant)
1210 {
1211 as_bad (_("expected #constant"));
1212 ignore_rest_of_line ();
1213 return FAIL;
1214 }
1215 *val = exp.X_add_number;
1216 return SUCCESS;
1217 }
1218 #endif
1219
1220 /* Register parsing. */
1221
1222 /* Generic register parser. CCP points to what should be the
1223 beginning of a register name. If it is indeed a valid register
1224 name, advance CCP over it and return the reg_entry structure;
1225 otherwise return NULL. Does not issue diagnostics. */
1226
1227 static struct reg_entry *
1228 arm_reg_parse_multi (char **ccp)
1229 {
1230 char *start = *ccp;
1231 char *p;
1232 struct reg_entry *reg;
1233
1234 skip_whitespace (start);
1235
1236 #ifdef REGISTER_PREFIX
1237 if (*start != REGISTER_PREFIX)
1238 return NULL;
1239 start++;
1240 #endif
1241 #ifdef OPTIONAL_REGISTER_PREFIX
1242 if (*start == OPTIONAL_REGISTER_PREFIX)
1243 start++;
1244 #endif
1245
1246 p = start;
1247 if (!ISALPHA (*p) || !is_name_beginner (*p))
1248 return NULL;
1249
1250 do
1251 p++;
1252 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1253
1254 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1255
1256 if (!reg)
1257 return NULL;
1258
1259 *ccp = p;
1260 return reg;
1261 }
1262
1263 static int
1264 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1265 enum arm_reg_type type)
1266 {
1267 /* Alternative syntaxes are accepted for a few register classes. */
1268 switch (type)
1269 {
1270 case REG_TYPE_MVF:
1271 case REG_TYPE_MVD:
1272 case REG_TYPE_MVFX:
1273 case REG_TYPE_MVDX:
1274 /* Generic coprocessor register names are allowed for these. */
1275 if (reg && reg->type == REG_TYPE_CN)
1276 return reg->number;
1277 break;
1278
1279 case REG_TYPE_CP:
1280 /* For backward compatibility, a bare number is valid here. */
1281 {
1282 unsigned long processor = strtoul (start, ccp, 10);
1283 if (*ccp != start && processor <= 15)
1284 return processor;
1285 }
1286 /* Fall through. */
1287
1288 case REG_TYPE_MMXWC:
1289 /* WC includes WCG. ??? I'm not sure this is true for all
1290 instructions that take WC registers. */
1291 if (reg && reg->type == REG_TYPE_MMXWCG)
1292 return reg->number;
1293 break;
1294
1295 default:
1296 break;
1297 }
1298
1299 return FAIL;
1300 }
1301
1302 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1303 return value is the register number or FAIL. */
1304
1305 static int
1306 arm_reg_parse (char **ccp, enum arm_reg_type type)
1307 {
1308 char *start = *ccp;
1309 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1310 int ret;
1311
1312 /* Do not allow a scalar (reg+index) to parse as a register. */
1313 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1314 return FAIL;
1315
1316 if (reg && reg->type == type)
1317 return reg->number;
1318
1319 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1320 return ret;
1321
1322 *ccp = start;
1323 return FAIL;
1324 }
1325
1326 /* Parse a Neon type specifier. *STR should point at the leading '.'
1327 character. Does no verification at this stage that the type fits the opcode
1328 properly. E.g.,
1329
1330 .i32.i32.s16
1331 .s32.f32
1332 .u16
1333
1334 Can all be legally parsed by this function.
1335
1336 Fills in neon_type struct pointer with parsed information, and updates STR
1337 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1338 type, FAIL if not. */
1339
1340 static int
1341 parse_neon_type (struct neon_type *type, char **str)
1342 {
1343 char *ptr = *str;
1344
1345 if (type)
1346 type->elems = 0;
1347
1348 while (type->elems < NEON_MAX_TYPE_ELS)
1349 {
1350 enum neon_el_type thistype = NT_untyped;
1351 unsigned thissize = -1u;
1352
1353 if (*ptr != '.')
1354 break;
1355
1356 ptr++;
1357
1358 /* Just a size without an explicit type. */
1359 if (ISDIGIT (*ptr))
1360 goto parsesize;
1361
1362 switch (TOLOWER (*ptr))
1363 {
1364 case 'i': thistype = NT_integer; break;
1365 case 'f': thistype = NT_float; break;
1366 case 'p': thistype = NT_poly; break;
1367 case 's': thistype = NT_signed; break;
1368 case 'u': thistype = NT_unsigned; break;
1369 case 'd':
1370 thistype = NT_float;
1371 thissize = 64;
1372 ptr++;
1373 goto done;
1374 default:
1375 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1376 return FAIL;
1377 }
1378
1379 ptr++;
1380
1381 /* .f is an abbreviation for .f32. */
1382 if (thistype == NT_float && !ISDIGIT (*ptr))
1383 thissize = 32;
1384 else
1385 {
1386 parsesize:
1387 thissize = strtoul (ptr, &ptr, 10);
1388
1389 if (thissize != 8 && thissize != 16 && thissize != 32
1390 && thissize != 64)
1391 {
1392 as_bad (_("bad size %d in type specifier"), thissize);
1393 return FAIL;
1394 }
1395 }
1396
1397 done:
1398 if (type)
1399 {
1400 type->el[type->elems].type = thistype;
1401 type->el[type->elems].size = thissize;
1402 type->elems++;
1403 }
1404 }
1405
1406 /* Empty/missing type is not a successful parse. */
1407 if (type->elems == 0)
1408 return FAIL;
1409
1410 *str = ptr;
1411
1412 return SUCCESS;
1413 }
1414
1415 /* Errors may be set multiple times during parsing or bit encoding
1416 (particularly in the Neon bits), but usually the earliest error which is set
1417 will be the most meaningful. Avoid overwriting it with later (cascading)
1418 errors by calling this function. */
1419
1420 static void
1421 first_error (const char *err)
1422 {
1423 if (!inst.error)
1424 inst.error = err;
1425 }
1426
1427 /* Parse a single type, e.g. ".s32", leading period included. */
1428 static int
1429 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1430 {
1431 char *str = *ccp;
1432 struct neon_type optype;
1433
1434 if (*str == '.')
1435 {
1436 if (parse_neon_type (&optype, &str) == SUCCESS)
1437 {
1438 if (optype.elems == 1)
1439 *vectype = optype.el[0];
1440 else
1441 {
1442 first_error (_("only one type should be specified for operand"));
1443 return FAIL;
1444 }
1445 }
1446 else
1447 {
1448 first_error (_("vector type expected"));
1449 return FAIL;
1450 }
1451 }
1452 else
1453 return FAIL;
1454
1455 *ccp = str;
1456
1457 return SUCCESS;
1458 }
1459
1460 /* Special meanings for indices (which have a range of 0-7), which will fit into
1461 a 4-bit integer. */
1462
1463 #define NEON_ALL_LANES 15
1464 #define NEON_INTERLEAVE_LANES 14
1465
1466 /* Parse either a register or a scalar, with an optional type. Return the
1467 register number, and optionally fill in the actual type of the register
1468 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1469 type/index information in *TYPEINFO. */
1470
1471 static int
1472 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1473 enum arm_reg_type *rtype,
1474 struct neon_typed_alias *typeinfo)
1475 {
1476 char *str = *ccp;
1477 struct reg_entry *reg = arm_reg_parse_multi (&str);
1478 struct neon_typed_alias atype;
1479 struct neon_type_el parsetype;
1480
1481 atype.defined = 0;
1482 atype.index = -1;
1483 atype.eltype.type = NT_invtype;
1484 atype.eltype.size = -1;
1485
1486 /* Try alternate syntax for some types of register. Note these are mutually
1487 exclusive with the Neon syntax extensions. */
1488 if (reg == NULL)
1489 {
1490 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1491 if (altreg != FAIL)
1492 *ccp = str;
1493 if (typeinfo)
1494 *typeinfo = atype;
1495 return altreg;
1496 }
1497
1498 /* Undo polymorphism when a set of register types may be accepted. */
1499 if ((type == REG_TYPE_NDQ
1500 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1501 || (type == REG_TYPE_VFSD
1502 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1503 || (type == REG_TYPE_NSDQ
1504 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1505 || reg->type == REG_TYPE_NQ))
1506 || (type == REG_TYPE_MMXWC
1507 && (reg->type == REG_TYPE_MMXWCG)))
1508 type = (enum arm_reg_type) reg->type;
1509
1510 if (type != reg->type)
1511 return FAIL;
1512
1513 if (reg->neon)
1514 atype = *reg->neon;
1515
1516 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1517 {
1518 if ((atype.defined & NTA_HASTYPE) != 0)
1519 {
1520 first_error (_("can't redefine type for operand"));
1521 return FAIL;
1522 }
1523 atype.defined |= NTA_HASTYPE;
1524 atype.eltype = parsetype;
1525 }
1526
1527 if (skip_past_char (&str, '[') == SUCCESS)
1528 {
1529 if (type != REG_TYPE_VFD)
1530 {
1531 first_error (_("only D registers may be indexed"));
1532 return FAIL;
1533 }
1534
1535 if ((atype.defined & NTA_HASINDEX) != 0)
1536 {
1537 first_error (_("can't change index for operand"));
1538 return FAIL;
1539 }
1540
1541 atype.defined |= NTA_HASINDEX;
1542
1543 if (skip_past_char (&str, ']') == SUCCESS)
1544 atype.index = NEON_ALL_LANES;
1545 else
1546 {
1547 expressionS exp;
1548
1549 my_get_expression (&exp, &str, GE_NO_PREFIX);
1550
1551 if (exp.X_op != O_constant)
1552 {
1553 first_error (_("constant expression required"));
1554 return FAIL;
1555 }
1556
1557 if (skip_past_char (&str, ']') == FAIL)
1558 return FAIL;
1559
1560 atype.index = exp.X_add_number;
1561 }
1562 }
1563
1564 if (typeinfo)
1565 *typeinfo = atype;
1566
1567 if (rtype)
1568 *rtype = type;
1569
1570 *ccp = str;
1571
1572 return reg->number;
1573 }
1574
1575 /* Like arm_reg_parse, but allow allow the following extra features:
1576 - If RTYPE is non-zero, return the (possibly restricted) type of the
1577 register (e.g. Neon double or quad reg when either has been requested).
1578 - If this is a Neon vector type with additional type information, fill
1579 in the struct pointed to by VECTYPE (if non-NULL).
1580 This function will fault on encountering a scalar. */
1581
1582 static int
1583 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1584 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1585 {
1586 struct neon_typed_alias atype;
1587 char *str = *ccp;
1588 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1589
1590 if (reg == FAIL)
1591 return FAIL;
1592
1593 /* Do not allow regname(... to parse as a register. */
1594 if (*str == '(')
1595 return FAIL;
1596
1597 /* Do not allow a scalar (reg+index) to parse as a register. */
1598 if ((atype.defined & NTA_HASINDEX) != 0)
1599 {
1600 first_error (_("register operand expected, but got scalar"));
1601 return FAIL;
1602 }
1603
1604 if (vectype)
1605 *vectype = atype.eltype;
1606
1607 *ccp = str;
1608
1609 return reg;
1610 }
1611
1612 #define NEON_SCALAR_REG(X) ((X) >> 4)
1613 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1614
1615 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1616 have enough information to be able to do a good job bounds-checking. So, we
1617 just do easy checks here, and do further checks later. */
1618
1619 static int
1620 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1621 {
1622 int reg;
1623 char *str = *ccp;
1624 struct neon_typed_alias atype;
1625
1626 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1627
1628 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1629 return FAIL;
1630
1631 if (atype.index == NEON_ALL_LANES)
1632 {
1633 first_error (_("scalar must have an index"));
1634 return FAIL;
1635 }
1636 else if (atype.index >= 64 / elsize)
1637 {
1638 first_error (_("scalar index out of range"));
1639 return FAIL;
1640 }
1641
1642 if (type)
1643 *type = atype.eltype;
1644
1645 *ccp = str;
1646
1647 return reg * 16 + atype.index;
1648 }
1649
1650 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1651
1652 static long
1653 parse_reg_list (char ** strp)
1654 {
1655 char * str = * strp;
1656 long range = 0;
1657 int another_range;
1658
1659 /* We come back here if we get ranges concatenated by '+' or '|'. */
1660 do
1661 {
1662 skip_whitespace (str);
1663
1664 another_range = 0;
1665
1666 if (*str == '{')
1667 {
1668 int in_range = 0;
1669 int cur_reg = -1;
1670
1671 str++;
1672 do
1673 {
1674 int reg;
1675
1676 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1677 {
1678 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1679 return FAIL;
1680 }
1681
1682 if (in_range)
1683 {
1684 int i;
1685
1686 if (reg <= cur_reg)
1687 {
1688 first_error (_("bad range in register list"));
1689 return FAIL;
1690 }
1691
1692 for (i = cur_reg + 1; i < reg; i++)
1693 {
1694 if (range & (1 << i))
1695 as_tsktsk
1696 (_("Warning: duplicated register (r%d) in register list"),
1697 i);
1698 else
1699 range |= 1 << i;
1700 }
1701 in_range = 0;
1702 }
1703
1704 if (range & (1 << reg))
1705 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1706 reg);
1707 else if (reg <= cur_reg)
1708 as_tsktsk (_("Warning: register range not in ascending order"));
1709
1710 range |= 1 << reg;
1711 cur_reg = reg;
1712 }
1713 while (skip_past_comma (&str) != FAIL
1714 || (in_range = 1, *str++ == '-'));
1715 str--;
1716
1717 if (skip_past_char (&str, '}') == FAIL)
1718 {
1719 first_error (_("missing `}'"));
1720 return FAIL;
1721 }
1722 }
1723 else
1724 {
1725 expressionS exp;
1726
1727 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1728 return FAIL;
1729
1730 if (exp.X_op == O_constant)
1731 {
1732 if (exp.X_add_number
1733 != (exp.X_add_number & 0x0000ffff))
1734 {
1735 inst.error = _("invalid register mask");
1736 return FAIL;
1737 }
1738
1739 if ((range & exp.X_add_number) != 0)
1740 {
1741 int regno = range & exp.X_add_number;
1742
1743 regno &= -regno;
1744 regno = (1 << regno) - 1;
1745 as_tsktsk
1746 (_("Warning: duplicated register (r%d) in register list"),
1747 regno);
1748 }
1749
1750 range |= exp.X_add_number;
1751 }
1752 else
1753 {
1754 if (inst.reloc.type != 0)
1755 {
1756 inst.error = _("expression too complex");
1757 return FAIL;
1758 }
1759
1760 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1761 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1762 inst.reloc.pc_rel = 0;
1763 }
1764 }
1765
1766 if (*str == '|' || *str == '+')
1767 {
1768 str++;
1769 another_range = 1;
1770 }
1771 }
1772 while (another_range);
1773
1774 *strp = str;
1775 return range;
1776 }
1777
1778 /* Types of registers in a list. */
1779
1780 enum reg_list_els
1781 {
1782 REGLIST_VFP_S,
1783 REGLIST_VFP_D,
1784 REGLIST_NEON_D
1785 };
1786
1787 /* Parse a VFP register list. If the string is invalid return FAIL.
1788 Otherwise return the number of registers, and set PBASE to the first
1789 register. Parses registers of type ETYPE.
1790 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1791 - Q registers can be used to specify pairs of D registers
1792 - { } can be omitted from around a singleton register list
1793 FIXME: This is not implemented, as it would require backtracking in
1794 some cases, e.g.:
1795 vtbl.8 d3,d4,d5
1796 This could be done (the meaning isn't really ambiguous), but doesn't
1797 fit in well with the current parsing framework.
1798 - 32 D registers may be used (also true for VFPv3).
1799 FIXME: Types are ignored in these register lists, which is probably a
1800 bug. */
1801
1802 static int
1803 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1804 {
1805 char *str = *ccp;
1806 int base_reg;
1807 int new_base;
1808 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1809 int max_regs = 0;
1810 int count = 0;
1811 int warned = 0;
1812 unsigned long mask = 0;
1813 int i;
1814
1815 if (skip_past_char (&str, '{') == FAIL)
1816 {
1817 inst.error = _("expecting {");
1818 return FAIL;
1819 }
1820
1821 switch (etype)
1822 {
1823 case REGLIST_VFP_S:
1824 regtype = REG_TYPE_VFS;
1825 max_regs = 32;
1826 break;
1827
1828 case REGLIST_VFP_D:
1829 regtype = REG_TYPE_VFD;
1830 break;
1831
1832 case REGLIST_NEON_D:
1833 regtype = REG_TYPE_NDQ;
1834 break;
1835 }
1836
1837 if (etype != REGLIST_VFP_S)
1838 {
1839 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1840 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1841 {
1842 max_regs = 32;
1843 if (thumb_mode)
1844 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1845 fpu_vfp_ext_d32);
1846 else
1847 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1848 fpu_vfp_ext_d32);
1849 }
1850 else
1851 max_regs = 16;
1852 }
1853
1854 base_reg = max_regs;
1855
1856 do
1857 {
1858 int setmask = 1, addregs = 1;
1859
1860 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1861
1862 if (new_base == FAIL)
1863 {
1864 first_error (_(reg_expected_msgs[regtype]));
1865 return FAIL;
1866 }
1867
1868 if (new_base >= max_regs)
1869 {
1870 first_error (_("register out of range in list"));
1871 return FAIL;
1872 }
1873
1874 /* Note: a value of 2 * n is returned for the register Q<n>. */
1875 if (regtype == REG_TYPE_NQ)
1876 {
1877 setmask = 3;
1878 addregs = 2;
1879 }
1880
1881 if (new_base < base_reg)
1882 base_reg = new_base;
1883
1884 if (mask & (setmask << new_base))
1885 {
1886 first_error (_("invalid register list"));
1887 return FAIL;
1888 }
1889
1890 if ((mask >> new_base) != 0 && ! warned)
1891 {
1892 as_tsktsk (_("register list not in ascending order"));
1893 warned = 1;
1894 }
1895
1896 mask |= setmask << new_base;
1897 count += addregs;
1898
1899 if (*str == '-') /* We have the start of a range expression */
1900 {
1901 int high_range;
1902
1903 str++;
1904
1905 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1906 == FAIL)
1907 {
1908 inst.error = gettext (reg_expected_msgs[regtype]);
1909 return FAIL;
1910 }
1911
1912 if (high_range >= max_regs)
1913 {
1914 first_error (_("register out of range in list"));
1915 return FAIL;
1916 }
1917
1918 if (regtype == REG_TYPE_NQ)
1919 high_range = high_range + 1;
1920
1921 if (high_range <= new_base)
1922 {
1923 inst.error = _("register range not in ascending order");
1924 return FAIL;
1925 }
1926
1927 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1928 {
1929 if (mask & (setmask << new_base))
1930 {
1931 inst.error = _("invalid register list");
1932 return FAIL;
1933 }
1934
1935 mask |= setmask << new_base;
1936 count += addregs;
1937 }
1938 }
1939 }
1940 while (skip_past_comma (&str) != FAIL);
1941
1942 str++;
1943
1944 /* Sanity check -- should have raised a parse error above. */
1945 if (count == 0 || count > max_regs)
1946 abort ();
1947
1948 *pbase = base_reg;
1949
1950 /* Final test -- the registers must be consecutive. */
1951 mask >>= base_reg;
1952 for (i = 0; i < count; i++)
1953 {
1954 if ((mask & (1u << i)) == 0)
1955 {
1956 inst.error = _("non-contiguous register range");
1957 return FAIL;
1958 }
1959 }
1960
1961 *ccp = str;
1962
1963 return count;
1964 }
1965
1966 /* True if two alias types are the same. */
1967
1968 static bfd_boolean
1969 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1970 {
1971 if (!a && !b)
1972 return TRUE;
1973
1974 if (!a || !b)
1975 return FALSE;
1976
1977 if (a->defined != b->defined)
1978 return FALSE;
1979
1980 if ((a->defined & NTA_HASTYPE) != 0
1981 && (a->eltype.type != b->eltype.type
1982 || a->eltype.size != b->eltype.size))
1983 return FALSE;
1984
1985 if ((a->defined & NTA_HASINDEX) != 0
1986 && (a->index != b->index))
1987 return FALSE;
1988
1989 return TRUE;
1990 }
1991
1992 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1993 The base register is put in *PBASE.
1994 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1995 the return value.
1996 The register stride (minus one) is put in bit 4 of the return value.
1997 Bits [6:5] encode the list length (minus one).
1998 The type of the list elements is put in *ELTYPE, if non-NULL. */
1999
2000 #define NEON_LANE(X) ((X) & 0xf)
2001 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2002 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2003
2004 static int
2005 parse_neon_el_struct_list (char **str, unsigned *pbase,
2006 struct neon_type_el *eltype)
2007 {
2008 char *ptr = *str;
2009 int base_reg = -1;
2010 int reg_incr = -1;
2011 int count = 0;
2012 int lane = -1;
2013 int leading_brace = 0;
2014 enum arm_reg_type rtype = REG_TYPE_NDQ;
2015 const char *const incr_error = _("register stride must be 1 or 2");
2016 const char *const type_error = _("mismatched element/structure types in list");
2017 struct neon_typed_alias firsttype;
2018 firsttype.defined = 0;
2019 firsttype.eltype.type = NT_invtype;
2020 firsttype.eltype.size = -1;
2021 firsttype.index = -1;
2022
2023 if (skip_past_char (&ptr, '{') == SUCCESS)
2024 leading_brace = 1;
2025
2026 do
2027 {
2028 struct neon_typed_alias atype;
2029 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2030
2031 if (getreg == FAIL)
2032 {
2033 first_error (_(reg_expected_msgs[rtype]));
2034 return FAIL;
2035 }
2036
2037 if (base_reg == -1)
2038 {
2039 base_reg = getreg;
2040 if (rtype == REG_TYPE_NQ)
2041 {
2042 reg_incr = 1;
2043 }
2044 firsttype = atype;
2045 }
2046 else if (reg_incr == -1)
2047 {
2048 reg_incr = getreg - base_reg;
2049 if (reg_incr < 1 || reg_incr > 2)
2050 {
2051 first_error (_(incr_error));
2052 return FAIL;
2053 }
2054 }
2055 else if (getreg != base_reg + reg_incr * count)
2056 {
2057 first_error (_(incr_error));
2058 return FAIL;
2059 }
2060
2061 if (! neon_alias_types_same (&atype, &firsttype))
2062 {
2063 first_error (_(type_error));
2064 return FAIL;
2065 }
2066
2067 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2068 modes. */
2069 if (ptr[0] == '-')
2070 {
2071 struct neon_typed_alias htype;
2072 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2073 if (lane == -1)
2074 lane = NEON_INTERLEAVE_LANES;
2075 else if (lane != NEON_INTERLEAVE_LANES)
2076 {
2077 first_error (_(type_error));
2078 return FAIL;
2079 }
2080 if (reg_incr == -1)
2081 reg_incr = 1;
2082 else if (reg_incr != 1)
2083 {
2084 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2085 return FAIL;
2086 }
2087 ptr++;
2088 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2089 if (hireg == FAIL)
2090 {
2091 first_error (_(reg_expected_msgs[rtype]));
2092 return FAIL;
2093 }
2094 if (! neon_alias_types_same (&htype, &firsttype))
2095 {
2096 first_error (_(type_error));
2097 return FAIL;
2098 }
2099 count += hireg + dregs - getreg;
2100 continue;
2101 }
2102
2103 /* If we're using Q registers, we can't use [] or [n] syntax. */
2104 if (rtype == REG_TYPE_NQ)
2105 {
2106 count += 2;
2107 continue;
2108 }
2109
2110 if ((atype.defined & NTA_HASINDEX) != 0)
2111 {
2112 if (lane == -1)
2113 lane = atype.index;
2114 else if (lane != atype.index)
2115 {
2116 first_error (_(type_error));
2117 return FAIL;
2118 }
2119 }
2120 else if (lane == -1)
2121 lane = NEON_INTERLEAVE_LANES;
2122 else if (lane != NEON_INTERLEAVE_LANES)
2123 {
2124 first_error (_(type_error));
2125 return FAIL;
2126 }
2127 count++;
2128 }
2129 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2130
2131 /* No lane set by [x]. We must be interleaving structures. */
2132 if (lane == -1)
2133 lane = NEON_INTERLEAVE_LANES;
2134
2135 /* Sanity check. */
2136 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2137 || (count > 1 && reg_incr == -1))
2138 {
2139 first_error (_("error parsing element/structure list"));
2140 return FAIL;
2141 }
2142
2143 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2144 {
2145 first_error (_("expected }"));
2146 return FAIL;
2147 }
2148
2149 if (reg_incr == -1)
2150 reg_incr = 1;
2151
2152 if (eltype)
2153 *eltype = firsttype.eltype;
2154
2155 *pbase = base_reg;
2156 *str = ptr;
2157
2158 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2159 }
2160
2161 /* Parse an explicit relocation suffix on an expression. This is
2162 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2163 arm_reloc_hsh contains no entries, so this function can only
2164 succeed if there is no () after the word. Returns -1 on error,
2165 BFD_RELOC_UNUSED if there wasn't any suffix. */
2166
2167 static int
2168 parse_reloc (char **str)
2169 {
2170 struct reloc_entry *r;
2171 char *p, *q;
2172
2173 if (**str != '(')
2174 return BFD_RELOC_UNUSED;
2175
2176 p = *str + 1;
2177 q = p;
2178
2179 while (*q && *q != ')' && *q != ',')
2180 q++;
2181 if (*q != ')')
2182 return -1;
2183
2184 if ((r = (struct reloc_entry *)
2185 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2186 return -1;
2187
2188 *str = q + 1;
2189 return r->reloc;
2190 }
2191
2192 /* Directives: register aliases. */
2193
2194 static struct reg_entry *
2195 insert_reg_alias (char *str, unsigned number, int type)
2196 {
2197 struct reg_entry *new_reg;
2198 const char *name;
2199
2200 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2201 {
2202 if (new_reg->builtin)
2203 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2204
2205 /* Only warn about a redefinition if it's not defined as the
2206 same register. */
2207 else if (new_reg->number != number || new_reg->type != type)
2208 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2209
2210 return NULL;
2211 }
2212
2213 name = xstrdup (str);
2214 new_reg = XNEW (struct reg_entry);
2215
2216 new_reg->name = name;
2217 new_reg->number = number;
2218 new_reg->type = type;
2219 new_reg->builtin = FALSE;
2220 new_reg->neon = NULL;
2221
2222 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2223 abort ();
2224
2225 return new_reg;
2226 }
2227
2228 static void
2229 insert_neon_reg_alias (char *str, int number, int type,
2230 struct neon_typed_alias *atype)
2231 {
2232 struct reg_entry *reg = insert_reg_alias (str, number, type);
2233
2234 if (!reg)
2235 {
2236 first_error (_("attempt to redefine typed alias"));
2237 return;
2238 }
2239
2240 if (atype)
2241 {
2242 reg->neon = XNEW (struct neon_typed_alias);
2243 *reg->neon = *atype;
2244 }
2245 }
2246
2247 /* Look for the .req directive. This is of the form:
2248
2249 new_register_name .req existing_register_name
2250
2251 If we find one, or if it looks sufficiently like one that we want to
2252 handle any error here, return TRUE. Otherwise return FALSE. */
2253
2254 static bfd_boolean
2255 create_register_alias (char * newname, char *p)
2256 {
2257 struct reg_entry *old;
2258 char *oldname, *nbuf;
2259 size_t nlen;
2260
2261 /* The input scrubber ensures that whitespace after the mnemonic is
2262 collapsed to single spaces. */
2263 oldname = p;
2264 if (strncmp (oldname, " .req ", 6) != 0)
2265 return FALSE;
2266
2267 oldname += 6;
2268 if (*oldname == '\0')
2269 return FALSE;
2270
2271 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2272 if (!old)
2273 {
2274 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2275 return TRUE;
2276 }
2277
2278 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2279 the desired alias name, and p points to its end. If not, then
2280 the desired alias name is in the global original_case_string. */
2281 #ifdef TC_CASE_SENSITIVE
2282 nlen = p - newname;
2283 #else
2284 newname = original_case_string;
2285 nlen = strlen (newname);
2286 #endif
2287
2288 nbuf = xmemdup0 (newname, nlen);
2289
2290 /* Create aliases under the new name as stated; an all-lowercase
2291 version of the new name; and an all-uppercase version of the new
2292 name. */
2293 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2294 {
2295 for (p = nbuf; *p; p++)
2296 *p = TOUPPER (*p);
2297
2298 if (strncmp (nbuf, newname, nlen))
2299 {
2300 /* If this attempt to create an additional alias fails, do not bother
2301 trying to create the all-lower case alias. We will fail and issue
2302 a second, duplicate error message. This situation arises when the
2303 programmer does something like:
2304 foo .req r0
2305 Foo .req r1
2306 The second .req creates the "Foo" alias but then fails to create
2307 the artificial FOO alias because it has already been created by the
2308 first .req. */
2309 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2310 {
2311 free (nbuf);
2312 return TRUE;
2313 }
2314 }
2315
2316 for (p = nbuf; *p; p++)
2317 *p = TOLOWER (*p);
2318
2319 if (strncmp (nbuf, newname, nlen))
2320 insert_reg_alias (nbuf, old->number, old->type);
2321 }
2322
2323 free (nbuf);
2324 return TRUE;
2325 }
2326
2327 /* Create a Neon typed/indexed register alias using directives, e.g.:
2328 X .dn d5.s32[1]
2329 Y .qn 6.s16
2330 Z .dn d7
2331 T .dn Z[0]
2332 These typed registers can be used instead of the types specified after the
2333 Neon mnemonic, so long as all operands given have types. Types can also be
2334 specified directly, e.g.:
2335 vadd d0.s32, d1.s32, d2.s32 */
2336
2337 static bfd_boolean
2338 create_neon_reg_alias (char *newname, char *p)
2339 {
2340 enum arm_reg_type basetype;
2341 struct reg_entry *basereg;
2342 struct reg_entry mybasereg;
2343 struct neon_type ntype;
2344 struct neon_typed_alias typeinfo;
2345 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2346 int namelen;
2347
2348 typeinfo.defined = 0;
2349 typeinfo.eltype.type = NT_invtype;
2350 typeinfo.eltype.size = -1;
2351 typeinfo.index = -1;
2352
2353 nameend = p;
2354
2355 if (strncmp (p, " .dn ", 5) == 0)
2356 basetype = REG_TYPE_VFD;
2357 else if (strncmp (p, " .qn ", 5) == 0)
2358 basetype = REG_TYPE_NQ;
2359 else
2360 return FALSE;
2361
2362 p += 5;
2363
2364 if (*p == '\0')
2365 return FALSE;
2366
2367 basereg = arm_reg_parse_multi (&p);
2368
2369 if (basereg && basereg->type != basetype)
2370 {
2371 as_bad (_("bad type for register"));
2372 return FALSE;
2373 }
2374
2375 if (basereg == NULL)
2376 {
2377 expressionS exp;
2378 /* Try parsing as an integer. */
2379 my_get_expression (&exp, &p, GE_NO_PREFIX);
2380 if (exp.X_op != O_constant)
2381 {
2382 as_bad (_("expression must be constant"));
2383 return FALSE;
2384 }
2385 basereg = &mybasereg;
2386 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2387 : exp.X_add_number;
2388 basereg->neon = 0;
2389 }
2390
2391 if (basereg->neon)
2392 typeinfo = *basereg->neon;
2393
2394 if (parse_neon_type (&ntype, &p) == SUCCESS)
2395 {
2396 /* We got a type. */
2397 if (typeinfo.defined & NTA_HASTYPE)
2398 {
2399 as_bad (_("can't redefine the type of a register alias"));
2400 return FALSE;
2401 }
2402
2403 typeinfo.defined |= NTA_HASTYPE;
2404 if (ntype.elems != 1)
2405 {
2406 as_bad (_("you must specify a single type only"));
2407 return FALSE;
2408 }
2409 typeinfo.eltype = ntype.el[0];
2410 }
2411
2412 if (skip_past_char (&p, '[') == SUCCESS)
2413 {
2414 expressionS exp;
2415 /* We got a scalar index. */
2416
2417 if (typeinfo.defined & NTA_HASINDEX)
2418 {
2419 as_bad (_("can't redefine the index of a scalar alias"));
2420 return FALSE;
2421 }
2422
2423 my_get_expression (&exp, &p, GE_NO_PREFIX);
2424
2425 if (exp.X_op != O_constant)
2426 {
2427 as_bad (_("scalar index must be constant"));
2428 return FALSE;
2429 }
2430
2431 typeinfo.defined |= NTA_HASINDEX;
2432 typeinfo.index = exp.X_add_number;
2433
2434 if (skip_past_char (&p, ']') == FAIL)
2435 {
2436 as_bad (_("expecting ]"));
2437 return FALSE;
2438 }
2439 }
2440
2441 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2442 the desired alias name, and p points to its end. If not, then
2443 the desired alias name is in the global original_case_string. */
2444 #ifdef TC_CASE_SENSITIVE
2445 namelen = nameend - newname;
2446 #else
2447 newname = original_case_string;
2448 namelen = strlen (newname);
2449 #endif
2450
2451 namebuf = xmemdup0 (newname, namelen);
2452
2453 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2454 typeinfo.defined != 0 ? &typeinfo : NULL);
2455
2456 /* Insert name in all uppercase. */
2457 for (p = namebuf; *p; p++)
2458 *p = TOUPPER (*p);
2459
2460 if (strncmp (namebuf, newname, namelen))
2461 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2462 typeinfo.defined != 0 ? &typeinfo : NULL);
2463
2464 /* Insert name in all lowercase. */
2465 for (p = namebuf; *p; p++)
2466 *p = TOLOWER (*p);
2467
2468 if (strncmp (namebuf, newname, namelen))
2469 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2470 typeinfo.defined != 0 ? &typeinfo : NULL);
2471
2472 free (namebuf);
2473 return TRUE;
2474 }
2475
2476 /* Should never be called, as .req goes between the alias and the
2477 register name, not at the beginning of the line. */
2478
2479 static void
2480 s_req (int a ATTRIBUTE_UNUSED)
2481 {
2482 as_bad (_("invalid syntax for .req directive"));
2483 }
2484
2485 static void
2486 s_dn (int a ATTRIBUTE_UNUSED)
2487 {
2488 as_bad (_("invalid syntax for .dn directive"));
2489 }
2490
2491 static void
2492 s_qn (int a ATTRIBUTE_UNUSED)
2493 {
2494 as_bad (_("invalid syntax for .qn directive"));
2495 }
2496
2497 /* The .unreq directive deletes an alias which was previously defined
2498 by .req. For example:
2499
2500 my_alias .req r11
2501 .unreq my_alias */
2502
2503 static void
2504 s_unreq (int a ATTRIBUTE_UNUSED)
2505 {
2506 char * name;
2507 char saved_char;
2508
2509 name = input_line_pointer;
2510
2511 while (*input_line_pointer != 0
2512 && *input_line_pointer != ' '
2513 && *input_line_pointer != '\n')
2514 ++input_line_pointer;
2515
2516 saved_char = *input_line_pointer;
2517 *input_line_pointer = 0;
2518
2519 if (!*name)
2520 as_bad (_("invalid syntax for .unreq directive"));
2521 else
2522 {
2523 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2524 name);
2525
2526 if (!reg)
2527 as_bad (_("unknown register alias '%s'"), name);
2528 else if (reg->builtin)
2529 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2530 name);
2531 else
2532 {
2533 char * p;
2534 char * nbuf;
2535
2536 hash_delete (arm_reg_hsh, name, FALSE);
2537 free ((char *) reg->name);
2538 if (reg->neon)
2539 free (reg->neon);
2540 free (reg);
2541
2542 /* Also locate the all upper case and all lower case versions.
2543 Do not complain if we cannot find one or the other as it
2544 was probably deleted above. */
2545
2546 nbuf = strdup (name);
2547 for (p = nbuf; *p; p++)
2548 *p = TOUPPER (*p);
2549 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2550 if (reg)
2551 {
2552 hash_delete (arm_reg_hsh, nbuf, FALSE);
2553 free ((char *) reg->name);
2554 if (reg->neon)
2555 free (reg->neon);
2556 free (reg);
2557 }
2558
2559 for (p = nbuf; *p; p++)
2560 *p = TOLOWER (*p);
2561 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2562 if (reg)
2563 {
2564 hash_delete (arm_reg_hsh, nbuf, FALSE);
2565 free ((char *) reg->name);
2566 if (reg->neon)
2567 free (reg->neon);
2568 free (reg);
2569 }
2570
2571 free (nbuf);
2572 }
2573 }
2574
2575 *input_line_pointer = saved_char;
2576 demand_empty_rest_of_line ();
2577 }
2578
2579 /* Directives: Instruction set selection. */
2580
2581 #ifdef OBJ_ELF
2582 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2583 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2584 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2585 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2586
2587 /* Create a new mapping symbol for the transition to STATE. */
2588
2589 static void
2590 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2591 {
2592 symbolS * symbolP;
2593 const char * symname;
2594 int type;
2595
2596 switch (state)
2597 {
2598 case MAP_DATA:
2599 symname = "$d";
2600 type = BSF_NO_FLAGS;
2601 break;
2602 case MAP_ARM:
2603 symname = "$a";
2604 type = BSF_NO_FLAGS;
2605 break;
2606 case MAP_THUMB:
2607 symname = "$t";
2608 type = BSF_NO_FLAGS;
2609 break;
2610 default:
2611 abort ();
2612 }
2613
2614 symbolP = symbol_new (symname, now_seg, value, frag);
2615 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2616
2617 switch (state)
2618 {
2619 case MAP_ARM:
2620 THUMB_SET_FUNC (symbolP, 0);
2621 ARM_SET_THUMB (symbolP, 0);
2622 ARM_SET_INTERWORK (symbolP, support_interwork);
2623 break;
2624
2625 case MAP_THUMB:
2626 THUMB_SET_FUNC (symbolP, 1);
2627 ARM_SET_THUMB (symbolP, 1);
2628 ARM_SET_INTERWORK (symbolP, support_interwork);
2629 break;
2630
2631 case MAP_DATA:
2632 default:
2633 break;
2634 }
2635
2636 /* Save the mapping symbols for future reference. Also check that
2637 we do not place two mapping symbols at the same offset within a
2638 frag. We'll handle overlap between frags in
2639 check_mapping_symbols.
2640
2641 If .fill or other data filling directive generates zero sized data,
2642 the mapping symbol for the following code will have the same value
2643 as the one generated for the data filling directive. In this case,
2644 we replace the old symbol with the new one at the same address. */
2645 if (value == 0)
2646 {
2647 if (frag->tc_frag_data.first_map != NULL)
2648 {
2649 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2650 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2651 }
2652 frag->tc_frag_data.first_map = symbolP;
2653 }
2654 if (frag->tc_frag_data.last_map != NULL)
2655 {
2656 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2657 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2658 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2659 }
2660 frag->tc_frag_data.last_map = symbolP;
2661 }
2662
2663 /* We must sometimes convert a region marked as code to data during
2664 code alignment, if an odd number of bytes have to be padded. The
2665 code mapping symbol is pushed to an aligned address. */
2666
2667 static void
2668 insert_data_mapping_symbol (enum mstate state,
2669 valueT value, fragS *frag, offsetT bytes)
2670 {
2671 /* If there was already a mapping symbol, remove it. */
2672 if (frag->tc_frag_data.last_map != NULL
2673 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2674 {
2675 symbolS *symp = frag->tc_frag_data.last_map;
2676
2677 if (value == 0)
2678 {
2679 know (frag->tc_frag_data.first_map == symp);
2680 frag->tc_frag_data.first_map = NULL;
2681 }
2682 frag->tc_frag_data.last_map = NULL;
2683 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2684 }
2685
2686 make_mapping_symbol (MAP_DATA, value, frag);
2687 make_mapping_symbol (state, value + bytes, frag);
2688 }
2689
2690 static void mapping_state_2 (enum mstate state, int max_chars);
2691
2692 /* Set the mapping state to STATE. Only call this when about to
2693 emit some STATE bytes to the file. */
2694
2695 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2696 void
2697 mapping_state (enum mstate state)
2698 {
2699 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2700
2701 if (mapstate == state)
2702 /* The mapping symbol has already been emitted.
2703 There is nothing else to do. */
2704 return;
2705
2706 if (state == MAP_ARM || state == MAP_THUMB)
2707 /* PR gas/12931
2708 All ARM instructions require 4-byte alignment.
2709 (Almost) all Thumb instructions require 2-byte alignment.
2710
2711 When emitting instructions into any section, mark the section
2712 appropriately.
2713
2714 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2715 but themselves require 2-byte alignment; this applies to some
2716 PC- relative forms. However, these cases will involve implicit
2717 literal pool generation or an explicit .align >=2, both of
2718 which will cause the section to me marked with sufficient
2719 alignment. Thus, we don't handle those cases here. */
2720 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2721
2722 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2723 /* This case will be evaluated later. */
2724 return;
2725
2726 mapping_state_2 (state, 0);
2727 }
2728
2729 /* Same as mapping_state, but MAX_CHARS bytes have already been
2730 allocated. Put the mapping symbol that far back. */
2731
2732 static void
2733 mapping_state_2 (enum mstate state, int max_chars)
2734 {
2735 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2736
2737 if (!SEG_NORMAL (now_seg))
2738 return;
2739
2740 if (mapstate == state)
2741 /* The mapping symbol has already been emitted.
2742 There is nothing else to do. */
2743 return;
2744
2745 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2746 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2747 {
2748 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2749 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2750
2751 if (add_symbol)
2752 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2753 }
2754
2755 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2756 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2757 }
2758 #undef TRANSITION
2759 #else
2760 #define mapping_state(x) ((void)0)
2761 #define mapping_state_2(x, y) ((void)0)
2762 #endif
2763
2764 /* Find the real, Thumb encoded start of a Thumb function. */
2765
2766 #ifdef OBJ_COFF
2767 static symbolS *
2768 find_real_start (symbolS * symbolP)
2769 {
2770 char * real_start;
2771 const char * name = S_GET_NAME (symbolP);
2772 symbolS * new_target;
2773
2774 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2775 #define STUB_NAME ".real_start_of"
2776
2777 if (name == NULL)
2778 abort ();
2779
2780 /* The compiler may generate BL instructions to local labels because
2781 it needs to perform a branch to a far away location. These labels
2782 do not have a corresponding ".real_start_of" label. We check
2783 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2784 the ".real_start_of" convention for nonlocal branches. */
2785 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2786 return symbolP;
2787
2788 real_start = concat (STUB_NAME, name, NULL);
2789 new_target = symbol_find (real_start);
2790 free (real_start);
2791
2792 if (new_target == NULL)
2793 {
2794 as_warn (_("Failed to find real start of function: %s\n"), name);
2795 new_target = symbolP;
2796 }
2797
2798 return new_target;
2799 }
2800 #endif
2801
2802 static void
2803 opcode_select (int width)
2804 {
2805 switch (width)
2806 {
2807 case 16:
2808 if (! thumb_mode)
2809 {
2810 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2811 as_bad (_("selected processor does not support THUMB opcodes"));
2812
2813 thumb_mode = 1;
2814 /* No need to force the alignment, since we will have been
2815 coming from ARM mode, which is word-aligned. */
2816 record_alignment (now_seg, 1);
2817 }
2818 break;
2819
2820 case 32:
2821 if (thumb_mode)
2822 {
2823 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2824 as_bad (_("selected processor does not support ARM opcodes"));
2825
2826 thumb_mode = 0;
2827
2828 if (!need_pass_2)
2829 frag_align (2, 0, 0);
2830
2831 record_alignment (now_seg, 1);
2832 }
2833 break;
2834
2835 default:
2836 as_bad (_("invalid instruction size selected (%d)"), width);
2837 }
2838 }
2839
2840 static void
2841 s_arm (int ignore ATTRIBUTE_UNUSED)
2842 {
2843 opcode_select (32);
2844 demand_empty_rest_of_line ();
2845 }
2846
2847 static void
2848 s_thumb (int ignore ATTRIBUTE_UNUSED)
2849 {
2850 opcode_select (16);
2851 demand_empty_rest_of_line ();
2852 }
2853
2854 static void
2855 s_code (int unused ATTRIBUTE_UNUSED)
2856 {
2857 int temp;
2858
2859 temp = get_absolute_expression ();
2860 switch (temp)
2861 {
2862 case 16:
2863 case 32:
2864 opcode_select (temp);
2865 break;
2866
2867 default:
2868 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2869 }
2870 }
2871
2872 static void
2873 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2874 {
2875 /* If we are not already in thumb mode go into it, EVEN if
2876 the target processor does not support thumb instructions.
2877 This is used by gcc/config/arm/lib1funcs.asm for example
2878 to compile interworking support functions even if the
2879 target processor should not support interworking. */
2880 if (! thumb_mode)
2881 {
2882 thumb_mode = 2;
2883 record_alignment (now_seg, 1);
2884 }
2885
2886 demand_empty_rest_of_line ();
2887 }
2888
2889 static void
2890 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2891 {
2892 s_thumb (0);
2893
2894 /* The following label is the name/address of the start of a Thumb function.
2895 We need to know this for the interworking support. */
2896 label_is_thumb_function_name = TRUE;
2897 }
2898
2899 /* Perform a .set directive, but also mark the alias as
2900 being a thumb function. */
2901
2902 static void
2903 s_thumb_set (int equiv)
2904 {
2905 /* XXX the following is a duplicate of the code for s_set() in read.c
2906 We cannot just call that code as we need to get at the symbol that
2907 is created. */
2908 char * name;
2909 char delim;
2910 char * end_name;
2911 symbolS * symbolP;
2912
2913 /* Especial apologies for the random logic:
2914 This just grew, and could be parsed much more simply!
2915 Dean - in haste. */
2916 delim = get_symbol_name (& name);
2917 end_name = input_line_pointer;
2918 (void) restore_line_pointer (delim);
2919
2920 if (*input_line_pointer != ',')
2921 {
2922 *end_name = 0;
2923 as_bad (_("expected comma after name \"%s\""), name);
2924 *end_name = delim;
2925 ignore_rest_of_line ();
2926 return;
2927 }
2928
2929 input_line_pointer++;
2930 *end_name = 0;
2931
2932 if (name[0] == '.' && name[1] == '\0')
2933 {
2934 /* XXX - this should not happen to .thumb_set. */
2935 abort ();
2936 }
2937
2938 if ((symbolP = symbol_find (name)) == NULL
2939 && (symbolP = md_undefined_symbol (name)) == NULL)
2940 {
2941 #ifndef NO_LISTING
2942 /* When doing symbol listings, play games with dummy fragments living
2943 outside the normal fragment chain to record the file and line info
2944 for this symbol. */
2945 if (listing & LISTING_SYMBOLS)
2946 {
2947 extern struct list_info_struct * listing_tail;
2948 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2949
2950 memset (dummy_frag, 0, sizeof (fragS));
2951 dummy_frag->fr_type = rs_fill;
2952 dummy_frag->line = listing_tail;
2953 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2954 dummy_frag->fr_symbol = symbolP;
2955 }
2956 else
2957 #endif
2958 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2959
2960 #ifdef OBJ_COFF
2961 /* "set" symbols are local unless otherwise specified. */
2962 SF_SET_LOCAL (symbolP);
2963 #endif /* OBJ_COFF */
2964 } /* Make a new symbol. */
2965
2966 symbol_table_insert (symbolP);
2967
2968 * end_name = delim;
2969
2970 if (equiv
2971 && S_IS_DEFINED (symbolP)
2972 && S_GET_SEGMENT (symbolP) != reg_section)
2973 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2974
2975 pseudo_set (symbolP);
2976
2977 demand_empty_rest_of_line ();
2978
2979 /* XXX Now we come to the Thumb specific bit of code. */
2980
2981 THUMB_SET_FUNC (symbolP, 1);
2982 ARM_SET_THUMB (symbolP, 1);
2983 #if defined OBJ_ELF || defined OBJ_COFF
2984 ARM_SET_INTERWORK (symbolP, support_interwork);
2985 #endif
2986 }
2987
2988 /* Directives: Mode selection. */
2989
2990 /* .syntax [unified|divided] - choose the new unified syntax
2991 (same for Arm and Thumb encoding, modulo slight differences in what
2992 can be represented) or the old divergent syntax for each mode. */
2993 static void
2994 s_syntax (int unused ATTRIBUTE_UNUSED)
2995 {
2996 char *name, delim;
2997
2998 delim = get_symbol_name (& name);
2999
3000 if (!strcasecmp (name, "unified"))
3001 unified_syntax = TRUE;
3002 else if (!strcasecmp (name, "divided"))
3003 unified_syntax = FALSE;
3004 else
3005 {
3006 as_bad (_("unrecognized syntax mode \"%s\""), name);
3007 return;
3008 }
3009 (void) restore_line_pointer (delim);
3010 demand_empty_rest_of_line ();
3011 }
3012
3013 /* Directives: sectioning and alignment. */
3014
3015 static void
3016 s_bss (int ignore ATTRIBUTE_UNUSED)
3017 {
3018 /* We don't support putting frags in the BSS segment, we fake it by
3019 marking in_bss, then looking at s_skip for clues. */
3020 subseg_set (bss_section, 0);
3021 demand_empty_rest_of_line ();
3022
3023 #ifdef md_elf_section_change_hook
3024 md_elf_section_change_hook ();
3025 #endif
3026 }
3027
3028 static void
3029 s_even (int ignore ATTRIBUTE_UNUSED)
3030 {
3031 /* Never make frag if expect extra pass. */
3032 if (!need_pass_2)
3033 frag_align (1, 0, 0);
3034
3035 record_alignment (now_seg, 1);
3036
3037 demand_empty_rest_of_line ();
3038 }
3039
3040 /* Directives: CodeComposer Studio. */
3041
3042 /* .ref (for CodeComposer Studio syntax only). */
3043 static void
3044 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3045 {
3046 if (codecomposer_syntax)
3047 ignore_rest_of_line ();
3048 else
3049 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3050 }
3051
3052 /* If name is not NULL, then it is used for marking the beginning of a
3053 function, whereas if it is NULL then it means the function end. */
3054 static void
3055 asmfunc_debug (const char * name)
3056 {
3057 static const char * last_name = NULL;
3058
3059 if (name != NULL)
3060 {
3061 gas_assert (last_name == NULL);
3062 last_name = name;
3063
3064 if (debug_type == DEBUG_STABS)
3065 stabs_generate_asm_func (name, name);
3066 }
3067 else
3068 {
3069 gas_assert (last_name != NULL);
3070
3071 if (debug_type == DEBUG_STABS)
3072 stabs_generate_asm_endfunc (last_name, last_name);
3073
3074 last_name = NULL;
3075 }
3076 }
3077
3078 static void
3079 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3080 {
3081 if (codecomposer_syntax)
3082 {
3083 switch (asmfunc_state)
3084 {
3085 case OUTSIDE_ASMFUNC:
3086 asmfunc_state = WAITING_ASMFUNC_NAME;
3087 break;
3088
3089 case WAITING_ASMFUNC_NAME:
3090 as_bad (_(".asmfunc repeated."));
3091 break;
3092
3093 case WAITING_ENDASMFUNC:
3094 as_bad (_(".asmfunc without function."));
3095 break;
3096 }
3097 demand_empty_rest_of_line ();
3098 }
3099 else
3100 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3101 }
3102
3103 static void
3104 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3105 {
3106 if (codecomposer_syntax)
3107 {
3108 switch (asmfunc_state)
3109 {
3110 case OUTSIDE_ASMFUNC:
3111 as_bad (_(".endasmfunc without a .asmfunc."));
3112 break;
3113
3114 case WAITING_ASMFUNC_NAME:
3115 as_bad (_(".endasmfunc without function."));
3116 break;
3117
3118 case WAITING_ENDASMFUNC:
3119 asmfunc_state = OUTSIDE_ASMFUNC;
3120 asmfunc_debug (NULL);
3121 break;
3122 }
3123 demand_empty_rest_of_line ();
3124 }
3125 else
3126 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3127 }
3128
3129 static void
3130 s_ccs_def (int name)
3131 {
3132 if (codecomposer_syntax)
3133 s_globl (name);
3134 else
3135 as_bad (_(".def pseudo-op only available with -mccs flag."));
3136 }
3137
3138 /* Directives: Literal pools. */
3139
3140 static literal_pool *
3141 find_literal_pool (void)
3142 {
3143 literal_pool * pool;
3144
3145 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3146 {
3147 if (pool->section == now_seg
3148 && pool->sub_section == now_subseg)
3149 break;
3150 }
3151
3152 return pool;
3153 }
3154
3155 static literal_pool *
3156 find_or_make_literal_pool (void)
3157 {
3158 /* Next literal pool ID number. */
3159 static unsigned int latest_pool_num = 1;
3160 literal_pool * pool;
3161
3162 pool = find_literal_pool ();
3163
3164 if (pool == NULL)
3165 {
3166 /* Create a new pool. */
3167 pool = XNEW (literal_pool);
3168 if (! pool)
3169 return NULL;
3170
3171 pool->next_free_entry = 0;
3172 pool->section = now_seg;
3173 pool->sub_section = now_subseg;
3174 pool->next = list_of_pools;
3175 pool->symbol = NULL;
3176 pool->alignment = 2;
3177
3178 /* Add it to the list. */
3179 list_of_pools = pool;
3180 }
3181
3182 /* New pools, and emptied pools, will have a NULL symbol. */
3183 if (pool->symbol == NULL)
3184 {
3185 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3186 (valueT) 0, &zero_address_frag);
3187 pool->id = latest_pool_num ++;
3188 }
3189
3190 /* Done. */
3191 return pool;
3192 }
3193
3194 /* Add the literal in the global 'inst'
3195 structure to the relevant literal pool. */
3196
3197 static int
3198 add_to_lit_pool (unsigned int nbytes)
3199 {
3200 #define PADDING_SLOT 0x1
3201 #define LIT_ENTRY_SIZE_MASK 0xFF
3202 literal_pool * pool;
3203 unsigned int entry, pool_size = 0;
3204 bfd_boolean padding_slot_p = FALSE;
3205 unsigned imm1 = 0;
3206 unsigned imm2 = 0;
3207
3208 if (nbytes == 8)
3209 {
3210 imm1 = inst.operands[1].imm;
3211 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3212 : inst.reloc.exp.X_unsigned ? 0
3213 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3214 if (target_big_endian)
3215 {
3216 imm1 = imm2;
3217 imm2 = inst.operands[1].imm;
3218 }
3219 }
3220
3221 pool = find_or_make_literal_pool ();
3222
3223 /* Check if this literal value is already in the pool. */
3224 for (entry = 0; entry < pool->next_free_entry; entry ++)
3225 {
3226 if (nbytes == 4)
3227 {
3228 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3229 && (inst.reloc.exp.X_op == O_constant)
3230 && (pool->literals[entry].X_add_number
3231 == inst.reloc.exp.X_add_number)
3232 && (pool->literals[entry].X_md == nbytes)
3233 && (pool->literals[entry].X_unsigned
3234 == inst.reloc.exp.X_unsigned))
3235 break;
3236
3237 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3238 && (inst.reloc.exp.X_op == O_symbol)
3239 && (pool->literals[entry].X_add_number
3240 == inst.reloc.exp.X_add_number)
3241 && (pool->literals[entry].X_add_symbol
3242 == inst.reloc.exp.X_add_symbol)
3243 && (pool->literals[entry].X_op_symbol
3244 == inst.reloc.exp.X_op_symbol)
3245 && (pool->literals[entry].X_md == nbytes))
3246 break;
3247 }
3248 else if ((nbytes == 8)
3249 && !(pool_size & 0x7)
3250 && ((entry + 1) != pool->next_free_entry)
3251 && (pool->literals[entry].X_op == O_constant)
3252 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3253 && (pool->literals[entry].X_unsigned
3254 == inst.reloc.exp.X_unsigned)
3255 && (pool->literals[entry + 1].X_op == O_constant)
3256 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3257 && (pool->literals[entry + 1].X_unsigned
3258 == inst.reloc.exp.X_unsigned))
3259 break;
3260
3261 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3262 if (padding_slot_p && (nbytes == 4))
3263 break;
3264
3265 pool_size += 4;
3266 }
3267
3268 /* Do we need to create a new entry? */
3269 if (entry == pool->next_free_entry)
3270 {
3271 if (entry >= MAX_LITERAL_POOL_SIZE)
3272 {
3273 inst.error = _("literal pool overflow");
3274 return FAIL;
3275 }
3276
3277 if (nbytes == 8)
3278 {
3279 /* For 8-byte entries, we align to an 8-byte boundary,
3280 and split it into two 4-byte entries, because on 32-bit
3281 host, 8-byte constants are treated as big num, thus
3282 saved in "generic_bignum" which will be overwritten
3283 by later assignments.
3284
3285 We also need to make sure there is enough space for
3286 the split.
3287
3288 We also check to make sure the literal operand is a
3289 constant number. */
3290 if (!(inst.reloc.exp.X_op == O_constant
3291 || inst.reloc.exp.X_op == O_big))
3292 {
3293 inst.error = _("invalid type for literal pool");
3294 return FAIL;
3295 }
3296 else if (pool_size & 0x7)
3297 {
3298 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3299 {
3300 inst.error = _("literal pool overflow");
3301 return FAIL;
3302 }
3303
3304 pool->literals[entry] = inst.reloc.exp;
3305 pool->literals[entry].X_op = O_constant;
3306 pool->literals[entry].X_add_number = 0;
3307 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3308 pool->next_free_entry += 1;
3309 pool_size += 4;
3310 }
3311 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3312 {
3313 inst.error = _("literal pool overflow");
3314 return FAIL;
3315 }
3316
3317 pool->literals[entry] = inst.reloc.exp;
3318 pool->literals[entry].X_op = O_constant;
3319 pool->literals[entry].X_add_number = imm1;
3320 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3321 pool->literals[entry++].X_md = 4;
3322 pool->literals[entry] = inst.reloc.exp;
3323 pool->literals[entry].X_op = O_constant;
3324 pool->literals[entry].X_add_number = imm2;
3325 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3326 pool->literals[entry].X_md = 4;
3327 pool->alignment = 3;
3328 pool->next_free_entry += 1;
3329 }
3330 else
3331 {
3332 pool->literals[entry] = inst.reloc.exp;
3333 pool->literals[entry].X_md = 4;
3334 }
3335
3336 #ifdef OBJ_ELF
3337 /* PR ld/12974: Record the location of the first source line to reference
3338 this entry in the literal pool. If it turns out during linking that the
3339 symbol does not exist we will be able to give an accurate line number for
3340 the (first use of the) missing reference. */
3341 if (debug_type == DEBUG_DWARF2)
3342 dwarf2_where (pool->locs + entry);
3343 #endif
3344 pool->next_free_entry += 1;
3345 }
3346 else if (padding_slot_p)
3347 {
3348 pool->literals[entry] = inst.reloc.exp;
3349 pool->literals[entry].X_md = nbytes;
3350 }
3351
3352 inst.reloc.exp.X_op = O_symbol;
3353 inst.reloc.exp.X_add_number = pool_size;
3354 inst.reloc.exp.X_add_symbol = pool->symbol;
3355
3356 return SUCCESS;
3357 }
3358
3359 bfd_boolean
3360 tc_start_label_without_colon (void)
3361 {
3362 bfd_boolean ret = TRUE;
3363
3364 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3365 {
3366 const char *label = input_line_pointer;
3367
3368 while (!is_end_of_line[(int) label[-1]])
3369 --label;
3370
3371 if (*label == '.')
3372 {
3373 as_bad (_("Invalid label '%s'"), label);
3374 ret = FALSE;
3375 }
3376
3377 asmfunc_debug (label);
3378
3379 asmfunc_state = WAITING_ENDASMFUNC;
3380 }
3381
3382 return ret;
3383 }
3384
3385 /* Can't use symbol_new here, so have to create a symbol and then at
3386 a later date assign it a value. That's what these functions do. */
3387
3388 static void
3389 symbol_locate (symbolS * symbolP,
3390 const char * name, /* It is copied, the caller can modify. */
3391 segT segment, /* Segment identifier (SEG_<something>). */
3392 valueT valu, /* Symbol value. */
3393 fragS * frag) /* Associated fragment. */
3394 {
3395 size_t name_length;
3396 char * preserved_copy_of_name;
3397
3398 name_length = strlen (name) + 1; /* +1 for \0. */
3399 obstack_grow (&notes, name, name_length);
3400 preserved_copy_of_name = (char *) obstack_finish (&notes);
3401
3402 #ifdef tc_canonicalize_symbol_name
3403 preserved_copy_of_name =
3404 tc_canonicalize_symbol_name (preserved_copy_of_name);
3405 #endif
3406
3407 S_SET_NAME (symbolP, preserved_copy_of_name);
3408
3409 S_SET_SEGMENT (symbolP, segment);
3410 S_SET_VALUE (symbolP, valu);
3411 symbol_clear_list_pointers (symbolP);
3412
3413 symbol_set_frag (symbolP, frag);
3414
3415 /* Link to end of symbol chain. */
3416 {
3417 extern int symbol_table_frozen;
3418
3419 if (symbol_table_frozen)
3420 abort ();
3421 }
3422
3423 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3424
3425 obj_symbol_new_hook (symbolP);
3426
3427 #ifdef tc_symbol_new_hook
3428 tc_symbol_new_hook (symbolP);
3429 #endif
3430
3431 #ifdef DEBUG_SYMS
3432 verify_symbol_chain (symbol_rootP, symbol_lastP);
3433 #endif /* DEBUG_SYMS */
3434 }
3435
3436 static void
3437 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3438 {
3439 unsigned int entry;
3440 literal_pool * pool;
3441 char sym_name[20];
3442
3443 pool = find_literal_pool ();
3444 if (pool == NULL
3445 || pool->symbol == NULL
3446 || pool->next_free_entry == 0)
3447 return;
3448
3449 /* Align pool as you have word accesses.
3450 Only make a frag if we have to. */
3451 if (!need_pass_2)
3452 frag_align (pool->alignment, 0, 0);
3453
3454 record_alignment (now_seg, 2);
3455
3456 #ifdef OBJ_ELF
3457 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3458 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3459 #endif
3460 sprintf (sym_name, "$$lit_\002%x", pool->id);
3461
3462 symbol_locate (pool->symbol, sym_name, now_seg,
3463 (valueT) frag_now_fix (), frag_now);
3464 symbol_table_insert (pool->symbol);
3465
3466 ARM_SET_THUMB (pool->symbol, thumb_mode);
3467
3468 #if defined OBJ_COFF || defined OBJ_ELF
3469 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3470 #endif
3471
3472 for (entry = 0; entry < pool->next_free_entry; entry ++)
3473 {
3474 #ifdef OBJ_ELF
3475 if (debug_type == DEBUG_DWARF2)
3476 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3477 #endif
3478 /* First output the expression in the instruction to the pool. */
3479 emit_expr (&(pool->literals[entry]),
3480 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3481 }
3482
3483 /* Mark the pool as empty. */
3484 pool->next_free_entry = 0;
3485 pool->symbol = NULL;
3486 }
3487
3488 #ifdef OBJ_ELF
3489 /* Forward declarations for functions below, in the MD interface
3490 section. */
3491 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3492 static valueT create_unwind_entry (int);
3493 static void start_unwind_section (const segT, int);
3494 static void add_unwind_opcode (valueT, int);
3495 static void flush_pending_unwind (void);
3496
3497 /* Directives: Data. */
3498
3499 static void
3500 s_arm_elf_cons (int nbytes)
3501 {
3502 expressionS exp;
3503
3504 #ifdef md_flush_pending_output
3505 md_flush_pending_output ();
3506 #endif
3507
3508 if (is_it_end_of_statement ())
3509 {
3510 demand_empty_rest_of_line ();
3511 return;
3512 }
3513
3514 #ifdef md_cons_align
3515 md_cons_align (nbytes);
3516 #endif
3517
3518 mapping_state (MAP_DATA);
3519 do
3520 {
3521 int reloc;
3522 char *base = input_line_pointer;
3523
3524 expression (& exp);
3525
3526 if (exp.X_op != O_symbol)
3527 emit_expr (&exp, (unsigned int) nbytes);
3528 else
3529 {
3530 char *before_reloc = input_line_pointer;
3531 reloc = parse_reloc (&input_line_pointer);
3532 if (reloc == -1)
3533 {
3534 as_bad (_("unrecognized relocation suffix"));
3535 ignore_rest_of_line ();
3536 return;
3537 }
3538 else if (reloc == BFD_RELOC_UNUSED)
3539 emit_expr (&exp, (unsigned int) nbytes);
3540 else
3541 {
3542 reloc_howto_type *howto = (reloc_howto_type *)
3543 bfd_reloc_type_lookup (stdoutput,
3544 (bfd_reloc_code_real_type) reloc);
3545 int size = bfd_get_reloc_size (howto);
3546
3547 if (reloc == BFD_RELOC_ARM_PLT32)
3548 {
3549 as_bad (_("(plt) is only valid on branch targets"));
3550 reloc = BFD_RELOC_UNUSED;
3551 size = 0;
3552 }
3553
3554 if (size > nbytes)
3555 as_bad (_("%s relocations do not fit in %d bytes"),
3556 howto->name, nbytes);
3557 else
3558 {
3559 /* We've parsed an expression stopping at O_symbol.
3560 But there may be more expression left now that we
3561 have parsed the relocation marker. Parse it again.
3562 XXX Surely there is a cleaner way to do this. */
3563 char *p = input_line_pointer;
3564 int offset;
3565 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3566
3567 memcpy (save_buf, base, input_line_pointer - base);
3568 memmove (base + (input_line_pointer - before_reloc),
3569 base, before_reloc - base);
3570
3571 input_line_pointer = base + (input_line_pointer-before_reloc);
3572 expression (&exp);
3573 memcpy (base, save_buf, p - base);
3574
3575 offset = nbytes - size;
3576 p = frag_more (nbytes);
3577 memset (p, 0, nbytes);
3578 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3579 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3580 free (save_buf);
3581 }
3582 }
3583 }
3584 }
3585 while (*input_line_pointer++ == ',');
3586
3587 /* Put terminator back into stream. */
3588 input_line_pointer --;
3589 demand_empty_rest_of_line ();
3590 }
3591
3592 /* Emit an expression containing a 32-bit thumb instruction.
3593 Implementation based on put_thumb32_insn. */
3594
3595 static void
3596 emit_thumb32_expr (expressionS * exp)
3597 {
3598 expressionS exp_high = *exp;
3599
3600 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3601 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3602 exp->X_add_number &= 0xffff;
3603 emit_expr (exp, (unsigned int) THUMB_SIZE);
3604 }
3605
3606 /* Guess the instruction size based on the opcode. */
3607
3608 static int
3609 thumb_insn_size (int opcode)
3610 {
3611 if ((unsigned int) opcode < 0xe800u)
3612 return 2;
3613 else if ((unsigned int) opcode >= 0xe8000000u)
3614 return 4;
3615 else
3616 return 0;
3617 }
3618
3619 static bfd_boolean
3620 emit_insn (expressionS *exp, int nbytes)
3621 {
3622 int size = 0;
3623
3624 if (exp->X_op == O_constant)
3625 {
3626 size = nbytes;
3627
3628 if (size == 0)
3629 size = thumb_insn_size (exp->X_add_number);
3630
3631 if (size != 0)
3632 {
3633 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3634 {
3635 as_bad (_(".inst.n operand too big. "\
3636 "Use .inst.w instead"));
3637 size = 0;
3638 }
3639 else
3640 {
3641 if (now_it.state == AUTOMATIC_IT_BLOCK)
3642 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3643 else
3644 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3645
3646 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3647 emit_thumb32_expr (exp);
3648 else
3649 emit_expr (exp, (unsigned int) size);
3650
3651 it_fsm_post_encode ();
3652 }
3653 }
3654 else
3655 as_bad (_("cannot determine Thumb instruction size. " \
3656 "Use .inst.n/.inst.w instead"));
3657 }
3658 else
3659 as_bad (_("constant expression required"));
3660
3661 return (size != 0);
3662 }
3663
3664 /* Like s_arm_elf_cons but do not use md_cons_align and
3665 set the mapping state to MAP_ARM/MAP_THUMB. */
3666
3667 static void
3668 s_arm_elf_inst (int nbytes)
3669 {
3670 if (is_it_end_of_statement ())
3671 {
3672 demand_empty_rest_of_line ();
3673 return;
3674 }
3675
3676 /* Calling mapping_state () here will not change ARM/THUMB,
3677 but will ensure not to be in DATA state. */
3678
3679 if (thumb_mode)
3680 mapping_state (MAP_THUMB);
3681 else
3682 {
3683 if (nbytes != 0)
3684 {
3685 as_bad (_("width suffixes are invalid in ARM mode"));
3686 ignore_rest_of_line ();
3687 return;
3688 }
3689
3690 nbytes = 4;
3691
3692 mapping_state (MAP_ARM);
3693 }
3694
3695 do
3696 {
3697 expressionS exp;
3698
3699 expression (& exp);
3700
3701 if (! emit_insn (& exp, nbytes))
3702 {
3703 ignore_rest_of_line ();
3704 return;
3705 }
3706 }
3707 while (*input_line_pointer++ == ',');
3708
3709 /* Put terminator back into stream. */
3710 input_line_pointer --;
3711 demand_empty_rest_of_line ();
3712 }
3713
3714 /* Parse a .rel31 directive. */
3715
3716 static void
3717 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3718 {
3719 expressionS exp;
3720 char *p;
3721 valueT highbit;
3722
3723 highbit = 0;
3724 if (*input_line_pointer == '1')
3725 highbit = 0x80000000;
3726 else if (*input_line_pointer != '0')
3727 as_bad (_("expected 0 or 1"));
3728
3729 input_line_pointer++;
3730 if (*input_line_pointer != ',')
3731 as_bad (_("missing comma"));
3732 input_line_pointer++;
3733
3734 #ifdef md_flush_pending_output
3735 md_flush_pending_output ();
3736 #endif
3737
3738 #ifdef md_cons_align
3739 md_cons_align (4);
3740 #endif
3741
3742 mapping_state (MAP_DATA);
3743
3744 expression (&exp);
3745
3746 p = frag_more (4);
3747 md_number_to_chars (p, highbit, 4);
3748 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3749 BFD_RELOC_ARM_PREL31);
3750
3751 demand_empty_rest_of_line ();
3752 }
3753
3754 /* Directives: AEABI stack-unwind tables. */
3755
3756 /* Parse an unwind_fnstart directive. Simply records the current location. */
3757
3758 static void
3759 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3760 {
3761 demand_empty_rest_of_line ();
3762 if (unwind.proc_start)
3763 {
3764 as_bad (_("duplicate .fnstart directive"));
3765 return;
3766 }
3767
3768 /* Mark the start of the function. */
3769 unwind.proc_start = expr_build_dot ();
3770
3771 /* Reset the rest of the unwind info. */
3772 unwind.opcode_count = 0;
3773 unwind.table_entry = NULL;
3774 unwind.personality_routine = NULL;
3775 unwind.personality_index = -1;
3776 unwind.frame_size = 0;
3777 unwind.fp_offset = 0;
3778 unwind.fp_reg = REG_SP;
3779 unwind.fp_used = 0;
3780 unwind.sp_restored = 0;
3781 }
3782
3783
3784 /* Parse a handlerdata directive. Creates the exception handling table entry
3785 for the function. */
3786
3787 static void
3788 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3789 {
3790 demand_empty_rest_of_line ();
3791 if (!unwind.proc_start)
3792 as_bad (MISSING_FNSTART);
3793
3794 if (unwind.table_entry)
3795 as_bad (_("duplicate .handlerdata directive"));
3796
3797 create_unwind_entry (1);
3798 }
3799
3800 /* Parse an unwind_fnend directive. Generates the index table entry. */
3801
3802 static void
3803 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3804 {
3805 long where;
3806 char *ptr;
3807 valueT val;
3808 unsigned int marked_pr_dependency;
3809
3810 demand_empty_rest_of_line ();
3811
3812 if (!unwind.proc_start)
3813 {
3814 as_bad (_(".fnend directive without .fnstart"));
3815 return;
3816 }
3817
3818 /* Add eh table entry. */
3819 if (unwind.table_entry == NULL)
3820 val = create_unwind_entry (0);
3821 else
3822 val = 0;
3823
3824 /* Add index table entry. This is two words. */
3825 start_unwind_section (unwind.saved_seg, 1);
3826 frag_align (2, 0, 0);
3827 record_alignment (now_seg, 2);
3828
3829 ptr = frag_more (8);
3830 memset (ptr, 0, 8);
3831 where = frag_now_fix () - 8;
3832
3833 /* Self relative offset of the function start. */
3834 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3835 BFD_RELOC_ARM_PREL31);
3836
3837 /* Indicate dependency on EHABI-defined personality routines to the
3838 linker, if it hasn't been done already. */
3839 marked_pr_dependency
3840 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3841 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3842 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3843 {
3844 static const char *const name[] =
3845 {
3846 "__aeabi_unwind_cpp_pr0",
3847 "__aeabi_unwind_cpp_pr1",
3848 "__aeabi_unwind_cpp_pr2"
3849 };
3850 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3851 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3852 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3853 |= 1 << unwind.personality_index;
3854 }
3855
3856 if (val)
3857 /* Inline exception table entry. */
3858 md_number_to_chars (ptr + 4, val, 4);
3859 else
3860 /* Self relative offset of the table entry. */
3861 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3862 BFD_RELOC_ARM_PREL31);
3863
3864 /* Restore the original section. */
3865 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3866
3867 unwind.proc_start = NULL;
3868 }
3869
3870
3871 /* Parse an unwind_cantunwind directive. */
3872
3873 static void
3874 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3875 {
3876 demand_empty_rest_of_line ();
3877 if (!unwind.proc_start)
3878 as_bad (MISSING_FNSTART);
3879
3880 if (unwind.personality_routine || unwind.personality_index != -1)
3881 as_bad (_("personality routine specified for cantunwind frame"));
3882
3883 unwind.personality_index = -2;
3884 }
3885
3886
3887 /* Parse a personalityindex directive. */
3888
3889 static void
3890 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3891 {
3892 expressionS exp;
3893
3894 if (!unwind.proc_start)
3895 as_bad (MISSING_FNSTART);
3896
3897 if (unwind.personality_routine || unwind.personality_index != -1)
3898 as_bad (_("duplicate .personalityindex directive"));
3899
3900 expression (&exp);
3901
3902 if (exp.X_op != O_constant
3903 || exp.X_add_number < 0 || exp.X_add_number > 15)
3904 {
3905 as_bad (_("bad personality routine number"));
3906 ignore_rest_of_line ();
3907 return;
3908 }
3909
3910 unwind.personality_index = exp.X_add_number;
3911
3912 demand_empty_rest_of_line ();
3913 }
3914
3915
3916 /* Parse a personality directive. */
3917
3918 static void
3919 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3920 {
3921 char *name, *p, c;
3922
3923 if (!unwind.proc_start)
3924 as_bad (MISSING_FNSTART);
3925
3926 if (unwind.personality_routine || unwind.personality_index != -1)
3927 as_bad (_("duplicate .personality directive"));
3928
3929 c = get_symbol_name (& name);
3930 p = input_line_pointer;
3931 if (c == '"')
3932 ++ input_line_pointer;
3933 unwind.personality_routine = symbol_find_or_make (name);
3934 *p = c;
3935 demand_empty_rest_of_line ();
3936 }
3937
3938
3939 /* Parse a directive saving core registers. */
3940
3941 static void
3942 s_arm_unwind_save_core (void)
3943 {
3944 valueT op;
3945 long range;
3946 int n;
3947
3948 range = parse_reg_list (&input_line_pointer);
3949 if (range == FAIL)
3950 {
3951 as_bad (_("expected register list"));
3952 ignore_rest_of_line ();
3953 return;
3954 }
3955
3956 demand_empty_rest_of_line ();
3957
3958 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3959 into .unwind_save {..., sp...}. We aren't bothered about the value of
3960 ip because it is clobbered by calls. */
3961 if (unwind.sp_restored && unwind.fp_reg == 12
3962 && (range & 0x3000) == 0x1000)
3963 {
3964 unwind.opcode_count--;
3965 unwind.sp_restored = 0;
3966 range = (range | 0x2000) & ~0x1000;
3967 unwind.pending_offset = 0;
3968 }
3969
3970 /* Pop r4-r15. */
3971 if (range & 0xfff0)
3972 {
3973 /* See if we can use the short opcodes. These pop a block of up to 8
3974 registers starting with r4, plus maybe r14. */
3975 for (n = 0; n < 8; n++)
3976 {
3977 /* Break at the first non-saved register. */
3978 if ((range & (1 << (n + 4))) == 0)
3979 break;
3980 }
3981 /* See if there are any other bits set. */
3982 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3983 {
3984 /* Use the long form. */
3985 op = 0x8000 | ((range >> 4) & 0xfff);
3986 add_unwind_opcode (op, 2);
3987 }
3988 else
3989 {
3990 /* Use the short form. */
3991 if (range & 0x4000)
3992 op = 0xa8; /* Pop r14. */
3993 else
3994 op = 0xa0; /* Do not pop r14. */
3995 op |= (n - 1);
3996 add_unwind_opcode (op, 1);
3997 }
3998 }
3999
4000 /* Pop r0-r3. */
4001 if (range & 0xf)
4002 {
4003 op = 0xb100 | (range & 0xf);
4004 add_unwind_opcode (op, 2);
4005 }
4006
4007 /* Record the number of bytes pushed. */
4008 for (n = 0; n < 16; n++)
4009 {
4010 if (range & (1 << n))
4011 unwind.frame_size += 4;
4012 }
4013 }
4014
4015
4016 /* Parse a directive saving FPA registers. */
4017
4018 static void
4019 s_arm_unwind_save_fpa (int reg)
4020 {
4021 expressionS exp;
4022 int num_regs;
4023 valueT op;
4024
4025 /* Get Number of registers to transfer. */
4026 if (skip_past_comma (&input_line_pointer) != FAIL)
4027 expression (&exp);
4028 else
4029 exp.X_op = O_illegal;
4030
4031 if (exp.X_op != O_constant)
4032 {
4033 as_bad (_("expected , <constant>"));
4034 ignore_rest_of_line ();
4035 return;
4036 }
4037
4038 num_regs = exp.X_add_number;
4039
4040 if (num_regs < 1 || num_regs > 4)
4041 {
4042 as_bad (_("number of registers must be in the range [1:4]"));
4043 ignore_rest_of_line ();
4044 return;
4045 }
4046
4047 demand_empty_rest_of_line ();
4048
4049 if (reg == 4)
4050 {
4051 /* Short form. */
4052 op = 0xb4 | (num_regs - 1);
4053 add_unwind_opcode (op, 1);
4054 }
4055 else
4056 {
4057 /* Long form. */
4058 op = 0xc800 | (reg << 4) | (num_regs - 1);
4059 add_unwind_opcode (op, 2);
4060 }
4061 unwind.frame_size += num_regs * 12;
4062 }
4063
4064
4065 /* Parse a directive saving VFP registers for ARMv6 and above. */
4066
4067 static void
4068 s_arm_unwind_save_vfp_armv6 (void)
4069 {
4070 int count;
4071 unsigned int start;
4072 valueT op;
4073 int num_vfpv3_regs = 0;
4074 int num_regs_below_16;
4075
4076 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4077 if (count == FAIL)
4078 {
4079 as_bad (_("expected register list"));
4080 ignore_rest_of_line ();
4081 return;
4082 }
4083
4084 demand_empty_rest_of_line ();
4085
4086 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4087 than FSTMX/FLDMX-style ones). */
4088
4089 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4090 if (start >= 16)
4091 num_vfpv3_regs = count;
4092 else if (start + count > 16)
4093 num_vfpv3_regs = start + count - 16;
4094
4095 if (num_vfpv3_regs > 0)
4096 {
4097 int start_offset = start > 16 ? start - 16 : 0;
4098 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4099 add_unwind_opcode (op, 2);
4100 }
4101
4102 /* Generate opcode for registers numbered in the range 0 .. 15. */
4103 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4104 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4105 if (num_regs_below_16 > 0)
4106 {
4107 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4108 add_unwind_opcode (op, 2);
4109 }
4110
4111 unwind.frame_size += count * 8;
4112 }
4113
4114
4115 /* Parse a directive saving VFP registers for pre-ARMv6. */
4116
4117 static void
4118 s_arm_unwind_save_vfp (void)
4119 {
4120 int count;
4121 unsigned int reg;
4122 valueT op;
4123
4124 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4125 if (count == FAIL)
4126 {
4127 as_bad (_("expected register list"));
4128 ignore_rest_of_line ();
4129 return;
4130 }
4131
4132 demand_empty_rest_of_line ();
4133
4134 if (reg == 8)
4135 {
4136 /* Short form. */
4137 op = 0xb8 | (count - 1);
4138 add_unwind_opcode (op, 1);
4139 }
4140 else
4141 {
4142 /* Long form. */
4143 op = 0xb300 | (reg << 4) | (count - 1);
4144 add_unwind_opcode (op, 2);
4145 }
4146 unwind.frame_size += count * 8 + 4;
4147 }
4148
4149
4150 /* Parse a directive saving iWMMXt data registers. */
4151
4152 static void
4153 s_arm_unwind_save_mmxwr (void)
4154 {
4155 int reg;
4156 int hi_reg;
4157 int i;
4158 unsigned mask = 0;
4159 valueT op;
4160
4161 if (*input_line_pointer == '{')
4162 input_line_pointer++;
4163
4164 do
4165 {
4166 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4167
4168 if (reg == FAIL)
4169 {
4170 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4171 goto error;
4172 }
4173
4174 if (mask >> reg)
4175 as_tsktsk (_("register list not in ascending order"));
4176 mask |= 1 << reg;
4177
4178 if (*input_line_pointer == '-')
4179 {
4180 input_line_pointer++;
4181 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4182 if (hi_reg == FAIL)
4183 {
4184 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4185 goto error;
4186 }
4187 else if (reg >= hi_reg)
4188 {
4189 as_bad (_("bad register range"));
4190 goto error;
4191 }
4192 for (; reg < hi_reg; reg++)
4193 mask |= 1 << reg;
4194 }
4195 }
4196 while (skip_past_comma (&input_line_pointer) != FAIL);
4197
4198 skip_past_char (&input_line_pointer, '}');
4199
4200 demand_empty_rest_of_line ();
4201
4202 /* Generate any deferred opcodes because we're going to be looking at
4203 the list. */
4204 flush_pending_unwind ();
4205
4206 for (i = 0; i < 16; i++)
4207 {
4208 if (mask & (1 << i))
4209 unwind.frame_size += 8;
4210 }
4211
4212 /* Attempt to combine with a previous opcode. We do this because gcc
4213 likes to output separate unwind directives for a single block of
4214 registers. */
4215 if (unwind.opcode_count > 0)
4216 {
4217 i = unwind.opcodes[unwind.opcode_count - 1];
4218 if ((i & 0xf8) == 0xc0)
4219 {
4220 i &= 7;
4221 /* Only merge if the blocks are contiguous. */
4222 if (i < 6)
4223 {
4224 if ((mask & 0xfe00) == (1 << 9))
4225 {
4226 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4227 unwind.opcode_count--;
4228 }
4229 }
4230 else if (i == 6 && unwind.opcode_count >= 2)
4231 {
4232 i = unwind.opcodes[unwind.opcode_count - 2];
4233 reg = i >> 4;
4234 i &= 0xf;
4235
4236 op = 0xffff << (reg - 1);
4237 if (reg > 0
4238 && ((mask & op) == (1u << (reg - 1))))
4239 {
4240 op = (1 << (reg + i + 1)) - 1;
4241 op &= ~((1 << reg) - 1);
4242 mask |= op;
4243 unwind.opcode_count -= 2;
4244 }
4245 }
4246 }
4247 }
4248
4249 hi_reg = 15;
4250 /* We want to generate opcodes in the order the registers have been
4251 saved, ie. descending order. */
4252 for (reg = 15; reg >= -1; reg--)
4253 {
4254 /* Save registers in blocks. */
4255 if (reg < 0
4256 || !(mask & (1 << reg)))
4257 {
4258 /* We found an unsaved reg. Generate opcodes to save the
4259 preceding block. */
4260 if (reg != hi_reg)
4261 {
4262 if (reg == 9)
4263 {
4264 /* Short form. */
4265 op = 0xc0 | (hi_reg - 10);
4266 add_unwind_opcode (op, 1);
4267 }
4268 else
4269 {
4270 /* Long form. */
4271 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4272 add_unwind_opcode (op, 2);
4273 }
4274 }
4275 hi_reg = reg - 1;
4276 }
4277 }
4278
4279 return;
4280 error:
4281 ignore_rest_of_line ();
4282 }
4283
4284 static void
4285 s_arm_unwind_save_mmxwcg (void)
4286 {
4287 int reg;
4288 int hi_reg;
4289 unsigned mask = 0;
4290 valueT op;
4291
4292 if (*input_line_pointer == '{')
4293 input_line_pointer++;
4294
4295 skip_whitespace (input_line_pointer);
4296
4297 do
4298 {
4299 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4300
4301 if (reg == FAIL)
4302 {
4303 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4304 goto error;
4305 }
4306
4307 reg -= 8;
4308 if (mask >> reg)
4309 as_tsktsk (_("register list not in ascending order"));
4310 mask |= 1 << reg;
4311
4312 if (*input_line_pointer == '-')
4313 {
4314 input_line_pointer++;
4315 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4316 if (hi_reg == FAIL)
4317 {
4318 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4319 goto error;
4320 }
4321 else if (reg >= hi_reg)
4322 {
4323 as_bad (_("bad register range"));
4324 goto error;
4325 }
4326 for (; reg < hi_reg; reg++)
4327 mask |= 1 << reg;
4328 }
4329 }
4330 while (skip_past_comma (&input_line_pointer) != FAIL);
4331
4332 skip_past_char (&input_line_pointer, '}');
4333
4334 demand_empty_rest_of_line ();
4335
4336 /* Generate any deferred opcodes because we're going to be looking at
4337 the list. */
4338 flush_pending_unwind ();
4339
4340 for (reg = 0; reg < 16; reg++)
4341 {
4342 if (mask & (1 << reg))
4343 unwind.frame_size += 4;
4344 }
4345 op = 0xc700 | mask;
4346 add_unwind_opcode (op, 2);
4347 return;
4348 error:
4349 ignore_rest_of_line ();
4350 }
4351
4352
4353 /* Parse an unwind_save directive.
