[binutils, ARM, 11/16] New BFCSEL instruction for Armv8.1-M Mainline
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 #ifdef OBJ_ELF
306 static const arm_feature_set fpu_vfp_fp16 =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
308 static const arm_feature_set fpu_neon_ext_fma =
309 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
310 #endif
311 static const arm_feature_set fpu_vfp_ext_fma =
312 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
313 static const arm_feature_set fpu_vfp_ext_armv8 =
314 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
315 static const arm_feature_set fpu_vfp_ext_armv8xd =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
317 static const arm_feature_set fpu_neon_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
319 static const arm_feature_set fpu_crypto_ext_armv8 =
320 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
321 static const arm_feature_set crc_ext_armv8 =
322 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
323 static const arm_feature_set fpu_neon_ext_v8_1 =
324 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
325 static const arm_feature_set fpu_neon_ext_dotprod =
326 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
327
328 static int mfloat_abi_opt = -1;
329 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
330 directive. */
331 static arm_feature_set selected_arch = ARM_ARCH_NONE;
332 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
333 directive. */
334 static arm_feature_set selected_ext = ARM_ARCH_NONE;
335 /* Feature bits selected by the last -mcpu/-march or by the combination of the
336 last .cpu/.arch directive .arch_extension directives since that
337 directive. */
338 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
339 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
340 static arm_feature_set selected_fpu = FPU_NONE;
341 /* Feature bits selected by the last .object_arch directive. */
342 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
343 /* Must be long enough to hold any of the names in arm_cpus. */
344 static char selected_cpu_name[20];
345
346 extern FLONUM_TYPE generic_floating_point_number;
347
348 /* Return if no cpu was selected on command-line. */
349 static bfd_boolean
350 no_cpu_selected (void)
351 {
352 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
353 }
354
355 #ifdef OBJ_ELF
356 # ifdef EABI_DEFAULT
357 static int meabi_flags = EABI_DEFAULT;
358 # else
359 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
360 # endif
361
362 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
363
364 bfd_boolean
365 arm_is_eabi (void)
366 {
367 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
368 }
369 #endif
370
371 #ifdef OBJ_ELF
372 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
373 symbolS * GOT_symbol;
374 #endif
375
376 /* 0: assemble for ARM,
377 1: assemble for Thumb,
378 2: assemble for Thumb even though target CPU does not support thumb
379 instructions. */
380 static int thumb_mode = 0;
381 /* A value distinct from the possible values for thumb_mode that we
382 can use to record whether thumb_mode has been copied into the
383 tc_frag_data field of a frag. */
384 #define MODE_RECORDED (1 << 4)
385
386 /* Specifies the intrinsic IT insn behavior mode. */
387 enum implicit_it_mode
388 {
389 IMPLICIT_IT_MODE_NEVER = 0x00,
390 IMPLICIT_IT_MODE_ARM = 0x01,
391 IMPLICIT_IT_MODE_THUMB = 0x02,
392 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
393 };
394 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
395
396 /* If unified_syntax is true, we are processing the new unified
397 ARM/Thumb syntax. Important differences from the old ARM mode:
398
399 - Immediate operands do not require a # prefix.
400 - Conditional affixes always appear at the end of the
401 instruction. (For backward compatibility, those instructions
402 that formerly had them in the middle, continue to accept them
403 there.)
404 - The IT instruction may appear, and if it does is validated
405 against subsequent conditional affixes. It does not generate
406 machine code.
407
408 Important differences from the old Thumb mode:
409
410 - Immediate operands do not require a # prefix.
411 - Most of the V6T2 instructions are only available in unified mode.
412 - The .N and .W suffixes are recognized and honored (it is an error
413 if they cannot be honored).
414 - All instructions set the flags if and only if they have an 's' affix.
415 - Conditional affixes may be used. They are validated against
416 preceding IT instructions. Unlike ARM mode, you cannot use a
417 conditional affix except in the scope of an IT instruction. */
418
419 static bfd_boolean unified_syntax = FALSE;
420
421 /* An immediate operand can start with #, and ld*, st*, pld operands
422 can contain [ and ]. We need to tell APP not to elide whitespace
423 before a [, which can appear as the first operand for pld.