4354 If the argument is non-zero, this is a .vsave directive. */
4355
4356 static void
4357 s_arm_unwind_save (int arch_v6)
4358 {
4359 char *peek;
4360 struct reg_entry *reg;
4361 bfd_boolean had_brace = FALSE;
4362
4363 if (!unwind.proc_start)
4364 as_bad (MISSING_FNSTART);
4365
4366 /* Figure out what sort of save we have. */
4367 peek = input_line_pointer;
4368
4369 if (*peek == '{')
4370 {
4371 had_brace = TRUE;
4372 peek++;
4373 }
4374
4375 reg = arm_reg_parse_multi (&peek);
4376
4377 if (!reg)
4378 {
4379 as_bad (_("register expected"));
4380 ignore_rest_of_line ();
4381 return;
4382 }
4383
4384 switch (reg->type)
4385 {
4386 case REG_TYPE_FN:
4387 if (had_brace)
4388 {
4389 as_bad (_("FPA .unwind_save does not take a register list"));
4390 ignore_rest_of_line ();
4391 return;
4392 }
4393 input_line_pointer = peek;
4394 s_arm_unwind_save_fpa (reg->number);
4395 return;
4396
4397 case REG_TYPE_RN:
4398 s_arm_unwind_save_core ();
4399 return;
4400
4401 case REG_TYPE_VFD:
4402 if (arch_v6)
4403 s_arm_unwind_save_vfp_armv6 ();
4404 else
4405 s_arm_unwind_save_vfp ();
4406 return;
4407
4408 case REG_TYPE_MMXWR:
4409 s_arm_unwind_save_mmxwr ();
4410 return;
4411
4412 case REG_TYPE_MMXWCG:
4413 s_arm_unwind_save_mmxwcg ();
4414 return;
4415
4416 default:
4417 as_bad (_(".unwind_save does not support this kind of register"));
4418 ignore_rest_of_line ();
4419 }
4420 }
4421
4422
4423 /* Parse an unwind_movsp directive. */
4424
4425 static void
4426 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4427 {
4428 int reg;
4429 valueT op;
4430 int offset;
4431
4432 if (!unwind.proc_start)
4433 as_bad (MISSING_FNSTART);
4434
4435 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4436 if (reg == FAIL)
4437 {
4438 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4439 ignore_rest_of_line ();
4440 return;
4441 }
4442
4443 /* Optional constant. */
4444 if (skip_past_comma (&input_line_pointer) != FAIL)
4445 {
4446 if (immediate_for_directive (&offset) == FAIL)
4447 return;
4448 }
4449 else
4450 offset = 0;
4451
4452 demand_empty_rest_of_line ();
4453
4454 if (reg == REG_SP || reg == REG_PC)
4455 {
4456 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4457 return;
4458 }
4459
4460 if (unwind.fp_reg != REG_SP)
4461 as_bad (_("unexpected .unwind_movsp directive"));
4462
4463 /* Generate opcode to restore the value. */
4464 op = 0x90 | reg;
4465 add_unwind_opcode (op, 1);
4466
4467 /* Record the information for later. */
4468 unwind.fp_reg = reg;
4469 unwind.fp_offset = unwind.frame_size - offset;
4470 unwind.sp_restored = 1;
4471 }
4472
4473 /* Parse an unwind_pad directive. */
4474
4475 static void
4476 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4477 {
4478 int offset;
4479
4480 if (!unwind.proc_start)
4481 as_bad (MISSING_FNSTART);
4482
4483 if (immediate_for_directive (&offset) == FAIL)
4484 return;
4485
4486 if (offset & 3)
4487 {
4488 as_bad (_("stack increment must be multiple of 4"));
4489 ignore_rest_of_line ();
4490 return;
4491 }
4492
4493 /* Don't generate any opcodes, just record the details for later. */
4494 unwind.frame_size += offset;
4495 unwind.pending_offset += offset;
4496
4497 demand_empty_rest_of_line ();
4498 }
4499
4500 /* Parse an unwind_setfp directive. */
4501
4502 static void
4503 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4504 {
4505 int sp_reg;
4506 int fp_reg;
4507 int offset;
4508
4509 if (!unwind.proc_start)
4510 as_bad (MISSING_FNSTART);
4511
4512 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4513 if (skip_past_comma (&input_line_pointer) == FAIL)
4514 sp_reg = FAIL;
4515 else
4516 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4517
4518 if (fp_reg == FAIL || sp_reg == FAIL)
4519 {
4520 as_bad (_("expected <reg>, <reg>"));
4521 ignore_rest_of_line ();
4522 return;
4523 }
4524
4525 /* Optional constant. */
4526 if (skip_past_comma (&input_line_pointer) != FAIL)
4527 {
4528 if (immediate_for_directive (&offset) == FAIL)
4529 return;
4530 }
4531 else
4532 offset = 0;
4533
4534 demand_empty_rest_of_line ();
4535
4536 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4537 {
4538 as_bad (_("register must be either sp or set by a previous"
4539 "unwind_movsp directive"));
4540 return;
4541 }
4542
4543 /* Don't generate any opcodes, just record the information for later. */
4544 unwind.fp_reg = fp_reg;
4545 unwind.fp_used = 1;
4546 if (sp_reg == REG_SP)
4547 unwind.fp_offset = unwind.frame_size - offset;
4548 else
4549 unwind.fp_offset -= offset;
4550 }
4551
4552 /* Parse an unwind_raw directive. */
4553
4554 static void
4555 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4556 {
4557 expressionS exp;
4558 /* This is an arbitrary limit. */
4559 unsigned char op[16];
4560 int count;
4561
4562 if (!unwind.proc_start)
4563 as_bad (MISSING_FNSTART);
4564
4565 expression (&exp);
4566 if (exp.X_op == O_constant
4567 && skip_past_comma (&input_line_pointer) != FAIL)
4568 {
4569 unwind.frame_size += exp.X_add_number;
4570 expression (&exp);
4571 }
4572 else
4573 exp.X_op = O_illegal;
4574
4575 if (exp.X_op != O_constant)
4576 {
4577 as_bad (_("expected <offset>, <opcode>"));
4578 ignore_rest_of_line ();
4579 return;
4580 }
4581
4582 count = 0;
4583
4584 /* Parse the opcode. */
4585 for (;;)
4586 {
4587 if (count >= 16)
4588 {
4589 as_bad (_("unwind opcode too long"));
4590 ignore_rest_of_line ();
4591 }
4592 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4593 {
4594 as_bad (_("invalid unwind opcode"));
4595 ignore_rest_of_line ();
4596 return;
4597 }
4598 op[count++] = exp.X_add_number;
4599
4600 /* Parse the next byte. */
4601 if (skip_past_comma (&input_line_pointer) == FAIL)
4602 break;
4603
4604 expression (&exp);
4605 }
4606
4607 /* Add the opcode bytes in reverse order. */
4608 while (count--)
4609 add_unwind_opcode (op[count], 1);
4610
4611 demand_empty_rest_of_line ();
4612 }
4613
4614
4615 /* Parse a .eabi_attribute directive. */
4616
4617 static void
4618 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4619 {
4620 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4621
4622 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4623 attributes_set_explicitly[tag] = 1;
4624 }
4625
4626 /* Emit a tls fix for the symbol. */
4627
4628 static void
4629 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4630 {
4631 char *p;
4632 expressionS exp;
4633 #ifdef md_flush_pending_output
4634 md_flush_pending_output ();
4635 #endif
4636
4637 #ifdef md_cons_align
4638 md_cons_align (4);
4639 #endif
4640
4641 /* Since we're just labelling the code, there's no need to define a
4642 mapping symbol. */
4643 expression (&exp);
4644 p = obstack_next_free (&frchain_now->frch_obstack);
4645 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4646 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4647 : BFD_RELOC_ARM_TLS_DESCSEQ);
4648 }
4649 #endif /* OBJ_ELF */
4650
4651 static void s_arm_arch (int);
4652 static void s_arm_object_arch (int);
4653 static void s_arm_cpu (int);
4654 static void s_arm_fpu (int);
4655 static void s_arm_arch_extension (int);
4656
4657 #ifdef TE_PE
4658
4659 static void
4660 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4661 {
4662 expressionS exp;
4663
4664 do
4665 {
4666 expression (&exp);
4667 if (exp.X_op == O_symbol)
4668 exp.X_op = O_secrel;
4669
4670 emit_expr (&exp, 4);
4671 }
4672 while (*input_line_pointer++ == ',');
4673
4674 input_line_pointer--;
4675 demand_empty_rest_of_line ();
4676 }
4677 #endif /* TE_PE */
4678
4679 /* This table describes all the machine specific pseudo-ops the assembler
4680 has to support. The fields are:
4681 pseudo-op name without dot
4682 function to call to execute this pseudo-op
4683 Integer arg to pass to the function. */
4684
4685 const pseudo_typeS md_pseudo_table[] =
4686 {
4687 /* Never called because '.req' does not start a line. */
4688 { "req", s_req, 0 },
4689 /* Following two are likewise never called. */
4690 { "dn", s_dn, 0 },
4691 { "qn", s_qn, 0 },
4692 { "unreq", s_unreq, 0 },
4693 { "bss", s_bss, 0 },
4694 { "align", s_align_ptwo, 2 },
4695 { "arm", s_arm, 0 },
4696 { "thumb", s_thumb, 0 },
4697 { "code", s_code, 0 },
4698 { "force_thumb", s_force_thumb, 0 },
4699 { "thumb_func", s_thumb_func, 0 },
4700 { "thumb_set", s_thumb_set, 0 },
4701 { "even", s_even, 0 },
4702 { "ltorg", s_ltorg, 0 },
4703 { "pool", s_ltorg, 0 },
4704 { "syntax", s_syntax, 0 },
4705 { "cpu", s_arm_cpu, 0 },
4706 { "arch", s_arm_arch, 0 },
4707 { "object_arch", s_arm_object_arch, 0 },
4708 { "fpu", s_arm_fpu, 0 },
4709 { "arch_extension", s_arm_arch_extension, 0 },
4710 #ifdef OBJ_ELF
4711 { "word", s_arm_elf_cons, 4 },
4712 { "long", s_arm_elf_cons, 4 },
4713 { "inst.n", s_arm_elf_inst, 2 },
4714 { "inst.w", s_arm_elf_inst, 4 },
4715 { "inst", s_arm_elf_inst, 0 },
4716 { "rel31", s_arm_rel31, 0 },
4717 { "fnstart", s_arm_unwind_fnstart, 0 },
4718 { "fnend", s_arm_unwind_fnend, 0 },
4719 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4720 { "personality", s_arm_unwind_personality, 0 },
4721 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4722 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4723 { "save", s_arm_unwind_save, 0 },
4724 { "vsave", s_arm_unwind_save, 1 },
4725 { "movsp", s_arm_unwind_movsp, 0 },
4726 { "pad", s_arm_unwind_pad, 0 },
4727 { "setfp", s_arm_unwind_setfp, 0 },
4728 { "unwind_raw", s_arm_unwind_raw, 0 },
4729 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4730 { "tlsdescseq", s_arm_tls_descseq, 0 },
4731 #else
4732 { "word", cons, 4},
4733
4734 /* These are used for dwarf. */
4735 {"2byte", cons, 2},
4736 {"4byte", cons, 4},
4737 {"8byte", cons, 8},
4738 /* These are used for dwarf2. */
4739 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4740 { "loc", dwarf2_directive_loc, 0 },
4741 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4742 #endif
4743 { "extend", float_cons, 'x' },
4744 { "ldouble", float_cons, 'x' },
4745 { "packed", float_cons, 'p' },
4746 #ifdef TE_PE
4747 {"secrel32", pe_directive_secrel, 0},
4748 #endif
4749
4750 /* These are for compatibility with CodeComposer Studio. */
4751 {"ref", s_ccs_ref, 0},
4752 {"def", s_ccs_def, 0},
4753 {"asmfunc", s_ccs_asmfunc, 0},
4754 {"endasmfunc", s_ccs_endasmfunc, 0},
4755
4756 { 0, 0, 0 }
4757 };
4758 \f
4759 /* Parser functions used exclusively in instruction operands. */
4760
4761 /* Generic immediate-value read function for use in insn parsing.
4762 STR points to the beginning of the immediate (the leading #);
4763 VAL receives the value; if the value is outside [MIN, MAX]
4764 issue an error. PREFIX_OPT is true if the immediate prefix is
4765 optional. */
4766
4767 static int
4768 parse_immediate (char **str, int *val, int min, int max,
4769 bfd_boolean prefix_opt)
4770 {
4771 expressionS exp;
4772 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4773 if (exp.X_op != O_constant)
4774 {
4775 inst.error = _("constant expression required");
4776 return FAIL;
4777 }
4778
4779 if (exp.X_add_number < min || exp.X_add_number > max)
4780 {
4781 inst.error = _("immediate value out of range");
4782 return FAIL;
4783 }
4784
4785 *val = exp.X_add_number;
4786 return SUCCESS;
4787 }
4788
4789 /* Less-generic immediate-value read function with the possibility of loading a
4790 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4791 instructions. Puts the result directly in inst.operands[i]. */
4792
4793 static int
4794 parse_big_immediate (char **str, int i, expressionS *in_exp,
4795 bfd_boolean allow_symbol_p)
4796 {
4797 expressionS exp;
4798 expressionS *exp_p = in_exp ? in_exp : &exp;
4799 char *ptr = *str;
4800
4801 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4802
4803 if (exp_p->X_op == O_constant)
4804 {
4805 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4806 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4807 O_constant. We have to be careful not to break compilation for
4808 32-bit X_add_number, though. */
4809 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4810 {
4811 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4812 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4813 & 0xffffffff);
4814 inst.operands[i].regisimm = 1;
4815 }
4816 }
4817 else if (exp_p->X_op == O_big
4818 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4819 {
4820 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4821
4822 /* Bignums have their least significant bits in
4823 generic_bignum[0]. Make sure we put 32 bits in imm and
4824 32 bits in reg, in a (hopefully) portable way. */
4825 gas_assert (parts != 0);
4826
4827 /* Make sure that the number is not too big.
4828 PR 11972: Bignums can now be sign-extended to the
4829 size of a .octa so check that the out of range bits
4830 are all zero or all one. */
4831 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4832 {
4833 LITTLENUM_TYPE m = -1;
4834
4835 if (generic_bignum[parts * 2] != 0
4836 && generic_bignum[parts * 2] != m)
4837 return FAIL;
4838
4839 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4840 if (generic_bignum[j] != generic_bignum[j-1])
4841 return FAIL;
4842 }
4843
4844 inst.operands[i].imm = 0;
4845 for (j = 0; j < parts; j++, idx++)
4846 inst.operands[i].imm |= generic_bignum[idx]
4847 << (LITTLENUM_NUMBER_OF_BITS * j);
4848 inst.operands[i].reg = 0;
4849 for (j = 0; j < parts; j++, idx++)
4850 inst.operands[i].reg |= generic_bignum[idx]
4851 << (LITTLENUM_NUMBER_OF_BITS * j);
4852 inst.operands[i].regisimm = 1;
4853 }
4854 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4855 return FAIL;
4856
4857 *str = ptr;
4858
4859 return SUCCESS;
4860 }
4861
4862 /* Returns the pseudo-register number of an FPA immediate constant,
4863 or FAIL if there isn't a valid constant here. */
4864
4865 static int
4866 parse_fpa_immediate (char ** str)
4867 {
4868 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4869 char * save_in;
4870 expressionS exp;
4871 int i;
4872 int j;
4873
4874 /* First try and match exact strings, this is to guarantee
4875 that some formats will work even for cross assembly. */
4876
4877 for (i = 0; fp_const[i]; i++)
4878 {
4879 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4880 {
4881 char *start = *str;
4882
4883 *str += strlen (fp_const[i]);
4884 if (is_end_of_line[(unsigned char) **str])
4885 return i + 8;
4886 *str = start;
4887 }
4888 }
4889
4890 /* Just because we didn't get a match doesn't mean that the constant
4891 isn't valid, just that it is in a format that we don't
4892 automatically recognize. Try parsing it with the standard
4893 expression routines. */
4894
4895 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4896
4897 /* Look for a raw floating point number. */
4898 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4899 && is_end_of_line[(unsigned char) *save_in])
4900 {
4901 for (i = 0; i < NUM_FLOAT_VALS; i++)
4902 {
4903 for (j = 0; j < MAX_LITTLENUMS; j++)
4904 {
4905 if (words[j] != fp_values[i][j])
4906 break;
4907 }
4908
4909 if (j == MAX_LITTLENUMS)
4910 {
4911 *str = save_in;
4912 return i + 8;
4913 }
4914 }
4915 }
4916
4917 /* Try and parse a more complex expression, this will probably fail
4918 unless the code uses a floating point prefix (eg "0f"). */
4919 save_in = input_line_pointer;
4920 input_line_pointer = *str;
4921 if (expression (&exp) == absolute_section
4922 && exp.X_op == O_big
4923 && exp.X_add_number < 0)
4924 {
4925 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4926 Ditto for 15. */
4927 #define X_PRECISION 5
4928 #define E_PRECISION 15L
4929 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4930 {
4931 for (i = 0; i < NUM_FLOAT_VALS; i++)
4932 {
4933 for (j = 0; j < MAX_LITTLENUMS; j++)
4934 {
4935 if (words[j] != fp_values[i][j])
4936 break;
4937 }
4938
4939 if (j == MAX_LITTLENUMS)
4940 {
4941 *str = input_line_pointer;
4942 input_line_pointer = save_in;
4943 return i + 8;
4944 }
4945 }
4946 }
4947 }
4948
4949 *str = input_line_pointer;
4950 input_line_pointer = save_in;
4951 inst.error = _("invalid FPA immediate expression");
4952 return FAIL;
4953 }
4954
4955 /* Returns 1 if a number has "quarter-precision" float format
4956 0baBbbbbbc defgh000 00000000 00000000. */
4957
4958 static int
4959 is_quarter_float (unsigned imm)
4960 {
4961 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4962 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4963 }
4964
4965
4966 /* Detect the presence of a floating point or integer zero constant,
4967 i.e. #0.0 or #0. */
4968
4969 static bfd_boolean
4970 parse_ifimm_zero (char **in)
4971 {
4972 int error_code;
4973
4974 if (!is_immediate_prefix (**in))
4975 {
4976 /* In unified syntax, all prefixes are optional. */
4977 if (!unified_syntax)
4978 return FALSE;
4979 }
4980 else
4981 ++*in;
4982
4983 /* Accept #0x0 as a synonym for #0. */
4984 if (strncmp (*in, "0x", 2) == 0)
4985 {
4986 int val;
4987 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
4988 return FALSE;
4989 return TRUE;
4990 }
4991
4992 error_code = atof_generic (in, ".", EXP_CHARS,
4993 &generic_floating_point_number);
4994
4995 if (!error_code
4996 && generic_floating_point_number.sign == '+'
4997 && (generic_floating_point_number.low
4998 > generic_floating_point_number.leader))
4999 return TRUE;
5000
5001 return FALSE;
5002 }
5003
5004 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5005 0baBbbbbbc defgh000 00000000 00000000.
5006 The zero and minus-zero cases need special handling, since they can't be
5007 encoded in the "quarter-precision" float format, but can nonetheless be
5008 loaded as integer constants. */
5009
5010 static unsigned
5011 parse_qfloat_immediate (char **ccp, int *immed)
5012 {
5013 char *str = *ccp;
5014 char *fpnum;
5015 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5016 int found_fpchar = 0;
5017
5018 skip_past_char (&str, '#');
5019
5020 /* We must not accidentally parse an integer as a floating-point number. Make
5021 sure that the value we parse is not an integer by checking for special
5022 characters '.' or 'e'.
5023 FIXME: This is a horrible hack, but doing better is tricky because type
5024 information isn't in a very usable state at parse time. */
5025 fpnum = str;
5026 skip_whitespace (fpnum);
5027
5028 if (strncmp (fpnum, "0x", 2) == 0)
5029 return FAIL;
5030 else
5031 {
5032 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5033 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5034 {
5035 found_fpchar = 1;
5036 break;
5037 }
5038
5039 if (!found_fpchar)
5040 return FAIL;
5041 }
5042
5043 if ((str = atof_ieee (str, 's', words)) != NULL)
5044 {
5045 unsigned fpword = 0;
5046 int i;
5047
5048 /* Our FP word must be 32 bits (single-precision FP). */
5049 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5050 {
5051 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5052 fpword |= words[i];
5053 }
5054
5055 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5056 *immed = fpword;
5057 else
5058 return FAIL;
5059
5060 *ccp = str;
5061
5062 return SUCCESS;
5063 }
5064
5065 return FAIL;
5066 }
5067
5068 /* Shift operands. */
5069 enum shift_kind
5070 {
5071 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5072 };
5073
5074 struct asm_shift_name
5075 {
5076 const char *name;
5077 enum shift_kind kind;
5078 };
5079
5080 /* Third argument to parse_shift. */
5081 enum parse_shift_mode
5082 {
5083 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5084 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5085 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5086 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5087 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5088 };
5089
5090 /* Parse a <shift> specifier on an ARM data processing instruction.
5091 This has three forms:
5092
5093 (LSL|LSR|ASL|ASR|ROR) Rs
5094 (LSL|LSR|ASL|ASR|ROR) #imm
5095 RRX
5096
5097 Note that ASL is assimilated to LSL in the instruction encoding, and
5098 RRX to ROR #0 (which cannot be written as such). */
5099
5100 static int
5101 parse_shift (char **str, int i, enum parse_shift_mode mode)
5102 {
5103 const struct asm_shift_name *shift_name;
5104 enum shift_kind shift;
5105 char *s = *str;
5106 char *p = s;
5107 int reg;
5108
5109 for (p = *str; ISALPHA (*p); p++)
5110 ;
5111
5112 if (p == *str)
5113 {
5114 inst.error = _("shift expression expected");
5115 return FAIL;
5116 }
5117
5118 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5119 p - *str);
5120
5121 if (shift_name == NULL)
5122 {
5123 inst.error = _("shift expression expected");
5124 return FAIL;
5125 }
5126
5127 shift = shift_name->kind;
5128
5129 switch (mode)
5130 {
5131 case NO_SHIFT_RESTRICT:
5132 case SHIFT_IMMEDIATE: break;
5133
5134 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5135 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5136 {
5137 inst.error = _("'LSL' or 'ASR' required");
5138 return FAIL;
5139 }
5140 break;
5141
5142 case SHIFT_LSL_IMMEDIATE:
5143 if (shift != SHIFT_LSL)
5144 {
5145 inst.error = _("'LSL' required");
5146 return FAIL;
5147 }
5148 break;
5149
5150 case SHIFT_ASR_IMMEDIATE:
5151 if (shift != SHIFT_ASR)
5152 {
5153 inst.error = _("'ASR' required");
5154 return FAIL;
5155 }
5156 break;
5157
5158 default: abort ();
5159 }
5160
5161 if (shift != SHIFT_RRX)
5162 {
5163 /* Whitespace can appear here if the next thing is a bare digit. */
5164 skip_whitespace (p);
5165
5166 if (mode == NO_SHIFT_RESTRICT
5167 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5168 {
5169 inst.operands[i].imm = reg;
5170 inst.operands[i].immisreg = 1;
5171 }
5172 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5173 return FAIL;
5174 }
5175 inst.operands[i].shift_kind = shift;
5176 inst.operands[i].shifted = 1;
5177 *str = p;
5178 return SUCCESS;
5179 }
5180
5181 /* Parse a <shifter_operand> for an ARM data processing instruction:
5182
5183 #<immediate>
5184 #<immediate>, <rotate>
5185 <Rm>
5186 <Rm>, <shift>
5187
5188 where <shift> is defined by parse_shift above, and <rotate> is a
5189 multiple of 2 between 0 and 30. Validation of immediate operands
5190 is deferred to md_apply_fix. */
5191
5192 static int
5193 parse_shifter_operand (char **str, int i)
5194 {
5195 int value;
5196 expressionS exp;
5197
5198 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5199 {
5200 inst.operands[i].reg = value;
5201 inst.operands[i].isreg = 1;
5202
5203 /* parse_shift will override this if appropriate */
5204 inst.reloc.exp.X_op = O_constant;
5205 inst.reloc.exp.X_add_number = 0;
5206
5207 if (skip_past_comma (str) == FAIL)
5208 return SUCCESS;
5209
5210 /* Shift operation on register. */
5211 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5212 }
5213
5214 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5215 return FAIL;
5216
5217 if (skip_past_comma (str) == SUCCESS)
5218 {
5219 /* #x, y -- ie explicit rotation by Y. */
5220 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5221 return FAIL;
5222
5223 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5224 {
5225 inst.error = _("constant expression expected");
5226 return FAIL;
5227 }
5228
5229 value = exp.X_add_number;
5230 if (value < 0 || value > 30 || value % 2 != 0)
5231 {
5232 inst.error = _("invalid rotation");
5233 return FAIL;
5234 }
5235 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5236 {
5237 inst.error = _("invalid constant");
5238 return FAIL;
5239 }
5240
5241 /* Encode as specified. */
5242 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5243 return SUCCESS;
5244 }
5245
5246 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5247 inst.reloc.pc_rel = 0;
5248 return SUCCESS;
5249 }
5250
5251 /* Group relocation information. Each entry in the table contains the
5252 textual name of the relocation as may appear in assembler source
5253 and must end with a colon.
5254 Along with this textual name are the relocation codes to be used if
5255 the corresponding instruction is an ALU instruction (ADD or SUB only),
5256 an LDR, an LDRS, or an LDC. */
5257
5258 struct group_reloc_table_entry
5259 {
5260 const char *name;
5261 int alu_code;
5262 int ldr_code;
5263 int ldrs_code;
5264 int ldc_code;
5265 };
5266
5267 typedef enum
5268 {
5269 /* Varieties of non-ALU group relocation. */
5270
5271 GROUP_LDR,
5272 GROUP_LDRS,
5273 GROUP_LDC
5274 } group_reloc_type;
5275
5276 static struct group_reloc_table_entry group_reloc_table[] =
5277 { /* Program counter relative: */
5278 { "pc_g0_nc",
5279 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5280 0, /* LDR */
5281 0, /* LDRS */
5282 0 }, /* LDC */
5283 { "pc_g0",
5284 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5285 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5286 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5287 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5288 { "pc_g1_nc",
5289 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5290 0, /* LDR */
5291 0, /* LDRS */
5292 0 }, /* LDC */
5293 { "pc_g1",
5294 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5295 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5296 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5297 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5298 { "pc_g2",
5299 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5300 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5301 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5302 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5303 /* Section base relative */
5304 { "sb_g0_nc",
5305 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5306 0, /* LDR */
5307 0, /* LDRS */
5308 0 }, /* LDC */
5309 { "sb_g0",
5310 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5311 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5312 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5313 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5314 { "sb_g1_nc",
5315 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5316 0, /* LDR */
5317 0, /* LDRS */
5318 0 }, /* LDC */
5319 { "sb_g1",
5320 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5321 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5322 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5323 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5324 { "sb_g2",
5325 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5326 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5327 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5328 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5329 /* Absolute thumb alu relocations. */
5330 { "lower0_7",
5331 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5332 0, /* LDR. */
5333 0, /* LDRS. */
5334 0 }, /* LDC. */
5335 { "lower8_15",
5336 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5337 0, /* LDR. */
5338 0, /* LDRS. */
5339 0 }, /* LDC. */
5340 { "upper0_7",
5341 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5342 0, /* LDR. */
5343 0, /* LDRS. */
5344 0 }, /* LDC. */
5345 { "upper8_15",
5346 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5347 0, /* LDR. */
5348 0, /* LDRS. */
5349 0 } }; /* LDC. */
5350
5351 /* Given the address of a pointer pointing to the textual name of a group
5352 relocation as may appear in assembler source, attempt to find its details
5353 in group_reloc_table. The pointer will be updated to the character after
5354 the trailing colon. On failure, FAIL will be returned; SUCCESS
5355 otherwise. On success, *entry will be updated to point at the relevant
5356 group_reloc_table entry. */
5357
5358 static int
5359 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5360 {
5361 unsigned int i;
5362 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5363 {
5364 int length = strlen (group_reloc_table[i].name);
5365
5366 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5367 && (*str)[length] == ':')
5368 {
5369 *out = &group_reloc_table[i];
5370 *str += (length + 1);
5371 return SUCCESS;
5372 }
5373 }
5374
5375 return FAIL;
5376 }
5377
5378 /* Parse a <shifter_operand> for an ARM data processing instruction
5379 (as for parse_shifter_operand) where group relocations are allowed:
5380
5381 #<immediate>
5382 #<immediate>, <rotate>
5383 #:<group_reloc>:<expression>
5384 <Rm>
5385 <Rm>, <shift>
5386
5387 where <group_reloc> is one of the strings defined in group_reloc_table.
5388 The hashes are optional.
5389
5390 Everything else is as for parse_shifter_operand. */
5391
5392 static parse_operand_result
5393 parse_shifter_operand_group_reloc (char **str, int i)
5394 {
5395 /* Determine if we have the sequence of characters #: or just :
5396 coming next. If we do, then we check for a group relocation.
5397 If we don't, punt the whole lot to parse_shifter_operand. */
5398
5399 if (((*str)[0] == '#' && (*str)[1] == ':')
5400 || (*str)[0] == ':')
5401 {
5402 struct group_reloc_table_entry *entry;
5403
5404 if ((*str)[0] == '#')
5405 (*str) += 2;
5406 else
5407 (*str)++;
5408
5409 /* Try to parse a group relocation. Anything else is an error. */
5410 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5411 {
5412 inst.error = _("unknown group relocation");
5413 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5414 }
5415
5416 /* We now have the group relocation table entry corresponding to
5417 the name in the assembler source. Next, we parse the expression. */
5418 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5419 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5420
5421 /* Record the relocation type (always the ALU variant here). */
5422 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5423 gas_assert (inst.reloc.type != 0);
5424
5425 return PARSE_OPERAND_SUCCESS;
5426 }
5427 else
5428 return parse_shifter_operand (str, i) == SUCCESS
5429 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5430
5431 /* Never reached. */
5432 }
5433
5434 /* Parse a Neon alignment expression. Information is written to
5435 inst.operands[i]. We assume the initial ':' has been skipped.
5436
5437 align .imm = align << 8, .immisalign=1, .preind=0 */
5438 static parse_operand_result
5439 parse_neon_alignment (char **str, int i)
5440 {
5441 char *p = *str;
5442 expressionS exp;
5443
5444 my_get_expression (&exp, &p, GE_NO_PREFIX);
5445
5446 if (exp.X_op != O_constant)
5447 {
5448 inst.error = _("alignment must be constant");
5449 return PARSE_OPERAND_FAIL;
5450 }
5451
5452 inst.operands[i].imm = exp.X_add_number << 8;
5453 inst.operands[i].immisalign = 1;
5454 /* Alignments are not pre-indexes. */
5455 inst.operands[i].preind = 0;
5456
5457 *str = p;
5458 return PARSE_OPERAND_SUCCESS;
5459 }
5460
5461 /* Parse all forms of an ARM address expression. Information is written
5462 to inst.operands[i] and/or inst.reloc.
5463
5464 Preindexed addressing (.preind=1):
5465
5466 [Rn, #offset] .reg=Rn .reloc.exp=offset
5467 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5468 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5469 .shift_kind=shift .reloc.exp=shift_imm
5470
5471 These three may have a trailing ! which causes .writeback to be set also.
5472
5473 Postindexed addressing (.postind=1, .writeback=1):
5474
5475 [Rn], #offset .reg=Rn .reloc.exp=offset
5476 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5477 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5478 .shift_kind=shift .reloc.exp=shift_imm
5479
5480 Unindexed addressing (.preind=0, .postind=0):
5481
5482 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5483
5484 Other:
5485
5486 [Rn]{!} shorthand for [Rn,#0]{!}
5487 =immediate .isreg=0 .reloc.exp=immediate
5488 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5489
5490 It is the caller's responsibility to check for addressing modes not
5491 supported by the instruction, and to set inst.reloc.type. */
5492
5493 static parse_operand_result
5494 parse_address_main (char **str, int i, int group_relocations,
5495 group_reloc_type group_type)
5496 {
5497 char *p = *str;
5498 int reg;
5499
5500 if (skip_past_char (&p, '[') == FAIL)
5501 {
5502 if (skip_past_char (&p, '=') == FAIL)
5503 {
5504 /* Bare address - translate to PC-relative offset. */
5505 inst.reloc.pc_rel = 1;
5506 inst.operands[i].reg = REG_PC;
5507 inst.operands[i].isreg = 1;
5508 inst.operands[i].preind = 1;
5509
5510 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5511 return PARSE_OPERAND_FAIL;
5512 }
5513 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5514 /*allow_symbol_p=*/TRUE))
5515 return PARSE_OPERAND_FAIL;
5516
5517 *str = p;
5518 return PARSE_OPERAND_SUCCESS;
5519 }
5520
5521 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5522 skip_whitespace (p);
5523
5524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5525 {
5526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5527 return PARSE_OPERAND_FAIL;
5528 }
5529 inst.operands[i].reg = reg;
5530 inst.operands[i].isreg = 1;
5531
5532 if (skip_past_comma (&p) == SUCCESS)
5533 {
5534 inst.operands[i].preind = 1;
5535
5536 if (*p == '+') p++;
5537 else if (*p == '-') p++, inst.operands[i].negative = 1;
5538
5539 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5540 {
5541 inst.operands[i].imm = reg;
5542 inst.operands[i].immisreg = 1;
5543
5544 if (skip_past_comma (&p) == SUCCESS)
5545 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5546 return PARSE_OPERAND_FAIL;
5547 }
5548 else if (skip_past_char (&p, ':') == SUCCESS)
5549 {
5550 /* FIXME: '@' should be used here, but it's filtered out by generic
5551 code before we get to see it here. This may be subject to
5552 change. */
5553 parse_operand_result result = parse_neon_alignment (&p, i);
5554
5555 if (result != PARSE_OPERAND_SUCCESS)
5556 return result;
5557 }
5558 else
5559 {
5560 if (inst.operands[i].negative)
5561 {
5562 inst.operands[i].negative = 0;
5563 p--;
5564 }
5565
5566 if (group_relocations
5567 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5568 {
5569 struct group_reloc_table_entry *entry;
5570
5571 /* Skip over the #: or : sequence. */
5572 if (*p == '#')
5573 p += 2;
5574 else
5575 p++;
5576
5577 /* Try to parse a group relocation. Anything else is an
5578 error. */
5579 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5580 {
5581 inst.error = _("unknown group relocation");
5582 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5583 }
5584
5585 /* We now have the group relocation table entry corresponding to
5586 the name in the assembler source. Next, we parse the
5587 expression. */
5588 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5589 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5590
5591 /* Record the relocation type. */
5592 switch (group_type)
5593 {
5594 case GROUP_LDR:
5595 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5596 break;
5597
5598 case GROUP_LDRS:
5599 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5600 break;
5601
5602 case GROUP_LDC:
5603 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5604 break;
5605
5606 default:
5607 gas_assert (0);
5608 }
5609
5610 if (inst.reloc.type == 0)
5611 {
5612 inst.error = _("this group relocation is not allowed on this instruction");
5613 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5614 }
5615 }
5616 else
5617 {
5618 char *q = p;
5619 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5620 return PARSE_OPERAND_FAIL;
5621 /* If the offset is 0, find out if it's a +0 or -0. */
5622 if (inst.reloc.exp.X_op == O_constant
5623 && inst.reloc.exp.X_add_number == 0)
5624 {
5625 skip_whitespace (q);
5626 if (*q == '#')
5627 {
5628 q++;
5629 skip_whitespace (q);
5630 }
5631 if (*q == '-')
5632 inst.operands[i].negative = 1;
5633 }
5634 }
5635 }
5636 }
5637 else if (skip_past_char (&p, ':') == SUCCESS)
5638 {
5639 /* FIXME: '@' should be used here, but it's filtered out by generic code
5640 before we get to see it here. This may be subject to change. */
5641 parse_operand_result result = parse_neon_alignment (&p, i);
5642
5643 if (result != PARSE_OPERAND_SUCCESS)
5644 return result;
5645 }
5646
5647 if (skip_past_char (&p, ']') == FAIL)
5648 {
5649 inst.error = _("']' expected");
5650 return PARSE_OPERAND_FAIL;
5651 }
5652
5653 if (skip_past_char (&p, '!') == SUCCESS)
5654 inst.operands[i].writeback = 1;
5655
5656 else if (skip_past_comma (&p) == SUCCESS)
5657 {
5658 if (skip_past_char (&p, '{') == SUCCESS)
5659 {
5660 /* [Rn], {expr} - unindexed, with option */
5661 if (parse_immediate (&p, &inst.operands[i].imm,
5662 0, 255, TRUE) == FAIL)
5663 return PARSE_OPERAND_FAIL;
5664
5665 if (skip_past_char (&p, '}') == FAIL)
5666 {
5667 inst.error = _("'}' expected at end of 'option' field");
5668 return PARSE_OPERAND_FAIL;
5669 }
5670 if (inst.operands[i].preind)
5671 {
5672 inst.error = _("cannot combine index with option");
5673 return PARSE_OPERAND_FAIL;
5674 }
5675 *str = p;
5676 return PARSE_OPERAND_SUCCESS;
5677 }
5678 else
5679 {
5680 inst.operands[i].postind = 1;
5681 inst.operands[i].writeback = 1;
5682
5683 if (inst.operands[i].preind)
5684 {
5685 inst.error = _("cannot combine pre- and post-indexing");
5686 return PARSE_OPERAND_FAIL;
5687 }
5688
5689 if (*p == '+') p++;
5690 else if (*p == '-') p++, inst.operands[i].negative = 1;
5691
5692 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5693 {
5694 /* We might be using the immediate for alignment already. If we
5695 are, OR the register number into the low-order bits. */
5696 if (inst.operands[i].immisalign)
5697 inst.operands[i].imm |= reg;
5698 else
5699 inst.operands[i].imm = reg;
5700 inst.operands[i].immisreg = 1;
5701
5702 if (skip_past_comma (&p) == SUCCESS)
5703 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5704 return PARSE_OPERAND_FAIL;
5705 }
5706 else
5707 {
5708 char *q = p;
5709 if (inst.operands[i].negative)
5710 {
5711 inst.operands[i].negative = 0;
5712 p--;
5713 }
5714 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5715 return PARSE_OPERAND_FAIL;
5716 /* If the offset is 0, find out if it's a +0 or -0. */
5717 if (inst.reloc.exp.X_op == O_constant
5718 && inst.reloc.exp.X_add_number == 0)
5719 {
5720 skip_whitespace (q);
5721 if (*q == '#')
5722 {
5723 q++;
5724 skip_whitespace (q);
5725 }
5726 if (*q == '-')
5727 inst.operands[i].negative = 1;
5728 }
5729 }
5730 }
5731 }
5732
5733 /* If at this point neither .preind nor .postind is set, we have a
5734 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5735 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5736 {
5737 inst.operands[i].preind = 1;
5738 inst.reloc.exp.X_op = O_constant;
5739 inst.reloc.exp.X_add_number = 0;
5740 }
5741 *str = p;
5742 return PARSE_OPERAND_SUCCESS;
5743 }
5744
5745 static int
5746 parse_address (char **str, int i)
5747 {
5748 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5749 ? SUCCESS : FAIL;
5750 }
5751
5752 static parse_operand_result
5753 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5754 {
5755 return parse_address_main (str, i, 1, type);
5756 }
5757
5758 /* Parse an operand for a MOVW or MOVT instruction. */
5759 static int
5760 parse_half (char **str)
5761 {
5762 char * p;
5763
5764 p = *str;
5765 skip_past_char (&p, '#');
5766 if (strncasecmp (p, ":lower16:", 9) == 0)
5767 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5768 else if (strncasecmp (p, ":upper16:", 9) == 0)
5769 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5770
5771 if (inst.reloc.type != BFD_RELOC_UNUSED)
5772 {
5773 p += 9;
5774 skip_whitespace (p);
5775 }
5776
5777 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5778 return FAIL;
5779
5780 if (inst.reloc.type == BFD_RELOC_UNUSED)
5781 {
5782 if (inst.reloc.exp.X_op != O_constant)
5783 {
5784 inst.error = _("constant expression expected");
5785 return FAIL;
5786 }
5787 if (inst.reloc.exp.X_add_number < 0
5788 || inst.reloc.exp.X_add_number > 0xffff)
5789 {
5790 inst.error = _("immediate value out of range");
5791 return FAIL;
5792 }
5793 }
5794 *str = p;
5795 return SUCCESS;
5796 }
5797
5798 /* Miscellaneous. */
5799
5800 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5801 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5802 static int
5803 parse_psr (char **str, bfd_boolean lhs)
5804 {
5805 char *p;
5806 unsigned long psr_field;
5807 const struct asm_psr *psr;
5808 char *start;
5809 bfd_boolean is_apsr = FALSE;
5810 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5811
5812 /* PR gas/12698: If the user has specified -march=all then m_profile will
5813 be TRUE, but we want to ignore it in this case as we are building for any
5814 CPU type, including non-m variants. */
5815 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5816 m_profile = FALSE;
5817
5818 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5819 feature for ease of use and backwards compatibility. */
5820 p = *str;
5821 if (strncasecmp (p, "SPSR", 4) == 0)
5822 {
5823 if (m_profile)
5824 goto unsupported_psr;
5825
5826 psr_field = SPSR_BIT;
5827 }
5828 else if (strncasecmp (p, "CPSR", 4) == 0)
5829 {
5830 if (m_profile)
5831 goto unsupported_psr;
5832
5833 psr_field = 0;
5834 }
5835 else if (strncasecmp (p, "APSR", 4) == 0)
5836 {
5837 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5838 and ARMv7-R architecture CPUs. */
5839 is_apsr = TRUE;
5840 psr_field = 0;
5841 }
5842 else if (m_profile)
5843 {
5844 start = p;
5845 do
5846 p++;
5847 while (ISALNUM (*p) || *p == '_');
5848
5849 if (strncasecmp (start, "iapsr", 5) == 0
5850 || strncasecmp (start, "eapsr", 5) == 0
5851 || strncasecmp (start, "xpsr", 4) == 0
5852 || strncasecmp (start, "psr", 3) == 0)
5853 p = start + strcspn (start, "rR") + 1;
5854
5855 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5856 p - start);
5857
5858 if (!psr)
5859 return FAIL;
5860
5861 /* If APSR is being written, a bitfield may be specified. Note that
5862 APSR itself is handled above. */
5863 if (psr->field <= 3)
5864 {
5865 psr_field = psr->field;
5866 is_apsr = TRUE;
5867 goto check_suffix;
5868 }
5869
5870 *str = p;
5871 /* M-profile MSR instructions have the mask field set to "10", except
5872 *PSR variants which modify APSR, which may use a different mask (and
5873 have been handled already). Do that by setting the PSR_f field
5874 here. */
5875 return psr->field | (lhs ? PSR_f : 0);
5876 }
5877 else
5878 goto unsupported_psr;
5879
5880 p += 4;
5881 check_suffix:
5882 if (*p == '_')
5883 {
5884 /* A suffix follows. */
5885 p++;
5886 start = p;
5887
5888 do
5889 p++;
5890 while (ISALNUM (*p) || *p == '_');
5891
5892 if (is_apsr)
5893 {
5894 /* APSR uses a notation for bits, rather than fields. */
5895 unsigned int nzcvq_bits = 0;
5896 unsigned int g_bit = 0;
5897 char *bit;
5898
5899 for (bit = start; bit != p; bit++)
5900 {
5901 switch (TOLOWER (*bit))
5902 {
5903 case 'n':
5904 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5905 break;
5906
5907 case 'z':
5908 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5909 break;
5910
5911 case 'c':
5912 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5913 break;
5914
5915 case 'v':
5916 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5917 break;
5918
5919 case 'q':
5920 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5921 break;
5922
5923 case 'g':
5924 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5925 break;
5926
5927 default:
5928 inst.error = _("unexpected bit specified after APSR");
5929 return FAIL;
5930 }
5931 }
5932
5933 if (nzcvq_bits == 0x1f)
5934 psr_field |= PSR_f;
5935
5936 if (g_bit == 0x1)
5937 {
5938 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5939 {
5940 inst.error = _("selected processor does not "
5941 "support DSP extension");
5942 return FAIL;
5943 }
5944
5945 psr_field |= PSR_s;
5946 }
5947
5948 if ((nzcvq_bits & 0x20) != 0
5949 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5950 || (g_bit & 0x2) != 0)
5951 {
5952 inst.error = _("bad bitmask specified after APSR");
5953 return FAIL;
5954 }
5955 }
5956 else
5957 {
5958 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5959 p - start);
5960 if (!psr)
5961 goto error;
5962
5963 psr_field |= psr->field;
5964 }
5965 }
5966 else
5967 {
5968 if (ISALNUM (*p))
5969 goto error; /* Garbage after "[CS]PSR". */
5970
5971 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5972 is deprecated, but allow it anyway. */
5973 if (is_apsr && lhs)
5974 {
5975 psr_field |= PSR_f;
5976 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5977 "deprecated"));
5978 }
5979 else if (!m_profile)
5980 /* These bits are never right for M-profile devices: don't set them
5981 (only code paths which read/write APSR reach here). */
5982 psr_field |= (PSR_c | PSR_f);
5983 }
5984 *str = p;
5985 return psr_field;
5986
5987 unsupported_psr:
5988 inst.error = _("selected processor does not support requested special "
5989 "purpose register");
5990 return FAIL;
5991
5992 error:
5993 inst.error = _("flag for {c}psr instruction expected");
5994 return FAIL;
5995 }
5996
5997 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5998 value suitable for splatting into the AIF field of the instruction. */
5999
6000 static int
6001 parse_cps_flags (char **str)
6002 {
6003 int val = 0;
6004 int saw_a_flag = 0;
6005 char *s = *str;
6006
6007 for (;;)
6008 switch (*s++)
6009 {
6010 case '\0': case ',':
6011 goto done;
6012
6013 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6014 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6015 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6016
6017 default:
6018 inst.error = _("unrecognized CPS flag");
6019 return FAIL;
6020 }
6021
6022 done:
6023 if (saw_a_flag == 0)
6024 {
6025 inst.error = _("missing CPS flags");
6026 return FAIL;
6027 }
6028
6029 *str = s - 1;
6030 return val;
6031 }
6032
6033 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6034 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6035
6036 static int
6037 parse_endian_specifier (char **str)
6038 {
6039 int little_endian;
6040 char *s = *str;
6041
6042 if (strncasecmp (s, "BE", 2))
6043 little_endian = 0;
6044 else if (strncasecmp (s, "LE", 2))
6045 little_endian = 1;
6046 else
6047 {
6048 inst.error = _("valid endian specifiers are be or le");
6049 return FAIL;
6050 }
6051
6052 if (ISALNUM (s[2]) || s[2] == '_')
6053 {
6054 inst.error = _("valid endian specifiers are be or le");
6055 return FAIL;
6056 }
6057
6058 *str = s + 2;
6059 return little_endian;
6060 }
6061
6062 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6063 value suitable for poking into the rotate field of an sxt or sxta
6064 instruction, or FAIL on error. */
6065
6066 static int
6067 parse_ror (char **str)
6068 {
6069 int rot;
6070 char *s = *str;
6071
6072 if (strncasecmp (s, "ROR", 3) == 0)
6073 s += 3;
6074 else
6075 {
6076 inst.error = _("missing rotation field after comma");
6077 return FAIL;
6078 }
6079
6080 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6081 return FAIL;
6082
6083 switch (rot)
6084 {
6085 case 0: *str = s; return 0x0;
6086 case 8: *str = s; return 0x1;
6087 case 16: *str = s; return 0x2;
6088 case 24: *str = s; return 0x3;
6089
6090 default:
6091 inst.error = _("rotation can only be 0, 8, 16, or 24");
6092 return FAIL;
6093 }
6094 }
6095
6096 /* Parse a conditional code (from conds[] below). The value returned is in the
6097 range 0 .. 14, or FAIL. */
6098 static int
6099 parse_cond (char **str)
6100 {
6101 char *q;
6102 const struct asm_cond *c;
6103 int n;
6104 /* Condition codes are always 2 characters, so matching up to
6105 3 characters is sufficient. */
6106 char cond[3];
6107
6108 q = *str;
6109 n = 0;
6110 while (ISALPHA (*q) && n < 3)
6111 {
6112 cond[n] = TOLOWER (*q);
6113 q++;
6114 n++;
6115 }
6116
6117 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6118 if (!c)
6119 {
6120 inst.error = _("condition required");
6121 return FAIL;
6122 }
6123
6124 *str = q;
6125 return c->value;
6126 }
6127
6128 /* Record a use of the given feature. */
6129 static void
6130 record_feature_use (const arm_feature_set *feature)
6131 {
6132 if (thumb_mode)
6133 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6134 else
6135 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6136 }
6137
6138 /* If the given feature available in the selected CPU, mark it as used.
6139 Returns TRUE iff feature is available. */
6140 static bfd_boolean
6141 mark_feature_used (const arm_feature_set *feature)
6142 {
6143 /* Ensure the option is valid on the current architecture. */
6144 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6145 return FALSE;
6146
6147 /* Add the appropriate architecture feature for the barrier option used.
6148 */
6149 record_feature_use (feature);
6150
6151 return TRUE;
6152 }
6153
6154 /* Parse an option for a barrier instruction. Returns the encoding for the
6155 option, or FAIL. */
6156 static int
6157 parse_barrier (char **str)
6158 {
6159 char *p, *q;
6160 const struct asm_barrier_opt *o;
6161
6162 p = q = *str;
6163 while (ISALPHA (*q))
6164 q++;
6165
6166 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6167 q - p);
6168 if (!o)
6169 return FAIL;
6170
6171 if (!mark_feature_used (&o->arch))
6172 return FAIL;
6173
6174 *str = q;
6175 return o->value;
6176 }
6177
6178 /* Parse the operands of a table branch instruction. Similar to a memory
6179 operand. */
6180 static int
6181 parse_tb (char **str)
6182 {
6183 char * p = *str;
6184 int reg;
6185
6186 if (skip_past_char (&p, '[') == FAIL)
6187 {
6188 inst.error = _("'[' expected");
6189 return FAIL;
6190 }
6191
6192 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6193 {
6194 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6195 return FAIL;
6196 }
6197 inst.operands[0].reg = reg;
6198
6199 if (skip_past_comma (&p) == FAIL)
6200 {
6201 inst.error = _("',' expected");
6202 return FAIL;
6203 }
6204
6205 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6206 {
6207 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6208 return FAIL;
6209 }
6210 inst.operands[0].imm = reg;
6211
6212 if (skip_past_comma (&p) == SUCCESS)
6213 {
6214 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6215 return FAIL;
6216 if (inst.reloc.exp.X_add_number != 1)
6217 {
6218 inst.error = _("invalid shift");
6219 return FAIL;
6220 }
6221 inst.operands[0].shifted = 1;
6222 }
6223
6224 if (skip_past_char (&p, ']') == FAIL)
6225 {
6226 inst.error = _("']' expected");
6227 return FAIL;
6228 }
6229 *str = p;
6230 return SUCCESS;
6231 }
6232
6233 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6234 information on the types the operands can take and how they are encoded.
6235 Up to four operands may be read; this function handles setting the
6236 ".present" field for each read operand itself.
6237 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6238 else returns FAIL. */
6239
6240 static int
6241 parse_neon_mov (char **str, int *which_operand)
6242 {
6243 int i = *which_operand, val;
6244 enum arm_reg_type rtype;
6245 char *ptr = *str;
6246 struct neon_type_el optype;
6247
6248 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6249 {
6250 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6251 inst.operands[i].reg = val;
6252 inst.operands[i].isscalar = 1;
6253 inst.operands[i].vectype = optype;
6254 inst.operands[i++].present = 1;
6255
6256 if (skip_past_comma (&ptr) == FAIL)
6257 goto wanted_comma;
6258
6259 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6260 goto wanted_arm;
6261
6262 inst.operands[i].reg = val;
6263 inst.operands[i].isreg = 1;
6264 inst.operands[i].present = 1;
6265 }
6266 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6267 != FAIL)
6268 {
6269 /* Cases 0, 1, 2, 3, 5 (D only). */
6270 if (skip_past_comma (&ptr) == FAIL)
6271 goto wanted_comma;
6272
6273 inst.operands[i].reg = val;
6274 inst.operands[i].isreg = 1;
6275 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6276 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6277 inst.operands[i].isvec = 1;
6278 inst.operands[i].vectype = optype;
6279 inst.operands[i++].present = 1;
6280
6281 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6282 {
6283 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6284 Case 13: VMOV <Sd>, <Rm> */
6285 inst.operands[i].reg = val;
6286 inst.operands[i].isreg = 1;
6287 inst.operands[i].present = 1;
6288
6289 if (rtype == REG_TYPE_NQ)
6290 {
6291 first_error (_("can't use Neon quad register here"));
6292 return FAIL;
6293 }
6294 else if (rtype != REG_TYPE_VFS)
6295 {
6296 i++;
6297 if (skip_past_comma (&ptr) == FAIL)
6298 goto wanted_comma;
6299 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6300 goto wanted_arm;
6301 inst.operands[i].reg = val;
6302 inst.operands[i].isreg = 1;
6303 inst.operands[i].present = 1;
6304 }
6305 }
6306 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6307 &optype)) != FAIL)
6308 {
6309 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6310 Case 1: VMOV<c><q> <Dd>, <Dm>
6311 Case 8: VMOV.F32 <Sd>, <Sm>
6312 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6313
6314 inst.operands[i].reg = val;
6315 inst.operands[i].isreg = 1;
6316 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6317 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6318 inst.operands[i].isvec = 1;
6319 inst.operands[i].vectype = optype;
6320 inst.operands[i].present = 1;
6321
6322 if (skip_past_comma (&ptr) == SUCCESS)
6323 {
6324 /* Case 15. */
6325 i++;
6326
6327 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6328 goto wanted_arm;
6329
6330 inst.operands[i].reg = val;
6331 inst.operands[i].isreg = 1;
6332 inst.operands[i++].present = 1;
6333
6334 if (skip_past_comma (&ptr) == FAIL)
6335 goto wanted_comma;
6336
6337 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6338 goto wanted_arm;
6339
6340 inst.operands[i].reg = val;
6341 inst.operands[i].isreg = 1;
6342 inst.operands[i].present = 1;
6343 }
6344 }
6345 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6346 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6347 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6348 Case 10: VMOV.F32 <Sd>, #<imm>
6349 Case 11: VMOV.F64 <Dd>, #<imm> */
6350 inst.operands[i].immisfloat = 1;
6351 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6352 == SUCCESS)
6353 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6354 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6355 ;
6356 else
6357 {
6358 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6359 return FAIL;
6360 }
6361 }
6362 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6363 {
6364 /* Cases 6, 7. */
6365 inst.operands[i].reg = val;
6366 inst.operands[i].isreg = 1;
6367 inst.operands[i++].present = 1;
6368
6369 if (skip_past_comma (&ptr) == FAIL)
6370 goto wanted_comma;
6371
6372 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6373 {
6374 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6375 inst.operands[i].reg = val;
6376 inst.operands[i].isscalar = 1;
6377 inst.operands[i].present = 1;
6378 inst.operands[i].vectype = optype;
6379 }
6380 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6381 {
6382 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6383 inst.operands[i].reg = val;
6384 inst.operands[i].isreg = 1;
6385 inst.operands[i++].present = 1;
6386
6387 if (skip_past_comma (&ptr) == FAIL)
6388 goto wanted_comma;
6389
6390 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6391 == FAIL)
6392 {
6393 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6394 return FAIL;
6395 }
6396
6397 inst.operands[i].reg = val;
6398 inst.operands[i].isreg = 1;
6399 inst.operands[i].isvec = 1;
6400 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6401 inst.operands[i].vectype = optype;
6402 inst.operands[i].present = 1;
6403
6404 if (rtype == REG_TYPE_VFS)
6405 {
6406 /* Case 14. */
6407 i++;
6408 if (skip_past_comma (&ptr) == FAIL)
6409 goto wanted_comma;
6410 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6411 &optype)) == FAIL)
6412 {
6413 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6414 return FAIL;
6415 }
6416 inst.operands[i].reg = val;
6417 inst.operands[i].isreg = 1;
6418 inst.operands[i].isvec = 1;
6419 inst.operands[i].issingle = 1;
6420 inst.operands[i].vectype = optype;
6421 inst.operands[i].present = 1;
6422 }
6423 }
6424 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6425 != FAIL)
6426 {
6427 /* Case 13. */
6428 inst.operands[i].reg = val;
6429 inst.operands[i].isreg = 1;
6430 inst.operands[i].isvec = 1;
6431 inst.operands[i].issingle = 1;
6432 inst.operands[i].vectype = optype;
6433 inst.operands[i].present = 1;
6434 }
6435 }
6436 else
6437 {
6438 first_error (_("parse error"));
6439 return FAIL;
6440 }
6441
6442 /* Successfully parsed the operands. Update args. */
6443 *which_operand = i;
6444 *str = ptr;
6445 return SUCCESS;
6446
6447 wanted_comma:
6448 first_error (_("expected comma"));
6449 return FAIL;
6450
6451 wanted_arm:
6452 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6453 return FAIL;
6454 }
6455
6456 /* Use this macro when the operand constraints are different
6457 for ARM and THUMB (e.g. ldrd). */
6458 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6459 ((arm_operand) | ((thumb_operand) << 16))
6460
6461 /* Matcher codes for parse_operands. */
6462 enum operand_parse_code
6463 {
6464 OP_stop, /* end of line */
6465
6466 OP_RR, /* ARM register */
6467 OP_RRnpc, /* ARM register, not r15 */
6468 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6469 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6470 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6471 optional trailing ! */
6472 OP_RRw, /* ARM register, not r15, optional trailing ! */
6473 OP_RCP, /* Coprocessor number */
6474 OP_RCN, /* Coprocessor register */
6475 OP_RF, /* FPA register */
6476 OP_RVS, /* VFP single precision register */
6477 OP_RVD, /* VFP double precision register (0..15) */
6478 OP_RND, /* Neon double precision register (0..31) */
6479 OP_RNQ, /* Neon quad precision register */
6480 OP_RVSD, /* VFP single or double precision register */
6481 OP_RNDQ, /* Neon double or quad precision register */
6482 OP_RNSDQ, /* Neon single, double or quad precision register */
6483 OP_RNSC, /* Neon scalar D[X] */
6484 OP_RVC, /* VFP control register */
6485 OP_RMF, /* Maverick F register */
6486 OP_RMD, /* Maverick D register */
6487 OP_RMFX, /* Maverick FX register */
6488 OP_RMDX, /* Maverick DX register */
6489 OP_RMAX, /* Maverick AX register */
6490 OP_RMDS, /* Maverick DSPSC register */
6491 OP_RIWR, /* iWMMXt wR register */
6492 OP_RIWC, /* iWMMXt wC register */
6493 OP_RIWG, /* iWMMXt wCG register */
6494 OP_RXA, /* XScale accumulator register */
6495
6496 OP_REGLST, /* ARM register list */
6497 OP_VRSLST, /* VFP single-precision register list */
6498 OP_VRDLST, /* VFP double-precision register list */
6499 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6500 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6501 OP_NSTRLST, /* Neon element/structure list */
6502
6503 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6504 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6505 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6506 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6507 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6508 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6509 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6510 OP_VMOV, /* Neon VMOV operands. */
6511 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6512 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6513 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6514
6515 OP_I0, /* immediate zero */
6516 OP_I7, /* immediate value 0 .. 7 */
6517 OP_I15, /* 0 .. 15 */
6518 OP_I16, /* 1 .. 16 */
6519 OP_I16z, /* 0 .. 16 */
6520 OP_I31, /* 0 .. 31 */
6521 OP_I31w, /* 0 .. 31, optional trailing ! */
6522 OP_I32, /* 1 .. 32 */
6523 OP_I32z, /* 0 .. 32 */
6524 OP_I63, /* 0 .. 63 */
6525 OP_I63s, /* -64 .. 63 */
6526 OP_I64, /* 1 .. 64 */
6527 OP_I64z, /* 0 .. 64 */
6528 OP_I255, /* 0 .. 255 */
6529
6530 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6531 OP_I7b, /* 0 .. 7 */
6532 OP_I15b, /* 0 .. 15 */
6533 OP_I31b, /* 0 .. 31 */
6534
6535 OP_SH, /* shifter operand */
6536 OP_SHG, /* shifter operand with possible group relocation */
6537 OP_ADDR, /* Memory address expression (any mode) */
6538 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6539 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6540 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6541 OP_EXP, /* arbitrary expression */
6542 OP_EXPi, /* same, with optional immediate prefix */
6543 OP_EXPr, /* same, with optional relocation suffix */
6544 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6545 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6546 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6547
6548 OP_CPSF, /* CPS flags */
6549 OP_ENDI, /* Endianness specifier */
6550 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6551 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6552 OP_COND, /* conditional code */
6553 OP_TB, /* Table branch. */
6554
6555 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6556
6557 OP_RRnpc_I0, /* ARM register or literal 0 */
6558 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
6559 OP_RR_EXi, /* ARM register or expression with imm prefix */
6560 OP_RF_IF, /* FPA register or immediate */
6561 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6562 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6563
6564 /* Optional operands. */
6565 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6566 OP_oI31b, /* 0 .. 31 */
6567 OP_oI32b, /* 1 .. 32 */
6568 OP_oI32z, /* 0 .. 32 */
6569 OP_oIffffb, /* 0 .. 65535 */
6570 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6571
6572 OP_oRR, /* ARM register */
6573 OP_oRRnpc, /* ARM register, not the PC */
6574 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6575 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6576 OP_oRND, /* Optional Neon double precision register */
6577 OP_oRNQ, /* Optional Neon quad precision register */
6578 OP_oRNDQ, /* Optional Neon double or quad precision register */
6579 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6580 OP_oSHll, /* LSL immediate */
6581 OP_oSHar, /* ASR immediate */
6582 OP_oSHllar, /* LSL or ASR immediate */
6583 OP_oROR, /* ROR 0/8/16/24 */
6584 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6585
6586 /* Some pre-defined mixed (ARM/THUMB) operands. */
6587 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6588 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6589 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6590
6591 OP_FIRST_OPTIONAL = OP_oI7b
6592 };
6593
6594 /* Generic instruction operand parser. This does no encoding and no
6595 semantic validation; it merely squirrels values away in the inst
6596 structure. Returns SUCCESS or FAIL depending on whether the
6597 specified grammar matched. */
6598 static int
6599 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6600 {
6601 unsigned const int *upat = pattern;
6602 char *backtrack_pos = 0;
6603 const char *backtrack_error = 0;
6604 int i, val = 0, backtrack_index = 0;
6605 enum arm_reg_type rtype;
6606 parse_operand_result result;
6607 unsigned int op_parse_code;
6608
6609 #define po_char_or_fail(chr) \
6610 do \
6611 { \
6612 if (skip_past_char (&str, chr) == FAIL) \
6613 goto bad_args; \
6614 } \
6615 while (0)
6616
6617 #define po_reg_or_fail(regtype) \
6618 do \
6619 { \
6620 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6621 & inst.operands[i].vectype); \
6622 if (val == FAIL) \
6623 { \
6624 first_error (_(reg_expected_msgs[regtype])); \
6625 goto failure; \
6626 } \
6627 inst.operands[i].reg = val; \
6628 inst.operands[i].isreg = 1; \
6629 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6630 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6631 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6632 || rtype == REG_TYPE_VFD \
6633 || rtype == REG_TYPE_NQ); \
6634 } \
6635 while (0)
6636
6637 #define po_reg_or_goto(regtype, label) \
6638 do \
6639 { \
6640 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6641 & inst.operands[i].vectype); \
6642 if (val == FAIL) \
6643 goto label; \
6644 \
6645 inst.operands[i].reg = val; \
6646 inst.operands[i].isreg = 1; \
6647 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6648 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6649 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6650 || rtype == REG_TYPE_VFD \
6651 || rtype == REG_TYPE_NQ); \
6652 } \
6653 while (0)
6654
6655 #define po_imm_or_fail(min, max, popt) \
6656 do \
6657 { \
6658 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6659 goto failure; \
6660 inst.operands[i].imm = val; \
6661 } \
6662 while (0)
6663
6664 #define po_scalar_or_goto(elsz, label) \
6665 do \
6666 { \
6667 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6668 if (val == FAIL) \
6669 goto label; \
6670 inst.operands[i].reg = val; \
6671 inst.operands[i].isscalar = 1; \
6672 } \
6673 while (0)
6674
6675 #define po_misc_or_fail(expr) \
6676 do \
6677 { \
6678 if (expr) \
6679 goto failure; \
6680 } \
6681 while (0)
6682
6683 #define po_misc_or_fail_no_backtrack(expr) \
6684 do \
6685 { \
6686 result = expr; \
6687 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6688 backtrack_pos = 0; \
6689 if (result != PARSE_OPERAND_SUCCESS) \
6690 goto failure; \
6691 } \
6692 while (0)
6693
6694 #define po_barrier_or_imm(str) \
6695 do \
6696 { \
6697 val = parse_barrier (&str); \
6698 if (val == FAIL && ! ISALPHA (*str)) \
6699 goto immediate; \
6700 if (val == FAIL \
6701 /* ISB can only take SY as an option. */ \
6702 || ((inst.instruction & 0xf0) == 0x60 \
6703 && val != 0xf)) \
6704 { \
6705 inst.error = _("invalid barrier type"); \
6706 backtrack_pos = 0; \
6707 goto failure; \
6708 } \
6709 } \
6710 while (0)
6711
6712 skip_whitespace (str);
6713
6714 for (i = 0; upat[i] != OP_stop; i++)
6715 {
6716 op_parse_code = upat[i];
6717 if (op_parse_code >= 1<<16)
6718 op_parse_code = thumb ? (op_parse_code >> 16)
6719 : (op_parse_code & ((1<<16)-1));
6720
6721 if (op_parse_code >= OP_FIRST_OPTIONAL)
6722 {
6723 /* Remember where we are in case we need to backtrack. */
6724 gas_assert (!backtrack_pos);
6725 backtrack_pos = str;
6726 backtrack_error = inst.error;
6727 backtrack_index = i;
6728 }
6729
6730 if (i > 0 && (i > 1 || inst.operands[0].present))
6731 po_char_or_fail (',');
6732
6733 switch (op_parse_code)
6734 {
6735 /* Registers */
6736 case OP_oRRnpc:
6737 case OP_oRRnpcsp:
6738 case OP_RRnpc:
6739 case OP_RRnpcsp:
6740 case OP_oRR:
6741 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6742 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6743 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6744 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6745 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6746 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6747 case OP_oRND:
6748 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6749 case OP_RVC:
6750 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6751 break;
6752 /* Also accept generic coprocessor regs for unknown registers. */
6753 coproc_reg:
6754 po_reg_or_fail (REG_TYPE_CN);
6755 break;
6756 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6757 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6758 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6759 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6760 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6761 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6762 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6763 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6764 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6765 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6766 case OP_oRNQ:
6767 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6768 case OP_oRNDQ:
6769 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6770 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6771 case OP_oRNSDQ:
6772 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6773
6774 /* Neon scalar. Using an element size of 8 means that some invalid
6775 scalars are accepted here, so deal with those in later code. */
6776 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6777
6778 case OP_RNDQ_I0:
6779 {
6780 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6781 break;
6782 try_imm0:
6783 po_imm_or_fail (0, 0, TRUE);
6784 }
6785 break;
6786
6787 case OP_RVSD_I0:
6788 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6789 break;
6790
6791 case OP_RSVD_FI0:
6792 {
6793 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6794 break;
6795 try_ifimm0:
6796 if (parse_ifimm_zero (&str))
6797 inst.operands[i].imm = 0;
6798 else
6799 {
6800 inst.error
6801 = _("only floating point zero is allowed as immediate value");
6802 goto failure;
6803 }
6804 }
6805 break;
6806
6807 case OP_RR_RNSC:
6808 {
6809 po_scalar_or_goto (8, try_rr);
6810 break;
6811 try_rr:
6812 po_reg_or_fail (REG_TYPE_RN);
6813 }
6814 break;
6815
6816 case OP_RNSDQ_RNSC:
6817 {
6818 po_scalar_or_goto (8, try_nsdq);
6819 break;
6820 try_nsdq:
6821 po_reg_or_fail (REG_TYPE_NSDQ);
6822 }
6823 break;
6824
6825 case OP_RNDQ_RNSC:
6826 {
6827 po_scalar_or_goto (8, try_ndq);
6828 break;
6829 try_ndq:
6830 po_reg_or_fail (REG_TYPE_NDQ);
6831 }
6832 break;
6833
6834 case OP_RND_RNSC:
6835 {
6836 po_scalar_or_goto (8, try_vfd);
6837 break;
6838 try_vfd:
6839 po_reg_or_fail (REG_TYPE_VFD);
6840 }
6841 break;
6842
6843 case OP_VMOV:
6844 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6845 not careful then bad things might happen. */
6846 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6847 break;
6848
6849 case OP_RNDQ_Ibig:
6850 {
6851 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6852 break;
6853 try_immbig:
6854 /* There's a possibility of getting a 64-bit immediate here, so
6855 we need special handling. */
6856 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6857 == FAIL)
6858 {
6859 inst.error = _("immediate value is out of range");
6860 goto failure;
6861 }
6862 }
6863 break;
6864
6865 case OP_RNDQ_I63b:
6866 {
6867 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6868 break;
6869 try_shimm:
6870 po_imm_or_fail (0, 63, TRUE);
6871 }
6872 break;
6873
6874 case OP_RRnpcb:
6875 po_char_or_fail ('[');
6876 po_reg_or_fail (REG_TYPE_RN);
6877 po_char_or_fail (']');
6878 break;
6879
6880 case OP_RRnpctw:
6881 case OP_RRw:
6882 case OP_oRRw:
6883 po_reg_or_fail (REG_TYPE_RN);
6884 if (skip_past_char (&str, '!') == SUCCESS)
6885 inst.operands[i].writeback = 1;
6886 break;
6887
6888 /* Immediates */
6889 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6890 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6891 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6892 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6893 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6894 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6895 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6896 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6897 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6898 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6899 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6900 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6901
6902 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6903 case OP_oI7b:
6904 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6905 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6906 case OP_oI31b:
6907 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6908 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6909 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6910 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6911
6912 /* Immediate variants */
6913 case OP_oI255c:
6914 po_char_or_fail ('{');
6915 po_imm_or_fail (0, 255, TRUE);
6916 po_char_or_fail ('}');
6917 break;
6918
6919 case OP_I31w:
6920 /* The expression parser chokes on a trailing !, so we have
6921 to find it first and zap it. */
6922 {
6923 char *s = str;
6924 while (*s && *s != ',')
6925 s++;
6926 if (s[-1] == '!')
6927 {
6928 s[-1] = '\0';
6929 inst.operands[i].writeback = 1;
6930 }
6931 po_imm_or_fail (0, 31, TRUE);
6932 if (str == s - 1)
6933 str = s;
6934 }
6935 break;
6936
6937 /* Expressions */
6938 case OP_EXPi: EXPi:
6939 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6940 GE_OPT_PREFIX));
6941 break;
6942
6943 case OP_EXP:
6944 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6945 GE_NO_PREFIX));
6946 break;
6947
6948 case OP_EXPr: EXPr:
6949 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6950 GE_NO_PREFIX));
6951 if (inst.reloc.exp.X_op == O_symbol)
6952 {
6953 val = parse_reloc (&str);
6954 if (val == -1)
6955 {
6956 inst.error = _("unrecognized relocation suffix");
6957 goto failure;
6958 }
6959 else if (val != BFD_RELOC_UNUSED)
6960 {
6961 inst.operands[i].imm = val;
6962 inst.operands[i].hasreloc = 1;
6963 }
6964 }
6965 break;
6966
6967 /* Operand for MOVW or MOVT. */
6968 case OP_HALF:
6969 po_misc_or_fail (parse_half (&str));
6970 break;
6971
6972 /* Register or expression. */
6973 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6974 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6975
6976 /* Register or immediate. */
6977 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6978 I0: po_imm_or_fail (0, 0, FALSE); break;
6979
6980 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6981 IF:
6982 if (!is_immediate_prefix (*str))
6983 goto bad_args;
6984 str++;
6985 val = parse_fpa_immediate (&str);
6986 if (val == FAIL)
6987 goto failure;
6988 /* FPA immediates are encoded as registers 8-15.
6989 parse_fpa_immediate has already applied the offset. */
6990 inst.operands[i].reg = val;
6991 inst.operands[i].isreg = 1;
6992 break;
6993
6994 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6995 I32z: po_imm_or_fail (0, 32, FALSE); break;
6996
6997 /* Two kinds of register. */
6998 case OP_RIWR_RIWC:
6999 {
7000 struct reg_entry *rege = arm_reg_parse_multi (&str);
7001 if (!rege
7002 || (rege->type != REG_TYPE_MMXWR
7003 && rege->type != REG_TYPE_MMXWC
7004 && rege->type != REG_TYPE_MMXWCG))
7005 {
7006 inst.error = _("iWMMXt data or control register expected");
7007 goto failure;
7008 }
7009 inst.operands[i].reg = rege->number;
7010 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7011 }
7012 break;
7013
7014 case OP_RIWC_RIWG:
7015 {
7016 struct reg_entry *rege = arm_reg_parse_multi (&str);
7017 if (!rege
7018 || (rege->type != REG_TYPE_MMXWC
7019 && rege->type != REG_TYPE_MMXWCG))
7020 {
7021 inst.error = _("iWMMXt control register expected");
7022 goto failure;
7023 }
7024 inst.operands[i].reg = rege->number;
7025 inst.operands[i].isreg = 1;
7026 }
7027 break;
7028
7029 /* Misc */
7030 case OP_CPSF: val = parse_cps_flags (&str); break;
7031 case OP_ENDI: val = parse_endian_specifier (&str); break;
7032 case OP_oROR: val = parse_ror (&str); break;
7033 case OP_COND: val = parse_cond (&str); break;
7034 case OP_oBARRIER_I15:
7035 po_barrier_or_imm (str); break;
7036 immediate:
7037 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7038 goto failure;
7039 break;
7040
7041 case OP_wPSR:
7042 case OP_rPSR:
7043 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7044 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7045 {
7046 inst.error = _("Banked registers are not available with this "
7047 "architecture.");
7048 goto failure;
7049 }
7050 break;
7051 try_psr:
7052 val = parse_psr (&str, op_parse_code == OP_wPSR);
7053 break;
7054
7055 case OP_APSR_RR:
7056 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7057 break;
7058 try_apsr:
7059 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7060 instruction). */
7061 if (strncasecmp (str, "APSR_", 5) == 0)
7062 {
7063 unsigned found = 0;
7064 str += 5;
7065 while (found < 15)
7066 switch (*str++)
7067 {
7068 case 'c': found = (found & 1) ? 16 : found | 1; break;
7069 case 'n': found = (found & 2) ? 16 : found | 2; break;
7070 case 'z': found = (found & 4) ? 16 : found | 4; break;
7071 case 'v': found = (found & 8) ? 16 : found | 8; break;
7072 default: found = 16;
7073 }
7074 if (found != 15)
7075 goto failure;
7076 inst.operands[i].isvec = 1;
7077 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7078 inst.operands[i].reg = REG_PC;
7079 }
7080 else
7081 goto failure;
7082 break;
7083
7084 case OP_TB:
7085 po_misc_or_fail (parse_tb (&str));
7086 break;
7087
7088 /* Register lists. */
7089 case OP_REGLST:
7090 val = parse_reg_list (&str);
7091 if (*str == '^')
7092 {
7093 inst.operands[i].writeback = 1;
7094 str++;
7095 }
7096 break;
7097
7098 case OP_VRSLST:
7099 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7100 break;
7101
7102 case OP_VRDLST:
7103 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7104 break;
7105
7106 case OP_VRSDLST:
7107 /* Allow Q registers too. */
7108 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7109 REGLIST_NEON_D);
7110 if (val == FAIL)
7111 {
7112 inst.error = NULL;
7113 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7114 REGLIST_VFP_S);
7115 inst.operands[i].issingle = 1;
7116 }
7117 break;
7118
7119 case OP_NRDLST:
7120 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7121 REGLIST_NEON_D);
7122 break;
7123
7124 case OP_NSTRLST:
7125 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7126 &inst.operands[i].vectype);
7127 break;
7128
7129 /* Addressing modes */
7130 case OP_ADDR:
7131 po_misc_or_fail (parse_address (&str, i));
7132 break;
7133
7134 case OP_ADDRGLDR:
7135 po_misc_or_fail_no_backtrack (
7136 parse_address_group_reloc (&str, i, GROUP_LDR));
7137 break;
7138
7139 case OP_ADDRGLDRS:
7140 po_misc_or_fail_no_backtrack (
7141 parse_address_group_reloc (&str, i, GROUP_LDRS));
7142 break;
7143
7144 case OP_ADDRGLDC:
7145 po_misc_or_fail_no_backtrack (
7146 parse_address_group_reloc (&str, i, GROUP_LDC));
7147 break;
7148
7149 case OP_SH:
7150 po_misc_or_fail (parse_shifter_operand (&str, i));
7151 break;
7152
7153 case OP_SHG:
7154 po_misc_or_fail_no_backtrack (
7155 parse_shifter_operand_group_reloc (&str, i));
7156 break;
7157
7158 case OP_oSHll:
7159 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7160 break;
7161
7162 case OP_oSHar:
7163 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7164 break;
7165
7166 case OP_oSHllar:
7167 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7168 break;
7169
7170 default:
7171 as_fatal (_("unhandled operand code %d"), op_parse_code);
7172 }
7173
7174 /* Various value-based sanity checks and shared operations. We
7175 do not signal immediate failures for the register constraints;
7176 this allows a syntax error to take precedence. */
7177 switch (op_parse_code)
7178 {
7179 case OP_oRRnpc:
7180 case OP_RRnpc:
7181 case OP_RRnpcb:
7182 case OP_RRw:
7183 case OP_oRRw:
7184 case OP_RRnpc_I0:
7185 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7186 inst.error = BAD_PC;
7187 break;
7188
7189 case OP_oRRnpcsp:
7190 case OP_RRnpcsp:
7191 if (inst.operands[i].isreg)
7192 {
7193 if (inst.operands[i].reg == REG_PC)
7194 inst.error = BAD_PC;
7195 else if (inst.operands[i].reg == REG_SP
7196 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7197 relaxed since ARMv8-A. */
7198 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7199 {
7200 gas_assert (thumb);
7201 inst.error = BAD_SP;
7202 }
7203 }
7204 break;
7205
7206 case OP_RRnpctw:
7207 if (inst.operands[i].isreg
7208 && inst.operands[i].reg == REG_PC
7209 && (inst.operands[i].writeback || thumb))
7210 inst.error = BAD_PC;
7211 break;
7212
7213 case OP_CPSF:
7214 case OP_ENDI:
7215 case OP_oROR:
7216 case OP_wPSR:
7217 case OP_rPSR:
7218 case OP_COND:
7219 case OP_oBARRIER_I15:
7220 case OP_REGLST:
7221 case OP_VRSLST:
7222 case OP_VRDLST:
7223 case OP_VRSDLST:
7224 case OP_NRDLST:
7225 case OP_NSTRLST:
7226 if (val == FAIL)
7227 goto failure;
7228 inst.operands[i].imm = val;
7229 break;
7230
7231 default:
7232 break;
7233 }
7234
7235 /* If we get here, this operand was successfully parsed. */
7236 inst.operands[i].present = 1;
7237 continue;
7238
7239 bad_args:
7240 inst.error = BAD_ARGS;
7241
7242 failure:
7243 if (!backtrack_pos)
7244 {
7245 /* The parse routine should already have set inst.error, but set a
7246 default here just in case. */
7247 if (!inst.error)
7248 inst.error = _("syntax error");
7249 return FAIL;
7250 }
7251
7252 /* Do not backtrack over a trailing optional argument that
7253 absorbed some text. We will only fail again, with the
7254 'garbage following instruction' error message, which is
7255 probably less helpful than the current one. */
7256 if (backtrack_index == i && backtrack_pos != str
7257 && upat[i+1] == OP_stop)
7258 {
7259 if (!inst.error)
7260 inst.error = _("syntax error");
7261 return FAIL;
7262 }
7263
7264 /* Try again, skipping the optional argument at backtrack_pos. */
7265 str = backtrack_pos;
7266 inst.error = backtrack_error;
7267 inst.operands[backtrack_index].present = 0;
7268 i = backtrack_index;
7269 backtrack_pos = 0;
7270 }
7271
7272 /* Check that we have parsed all the arguments. */
7273 if (*str != '\0' && !inst.error)
7274 inst.error = _("garbage following instruction");
7275
7276 return inst.error ? FAIL : SUCCESS;
7277 }
7278
7279 #undef po_char_or_fail
7280 #undef po_reg_or_fail
7281 #undef po_reg_or_goto
7282 #undef po_imm_or_fail
7283 #undef po_scalar_or_fail
7284 #undef po_barrier_or_imm
7285
7286 /* Shorthand macro for instruction encoding functions issuing errors. */
7287 #define constraint(expr, err) \
7288 do \
7289 { \
7290 if (expr) \
7291 { \
7292 inst.error = err; \
7293 return; \
7294 } \
7295 } \
7296 while (0)
7297
7298 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7299 instructions are unpredictable if these registers are used. This
7300 is the BadReg predicate in ARM's Thumb-2 documentation.
7301
7302 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7303 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7304 #define reject_bad_reg(reg) \
7305 do \
7306 if (reg == REG_PC) \
7307 { \
7308 inst.error = BAD_PC; \
7309 return; \
7310 } \
7311 else if (reg == REG_SP \
7312 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7313 { \
7314 inst.error = BAD_SP; \
7315 return; \
7316 } \
7317 while (0)
7318
7319 /* If REG is R13 (the stack pointer), warn that its use is
7320 deprecated. */
7321 #define warn_deprecated_sp(reg) \
7322 do \
7323 if (warn_on_deprecated && reg == REG_SP) \
7324 as_tsktsk (_("use of r13 is deprecated")); \
7325 while (0)
7326
7327 /* Functions for operand encoding. ARM, then Thumb. */
7328
7329 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7330
7331 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7332
7333 The only binary encoding difference is the Coprocessor number. Coprocessor
7334 9 is used for half-precision calculations or conversions. The format of the
7335 instruction is the same as the equivalent Coprocessor 10 instruction that
7336 exists for Single-Precision operation. */
7337
7338 static void
7339 do_scalar_fp16_v82_encode (void)
7340 {
7341 if (inst.cond != COND_ALWAYS)
7342 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7343 " the behaviour is UNPREDICTABLE"));
7344 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7345 _(BAD_FP16));
7346
7347 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7348 mark_feature_used (&arm_ext_fp16);
7349 }
7350
7351 /* If VAL can be encoded in the immediate field of an ARM instruction,
7352 return the encoded form. Otherwise, return FAIL. */
7353
7354 static unsigned int
7355 encode_arm_immediate (unsigned int val)
7356 {
7357 unsigned int a, i;
7358
7359 if (val <= 0xff)
7360 return val;
7361
7362 for (i = 2; i < 32; i += 2)
7363 if ((a = rotate_left (val, i)) <= 0xff)
7364 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7365
7366 return FAIL;
7367 }
7368
7369 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7370 return the encoded form. Otherwise, return FAIL. */
7371 static unsigned int
7372 encode_thumb32_immediate (unsigned int val)
7373 {
7374 unsigned int a, i;
7375
7376 if (val <= 0xff)
7377 return val;
7378
7379 for (i = 1; i <= 24; i++)
7380 {
7381 a = val >> i;
7382 if ((val & ~(0xff << i)) == 0)
7383 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7384 }
7385
7386 a = val & 0xff;
7387 if (val == ((a << 16) | a))
7388 return 0x100 | a;
7389 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7390 return 0x300 | a;
7391
7392 a = val & 0xff00;
7393 if (val == ((a << 16) | a))
7394 return 0x200 | (a >> 8);
7395
7396 return FAIL;
7397 }
7398 /* Encode a VFP SP or DP register number into inst.instruction. */
7399
7400 static void
7401 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7402 {
7403 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7404 && reg > 15)
7405 {
7406 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7407 {
7408 if (thumb_mode)
7409 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7410 fpu_vfp_ext_d32);
7411 else
7412 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7413 fpu_vfp_ext_d32);
7414 }
7415 else
7416 {
7417 first_error (_("D register out of range for selected VFP version"));
7418 return;
7419 }
7420 }
7421
7422 switch (pos)
7423 {
7424 case VFP_REG_Sd:
7425 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7426 break;
7427
7428 case VFP_REG_Sn:
7429 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7430 break;
7431
7432 case VFP_REG_Sm:
7433 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7434 break;
7435
7436 case VFP_REG_Dd:
7437 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7438 break;
7439
7440 case VFP_REG_Dn:
7441 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7442 break;
7443
7444 case VFP_REG_Dm:
7445 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7446 break;
7447
7448 default:
7449 abort ();
7450 }
7451 }
7452
7453 /* Encode a <shift> in an ARM-format instruction. The immediate,
7454 if any, is handled by md_apply_fix. */
7455 static void
7456 encode_arm_shift (int i)
7457 {
7458 /* register-shifted register. */
7459 if (inst.operands[i].immisreg)
7460 {
7461 int op_index;
7462 for (op_index = 0; op_index <= i; ++op_index)
7463 {
7464 /* Check the operand only when it's presented. In pre-UAL syntax,
7465 if the destination register is the same as the first operand, two
7466 register form of the instruction can be used. */
7467 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7468 && inst.operands[op_index].reg == REG_PC)
7469 as_warn (UNPRED_REG ("r15"));
7470 }
7471
7472 if (inst.operands[i].imm == REG_PC)
7473 as_warn (UNPRED_REG ("r15"));
7474 }
7475
7476 if (inst.operands[i].shift_kind == SHIFT_RRX)
7477 inst.instruction |= SHIFT_ROR << 5;
7478 else
7479 {
7480 inst.instruction |= inst.operands[i].shift_kind << 5;
7481 if (inst.operands[i].immisreg)
7482 {
7483 inst.instruction |= SHIFT_BY_REG;
7484 inst.instruction |= inst.operands[i].imm << 8;
7485 }
7486 else
7487 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7488 }
7489 }
7490
7491 static void
7492 encode_arm_shifter_operand (int i)
7493 {
7494 if (inst.operands[i].isreg)
7495 {
7496 inst.instruction |= inst.operands[i].reg;
7497 encode_arm_shift (i);
7498 }
7499 else
7500 {
7501 inst.instruction |= INST_IMMEDIATE;
7502 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7503 inst.instruction |= inst.operands[i].imm;
7504 }
7505 }
7506
7507 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7508 static void
7509 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7510 {
7511 /* PR 14260:
7512 Generate an error if the operand is not a register. */
7513 constraint (!inst.operands[i].isreg,
7514 _("Instruction does not support =N addresses"));
7515
7516 inst.instruction |= inst.operands[i].reg << 16;
7517
7518 if (inst.operands[i].preind)
7519 {
7520 if (is_t)
7521 {
7522 inst.error = _("instruction does not accept preindexed addressing");
7523 return;
7524 }
7525 inst.instruction |= PRE_INDEX;
7526 if (inst.operands[i].writeback)
7527 inst.instruction |= WRITE_BACK;
7528
7529 }
7530 else if (inst.operands[i].postind)
7531 {
7532 gas_assert (inst.operands[i].writeback);
7533 if (is_t)
7534 inst.instruction |= WRITE_BACK;
7535 }
7536 else /* unindexed - only for coprocessor */
7537 {
7538 inst.error = _("instruction does not accept unindexed addressing");
7539 return;
7540 }
7541
7542 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7543 && (((inst.instruction & 0x000f0000) >> 16)
7544 == ((inst.instruction & 0x0000f000) >> 12)))
7545 as_warn ((inst.instruction & LOAD_BIT)
7546 ? _("destination register same as write-back base")
7547 : _("source register same as write-back base"));
7548 }
7549
7550 /* inst.operands[i] was set up by parse_address. Encode it into an
7551 ARM-format mode 2 load or store instruction. If is_t is true,
7552 reject forms that cannot be used with a T instruction (i.e. not
7553 post-indexed). */
7554 static void
7555 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7556 {
7557 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7558
7559 encode_arm_addr_mode_common (i, is_t);
7560
7561 if (inst.operands[i].immisreg)
7562 {
7563 constraint ((inst.operands[i].imm == REG_PC
7564 || (is_pc && inst.operands[i].writeback)),
7565 BAD_PC_ADDRESSING);
7566 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7567 inst.instruction |= inst.operands[i].imm;
7568 if (!inst.operands[i].negative)
7569 inst.instruction |= INDEX_UP;
7570 if (inst.operands[i].shifted)
7571 {
7572 if (inst.operands[i].shift_kind == SHIFT_RRX)
7573 inst.instruction |= SHIFT_ROR << 5;
7574 else
7575 {
7576 inst.instruction |= inst.operands[i].shift_kind << 5;
7577 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7578 }
7579 }
7580 }
7581 else /* immediate offset in inst.reloc */
7582 {
7583 if (is_pc && !inst.reloc.pc_rel)
7584 {
7585 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7586
7587 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7588 cannot use PC in addressing.
7589 PC cannot be used in writeback addressing, either. */
7590 constraint ((is_t || inst.operands[i].writeback),
7591 BAD_PC_ADDRESSING);
7592
7593 /* Use of PC in str is deprecated for ARMv7. */
7594 if (warn_on_deprecated
7595 && !is_load
7596 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7597 as_tsktsk (_("use of PC in this instruction is deprecated"));
7598 }
7599
7600 if (inst.reloc.type == BFD_RELOC_UNUSED)
7601 {
7602 /* Prefer + for zero encoded value. */
7603 if (!inst.operands[i].negative)
7604 inst.instruction |= INDEX_UP;
7605 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7606 }
7607 }
7608 }
7609
7610 /* inst.operands[i] was set up by parse_address. Encode it into an
7611 ARM-format mode 3 load or store instruction. Reject forms that
7612 cannot be used with such instructions. If is_t is true, reject
7613 forms that cannot be used with a T instruction (i.e. not
7614 post-indexed). */
7615 static void
7616 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7617 {
7618 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7619 {
7620 inst.error = _("instruction does not accept scaled register index");
7621 return;
7622 }
7623
7624 encode_arm_addr_mode_common (i, is_t);
7625
7626 if (inst.operands[i].immisreg)
7627 {
7628 constraint ((inst.operands[i].imm == REG_PC
7629 || (is_t && inst.operands[i].reg == REG_PC)),
7630 BAD_PC_ADDRESSING);
7631 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7632 BAD_PC_WRITEBACK);
7633 inst.instruction |= inst.operands[i].imm;
7634 if (!inst.operands[i].negative)
7635 inst.instruction |= INDEX_UP;
7636 }
7637 else /* immediate offset in inst.reloc */
7638 {
7639 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7640 && inst.operands[i].writeback),
7641 BAD_PC_WRITEBACK);
7642 inst.instruction |= HWOFFSET_IMM;
7643 if (inst.reloc.type == BFD_RELOC_UNUSED)
7644 {
7645 /* Prefer + for zero encoded value. */
7646 if (!inst.operands[i].negative)
7647 inst.instruction |= INDEX_UP;
7648
7649 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7650 }
7651 }
7652 }
7653
7654 /* Write immediate bits [7:0] to the following locations:
7655
7656 |28/24|23 19|18 16|15 4|3 0|
7657 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7658
7659 This function is used by VMOV/VMVN/VORR/VBIC. */
7660
7661 static void
7662 neon_write_immbits (unsigned immbits)
7663 {
7664 inst.instruction |= immbits & 0xf;
7665 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7666 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7667 }
7668
7669 /* Invert low-order SIZE bits of XHI:XLO. */
7670
7671 static void
7672 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7673 {
7674 unsigned immlo = xlo ? *xlo : 0;
7675 unsigned immhi = xhi ? *xhi : 0;
7676
7677 switch (size)
7678 {
7679 case 8:
7680 immlo = (~immlo) & 0xff;
7681 break;
7682
7683 case 16:
7684 immlo = (~immlo) & 0xffff;
7685 break;
7686
7687 case 64:
7688 immhi = (~immhi) & 0xffffffff;
7689 /* fall through. */
7690
7691 case 32:
7692 immlo = (~immlo) & 0xffffffff;
7693 break;
7694
7695 default:
7696 abort ();
7697 }
7698
7699 if (xlo)
7700 *xlo = immlo;
7701
7702 if (xhi)
7703 *xhi = immhi;
7704 }
7705
7706 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7707 A, B, C, D. */
7708
7709 static int
7710 neon_bits_same_in_bytes (unsigned imm)
7711 {
7712 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7713 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7714 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7715 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7716 }
7717
7718 /* For immediate of above form, return 0bABCD. */
7719
7720 static unsigned
7721 neon_squash_bits (unsigned imm)
7722 {
7723 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7724 | ((imm & 0x01000000) >> 21);
7725 }
7726
7727 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7728
7729 static unsigned
7730 neon_qfloat_bits (unsigned imm)
7731 {
7732 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7733 }
7734
7735 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7736 the instruction. *OP is passed as the initial value of the op field, and
7737 may be set to a different value depending on the constant (i.e.
7738 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7739 MVN). If the immediate looks like a repeated pattern then also
7740 try smaller element sizes. */
7741
7742 static int
7743 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7744 unsigned *immbits, int *op, int size,
7745 enum neon_el_type type)
7746 {
7747 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7748 float. */
7749 if (type == NT_float && !float_p)
7750 return FAIL;
7751
7752 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7753 {
7754 if (size != 32 || *op == 1)
7755 return FAIL;
7756 *immbits = neon_qfloat_bits (immlo);
7757 return 0xf;
7758 }
7759
7760 if (size == 64)
7761 {
7762 if (neon_bits_same_in_bytes (immhi)
7763 && neon_bits_same_in_bytes (immlo))
7764 {
7765 if (*op == 1)
7766 return FAIL;
7767 *immbits = (neon_squash_bits (immhi) << 4)
7768 | neon_squash_bits (immlo);
7769 *op = 1;
7770 return 0xe;
7771 }
7772
7773 if (immhi != immlo)
7774 return FAIL;
7775 }
7776
7777 if (size >= 32)
7778 {
7779 if (immlo == (immlo & 0x000000ff))
7780 {
7781 *immbits = immlo;
7782 return 0x0;
7783 }
7784 else if (immlo == (immlo & 0x0000ff00))
7785 {
7786 *immbits = immlo >> 8;
7787 return 0x2;
7788 }
7789 else if (immlo == (immlo & 0x00ff0000))
7790 {
7791 *immbits = immlo >> 16;
7792 return 0x4;
7793 }
7794 else if (immlo == (immlo & 0xff000000))
7795 {
7796 *immbits = immlo >> 24;
7797 return 0x6;
7798 }
7799 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7800 {
7801 *immbits = (immlo >> 8) & 0xff;
7802 return 0xc;
7803 }
7804 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7805 {
7806 *immbits = (immlo >> 16) & 0xff;
7807 return 0xd;
7808 }
7809
7810 if ((immlo & 0xffff) != (immlo >> 16))
7811 return FAIL;
7812 immlo &= 0xffff;
7813 }
7814
7815 if (size >= 16)
7816 {
7817 if (immlo == (immlo & 0x000000ff))
7818 {
7819 *immbits = immlo;
7820 return 0x8;
7821 }
7822 else if (immlo == (immlo & 0x0000ff00))
7823 {
7824 *immbits = immlo >> 8;
7825 return 0xa;
7826 }
7827
7828 if ((immlo & 0xff) != (immlo >> 8))
7829 return FAIL;
7830 immlo &= 0xff;
7831 }
7832
7833 if (immlo == (immlo & 0x000000ff))
7834 {
7835 /* Don't allow MVN with 8-bit immediate. */
7836 if (*op == 1)
7837 return FAIL;
7838 *immbits = immlo;
7839 return 0xe;
7840 }
7841
7842 return FAIL;
7843 }
7844
7845 #if defined BFD_HOST_64_BIT
7846 /* Returns TRUE if double precision value V may be cast
7847 to single precision without loss of accuracy. */
7848
7849 static bfd_boolean
7850 is_double_a_single (bfd_int64_t v)
7851 {
7852 int exp = (int)((v >> 52) & 0x7FF);
7853 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7854
7855 return (exp == 0 || exp == 0x7FF
7856 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7857 && (mantissa & 0x1FFFFFFFl) == 0;
7858 }
7859
7860 /* Returns a double precision value casted to single precision
7861 (ignoring the least significant bits in exponent and mantissa). */
7862
7863 static int
7864 double_to_single (bfd_int64_t v)
7865 {
7866 int sign = (int) ((v >> 63) & 1l);
7867 int exp = (int) ((v >> 52) & 0x7FF);
7868 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7869
7870 if (exp == 0x7FF)
7871 exp = 0xFF;
7872 else
7873 {
7874 exp = exp - 1023 + 127;
7875 if (exp >= 0xFF)
7876 {
7877 /* Infinity. */
7878 exp = 0x7F;
7879 mantissa = 0;
7880 }
7881 else if (exp < 0)
7882 {
7883 /* No denormalized numbers. */
7884 exp = 0;
7885 mantissa = 0;
7886 }
7887 }
7888 mantissa >>= 29;
7889 return (sign << 31) | (exp << 23) | mantissa;
7890 }
7891 #endif /* BFD_HOST_64_BIT */
7892
7893 enum lit_type
7894 {
7895 CONST_THUMB,
7896 CONST_ARM,
7897 CONST_VEC
7898 };
7899
7900 static void do_vfp_nsyn_opcode (const char *);
7901
7902 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7903 Determine whether it can be performed with a move instruction; if
7904 it can, convert inst.instruction to that move instruction and
7905 return TRUE; if it can't, convert inst.instruction to a literal-pool
7906 load and return FALSE. If this is not a valid thing to do in the
7907 current context, set inst.error and return TRUE.
7908
7909 inst.operands[i] describes the destination register. */
7910
7911 static bfd_boolean
7912 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7913 {
7914 unsigned long tbit;
7915 bfd_boolean thumb_p = (t == CONST_THUMB);
7916 bfd_boolean arm_p = (t == CONST_ARM);
7917
7918 if (thumb_p)
7919 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7920 else
7921 tbit = LOAD_BIT;
7922
7923 if ((inst.instruction & tbit) == 0)
7924 {
7925 inst.error = _("invalid pseudo operation");
7926 return TRUE;
7927 }
7928
7929 if (inst.reloc.exp.X_op != O_constant
7930 && inst.reloc.exp.X_op != O_symbol
7931 && inst.reloc.exp.X_op != O_big)
7932 {
7933 inst.error = _("constant expression expected");
7934 return TRUE;
7935 }
7936
7937 if (inst.reloc.exp.X_op == O_constant
7938 || inst.reloc.exp.X_op == O_big)
7939 {
7940 #if defined BFD_HOST_64_BIT
7941 bfd_int64_t v;
7942 #else
7943 offsetT v;
7944 #endif
7945 if (inst.reloc.exp.X_op == O_big)
7946 {
7947 LITTLENUM_TYPE w[X_PRECISION];
7948 LITTLENUM_TYPE * l;
7949
7950 if (inst.reloc.exp.X_add_number == -1)
7951 {
7952 gen_to_words (w, X_PRECISION, E_PRECISION);
7953 l = w;
7954 /* FIXME: Should we check words w[2..5] ? */
7955 }
7956 else
7957 l = generic_bignum;
7958
7959 #if defined BFD_HOST_64_BIT
7960 v =
7961 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
7962 << LITTLENUM_NUMBER_OF_BITS)
7963 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
7964 << LITTLENUM_NUMBER_OF_BITS)
7965 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
7966 << LITTLENUM_NUMBER_OF_BITS)
7967 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
7968 #else
7969 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
7970 | (l[0] & LITTLENUM_MASK);
7971 #endif
7972 }
7973 else
7974 v = inst.reloc.exp.X_add_number;
7975
7976 if (!inst.operands[i].issingle)
7977 {
7978 if (thumb_p)
7979 {
7980 /* LDR should not use lead in a flag-setting instruction being
7981 chosen so we do not check whether movs can be used. */
7982
7983 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
7984 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
7985 && inst.operands[i].reg != 13
7986 && inst.operands[i].reg != 15)
7987 {
7988 /* Check if on thumb2 it can be done with a mov.w, mvn or
7989 movw instruction. */
7990 unsigned int newimm;
7991 bfd_boolean isNegated;
7992
7993 newimm = encode_thumb32_immediate (v);
7994 if (newimm != (unsigned int) FAIL)
7995 isNegated = FALSE;
7996 else
7997 {
7998 newimm = encode_thumb32_immediate (~v);
7999 if (newimm != (unsigned int) FAIL)
8000 isNegated = TRUE;
8001 }
8002
8003 /* The number can be loaded with a mov.w or mvn
8004 instruction. */
8005 if (newimm != (unsigned int) FAIL
8006 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8007 {
8008 inst.instruction = (0xf04f0000 /* MOV.W. */
8009 | (inst.operands[i].reg << 8));
8010 /* Change to MOVN. */
8011 inst.instruction |= (isNegated ? 0x200000 : 0);
8012 inst.instruction |= (newimm & 0x800) << 15;
8013 inst.instruction |= (newimm & 0x700) << 4;
8014 inst.instruction |= (newimm & 0x0ff);
8015 return TRUE;
8016 }
8017 /* The number can be loaded with a movw instruction. */
8018 else if ((v & ~0xFFFF) == 0
8019 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8020 {
8021 int imm = v & 0xFFFF;
8022
8023 inst.instruction = 0xf2400000; /* MOVW. */
8024 inst.instruction |= (inst.operands[i].reg << 8);
8025 inst.instruction |= (imm & 0xf000) << 4;
8026 inst.instruction |= (imm & 0x0800) << 15;
8027 inst.instruction |= (imm & 0x0700) << 4;
8028 inst.instruction |= (imm & 0x00ff);
8029 return TRUE;
8030 }
8031 }
8032 }
8033 else if (arm_p)
8034 {
8035 int value = encode_arm_immediate (v);
8036
8037 if (value != FAIL)
8038 {
8039 /* This can be done with a mov instruction. */
8040 inst.instruction &= LITERAL_MASK;
8041 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8042 inst.instruction |= value & 0xfff;
8043 return TRUE;
8044 }
8045
8046 value = encode_arm_immediate (~ v);
8047 if (value != FAIL)
8048 {
8049 /* This can be done with a mvn instruction. */
8050 inst.instruction &= LITERAL_MASK;
8051 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8052 inst.instruction |= value & 0xfff;
8053 return TRUE;
8054 }
8055 }
8056 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8057 {
8058 int op = 0;
8059 unsigned immbits = 0;
8060 unsigned immlo = inst.operands[1].imm;
8061 unsigned immhi = inst.operands[1].regisimm
8062 ? inst.operands[1].reg
8063 : inst.reloc.exp.X_unsigned
8064 ? 0
8065 : ((bfd_int64_t)((int) immlo)) >> 32;
8066 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8067 &op, 64, NT_invtype);
8068
8069 if (cmode == FAIL)
8070 {
8071 neon_invert_size (&immlo, &immhi, 64);
8072 op = !op;
8073 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8074 &op, 64, NT_invtype);
8075 }
8076
8077 if (cmode != FAIL)
8078 {
8079 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8080 | (1 << 23)
8081 | (cmode << 8)
8082 | (op << 5)
8083 | (1 << 4);
8084
8085 /* Fill other bits in vmov encoding for both thumb and arm. */
8086 if (thumb_mode)
8087 inst.instruction |= (0x7U << 29) | (0xF << 24);
8088 else
8089 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8090 neon_write_immbits (immbits);
8091 return TRUE;
8092 }
8093 }
8094 }
8095
8096 if (t == CONST_VEC)
8097 {
8098 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8099 if (inst.operands[i].issingle
8100 && is_quarter_float (inst.operands[1].imm)
8101 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8102 {
8103 inst.operands[1].imm =
8104 neon_qfloat_bits (v);
8105 do_vfp_nsyn_opcode ("fconsts");
8106 return TRUE;
8107 }
8108
8109 /* If our host does not support a 64-bit type then we cannot perform
8110 the following optimization. This mean that there will be a
8111 discrepancy between the output produced by an assembler built for
8112 a 32-bit-only host and the output produced from a 64-bit host, but
8113 this cannot be helped. */
8114 #if defined BFD_HOST_64_BIT
8115 else if (!inst.operands[1].issingle
8116 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8117 {
8118 if (is_double_a_single (v)
8119 && is_quarter_float (double_to_single (v)))
8120 {
8121 inst.operands[1].imm =
8122 neon_qfloat_bits (double_to_single (v));
8123 do_vfp_nsyn_opcode ("fconstd");
8124 return TRUE;
8125 }
8126 }
8127 #endif
8128 }
8129 }
8130
8131 if (add_to_lit_pool ((!inst.operands[i].isvec
8132 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8133 return TRUE;
8134
8135 inst.operands[1].reg = REG_PC;
8136 inst.operands[1].isreg = 1;
8137 inst.operands[1].preind = 1;
8138 inst.reloc.pc_rel = 1;
8139 inst.reloc.type = (thumb_p
8140 ? BFD_RELOC_ARM_THUMB_OFFSET
8141 : (mode_3
8142 ? BFD_RELOC_ARM_HWLITERAL
8143 : BFD_RELOC_ARM_LITERAL));
8144 return FALSE;
8145 }
8146
8147 /* inst.operands[i] was set up by parse_address. Encode it into an
8148 ARM-format instruction. Reject all forms which cannot be encoded
8149 into a coprocessor load/store instruction. If wb_ok is false,
8150 reject use of writeback; if unind_ok is false, reject use of
8151 unindexed addressing. If reloc_override is not 0, use it instead
8152 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8153 (in which case it is preserved). */
8154
8155 static int
8156 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8157 {
8158 if (!inst.operands[i].isreg)
8159 {
8160 /* PR 18256 */
8161 if (! inst.operands[0].isvec)
8162 {
8163 inst.error = _("invalid co-processor operand");
8164 return FAIL;
8165 }
8166 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8167 return SUCCESS;
8168 }
8169
8170 inst.instruction |= inst.operands[i].reg << 16;
8171
8172 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8173
8174 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8175 {
8176 gas_assert (!inst.operands[i].writeback);
8177 if (!unind_ok)
8178 {
8179 inst.error = _("instruction does not support unindexed addressing");
8180 return FAIL;
8181 }
8182 inst.instruction |= inst.operands[i].imm;
8183 inst.instruction |= INDEX_UP;
8184 return SUCCESS;
8185 }
8186
8187 if (inst.operands[i].preind)
8188 inst.instruction |= PRE_INDEX;
8189
8190 if (inst.operands[i].writeback)
8191 {
8192 if (inst.operands[i].reg == REG_PC)
8193 {
8194 inst.error = _("pc may not be used with write-back");
8195 return FAIL;
8196 }
8197 if (!wb_ok)
8198 {
8199 inst.error = _("instruction does not support writeback");
8200 return FAIL;
8201 }
8202 inst.instruction |= WRITE_BACK;
8203 }
8204
8205 if (reloc_override)
8206 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8207 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8208 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8209 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
8210 {
8211 if (thumb_mode)
8212 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8213 else
8214 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
8215 }
8216
8217 /* Prefer + for zero encoded value. */
8218 if (!inst.operands[i].negative)
8219 inst.instruction |= INDEX_UP;
8220
8221 return SUCCESS;
8222 }
8223
8224 /* Functions for instruction encoding, sorted by sub-architecture.
8225 First some generics; their names are taken from the conventional
8226 bit positions for register arguments in ARM format instructions. */
8227
8228 static void
8229 do_noargs (void)
8230 {
8231 }
8232
8233 static void
8234 do_rd (void)
8235 {
8236 inst.instruction |= inst.operands[0].reg << 12;
8237 }
8238
8239 static void
8240 do_rn (void)
8241 {
8242 inst.instruction |= inst.operands[0].reg << 16;
8243 }
8244
8245 static void
8246 do_rd_rm (void)
8247 {
8248 inst.instruction |= inst.operands[0].reg << 12;
8249 inst.instruction |= inst.operands[1].reg;
8250 }
8251
8252 static void
8253 do_rm_rn (void)
8254 {
8255 inst.instruction |= inst.operands[0].reg;
8256 inst.instruction |= inst.operands[1].reg << 16;
8257 }
8258
8259 static void
8260 do_rd_rn (void)
8261 {
8262 inst.instruction |= inst.operands[0].reg << 12;
8263 inst.instruction |= inst.operands[1].reg << 16;
8264 }
8265
8266 static void
8267 do_rn_rd (void)
8268 {
8269 inst.instruction |= inst.operands[0].reg << 16;
8270 inst.instruction |= inst.operands[1].reg << 12;
8271 }
8272
8273 static void
8274 do_tt (void)
8275 {
8276 inst.instruction |= inst.operands[0].reg << 8;
8277 inst.instruction |= inst.operands[1].reg << 16;
8278 }
8279
8280 static bfd_boolean
8281 check_obsolete (const arm_feature_set *feature, const char *msg)
8282 {
8283 if (ARM_CPU_IS_ANY (cpu_variant))
8284 {
8285 as_tsktsk ("%s", msg);
8286 return TRUE;
8287 }
8288 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8289 {
8290 as_bad ("%s", msg);
8291 return TRUE;
8292 }
8293
8294 return FALSE;
8295 }
8296
8297 static void
8298 do_rd_rm_rn (void)
8299 {
8300 unsigned Rn = inst.operands[2].reg;
8301 /* Enforce restrictions on SWP instruction. */
8302 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8303 {
8304 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8305 _("Rn must not overlap other operands"));
8306
8307 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8308 */
8309 if (!check_obsolete (&arm_ext_v8,
8310 _("swp{b} use is obsoleted for ARMv8 and later"))
8311 && warn_on_deprecated
8312 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8313 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8314 }
8315
8316 inst.instruction |= inst.operands[0].reg << 12;
8317 inst.instruction |= inst.operands[1].reg;
8318 inst.instruction |= Rn << 16;
8319 }
8320
8321 static void
8322 do_rd_rn_rm (void)
8323 {
8324 inst.instruction |= inst.operands[0].reg << 12;
8325 inst.instruction |= inst.operands[1].reg << 16;
8326 inst.instruction |= inst.operands[2].reg;
8327 }
8328
8329 static void
8330 do_rm_rd_rn (void)
8331 {
8332 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8333 constraint (((inst.reloc.exp.X_op != O_constant
8334 && inst.reloc.exp.X_op != O_illegal)
8335 || inst.reloc.exp.X_add_number != 0),
8336 BAD_ADDR_MODE);
8337 inst.instruction |= inst.operands[0].reg;
8338 inst.instruction |= inst.operands[1].reg << 12;
8339 inst.instruction |= inst.operands[2].reg << 16;
8340 }
8341
8342 static void
8343 do_imm0 (void)
8344 {
8345 inst.instruction |= inst.operands[0].imm;
8346 }
8347
8348 static void
8349 do_rd_cpaddr (void)
8350 {
8351 inst.instruction |= inst.operands[0].reg << 12;
8352 encode_arm_cp_address (1, TRUE, TRUE, 0);
8353 }
8354
8355 /* ARM instructions, in alphabetical order by function name (except
8356 that wrapper functions appear immediately after the function they
8357 wrap). */
8358
8359 /* This is a pseudo-op of the form "adr rd, label" to be converted
8360 into a relative address of the form "add rd, pc, #label-.-8". */
8361
8362 static void
8363 do_adr (void)
8364 {
8365 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8366
8367 /* Frag hacking will turn this into a sub instruction if the offset turns
8368 out to be negative. */
8369 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8370 inst.reloc.pc_rel = 1;
8371 inst.reloc.exp.X_add_number -= 8;
8372
8373 if (inst.reloc.exp.X_op == O_symbol
8374 && inst.reloc.exp.X_add_symbol != NULL
8375 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8376 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8377 inst.reloc.exp.X_add_number += 1;
8378 }
8379
8380 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8381 into a relative address of the form:
8382 add rd, pc, #low(label-.-8)"
8383 add rd, rd, #high(label-.-8)" */
8384
8385 static void
8386 do_adrl (void)
8387 {
8388 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8389
8390 /* Frag hacking will turn this into a sub instruction if the offset turns
8391 out to be negative. */
8392 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8393 inst.reloc.pc_rel = 1;
8394 inst.size = INSN_SIZE * 2;
8395 inst.reloc.exp.X_add_number -= 8;
8396
8397 if (inst.reloc.exp.X_op == O_symbol
8398 && inst.reloc.exp.X_add_symbol != NULL
8399 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8400 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8401 inst.reloc.exp.X_add_number += 1;
8402 }
8403
8404 static void
8405 do_arit (void)
8406 {
8407 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8408 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8409 THUMB1_RELOC_ONLY);
8410 if (!inst.operands[1].present)
8411 inst.operands[1].reg = inst.operands[0].reg;
8412 inst.instruction |= inst.operands[0].reg << 12;
8413 inst.instruction |= inst.operands[1].reg << 16;
8414 encode_arm_shifter_operand (2);
8415 }
8416
8417 static void
8418 do_barrier (void)
8419 {
8420 if (inst.operands[0].present)
8421 inst.instruction |= inst.operands[0].imm;
8422 else
8423 inst.instruction |= 0xf;
8424 }
8425
8426 static void
8427 do_bfc (void)
8428 {
8429 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8430 constraint (msb > 32, _("bit-field extends past end of register"));
8431 /* The instruction encoding stores the LSB and MSB,
8432 not the LSB and width. */
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].imm << 7;
8435 inst.instruction |= (msb - 1) << 16;
8436 }
8437
8438 static void
8439 do_bfi (void)
8440 {
8441 unsigned int msb;
8442
8443 /* #0 in second position is alternative syntax for bfc, which is
8444 the same instruction but with REG_PC in the Rm field. */
8445 if (!inst.operands[1].isreg)
8446 inst.operands[1].reg = REG_PC;
8447
8448 msb = inst.operands[2].imm + inst.operands[3].imm;
8449 constraint (msb > 32, _("bit-field extends past end of register"));
8450 /* The instruction encoding stores the LSB and MSB,
8451 not the LSB and width. */
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 inst.instruction |= inst.operands[1].reg;
8454 inst.instruction |= inst.operands[2].imm << 7;
8455 inst.instruction |= (msb - 1) << 16;
8456 }
8457
8458 static void
8459 do_bfx (void)
8460 {
8461 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8462 _("bit-field extends past end of register"));
8463 inst.instruction |= inst.operands[0].reg << 12;
8464 inst.instruction |= inst.operands[1].reg;
8465 inst.instruction |= inst.operands[2].imm << 7;
8466 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8467 }
8468
8469 /* ARM V5 breakpoint instruction (argument parse)
8470 BKPT <16 bit unsigned immediate>
8471 Instruction is not conditional.
8472 The bit pattern given in insns[] has the COND_ALWAYS condition,
8473 and it is an error if the caller tried to override that. */
8474
8475 static void
8476 do_bkpt (void)
8477 {
8478 /* Top 12 of 16 bits to bits 19:8. */
8479 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8480
8481 /* Bottom 4 of 16 bits to bits 3:0. */
8482 inst.instruction |= inst.operands[0].imm & 0xf;
8483 }
8484
8485 static void
8486 encode_branch (int default_reloc)
8487 {
8488 if (inst.operands[0].hasreloc)
8489 {
8490 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8491 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8492 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8493 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8494 ? BFD_RELOC_ARM_PLT32
8495 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8496 }
8497 else
8498 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8499 inst.reloc.pc_rel = 1;
8500 }
8501
8502 static void
8503 do_branch (void)
8504 {
8505 #ifdef OBJ_ELF
8506 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8507 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8508 else
8509 #endif
8510 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8511 }
8512
8513 static void
8514 do_bl (void)
8515 {
8516 #ifdef OBJ_ELF
8517 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8518 {
8519 if (inst.cond == COND_ALWAYS)
8520 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8521 else
8522 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8523 }
8524 else
8525 #endif
8526 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8527 }
8528
8529 /* ARM V5 branch-link-exchange instruction (argument parse)
8530 BLX <target_addr> ie BLX(1)
8531 BLX{<condition>} <Rm> ie BLX(2)
8532 Unfortunately, there are two different opcodes for this mnemonic.
8533 So, the insns[].value is not used, and the code here zaps values
8534 into inst.instruction.
8535 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8536
8537 static void
8538 do_blx (void)
8539 {
8540 if (inst.operands[0].isreg)
8541 {
8542 /* Arg is a register; the opcode provided by insns[] is correct.
8543 It is not illegal to do "blx pc", just useless. */
8544 if (inst.operands[0].reg == REG_PC)
8545 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8546
8547 inst.instruction |= inst.operands[0].reg;
8548 }
8549 else
8550 {
8551 /* Arg is an address; this instruction cannot be executed
8552 conditionally, and the opcode must be adjusted.
8553 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8554 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8555 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8556 inst.instruction = 0xfa000000;
8557 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8558 }
8559 }
8560
8561 static void
8562 do_bx (void)
8563 {
8564 bfd_boolean want_reloc;
8565
8566 if (inst.operands[0].reg == REG_PC)
8567 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8568
8569 inst.instruction |= inst.operands[0].reg;
8570 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8571 it is for ARMv4t or earlier. */
8572 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8573 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8574 want_reloc = TRUE;
8575
8576 #ifdef OBJ_ELF
8577 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8578 #endif
8579 want_reloc = FALSE;
8580
8581 if (want_reloc)
8582 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8583 }
8584
8585
8586 /* ARM v5TEJ. Jump to Jazelle code. */
8587
8588 static void
8589 do_bxj (void)
8590 {
8591 if (inst.operands[0].reg == REG_PC)
8592 as_tsktsk (_("use of r15 in bxj is not really useful"));
8593
8594 inst.instruction |= inst.operands[0].reg;
8595 }
8596
8597 /* Co-processor data operation:
8598 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8599 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8600 static void
8601 do_cdp (void)
8602 {
8603 inst.instruction |= inst.operands[0].reg << 8;
8604 inst.instruction |= inst.operands[1].imm << 20;
8605 inst.instruction |= inst.operands[2].reg << 12;
8606 inst.instruction |= inst.operands[3].reg << 16;
8607 inst.instruction |= inst.operands[4].reg;
8608 inst.instruction |= inst.operands[5].imm << 5;
8609 }
8610
8611 static void
8612 do_cmp (void)
8613 {
8614 inst.instruction |= inst.operands[0].reg << 16;
8615 encode_arm_shifter_operand (1);
8616 }
8617
8618 /* Transfer between coprocessor and ARM registers.
8619 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8620 MRC2
8621 MCR{cond}
8622 MCR2
8623
8624 No special properties. */
8625
8626 struct deprecated_coproc_regs_s
8627 {
8628 unsigned cp;
8629 int opc1;
8630 unsigned crn;
8631 unsigned crm;
8632 int opc2;
8633 arm_feature_set deprecated;
8634 arm_feature_set obsoleted;
8635 const char *dep_msg;
8636 const char *obs_msg;
8637 };
8638
8639 #define DEPR_ACCESS_V8 \
8640 N_("This coprocessor register access is deprecated in ARMv8")
8641
8642 /* Table of all deprecated coprocessor registers. */
8643 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8644 {
8645 {15, 0, 7, 10, 5, /* CP15DMB. */
8646 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8647 DEPR_ACCESS_V8, NULL},
8648 {15, 0, 7, 10, 4, /* CP15DSB. */
8649 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8650 DEPR_ACCESS_V8, NULL},
8651 {15, 0, 7, 5, 4, /* CP15ISB. */
8652 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8653 DEPR_ACCESS_V8, NULL},
8654 {14, 6, 1, 0, 0, /* TEEHBR. */
8655 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8656 DEPR_ACCESS_V8, NULL},
8657 {14, 6, 0, 0, 0, /* TEECR. */
8658 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8659 DEPR_ACCESS_V8, NULL},
8660 };
8661
8662 #undef DEPR_ACCESS_V8
8663
8664 static const size_t deprecated_coproc_reg_count =
8665 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8666
8667 static void
8668 do_co_reg (void)
8669 {
8670 unsigned Rd;
8671 size_t i;
8672
8673 Rd = inst.operands[2].reg;
8674 if (thumb_mode)
8675 {
8676 if (inst.instruction == 0xee000010
8677 || inst.instruction == 0xfe000010)
8678 /* MCR, MCR2 */
8679 reject_bad_reg (Rd);
8680 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8681 /* MRC, MRC2 */
8682 constraint (Rd == REG_SP, BAD_SP);
8683 }
8684 else
8685 {
8686 /* MCR */
8687 if (inst.instruction == 0xe000010)
8688 constraint (Rd == REG_PC, BAD_PC);
8689 }
8690
8691 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8692 {
8693 const struct deprecated_coproc_regs_s *r =
8694 deprecated_coproc_regs + i;
8695
8696 if (inst.operands[0].reg == r->cp
8697 && inst.operands[1].imm == r->opc1
8698 && inst.operands[3].reg == r->crn
8699 && inst.operands[4].reg == r->crm
8700 && inst.operands[5].imm == r->opc2)
8701 {
8702 if (! ARM_CPU_IS_ANY (cpu_variant)
8703 && warn_on_deprecated
8704 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8705 as_tsktsk ("%s", r->dep_msg);
8706 }
8707 }
8708
8709 inst.instruction |= inst.operands[0].reg << 8;
8710 inst.instruction |= inst.operands[1].imm << 21;
8711 inst.instruction |= Rd << 12;
8712 inst.instruction |= inst.operands[3].reg << 16;
8713 inst.instruction |= inst.operands[4].reg;
8714 inst.instruction |= inst.operands[5].imm << 5;
8715 }
8716
8717 /* Transfer between coprocessor register and pair of ARM registers.
8718 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8719 MCRR2
8720 MRRC{cond}
8721 MRRC2
8722
8723 Two XScale instructions are special cases of these:
8724
8725 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8726 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8727
8728 Result unpredictable if Rd or Rn is R15. */
8729
8730 static void
8731 do_co_reg2c (void)
8732 {
8733 unsigned Rd, Rn;
8734
8735 Rd = inst.operands[2].reg;
8736 Rn = inst.operands[3].reg;
8737
8738 if (thumb_mode)
8739 {
8740 reject_bad_reg (Rd);
8741 reject_bad_reg (Rn);
8742 }
8743 else
8744 {
8745 constraint (Rd == REG_PC, BAD_PC);
8746 constraint (Rn == REG_PC, BAD_PC);
8747 }
8748
8749 /* Only check the MRRC{2} variants. */
8750 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8751 {
8752 /* If Rd == Rn, error that the operation is
8753 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8754 constraint (Rd == Rn, BAD_OVERLAP);
8755 }
8756
8757 inst.instruction |= inst.operands[0].reg << 8;
8758 inst.instruction |= inst.operands[1].imm << 4;
8759 inst.instruction |= Rd << 12;
8760 inst.instruction |= Rn << 16;
8761 inst.instruction |= inst.operands[4].reg;
8762 }
8763
8764 static void
8765 do_cpsi (void)
8766 {
8767 inst.instruction |= inst.operands[0].imm << 6;
8768 if (inst.operands[1].present)
8769 {
8770 inst.instruction |= CPSI_MMOD;
8771 inst.instruction |= inst.operands[1].imm;
8772 }
8773 }
8774
8775 static void
8776 do_dbg (void)
8777 {
8778 inst.instruction |= inst.operands[0].imm;
8779 }
8780
8781 static void
8782 do_div (void)
8783 {
8784 unsigned Rd, Rn, Rm;
8785
8786 Rd = inst.operands[0].reg;
8787 Rn = (inst.operands[1].present
8788 ? inst.operands[1].reg : Rd);
8789 Rm = inst.operands[2].reg;
8790
8791 constraint ((Rd == REG_PC), BAD_PC);
8792 constraint ((Rn == REG_PC), BAD_PC);
8793 constraint ((Rm == REG_PC), BAD_PC);
8794
8795 inst.instruction |= Rd << 16;
8796 inst.instruction |= Rn << 0;
8797 inst.instruction |= Rm << 8;
8798 }
8799
8800 static void
8801 do_it (void)
8802 {
8803 /* There is no IT instruction in ARM mode. We
8804 process it to do the validation as if in
8805 thumb mode, just in case the code gets
8806 assembled for thumb using the unified syntax. */
8807
8808 inst.size = 0;
8809 if (unified_syntax)
8810 {
8811 set_it_insn_type (IT_INSN);
8812 now_it.mask = (inst.instruction & 0xf) | 0x10;
8813 now_it.cc = inst.operands[0].imm;
8814 }
8815 }
8816
8817 /* If there is only one register in the register list,
8818 then return its register number. Otherwise return -1. */
8819 static int
8820 only_one_reg_in_list (int range)
8821 {
8822 int i = ffs (range) - 1;
8823 return (i > 15 || range != (1 << i)) ? -1 : i;
8824 }
8825
8826 static void
8827 encode_ldmstm(int from_push_pop_mnem)
8828 {
8829 int base_reg = inst.operands[0].reg;
8830 int range = inst.operands[1].imm;
8831 int one_reg;
8832
8833 inst.instruction |= base_reg << 16;
8834 inst.instruction |= range;
8835
8836 if (inst.operands[1].writeback)
8837 inst.instruction |= LDM_TYPE_2_OR_3;
8838
8839 if (inst.operands[0].writeback)
8840 {
8841 inst.instruction |= WRITE_BACK;
8842 /* Check for unpredictable uses of writeback. */
8843 if (inst.instruction & LOAD_BIT)
8844 {
8845 /* Not allowed in LDM type 2. */
8846 if ((inst.instruction & LDM_TYPE_2_OR_3)
8847 && ((range & (1 << REG_PC)) == 0))
8848 as_warn (_("writeback of base register is UNPREDICTABLE"));
8849 /* Only allowed if base reg not in list for other types. */
8850 else if (range & (1 << base_reg))
8851 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8852 }
8853 else /* STM. */
8854 {
8855 /* Not allowed for type 2. */
8856 if (inst.instruction & LDM_TYPE_2_OR_3)
8857 as_warn (_("writeback of base register is UNPREDICTABLE"));
8858 /* Only allowed if base reg not in list, or first in list. */
8859 else if ((range & (1 << base_reg))
8860 && (range & ((1 << base_reg) - 1)))
8861 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8862 }
8863 }
8864
8865 /* If PUSH/POP has only one register, then use the A2 encoding. */
8866 one_reg = only_one_reg_in_list (range);
8867 if (from_push_pop_mnem && one_reg >= 0)
8868 {
8869 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8870
8871 inst.instruction &= A_COND_MASK;
8872 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8873 inst.instruction |= one_reg << 12;
8874 }
8875 }
8876
8877 static void
8878 do_ldmstm (void)
8879 {
8880 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8881 }
8882
8883 /* ARMv5TE load-consecutive (argument parse)
8884 Mode is like LDRH.
8885
8886 LDRccD R, mode
8887 STRccD R, mode. */
8888
8889 static void
8890 do_ldrd (void)
8891 {
8892 constraint (inst.operands[0].reg % 2 != 0,
8893 _("first transfer register must be even"));
8894 constraint (inst.operands[1].present
8895 && inst.operands[1].reg != inst.operands[0].reg + 1,
8896 _("can only transfer two consecutive registers"));
8897 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8898 constraint (!inst.operands[2].isreg, _("'[' expected"));
8899
8900 if (!inst.operands[1].present)
8901 inst.operands[1].reg = inst.operands[0].reg + 1;
8902
8903 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8904 register and the first register written; we have to diagnose
8905 overlap between the base and the second register written here. */
8906
8907 if (inst.operands[2].reg == inst.operands[1].reg
8908 && (inst.operands[2].writeback || inst.operands[2].postind))
8909 as_warn (_("base register written back, and overlaps "
8910 "second transfer register"));
8911
8912 if (!(inst.instruction & V4_STR_BIT))
8913 {
8914 /* For an index-register load, the index register must not overlap the
8915 destination (even if not write-back). */
8916 if (inst.operands[2].immisreg
8917 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8918 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8919 as_warn (_("index register overlaps transfer register"));
8920 }
8921 inst.instruction |= inst.operands[0].reg << 12;
8922 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8923 }
8924
8925 static void
8926 do_ldrex (void)
8927 {
8928 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8929 || inst.operands[1].postind || inst.operands[1].writeback
8930 || inst.operands[1].immisreg || inst.operands[1].shifted
8931 || inst.operands[1].negative
8932 /* This can arise if the programmer has written
8933 strex rN, rM, foo
8934 or if they have mistakenly used a register name as the last
8935 operand, eg:
8936 strex rN, rM, rX
8937 It is very difficult to distinguish between these two cases
8938 because "rX" might actually be a label. ie the register
8939 name has been occluded by a symbol of the same name. So we
8940 just generate a general 'bad addressing mode' type error
8941 message and leave it up to the programmer to discover the
8942 true cause and fix their mistake. */
8943 || (inst.operands[1].reg == REG_PC),
8944 BAD_ADDR_MODE);
8945
8946 constraint (inst.reloc.exp.X_op != O_constant
8947 || inst.reloc.exp.X_add_number != 0,
8948 _("offset must be zero in ARM encoding"));
8949
8950 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8951
8952 inst.instruction |= inst.operands[0].reg << 12;
8953 inst.instruction |= inst.operands[1].reg << 16;
8954 inst.reloc.type = BFD_RELOC_UNUSED;
8955 }
8956
8957 static void
8958 do_ldrexd (void)
8959 {
8960 constraint (inst.operands[0].reg % 2 != 0,
8961 _("even register required"));
8962 constraint (inst.operands[1].present
8963 && inst.operands[1].reg != inst.operands[0].reg + 1,
8964 _("can only load two consecutive registers"));
8965 /* If op 1 were present and equal to PC, this function wouldn't
8966 have been called in the first place. */
8967 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8968
8969 inst.instruction |= inst.operands[0].reg << 12;
8970 inst.instruction |= inst.operands[2].reg << 16;
8971 }
8972
8973 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8974 which is not a multiple of four is UNPREDICTABLE. */
8975 static void
8976 check_ldr_r15_aligned (void)
8977 {
8978 constraint (!(inst.operands[1].immisreg)
8979 && (inst.operands[0].reg == REG_PC
8980 && inst.operands[1].reg == REG_PC
8981 && (inst.reloc.exp.X_add_number & 0x3)),
8982 _("ldr to register 15 must be 4-byte aligned"));
8983 }
8984
8985 static void
8986 do_ldst (void)
8987 {
8988 inst.instruction |= inst.operands[0].reg << 12;
8989 if (!inst.operands[1].isreg)
8990 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
8991 return;
8992 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8993 check_ldr_r15_aligned ();
8994 }
8995
8996 static void
8997 do_ldstt (void)
8998 {
8999 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9000 reject [Rn,...]. */
9001 if (inst.operands[1].preind)
9002 {
9003 constraint (inst.reloc.exp.X_op != O_constant
9004 || inst.reloc.exp.X_add_number != 0,
9005 _("this instruction requires a post-indexed address"));
9006
9007 inst.operands[1].preind = 0;
9008 inst.operands[1].postind = 1;
9009 inst.operands[1].writeback = 1;
9010 }
9011 inst.instruction |= inst.operands[0].reg << 12;
9012 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9013 }
9014
9015 /* Halfword and signed-byte load/store operations. */
9016
9017 static void
9018 do_ldstv4 (void)
9019 {
9020 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9021 inst.instruction |= inst.operands[0].reg << 12;
9022 if (!inst.operands[1].isreg)
9023 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9024 return;
9025 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9026 }
9027
9028 static void
9029 do_ldsttv4 (void)
9030 {
9031 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9032 reject [Rn,...]. */
9033 if (inst.operands[1].preind)
9034 {
9035 constraint (inst.reloc.exp.X_op != O_constant
9036 || inst.reloc.exp.X_add_number != 0,
9037 _("this instruction requires a post-indexed address"));
9038
9039 inst.operands[1].preind = 0;
9040 inst.operands[1].postind = 1;
9041 inst.operands[1].writeback = 1;
9042 }
9043 inst.instruction |= inst.operands[0].reg << 12;
9044 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9045 }
9046
9047 /* Co-processor register load/store.
9048 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9049 static void
9050 do_lstc (void)
9051 {
9052 inst.instruction |= inst.operands[0].reg << 8;
9053 inst.instruction |= inst.operands[1].reg << 12;
9054 encode_arm_cp_address (2, TRUE, TRUE, 0);
9055 }
9056
9057 static void
9058 do_mlas (void)
9059 {
9060 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9061 if (inst.operands[0].reg == inst.operands[1].reg
9062 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9063 && !(inst.instruction & 0x00400000))
9064 as_tsktsk (_("Rd and Rm should be different in mla"));
9065
9066 inst.instruction |= inst.operands[0].reg << 16;
9067 inst.instruction |= inst.operands[1].reg;
9068 inst.instruction |= inst.operands[2].reg << 8;
9069 inst.instruction |= inst.operands[3].reg << 12;
9070 }
9071
9072 static void
9073 do_mov (void)
9074 {
9075 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9076 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9077 THUMB1_RELOC_ONLY);
9078 inst.instruction |= inst.operands[0].reg << 12;
9079 encode_arm_shifter_operand (1);
9080 }
9081
9082 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9083 static void
9084 do_mov16 (void)
9085 {
9086 bfd_vma imm;
9087 bfd_boolean top;
9088
9089 top = (inst.instruction & 0x00400000) != 0;
9090 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
9091 _(":lower16: not allowed in this instruction"));
9092 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
9093 _(":upper16: not allowed in this instruction"));
9094 inst.instruction |= inst.operands[0].reg << 12;
9095 if (inst.reloc.type == BFD_RELOC_UNUSED)
9096 {
9097 imm = inst.reloc.exp.X_add_number;
9098 /* The value is in two pieces: 0:11, 16:19. */
9099 inst.instruction |= (imm & 0x00000fff);
9100 inst.instruction |= (imm & 0x0000f000) << 4;
9101 }
9102 }
9103
9104 static int
9105 do_vfp_nsyn_mrs (void)
9106 {
9107 if (inst.operands[0].isvec)
9108 {
9109 if (inst.operands[1].reg != 1)
9110 first_error (_("operand 1 must be FPSCR"));
9111 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9112 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9113 do_vfp_nsyn_opcode ("fmstat");
9114 }
9115 else if (inst.operands[1].isvec)
9116 do_vfp_nsyn_opcode ("fmrx");
9117 else
9118 return FAIL;
9119
9120 return SUCCESS;
9121 }
9122
9123 static int
9124 do_vfp_nsyn_msr (void)
9125 {
9126 if (inst.operands[0].isvec)
9127 do_vfp_nsyn_opcode ("fmxr");
9128 else
9129 return FAIL;
9130
9131 return SUCCESS;
9132 }
9133
9134 static void
9135 do_vmrs (void)
9136 {
9137 unsigned Rt = inst.operands[0].reg;
9138
9139 if (thumb_mode && Rt == REG_SP)
9140 {
9141 inst.error = BAD_SP;
9142 return;
9143 }
9144
9145 /* MVFR2 is only valid at ARMv8-A. */
9146 if (inst.operands[1].reg == 5)
9147 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9148 _(BAD_FPU));
9149
9150 /* APSR_ sets isvec. All other refs to PC are illegal. */
9151 if (!inst.operands[0].isvec && Rt == REG_PC)
9152 {
9153 inst.error = BAD_PC;
9154 return;
9155 }
9156
9157 /* If we get through parsing the register name, we just insert the number
9158 generated into the instruction without further validation. */
9159 inst.instruction |= (inst.operands[1].reg << 16);
9160 inst.instruction |= (Rt << 12);
9161 }
9162
9163 static void
9164 do_vmsr (void)
9165 {
9166 unsigned Rt = inst.operands[1].reg;
9167
9168 if (thumb_mode)
9169 reject_bad_reg (Rt);
9170 else if (Rt == REG_PC)
9171 {
9172 inst.error = BAD_PC;
9173 return;
9174 }
9175
9176 /* MVFR2 is only valid for ARMv8-A. */
9177 if (inst.operands[0].reg == 5)
9178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9179 _(BAD_FPU));
9180
9181 /* If we get through parsing the register name, we just insert the number
9182 generated into the instruction without further validation. */
9183 inst.instruction |= (inst.operands[0].reg << 16);
9184 inst.instruction |= (Rt << 12);
9185 }
9186
9187 static void
9188 do_mrs (void)
9189 {
9190 unsigned br;
9191
9192 if (do_vfp_nsyn_mrs () == SUCCESS)
9193 return;
9194
9195 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9196 inst.instruction |= inst.operands[0].reg << 12;
9197
9198 if (inst.operands[1].isreg)
9199 {
9200 br = inst.operands[1].reg;
9201 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
9202 as_bad (_("bad register for mrs"));
9203 }
9204 else
9205 {
9206 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9207 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9208 != (PSR_c|PSR_f),
9209 _("'APSR', 'CPSR' or 'SPSR' expected"));
9210 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9211 }
9212
9213 inst.instruction |= br;
9214 }
9215
9216 /* Two possible forms:
9217 "{C|S}PSR_<field>, Rm",
9218 "{C|S}PSR_f, #expression". */
9219
9220 static void
9221 do_msr (void)
9222 {
9223 if (do_vfp_nsyn_msr () == SUCCESS)
9224 return;
9225
9226 inst.instruction |= inst.operands[0].imm;
9227 if (inst.operands[1].isreg)
9228 inst.instruction |= inst.operands[1].reg;
9229 else
9230 {
9231 inst.instruction |= INST_IMMEDIATE;
9232 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9233 inst.reloc.pc_rel = 0;
9234 }
9235 }
9236
9237 static void
9238 do_mul (void)
9239 {
9240 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9241
9242 if (!inst.operands[2].present)
9243 inst.operands[2].reg = inst.operands[0].reg;
9244 inst.instruction |= inst.operands[0].reg << 16;
9245 inst.instruction |= inst.operands[1].reg;
9246 inst.instruction |= inst.operands[2].reg << 8;
9247
9248 if (inst.operands[0].reg == inst.operands[1].reg
9249 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9250 as_tsktsk (_("Rd and Rm should be different in mul"));
9251 }
9252
9253 /* Long Multiply Parser
9254 UMULL RdLo, RdHi, Rm, Rs
9255 SMULL RdLo, RdHi, Rm, Rs
9256 UMLAL RdLo, RdHi, Rm, Rs
9257 SMLAL RdLo, RdHi, Rm, Rs. */
9258
9259 static void
9260 do_mull (void)
9261 {
9262 inst.instruction |= inst.operands[0].reg << 12;
9263 inst.instruction |= inst.operands[1].reg << 16;
9264 inst.instruction |= inst.operands[2].reg;
9265 inst.instruction |= inst.operands[3].reg << 8;
9266
9267 /* rdhi and rdlo must be different. */
9268 if (inst.operands[0].reg == inst.operands[1].reg)
9269 as_tsktsk (_("rdhi and rdlo must be different"));
9270
9271 /* rdhi, rdlo and rm must all be different before armv6. */
9272 if ((inst.operands[0].reg == inst.operands[2].reg
9273 || inst.operands[1].reg == inst.operands[2].reg)
9274 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9275 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9276 }
9277
9278 static void
9279 do_nop (void)
9280 {
9281 if (inst.operands[0].present
9282 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9283 {
9284 /* Architectural NOP hints are CPSR sets with no bits selected. */
9285 inst.instruction &= 0xf0000000;
9286 inst.instruction |= 0x0320f000;
9287 if (inst.operands[0].present)
9288 inst.instruction |= inst.operands[0].imm;
9289 }
9290 }
9291
9292 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9293 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9294 Condition defaults to COND_ALWAYS.
9295 Error if Rd, Rn or Rm are R15. */
9296
9297 static void
9298 do_pkhbt (void)
9299 {
9300 inst.instruction |= inst.operands[0].reg << 12;
9301 inst.instruction |= inst.operands[1].reg << 16;
9302 inst.instruction |= inst.operands[2].reg;
9303 if (inst.operands[3].present)
9304 encode_arm_shift (3);
9305 }
9306
9307 /* ARM V6 PKHTB (Argument Parse). */
9308
9309 static void
9310 do_pkhtb (void)
9311 {
9312 if (!inst.operands[3].present)
9313 {
9314 /* If the shift specifier is omitted, turn the instruction
9315 into pkhbt rd, rm, rn. */
9316 inst.instruction &= 0xfff00010;
9317 inst.instruction |= inst.operands[0].reg << 12;
9318 inst.instruction |= inst.operands[1].reg;
9319 inst.instruction |= inst.operands[2].reg << 16;
9320 }
9321 else
9322 {
9323 inst.instruction |= inst.operands[0].reg << 12;
9324 inst.instruction |= inst.operands[1].reg << 16;
9325 inst.instruction |= inst.operands[2].reg;
9326 encode_arm_shift (3);
9327 }
9328 }
9329
9330 /* ARMv5TE: Preload-Cache
9331 MP Extensions: Preload for write
9332
9333 PLD(W) <addr_mode>
9334
9335 Syntactically, like LDR with B=1, W=0, L=1. */
9336
9337 static void
9338 do_pld (void)
9339 {
9340 constraint (!inst.operands[0].isreg,
9341 _("'[' expected after PLD mnemonic"));
9342 constraint (inst.operands[0].postind,
9343 _("post-indexed expression used in preload instruction"));
9344 constraint (inst.operands[0].writeback,
9345 _("writeback used in preload instruction"));
9346 constraint (!inst.operands[0].preind,
9347 _("unindexed addressing used in preload instruction"));
9348 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9349 }
9350
9351 /* ARMv7: PLI <addr_mode> */
9352 static void
9353 do_pli (void)
9354 {
9355 constraint (!inst.operands[0].isreg,
9356 _("'[' expected after PLI mnemonic"));
9357 constraint (inst.operands[0].postind,
9358 _("post-indexed expression used in preload instruction"));
9359 constraint (inst.operands[0].writeback,
9360 _("writeback used in preload instruction"));
9361 constraint (!inst.operands[0].preind,
9362 _("unindexed addressing used in preload instruction"));
9363 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9364 inst.instruction &= ~PRE_INDEX;
9365 }
9366
9367 static void
9368 do_push_pop (void)
9369 {
9370 constraint (inst.operands[0].writeback,
9371 _("push/pop do not support {reglist}^"));
9372 inst.operands[1] = inst.operands[0];
9373 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9374 inst.operands[0].isreg = 1;
9375 inst.operands[0].writeback = 1;
9376 inst.operands[0].reg = REG_SP;
9377 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9378 }
9379
9380 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9381 word at the specified address and the following word
9382 respectively.
9383 Unconditionally executed.
9384 Error if Rn is R15. */
9385
9386 static void
9387 do_rfe (void)
9388 {
9389 inst.instruction |= inst.operands[0].reg << 16;
9390 if (inst.operands[0].writeback)
9391 inst.instruction |= WRITE_BACK;
9392 }
9393
9394 /* ARM V6 ssat (argument parse). */
9395
9396 static void
9397 do_ssat (void)
9398 {
9399 inst.instruction |= inst.operands[0].reg << 12;
9400 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9401 inst.instruction |= inst.operands[2].reg;
9402
9403 if (inst.operands[3].present)
9404 encode_arm_shift (3);
9405 }
9406
9407 /* ARM V6 usat (argument parse). */
9408
9409 static void
9410 do_usat (void)
9411 {
9412 inst.instruction |= inst.operands[0].reg << 12;
9413 inst.instruction |= inst.operands[1].imm << 16;
9414 inst.instruction |= inst.operands[2].reg;
9415
9416 if (inst.operands[3].present)
9417 encode_arm_shift (3);
9418 }
9419
9420 /* ARM V6 ssat16 (argument parse). */
9421
9422 static void
9423 do_ssat16 (void)
9424 {
9425 inst.instruction |= inst.operands[0].reg << 12;
9426 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9427 inst.instruction |= inst.operands[2].reg;
9428 }
9429
9430 static void
9431 do_usat16 (void)
9432 {
9433 inst.instruction |= inst.operands[0].reg << 12;
9434 inst.instruction |= inst.operands[1].imm << 16;
9435 inst.instruction |= inst.operands[2].reg;
9436 }
9437
9438 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9439 preserving the other bits.
9440
9441 setend <endian_specifier>, where <endian_specifier> is either
9442 BE or LE. */
9443
9444 static void
9445 do_setend (void)
9446 {
9447 if (warn_on_deprecated
9448 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9449 as_tsktsk (_("setend use is deprecated for ARMv8"));
9450
9451 if (inst.operands[0].imm)
9452 inst.instruction |= 0x200;
9453 }
9454
9455 static void
9456 do_shift (void)
9457 {
9458 unsigned int Rm = (inst.operands[1].present
9459 ? inst.operands[1].reg
9460 : inst.operands[0].reg);
9461
9462 inst.instruction |= inst.operands[0].reg << 12;
9463 inst.instruction |= Rm;
9464 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9465 {
9466 inst.instruction |= inst.operands[2].reg << 8;
9467 inst.instruction |= SHIFT_BY_REG;
9468 /* PR 12854: Error on extraneous shifts. */
9469 constraint (inst.operands[2].shifted,
9470 _("extraneous shift as part of operand to shift insn"));
9471 }
9472 else
9473 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9474 }
9475
9476 static void
9477 do_smc (void)
9478 {
9479 inst.reloc.type = BFD_RELOC_ARM_SMC;
9480 inst.reloc.pc_rel = 0;
9481 }
9482
9483 static void
9484 do_hvc (void)
9485 {
9486 inst.reloc.type = BFD_RELOC_ARM_HVC;
9487 inst.reloc.pc_rel = 0;
9488 }
9489
9490 static void
9491 do_swi (void)
9492 {
9493 inst.reloc.type = BFD_RELOC_ARM_SWI;
9494 inst.reloc.pc_rel = 0;
9495 }
9496
9497 static void
9498 do_setpan (void)
9499 {
9500 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9501 _("selected processor does not support SETPAN instruction"));
9502
9503 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9504 }
9505
9506 static void
9507 do_t_setpan (void)
9508 {
9509 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9510 _("selected processor does not support SETPAN instruction"));
9511
9512 inst.instruction |= (inst.operands[0].imm << 3);
9513 }
9514
9515 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9516 SMLAxy{cond} Rd,Rm,Rs,Rn
9517 SMLAWy{cond} Rd,Rm,Rs,Rn
9518 Error if any register is R15. */
9519
9520 static void
9521 do_smla (void)
9522 {
9523 inst.instruction |= inst.operands[0].reg << 16;
9524 inst.instruction |= inst.operands[1].reg;
9525 inst.instruction |= inst.operands[2].reg << 8;
9526 inst.instruction |= inst.operands[3].reg << 12;
9527 }
9528
9529 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9530 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9531 Error if any register is R15.
9532 Warning if Rdlo == Rdhi. */
9533
9534 static void
9535 do_smlal (void)
9536 {
9537 inst.instruction |= inst.operands[0].reg << 12;
9538 inst.instruction |= inst.operands[1].reg << 16;
9539 inst.instruction |= inst.operands[2].reg;
9540 inst.instruction |= inst.operands[3].reg << 8;
9541
9542 if (inst.operands[0].reg == inst.operands[1].reg)
9543 as_tsktsk (_("rdhi and rdlo must be different"));
9544 }
9545
9546 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9547 SMULxy{cond} Rd,Rm,Rs
9548 Error if any register is R15. */
9549
9550 static void
9551 do_smul (void)
9552 {
9553 inst.instruction |= inst.operands[0].reg << 16;
9554 inst.instruction |= inst.operands[1].reg;
9555 inst.instruction |= inst.operands[2].reg << 8;
9556 }
9557
9558 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9559 the same for both ARM and Thumb-2. */
9560
9561 static void
9562 do_srs (void)
9563 {
9564 int reg;
9565
9566 if (inst.operands[0].present)
9567 {
9568 reg = inst.operands[0].reg;
9569 constraint (reg != REG_SP, _("SRS base register must be r13"));
9570 }
9571 else
9572 reg = REG_SP;
9573
9574 inst.instruction |= reg << 16;
9575 inst.instruction |= inst.operands[1].imm;
9576 if (inst.operands[0].writeback || inst.operands[1].writeback)
9577 inst.instruction |= WRITE_BACK;
9578 }
9579
9580 /* ARM V6 strex (argument parse). */
9581
9582 static void
9583 do_strex (void)
9584 {
9585 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9586 || inst.operands[2].postind || inst.operands[2].writeback
9587 || inst.operands[2].immisreg || inst.operands[2].shifted
9588 || inst.operands[2].negative
9589 /* See comment in do_ldrex(). */
9590 || (inst.operands[2].reg == REG_PC),
9591 BAD_ADDR_MODE);
9592
9593 constraint (inst.operands[0].reg == inst.operands[1].reg
9594 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9595
9596 constraint (inst.reloc.exp.X_op != O_constant
9597 || inst.reloc.exp.X_add_number != 0,
9598 _("offset must be zero in ARM encoding"));
9599
9600 inst.instruction |= inst.operands[0].reg << 12;
9601 inst.instruction |= inst.operands[1].reg;
9602 inst.instruction |= inst.operands[2].reg << 16;
9603 inst.reloc.type = BFD_RELOC_UNUSED;
9604 }
9605
9606 static void
9607 do_t_strexbh (void)
9608 {
9609 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9610 || inst.operands[2].postind || inst.operands[2].writeback
9611 || inst.operands[2].immisreg || inst.operands[2].shifted
9612 || inst.operands[2].negative,
9613 BAD_ADDR_MODE);
9614
9615 constraint (inst.operands[0].reg == inst.operands[1].reg
9616 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9617
9618 do_rm_rd_rn ();
9619 }
9620
9621 static void
9622 do_strexd (void)
9623 {
9624 constraint (inst.operands[1].reg % 2 != 0,
9625 _("even register required"));
9626 constraint (inst.operands[2].present
9627 && inst.operands[2].reg != inst.operands[1].reg + 1,
9628 _("can only store two consecutive registers"));
9629 /* If op 2 were present and equal to PC, this function wouldn't
9630 have been called in the first place. */
9631 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9632
9633 constraint (inst.operands[0].reg == inst.operands[1].reg
9634 || inst.operands[0].reg == inst.operands[1].reg + 1
9635 || inst.operands[0].reg == inst.operands[3].reg,
9636 BAD_OVERLAP);
9637
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[1].reg;
9640 inst.instruction |= inst.operands[3].reg << 16;
9641 }
9642
9643 /* ARM V8 STRL. */
9644 static void
9645 do_stlex (void)
9646 {
9647 constraint (inst.operands[0].reg == inst.operands[1].reg
9648 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9649
9650 do_rd_rm_rn ();
9651 }
9652
9653 static void
9654 do_t_stlex (void)
9655 {
9656 constraint (inst.operands[0].reg == inst.operands[1].reg
9657 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9658
9659 do_rm_rd_rn ();
9660 }
9661
9662 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9663 extends it to 32-bits, and adds the result to a value in another
9664 register. You can specify a rotation by 0, 8, 16, or 24 bits
9665 before extracting the 16-bit value.
9666 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9667 Condition defaults to COND_ALWAYS.
9668 Error if any register uses R15. */
9669
9670 static void
9671 do_sxtah (void)
9672 {
9673 inst.instruction |= inst.operands[0].reg << 12;
9674 inst.instruction |= inst.operands[1].reg << 16;
9675 inst.instruction |= inst.operands[2].reg;
9676 inst.instruction |= inst.operands[3].imm << 10;
9677 }
9678
9679 /* ARM V6 SXTH.
9680
9681 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9682 Condition defaults to COND_ALWAYS.
9683 Error if any register uses R15. */
9684
9685 static void
9686 do_sxth (void)
9687 {
9688 inst.instruction |= inst.operands[0].reg << 12;
9689 inst.instruction |= inst.operands[1].reg;
9690 inst.instruction |= inst.operands[2].imm << 10;
9691 }
9692 \f
9693 /* VFP instructions. In a logical order: SP variant first, monad
9694 before dyad, arithmetic then move then load/store. */
9695
9696 static void
9697 do_vfp_sp_monadic (void)
9698 {
9699 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9700 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9701 }
9702
9703 static void
9704 do_vfp_sp_dyadic (void)
9705 {
9706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9707 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9708 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9709 }
9710
9711 static void
9712 do_vfp_sp_compare_z (void)
9713 {
9714 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9715 }
9716
9717 static void
9718 do_vfp_dp_sp_cvt (void)
9719 {
9720 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9721 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9722 }
9723
9724 static void
9725 do_vfp_sp_dp_cvt (void)
9726 {
9727 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9728 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9729 }
9730
9731 static void
9732 do_vfp_reg_from_sp (void)
9733 {
9734 inst.instruction |= inst.operands[0].reg << 12;
9735 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9736 }
9737
9738 static void
9739 do_vfp_reg2_from_sp2 (void)
9740 {
9741 constraint (inst.operands[2].imm != 2,
9742 _("only two consecutive VFP SP registers allowed here"));
9743 inst.instruction |= inst.operands[0].reg << 12;
9744 inst.instruction |= inst.operands[1].reg << 16;
9745 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9746 }
9747
9748 static void
9749 do_vfp_sp_from_reg (void)
9750 {
9751 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9752 inst.instruction |= inst.operands[1].reg << 12;
9753 }
9754
9755 static void
9756 do_vfp_sp2_from_reg2 (void)
9757 {
9758 constraint (inst.operands[0].imm != 2,
9759 _("only two consecutive VFP SP registers allowed here"));
9760 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9761 inst.instruction |= inst.operands[1].reg << 12;
9762 inst.instruction |= inst.operands[2].reg << 16;
9763 }
9764
9765 static void
9766 do_vfp_sp_ldst (void)
9767 {
9768 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9769 encode_arm_cp_address (1, FALSE, TRUE, 0);
9770 }
9771
9772 static void
9773 do_vfp_dp_ldst (void)
9774 {
9775 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9776 encode_arm_cp_address (1, FALSE, TRUE, 0);
9777 }
9778
9779
9780 static void
9781 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9782 {
9783 if (inst.operands[0].writeback)
9784 inst.instruction |= WRITE_BACK;
9785 else
9786 constraint (ldstm_type != VFP_LDSTMIA,
9787 _("this addressing mode requires base-register writeback"));
9788 inst.instruction |= inst.operands[0].reg << 16;
9789 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9790 inst.instruction |= inst.operands[1].imm;
9791 }
9792
9793 static void
9794 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9795 {
9796 int count;
9797
9798 if (inst.operands[0].writeback)
9799 inst.instruction |= WRITE_BACK;
9800 else
9801 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9802 _("this addressing mode requires base-register writeback"));
9803
9804 inst.instruction |= inst.operands[0].reg << 16;
9805 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9806
9807 count = inst.operands[1].imm << 1;
9808 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9809 count += 1;
9810
9811 inst.instruction |= count;
9812 }
9813
9814 static void
9815 do_vfp_sp_ldstmia (void)
9816 {
9817 vfp_sp_ldstm (VFP_LDSTMIA);
9818 }
9819
9820 static void
9821 do_vfp_sp_ldstmdb (void)
9822 {
9823 vfp_sp_ldstm (VFP_LDSTMDB);
9824 }
9825
9826 static void
9827 do_vfp_dp_ldstmia (void)
9828 {
9829 vfp_dp_ldstm (VFP_LDSTMIA);
9830 }
9831
9832 static void
9833 do_vfp_dp_ldstmdb (void)
9834 {
9835 vfp_dp_ldstm (VFP_LDSTMDB);
9836 }
9837
9838 static void
9839 do_vfp_xp_ldstmia (void)
9840 {
9841 vfp_dp_ldstm (VFP_LDSTMIAX);
9842 }
9843
9844 static void
9845 do_vfp_xp_ldstmdb (void)
9846 {
9847 vfp_dp_ldstm (VFP_LDSTMDBX);
9848 }
9849
9850 static void
9851 do_vfp_dp_rd_rm (void)
9852 {
9853 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9854 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9855 }
9856
9857 static void
9858 do_vfp_dp_rn_rd (void)
9859 {
9860 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9861 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9862 }
9863
9864 static void
9865 do_vfp_dp_rd_rn (void)
9866 {
9867 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9868 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9869 }
9870
9871 static void
9872 do_vfp_dp_rd_rn_rm (void)
9873 {
9874 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9875 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9876 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9877 }
9878
9879 static void
9880 do_vfp_dp_rd (void)
9881 {
9882 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9883 }
9884
9885 static void
9886 do_vfp_dp_rm_rd_rn (void)
9887 {
9888 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9889 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9890 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9891 }
9892
9893 /* VFPv3 instructions. */
9894 static void
9895 do_vfp_sp_const (void)
9896 {
9897 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9898 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9899 inst.instruction |= (inst.operands[1].imm & 0x0f);
9900 }
9901
9902 static void
9903 do_vfp_dp_const (void)
9904 {
9905 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9906 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9907 inst.instruction |= (inst.operands[1].imm & 0x0f);
9908 }
9909
9910 static void
9911 vfp_conv (int srcsize)
9912 {
9913 int immbits = srcsize - inst.operands[1].imm;
9914
9915 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9916 {
9917 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9918 i.e. immbits must be in range 0 - 16. */
9919 inst.error = _("immediate value out of range, expected range [0, 16]");
9920 return;
9921 }
9922 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9923 {
9924 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9925 i.e. immbits must be in range 0 - 31. */
9926 inst.error = _("immediate value out of range, expected range [1, 32]");
9927 return;
9928 }
9929
9930 inst.instruction |= (immbits & 1) << 5;
9931 inst.instruction |= (immbits >> 1);
9932 }
9933
9934 static void
9935 do_vfp_sp_conv_16 (void)
9936 {
9937 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9938 vfp_conv (16);
9939 }
9940
9941 static void
9942 do_vfp_dp_conv_16 (void)
9943 {
9944 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9945 vfp_conv (16);
9946 }
9947
9948 static void
9949 do_vfp_sp_conv_32 (void)
9950 {
9951 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9952 vfp_conv (32);
9953 }
9954
9955 static void
9956 do_vfp_dp_conv_32 (void)
9957 {
9958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9959 vfp_conv (32);
9960 }
9961 \f
9962 /* FPA instructions. Also in a logical order. */
9963
9964 static void
9965 do_fpa_cmp (void)
9966 {
9967 inst.instruction |= inst.operands[0].reg << 16;
9968 inst.instruction |= inst.operands[1].reg;
9969 }
9970
9971 static void
9972 do_fpa_ldmstm (void)
9973 {
9974 inst.instruction |= inst.operands[0].reg << 12;
9975 switch (inst.operands[1].imm)
9976 {
9977 case 1: inst.instruction |= CP_T_X; break;
9978 case 2: inst.instruction |= CP_T_Y; break;
9979 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9980 case 4: break;
9981 default: abort ();
9982 }
9983
9984 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9985 {
9986 /* The instruction specified "ea" or "fd", so we can only accept
9987 [Rn]{!}. The instruction does not really support stacking or
9988 unstacking, so we have to emulate these by setting appropriate
9989 bits and offsets. */
9990 constraint (inst.reloc.exp.X_op != O_constant
9991 || inst.reloc.exp.X_add_number != 0,
9992 _("this instruction does not support indexing"));
9993
9994 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9995 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9996
9997 if (!(inst.instruction & INDEX_UP))
9998 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9999
10000 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10001 {
10002 inst.operands[2].preind = 0;
10003 inst.operands[2].postind = 1;
10004 }
10005 }
10006
10007 encode_arm_cp_address (2, TRUE, TRUE, 0);
10008 }
10009 \f
10010 /* iWMMXt instructions: strictly in alphabetical order. */
10011
10012 static void
10013 do_iwmmxt_tandorc (void)
10014 {
10015 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10016 }
10017
10018 static void
10019 do_iwmmxt_textrc (void)
10020 {
10021 inst.instruction |= inst.operands[0].reg << 12;
10022 inst.instruction |= inst.operands[1].imm;
10023 }
10024
10025 static void
10026 do_iwmmxt_textrm (void)
10027 {
10028 inst.instruction |= inst.operands[0].reg << 12;
10029 inst.instruction |= inst.operands[1].reg << 16;
10030 inst.instruction |= inst.operands[2].imm;
10031 }
10032
10033 static void
10034 do_iwmmxt_tinsr (void)
10035 {
10036 inst.instruction |= inst.operands[0].reg << 16;
10037 inst.instruction |= inst.operands[1].reg << 12;
10038 inst.instruction |= inst.operands[2].imm;
10039 }
10040
10041 static void
10042 do_iwmmxt_tmia (void)
10043 {
10044 inst.instruction |= inst.operands[0].reg << 5;
10045 inst.instruction |= inst.operands[1].reg;
10046 inst.instruction |= inst.operands[2].reg << 12;
10047 }
10048
10049 static void
10050 do_iwmmxt_waligni (void)
10051 {
10052 inst.instruction |= inst.operands[0].reg << 12;
10053 inst.instruction |= inst.operands[1].reg << 16;
10054 inst.instruction |= inst.operands[2].reg;
10055 inst.instruction |= inst.operands[3].imm << 20;
10056 }
10057
10058 static void
10059 do_iwmmxt_wmerge (void)
10060 {
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 inst.instruction |= inst.operands[1].reg << 16;
10063 inst.instruction |= inst.operands[2].reg;
10064 inst.instruction |= inst.operands[3].imm << 21;
10065 }
10066
10067 static void
10068 do_iwmmxt_wmov (void)
10069 {
10070 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10071 inst.instruction |= inst.operands[0].reg << 12;
10072 inst.instruction |= inst.operands[1].reg << 16;
10073 inst.instruction |= inst.operands[1].reg;
10074 }
10075
10076 static void
10077 do_iwmmxt_wldstbh (void)
10078 {
10079 int reloc;
10080 inst.instruction |= inst.operands[0].reg << 12;
10081 if (thumb_mode)
10082 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10083 else
10084 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10085 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10086 }
10087
10088 static void
10089 do_iwmmxt_wldstw (void)
10090 {
10091 /* RIWR_RIWC clears .isreg for a control register. */
10092 if (!inst.operands[0].isreg)
10093 {
10094 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10095 inst.instruction |= 0xf0000000;
10096 }
10097
10098 inst.instruction |= inst.operands[0].reg << 12;
10099 encode_arm_cp_address (1, TRUE, TRUE, 0);
10100 }
10101
10102 static void
10103 do_iwmmxt_wldstd (void)
10104 {
10105 inst.instruction |= inst.operands[0].reg << 12;
10106 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10107 && inst.operands[1].immisreg)
10108 {
10109 inst.instruction &= ~0x1a000ff;
10110 inst.instruction |= (0xfU << 28);
10111 if (inst.operands[1].preind)
10112 inst.instruction |= PRE_INDEX;
10113 if (!inst.operands[1].negative)
10114 inst.instruction |= INDEX_UP;
10115 if (inst.operands[1].writeback)
10116 inst.instruction |= WRITE_BACK;
10117 inst.instruction |= inst.operands[1].reg << 16;
10118 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10119 inst.instruction |= inst.operands[1].imm;
10120 }
10121 else
10122 encode_arm_cp_address (1, TRUE, FALSE, 0);
10123 }
10124
10125 static void
10126 do_iwmmxt_wshufh (void)
10127 {
10128 inst.instruction |= inst.operands[0].reg << 12;
10129 inst.instruction |= inst.operands[1].reg << 16;
10130 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10131 inst.instruction |= (inst.operands[2].imm & 0x0f);
10132 }
10133
10134 static void
10135 do_iwmmxt_wzero (void)
10136 {
10137 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10138 inst.instruction |= inst.operands[0].reg;
10139 inst.instruction |= inst.operands[0].reg << 12;
10140 inst.instruction |= inst.operands[0].reg << 16;
10141 }
10142
10143 static void
10144 do_iwmmxt_wrwrwr_or_imm5 (void)
10145 {
10146 if (inst.operands[2].isreg)
10147 do_rd_rn_rm ();
10148 else {
10149 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10150 _("immediate operand requires iWMMXt2"));
10151 do_rd_rn ();
10152 if (inst.operands[2].imm == 0)
10153 {
10154 switch ((inst.instruction >> 20) & 0xf)
10155 {
10156 case 4:
10157 case 5:
10158 case 6:
10159 case 7:
10160 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10161 inst.operands[2].imm = 16;
10162 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10163 break;
10164 case 8:
10165 case 9:
10166 case 10:
10167 case 11:
10168 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10169 inst.operands[2].imm = 32;
10170 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10171 break;
10172 case 12:
10173 case 13:
10174 case 14:
10175 case 15:
10176 {
10177 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10178 unsigned long wrn;
10179 wrn = (inst.instruction >> 16) & 0xf;
10180 inst.instruction &= 0xff0fff0f;
10181 inst.instruction |= wrn;
10182 /* Bail out here; the instruction is now assembled. */
10183 return;
10184 }
10185 }
10186 }
10187 /* Map 32 -> 0, etc. */
10188 inst.operands[2].imm &= 0x1f;
10189 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10190 }
10191 }
10192 \f
10193 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10194 operations first, then control, shift, and load/store. */
10195
10196 /* Insns like "foo X,Y,Z". */
10197
10198 static void
10199 do_mav_triple (void)
10200 {
10201 inst.instruction |= inst.operands[0].reg << 16;
10202 inst.instruction |= inst.operands[1].reg;
10203 inst.instruction |= inst.operands[2].reg << 12;
10204 }
10205
10206 /* Insns like "foo W,X,Y,Z".
10207 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10208
10209 static void
10210 do_mav_quad (void)
10211 {
10212 inst.instruction |= inst.operands[0].reg << 5;
10213 inst.instruction |= inst.operands[1].reg << 12;
10214 inst.instruction |= inst.operands[2].reg << 16;
10215 inst.instruction |= inst.operands[3].reg;
10216 }
10217
10218 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10219 static void
10220 do_mav_dspsc (void)
10221 {
10222 inst.instruction |= inst.operands[1].reg << 12;
10223 }
10224
10225 /* Maverick shift immediate instructions.
10226 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10227 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10228
10229 static void
10230 do_mav_shift (void)
10231 {
10232 int imm = inst.operands[2].imm;
10233
10234 inst.instruction |= inst.operands[0].reg << 12;
10235 inst.instruction |= inst.operands[1].reg << 16;
10236
10237 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10238 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10239 Bit 4 should be 0. */
10240 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10241
10242 inst.instruction |= imm;
10243 }
10244 \f
10245 /* XScale instructions. Also sorted arithmetic before move. */
10246
10247 /* Xscale multiply-accumulate (argument parse)
10248 MIAcc acc0,Rm,Rs
10249 MIAPHcc acc0,Rm,Rs
10250 MIAxycc acc0,Rm,Rs. */
10251
10252 static void
10253 do_xsc_mia (void)
10254 {
10255 inst.instruction |= inst.operands[1].reg;
10256 inst.instruction |= inst.operands[2].reg << 12;
10257 }
10258
10259 /* Xscale move-accumulator-register (argument parse)
10260
10261 MARcc acc0,RdLo,RdHi. */
10262
10263 static void
10264 do_xsc_mar (void)
10265 {
10266 inst.instruction |= inst.operands[1].reg << 12;
10267 inst.instruction |= inst.operands[2].reg << 16;
10268 }
10269
10270 /* Xscale move-register-accumulator (argument parse)
10271
10272 MRAcc RdLo,RdHi,acc0. */
10273
10274 static void
10275 do_xsc_mra (void)
10276 {
10277 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10278 inst.instruction |= inst.operands[0].reg << 12;
10279 inst.instruction |= inst.operands[1].reg << 16;
10280 }
10281 \f
10282 /* Encoding functions relevant only to Thumb. */
10283
10284 /* inst.operands[i] is a shifted-register operand; encode
10285 it into inst.instruction in the format used by Thumb32. */
10286
10287 static void
10288 encode_thumb32_shifted_operand (int i)
10289 {
10290 unsigned int value = inst.reloc.exp.X_add_number;
10291 unsigned int shift = inst.operands[i].shift_kind;
10292
10293 constraint (inst.operands[i].immisreg,
10294 _("shift by register not allowed in thumb mode"));
10295 inst.instruction |= inst.operands[i].reg;
10296 if (shift == SHIFT_RRX)
10297 inst.instruction |= SHIFT_ROR << 4;
10298 else
10299 {
10300 constraint (inst.reloc.exp.X_op != O_constant,
10301 _("expression too complex"));
10302
10303 constraint (value > 32
10304 || (value == 32 && (shift == SHIFT_LSL
10305 || shift == SHIFT_ROR)),
10306 _("shift expression is too large"));
10307
10308 if (value == 0)
10309 shift = SHIFT_LSL;
10310 else if (value == 32)
10311 value = 0;
10312
10313 inst.instruction |= shift << 4;
10314 inst.instruction |= (value & 0x1c) << 10;
10315 inst.instruction |= (value & 0x03) << 6;
10316 }
10317 }
10318
10319
10320 /* inst.operands[i] was set up by parse_address. Encode it into a
10321 Thumb32 format load or store instruction. Reject forms that cannot
10322 be used with such instructions. If is_t is true, reject forms that
10323 cannot be used with a T instruction; if is_d is true, reject forms
10324 that cannot be used with a D instruction. If it is a store insn,
10325 reject PC in Rn. */
10326
10327 static void
10328 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10329 {
10330 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10331
10332 constraint (!inst.operands[i].isreg,
10333 _("Instruction does not support =N addresses"));
10334
10335 inst.instruction |= inst.operands[i].reg << 16;
10336 if (inst.operands[i].immisreg)
10337 {
10338 constraint (is_pc, BAD_PC_ADDRESSING);
10339 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10340 constraint (inst.operands[i].negative,
10341 _("Thumb does not support negative register indexing"));
10342 constraint (inst.operands[i].postind,
10343 _("Thumb does not support register post-indexing"));
10344 constraint (inst.operands[i].writeback,
10345 _("Thumb does not support register indexing with writeback"));
10346 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10347 _("Thumb supports only LSL in shifted register indexing"));
10348
10349 inst.instruction |= inst.operands[i].imm;
10350 if (inst.operands[i].shifted)
10351 {
10352 constraint (inst.reloc.exp.X_op != O_constant,
10353 _("expression too complex"));
10354 constraint (inst.reloc.exp.X_add_number < 0
10355 || inst.reloc.exp.X_add_number > 3,
10356 _("shift out of range"));
10357 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10358 }
10359 inst.reloc.type = BFD_RELOC_UNUSED;
10360 }
10361 else if (inst.operands[i].preind)
10362 {
10363 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10364 constraint (is_t && inst.operands[i].writeback,
10365 _("cannot use writeback with this instruction"));
10366 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10367 BAD_PC_ADDRESSING);
10368
10369 if (is_d)
10370 {
10371 inst.instruction |= 0x01000000;
10372 if (inst.operands[i].writeback)
10373 inst.instruction |= 0x00200000;
10374 }
10375 else
10376 {
10377 inst.instruction |= 0x00000c00;
10378 if (inst.operands[i].writeback)
10379 inst.instruction |= 0x00000100;
10380 }
10381 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10382 }
10383 else if (inst.operands[i].postind)
10384 {
10385 gas_assert (inst.operands[i].writeback);
10386 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10387 constraint (is_t, _("cannot use post-indexing with this instruction"));
10388
10389 if (is_d)
10390 inst.instruction |= 0x00200000;
10391 else
10392 inst.instruction |= 0x00000900;
10393 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10394 }
10395 else /* unindexed - only for coprocessor */
10396 inst.error = _("instruction does not accept unindexed addressing");
10397 }
10398
10399 /* Table of Thumb instructions which exist in both 16- and 32-bit
10400 encodings (the latter only in post-V6T2 cores). The index is the
10401 value used in the insns table below. When there is more than one
10402 possible 16-bit encoding for the instruction, this table always
10403 holds variant (1).
10404 Also contains several pseudo-instructions used during relaxation. */
10405 #define T16_32_TAB \
10406 X(_adc, 4140, eb400000), \
10407 X(_adcs, 4140, eb500000), \
10408 X(_add, 1c00, eb000000), \
10409 X(_adds, 1c00, eb100000), \
10410 X(_addi, 0000, f1000000), \
10411 X(_addis, 0000, f1100000), \
10412 X(_add_pc,000f, f20f0000), \
10413 X(_add_sp,000d, f10d0000), \
10414 X(_adr, 000f, f20f0000), \
10415 X(_and, 4000, ea000000), \
10416 X(_ands, 4000, ea100000), \
10417 X(_asr, 1000, fa40f000), \
10418 X(_asrs, 1000, fa50f000), \
10419 X(_b, e000, f000b000), \
10420 X(_bcond, d000, f0008000), \
10421 X(_bic, 4380, ea200000), \
10422 X(_bics, 4380, ea300000), \
10423 X(_cmn, 42c0, eb100f00), \
10424 X(_cmp, 2800, ebb00f00), \
10425 X(_cpsie, b660, f3af8400), \
10426 X(_cpsid, b670, f3af8600), \
10427 X(_cpy, 4600, ea4f0000), \
10428 X(_dec_sp,80dd, f1ad0d00), \
10429 X(_eor, 4040, ea800000), \
10430 X(_eors, 4040, ea900000), \
10431 X(_inc_sp,00dd, f10d0d00), \
10432 X(_ldmia, c800, e8900000), \
10433 X(_ldr, 6800, f8500000), \
10434 X(_ldrb, 7800, f8100000), \
10435 X(_ldrh, 8800, f8300000), \
10436 X(_ldrsb, 5600, f9100000), \
10437 X(_ldrsh, 5e00, f9300000), \
10438 X(_ldr_pc,4800, f85f0000), \
10439 X(_ldr_pc2,4800, f85f0000), \
10440 X(_ldr_sp,9800, f85d0000), \
10441 X(_lsl, 0000, fa00f000), \
10442 X(_lsls, 0000, fa10f000), \
10443 X(_lsr, 0800, fa20f000), \
10444 X(_lsrs, 0800, fa30f000), \
10445 X(_mov, 2000, ea4f0000), \
10446 X(_movs, 2000, ea5f0000), \
10447 X(_mul, 4340, fb00f000), \
10448 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10449 X(_mvn, 43c0, ea6f0000), \
10450 X(_mvns, 43c0, ea7f0000), \
10451 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10452 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10453 X(_orr, 4300, ea400000), \
10454 X(_orrs, 4300, ea500000), \
10455 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10456 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10457 X(_rev, ba00, fa90f080), \
10458 X(_rev16, ba40, fa90f090), \
10459 X(_revsh, bac0, fa90f0b0), \
10460 X(_ror, 41c0, fa60f000), \
10461 X(_rors, 41c0, fa70f000), \
10462 X(_sbc, 4180, eb600000), \
10463 X(_sbcs, 4180, eb700000), \
10464 X(_stmia, c000, e8800000), \
10465 X(_str, 6000, f8400000), \
10466 X(_strb, 7000, f8000000), \
10467 X(_strh, 8000, f8200000), \
10468 X(_str_sp,9000, f84d0000), \
10469 X(_sub, 1e00, eba00000), \
10470 X(_subs, 1e00, ebb00000), \
10471 X(_subi, 8000, f1a00000), \
10472 X(_subis, 8000, f1b00000), \
10473 X(_sxtb, b240, fa4ff080), \
10474 X(_sxth, b200, fa0ff080), \
10475 X(_tst, 4200, ea100f00), \
10476 X(_uxtb, b2c0, fa5ff080), \
10477 X(_uxth, b280, fa1ff080), \
10478 X(_nop, bf00, f3af8000), \
10479 X(_yield, bf10, f3af8001), \
10480 X(_wfe, bf20, f3af8002), \
10481 X(_wfi, bf30, f3af8003), \
10482 X(_sev, bf40, f3af8004), \
10483 X(_sevl, bf50, f3af8005), \
10484 X(_udf, de00, f7f0a000)
10485
10486 /* To catch errors in encoding functions, the codes are all offset by
10487 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10488 as 16-bit instructions. */
10489 #define X(a,b,c) T_MNEM##a
10490 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10491 #undef X
10492
10493 #define X(a,b,c) 0x##b
10494 static const unsigned short thumb_op16[] = { T16_32_TAB };
10495 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10496 #undef X
10497
10498 #define X(a,b,c) 0x##c
10499 static const unsigned int thumb_op32[] = { T16_32_TAB };
10500 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10501 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10502 #undef X
10503 #undef T16_32_TAB
10504
10505 /* Thumb instruction encoders, in alphabetical order. */
10506
10507 /* ADDW or SUBW. */
10508
10509 static void
10510 do_t_add_sub_w (void)
10511 {
10512 int Rd, Rn;
10513
10514 Rd = inst.operands[0].reg;
10515 Rn = inst.operands[1].reg;
10516
10517 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10518 is the SP-{plus,minus}-immediate form of the instruction. */
10519 if (Rn == REG_SP)
10520 constraint (Rd == REG_PC, BAD_PC);
10521 else
10522 reject_bad_reg (Rd);
10523
10524 inst.instruction |= (Rn << 16) | (Rd << 8);
10525 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10526 }
10527
10528 /* Parse an add or subtract instruction. We get here with inst.instruction
10529 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
10530
10531 static void
10532 do_t_add_sub (void)
10533 {
10534 int Rd, Rs, Rn;
10535
10536 Rd = inst.operands[0].reg;
10537 Rs = (inst.operands[1].present
10538 ? inst.operands[1].reg /* Rd, Rs, foo */
10539 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10540
10541 if (Rd == REG_PC)
10542 set_it_insn_type_last ();
10543
10544 if (unified_syntax)
10545 {
10546 bfd_boolean flags;
10547 bfd_boolean narrow;
10548 int opcode;
10549
10550 flags = (inst.instruction == T_MNEM_adds
10551 || inst.instruction == T_MNEM_subs);
10552 if (flags)
10553 narrow = !in_it_block ();
10554 else
10555 narrow = in_it_block ();
10556 if (!inst.operands[2].isreg)
10557 {
10558 int add;
10559
10560 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10561 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10562
10563 add = (inst.instruction == T_MNEM_add
10564 || inst.instruction == T_MNEM_adds);
10565 opcode = 0;
10566 if (inst.size_req != 4)
10567 {
10568 /* Attempt to use a narrow opcode, with relaxation if
10569 appropriate. */
10570 if (Rd == REG_SP && Rs == REG_SP && !flags)
10571 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10572 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10573 opcode = T_MNEM_add_sp;
10574 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10575 opcode = T_MNEM_add_pc;
10576 else if (Rd <= 7 && Rs <= 7 && narrow)
10577 {
10578 if (flags)
10579 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10580 else
10581 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10582 }
10583 if (opcode)
10584 {
10585 inst.instruction = THUMB_OP16(opcode);
10586 inst.instruction |= (Rd << 4) | Rs;
10587 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10588 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
10589 {
10590 if (inst.size_req == 2)
10591 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10592 else
10593 inst.relax = opcode;
10594 }
10595 }
10596 else
10597 constraint (inst.size_req == 2, BAD_HIREG);
10598 }
10599 if (inst.size_req == 4
10600 || (inst.size_req != 2 && !opcode))
10601 {
10602 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10603 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10604 THUMB1_RELOC_ONLY);
10605 if (Rd == REG_PC)
10606 {
10607 constraint (add, BAD_PC);
10608 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10609 _("only SUBS PC, LR, #const allowed"));
10610 constraint (inst.reloc.exp.X_op != O_constant,
10611 _("expression too complex"));
10612 constraint (inst.reloc.exp.X_add_number < 0
10613 || inst.reloc.exp.X_add_number > 0xff,
10614 _("immediate value out of range"));
10615 inst.instruction = T2_SUBS_PC_LR
10616 | inst.reloc.exp.X_add_number;
10617 inst.reloc.type = BFD_RELOC_UNUSED;
10618 return;
10619 }
10620 else if (Rs == REG_PC)
10621 {
10622 /* Always use addw/subw. */
10623 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10624 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10625 }
10626 else
10627 {
10628 inst.instruction = THUMB_OP32 (inst.instruction);
10629 inst.instruction = (inst.instruction & 0xe1ffffff)
10630 | 0x10000000;
10631 if (flags)
10632 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10633 else
10634 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10635 }
10636 inst.instruction |= Rd << 8;
10637 inst.instruction |= Rs << 16;
10638 }
10639 }
10640 else
10641 {
10642 unsigned int value = inst.reloc.exp.X_add_number;
10643 unsigned int shift = inst.operands[2].shift_kind;
10644
10645 Rn = inst.operands[2].reg;
10646 /* See if we can do this with a 16-bit instruction. */
10647 if (!inst.operands[2].shifted && inst.size_req != 4)
10648 {
10649 if (Rd > 7 || Rs > 7 || Rn > 7)
10650 narrow = FALSE;
10651
10652 if (narrow)
10653 {
10654 inst.instruction = ((inst.instruction == T_MNEM_adds
10655 || inst.instruction == T_MNEM_add)
10656 ? T_OPCODE_ADD_R3
10657 : T_OPCODE_SUB_R3);
10658 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10659 return;
10660 }
10661
10662 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10663 {
10664 /* Thumb-1 cores (except v6-M) require at least one high
10665 register in a narrow non flag setting add. */
10666 if (Rd > 7 || Rn > 7
10667 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10668 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10669 {
10670 if (Rd == Rn)
10671 {
10672 Rn = Rs;
10673 Rs = Rd;
10674 }
10675 inst.instruction = T_OPCODE_ADD_HI;
10676 inst.instruction |= (Rd & 8) << 4;
10677 inst.instruction |= (Rd & 7);
10678 inst.instruction |= Rn << 3;
10679 return;
10680 }
10681 }
10682 }
10683
10684 constraint (Rd == REG_PC, BAD_PC);
10685 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10686 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10687 constraint (Rs == REG_PC, BAD_PC);
10688 reject_bad_reg (Rn);
10689
10690 /* If we get here, it can't be done in 16 bits. */
10691 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10692 _("shift must be constant"));
10693 inst.instruction = THUMB_OP32 (inst.instruction);
10694 inst.instruction |= Rd << 8;
10695 inst.instruction |= Rs << 16;
10696 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10697 _("shift value over 3 not allowed in thumb mode"));
10698 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10699 _("only LSL shift allowed in thumb mode"));
10700 encode_thumb32_shifted_operand (2);
10701 }
10702 }
10703 else
10704 {
10705 constraint (inst.instruction == T_MNEM_adds
10706 || inst.instruction == T_MNEM_subs,
10707 BAD_THUMB32);
10708
10709 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10710 {
10711 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10712 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10713 BAD_HIREG);
10714
10715 inst.instruction = (inst.instruction == T_MNEM_add
10716 ? 0x0000 : 0x8000);
10717 inst.instruction |= (Rd << 4) | Rs;
10718 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10719 return;
10720 }
10721
10722 Rn = inst.operands[2].reg;
10723 constraint (inst.operands[2].shifted, _("unshifted register required"));
10724
10725 /* We now have Rd, Rs, and Rn set to registers. */
10726 if (Rd > 7 || Rs > 7 || Rn > 7)
10727 {
10728 /* Can't do this for SUB. */
10729 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10730 inst.instruction = T_OPCODE_ADD_HI;
10731 inst.instruction |= (Rd & 8) << 4;
10732 inst.instruction |= (Rd & 7);
10733 if (Rs == Rd)
10734 inst.instruction |= Rn << 3;
10735 else if (Rn == Rd)
10736 inst.instruction |= Rs << 3;
10737 else
10738 constraint (1, _("dest must overlap one source register"));
10739 }
10740 else
10741 {
10742 inst.instruction = (inst.instruction == T_MNEM_add
10743 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10745 }
10746 }
10747 }
10748
10749 static void
10750 do_t_adr (void)
10751 {
10752 unsigned Rd;
10753
10754 Rd = inst.operands[0].reg;
10755 reject_bad_reg (Rd);
10756
10757 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10758 {
10759 /* Defer to section relaxation. */
10760 inst.relax = inst.instruction;
10761 inst.instruction = THUMB_OP16 (inst.instruction);
10762 inst.instruction |= Rd << 4;
10763 }
10764 else if (unified_syntax && inst.size_req != 2)
10765 {
10766 /* Generate a 32-bit opcode. */
10767 inst.instruction = THUMB_OP32 (inst.instruction);
10768 inst.instruction |= Rd << 8;
10769 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10770 inst.reloc.pc_rel = 1;
10771 }
10772 else
10773 {
10774 /* Generate a 16-bit opcode. */
10775 inst.instruction = THUMB_OP16 (inst.instruction);
10776 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10777 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10778 inst.reloc.pc_rel = 1;
10779 inst.instruction |= Rd << 4;
10780 }
10781
10782 if (inst.reloc.exp.X_op == O_symbol
10783 && inst.reloc.exp.X_add_symbol != NULL
10784 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10785 && THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10786 inst.reloc.exp.X_add_number += 1;
10787 }
10788
10789 /* Arithmetic instructions for which there is just one 16-bit
10790 instruction encoding, and it allows only two low registers.