424 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
425 const char arm_symbol_chars[] = "#[]{}";
426
427 enum neon_el_type
428 {
429 NT_invtype,
430 NT_untyped,
431 NT_integer,
432 NT_float,
433 NT_poly,
434 NT_signed,
435 NT_unsigned
436 };
437
438 struct neon_type_el
439 {
440 enum neon_el_type type;
441 unsigned size;
442 };
443
444 #define NEON_MAX_TYPE_ELS 4
445
446 struct neon_type
447 {
448 struct neon_type_el el[NEON_MAX_TYPE_ELS];
449 unsigned elems;
450 };
451
452 enum it_instruction_type
453 {
454 OUTSIDE_IT_INSN,
455 INSIDE_IT_INSN,
456 INSIDE_IT_LAST_INSN,
457 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
458 if inside, should be the last one. */
459 NEUTRAL_IT_INSN, /* This could be either inside or outside,
460 i.e. BKPT and NOP. */
461 IT_INSN /* The IT insn has been parsed. */
462 };
463
464 /* The maximum number of operands we need. */
465 #define ARM_IT_MAX_OPERANDS 6
466 #define ARM_IT_MAX_RELOCS 3
467
468 struct arm_it
469 {
470 const char * error;
471 unsigned long instruction;
472 int size;
473 int size_req;
474 int cond;
475 /* "uncond_value" is set to the value in place of the conditional field in
476 unconditional versions of the instruction, or -1 if nothing is
477 appropriate. */
478 int uncond_value;
479 struct neon_type vectype;
480 /* This does not indicate an actual NEON instruction, only that
481 the mnemonic accepts neon-style type suffixes. */
482 int is_neon;
483 /* Set to the opcode if the instruction needs relaxation.
484 Zero if the instruction is not relaxed. */
485 unsigned long relax;
486 struct
487 {
488 bfd_reloc_code_real_type type;
489 expressionS exp;
490 int pc_rel;
491 } relocs[ARM_IT_MAX_RELOCS];
492
493 enum it_instruction_type it_insn_type;
494
495 struct
496 {
497 unsigned reg;
498 signed int imm;
499 struct neon_type_el vectype;
500 unsigned present : 1; /* Operand present. */
501 unsigned isreg : 1; /* Operand was a register. */
502 unsigned immisreg : 1; /* .imm field is a second register. */
503 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
504 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
505 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
506 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
507 instructions. This allows us to disambiguate ARM <-> vector insns. */
508 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
509 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
510 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
511 unsigned issingle : 1; /* Operand is VFP single-precision register. */
512 unsigned hasreloc : 1; /* Operand has relocation suffix. */
513 unsigned writeback : 1; /* Operand has trailing ! */
514 unsigned preind : 1; /* Preindexed address. */
515 unsigned postind : 1; /* Postindexed address. */
516 unsigned negative : 1; /* Index register was negated. */
517 unsigned shifted : 1; /* Shift applied to operation. */
518 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
519 } operands[ARM_IT_MAX_OPERANDS];
520 };
521
522 static struct arm_it inst;
523
524 #define NUM_FLOAT_VALS 8
525
526 const char * fp_const[] =
527 {
528 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
529 };
530
531 /* Number of littlenums required to hold an extended precision number. */
532 #define MAX_LITTLENUMS 6
533
534 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
535
536 #define FAIL (-1)
537 #define SUCCESS (0)
538
539 #define SUFF_S 1
540 #define SUFF_D 2