10791 For maximal compatibility with ARM syntax, we allow three register
10792 operands even when Thumb-32 instructions are not available, as long
10793 as the first two are identical. For instance, both "sbc r0,r1" and
10794 "sbc r0,r0,r1" are allowed. */
10795 static void
10796 do_t_arit3 (void)
10797 {
10798 int Rd, Rs, Rn;
10799
10800 Rd = inst.operands[0].reg;
10801 Rs = (inst.operands[1].present
10802 ? inst.operands[1].reg /* Rd, Rs, foo */
10803 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10804 Rn = inst.operands[2].reg;
10805
10806 reject_bad_reg (Rd);
10807 reject_bad_reg (Rs);
10808 if (inst.operands[2].isreg)
10809 reject_bad_reg (Rn);
10810
10811 if (unified_syntax)
10812 {
10813 if (!inst.operands[2].isreg)
10814 {
10815 /* For an immediate, we always generate a 32-bit opcode;
10816 section relaxation will shrink it later if possible. */
10817 inst.instruction = THUMB_OP32 (inst.instruction);
10818 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10819 inst.instruction |= Rd << 8;
10820 inst.instruction |= Rs << 16;
10821 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10822 }
10823 else
10824 {
10825 bfd_boolean narrow;
10826
10827 /* See if we can do this with a 16-bit instruction. */
10828 if (THUMB_SETS_FLAGS (inst.instruction))
10829 narrow = !in_it_block ();
10830 else
10831 narrow = in_it_block ();
10832
10833 if (Rd > 7 || Rn > 7 || Rs > 7)
10834 narrow = FALSE;
10835 if (inst.operands[2].shifted)
10836 narrow = FALSE;
10837 if (inst.size_req == 4)
10838 narrow = FALSE;
10839
10840 if (narrow
10841 && Rd == Rs)
10842 {
10843 inst.instruction = THUMB_OP16 (inst.instruction);
10844 inst.instruction |= Rd;
10845 inst.instruction |= Rn << 3;
10846 return;
10847 }
10848
10849 /* If we get here, it can't be done in 16 bits. */
10850 constraint (inst.operands[2].shifted
10851 && inst.operands[2].immisreg,
10852 _("shift must be constant"));
10853 inst.instruction = THUMB_OP32 (inst.instruction);
10854 inst.instruction |= Rd << 8;
10855 inst.instruction |= Rs << 16;
10856 encode_thumb32_shifted_operand (2);
10857 }
10858 }
10859 else
10860 {
10861 /* On its face this is a lie - the instruction does set the
10862 flags. However, the only supported mnemonic in this mode
10863 says it doesn't. */
10864 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10865
10866 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10867 _("unshifted register required"));
10868 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10869 constraint (Rd != Rs,
10870 _("dest and source1 must be the same register"));
10871
10872 inst.instruction = THUMB_OP16 (inst.instruction);
10873 inst.instruction |= Rd;
10874 inst.instruction |= Rn << 3;
10875 }
10876 }
10877
10878 /* Similarly, but for instructions where the arithmetic operation is
10879 commutative, so we can allow either of them to be different from
10880 the destination operand in a 16-bit instruction. For instance, all
10881 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10882 accepted. */
10883 static void
10884 do_t_arit3c (void)
10885 {
10886 int Rd, Rs, Rn;
10887
10888 Rd = inst.operands[0].reg;
10889 Rs = (inst.operands[1].present
10890 ? inst.operands[1].reg /* Rd, Rs, foo */
10891 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10892 Rn = inst.operands[2].reg;
10893
10894 reject_bad_reg (Rd);
10895 reject_bad_reg (Rs);
10896 if (inst.operands[2].isreg)
10897 reject_bad_reg (Rn);
10898
10899 if (unified_syntax)
10900 {
10901 if (!inst.operands[2].isreg)
10902 {
10903 /* For an immediate, we always generate a 32-bit opcode;
10904 section relaxation will shrink it later if possible. */
10905 inst.instruction = THUMB_OP32 (inst.instruction);
10906 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10907 inst.instruction |= Rd << 8;
10908 inst.instruction |= Rs << 16;
10909 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10910 }
10911 else
10912 {
10913 bfd_boolean narrow;
10914
10915 /* See if we can do this with a 16-bit instruction. */
10916 if (THUMB_SETS_FLAGS (inst.instruction))
10917 narrow = !in_it_block ();
10918 else
10919 narrow = in_it_block ();
10920
10921 if (Rd > 7 || Rn > 7 || Rs > 7)
10922 narrow = FALSE;
10923 if (inst.operands[2].shifted)
10924 narrow = FALSE;
10925 if (inst.size_req == 4)
10926 narrow = FALSE;
10927
10928 if (narrow)
10929 {
10930 if (Rd == Rs)
10931 {
10932 inst.instruction = THUMB_OP16 (inst.instruction);
10933 inst.instruction |= Rd;
10934 inst.instruction |= Rn << 3;
10935 return;
10936 }
10937 if (Rd == Rn)
10938 {
10939 inst.instruction = THUMB_OP16 (inst.instruction);
10940 inst.instruction |= Rd;
10941 inst.instruction |= Rs << 3;
10942 return;
10943 }
10944 }
10945
10946 /* If we get here, it can't be done in 16 bits. */
10947 constraint (inst.operands[2].shifted
10948 && inst.operands[2].immisreg,
10949 _("shift must be constant"));
10950 inst.instruction = THUMB_OP32 (inst.instruction);
10951 inst.instruction |= Rd << 8;
10952 inst.instruction |= Rs << 16;
10953 encode_thumb32_shifted_operand (2);
10954 }
10955 }
10956 else
10957 {
10958 /* On its face this is a lie - the instruction does set the
10959 flags. However, the only supported mnemonic in this mode
10960 says it doesn't. */
10961 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10962
10963 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10964 _("unshifted register required"));
10965 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10966
10967 inst.instruction = THUMB_OP16 (inst.instruction);
10968 inst.instruction |= Rd;
10969
10970 if (Rd == Rs)
10971 inst.instruction |= Rn << 3;
10972 else if (Rd == Rn)
10973 inst.instruction |= Rs << 3;
10974 else
10975 constraint (1, _("dest must overlap one source register"));
10976 }
10977 }
10978
10979 static void
10980 do_t_bfc (void)
10981 {
10982 unsigned Rd;
10983 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10984 constraint (msb > 32, _("bit-field extends past end of register"));
10985 /* The instruction encoding stores the LSB and MSB,
10986 not the LSB and width. */
10987 Rd = inst.operands[0].reg;
10988 reject_bad_reg (Rd);
10989 inst.instruction |= Rd << 8;
10990 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10991 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10992 inst.instruction |= msb - 1;
10993 }
10994
10995 static void
10996 do_t_bfi (void)
10997 {
10998 int Rd, Rn;
10999 unsigned int msb;
11000
11001 Rd = inst.operands[0].reg;
11002 reject_bad_reg (Rd);
11003
11004 /* #0 in second position is alternative syntax for bfc, which is
11005 the same instruction but with REG_PC in the Rm field. */
11006 if (!inst.operands[1].isreg)
11007 Rn = REG_PC;
11008 else
11009 {
11010 Rn = inst.operands[1].reg;
11011 reject_bad_reg (Rn);
11012 }
11013
11014 msb = inst.operands[2].imm + inst.operands[3].imm;
11015 constraint (msb > 32, _("bit-field extends past end of register"));
11016 /* The instruction encoding stores the LSB and MSB,
11017 not the LSB and width. */
11018 inst.instruction |= Rd << 8;
11019 inst.instruction |= Rn << 16;
11020 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11021 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11022 inst.instruction |= msb - 1;
11023 }
11024
11025 static void
11026 do_t_bfx (void)
11027 {
11028 unsigned Rd, Rn;
11029
11030 Rd = inst.operands[0].reg;
11031 Rn = inst.operands[1].reg;
11032
11033 reject_bad_reg (Rd);
11034 reject_bad_reg (Rn);
11035
11036 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11037 _("bit-field extends past end of register"));
11038 inst.instruction |= Rd << 8;
11039 inst.instruction |= Rn << 16;
11040 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11041 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11042 inst.instruction |= inst.operands[3].imm - 1;
11043 }
11044
11045 /* ARM V5 Thumb BLX (argument parse)
11046 BLX <target_addr> which is BLX(1)
11047 BLX <Rm> which is BLX(2)
11048 Unfortunately, there are two different opcodes for this mnemonic.
11049 So, the insns[].value is not used, and the code here zaps values
11050 into inst.instruction.
11051
11052 ??? How to take advantage of the additional two bits of displacement
11053 available in Thumb32 mode? Need new relocation? */
11054
11055 static void
11056 do_t_blx (void)
11057 {
11058 set_it_insn_type_last ();
11059
11060 if (inst.operands[0].isreg)
11061 {
11062 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11063 /* We have a register, so this is BLX(2). */
11064 inst.instruction |= inst.operands[0].reg << 3;
11065 }
11066 else
11067 {
11068 /* No register. This must be BLX(1). */
11069 inst.instruction = 0xf000e800;
11070 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11071 }
11072 }
11073
11074 static void
11075 do_t_branch (void)
11076 {
11077 int opcode;
11078 int cond;
11079 bfd_reloc_code_real_type reloc;
11080
11081 cond = inst.cond;
11082 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11083
11084 if (in_it_block ())
11085 {
11086 /* Conditional branches inside IT blocks are encoded as unconditional
11087 branches. */
11088 cond = COND_ALWAYS;
11089 }
11090 else
11091 cond = inst.cond;
11092
11093 if (cond != COND_ALWAYS)
11094 opcode = T_MNEM_bcond;
11095 else
11096 opcode = inst.instruction;
11097
11098 if (unified_syntax
11099 && (inst.size_req == 4
11100 || (inst.size_req != 2
11101 && (inst.operands[0].hasreloc
11102 || inst.reloc.exp.X_op == O_constant))))
11103 {
11104 inst.instruction = THUMB_OP32(opcode);
11105 if (cond == COND_ALWAYS)
11106 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11107 else
11108 {
11109 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11110 _("selected architecture does not support "
11111 "wide conditional branch instruction"));
11112
11113 gas_assert (cond != 0xF);
11114 inst.instruction |= cond << 22;
11115 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11116 }
11117 }
11118 else
11119 {
11120 inst.instruction = THUMB_OP16(opcode);
11121 if (cond == COND_ALWAYS)
11122 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11123 else
11124 {
11125 inst.instruction |= cond << 8;
11126 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11127 }
11128 /* Allow section relaxation. */
11129 if (unified_syntax && inst.size_req != 2)
11130 inst.relax = opcode;
11131 }
11132 inst.reloc.type = reloc;
11133 inst.reloc.pc_rel = 1;
11134 }
11135
11136 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11137 between the two is the maximum immediate allowed - which is passed in
11138 RANGE. */
11139 static void
11140 do_t_bkpt_hlt1 (int range)
11141 {
11142 constraint (inst.cond != COND_ALWAYS,
11143 _("instruction is always unconditional"));
11144 if (inst.operands[0].present)
11145 {
11146 constraint (inst.operands[0].imm > range,
11147 _("immediate value out of range"));
11148 inst.instruction |= inst.operands[0].imm;
11149 }
11150
11151 set_it_insn_type (NEUTRAL_IT_INSN);
11152 }
11153
11154 static void
11155 do_t_hlt (void)
11156 {
11157 do_t_bkpt_hlt1 (63);
11158 }
11159
11160 static void
11161 do_t_bkpt (void)
11162 {
11163 do_t_bkpt_hlt1 (255);
11164 }
11165
11166 static void
11167 do_t_branch23 (void)
11168 {
11169 set_it_insn_type_last ();
11170 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11171
11172 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11173 this file. We used to simply ignore the PLT reloc type here --
11174 the branch encoding is now needed to deal with TLSCALL relocs.
11175 So if we see a PLT reloc now, put it back to how it used to be to
11176 keep the preexisting behaviour. */
11177 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11178 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11179
11180 #if defined(OBJ_COFF)
11181 /* If the destination of the branch is a defined symbol which does not have
11182 the THUMB_FUNC attribute, then we must be calling a function which has
11183 the (interfacearm) attribute. We look for the Thumb entry point to that
11184 function and change the branch to refer to that function instead. */
11185 if ( inst.reloc.exp.X_op == O_symbol
11186 && inst.reloc.exp.X_add_symbol != NULL
11187 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11188 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11189 inst.reloc.exp.X_add_symbol =
11190 find_real_start (inst.reloc.exp.X_add_symbol);
11191 #endif
11192 }
11193
11194 static void
11195 do_t_bx (void)
11196 {
11197 set_it_insn_type_last ();
11198 inst.instruction |= inst.operands[0].reg << 3;
11199 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11200 should cause the alignment to be checked once it is known. This is
11201 because BX PC only works if the instruction is word aligned. */
11202 }
11203
11204 static void
11205 do_t_bxj (void)
11206 {
11207 int Rm;
11208
11209 set_it_insn_type_last ();
11210 Rm = inst.operands[0].reg;
11211 reject_bad_reg (Rm);
11212 inst.instruction |= Rm << 16;
11213 }
11214
11215 static void
11216 do_t_clz (void)
11217 {
11218 unsigned Rd;
11219 unsigned Rm;
11220
11221 Rd = inst.operands[0].reg;
11222 Rm = inst.operands[1].reg;
11223
11224 reject_bad_reg (Rd);
11225 reject_bad_reg (Rm);
11226
11227 inst.instruction |= Rd << 8;
11228 inst.instruction |= Rm << 16;
11229 inst.instruction |= Rm;
11230 }
11231
11232 static void
11233 do_t_cps (void)
11234 {
11235 set_it_insn_type (OUTSIDE_IT_INSN);
11236 inst.instruction |= inst.operands[0].imm;
11237 }
11238
11239 static void
11240 do_t_cpsi (void)
11241 {
11242 set_it_insn_type (OUTSIDE_IT_INSN);
11243 if (unified_syntax
11244 && (inst.operands[1].present || inst.size_req == 4)
11245 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11246 {
11247 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11248 inst.instruction = 0xf3af8000;
11249 inst.instruction |= imod << 9;
11250 inst.instruction |= inst.operands[0].imm << 5;
11251 if (inst.operands[1].present)
11252 inst.instruction |= 0x100 | inst.operands[1].imm;
11253 }
11254 else
11255 {
11256 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11257 && (inst.operands[0].imm & 4),
11258 _("selected processor does not support 'A' form "
11259 "of this instruction"));
11260 constraint (inst.operands[1].present || inst.size_req == 4,
11261 _("Thumb does not support the 2-argument "
11262 "form of this instruction"));
11263 inst.instruction |= inst.operands[0].imm;
11264 }
11265 }
11266
11267 /* THUMB CPY instruction (argument parse). */
11268
11269 static void
11270 do_t_cpy (void)
11271 {
11272 if (inst.size_req == 4)
11273 {
11274 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11275 inst.instruction |= inst.operands[0].reg << 8;
11276 inst.instruction |= inst.operands[1].reg;
11277 }
11278 else
11279 {
11280 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11281 inst.instruction |= (inst.operands[0].reg & 0x7);
11282 inst.instruction |= inst.operands[1].reg << 3;
11283 }
11284 }
11285
11286 static void
11287 do_t_cbz (void)
11288 {
11289 set_it_insn_type (OUTSIDE_IT_INSN);
11290 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11291 inst.instruction |= inst.operands[0].reg;
11292 inst.reloc.pc_rel = 1;
11293 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11294 }
11295
11296 static void
11297 do_t_dbg (void)
11298 {
11299 inst.instruction |= inst.operands[0].imm;
11300 }
11301
11302 static void
11303 do_t_div (void)
11304 {
11305 unsigned Rd, Rn, Rm;
11306
11307 Rd = inst.operands[0].reg;
11308 Rn = (inst.operands[1].present
11309 ? inst.operands[1].reg : Rd);
11310 Rm = inst.operands[2].reg;
11311
11312 reject_bad_reg (Rd);
11313 reject_bad_reg (Rn);
11314 reject_bad_reg (Rm);
11315
11316 inst.instruction |= Rd << 8;
11317 inst.instruction |= Rn << 16;
11318 inst.instruction |= Rm;
11319 }
11320
11321 static void
11322 do_t_hint (void)
11323 {
11324 if (unified_syntax && inst.size_req == 4)
11325 inst.instruction = THUMB_OP32 (inst.instruction);
11326 else
11327 inst.instruction = THUMB_OP16 (inst.instruction);
11328 }
11329
11330 static void
11331 do_t_it (void)
11332 {
11333 unsigned int cond = inst.operands[0].imm;
11334
11335 set_it_insn_type (IT_INSN);
11336 now_it.mask = (inst.instruction & 0xf) | 0x10;
11337 now_it.cc = cond;
11338 now_it.warn_deprecated = FALSE;
11339
11340 /* If the condition is a negative condition, invert the mask. */
11341 if ((cond & 0x1) == 0x0)
11342 {
11343 unsigned int mask = inst.instruction & 0x000f;
11344
11345 if ((mask & 0x7) == 0)
11346 {
11347 /* No conversion needed. */
11348 now_it.block_length = 1;
11349 }
11350 else if ((mask & 0x3) == 0)
11351 {
11352 mask ^= 0x8;
11353 now_it.block_length = 2;
11354 }
11355 else if ((mask & 0x1) == 0)
11356 {
11357 mask ^= 0xC;
11358 now_it.block_length = 3;
11359 }
11360 else
11361 {
11362 mask ^= 0xE;
11363 now_it.block_length = 4;
11364 }
11365
11366 inst.instruction &= 0xfff0;
11367 inst.instruction |= mask;
11368 }
11369
11370 inst.instruction |= cond << 4;
11371 }
11372
11373 /* Helper function used for both push/pop and ldm/stm. */
11374 static void
11375 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11376 {
11377 bfd_boolean load;
11378
11379 load = (inst.instruction & (1 << 20)) != 0;
11380
11381 if (mask & (1 << 13))
11382 inst.error = _("SP not allowed in register list");
11383
11384 if ((mask & (1 << base)) != 0
11385 && writeback)
11386 inst.error = _("having the base register in the register list when "
11387 "using write back is UNPREDICTABLE");
11388
11389 if (load)
11390 {
11391 if (mask & (1 << 15))
11392 {
11393 if (mask & (1 << 14))
11394 inst.error = _("LR and PC should not both be in register list");
11395 else
11396 set_it_insn_type_last ();
11397 }
11398 }
11399 else
11400 {
11401 if (mask & (1 << 15))
11402 inst.error = _("PC not allowed in register list");
11403 }
11404
11405 if ((mask & (mask - 1)) == 0)
11406 {
11407 /* Single register transfers implemented as str/ldr. */
11408 if (writeback)
11409 {
11410 if (inst.instruction & (1 << 23))
11411 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11412 else
11413 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11414 }
11415 else
11416 {
11417 if (inst.instruction & (1 << 23))
11418 inst.instruction = 0x00800000; /* ia -> [base] */
11419 else
11420 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11421 }
11422
11423 inst.instruction |= 0xf8400000;
11424 if (load)
11425 inst.instruction |= 0x00100000;
11426
11427 mask = ffs (mask) - 1;
11428 mask <<= 12;
11429 }
11430 else if (writeback)
11431 inst.instruction |= WRITE_BACK;
11432
11433 inst.instruction |= mask;
11434 inst.instruction |= base << 16;
11435 }
11436
11437 static void
11438 do_t_ldmstm (void)
11439 {
11440 /* This really doesn't seem worth it. */
11441 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11442 _("expression too complex"));
11443 constraint (inst.operands[1].writeback,
11444 _("Thumb load/store multiple does not support {reglist}^"));
11445
11446 if (unified_syntax)
11447 {
11448 bfd_boolean narrow;
11449 unsigned mask;
11450
11451 narrow = FALSE;
11452 /* See if we can use a 16-bit instruction. */
11453 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11454 && inst.size_req != 4
11455 && !(inst.operands[1].imm & ~0xff))
11456 {
11457 mask = 1 << inst.operands[0].reg;
11458
11459 if (inst.operands[0].reg <= 7)
11460 {
11461 if (inst.instruction == T_MNEM_stmia
11462 ? inst.operands[0].writeback
11463 : (inst.operands[0].writeback
11464 == !(inst.operands[1].imm & mask)))
11465 {
11466 if (inst.instruction == T_MNEM_stmia
11467 && (inst.operands[1].imm & mask)
11468 && (inst.operands[1].imm & (mask - 1)))
11469 as_warn (_("value stored for r%d is UNKNOWN"),
11470 inst.operands[0].reg);
11471
11472 inst.instruction = THUMB_OP16 (inst.instruction);
11473 inst.instruction |= inst.operands[0].reg << 8;
11474 inst.instruction |= inst.operands[1].imm;
11475 narrow = TRUE;
11476 }
11477 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11478 {
11479 /* This means 1 register in reg list one of 3 situations:
11480 1. Instruction is stmia, but without writeback.
11481 2. lmdia without writeback, but with Rn not in
11482 reglist.
11483 3. ldmia with writeback, but with Rn in reglist.
11484 Case 3 is UNPREDICTABLE behaviour, so we handle
11485 case 1 and 2 which can be converted into a 16-bit
11486 str or ldr. The SP cases are handled below. */
11487 unsigned long opcode;
11488 /* First, record an error for Case 3. */
11489 if (inst.operands[1].imm & mask
11490 && inst.operands[0].writeback)
11491 inst.error =
11492 _("having the base register in the register list when "
11493 "using write back is UNPREDICTABLE");
11494
11495 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11496 : T_MNEM_ldr);
11497 inst.instruction = THUMB_OP16 (opcode);
11498 inst.instruction |= inst.operands[0].reg << 3;
11499 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11500 narrow = TRUE;
11501 }
11502 }
11503 else if (inst.operands[0] .reg == REG_SP)
11504 {
11505 if (inst.operands[0].writeback)
11506 {
11507 inst.instruction =
11508 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11509 ? T_MNEM_push : T_MNEM_pop);
11510 inst.instruction |= inst.operands[1].imm;
11511 narrow = TRUE;
11512 }
11513 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11514 {
11515 inst.instruction =
11516 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11517 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11518 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11519 narrow = TRUE;
11520 }
11521 }
11522 }
11523
11524 if (!narrow)
11525 {
11526 if (inst.instruction < 0xffff)
11527 inst.instruction = THUMB_OP32 (inst.instruction);
11528
11529 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11530 inst.operands[0].writeback);
11531 }
11532 }
11533 else
11534 {
11535 constraint (inst.operands[0].reg > 7
11536 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11537 constraint (inst.instruction != T_MNEM_ldmia
11538 && inst.instruction != T_MNEM_stmia,
11539 _("Thumb-2 instruction only valid in unified syntax"));
11540 if (inst.instruction == T_MNEM_stmia)
11541 {
11542 if (!inst.operands[0].writeback)
11543 as_warn (_("this instruction will write back the base register"));
11544 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11545 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11546 as_warn (_("value stored for r%d is UNKNOWN"),
11547 inst.operands[0].reg);
11548 }
11549 else
11550 {
11551 if (!inst.operands[0].writeback
11552 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11553 as_warn (_("this instruction will write back the base register"));
11554 else if (inst.operands[0].writeback
11555 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11556 as_warn (_("this instruction will not write back the base register"));
11557 }
11558
11559 inst.instruction = THUMB_OP16 (inst.instruction);
11560 inst.instruction |= inst.operands[0].reg << 8;
11561 inst.instruction |= inst.operands[1].imm;
11562 }
11563 }
11564
11565 static void
11566 do_t_ldrex (void)
11567 {
11568 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11569 || inst.operands[1].postind || inst.operands[1].writeback
11570 || inst.operands[1].immisreg || inst.operands[1].shifted
11571 || inst.operands[1].negative,
11572 BAD_ADDR_MODE);
11573
11574 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11575
11576 inst.instruction |= inst.operands[0].reg << 12;
11577 inst.instruction |= inst.operands[1].reg << 16;
11578 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11579 }
11580
11581 static void
11582 do_t_ldrexd (void)
11583 {
11584 if (!inst.operands[1].present)
11585 {
11586 constraint (inst.operands[0].reg == REG_LR,
11587 _("r14 not allowed as first register "
11588 "when second register is omitted"));
11589 inst.operands[1].reg = inst.operands[0].reg + 1;
11590 }
11591 constraint (inst.operands[0].reg == inst.operands[1].reg,
11592 BAD_OVERLAP);
11593
11594 inst.instruction |= inst.operands[0].reg << 12;
11595 inst.instruction |= inst.operands[1].reg << 8;
11596 inst.instruction |= inst.operands[2].reg << 16;
11597 }
11598
11599 static void
11600 do_t_ldst (void)
11601 {
11602 unsigned long opcode;
11603 int Rn;
11604
11605 if (inst.operands[0].isreg
11606 && !inst.operands[0].preind
11607 && inst.operands[0].reg == REG_PC)
11608 set_it_insn_type_last ();
11609
11610 opcode = inst.instruction;
11611 if (unified_syntax)
11612 {
11613 if (!inst.operands[1].isreg)
11614 {
11615 if (opcode <= 0xffff)
11616 inst.instruction = THUMB_OP32 (opcode);
11617 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11618 return;
11619 }
11620 if (inst.operands[1].isreg
11621 && !inst.operands[1].writeback
11622 && !inst.operands[1].shifted && !inst.operands[1].postind
11623 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11624 && opcode <= 0xffff
11625 && inst.size_req != 4)
11626 {
11627 /* Insn may have a 16-bit form. */
11628 Rn = inst.operands[1].reg;
11629 if (inst.operands[1].immisreg)
11630 {
11631 inst.instruction = THUMB_OP16 (opcode);
11632 /* [Rn, Rik] */
11633 if (Rn <= 7 && inst.operands[1].imm <= 7)
11634 goto op16;
11635 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11636 reject_bad_reg (inst.operands[1].imm);
11637 }
11638 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11639 && opcode != T_MNEM_ldrsb)
11640 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11641 || (Rn == REG_SP && opcode == T_MNEM_str))
11642 {
11643 /* [Rn, #const] */
11644 if (Rn > 7)
11645 {
11646 if (Rn == REG_PC)
11647 {
11648 if (inst.reloc.pc_rel)
11649 opcode = T_MNEM_ldr_pc2;
11650 else
11651 opcode = T_MNEM_ldr_pc;
11652 }
11653 else
11654 {
11655 if (opcode == T_MNEM_ldr)
11656 opcode = T_MNEM_ldr_sp;
11657 else
11658 opcode = T_MNEM_str_sp;
11659 }
11660 inst.instruction = inst.operands[0].reg << 8;
11661 }
11662 else
11663 {
11664 inst.instruction = inst.operands[0].reg;
11665 inst.instruction |= inst.operands[1].reg << 3;
11666 }
11667 inst.instruction |= THUMB_OP16 (opcode);
11668 if (inst.size_req == 2)
11669 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11670 else
11671 inst.relax = opcode;
11672 return;
11673 }
11674 }
11675 /* Definitely a 32-bit variant. */
11676
11677 /* Warning for Erratum 752419. */
11678 if (opcode == T_MNEM_ldr
11679 && inst.operands[0].reg == REG_SP
11680 && inst.operands[1].writeback == 1
11681 && !inst.operands[1].immisreg)
11682 {
11683 if (no_cpu_selected ()
11684 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11685 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11686 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11687 as_warn (_("This instruction may be unpredictable "
11688 "if executed on M-profile cores "
11689 "with interrupts enabled."));
11690 }
11691
11692 /* Do some validations regarding addressing modes. */
11693 if (inst.operands[1].immisreg)
11694 reject_bad_reg (inst.operands[1].imm);
11695
11696 constraint (inst.operands[1].writeback == 1
11697 && inst.operands[0].reg == inst.operands[1].reg,
11698 BAD_OVERLAP);
11699
11700 inst.instruction = THUMB_OP32 (opcode);
11701 inst.instruction |= inst.operands[0].reg << 12;
11702 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11703 check_ldr_r15_aligned ();
11704 return;
11705 }
11706
11707 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11708
11709 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11710 {
11711 /* Only [Rn,Rm] is acceptable. */
11712 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11713 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11714 || inst.operands[1].postind || inst.operands[1].shifted
11715 || inst.operands[1].negative,
11716 _("Thumb does not support this addressing mode"));
11717 inst.instruction = THUMB_OP16 (inst.instruction);
11718 goto op16;
11719 }
11720
11721 inst.instruction = THUMB_OP16 (inst.instruction);
11722 if (!inst.operands[1].isreg)
11723 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11724 return;
11725
11726 constraint (!inst.operands[1].preind
11727 || inst.operands[1].shifted
11728 || inst.operands[1].writeback,
11729 _("Thumb does not support this addressing mode"));
11730 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11731 {
11732 constraint (inst.instruction & 0x0600,
11733 _("byte or halfword not valid for base register"));
11734 constraint (inst.operands[1].reg == REG_PC
11735 && !(inst.instruction & THUMB_LOAD_BIT),
11736 _("r15 based store not allowed"));
11737 constraint (inst.operands[1].immisreg,
11738 _("invalid base register for register offset"));
11739
11740 if (inst.operands[1].reg == REG_PC)
11741 inst.instruction = T_OPCODE_LDR_PC;
11742 else if (inst.instruction & THUMB_LOAD_BIT)
11743 inst.instruction = T_OPCODE_LDR_SP;
11744 else
11745 inst.instruction = T_OPCODE_STR_SP;
11746
11747 inst.instruction |= inst.operands[0].reg << 8;
11748 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11749 return;
11750 }
11751
11752 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11753 if (!inst.operands[1].immisreg)
11754 {
11755 /* Immediate offset. */
11756 inst.instruction |= inst.operands[0].reg;
11757 inst.instruction |= inst.operands[1].reg << 3;
11758 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11759 return;
11760 }
11761
11762 /* Register offset. */
11763 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11764 constraint (inst.operands[1].negative,
11765 _("Thumb does not support this addressing mode"));
11766
11767 op16:
11768 switch (inst.instruction)
11769 {
11770 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11771 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11772 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11773 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11774 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11775 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11776 case 0x5600 /* ldrsb */:
11777 case 0x5e00 /* ldrsh */: break;
11778 default: abort ();
11779 }
11780
11781 inst.instruction |= inst.operands[0].reg;
11782 inst.instruction |= inst.operands[1].reg << 3;
11783 inst.instruction |= inst.operands[1].imm << 6;
11784 }
11785
11786 static void
11787 do_t_ldstd (void)
11788 {
11789 if (!inst.operands[1].present)
11790 {
11791 inst.operands[1].reg = inst.operands[0].reg + 1;
11792 constraint (inst.operands[0].reg == REG_LR,
11793 _("r14 not allowed here"));
11794 constraint (inst.operands[0].reg == REG_R12,
11795 _("r12 not allowed here"));
11796 }
11797
11798 if (inst.operands[2].writeback
11799 && (inst.operands[0].reg == inst.operands[2].reg
11800 || inst.operands[1].reg == inst.operands[2].reg))
11801 as_warn (_("base register written back, and overlaps "
11802 "one of transfer registers"));
11803
11804 inst.instruction |= inst.operands[0].reg << 12;
11805 inst.instruction |= inst.operands[1].reg << 8;
11806 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11807 }
11808
11809 static void
11810 do_t_ldstt (void)
11811 {
11812 inst.instruction |= inst.operands[0].reg << 12;
11813 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11814 }
11815
11816 static void
11817 do_t_mla (void)
11818 {
11819 unsigned Rd, Rn, Rm, Ra;
11820
11821 Rd = inst.operands[0].reg;
11822 Rn = inst.operands[1].reg;
11823 Rm = inst.operands[2].reg;
11824 Ra = inst.operands[3].reg;
11825
11826 reject_bad_reg (Rd);
11827 reject_bad_reg (Rn);
11828 reject_bad_reg (Rm);
11829 reject_bad_reg (Ra);
11830
11831 inst.instruction |= Rd << 8;
11832 inst.instruction |= Rn << 16;
11833 inst.instruction |= Rm;
11834 inst.instruction |= Ra << 12;
11835 }
11836
11837 static void
11838 do_t_mlal (void)
11839 {
11840 unsigned RdLo, RdHi, Rn, Rm;
11841
11842 RdLo = inst.operands[0].reg;
11843 RdHi = inst.operands[1].reg;
11844 Rn = inst.operands[2].reg;
11845 Rm = inst.operands[3].reg;
11846
11847 reject_bad_reg (RdLo);
11848 reject_bad_reg (RdHi);
11849 reject_bad_reg (Rn);
11850 reject_bad_reg (Rm);
11851
11852 inst.instruction |= RdLo << 12;
11853 inst.instruction |= RdHi << 8;
11854 inst.instruction |= Rn << 16;
11855 inst.instruction |= Rm;
11856 }
11857
11858 static void
11859 do_t_mov_cmp (void)
11860 {
11861 unsigned Rn, Rm;
11862
11863 Rn = inst.operands[0].reg;
11864 Rm = inst.operands[1].reg;
11865
11866 if (Rn == REG_PC)
11867 set_it_insn_type_last ();
11868
11869 if (unified_syntax)
11870 {
11871 int r0off = (inst.instruction == T_MNEM_mov
11872 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11873 unsigned long opcode;
11874 bfd_boolean narrow;
11875 bfd_boolean low_regs;
11876
11877 low_regs = (Rn <= 7 && Rm <= 7);
11878 opcode = inst.instruction;
11879 if (in_it_block ())
11880 narrow = opcode != T_MNEM_movs;
11881 else
11882 narrow = opcode != T_MNEM_movs || low_regs;
11883 if (inst.size_req == 4
11884 || inst.operands[1].shifted)
11885 narrow = FALSE;
11886
11887 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11888 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11889 && !inst.operands[1].shifted
11890 && Rn == REG_PC
11891 && Rm == REG_LR)
11892 {
11893 inst.instruction = T2_SUBS_PC_LR;
11894 return;
11895 }
11896
11897 if (opcode == T_MNEM_cmp)
11898 {
11899 constraint (Rn == REG_PC, BAD_PC);
11900 if (narrow)
11901 {
11902 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11903 but valid. */
11904 warn_deprecated_sp (Rm);
11905 /* R15 was documented as a valid choice for Rm in ARMv6,
11906 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11907 tools reject R15, so we do too. */
11908 constraint (Rm == REG_PC, BAD_PC);
11909 }
11910 else
11911 reject_bad_reg (Rm);
11912 }
11913 else if (opcode == T_MNEM_mov
11914 || opcode == T_MNEM_movs)
11915 {
11916 if (inst.operands[1].isreg)
11917 {
11918 if (opcode == T_MNEM_movs)
11919 {
11920 reject_bad_reg (Rn);
11921 reject_bad_reg (Rm);
11922 }
11923 else if (narrow)
11924 {
11925 /* This is mov.n. */
11926 if ((Rn == REG_SP || Rn == REG_PC)
11927 && (Rm == REG_SP || Rm == REG_PC))
11928 {
11929 as_tsktsk (_("Use of r%u as a source register is "
11930 "deprecated when r%u is the destination "
11931 "register."), Rm, Rn);
11932 }
11933 }
11934 else
11935 {
11936 /* This is mov.w. */
11937 constraint (Rn == REG_PC, BAD_PC);
11938 constraint (Rm == REG_PC, BAD_PC);
11939 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11940 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11941 }
11942 }
11943 else
11944 reject_bad_reg (Rn);
11945 }
11946
11947 if (!inst.operands[1].isreg)
11948 {
11949 /* Immediate operand. */
11950 if (!in_it_block () && opcode == T_MNEM_mov)
11951 narrow = 0;
11952 if (low_regs && narrow)
11953 {
11954 inst.instruction = THUMB_OP16 (opcode);
11955 inst.instruction |= Rn << 8;
11956 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11957 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
11958 {
11959 if (inst.size_req == 2)
11960 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11961 else
11962 inst.relax = opcode;
11963 }
11964 }
11965 else
11966 {
11967 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11968 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
11969 THUMB1_RELOC_ONLY);
11970
11971 inst.instruction = THUMB_OP32 (inst.instruction);
11972 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11973 inst.instruction |= Rn << r0off;
11974 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11975 }
11976 }
11977 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11978 && (inst.instruction == T_MNEM_mov
11979 || inst.instruction == T_MNEM_movs))
11980 {
11981 /* Register shifts are encoded as separate shift instructions. */
11982 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11983
11984 if (in_it_block ())
11985 narrow = !flags;
11986 else
11987 narrow = flags;
11988
11989 if (inst.size_req == 4)
11990 narrow = FALSE;
11991
11992 if (!low_regs || inst.operands[1].imm > 7)
11993 narrow = FALSE;
11994
11995 if (Rn != Rm)
11996 narrow = FALSE;
11997
11998 switch (inst.operands[1].shift_kind)
11999 {
12000 case SHIFT_LSL:
12001 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12002 break;
12003 case SHIFT_ASR:
12004 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12005 break;
12006 case SHIFT_LSR:
12007 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12008 break;
12009 case SHIFT_ROR:
12010 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12011 break;
12012 default:
12013 abort ();
12014 }
12015
12016 inst.instruction = opcode;
12017 if (narrow)
12018 {
12019 inst.instruction |= Rn;
12020 inst.instruction |= inst.operands[1].imm << 3;
12021 }
12022 else
12023 {
12024 if (flags)
12025 inst.instruction |= CONDS_BIT;
12026
12027 inst.instruction |= Rn << 8;
12028 inst.instruction |= Rm << 16;
12029 inst.instruction |= inst.operands[1].imm;
12030 }
12031 }
12032 else if (!narrow)
12033 {
12034 /* Some mov with immediate shift have narrow variants.
12035 Register shifts are handled above. */
12036 if (low_regs && inst.operands[1].shifted
12037 && (inst.instruction == T_MNEM_mov
12038 || inst.instruction == T_MNEM_movs))
12039 {
12040 if (in_it_block ())
12041 narrow = (inst.instruction == T_MNEM_mov);
12042 else
12043 narrow = (inst.instruction == T_MNEM_movs);
12044 }
12045
12046 if (narrow)
12047 {
12048 switch (inst.operands[1].shift_kind)
12049 {
12050 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12051 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12052 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12053 default: narrow = FALSE; break;
12054 }
12055 }
12056
12057 if (narrow)
12058 {
12059 inst.instruction |= Rn;
12060 inst.instruction |= Rm << 3;
12061 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12062 }
12063 else
12064 {
12065 inst.instruction = THUMB_OP32 (inst.instruction);
12066 inst.instruction |= Rn << r0off;
12067 encode_thumb32_shifted_operand (1);
12068 }
12069 }
12070 else
12071 switch (inst.instruction)
12072 {
12073 case T_MNEM_mov:
12074 /* In v4t or v5t a move of two lowregs produces unpredictable
12075 results. Don't allow this. */
12076 if (low_regs)
12077 {
12078 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12079 "MOV Rd, Rs with two low registers is not "
12080 "permitted on this architecture");
12081 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12082 arm_ext_v6);
12083 }
12084
12085 inst.instruction = T_OPCODE_MOV_HR;
12086 inst.instruction |= (Rn & 0x8) << 4;
12087 inst.instruction |= (Rn & 0x7);
12088 inst.instruction |= Rm << 3;
12089 break;
12090
12091 case T_MNEM_movs:
12092 /* We know we have low registers at this point.
12093 Generate LSLS Rd, Rs, #0. */
12094 inst.instruction = T_OPCODE_LSL_I;
12095 inst.instruction |= Rn;
12096 inst.instruction |= Rm << 3;
12097 break;
12098
12099 case T_MNEM_cmp:
12100 if (low_regs)
12101 {
12102 inst.instruction = T_OPCODE_CMP_LR;
12103 inst.instruction |= Rn;
12104 inst.instruction |= Rm << 3;
12105 }
12106 else
12107 {
12108 inst.instruction = T_OPCODE_CMP_HR;
12109 inst.instruction |= (Rn & 0x8) << 4;
12110 inst.instruction |= (Rn & 0x7);
12111 inst.instruction |= Rm << 3;
12112 }
12113 break;
12114 }
12115 return;
12116 }
12117
12118 inst.instruction = THUMB_OP16 (inst.instruction);
12119
12120 /* PR 10443: Do not silently ignore shifted operands. */
12121 constraint (inst.operands[1].shifted,
12122 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12123
12124 if (inst.operands[1].isreg)
12125 {
12126 if (Rn < 8 && Rm < 8)
12127 {
12128 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12129 since a MOV instruction produces unpredictable results. */
12130 if (inst.instruction == T_OPCODE_MOV_I8)
12131 inst.instruction = T_OPCODE_ADD_I3;
12132 else
12133 inst.instruction = T_OPCODE_CMP_LR;
12134
12135 inst.instruction |= Rn;
12136 inst.instruction |= Rm << 3;
12137 }
12138 else
12139 {
12140 if (inst.instruction == T_OPCODE_MOV_I8)
12141 inst.instruction = T_OPCODE_MOV_HR;
12142 else
12143 inst.instruction = T_OPCODE_CMP_HR;
12144 do_t_cpy ();
12145 }
12146 }
12147 else
12148 {
12149 constraint (Rn > 7,
12150 _("only lo regs allowed with immediate"));
12151 inst.instruction |= Rn << 8;
12152 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12153 }
12154 }
12155
12156 static void
12157 do_t_mov16 (void)
12158 {
12159 unsigned Rd;
12160 bfd_vma imm;
12161 bfd_boolean top;
12162
12163 top = (inst.instruction & 0x00800000) != 0;
12164 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12165 {
12166 constraint (top, _(":lower16: not allowed in this instruction"));
12167 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12168 }
12169 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12170 {
12171 constraint (!top, _(":upper16: not allowed in this instruction"));
12172 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12173 }
12174
12175 Rd = inst.operands[0].reg;
12176 reject_bad_reg (Rd);
12177
12178 inst.instruction |= Rd << 8;
12179 if (inst.reloc.type == BFD_RELOC_UNUSED)
12180 {
12181 imm = inst.reloc.exp.X_add_number;
12182 inst.instruction |= (imm & 0xf000) << 4;
12183 inst.instruction |= (imm & 0x0800) << 15;
12184 inst.instruction |= (imm & 0x0700) << 4;
12185 inst.instruction |= (imm & 0x00ff);
12186 }
12187 }
12188
12189 static void
12190 do_t_mvn_tst (void)
12191 {
12192 unsigned Rn, Rm;
12193
12194 Rn = inst.operands[0].reg;
12195 Rm = inst.operands[1].reg;
12196
12197 if (inst.instruction == T_MNEM_cmp
12198 || inst.instruction == T_MNEM_cmn)
12199 constraint (Rn == REG_PC, BAD_PC);
12200 else
12201 reject_bad_reg (Rn);
12202 reject_bad_reg (Rm);
12203
12204 if (unified_syntax)
12205 {
12206 int r0off = (inst.instruction == T_MNEM_mvn
12207 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12208 bfd_boolean narrow;
12209
12210 if (inst.size_req == 4
12211 || inst.instruction > 0xffff
12212 || inst.operands[1].shifted
12213 || Rn > 7 || Rm > 7)
12214 narrow = FALSE;
12215 else if (inst.instruction == T_MNEM_cmn
12216 || inst.instruction == T_MNEM_tst)
12217 narrow = TRUE;
12218 else if (THUMB_SETS_FLAGS (inst.instruction))
12219 narrow = !in_it_block ();
12220 else
12221 narrow = in_it_block ();
12222
12223 if (!inst.operands[1].isreg)
12224 {
12225 /* For an immediate, we always generate a 32-bit opcode;
12226 section relaxation will shrink it later if possible. */
12227 if (inst.instruction < 0xffff)
12228 inst.instruction = THUMB_OP32 (inst.instruction);
12229 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12230 inst.instruction |= Rn << r0off;
12231 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12232 }
12233 else
12234 {
12235 /* See if we can do this with a 16-bit instruction. */
12236 if (narrow)
12237 {
12238 inst.instruction = THUMB_OP16 (inst.instruction);
12239 inst.instruction |= Rn;
12240 inst.instruction |= Rm << 3;
12241 }
12242 else
12243 {
12244 constraint (inst.operands[1].shifted
12245 && inst.operands[1].immisreg,
12246 _("shift must be constant"));
12247 if (inst.instruction < 0xffff)
12248 inst.instruction = THUMB_OP32 (inst.instruction);
12249 inst.instruction |= Rn << r0off;
12250 encode_thumb32_shifted_operand (1);
12251 }
12252 }
12253 }
12254 else
12255 {
12256 constraint (inst.instruction > 0xffff
12257 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12258 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12259 _("unshifted register required"));
12260 constraint (Rn > 7 || Rm > 7,
12261 BAD_HIREG);
12262
12263 inst.instruction = THUMB_OP16 (inst.instruction);
12264 inst.instruction |= Rn;
12265 inst.instruction |= Rm << 3;
12266 }
12267 }
12268
12269 static void
12270 do_t_mrs (void)
12271 {
12272 unsigned Rd;
12273
12274 if (do_vfp_nsyn_mrs () == SUCCESS)
12275 return;
12276
12277 Rd = inst.operands[0].reg;
12278 reject_bad_reg (Rd);
12279 inst.instruction |= Rd << 8;
12280
12281 if (inst.operands[1].isreg)
12282 {
12283 unsigned br = inst.operands[1].reg;
12284 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12285 as_bad (_("bad register for mrs"));
12286
12287 inst.instruction |= br & (0xf << 16);
12288 inst.instruction |= (br & 0x300) >> 4;
12289 inst.instruction |= (br & SPSR_BIT) >> 2;
12290 }
12291 else
12292 {
12293 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12294
12295 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12296 {
12297 /* PR gas/12698: The constraint is only applied for m_profile.
12298 If the user has specified -march=all, we want to ignore it as
12299 we are building for any CPU type, including non-m variants. */
12300 bfd_boolean m_profile =
12301 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12302 constraint ((flags != 0) && m_profile, _("selected processor does "
12303 "not support requested special purpose register"));
12304 }
12305 else
12306 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12307 devices). */
12308 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12309 _("'APSR', 'CPSR' or 'SPSR' expected"));
12310
12311 inst.instruction |= (flags & SPSR_BIT) >> 2;
12312 inst.instruction |= inst.operands[1].imm & 0xff;
12313 inst.instruction |= 0xf0000;
12314 }
12315 }
12316
12317 static void
12318 do_t_msr (void)
12319 {
12320 int flags;
12321 unsigned Rn;
12322
12323 if (do_vfp_nsyn_msr () == SUCCESS)
12324 return;
12325
12326 constraint (!inst.operands[1].isreg,
12327 _("Thumb encoding does not support an immediate here"));
12328
12329 if (inst.operands[0].isreg)
12330 flags = (int)(inst.operands[0].reg);
12331 else
12332 flags = inst.operands[0].imm;
12333
12334 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12335 {
12336 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12337
12338 /* PR gas/12698: The constraint is only applied for m_profile.
12339 If the user has specified -march=all, we want to ignore it as
12340 we are building for any CPU type, including non-m variants. */
12341 bfd_boolean m_profile =
12342 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12343 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12344 && (bits & ~(PSR_s | PSR_f)) != 0)
12345 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12346 && bits != PSR_f)) && m_profile,
12347 _("selected processor does not support requested special "
12348 "purpose register"));
12349 }
12350 else
12351 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12352 "requested special purpose register"));
12353
12354 Rn = inst.operands[1].reg;
12355 reject_bad_reg (Rn);
12356
12357 inst.instruction |= (flags & SPSR_BIT) >> 2;
12358 inst.instruction |= (flags & 0xf0000) >> 8;
12359 inst.instruction |= (flags & 0x300) >> 4;
12360 inst.instruction |= (flags & 0xff);
12361 inst.instruction |= Rn << 16;
12362 }
12363
12364 static void
12365 do_t_mul (void)
12366 {
12367 bfd_boolean narrow;
12368 unsigned Rd, Rn, Rm;
12369
12370 if (!inst.operands[2].present)
12371 inst.operands[2].reg = inst.operands[0].reg;
12372
12373 Rd = inst.operands[0].reg;
12374 Rn = inst.operands[1].reg;
12375 Rm = inst.operands[2].reg;
12376
12377 if (unified_syntax)
12378 {
12379 if (inst.size_req == 4
12380 || (Rd != Rn
12381 && Rd != Rm)
12382 || Rn > 7
12383 || Rm > 7)
12384 narrow = FALSE;
12385 else if (inst.instruction == T_MNEM_muls)
12386 narrow = !in_it_block ();
12387 else
12388 narrow = in_it_block ();
12389 }
12390 else
12391 {
12392 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12393 constraint (Rn > 7 || Rm > 7,
12394 BAD_HIREG);
12395 narrow = TRUE;
12396 }
12397
12398 if (narrow)
12399 {
12400 /* 16-bit MULS/Conditional MUL. */
12401 inst.instruction = THUMB_OP16 (inst.instruction);
12402 inst.instruction |= Rd;
12403
12404 if (Rd == Rn)
12405 inst.instruction |= Rm << 3;
12406 else if (Rd == Rm)
12407 inst.instruction |= Rn << 3;
12408 else
12409 constraint (1, _("dest must overlap one source register"));
12410 }
12411 else
12412 {
12413 constraint (inst.instruction != T_MNEM_mul,
12414 _("Thumb-2 MUL must not set flags"));
12415 /* 32-bit MUL. */
12416 inst.instruction = THUMB_OP32 (inst.instruction);
12417 inst.instruction |= Rd << 8;
12418 inst.instruction |= Rn << 16;
12419 inst.instruction |= Rm << 0;
12420
12421 reject_bad_reg (Rd);
12422 reject_bad_reg (Rn);
12423 reject_bad_reg (Rm);
12424 }
12425 }
12426
12427 static void
12428 do_t_mull (void)
12429 {
12430 unsigned RdLo, RdHi, Rn, Rm;
12431
12432 RdLo = inst.operands[0].reg;
12433 RdHi = inst.operands[1].reg;
12434 Rn = inst.operands[2].reg;
12435 Rm = inst.operands[3].reg;
12436
12437 reject_bad_reg (RdLo);
12438 reject_bad_reg (RdHi);
12439 reject_bad_reg (Rn);
12440 reject_bad_reg (Rm);
12441
12442 inst.instruction |= RdLo << 12;
12443 inst.instruction |= RdHi << 8;
12444 inst.instruction |= Rn << 16;
12445 inst.instruction |= Rm;
12446
12447 if (RdLo == RdHi)
12448 as_tsktsk (_("rdhi and rdlo must be different"));
12449 }
12450
12451 static void
12452 do_t_nop (void)
12453 {
12454 set_it_insn_type (NEUTRAL_IT_INSN);
12455
12456 if (unified_syntax)
12457 {
12458 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12459 {
12460 inst.instruction = THUMB_OP32 (inst.instruction);
12461 inst.instruction |= inst.operands[0].imm;
12462 }
12463 else
12464 {
12465 /* PR9722: Check for Thumb2 availability before
12466 generating a thumb2 nop instruction. */
12467 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12468 {
12469 inst.instruction = THUMB_OP16 (inst.instruction);
12470 inst.instruction |= inst.operands[0].imm << 4;
12471 }
12472 else
12473 inst.instruction = 0x46c0;
12474 }
12475 }
12476 else
12477 {
12478 constraint (inst.operands[0].present,
12479 _("Thumb does not support NOP with hints"));
12480 inst.instruction = 0x46c0;
12481 }
12482 }
12483
12484 static void
12485 do_t_neg (void)
12486 {
12487 if (unified_syntax)
12488 {
12489 bfd_boolean narrow;
12490
12491 if (THUMB_SETS_FLAGS (inst.instruction))
12492 narrow = !in_it_block ();
12493 else
12494 narrow = in_it_block ();
12495 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12496 narrow = FALSE;
12497 if (inst.size_req == 4)
12498 narrow = FALSE;
12499
12500 if (!narrow)
12501 {
12502 inst.instruction = THUMB_OP32 (inst.instruction);
12503 inst.instruction |= inst.operands[0].reg << 8;
12504 inst.instruction |= inst.operands[1].reg << 16;
12505 }
12506 else
12507 {
12508 inst.instruction = THUMB_OP16 (inst.instruction);
12509 inst.instruction |= inst.operands[0].reg;
12510 inst.instruction |= inst.operands[1].reg << 3;
12511 }
12512 }
12513 else
12514 {
12515 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12516 BAD_HIREG);
12517 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12518
12519 inst.instruction = THUMB_OP16 (inst.instruction);
12520 inst.instruction |= inst.operands[0].reg;
12521 inst.instruction |= inst.operands[1].reg << 3;
12522 }
12523 }
12524
12525 static void
12526 do_t_orn (void)
12527 {
12528 unsigned Rd, Rn;
12529
12530 Rd = inst.operands[0].reg;
12531 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12532
12533 reject_bad_reg (Rd);
12534 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12535 reject_bad_reg (Rn);
12536
12537 inst.instruction |= Rd << 8;
12538 inst.instruction |= Rn << 16;
12539
12540 if (!inst.operands[2].isreg)
12541 {
12542 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12543 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12544 }
12545 else
12546 {
12547 unsigned Rm;
12548
12549 Rm = inst.operands[2].reg;
12550 reject_bad_reg (Rm);
12551
12552 constraint (inst.operands[2].shifted
12553 && inst.operands[2].immisreg,
12554 _("shift must be constant"));
12555 encode_thumb32_shifted_operand (2);
12556 }
12557 }
12558
12559 static void
12560 do_t_pkhbt (void)
12561 {
12562 unsigned Rd, Rn, Rm;
12563
12564 Rd = inst.operands[0].reg;
12565 Rn = inst.operands[1].reg;
12566 Rm = inst.operands[2].reg;
12567
12568 reject_bad_reg (Rd);
12569 reject_bad_reg (Rn);
12570 reject_bad_reg (Rm);
12571
12572 inst.instruction |= Rd << 8;
12573 inst.instruction |= Rn << 16;
12574 inst.instruction |= Rm;
12575 if (inst.operands[3].present)
12576 {
12577 unsigned int val = inst.reloc.exp.X_add_number;
12578 constraint (inst.reloc.exp.X_op != O_constant,
12579 _("expression too complex"));
12580 inst.instruction |= (val & 0x1c) << 10;
12581 inst.instruction |= (val & 0x03) << 6;
12582 }
12583 }
12584
12585 static void
12586 do_t_pkhtb (void)
12587 {
12588 if (!inst.operands[3].present)
12589 {
12590 unsigned Rtmp;
12591
12592 inst.instruction &= ~0x00000020;
12593
12594 /* PR 10168. Swap the Rm and Rn registers. */
12595 Rtmp = inst.operands[1].reg;
12596 inst.operands[1].reg = inst.operands[2].reg;
12597 inst.operands[2].reg = Rtmp;
12598 }
12599 do_t_pkhbt ();
12600 }
12601
12602 static void
12603 do_t_pld (void)
12604 {
12605 if (inst.operands[0].immisreg)
12606 reject_bad_reg (inst.operands[0].imm);
12607
12608 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12609 }
12610
12611 static void
12612 do_t_push_pop (void)
12613 {
12614 unsigned mask;
12615
12616 constraint (inst.operands[0].writeback,
12617 _("push/pop do not support {reglist}^"));
12618 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12619 _("expression too complex"));
12620
12621 mask = inst.operands[0].imm;
12622 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12623 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12624 else if (inst.size_req != 4
12625 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
12626 ? REG_LR : REG_PC)))
12627 {
12628 inst.instruction = THUMB_OP16 (inst.instruction);
12629 inst.instruction |= THUMB_PP_PC_LR;
12630 inst.instruction |= mask & 0xff;
12631 }
12632 else if (unified_syntax)
12633 {
12634 inst.instruction = THUMB_OP32 (inst.instruction);
12635 encode_thumb2_ldmstm (13, mask, TRUE);
12636 }
12637 else
12638 {
12639 inst.error = _("invalid register list to push/pop instruction");
12640 return;
12641 }
12642 }
12643
12644 static void
12645 do_t_rbit (void)
12646 {
12647 unsigned Rd, Rm;
12648
12649 Rd = inst.operands[0].reg;
12650 Rm = inst.operands[1].reg;
12651
12652 reject_bad_reg (Rd);
12653 reject_bad_reg (Rm);
12654
12655 inst.instruction |= Rd << 8;
12656 inst.instruction |= Rm << 16;
12657 inst.instruction |= Rm;
12658 }
12659
12660 static void
12661 do_t_rev (void)
12662 {
12663 unsigned Rd, Rm;
12664
12665 Rd = inst.operands[0].reg;
12666 Rm = inst.operands[1].reg;
12667
12668 reject_bad_reg (Rd);
12669 reject_bad_reg (Rm);
12670
12671 if (Rd <= 7 && Rm <= 7
12672 && inst.size_req != 4)
12673 {
12674 inst.instruction = THUMB_OP16 (inst.instruction);
12675 inst.instruction |= Rd;
12676 inst.instruction |= Rm << 3;
12677 }
12678 else if (unified_syntax)
12679 {
12680 inst.instruction = THUMB_OP32 (inst.instruction);
12681 inst.instruction |= Rd << 8;
12682 inst.instruction |= Rm << 16;
12683 inst.instruction |= Rm;
12684 }
12685 else
12686 inst.error = BAD_HIREG;
12687 }
12688
12689 static void
12690 do_t_rrx (void)
12691 {
12692 unsigned Rd, Rm;
12693
12694 Rd = inst.operands[0].reg;
12695 Rm = inst.operands[1].reg;
12696
12697 reject_bad_reg (Rd);
12698 reject_bad_reg (Rm);
12699
12700 inst.instruction |= Rd << 8;
12701 inst.instruction |= Rm;
12702 }
12703
12704 static void
12705 do_t_rsb (void)
12706 {
12707 unsigned Rd, Rs;
12708
12709 Rd = inst.operands[0].reg;
12710 Rs = (inst.operands[1].present
12711 ? inst.operands[1].reg /* Rd, Rs, foo */
12712 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12713
12714 reject_bad_reg (Rd);
12715 reject_bad_reg (Rs);
12716 if (inst.operands[2].isreg)
12717 reject_bad_reg (inst.operands[2].reg);
12718
12719 inst.instruction |= Rd << 8;
12720 inst.instruction |= Rs << 16;
12721 if (!inst.operands[2].isreg)
12722 {
12723 bfd_boolean narrow;
12724
12725 if ((inst.instruction & 0x00100000) != 0)
12726 narrow = !in_it_block ();
12727 else
12728 narrow = in_it_block ();
12729
12730 if (Rd > 7 || Rs > 7)
12731 narrow = FALSE;
12732
12733 if (inst.size_req == 4 || !unified_syntax)
12734 narrow = FALSE;
12735
12736 if (inst.reloc.exp.X_op != O_constant
12737 || inst.reloc.exp.X_add_number != 0)
12738 narrow = FALSE;
12739
12740 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12741 relaxation, but it doesn't seem worth the hassle. */
12742 if (narrow)
12743 {
12744 inst.reloc.type = BFD_RELOC_UNUSED;
12745 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12746 inst.instruction |= Rs << 3;
12747 inst.instruction |= Rd;
12748 }
12749 else
12750 {
12751 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12752 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12753 }
12754 }
12755 else
12756 encode_thumb32_shifted_operand (2);
12757 }
12758
12759 static void
12760 do_t_setend (void)
12761 {
12762 if (warn_on_deprecated
12763 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12764 as_tsktsk (_("setend use is deprecated for ARMv8"));
12765
12766 set_it_insn_type (OUTSIDE_IT_INSN);
12767 if (inst.operands[0].imm)
12768 inst.instruction |= 0x8;
12769 }
12770
12771 static void
12772 do_t_shift (void)
12773 {
12774 if (!inst.operands[1].present)
12775 inst.operands[1].reg = inst.operands[0].reg;
12776
12777 if (unified_syntax)
12778 {
12779 bfd_boolean narrow;
12780 int shift_kind;
12781
12782 switch (inst.instruction)
12783 {
12784 case T_MNEM_asr:
12785 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12786 case T_MNEM_lsl:
12787 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12788 case T_MNEM_lsr:
12789 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12790 case T_MNEM_ror:
12791 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12792 default: abort ();
12793 }
12794
12795 if (THUMB_SETS_FLAGS (inst.instruction))
12796 narrow = !in_it_block ();
12797 else
12798 narrow = in_it_block ();
12799 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12800 narrow = FALSE;
12801 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12802 narrow = FALSE;
12803 if (inst.operands[2].isreg
12804 && (inst.operands[1].reg != inst.operands[0].reg
12805 || inst.operands[2].reg > 7))
12806 narrow = FALSE;
12807 if (inst.size_req == 4)
12808 narrow = FALSE;
12809
12810 reject_bad_reg (inst.operands[0].reg);
12811 reject_bad_reg (inst.operands[1].reg);
12812
12813 if (!narrow)
12814 {
12815 if (inst.operands[2].isreg)
12816 {
12817 reject_bad_reg (inst.operands[2].reg);
12818 inst.instruction = THUMB_OP32 (inst.instruction);
12819 inst.instruction |= inst.operands[0].reg << 8;
12820 inst.instruction |= inst.operands[1].reg << 16;
12821 inst.instruction |= inst.operands[2].reg;
12822
12823 /* PR 12854: Error on extraneous shifts. */
12824 constraint (inst.operands[2].shifted,
12825 _("extraneous shift as part of operand to shift insn"));
12826 }
12827 else
12828 {
12829 inst.operands[1].shifted = 1;
12830 inst.operands[1].shift_kind = shift_kind;
12831 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12832 ? T_MNEM_movs : T_MNEM_mov);
12833 inst.instruction |= inst.operands[0].reg << 8;
12834 encode_thumb32_shifted_operand (1);
12835 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12836 inst.reloc.type = BFD_RELOC_UNUSED;
12837 }
12838 }
12839 else
12840 {
12841 if (inst.operands[2].isreg)
12842 {
12843 switch (shift_kind)
12844 {
12845 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12846 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12847 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12848 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12849 default: abort ();
12850 }
12851
12852 inst.instruction |= inst.operands[0].reg;
12853 inst.instruction |= inst.operands[2].reg << 3;
12854
12855 /* PR 12854: Error on extraneous shifts. */
12856 constraint (inst.operands[2].shifted,
12857 _("extraneous shift as part of operand to shift insn"));
12858 }
12859 else
12860 {
12861 switch (shift_kind)
12862 {
12863 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12864 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12865 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12866 default: abort ();
12867 }
12868 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12869 inst.instruction |= inst.operands[0].reg;
12870 inst.instruction |= inst.operands[1].reg << 3;
12871 }
12872 }
12873 }
12874 else
12875 {
12876 constraint (inst.operands[0].reg > 7
12877 || inst.operands[1].reg > 7, BAD_HIREG);
12878 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12879
12880 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12881 {
12882 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12883 constraint (inst.operands[0].reg != inst.operands[1].reg,
12884 _("source1 and dest must be same register"));
12885
12886 switch (inst.instruction)
12887 {
12888 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12889 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12890 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12891 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12892 default: abort ();
12893 }
12894
12895 inst.instruction |= inst.operands[0].reg;
12896 inst.instruction |= inst.operands[2].reg << 3;
12897
12898 /* PR 12854: Error on extraneous shifts. */
12899 constraint (inst.operands[2].shifted,
12900 _("extraneous shift as part of operand to shift insn"));
12901 }
12902 else
12903 {
12904 switch (inst.instruction)
12905 {
12906 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12907 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12908 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12909 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12910 default: abort ();
12911 }
12912 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12913 inst.instruction |= inst.operands[0].reg;
12914 inst.instruction |= inst.operands[1].reg << 3;
12915 }
12916 }
12917 }
12918
12919 static void
12920 do_t_simd (void)
12921 {
12922 unsigned Rd, Rn, Rm;
12923
12924 Rd = inst.operands[0].reg;
12925 Rn = inst.operands[1].reg;
12926 Rm = inst.operands[2].reg;
12927
12928 reject_bad_reg (Rd);
12929 reject_bad_reg (Rn);
12930 reject_bad_reg (Rm);
12931
12932 inst.instruction |= Rd << 8;
12933 inst.instruction |= Rn << 16;
12934 inst.instruction |= Rm;
12935 }
12936
12937 static void
12938 do_t_simd2 (void)
12939 {
12940 unsigned Rd, Rn, Rm;
12941
12942 Rd = inst.operands[0].reg;
12943 Rm = inst.operands[1].reg;
12944 Rn = inst.operands[2].reg;
12945
12946 reject_bad_reg (Rd);
12947 reject_bad_reg (Rn);
12948 reject_bad_reg (Rm);
12949
12950 inst.instruction |= Rd << 8;
12951 inst.instruction |= Rn << 16;
12952 inst.instruction |= Rm;
12953 }
12954
12955 static void
12956 do_t_smc (void)
12957 {
12958 unsigned int value = inst.reloc.exp.X_add_number;
12959 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12960 _("SMC is not permitted on this architecture"));
12961 constraint (inst.reloc.exp.X_op != O_constant,
12962 _("expression too complex"));
12963 inst.reloc.type = BFD_RELOC_UNUSED;
12964 inst.instruction |= (value & 0xf000) >> 12;
12965 inst.instruction |= (value & 0x0ff0);
12966 inst.instruction |= (value & 0x000f) << 16;
12967 /* PR gas/15623: SMC instructions must be last in an IT block. */
12968 set_it_insn_type_last ();
12969 }
12970
12971 static void
12972 do_t_hvc (void)
12973 {
12974 unsigned int value = inst.reloc.exp.X_add_number;
12975
12976 inst.reloc.type = BFD_RELOC_UNUSED;
12977 inst.instruction |= (value & 0x0fff);
12978 inst.instruction |= (value & 0xf000) << 4;
12979 }
12980
12981 static void
12982 do_t_ssat_usat (int bias)
12983 {
12984 unsigned Rd, Rn;
12985
12986 Rd = inst.operands[0].reg;
12987 Rn = inst.operands[2].reg;
12988
12989 reject_bad_reg (Rd);
12990 reject_bad_reg (Rn);
12991
12992 inst.instruction |= Rd << 8;
12993 inst.instruction |= inst.operands[1].imm - bias;
12994 inst.instruction |= Rn << 16;
12995
12996 if (inst.operands[3].present)
12997 {
12998 offsetT shift_amount = inst.reloc.exp.X_add_number;
12999
13000 inst.reloc.type = BFD_RELOC_UNUSED;
13001
13002 constraint (inst.reloc.exp.X_op != O_constant,
13003 _("expression too complex"));
13004
13005 if (shift_amount != 0)
13006 {
13007 constraint (shift_amount > 31,
13008 _("shift expression is too large"));
13009
13010 if (inst.operands[3].shift_kind == SHIFT_ASR)
13011 inst.instruction |= 0x00200000; /* sh bit. */
13012
13013 inst.instruction |= (shift_amount & 0x1c) << 10;
13014 inst.instruction |= (shift_amount & 0x03) << 6;
13015 }
13016 }
13017 }
13018
13019 static void
13020 do_t_ssat (void)
13021 {
13022 do_t_ssat_usat (1);
13023 }
13024
13025 static void
13026 do_t_ssat16 (void)
13027 {
13028 unsigned Rd, Rn;
13029
13030 Rd = inst.operands[0].reg;
13031 Rn = inst.operands[2].reg;
13032
13033 reject_bad_reg (Rd);
13034 reject_bad_reg (Rn);
13035
13036 inst.instruction |= Rd << 8;
13037 inst.instruction |= inst.operands[1].imm - 1;
13038 inst.instruction |= Rn << 16;
13039 }
13040
13041 static void
13042 do_t_strex (void)
13043 {
13044 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13045 || inst.operands[2].postind || inst.operands[2].writeback
13046 || inst.operands[2].immisreg || inst.operands[2].shifted
13047 || inst.operands[2].negative,
13048 BAD_ADDR_MODE);
13049
13050 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13051
13052 inst.instruction |= inst.operands[0].reg << 8;
13053 inst.instruction |= inst.operands[1].reg << 12;
13054 inst.instruction |= inst.operands[2].reg << 16;
13055 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
13056 }
13057
13058 static void
13059 do_t_strexd (void)
13060 {
13061 if (!inst.operands[2].present)
13062 inst.operands[2].reg = inst.operands[1].reg + 1;
13063
13064 constraint (inst.operands[0].reg == inst.operands[1].reg
13065 || inst.operands[0].reg == inst.operands[2].reg
13066 || inst.operands[0].reg == inst.operands[3].reg,
13067 BAD_OVERLAP);
13068
13069 inst.instruction |= inst.operands[0].reg;
13070 inst.instruction |= inst.operands[1].reg << 12;
13071 inst.instruction |= inst.operands[2].reg << 8;
13072 inst.instruction |= inst.operands[3].reg << 16;
13073 }
13074
13075 static void
13076 do_t_sxtah (void)
13077 {
13078 unsigned Rd, Rn, Rm;
13079
13080 Rd = inst.operands[0].reg;
13081 Rn = inst.operands[1].reg;
13082 Rm = inst.operands[2].reg;
13083
13084 reject_bad_reg (Rd);
13085 reject_bad_reg (Rn);
13086 reject_bad_reg (Rm);
13087
13088 inst.instruction |= Rd << 8;
13089 inst.instruction |= Rn << 16;
13090 inst.instruction |= Rm;
13091 inst.instruction |= inst.operands[3].imm << 4;
13092 }
13093
13094 static void
13095 do_t_sxth (void)
13096 {
13097 unsigned Rd, Rm;
13098
13099 Rd = inst.operands[0].reg;
13100 Rm = inst.operands[1].reg;
13101
13102 reject_bad_reg (Rd);
13103 reject_bad_reg (Rm);
13104
13105 if (inst.instruction <= 0xffff
13106 && inst.size_req != 4
13107 && Rd <= 7 && Rm <= 7
13108 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13109 {
13110 inst.instruction = THUMB_OP16 (inst.instruction);
13111 inst.instruction |= Rd;
13112 inst.instruction |= Rm << 3;
13113 }
13114 else if (unified_syntax)
13115 {
13116 if (inst.instruction <= 0xffff)
13117 inst.instruction = THUMB_OP32 (inst.instruction);
13118 inst.instruction |= Rd << 8;
13119 inst.instruction |= Rm;
13120 inst.instruction |= inst.operands[2].imm << 4;
13121 }
13122 else
13123 {
13124 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13125 _("Thumb encoding does not support rotation"));
13126 constraint (1, BAD_HIREG);
13127 }
13128 }
13129
13130 static void
13131 do_t_swi (void)
13132 {
13133 inst.reloc.type = BFD_RELOC_ARM_SWI;
13134 }
13135
13136 static void
13137 do_t_tb (void)
13138 {
13139 unsigned Rn, Rm;
13140 int half;
13141
13142 half = (inst.instruction & 0x10) != 0;
13143 set_it_insn_type_last ();
13144 constraint (inst.operands[0].immisreg,
13145 _("instruction requires register index"));
13146
13147 Rn = inst.operands[0].reg;
13148 Rm = inst.operands[0].imm;
13149
13150 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13151 constraint (Rn == REG_SP, BAD_SP);
13152 reject_bad_reg (Rm);
13153
13154 constraint (!half && inst.operands[0].shifted,
13155 _("instruction does not allow shifted index"));
13156 inst.instruction |= (Rn << 16) | Rm;
13157 }
13158
13159 static void
13160 do_t_udf (void)
13161 {
13162 if (!inst.operands[0].present)
13163 inst.operands[0].imm = 0;
13164
13165 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13166 {
13167 constraint (inst.size_req == 2,
13168 _("immediate value out of range"));
13169 inst.instruction = THUMB_OP32 (inst.instruction);
13170 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13171 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13172 }
13173 else
13174 {
13175 inst.instruction = THUMB_OP16 (inst.instruction);
13176 inst.instruction |= inst.operands[0].imm;
13177 }
13178
13179 set_it_insn_type (NEUTRAL_IT_INSN);
13180 }
13181
13182
13183 static void
13184 do_t_usat (void)
13185 {
13186 do_t_ssat_usat (0);
13187 }
13188
13189 static void
13190 do_t_usat16 (void)
13191 {
13192 unsigned Rd, Rn;
13193
13194 Rd = inst.operands[0].reg;
13195 Rn = inst.operands[2].reg;
13196
13197 reject_bad_reg (Rd);
13198 reject_bad_reg (Rn);
13199
13200 inst.instruction |= Rd << 8;
13201 inst.instruction |= inst.operands[1].imm;
13202 inst.instruction |= Rn << 16;
13203 }
13204
13205 /* Neon instruction encoder helpers. */
13206
13207 /* Encodings for the different types for various Neon opcodes. */
13208
13209 /* An "invalid" code for the following tables. */
13210 #define N_INV -1u
13211
13212 struct neon_tab_entry
13213 {
13214 unsigned integer;
13215 unsigned float_or_poly;
13216 unsigned scalar_or_imm;
13217 };
13218
13219 /* Map overloaded Neon opcodes to their respective encodings. */
13220 #define NEON_ENC_TAB \
13221 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13222 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13223 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13224 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13225 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13226 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13227 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13228 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13229 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13230 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13231 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13232 /* Register variants of the following two instructions are encoded as
13233 vcge / vcgt with the operands reversed. */ \
13234 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13235 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13236 X(vfma, N_INV, 0x0000c10, N_INV), \
13237 X(vfms, N_INV, 0x0200c10, N_INV), \
13238 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13239 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13240 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13241 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13242 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13243 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13244 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13245 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13246 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13247 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13248 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13249 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13250 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13251 X(vshl, 0x0000400, N_INV, 0x0800510), \
13252 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13253 X(vand, 0x0000110, N_INV, 0x0800030), \
13254 X(vbic, 0x0100110, N_INV, 0x0800030), \
13255 X(veor, 0x1000110, N_INV, N_INV), \
13256 X(vorn, 0x0300110, N_INV, 0x0800010), \
13257 X(vorr, 0x0200110, N_INV, 0x0800010), \
13258 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13259 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13260 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13261 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13262 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13263 X(vst1, 0x0000000, 0x0800000, N_INV), \
13264 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13265 X(vst2, 0x0000100, 0x0800100, N_INV), \
13266 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13267 X(vst3, 0x0000200, 0x0800200, N_INV), \
13268 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13269 X(vst4, 0x0000300, 0x0800300, N_INV), \
13270 X(vmovn, 0x1b20200, N_INV, N_INV), \
13271 X(vtrn, 0x1b20080, N_INV, N_INV), \
13272 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13273 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13274 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13275 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13276 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13277 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13278 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13279 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13280 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13281 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13282 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13283 X(vseleq, 0xe000a00, N_INV, N_INV), \
13284 X(vselvs, 0xe100a00, N_INV, N_INV), \
13285 X(vselge, 0xe200a00, N_INV, N_INV), \
13286 X(vselgt, 0xe300a00, N_INV, N_INV), \
13287 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13288 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13289 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13290 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13291 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13292 X(aes, 0x3b00300, N_INV, N_INV), \
13293 X(sha3op, 0x2000c00, N_INV, N_INV), \
13294 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13295 X(sha2op, 0x3ba0380, N_INV, N_INV)
13296
13297 enum neon_opc
13298 {
13299 #define X(OPC,I,F,S) N_MNEM_##OPC
13300 NEON_ENC_TAB
13301 #undef X
13302 };
13303
13304 static const struct neon_tab_entry neon_enc_tab[] =
13305 {
13306 #define X(OPC,I,F,S) { (I), (F), (S) }
13307 NEON_ENC_TAB
13308 #undef X
13309 };
13310
13311 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13312 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13313 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13314 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13315 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13316 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13317 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13318 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13319 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13320 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13321 #define NEON_ENC_SINGLE_(X) \
13322 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13323 #define NEON_ENC_DOUBLE_(X) \
13324 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13325 #define NEON_ENC_FPV8_(X) \
13326 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13327
13328 #define NEON_ENCODE(type, inst) \
13329 do \
13330 { \
13331 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13332 inst.is_neon = 1; \
13333 } \
13334 while (0)
13335
13336 #define check_neon_suffixes \
13337 do \
13338 { \
13339 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13340 { \
13341 as_bad (_("invalid neon suffix for non neon instruction")); \
13342 return; \
13343 } \
13344 } \
13345 while (0)
13346
13347 /* Define shapes for instruction operands. The following mnemonic characters
13348 are used in this table:
13349
13350 F - VFP S<n> register
13351 D - Neon D<n> register
13352 Q - Neon Q<n> register
13353 I - Immediate
13354 S - Scalar
13355 R - ARM register
13356 L - D<n> register list
13357
13358 This table is used to generate various data:
13359 - enumerations of the form NS_DDR to be used as arguments to
13360 neon_select_shape.
13361 - a table classifying shapes into single, double, quad, mixed.
13362 - a table used to drive neon_select_shape. */
13363
13364 #define NEON_SHAPE_DEF \
13365 X(3, (D, D, D), DOUBLE), \
13366 X(3, (Q, Q, Q), QUAD), \
13367 X(3, (D, D, I), DOUBLE), \
13368 X(3, (Q, Q, I), QUAD), \
13369 X(3, (D, D, S), DOUBLE), \
13370 X(3, (Q, Q, S), QUAD), \
13371 X(2, (D, D), DOUBLE), \
13372 X(2, (Q, Q), QUAD), \
13373 X(2, (D, S), DOUBLE), \
13374 X(2, (Q, S), QUAD), \
13375 X(2, (D, R), DOUBLE), \
13376 X(2, (Q, R), QUAD), \
13377 X(2, (D, I), DOUBLE), \
13378 X(2, (Q, I), QUAD), \
13379 X(3, (D, L, D), DOUBLE), \
13380 X(2, (D, Q), MIXED), \
13381 X(2, (Q, D), MIXED), \
13382 X(3, (D, Q, I), MIXED), \
13383 X(3, (Q, D, I), MIXED), \
13384 X(3, (Q, D, D), MIXED), \
13385 X(3, (D, Q, Q), MIXED), \
13386 X(3, (Q, Q, D), MIXED), \
13387 X(3, (Q, D, S), MIXED), \
13388 X(3, (D, Q, S), MIXED), \
13389 X(4, (D, D, D, I), DOUBLE), \
13390 X(4, (Q, Q, Q, I), QUAD), \
13391 X(4, (D, D, S, I), DOUBLE), \
13392 X(4, (Q, Q, S, I), QUAD), \
13393 X(2, (F, F), SINGLE), \
13394 X(3, (F, F, F), SINGLE), \
13395 X(2, (F, I), SINGLE), \
13396 X(2, (F, D), MIXED), \
13397 X(2, (D, F), MIXED), \
13398 X(3, (F, F, I), MIXED), \
13399 X(4, (R, R, F, F), SINGLE), \
13400 X(4, (F, F, R, R), SINGLE), \
13401 X(3, (D, R, R), DOUBLE), \
13402 X(3, (R, R, D), DOUBLE), \
13403 X(2, (S, R), SINGLE), \
13404 X(2, (R, S), SINGLE), \
13405 X(2, (F, R), SINGLE), \
13406 X(2, (R, F), SINGLE), \
13407 /* Half float shape supported so far. */\
13408 X (2, (H, D), MIXED), \
13409 X (2, (D, H), MIXED), \
13410 X (2, (H, F), MIXED), \
13411 X (2, (F, H), MIXED), \
13412 X (2, (H, H), HALF), \
13413 X (2, (H, R), HALF), \
13414 X (2, (R, H), HALF), \
13415 X (2, (H, I), HALF), \
13416 X (3, (H, H, H), HALF), \
13417 X (3, (H, F, I), MIXED), \
13418 X (3, (F, H, I), MIXED)
13419
13420 #define S2(A,B) NS_##A##B
13421 #define S3(A,B,C) NS_##A##B##C
13422 #define S4(A,B,C,D) NS_##A##B##C##D
13423
13424 #define X(N, L, C) S##N L
13425
13426 enum neon_shape
13427 {
13428 NEON_SHAPE_DEF,
13429 NS_NULL
13430 };
13431
13432 #undef X
13433 #undef S2
13434 #undef S3
13435 #undef S4
13436
13437 enum neon_shape_class
13438 {
13439 SC_HALF,
13440 SC_SINGLE,
13441 SC_DOUBLE,
13442 SC_QUAD,
13443 SC_MIXED
13444 };
13445
13446 #define X(N, L, C) SC_##C
13447
13448 static enum neon_shape_class neon_shape_class[] =
13449 {
13450 NEON_SHAPE_DEF
13451 };
13452
13453 #undef X
13454
13455 enum neon_shape_el
13456 {
13457 SE_H,
13458 SE_F,
13459 SE_D,
13460 SE_Q,
13461 SE_I,
13462 SE_S,
13463 SE_R,
13464 SE_L
13465 };
13466
13467 /* Register widths of above. */
13468 static unsigned neon_shape_el_size[] =
13469 {
13470 16,
13471 32,
13472 64,
13473 128,
13474 0,
13475 32,
13476 32,
13477 0
13478 };
13479
13480 struct neon_shape_info
13481 {
13482 unsigned els;
13483 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13484 };
13485
13486 #define S2(A,B) { SE_##A, SE_##B }
13487 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13488 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13489
13490 #define X(N, L, C) { N, S##N L }
13491
13492 static struct neon_shape_info neon_shape_tab[] =
13493 {
13494 NEON_SHAPE_DEF
13495 };
13496
13497 #undef X
13498 #undef S2
13499 #undef S3
13500 #undef S4
13501
13502 /* Bit masks used in type checking given instructions.
13503 'N_EQK' means the type must be the same as (or based on in some way) the key
13504 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13505 set, various other bits can be set as well in order to modify the meaning of
13506 the type constraint. */
13507
13508 enum neon_type_mask
13509 {
13510 N_S8 = 0x0000001,
13511 N_S16 = 0x0000002,
13512 N_S32 = 0x0000004,
13513 N_S64 = 0x0000008,
13514 N_U8 = 0x0000010,
13515 N_U16 = 0x0000020,
13516 N_U32 = 0x0000040,
13517 N_U64 = 0x0000080,
13518 N_I8 = 0x0000100,
13519 N_I16 = 0x0000200,
13520 N_I32 = 0x0000400,
13521 N_I64 = 0x0000800,
13522 N_8 = 0x0001000,
13523 N_16 = 0x0002000,
13524 N_32 = 0x0004000,
13525 N_64 = 0x0008000,
13526 N_P8 = 0x0010000,
13527 N_P16 = 0x0020000,
13528 N_F16 = 0x0040000,
13529 N_F32 = 0x0080000,
13530 N_F64 = 0x0100000,
13531 N_P64 = 0x0200000,
13532 N_KEY = 0x1000000, /* Key element (main type specifier). */
13533 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13534 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13535 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13536 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13537 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13538 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13539 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13540 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13541 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13542 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13543 N_UTYP = 0,
13544 N_MAX_NONSPECIAL = N_P64
13545 };
13546
13547 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13548
13549 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13550 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13551 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13552 #define N_S_32 (N_S8 | N_S16 | N_S32)
13553 #define N_F_16_32 (N_F16 | N_F32)
13554 #define N_SUF_32 (N_SU_32 | N_F_16_32)
13555 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13556 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
13557 #define N_F_ALL (N_F16 | N_F32 | N_F64)
13558
13559 /* Pass this as the first type argument to neon_check_type to ignore types
13560 altogether. */
13561 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13562
13563 /* Select a "shape" for the current instruction (describing register types or
13564 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13565 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13566 function of operand parsing, so this function doesn't need to be called.
13567 Shapes should be listed in order of decreasing length. */
13568
13569 static enum neon_shape
13570 neon_select_shape (enum neon_shape shape, ...)
13571 {
13572 va_list ap;
13573 enum neon_shape first_shape = shape;
13574
13575 /* Fix missing optional operands. FIXME: we don't know at this point how
13576 many arguments we should have, so this makes the assumption that we have
13577 > 1. This is true of all current Neon opcodes, I think, but may not be
13578 true in the future. */
13579 if (!inst.operands[1].present)
13580 inst.operands[1] = inst.operands[0];
13581
13582 va_start (ap, shape);
13583
13584 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13585 {
13586 unsigned j;
13587 int matches = 1;
13588
13589 for (j = 0; j < neon_shape_tab[shape].els; j++)
13590 {
13591 if (!inst.operands[j].present)
13592 {
13593 matches = 0;
13594 break;
13595 }
13596
13597 switch (neon_shape_tab[shape].el[j])
13598 {
13599 /* If a .f16, .16, .u16, .s16 type specifier is given over
13600 a VFP single precision register operand, it's essentially
13601 means only half of the register is used.
13602
13603 If the type specifier is given after the mnemonics, the
13604 information is stored in inst.vectype. If the type specifier
13605 is given after register operand, the information is stored
13606 in inst.operands[].vectype.
13607
13608 When there is only one type specifier, and all the register
13609 operands are the same type of hardware register, the type
13610 specifier applies to all register operands.
13611
13612 If no type specifier is given, the shape is inferred from
13613 operand information.
13614
13615 for example:
13616 vadd.f16 s0, s1, s2: NS_HHH
13617 vabs.f16 s0, s1: NS_HH
13618 vmov.f16 s0, r1: NS_HR
13619 vmov.f16 r0, s1: NS_RH
13620 vcvt.f16 r0, s1: NS_RH
13621 vcvt.f16.s32 s2, s2, #29: NS_HFI
13622 vcvt.f16.s32 s2, s2: NS_HF
13623 */
13624 case SE_H:
13625 if (!(inst.operands[j].isreg
13626 && inst.operands[j].isvec
13627 && inst.operands[j].issingle
13628 && !inst.operands[j].isquad
13629 && ((inst.vectype.elems == 1
13630 && inst.vectype.el[0].size == 16)
13631 || (inst.vectype.elems > 1
13632 && inst.vectype.el[j].size == 16)
13633 || (inst.vectype.elems == 0
13634 && inst.operands[j].vectype.type != NT_invtype
13635 && inst.operands[j].vectype.size == 16))))
13636 matches = 0;
13637 break;
13638
13639 case SE_F:
13640 if (!(inst.operands[j].isreg
13641 && inst.operands[j].isvec
13642 && inst.operands[j].issingle
13643 && !inst.operands[j].isquad
13644 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13645 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13646 || (inst.vectype.elems == 0
13647 && (inst.operands[j].vectype.size == 32
13648 || inst.operands[j].vectype.type == NT_invtype)))))
13649 matches = 0;
13650 break;
13651
13652 case SE_D:
13653 if (!(inst.operands[j].isreg
13654 && inst.operands[j].isvec
13655 && !inst.operands[j].isquad
13656 && !inst.operands[j].issingle))
13657 matches = 0;
13658 break;
13659
13660 case SE_R:
13661 if (!(inst.operands[j].isreg
13662 && !inst.operands[j].isvec))
13663 matches = 0;
13664 break;
13665
13666 case SE_Q:
13667 if (!(inst.operands[j].isreg
13668 && inst.operands[j].isvec
13669 && inst.operands[j].isquad
13670 && !inst.operands[j].issingle))
13671 matches = 0;
13672 break;
13673
13674 case SE_I:
13675 if (!(!inst.operands[j].isreg
13676 && !inst.operands[j].isscalar))
13677 matches = 0;
13678 break;
13679
13680 case SE_S:
13681 if (!(!inst.operands[j].isreg
13682 && inst.operands[j].isscalar))
13683 matches = 0;
13684 break;
13685
13686 case SE_L:
13687 break;
13688 }
13689 if (!matches)
13690 break;
13691 }
13692 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13693 /* We've matched all the entries in the shape table, and we don't
13694 have any left over operands which have not been matched. */
13695 break;
13696 }
13697
13698 va_end (ap);
13699
13700 if (shape == NS_NULL && first_shape != NS_NULL)
13701 first_error (_("invalid instruction shape"));
13702
13703 return shape;
13704 }
13705
13706 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13707 means the Q bit should be set). */
13708
13709 static int
13710 neon_quad (enum neon_shape shape)
13711 {
13712 return neon_shape_class[shape] == SC_QUAD;
13713 }
13714
13715 static void
13716 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13717 unsigned *g_size)
13718 {
13719 /* Allow modification to be made to types which are constrained to be
13720 based on the key element, based on bits set alongside N_EQK. */
13721 if ((typebits & N_EQK) != 0)
13722 {
13723 if ((typebits & N_HLF) != 0)
13724 *g_size /= 2;
13725 else if ((typebits & N_DBL) != 0)
13726 *g_size *= 2;
13727 if ((typebits & N_SGN) != 0)
13728 *g_type = NT_signed;
13729 else if ((typebits & N_UNS) != 0)
13730 *g_type = NT_unsigned;
13731 else if ((typebits & N_INT) != 0)
13732 *g_type = NT_integer;
13733 else if ((typebits & N_FLT) != 0)
13734 *g_type = NT_float;
13735 else if ((typebits & N_SIZ) != 0)
13736 *g_type = NT_untyped;
13737 }
13738 }
13739
13740 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13741 operand type, i.e. the single type specified in a Neon instruction when it
13742 is the only one given. */
13743
13744 static struct neon_type_el
13745 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13746 {
13747 struct neon_type_el dest = *key;
13748
13749 gas_assert ((thisarg & N_EQK) != 0);
13750
13751 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13752
13753 return dest;
13754 }
13755
13756 /* Convert Neon type and size into compact bitmask representation. */
13757
13758 static enum neon_type_mask
13759 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13760 {
13761 switch (type)
13762 {
13763 case NT_untyped:
13764 switch (size)
13765 {
13766 case 8: return N_8;
13767 case 16: return N_16;
13768 case 32: return N_32;
13769 case 64: return N_64;
13770 default: ;
13771 }
13772 break;
13773
13774 case NT_integer:
13775 switch (size)
13776 {
13777 case 8: return N_I8;
13778 case 16: return N_I16;
13779 case 32: return N_I32;
13780 case 64: return N_I64;
13781 default: ;
13782 }
13783 break;
13784
13785 case NT_float:
13786 switch (size)
13787 {
13788 case 16: return N_F16;
13789 case 32: return N_F32;
13790 case 64: return N_F64;
13791 default: ;
13792 }
13793 break;
13794
13795 case NT_poly:
13796 switch (size)
13797 {
13798 case 8: return N_P8;
13799 case 16: return N_P16;
13800 case 64: return N_P64;
13801 default: ;
13802 }
13803 break;
13804
13805 case NT_signed:
13806 switch (size)
13807 {
13808 case 8: return N_S8;
13809 case 16: return N_S16;
13810 case 32: return N_S32;
13811 case 64: return N_S64;
13812 default: ;
13813 }
13814 break;
13815
13816 case NT_unsigned:
13817 switch (size)
13818 {
13819 case 8: return N_U8;
13820 case 16: return N_U16;
13821 case 32: return N_U32;
13822 case 64: return N_U64;
13823 default: ;
13824 }
13825 break;
13826
13827 default: ;
13828 }
13829
13830 return N_UTYP;
13831 }
13832
13833 /* Convert compact Neon bitmask type representation to a type and size. Only
13834 handles the case where a single bit is set in the mask. */
13835
13836 static int
13837 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13838 enum neon_type_mask mask)
13839 {
13840 if ((mask & N_EQK) != 0)
13841 return FAIL;
13842
13843 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13844 *size = 8;
13845 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13846 *size = 16;
13847 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13848 *size = 32;
13849 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13850 *size = 64;
13851 else
13852 return FAIL;
13853
13854 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13855 *type = NT_signed;
13856 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13857 *type = NT_unsigned;
13858 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13859 *type = NT_integer;
13860 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13861 *type = NT_untyped;
13862 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13863 *type = NT_poly;
13864 else if ((mask & (N_F_ALL)) != 0)
13865 *type = NT_float;
13866 else
13867 return FAIL;
13868
13869 return SUCCESS;
13870 }
13871
13872 /* Modify a bitmask of allowed types. This is only needed for type
13873 relaxation. */
13874
13875 static unsigned
13876 modify_types_allowed (unsigned allowed, unsigned mods)
13877 {
13878 unsigned size;
13879 enum neon_el_type type;
13880 unsigned destmask;
13881 int i;
13882
13883 destmask = 0;
13884
13885 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13886 {
13887 if (el_type_of_type_chk (&type, &size,
13888 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13889 {
13890 neon_modify_type_size (mods, &type, &size);
13891 destmask |= type_chk_of_el_type (type, size);
13892 }
13893 }
13894
13895 return destmask;
13896 }
13897
13898 /* Check type and return type classification.
13899 The manual states (paraphrase): If one datatype is given, it indicates the
13900 type given in:
13901 - the second operand, if there is one
13902 - the operand, if there is no second operand
13903 - the result, if there are no operands.
13904 This isn't quite good enough though, so we use a concept of a "key" datatype
13905 which is set on a per-instruction basis, which is the one which matters when
13906 only one data type is written.
13907 Note: this function has side-effects (e.g. filling in missing operands). All
13908 Neon instructions should call it before performing bit encoding. */
13909
13910 static struct neon_type_el
13911 neon_check_type (unsigned els, enum neon_shape ns, ...)
13912 {
13913 va_list ap;
13914 unsigned i, pass, key_el = 0;
13915 unsigned types[NEON_MAX_TYPE_ELS];
13916 enum neon_el_type k_type = NT_invtype;
13917 unsigned k_size = -1u;
13918 struct neon_type_el badtype = {NT_invtype, -1};
13919 unsigned key_allowed = 0;
13920
13921 /* Optional registers in Neon instructions are always (not) in operand 1.
13922 Fill in the missing operand here, if it was omitted. */
13923 if (els > 1 && !inst.operands[1].present)
13924 inst.operands[1] = inst.operands[0];
13925
13926 /* Suck up all the varargs. */
13927 va_start (ap, ns);
13928 for (i = 0; i < els; i++)
13929 {
13930 unsigned thisarg = va_arg (ap, unsigned);
13931 if (thisarg == N_IGNORE_TYPE)
13932 {
13933 va_end (ap);
13934 return badtype;
13935 }
13936 types[i] = thisarg;
13937 if ((thisarg & N_KEY) != 0)
13938 key_el = i;
13939 }
13940 va_end (ap);
13941
13942 if (inst.vectype.elems > 0)
13943 for (i = 0; i < els; i++)
13944 if (inst.operands[i].vectype.type != NT_invtype)
13945 {
13946 first_error (_("types specified in both the mnemonic and operands"));
13947 return badtype;
13948 }
13949
13950 /* Duplicate inst.vectype elements here as necessary.
13951 FIXME: No idea if this is exactly the same as the ARM assembler,
13952 particularly when an insn takes one register and one non-register
13953 operand. */
13954 if (inst.vectype.elems == 1 && els > 1)
13955 {
13956 unsigned j;
13957 inst.vectype.elems = els;
13958 inst.vectype.el[key_el] = inst.vectype.el[0];
13959 for (j = 0; j < els; j++)
13960 if (j != key_el)
13961 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13962 types[j]);
13963 }
13964 else if (inst.vectype.elems == 0 && els > 0)
13965 {
13966 unsigned j;
13967 /* No types were given after the mnemonic, so look for types specified
13968 after each operand. We allow some flexibility here; as long as the
13969 "key" operand has a type, we can infer the others. */
13970 for (j = 0; j < els; j++)
13971 if (inst.operands[j].vectype.type != NT_invtype)
13972 inst.vectype.el[j] = inst.operands[j].vectype;
13973
13974 if (inst.operands[key_el].vectype.type != NT_invtype)
13975 {
13976 for (j = 0; j < els; j++)
13977 if (inst.operands[j].vectype.type == NT_invtype)
13978 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13979 types[j]);
13980 }
13981 else
13982 {
13983 first_error (_("operand types can't be inferred"));
13984 return badtype;
13985 }
13986 }
13987 else if (inst.vectype.elems != els)
13988 {
13989 first_error (_("type specifier has the wrong number of parts"));
13990 return badtype;
13991 }
13992
13993 for (pass = 0; pass < 2; pass++)
13994 {
13995 for (i = 0; i < els; i++)
13996 {
13997 unsigned thisarg = types[i];
13998 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
13999 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14000 enum neon_el_type g_type = inst.vectype.el[i].type;
14001 unsigned g_size = inst.vectype.el[i].size;
14002
14003 /* Decay more-specific signed & unsigned types to sign-insensitive
14004 integer types if sign-specific variants are unavailable. */
14005 if ((g_type == NT_signed || g_type == NT_unsigned)
14006 && (types_allowed & N_SU_ALL) == 0)
14007 g_type = NT_integer;
14008
14009 /* If only untyped args are allowed, decay any more specific types to
14010 them. Some instructions only care about signs for some element
14011 sizes, so handle that properly. */
14012 if (((types_allowed & N_UNT) == 0)
14013 && ((g_size == 8 && (types_allowed & N_8) != 0)
14014 || (g_size == 16 && (types_allowed & N_16) != 0)
14015 || (g_size == 32 && (types_allowed & N_32) != 0)
14016 || (g_size == 64 && (types_allowed & N_64) != 0)))
14017 g_type = NT_untyped;
14018
14019 if (pass == 0)
14020 {
14021 if ((thisarg & N_KEY) != 0)
14022 {
14023 k_type = g_type;
14024 k_size = g_size;
14025 key_allowed = thisarg & ~N_KEY;
14026
14027 /* Check architecture constraint on FP16 extension. */
14028 if (k_size == 16
14029 && k_type == NT_float
14030 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14031 {
14032 inst.error = _(BAD_FP16);
14033 return badtype;
14034 }
14035 }
14036 }
14037 else
14038 {
14039 if ((thisarg & N_VFP) != 0)
14040 {
14041 enum neon_shape_el regshape;
14042 unsigned regwidth, match;
14043
14044 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14045 if (ns == NS_NULL)
14046 {
14047 first_error (_("invalid instruction shape"));
14048 return badtype;
14049 }
14050 regshape = neon_shape_tab[ns].el[i];
14051 regwidth = neon_shape_el_size[regshape];
14052
14053 /* In VFP mode, operands must match register widths. If we
14054 have a key operand, use its width, else use the width of
14055 the current operand. */
14056 if (k_size != -1u)
14057 match = k_size;
14058 else
14059 match = g_size;
14060
14061 /* FP16 will use a single precision register. */
14062 if (regwidth == 32 && match == 16)
14063 {
14064 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14065 match = regwidth;
14066 else
14067 {
14068 inst.error = _(BAD_FP16);
14069 return badtype;
14070 }
14071 }
14072
14073 if (regwidth != match)
14074 {
14075 first_error (_("operand size must match register width"));
14076 return badtype;
14077 }
14078 }
14079
14080 if ((thisarg & N_EQK) == 0)
14081 {
14082 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14083
14084 if ((given_type & types_allowed) == 0)
14085 {
14086 first_error (_("bad type in Neon instruction"));
14087 return badtype;
14088 }
14089 }
14090 else
14091 {
14092 enum neon_el_type mod_k_type = k_type;
14093 unsigned mod_k_size = k_size;
14094 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14095 if (g_type != mod_k_type || g_size != mod_k_size)
14096 {
14097 first_error (_("inconsistent types in Neon instruction"));
14098 return badtype;
14099 }
14100 }
14101 }
14102 }
14103 }
14104
14105 return inst.vectype.el[key_el];
14106 }
14107
14108 /* Neon-style VFP instruction forwarding. */
14109
14110 /* Thumb VFP instructions have 0xE in the condition field. */
14111
14112 static void
14113 do_vfp_cond_or_thumb (void)
14114 {
14115 inst.is_neon = 1;
14116
14117 if (thumb_mode)
14118 inst.instruction |= 0xe0000000;
14119 else
14120 inst.instruction |= inst.cond << 28;
14121 }
14122
14123 /* Look up and encode a simple mnemonic, for use as a helper function for the
14124 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14125 etc. It is assumed that operand parsing has already been done, and that the
14126 operands are in the form expected by the given opcode (this isn't necessarily
14127 the same as the form in which they were parsed, hence some massaging must
14128 take place before this function is called).
14129 Checks current arch version against that in the looked-up opcode. */
14130
14131 static void
14132 do_vfp_nsyn_opcode (const char *opname)
14133 {
14134 const struct asm_opcode *opcode;
14135
14136 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
14137
14138 if (!opcode)
14139 abort ();
14140
14141 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
14142 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14143 _(BAD_FPU));
14144
14145 inst.is_neon = 1;
14146
14147 if (thumb_mode)
14148 {
14149 inst.instruction = opcode->tvalue;
14150 opcode->tencode ();
14151 }
14152 else
14153 {
14154 inst.instruction = (inst.cond << 28) | opcode->avalue;
14155 opcode->aencode ();
14156 }
14157 }
14158
14159 static void
14160 do_vfp_nsyn_add_sub (enum neon_shape rs)
14161 {
14162 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14163
14164 if (rs == NS_FFF || rs == NS_HHH)
14165 {
14166 if (is_add)
14167 do_vfp_nsyn_opcode ("fadds");
14168 else
14169 do_vfp_nsyn_opcode ("fsubs");
14170
14171 /* ARMv8.2 fp16 instruction. */
14172 if (rs == NS_HHH)
14173 do_scalar_fp16_v82_encode ();
14174 }
14175 else
14176 {
14177 if (is_add)
14178 do_vfp_nsyn_opcode ("faddd");
14179 else
14180 do_vfp_nsyn_opcode ("fsubd");
14181 }
14182 }
14183
14184 /* Check operand types to see if this is a VFP instruction, and if so call
14185 PFN (). */
14186
14187 static int
14188 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14189 {
14190 enum neon_shape rs;
14191 struct neon_type_el et;
14192
14193 switch (args)
14194 {
14195 case 2:
14196 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14197 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14198 break;
14199
14200 case 3:
14201 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14202 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14203 N_F_ALL | N_KEY | N_VFP);
14204 break;
14205
14206 default:
14207 abort ();
14208 }
14209
14210 if (et.type != NT_invtype)
14211 {
14212 pfn (rs);
14213 return SUCCESS;
14214 }
14215
14216 inst.error = NULL;
14217 return FAIL;
14218 }
14219
14220 static void
14221 do_vfp_nsyn_mla_mls (enum neon_shape rs)
14222 {
14223 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
14224
14225 if (rs == NS_FFF || rs == NS_HHH)
14226 {
14227 if (is_mla)
14228 do_vfp_nsyn_opcode ("fmacs");
14229 else
14230 do_vfp_nsyn_opcode ("fnmacs");
14231
14232 /* ARMv8.2 fp16 instruction. */
14233 if (rs == NS_HHH)
14234 do_scalar_fp16_v82_encode ();
14235 }
14236 else
14237 {
14238 if (is_mla)
14239 do_vfp_nsyn_opcode ("fmacd");
14240 else
14241 do_vfp_nsyn_opcode ("fnmacd");
14242 }
14243 }
14244
14245 static void
14246 do_vfp_nsyn_fma_fms (enum neon_shape rs)
14247 {
14248 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14249
14250 if (rs == NS_FFF || rs == NS_HHH)
14251 {
14252 if (is_fma)
14253 do_vfp_nsyn_opcode ("ffmas");
14254 else
14255 do_vfp_nsyn_opcode ("ffnmas");
14256
14257 /* ARMv8.2 fp16 instruction. */
14258 if (rs == NS_HHH)
14259 do_scalar_fp16_v82_encode ();
14260 }
14261 else
14262 {
14263 if (is_fma)
14264 do_vfp_nsyn_opcode ("ffmad");
14265 else
14266 do_vfp_nsyn_opcode ("ffnmad");
14267 }
14268 }
14269
14270 static void
14271 do_vfp_nsyn_mul (enum neon_shape rs)
14272 {
14273 if (rs == NS_FFF || rs == NS_HHH)
14274 {
14275 do_vfp_nsyn_opcode ("fmuls");
14276
14277 /* ARMv8.2 fp16 instruction. */
14278 if (rs == NS_HHH)
14279 do_scalar_fp16_v82_encode ();
14280 }
14281 else
14282 do_vfp_nsyn_opcode ("fmuld");
14283 }
14284
14285 static void
14286 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14287 {
14288 int is_neg = (inst.instruction & 0x80) != 0;
14289 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
14290
14291 if (rs == NS_FF || rs == NS_HH)
14292 {
14293 if (is_neg)
14294 do_vfp_nsyn_opcode ("fnegs");
14295 else
14296 do_vfp_nsyn_opcode ("fabss");
14297
14298 /* ARMv8.2 fp16 instruction. */
14299 if (rs == NS_HH)
14300 do_scalar_fp16_v82_encode ();
14301 }
14302 else
14303 {
14304 if (is_neg)
14305 do_vfp_nsyn_opcode ("fnegd");
14306 else
14307 do_vfp_nsyn_opcode ("fabsd");
14308 }
14309 }
14310
14311 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14312 insns belong to Neon, and are handled elsewhere. */
14313
14314 static void
14315 do_vfp_nsyn_ldm_stm (int is_dbmode)
14316 {
14317 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14318 if (is_ldm)
14319 {
14320 if (is_dbmode)
14321 do_vfp_nsyn_opcode ("fldmdbs");
14322 else
14323 do_vfp_nsyn_opcode ("fldmias");
14324 }
14325 else
14326 {
14327 if (is_dbmode)
14328 do_vfp_nsyn_opcode ("fstmdbs");
14329 else
14330 do_vfp_nsyn_opcode ("fstmias");
14331 }
14332 }
14333
14334 static void
14335 do_vfp_nsyn_sqrt (void)
14336 {
14337 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14338 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14339
14340 if (rs == NS_FF || rs == NS_HH)
14341 {
14342 do_vfp_nsyn_opcode ("fsqrts");
14343
14344 /* ARMv8.2 fp16 instruction. */
14345 if (rs == NS_HH)
14346 do_scalar_fp16_v82_encode ();
14347 }
14348 else
14349 do_vfp_nsyn_opcode ("fsqrtd");
14350 }
14351
14352 static void
14353 do_vfp_nsyn_div (void)
14354 {
14355 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14356 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14357 N_F_ALL | N_KEY | N_VFP);
14358
14359 if (rs == NS_FFF || rs == NS_HHH)
14360 {
14361 do_vfp_nsyn_opcode ("fdivs");
14362
14363 /* ARMv8.2 fp16 instruction. */
14364 if (rs == NS_HHH)
14365 do_scalar_fp16_v82_encode ();
14366 }
14367 else
14368 do_vfp_nsyn_opcode ("fdivd");
14369 }
14370
14371 static void
14372 do_vfp_nsyn_nmul (void)
14373 {
14374 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14375 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14376 N_F_ALL | N_KEY | N_VFP);
14377
14378 if (rs == NS_FFF || rs == NS_HHH)
14379 {
14380 NEON_ENCODE (SINGLE, inst);
14381 do_vfp_sp_dyadic ();
14382
14383 /* ARMv8.2 fp16 instruction. */
14384 if (rs == NS_HHH)
14385 do_scalar_fp16_v82_encode ();
14386 }
14387 else
14388 {
14389 NEON_ENCODE (DOUBLE, inst);
14390 do_vfp_dp_rd_rn_rm ();
14391 }
14392 do_vfp_cond_or_thumb ();
14393
14394 }
14395
14396 static void
14397 do_vfp_nsyn_cmp (void)
14398 {
14399 enum neon_shape rs;
14400 if (inst.operands[1].isreg)
14401 {
14402 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14403 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14404
14405 if (rs == NS_FF || rs == NS_HH)
14406 {
14407 NEON_ENCODE (SINGLE, inst);
14408 do_vfp_sp_monadic ();
14409 }
14410 else
14411 {
14412 NEON_ENCODE (DOUBLE, inst);
14413 do_vfp_dp_rd_rm ();
14414 }
14415 }
14416 else
14417 {
14418 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14419 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
14420
14421 switch (inst.instruction & 0x0fffffff)
14422 {
14423 case N_MNEM_vcmp:
14424 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14425 break;
14426 case N_MNEM_vcmpe:
14427 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14428 break;
14429 default:
14430 abort ();
14431 }
14432
14433 if (rs == NS_FI || rs == NS_HI)
14434 {
14435 NEON_ENCODE (SINGLE, inst);
14436 do_vfp_sp_compare_z ();
14437 }
14438 else
14439 {
14440 NEON_ENCODE (DOUBLE, inst);
14441 do_vfp_dp_rd ();
14442 }
14443 }
14444 do_vfp_cond_or_thumb ();
14445
14446 /* ARMv8.2 fp16 instruction. */
14447 if (rs == NS_HI || rs == NS_HH)
14448 do_scalar_fp16_v82_encode ();
14449 }
14450
14451 static void
14452 nsyn_insert_sp (void)
14453 {
14454 inst.operands[1] = inst.operands[0];
14455 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14456 inst.operands[0].reg = REG_SP;
14457 inst.operands[0].isreg = 1;
14458 inst.operands[0].writeback = 1;
14459 inst.operands[0].present = 1;
14460 }
14461
14462 static void
14463 do_vfp_nsyn_push (void)
14464 {
14465 nsyn_insert_sp ();
14466
14467 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14468 _("register list must contain at least 1 and at most 16 "
14469 "registers"));
14470
14471 if (inst.operands[1].issingle)
14472 do_vfp_nsyn_opcode ("fstmdbs");
14473 else
14474 do_vfp_nsyn_opcode ("fstmdbd");
14475 }
14476
14477 static void
14478 do_vfp_nsyn_pop (void)
14479 {
14480 nsyn_insert_sp ();
14481
14482 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14483 _("register list must contain at least 1 and at most 16 "
14484 "registers"));
14485
14486 if (inst.operands[1].issingle)
14487 do_vfp_nsyn_opcode ("fldmias");
14488 else
14489 do_vfp_nsyn_opcode ("fldmiad");
14490 }
14491
14492 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14493 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14494
14495 static void
14496 neon_dp_fixup (struct arm_it* insn)
14497 {
14498 unsigned int i = insn->instruction;
14499 insn->is_neon = 1;
14500
14501 if (thumb_mode)
14502 {
14503 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14504 if (i & (1 << 24))
14505 i |= 1 << 28;
14506
14507 i &= ~(1 << 24);
14508
14509 i |= 0xef000000;
14510 }
14511 else
14512 i |= 0xf2000000;
14513
14514 insn->instruction = i;
14515 }
14516
14517 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14518 (0, 1, 2, 3). */
14519
14520 static unsigned
14521 neon_logbits (unsigned x)
14522 {
14523 return ffs (x) - 4;
14524 }
14525
14526 #define LOW4(R) ((R) & 0xf)
14527 #define HI1(R) (((R) >> 4) & 1)
14528
14529 /* Encode insns with bit pattern:
14530
14531 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14532 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14533
14534 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14535 different meaning for some instruction. */
14536
14537 static void
14538 neon_three_same (int isquad, int ubit, int size)
14539 {
14540 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14541 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14542 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14543 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14544 inst.instruction |= LOW4 (inst.operands[2].reg);
14545 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14546 inst.instruction |= (isquad != 0) << 6;
14547 inst.instruction |= (ubit != 0) << 24;
14548 if (size != -1)
14549 inst.instruction |= neon_logbits (size) << 20;
14550
14551 neon_dp_fixup (&inst);
14552 }
14553
14554 /* Encode instructions of the form:
14555
14556 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14557 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14558
14559 Don't write size if SIZE == -1. */
14560
14561 static void
14562 neon_two_same (int qbit, int ubit, int size)
14563 {
14564 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14565 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14566 inst.instruction |= LOW4 (inst.operands[1].reg);
14567 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14568 inst.instruction |= (qbit != 0) << 6;
14569 inst.instruction |= (ubit != 0) << 24;
14570
14571 if (size != -1)
14572 inst.instruction |= neon_logbits (size) << 18;
14573
14574 neon_dp_fixup (&inst);
14575 }
14576
14577 /* Neon instruction encoders, in approximate order of appearance. */
14578
14579 static void
14580 do_neon_dyadic_i_su (void)
14581 {
14582 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14583 struct neon_type_el et = neon_check_type (3, rs,
14584 N_EQK, N_EQK, N_SU_32 | N_KEY);
14585 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14586 }
14587
14588 static void
14589 do_neon_dyadic_i64_su (void)
14590 {
14591 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14592 struct neon_type_el et = neon_check_type (3, rs,
14593 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14594 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14595 }
14596
14597 static void
14598 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14599 unsigned immbits)
14600 {
14601 unsigned size = et.size >> 3;
14602 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14604 inst.instruction |= LOW4 (inst.operands[1].reg);
14605 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14606 inst.instruction |= (isquad != 0) << 6;
14607 inst.instruction |= immbits << 16;
14608 inst.instruction |= (size >> 3) << 7;
14609 inst.instruction |= (size & 0x7) << 19;
14610 if (write_ubit)
14611 inst.instruction |= (uval != 0) << 24;
14612
14613 neon_dp_fixup (&inst);
14614 }
14615
14616 static void
14617 do_neon_shl_imm (void)
14618 {
14619 if (!inst.operands[2].isreg)
14620 {
14621 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14622 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14623 int imm = inst.operands[2].imm;
14624
14625 constraint (imm < 0 || (unsigned)imm >= et.size,
14626 _("immediate out of range for shift"));
14627 NEON_ENCODE (IMMED, inst);
14628 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14629 }
14630 else
14631 {
14632 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14633 struct neon_type_el et = neon_check_type (3, rs,
14634 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14635 unsigned int tmp;
14636
14637 /* VSHL/VQSHL 3-register variants have syntax such as:
14638 vshl.xx Dd, Dm, Dn
14639 whereas other 3-register operations encoded by neon_three_same have
14640 syntax like:
14641 vadd.xx Dd, Dn, Dm
14642 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14643 here. */
14644 tmp = inst.operands[2].reg;
14645 inst.operands[2].reg = inst.operands[1].reg;
14646 inst.operands[1].reg = tmp;
14647 NEON_ENCODE (INTEGER, inst);
14648 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14649 }
14650 }
14651
14652 static void
14653 do_neon_qshl_imm (void)
14654 {
14655 if (!inst.operands[2].isreg)
14656 {
14657 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14658 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14659 int imm = inst.operands[2].imm;
14660
14661 constraint (imm < 0 || (unsigned)imm >= et.size,
14662 _("immediate out of range for shift"));
14663 NEON_ENCODE (IMMED, inst);
14664 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14665 }
14666 else
14667 {
14668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14669 struct neon_type_el et = neon_check_type (3, rs,
14670 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14671 unsigned int tmp;
14672
14673 /* See note in do_neon_shl_imm. */
14674 tmp = inst.operands[2].reg;
14675 inst.operands[2].reg = inst.operands[1].reg;
14676 inst.operands[1].reg = tmp;
14677 NEON_ENCODE (INTEGER, inst);
14678 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14679 }
14680 }
14681
14682 static void
14683 do_neon_rshl (void)
14684 {
14685 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14686 struct neon_type_el et = neon_check_type (3, rs,
14687 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14688 unsigned int tmp;
14689
14690 tmp = inst.operands[2].reg;
14691 inst.operands[2].reg = inst.operands[1].reg;
14692 inst.operands[1].reg = tmp;
14693 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14694 }
14695
14696 static int
14697 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14698 {
14699 /* Handle .I8 pseudo-instructions. */
14700 if (size == 8)
14701 {
14702 /* Unfortunately, this will make everything apart from zero out-of-range.
14703 FIXME is this the intended semantics? There doesn't seem much point in
14704 accepting .I8 if so. */
14705 immediate |= immediate << 8;
14706 size = 16;
14707 }
14708
14709 if (size >= 32)
14710 {
14711 if (immediate == (immediate & 0x000000ff))
14712 {
14713 *immbits = immediate;
14714 return 0x1;
14715 }
14716 else if (immediate == (immediate & 0x0000ff00))
14717 {
14718 *immbits = immediate >> 8;
14719 return 0x3;
14720 }
14721 else if (immediate == (immediate & 0x00ff0000))
14722 {
14723 *immbits = immediate >> 16;
14724 return 0x5;
14725 }
14726 else if (immediate == (immediate & 0xff000000))
14727 {
14728 *immbits = immediate >> 24;
14729 return 0x7;
14730 }
14731 if ((immediate & 0xffff) != (immediate >> 16))
14732 goto bad_immediate;
14733 immediate &= 0xffff;
14734 }
14735
14736 if (immediate == (immediate & 0x000000ff))
14737 {
14738 *immbits = immediate;
14739 return 0x9;
14740 }
14741 else if (immediate == (immediate & 0x0000ff00))
14742 {
14743 *immbits = immediate >> 8;
14744 return 0xb;
14745 }
14746
14747 bad_immediate:
14748 first_error (_("immediate value out of range"));
14749 return FAIL;
14750 }
14751
14752 static void
14753 do_neon_logic (void)
14754 {
14755 if (inst.operands[2].present && inst.operands[2].isreg)
14756 {
14757 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14758 neon_check_type (3, rs, N_IGNORE_TYPE);
14759 /* U bit and size field were set as part of the bitmask. */
14760 NEON_ENCODE (INTEGER, inst);
14761 neon_three_same (neon_quad (rs), 0, -1);
14762 }
14763 else
14764 {
14765 const int three_ops_form = (inst.operands[2].present
14766 && !inst.operands[2].isreg);
14767 const int immoperand = (three_ops_form ? 2 : 1);
14768 enum neon_shape rs = (three_ops_form
14769 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14770 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14771 struct neon_type_el et = neon_check_type (2, rs,
14772 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14773 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14774 unsigned immbits;
14775 int cmode;
14776
14777 if (et.type == NT_invtype)
14778 return;
14779
14780 if (three_ops_form)
14781 constraint (inst.operands[0].reg != inst.operands[1].reg,
14782 _("first and second operands shall be the same register"));
14783
14784 NEON_ENCODE (IMMED, inst);
14785
14786 immbits = inst.operands[immoperand].imm;
14787 if (et.size == 64)
14788 {
14789 /* .i64 is a pseudo-op, so the immediate must be a repeating
14790 pattern. */
14791 if (immbits != (inst.operands[immoperand].regisimm ?
14792 inst.operands[immoperand].reg : 0))
14793 {
14794 /* Set immbits to an invalid constant. */
14795 immbits = 0xdeadbeef;
14796 }
14797 }
14798
14799 switch (opcode)
14800 {
14801 case N_MNEM_vbic:
14802 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14803 break;
14804
14805 case N_MNEM_vorr:
14806 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14807 break;
14808
14809 case N_MNEM_vand:
14810 /* Pseudo-instruction for VBIC. */
14811 neon_invert_size (&immbits, 0, et.size);
14812 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14813 break;
14814
14815 case N_MNEM_vorn:
14816 /* Pseudo-instruction for VORR. */
14817 neon_invert_size (&immbits, 0, et.size);
14818 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14819 break;
14820
14821 default:
14822 abort ();
14823 }
14824
14825 if (cmode == FAIL)
14826 return;
14827
14828 inst.instruction |= neon_quad (rs) << 6;
14829 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14830 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14831 inst.instruction |= cmode << 8;
14832 neon_write_immbits (immbits);
14833
14834 neon_dp_fixup (&inst);
14835 }
14836 }
14837
14838 static void
14839 do_neon_bitfield (void)
14840 {
14841 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14842 neon_check_type (3, rs, N_IGNORE_TYPE);
14843 neon_three_same (neon_quad (rs), 0, -1);
14844 }
14845
14846 static void
14847 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14848 unsigned destbits)
14849 {
14850 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14851 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14852 types | N_KEY);
14853 if (et.type == NT_float)
14854 {
14855 NEON_ENCODE (FLOAT, inst);
14856 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
14857 }
14858 else
14859 {
14860 NEON_ENCODE (INTEGER, inst);
14861 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14862 }
14863 }
14864
14865 static void
14866 do_neon_dyadic_if_su (void)
14867 {
14868 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14869 }
14870
14871 static void
14872 do_neon_dyadic_if_su_d (void)
14873 {
14874 /* This version only allow D registers, but that constraint is enforced during
14875 operand parsing so we don't need to do anything extra here. */
14876 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14877 }
14878
14879 static void
14880 do_neon_dyadic_if_i_d (void)
14881 {
14882 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14883 affected if we specify unsigned args. */
14884 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14885 }
14886
14887 enum vfp_or_neon_is_neon_bits
14888 {
14889 NEON_CHECK_CC = 1,
14890 NEON_CHECK_ARCH = 2,
14891 NEON_CHECK_ARCH8 = 4
14892 };
14893
14894 /* Call this function if an instruction which may have belonged to the VFP or
14895 Neon instruction sets, but turned out to be a Neon instruction (due to the
14896 operand types involved, etc.). We have to check and/or fix-up a couple of
14897 things:
14898
14899 - Make sure the user hasn't attempted to make a Neon instruction
14900 conditional.
14901 - Alter the value in the condition code field if necessary.
14902 - Make sure that the arch supports Neon instructions.
14903
14904 Which of these operations take place depends on bits from enum
14905 vfp_or_neon_is_neon_bits.
14906
14907 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14908 current instruction's condition is COND_ALWAYS, the condition field is
14909 changed to inst.uncond_value. This is necessary because instructions shared
14910 between VFP and Neon may be conditional for the VFP variants only, and the
14911 unconditional Neon version must have, e.g., 0xF in the condition field. */
14912
14913 static int
14914 vfp_or_neon_is_neon (unsigned check)
14915 {
14916 /* Conditions are always legal in Thumb mode (IT blocks). */
14917 if (!thumb_mode && (check & NEON_CHECK_CC))
14918 {
14919 if (inst.cond != COND_ALWAYS)
14920 {
14921 first_error (_(BAD_COND));
14922 return FAIL;
14923 }
14924 if (inst.uncond_value != -1)
14925 inst.instruction |= inst.uncond_value << 28;
14926 }
14927
14928 if ((check & NEON_CHECK_ARCH)
14929 && !mark_feature_used (&fpu_neon_ext_v1))
14930 {
14931 first_error (_(BAD_FPU));
14932 return FAIL;
14933 }
14934
14935 if ((check & NEON_CHECK_ARCH8)
14936 && !mark_feature_used (&fpu_neon_ext_armv8))
14937 {
14938 first_error (_(BAD_FPU));
14939 return FAIL;
14940 }
14941
14942 return SUCCESS;
14943 }
14944
14945 static void
14946 do_neon_addsub_if_i (void)
14947 {
14948 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14949 return;
14950
14951 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14952 return;
14953
14954 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14955 affected if we specify unsigned args. */
14956 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14957 }
14958
14959 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14960 result to be:
14961 V<op> A,B (A is operand 0, B is operand 2)
14962 to mean:
14963 V<op> A,B,A
14964 not:
14965 V<op> A,B,B
14966 so handle that case specially. */
14967
14968 static void
14969 neon_exchange_operands (void)
14970 {
14971 if (inst.operands[1].present)
14972 {
14973 void *scratch = xmalloc (sizeof (inst.operands[0]));
14974
14975 /* Swap operands[1] and operands[2]. */
14976 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14977 inst.operands[1] = inst.operands[2];
14978 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14979 free (scratch);
14980 }
14981 else
14982 {
14983 inst.operands[1] = inst.operands[2];
14984 inst.operands[2] = inst.operands[0];
14985 }
14986 }
14987
14988 static void
14989 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14990 {
14991 if (inst.operands[2].isreg)
14992 {
14993 if (invert)
14994 neon_exchange_operands ();
14995 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14996 }
14997 else
14998 {
14999 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15000 struct neon_type_el et = neon_check_type (2, rs,
15001 N_EQK | N_SIZ, immtypes | N_KEY);
15002
15003 NEON_ENCODE (IMMED, inst);
15004 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15005 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15006 inst.instruction |= LOW4 (inst.operands[1].reg);
15007 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15008 inst.instruction |= neon_quad (rs) << 6;
15009 inst.instruction |= (et.type == NT_float) << 10;
15010 inst.instruction |= neon_logbits (et.size) << 18;
15011
15012 neon_dp_fixup (&inst);
15013 }
15014 }
15015
15016 static void
15017 do_neon_cmp (void)
15018 {
15019 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
15020 }
15021
15022 static void
15023 do_neon_cmp_inv (void)
15024 {
15025 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
15026 }
15027
15028 static void
15029 do_neon_ceq (void)
15030 {
15031 neon_compare (N_IF_32, N_IF_32, FALSE);
15032 }
15033
15034 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
15035 scalars, which are encoded in 5 bits, M : Rm.
15036 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15037 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
15038 index in M.
15039
15040 Dot Product instructions are similar to multiply instructions except elsize
15041 should always be 32.
15042
15043 This function translates SCALAR, which is GAS's internal encoding of indexed
15044 scalar register, to raw encoding. There is also register and index range
15045 check based on ELSIZE. */
15046
15047 static unsigned
15048 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15049 {
15050 unsigned regno = NEON_SCALAR_REG (scalar);
15051 unsigned elno = NEON_SCALAR_INDEX (scalar);
15052
15053 switch (elsize)
15054 {
15055 case 16:
15056 if (regno > 7 || elno > 3)
15057 goto bad_scalar;
15058 return regno | (elno << 3);
15059
15060 case 32:
15061 if (regno > 15 || elno > 1)
15062 goto bad_scalar;
15063 return regno | (elno << 4);
15064
15065 default:
15066 bad_scalar:
15067 first_error (_("scalar out of range for multiply instruction"));
15068 }
15069
15070 return 0;
15071 }
15072
15073 /* Encode multiply / multiply-accumulate scalar instructions. */
15074
15075 static void
15076 neon_mul_mac (struct neon_type_el et, int ubit)
15077 {
15078 unsigned scalar;
15079
15080 /* Give a more helpful error message if we have an invalid type. */
15081 if (et.type == NT_invtype)
15082 return;
15083
15084 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
15085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15086 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15087 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15088 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15089 inst.instruction |= LOW4 (scalar);
15090 inst.instruction |= HI1 (scalar) << 5;
15091 inst.instruction |= (et.type == NT_float) << 8;
15092 inst.instruction |= neon_logbits (et.size) << 20;
15093 inst.instruction |= (ubit != 0) << 24;
15094
15095 neon_dp_fixup (&inst);
15096 }
15097
15098 static void
15099 do_neon_mac_maybe_scalar (void)
15100 {
15101 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15102 return;
15103
15104 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15105 return;
15106
15107 if (inst.operands[2].isscalar)
15108 {
15109 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15110 struct neon_type_el et = neon_check_type (3, rs,
15111 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
15112 NEON_ENCODE (SCALAR, inst);
15113 neon_mul_mac (et, neon_quad (rs));
15114 }
15115 else
15116 {
15117 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15118 affected if we specify unsigned args. */
15119 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15120 }
15121 }
15122
15123 static void
15124 do_neon_fmac (void)
15125 {
15126 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15127 return;
15128
15129 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15130 return;
15131
15132 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15133 }
15134
15135 static void
15136 do_neon_tst (void)
15137 {
15138 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15139 struct neon_type_el et = neon_check_type (3, rs,
15140 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
15141 neon_three_same (neon_quad (rs), 0, et.size);
15142 }
15143
15144 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
15145 same types as the MAC equivalents. The polynomial type for this instruction
15146 is encoded the same as the integer type. */
15147
15148 static void
15149 do_neon_mul (void)
15150 {
15151 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15152 return;
15153
15154 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15155 return;
15156
15157 if (inst.operands[2].isscalar)
15158 do_neon_mac_maybe_scalar ();
15159 else
15160 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
15161 }
15162
15163 static void
15164 do_neon_qdmulh (void)
15165 {
15166 if (inst.operands[2].isscalar)
15167 {
15168 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15169 struct neon_type_el et = neon_check_type (3, rs,
15170 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15171 NEON_ENCODE (SCALAR, inst);
15172 neon_mul_mac (et, neon_quad (rs));
15173 }
15174 else
15175 {
15176 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15177 struct neon_type_el et = neon_check_type (3, rs,
15178 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15179 NEON_ENCODE (INTEGER, inst);
15180 /* The U bit (rounding) comes from bit mask. */
15181 neon_three_same (neon_quad (rs), 0, et.size);
15182 }
15183 }
15184
15185 static void
15186 do_neon_qrdmlah (void)
15187 {
15188 /* Check we're on the correct architecture. */
15189 if (!mark_feature_used (&fpu_neon_ext_armv8))
15190 inst.error =
15191 _("instruction form not available on this architecture.");
15192 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15193 {
15194 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15195 record_feature_use (&fpu_neon_ext_v8_1);
15196 }
15197
15198 if (inst.operands[2].isscalar)
15199 {
15200 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15201 struct neon_type_el et = neon_check_type (3, rs,
15202 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15203 NEON_ENCODE (SCALAR, inst);
15204 neon_mul_mac (et, neon_quad (rs));
15205 }
15206 else
15207 {
15208 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15209 struct neon_type_el et = neon_check_type (3, rs,
15210 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15211 NEON_ENCODE (INTEGER, inst);
15212 /* The U bit (rounding) comes from bit mask. */
15213 neon_three_same (neon_quad (rs), 0, et.size);
15214 }
15215 }
15216
15217 static void
15218 do_neon_fcmp_absolute (void)
15219 {
15220 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15221 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15222 N_F_16_32 | N_KEY);
15223 /* Size field comes from bit mask. */
15224 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
15225 }
15226
15227 static void
15228 do_neon_fcmp_absolute_inv (void)
15229 {
15230 neon_exchange_operands ();
15231 do_neon_fcmp_absolute ();
15232 }
15233
15234 static void
15235 do_neon_step (void)
15236 {
15237 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15238 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15239 N_F_16_32 | N_KEY);
15240 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15241 }
15242
15243 static void
15244 do_neon_abs_neg (void)
15245 {
15246 enum neon_shape rs;
15247 struct neon_type_el et;
15248
15249 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15250 return;
15251
15252 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15253 return;
15254
15255 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15256 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
15257
15258 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15259 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15260 inst.instruction |= LOW4 (inst.operands[1].reg);
15261 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15262 inst.instruction |= neon_quad (rs) << 6;
15263 inst.instruction |= (et.type == NT_float) << 10;
15264 inst.instruction |= neon_logbits (et.size) << 18;
15265
15266 neon_dp_fixup (&inst);
15267 }
15268
15269 static void
15270 do_neon_sli (void)
15271 {
15272 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15273 struct neon_type_el et = neon_check_type (2, rs,
15274 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15275 int imm = inst.operands[2].imm;
15276 constraint (imm < 0 || (unsigned)imm >= et.size,
15277 _("immediate out of range for insert"));
15278 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15279 }
15280
15281 static void
15282 do_neon_sri (void)
15283 {
15284 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15285 struct neon_type_el et = neon_check_type (2, rs,
15286 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15287 int imm = inst.operands[2].imm;
15288 constraint (imm < 1 || (unsigned)imm > et.size,
15289 _("immediate out of range for insert"));
15290 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
15291 }
15292
15293 static void
15294 do_neon_qshlu_imm (void)
15295 {
15296 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15297 struct neon_type_el et = neon_check_type (2, rs,
15298 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15299 int imm = inst.operands[2].imm;
15300 constraint (imm < 0 || (unsigned)imm >= et.size,
15301 _("immediate out of range for shift"));
15302 /* Only encodes the 'U present' variant of the instruction.
15303 In this case, signed types have OP (bit 8) set to 0.
15304 Unsigned types have OP set to 1. */
15305 inst.instruction |= (et.type == NT_unsigned) << 8;
15306 /* The rest of the bits are the same as other immediate shifts. */
15307 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15308 }
15309
15310 static void
15311 do_neon_qmovn (void)
15312 {
15313 struct neon_type_el et = neon_check_type (2, NS_DQ,
15314 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15315 /* Saturating move where operands can be signed or unsigned, and the
15316 destination has the same signedness. */
15317 NEON_ENCODE (INTEGER, inst);
15318 if (et.type == NT_unsigned)
15319 inst.instruction |= 0xc0;
15320 else
15321 inst.instruction |= 0x80;
15322 neon_two_same (0, 1, et.size / 2);
15323 }
15324
15325 static void
15326 do_neon_qmovun (void)
15327 {
15328 struct neon_type_el et = neon_check_type (2, NS_DQ,
15329 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15330 /* Saturating move with unsigned results. Operands must be signed. */
15331 NEON_ENCODE (INTEGER, inst);
15332 neon_two_same (0, 1, et.size / 2);
15333 }
15334
15335 static void
15336 do_neon_rshift_sat_narrow (void)
15337 {
15338 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15339 or unsigned. If operands are unsigned, results must also be unsigned. */
15340 struct neon_type_el et = neon_check_type (2, NS_DQI,
15341 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15342 int imm = inst.operands[2].imm;
15343 /* This gets the bounds check, size encoding and immediate bits calculation
15344 right. */
15345 et.size /= 2;
15346
15347 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15348 VQMOVN.I<size> <Dd>, <Qm>. */
15349 if (imm == 0)
15350 {
15351 inst.operands[2].present = 0;
15352 inst.instruction = N_MNEM_vqmovn;
15353 do_neon_qmovn ();
15354 return;
15355 }
15356
15357 constraint (imm < 1 || (unsigned)imm > et.size,
15358 _("immediate out of range"));
15359 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15360 }
15361
15362 static void
15363 do_neon_rshift_sat_narrow_u (void)
15364 {
15365 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15366 or unsigned. If operands are unsigned, results must also be unsigned. */
15367 struct neon_type_el et = neon_check_type (2, NS_DQI,
15368 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15369 int imm = inst.operands[2].imm;
15370 /* This gets the bounds check, size encoding and immediate bits calculation
15371 right. */
15372 et.size /= 2;
15373
15374 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15375 VQMOVUN.I<size> <Dd>, <Qm>. */
15376 if (imm == 0)
15377 {
15378 inst.operands[2].present = 0;
15379 inst.instruction = N_MNEM_vqmovun;
15380 do_neon_qmovun ();
15381 return;
15382 }
15383
15384 constraint (imm < 1 || (unsigned)imm > et.size,
15385 _("immediate out of range"));
15386 /* FIXME: The manual is kind of unclear about what value U should have in
15387 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15388 must be 1. */
15389 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15390 }
15391
15392 static void
15393 do_neon_movn (void)
15394 {
15395 struct neon_type_el et = neon_check_type (2, NS_DQ,
15396 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15397 NEON_ENCODE (INTEGER, inst);
15398 neon_two_same (0, 1, et.size / 2);
15399 }
15400
15401 static void
15402 do_neon_rshift_narrow (void)
15403 {
15404 struct neon_type_el et = neon_check_type (2, NS_DQI,
15405 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15406 int imm = inst.operands[2].imm;
15407 /* This gets the bounds check, size encoding and immediate bits calculation
15408 right. */
15409 et.size /= 2;
15410
15411 /* If immediate is zero then we are a pseudo-instruction for
15412 VMOVN.I<size> <Dd>, <Qm> */
15413 if (imm == 0)
15414 {
15415 inst.operands[2].present = 0;
15416 inst.instruction = N_MNEM_vmovn;
15417 do_neon_movn ();
15418 return;
15419 }
15420
15421 constraint (imm < 1 || (unsigned)imm > et.size,
15422 _("immediate out of range for narrowing operation"));
15423 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15424 }
15425
15426 static void
15427 do_neon_shll (void)
15428 {
15429 /* FIXME: Type checking when lengthening. */
15430 struct neon_type_el et = neon_check_type (2, NS_QDI,
15431 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15432 unsigned imm = inst.operands[2].imm;
15433
15434 if (imm == et.size)
15435 {
15436 /* Maximum shift variant. */
15437 NEON_ENCODE (INTEGER, inst);
15438 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15439 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15440 inst.instruction |= LOW4 (inst.operands[1].reg);
15441 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15442 inst.instruction |= neon_logbits (et.size) << 18;
15443
15444 neon_dp_fixup (&inst);
15445 }
15446 else
15447 {
15448 /* A more-specific type check for non-max versions. */
15449 et = neon_check_type (2, NS_QDI,
15450 N_EQK | N_DBL, N_SU_32 | N_KEY);
15451 NEON_ENCODE (IMMED, inst);
15452 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15453 }
15454 }
15455
15456 /* Check the various types for the VCVT instruction, and return which version
15457 the current instruction is. */
15458
15459 #define CVT_FLAVOUR_VAR \
15460 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15461 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15462 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15463 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15464 /* Half-precision conversions. */ \
15465 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15466 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15467 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15468 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
15469 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15470 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15471 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15472 Compared with single/double precision variants, only the co-processor \
15473 field is different, so the encoding flow is reused here. */ \
15474 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15475 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15476 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15477 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
15478 /* VFP instructions. */ \
15479 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15480 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15481 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15482 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15483 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15484 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15485 /* VFP instructions with bitshift. */ \
15486 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15487 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15488 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15489 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15490 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15491 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15492 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15493 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15494
15495 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15496 neon_cvt_flavour_##C,
15497
15498 /* The different types of conversions we can do. */
15499 enum neon_cvt_flavour
15500 {
15501 CVT_FLAVOUR_VAR
15502 neon_cvt_flavour_invalid,
15503 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15504 };
15505
15506 #undef CVT_VAR
15507
15508 static enum neon_cvt_flavour
15509 get_neon_cvt_flavour (enum neon_shape rs)
15510 {
15511 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15512 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15513 if (et.type != NT_invtype) \
15514 { \
15515 inst.error = NULL; \
15516 return (neon_cvt_flavour_##C); \
15517 }
15518
15519 struct neon_type_el et;
15520 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15521 || rs == NS_FF) ? N_VFP : 0;
15522 /* The instruction versions which take an immediate take one register
15523 argument, which is extended to the width of the full register. Thus the
15524 "source" and "destination" registers must have the same width. Hack that
15525 here by making the size equal to the key (wider, in this case) operand. */
15526 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15527
15528 CVT_FLAVOUR_VAR;
15529
15530 return neon_cvt_flavour_invalid;
15531 #undef CVT_VAR
15532 }
15533
15534 enum neon_cvt_mode
15535 {
15536 neon_cvt_mode_a,
15537 neon_cvt_mode_n,
15538 neon_cvt_mode_p,
15539 neon_cvt_mode_m,
15540 neon_cvt_mode_z,
15541 neon_cvt_mode_x,
15542 neon_cvt_mode_r
15543 };
15544
15545 /* Neon-syntax VFP conversions. */
15546
15547 static void
15548 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15549 {
15550 const char *opname = 0;
15551
15552 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15553 || rs == NS_FHI || rs == NS_HFI)
15554 {
15555 /* Conversions with immediate bitshift. */
15556 const char *enc[] =
15557 {
15558 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15559 CVT_FLAVOUR_VAR
15560 NULL
15561 #undef CVT_VAR
15562 };
15563
15564 if (flavour < (int) ARRAY_SIZE (enc))
15565 {
15566 opname = enc[flavour];
15567 constraint (inst.operands[0].reg != inst.operands[1].reg,
15568 _("operands 0 and 1 must be the same register"));
15569 inst.operands[1] = inst.operands[2];
15570 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15571 }
15572 }
15573 else
15574 {
15575 /* Conversions without bitshift. */
15576 const char *enc[] =
15577 {
15578 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15579 CVT_FLAVOUR_VAR
15580 NULL
15581 #undef CVT_VAR
15582 };
15583
15584 if (flavour < (int) ARRAY_SIZE (enc))
15585 opname = enc[flavour];
15586 }
15587
15588 if (opname)
15589 do_vfp_nsyn_opcode (opname);
15590
15591 /* ARMv8.2 fp16 VCVT instruction. */
15592 if (flavour == neon_cvt_flavour_s32_f16
15593 || flavour == neon_cvt_flavour_u32_f16
15594 || flavour == neon_cvt_flavour_f16_u32
15595 || flavour == neon_cvt_flavour_f16_s32)
15596 do_scalar_fp16_v82_encode ();
15597 }
15598
15599 static void
15600 do_vfp_nsyn_cvtz (void)
15601 {
15602 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
15603 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15604 const char *enc[] =
15605 {
15606 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15607 CVT_FLAVOUR_VAR
15608 NULL
15609 #undef CVT_VAR
15610 };
15611
15612 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15613 do_vfp_nsyn_opcode (enc[flavour]);
15614 }
15615
15616 static void
15617 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15618 enum neon_cvt_mode mode)
15619 {
15620 int sz, op;
15621 int rm;
15622
15623 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15624 D register operands. */
15625 if (flavour == neon_cvt_flavour_s32_f64
15626 || flavour == neon_cvt_flavour_u32_f64)
15627 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15628 _(BAD_FPU));
15629
15630 if (flavour == neon_cvt_flavour_s32_f16
15631 || flavour == neon_cvt_flavour_u32_f16)
15632 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15633 _(BAD_FP16));
15634
15635 set_it_insn_type (OUTSIDE_IT_INSN);
15636
15637 switch (flavour)
15638 {
15639 case neon_cvt_flavour_s32_f64:
15640 sz = 1;
15641 op = 1;
15642 break;
15643 case neon_cvt_flavour_s32_f32:
15644 sz = 0;
15645 op = 1;
15646 break;
15647 case neon_cvt_flavour_s32_f16:
15648 sz = 0;
15649 op = 1;
15650 break;
15651 case neon_cvt_flavour_u32_f64:
15652 sz = 1;
15653 op = 0;
15654 break;
15655 case neon_cvt_flavour_u32_f32:
15656 sz = 0;
15657 op = 0;
15658 break;
15659 case neon_cvt_flavour_u32_f16:
15660 sz = 0;
15661 op = 0;
15662 break;
15663 default:
15664 first_error (_("invalid instruction shape"));
15665 return;
15666 }
15667
15668 switch (mode)
15669 {
15670 case neon_cvt_mode_a: rm = 0; break;
15671 case neon_cvt_mode_n: rm = 1; break;
15672 case neon_cvt_mode_p: rm = 2; break;
15673 case neon_cvt_mode_m: rm = 3; break;
15674 default: first_error (_("invalid rounding mode")); return;
15675 }
15676
15677 NEON_ENCODE (FPV8, inst);
15678 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15679 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15680 inst.instruction |= sz << 8;
15681
15682 /* ARMv8.2 fp16 VCVT instruction. */
15683 if (flavour == neon_cvt_flavour_s32_f16
15684 ||flavour == neon_cvt_flavour_u32_f16)
15685 do_scalar_fp16_v82_encode ();
15686 inst.instruction |= op << 7;
15687 inst.instruction |= rm << 16;
15688 inst.instruction |= 0xf0000000;
15689 inst.is_neon = TRUE;
15690 }
15691
15692 static void
15693 do_neon_cvt_1 (enum neon_cvt_mode mode)
15694 {
15695 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15696 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15697 NS_FH, NS_HF, NS_FHI, NS_HFI,
15698 NS_NULL);
15699 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15700
15701 if (flavour == neon_cvt_flavour_invalid)
15702 return;
15703
15704 /* PR11109: Handle round-to-zero for VCVT conversions. */
15705 if (mode == neon_cvt_mode_z
15706 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15707 && (flavour == neon_cvt_flavour_s16_f16
15708 || flavour == neon_cvt_flavour_u16_f16
15709 || flavour == neon_cvt_flavour_s32_f32
15710 || flavour == neon_cvt_flavour_u32_f32
15711 || flavour == neon_cvt_flavour_s32_f64
15712 || flavour == neon_cvt_flavour_u32_f64)
15713 && (rs == NS_FD || rs == NS_FF))
15714 {
15715 do_vfp_nsyn_cvtz ();
15716 return;
15717 }
15718
15719 /* ARMv8.2 fp16 VCVT conversions. */
15720 if (mode == neon_cvt_mode_z
15721 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15722 && (flavour == neon_cvt_flavour_s32_f16
15723 || flavour == neon_cvt_flavour_u32_f16)
15724 && (rs == NS_FH))
15725 {
15726 do_vfp_nsyn_cvtz ();
15727 do_scalar_fp16_v82_encode ();
15728 return;
15729 }
15730
15731 /* VFP rather than Neon conversions. */
15732 if (flavour >= neon_cvt_flavour_first_fp)
15733 {
15734 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15735 do_vfp_nsyn_cvt (rs, flavour);
15736 else
15737 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15738
15739 return;
15740 }
15741
15742 switch (rs)
15743 {
15744 case NS_DDI:
15745 case NS_QQI:
15746 {
15747 unsigned immbits;
15748 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15749 0x0000100, 0x1000100, 0x0, 0x1000000};
15750
15751 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15752 return;
15753
15754 /* Fixed-point conversion with #0 immediate is encoded as an
15755 integer conversion. */
15756 if (inst.operands[2].present && inst.operands[2].imm == 0)
15757 goto int_encode;
15758 NEON_ENCODE (IMMED, inst);
15759 if (flavour != neon_cvt_flavour_invalid)
15760 inst.instruction |= enctab[flavour];
15761 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15762 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15763 inst.instruction |= LOW4 (inst.operands[1].reg);
15764 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15765 inst.instruction |= neon_quad (rs) << 6;
15766 inst.instruction |= 1 << 21;
15767 if (flavour < neon_cvt_flavour_s16_f16)
15768 {
15769 inst.instruction |= 1 << 21;
15770 immbits = 32 - inst.operands[2].imm;
15771 inst.instruction |= immbits << 16;
15772 }
15773 else
15774 {
15775 inst.instruction |= 3 << 20;
15776 immbits = 16 - inst.operands[2].imm;
15777 inst.instruction |= immbits << 16;
15778 inst.instruction &= ~(1 << 9);
15779 }
15780
15781 neon_dp_fixup (&inst);
15782 }
15783 break;
15784
15785 case NS_DD:
15786 case NS_QQ:
15787 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15788 {
15789 NEON_ENCODE (FLOAT, inst);
15790 set_it_insn_type (OUTSIDE_IT_INSN);
15791
15792 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15793 return;
15794
15795 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15796 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15797 inst.instruction |= LOW4 (inst.operands[1].reg);
15798 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15799 inst.instruction |= neon_quad (rs) << 6;
15800 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15801 || flavour == neon_cvt_flavour_u32_f32) << 7;
15802 inst.instruction |= mode << 8;
15803 if (flavour == neon_cvt_flavour_u16_f16
15804 || flavour == neon_cvt_flavour_s16_f16)
15805 /* Mask off the original size bits and reencode them. */
15806 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15807
15808 if (thumb_mode)
15809 inst.instruction |= 0xfc000000;
15810 else
15811 inst.instruction |= 0xf0000000;
15812 }
15813 else
15814 {
15815 int_encode:
15816 {
15817 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15818 0x100, 0x180, 0x0, 0x080};
15819
15820 NEON_ENCODE (INTEGER, inst);
15821
15822 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15823 return;
15824
15825 if (flavour != neon_cvt_flavour_invalid)
15826 inst.instruction |= enctab[flavour];
15827
15828 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15829 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15830 inst.instruction |= LOW4 (inst.operands[1].reg);
15831 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15832 inst.instruction |= neon_quad (rs) << 6;
15833 if (flavour >= neon_cvt_flavour_s16_f16
15834 && flavour <= neon_cvt_flavour_f16_u16)
15835 /* Half precision. */
15836 inst.instruction |= 1 << 18;
15837 else
15838 inst.instruction |= 2 << 18;
15839
15840 neon_dp_fixup (&inst);
15841 }
15842 }
15843 break;
15844
15845 /* Half-precision conversions for Advanced SIMD -- neon. */
15846 case NS_QD:
15847 case NS_DQ:
15848
15849 if ((rs == NS_DQ)
15850 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15851 {
15852 as_bad (_("operand size must match register width"));
15853 break;
15854 }
15855
15856 if ((rs == NS_QD)
15857 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15858 {
15859 as_bad (_("operand size must match register width"));
15860 break;
15861 }
15862
15863 if (rs == NS_DQ)
15864 inst.instruction = 0x3b60600;
15865 else
15866 inst.instruction = 0x3b60700;
15867
15868 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15869 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15870 inst.instruction |= LOW4 (inst.operands[1].reg);
15871 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15872 neon_dp_fixup (&inst);
15873 break;
15874
15875 default:
15876 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15877 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15878 do_vfp_nsyn_cvt (rs, flavour);
15879 else
15880 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15881 }
15882 }
15883
15884 static void
15885 do_neon_cvtr (void)
15886 {
15887 do_neon_cvt_1 (neon_cvt_mode_x);
15888 }
15889
15890 static void
15891 do_neon_cvt (void)
15892 {
15893 do_neon_cvt_1 (neon_cvt_mode_z);
15894 }
15895
15896 static void
15897 do_neon_cvta (void)
15898 {
15899 do_neon_cvt_1 (neon_cvt_mode_a);
15900 }
15901
15902 static void
15903 do_neon_cvtn (void)
15904 {
15905 do_neon_cvt_1 (neon_cvt_mode_n);
15906 }
15907
15908 static void
15909 do_neon_cvtp (void)
15910 {
15911 do_neon_cvt_1 (neon_cvt_mode_p);
15912 }
15913
15914 static void
15915 do_neon_cvtm (void)
15916 {
15917 do_neon_cvt_1 (neon_cvt_mode_m);
15918 }
15919
15920 static void
15921 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15922 {
15923 if (is_double)
15924 mark_feature_used (&fpu_vfp_ext_armv8);
15925
15926 encode_arm_vfp_reg (inst.operands[0].reg,
15927 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15928 encode_arm_vfp_reg (inst.operands[1].reg,
15929 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15930 inst.instruction |= to ? 0x10000 : 0;
15931 inst.instruction |= t ? 0x80 : 0;
15932 inst.instruction |= is_double ? 0x100 : 0;
15933 do_vfp_cond_or_thumb ();
15934 }
15935
15936 static void
15937 do_neon_cvttb_1 (bfd_boolean t)
15938 {
15939 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
15940 NS_DF, NS_DH, NS_NULL);
15941
15942 if (rs == NS_NULL)
15943 return;
15944 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15945 {
15946 inst.error = NULL;
15947 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15948 }
15949 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15950 {
15951 inst.error = NULL;
15952 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15953 }
15954 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15955 {
15956 /* The VCVTB and VCVTT instructions with D-register operands
15957 don't work for SP only targets. */
15958 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15959 _(BAD_FPU));
15960
15961 inst.error = NULL;
15962 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15963 }
15964 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15965 {
15966 /* The VCVTB and VCVTT instructions with D-register operands
15967 don't work for SP only targets. */
15968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15969 _(BAD_FPU));
15970
15971 inst.error = NULL;
15972 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15973 }
15974 else
15975 return;
15976 }
15977
15978 static void
15979 do_neon_cvtb (void)
15980 {
15981 do_neon_cvttb_1 (FALSE);
15982 }
15983
15984
15985 static void
15986 do_neon_cvtt (void)
15987 {
15988 do_neon_cvttb_1 (TRUE);
15989 }
15990
15991 static void
15992 neon_move_immediate (void)
15993 {
15994 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15995 struct neon_type_el et = neon_check_type (2, rs,
15996 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15997 unsigned immlo, immhi = 0, immbits;
15998 int op, cmode, float_p;
15999
16000 constraint (et.type == NT_invtype,
16001 _("operand size must be specified for immediate VMOV"));
16002
16003 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16004 op = (inst.instruction & (1 << 5)) != 0;
16005
16006 immlo = inst.operands[1].imm;
16007 if (inst.operands[1].regisimm)
16008 immhi = inst.operands[1].reg;
16009
16010 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
16011 _("immediate has bits set outside the operand size"));
16012
16013 float_p = inst.operands[1].immisfloat;
16014
16015 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
16016 et.size, et.type)) == FAIL)
16017 {
16018 /* Invert relevant bits only. */
16019 neon_invert_size (&immlo, &immhi, et.size);
16020 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
16021 with one or the other; those cases are caught by
16022 neon_cmode_for_move_imm. */
16023 op = !op;
16024 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16025 &op, et.size, et.type)) == FAIL)
16026 {
16027 first_error (_("immediate out of range"));
16028 return;
16029 }
16030 }
16031
16032 inst.instruction &= ~(1 << 5);
16033 inst.instruction |= op << 5;
16034
16035 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16036 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16037 inst.instruction |= neon_quad (rs) << 6;
16038 inst.instruction |= cmode << 8;
16039
16040 neon_write_immbits (immbits);
16041 }
16042
16043 static void
16044 do_neon_mvn (void)
16045 {
16046 if (inst.operands[1].isreg)
16047 {
16048 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16049
16050 NEON_ENCODE (INTEGER, inst);
16051 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16052 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16053 inst.instruction |= LOW4 (inst.operands[1].reg);
16054 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16055 inst.instruction |= neon_quad (rs) << 6;
16056 }
16057 else
16058 {
16059 NEON_ENCODE (IMMED, inst);
16060 neon_move_immediate ();
16061 }
16062
16063 neon_dp_fixup (&inst);
16064 }
16065
16066 /* Encode instructions of form:
16067
16068 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16069 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
16070
16071 static void
16072 neon_mixed_length (struct neon_type_el et, unsigned size)
16073 {
16074 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16075 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16076 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16077 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16078 inst.instruction |= LOW4 (inst.operands[2].reg);
16079 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16080 inst.instruction |= (et.type == NT_unsigned) << 24;
16081 inst.instruction |= neon_logbits (size) << 20;
16082
16083 neon_dp_fixup (&inst);
16084 }
16085
16086 static void
16087 do_neon_dyadic_long (void)
16088 {
16089 /* FIXME: Type checking for lengthening op. */
16090 struct neon_type_el et = neon_check_type (3, NS_QDD,
16091 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16092 neon_mixed_length (et, et.size);
16093 }
16094
16095 static void
16096 do_neon_abal (void)
16097 {
16098 struct neon_type_el et = neon_check_type (3, NS_QDD,
16099 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16100 neon_mixed_length (et, et.size);
16101 }
16102
16103 static void
16104 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16105 {
16106 if (inst.operands[2].isscalar)
16107 {
16108 struct neon_type_el et = neon_check_type (3, NS_QDS,
16109 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
16110 NEON_ENCODE (SCALAR, inst);
16111 neon_mul_mac (et, et.type == NT_unsigned);
16112 }
16113 else
16114 {
16115 struct neon_type_el et = neon_check_type (3, NS_QDD,
16116 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
16117 NEON_ENCODE (INTEGER, inst);
16118 neon_mixed_length (et, et.size);
16119 }
16120 }
16121
16122 static void
16123 do_neon_mac_maybe_scalar_long (void)
16124 {
16125 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16126 }
16127
16128 static void
16129 do_neon_dyadic_wide (void)
16130 {
16131 struct neon_type_el et = neon_check_type (3, NS_QQD,
16132 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16133 neon_mixed_length (et, et.size);
16134 }
16135
16136 static void
16137 do_neon_dyadic_narrow (void)
16138 {
16139 struct neon_type_el et = neon_check_type (3, NS_QDD,
16140 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
16141 /* Operand sign is unimportant, and the U bit is part of the opcode,
16142 so force the operand type to integer. */
16143 et.type = NT_integer;
16144 neon_mixed_length (et, et.size / 2);
16145 }
16146
16147 static void
16148 do_neon_mul_sat_scalar_long (void)
16149 {
16150 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16151 }
16152
16153 static void
16154 do_neon_vmull (void)
16155 {
16156 if (inst.operands[2].isscalar)
16157 do_neon_mac_maybe_scalar_long ();
16158 else
16159 {
16160 struct neon_type_el et = neon_check_type (3, NS_QDD,
16161 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
16162
16163 if (et.type == NT_poly)
16164 NEON_ENCODE (POLY, inst);
16165 else
16166 NEON_ENCODE (INTEGER, inst);
16167
16168 /* For polynomial encoding the U bit must be zero, and the size must
16169 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16170 obviously, as 0b10). */
16171 if (et.size == 64)
16172 {
16173 /* Check we're on the correct architecture. */
16174 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16175 inst.error =
16176 _("Instruction form not available on this architecture.");
16177
16178 et.size = 32;
16179 }
16180
16181 neon_mixed_length (et, et.size);
16182 }
16183 }
16184
16185 static void
16186 do_neon_ext (void)
16187 {
16188 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
16189 struct neon_type_el et = neon_check_type (3, rs,
16190 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16191 unsigned imm = (inst.operands[3].imm * et.size) / 8;
16192
16193 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16194 _("shift out of range"));
16195 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16196 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16197 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16198 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16199 inst.instruction |= LOW4 (inst.operands[2].reg);
16200 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16201 inst.instruction |= neon_quad (rs) << 6;
16202 inst.instruction |= imm << 8;
16203
16204 neon_dp_fixup (&inst);
16205 }
16206
16207 static void
16208 do_neon_rev (void)
16209 {
16210 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16211 struct neon_type_el et = neon_check_type (2, rs,
16212 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16213 unsigned op = (inst.instruction >> 7) & 3;
16214 /* N (width of reversed regions) is encoded as part of the bitmask. We
16215 extract it here to check the elements to be reversed are smaller.
16216 Otherwise we'd get a reserved instruction. */
16217 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
16218 gas_assert (elsize != 0);
16219 constraint (et.size >= elsize,
16220 _("elements must be smaller than reversal region"));
16221 neon_two_same (neon_quad (rs), 1, et.size);
16222 }
16223
16224 static void
16225 do_neon_dup (void)
16226 {
16227 if (inst.operands[1].isscalar)
16228 {
16229 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
16230 struct neon_type_el et = neon_check_type (2, rs,
16231 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16232 unsigned sizebits = et.size >> 3;
16233 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
16234 int logsize = neon_logbits (et.size);
16235 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
16236
16237 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
16238 return;
16239
16240 NEON_ENCODE (SCALAR, inst);
16241 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16242 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16243 inst.instruction |= LOW4 (dm);
16244 inst.instruction |= HI1 (dm) << 5;
16245 inst.instruction |= neon_quad (rs) << 6;
16246 inst.instruction |= x << 17;
16247 inst.instruction |= sizebits << 16;
16248
16249 neon_dp_fixup (&inst);
16250 }
16251 else
16252 {
16253 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16254 struct neon_type_el et = neon_check_type (2, rs,
16255 N_8 | N_16 | N_32 | N_KEY, N_EQK);
16256 /* Duplicate ARM register to lanes of vector. */
16257 NEON_ENCODE (ARMREG, inst);
16258 switch (et.size)
16259 {
16260 case 8: inst.instruction |= 0x400000; break;
16261 case 16: inst.instruction |= 0x000020; break;
16262 case 32: inst.instruction |= 0x000000; break;
16263 default: break;
16264 }
16265 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16266 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16267 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
16268 inst.instruction |= neon_quad (rs) << 21;
16269 /* The encoding for this instruction is identical for the ARM and Thumb
16270 variants, except for the condition field. */
16271 do_vfp_cond_or_thumb ();
16272 }
16273 }
16274
16275 /* VMOV has particularly many variations. It can be one of:
16276 0. VMOV<c><q> <Qd>, <Qm>
16277 1. VMOV<c><q> <Dd>, <Dm>
16278 (Register operations, which are VORR with Rm = Rn.)
16279 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16280 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16281 (Immediate loads.)
16282 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16283 (ARM register to scalar.)
16284 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16285 (Two ARM registers to vector.)
16286 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16287 (Scalar to ARM register.)
16288 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16289 (Vector to two ARM registers.)
16290 8. VMOV.F32 <Sd>, <Sm>
16291 9. VMOV.F64 <Dd>, <Dm>
16292 (VFP register moves.)
16293 10. VMOV.F32 <Sd>, #imm
16294 11. VMOV.F64 <Dd>, #imm
16295 (VFP float immediate load.)
16296 12. VMOV <Rd>, <Sm>
16297 (VFP single to ARM reg.)
16298 13. VMOV <Sd>, <Rm>
16299 (ARM reg to VFP single.)
16300 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16301 (Two ARM regs to two VFP singles.)
16302 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16303 (Two VFP singles to two ARM regs.)
16304
16305 These cases can be disambiguated using neon_select_shape, except cases 1/9
16306 and 3/11 which depend on the operand type too.
16307
16308 All the encoded bits are hardcoded by this function.
16309
16310 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16311 Cases 5, 7 may be used with VFPv2 and above.
16312
16313 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
16314 can specify a type where it doesn't make sense to, and is ignored). */
16315
16316 static void
16317 do_neon_mov (void)
16318 {
16319 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
16320 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16321 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16322 NS_HR, NS_RH, NS_HI, NS_NULL);
16323 struct neon_type_el et;
16324 const char *ldconst = 0;
16325
16326 switch (rs)
16327 {
16328 case NS_DD: /* case 1/9. */
16329 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16330 /* It is not an error here if no type is given. */
16331 inst.error = NULL;
16332 if (et.type == NT_float && et.size == 64)
16333 {
16334 do_vfp_nsyn_opcode ("fcpyd");
16335 break;
16336 }
16337 /* fall through. */
16338
16339 case NS_QQ: /* case 0/1. */
16340 {
16341 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16342 return;
16343 /* The architecture manual I have doesn't explicitly state which
16344 value the U bit should have for register->register moves, but
16345 the equivalent VORR instruction has U = 0, so do that. */
16346 inst.instruction = 0x0200110;
16347 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16348 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16349 inst.instruction |= LOW4 (inst.operands[1].reg);
16350 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16351 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16352 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16353 inst.instruction |= neon_quad (rs) << 6;
16354
16355 neon_dp_fixup (&inst);
16356 }
16357 break;
16358
16359 case NS_DI: /* case 3/11. */
16360 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16361 inst.error = NULL;
16362 if (et.type == NT_float && et.size == 64)
16363 {
16364 /* case 11 (fconstd). */
16365 ldconst = "fconstd";
16366 goto encode_fconstd;
16367 }
16368 /* fall through. */
16369
16370 case NS_QI: /* case 2/3. */
16371 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16372 return;
16373 inst.instruction = 0x0800010;
16374 neon_move_immediate ();
16375 neon_dp_fixup (&inst);
16376 break;
16377
16378 case NS_SR: /* case 4. */
16379 {
16380 unsigned bcdebits = 0;
16381 int logsize;
16382 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16383 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
16384
16385 /* .<size> is optional here, defaulting to .32. */
16386 if (inst.vectype.elems == 0
16387 && inst.operands[0].vectype.type == NT_invtype
16388 && inst.operands[1].vectype.type == NT_invtype)
16389 {
16390 inst.vectype.el[0].type = NT_untyped;
16391 inst.vectype.el[0].size = 32;
16392 inst.vectype.elems = 1;
16393 }
16394
16395 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16396 logsize = neon_logbits (et.size);
16397
16398 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16399 _(BAD_FPU));
16400 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16401 && et.size != 32, _(BAD_FPU));
16402 constraint (et.type == NT_invtype, _("bad type for scalar"));
16403 constraint (x >= 64 / et.size, _("scalar index out of range"));
16404
16405 switch (et.size)
16406 {
16407 case 8: bcdebits = 0x8; break;
16408 case 16: bcdebits = 0x1; break;
16409 case 32: bcdebits = 0x0; break;
16410 default: ;
16411 }
16412
16413 bcdebits |= x << logsize;
16414
16415 inst.instruction = 0xe000b10;
16416 do_vfp_cond_or_thumb ();
16417 inst.instruction |= LOW4 (dn) << 16;
16418 inst.instruction |= HI1 (dn) << 7;
16419 inst.instruction |= inst.operands[1].reg << 12;
16420 inst.instruction |= (bcdebits & 3) << 5;
16421 inst.instruction |= (bcdebits >> 2) << 21;
16422 }
16423 break;
16424
16425 case NS_DRR: /* case 5 (fmdrr). */
16426 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16427 _(BAD_FPU));
16428
16429 inst.instruction = 0xc400b10;
16430 do_vfp_cond_or_thumb ();
16431 inst.instruction |= LOW4 (inst.operands[0].reg);
16432 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16433 inst.instruction |= inst.operands[1].reg << 12;
16434 inst.instruction |= inst.operands[2].reg << 16;
16435 break;
16436
16437 case NS_RS: /* case 6. */
16438 {
16439 unsigned logsize;
16440 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16441 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16442 unsigned abcdebits = 0;
16443
16444 /* .<dt> is optional here, defaulting to .32. */
16445 if (inst.vectype.elems == 0
16446 && inst.operands[0].vectype.type == NT_invtype
16447 && inst.operands[1].vectype.type == NT_invtype)
16448 {
16449 inst.vectype.el[0].type = NT_untyped;
16450 inst.vectype.el[0].size = 32;
16451 inst.vectype.elems = 1;
16452 }
16453
16454 et = neon_check_type (2, NS_NULL,
16455 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16456 logsize = neon_logbits (et.size);
16457
16458 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16459 _(BAD_FPU));
16460 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16461 && et.size != 32, _(BAD_FPU));
16462 constraint (et.type == NT_invtype, _("bad type for scalar"));
16463 constraint (x >= 64 / et.size, _("scalar index out of range"));
16464
16465 switch (et.size)
16466 {
16467 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16468 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16469 case 32: abcdebits = 0x00; break;
16470 default: ;
16471 }
16472
16473 abcdebits |= x << logsize;
16474 inst.instruction = 0xe100b10;
16475 do_vfp_cond_or_thumb ();
16476 inst.instruction |= LOW4 (dn) << 16;
16477 inst.instruction |= HI1 (dn) << 7;
16478 inst.instruction |= inst.operands[0].reg << 12;
16479 inst.instruction |= (abcdebits & 3) << 5;
16480 inst.instruction |= (abcdebits >> 2) << 21;
16481 }
16482 break;
16483
16484 case NS_RRD: /* case 7 (fmrrd). */
16485 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16486 _(BAD_FPU));
16487
16488 inst.instruction = 0xc500b10;
16489 do_vfp_cond_or_thumb ();
16490 inst.instruction |= inst.operands[0].reg << 12;
16491 inst.instruction |= inst.operands[1].reg << 16;
16492 inst.instruction |= LOW4 (inst.operands[2].reg);
16493 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16494 break;
16495
16496 case NS_FF: /* case 8 (fcpys). */
16497 do_vfp_nsyn_opcode ("fcpys");
16498 break;
16499
16500 case NS_HI:
16501 case NS_FI: /* case 10 (fconsts). */
16502 ldconst = "fconsts";
16503 encode_fconstd:
16504 if (is_quarter_float (inst.operands[1].imm))
16505 {
16506 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16507 do_vfp_nsyn_opcode (ldconst);
16508
16509 /* ARMv8.2 fp16 vmov.f16 instruction. */
16510 if (rs == NS_HI)
16511 do_scalar_fp16_v82_encode ();
16512 }
16513 else
16514 first_error (_("immediate out of range"));
16515 break;
16516
16517 case NS_RH:
16518 case NS_RF: /* case 12 (fmrs). */
16519 do_vfp_nsyn_opcode ("fmrs");
16520 /* ARMv8.2 fp16 vmov.f16 instruction. */
16521 if (rs == NS_RH)
16522 do_scalar_fp16_v82_encode ();
16523 break;
16524
16525 case NS_HR:
16526 case NS_FR: /* case 13 (fmsr). */
16527 do_vfp_nsyn_opcode ("fmsr");
16528 /* ARMv8.2 fp16 vmov.f16 instruction. */
16529 if (rs == NS_HR)
16530 do_scalar_fp16_v82_encode ();
16531 break;
16532
16533 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16534 (one of which is a list), but we have parsed four. Do some fiddling to
16535 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16536 expect. */
16537 case NS_RRFF: /* case 14 (fmrrs). */
16538 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16539 _("VFP registers must be adjacent"));
16540 inst.operands[2].imm = 2;
16541 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16542 do_vfp_nsyn_opcode ("fmrrs");
16543 break;
16544
16545 case NS_FFRR: /* case 15 (fmsrr). */
16546 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16547 _("VFP registers must be adjacent"));
16548 inst.operands[1] = inst.operands[2];
16549 inst.operands[2] = inst.operands[3];
16550 inst.operands[0].imm = 2;
16551 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16552 do_vfp_nsyn_opcode ("fmsrr");
16553 break;
16554
16555 case NS_NULL:
16556 /* neon_select_shape has determined that the instruction
16557 shape is wrong and has already set the error message. */
16558 break;
16559
16560 default:
16561 abort ();
16562 }
16563 }
16564
16565 static void
16566 do_neon_rshift_round_imm (void)
16567 {
16568 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16569 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16570 int imm = inst.operands[2].imm;
16571
16572 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16573 if (imm == 0)
16574 {
16575 inst.operands[2].present = 0;
16576 do_neon_mov ();
16577 return;
16578 }
16579
16580 constraint (imm < 1 || (unsigned)imm > et.size,
16581 _("immediate out of range for shift"));
16582 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16583 et.size - imm);
16584 }
16585
16586 static void
16587 do_neon_movhf (void)
16588 {
16589 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16590 constraint (rs != NS_HH, _("invalid suffix"));
16591
16592 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16593 _(BAD_FPU));
16594
16595 do_vfp_sp_monadic ();
16596
16597 inst.is_neon = 1;
16598 inst.instruction |= 0xf0000000;
16599 }
16600
16601 static void
16602 do_neon_movl (void)
16603 {
16604 struct neon_type_el et = neon_check_type (2, NS_QD,
16605 N_EQK | N_DBL, N_SU_32 | N_KEY);
16606 unsigned sizebits = et.size >> 3;
16607 inst.instruction |= sizebits << 19;
16608 neon_two_same (0, et.type == NT_unsigned, -1);
16609 }
16610
16611 static void
16612 do_neon_trn (void)
16613 {
16614 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16615 struct neon_type_el et = neon_check_type (2, rs,
16616 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16617 NEON_ENCODE (INTEGER, inst);
16618 neon_two_same (neon_quad (rs), 1, et.size);
16619 }
16620
16621 static void
16622 do_neon_zip_uzp (void)
16623 {
16624 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16625 struct neon_type_el et = neon_check_type (2, rs,
16626 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16627 if (rs == NS_DD && et.size == 32)
16628 {
16629 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16630 inst.instruction = N_MNEM_vtrn;
16631 do_neon_trn ();
16632 return;
16633 }
16634 neon_two_same (neon_quad (rs), 1, et.size);
16635 }
16636
16637 static void
16638 do_neon_sat_abs_neg (void)
16639 {
16640 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16641 struct neon_type_el et = neon_check_type (2, rs,
16642 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16643 neon_two_same (neon_quad (rs), 1, et.size);
16644 }
16645
16646 static void
16647 do_neon_pair_long (void)
16648 {
16649 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16650 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16651 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16652 inst.instruction |= (et.type == NT_unsigned) << 7;
16653 neon_two_same (neon_quad (rs), 1, et.size);
16654 }
16655
16656 static void
16657 do_neon_recip_est (void)
16658 {
16659 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16660 struct neon_type_el et = neon_check_type (2, rs,
16661 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
16662 inst.instruction |= (et.type == NT_float) << 8;
16663 neon_two_same (neon_quad (rs), 1, et.size);
16664 }
16665
16666 static void
16667 do_neon_cls (void)
16668 {
16669 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16670 struct neon_type_el et = neon_check_type (2, rs,
16671 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16672 neon_two_same (neon_quad (rs), 1, et.size);
16673 }
16674
16675 static void
16676 do_neon_clz (void)
16677 {
16678 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16679 struct neon_type_el et = neon_check_type (2, rs,
16680 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16681 neon_two_same (neon_quad (rs), 1, et.size);
16682 }
16683
16684 static void
16685 do_neon_cnt (void)
16686 {
16687 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16688 struct neon_type_el et = neon_check_type (2, rs,
16689 N_EQK | N_INT, N_8 | N_KEY);
16690 neon_two_same (neon_quad (rs), 1, et.size);
16691 }
16692
16693 static void
16694 do_neon_swp (void)
16695 {
16696 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16697 neon_two_same (neon_quad (rs), 1, -1);
16698 }
16699
16700 static void
16701 do_neon_tbl_tbx (void)
16702 {
16703 unsigned listlenbits;
16704 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16705
16706 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16707 {
16708 first_error (_("bad list length for table lookup"));
16709 return;
16710 }
16711
16712 listlenbits = inst.operands[1].imm - 1;
16713 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16714 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16715 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16716 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16717 inst.instruction |= LOW4 (inst.operands[2].reg);
16718 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16719 inst.instruction |= listlenbits << 8;
16720
16721 neon_dp_fixup (&inst);
16722 }
16723
16724 static void
16725 do_neon_ldm_stm (void)
16726 {
16727 /* P, U and L bits are part of bitmask. */
16728 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16729 unsigned offsetbits = inst.operands[1].imm * 2;
16730
16731 if (inst.operands[1].issingle)
16732 {
16733 do_vfp_nsyn_ldm_stm (is_dbmode);
16734 return;
16735 }
16736
16737 constraint (is_dbmode && !inst.operands[0].writeback,
16738 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16739
16740 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16741 _("register list must contain at least 1 and at most 16 "
16742 "registers"));
16743
16744 inst.instruction |= inst.operands[0].reg << 16;
16745 inst.instruction |= inst.operands[0].writeback << 21;
16746 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16747 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16748
16749 inst.instruction |= offsetbits;
16750
16751 do_vfp_cond_or_thumb ();
16752 }
16753
16754 static void
16755 do_neon_ldr_str (void)
16756 {
16757 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16758
16759 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16760 And is UNPREDICTABLE in thumb mode. */
16761 if (!is_ldr
16762 && inst.operands[1].reg == REG_PC
16763 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16764 {
16765 if (thumb_mode)
16766 inst.error = _("Use of PC here is UNPREDICTABLE");
16767 else if (warn_on_deprecated)
16768 as_tsktsk (_("Use of PC here is deprecated"));
16769 }
16770
16771 if (inst.operands[0].issingle)
16772 {
16773 if (is_ldr)
16774 do_vfp_nsyn_opcode ("flds");
16775 else
16776 do_vfp_nsyn_opcode ("fsts");
16777
16778 /* ARMv8.2 vldr.16/vstr.16 instruction. */
16779 if (inst.vectype.el[0].size == 16)
16780 do_scalar_fp16_v82_encode ();
16781 }
16782 else
16783 {
16784 if (is_ldr)
16785 do_vfp_nsyn_opcode ("fldd");
16786 else
16787 do_vfp_nsyn_opcode ("fstd");
16788 }
16789 }
16790
16791 /* "interleave" version also handles non-interleaving register VLD1/VST1
16792 instructions. */
16793
16794 static void
16795 do_neon_ld_st_interleave (void)
16796 {
16797 struct neon_type_el et = neon_check_type (1, NS_NULL,
16798 N_8 | N_16 | N_32 | N_64);
16799 unsigned alignbits = 0;
16800 unsigned idx;
16801 /* The bits in this table go:
16802 0: register stride of one (0) or two (1)
16803 1,2: register list length, minus one (1, 2, 3, 4).
16804 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16805 We use -1 for invalid entries. */
16806 const int typetable[] =
16807 {
16808 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16809 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16810 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16811 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16812 };
16813 int typebits;
16814
16815 if (et.type == NT_invtype)
16816 return;
16817
16818 if (inst.operands[1].immisalign)
16819 switch (inst.operands[1].imm >> 8)
16820 {
16821 case 64: alignbits = 1; break;
16822 case 128:
16823 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
16824 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16825 goto bad_alignment;
16826 alignbits = 2;
16827 break;
16828 case 256:
16829 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16830 goto bad_alignment;
16831 alignbits = 3;
16832 break;
16833 default:
16834 bad_alignment:
16835 first_error (_("bad alignment"));
16836 return;
16837 }
16838
16839 inst.instruction |= alignbits << 4;
16840 inst.instruction |= neon_logbits (et.size) << 6;
16841
16842 /* Bits [4:6] of the immediate in a list specifier encode register stride
16843 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
16844 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
16845 up the right value for "type" in a table based on this value and the given
16846 list style, then stick it back. */
16847 idx = ((inst.operands[0].imm >> 4) & 7)
16848 | (((inst.instruction >> 8) & 3) << 3);
16849
16850 typebits = typetable[idx];
16851
16852 constraint (typebits == -1, _("bad list type for instruction"));
16853 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
16854 _("bad element type for instruction"));
16855
16856 inst.instruction &= ~0xf00;
16857 inst.instruction |= typebits << 8;
16858 }
16859
16860 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
16861 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
16862 otherwise. The variable arguments are a list of pairs of legal (size, align)
16863 values, terminated with -1. */
16864
16865 static int
16866 neon_alignment_bit (int size, int align, int *do_alignment, ...)
16867 {
16868 va_list ap;
16869 int result = FAIL, thissize, thisalign;
16870
16871 if (!inst.operands[1].immisalign)
16872 {
16873 *do_alignment = 0;
16874 return SUCCESS;
16875 }
16876
16877 va_start (ap, do_alignment);
16878
16879 do
16880 {
16881 thissize = va_arg (ap, int);
16882 if (thissize == -1)
16883 break;
16884 thisalign = va_arg (ap, int);
16885
16886 if (size == thissize && align == thisalign)
16887 result = SUCCESS;
16888 }
16889 while (result != SUCCESS);
16890
16891 va_end (ap);
16892
16893 if (result == SUCCESS)
16894 *do_alignment = 1;
16895 else
16896 first_error (_("unsupported alignment for instruction"));
16897
16898 return result;
16899 }
16900
16901 static void
16902 do_neon_ld_st_lane (void)
16903 {
16904 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16905 int align_good, do_alignment = 0;
16906 int logsize = neon_logbits (et.size);
16907 int align = inst.operands[1].imm >> 8;
16908 int n = (inst.instruction >> 8) & 3;
16909 int max_el = 64 / et.size;
16910
16911 if (et.type == NT_invtype)
16912 return;
16913
16914 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
16915 _("bad list length"));
16916 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
16917 _("scalar index out of range"));
16918 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
16919 && et.size == 8,
16920 _("stride of 2 unavailable when element size is 8"));
16921
16922 switch (n)
16923 {
16924 case 0: /* VLD1 / VST1. */
16925 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
16926 32, 32, -1);
16927 if (align_good == FAIL)
16928 return;
16929 if (do_alignment)
16930 {
16931 unsigned alignbits = 0;
16932 switch (et.size)
16933 {
16934 case 16: alignbits = 0x1; break;
16935 case 32: alignbits = 0x3; break;
16936 default: ;
16937 }
16938 inst.instruction |= alignbits << 4;
16939 }
16940 break;
16941
16942 case 1: /* VLD2 / VST2. */
16943 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
16944 16, 32, 32, 64, -1);
16945 if (align_good == FAIL)
16946 return;
16947 if (do_alignment)
16948 inst.instruction |= 1 << 4;
16949 break;
16950
16951 case 2: /* VLD3 / VST3. */
16952 constraint (inst.operands[1].immisalign,
16953 _("can't use alignment with this instruction"));
16954 break;
16955
16956 case 3: /* VLD4 / VST4. */
16957 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
16958 16, 64, 32, 64, 32, 128, -1);
16959 if (align_good == FAIL)
16960 return;
16961 if (do_alignment)
16962 {
16963 unsigned alignbits = 0;
16964 switch (et.size)
16965 {
16966 case 8: alignbits = 0x1; break;
16967 case 16: alignbits = 0x1; break;
16968 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16969 default: ;
16970 }
16971 inst.instruction |= alignbits << 4;
16972 }
16973 break;
16974
16975 default: ;
16976 }
16977
16978 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16979 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16980 inst.instruction |= 1 << (4 + logsize);
16981
16982 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16983 inst.instruction |= logsize << 10;
16984 }
16985
16986 /* Encode single n-element structure to all lanes VLD<n> instructions. */
16987
16988 static void
16989 do_neon_ld_dup (void)
16990 {
16991 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16992 int align_good, do_alignment = 0;
16993
16994 if (et.type == NT_invtype)
16995 return;
16996
16997 switch ((inst.instruction >> 8) & 3)
16998 {
16999 case 0: /* VLD1. */
17000 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
17001 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17002 &do_alignment, 16, 16, 32, 32, -1);
17003 if (align_good == FAIL)
17004 return;
17005 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
17006 {
17007 case 1: break;
17008 case 2: inst.instruction |= 1 << 5; break;
17009 default: first_error (_("bad list length")); return;
17010 }
17011 inst.instruction |= neon_logbits (et.size) << 6;
17012 break;
17013
17014 case 1: /* VLD2. */
17015 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17016 &do_alignment, 8, 16, 16, 32, 32, 64,
17017 -1);
17018 if (align_good == FAIL)
17019 return;
17020 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
17021 _("bad list length"));
17022 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17023 inst.instruction |= 1 << 5;
17024 inst.instruction |= neon_logbits (et.size) << 6;
17025 break;
17026
17027 case 2: /* VLD3. */
17028 constraint (inst.operands[1].immisalign,
17029 _("can't use alignment with this instruction"));
17030 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
17031 _("bad list length"));
17032 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17033 inst.instruction |= 1 << 5;
17034 inst.instruction |= neon_logbits (et.size) << 6;
17035 break;
17036
17037 case 3: /* VLD4. */
17038 {
17039 int align = inst.operands[1].imm >> 8;
17040 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17041 16, 64, 32, 64, 32, 128, -1);
17042 if (align_good == FAIL)
17043 return;
17044 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17045 _("bad list length"));
17046 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17047 inst.instruction |= 1 << 5;
17048 if (et.size == 32 && align == 128)
17049 inst.instruction |= 0x3 << 6;
17050 else
17051 inst.instruction |= neon_logbits (et.size) << 6;
17052 }
17053 break;
17054
17055 default: ;
17056 }
17057
17058 inst.instruction |= do_alignment << 4;
17059 }
17060
17061 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17062 apart from bits [11:4]. */
17063
17064 static void
17065 do_neon_ldx_stx (void)
17066 {
17067 if (inst.operands[1].isreg)
17068 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17069
17070 switch (NEON_LANE (inst.operands[0].imm))
17071 {
17072 case NEON_INTERLEAVE_LANES:
17073 NEON_ENCODE (INTERLV, inst);
17074 do_neon_ld_st_interleave ();
17075 break;
17076
17077 case NEON_ALL_LANES:
17078 NEON_ENCODE (DUP, inst);
17079 if (inst.instruction == N_INV)
17080 {
17081 first_error ("only loads support such operands");
17082 break;
17083 }
17084 do_neon_ld_dup ();
17085 break;
17086
17087 default:
17088 NEON_ENCODE (LANE, inst);
17089 do_neon_ld_st_lane ();
17090 }
17091
17092 /* L bit comes from bit mask. */
17093 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17094 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17095 inst.instruction |= inst.operands[1].reg << 16;
17096
17097 if (inst.operands[1].postind)
17098 {
17099 int postreg = inst.operands[1].imm & 0xf;
17100 constraint (!inst.operands[1].immisreg,
17101 _("post-index must be a register"));
17102 constraint (postreg == 0xd || postreg == 0xf,
17103 _("bad register for post-index"));
17104 inst.instruction |= postreg;
17105 }
17106 else
17107 {
17108 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17109 constraint (inst.reloc.exp.X_op != O_constant
17110 || inst.reloc.exp.X_add_number != 0,
17111 BAD_ADDR_MODE);
17112
17113 if (inst.operands[1].writeback)
17114 {
17115 inst.instruction |= 0xd;
17116 }
17117 else
17118 inst.instruction |= 0xf;
17119 }
17120
17121 if (thumb_mode)
17122 inst.instruction |= 0xf9000000;
17123 else
17124 inst.instruction |= 0xf4000000;
17125 }
17126
17127 /* FP v8. */
17128 static void
17129 do_vfp_nsyn_fpv8 (enum neon_shape rs)
17130 {
17131 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17132 D register operands. */
17133 if (neon_shape_class[rs] == SC_DOUBLE)
17134 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17135 _(BAD_FPU));
17136
17137 NEON_ENCODE (FPV8, inst);
17138
17139 if (rs == NS_FFF || rs == NS_HHH)
17140 {
17141 do_vfp_sp_dyadic ();
17142
17143 /* ARMv8.2 fp16 instruction. */
17144 if (rs == NS_HHH)
17145 do_scalar_fp16_v82_encode ();
17146 }
17147 else
17148 do_vfp_dp_rd_rn_rm ();
17149
17150 if (rs == NS_DDD)
17151 inst.instruction |= 0x100;
17152
17153 inst.instruction |= 0xf0000000;
17154 }
17155
17156 static void
17157 do_vsel (void)
17158 {
17159 set_it_insn_type (OUTSIDE_IT_INSN);
17160
17161 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17162 first_error (_("invalid instruction shape"));
17163 }
17164
17165 static void
17166 do_vmaxnm (void)
17167 {
17168 set_it_insn_type (OUTSIDE_IT_INSN);
17169
17170 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17171 return;
17172
17173 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17174 return;
17175
17176 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
17177 }
17178
17179 static void
17180 do_vrint_1 (enum neon_cvt_mode mode)
17181 {
17182 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
17183 struct neon_type_el et;
17184
17185 if (rs == NS_NULL)
17186 return;
17187
17188 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17189 D register operands. */
17190 if (neon_shape_class[rs] == SC_DOUBLE)
17191 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17192 _(BAD_FPU));
17193
17194 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17195 | N_VFP);
17196 if (et.type != NT_invtype)
17197 {
17198 /* VFP encodings. */
17199 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17200 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17201 set_it_insn_type (OUTSIDE_IT_INSN);
17202
17203 NEON_ENCODE (FPV8, inst);
17204 if (rs == NS_FF || rs == NS_HH)
17205 do_vfp_sp_monadic ();
17206 else
17207 do_vfp_dp_rd_rm ();
17208
17209 switch (mode)
17210 {
17211 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17212 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17213 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17214 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17215 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17216 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17217 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17218 default: abort ();
17219 }
17220
17221 inst.instruction |= (rs == NS_DD) << 8;
17222 do_vfp_cond_or_thumb ();
17223
17224 /* ARMv8.2 fp16 vrint instruction. */
17225 if (rs == NS_HH)
17226 do_scalar_fp16_v82_encode ();
17227 }
17228 else
17229 {
17230 /* Neon encodings (or something broken...). */
17231 inst.error = NULL;
17232 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
17233
17234 if (et.type == NT_invtype)
17235 return;
17236
17237 set_it_insn_type (OUTSIDE_IT_INSN);
17238 NEON_ENCODE (FLOAT, inst);
17239
17240 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17241 return;
17242
17243 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17244 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17245 inst.instruction |= LOW4 (inst.operands[1].reg);
17246 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17247 inst.instruction |= neon_quad (rs) << 6;
17248 /* Mask off the original size bits and reencode them. */
17249 inst.instruction = ((inst.instruction & 0xfff3ffff)
17250 | neon_logbits (et.size) << 18);
17251
17252 switch (mode)
17253 {
17254 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17255 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17256 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17257 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17258 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17259 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17260 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17261 default: abort ();
17262 }
17263
17264 if (thumb_mode)
17265 inst.instruction |= 0xfc000000;
17266 else
17267 inst.instruction |= 0xf0000000;
17268 }
17269 }
17270
17271 static void
17272 do_vrintx (void)
17273 {
17274 do_vrint_1 (neon_cvt_mode_x);
17275 }
17276
17277 static void
17278 do_vrintz (void)
17279 {
17280 do_vrint_1 (neon_cvt_mode_z);
17281 }
17282
17283 static void
17284 do_vrintr (void)
17285 {
17286 do_vrint_1 (neon_cvt_mode_r);
17287 }
17288
17289 static void
17290 do_vrinta (void)
17291 {
17292 do_vrint_1 (neon_cvt_mode_a);
17293 }
17294
17295 static void
17296 do_vrintn (void)
17297 {
17298 do_vrint_1 (neon_cvt_mode_n);
17299 }
17300
17301 static void
17302 do_vrintp (void)
17303 {
17304 do_vrint_1 (neon_cvt_mode_p);
17305 }
17306
17307 static void
17308 do_vrintm (void)
17309 {
17310 do_vrint_1 (neon_cvt_mode_m);
17311 }
17312
17313 static unsigned
17314 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17315 {
17316 unsigned regno = NEON_SCALAR_REG (opnd);
17317 unsigned elno = NEON_SCALAR_INDEX (opnd);
17318
17319 if (elsize == 16 && elno < 2 && regno < 16)
17320 return regno | (elno << 4);
17321 else if (elsize == 32 && elno == 0)
17322 return regno;
17323
17324 first_error (_("scalar out of range"));
17325 return 0;
17326 }
17327
17328 static void
17329 do_vcmla (void)
17330 {
17331 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17332 _(BAD_FPU));
17333 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17334 unsigned rot = inst.reloc.exp.X_add_number;
17335 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17336 _("immediate out of range"));
17337 rot /= 90;
17338 if (inst.operands[2].isscalar)
17339 {
17340 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17341 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17342 N_KEY | N_F16 | N_F32).size;
17343 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17344 inst.is_neon = 1;
17345 inst.instruction = 0xfe000800;
17346 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17347 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17348 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17349 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17350 inst.instruction |= LOW4 (m);
17351 inst.instruction |= HI1 (m) << 5;
17352 inst.instruction |= neon_quad (rs) << 6;
17353 inst.instruction |= rot << 20;
17354 inst.instruction |= (size == 32) << 23;
17355 }
17356 else
17357 {
17358 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17359 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17360 N_KEY | N_F16 | N_F32).size;
17361 neon_three_same (neon_quad (rs), 0, -1);
17362 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17363 inst.instruction |= 0xfc200800;
17364 inst.instruction |= rot << 23;
17365 inst.instruction |= (size == 32) << 20;
17366 }
17367 }
17368
17369 static void
17370 do_vcadd (void)
17371 {
17372 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17373 _(BAD_FPU));
17374 constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex"));
17375 unsigned rot = inst.reloc.exp.X_add_number;
17376 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17377 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17378 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17379 N_KEY | N_F16 | N_F32).size;
17380 neon_three_same (neon_quad (rs), 0, -1);
17381 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17382 inst.instruction |= 0xfc800800;
17383 inst.instruction |= (rot == 270) << 24;
17384 inst.instruction |= (size == 32) << 20;
17385 }
17386
17387 /* Dot Product instructions encoding support. */
17388
17389 static void
17390 do_neon_dotproduct (int unsigned_p)
17391 {
17392 enum neon_shape rs;
17393 unsigned scalar_oprd2 = 0;
17394 int high8;
17395
17396 if (inst.cond != COND_ALWAYS)
17397 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17398 "is UNPREDICTABLE"));
17399
17400 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17401 _(BAD_FPU));
17402
17403 /* Dot Product instructions are in three-same D/Q register format or the third
17404 operand can be a scalar index register. */
17405 if (inst.operands[2].isscalar)
17406 {
17407 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17408 high8 = 0xfe000000;
17409 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17410 }
17411 else
17412 {
17413 high8 = 0xfc000000;
17414 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17415 }
17416
17417 if (unsigned_p)
17418 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17419 else
17420 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17421
17422 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17423 Product instruction, so we pass 0 as the "ubit" parameter. And the
17424 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17425 neon_three_same (neon_quad (rs), 0, 32);
17426
17427 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17428 different NEON three-same encoding. */
17429 inst.instruction &= 0x00ffffff;
17430 inst.instruction |= high8;
17431 /* Encode 'U' bit which indicates signedness. */
17432 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17433 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17434 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17435 the instruction encoding. */
17436 if (inst.operands[2].isscalar)
17437 {
17438 inst.instruction &= 0xffffffd0;
17439 inst.instruction |= LOW4 (scalar_oprd2);
17440 inst.instruction |= HI1 (scalar_oprd2) << 5;
17441 }
17442 }
17443
17444 /* Dot Product instructions for signed integer. */
17445
17446 static void
17447 do_neon_dotproduct_s (void)
17448 {
17449 return do_neon_dotproduct (0);
17450 }
17451
17452 /* Dot Product instructions for unsigned integer. */
17453
17454 static void
17455 do_neon_dotproduct_u (void)
17456 {
17457 return do_neon_dotproduct (1);
17458 }
17459
17460 /* Crypto v1 instructions. */
17461 static void
17462 do_crypto_2op_1 (unsigned elttype, int op)
17463 {
17464 set_it_insn_type (OUTSIDE_IT_INSN);
17465
17466 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17467 == NT_invtype)
17468 return;
17469
17470 inst.error = NULL;
17471
17472 NEON_ENCODE (INTEGER, inst);
17473 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17474 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17475 inst.instruction |= LOW4 (inst.operands[1].reg);
17476 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17477 if (op != -1)
17478 inst.instruction |= op << 6;
17479
17480 if (thumb_mode)
17481 inst.instruction |= 0xfc000000;
17482 else
17483 inst.instruction |= 0xf0000000;
17484 }
17485
17486 static void
17487 do_crypto_3op_1 (int u, int op)
17488 {
17489 set_it_insn_type (OUTSIDE_IT_INSN);
17490
17491 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17492 N_32 | N_UNT | N_KEY).type == NT_invtype)
17493 return;
17494
17495 inst.error = NULL;
17496
17497 NEON_ENCODE (INTEGER, inst);
17498 neon_three_same (1, u, 8 << op);
17499 }
17500
17501 static void
17502 do_aese (void)
17503 {
17504 do_crypto_2op_1 (N_8, 0);
17505 }
17506
17507 static void
17508 do_aesd (void)
17509 {
17510 do_crypto_2op_1 (N_8, 1);
17511 }
17512
17513 static void
17514 do_aesmc (void)
17515 {
17516 do_crypto_2op_1 (N_8, 2);
17517 }
17518
17519 static void
17520 do_aesimc (void)
17521 {
17522 do_crypto_2op_1 (N_8, 3);
17523 }
17524
17525 static void
17526 do_sha1c (void)
17527 {
17528 do_crypto_3op_1 (0, 0);
17529 }
17530
17531 static void
17532 do_sha1p (void)
17533 {
17534 do_crypto_3op_1 (0, 1);
17535 }
17536
17537 static void
17538 do_sha1m (void)
17539 {
17540 do_crypto_3op_1 (0, 2);
17541 }
17542
17543 static void
17544 do_sha1su0 (void)
17545 {
17546 do_crypto_3op_1 (0, 3);
17547 }
17548
17549 static void
17550 do_sha256h (void)
17551 {
17552 do_crypto_3op_1 (1, 0);
17553 }
17554
17555 static void
17556 do_sha256h2 (void)
17557 {
17558 do_crypto_3op_1 (1, 1);
17559 }
17560
17561 static void
17562 do_sha256su1 (void)
17563 {
17564 do_crypto_3op_1 (1, 2);
17565 }
17566
17567 static void
17568 do_sha1h (void)
17569 {
17570 do_crypto_2op_1 (N_32, -1);
17571 }
17572
17573 static void
17574 do_sha1su1 (void)
17575 {
17576 do_crypto_2op_1 (N_32, 0);
17577 }
17578
17579 static void
17580 do_sha256su0 (void)
17581 {
17582 do_crypto_2op_1 (N_32, 1);
17583 }
17584
17585 static void
17586 do_crc32_1 (unsigned int poly, unsigned int sz)
17587 {
17588 unsigned int Rd = inst.operands[0].reg;
17589 unsigned int Rn = inst.operands[1].reg;
17590 unsigned int Rm = inst.operands[2].reg;
17591
17592 set_it_insn_type (OUTSIDE_IT_INSN);
17593 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17594 inst.instruction |= LOW4 (Rn) << 16;
17595 inst.instruction |= LOW4 (Rm);
17596 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17597 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17598
17599 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17600 as_warn (UNPRED_REG ("r15"));
17601 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
17602 as_warn (UNPRED_REG ("r13"));
17603 }
17604
17605 static void
17606 do_crc32b (void)
17607 {
17608 do_crc32_1 (0, 0);
17609 }
17610
17611 static void
17612 do_crc32h (void)
17613 {
17614 do_crc32_1 (0, 1);
17615 }
17616
17617 static void
17618 do_crc32w (void)
17619 {
17620 do_crc32_1 (0, 2);
17621 }
17622
17623 static void
17624 do_crc32cb (void)
17625 {
17626 do_crc32_1 (1, 0);
17627 }
17628
17629 static void
17630 do_crc32ch (void)
17631 {
17632 do_crc32_1 (1, 1);
17633 }
17634
17635 static void
17636 do_crc32cw (void)
17637 {
17638 do_crc32_1 (1, 2);
17639 }
17640
17641 static void
17642 do_vjcvt (void)
17643 {
17644 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17645 _(BAD_FPU));
17646 neon_check_type (2, NS_FD, N_S32, N_F64);
17647 do_vfp_sp_dp_cvt ();
17648 do_vfp_cond_or_thumb ();
17649 }
17650
17651 \f
17652 /* Overall per-instruction processing. */
17653
17654 /* We need to be able to fix up arbitrary expressions in some statements.