541 #define SUFF_E 3
542 #define SUFF_P 4
543
544 #define CP_T_X 0x00008000
545 #define CP_T_Y 0x00400000
546
547 #define CONDS_BIT 0x00100000
548 #define LOAD_BIT 0x00100000
549
550 #define DOUBLE_LOAD_FLAG 0x00000001
551
552 struct asm_cond
553 {
554 const char * template_name;
555 unsigned long value;
556 };
557
558 #define COND_ALWAYS 0xE
559
560 struct asm_psr
561 {
562 const char * template_name;
563 unsigned long field;
564 };
565
566 struct asm_barrier_opt
567 {
568 const char * template_name;
569 unsigned long value;
570 const arm_feature_set arch;
571 };
572
573 /* The bit that distinguishes CPSR and SPSR. */
574 #define SPSR_BIT (1 << 22)
575
576 /* The individual PSR flag bits. */
577 #define PSR_c (1 << 16)
578 #define PSR_x (1 << 17)
579 #define PSR_s (1 << 18)
580 #define PSR_f (1 << 19)
581
582 struct reloc_entry
583 {
584 const char * name;
585 bfd_reloc_code_real_type reloc;
586 };
587
588 enum vfp_reg_pos
589 {
590 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
591 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
592 };
593
594 enum vfp_ldstm_type
595 {
596 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
597 };
598
599 /* Bits for DEFINED field in neon_typed_alias. */
600 #define NTA_HASTYPE 1
601 #define NTA_HASINDEX 2
602
603 struct neon_typed_alias
604 {
605 unsigned char defined;
606 unsigned char index;
607 struct neon_type_el eltype;
608 };
609
610 /* ARM register categories. This includes coprocessor numbers and various
611 architecture extensions' registers. Each entry should have an error message
612 in reg_expected_msgs below. */
613 enum arm_reg_type
614 {
615 REG_TYPE_RN,
616 REG_TYPE_CP,
617 REG_TYPE_CN,
618 REG_TYPE_FN,
619 REG_TYPE_VFS,
620 REG_TYPE_VFD,
621 REG_TYPE_NQ,
622 REG_TYPE_VFSD,
623 REG_TYPE_NDQ,
624 REG_TYPE_NSD,
625 REG_TYPE_NSDQ,
626 REG_TYPE_VFC,
627 REG_TYPE_MVF,
628 REG_TYPE_MVD,
629 REG_TYPE_MVFX,
630 REG_TYPE_MVDX,
631 REG_TYPE_MVAX,
632 REG_TYPE_DSPSC,
633 REG_TYPE_MMXWR,
634 REG_TYPE_MMXWC,
635 REG_TYPE_MMXWCG,
636 REG_TYPE_XSCALE,
637 REG_TYPE_RNB
638 };
639
640 /* Structure for a hash table entry for a register.
641 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
642 information which states whether a vector type or index is specified (for a
643 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
644 struct reg_entry
645 {
646 const char * name;
647 unsigned int number;
648 unsigned char type;
649 unsigned char builtin;
650 struct neon_typed_alias * neon;
651 };
652
653 /* Diagnostics used when we don't get a register of the expected type. */
654 const char * const reg_expected_msgs[] =
655 {
656 [REG_TYPE_RN] = N_("ARM register expected"),
657 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
658 [REG_TYPE_CN] = N_("co-processor register expected"),
659 [REG_TYPE_FN] = N_("FPA register expected"),
660 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
661 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
662 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
663 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
664 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
665 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
666 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
667 " expected"),
668 [REG_TYPE_VFC] = N_("VFP system register expected"),
669 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
670 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