17655 This is so that we can handle symbols that are an arbitrary distance from
17656 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17657 which returns part of an address in a form which will be valid for
17658 a data instruction. We do this by pushing the expression into a symbol
17659 in the expr_section, and creating a fix for that. */
17660
17661 static void
17662 fix_new_arm (fragS * frag,
17663 int where,
17664 short int size,
17665 expressionS * exp,
17666 int pc_rel,
17667 int reloc)
17668 {
17669 fixS * new_fix;
17670
17671 switch (exp->X_op)
17672 {
17673 case O_constant:
17674 if (pc_rel)
17675 {
17676 /* Create an absolute valued symbol, so we have something to
17677 refer to in the object file. Unfortunately for us, gas's
17678 generic expression parsing will already have folded out
17679 any use of .set foo/.type foo %function that may have
17680 been used to set type information of the target location,
17681 that's being specified symbolically. We have to presume
17682 the user knows what they are doing. */
17683 char name[16 + 8];
17684 symbolS *symbol;
17685
17686 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17687
17688 symbol = symbol_find_or_make (name);
17689 S_SET_SEGMENT (symbol, absolute_section);
17690 symbol_set_frag (symbol, &zero_address_frag);
17691 S_SET_VALUE (symbol, exp->X_add_number);
17692 exp->X_op = O_symbol;
17693 exp->X_add_symbol = symbol;
17694 exp->X_add_number = 0;
17695 }
17696 /* FALLTHROUGH */
17697 case O_symbol:
17698 case O_add:
17699 case O_subtract:
17700 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
17701 (enum bfd_reloc_code_real) reloc);
17702 break;
17703
17704 default:
17705 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
17706 pc_rel, (enum bfd_reloc_code_real) reloc);
17707 break;
17708 }
17709
17710 /* Mark whether the fix is to a THUMB instruction, or an ARM
17711 instruction. */
17712 new_fix->tc_fix_data = thumb_mode;
17713 }
17714
17715 /* Create a frg for an instruction requiring relaxation. */
17716 static void
17717 output_relax_insn (void)
17718 {
17719 char * to;
17720 symbolS *sym;
17721 int offset;
17722
17723 /* The size of the instruction is unknown, so tie the debug info to the
17724 start of the instruction. */
17725 dwarf2_emit_insn (0);
17726
17727 switch (inst.reloc.exp.X_op)
17728 {
17729 case O_symbol:
17730 sym = inst.reloc.exp.X_add_symbol;
17731 offset = inst.reloc.exp.X_add_number;
17732 break;
17733 case O_constant:
17734 sym = NULL;
17735 offset = inst.reloc.exp.X_add_number;
17736 break;
17737 default:
17738 sym = make_expr_symbol (&inst.reloc.exp);
17739 offset = 0;
17740 break;
17741 }
17742 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17743 inst.relax, sym, offset, NULL/*offset, opcode*/);
17744 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
17745 }
17746
17747 /* Write a 32-bit thumb instruction to buf. */
17748 static void
17749 put_thumb32_insn (char * buf, unsigned long insn)
17750 {
17751 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17752 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17753 }
17754
17755 static void
17756 output_inst (const char * str)
17757 {
17758 char * to = NULL;
17759
17760 if (inst.error)
17761 {
17762 as_bad ("%s -- `%s'", inst.error, str);
17763 return;
17764 }
17765 if (inst.relax)
17766 {
17767 output_relax_insn ();
17768 return;
17769 }
17770 if (inst.size == 0)
17771 return;
17772
17773 to = frag_more (inst.size);
17774 /* PR 9814: Record the thumb mode into the current frag so that we know
17775 what type of NOP padding to use, if necessary. We override any previous
17776 setting so that if the mode has changed then the NOPS that we use will
17777 match the encoding of the last instruction in the frag. */
17778 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
17779
17780 if (thumb_mode && (inst.size > THUMB_SIZE))
17781 {
17782 gas_assert (inst.size == (2 * THUMB_SIZE));
17783 put_thumb32_insn (to, inst.instruction);
17784 }
17785 else if (inst.size > INSN_SIZE)
17786 {
17787 gas_assert (inst.size == (2 * INSN_SIZE));
17788 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17789 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
17790 }
17791 else
17792 md_number_to_chars (to, inst.instruction, inst.size);
17793
17794 if (inst.reloc.type != BFD_RELOC_UNUSED)
17795 fix_new_arm (frag_now, to - frag_now->fr_literal,
17796 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17797 inst.reloc.type);
17798
17799 dwarf2_emit_insn (inst.size);
17800 }
17801
17802 static char *
17803 output_it_inst (int cond, int mask, char * to)
17804 {
17805 unsigned long instruction = 0xbf00;
17806
17807 mask &= 0xf;
17808 instruction |= mask;
17809 instruction |= cond << 4;
17810
17811 if (to == NULL)
17812 {
17813 to = frag_more (2);
17814 #ifdef OBJ_ELF
17815 dwarf2_emit_insn (2);
17816 #endif
17817 }
17818
17819 md_number_to_chars (to, instruction, 2);
17820
17821 return to;
17822 }
17823
17824 /* Tag values used in struct asm_opcode's tag field. */
17825 enum opcode_tag
17826 {
17827 OT_unconditional, /* Instruction cannot be conditionalized.
17828 The ARM condition field is still 0xE. */
17829 OT_unconditionalF, /* Instruction cannot be conditionalized
17830 and carries 0xF in its ARM condition field. */
17831 OT_csuffix, /* Instruction takes a conditional suffix. */
17832 OT_csuffixF, /* Some forms of the instruction take a conditional
17833 suffix, others place 0xF where the condition field
17834 would be. */
17835 OT_cinfix3, /* Instruction takes a conditional infix,
17836 beginning at character index 3. (In
17837 unified mode, it becomes a suffix.) */
17838 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
17839 tsts, cmps, cmns, and teqs. */
17840 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
17841 character index 3, even in unified mode. Used for
17842 legacy instructions where suffix and infix forms
17843 may be ambiguous. */
17844 OT_csuf_or_in3, /* Instruction takes either a conditional
17845 suffix or an infix at character index 3. */
17846 OT_odd_infix_unc, /* This is the unconditional variant of an
17847 instruction that takes a conditional infix
17848 at an unusual position. In unified mode,
17849 this variant will accept a suffix. */
17850 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
17851 are the conditional variants of instructions that
17852 take conditional infixes in unusual positions.
17853 The infix appears at character index
17854 (tag - OT_odd_infix_0). These are not accepted
17855 in unified mode. */
17856 };
17857
17858 /* Subroutine of md_assemble, responsible for looking up the primary
17859 opcode from the mnemonic the user wrote. STR points to the
17860 beginning of the mnemonic.
17861
17862 This is not simply a hash table lookup, because of conditional
17863 variants. Most instructions have conditional variants, which are
17864 expressed with a _conditional affix_ to the mnemonic. If we were
17865 to encode each conditional variant as a literal string in the opcode
17866 table, it would have approximately 20,000 entries.
17867
17868 Most mnemonics take this affix as a suffix, and in unified syntax,
17869 'most' is upgraded to 'all'. However, in the divided syntax, some
17870 instructions take the affix as an infix, notably the s-variants of
17871 the arithmetic instructions. Of those instructions, all but six
17872 have the infix appear after the third character of the mnemonic.
17873
17874 Accordingly, the algorithm for looking up primary opcodes given
17875 an identifier is:
17876
17877 1. Look up the identifier in the opcode table.
17878 If we find a match, go to step U.
17879
17880 2. Look up the last two characters of the identifier in the
17881 conditions table. If we find a match, look up the first N-2
17882 characters of the identifier in the opcode table. If we
17883 find a match, go to step CE.
17884
17885 3. Look up the fourth and fifth characters of the identifier in
17886 the conditions table. If we find a match, extract those
17887 characters from the identifier, and look up the remaining
17888 characters in the opcode table. If we find a match, go
17889 to step CM.
17890
17891 4. Fail.
17892
17893 U. Examine the tag field of the opcode structure, in case this is
17894 one of the six instructions with its conditional infix in an
17895 unusual place. If it is, the tag tells us where to find the
17896 infix; look it up in the conditions table and set inst.cond
17897 accordingly. Otherwise, this is an unconditional instruction.
17898 Again set inst.cond accordingly. Return the opcode structure.
17899
17900 CE. Examine the tag field to make sure this is an instruction that
17901 should receive a conditional suffix. If it is not, fail.
17902 Otherwise, set inst.cond from the suffix we already looked up,
17903 and return the opcode structure.
17904
17905 CM. Examine the tag field to make sure this is an instruction that
17906 should receive a conditional infix after the third character.
17907 If it is not, fail. Otherwise, undo the edits to the current
17908 line of input and proceed as for case CE. */
17909
17910 static const struct asm_opcode *
17911 opcode_lookup (char **str)
17912 {
17913 char *end, *base;
17914 char *affix;
17915 const struct asm_opcode *opcode;
17916 const struct asm_cond *cond;
17917 char save[2];
17918
17919 /* Scan up to the end of the mnemonic, which must end in white space,
17920 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
17921 for (base = end = *str; *end != '\0'; end++)
17922 if (*end == ' ' || *end == '.')
17923 break;
17924
17925 if (end == base)
17926 return NULL;
17927
17928 /* Handle a possible width suffix and/or Neon type suffix. */
17929 if (end[0] == '.')
17930 {
17931 int offset = 2;
17932
17933 /* The .w and .n suffixes are only valid if the unified syntax is in
17934 use. */
17935 if (unified_syntax && end[1] == 'w')
17936 inst.size_req = 4;
17937 else if (unified_syntax && end[1] == 'n')
17938 inst.size_req = 2;
17939 else
17940 offset = 0;
17941
17942 inst.vectype.elems = 0;
17943
17944 *str = end + offset;
17945
17946 if (end[offset] == '.')
17947 {
17948 /* See if we have a Neon type suffix (possible in either unified or
17949 non-unified ARM syntax mode). */
17950 if (parse_neon_type (&inst.vectype, str) == FAIL)
17951 return NULL;
17952 }
17953 else if (end[offset] != '\0' && end[offset] != ' ')
17954 return NULL;
17955 }
17956 else
17957 *str = end;
17958
17959 /* Look for unaffixed or special-case affixed mnemonic. */
17960 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17961 end - base);
17962 if (opcode)
17963 {
17964 /* step U */
17965 if (opcode->tag < OT_odd_infix_0)
17966 {
17967 inst.cond = COND_ALWAYS;
17968 return opcode;
17969 }
17970
17971 if (warn_on_deprecated && unified_syntax)
17972 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17973 affix = base + (opcode->tag - OT_odd_infix_0);
17974 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17975 gas_assert (cond);
17976
17977 inst.cond = cond->value;
17978 return opcode;
17979 }
17980
17981 /* Cannot have a conditional suffix on a mnemonic of less than two
17982 characters. */
17983 if (end - base < 3)
17984 return NULL;
17985
17986 /* Look for suffixed mnemonic. */
17987 affix = end - 2;
17988 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17989 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17990 affix - base);
17991 if (opcode && cond)
17992 {
17993 /* step CE */
17994 switch (opcode->tag)
17995 {
17996 case OT_cinfix3_legacy:
17997 /* Ignore conditional suffixes matched on infix only mnemonics. */
17998 break;
17999
18000 case OT_cinfix3:
18001 case OT_cinfix3_deprecated:
18002 case OT_odd_infix_unc:
18003 if (!unified_syntax)
18004 return 0;
18005 /* Fall through. */
18006
18007 case OT_csuffix:
18008 case OT_csuffixF:
18009 case OT_csuf_or_in3:
18010 inst.cond = cond->value;
18011 return opcode;
18012
18013 case OT_unconditional:
18014 case OT_unconditionalF:
18015 if (thumb_mode)
18016 inst.cond = cond->value;
18017 else
18018 {
18019 /* Delayed diagnostic. */
18020 inst.error = BAD_COND;
18021 inst.cond = COND_ALWAYS;
18022 }
18023 return opcode;
18024
18025 default:
18026 return NULL;
18027 }
18028 }
18029
18030 /* Cannot have a usual-position infix on a mnemonic of less than
18031 six characters (five would be a suffix). */
18032 if (end - base < 6)
18033 return NULL;
18034
18035 /* Look for infixed mnemonic in the usual position. */
18036 affix = base + 3;
18037 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18038 if (!cond)
18039 return NULL;
18040
18041 memcpy (save, affix, 2);
18042 memmove (affix, affix + 2, (end - affix) - 2);
18043 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18044 (end - base) - 2);
18045 memmove (affix + 2, affix, (end - affix) - 2);
18046 memcpy (affix, save, 2);
18047
18048 if (opcode
18049 && (opcode->tag == OT_cinfix3
18050 || opcode->tag == OT_cinfix3_deprecated
18051 || opcode->tag == OT_csuf_or_in3
18052 || opcode->tag == OT_cinfix3_legacy))
18053 {
18054 /* Step CM. */
18055 if (warn_on_deprecated && unified_syntax
18056 && (opcode->tag == OT_cinfix3
18057 || opcode->tag == OT_cinfix3_deprecated))
18058 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18059
18060 inst.cond = cond->value;
18061 return opcode;
18062 }
18063
18064 return NULL;
18065 }
18066
18067 /* This function generates an initial IT instruction, leaving its block
18068 virtually open for the new instructions. Eventually,
18069 the mask will be updated by now_it_add_mask () each time
18070 a new instruction needs to be included in the IT block.
18071 Finally, the block is closed with close_automatic_it_block ().
18072 The block closure can be requested either from md_assemble (),
18073 a tencode (), or due to a label hook. */
18074
18075 static void
18076 new_automatic_it_block (int cond)
18077 {
18078 now_it.state = AUTOMATIC_IT_BLOCK;
18079 now_it.mask = 0x18;
18080 now_it.cc = cond;
18081 now_it.block_length = 1;
18082 mapping_state (MAP_THUMB);
18083 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
18084 now_it.warn_deprecated = FALSE;
18085 now_it.insn_cond = TRUE;
18086 }
18087
18088 /* Close an automatic IT block.
18089 See comments in new_automatic_it_block (). */
18090
18091 static void
18092 close_automatic_it_block (void)
18093 {
18094 now_it.mask = 0x10;
18095 now_it.block_length = 0;
18096 }
18097
18098 /* Update the mask of the current automatically-generated IT
18099 instruction. See comments in new_automatic_it_block (). */
18100
18101 static void
18102 now_it_add_mask (int cond)
18103 {
18104 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18105 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
18106 | ((bitvalue) << (nbit)))
18107 const int resulting_bit = (cond & 1);
18108
18109 now_it.mask &= 0xf;
18110 now_it.mask = SET_BIT_VALUE (now_it.mask,
18111 resulting_bit,
18112 (5 - now_it.block_length));
18113 now_it.mask = SET_BIT_VALUE (now_it.mask,
18114 1,
18115 ((5 - now_it.block_length) - 1) );
18116 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18117
18118 #undef CLEAR_BIT
18119 #undef SET_BIT_VALUE
18120 }
18121
18122 /* The IT blocks handling machinery is accessed through the these functions:
18123 it_fsm_pre_encode () from md_assemble ()
18124 set_it_insn_type () optional, from the tencode functions
18125 set_it_insn_type_last () ditto
18126 in_it_block () ditto
18127 it_fsm_post_encode () from md_assemble ()
18128 force_automatic_it_block_close () from label handling functions
18129
18130 Rationale:
18131 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
18132 initializing the IT insn type with a generic initial value depending
18133 on the inst.condition.
18134 2) During the tencode function, two things may happen:
18135 a) The tencode function overrides the IT insn type by
18136 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18137 b) The tencode function queries the IT block state by
18138 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18139
18140 Both set_it_insn_type and in_it_block run the internal FSM state
18141 handling function (handle_it_state), because: a) setting the IT insn
18142 type may incur in an invalid state (exiting the function),
18143 and b) querying the state requires the FSM to be updated.
18144 Specifically we want to avoid creating an IT block for conditional
18145 branches, so it_fsm_pre_encode is actually a guess and we can't
18146 determine whether an IT block is required until the tencode () routine
18147 has decided what type of instruction this actually it.
18148 Because of this, if set_it_insn_type and in_it_block have to be used,
18149 set_it_insn_type has to be called first.
18150
18151 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18152 determines the insn IT type depending on the inst.cond code.
18153 When a tencode () routine encodes an instruction that can be
18154 either outside an IT block, or, in the case of being inside, has to be
18155 the last one, set_it_insn_type_last () will determine the proper
18156 IT instruction type based on the inst.cond code. Otherwise,
18157 set_it_insn_type can be called for overriding that logic or
18158 for covering other cases.
18159
18160 Calling handle_it_state () may not transition the IT block state to
18161 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
18162 still queried. Instead, if the FSM determines that the state should
18163 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18164 after the tencode () function: that's what it_fsm_post_encode () does.
18165
18166 Since in_it_block () calls the state handling function to get an
18167 updated state, an error may occur (due to invalid insns combination).
18168 In that case, inst.error is set.
18169 Therefore, inst.error has to be checked after the execution of
18170 the tencode () routine.
18171
18172 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
18173 any pending state change (if any) that didn't take place in
18174 handle_it_state () as explained above. */
18175
18176 static void
18177 it_fsm_pre_encode (void)
18178 {
18179 if (inst.cond != COND_ALWAYS)
18180 inst.it_insn_type = INSIDE_IT_INSN;
18181 else
18182 inst.it_insn_type = OUTSIDE_IT_INSN;
18183
18184 now_it.state_handled = 0;
18185 }
18186
18187 /* IT state FSM handling function. */
18188
18189 static int
18190 handle_it_state (void)
18191 {
18192 now_it.state_handled = 1;
18193 now_it.insn_cond = FALSE;
18194
18195 switch (now_it.state)
18196 {
18197 case OUTSIDE_IT_BLOCK:
18198 switch (inst.it_insn_type)
18199 {
18200 case OUTSIDE_IT_INSN:
18201 break;
18202
18203 case INSIDE_IT_INSN:
18204 case INSIDE_IT_LAST_INSN:
18205 if (thumb_mode == 0)
18206 {
18207 if (unified_syntax
18208 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18209 as_tsktsk (_("Warning: conditional outside an IT block"\
18210 " for Thumb."));
18211 }
18212 else
18213 {
18214 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
18215 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
18216 {
18217 /* Automatically generate the IT instruction. */
18218 new_automatic_it_block (inst.cond);
18219 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18220 close_automatic_it_block ();
18221 }
18222 else
18223 {
18224 inst.error = BAD_OUT_IT;
18225 return FAIL;
18226 }
18227 }
18228 break;
18229
18230 case IF_INSIDE_IT_LAST_INSN:
18231 case NEUTRAL_IT_INSN:
18232 break;
18233
18234 case IT_INSN:
18235 now_it.state = MANUAL_IT_BLOCK;
18236 now_it.block_length = 0;
18237 break;
18238 }
18239 break;
18240
18241 case AUTOMATIC_IT_BLOCK:
18242 /* Three things may happen now:
18243 a) We should increment current it block size;
18244 b) We should close current it block (closing insn or 4 insns);
18245 c) We should close current it block and start a new one (due
18246 to incompatible conditions or
18247 4 insns-length block reached). */
18248
18249 switch (inst.it_insn_type)
18250 {
18251 case OUTSIDE_IT_INSN:
18252 /* The closure of the block shall happen immediately,
18253 so any in_it_block () call reports the block as closed. */
18254 force_automatic_it_block_close ();
18255 break;
18256
18257 case INSIDE_IT_INSN:
18258 case INSIDE_IT_LAST_INSN:
18259 case IF_INSIDE_IT_LAST_INSN:
18260 now_it.block_length++;
18261
18262 if (now_it.block_length > 4
18263 || !now_it_compatible (inst.cond))
18264 {
18265 force_automatic_it_block_close ();
18266 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18267 new_automatic_it_block (inst.cond);
18268 }
18269 else
18270 {
18271 now_it.insn_cond = TRUE;
18272 now_it_add_mask (inst.cond);
18273 }
18274
18275 if (now_it.state == AUTOMATIC_IT_BLOCK
18276 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18277 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18278 close_automatic_it_block ();
18279 break;
18280
18281 case NEUTRAL_IT_INSN:
18282 now_it.block_length++;
18283 now_it.insn_cond = TRUE;
18284
18285 if (now_it.block_length > 4)
18286 force_automatic_it_block_close ();
18287 else
18288 now_it_add_mask (now_it.cc & 1);
18289 break;
18290
18291 case IT_INSN:
18292 close_automatic_it_block ();
18293 now_it.state = MANUAL_IT_BLOCK;
18294 break;
18295 }
18296 break;
18297
18298 case MANUAL_IT_BLOCK:
18299 {
18300 /* Check conditional suffixes. */
18301 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18302 int is_last;
18303 now_it.mask <<= 1;
18304 now_it.mask &= 0x1f;
18305 is_last = (now_it.mask == 0x10);
18306 now_it.insn_cond = TRUE;
18307
18308 switch (inst.it_insn_type)
18309 {
18310 case OUTSIDE_IT_INSN:
18311 inst.error = BAD_NOT_IT;
18312 return FAIL;
18313
18314 case INSIDE_IT_INSN:
18315 if (cond != inst.cond)
18316 {
18317 inst.error = BAD_IT_COND;
18318 return FAIL;
18319 }
18320 break;
18321
18322 case INSIDE_IT_LAST_INSN:
18323 case IF_INSIDE_IT_LAST_INSN:
18324 if (cond != inst.cond)
18325 {
18326 inst.error = BAD_IT_COND;
18327 return FAIL;
18328 }
18329 if (!is_last)
18330 {
18331 inst.error = BAD_BRANCH;
18332 return FAIL;
18333 }
18334 break;
18335
18336 case NEUTRAL_IT_INSN:
18337 /* The BKPT instruction is unconditional even in an IT block. */
18338 break;
18339
18340 case IT_INSN:
18341 inst.error = BAD_IT_IT;
18342 return FAIL;
18343 }
18344 }
18345 break;
18346 }
18347
18348 return SUCCESS;
18349 }
18350
18351 struct depr_insn_mask
18352 {
18353 unsigned long pattern;
18354 unsigned long mask;
18355 const char* description;
18356 };
18357
18358 /* List of 16-bit instruction patterns deprecated in an IT block in
18359 ARMv8. */
18360 static const struct depr_insn_mask depr_it_insns[] = {
18361 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18362 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18363 { 0xa000, 0xb800, N_("ADR") },
18364 { 0x4800, 0xf800, N_("Literal loads") },
18365 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18366 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
18367 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18368 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18369 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
18370 { 0, 0, NULL }
18371 };
18372
18373 static void
18374 it_fsm_post_encode (void)
18375 {
18376 int is_last;
18377
18378 if (!now_it.state_handled)
18379 handle_it_state ();
18380
18381 if (now_it.insn_cond
18382 && !now_it.warn_deprecated
18383 && warn_on_deprecated
18384 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
18385 {
18386 if (inst.instruction >= 0x10000)
18387 {
18388 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
18389 "deprecated in ARMv8"));
18390 now_it.warn_deprecated = TRUE;
18391 }
18392 else
18393 {
18394 const struct depr_insn_mask *p = depr_it_insns;
18395
18396 while (p->mask != 0)
18397 {
18398 if ((inst.instruction & p->mask) == p->pattern)
18399 {
18400 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
18401 "of the following class are deprecated in ARMv8: "
18402 "%s"), p->description);
18403 now_it.warn_deprecated = TRUE;
18404 break;
18405 }
18406
18407 ++p;
18408 }
18409 }
18410
18411 if (now_it.block_length > 1)
18412 {
18413 as_tsktsk (_("IT blocks containing more than one conditional "
18414 "instruction are deprecated in ARMv8"));
18415 now_it.warn_deprecated = TRUE;
18416 }
18417 }
18418
18419 is_last = (now_it.mask == 0x10);
18420 if (is_last)
18421 {
18422 now_it.state = OUTSIDE_IT_BLOCK;
18423 now_it.mask = 0;
18424 }
18425 }
18426
18427 static void
18428 force_automatic_it_block_close (void)
18429 {
18430 if (now_it.state == AUTOMATIC_IT_BLOCK)
18431 {
18432 close_automatic_it_block ();
18433 now_it.state = OUTSIDE_IT_BLOCK;
18434 now_it.mask = 0;
18435 }
18436 }
18437
18438 static int
18439 in_it_block (void)
18440 {
18441 if (!now_it.state_handled)
18442 handle_it_state ();
18443
18444 return now_it.state != OUTSIDE_IT_BLOCK;
18445 }
18446
18447 /* Whether OPCODE only has T32 encoding. Since this function is only used by
18448 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18449 here, hence the "known" in the function name. */
18450
18451 static bfd_boolean
18452 known_t32_only_insn (const struct asm_opcode *opcode)
18453 {
18454 /* Original Thumb-1 wide instruction. */
18455 if (opcode->tencode == do_t_blx
18456 || opcode->tencode == do_t_branch23
18457 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18458 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18459 return TRUE;
18460
18461 /* Wide-only instruction added to ARMv8-M Baseline. */
18462 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
18463 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18464 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18465 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18466 return TRUE;
18467
18468 return FALSE;
18469 }
18470
18471 /* Whether wide instruction variant can be used if available for a valid OPCODE
18472 in ARCH. */
18473
18474 static bfd_boolean
18475 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18476 {
18477 if (known_t32_only_insn (opcode))
18478 return TRUE;
18479
18480 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18481 of variant T3 of B.W is checked in do_t_branch. */
18482 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18483 && opcode->tencode == do_t_branch)
18484 return TRUE;
18485
18486 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18487 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18488 && opcode->tencode == do_t_mov_cmp
18489 /* Make sure CMP instruction is not affected. */
18490 && opcode->aencode == do_mov)
18491 return TRUE;
18492
18493 /* Wide instruction variants of all instructions with narrow *and* wide
18494 variants become available with ARMv6t2. Other opcodes are either
18495 narrow-only or wide-only and are thus available if OPCODE is valid. */
18496 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18497 return TRUE;
18498
18499 /* OPCODE with narrow only instruction variant or wide variant not
18500 available. */
18501 return FALSE;
18502 }
18503
18504 void
18505 md_assemble (char *str)
18506 {
18507 char *p = str;
18508 const struct asm_opcode * opcode;
18509
18510 /* Align the previous label if needed. */
18511 if (last_label_seen != NULL)
18512 {
18513 symbol_set_frag (last_label_seen, frag_now);
18514 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18515 S_SET_SEGMENT (last_label_seen, now_seg);
18516 }
18517
18518 memset (&inst, '\0', sizeof (inst));
18519 inst.reloc.type = BFD_RELOC_UNUSED;
18520
18521 opcode = opcode_lookup (&p);
18522 if (!opcode)
18523 {
18524 /* It wasn't an instruction, but it might be a register alias of
18525 the form alias .req reg, or a Neon .dn/.qn directive. */
18526 if (! create_register_alias (str, p)
18527 && ! create_neon_reg_alias (str, p))
18528 as_bad (_("bad instruction `%s'"), str);
18529
18530 return;
18531 }
18532
18533 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
18534 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
18535
18536 /* The value which unconditional instructions should have in place of the
18537 condition field. */
18538 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18539
18540 if (thumb_mode)
18541 {
18542 arm_feature_set variant;
18543
18544 variant = cpu_variant;
18545 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
18546 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18547 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
18548 /* Check that this instruction is supported for this CPU. */
18549 if (!opcode->tvariant
18550 || (thumb_mode == 1
18551 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
18552 {
18553 if (opcode->tencode == do_t_swi)
18554 as_bad (_("SVC is not permitted on this architecture"));
18555 else
18556 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
18557 return;
18558 }
18559 if (inst.cond != COND_ALWAYS && !unified_syntax
18560 && opcode->tencode != do_t_branch)
18561 {
18562 as_bad (_("Thumb does not support conditional execution"));
18563 return;
18564 }
18565
18566 /* Two things are addressed here:
18567 1) Implicit require narrow instructions on Thumb-1.
18568 This avoids relaxation accidentally introducing Thumb-2
18569 instructions.
18570 2) Reject wide instructions in non Thumb-2 cores.
18571
18572 Only instructions with narrow and wide variants need to be handled
18573 but selecting all non wide-only instructions is easier. */
18574 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
18575 && !t32_insn_ok (variant, opcode))
18576 {
18577 if (inst.size_req == 0)
18578 inst.size_req = 2;
18579 else if (inst.size_req == 4)
18580 {
18581 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18582 as_bad (_("selected processor does not support 32bit wide "
18583 "variant of instruction `%s'"), str);
18584 else
18585 as_bad (_("selected processor does not support `%s' in "
18586 "Thumb-2 mode"), str);
18587 return;
18588 }
18589 }
18590
18591 inst.instruction = opcode->tvalue;
18592
18593 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
18594 {
18595 /* Prepare the it_insn_type for those encodings that don't set
18596 it. */
18597 it_fsm_pre_encode ();
18598
18599 opcode->tencode ();
18600
18601 it_fsm_post_encode ();
18602 }
18603
18604 if (!(inst.error || inst.relax))
18605 {
18606 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
18607 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18608 if (inst.size_req && inst.size_req != inst.size)
18609 {
18610 as_bad (_("cannot honor width suffix -- `%s'"), str);
18611 return;
18612 }
18613 }
18614
18615 /* Something has gone badly wrong if we try to relax a fixed size
18616 instruction. */
18617 gas_assert (inst.size_req == 0 || !inst.relax);
18618
18619 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18620 *opcode->tvariant);
18621 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
18622 set those bits when Thumb-2 32-bit instructions are seen. The impact
18623 of relaxable instructions will be considered later after we finish all
18624 relaxation. */
18625 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18626 variant = arm_arch_none;
18627 else
18628 variant = cpu_variant;
18629 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
18630 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18631 arm_ext_v6t2);
18632
18633 check_neon_suffixes;
18634
18635 if (!inst.error)
18636 {
18637 mapping_state (MAP_THUMB);
18638 }
18639 }
18640 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
18641 {
18642 bfd_boolean is_bx;
18643
18644 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18645 is_bx = (opcode->aencode == do_bx);
18646
18647 /* Check that this instruction is supported for this CPU. */
18648 if (!(is_bx && fix_v4bx)
18649 && !(opcode->avariant &&
18650 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
18651 {
18652 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
18653 return;
18654 }
18655 if (inst.size_req)
18656 {
18657 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18658 return;
18659 }
18660
18661 inst.instruction = opcode->avalue;
18662 if (opcode->tag == OT_unconditionalF)
18663 inst.instruction |= 0xFU << 28;
18664 else
18665 inst.instruction |= inst.cond << 28;
18666 inst.size = INSN_SIZE;
18667 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
18668 {
18669 it_fsm_pre_encode ();
18670 opcode->aencode ();
18671 it_fsm_post_encode ();
18672 }
18673 /* Arm mode bx is marked as both v4T and v5 because it's still required
18674 on a hypothetical non-thumb v5 core. */
18675 if (is_bx)
18676 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
18677 else
18678 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18679 *opcode->avariant);
18680
18681 check_neon_suffixes;
18682
18683 if (!inst.error)
18684 {
18685 mapping_state (MAP_ARM);
18686 }
18687 }
18688 else
18689 {
18690 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18691 "-- `%s'"), str);
18692 return;
18693 }
18694 output_inst (str);
18695 }
18696
18697 static void
18698 check_it_blocks_finished (void)
18699 {
18700 #ifdef OBJ_ELF
18701 asection *sect;
18702
18703 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18704 if (seg_info (sect)->tc_segment_info_data.current_it.state
18705 == MANUAL_IT_BLOCK)
18706 {
18707 as_warn (_("section '%s' finished with an open IT block."),
18708 sect->name);
18709 }
18710 #else
18711 if (now_it.state == MANUAL_IT_BLOCK)
18712 as_warn (_("file finished with an open IT block."));
18713 #endif
18714 }
18715
18716 /* Various frobbings of labels and their addresses. */
18717
18718 void
18719 arm_start_line_hook (void)
18720 {
18721 last_label_seen = NULL;
18722 }
18723
18724 void
18725 arm_frob_label (symbolS * sym)
18726 {
18727 last_label_seen = sym;
18728
18729 ARM_SET_THUMB (sym, thumb_mode);
18730
18731 #if defined OBJ_COFF || defined OBJ_ELF
18732 ARM_SET_INTERWORK (sym, support_interwork);
18733 #endif
18734
18735 force_automatic_it_block_close ();
18736
18737 /* Note - do not allow local symbols (.Lxxx) to be labelled
18738 as Thumb functions. This is because these labels, whilst
18739 they exist inside Thumb code, are not the entry points for
18740 possible ARM->Thumb calls. Also, these labels can be used
18741 as part of a computed goto or switch statement. eg gcc
18742 can generate code that looks like this:
18743
18744 ldr r2, [pc, .Laaa]
18745 lsl r3, r3, #2
18746 ldr r2, [r3, r2]
18747 mov pc, r2
18748
18749 .Lbbb: .word .Lxxx
18750 .Lccc: .word .Lyyy
18751 ..etc...
18752 .Laaa: .word Lbbb
18753
18754 The first instruction loads the address of the jump table.
18755 The second instruction converts a table index into a byte offset.
18756 The third instruction gets the jump address out of the table.
18757 The fourth instruction performs the jump.
18758
18759 If the address stored at .Laaa is that of a symbol which has the
18760 Thumb_Func bit set, then the linker will arrange for this address
18761 to have the bottom bit set, which in turn would mean that the
18762 address computation performed by the third instruction would end
18763 up with the bottom bit set. Since the ARM is capable of unaligned
18764 word loads, the instruction would then load the incorrect address
18765 out of the jump table, and chaos would ensue. */
18766 if (label_is_thumb_function_name
18767 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18768 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
18769 {
18770 /* When the address of a Thumb function is taken the bottom
18771 bit of that address should be set. This will allow
18772 interworking between Arm and Thumb functions to work
18773 correctly. */
18774
18775 THUMB_SET_FUNC (sym, 1);
18776
18777 label_is_thumb_function_name = FALSE;
18778 }
18779
18780 dwarf2_emit_label (sym);
18781 }
18782
18783 bfd_boolean
18784 arm_data_in_code (void)
18785 {
18786 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
18787 {
18788 *input_line_pointer = '/';
18789 input_line_pointer += 5;
18790 *input_line_pointer = 0;
18791 return TRUE;
18792 }
18793
18794 return FALSE;
18795 }
18796
18797 char *
18798 arm_canonicalize_symbol_name (char * name)
18799 {
18800 int len;
18801
18802 if (thumb_mode && (len = strlen (name)) > 5
18803 && streq (name + len - 5, "/data"))
18804 *(name + len - 5) = 0;
18805
18806 return name;
18807 }
18808 \f
18809 /* Table of all register names defined by default. The user can
18810 define additional names with .req. Note that all register names
18811 should appear in both upper and lowercase variants. Some registers
18812 also have mixed-case names. */
18813
18814 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
18815 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
18816 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
18817 #define REGSET(p,t) \
18818 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18819 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18820 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18821 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
18822 #define REGSETH(p,t) \
18823 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
18824 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
18825 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
18826 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
18827 #define REGSET2(p,t) \
18828 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
18829 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
18830 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
18831 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
18832 #define SPLRBANK(base,bank,t) \
18833 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
18834 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
18835 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
18836 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
18837 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
18838 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
18839
18840 static const struct reg_entry reg_names[] =
18841 {
18842 /* ARM integer registers. */
18843 REGSET(r, RN), REGSET(R, RN),
18844
18845 /* ATPCS synonyms. */
18846 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
18847 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
18848 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
18849
18850 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
18851 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
18852 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
18853
18854 /* Well-known aliases. */
18855 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
18856 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
18857
18858 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
18859 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
18860
18861 /* Coprocessor numbers. */
18862 REGSET(p, CP), REGSET(P, CP),
18863
18864 /* Coprocessor register numbers. The "cr" variants are for backward
18865 compatibility. */
18866 REGSET(c, CN), REGSET(C, CN),
18867 REGSET(cr, CN), REGSET(CR, CN),
18868
18869 /* ARM banked registers. */
18870 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
18871 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
18872 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
18873 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
18874 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
18875 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
18876 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
18877
18878 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
18879 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
18880 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
18881 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
18882 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
18883 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
18884 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
18885 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
18886
18887 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
18888 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
18889 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
18890 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
18891 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
18892 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
18893 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
18894 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
18895 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
18896
18897 /* FPA registers. */
18898 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
18899 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
18900
18901 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
18902 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
18903
18904 /* VFP SP registers. */
18905 REGSET(s,VFS), REGSET(S,VFS),
18906 REGSETH(s,VFS), REGSETH(S,VFS),
18907
18908 /* VFP DP Registers. */
18909 REGSET(d,VFD), REGSET(D,VFD),
18910 /* Extra Neon DP registers. */
18911 REGSETH(d,VFD), REGSETH(D,VFD),
18912
18913 /* Neon QP registers. */
18914 REGSET2(q,NQ), REGSET2(Q,NQ),
18915
18916 /* VFP control registers. */
18917 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
18918 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
18919 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
18920 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
18921 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
18922 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
18923 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
18924
18925 /* Maverick DSP coprocessor registers. */
18926 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
18927 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
18928
18929 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
18930 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
18931 REGDEF(dspsc,0,DSPSC),
18932
18933 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
18934 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
18935 REGDEF(DSPSC,0,DSPSC),
18936
18937 /* iWMMXt data registers - p0, c0-15. */
18938 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
18939
18940 /* iWMMXt control registers - p1, c0-3. */
18941 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
18942 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
18943 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
18944 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
18945
18946 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
18947 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
18948 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
18949 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
18950 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
18951
18952 /* XScale accumulator registers. */
18953 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
18954 };
18955 #undef REGDEF
18956 #undef REGNUM
18957 #undef REGSET
18958
18959 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
18960 within psr_required_here. */
18961 static const struct asm_psr psrs[] =
18962 {
18963 /* Backward compatibility notation. Note that "all" is no longer
18964 truly all possible PSR bits. */
18965 {"all", PSR_c | PSR_f},
18966 {"flg", PSR_f},
18967 {"ctl", PSR_c},
18968
18969 /* Individual flags. */
18970 {"f", PSR_f},
18971 {"c", PSR_c},
18972 {"x", PSR_x},
18973 {"s", PSR_s},
18974
18975 /* Combinations of flags. */
18976 {"fs", PSR_f | PSR_s},
18977 {"fx", PSR_f | PSR_x},
18978 {"fc", PSR_f | PSR_c},
18979 {"sf", PSR_s | PSR_f},
18980 {"sx", PSR_s | PSR_x},
18981 {"sc", PSR_s | PSR_c},
18982 {"xf", PSR_x | PSR_f},
18983 {"xs", PSR_x | PSR_s},
18984 {"xc", PSR_x | PSR_c},
18985 {"cf", PSR_c | PSR_f},
18986 {"cs", PSR_c | PSR_s},
18987 {"cx", PSR_c | PSR_x},
18988 {"fsx", PSR_f | PSR_s | PSR_x},
18989 {"fsc", PSR_f | PSR_s | PSR_c},
18990 {"fxs", PSR_f | PSR_x | PSR_s},
18991 {"fxc", PSR_f | PSR_x | PSR_c},
18992 {"fcs", PSR_f | PSR_c | PSR_s},
18993 {"fcx", PSR_f | PSR_c | PSR_x},
18994 {"sfx", PSR_s | PSR_f | PSR_x},
18995 {"sfc", PSR_s | PSR_f | PSR_c},
18996 {"sxf", PSR_s | PSR_x | PSR_f},
18997 {"sxc", PSR_s | PSR_x | PSR_c},
18998 {"scf", PSR_s | PSR_c | PSR_f},
18999 {"scx", PSR_s | PSR_c | PSR_x},
19000 {"xfs", PSR_x | PSR_f | PSR_s},
19001 {"xfc", PSR_x | PSR_f | PSR_c},
19002 {"xsf", PSR_x | PSR_s | PSR_f},
19003 {"xsc", PSR_x | PSR_s | PSR_c},
19004 {"xcf", PSR_x | PSR_c | PSR_f},
19005 {"xcs", PSR_x | PSR_c | PSR_s},
19006 {"cfs", PSR_c | PSR_f | PSR_s},
19007 {"cfx", PSR_c | PSR_f | PSR_x},
19008 {"csf", PSR_c | PSR_s | PSR_f},
19009 {"csx", PSR_c | PSR_s | PSR_x},
19010 {"cxf", PSR_c | PSR_x | PSR_f},
19011 {"cxs", PSR_c | PSR_x | PSR_s},
19012 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19013 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19014 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19015 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19016 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19017 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19018 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19019 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19020 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19021 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19022 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19023 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19024 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19025 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19026 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19027 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19028 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19029 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19030 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19031 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19032 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19033 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19034 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19035 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19036 };
19037
19038 /* Table of V7M psr names. */
19039 static const struct asm_psr v7m_psrs[] =
19040 {
19041 {"apsr", 0x0 }, {"APSR", 0x0 },
19042 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19043 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19044 {"psr", 0x3 }, {"PSR", 0x3 },
19045 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19046 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19047 {"epsr", 0x6 }, {"EPSR", 0x6 },
19048 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19049 {"msp", 0x8 }, {"MSP", 0x8 },
19050 {"psp", 0x9 }, {"PSP", 0x9 },
19051 {"msplim", 0xa }, {"MSPLIM", 0xa },
19052 {"psplim", 0xb }, {"PSPLIM", 0xb },
19053 {"primask", 0x10}, {"PRIMASK", 0x10},
19054 {"basepri", 0x11}, {"BASEPRI", 0x11},
19055 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
19056 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19057 {"control", 0x14}, {"CONTROL", 0x14},
19058 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19059 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19060 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19061 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19062 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19063 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19064 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19065 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19066 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
19067 };
19068
19069 /* Table of all shift-in-operand names. */
19070 static const struct asm_shift_name shift_names [] =
19071 {
19072 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19073 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19074 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19075 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19076 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19077 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19078 };
19079
19080 /* Table of all explicit relocation names. */
19081 #ifdef OBJ_ELF
19082 static struct reloc_entry reloc_names[] =
19083 {
19084 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19085 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19086 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19087 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19088 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19089 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19090 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19091 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19092 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19093 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
19094 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
19095 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19096 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
19097 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
19098 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
19099 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
19100 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
19101 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
19102 };
19103 #endif
19104
19105 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
19106 static const struct asm_cond conds[] =
19107 {
19108 {"eq", 0x0},
19109 {"ne", 0x1},
19110 {"cs", 0x2}, {"hs", 0x2},
19111 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19112 {"mi", 0x4},
19113 {"pl", 0x5},
19114 {"vs", 0x6},
19115 {"vc", 0x7},
19116 {"hi", 0x8},
19117 {"ls", 0x9},
19118 {"ge", 0xa},
19119 {"lt", 0xb},
19120 {"gt", 0xc},
19121 {"le", 0xd},
19122 {"al", 0xe}
19123 };
19124
19125 #define UL_BARRIER(L,U,CODE,FEAT) \
19126 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19127 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
19128
19129 static struct asm_barrier_opt barrier_opt_names[] =
19130 {
19131 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19132 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19133 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19134 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19135 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19136 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19137 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19138 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19139 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19140 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19141 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19142 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19143 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19144 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19145 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19146 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
19147 };
19148
19149 #undef UL_BARRIER
19150
19151 /* Table of ARM-format instructions. */
19152
19153 /* Macros for gluing together operand strings. N.B. In all cases
19154 other than OPS0, the trailing OP_stop comes from default
19155 zero-initialization of the unspecified elements of the array. */
19156 #define OPS0() { OP_stop, }
19157 #define OPS1(a) { OP_##a, }
19158 #define OPS2(a,b) { OP_##a,OP_##b, }
19159 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19160 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19161 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19162 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19163
19164 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19165 This is useful when mixing operands for ARM and THUMB, i.e. using the
19166 MIX_ARM_THUMB_OPERANDS macro.
19167 In order to use these macros, prefix the number of operands with _
19168 e.g. _3. */
19169 #define OPS_1(a) { a, }
19170 #define OPS_2(a,b) { a,b, }
19171 #define OPS_3(a,b,c) { a,b,c, }
19172 #define OPS_4(a,b,c,d) { a,b,c,d, }
19173 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19174 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19175
19176 /* These macros abstract out the exact format of the mnemonic table and
19177 save some repeated characters. */
19178
19179 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19180 #define TxCE(mnem, op, top, nops, ops, ae, te) \
19181 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
19182 THUMB_VARIANT, do_##ae, do_##te }
19183
19184 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19185 a T_MNEM_xyz enumerator. */
19186 #define TCE(mnem, aop, top, nops, ops, ae, te) \
19187 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
19188 #define tCE(mnem, aop, top, nops, ops, ae, te) \
19189 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19190
19191 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19192 infix after the third character. */
19193 #define TxC3(mnem, op, top, nops, ops, ae, te) \
19194 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
19195 THUMB_VARIANT, do_##ae, do_##te }
19196 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
19197 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
19198 THUMB_VARIANT, do_##ae, do_##te }
19199 #define TC3(mnem, aop, top, nops, ops, ae, te) \
19200 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
19201 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
19202 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
19203 #define tC3(mnem, aop, top, nops, ops, ae, te) \
19204 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19205 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
19206 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19207
19208 /* Mnemonic that cannot be conditionalized. The ARM condition-code
19209 field is still 0xE. Many of the Thumb variants can be executed
19210 conditionally, so this is checked separately. */
19211 #define TUE(mnem, op, top, nops, ops, ae, te) \
19212 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19213 THUMB_VARIANT, do_##ae, do_##te }
19214
19215 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19216 Used by mnemonics that have very minimal differences in the encoding for
19217 ARM and Thumb variants and can be handled in a common function. */
19218 #define TUEc(mnem, op, top, nops, ops, en) \
19219 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19220 THUMB_VARIANT, do_##en, do_##en }
19221
19222 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19223 condition code field. */
19224 #define TUF(mnem, op, top, nops, ops, ae, te) \
19225 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
19226 THUMB_VARIANT, do_##ae, do_##te }
19227
19228 /* ARM-only variants of all the above. */
19229 #define CE(mnem, op, nops, ops, ae) \
19230 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19231
19232 #define C3(mnem, op, nops, ops, ae) \
19233 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19234
19235 /* Legacy mnemonics that always have conditional infix after the third
19236 character. */
19237 #define CL(mnem, op, nops, ops, ae) \
19238 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19239 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19240
19241 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19242 #define cCE(mnem, op, nops, ops, ae) \
19243 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19244
19245 /* Legacy coprocessor instructions where conditional infix and conditional
19246 suffix are ambiguous. For consistency this includes all FPA instructions,
19247 not just the potentially ambiguous ones. */
19248 #define cCL(mnem, op, nops, ops, ae) \
19249 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19250 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19251
19252 /* Coprocessor, takes either a suffix or a position-3 infix
19253 (for an FPA corner case). */
19254 #define C3E(mnem, op, nops, ops, ae) \
19255 { mnem, OPS##nops ops, OT_csuf_or_in3, \
19256 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19257
19258 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
19259 { m1 #m2 m3, OPS##nops ops, \
19260 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
19261 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19262
19263 #define CM(m1, m2, op, nops, ops, ae) \
19264 xCM_ (m1, , m2, op, nops, ops, ae), \
19265 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19266 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19267 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19268 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19269 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19270 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19271 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19272 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19273 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19274 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19275 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19276 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19277 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19278 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19279 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19280 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19281 xCM_ (m1, le, m2, op, nops, ops, ae), \
19282 xCM_ (m1, al, m2, op, nops, ops, ae)
19283
19284 #define UE(mnem, op, nops, ops, ae) \
19285 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19286
19287 #define UF(mnem, op, nops, ops, ae) \
19288 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19289
19290 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
19291 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19292 use the same encoding function for each. */
19293 #define NUF(mnem, op, nops, ops, enc) \
19294 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19295 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19296
19297 /* Neon data processing, version which indirects through neon_enc_tab for
19298 the various overloaded versions of opcodes. */
19299 #define nUF(mnem, op, nops, ops, enc) \
19300 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
19301 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19302
19303 /* Neon insn with conditional suffix for the ARM version, non-overloaded
19304 version. */
19305 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
19306 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
19307 THUMB_VARIANT, do_##enc, do_##enc }
19308
19309 #define NCE(mnem, op, nops, ops, enc) \
19310 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19311
19312 #define NCEF(mnem, op, nops, ops, enc) \
19313 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19314
19315 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
19316 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
19317 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
19318 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19319
19320 #define nCE(mnem, op, nops, ops, enc) \
19321 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19322
19323 #define nCEF(mnem, op, nops, ops, enc) \
19324 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19325
19326 #define do_0 0
19327
19328 static const struct asm_opcode insns[] =
19329 {
19330 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19331 #define THUMB_VARIANT & arm_ext_v4t
19332 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19333 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19334 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19335 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19336 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19337 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19338 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19339 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19340 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19341 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19342 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19343 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19344 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19345 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19346 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19347 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
19348
19349 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19350 for setting PSR flag bits. They are obsolete in V6 and do not
19351 have Thumb equivalents. */
19352 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19353 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19354 CL("tstp", 110f000, 2, (RR, SH), cmp),
19355 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19356 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19357 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19358 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19359 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19360 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19361
19362 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
19363 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
19364 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19365 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19366
19367 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
19368 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19369 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19370 OP_RRnpc),
19371 OP_ADDRGLDR),ldst, t_ldst),
19372 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19373
19374 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19375 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19376 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19377 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19378 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19379 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19380
19381 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19382 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
19383
19384 /* Pseudo ops. */
19385 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
19386 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
19387 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
19388 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
19389
19390 /* Thumb-compatibility pseudo ops. */
19391 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19392 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19393 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19394 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19395 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19396 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19397 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19398 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19399 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19400 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19401 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19402 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
19403
19404 /* These may simplify to neg. */
19405 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19406 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
19407
19408 #undef THUMB_VARIANT
19409 #define THUMB_VARIANT & arm_ext_os
19410
19411 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19412 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19413
19414 #undef THUMB_VARIANT
19415 #define THUMB_VARIANT & arm_ext_v6
19416
19417 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
19418
19419 /* V1 instructions with no Thumb analogue prior to V6T2. */
19420 #undef THUMB_VARIANT
19421 #define THUMB_VARIANT & arm_ext_v6t2
19422
19423 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19424 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19425 CL("teqp", 130f000, 2, (RR, SH), cmp),
19426
19427 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19428 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19429 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19430 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19431
19432 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19433 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19434
19435 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19436 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19437
19438 /* V1 instructions with no Thumb analogue at all. */
19439 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
19440 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19441
19442 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19443 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19444 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19445 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19446 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19447 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19448 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19449 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19450
19451 #undef ARM_VARIANT
19452 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19453 #undef THUMB_VARIANT
19454 #define THUMB_VARIANT & arm_ext_v4t
19455
19456 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19457 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19458
19459 #undef THUMB_VARIANT
19460 #define THUMB_VARIANT & arm_ext_v6t2
19461
19462 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19463 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19464
19465 /* Generic coprocessor instructions. */
19466 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19467 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19468 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19469 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19470 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19471 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19472 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
19473
19474 #undef ARM_VARIANT
19475 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19476
19477 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19478 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19479
19480 #undef ARM_VARIANT
19481 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19482 #undef THUMB_VARIANT
19483 #define THUMB_VARIANT & arm_ext_msr
19484
19485 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19486 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
19487
19488 #undef ARM_VARIANT
19489 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19490 #undef THUMB_VARIANT
19491 #define THUMB_VARIANT & arm_ext_v6t2
19492
19493 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19494 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19495 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19496 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19497 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19498 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19499 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19500 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19501
19502 #undef ARM_VARIANT
19503 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19504 #undef THUMB_VARIANT
19505 #define THUMB_VARIANT & arm_ext_v4t
19506
19507 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19508 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19509 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19510 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19511 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19512 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19513
19514 #undef ARM_VARIANT
19515 #define ARM_VARIANT & arm_ext_v4t_5
19516
19517 /* ARM Architecture 4T. */
19518 /* Note: bx (and blx) are required on V5, even if the processor does
19519 not support Thumb. */
19520 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
19521
19522 #undef ARM_VARIANT
19523 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19524 #undef THUMB_VARIANT
19525 #define THUMB_VARIANT & arm_ext_v5t
19526
19527 /* Note: blx has 2 variants; the .value coded here is for
19528 BLX(2). Only this variant has conditional execution. */
19529 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19530 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
19531
19532 #undef THUMB_VARIANT
19533 #define THUMB_VARIANT & arm_ext_v6t2
19534
19535 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19536 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19537 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19538 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19539 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19540 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19541 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19542 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19543
19544 #undef ARM_VARIANT
19545 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19546 #undef THUMB_VARIANT
19547 #define THUMB_VARIANT & arm_ext_v5exp
19548
19549 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19550 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19551 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19552 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19553
19554 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19555 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19556
19557 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19558 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19559 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19560 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19561
19562 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19563 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19564 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19565 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19566
19567 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19568 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19569
19570 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19571 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19572 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19573 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19574
19575 #undef ARM_VARIANT
19576 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19577 #undef THUMB_VARIANT
19578 #define THUMB_VARIANT & arm_ext_v6t2
19579
19580 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
19581 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19582 ldrd, t_ldstd),
19583 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19584 ADDRGLDRS), ldrd, t_ldstd),
19585
19586 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19587 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19588
19589 #undef ARM_VARIANT
19590 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19591
19592 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
19593
19594 #undef ARM_VARIANT
19595 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19596 #undef THUMB_VARIANT
19597 #define THUMB_VARIANT & arm_ext_v6
19598
19599 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19600 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19601 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19602 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19603 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19604 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19605 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19606 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19607 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19608 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
19609
19610 #undef THUMB_VARIANT
19611 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19612
19613 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19614 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19615 strex, t_strex),
19616 #undef THUMB_VARIANT
19617 #define THUMB_VARIANT & arm_ext_v6t2
19618
19619 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19620 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19621
19622 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19623 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
19624
19625 /* ARM V6 not included in V7M. */
19626 #undef THUMB_VARIANT
19627 #define THUMB_VARIANT & arm_ext_v6_notm
19628 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19629 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19630 UF(rfeib, 9900a00, 1, (RRw), rfe),
19631 UF(rfeda, 8100a00, 1, (RRw), rfe),
19632 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19633 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19634 UF(rfefa, 8100a00, 1, (RRw), rfe),
19635 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19636 UF(rfeed, 9900a00, 1, (RRw), rfe),
19637 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19638 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19639 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19640 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
19641 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
19642 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
19643 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
19644 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19645 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19646 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
19647
19648 /* ARM V6 not included in V7M (eg. integer SIMD). */
19649 #undef THUMB_VARIANT
19650 #define THUMB_VARIANT & arm_ext_v6_dsp
19651 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19652 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19653 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19654 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19655 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19656 /* Old name for QASX. */
19657 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19658 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19659 /* Old name for QSAX. */
19660 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19661 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19662 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19663 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19664 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19665 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19666 /* Old name for SASX. */
19667 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19668 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19669 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19670 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19671 /* Old name for SHASX. */
19672 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19673 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19674 /* Old name for SHSAX. */
19675 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19676 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19677 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19678 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19679 /* Old name for SSAX. */
19680 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19681 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19682 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19683 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19684 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19685 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19686 /* Old name for UASX. */
19687 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19688 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19689 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19690 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19691 /* Old name for UHASX. */
19692 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19693 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19694 /* Old name for UHSAX. */
19695 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19696 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19697 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19698 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19699 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19700 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19701 /* Old name for UQASX. */
19702 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19703 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19704 /* Old name for UQSAX. */
19705 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19706 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19707 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19708 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19709 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19710 /* Old name for USAX. */
19711 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19712 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19713 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19714 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19715 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19716 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19717 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19718 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19719 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19720 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19721 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19722 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19723 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19724 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19725 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19726 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19727 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19728 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19729 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19730 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19731 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19732 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19733 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19734 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19735 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19736 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19737 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19738 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19739 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19740 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19741 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19742 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19743 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19744 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
19745
19746 #undef ARM_VARIANT
19747 #define ARM_VARIANT & arm_ext_v6k
19748 #undef THUMB_VARIANT
19749 #define THUMB_VARIANT & arm_ext_v6k
19750
19751 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19752 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19753 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19754 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
19755
19756 #undef THUMB_VARIANT
19757 #define THUMB_VARIANT & arm_ext_v6_notm
19758 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19759 ldrexd, t_ldrexd),
19760 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19761 RRnpcb), strexd, t_strexd),
19762
19763 #undef THUMB_VARIANT
19764 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19765 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19766 rd_rn, rd_rn),
19767 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19768 rd_rn, rd_rn),
19769 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19770 strex, t_strexbh),
19771 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19772 strex, t_strexbh),
19773 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
19774
19775 #undef ARM_VARIANT
19776 #define ARM_VARIANT & arm_ext_sec
19777 #undef THUMB_VARIANT
19778 #define THUMB_VARIANT & arm_ext_sec
19779
19780 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
19781
19782 #undef ARM_VARIANT
19783 #define ARM_VARIANT & arm_ext_virt
19784 #undef THUMB_VARIANT
19785 #define THUMB_VARIANT & arm_ext_virt
19786
19787 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19788 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19789
19790 #undef ARM_VARIANT
19791 #define ARM_VARIANT & arm_ext_pan
19792 #undef THUMB_VARIANT
19793 #define THUMB_VARIANT & arm_ext_pan
19794
19795 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19796
19797 #undef ARM_VARIANT
19798 #define ARM_VARIANT & arm_ext_v6t2
19799 #undef THUMB_VARIANT
19800 #define THUMB_VARIANT & arm_ext_v6t2
19801
19802 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19803 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19804 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19805 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19806
19807 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19808 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
19809
19810 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19811 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19812 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19813 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19814
19815 #undef THUMB_VARIANT
19816 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19817 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
19818 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
19819
19820 /* Thumb-only instructions. */
19821 #undef ARM_VARIANT
19822 #define ARM_VARIANT NULL
19823 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
19824 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
19825
19826 /* ARM does not really have an IT instruction, so always allow it.
19827 The opcode is copied from Thumb in order to allow warnings in
19828 -mimplicit-it=[never | arm] modes. */
19829 #undef ARM_VARIANT
19830 #define ARM_VARIANT & arm_ext_v1
19831 #undef THUMB_VARIANT
19832 #define THUMB_VARIANT & arm_ext_v6t2
19833
19834 TUE("it", bf08, bf08, 1, (COND), it, t_it),
19835 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
19836 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
19837 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
19838 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
19839 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
19840 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
19841 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
19842 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
19843 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
19844 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
19845 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
19846 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
19847 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
19848 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
19849 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
19850 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
19851 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
19852
19853 /* Thumb2 only instructions. */
19854 #undef ARM_VARIANT
19855 #define ARM_VARIANT NULL
19856
19857 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19858 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19859 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
19860 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
19861 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
19862 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
19863
19864 /* Hardware division instructions. */
19865 #undef ARM_VARIANT
19866 #define ARM_VARIANT & arm_ext_adiv
19867 #undef THUMB_VARIANT
19868 #define THUMB_VARIANT & arm_ext_div
19869
19870 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
19871 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
19872
19873 /* ARM V6M/V7 instructions. */
19874 #undef ARM_VARIANT
19875 #define ARM_VARIANT & arm_ext_barrier
19876 #undef THUMB_VARIANT
19877 #define THUMB_VARIANT & arm_ext_barrier
19878
19879 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
19880 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
19881 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
19882
19883 /* ARM V7 instructions. */
19884 #undef ARM_VARIANT
19885 #define ARM_VARIANT & arm_ext_v7
19886 #undef THUMB_VARIANT
19887 #define THUMB_VARIANT & arm_ext_v7
19888
19889 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
19890 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
19891
19892 #undef ARM_VARIANT
19893 #define ARM_VARIANT & arm_ext_mp
19894 #undef THUMB_VARIANT
19895 #define THUMB_VARIANT & arm_ext_mp
19896
19897 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
19898
19899 /* AArchv8 instructions. */
19900 #undef ARM_VARIANT
19901 #define ARM_VARIANT & arm_ext_v8
19902
19903 /* Instructions shared between armv8-a and armv8-m. */
19904 #undef THUMB_VARIANT
19905 #define THUMB_VARIANT & arm_ext_atomics
19906
19907 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19908 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19909 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19910 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19911 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19912 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19913 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19914 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
19915 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19916 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
19917 stlex, t_stlex),
19918 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
19919 stlex, t_stlex),
19920 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
19921 stlex, t_stlex),
19922 #undef THUMB_VARIANT
19923 #define THUMB_VARIANT & arm_ext_v8
19924
19925 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
19926 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
19927 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
19928 ldrexd, t_ldrexd),
19929 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
19930 strexd, t_strexd),
19931 /* ARMv8 T32 only. */
19932 #undef ARM_VARIANT
19933 #define ARM_VARIANT NULL
19934 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
19935 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
19936 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
19937
19938 /* FP for ARMv8. */
19939 #undef ARM_VARIANT
19940 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
19941 #undef THUMB_VARIANT
19942 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
19943
19944 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
19945 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
19946 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
19947 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
19948 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19949 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19950 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
19951 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
19952 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
19953 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
19954 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
19955 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
19956 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
19957 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
19958 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
19959 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
19960 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
19961
19962 /* Crypto v1 extensions. */
19963 #undef ARM_VARIANT
19964 #define ARM_VARIANT & fpu_crypto_ext_armv8
19965 #undef THUMB_VARIANT
19966 #define THUMB_VARIANT & fpu_crypto_ext_armv8
19967
19968 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
19969 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
19970 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
19971 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
19972 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
19973 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
19974 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
19975 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
19976 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
19977 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
19978 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
19979 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
19980 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
19981 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
19982
19983 #undef ARM_VARIANT
19984 #define ARM_VARIANT & crc_ext_armv8
19985 #undef THUMB_VARIANT
19986 #define THUMB_VARIANT & crc_ext_armv8
19987 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
19988 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
19989 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
19990 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
19991 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
19992 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
19993
19994 /* ARMv8.2 RAS extension. */
19995 #undef ARM_VARIANT
19996 #define ARM_VARIANT & arm_ext_ras
19997 #undef THUMB_VARIANT
19998 #define THUMB_VARIANT & arm_ext_ras
19999 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20000
20001 #undef ARM_VARIANT
20002 #define ARM_VARIANT & arm_ext_v8_3
20003 #undef THUMB_VARIANT
20004 #define THUMB_VARIANT & arm_ext_v8_3
20005 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
20006 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20007 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
20008
20009 #undef ARM_VARIANT
20010 #define ARM_VARIANT & fpu_neon_ext_dotprod
20011 #undef THUMB_VARIANT
20012 #define THUMB_VARIANT & fpu_neon_ext_dotprod
20013 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20014 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20015
20016 #undef ARM_VARIANT
20017 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
20018 #undef THUMB_VARIANT
20019 #define THUMB_VARIANT NULL
20020
20021 cCE("wfs", e200110, 1, (RR), rd),
20022 cCE("rfs", e300110, 1, (RR), rd),
20023 cCE("wfc", e400110, 1, (RR), rd),
20024 cCE("rfc", e500110, 1, (RR), rd),
20025
20026 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20027 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20028 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20029 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20030
20031 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20032 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20033 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20034 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20035
20036 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20037 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20038 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20039 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20040 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20041 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20042 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20043 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20044 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20045 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20046 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20047 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20048
20049 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20050 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20051 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20052 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20053 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20054 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20055 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20056 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20057 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20058 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20059 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20060 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20061
20062 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20063 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20064 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20065 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20066 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20067 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20068 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20069 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20070 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20071 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20072 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20073 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20074
20075 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20076 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20077 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20078 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20079 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20080 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20081 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20082 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20083 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20084 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20085 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20086 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20087
20088 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20089 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20090 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20091 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20092 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20093 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20094 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20095 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20096 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20097 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20098 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20099 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20100
20101 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20102 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20103 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20104 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20105 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20106 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20107 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20108 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20109 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20110 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20111 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20112 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20113
20114 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20115 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20116 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20117 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20118 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20119 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20120 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20121 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20122 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20123 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20124 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20125 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20126
20127 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20128 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20129 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20130 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20131 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20132 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20133 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20134 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20135 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20136 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20137 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20138 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20139
20140 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20141 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20142 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20143 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20144 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20145 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20146 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20147 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20148 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20149 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20150 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20151 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20152
20153 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20154 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20155 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20156 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20157 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20158 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20159 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20160 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20161 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20162 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20163 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20164 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20165
20166 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20167 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20168 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20169 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20170 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20171 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20172 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20173 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20174 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20175 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20176 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20177 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20178
20179 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20180 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20181 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20182 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20183 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20184 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20185 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20186 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20187 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20188 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20189 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20190 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20191
20192 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20193 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20194 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20195 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20196 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20197 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20198 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20199 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20200 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20201 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20202 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20203 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20204
20205 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20206 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20207 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20208 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20209 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20210 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20211 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20212 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20213 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20214 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20215 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20216 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20217
20218 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20219 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20220 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20221 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20222 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20223 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20224 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20225 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20226 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20227 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20228 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20229 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20230
20231 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20232 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20233 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20234 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20235 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20236 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20237 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20238 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20239 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20240 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20241 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20242 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20243
20244 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20245 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20246 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20247 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20248 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20249 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20250 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20251 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20252 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20253 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20254 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20255 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20256
20257 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20258 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20259 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20260 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20261 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20262 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20263 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20264 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20265 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20266 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20267 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20268 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20269
20270 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20271 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20272 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20273 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20274 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20275 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20276 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20277 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20278 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20279 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20280 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20281 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20282
20283 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20284 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20285 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20286 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20287 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20288 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20289 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20290 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20291 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20292 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20293 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20294 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20295
20296 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20297 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20298 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20299 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20300 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20301 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20302 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20303 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20304 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20305 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20306 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20307 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20308
20309 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20310 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20311 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20312 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20313 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20314 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20315 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20316 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20317 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20318 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20319 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20320 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20321
20322 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20323 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20324 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20325 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20326 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20327 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20328 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20329 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20330 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20331 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20332 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20333 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20334
20335 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20336 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20337 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20338 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20339 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20340 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20341 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20342 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20343 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20344 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20345 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20346 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20347
20348 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20349 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20350 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20351 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20352 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20353 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20354 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20355 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20356 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20357 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20358 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20359 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20360
20361 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20362 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20363 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20364 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20365 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20366 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20367 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20368 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20369 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20370 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20371 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20372 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20373
20374 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20375 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20376 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20377 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20378 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20379 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20380 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20381 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20382 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20383 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20384 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20385 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20386
20387 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20388 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20389 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20390 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20391 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20392 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20393 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20394 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20395 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20396 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20397 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20398 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20399
20400 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20401 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20402 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20403 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20404 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20405 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20406 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20407 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20408 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20409 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20410 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20411 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20412
20413 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20414 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20415 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20416 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20417
20418 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20419 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20420 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20421 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20422 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20423 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20424 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20425 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20426 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20427 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20428 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20429 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
20430
20431 /* The implementation of the FIX instruction is broken on some
20432 assemblers, in that it accepts a precision specifier as well as a
20433 rounding specifier, despite the fact that this is meaningless.
20434 To be more compatible, we accept it as well, though of course it
20435 does not set any bits. */
20436 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20437 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20438 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20439 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20440 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20441 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20442 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20443 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20444 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20445 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20446 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20447 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20448 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
20449
20450 /* Instructions that were new with the real FPA, call them V2. */
20451 #undef ARM_VARIANT
20452 #define ARM_VARIANT & fpu_fpa_ext_v2
20453
20454 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20455 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20456 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20457 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20458 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20459 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20460
20461 #undef ARM_VARIANT
20462 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20463
20464 /* Moves and type conversions. */
20465 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20466 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20467 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20468 cCE("fmstat", ef1fa10, 0, (), noargs),
20469 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20470 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
20471 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20472 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20473 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20474 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20475 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20476 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20477 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20478 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
20479
20480 /* Memory operations. */
20481 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20482 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20483 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20484 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20485 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20486 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20487 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20488 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20489 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20490 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20491 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20492 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20493 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20494 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20495 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20496 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20497 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20498 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20499
20500 /* Monadic operations. */
20501 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20502 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20503 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
20504
20505 /* Dyadic operations. */
20506 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20507 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20508 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20509 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20510 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20511 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20512 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20513 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20514 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20515
20516 /* Comparisons. */
20517 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20518 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20519 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20520 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
20521
20522 /* Double precision load/store are still present on single precision
20523 implementations. */
20524 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20525 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20526 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20527 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20528 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20529 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20530 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20531 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20532 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20533 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20534
20535 #undef ARM_VARIANT
20536 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20537
20538 /* Moves and type conversions. */
20539 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20540 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20541 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20542 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20543 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20544 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20545 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20546 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20547 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20548 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20549 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20550 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20551 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20552
20553 /* Monadic operations. */
20554 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20555 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20556 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20557
20558 /* Dyadic operations. */
20559 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20560 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20561 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20562 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20563 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20564 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20565 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20566 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20567 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20568
20569 /* Comparisons. */
20570 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20571 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20572 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20573 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
20574
20575 #undef ARM_VARIANT
20576 #define ARM_VARIANT & fpu_vfp_ext_v2
20577
20578 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20579 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20580 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20581 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
20582
20583 /* Instructions which may belong to either the Neon or VFP instruction sets.
20584 Individual encoder functions perform additional architecture checks. */
20585 #undef ARM_VARIANT
20586 #define ARM_VARIANT & fpu_vfp_ext_v1xd
20587 #undef THUMB_VARIANT
20588 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
20589
20590 /* These mnemonics are unique to VFP. */
20591 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20592 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
20593 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20594 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20595 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20596 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20597 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20598 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20599 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20600 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20601
20602 /* Mnemonics shared by Neon and VFP. */
20603 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20604 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20605 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20606
20607 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20608 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20609
20610 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20611 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20612
20613 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20614 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20615 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20616 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20617 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20618 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20619 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20620 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20621
20622 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
20623 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
20624 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20625 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
20626
20627
20628 /* NOTE: All VMOV encoding is special-cased! */
20629 NCE(vmov, 0, 1, (VMOV), neon_mov),
20630 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20631
20632 #undef ARM_VARIANT
20633 #define ARM_VARIANT & arm_ext_fp16
20634 #undef THUMB_VARIANT
20635 #define THUMB_VARIANT & arm_ext_fp16
20636 /* New instructions added from v8.2, allowing the extraction and insertion of
20637 the upper 16 bits of a 32-bit vector register. */
20638 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20639 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20640
20641 #undef THUMB_VARIANT
20642 #define THUMB_VARIANT & fpu_neon_ext_v1
20643 #undef ARM_VARIANT
20644 #define ARM_VARIANT & fpu_neon_ext_v1
20645
20646 /* Data processing with three registers of the same length. */
20647 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20648 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20649 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20650 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20651 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20652 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20653 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20654 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20655 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20656 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20657 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20658 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20659 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20660 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20661 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20662 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20663 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20664 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20665 /* If not immediate, fall back to neon_dyadic_i64_su.
20666 shl_imm should accept I8 I16 I32 I64,
20667 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
20668 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20669 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20670 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20671 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
20672 /* Logic ops, types optional & ignored. */
20673 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20674 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20675 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20676 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20677 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20678 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20679 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20680 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20681 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20682 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
20683 /* Bitfield ops, untyped. */
20684 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20685 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20686 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20687 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20688 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20689 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20690 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
20691 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20692 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20693 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20694 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20695 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20696 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20697 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20698 back to neon_dyadic_if_su. */
20699 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20700 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20701 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20702 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20703 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20704 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20705 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20706 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20707 /* Comparison. Type I8 I16 I32 F32. */
20708 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20709 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
20710 /* As above, D registers only. */
20711 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20712 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20713 /* Int and float variants, signedness unimportant. */
20714 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20715 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20716 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
20717 /* Add/sub take types I8 I16 I32 I64 F32. */
20718 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20719 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20720 /* vtst takes sizes 8, 16, 32. */
20721 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20722 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20723 /* VMUL takes I8 I16 I32 F32 P8. */
20724 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
20725 /* VQD{R}MULH takes S16 S32. */
20726 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20727 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20728 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20729 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20730 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20731 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20732 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20733 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20734 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20735 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20736 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20737 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20738 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20739 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20740 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20741 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20742 /* ARM v8.1 extension. */
20743 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20744 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20745 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20746 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20747
20748 /* Two address, int/float. Types S8 S16 S32 F32. */
20749 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
20750 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
20751
20752 /* Data processing with two registers and a shift amount. */
20753 /* Right shifts, and variants with rounding.
20754 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
20755 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20756 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20757 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20758 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20759 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20760 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20761 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20762 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20763 /* Shift and insert. Sizes accepted 8 16 32 64. */
20764 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
20765 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
20766 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
20767 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
20768 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
20769 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
20770 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
20771 /* Right shift immediate, saturating & narrowing, with rounding variants.
20772 Types accepted S16 S32 S64 U16 U32 U64. */
20773 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20774 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20775 /* As above, unsigned. Types accepted S16 S32 S64. */
20776 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20777 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20778 /* Right shift narrowing. Types accepted I16 I32 I64. */
20779 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20780 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20781 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
20782 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
20783 /* CVT with optional immediate for fixed-point variant. */
20784 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
20785
20786 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
20787 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
20788
20789 /* Data processing, three registers of different lengths. */
20790 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
20791 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
20792 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
20793 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
20794 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
20795 /* If not scalar, fall back to neon_dyadic_long.
20796 Vector types as above, scalar types S16 S32 U16 U32. */
20797 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20798 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20799 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20800 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20801 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20802 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20803 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20804 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20805 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20806 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20807 /* Saturating doubling multiplies. Types S16 S32. */
20808 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20809 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20810 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20811 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
20812 S16 S32 U16 U32. */
20813 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
20814
20815 /* Extract. Size 8. */
20816 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
20817 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
20818
20819 /* Two registers, miscellaneous. */
20820 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
20821 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
20822 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
20823 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
20824 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
20825 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
20826 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
20827 /* Vector replicate. Sizes 8 16 32. */
20828 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
20829 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
20830 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
20831 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
20832 /* VMOVN. Types I16 I32 I64. */
20833 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
20834 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
20835 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
20836 /* VQMOVUN. Types S16 S32 S64. */
20837 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
20838 /* VZIP / VUZP. Sizes 8 16 32. */
20839 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
20840 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
20841 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
20842 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
20843 /* VQABS / VQNEG. Types S8 S16 S32. */
20844 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20845 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
20846 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20847 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
20848 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
20849 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
20850 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
20851 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
20852 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
20853 /* Reciprocal estimates. Types U32 F16 F32. */
20854 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
20855 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
20856 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
20857 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
20858 /* VCLS. Types S8 S16 S32. */
20859 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
20860 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
20861 /* VCLZ. Types I8 I16 I32. */
20862 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
20863 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
20864 /* VCNT. Size 8. */
20865 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
20866 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
20867 /* Two address, untyped. */
20868 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
20869 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
20870 /* VTRN. Sizes 8 16 32. */
20871 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
20872 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
20873
20874 /* Table lookup. Size 8. */
20875 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20876 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20877
20878 #undef THUMB_VARIANT
20879 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
20880 #undef ARM_VARIANT
20881 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
20882
20883 /* Neon element/structure load/store. */
20884 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20885 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20886 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20887 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20888 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20889 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20890 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20891 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20892
20893 #undef THUMB_VARIANT
20894 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
20895 #undef ARM_VARIANT
20896 #define ARM_VARIANT & fpu_vfp_ext_v3xd
20897 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
20898 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20899 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20900 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20901 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20902 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20903 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20904 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20905 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20906
20907 #undef THUMB_VARIANT
20908 #define THUMB_VARIANT & fpu_vfp_ext_v3
20909 #undef ARM_VARIANT
20910 #define ARM_VARIANT & fpu_vfp_ext_v3
20911
20912 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
20913 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20914 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20915 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20916 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20917 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20918 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20919 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20920 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20921
20922 #undef ARM_VARIANT
20923 #define ARM_VARIANT & fpu_vfp_ext_fma
20924 #undef THUMB_VARIANT
20925 #define THUMB_VARIANT & fpu_vfp_ext_fma
20926 /* Mnemonics shared by Neon and VFP. These are included in the
20927 VFP FMA variant; NEON and VFP FMA always includes the NEON
20928 FMA instructions. */
20929 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20930 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20931 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
20932 the v form should always be used. */
20933 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20934 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20935 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20936 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20937 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20938 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20939
20940 #undef THUMB_VARIANT
20941 #undef ARM_VARIANT
20942 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
20943
20944 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20945 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20946 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20947 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20948 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20949 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20950 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
20951 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
20952
20953 #undef ARM_VARIANT
20954 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
20955
20956 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
20957 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
20958 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
20959 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
20960 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
20961 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
20962 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
20963 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
20964 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
20965 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20966 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20967 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20968 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20969 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20970 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20971 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20972 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20973 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20974 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
20975 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
20976 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20977 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20978 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20979 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20980 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20981 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20982 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
20983 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
20984 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
20985 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
20986 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
20987 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
20988 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
20989 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
20990 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
20991 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
20992 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
20993 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20994 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20995 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20996 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20997 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20998 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20999 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21000 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21001 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21002 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
21003 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21004 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21005 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21006 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21007 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21008 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21009 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21010 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21011 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21012 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21013 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21014 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21015 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21016 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21017 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21018 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21019 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21020 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21021 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21022 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21023 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21024 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21025 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21026 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21027 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21028 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21029 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21030 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21031 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21032 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21033 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21034 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21035 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21036 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21037 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21038 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21039 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21040 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21041 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21042 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21043 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21044 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21045 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21046 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21047 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21048 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21049 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21050 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21051 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21052 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21053 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21054 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21055 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21056 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21057 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21058 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21059 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21060 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21061 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21062 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21063 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21064 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21065 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21066 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21067 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21068 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21069 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21070 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21071 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21072 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21073 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21074 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21075 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21076 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21077 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21078 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21079 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21080 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21081 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21082 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21083 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21084 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21085 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21086 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21087 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21088 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21089 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21090 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21091 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21092 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21093 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21094 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21095 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21096 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21097 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21098 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21099 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21100 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21101 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21102 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21103 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21104 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21105 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21106 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21107 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21108 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21109 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21110 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21111 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21112 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21113 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21114 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21115 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21116 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21117 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
21118
21119 #undef ARM_VARIANT
21120 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21121
21122 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21123 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21124 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21125 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21126 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21127 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21128 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21129 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21130 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21131 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21132 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21133 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21134 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21135 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21136 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21137 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21138 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21139 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21140 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21141 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21142 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21143 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21144 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21145 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21146 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21147 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21148 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21149 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21150 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21151 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21152 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21153 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21154 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21155 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21156 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21157 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21158 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21159 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21160 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21161 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21162 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21163 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21164 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21165 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21166 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21167 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21168 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21169 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21170 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21171 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21172 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21173 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21174 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21175 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21176 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21177 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21178 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21179
21180 #undef ARM_VARIANT
21181 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21182
21183 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21184 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21185 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21186 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21187 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21188 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21189 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21190 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21191 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21192 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21193 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21194 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21195 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21196 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
21197 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21198 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21199 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21200 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21201 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21202 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21203 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21204 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21205 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21206 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21207 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21208 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21209 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21210 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
21211 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21212 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21213 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21214 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21215 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21216 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
21217 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21218 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21219 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21220 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21221 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21222 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21223 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21224 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
21225 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21226 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21227 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21228 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21229 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21230 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21231 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21232 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21233 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21234 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21235 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21236 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21237 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21238 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21239 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21240 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21241 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21242 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21243 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21244 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21245 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21246 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21247 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21248 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21249 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21250 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21251 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21252 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21253 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21254 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21255 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21256 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21257 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21258 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21259
21260 /* ARMv8-M instructions. */
21261 #undef ARM_VARIANT
21262 #define ARM_VARIANT NULL
21263 #undef THUMB_VARIANT
21264 #define THUMB_VARIANT & arm_ext_v8m
21265 TUE("sg", 0, e97fe97f, 0, (), 0, noargs),
21266 TUE("blxns", 0, 4784, 1, (RRnpc), 0, t_blx),
21267 TUE("bxns", 0, 4704, 1, (RRnpc), 0, t_bx),
21268 TUE("tt", 0, e840f000, 2, (RRnpc, RRnpc), 0, tt),
21269 TUE("ttt", 0, e840f040, 2, (RRnpc, RRnpc), 0, tt),
21270 TUE("tta", 0, e840f080, 2, (RRnpc, RRnpc), 0, tt),
21271 TUE("ttat", 0, e840f0c0, 2, (RRnpc, RRnpc), 0, tt),
21272
21273 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21274 instructions behave as nop if no VFP is present. */
21275 #undef THUMB_VARIANT
21276 #define THUMB_VARIANT & arm_ext_v8m_main
21277 TUEc("vlldm", 0, ec300a00, 1, (RRnpc), rn),
21278 TUEc("vlstm", 0, ec200a00, 1, (RRnpc), rn),
21279 };
21280 #undef ARM_VARIANT
21281 #undef THUMB_VARIANT
21282 #undef TCE
21283 #undef TUE
21284 #undef TUF
21285 #undef TCC
21286 #undef cCE
21287 #undef cCL
21288 #undef C3E
21289 #undef CE
21290 #undef CM
21291 #undef UE
21292 #undef UF
21293 #undef UT
21294 #undef NUF
21295 #undef nUF
21296 #undef NCE
21297 #undef nCE
21298 #undef OPS0
21299 #undef OPS1
21300 #undef OPS2
21301 #undef OPS3
21302 #undef OPS4
21303 #undef OPS5
21304 #undef OPS6
21305 #undef do_0
21306 \f
21307 /* MD interface: bits in the object file. */
21308
21309 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21310 for use in the a.out file, and stores them in the array pointed to by buf.