671 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
672 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
673 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
674 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
675 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
676 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
677 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
678 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
679 [REG_TYPE_RNB] = N_("")
680 };
681
682 /* Some well known registers that we refer to directly elsewhere. */
683 #define REG_R12 12
684 #define REG_SP 13
685 #define REG_LR 14
686 #define REG_PC 15
687
688 /* ARM instructions take 4bytes in the object file, Thumb instructions
689 take 2: */
690 #define INSN_SIZE 4
691
692 struct asm_opcode
693 {
694 /* Basic string to match. */
695 const char * template_name;
696
697 /* Parameters to instruction. */
698 unsigned int operands[8];
699
700 /* Conditional tag - see opcode_lookup. */
701 unsigned int tag : 4;
702
703 /* Basic instruction code. */
704 unsigned int avalue : 28;
705
706 /* Thumb-format instruction code. */
707 unsigned int tvalue;
708
709 /* Which architecture variant provides this instruction. */
710 const arm_feature_set * avariant;
711 const arm_feature_set * tvariant;
712
713 /* Function to call to encode instruction in ARM format. */
714 void (* aencode) (void);
715
716 /* Function to call to encode instruction in Thumb format. */
717 void (* tencode) (void);
718 };
719
720 /* Defines for various bits that we will want to toggle. */
721 #define INST_IMMEDIATE 0x02000000
722 #define OFFSET_REG 0x02000000
723 #define HWOFFSET_IMM 0x00400000
724 #define SHIFT_BY_REG 0x00000010
725 #define PRE_INDEX 0x01000000
726 #define INDEX_UP 0x00800000
727 #define WRITE_BACK 0x00200000
728 #define LDM_TYPE_2_OR_3 0x00400000
729 #define CPSI_MMOD 0x00020000
730
731 #define LITERAL_MASK 0xf000f000
732 #define OPCODE_MASK 0xfe1fffff
733 #define V4_STR_BIT 0x00000020
734 #define VLDR_VMOV_SAME 0x0040f000
735
736 #define T2_SUBS_PC_LR 0xf3de8f00
737
738 #define DATA_OP_SHIFT 21
739 #define SBIT_SHIFT 20
740
741 #define T2_OPCODE_MASK 0xfe1fffff
742 #define T2_DATA_OP_SHIFT 21
743 #define T2_SBIT_SHIFT 20
744
745 #define A_COND_MASK 0xf0000000
746 #define A_PUSH_POP_OP_MASK 0x0fff0000
747
748 /* Opcodes for pushing/poping registers to/from the stack. */
749 #define A1_OPCODE_PUSH 0x092d0000
750 #define A2_OPCODE_PUSH 0x052d0004
751 #define A2_OPCODE_POP 0x049d0004
752
753 /* Codes to distinguish the arithmetic instructions. */
754 #define OPCODE_AND 0
755 #define OPCODE_EOR 1
756 #define OPCODE_SUB 2
757 #define OPCODE_RSB 3
758 #define OPCODE_ADD 4
759 #define OPCODE_ADC 5
760 #define OPCODE_SBC 6
761 #define OPCODE_RSC 7
762 #define OPCODE_TST 8
763 #define OPCODE_TEQ 9
764 #define OPCODE_CMP 10
765 #define OPCODE_CMN 11
766 #define OPCODE_ORR 12
767 #define OPCODE_MOV 13
768 #define OPCODE_BIC 14
769 #define OPCODE_MVN 15
770
771 #define T2_OPCODE_AND 0
772 #define T2_OPCODE_BIC 1
773 #define T2_OPCODE_ORR 2
774 #define T2_OPCODE_ORN 3
775 #define T2_OPCODE_EOR 4
776 #define T2_OPCODE_ADD 8
777 #define T2_OPCODE_ADC 10
778 #define T2_OPCODE_SBC 11
779 #define T2_OPCODE_SUB 13
780 #define T2_OPCODE_RSB 14
781
782 #define T_OPCODE_MUL 0x4340
783 #define T_OPCODE_TST 0x4200
784 #define T_OPCODE_CMN 0x42c0
785 #define T_OPCODE_NEG 0x4240
786 #define T_OPCODE_MVN 0x43c0
787
788 #define T_OPCODE_ADD_R3 0x1800
789 #define T_OPCODE_SUB_R3 0x1a00
790 #define T_OPCODE_ADD_HI 0x4400
791 #define T_OPCODE_ADD_ST 0xb000
792 #define T_OPCODE_SUB_ST 0xb080
793 #define T_OPCODE_ADD_SP 0xa800
794 #define T_OPCODE_ADD_PC 0xa000
795 #define T_OPCODE_ADD_I8 0x3000
796 #define T_OPCODE_SUB_I8 0x3800
797 #define T_OPCODE_ADD_I3 0x1c00
798 #define T_OPCODE_SUB_I3 0x1e00
799
800 #define T_OPCODE_ASR_R 0x4100
801 #define T_OPCODE_LSL_R 0x4080
802 #define T_OPCODE_LSR_R 0x40c0
803 #define T_OPCODE_ROR_R 0x41c0
804 #define T_OPCODE_ASR_I 0x1000
805 #define T_OPCODE_LSL_I 0x0000
806 #define T_OPCODE_LSR_I 0x0800
807
808 #define T_OPCODE_MOV_I8 0x2000
809 #define T_OPCODE_CMP_I8 0x2800
810 #define T_OPCODE_CMP_LR 0x4280
811 #define T_OPCODE_MOV_HR 0x4600
812 #define T_OPCODE_CMP_HR 0x4500
813
814 #define T_OPCODE_LDR_PC 0x4800
815 #define T_OPCODE_LDR_SP 0x9800
816 #define T_OPCODE_STR_SP 0x9000
817 #define T_OPCODE_LDR_IW 0x6800
818 #define T_OPCODE_STR_IW 0x6000
819 #define T_OPCODE_LDR_IH 0x8800
820 #define T_OPCODE_STR_IH 0x8000
821 #define T_OPCODE_LDR_IB 0x7800
822 #define T_OPCODE_STR_IB 0x7000
823 #define T_OPCODE_LDR_RW 0x5800
824 #define T_OPCODE_STR_RW 0x5000
825 #define T_OPCODE_LDR_RH 0x5a00
826 #define T_OPCODE_STR_RH 0x5200
827 #define T_OPCODE_LDR_RB 0x5c00
828 #define T_OPCODE_STR_RB 0x5400
829
830 #define T_OPCODE_PUSH 0xb400
831 #define T_OPCODE_POP 0xbc00
832
833 #define T_OPCODE_BRANCH 0xe000
834
835 #define THUMB_SIZE 2 /* Size of thumb instruction. */
836 #define THUMB_PP_PC_LR 0x0100
837 #define THUMB_LOAD_BIT 0x0800
838 #define THUMB2_LOAD_BIT 0x00100000
839
840 #define BAD_ARGS _("bad arguments to instruction")
841 #define BAD_SP _("r13 not allowed here")
842 #define BAD_PC _("r15 not allowed here")
843 #define BAD_COND _("instruction cannot be conditional")
844 #define BAD_OVERLAP _("registers may not be the same")
845 #define BAD_HIREG _("lo register required")
846 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
847 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
848 #define BAD_BRANCH _("branch must be last instruction in IT block")
849 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
850 #define BAD_NOT_IT _("instruction not allowed in IT block")
851 #define BAD_FPU _("selected FPU does not support instruction")
852 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
853 #define BAD_IT_COND _("incorrect condition in IT block")
854 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
855 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
856 #define BAD_PC_ADDRESSING \
857 _("cannot use register index with PC-relative addressing")
858 #define BAD_PC_WRITEBACK \
859 _("cannot use writeback with PC-relative addressing")
860 #define BAD_RANGE _("branch out of range")
861 #define BAD_FP16 _("selected processor does not support fp16 instruction")
862 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
863 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
864
865 static struct hash_control * arm_ops_hsh;
866 static struct hash_control * arm_cond_hsh;
867 static struct hash_control * arm_shift_hsh;
868 static struct hash_control * arm_psr_hsh;
869 static struct hash_control * arm_v7m_psr_hsh;
870 static struct hash_control * arm_reg_hsh;
871 static struct hash_control * arm_reloc_hsh;
872 static struct hash_control * arm_barrier_opt_hsh;
873
874 /* Stuff needed to resolve the label ambiguity
875 As:
876 ...
877 label: <insn>
878 may differ from:
879 ...