21311 This knows about the endian-ness of the target machine and does
21312 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21313 2 (short) and 4 (long) Floating numbers are put out as a series of
21314 LITTLENUMS (shorts, here at least). */
21315
21316 void
21317 md_number_to_chars (char * buf, valueT val, int n)
21318 {
21319 if (target_big_endian)
21320 number_to_chars_bigendian (buf, val, n);
21321 else
21322 number_to_chars_littleendian (buf, val, n);
21323 }
21324
21325 static valueT
21326 md_chars_to_number (char * buf, int n)
21327 {
21328 valueT result = 0;
21329 unsigned char * where = (unsigned char *) buf;
21330
21331 if (target_big_endian)
21332 {
21333 while (n--)
21334 {
21335 result <<= 8;
21336 result |= (*where++ & 255);
21337 }
21338 }
21339 else
21340 {
21341 while (n--)
21342 {
21343 result <<= 8;
21344 result |= (where[n] & 255);
21345 }
21346 }
21347
21348 return result;
21349 }
21350
21351 /* MD interface: Sections. */
21352
21353 /* Calculate the maximum variable size (i.e., excluding fr_fix)
21354 that an rs_machine_dependent frag may reach. */
21355
21356 unsigned int
21357 arm_frag_max_var (fragS *fragp)
21358 {
21359 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21360 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21361
21362 Note that we generate relaxable instructions even for cases that don't
21363 really need it, like an immediate that's a trivial constant. So we're
21364 overestimating the instruction size for some of those cases. Rather
21365 than putting more intelligence here, it would probably be better to
21366 avoid generating a relaxation frag in the first place when it can be
21367 determined up front that a short instruction will suffice. */
21368
21369 gas_assert (fragp->fr_type == rs_machine_dependent);
21370 return INSN_SIZE;
21371 }
21372
21373 /* Estimate the size of a frag before relaxing. Assume everything fits in
21374 2 bytes. */
21375
21376 int
21377 md_estimate_size_before_relax (fragS * fragp,
21378 segT segtype ATTRIBUTE_UNUSED)
21379 {
21380 fragp->fr_var = 2;
21381 return 2;
21382 }
21383
21384 /* Convert a machine dependent frag. */
21385
21386 void
21387 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21388 {
21389 unsigned long insn;
21390 unsigned long old_op;
21391 char *buf;
21392 expressionS exp;
21393 fixS *fixp;
21394 int reloc_type;
21395 int pc_rel;
21396 int opcode;
21397
21398 buf = fragp->fr_literal + fragp->fr_fix;
21399
21400 old_op = bfd_get_16(abfd, buf);
21401 if (fragp->fr_symbol)
21402 {
21403 exp.X_op = O_symbol;
21404 exp.X_add_symbol = fragp->fr_symbol;
21405 }
21406 else
21407 {
21408 exp.X_op = O_constant;
21409 }
21410 exp.X_add_number = fragp->fr_offset;
21411 opcode = fragp->fr_subtype;
21412 switch (opcode)
21413 {
21414 case T_MNEM_ldr_pc:
21415 case T_MNEM_ldr_pc2:
21416 case T_MNEM_ldr_sp:
21417 case T_MNEM_str_sp:
21418 case T_MNEM_ldr:
21419 case T_MNEM_ldrb:
21420 case T_MNEM_ldrh:
21421 case T_MNEM_str:
21422 case T_MNEM_strb:
21423 case T_MNEM_strh:
21424 if (fragp->fr_var == 4)
21425 {
21426 insn = THUMB_OP32 (opcode);
21427 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21428 {
21429 insn |= (old_op & 0x700) << 4;
21430 }
21431 else
21432 {
21433 insn |= (old_op & 7) << 12;
21434 insn |= (old_op & 0x38) << 13;
21435 }
21436 insn |= 0x00000c00;
21437 put_thumb32_insn (buf, insn);
21438 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21439 }
21440 else
21441 {
21442 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21443 }
21444 pc_rel = (opcode == T_MNEM_ldr_pc2);
21445 break;
21446 case T_MNEM_adr:
21447 if (fragp->fr_var == 4)
21448 {
21449 insn = THUMB_OP32 (opcode);
21450 insn |= (old_op & 0xf0) << 4;
21451 put_thumb32_insn (buf, insn);
21452 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21453 }
21454 else
21455 {
21456 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21457 exp.X_add_number -= 4;
21458 }
21459 pc_rel = 1;
21460 break;
21461 case T_MNEM_mov:
21462 case T_MNEM_movs:
21463 case T_MNEM_cmp:
21464 case T_MNEM_cmn:
21465 if (fragp->fr_var == 4)
21466 {
21467 int r0off = (opcode == T_MNEM_mov
21468 || opcode == T_MNEM_movs) ? 0 : 8;
21469 insn = THUMB_OP32 (opcode);
21470 insn = (insn & 0xe1ffffff) | 0x10000000;
21471 insn |= (old_op & 0x700) << r0off;
21472 put_thumb32_insn (buf, insn);
21473 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21474 }
21475 else
21476 {
21477 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21478 }
21479 pc_rel = 0;
21480 break;
21481 case T_MNEM_b:
21482 if (fragp->fr_var == 4)
21483 {
21484 insn = THUMB_OP32(opcode);
21485 put_thumb32_insn (buf, insn);
21486 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21487 }
21488 else
21489 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21490 pc_rel = 1;
21491 break;
21492 case T_MNEM_bcond:
21493 if (fragp->fr_var == 4)
21494 {
21495 insn = THUMB_OP32(opcode);
21496 insn |= (old_op & 0xf00) << 14;
21497 put_thumb32_insn (buf, insn);
21498 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21499 }
21500 else
21501 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21502 pc_rel = 1;
21503 break;
21504 case T_MNEM_add_sp:
21505 case T_MNEM_add_pc:
21506 case T_MNEM_inc_sp:
21507 case T_MNEM_dec_sp:
21508 if (fragp->fr_var == 4)
21509 {
21510 /* ??? Choose between add and addw. */
21511 insn = THUMB_OP32 (opcode);
21512 insn |= (old_op & 0xf0) << 4;
21513 put_thumb32_insn (buf, insn);
21514 if (opcode == T_MNEM_add_pc)
21515 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21516 else
21517 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21518 }
21519 else
21520 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21521 pc_rel = 0;
21522 break;
21523
21524 case T_MNEM_addi:
21525 case T_MNEM_addis:
21526 case T_MNEM_subi:
21527 case T_MNEM_subis:
21528 if (fragp->fr_var == 4)
21529 {
21530 insn = THUMB_OP32 (opcode);
21531 insn |= (old_op & 0xf0) << 4;
21532 insn |= (old_op & 0xf) << 16;
21533 put_thumb32_insn (buf, insn);
21534 if (insn & (1 << 20))
21535 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21536 else
21537 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21538 }
21539 else
21540 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21541 pc_rel = 0;
21542 break;
21543 default:
21544 abort ();
21545 }
21546 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21547 (enum bfd_reloc_code_real) reloc_type);
21548 fixp->fx_file = fragp->fr_file;
21549 fixp->fx_line = fragp->fr_line;
21550 fragp->fr_fix += fragp->fr_var;
21551
21552 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21553 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21554 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21555 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
21556 }
21557
21558 /* Return the size of a relaxable immediate operand instruction.
21559 SHIFT and SIZE specify the form of the allowable immediate. */
21560 static int
21561 relax_immediate (fragS *fragp, int size, int shift)
21562 {
21563 offsetT offset;
21564 offsetT mask;
21565 offsetT low;
21566
21567 /* ??? Should be able to do better than this. */
21568 if (fragp->fr_symbol)
21569 return 4;
21570
21571 low = (1 << shift) - 1;
21572 mask = (1 << (shift + size)) - (1 << shift);
21573 offset = fragp->fr_offset;
21574 /* Force misaligned offsets to 32-bit variant. */
21575 if (offset & low)
21576 return 4;
21577 if (offset & ~mask)
21578 return 4;
21579 return 2;
21580 }
21581
21582 /* Get the address of a symbol during relaxation. */
21583 static addressT
21584 relaxed_symbol_addr (fragS *fragp, long stretch)
21585 {
21586 fragS *sym_frag;
21587 addressT addr;
21588 symbolS *sym;
21589
21590 sym = fragp->fr_symbol;
21591 sym_frag = symbol_get_frag (sym);
21592 know (S_GET_SEGMENT (sym) != absolute_section
21593 || sym_frag == &zero_address_frag);
21594 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21595
21596 /* If frag has yet to be reached on this pass, assume it will
21597 move by STRETCH just as we did. If this is not so, it will
21598 be because some frag between grows, and that will force
21599 another pass. */
21600
21601 if (stretch != 0
21602 && sym_frag->relax_marker != fragp->relax_marker)
21603 {
21604 fragS *f;
21605
21606 /* Adjust stretch for any alignment frag. Note that if have
21607 been expanding the earlier code, the symbol may be
21608 defined in what appears to be an earlier frag. FIXME:
21609 This doesn't handle the fr_subtype field, which specifies
21610 a maximum number of bytes to skip when doing an
21611 alignment. */
21612 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21613 {
21614 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21615 {
21616 if (stretch < 0)
21617 stretch = - ((- stretch)
21618 & ~ ((1 << (int) f->fr_offset) - 1));
21619 else
21620 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21621 if (stretch == 0)
21622 break;
21623 }
21624 }
21625 if (f != NULL)
21626 addr += stretch;
21627 }
21628
21629 return addr;
21630 }
21631
21632 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
21633 load. */
21634 static int
21635 relax_adr (fragS *fragp, asection *sec, long stretch)
21636 {
21637 addressT addr;
21638 offsetT val;
21639
21640 /* Assume worst case for symbols not known to be in the same section. */
21641 if (fragp->fr_symbol == NULL
21642 || !S_IS_DEFINED (fragp->fr_symbol)
21643 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21644 || S_IS_WEAK (fragp->fr_symbol))
21645 return 4;
21646
21647 val = relaxed_symbol_addr (fragp, stretch);
21648 addr = fragp->fr_address + fragp->fr_fix;
21649 addr = (addr + 4) & ~3;
21650 /* Force misaligned targets to 32-bit variant. */
21651 if (val & 3)
21652 return 4;
21653 val -= addr;
21654 if (val < 0 || val > 1020)
21655 return 4;
21656 return 2;
21657 }
21658
21659 /* Return the size of a relaxable add/sub immediate instruction. */
21660 static int
21661 relax_addsub (fragS *fragp, asection *sec)
21662 {
21663 char *buf;
21664 int op;
21665
21666 buf = fragp->fr_literal + fragp->fr_fix;
21667 op = bfd_get_16(sec->owner, buf);
21668 if ((op & 0xf) == ((op >> 4) & 0xf))
21669 return relax_immediate (fragp, 8, 0);
21670 else
21671 return relax_immediate (fragp, 3, 0);
21672 }
21673
21674 /* Return TRUE iff the definition of symbol S could be pre-empted
21675 (overridden) at link or load time. */
21676 static bfd_boolean
21677 symbol_preemptible (symbolS *s)
21678 {
21679 /* Weak symbols can always be pre-empted. */
21680 if (S_IS_WEAK (s))
21681 return TRUE;
21682
21683 /* Non-global symbols cannot be pre-empted. */
21684 if (! S_IS_EXTERNAL (s))
21685 return FALSE;
21686
21687 #ifdef OBJ_ELF
21688 /* In ELF, a global symbol can be marked protected, or private. In that
21689 case it can't be pre-empted (other definitions in the same link unit
21690 would violate the ODR). */
21691 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21692 return FALSE;
21693 #endif
21694
21695 /* Other global symbols might be pre-empted. */
21696 return TRUE;
21697 }
21698
21699 /* Return the size of a relaxable branch instruction. BITS is the
21700 size of the offset field in the narrow instruction. */
21701
21702 static int
21703 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
21704 {
21705 addressT addr;
21706 offsetT val;
21707 offsetT limit;
21708
21709 /* Assume worst case for symbols not known to be in the same section. */
21710 if (!S_IS_DEFINED (fragp->fr_symbol)
21711 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21712 || S_IS_WEAK (fragp->fr_symbol))
21713 return 4;
21714
21715 #ifdef OBJ_ELF
21716 /* A branch to a function in ARM state will require interworking. */
21717 if (S_IS_DEFINED (fragp->fr_symbol)
21718 && ARM_IS_FUNC (fragp->fr_symbol))
21719 return 4;
21720 #endif
21721
21722 if (symbol_preemptible (fragp->fr_symbol))
21723 return 4;
21724
21725 val = relaxed_symbol_addr (fragp, stretch);
21726 addr = fragp->fr_address + fragp->fr_fix + 4;
21727 val -= addr;
21728
21729 /* Offset is a signed value *2 */
21730 limit = 1 << bits;
21731 if (val >= limit || val < -limit)
21732 return 4;
21733 return 2;
21734 }
21735
21736
21737 /* Relax a machine dependent frag. This returns the amount by which
21738 the current size of the frag should change. */
21739
21740 int
21741 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
21742 {
21743 int oldsize;
21744 int newsize;
21745
21746 oldsize = fragp->fr_var;
21747 switch (fragp->fr_subtype)
21748 {
21749 case T_MNEM_ldr_pc2:
21750 newsize = relax_adr (fragp, sec, stretch);
21751 break;
21752 case T_MNEM_ldr_pc:
21753 case T_MNEM_ldr_sp:
21754 case T_MNEM_str_sp:
21755 newsize = relax_immediate (fragp, 8, 2);
21756 break;
21757 case T_MNEM_ldr:
21758 case T_MNEM_str:
21759 newsize = relax_immediate (fragp, 5, 2);
21760 break;
21761 case T_MNEM_ldrh:
21762 case T_MNEM_strh:
21763 newsize = relax_immediate (fragp, 5, 1);
21764 break;
21765 case T_MNEM_ldrb:
21766 case T_MNEM_strb:
21767 newsize = relax_immediate (fragp, 5, 0);
21768 break;
21769 case T_MNEM_adr:
21770 newsize = relax_adr (fragp, sec, stretch);
21771 break;
21772 case T_MNEM_mov:
21773 case T_MNEM_movs:
21774 case T_MNEM_cmp:
21775 case T_MNEM_cmn:
21776 newsize = relax_immediate (fragp, 8, 0);
21777 break;
21778 case T_MNEM_b:
21779 newsize = relax_branch (fragp, sec, 11, stretch);
21780 break;
21781 case T_MNEM_bcond:
21782 newsize = relax_branch (fragp, sec, 8, stretch);
21783 break;
21784 case T_MNEM_add_sp:
21785 case T_MNEM_add_pc:
21786 newsize = relax_immediate (fragp, 8, 2);
21787 break;
21788 case T_MNEM_inc_sp:
21789 case T_MNEM_dec_sp:
21790 newsize = relax_immediate (fragp, 7, 2);
21791 break;
21792 case T_MNEM_addi:
21793 case T_MNEM_addis:
21794 case T_MNEM_subi:
21795 case T_MNEM_subis:
21796 newsize = relax_addsub (fragp, sec);
21797 break;
21798 default:
21799 abort ();
21800 }
21801
21802 fragp->fr_var = newsize;
21803 /* Freeze wide instructions that are at or before the same location as
21804 in the previous pass. This avoids infinite loops.
21805 Don't freeze them unconditionally because targets may be artificially
21806 misaligned by the expansion of preceding frags. */
21807 if (stretch <= 0 && newsize > 2)
21808 {
21809 md_convert_frag (sec->owner, sec, fragp);
21810 frag_wane (fragp);
21811 }
21812
21813 return newsize - oldsize;
21814 }
21815
21816 /* Round up a section size to the appropriate boundary. */
21817
21818 valueT
21819 md_section_align (segT segment ATTRIBUTE_UNUSED,
21820 valueT size)
21821 {
21822 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
21823 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
21824 {
21825 /* For a.out, force the section size to be aligned. If we don't do
21826 this, BFD will align it for us, but it will not write out the
21827 final bytes of the section. This may be a bug in BFD, but it is
21828 easier to fix it here since that is how the other a.out targets
21829 work. */
21830 int align;
21831
21832 align = bfd_get_section_alignment (stdoutput, segment);
21833 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
21834 }
21835 #endif
21836
21837 return size;
21838 }
21839
21840 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
21841 of an rs_align_code fragment. */
21842
21843 void
21844 arm_handle_align (fragS * fragP)
21845 {
21846 static unsigned char const arm_noop[2][2][4] =
21847 {
21848 { /* ARMv1 */
21849 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
21850 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
21851 },
21852 { /* ARMv6k */
21853 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
21854 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
21855 },
21856 };
21857 static unsigned char const thumb_noop[2][2][2] =
21858 {
21859 { /* Thumb-1 */
21860 {0xc0, 0x46}, /* LE */
21861 {0x46, 0xc0}, /* BE */
21862 },
21863 { /* Thumb-2 */
21864 {0x00, 0xbf}, /* LE */
21865 {0xbf, 0x00} /* BE */
21866 }
21867 };
21868 static unsigned char const wide_thumb_noop[2][4] =
21869 { /* Wide Thumb-2 */
21870 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
21871 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
21872 };
21873
21874 unsigned bytes, fix, noop_size;
21875 char * p;
21876 const unsigned char * noop;
21877 const unsigned char *narrow_noop = NULL;
21878 #ifdef OBJ_ELF
21879 enum mstate state;
21880 #endif
21881
21882 if (fragP->fr_type != rs_align_code)
21883 return;
21884
21885 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
21886 p = fragP->fr_literal + fragP->fr_fix;
21887 fix = 0;
21888
21889 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
21890 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
21891
21892 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
21893
21894 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
21895 {
21896 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21897 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
21898 {
21899 narrow_noop = thumb_noop[1][target_big_endian];
21900 noop = wide_thumb_noop[target_big_endian];
21901 }
21902 else
21903 noop = thumb_noop[0][target_big_endian];
21904 noop_size = 2;
21905 #ifdef OBJ_ELF
21906 state = MAP_THUMB;
21907 #endif
21908 }
21909 else
21910 {
21911 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21912 ? selected_cpu : arm_arch_none,
21913 arm_ext_v6k) != 0]
21914 [target_big_endian];
21915 noop_size = 4;
21916 #ifdef OBJ_ELF
21917 state = MAP_ARM;
21918 #endif
21919 }
21920
21921 fragP->fr_var = noop_size;
21922
21923 if (bytes & (noop_size - 1))
21924 {
21925 fix = bytes & (noop_size - 1);
21926 #ifdef OBJ_ELF
21927 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
21928 #endif
21929 memset (p, 0, fix);
21930 p += fix;
21931 bytes -= fix;
21932 }
21933
21934 if (narrow_noop)
21935 {
21936 if (bytes & noop_size)
21937 {
21938 /* Insert a narrow noop. */
21939 memcpy (p, narrow_noop, noop_size);
21940 p += noop_size;
21941 bytes -= noop_size;
21942 fix += noop_size;
21943 }
21944
21945 /* Use wide noops for the remainder */
21946 noop_size = 4;
21947 }
21948
21949 while (bytes >= noop_size)
21950 {
21951 memcpy (p, noop, noop_size);
21952 p += noop_size;
21953 bytes -= noop_size;
21954 fix += noop_size;
21955 }
21956
21957 fragP->fr_fix += fix;
21958 }
21959
21960 /* Called from md_do_align. Used to create an alignment
21961 frag in a code section. */
21962
21963 void
21964 arm_frag_align_code (int n, int max)
21965 {
21966 char * p;
21967
21968 /* We assume that there will never be a requirement
21969 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
21970 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
21971 {
21972 char err_msg[128];
21973
21974 sprintf (err_msg,
21975 _("alignments greater than %d bytes not supported in .text sections."),
21976 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
21977 as_fatal ("%s", err_msg);
21978 }
21979
21980 p = frag_var (rs_align_code,
21981 MAX_MEM_FOR_RS_ALIGN_CODE,
21982 1,
21983 (relax_substateT) max,
21984 (symbolS *) NULL,
21985 (offsetT) n,
21986 (char *) NULL);
21987 *p = 0;
21988 }
21989
21990 /* Perform target specific initialisation of a frag.
21991 Note - despite the name this initialisation is not done when the frag
21992 is created, but only when its type is assigned. A frag can be created
21993 and used a long time before its type is set, so beware of assuming that
21994 this initialisation is performed first. */
21995
21996 #ifndef OBJ_ELF
21997 void
21998 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
21999 {
22000 /* Record whether this frag is in an ARM or a THUMB area. */
22001 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22002 }
22003
22004 #else /* OBJ_ELF is defined. */
22005 void
22006 arm_init_frag (fragS * fragP, int max_chars)
22007 {
22008 int frag_thumb_mode;
22009
22010 /* If the current ARM vs THUMB mode has not already
22011 been recorded into this frag then do so now. */
22012 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
22013 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22014
22015 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
22016
22017 /* Record a mapping symbol for alignment frags. We will delete this
22018 later if the alignment ends up empty. */
22019 switch (fragP->fr_type)
22020 {
22021 case rs_align:
22022 case rs_align_test:
22023 case rs_fill:
22024 mapping_state_2 (MAP_DATA, max_chars);
22025 break;
22026 case rs_align_code:
22027 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
22028 break;
22029 default:
22030 break;
22031 }
22032 }
22033
22034 /* When we change sections we need to issue a new mapping symbol. */
22035
22036 void
22037 arm_elf_change_section (void)
22038 {
22039 /* Link an unlinked unwind index table section to the .text section. */
22040 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22041 && elf_linked_to_section (now_seg) == NULL)
22042 elf_linked_to_section (now_seg) = text_section;
22043 }
22044
22045 int
22046 arm_elf_section_type (const char * str, size_t len)
22047 {
22048 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22049 return SHT_ARM_EXIDX;
22050
22051 return -1;
22052 }
22053 \f
22054 /* Code to deal with unwinding tables. */
22055
22056 static void add_unwind_adjustsp (offsetT);
22057
22058 /* Generate any deferred unwind frame offset. */
22059
22060 static void
22061 flush_pending_unwind (void)
22062 {
22063 offsetT offset;
22064
22065 offset = unwind.pending_offset;
22066 unwind.pending_offset = 0;
22067 if (offset != 0)
22068 add_unwind_adjustsp (offset);
22069 }
22070
22071 /* Add an opcode to this list for this function. Two-byte opcodes should
22072 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22073 order. */
22074
22075 static void
22076 add_unwind_opcode (valueT op, int length)
22077 {
22078 /* Add any deferred stack adjustment. */
22079 if (unwind.pending_offset)
22080 flush_pending_unwind ();
22081
22082 unwind.sp_restored = 0;
22083
22084 if (unwind.opcode_count + length > unwind.opcode_alloc)
22085 {
22086 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22087 if (unwind.opcodes)
22088 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22089 unwind.opcode_alloc);
22090 else
22091 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
22092 }
22093 while (length > 0)
22094 {
22095 length--;
22096 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22097 op >>= 8;
22098 unwind.opcode_count++;
22099 }
22100 }
22101
22102 /* Add unwind opcodes to adjust the stack pointer. */
22103
22104 static void
22105 add_unwind_adjustsp (offsetT offset)
22106 {
22107 valueT op;
22108
22109 if (offset > 0x200)
22110 {
22111 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22112 char bytes[5];
22113 int n;
22114 valueT o;
22115
22116 /* Long form: 0xb2, uleb128. */
22117 /* This might not fit in a word so add the individual bytes,
22118 remembering the list is built in reverse order. */
22119 o = (valueT) ((offset - 0x204) >> 2);
22120 if (o == 0)
22121 add_unwind_opcode (0, 1);
22122
22123 /* Calculate the uleb128 encoding of the offset. */
22124 n = 0;
22125 while (o)
22126 {
22127 bytes[n] = o & 0x7f;
22128 o >>= 7;
22129 if (o)
22130 bytes[n] |= 0x80;
22131 n++;
22132 }
22133 /* Add the insn. */
22134 for (; n; n--)
22135 add_unwind_opcode (bytes[n - 1], 1);
22136 add_unwind_opcode (0xb2, 1);
22137 }
22138 else if (offset > 0x100)
22139 {
22140 /* Two short opcodes. */
22141 add_unwind_opcode (0x3f, 1);
22142 op = (offset - 0x104) >> 2;
22143 add_unwind_opcode (op, 1);
22144 }
22145 else if (offset > 0)
22146 {
22147 /* Short opcode. */
22148 op = (offset - 4) >> 2;
22149 add_unwind_opcode (op, 1);
22150 }
22151 else if (offset < 0)
22152 {
22153 offset = -offset;
22154 while (offset > 0x100)
22155 {
22156 add_unwind_opcode (0x7f, 1);
22157 offset -= 0x100;
22158 }
22159 op = ((offset - 4) >> 2) | 0x40;
22160 add_unwind_opcode (op, 1);
22161 }
22162 }
22163
22164 /* Finish the list of unwind opcodes for this function. */
22165 static void
22166 finish_unwind_opcodes (void)
22167 {
22168 valueT op;
22169
22170 if (unwind.fp_used)
22171 {
22172 /* Adjust sp as necessary. */
22173 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22174 flush_pending_unwind ();
22175
22176 /* After restoring sp from the frame pointer. */
22177 op = 0x90 | unwind.fp_reg;
22178 add_unwind_opcode (op, 1);
22179 }
22180 else
22181 flush_pending_unwind ();
22182 }
22183
22184
22185 /* Start an exception table entry. If idx is nonzero this is an index table
22186 entry. */
22187
22188 static void
22189 start_unwind_section (const segT text_seg, int idx)
22190 {
22191 const char * text_name;
22192 const char * prefix;
22193 const char * prefix_once;
22194 const char * group_name;
22195 char * sec_name;
22196 int type;
22197 int flags;
22198 int linkonce;
22199
22200 if (idx)
22201 {
22202 prefix = ELF_STRING_ARM_unwind;
22203 prefix_once = ELF_STRING_ARM_unwind_once;
22204 type = SHT_ARM_EXIDX;
22205 }
22206 else
22207 {
22208 prefix = ELF_STRING_ARM_unwind_info;
22209 prefix_once = ELF_STRING_ARM_unwind_info_once;
22210 type = SHT_PROGBITS;
22211 }
22212
22213 text_name = segment_name (text_seg);
22214 if (streq (text_name, ".text"))
22215 text_name = "";
22216
22217 if (strncmp (text_name, ".gnu.linkonce.t.",
22218 strlen (".gnu.linkonce.t.")) == 0)
22219 {
22220 prefix = prefix_once;
22221 text_name += strlen (".gnu.linkonce.t.");
22222 }
22223
22224 sec_name = concat (prefix, text_name, (char *) NULL);
22225
22226 flags = SHF_ALLOC;
22227 linkonce = 0;
22228 group_name = 0;
22229
22230 /* Handle COMDAT group. */
22231 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
22232 {
22233 group_name = elf_group_name (text_seg);
22234 if (group_name == NULL)
22235 {
22236 as_bad (_("Group section `%s' has no group signature"),
22237 segment_name (text_seg));
22238 ignore_rest_of_line ();
22239 return;
22240 }
22241 flags |= SHF_GROUP;
22242 linkonce = 1;
22243 }
22244
22245 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22246 linkonce, 0);
22247
22248 /* Set the section link for index tables. */
22249 if (idx)
22250 elf_linked_to_section (now_seg) = text_seg;
22251 }
22252
22253
22254 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22255 personality routine data. Returns zero, or the index table value for
22256 an inline entry. */
22257
22258 static valueT
22259 create_unwind_entry (int have_data)
22260 {
22261 int size;
22262 addressT where;
22263 char *ptr;
22264 /* The current word of data. */
22265 valueT data;
22266 /* The number of bytes left in this word. */
22267 int n;
22268
22269 finish_unwind_opcodes ();
22270
22271 /* Remember the current text section. */
22272 unwind.saved_seg = now_seg;
22273 unwind.saved_subseg = now_subseg;
22274
22275 start_unwind_section (now_seg, 0);
22276
22277 if (unwind.personality_routine == NULL)
22278 {
22279 if (unwind.personality_index == -2)
22280 {
22281 if (have_data)
22282 as_bad (_("handlerdata in cantunwind frame"));
22283 return 1; /* EXIDX_CANTUNWIND. */
22284 }
22285
22286 /* Use a default personality routine if none is specified. */
22287 if (unwind.personality_index == -1)
22288 {
22289 if (unwind.opcode_count > 3)
22290 unwind.personality_index = 1;
22291 else
22292 unwind.personality_index = 0;
22293 }
22294
22295 /* Space for the personality routine entry. */
22296 if (unwind.personality_index == 0)
22297 {
22298 if (unwind.opcode_count > 3)
22299 as_bad (_("too many unwind opcodes for personality routine 0"));
22300
22301 if (!have_data)
22302 {
22303 /* All the data is inline in the index table. */
22304 data = 0x80;
22305 n = 3;
22306 while (unwind.opcode_count > 0)
22307 {
22308 unwind.opcode_count--;
22309 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22310 n--;
22311 }
22312
22313 /* Pad with "finish" opcodes. */
22314 while (n--)
22315 data = (data << 8) | 0xb0;
22316
22317 return data;
22318 }
22319 size = 0;
22320 }
22321 else
22322 /* We get two opcodes "free" in the first word. */
22323 size = unwind.opcode_count - 2;
22324 }
22325 else
22326 {
22327 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22328 if (unwind.personality_index != -1)
22329 {
22330 as_bad (_("attempt to recreate an unwind entry"));
22331 return 1;
22332 }
22333
22334 /* An extra byte is required for the opcode count. */
22335 size = unwind.opcode_count + 1;
22336 }
22337
22338 size = (size + 3) >> 2;
22339 if (size > 0xff)
22340 as_bad (_("too many unwind opcodes"));
22341
22342 frag_align (2, 0, 0);
22343 record_alignment (now_seg, 2);
22344 unwind.table_entry = expr_build_dot ();
22345
22346 /* Allocate the table entry. */
22347 ptr = frag_more ((size << 2) + 4);
22348 /* PR 13449: Zero the table entries in case some of them are not used. */
22349 memset (ptr, 0, (size << 2) + 4);
22350 where = frag_now_fix () - ((size << 2) + 4);
22351
22352 switch (unwind.personality_index)
22353 {
22354 case -1:
22355 /* ??? Should this be a PLT generating relocation? */
22356 /* Custom personality routine. */
22357 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22358 BFD_RELOC_ARM_PREL31);
22359
22360 where += 4;
22361 ptr += 4;
22362
22363 /* Set the first byte to the number of additional words. */
22364 data = size > 0 ? size - 1 : 0;
22365 n = 3;
22366 break;
22367
22368 /* ABI defined personality routines. */
22369 case 0:
22370 /* Three opcodes bytes are packed into the first word. */
22371 data = 0x80;
22372 n = 3;
22373 break;
22374
22375 case 1:
22376 case 2:
22377 /* The size and first two opcode bytes go in the first word. */
22378 data = ((0x80 + unwind.personality_index) << 8) | size;
22379 n = 2;
22380 break;
22381
22382 default:
22383 /* Should never happen. */
22384 abort ();
22385 }
22386
22387 /* Pack the opcodes into words (MSB first), reversing the list at the same
22388 time. */
22389 while (unwind.opcode_count > 0)
22390 {
22391 if (n == 0)
22392 {
22393 md_number_to_chars (ptr, data, 4);
22394 ptr += 4;
22395 n = 4;
22396 data = 0;
22397 }
22398 unwind.opcode_count--;
22399 n--;
22400 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22401 }
22402
22403 /* Finish off the last word. */
22404 if (n < 4)
22405 {
22406 /* Pad with "finish" opcodes. */
22407 while (n--)
22408 data = (data << 8) | 0xb0;
22409
22410 md_number_to_chars (ptr, data, 4);
22411 }
22412
22413 if (!have_data)
22414 {
22415 /* Add an empty descriptor if there is no user-specified data. */
22416 ptr = frag_more (4);
22417 md_number_to_chars (ptr, 0, 4);
22418 }
22419
22420 return 0;
22421 }
22422
22423
22424 /* Initialize the DWARF-2 unwind information for this procedure. */
22425
22426 void
22427 tc_arm_frame_initial_instructions (void)
22428 {
22429 cfi_add_CFA_def_cfa (REG_SP, 0);
22430 }
22431 #endif /* OBJ_ELF */
22432
22433 /* Convert REGNAME to a DWARF-2 register number. */
22434
22435 int
22436 tc_arm_regname_to_dw2regnum (char *regname)
22437 {
22438 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
22439 if (reg != FAIL)
22440 return reg;
22441
22442 /* PR 16694: Allow VFP registers as well. */
22443 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22444 if (reg != FAIL)
22445 return 64 + reg;
22446
22447 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22448 if (reg != FAIL)
22449 return reg + 256;
22450
22451 return -1;
22452 }
22453
22454 #ifdef TE_PE
22455 void
22456 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
22457 {
22458 expressionS exp;
22459
22460 exp.X_op = O_secrel;
22461 exp.X_add_symbol = symbol;
22462 exp.X_add_number = 0;
22463 emit_expr (&exp, size);
22464 }
22465 #endif
22466
22467 /* MD interface: Symbol and relocation handling. */
22468
22469 /* Return the address within the segment that a PC-relative fixup is
22470 relative to. For ARM, PC-relative fixups applied to instructions
22471 are generally relative to the location of the fixup plus 8 bytes.
22472 Thumb branches are offset by 4, and Thumb loads relative to PC
22473 require special handling. */
22474
22475 long
22476 md_pcrel_from_section (fixS * fixP, segT seg)
22477 {
22478 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22479
22480 /* If this is pc-relative and we are going to emit a relocation
22481 then we just want to put out any pipeline compensation that the linker
22482 will need. Otherwise we want to use the calculated base.
22483 For WinCE we skip the bias for externals as well, since this
22484 is how the MS ARM-CE assembler behaves and we want to be compatible. */
22485 if (fixP->fx_pcrel
22486 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
22487 || (arm_force_relocation (fixP)
22488 #ifdef TE_WINCE
22489 && !S_IS_EXTERNAL (fixP->fx_addsy)
22490 #endif
22491 )))
22492 base = 0;
22493
22494
22495 switch (fixP->fx_r_type)
22496 {
22497 /* PC relative addressing on the Thumb is slightly odd as the
22498 bottom two bits of the PC are forced to zero for the
22499 calculation. This happens *after* application of the
22500 pipeline offset. However, Thumb adrl already adjusts for
22501 this, so we need not do it again. */
22502 case BFD_RELOC_ARM_THUMB_ADD:
22503 return base & ~3;
22504
22505 case BFD_RELOC_ARM_THUMB_OFFSET:
22506 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22507 case BFD_RELOC_ARM_T32_ADD_PC12:
22508 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22509 return (base + 4) & ~3;
22510
22511 /* Thumb branches are simply offset by +4. */
22512 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22513 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22514 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22515 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22516 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22517 return base + 4;
22518
22519 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22520 if (fixP->fx_addsy
22521 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22522 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22523 && ARM_IS_FUNC (fixP->fx_addsy)
22524 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22525 base = fixP->fx_where + fixP->fx_frag->fr_address;
22526 return base + 4;
22527
22528 /* BLX is like branches above, but forces the low two bits of PC to
22529 zero. */
22530 case BFD_RELOC_THUMB_PCREL_BLX:
22531 if (fixP->fx_addsy
22532 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22533 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22534 && THUMB_IS_FUNC (fixP->fx_addsy)
22535 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22536 base = fixP->fx_where + fixP->fx_frag->fr_address;
22537 return (base + 4) & ~3;
22538
22539 /* ARM mode branches are offset by +8. However, the Windows CE
22540 loader expects the relocation not to take this into account. */
22541 case BFD_RELOC_ARM_PCREL_BLX:
22542 if (fixP->fx_addsy
22543 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22544 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22545 && ARM_IS_FUNC (fixP->fx_addsy)
22546 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22547 base = fixP->fx_where + fixP->fx_frag->fr_address;
22548 return base + 8;
22549
22550 case BFD_RELOC_ARM_PCREL_CALL:
22551 if (fixP->fx_addsy
22552 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22553 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22554 && THUMB_IS_FUNC (fixP->fx_addsy)
22555 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22556 base = fixP->fx_where + fixP->fx_frag->fr_address;
22557 return base + 8;
22558
22559 case BFD_RELOC_ARM_PCREL_BRANCH:
22560 case BFD_RELOC_ARM_PCREL_JUMP:
22561 case BFD_RELOC_ARM_PLT32:
22562 #ifdef TE_WINCE
22563 /* When handling fixups immediately, because we have already
22564 discovered the value of a symbol, or the address of the frag involved
22565 we must account for the offset by +8, as the OS loader will never see the reloc.
22566 see fixup_segment() in write.c
22567 The S_IS_EXTERNAL test handles the case of global symbols.
22568 Those need the calculated base, not just the pipe compensation the linker will need. */
22569 if (fixP->fx_pcrel
22570 && fixP->fx_addsy != NULL
22571 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22572 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22573 return base + 8;
22574 return base;
22575 #else
22576 return base + 8;
22577 #endif
22578
22579
22580 /* ARM mode loads relative to PC are also offset by +8. Unlike
22581 branches, the Windows CE loader *does* expect the relocation
22582 to take this into account. */
22583 case BFD_RELOC_ARM_OFFSET_IMM:
22584 case BFD_RELOC_ARM_OFFSET_IMM8:
22585 case BFD_RELOC_ARM_HWLITERAL:
22586 case BFD_RELOC_ARM_LITERAL:
22587 case BFD_RELOC_ARM_CP_OFF_IMM:
22588 return base + 8;
22589
22590
22591 /* Other PC-relative relocations are un-offset. */
22592 default:
22593 return base;
22594 }
22595 }
22596
22597 static bfd_boolean flag_warn_syms = TRUE;
22598
22599 bfd_boolean
22600 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
22601 {
22602 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22603 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22604 does mean that the resulting code might be very confusing to the reader.
22605 Also this warning can be triggered if the user omits an operand before
22606 an immediate address, eg:
22607
22608 LDR =foo
22609
22610 GAS treats this as an assignment of the value of the symbol foo to a
22611 symbol LDR, and so (without this code) it will not issue any kind of
22612 warning or error message.
22613
22614 Note - ARM instructions are case-insensitive but the strings in the hash
22615 table are all stored in lower case, so we must first ensure that name is
22616 lower case too. */
22617 if (flag_warn_syms && arm_ops_hsh)
22618 {
22619 char * nbuf = strdup (name);
22620 char * p;
22621
22622 for (p = nbuf; *p; p++)
22623 *p = TOLOWER (*p);
22624 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22625 {
22626 static struct hash_control * already_warned = NULL;
22627
22628 if (already_warned == NULL)
22629 already_warned = hash_new ();
22630 /* Only warn about the symbol once. To keep the code
22631 simple we let hash_insert do the lookup for us. */
22632 if (hash_insert (already_warned, name, NULL) == NULL)
22633 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
22634 }
22635 else
22636 free (nbuf);
22637 }
22638
22639 return FALSE;
22640 }
22641
22642 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22643 Otherwise we have no need to default values of symbols. */
22644
22645 symbolS *
22646 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22647 {
22648 #ifdef OBJ_ELF
22649 if (name[0] == '_' && name[1] == 'G'
22650 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22651 {
22652 if (!GOT_symbol)
22653 {
22654 if (symbol_find (name))
22655 as_bad (_("GOT already in the symbol table"));
22656
22657 GOT_symbol = symbol_new (name, undefined_section,
22658 (valueT) 0, & zero_address_frag);
22659 }
22660
22661 return GOT_symbol;
22662 }
22663 #endif
22664
22665 return NULL;
22666 }
22667
22668 /* Subroutine of md_apply_fix. Check to see if an immediate can be
22669 computed as two separate immediate values, added together. We
22670 already know that this value cannot be computed by just one ARM
22671 instruction. */
22672
22673 static unsigned int
22674 validate_immediate_twopart (unsigned int val,
22675 unsigned int * highpart)
22676 {
22677 unsigned int a;
22678 unsigned int i;
22679
22680 for (i = 0; i < 32; i += 2)
22681 if (((a = rotate_left (val, i)) & 0xff) != 0)
22682 {
22683 if (a & 0xff00)
22684 {
22685 if (a & ~ 0xffff)
22686 continue;
22687 * highpart = (a >> 8) | ((i + 24) << 7);
22688 }
22689 else if (a & 0xff0000)
22690 {
22691 if (a & 0xff000000)
22692 continue;
22693 * highpart = (a >> 16) | ((i + 16) << 7);
22694 }
22695 else
22696 {
22697 gas_assert (a & 0xff000000);
22698 * highpart = (a >> 24) | ((i + 8) << 7);
22699 }
22700
22701 return (a & 0xff) | (i << 7);
22702 }
22703
22704 return FAIL;
22705 }
22706
22707 static int
22708 validate_offset_imm (unsigned int val, int hwse)
22709 {
22710 if ((hwse && val > 255) || val > 4095)
22711 return FAIL;
22712 return val;
22713 }
22714
22715 /* Subroutine of md_apply_fix. Do those data_ops which can take a
22716 negative immediate constant by altering the instruction. A bit of
22717 a hack really.
22718 MOV <-> MVN
22719 AND <-> BIC
22720 ADC <-> SBC
22721 by inverting the second operand, and
22722 ADD <-> SUB
22723 CMP <-> CMN
22724 by negating the second operand. */
22725
22726 static int
22727 negate_data_op (unsigned long * instruction,
22728 unsigned long value)
22729 {
22730 int op, new_inst;
22731 unsigned long negated, inverted;
22732
22733 negated = encode_arm_immediate (-value);
22734 inverted = encode_arm_immediate (~value);
22735
22736 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
22737 switch (op)
22738 {
22739 /* First negates. */
22740 case OPCODE_SUB: /* ADD <-> SUB */
22741 new_inst = OPCODE_ADD;
22742 value = negated;
22743 break;
22744
22745 case OPCODE_ADD:
22746 new_inst = OPCODE_SUB;
22747 value = negated;
22748 break;
22749
22750 case OPCODE_CMP: /* CMP <-> CMN */
22751 new_inst = OPCODE_CMN;
22752 value = negated;
22753 break;
22754
22755 case OPCODE_CMN:
22756 new_inst = OPCODE_CMP;
22757 value = negated;
22758 break;
22759
22760 /* Now Inverted ops. */
22761 case OPCODE_MOV: /* MOV <-> MVN */
22762 new_inst = OPCODE_MVN;
22763 value = inverted;
22764 break;
22765
22766 case OPCODE_MVN:
22767 new_inst = OPCODE_MOV;
22768 value = inverted;
22769 break;
22770
22771 case OPCODE_AND: /* AND <-> BIC */
22772 new_inst = OPCODE_BIC;
22773 value = inverted;
22774 break;
22775
22776 case OPCODE_BIC:
22777 new_inst = OPCODE_AND;
22778 value = inverted;
22779 break;
22780
22781 case OPCODE_ADC: /* ADC <-> SBC */
22782 new_inst = OPCODE_SBC;
22783 value = inverted;
22784 break;
22785
22786 case OPCODE_SBC:
22787 new_inst = OPCODE_ADC;
22788 value = inverted;
22789 break;
22790
22791 /* We cannot do anything. */
22792 default:
22793 return FAIL;
22794 }
22795
22796 if (value == (unsigned) FAIL)
22797 return FAIL;
22798
22799 *instruction &= OPCODE_MASK;
22800 *instruction |= new_inst << DATA_OP_SHIFT;
22801 return value;
22802 }
22803
22804 /* Like negate_data_op, but for Thumb-2. */
22805
22806 static unsigned int
22807 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
22808 {
22809 int op, new_inst;
22810 int rd;
22811 unsigned int negated, inverted;
22812
22813 negated = encode_thumb32_immediate (-value);
22814 inverted = encode_thumb32_immediate (~value);
22815
22816 rd = (*instruction >> 8) & 0xf;
22817 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
22818 switch (op)
22819 {
22820 /* ADD <-> SUB. Includes CMP <-> CMN. */
22821 case T2_OPCODE_SUB:
22822 new_inst = T2_OPCODE_ADD;
22823 value = negated;
22824 break;
22825
22826 case T2_OPCODE_ADD:
22827 new_inst = T2_OPCODE_SUB;
22828 value = negated;
22829 break;
22830
22831 /* ORR <-> ORN. Includes MOV <-> MVN. */
22832 case T2_OPCODE_ORR:
22833 new_inst = T2_OPCODE_ORN;
22834 value = inverted;
22835 break;
22836
22837 case T2_OPCODE_ORN:
22838 new_inst = T2_OPCODE_ORR;
22839 value = inverted;
22840 break;
22841
22842 /* AND <-> BIC. TST has no inverted equivalent. */
22843 case T2_OPCODE_AND:
22844 new_inst = T2_OPCODE_BIC;
22845 if (rd == 15)
22846 value = FAIL;
22847 else
22848 value = inverted;
22849 break;
22850
22851 case T2_OPCODE_BIC:
22852 new_inst = T2_OPCODE_AND;
22853 value = inverted;
22854 break;
22855
22856 /* ADC <-> SBC */
22857 case T2_OPCODE_ADC:
22858 new_inst = T2_OPCODE_SBC;
22859 value = inverted;
22860 break;
22861
22862 case T2_OPCODE_SBC:
22863 new_inst = T2_OPCODE_ADC;
22864 value = inverted;
22865 break;
22866
22867 /* We cannot do anything. */
22868 default:
22869 return FAIL;
22870 }
22871
22872 if (value == (unsigned int)FAIL)
22873 return FAIL;
22874
22875 *instruction &= T2_OPCODE_MASK;
22876 *instruction |= new_inst << T2_DATA_OP_SHIFT;
22877 return value;
22878 }
22879
22880 /* Read a 32-bit thumb instruction from buf. */
22881 static unsigned long
22882 get_thumb32_insn (char * buf)
22883 {
22884 unsigned long insn;
22885 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
22886 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22887
22888 return insn;
22889 }
22890
22891
22892 /* We usually want to set the low bit on the address of thumb function
22893 symbols. In particular .word foo - . should have the low bit set.
22894 Generic code tries to fold the difference of two symbols to
22895 a constant. Prevent this and force a relocation when the first symbols
22896 is a thumb function. */
22897
22898 bfd_boolean
22899 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
22900 {
22901 if (op == O_subtract
22902 && l->X_op == O_symbol
22903 && r->X_op == O_symbol
22904 && THUMB_IS_FUNC (l->X_add_symbol))
22905 {
22906 l->X_op = O_subtract;
22907 l->X_op_symbol = r->X_add_symbol;
22908 l->X_add_number -= r->X_add_number;
22909 return TRUE;
22910 }
22911
22912 /* Process as normal. */
22913 return FALSE;
22914 }
22915
22916 /* Encode Thumb2 unconditional branches and calls. The encoding
22917 for the 2 are identical for the immediate values. */
22918
22919 static void
22920 encode_thumb2_b_bl_offset (char * buf, offsetT value)
22921 {
22922 #define T2I1I2MASK ((1 << 13) | (1 << 11))
22923 offsetT newval;
22924 offsetT newval2;
22925 addressT S, I1, I2, lo, hi;
22926
22927 S = (value >> 24) & 0x01;
22928 I1 = (value >> 23) & 0x01;
22929 I2 = (value >> 22) & 0x01;
22930 hi = (value >> 12) & 0x3ff;
22931 lo = (value >> 1) & 0x7ff;
22932 newval = md_chars_to_number (buf, THUMB_SIZE);
22933 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22934 newval |= (S << 10) | hi;
22935 newval2 &= ~T2I1I2MASK;
22936 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
22937 md_number_to_chars (buf, newval, THUMB_SIZE);
22938 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22939 }
22940
22941 void
22942 md_apply_fix (fixS * fixP,
22943 valueT * valP,
22944 segT seg)
22945 {
22946 offsetT value = * valP;
22947 offsetT newval;
22948 unsigned int newimm;
22949 unsigned long temp;
22950 int sign;
22951 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
22952
22953 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
22954
22955 /* Note whether this will delete the relocation. */
22956
22957 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
22958 fixP->fx_done = 1;
22959
22960 /* On a 64-bit host, silently truncate 'value' to 32 bits for
22961 consistency with the behaviour on 32-bit hosts. Remember value
22962 for emit_reloc. */
22963 value &= 0xffffffff;
22964 value ^= 0x80000000;
22965 value -= 0x80000000;
22966
22967 *valP = value;
22968 fixP->fx_addnumber = value;
22969
22970 /* Same treatment for fixP->fx_offset. */
22971 fixP->fx_offset &= 0xffffffff;
22972 fixP->fx_offset ^= 0x80000000;
22973 fixP->fx_offset -= 0x80000000;
22974
22975 switch (fixP->fx_r_type)
22976 {
22977 case BFD_RELOC_NONE:
22978 /* This will need to go in the object file. */
22979 fixP->fx_done = 0;
22980 break;
22981
22982 case BFD_RELOC_ARM_IMMEDIATE:
22983 /* We claim that this fixup has been processed here,
22984 even if in fact we generate an error because we do
22985 not have a reloc for it, so tc_gen_reloc will reject it. */
22986 fixP->fx_done = 1;
22987
22988 if (fixP->fx_addsy)
22989 {
22990 const char *msg = 0;
22991
22992 if (! S_IS_DEFINED (fixP->fx_addsy))
22993 msg = _("undefined symbol %s used as an immediate value");
22994 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22995 msg = _("symbol %s is in a different section");
22996 else if (S_IS_WEAK (fixP->fx_addsy))
22997 msg = _("symbol %s is weak and may be overridden later");
22998
22999 if (msg)
23000 {
23001 as_bad_where (fixP->fx_file, fixP->fx_line,
23002 msg, S_GET_NAME (fixP->fx_addsy));
23003 break;
23004 }
23005 }
23006
23007 temp = md_chars_to_number (buf, INSN_SIZE);
23008
23009 /* If the offset is negative, we should use encoding A2 for ADR. */
23010 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23011 newimm = negate_data_op (&temp, value);
23012 else
23013 {
23014 newimm = encode_arm_immediate (value);
23015
23016 /* If the instruction will fail, see if we can fix things up by
23017 changing the opcode. */
23018 if (newimm == (unsigned int) FAIL)
23019 newimm = negate_data_op (&temp, value);
23020 /* MOV accepts both ARM modified immediate (A1 encoding) and
23021 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23022 When disassembling, MOV is preferred when there is no encoding
23023 overlap. */
23024 if (newimm == (unsigned int) FAIL
23025 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23026 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23027 && !((temp >> SBIT_SHIFT) & 0x1)
23028 && value >= 0 && value <= 0xffff)
23029 {
23030 /* Clear bits[23:20] to change encoding from A1 to A2. */
23031 temp &= 0xff0fffff;
23032 /* Encoding high 4bits imm. Code below will encode the remaining
23033 low 12bits. */
23034 temp |= (value & 0x0000f000) << 4;
23035 newimm = value & 0x00000fff;
23036 }
23037 }
23038
23039 if (newimm == (unsigned int) FAIL)
23040 {
23041 as_bad_where (fixP->fx_file, fixP->fx_line,
23042 _("invalid constant (%lx) after fixup"),
23043 (unsigned long) value);
23044 break;
23045 }
23046
23047 newimm |= (temp & 0xfffff000);
23048 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23049 break;
23050
23051 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23052 {
23053 unsigned int highpart = 0;
23054 unsigned int newinsn = 0xe1a00000; /* nop. */
23055
23056 if (fixP->fx_addsy)
23057 {
23058 const char *msg = 0;
23059
23060 if (! S_IS_DEFINED (fixP->fx_addsy))
23061 msg = _("undefined symbol %s used as an immediate value");
23062 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23063 msg = _("symbol %s is in a different section");
23064 else if (S_IS_WEAK (fixP->fx_addsy))
23065 msg = _("symbol %s is weak and may be overridden later");
23066
23067 if (msg)
23068 {
23069 as_bad_where (fixP->fx_file, fixP->fx_line,
23070 msg, S_GET_NAME (fixP->fx_addsy));
23071 break;
23072 }
23073 }
23074
23075 newimm = encode_arm_immediate (value);
23076 temp = md_chars_to_number (buf, INSN_SIZE);
23077
23078 /* If the instruction will fail, see if we can fix things up by
23079 changing the opcode. */
23080 if (newimm == (unsigned int) FAIL
23081 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23082 {
23083 /* No ? OK - try using two ADD instructions to generate
23084 the value. */
23085 newimm = validate_immediate_twopart (value, & highpart);
23086
23087 /* Yes - then make sure that the second instruction is
23088 also an add. */
23089 if (newimm != (unsigned int) FAIL)
23090 newinsn = temp;
23091 /* Still No ? Try using a negated value. */
23092 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23093 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23094 /* Otherwise - give up. */
23095 else
23096 {
23097 as_bad_where (fixP->fx_file, fixP->fx_line,
23098 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23099 (long) value);
23100 break;
23101 }
23102
23103 /* Replace the first operand in the 2nd instruction (which
23104 is the PC) with the destination register. We have
23105 already added in the PC in the first instruction and we
23106 do not want to do it again. */
23107 newinsn &= ~ 0xf0000;
23108 newinsn |= ((newinsn & 0x0f000) << 4);
23109 }
23110
23111 newimm |= (temp & 0xfffff000);
23112 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23113
23114 highpart |= (newinsn & 0xfffff000);
23115 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23116 }
23117 break;
23118
23119 case BFD_RELOC_ARM_OFFSET_IMM:
23120 if (!fixP->fx_done && seg->use_rela_p)
23121 value = 0;
23122 /* Fall through. */
23123
23124 case BFD_RELOC_ARM_LITERAL:
23125 sign = value > 0;
23126
23127 if (value < 0)
23128 value = - value;
23129
23130 if (validate_offset_imm (value, 0) == FAIL)
23131 {
23132 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23133 as_bad_where (fixP->fx_file, fixP->fx_line,
23134 _("invalid literal constant: pool needs to be closer"));
23135 else
23136 as_bad_where (fixP->fx_file, fixP->fx_line,
23137 _("bad immediate value for offset (%ld)"),
23138 (long) value);
23139 break;
23140 }
23141
23142 newval = md_chars_to_number (buf, INSN_SIZE);
23143 if (value == 0)
23144 newval &= 0xfffff000;
23145 else
23146 {
23147 newval &= 0xff7ff000;
23148 newval |= value | (sign ? INDEX_UP : 0);
23149 }
23150 md_number_to_chars (buf, newval, INSN_SIZE);
23151 break;
23152
23153 case BFD_RELOC_ARM_OFFSET_IMM8:
23154 case BFD_RELOC_ARM_HWLITERAL:
23155 sign = value > 0;
23156
23157 if (value < 0)
23158 value = - value;
23159
23160 if (validate_offset_imm (value, 1) == FAIL)
23161 {
23162 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23163 as_bad_where (fixP->fx_file, fixP->fx_line,
23164 _("invalid literal constant: pool needs to be closer"));
23165 else
23166 as_bad_where (fixP->fx_file, fixP->fx_line,
23167 _("bad immediate value for 8-bit offset (%ld)"),
23168 (long) value);
23169 break;
23170 }
23171
23172 newval = md_chars_to_number (buf, INSN_SIZE);
23173 if (value == 0)
23174 newval &= 0xfffff0f0;
23175 else
23176 {
23177 newval &= 0xff7ff0f0;
23178 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23179 }
23180 md_number_to_chars (buf, newval, INSN_SIZE);
23181 break;
23182
23183 case BFD_RELOC_ARM_T32_OFFSET_U8:
23184 if (value < 0 || value > 1020 || value % 4 != 0)
23185 as_bad_where (fixP->fx_file, fixP->fx_line,
23186 _("bad immediate value for offset (%ld)"), (long) value);
23187 value /= 4;
23188
23189 newval = md_chars_to_number (buf+2, THUMB_SIZE);
23190 newval |= value;
23191 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23192 break;
23193
23194 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23195 /* This is a complicated relocation used for all varieties of Thumb32
23196 load/store instruction with immediate offset:
23197
23198 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
23199 *4, optional writeback(W)
23200 (doubleword load/store)
23201
23202 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23203 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23204 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23205 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23206 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23207
23208 Uppercase letters indicate bits that are already encoded at
23209 this point. Lowercase letters are our problem. For the
23210 second block of instructions, the secondary opcode nybble
23211 (bits 8..11) is present, and bit 23 is zero, even if this is
23212 a PC-relative operation. */
23213 newval = md_chars_to_number (buf, THUMB_SIZE);
23214 newval <<= 16;
23215 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
23216
23217 if ((newval & 0xf0000000) == 0xe0000000)
23218 {
23219 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23220 if (value >= 0)
23221 newval |= (1 << 23);
23222 else
23223 value = -value;
23224 if (value % 4 != 0)
23225 {
23226 as_bad_where (fixP->fx_file, fixP->fx_line,
23227 _("offset not a multiple of 4"));
23228 break;
23229 }
23230 value /= 4;
23231 if (value > 0xff)
23232 {
23233 as_bad_where (fixP->fx_file, fixP->fx_line,
23234 _("offset out of range"));
23235 break;
23236 }
23237 newval &= ~0xff;
23238 }
23239 else if ((newval & 0x000f0000) == 0x000f0000)
23240 {
23241 /* PC-relative, 12-bit offset. */
23242 if (value >= 0)
23243 newval |= (1 << 23);
23244 else
23245 value = -value;
23246 if (value > 0xfff)
23247 {
23248 as_bad_where (fixP->fx_file, fixP->fx_line,
23249 _("offset out of range"));
23250 break;
23251 }
23252 newval &= ~0xfff;
23253 }
23254 else if ((newval & 0x00000100) == 0x00000100)
23255 {
23256 /* Writeback: 8-bit, +/- offset. */
23257 if (value >= 0)
23258 newval |= (1 << 9);
23259 else
23260 value = -value;
23261 if (value > 0xff)
23262 {
23263 as_bad_where (fixP->fx_file, fixP->fx_line,
23264 _("offset out of range"));
23265 break;
23266 }
23267 newval &= ~0xff;
23268 }
23269 else if ((newval & 0x00000f00) == 0x00000e00)
23270 {
23271 /* T-instruction: positive 8-bit offset. */
23272 if (value < 0 || value > 0xff)
23273 {
23274 as_bad_where (fixP->fx_file, fixP->fx_line,
23275 _("offset out of range"));
23276 break;
23277 }
23278 newval &= ~0xff;
23279 newval |= value;
23280 }
23281 else
23282 {
23283 /* Positive 12-bit or negative 8-bit offset. */
23284 int limit;
23285 if (value >= 0)
23286 {
23287 newval |= (1 << 23);
23288 limit = 0xfff;
23289 }
23290 else
23291 {
23292 value = -value;
23293 limit = 0xff;
23294 }
23295 if (value > limit)
23296 {
23297 as_bad_where (fixP->fx_file, fixP->fx_line,
23298 _("offset out of range"));
23299 break;
23300 }
23301 newval &= ~limit;
23302 }
23303
23304 newval |= value;
23305 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23306 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23307 break;
23308
23309 case BFD_RELOC_ARM_SHIFT_IMM:
23310 newval = md_chars_to_number (buf, INSN_SIZE);
23311 if (((unsigned long) value) > 32
23312 || (value == 32
23313 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23314 {
23315 as_bad_where (fixP->fx_file, fixP->fx_line,
23316 _("shift expression is too large"));
23317 break;
23318 }
23319
23320 if (value == 0)
23321 /* Shifts of zero must be done as lsl. */
23322 newval &= ~0x60;
23323 else if (value == 32)
23324 value = 0;
23325 newval &= 0xfffff07f;
23326 newval |= (value & 0x1f) << 7;
23327 md_number_to_chars (buf, newval, INSN_SIZE);
23328 break;
23329
23330 case BFD_RELOC_ARM_T32_IMMEDIATE:
23331 case BFD_RELOC_ARM_T32_ADD_IMM:
23332 case BFD_RELOC_ARM_T32_IMM12:
23333 case BFD_RELOC_ARM_T32_ADD_PC12:
23334 /* We claim that this fixup has been processed here,
23335 even if in fact we generate an error because we do
23336 not have a reloc for it, so tc_gen_reloc will reject it. */
23337 fixP->fx_done = 1;
23338
23339 if (fixP->fx_addsy
23340 && ! S_IS_DEFINED (fixP->fx_addsy))
23341 {
23342 as_bad_where (fixP->fx_file, fixP->fx_line,
23343 _("undefined symbol %s used as an immediate value"),
23344 S_GET_NAME (fixP->fx_addsy));
23345 break;
23346 }
23347
23348 newval = md_chars_to_number (buf, THUMB_SIZE);
23349 newval <<= 16;
23350 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
23351
23352 newimm = FAIL;
23353 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23354 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23355 Thumb2 modified immediate encoding (T2). */
23356 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
23357 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23358 {
23359 newimm = encode_thumb32_immediate (value);
23360 if (newimm == (unsigned int) FAIL)
23361 newimm = thumb32_negate_data_op (&newval, value);
23362 }
23363 if (newimm == (unsigned int) FAIL)
23364 {
23365 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
23366 {
23367 /* Turn add/sum into addw/subw. */
23368 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23369 newval = (newval & 0xfeffffff) | 0x02000000;
23370 /* No flat 12-bit imm encoding for addsw/subsw. */
23371 if ((newval & 0x00100000) == 0)
23372 {
23373 /* 12 bit immediate for addw/subw. */
23374 if (value < 0)
23375 {
23376 value = -value;
23377 newval ^= 0x00a00000;
23378 }
23379 if (value > 0xfff)
23380 newimm = (unsigned int) FAIL;
23381 else
23382 newimm = value;
23383 }
23384 }
23385 else
23386 {
23387 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23388 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23389 disassembling, MOV is preferred when there is no encoding
23390 overlap.
23391 NOTE: MOV is using ORR opcode under Thumb 2 mode. */
23392 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23393 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23394 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23395 && value >= 0 && value <=0xffff)
23396 {
23397 /* Toggle bit[25] to change encoding from T2 to T3. */
23398 newval ^= 1 << 25;
23399 /* Clear bits[19:16]. */
23400 newval &= 0xfff0ffff;
23401 /* Encoding high 4bits imm. Code below will encode the
23402 remaining low 12bits. */
23403 newval |= (value & 0x0000f000) << 4;
23404 newimm = value & 0x00000fff;
23405 }
23406 }
23407 }
23408
23409 if (newimm == (unsigned int)FAIL)
23410 {
23411 as_bad_where (fixP->fx_file, fixP->fx_line,
23412 _("invalid constant (%lx) after fixup"),
23413 (unsigned long) value);
23414 break;
23415 }
23416
23417 newval |= (newimm & 0x800) << 15;
23418 newval |= (newimm & 0x700) << 4;
23419 newval |= (newimm & 0x0ff);
23420
23421 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23422 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23423 break;
23424
23425 case BFD_RELOC_ARM_SMC:
23426 if (((unsigned long) value) > 0xffff)
23427 as_bad_where (fixP->fx_file, fixP->fx_line,
23428 _("invalid smc expression"));
23429 newval = md_chars_to_number (buf, INSN_SIZE);
23430 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23431 md_number_to_chars (buf, newval, INSN_SIZE);
23432 break;
23433
23434 case BFD_RELOC_ARM_HVC:
23435 if (((unsigned long) value) > 0xffff)
23436 as_bad_where (fixP->fx_file, fixP->fx_line,
23437 _("invalid hvc expression"));
23438 newval = md_chars_to_number (buf, INSN_SIZE);
23439 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23440 md_number_to_chars (buf, newval, INSN_SIZE);
23441 break;
23442
23443 case BFD_RELOC_ARM_SWI:
23444 if (fixP->tc_fix_data != 0)
23445 {
23446 if (((unsigned long) value) > 0xff)
23447 as_bad_where (fixP->fx_file, fixP->fx_line,
23448 _("invalid swi expression"));
23449 newval = md_chars_to_number (buf, THUMB_SIZE);
23450 newval |= value;
23451 md_number_to_chars (buf, newval, THUMB_SIZE);
23452 }
23453 else
23454 {
23455 if (((unsigned long) value) > 0x00ffffff)
23456 as_bad_where (fixP->fx_file, fixP->fx_line,
23457 _("invalid swi expression"));
23458 newval = md_chars_to_number (buf, INSN_SIZE);
23459 newval |= value;
23460 md_number_to_chars (buf, newval, INSN_SIZE);
23461 }
23462 break;
23463
23464 case BFD_RELOC_ARM_MULTI:
23465 if (((unsigned long) value) > 0xffff)
23466 as_bad_where (fixP->fx_file, fixP->fx_line,
23467 _("invalid expression in load/store multiple"));
23468 newval = value | md_chars_to_number (buf, INSN_SIZE);
23469 md_number_to_chars (buf, newval, INSN_SIZE);
23470 break;
23471
23472 #ifdef OBJ_ELF
23473 case BFD_RELOC_ARM_PCREL_CALL:
23474
23475 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23476 && fixP->fx_addsy
23477 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23478 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23479 && THUMB_IS_FUNC (fixP->fx_addsy))
23480 /* Flip the bl to blx. This is a simple flip
23481 bit here because we generate PCREL_CALL for
23482 unconditional bls. */
23483 {
23484 newval = md_chars_to_number (buf, INSN_SIZE);
23485 newval = newval | 0x10000000;
23486 md_number_to_chars (buf, newval, INSN_SIZE);
23487 temp = 1;
23488 fixP->fx_done = 1;
23489 }
23490 else
23491 temp = 3;
23492 goto arm_branch_common;
23493
23494 case BFD_RELOC_ARM_PCREL_JUMP:
23495 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23496 && fixP->fx_addsy
23497 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23498 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23499 && THUMB_IS_FUNC (fixP->fx_addsy))
23500 {
23501 /* This would map to a bl<cond>, b<cond>,
23502 b<always> to a Thumb function. We
23503 need to force a relocation for this particular
23504 case. */
23505 newval = md_chars_to_number (buf, INSN_SIZE);
23506 fixP->fx_done = 0;
23507 }
23508 /* Fall through. */
23509
23510 case BFD_RELOC_ARM_PLT32:
23511 #endif
23512 case BFD_RELOC_ARM_PCREL_BRANCH:
23513 temp = 3;
23514 goto arm_branch_common;
23515
23516 case BFD_RELOC_ARM_PCREL_BLX:
23517
23518 temp = 1;
23519 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23520 && fixP->fx_addsy
23521 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23522 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23523 && ARM_IS_FUNC (fixP->fx_addsy))
23524 {
23525 /* Flip the blx to a bl and warn. */
23526 const char *name = S_GET_NAME (fixP->fx_addsy);
23527 newval = 0xeb000000;
23528 as_warn_where (fixP->fx_file, fixP->fx_line,
23529 _("blx to '%s' an ARM ISA state function changed to bl"),
23530 name);
23531 md_number_to_chars (buf, newval, INSN_SIZE);
23532 temp = 3;
23533 fixP->fx_done = 1;
23534 }
23535
23536 #ifdef OBJ_ELF
23537 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23538 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
23539 #endif
23540
23541 arm_branch_common:
23542 /* We are going to store value (shifted right by two) in the
23543 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23544 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
23545 also be clear. */
23546 if (value & temp)
23547 as_bad_where (fixP->fx_file, fixP->fx_line,
23548 _("misaligned branch destination"));
23549 if ((value & (offsetT)0xfe000000) != (offsetT)0
23550 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
23551 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23552
23553 if (fixP->fx_done || !seg->use_rela_p)
23554 {
23555 newval = md_chars_to_number (buf, INSN_SIZE);
23556 newval |= (value >> 2) & 0x00ffffff;
23557 /* Set the H bit on BLX instructions. */
23558 if (temp == 1)
23559 {
23560 if (value & 2)
23561 newval |= 0x01000000;
23562 else
23563 newval &= ~0x01000000;
23564 }
23565 md_number_to_chars (buf, newval, INSN_SIZE);
23566 }
23567 break;
23568
23569 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23570 /* CBZ can only branch forward. */
23571
23572 /* Attempts to use CBZ to branch to the next instruction
23573 (which, strictly speaking, are prohibited) will be turned into
23574 no-ops.
23575
23576 FIXME: It may be better to remove the instruction completely and
23577 perform relaxation. */
23578 if (value == -2)
23579 {
23580 newval = md_chars_to_number (buf, THUMB_SIZE);
23581 newval = 0xbf00; /* NOP encoding T1 */
23582 md_number_to_chars (buf, newval, THUMB_SIZE);
23583 }
23584 else
23585 {
23586 if (value & ~0x7e)
23587 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23588
23589 if (fixP->fx_done || !seg->use_rela_p)
23590 {
23591 newval = md_chars_to_number (buf, THUMB_SIZE);
23592 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23593 md_number_to_chars (buf, newval, THUMB_SIZE);
23594 }
23595 }
23596 break;
23597
23598 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
23599 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
23600 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23601
23602 if (fixP->fx_done || !seg->use_rela_p)
23603 {
23604 newval = md_chars_to_number (buf, THUMB_SIZE);
23605 newval |= (value & 0x1ff) >> 1;
23606 md_number_to_chars (buf, newval, THUMB_SIZE);
23607 }
23608 break;
23609
23610 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
23611 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
23612 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23613
23614 if (fixP->fx_done || !seg->use_rela_p)
23615 {
23616 newval = md_chars_to_number (buf, THUMB_SIZE);
23617 newval |= (value & 0xfff) >> 1;
23618 md_number_to_chars (buf, newval, THUMB_SIZE);
23619 }
23620 break;
23621
23622 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23623 if (fixP->fx_addsy
23624 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23625 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23626 && ARM_IS_FUNC (fixP->fx_addsy)
23627 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23628 {
23629 /* Force a relocation for a branch 20 bits wide. */
23630 fixP->fx_done = 0;
23631 }
23632 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
23633 as_bad_where (fixP->fx_file, fixP->fx_line,
23634 _("conditional branch out of range"));
23635
23636 if (fixP->fx_done || !seg->use_rela_p)
23637 {
23638 offsetT newval2;
23639 addressT S, J1, J2, lo, hi;
23640
23641 S = (value & 0x00100000) >> 20;
23642 J2 = (value & 0x00080000) >> 19;
23643 J1 = (value & 0x00040000) >> 18;
23644 hi = (value & 0x0003f000) >> 12;
23645 lo = (value & 0x00000ffe) >> 1;
23646
23647 newval = md_chars_to_number (buf, THUMB_SIZE);
23648 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23649 newval |= (S << 10) | hi;
23650 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23651 md_number_to_chars (buf, newval, THUMB_SIZE);
23652 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23653 }
23654 break;
23655
23656 case BFD_RELOC_THUMB_PCREL_BLX:
23657 /* If there is a blx from a thumb state function to
23658 another thumb function flip this to a bl and warn
23659 about it. */
23660
23661 if (fixP->fx_addsy
23662 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23663 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23664 && THUMB_IS_FUNC (fixP->fx_addsy))
23665 {
23666 const char *name = S_GET_NAME (fixP->fx_addsy);
23667 as_warn_where (fixP->fx_file, fixP->fx_line,
23668 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23669 name);
23670 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23671 newval = newval | 0x1000;
23672 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23673 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23674 fixP->fx_done = 1;
23675 }
23676
23677
23678 goto thumb_bl_common;
23679
23680 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23681 /* A bl from Thumb state ISA to an internal ARM state function
23682 is converted to a blx. */
23683 if (fixP->fx_addsy
23684 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23685 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23686 && ARM_IS_FUNC (fixP->fx_addsy)
23687 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23688 {
23689 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23690 newval = newval & ~0x1000;
23691 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23692 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23693 fixP->fx_done = 1;
23694 }
23695
23696 thumb_bl_common:
23697
23698 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23699 /* For a BLX instruction, make sure that the relocation is rounded up
23700 to a word boundary. This follows the semantics of the instruction
23701 which specifies that bit 1 of the target address will come from bit
23702 1 of the base address. */
23703 value = (value + 3) & ~ 3;
23704
23705 #ifdef OBJ_ELF
23706 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23707 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23708 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23709 #endif
23710
23711 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23712 {
23713 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
23714 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23715 else if ((value & ~0x1ffffff)
23716 && ((value & ~0x1ffffff) != ~0x1ffffff))
23717 as_bad_where (fixP->fx_file, fixP->fx_line,
23718 _("Thumb2 branch out of range"));
23719 }
23720
23721 if (fixP->fx_done || !seg->use_rela_p)
23722 encode_thumb2_b_bl_offset (buf, value);
23723
23724 break;
23725
23726 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23727 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
23728 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23729
23730 if (fixP->fx_done || !seg->use_rela_p)
23731 encode_thumb2_b_bl_offset (buf, value);
23732
23733 break;
23734
23735 case BFD_RELOC_8:
23736 if (fixP->fx_done || !seg->use_rela_p)
23737 *buf = value;
23738 break;
23739
23740 case BFD_RELOC_16:
23741 if (fixP->fx_done || !seg->use_rela_p)
23742 md_number_to_chars (buf, value, 2);
23743 break;
23744
23745 #ifdef OBJ_ELF
23746 case BFD_RELOC_ARM_TLS_CALL:
23747 case BFD_RELOC_ARM_THM_TLS_CALL:
23748 case BFD_RELOC_ARM_TLS_DESCSEQ:
23749 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23750 case BFD_RELOC_ARM_TLS_GOTDESC:
23751 case BFD_RELOC_ARM_TLS_GD32:
23752 case BFD_RELOC_ARM_TLS_LE32:
23753 case BFD_RELOC_ARM_TLS_IE32:
23754 case BFD_RELOC_ARM_TLS_LDM32:
23755 case BFD_RELOC_ARM_TLS_LDO32:
23756 S_SET_THREAD_LOCAL (fixP->fx_addsy);
23757 break;
23758
23759 case BFD_RELOC_ARM_GOT32:
23760 case BFD_RELOC_ARM_GOTOFF:
23761 break;
23762
23763 case BFD_RELOC_ARM_GOT_PREL:
23764 if (fixP->fx_done || !seg->use_rela_p)
23765 md_number_to_chars (buf, value, 4);
23766 break;
23767
23768 case BFD_RELOC_ARM_TARGET2:
23769 /* TARGET2 is not partial-inplace, so we need to write the
23770 addend here for REL targets, because it won't be written out
23771 during reloc processing later. */
23772 if (fixP->fx_done || !seg->use_rela_p)
23773 md_number_to_chars (buf, fixP->fx_offset, 4);
23774 break;
23775 #endif
23776
23777 case BFD_RELOC_RVA:
23778 case BFD_RELOC_32:
23779 case BFD_RELOC_ARM_TARGET1:
23780 case BFD_RELOC_ARM_ROSEGREL32:
23781 case BFD_RELOC_ARM_SBREL32:
23782 case BFD_RELOC_32_PCREL:
23783 #ifdef TE_PE
23784 case BFD_RELOC_32_SECREL:
23785 #endif
23786 if (fixP->fx_done || !seg->use_rela_p)
23787 #ifdef TE_WINCE
23788 /* For WinCE we only do this for pcrel fixups. */
23789 if (fixP->fx_done || fixP->fx_pcrel)
23790 #endif
23791 md_number_to_chars (buf, value, 4);
23792 break;
23793
23794 #ifdef OBJ_ELF
23795 case BFD_RELOC_ARM_PREL31:
23796 if (fixP->fx_done || !seg->use_rela_p)
23797 {
23798 newval = md_chars_to_number (buf, 4) & 0x80000000;
23799 if ((value ^ (value >> 1)) & 0x40000000)
23800 {
23801 as_bad_where (fixP->fx_file, fixP->fx_line,
23802 _("rel31 relocation overflow"));
23803 }
23804 newval |= value & 0x7fffffff;
23805 md_number_to_chars (buf, newval, 4);
23806 }
23807 break;
23808 #endif
23809
23810 case BFD_RELOC_ARM_CP_OFF_IMM:
23811 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
23812 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
23813 newval = md_chars_to_number (buf, INSN_SIZE);
23814 else
23815 newval = get_thumb32_insn (buf);
23816 if ((newval & 0x0f200f00) == 0x0d000900)
23817 {
23818 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
23819 has permitted values that are multiples of 2, in the range 0
23820 to 510. */
23821 if (value < -510 || value > 510 || (value & 1))
23822 as_bad_where (fixP->fx_file, fixP->fx_line,
23823 _("co-processor offset out of range"));
23824 }
23825 else if (value < -1023 || value > 1023 || (value & 3))
23826 as_bad_where (fixP->fx_file, fixP->fx_line,
23827 _("co-processor offset out of range"));
23828 cp_off_common:
23829 sign = value > 0;
23830 if (value < 0)
23831 value = -value;
23832 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23833 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23834 newval = md_chars_to_number (buf, INSN_SIZE);
23835 else
23836 newval = get_thumb32_insn (buf);
23837 if (value == 0)
23838 newval &= 0xffffff00;
23839 else
23840 {
23841 newval &= 0xff7fff00;
23842 if ((newval & 0x0f200f00) == 0x0d000900)
23843 {
23844 /* This is a fp16 vstr/vldr.
23845
23846 It requires the immediate offset in the instruction is shifted
23847 left by 1 to be a half-word offset.
23848
23849 Here, left shift by 1 first, and later right shift by 2
23850 should get the right offset. */
23851 value <<= 1;
23852 }
23853 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
23854 }
23855 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23856 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23857 md_number_to_chars (buf, newval, INSN_SIZE);
23858 else
23859 put_thumb32_insn (buf, newval);
23860 break;
23861
23862 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
23863 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
23864 if (value < -255 || value > 255)
23865 as_bad_where (fixP->fx_file, fixP->fx_line,
23866 _("co-processor offset out of range"));
23867 value *= 4;
23868 goto cp_off_common;
23869
23870 case BFD_RELOC_ARM_THUMB_OFFSET:
23871 newval = md_chars_to_number (buf, THUMB_SIZE);
23872 /* Exactly what ranges, and where the offset is inserted depends
23873 on the type of instruction, we can establish this from the
23874 top 4 bits. */
23875 switch (newval >> 12)
23876 {
23877 case 4: /* PC load. */
23878 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
23879 forced to zero for these loads; md_pcrel_from has already
23880 compensated for this. */
23881 if (value & 3)
23882 as_bad_where (fixP->fx_file, fixP->fx_line,
23883 _("invalid offset, target not word aligned (0x%08lX)"),
23884 (((unsigned long) fixP->fx_frag->fr_address
23885 + (unsigned long) fixP->fx_where) & ~3)
23886 + (unsigned long) value);
23887
23888 if (value & ~0x3fc)
23889 as_bad_where (fixP->fx_file, fixP->fx_line,
23890 _("invalid offset, value too big (0x%08lX)"),
23891 (long) value);
23892
23893 newval |= value >> 2;
23894 break;
23895
23896 case 9: /* SP load/store. */
23897 if (value & ~0x3fc)
23898 as_bad_where (fixP->fx_file, fixP->fx_line,
23899 _("invalid offset, value too big (0x%08lX)"),
23900 (long) value);
23901 newval |= value >> 2;
23902 break;
23903
23904 case 6: /* Word load/store. */
23905 if (value & ~0x7c)
23906 as_bad_where (fixP->fx_file, fixP->fx_line,
23907 _("invalid offset, value too big (0x%08lX)"),
23908 (long) value);
23909 newval |= value << 4; /* 6 - 2. */
23910 break;
23911
23912 case 7: /* Byte load/store. */
23913 if (value & ~0x1f)
23914 as_bad_where (fixP->fx_file, fixP->fx_line,
23915 _("invalid offset, value too big (0x%08lX)"),
23916 (long) value);
23917 newval |= value << 6;
23918 break;
23919
23920 case 8: /* Halfword load/store. */
23921 if (value & ~0x3e)
23922 as_bad_where (fixP->fx_file, fixP->fx_line,
23923 _("invalid offset, value too big (0x%08lX)"),
23924 (long) value);
23925 newval |= value << 5; /* 6 - 1. */
23926 break;
23927
23928 default:
23929 as_bad_where (fixP->fx_file, fixP->fx_line,
23930 "Unable to process relocation for thumb opcode: %lx",
23931 (unsigned long) newval);
23932 break;
23933 }
23934 md_number_to_chars (buf, newval, THUMB_SIZE);
23935 break;
23936
23937 case BFD_RELOC_ARM_THUMB_ADD:
23938 /* This is a complicated relocation, since we use it for all of
23939 the following immediate relocations:
23940
23941 3bit ADD/SUB
23942 8bit ADD/SUB
23943 9bit ADD/SUB SP word-aligned
23944 10bit ADD PC/SP word-aligned
23945
23946 The type of instruction being processed is encoded in the
23947 instruction field:
23948
23949 0x8000 SUB
23950 0x00F0 Rd
23951 0x000F Rs
23952 */
23953 newval = md_chars_to_number (buf, THUMB_SIZE);
23954 {
23955 int rd = (newval >> 4) & 0xf;
23956 int rs = newval & 0xf;
23957 int subtract = !!(newval & 0x8000);
23958
23959 /* Check for HI regs, only very restricted cases allowed:
23960 Adjusting SP, and using PC or SP to get an address. */
23961 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
23962 || (rs > 7 && rs != REG_SP && rs != REG_PC))
23963 as_bad_where (fixP->fx_file, fixP->fx_line,
23964 _("invalid Hi register with immediate"));
23965
23966 /* If value is negative, choose the opposite instruction. */
23967 if (value < 0)
23968 {
23969 value = -value;
23970 subtract = !subtract;
23971 if (value < 0)
23972 as_bad_where (fixP->fx_file, fixP->fx_line,
23973 _("immediate value out of range"));
23974 }
23975
23976 if (rd == REG_SP)
23977 {
23978 if (value & ~0x1fc)
23979 as_bad_where (fixP->fx_file, fixP->fx_line,
23980 _("invalid immediate for stack address calculation"));
23981 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
23982 newval |= value >> 2;
23983 }
23984 else if (rs == REG_PC || rs == REG_SP)
23985 {
23986 /* PR gas/18541. If the addition is for a defined symbol
23987 within range of an ADR instruction then accept it. */
23988 if (subtract
23989 && value == 4
23990 && fixP->fx_addsy != NULL)
23991 {
23992 subtract = 0;
23993
23994 if (! S_IS_DEFINED (fixP->fx_addsy)
23995 || S_GET_SEGMENT (fixP->fx_addsy) != seg
23996 || S_IS_WEAK (fixP->fx_addsy))
23997 {
23998 as_bad_where (fixP->fx_file, fixP->fx_line,
23999 _("address calculation needs a strongly defined nearby symbol"));
24000 }
24001 else
24002 {
24003 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24004
24005 /* Round up to the next 4-byte boundary. */
24006 if (v & 3)
24007 v = (v + 3) & ~ 3;
24008 else
24009 v += 4;
24010 v = S_GET_VALUE (fixP->fx_addsy) - v;
24011
24012 if (v & ~0x3fc)
24013 {
24014 as_bad_where (fixP->fx_file, fixP->fx_line,
24015 _("symbol too far away"));
24016 }
24017 else
24018 {
24019 fixP->fx_done = 1;
24020 value = v;
24021 }
24022 }
24023 }
24024
24025 if (subtract || value & ~0x3fc)
24026 as_bad_where (fixP->fx_file, fixP->fx_line,
24027 _("invalid immediate for address calculation (value = 0x%08lX)"),
24028 (unsigned long) (subtract ? - value : value));
24029 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24030 newval |= rd << 8;
24031 newval |= value >> 2;
24032 }
24033 else if (rs == rd)
24034 {
24035 if (value & ~0xff)
24036 as_bad_where (fixP->fx_file, fixP->fx_line,
24037 _("immediate value out of range"));
24038 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24039 newval |= (rd << 8) | value;
24040 }
24041 else
24042 {
24043 if (value & ~0x7)
24044 as_bad_where (fixP->fx_file, fixP->fx_line,
24045 _("immediate value out of range"));
24046 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24047 newval |= rd | (rs << 3) | (value << 6);
24048 }
24049 }
24050 md_number_to_chars (buf, newval, THUMB_SIZE);
24051 break;
24052
24053 case BFD_RELOC_ARM_THUMB_IMM:
24054 newval = md_chars_to_number (buf, THUMB_SIZE);
24055 if (value < 0 || value > 255)
24056 as_bad_where (fixP->fx_file, fixP->fx_line,
24057 _("invalid immediate: %ld is out of range"),
24058 (long) value);
24059 newval |= value;
24060 md_number_to_chars (buf, newval, THUMB_SIZE);
24061 break;
24062
24063 case BFD_RELOC_ARM_THUMB_SHIFT:
24064 /* 5bit shift value (0..32). LSL cannot take 32. */
24065 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24066 temp = newval & 0xf800;
24067 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24068 as_bad_where (fixP->fx_file, fixP->fx_line,
24069 _("invalid shift value: %ld"), (long) value);
24070 /* Shifts of zero must be encoded as LSL. */
24071 if (value == 0)
24072 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24073 /* Shifts of 32 are encoded as zero. */
24074 else if (value == 32)
24075 value = 0;
24076 newval |= value << 6;
24077 md_number_to_chars (buf, newval, THUMB_SIZE);
24078 break;
24079
24080 case BFD_RELOC_VTABLE_INHERIT:
24081 case BFD_RELOC_VTABLE_ENTRY:
24082 fixP->fx_done = 0;
24083 return;
24084
24085 case BFD_RELOC_ARM_MOVW:
24086 case BFD_RELOC_ARM_MOVT:
24087 case BFD_RELOC_ARM_THUMB_MOVW:
24088 case BFD_RELOC_ARM_THUMB_MOVT:
24089 if (fixP->fx_done || !seg->use_rela_p)
24090 {
24091 /* REL format relocations are limited to a 16-bit addend. */
24092 if (!fixP->fx_done)
24093 {
24094 if (value < -0x8000 || value > 0x7fff)
24095 as_bad_where (fixP->fx_file, fixP->fx_line,
24096 _("offset out of range"));
24097 }
24098 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24099 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24100 {
24101 value >>= 16;
24102 }
24103
24104 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24105 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24106 {
24107 newval = get_thumb32_insn (buf);
24108 newval &= 0xfbf08f00;
24109 newval |= (value & 0xf000) << 4;
24110 newval |= (value & 0x0800) << 15;
24111 newval |= (value & 0x0700) << 4;
24112 newval |= (value & 0x00ff);
24113 put_thumb32_insn (buf, newval);
24114 }
24115 else
24116 {
24117 newval = md_chars_to_number (buf, 4);
24118 newval &= 0xfff0f000;
24119 newval |= value & 0x0fff;
24120 newval |= (value & 0xf000) << 4;
24121 md_number_to_chars (buf, newval, 4);
24122 }
24123 }
24124 return;
24125
24126 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24127 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24128 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24129 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24130 gas_assert (!fixP->fx_done);
24131 {
24132 bfd_vma insn;
24133 bfd_boolean is_mov;
24134 bfd_vma encoded_addend = value;
24135
24136 /* Check that addend can be encoded in instruction. */
24137 if (!seg->use_rela_p && (value < 0 || value > 255))
24138 as_bad_where (fixP->fx_file, fixP->fx_line,
24139 _("the offset 0x%08lX is not representable"),
24140 (unsigned long) encoded_addend);
24141
24142 /* Extract the instruction. */
24143 insn = md_chars_to_number (buf, THUMB_SIZE);
24144 is_mov = (insn & 0xf800) == 0x2000;
24145
24146 /* Encode insn. */
24147 if (is_mov)
24148 {
24149 if (!seg->use_rela_p)
24150 insn |= encoded_addend;
24151 }
24152 else
24153 {
24154 int rd, rs;
24155
24156 /* Extract the instruction. */
24157 /* Encoding is the following
24158 0x8000 SUB
24159 0x00F0 Rd
24160 0x000F Rs
24161 */
24162 /* The following conditions must be true :
24163 - ADD
24164 - Rd == Rs
24165 - Rd <= 7
24166 */
24167 rd = (insn >> 4) & 0xf;
24168 rs = insn & 0xf;
24169 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24170 as_bad_where (fixP->fx_file, fixP->fx_line,
24171 _("Unable to process relocation for thumb opcode: %lx"),
24172 (unsigned long) insn);
24173
24174 /* Encode as ADD immediate8 thumb 1 code. */
24175 insn = 0x3000 | (rd << 8);
24176
24177 /* Place the encoded addend into the first 8 bits of the
24178 instruction. */
24179 if (!seg->use_rela_p)
24180 insn |= encoded_addend;
24181 }
24182
24183 /* Update the instruction. */
24184 md_number_to_chars (buf, insn, THUMB_SIZE);
24185 }
24186 break;
24187
24188 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24189 case BFD_RELOC_ARM_ALU_PC_G0:
24190 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24191 case BFD_RELOC_ARM_ALU_PC_G1:
24192 case BFD_RELOC_ARM_ALU_PC_G2:
24193 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24194 case BFD_RELOC_ARM_ALU_SB_G0:
24195 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24196 case BFD_RELOC_ARM_ALU_SB_G1:
24197 case BFD_RELOC_ARM_ALU_SB_G2:
24198 gas_assert (!fixP->fx_done);
24199 if (!seg->use_rela_p)
24200 {
24201 bfd_vma insn;
24202 bfd_vma encoded_addend;
24203 bfd_vma addend_abs = abs (value);
24204
24205 /* Check that the absolute value of the addend can be
24206 expressed as an 8-bit constant plus a rotation. */
24207 encoded_addend = encode_arm_immediate (addend_abs);
24208 if (encoded_addend == (unsigned int) FAIL)
24209 as_bad_where (fixP->fx_file, fixP->fx_line,
24210 _("the offset 0x%08lX is not representable"),
24211 (unsigned long) addend_abs);
24212
24213 /* Extract the instruction. */
24214 insn = md_chars_to_number (buf, INSN_SIZE);
24215
24216 /* If the addend is positive, use an ADD instruction.
24217 Otherwise use a SUB. Take care not to destroy the S bit. */
24218 insn &= 0xff1fffff;
24219 if (value < 0)
24220 insn |= 1 << 22;
24221 else
24222 insn |= 1 << 23;
24223
24224 /* Place the encoded addend into the first 12 bits of the
24225 instruction. */
24226 insn &= 0xfffff000;
24227 insn |= encoded_addend;
24228
24229 /* Update the instruction. */
24230 md_number_to_chars (buf, insn, INSN_SIZE);
24231 }
24232 break;
24233
24234 case BFD_RELOC_ARM_LDR_PC_G0:
24235 case BFD_RELOC_ARM_LDR_PC_G1:
24236 case BFD_RELOC_ARM_LDR_PC_G2:
24237 case BFD_RELOC_ARM_LDR_SB_G0:
24238 case BFD_RELOC_ARM_LDR_SB_G1:
24239 case BFD_RELOC_ARM_LDR_SB_G2:
24240 gas_assert (!fixP->fx_done);
24241 if (!seg->use_rela_p)
24242 {
24243 bfd_vma insn;
24244 bfd_vma addend_abs = abs (value);
24245
24246 /* Check that the absolute value of the addend can be
24247 encoded in 12 bits. */
24248 if (addend_abs >= 0x1000)
24249 as_bad_where (fixP->fx_file, fixP->fx_line,
24250 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24251 (unsigned long) addend_abs);
24252
24253 /* Extract the instruction. */
24254 insn = md_chars_to_number (buf, INSN_SIZE);
24255
24256 /* If the addend is negative, clear bit 23 of the instruction.