880 label:
881 <insn> */
882
883 symbolS * last_label_seen;
884 static int label_is_thumb_function_name = FALSE;
885
886 /* Literal pool structure. Held on a per-section
887 and per-sub-section basis. */
888
889 #define MAX_LITERAL_POOL_SIZE 1024
890 typedef struct literal_pool
891 {
892 expressionS literals [MAX_LITERAL_POOL_SIZE];
893 unsigned int next_free_entry;
894 unsigned int id;
895 symbolS * symbol;
896 segT section;
897 subsegT sub_section;
898 #ifdef OBJ_ELF
899 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
900 #endif
901 struct literal_pool * next;
902 unsigned int alignment;
903 } literal_pool;
904
905 /* Pointer to a linked list of literal pools. */
906 literal_pool * list_of_pools = NULL;
907
908 typedef enum asmfunc_states
909 {
910 OUTSIDE_ASMFUNC,
911 WAITING_ASMFUNC_NAME,
912 WAITING_ENDASMFUNC
913 } asmfunc_states;
914
915 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
916
917 #ifdef OBJ_ELF
918 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
919 #else
920 static struct current_it now_it;
921 #endif
922
923 static inline int
924 now_it_compatible (int cond)
925 {
926 return (cond & ~1) == (now_it.cc & ~1);
927 }
928
929 static inline int
930 conditional_insn (void)
931 {
932 return inst.cond != COND_ALWAYS;
933 }
934
935 static int in_it_block (void);
936
937 static int handle_it_state (void);
938
939 static void force_automatic_it_block_close (void);
940
941 static void it_fsm_post_encode (void);
942
943 #define set_it_insn_type(type) \
944 do \
945 { \
946 inst.it_insn_type = type; \
947 if (handle_it_state () == FAIL) \
948 return; \
949 } \
950 while (0)
951
952 #define set_it_insn_type_nonvoid(type, failret) \
953 do \
954 { \
955 inst.it_insn_type = type; \
956 if (handle_it_state () == FAIL) \
957 return failret; \
958 } \
959 while(0)
960
961 #define set_it_insn_type_last() \
962 do \
963 { \
964 if (inst.cond == COND_ALWAYS) \
965 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
966 else \
967 set_it_insn_type (INSIDE_IT_LAST_INSN); \
968 } \
969 while (0)
970
971 /* Pure syntax. */
972
973 /* This array holds the chars that always start a comment. If the
974 pre-processor is disabled, these aren't very useful. */
975 char arm_comment_chars[] = "@";
976
977 /* This array holds the chars that only start a comment at the beginning of
978 a line. If the line seems to have the form '# 123 filename'
979 .line and .file directives will appear in the pre-processed output. */
980 /* Note that input_file.c hand checks for '#' at the beginning of the
981 first line of the input file. This is because the compiler outputs
982 #NO_APP at the beginning of its output. */
983 /* Also note that comments like this one will always work. */
984 const char line_comment_chars[] = "#";
985
986 char arm_line_separator_chars[] = ";";
987
988 /* Chars that can be used to separate mant
989 from exp in floating point numbers. */
990 const char EXP_CHARS[] = "eE";
991
992 /* Chars that mean this number is a floating point constant. */
993 /* As in 0f12.456 */
994 /* or 0d1.2345e12 */
995
996 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
997
998 /* Prefix characters that indicate the start of an immediate
999 value. */
1000 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1001
1002 /* Separator character handling. */
1003
1004 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1005
1006 static inline int
1007 skip_past_char (char ** str, char c)
1008 {
1009 /* PR gas/14987: Allow for whitespace before the expected character. */
1010 skip_whitespace (*str);
1011
1012 if (**str == c)
1013 {
1014 (*str)++;
1015 return SUCCESS;
1016 }
1017 else
1018 return FAIL;
1019 }
1020
1021 #define skip_past_comma(str) skip_past_char (str, ',')
1022
1023 /* Arithmetic expressions (possibly involving symbols). */
1024
1025 /* Return TRUE if anything in the expression is a bignum. */
1026
1027 static bfd_boolean
1028 walk_no_bignums (symbolS * sp)
1029 {
1030 if (symbol_get_value_expression (sp)->X_op == O_big)
1031 return TRUE;
1032
1033 if (symbol_get_value_expression (sp)->X_add_symbol)
1034 {
1035 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1036 || (symbol_get_value_expression (sp)->X_op_symbol
1037 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1038 }
1039
1040 return FALSE;
1041 }
1042
1043 static bfd_boolean in_my_get_expression = FALSE;
1044
1045 /* Third argument to my_get_expression. */
1046 #define GE_NO_PREFIX 0
1047 #define GE_IMM_PREFIX 1