24257 Otherwise set it. */
24258 if (value < 0)
24259 insn &= ~(1 << 23);
24260 else
24261 insn |= 1 << 23;
24262
24263 /* Place the absolute value of the addend into the first 12 bits
24264 of the instruction. */
24265 insn &= 0xfffff000;
24266 insn |= addend_abs;
24267
24268 /* Update the instruction. */
24269 md_number_to_chars (buf, insn, INSN_SIZE);
24270 }
24271 break;
24272
24273 case BFD_RELOC_ARM_LDRS_PC_G0:
24274 case BFD_RELOC_ARM_LDRS_PC_G1:
24275 case BFD_RELOC_ARM_LDRS_PC_G2:
24276 case BFD_RELOC_ARM_LDRS_SB_G0:
24277 case BFD_RELOC_ARM_LDRS_SB_G1:
24278 case BFD_RELOC_ARM_LDRS_SB_G2:
24279 gas_assert (!fixP->fx_done);
24280 if (!seg->use_rela_p)
24281 {
24282 bfd_vma insn;
24283 bfd_vma addend_abs = abs (value);
24284
24285 /* Check that the absolute value of the addend can be
24286 encoded in 8 bits. */
24287 if (addend_abs >= 0x100)
24288 as_bad_where (fixP->fx_file, fixP->fx_line,
24289 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24290 (unsigned long) addend_abs);
24291
24292 /* Extract the instruction. */
24293 insn = md_chars_to_number (buf, INSN_SIZE);
24294
24295 /* If the addend is negative, clear bit 23 of the instruction.
24296 Otherwise set it. */
24297 if (value < 0)
24298 insn &= ~(1 << 23);
24299 else
24300 insn |= 1 << 23;
24301
24302 /* Place the first four bits of the absolute value of the addend
24303 into the first 4 bits of the instruction, and the remaining
24304 four into bits 8 .. 11. */
24305 insn &= 0xfffff0f0;
24306 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24307
24308 /* Update the instruction. */
24309 md_number_to_chars (buf, insn, INSN_SIZE);
24310 }
24311 break;
24312
24313 case BFD_RELOC_ARM_LDC_PC_G0:
24314 case BFD_RELOC_ARM_LDC_PC_G1:
24315 case BFD_RELOC_ARM_LDC_PC_G2:
24316 case BFD_RELOC_ARM_LDC_SB_G0:
24317 case BFD_RELOC_ARM_LDC_SB_G1:
24318 case BFD_RELOC_ARM_LDC_SB_G2:
24319 gas_assert (!fixP->fx_done);
24320 if (!seg->use_rela_p)
24321 {
24322 bfd_vma insn;
24323 bfd_vma addend_abs = abs (value);
24324
24325 /* Check that the absolute value of the addend is a multiple of
24326 four and, when divided by four, fits in 8 bits. */
24327 if (addend_abs & 0x3)
24328 as_bad_where (fixP->fx_file, fixP->fx_line,
24329 _("bad offset 0x%08lX (must be word-aligned)"),
24330 (unsigned long) addend_abs);
24331
24332 if ((addend_abs >> 2) > 0xff)
24333 as_bad_where (fixP->fx_file, fixP->fx_line,
24334 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24335 (unsigned long) addend_abs);
24336
24337 /* Extract the instruction. */
24338 insn = md_chars_to_number (buf, INSN_SIZE);
24339
24340 /* If the addend is negative, clear bit 23 of the instruction.
24341 Otherwise set it. */
24342 if (value < 0)
24343 insn &= ~(1 << 23);
24344 else
24345 insn |= 1 << 23;
24346
24347 /* Place the addend (divided by four) into the first eight
24348 bits of the instruction. */
24349 insn &= 0xfffffff0;
24350 insn |= addend_abs >> 2;
24351
24352 /* Update the instruction. */
24353 md_number_to_chars (buf, insn, INSN_SIZE);
24354 }
24355 break;
24356
24357 case BFD_RELOC_ARM_V4BX:
24358 /* This will need to go in the object file. */
24359 fixP->fx_done = 0;
24360 break;
24361
24362 case BFD_RELOC_UNUSED:
24363 default:
24364 as_bad_where (fixP->fx_file, fixP->fx_line,
24365 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24366 }
24367 }
24368
24369 /* Translate internal representation of relocation info to BFD target
24370 format. */
24371
24372 arelent *
24373 tc_gen_reloc (asection *section, fixS *fixp)
24374 {
24375 arelent * reloc;
24376 bfd_reloc_code_real_type code;
24377
24378 reloc = XNEW (arelent);
24379
24380 reloc->sym_ptr_ptr = XNEW (asymbol *);
24381 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24382 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
24383
24384 if (fixp->fx_pcrel)
24385 {
24386 if (section->use_rela_p)
24387 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24388 else
24389 fixp->fx_offset = reloc->address;
24390 }
24391 reloc->addend = fixp->fx_offset;
24392
24393 switch (fixp->fx_r_type)
24394 {
24395 case BFD_RELOC_8:
24396 if (fixp->fx_pcrel)
24397 {
24398 code = BFD_RELOC_8_PCREL;
24399 break;
24400 }
24401 /* Fall through. */
24402
24403 case BFD_RELOC_16:
24404 if (fixp->fx_pcrel)
24405 {
24406 code = BFD_RELOC_16_PCREL;
24407 break;
24408 }
24409 /* Fall through. */
24410
24411 case BFD_RELOC_32:
24412 if (fixp->fx_pcrel)
24413 {
24414 code = BFD_RELOC_32_PCREL;
24415 break;
24416 }
24417 /* Fall through. */
24418
24419 case BFD_RELOC_ARM_MOVW:
24420 if (fixp->fx_pcrel)
24421 {
24422 code = BFD_RELOC_ARM_MOVW_PCREL;
24423 break;
24424 }
24425 /* Fall through. */
24426
24427 case BFD_RELOC_ARM_MOVT:
24428 if (fixp->fx_pcrel)
24429 {
24430 code = BFD_RELOC_ARM_MOVT_PCREL;
24431 break;
24432 }
24433 /* Fall through. */
24434
24435 case BFD_RELOC_ARM_THUMB_MOVW:
24436 if (fixp->fx_pcrel)
24437 {
24438 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24439 break;
24440 }
24441 /* Fall through. */
24442
24443 case BFD_RELOC_ARM_THUMB_MOVT:
24444 if (fixp->fx_pcrel)
24445 {
24446 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24447 break;
24448 }
24449 /* Fall through. */
24450
24451 case BFD_RELOC_NONE:
24452 case BFD_RELOC_ARM_PCREL_BRANCH:
24453 case BFD_RELOC_ARM_PCREL_BLX:
24454 case BFD_RELOC_RVA:
24455 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24456 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24457 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24458 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24459 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24460 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24461 case BFD_RELOC_VTABLE_ENTRY:
24462 case BFD_RELOC_VTABLE_INHERIT:
24463 #ifdef TE_PE
24464 case BFD_RELOC_32_SECREL:
24465 #endif
24466 code = fixp->fx_r_type;
24467 break;
24468
24469 case BFD_RELOC_THUMB_PCREL_BLX:
24470 #ifdef OBJ_ELF
24471 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24472 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24473 else
24474 #endif
24475 code = BFD_RELOC_THUMB_PCREL_BLX;
24476 break;
24477
24478 case BFD_RELOC_ARM_LITERAL:
24479 case BFD_RELOC_ARM_HWLITERAL:
24480 /* If this is called then the a literal has
24481 been referenced across a section boundary. */
24482 as_bad_where (fixp->fx_file, fixp->fx_line,
24483 _("literal referenced across section boundary"));
24484 return NULL;
24485
24486 #ifdef OBJ_ELF
24487 case BFD_RELOC_ARM_TLS_CALL:
24488 case BFD_RELOC_ARM_THM_TLS_CALL:
24489 case BFD_RELOC_ARM_TLS_DESCSEQ:
24490 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24491 case BFD_RELOC_ARM_GOT32:
24492 case BFD_RELOC_ARM_GOTOFF:
24493 case BFD_RELOC_ARM_GOT_PREL:
24494 case BFD_RELOC_ARM_PLT32:
24495 case BFD_RELOC_ARM_TARGET1:
24496 case BFD_RELOC_ARM_ROSEGREL32:
24497 case BFD_RELOC_ARM_SBREL32:
24498 case BFD_RELOC_ARM_PREL31:
24499 case BFD_RELOC_ARM_TARGET2:
24500 case BFD_RELOC_ARM_TLS_LDO32:
24501 case BFD_RELOC_ARM_PCREL_CALL:
24502 case BFD_RELOC_ARM_PCREL_JUMP:
24503 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24504 case BFD_RELOC_ARM_ALU_PC_G0:
24505 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24506 case BFD_RELOC_ARM_ALU_PC_G1:
24507 case BFD_RELOC_ARM_ALU_PC_G2:
24508 case BFD_RELOC_ARM_LDR_PC_G0:
24509 case BFD_RELOC_ARM_LDR_PC_G1:
24510 case BFD_RELOC_ARM_LDR_PC_G2:
24511 case BFD_RELOC_ARM_LDRS_PC_G0:
24512 case BFD_RELOC_ARM_LDRS_PC_G1:
24513 case BFD_RELOC_ARM_LDRS_PC_G2:
24514 case BFD_RELOC_ARM_LDC_PC_G0:
24515 case BFD_RELOC_ARM_LDC_PC_G1:
24516 case BFD_RELOC_ARM_LDC_PC_G2:
24517 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24518 case BFD_RELOC_ARM_ALU_SB_G0:
24519 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24520 case BFD_RELOC_ARM_ALU_SB_G1:
24521 case BFD_RELOC_ARM_ALU_SB_G2:
24522 case BFD_RELOC_ARM_LDR_SB_G0:
24523 case BFD_RELOC_ARM_LDR_SB_G1:
24524 case BFD_RELOC_ARM_LDR_SB_G2:
24525 case BFD_RELOC_ARM_LDRS_SB_G0:
24526 case BFD_RELOC_ARM_LDRS_SB_G1:
24527 case BFD_RELOC_ARM_LDRS_SB_G2:
24528 case BFD_RELOC_ARM_LDC_SB_G0:
24529 case BFD_RELOC_ARM_LDC_SB_G1:
24530 case BFD_RELOC_ARM_LDC_SB_G2:
24531 case BFD_RELOC_ARM_V4BX:
24532 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24533 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24534 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24535 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24536 code = fixp->fx_r_type;
24537 break;
24538
24539 case BFD_RELOC_ARM_TLS_GOTDESC:
24540 case BFD_RELOC_ARM_TLS_GD32:
24541 case BFD_RELOC_ARM_TLS_LE32:
24542 case BFD_RELOC_ARM_TLS_IE32:
24543 case BFD_RELOC_ARM_TLS_LDM32:
24544 /* BFD will include the symbol's address in the addend.
24545 But we don't want that, so subtract it out again here. */
24546 if (!S_IS_COMMON (fixp->fx_addsy))
24547 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24548 code = fixp->fx_r_type;
24549 break;
24550 #endif
24551
24552 case BFD_RELOC_ARM_IMMEDIATE:
24553 as_bad_where (fixp->fx_file, fixp->fx_line,
24554 _("internal relocation (type: IMMEDIATE) not fixed up"));
24555 return NULL;
24556
24557 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24558 as_bad_where (fixp->fx_file, fixp->fx_line,
24559 _("ADRL used for a symbol not defined in the same file"));
24560 return NULL;
24561
24562 case BFD_RELOC_ARM_OFFSET_IMM:
24563 if (section->use_rela_p)
24564 {
24565 code = fixp->fx_r_type;
24566 break;
24567 }
24568
24569 if (fixp->fx_addsy != NULL
24570 && !S_IS_DEFINED (fixp->fx_addsy)
24571 && S_IS_LOCAL (fixp->fx_addsy))
24572 {
24573 as_bad_where (fixp->fx_file, fixp->fx_line,
24574 _("undefined local label `%s'"),
24575 S_GET_NAME (fixp->fx_addsy));
24576 return NULL;
24577 }
24578
24579 as_bad_where (fixp->fx_file, fixp->fx_line,
24580 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24581 return NULL;
24582
24583 default:
24584 {
24585 const char * type;
24586
24587 switch (fixp->fx_r_type)
24588 {
24589 case BFD_RELOC_NONE: type = "NONE"; break;
24590 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24591 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
24592 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
24593 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24594 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24595 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
24596 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
24597 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
24598 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24599 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24600 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24601 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24602 default: type = _("<unknown>"); break;
24603 }
24604 as_bad_where (fixp->fx_file, fixp->fx_line,
24605 _("cannot represent %s relocation in this object file format"),
24606 type);
24607 return NULL;
24608 }
24609 }
24610
24611 #ifdef OBJ_ELF
24612 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24613 && GOT_symbol
24614 && fixp->fx_addsy == GOT_symbol)
24615 {
24616 code = BFD_RELOC_ARM_GOTPC;
24617 reloc->addend = fixp->fx_offset = reloc->address;
24618 }
24619 #endif
24620
24621 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
24622
24623 if (reloc->howto == NULL)
24624 {
24625 as_bad_where (fixp->fx_file, fixp->fx_line,
24626 _("cannot represent %s relocation in this object file format"),
24627 bfd_get_reloc_code_name (code));
24628 return NULL;
24629 }
24630
24631 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24632 vtable entry to be used in the relocation's section offset. */
24633 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24634 reloc->address = fixp->fx_offset;
24635
24636 return reloc;
24637 }
24638
24639 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
24640
24641 void
24642 cons_fix_new_arm (fragS * frag,
24643 int where,
24644 int size,
24645 expressionS * exp,
24646 bfd_reloc_code_real_type reloc)
24647 {
24648 int pcrel = 0;
24649
24650 /* Pick a reloc.
24651 FIXME: @@ Should look at CPU word size. */
24652 switch (size)
24653 {
24654 case 1:
24655 reloc = BFD_RELOC_8;
24656 break;
24657 case 2:
24658 reloc = BFD_RELOC_16;
24659 break;
24660 case 4:
24661 default:
24662 reloc = BFD_RELOC_32;
24663 break;
24664 case 8:
24665 reloc = BFD_RELOC_64;
24666 break;
24667 }
24668
24669 #ifdef TE_PE
24670 if (exp->X_op == O_secrel)
24671 {
24672 exp->X_op = O_symbol;
24673 reloc = BFD_RELOC_32_SECREL;
24674 }
24675 #endif
24676
24677 fix_new_exp (frag, where, size, exp, pcrel, reloc);
24678 }
24679
24680 #if defined (OBJ_COFF)
24681 void
24682 arm_validate_fix (fixS * fixP)
24683 {
24684 /* If the destination of the branch is a defined symbol which does not have
24685 the THUMB_FUNC attribute, then we must be calling a function which has
24686 the (interfacearm) attribute. We look for the Thumb entry point to that
24687 function and change the branch to refer to that function instead. */
24688 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24689 && fixP->fx_addsy != NULL
24690 && S_IS_DEFINED (fixP->fx_addsy)
24691 && ! THUMB_IS_FUNC (fixP->fx_addsy))
24692 {
24693 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
24694 }
24695 }
24696 #endif
24697
24698
24699 int
24700 arm_force_relocation (struct fix * fixp)
24701 {
24702 #if defined (OBJ_COFF) && defined (TE_PE)
24703 if (fixp->fx_r_type == BFD_RELOC_RVA)
24704 return 1;
24705 #endif
24706
24707 /* In case we have a call or a branch to a function in ARM ISA mode from
24708 a thumb function or vice-versa force the relocation. These relocations
24709 are cleared off for some cores that might have blx and simple transformations
24710 are possible. */
24711
24712 #ifdef OBJ_ELF
24713 switch (fixp->fx_r_type)
24714 {
24715 case BFD_RELOC_ARM_PCREL_JUMP:
24716 case BFD_RELOC_ARM_PCREL_CALL:
24717 case BFD_RELOC_THUMB_PCREL_BLX:
24718 if (THUMB_IS_FUNC (fixp->fx_addsy))
24719 return 1;
24720 break;
24721
24722 case BFD_RELOC_ARM_PCREL_BLX:
24723 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24724 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24725 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24726 if (ARM_IS_FUNC (fixp->fx_addsy))
24727 return 1;
24728 break;
24729
24730 default:
24731 break;
24732 }
24733 #endif
24734
24735 /* Resolve these relocations even if the symbol is extern or weak.
24736 Technically this is probably wrong due to symbol preemption.
24737 In practice these relocations do not have enough range to be useful
24738 at dynamic link time, and some code (e.g. in the Linux kernel)
24739 expects these references to be resolved. */
24740 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
24741 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
24742 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
24743 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
24744 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24745 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
24746 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
24747 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
24748 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
24749 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
24750 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
24751 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
24752 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
24753 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
24754 return 0;
24755
24756 /* Always leave these relocations for the linker. */
24757 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24758 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24759 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24760 return 1;
24761
24762 /* Always generate relocations against function symbols. */
24763 if (fixp->fx_r_type == BFD_RELOC_32
24764 && fixp->fx_addsy
24765 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
24766 return 1;
24767
24768 return generic_force_reloc (fixp);
24769 }
24770
24771 #if defined (OBJ_ELF) || defined (OBJ_COFF)
24772 /* Relocations against function names must be left unadjusted,
24773 so that the linker can use this information to generate interworking
24774 stubs. The MIPS version of this function
24775 also prevents relocations that are mips-16 specific, but I do not
24776 know why it does this.
24777
24778 FIXME:
24779 There is one other problem that ought to be addressed here, but
24780 which currently is not: Taking the address of a label (rather
24781 than a function) and then later jumping to that address. Such
24782 addresses also ought to have their bottom bit set (assuming that
24783 they reside in Thumb code), but at the moment they will not. */
24784
24785 bfd_boolean
24786 arm_fix_adjustable (fixS * fixP)
24787 {
24788 if (fixP->fx_addsy == NULL)
24789 return 1;
24790
24791 /* Preserve relocations against symbols with function type. */
24792 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
24793 return FALSE;
24794
24795 if (THUMB_IS_FUNC (fixP->fx_addsy)
24796 && fixP->fx_subsy == NULL)
24797 return FALSE;
24798
24799 /* We need the symbol name for the VTABLE entries. */
24800 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
24801 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24802 return FALSE;
24803
24804 /* Don't allow symbols to be discarded on GOT related relocs. */
24805 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
24806 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
24807 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
24808 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
24809 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
24810 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
24811 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
24812 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
24813 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
24814 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
24815 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
24816 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
24817 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
24818 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
24819 return FALSE;
24820
24821 /* Similarly for group relocations. */
24822 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24823 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24824 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24825 return FALSE;
24826
24827 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
24828 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
24829 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24830 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
24831 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
24832 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24833 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
24834 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
24835 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
24836 return FALSE;
24837
24838 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
24839 offsets, so keep these symbols. */
24840 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
24841 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
24842 return FALSE;
24843
24844 return TRUE;
24845 }
24846 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
24847
24848 #ifdef OBJ_ELF
24849 const char *
24850 elf32_arm_target_format (void)
24851 {
24852 #ifdef TE_SYMBIAN
24853 return (target_big_endian
24854 ? "elf32-bigarm-symbian"
24855 : "elf32-littlearm-symbian");
24856 #elif defined (TE_VXWORKS)
24857 return (target_big_endian
24858 ? "elf32-bigarm-vxworks"
24859 : "elf32-littlearm-vxworks");
24860 #elif defined (TE_NACL)
24861 return (target_big_endian
24862 ? "elf32-bigarm-nacl"
24863 : "elf32-littlearm-nacl");
24864 #else
24865 if (target_big_endian)
24866 return "elf32-bigarm";
24867 else
24868 return "elf32-littlearm";
24869 #endif
24870 }
24871
24872 void
24873 armelf_frob_symbol (symbolS * symp,
24874 int * puntp)
24875 {
24876 elf_frob_symbol (symp, puntp);
24877 }
24878 #endif
24879
24880 /* MD interface: Finalization. */
24881
24882 void
24883 arm_cleanup (void)
24884 {
24885 literal_pool * pool;
24886
24887 /* Ensure that all the IT blocks are properly closed. */
24888 check_it_blocks_finished ();
24889
24890 for (pool = list_of_pools; pool; pool = pool->next)
24891 {
24892 /* Put it at the end of the relevant section. */
24893 subseg_set (pool->section, pool->sub_section);
24894 #ifdef OBJ_ELF
24895 arm_elf_change_section ();
24896 #endif
24897 s_ltorg (0);
24898 }
24899 }
24900
24901 #ifdef OBJ_ELF
24902 /* Remove any excess mapping symbols generated for alignment frags in
24903 SEC. We may have created a mapping symbol before a zero byte
24904 alignment; remove it if there's a mapping symbol after the
24905 alignment. */
24906 static void
24907 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
24908 void *dummy ATTRIBUTE_UNUSED)
24909 {
24910 segment_info_type *seginfo = seg_info (sec);
24911 fragS *fragp;
24912
24913 if (seginfo == NULL || seginfo->frchainP == NULL)
24914 return;
24915
24916 for (fragp = seginfo->frchainP->frch_root;
24917 fragp != NULL;
24918 fragp = fragp->fr_next)
24919 {
24920 symbolS *sym = fragp->tc_frag_data.last_map;
24921 fragS *next = fragp->fr_next;
24922
24923 /* Variable-sized frags have been converted to fixed size by
24924 this point. But if this was variable-sized to start with,
24925 there will be a fixed-size frag after it. So don't handle
24926 next == NULL. */
24927 if (sym == NULL || next == NULL)
24928 continue;
24929
24930 if (S_GET_VALUE (sym) < next->fr_address)
24931 /* Not at the end of this frag. */
24932 continue;
24933 know (S_GET_VALUE (sym) == next->fr_address);
24934
24935 do
24936 {
24937 if (next->tc_frag_data.first_map != NULL)
24938 {
24939 /* Next frag starts with a mapping symbol. Discard this
24940 one. */
24941 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24942 break;
24943 }
24944
24945 if (next->fr_next == NULL)
24946 {
24947 /* This mapping symbol is at the end of the section. Discard
24948 it. */
24949 know (next->fr_fix == 0 && next->fr_var == 0);
24950 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24951 break;
24952 }
24953
24954 /* As long as we have empty frags without any mapping symbols,
24955 keep looking. */
24956 /* If the next frag is non-empty and does not start with a
24957 mapping symbol, then this mapping symbol is required. */
24958 if (next->fr_address != next->fr_next->fr_address)
24959 break;
24960
24961 next = next->fr_next;
24962 }
24963 while (next != NULL);
24964 }
24965 }
24966 #endif
24967
24968 /* Adjust the symbol table. This marks Thumb symbols as distinct from
24969 ARM ones. */
24970
24971 void
24972 arm_adjust_symtab (void)
24973 {
24974 #ifdef OBJ_COFF
24975 symbolS * sym;
24976
24977 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24978 {
24979 if (ARM_IS_THUMB (sym))
24980 {
24981 if (THUMB_IS_FUNC (sym))
24982 {
24983 /* Mark the symbol as a Thumb function. */
24984 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
24985 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
24986 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
24987
24988 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
24989 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
24990 else
24991 as_bad (_("%s: unexpected function type: %d"),
24992 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
24993 }
24994 else switch (S_GET_STORAGE_CLASS (sym))
24995 {
24996 case C_EXT:
24997 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
24998 break;
24999 case C_STAT:
25000 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25001 break;
25002 case C_LABEL:
25003 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25004 break;
25005 default:
25006 /* Do nothing. */
25007 break;
25008 }
25009 }
25010
25011 if (ARM_IS_INTERWORK (sym))
25012 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
25013 }
25014 #endif
25015 #ifdef OBJ_ELF
25016 symbolS * sym;
25017 char bind;
25018
25019 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25020 {
25021 if (ARM_IS_THUMB (sym))
25022 {
25023 elf_symbol_type * elf_sym;
25024
25025 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25026 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
25027
25028 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25029 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
25030 {
25031 /* If it's a .thumb_func, declare it as so,
25032 otherwise tag label as .code 16. */
25033 if (THUMB_IS_FUNC (sym))
25034 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25035 ST_BRANCH_TO_THUMB);
25036 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25037 elf_sym->internal_elf_sym.st_info =
25038 ELF_ST_INFO (bind, STT_ARM_16BIT);
25039 }
25040 }
25041 }
25042
25043 /* Remove any overlapping mapping symbols generated by alignment frags. */
25044 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
25045 /* Now do generic ELF adjustments. */
25046 elf_adjust_symtab ();
25047 #endif
25048 }
25049
25050 /* MD interface: Initialization. */
25051
25052 static void
25053 set_constant_flonums (void)
25054 {
25055 int i;
25056
25057 for (i = 0; i < NUM_FLOAT_VALS; i++)
25058 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25059 abort ();
25060 }
25061
25062 /* Auto-select Thumb mode if it's the only available instruction set for the
25063 given architecture. */
25064
25065 static void
25066 autoselect_thumb_from_cpu_variant (void)
25067 {
25068 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25069 opcode_select (16);
25070 }
25071
25072 void
25073 md_begin (void)
25074 {
25075 unsigned mach;
25076 unsigned int i;
25077
25078 if ( (arm_ops_hsh = hash_new ()) == NULL
25079 || (arm_cond_hsh = hash_new ()) == NULL
25080 || (arm_shift_hsh = hash_new ()) == NULL
25081 || (arm_psr_hsh = hash_new ()) == NULL
25082 || (arm_v7m_psr_hsh = hash_new ()) == NULL
25083 || (arm_reg_hsh = hash_new ()) == NULL
25084 || (arm_reloc_hsh = hash_new ()) == NULL
25085 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
25086 as_fatal (_("virtual memory exhausted"));
25087
25088 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
25089 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
25090 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
25091 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
25092 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
25093 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
25094 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
25095 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
25096 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
25097 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
25098 (void *) (v7m_psrs + i));
25099 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
25100 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
25101 for (i = 0;
25102 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25103 i++)
25104 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
25105 (void *) (barrier_opt_names + i));
25106 #ifdef OBJ_ELF
25107 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25108 {
25109 struct reloc_entry * entry = reloc_names + i;
25110
25111 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25112 /* This makes encode_branch() use the EABI versions of this relocation. */
25113 entry->reloc = BFD_RELOC_UNUSED;
25114
25115 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25116 }
25117 #endif
25118
25119 set_constant_flonums ();
25120
25121 /* Set the cpu variant based on the command-line options. We prefer
25122 -mcpu= over -march= if both are set (as for GCC); and we prefer
25123 -mfpu= over any other way of setting the floating point unit.
25124 Use of legacy options with new options are faulted. */
25125 if (legacy_cpu)
25126 {
25127 if (mcpu_cpu_opt || march_cpu_opt)
25128 as_bad (_("use of old and new-style options to set CPU type"));
25129
25130 mcpu_cpu_opt = legacy_cpu;
25131 }
25132 else if (!mcpu_cpu_opt)
25133 {
25134 mcpu_cpu_opt = march_cpu_opt;
25135 dyn_mcpu_ext_opt = dyn_march_ext_opt;
25136 /* Avoid double free in arm_md_end. */
25137 dyn_march_ext_opt = NULL;
25138 }
25139
25140 if (legacy_fpu)
25141 {
25142 if (mfpu_opt)
25143 as_bad (_("use of old and new-style options to set FPU type"));
25144
25145 mfpu_opt = legacy_fpu;
25146 }
25147 else if (!mfpu_opt)
25148 {
25149 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25150 || defined (TE_NetBSD) || defined (TE_VXWORKS))
25151 /* Some environments specify a default FPU. If they don't, infer it
25152 from the processor. */
25153 if (mcpu_fpu_opt)
25154 mfpu_opt = mcpu_fpu_opt;
25155 else
25156 mfpu_opt = march_fpu_opt;
25157 #else
25158 mfpu_opt = &fpu_default;
25159 #endif
25160 }
25161
25162 if (!mfpu_opt)
25163 {
25164 if (mcpu_cpu_opt != NULL)
25165 mfpu_opt = &fpu_default;
25166 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
25167 mfpu_opt = &fpu_arch_vfp_v2;
25168 else
25169 mfpu_opt = &fpu_arch_fpa;
25170 }
25171
25172 #ifdef CPU_DEFAULT
25173 if (!mcpu_cpu_opt)
25174 {
25175 mcpu_cpu_opt = &cpu_default;
25176 selected_cpu = cpu_default;
25177 }
25178 else if (dyn_mcpu_ext_opt)
25179 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25180 else
25181 selected_cpu = *mcpu_cpu_opt;
25182 #else
25183 if (mcpu_cpu_opt && dyn_mcpu_ext_opt)
25184 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
25185 else if (mcpu_cpu_opt)
25186 selected_cpu = *mcpu_cpu_opt;
25187 else
25188 mcpu_cpu_opt = &arm_arch_any;
25189 #endif
25190
25191 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25192 if (dyn_mcpu_ext_opt)
25193 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
25194
25195 autoselect_thumb_from_cpu_variant ();
25196
25197 arm_arch_used = thumb_arch_used = arm_arch_none;
25198
25199 #if defined OBJ_COFF || defined OBJ_ELF
25200 {
25201 unsigned int flags = 0;
25202
25203 #if defined OBJ_ELF
25204 flags = meabi_flags;
25205
25206 switch (meabi_flags)
25207 {
25208 case EF_ARM_EABI_UNKNOWN:
25209 #endif
25210 /* Set the flags in the private structure. */
25211 if (uses_apcs_26) flags |= F_APCS26;
25212 if (support_interwork) flags |= F_INTERWORK;
25213 if (uses_apcs_float) flags |= F_APCS_FLOAT;
25214 if (pic_code) flags |= F_PIC;
25215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
25216 flags |= F_SOFT_FLOAT;
25217
25218 switch (mfloat_abi_opt)
25219 {
25220 case ARM_FLOAT_ABI_SOFT:
25221 case ARM_FLOAT_ABI_SOFTFP:
25222 flags |= F_SOFT_FLOAT;
25223 break;
25224
25225 case ARM_FLOAT_ABI_HARD:
25226 if (flags & F_SOFT_FLOAT)
25227 as_bad (_("hard-float conflicts with specified fpu"));
25228 break;
25229 }
25230
25231 /* Using pure-endian doubles (even if soft-float). */
25232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
25233 flags |= F_VFP_FLOAT;
25234
25235 #if defined OBJ_ELF
25236 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
25237 flags |= EF_ARM_MAVERICK_FLOAT;
25238 break;
25239
25240 case EF_ARM_EABI_VER4:
25241 case EF_ARM_EABI_VER5:
25242 /* No additional flags to set. */
25243 break;
25244
25245 default:
25246 abort ();
25247 }
25248 #endif
25249 bfd_set_private_flags (stdoutput, flags);
25250
25251 /* We have run out flags in the COFF header to encode the
25252 status of ATPCS support, so instead we create a dummy,
25253 empty, debug section called .arm.atpcs. */
25254 if (atpcs)
25255 {
25256 asection * sec;
25257
25258 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25259
25260 if (sec != NULL)
25261 {
25262 bfd_set_section_flags
25263 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25264 bfd_set_section_size (stdoutput, sec, 0);
25265 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25266 }
25267 }
25268 }
25269 #endif
25270
25271 /* Record the CPU type as well. */
25272 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25273 mach = bfd_mach_arm_iWMMXt2;
25274 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
25275 mach = bfd_mach_arm_iWMMXt;
25276 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
25277 mach = bfd_mach_arm_XScale;
25278 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
25279 mach = bfd_mach_arm_ep9312;
25280 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
25281 mach = bfd_mach_arm_5TE;
25282 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
25283 {
25284 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25285 mach = bfd_mach_arm_5T;
25286 else
25287 mach = bfd_mach_arm_5;
25288 }
25289 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
25290 {
25291 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25292 mach = bfd_mach_arm_4T;
25293 else
25294 mach = bfd_mach_arm_4;
25295 }
25296 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
25297 mach = bfd_mach_arm_3M;
25298 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25299 mach = bfd_mach_arm_3;
25300 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25301 mach = bfd_mach_arm_2a;
25302 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25303 mach = bfd_mach_arm_2;
25304 else
25305 mach = bfd_mach_arm_unknown;
25306
25307 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25308 }
25309
25310 /* Command line processing. */
25311
25312 /* md_parse_option
25313 Invocation line includes a switch not recognized by the base assembler.
25314 See if it's a processor-specific option.
25315
25316 This routine is somewhat complicated by the need for backwards
25317 compatibility (since older releases of gcc can't be changed).
25318 The new options try to make the interface as compatible as
25319 possible with GCC.
25320
25321 New options (supported) are:
25322
25323 -mcpu=<cpu name> Assemble for selected processor
25324 -march=<architecture name> Assemble for selected architecture
25325 -mfpu=<fpu architecture> Assemble for selected FPU.
25326 -EB/-mbig-endian Big-endian
25327 -EL/-mlittle-endian Little-endian
25328 -k Generate PIC code
25329 -mthumb Start in Thumb mode
25330 -mthumb-interwork Code supports ARM/Thumb interworking
25331
25332 -m[no-]warn-deprecated Warn about deprecated features
25333 -m[no-]warn-syms Warn when symbols match instructions
25334
25335 For now we will also provide support for:
25336
25337 -mapcs-32 32-bit Program counter
25338 -mapcs-26 26-bit Program counter
25339 -macps-float Floats passed in FP registers
25340 -mapcs-reentrant Reentrant code
25341 -matpcs
25342 (sometime these will probably be replaced with -mapcs=<list of options>
25343 and -matpcs=<list of options>)
25344
25345 The remaining options are only supported for back-wards compatibility.
25346 Cpu variants, the arm part is optional:
25347 -m[arm]1 Currently not supported.
25348 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25349 -m[arm]3 Arm 3 processor
25350 -m[arm]6[xx], Arm 6 processors
25351 -m[arm]7[xx][t][[d]m] Arm 7 processors
25352 -m[arm]8[10] Arm 8 processors
25353 -m[arm]9[20][tdmi] Arm 9 processors
25354 -mstrongarm[110[0]] StrongARM processors
25355 -mxscale XScale processors
25356 -m[arm]v[2345[t[e]]] Arm architectures
25357 -mall All (except the ARM1)
25358 FP variants:
25359 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25360 -mfpe-old (No float load/store multiples)
25361 -mvfpxd VFP Single precision
25362 -mvfp All VFP
25363 -mno-fpu Disable all floating point instructions
25364
25365 The following CPU names are recognized:
25366 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25367 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25368 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25369 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25370 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25371 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25372 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
25373
25374 */
25375
25376 const char * md_shortopts = "m:k";
25377
25378 #ifdef ARM_BI_ENDIAN
25379 #define OPTION_EB (OPTION_MD_BASE + 0)
25380 #define OPTION_EL (OPTION_MD_BASE + 1)
25381 #else
25382 #if TARGET_BYTES_BIG_ENDIAN
25383 #define OPTION_EB (OPTION_MD_BASE + 0)
25384 #else
25385 #define OPTION_EL (OPTION_MD_BASE + 1)
25386 #endif
25387 #endif
25388 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
25389
25390 struct option md_longopts[] =
25391 {
25392 #ifdef OPTION_EB
25393 {"EB", no_argument, NULL, OPTION_EB},
25394 #endif
25395 #ifdef OPTION_EL
25396 {"EL", no_argument, NULL, OPTION_EL},
25397 #endif
25398 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
25399 {NULL, no_argument, NULL, 0}
25400 };
25401
25402
25403 size_t md_longopts_size = sizeof (md_longopts);
25404
25405 struct arm_option_table
25406 {
25407 const char *option; /* Option name to match. */
25408 const char *help; /* Help information. */
25409 int *var; /* Variable to change. */
25410 int value; /* What to change it to. */
25411 const char *deprecated; /* If non-null, print this message. */
25412 };
25413
25414 struct arm_option_table arm_opts[] =
25415 {
25416 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25417 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25418 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25419 &support_interwork, 1, NULL},
25420 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25421 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25422 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25423 1, NULL},
25424 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25425 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25426 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25427 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25428 NULL},
25429
25430 /* These are recognized by the assembler, but have no affect on code. */
25431 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25432 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
25433
25434 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25435 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25436 &warn_on_deprecated, 0, NULL},
25437 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25438 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
25439 {NULL, NULL, NULL, 0, NULL}
25440 };
25441
25442 struct arm_legacy_option_table
25443 {
25444 const char *option; /* Option name to match. */
25445 const arm_feature_set **var; /* Variable to change. */
25446 const arm_feature_set value; /* What to change it to. */
25447 const char *deprecated; /* If non-null, print this message. */
25448 };
25449
25450 const struct arm_legacy_option_table arm_legacy_opts[] =
25451 {
25452 /* DON'T add any new processors to this list -- we want the whole list
25453 to go away... Add them to the processors table instead. */
25454 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25455 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25456 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25457 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25458 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25459 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25460 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25461 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25462 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25463 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25464 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25465 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25466 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25467 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25468 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25469 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25470 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25471 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25472 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25473 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25474 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25475 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25476 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25477 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25478 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25479 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25480 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25481 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25482 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25483 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25484 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25485 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25486 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25487 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25488 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25489 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25490 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25491 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25492 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25493 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25494 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25495 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25496 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25497 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25498 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25499 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25500 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25501 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25502 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25503 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25504 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25505 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25506 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25507 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25508 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25509 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25510 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25511 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25512 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25513 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25514 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25515 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25516 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25517 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25518 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25519 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25520 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25521 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25522 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25523 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
25524 N_("use -mcpu=strongarm110")},
25525 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
25526 N_("use -mcpu=strongarm1100")},
25527 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
25528 N_("use -mcpu=strongarm1110")},
25529 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25530 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25531 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
25532
25533 /* Architecture variants -- don't add any more to this list either. */
25534 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25535 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25536 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25537 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25538 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25539 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25540 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25541 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25542 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25543 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25544 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25545 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25546 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25547 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25548 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25549 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25550 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25551 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25552
25553 /* Floating point variants -- don't add any more to this list either. */
25554 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25555 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25556 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25557 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
25558 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
25559
25560 {NULL, NULL, ARM_ARCH_NONE, NULL}
25561 };
25562
25563 struct arm_cpu_option_table
25564 {
25565 const char *name;
25566 size_t name_len;
25567 const arm_feature_set value;
25568 const arm_feature_set ext;
25569 /* For some CPUs we assume an FPU unless the user explicitly sets
25570 -mfpu=... */
25571 const arm_feature_set default_fpu;
25572 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25573 case. */
25574 const char *canonical_name;
25575 };
25576
25577 /* This list should, at a minimum, contain all the cpu names
25578 recognized by GCC. */
25579 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
25580 static const struct arm_cpu_option_table arm_cpus[] =
25581 {
25582 ARM_CPU_OPT ("all", NULL, ARM_ANY,
25583 ARM_ARCH_NONE,
25584 FPU_ARCH_FPA),
25585 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
25586 ARM_ARCH_NONE,
25587 FPU_ARCH_FPA),
25588 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
25589 ARM_ARCH_NONE,
25590 FPU_ARCH_FPA),
25591 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
25592 ARM_ARCH_NONE,
25593 FPU_ARCH_FPA),
25594 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
25595 ARM_ARCH_NONE,
25596 FPU_ARCH_FPA),
25597 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
25598 ARM_ARCH_NONE,
25599 FPU_ARCH_FPA),
25600 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
25601 ARM_ARCH_NONE,
25602 FPU_ARCH_FPA),
25603 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
25604 ARM_ARCH_NONE,
25605 FPU_ARCH_FPA),
25606 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
25607 ARM_ARCH_NONE,
25608 FPU_ARCH_FPA),
25609 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
25610 ARM_ARCH_NONE,
25611 FPU_ARCH_FPA),
25612 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
25613 ARM_ARCH_NONE,
25614 FPU_ARCH_FPA),
25615 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
25616 ARM_ARCH_NONE,
25617 FPU_ARCH_FPA),
25618 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
25619 ARM_ARCH_NONE,
25620 FPU_ARCH_FPA),
25621 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
25622 ARM_ARCH_NONE,
25623 FPU_ARCH_FPA),
25624 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
25625 ARM_ARCH_NONE,
25626 FPU_ARCH_FPA),
25627 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
25628 ARM_ARCH_NONE,
25629 FPU_ARCH_FPA),
25630 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
25631 ARM_ARCH_NONE,
25632 FPU_ARCH_FPA),
25633 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
25634 ARM_ARCH_NONE,
25635 FPU_ARCH_FPA),
25636 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
25637 ARM_ARCH_NONE,
25638 FPU_ARCH_FPA),
25639 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
25640 ARM_ARCH_NONE,
25641 FPU_ARCH_FPA),
25642 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
25643 ARM_ARCH_NONE,
25644 FPU_ARCH_FPA),
25645 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
25646 ARM_ARCH_NONE,
25647 FPU_ARCH_FPA),
25648 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
25649 ARM_ARCH_NONE,
25650 FPU_ARCH_FPA),
25651 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
25652 ARM_ARCH_NONE,
25653 FPU_ARCH_FPA),
25654 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
25655 ARM_ARCH_NONE,
25656 FPU_ARCH_FPA),
25657 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
25658 ARM_ARCH_NONE,
25659 FPU_ARCH_FPA),
25660 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
25661 ARM_ARCH_NONE,
25662 FPU_ARCH_FPA),
25663 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
25664 ARM_ARCH_NONE,
25665 FPU_ARCH_FPA),
25666 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
25667 ARM_ARCH_NONE,
25668 FPU_ARCH_FPA),
25669 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
25670 ARM_ARCH_NONE,
25671 FPU_ARCH_FPA),
25672 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
25673 ARM_ARCH_NONE,
25674 FPU_ARCH_FPA),
25675 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
25676 ARM_ARCH_NONE,
25677 FPU_ARCH_FPA),
25678 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
25679 ARM_ARCH_NONE,
25680 FPU_ARCH_FPA),
25681 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
25682 ARM_ARCH_NONE,
25683 FPU_ARCH_FPA),
25684 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
25685 ARM_ARCH_NONE,
25686 FPU_ARCH_FPA),
25687 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
25688 ARM_ARCH_NONE,
25689 FPU_ARCH_FPA),
25690 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
25691 ARM_ARCH_NONE,
25692 FPU_ARCH_FPA),
25693 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
25694 ARM_ARCH_NONE,
25695 FPU_ARCH_FPA),
25696 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
25697 ARM_ARCH_NONE,
25698 FPU_ARCH_FPA),
25699 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
25700 ARM_ARCH_NONE,
25701 FPU_ARCH_FPA),
25702 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
25703 ARM_ARCH_NONE,
25704 FPU_ARCH_FPA),
25705 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
25706 ARM_ARCH_NONE,
25707 FPU_ARCH_FPA),
25708 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
25709 ARM_ARCH_NONE,
25710 FPU_ARCH_FPA),
25711 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
25712 ARM_ARCH_NONE,
25713 FPU_ARCH_FPA),
25714 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
25715 ARM_ARCH_NONE,
25716 FPU_ARCH_FPA),
25717 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
25718 ARM_ARCH_NONE,
25719 FPU_ARCH_FPA),
25720
25721 /* For V5 or later processors we default to using VFP; but the user
25722 should really set the FPU type explicitly. */
25723 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
25724 ARM_ARCH_NONE,
25725 FPU_ARCH_VFP_V2),
25726 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
25727 ARM_ARCH_NONE,
25728 FPU_ARCH_VFP_V2),
25729 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25730 ARM_ARCH_NONE,
25731 FPU_ARCH_VFP_V2),
25732 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
25733 ARM_ARCH_NONE,
25734 FPU_ARCH_VFP_V2),
25735 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
25736 ARM_ARCH_NONE,
25737 FPU_ARCH_VFP_V2),
25738 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
25739 ARM_ARCH_NONE,
25740 FPU_ARCH_VFP_V2),
25741 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
25742 ARM_ARCH_NONE,
25743 FPU_ARCH_VFP_V2),
25744 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
25745 ARM_ARCH_NONE,
25746 FPU_ARCH_VFP_V2),
25747 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
25748 ARM_ARCH_NONE,
25749 FPU_ARCH_VFP_V2),
25750 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
25751 ARM_ARCH_NONE,
25752 FPU_ARCH_VFP_V2),
25753 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
25754 ARM_ARCH_NONE,
25755 FPU_ARCH_VFP_V2),
25756 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
25757 ARM_ARCH_NONE,
25758 FPU_ARCH_VFP_V2),
25759 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
25760 ARM_ARCH_NONE,
25761 FPU_ARCH_VFP_V1),
25762 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
25763 ARM_ARCH_NONE,
25764 FPU_ARCH_VFP_V1),
25765 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
25766 ARM_ARCH_NONE,
25767 FPU_ARCH_VFP_V2),
25768 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
25769 ARM_ARCH_NONE,
25770 FPU_ARCH_VFP_V2),
25771 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
25772 ARM_ARCH_NONE,
25773 FPU_ARCH_VFP_V1),
25774 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
25775 ARM_ARCH_NONE,
25776 FPU_ARCH_VFP_V2),
25777 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
25778 ARM_ARCH_NONE,
25779 FPU_ARCH_VFP_V2),
25780 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
25781 ARM_ARCH_NONE,
25782 FPU_ARCH_VFP_V2),
25783 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
25784 ARM_ARCH_NONE,
25785 FPU_ARCH_VFP_V2),
25786 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
25787 ARM_ARCH_NONE,
25788 FPU_ARCH_VFP_V2),
25789 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
25790 ARM_ARCH_NONE,
25791 FPU_ARCH_VFP_V2),
25792 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
25793 ARM_ARCH_NONE,
25794 FPU_ARCH_VFP_V2),
25795 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
25796 ARM_ARCH_NONE,
25797 FPU_ARCH_VFP_V2),
25798 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
25799 ARM_ARCH_NONE,
25800 FPU_ARCH_VFP_V2),
25801 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
25802 ARM_ARCH_NONE,
25803 FPU_NONE),
25804 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
25805 ARM_ARCH_NONE,
25806 FPU_NONE),
25807 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
25808 ARM_ARCH_NONE,
25809 FPU_ARCH_VFP_V2),
25810 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
25811 ARM_ARCH_NONE,
25812 FPU_ARCH_VFP_V2),
25813 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
25814 ARM_ARCH_NONE,
25815 FPU_ARCH_VFP_V2),
25816 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
25817 ARM_ARCH_NONE,
25818 FPU_NONE),
25819 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
25820 ARM_ARCH_NONE,
25821 FPU_NONE),
25822 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
25823 ARM_ARCH_NONE,
25824 FPU_ARCH_VFP_V2),
25825 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
25826 ARM_ARCH_NONE,
25827 FPU_NONE),
25828 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
25829 ARM_ARCH_NONE,
25830 FPU_ARCH_VFP_V2),
25831 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
25832 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25833 FPU_NONE),
25834 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
25835 ARM_ARCH_NONE,
25836 FPU_ARCH_NEON_VFP_V4),
25837 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
25838 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
25839 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
25840 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
25841 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25842 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
25843 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
25844 ARM_ARCH_NONE,
25845 FPU_ARCH_NEON_VFP_V4),
25846 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
25847 ARM_ARCH_NONE,
25848 FPU_ARCH_NEON_VFP_V4),
25849 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
25850 ARM_ARCH_NONE,
25851 FPU_ARCH_NEON_VFP_V4),
25852 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
25853 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25854 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25855 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
25856 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25857 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25858 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
25859 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25860 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25861 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
25862 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25863 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25864 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
25865 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25866 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25867 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
25868 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25869 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25870 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
25871 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25872 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25873 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
25874 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25875 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25876 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
25877 ARM_ARCH_NONE,
25878 FPU_NONE),
25879 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
25880 ARM_ARCH_NONE,
25881 FPU_ARCH_VFP_V3D16),
25882 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
25883 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25884 FPU_NONE),
25885 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
25886 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25887 FPU_ARCH_VFP_V3D16),
25888 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
25889 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
25890 FPU_ARCH_VFP_V3D16),
25891 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
25892 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25893 FPU_ARCH_NEON_VFP_ARMV8),
25894 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
25895 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
25896 FPU_NONE),
25897 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
25898 ARM_ARCH_NONE,
25899 FPU_NONE),
25900 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
25901 ARM_ARCH_NONE,
25902 FPU_NONE),
25903 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
25904 ARM_ARCH_NONE,
25905 FPU_NONE),
25906 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
25907 ARM_ARCH_NONE,
25908 FPU_NONE),
25909 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
25910 ARM_ARCH_NONE,
25911 FPU_NONE),
25912 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
25913 ARM_ARCH_NONE,
25914 FPU_NONE),
25915 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
25916 ARM_ARCH_NONE,
25917 FPU_NONE),
25918 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
25919 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25920 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25921
25922 /* ??? XSCALE is really an architecture. */
25923 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
25924 ARM_ARCH_NONE,
25925 FPU_ARCH_VFP_V2),
25926
25927 /* ??? iwmmxt is not a processor. */
25928 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
25929 ARM_ARCH_NONE,
25930 FPU_ARCH_VFP_V2),
25931 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
25932 ARM_ARCH_NONE,
25933 FPU_ARCH_VFP_V2),
25934 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
25935 ARM_ARCH_NONE,
25936 FPU_ARCH_VFP_V2),
25937
25938 /* Maverick */
25939 ARM_CPU_OPT ("ep9312", "ARM920T",
25940 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
25941 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
25942
25943 /* Marvell processors. */
25944 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
25945 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25946 FPU_ARCH_VFP_V3D16),
25947 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
25948 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
25949 FPU_ARCH_NEON_VFP_V4),
25950
25951 /* APM X-Gene family. */
25952 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
25953 ARM_ARCH_NONE,
25954 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25955 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
25956 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25957 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
25958
25959 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
25960 };
25961 #undef ARM_CPU_OPT
25962
25963 struct arm_arch_option_table
25964 {
25965 const char *name;
25966 size_t name_len;
25967 const arm_feature_set value;
25968 const arm_feature_set default_fpu;
25969 };
25970
25971 /* This list should, at a minimum, contain all the architecture names
25972 recognized by GCC. */
25973 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
25974 static const struct arm_arch_option_table arm_archs[] =
25975 {
25976 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
25977 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
25978 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
25979 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
25980 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
25981 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
25982 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
25983 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
25984 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
25985 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
25986 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
25987 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
25988 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
25989 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
25990 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
25991 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
25992 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
25993 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
25994 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
25995 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
25996 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
25997 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
25998 kept to preserve existing behaviour. */
25999 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26000 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
26001 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
26002 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
26003 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
26004 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26005 kept to preserve existing behaviour. */
26006 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26007 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
26008 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26009 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26010 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
26011 /* The official spelling of the ARMv7 profile variants is the dashed form.
26012 Accept the non-dashed form for compatibility with old toolchains. */
26013 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26014 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
26015 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26016 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26017 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
26018 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
26019 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26020 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
26021 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
26022 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
26023 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
26024 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
26025 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
26026 ARM_ARCH_OPT ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP),
26027 ARM_ARCH_OPT ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP),
26028 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26029 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26030 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
26031 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26032 };
26033 #undef ARM_ARCH_OPT
26034
26035 /* ISA extensions in the co-processor and main instruction set space. */
26036 struct arm_option_extension_value_table
26037 {
26038 const char *name;
26039 size_t name_len;
26040 const arm_feature_set merge_value;
26041 const arm_feature_set clear_value;
26042 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26043 indicates that an extension is available for all architectures while
26044 ARM_ANY marks an empty entry. */
26045 const arm_feature_set allowed_archs[2];
26046 };
26047
26048 /* The following table must be in alphabetical order with a NULL last entry.
26049 */
26050 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26051 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
26052 static const struct arm_option_extension_value_table arm_extensions[] =
26053 {
26054 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26055 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26056 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26057 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26058 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26059 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26060 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26061 ARM_ARCH_V8_2A),
26062 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26063 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26064 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
26065 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26066 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26067 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26068 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26069 ARM_ARCH_V8_2A),
26070 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26071 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26072 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26073 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26074 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26075 Thumb divide instruction. Due to this having the same name as the
26076 previous entry, this will be ignored when doing command-line parsing and
26077 only considered by build attribute selection code. */
26078 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26079 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26080 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
26081 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
26082 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
26083 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
26084 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
26085 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
26086 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26087 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26088 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26089 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26090 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26091 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26092 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26093 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
26094 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26095 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
26096 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26097 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26098 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
26099 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26100 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26101 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
26102 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26103 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26104 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26105 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26106 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26107 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26108 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26109 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26110 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26111 | ARM_EXT_DIV),
26112 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26113 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26114 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
26115 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26116 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
26117 };
26118 #undef ARM_EXT_OPT
26119
26120 /* ISA floating-point and Advanced SIMD extensions. */
26121 struct arm_option_fpu_value_table
26122 {
26123 const char *name;
26124 const arm_feature_set value;
26125 };
26126
26127 /* This list should, at a minimum, contain all the fpu names
26128 recognized by GCC. */
26129 static const struct arm_option_fpu_value_table arm_fpus[] =
26130 {
26131 {"softfpa", FPU_NONE},
26132 {"fpe", FPU_ARCH_FPE},
26133 {"fpe2", FPU_ARCH_FPE},
26134 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26135 {"fpa", FPU_ARCH_FPA},
26136 {"fpa10", FPU_ARCH_FPA},
26137 {"fpa11", FPU_ARCH_FPA},
26138 {"arm7500fe", FPU_ARCH_FPA},
26139 {"softvfp", FPU_ARCH_VFP},
26140 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26141 {"vfp", FPU_ARCH_VFP_V2},
26142 {"vfp9", FPU_ARCH_VFP_V2},
26143 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
26144 {"vfp10", FPU_ARCH_VFP_V2},
26145 {"vfp10-r0", FPU_ARCH_VFP_V1},
26146 {"vfpxd", FPU_ARCH_VFP_V1xD},
26147 {"vfpv2", FPU_ARCH_VFP_V2},
26148 {"vfpv3", FPU_ARCH_VFP_V3},
26149 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
26150 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
26151 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26152 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26153 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
26154 {"arm1020t", FPU_ARCH_VFP_V1},
26155 {"arm1020e", FPU_ARCH_VFP_V2},
26156 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
26157 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26158 {"maverick", FPU_ARCH_MAVERICK},
26159 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26160 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26161 {"neon-fp16", FPU_ARCH_NEON_FP16},
26162 {"vfpv4", FPU_ARCH_VFP_V4},
26163 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
26164 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
26165 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26166 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
26167 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
26168 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26169 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26170 {"crypto-neon-fp-armv8",
26171 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
26172 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
26173 {"crypto-neon-fp-armv8.1",
26174 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
26175 {NULL, ARM_ARCH_NONE}
26176 };
26177
26178 struct arm_option_value_table
26179 {
26180 const char *name;
26181 long value;
26182 };
26183
26184 static const struct arm_option_value_table arm_float_abis[] =
26185 {
26186 {"hard", ARM_FLOAT_ABI_HARD},
26187 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26188 {"soft", ARM_FLOAT_ABI_SOFT},
26189 {NULL, 0}
26190 };
26191
26192 #ifdef OBJ_ELF
26193 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
26194 static const struct arm_option_value_table arm_eabis[] =
26195 {
26196 {"gnu", EF_ARM_EABI_UNKNOWN},
26197 {"4", EF_ARM_EABI_VER4},
26198 {"5", EF_ARM_EABI_VER5},
26199 {NULL, 0}
26200 };
26201 #endif
26202
26203 struct arm_long_option_table
26204 {
26205 const char * option; /* Substring to match. */
26206 const char * help; /* Help information. */
26207 int (* func) (const char * subopt); /* Function to decode sub-option. */
26208 const char * deprecated; /* If non-null, print this message. */
26209 };
26210
26211 static bfd_boolean
26212 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
26213 arm_feature_set **ext_set_p)
26214 {
26215 /* We insist on extensions being specified in alphabetical order, and with
26216 extensions being added before being removed. We achieve this by having
26217 the global ARM_EXTENSIONS table in alphabetical order, and using the
26218 ADDING_VALUE variable to indicate whether we are adding an extension (1)
26219 or removing it (0) and only allowing it to change in the order
26220 -1 -> 1 -> 0. */
26221 const struct arm_option_extension_value_table * opt = NULL;
26222 const arm_feature_set arm_any = ARM_ANY;
26223 int adding_value = -1;
26224
26225 if (!*ext_set_p)
26226 {
26227 *ext_set_p = XNEW (arm_feature_set);
26228 **ext_set_p = arm_arch_none;
26229 }
26230
26231 while (str != NULL && *str != 0)
26232 {
26233 const char *ext;
26234 size_t len;
26235
26236 if (*str != '+')
26237 {
26238 as_bad (_("invalid architectural extension"));
26239 return FALSE;
26240 }
26241
26242 str++;
26243 ext = strchr (str, '+');
26244
26245 if (ext != NULL)
26246 len = ext - str;
26247 else
26248 len = strlen (str);
26249
26250 if (len >= 2 && strncmp (str, "no", 2) == 0)
26251 {
26252 if (adding_value != 0)
26253 {
26254 adding_value = 0;
26255 opt = arm_extensions;
26256 }
26257
26258 len -= 2;
26259 str += 2;
26260 }
26261 else if (len > 0)
26262 {
26263 if (adding_value == -1)
26264 {
26265 adding_value = 1;
26266 opt = arm_extensions;
26267 }
26268 else if (adding_value != 1)
26269 {
26270 as_bad (_("must specify extensions to add before specifying "
26271 "those to remove"));
26272 return FALSE;
26273 }
26274 }
26275
26276 if (len == 0)
26277 {
26278 as_bad (_("missing architectural extension"));
26279 return FALSE;
26280 }
26281
26282 gas_assert (adding_value != -1);
26283 gas_assert (opt != NULL);
26284
26285 /* Scan over the options table trying to find an exact match. */
26286 for (; opt->name != NULL; opt++)
26287 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26288 {
26289 int i, nb_allowed_archs =
26290 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26291 /* Check we can apply the extension to this architecture. */
26292 for (i = 0; i < nb_allowed_archs; i++)
26293 {
26294 /* Empty entry. */
26295 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
26296 continue;
26297 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
26298 break;
26299 }
26300 if (i == nb_allowed_archs)
26301 {
26302 as_bad (_("extension does not apply to the base architecture"));
26303 return FALSE;
26304 }
26305
26306 /* Add or remove the extension. */
26307 if (adding_value)
26308 ARM_MERGE_FEATURE_SETS (**ext_set_p, **ext_set_p,
26309 opt->merge_value);
26310 else
26311 ARM_CLEAR_FEATURE (**ext_set_p, **ext_set_p, opt->clear_value);
26312
26313 /* Allowing Thumb division instructions for ARMv7 in autodetection
26314 rely on this break so that duplicate extensions (extensions
26315 with the same name as a previous extension in the list) are not
26316 considered for command-line parsing. */
26317 break;
26318 }
26319
26320 if (opt->name == NULL)
26321 {
26322 /* Did we fail to find an extension because it wasn't specified in
26323 alphabetical order, or because it does not exist? */
26324
26325 for (opt = arm_extensions; opt->name != NULL; opt++)
26326 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26327 break;
26328
26329 if (opt->name == NULL)
26330 as_bad (_("unknown architectural extension `%s'"), str);
26331 else
26332 as_bad (_("architectural extensions must be specified in "
26333 "alphabetical order"));
26334
26335 return FALSE;
26336 }
26337 else
26338 {
26339 /* We should skip the extension we've just matched the next time
26340 round. */
26341 opt++;
26342 }
26343
26344 str = ext;
26345 };
26346
26347 return TRUE;
26348 }
26349
26350 static bfd_boolean
26351 arm_parse_cpu (const char *str)
26352 {
26353 const struct arm_cpu_option_table *opt;
26354 const char *ext = strchr (str, '+');
26355 size_t len;
26356
26357 if (ext != NULL)
26358 len = ext - str;
26359 else
26360 len = strlen (str);
26361
26362 if (len == 0)
26363 {
26364 as_bad (_("missing cpu name `%s'"), str);
26365 return FALSE;
26366 }
26367
26368 for (opt = arm_cpus; opt->name != NULL; opt++)
26369 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26370 {
26371 mcpu_cpu_opt = &opt->value;
26372 if (!dyn_mcpu_ext_opt)
26373 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
26374 *dyn_mcpu_ext_opt = opt->ext;
26375 mcpu_fpu_opt = &opt->default_fpu;
26376 if (opt->canonical_name)
26377 {
26378 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
26379 strcpy (selected_cpu_name, opt->canonical_name);
26380 }
26381 else
26382 {
26383 size_t i;
26384
26385 if (len >= sizeof selected_cpu_name)
26386 len = (sizeof selected_cpu_name) - 1;
26387
26388 for (i = 0; i < len; i++)
26389 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26390 selected_cpu_name[i] = 0;
26391 }
26392
26393 if (ext != NULL)
26394 return arm_parse_extension (ext, mcpu_cpu_opt, &dyn_mcpu_ext_opt);
26395
26396 return TRUE;
26397 }
26398
26399 as_bad (_("unknown cpu `%s'"), str);
26400 return FALSE;
26401 }
26402
26403 static bfd_boolean
26404 arm_parse_arch (const char *str)
26405 {
26406 const struct arm_arch_option_table *opt;
26407 const char *ext = strchr (str, '+');
26408 size_t len;
26409
26410 if (ext != NULL)
26411 len = ext - str;
26412 else
26413 len = strlen (str);
26414
26415 if (len == 0)
26416 {
26417 as_bad (_("missing architecture name `%s'"), str);
26418 return FALSE;
26419 }
26420
26421 for (opt = arm_archs; opt->name != NULL; opt++)
26422 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
26423 {
26424 march_cpu_opt = &opt->value;
26425 march_fpu_opt = &opt->default_fpu;
26426 strcpy (selected_cpu_name, opt->name);
26427
26428 if (ext != NULL)
26429 return arm_parse_extension (ext, march_cpu_opt, &dyn_march_ext_opt);
26430
26431 return TRUE;
26432 }
26433
26434 as_bad (_("unknown architecture `%s'\n"), str);
26435 return FALSE;
26436 }
26437
26438 static bfd_boolean
26439 arm_parse_fpu (const char * str)
26440 {
26441 const struct arm_option_fpu_value_table * opt;
26442
26443 for (opt = arm_fpus; opt->name != NULL; opt++)
26444 if (streq (opt->name, str))
26445 {
26446 mfpu_opt = &opt->value;
26447 return TRUE;
26448 }
26449
26450 as_bad (_("unknown floating point format `%s'\n"), str);
26451 return FALSE;
26452 }
26453
26454 static bfd_boolean
26455 arm_parse_float_abi (const char * str)
26456 {
26457 const struct arm_option_value_table * opt;
26458
26459 for (opt = arm_float_abis; opt->name != NULL; opt++)
26460 if (streq (opt->name, str))
26461 {
26462 mfloat_abi_opt = opt->value;
26463 return TRUE;
26464 }
26465
26466 as_bad (_("unknown floating point abi `%s'\n"), str);
26467 return FALSE;
26468 }
26469
26470 #ifdef OBJ_ELF
26471 static bfd_boolean
26472 arm_parse_eabi (const char * str)
26473 {
26474 const struct arm_option_value_table *opt;
26475
26476 for (opt = arm_eabis; opt->name != NULL; opt++)
26477 if (streq (opt->name, str))
26478 {
26479 meabi_flags = opt->value;
26480 return TRUE;
26481 }
26482 as_bad (_("unknown EABI `%s'\n"), str);
26483 return FALSE;
26484 }
26485 #endif
26486
26487 static bfd_boolean
26488 arm_parse_it_mode (const char * str)
26489 {
26490 bfd_boolean ret = TRUE;
26491
26492 if (streq ("arm", str))
26493 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
26494 else if (streq ("thumb", str))
26495 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
26496 else if (streq ("always", str))
26497 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
26498 else if (streq ("never", str))
26499 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
26500 else
26501 {
26502 as_bad (_("unknown implicit IT mode `%s', should be "\
26503 "arm, thumb, always, or never."), str);
26504 ret = FALSE;
26505 }
26506
26507 return ret;
26508 }
26509
26510 static bfd_boolean
26511 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
26512 {
26513 codecomposer_syntax = TRUE;
26514 arm_comment_chars[0] = ';';
26515 arm_line_separator_chars[0] = 0;
26516 return TRUE;
26517 }
26518
26519 struct arm_long_option_table arm_long_opts[] =
26520 {
26521 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
26522 arm_parse_cpu, NULL},
26523 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
26524 arm_parse_arch, NULL},
26525 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
26526 arm_parse_fpu, NULL},
26527 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
26528 arm_parse_float_abi, NULL},
26529 #ifdef OBJ_ELF
26530 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
26531 arm_parse_eabi, NULL},
26532 #endif
26533 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
26534 arm_parse_it_mode, NULL},
26535 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
26536 arm_ccs_mode, NULL},
26537 {NULL, NULL, 0, NULL}
26538 };
26539
26540 int
26541 md_parse_option (int c, const char * arg)
26542 {
26543 struct arm_option_table *opt;
26544 const struct arm_legacy_option_table *fopt;
26545 struct arm_long_option_table *lopt;
26546
26547 switch (c)
26548 {
26549 #ifdef OPTION_EB
26550 case OPTION_EB:
26551 target_big_endian = 1;
26552 break;
26553 #endif
26554
26555 #ifdef OPTION_EL
26556 case OPTION_EL:
26557 target_big_endian = 0;
26558 break;
26559 #endif
26560
26561 case OPTION_FIX_V4BX:
26562 fix_v4bx = TRUE;
26563 break;
26564
26565 case 'a':
26566 /* Listing option. Just ignore these, we don't support additional
26567 ones. */
26568 return 0;
26569
26570 default:
26571 for (opt = arm_opts; opt->option != NULL; opt++)
26572 {
26573 if (c == opt->option[0]
26574 && ((arg == NULL && opt->option[1] == 0)
26575 || streq (arg, opt->option + 1)))
26576 {
26577 /* If the option is deprecated, tell the user. */
26578 if (warn_on_deprecated && opt->deprecated != NULL)
26579 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26580 arg ? arg : "", _(opt->deprecated));
26581
26582 if (opt->var != NULL)
26583 *opt->var = opt->value;
26584
26585 return 1;
26586 }
26587 }
26588
26589 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
26590 {
26591 if (c == fopt->option[0]
26592 && ((arg == NULL && fopt->option[1] == 0)
26593 || streq (arg, fopt->option + 1)))
26594 {
26595 /* If the option is deprecated, tell the user. */
26596 if (warn_on_deprecated && fopt->deprecated != NULL)
26597 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
26598 arg ? arg : "", _(fopt->deprecated));
26599
26600 if (fopt->var != NULL)
26601 *fopt->var = &fopt->value;
26602
26603 return 1;
26604 }
26605 }
26606
26607 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26608 {
26609 /* These options are expected to have an argument. */
26610 if (c == lopt->option[0]
26611 && arg != NULL
26612 && strncmp (arg, lopt->option + 1,
26613 strlen (lopt->option + 1)) == 0)
26614 {
26615 /* If the option is deprecated, tell the user. */
26616 if (warn_on_deprecated && lopt->deprecated != NULL)
26617 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
26618 _(lopt->deprecated));
26619
26620 /* Call the sup-option parser. */
26621 return lopt->func (arg + strlen (lopt->option) - 1);
26622 }
26623 }
26624
26625 return 0;
26626 }
26627
26628 return 1;
26629 }
26630
26631 void
26632 md_show_usage (FILE * fp)
26633 {
26634 struct arm_option_table *opt;
26635 struct arm_long_option_table *lopt;
26636
26637 fprintf (fp, _(" ARM-specific assembler options:\n"));
26638
26639 for (opt = arm_opts; opt->option != NULL; opt++)
26640 if (opt->help != NULL)
26641 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
26642
26643 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26644 if (lopt->help != NULL)
26645 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
26646
26647 #ifdef OPTION_EB
26648 fprintf (fp, _("\
26649 -EB assemble code for a big-endian cpu\n"));
26650 #endif
26651
26652 #ifdef OPTION_EL
26653 fprintf (fp, _("\
26654 -EL assemble code for a little-endian cpu\n"));
26655 #endif
26656
26657 fprintf (fp, _("\
26658 --fix-v4bx Allow BX in ARMv4 code\n"));
26659 }
26660
26661
26662 #ifdef OBJ_ELF
26663 typedef struct
26664 {
26665 int val;
26666 arm_feature_set flags;
26667 } cpu_arch_ver_table;
26668
26669 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
26670 chronologically for architectures, with an exception for ARMv6-M and
26671 ARMv6S-M due to legacy reasons. No new architecture should have a
26672 special case. This allows for build attribute selection results to be
26673 stable when new architectures are added. */
26674 static const cpu_arch_ver_table cpu_arch_ver[] =
26675 {
26676 {0, ARM_ARCH_V1},
26677 {0, ARM_ARCH_V2},
26678 {0, ARM_ARCH_V2S},
26679 {0, ARM_ARCH_V3},
26680 {0, ARM_ARCH_V3M},
26681 {1, ARM_ARCH_V4xM},
26682 {1, ARM_ARCH_V4},
26683 {2, ARM_ARCH_V4TxM},
26684 {2, ARM_ARCH_V4T},
26685 {3, ARM_ARCH_V5xM},
26686 {3, ARM_ARCH_V5},
26687 {3, ARM_ARCH_V5TxM},
26688 {3, ARM_ARCH_V5T},
26689 {4, ARM_ARCH_V5TExP},
26690 {4, ARM_ARCH_V5TE},
26691 {5, ARM_ARCH_V5TEJ},
26692 {6, ARM_ARCH_V6},
26693 {7, ARM_ARCH_V6Z},
26694 {7, ARM_ARCH_V6KZ},
26695 {9, ARM_ARCH_V6K},
26696 {8, ARM_ARCH_V6T2},
26697 {8, ARM_ARCH_V6KT2},
26698 {8, ARM_ARCH_V6ZT2},
26699 {8, ARM_ARCH_V6KZT2},
26700
26701 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
26702 always selected build attributes to match those of ARMv6-M
26703 (resp. ARMv6S-M). However, due to these architectures being a strict
26704 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
26705 would be selected when fully respecting chronology of architectures.
26706 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
26707 move them before ARMv7 architectures. */
26708 {11, ARM_ARCH_V6M},
26709 {12, ARM_ARCH_V6SM},
26710
26711 {10, ARM_ARCH_V7},
26712 {10, ARM_ARCH_V7A},
26713 {10, ARM_ARCH_V7R},
26714 {10, ARM_ARCH_V7M},
26715 {10, ARM_ARCH_V7VE},
26716 {13, ARM_ARCH_V7EM},
26717 {14, ARM_ARCH_V8A},
26718 {14, ARM_ARCH_V8_1A},
26719 {14, ARM_ARCH_V8_2A},
26720 {14, ARM_ARCH_V8_3A},
26721 {16, ARM_ARCH_V8M_BASE},
26722 {17, ARM_ARCH_V8M_MAIN},
26723 {15, ARM_ARCH_V8R},
26724 {-1, ARM_ARCH_NONE}
26725 };
26726
26727 /* Set an attribute if it has not already been set by the user. */
26728 static void
26729 aeabi_set_attribute_int (int tag, int value)
26730 {
26731 if (tag < 1
26732 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26733 || !attributes_set_explicitly[tag])
26734 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
26735 }
26736
26737 static void
26738 aeabi_set_attribute_string (int tag, const char *value)
26739 {
26740 if (tag < 1
26741 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26742 || !attributes_set_explicitly[tag])
26743 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
26744 }
26745
26746 /* Return whether features in the *NEEDED feature set are available via
26747 extensions for the architecture whose feature set is *ARCH_FSET. */
26748 static bfd_boolean
26749 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
26750 const arm_feature_set *needed)
26751 {
26752 int i, nb_allowed_archs;
26753 arm_feature_set ext_fset;
26754 const struct arm_option_extension_value_table *opt;
26755
26756 ext_fset = arm_arch_none;
26757 for (opt = arm_extensions; opt->name != NULL; opt++)
26758 {
26759 /* Extension does not provide any feature we need. */
26760 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
26761 continue;
26762
26763 nb_allowed_archs =
26764 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
26765 for (i = 0; i < nb_allowed_archs; i++)
26766 {
26767 /* Empty entry. */
26768 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
26769 break;
26770
26771 /* Extension is available, add it. */
26772 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
26773 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
26774 }
26775 }
26776
26777 /* Can we enable all features in *needed? */
26778 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
26779 }
26780
26781 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
26782 a given architecture feature set *ARCH_EXT_FSET including extension feature
26783 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
26784 - if true, check for an exact match of the architecture modulo extensions;
26785 - otherwise, select build attribute value of the first superset
26786 architecture released so that results remains stable when new architectures
26787 are added.
26788 For -march/-mcpu=all the build attribute value of the most featureful
26789 architecture is returned. Tag_CPU_arch_profile result is returned in
26790 PROFILE. */
26791 static int
26792 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
26793 const arm_feature_set *ext_fset,
26794 char *profile, int exact_match)
26795 {
26796 arm_feature_set arch_fset;
26797 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
26798
26799 /* Select most featureful architecture with all its extensions if building
26800 for -march=all as the feature sets used to set build attributes. */
26801 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
26802 {
26803 /* Force revisiting of decision for each new architecture. */
26804 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8M_MAIN);
26805 *profile = 'A';
26806 return TAG_CPU_ARCH_V8;
26807 }
26808
26809 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
26810
26811 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
26812 {
26813 arm_feature_set known_arch_fset;
26814
26815 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
26816 if (exact_match)
26817 {
26818 /* Base architecture match user-specified architecture and
26819 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
26820 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
26821 {
26822 p_ver_ret = p_ver;
26823 goto found;
26824 }
26825 /* Base architecture match user-specified architecture only
26826 (eg. ARMv6-M in the same case as above). Record it in case we
26827 find a match with above condition. */
26828 else if (p_ver_ret == NULL
26829 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
26830 p_ver_ret = p_ver;
26831 }
26832 else
26833 {
26834
26835 /* Architecture has all features wanted. */
26836 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
26837 {
26838 arm_feature_set added_fset;
26839
26840 /* Compute features added by this architecture over the one
26841 recorded in p_ver_ret. */
26842 if (p_ver_ret != NULL)
26843 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
26844 p_ver_ret->flags);
26845 /* First architecture that match incl. with extensions, or the
26846 only difference in features over the recorded match is
26847 features that were optional and are now mandatory. */
26848 if (p_ver_ret == NULL
26849 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
26850 {
26851 p_ver_ret = p_ver;
26852 goto found;
26853 }
26854 }
26855 else if (p_ver_ret == NULL)
26856 {
26857 arm_feature_set needed_ext_fset;
26858
26859 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
26860
26861 /* Architecture has all features needed when using some
26862 extensions. Record it and continue searching in case there
26863 exist an architecture providing all needed features without
26864 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
26865 OS extension). */
26866 if (have_ext_for_needed_feat_p (&known_arch_fset,
26867 &needed_ext_fset))
26868 p_ver_ret = p_ver;
26869 }
26870 }
26871 }
26872
26873 if (p_ver_ret == NULL)
26874 return -1;
26875
26876 found:
26877 /* Tag_CPU_arch_profile. */
26878 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
26879 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
26880 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
26881 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
26882 *profile = 'A';
26883 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
26884 *profile = 'R';
26885 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
26886 *profile = 'M';
26887 else
26888 *profile = '\0';
26889 return p_ver_ret->val;
26890 }
26891
26892 /* Set the public EABI object attributes. */
26893 static void
26894 aeabi_set_public_attributes (void)
26895 {
26896 char profile;
26897 int arch = -1;
26898 int virt_sec = 0;
26899 int fp16_optional = 0;
26900 int skip_exact_match = 0;
26901 arm_feature_set flags, flags_arch, flags_ext;
26902
26903 /* Autodetection mode, choose the architecture based the instructions
26904 actually used. */
26905 if (no_cpu_selected ())
26906 {
26907 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
26908
26909 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
26910 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
26911
26912 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
26913 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
26914
26915 /* Code run during relaxation relies on selected_cpu being set. */
26916 selected_cpu = flags;
26917 }
26918 /* Otherwise, choose the architecture based on the capabilities of the
26919 requested cpu. */
26920 else
26921 flags = selected_cpu;
26922 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
26923
26924 /* Allow the user to override the reported architecture. */
26925 if (object_arch)
26926 {
26927 ARM_CLEAR_FEATURE (flags_arch, *object_arch, fpu_any);
26928 flags_ext = arm_arch_none;
26929 }
26930 else
26931 {
26932 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
26933 flags_ext = dyn_mcpu_ext_opt ? *dyn_mcpu_ext_opt : arm_arch_none;
26934 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
26935 }
26936
26937 /* When this function is run again after relaxation has happened there is no
26938 way to determine whether an architecture or CPU was specified by the user:
26939 - selected_cpu is set above for relaxation to work;
26940 - march_cpu_opt is not set if only -mcpu or .cpu is used;
26941 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
26942 Therefore, if not in -march=all case we first try an exact match and fall
26943 back to autodetection. */
26944 if (!skip_exact_match)
26945 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
26946 if (arch == -1)
26947 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
26948 if (arch == -1)
26949 as_bad (_("no architecture contains all the instructions used\n"));
26950
26951 /* Tag_CPU_name. */
26952 if (selected_cpu_name[0])
26953 {
26954 char *q;
26955
26956 q = selected_cpu_name;
26957 if (strncmp (q, "armv", 4) == 0)
26958 {
26959 int i;
26960
26961 q += 4;
26962 for (i = 0; q[i]; i++)
26963 q[i] = TOUPPER (q[i]);
26964 }
26965 aeabi_set_attribute_string (Tag_CPU_name, q);
26966 }
26967
26968 /* Tag_CPU_arch. */
26969 aeabi_set_attribute_int (Tag_CPU_arch, arch);
26970
26971 /* Tag_CPU_arch_profile. */
26972 if (profile != '\0')
26973 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
26974
26975 /* Tag_DSP_extension. */
26976 if (dyn_mcpu_ext_opt && ARM_CPU_HAS_FEATURE (*dyn_mcpu_ext_opt, arm_ext_dsp))
26977 aeabi_set_attribute_int (Tag_DSP_extension, 1);
26978
26979 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
26980 /* Tag_ARM_ISA_use. */
26981 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
26982 || ARM_FEATURE_ZERO (flags_arch))
26983 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
26984
26985 /* Tag_THUMB_ISA_use. */
26986 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
26987 || ARM_FEATURE_ZERO (flags_arch))
26988 {
26989 int thumb_isa_use;
26990
26991 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
26992 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
26993 thumb_isa_use = 3;
26994 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
26995 thumb_isa_use = 2;
26996 else
26997 thumb_isa_use = 1;
26998 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
26999 }
27000
27001 /* Tag_VFP_arch. */
27002 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27003 aeabi_set_attribute_int (Tag_VFP_arch,
27004 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27005 ? 7 : 8);
27006 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
27007 aeabi_set_attribute_int (Tag_VFP_arch,
27008 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27009 ? 5 : 6);
27010 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
27011 {
27012 fp16_optional = 1;
27013 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27014 }
27015 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
27016 {
27017 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27018 fp16_optional = 1;
27019 }
27020 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27021 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27022 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
27023 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
27024 aeabi_set_attribute_int (Tag_VFP_arch, 1);
27025
27026 /* Tag_ABI_HardFP_use. */
27027 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27028 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27029 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27030
27031 /* Tag_WMMX_arch. */
27032 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27033 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27034 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27035 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
27036
27037 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
27038 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27039 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27040 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
27041 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27042 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27043 {
27044 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27045 {
27046 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27047 }
27048 else
27049 {
27050 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27051 fp16_optional = 1;
27052 }
27053 }
27054
27055 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
27056 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
27057 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
27058
27059 /* Tag_DIV_use.
27060
27061 We set Tag_DIV_use to two when integer divide instructions have been used
27062 in ARM state, or when Thumb integer divide instructions have been used,
27063 but we have no architecture profile set, nor have we any ARM instructions.
27064
27065 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27066 by the base architecture.
27067
27068 For new architectures we will have to check these tests. */
27069 gas_assert (arch <= TAG_CPU_ARCH_V8M_MAIN);
27070 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27071 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
27072 aeabi_set_attribute_int (Tag_DIV_use, 0);
27073 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27074 || (profile == '\0'
27075 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27076 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
27077 aeabi_set_attribute_int (Tag_DIV_use, 2);
27078
27079 /* Tag_MP_extension_use. */
27080 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27081 aeabi_set_attribute_int (Tag_MPextension_use, 1);
27082
27083 /* Tag Virtualization_use. */
27084 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
27085 virt_sec |= 1;
27086 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27087 virt_sec |= 2;
27088 if (virt_sec != 0)
27089 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
27090 }
27091
27092 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
27093 finished and free extension feature bits which will not be used anymore. */
27094 void
27095 arm_md_post_relax (void)
27096 {
27097 aeabi_set_public_attributes ();
27098 XDELETE (dyn_mcpu_ext_opt);
27099 dyn_mcpu_ext_opt = NULL;
27100 XDELETE (dyn_march_ext_opt);
27101 dyn_march_ext_opt = NULL;
27102 }
27103
27104 /* Add the default contents for the .ARM.attributes section. */
27105 void
27106 arm_md_end (void)
27107 {
27108 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27109 return;
27110
27111 aeabi_set_public_attributes ();
27112 }
27113 #endif /* OBJ_ELF */
27114
27115
27116 /* Parse a .cpu directive. */
27117
27118 static void
27119 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27120 {
27121 const struct arm_cpu_option_table *opt;
27122 char *name;
27123 char saved_char;
27124
27125 name = input_line_pointer;
27126 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27127 input_line_pointer++;
27128 saved_char = *input_line_pointer;
27129 *input_line_pointer = 0;
27130
27131 /* Skip the first "all" entry. */
27132 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27133 if (streq (opt->name, name))
27134 {
27135 mcpu_cpu_opt = &opt->value;
27136 if (!dyn_mcpu_ext_opt)
27137 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27138 *dyn_mcpu_ext_opt = opt->ext;
27139 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27140 if (opt->canonical_name)
27141 strcpy (selected_cpu_name, opt->canonical_name);
27142 else
27143 {
27144 int i;
27145 for (i = 0; opt->name[i]; i++)
27146 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27147
27148 selected_cpu_name[i] = 0;
27149 }
27150 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
27151 if (dyn_mcpu_ext_opt)
27152 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
27153 *input_line_pointer = saved_char;
27154 demand_empty_rest_of_line ();
27155 return;
27156 }
27157 as_bad (_("unknown cpu `%s'"), name);
27158 *input_line_pointer = saved_char;
27159 ignore_rest_of_line ();
27160 }
27161
27162
27163 /* Parse a .arch directive. */
27164
27165 static void
27166 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27167 {
27168 const struct arm_arch_option_table *opt;
27169 char saved_char;
27170 char *name;
27171
27172 name = input_line_pointer;
27173 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27174 input_line_pointer++;
27175 saved_char = *input_line_pointer;
27176 *input_line_pointer = 0;
27177
27178 /* Skip the first "all" entry. */
27179 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27180 if (streq (opt->name, name))
27181 {
27182 mcpu_cpu_opt = &opt->value;
27183 XDELETE (dyn_mcpu_ext_opt);
27184 dyn_mcpu_ext_opt = NULL;
27185 selected_cpu = *mcpu_cpu_opt;
27186 strcpy (selected_cpu_name, opt->name);
27187 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
27188 *input_line_pointer = saved_char;
27189 demand_empty_rest_of_line ();
27190 return;
27191 }
27192
27193 as_bad (_("unknown architecture `%s'\n"), name);
27194 *input_line_pointer = saved_char;
27195 ignore_rest_of_line ();
27196 }
27197
27198
27199 /* Parse a .object_arch directive. */
27200
27201 static void
27202 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
27203 {
27204 const struct arm_arch_option_table *opt;
27205 char saved_char;
27206 char *name;
27207
27208 name = input_line_pointer;
27209 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27210 input_line_pointer++;
27211 saved_char = *input_line_pointer;
27212 *input_line_pointer = 0;
27213
27214 /* Skip the first "all" entry. */
27215 for (opt = arm_archs + 1; opt->name != NULL; opt++)
27216 if (streq (opt->name, name))
27217 {
27218 object_arch = &opt->value;
27219 *input_line_pointer = saved_char;
27220 demand_empty_rest_of_line ();
27221 return;
27222 }
27223
27224 as_bad (_("unknown architecture `%s'\n"), name);
27225 *input_line_pointer = saved_char;
27226 ignore_rest_of_line ();
27227 }
27228
27229 /* Parse a .arch_extension directive. */
27230
27231 static void
27232 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
27233 {
27234 const struct arm_option_extension_value_table *opt;
27235 const arm_feature_set arm_any = ARM_ANY;
27236 char saved_char;
27237 char *name;
27238 int adding_value = 1;
27239
27240 name = input_line_pointer;
27241 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27242 input_line_pointer++;
27243 saved_char = *input_line_pointer;
27244 *input_line_pointer = 0;
27245
27246 if (strlen (name) >= 2
27247 && strncmp (name, "no", 2) == 0)
27248 {
27249 adding_value = 0;
27250 name += 2;
27251 }
27252
27253 for (opt = arm_extensions; opt->name != NULL; opt++)
27254 if (streq (opt->name, name))
27255 {
27256 int i, nb_allowed_archs =
27257 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
27258 for (i = 0; i < nb_allowed_archs; i++)
27259 {
27260 /* Empty entry. */
27261 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27262 continue;
27263 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *mcpu_cpu_opt))
27264 break;
27265 }
27266
27267 if (i == nb_allowed_archs)
27268 {
27269 as_bad (_("architectural extension `%s' is not allowed for the "
27270 "current base architecture"), name);
27271 break;
27272 }
27273
27274 if (!dyn_mcpu_ext_opt)
27275 {
27276 dyn_mcpu_ext_opt = XNEW (arm_feature_set);
27277 *dyn_mcpu_ext_opt = arm_arch_none;
27278 }
27279 if (adding_value)
27280 ARM_MERGE_FEATURE_SETS (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27281 opt->merge_value);
27282 else
27283 ARM_CLEAR_FEATURE (*dyn_mcpu_ext_opt, *dyn_mcpu_ext_opt,
27284 opt->clear_value);
27285
27286 ARM_MERGE_FEATURE_SETS (selected_cpu, *mcpu_cpu_opt, *dyn_mcpu_ext_opt);
27287 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, *mfpu_opt);
27288 *input_line_pointer = saved_char;
27289 demand_empty_rest_of_line ();
27290 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
27291 on this return so that duplicate extensions (extensions with the
27292 same name as a previous extension in the list) are not considered
27293 for command-line parsing. */
27294 return;
27295 }
27296
27297 if (opt->name == NULL)
27298 as_bad (_("unknown architecture extension `%s'\n"), name);
27299
27300 *input_line_pointer = saved_char;
27301 ignore_rest_of_line ();
27302 }
27303
27304 /* Parse a .fpu directive. */
27305
27306 static void
27307 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
27308 {
27309 const struct arm_option_fpu_value_table *opt;
27310 char saved_char;
27311 char *name;
27312
27313 name = input_line_pointer;
27314 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27315 input_line_pointer++;
27316 saved_char = *input_line_pointer;
27317 *input_line_pointer = 0;
27318
27319 for (opt = arm_fpus; opt->name != NULL; opt++)
27320 if (streq (opt->name, name))
27321 {
27322 mfpu_opt = &opt->value;
27323 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
27324 if (dyn_mcpu_ext_opt)
27325 ARM_MERGE_FEATURE_SETS (cpu_variant, cpu_variant, *dyn_mcpu_ext_opt);
27326 *input_line_pointer = saved_char;
27327 demand_empty_rest_of_line ();
27328 return;
27329 }
27330
27331 as_bad (_("unknown floating point format `%s'\n"), name);
27332 *input_line_pointer = saved_char;
27333 ignore_rest_of_line ();
27334 }
27335
27336 /* Copy symbol information. */
27337
27338 void
27339 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
27340 {
27341 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
27342 }
27343
27344 #ifdef OBJ_ELF
27345 /* Given a symbolic attribute NAME, return the proper integer value.
27346 Returns -1 if the attribute is not known. */
27347
27348 int
27349 arm_convert_symbolic_attribute (const char *name)
27350 {
27351 static const struct
27352 {
27353 const char * name;
27354 const int tag;
27355 }
27356 attribute_table[] =
27357 {
27358 /* When you modify this table you should
27359 also modify the list in doc/c-arm.texi. */
27360 #define T(tag) {#tag, tag}
27361 T (Tag_CPU_raw_name),
27362 T (Tag_CPU_name),
27363 T (Tag_CPU_arch),
27364 T (Tag_CPU_arch_profile),
27365 T (Tag_ARM_ISA_use),
27366 T (Tag_THUMB_ISA_use),
27367 T (Tag_FP_arch),
27368 T (Tag_VFP_arch),
27369 T (Tag_WMMX_arch),
27370 T (Tag_Advanced_SIMD_arch),
27371 T (Tag_PCS_config),
27372 T (Tag_ABI_PCS_R9_use),
27373 T (Tag_ABI_PCS_RW_data),
27374 T (Tag_ABI_PCS_RO_data),
27375 T (Tag_ABI_PCS_GOT_use),
27376 T (Tag_ABI_PCS_wchar_t),
27377 T (Tag_ABI_FP_rounding),
27378 T (Tag_ABI_FP_denormal),
27379 T (Tag_ABI_FP_exceptions),
27380 T (Tag_ABI_FP_user_exceptions),
27381 T (Tag_ABI_FP_number_model),
27382 T (Tag_ABI_align_needed),
27383 T (Tag_ABI_align8_needed),
27384 T (Tag_ABI_align_preserved),
27385 T (Tag_ABI_align8_preserved),
27386 T (Tag_ABI_enum_size),
27387 T (Tag_ABI_HardFP_use),
27388 T (Tag_ABI_VFP_args),
27389 T (Tag_ABI_WMMX_args),
27390 T (Tag_ABI_optimization_goals),
27391 T (Tag_ABI_FP_optimization_goals),
27392 T (Tag_compatibility),
27393 T (Tag_CPU_unaligned_access),
27394 T (Tag_FP_HP_extension),
27395 T (Tag_VFP_HP_extension),
27396 T (Tag_ABI_FP_16bit_format),
27397 T (Tag_MPextension_use),
27398 T (Tag_DIV_use),
27399 T (Tag_nodefaults),
27400 T (Tag_also_compatible_with),
27401 T (Tag_conformance),
27402 T (Tag_T2EE_use),
27403 T (Tag_Virtualization_use),
27404 T (Tag_DSP_extension),
27405 /* We deliberately do not include Tag_MPextension_use_legacy. */
27406 #undef T
27407 };
27408 unsigned int i;
27409
27410 if (name == NULL)
27411 return -1;
27412
27413 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
27414 if (streq (name, attribute_table[i].name))
27415 return attribute_table[i].tag;
27416
27417 return -1;
27418 }
27419
27420
27421 /* Apply sym value for relocations only in the case that they are for
27422 local symbols in the same segment as the fixup and you have the
27423 respective architectural feature for blx and simple switches. */
27424 int
27425 arm_apply_sym_value (struct fix * fixP, segT this_seg)
27426 {
27427 if (fixP->fx_addsy
27428 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27429 /* PR 17444: If the local symbol is in a different section then a reloc
27430 will always be generated for it, so applying the symbol value now
27431 will result in a double offset being stored in the relocation. */
27432 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
27433 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
27434 {
27435 switch (fixP->fx_r_type)
27436 {
27437 case BFD_RELOC_ARM_PCREL_BLX:
27438 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27439 if (ARM_IS_FUNC (fixP->fx_addsy))
27440 return 1;
27441 break;
27442
27443 case BFD_RELOC_ARM_PCREL_CALL:
27444 case BFD_RELOC_THUMB_PCREL_BLX:
27445 if (THUMB_IS_FUNC (fixP->fx_addsy))
27446 return 1;
27447 break;
27448
27449 default:
27450 break;
27451 }
27452
27453 }
27454 return 0;
27455 }
27456 #endif /* OBJ_ELF */
This page took 0.790436 seconds and 5 git commands to generate.