1048 #define GE_OPT_PREFIX 2
1049 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1050 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1051 #define GE_OPT_PREFIX_BIG 3
1052
1053 static int
1054 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1055 {
1056 char * save_in;
1057
1058 /* In unified syntax, all prefixes are optional. */
1059 if (unified_syntax)
1060 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1061 : GE_OPT_PREFIX;
1062
1063 switch (prefix_mode)
1064 {
1065 case GE_NO_PREFIX: break;
1066 case GE_IMM_PREFIX:
1067 if (!is_immediate_prefix (**str))
1068 {
1069 inst.error = _("immediate expression requires a # prefix");
1070 return FAIL;
1071 }
1072 (*str)++;
1073 break;
1074 case GE_OPT_PREFIX:
1075 case GE_OPT_PREFIX_BIG:
1076 if (is_immediate_prefix (**str))
1077 (*str)++;
1078 break;
1079 default:
1080 abort ();
1081 }
1082
1083 memset (ep, 0, sizeof (expressionS));
1084
1085 save_in = input_line_pointer;
1086 input_line_pointer = *str;
1087 in_my_get_expression = TRUE;
1088 expression (ep);
1089 in_my_get_expression = FALSE;
1090
1091 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1092 {
1093 /* We found a bad or missing expression in md_operand(). */
1094 *str = input_line_pointer;
1095 input_line_pointer = save_in;
1096 if (inst.error == NULL)
1097 inst.error = (ep->X_op == O_absent
1098 ? _("missing expression") :_("bad expression"));
1099 return 1;
1100 }
1101
1102 /* Get rid of any bignums now, so that we don't generate an error for which
1103 we can't establish a line number later on. Big numbers are never valid
1104 in instructions, which is where this routine is always called. */
1105 if (prefix_mode != GE_OPT_PREFIX_BIG
1106 && (ep->X_op == O_big
1107 || (ep->X_add_symbol
1108 && (walk_no_bignums (ep->X_add_symbol)
1109 || (ep->X_op_symbol
1110 && walk_no_bignums (ep->X_op_symbol))))))
1111 {
1112 inst.error = _("invalid constant");
1113 *str = input_line_pointer;
1114 input_line_pointer = save_in;
1115 return 1;
1116 }
1117
1118 *str = input_line_pointer;
1119 input_line_pointer = save_in;
1120 return SUCCESS;
1121 }
1122
1123 /* Turn a string in input_line_pointer into a floating point constant
1124 of type TYPE, and store the appropriate bytes in *LITP. The number
1125 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1126 returned, or NULL on OK.
1127
1128 Note that fp constants aren't represent in the normal way on the ARM.
1129 In big endian mode, things are as expected. However, in little endian
1130 mode fp constants are big-endian word-wise, and little-endian byte-wise
1131 within the words. For example, (double) 1.1 in big endian mode is
1132 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1133 the byte sequence 99 99 f1 3f 9a 99 99 99.
1134
1135 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1136
1137 const char *
1138 md_atof (int type, char * litP, int * sizeP)
1139 {
1140 int prec;
1141 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1142 char *t;
1143 int i;
1144
1145 switch (type)
1146 {
1147 case 'f':
1148 case 'F':
1149 case 's':
1150 case 'S':
1151 prec = 2;
1152 break;
1153
1154 case 'd':
1155 case 'D':
1156 case 'r':
1157 case 'R':
1158 prec = 4;
1159 break;
1160
1161 case 'x':
1162 case 'X':
1163 prec = 5;
1164 break;
1165
1166 case 'p':
1167 case 'P':
1168 prec = 5;
1169 break;
1170
1171 default:
1172 *sizeP = 0;
1173 return _("Unrecognized or unsupported floating point constant");
1174 }
1175
1176 t = atof_ieee (input_line_pointer, type, words);
1177 if (t)
1178 input_line_pointer = t;
1179 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1180
1181 if (target_big_endian)
1182 {
1183 for (i = 0; i < prec; i++)
1184 {
1185 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1186 litP += sizeof (LITTLENUM_TYPE);
1187 }
1188 }
1189 else
1190 {
1191 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1192 for (i = prec - 1; i >= 0; i--)
1193 {
1194 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1195 litP += sizeof (LITTLENUM_TYPE);
1196 }
1197 else
1198 /* For a 4 byte float the order of elements in `words' is 1 0.
1199 For an 8 byte float the order is 1 0 3 2. */
1200 for (i = 0; i < prec; i += 2)
1201 {
1202 md_number_to_chars (litP, (valueT) words[i + 1],
1203 sizeof (LITTLENUM_TYPE));
1204 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1205 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1206 litP += 2 * sizeof (LITTLENUM_TYPE);
1207 }
1208 }
1209
1210 return NULL;
1211 }
1212
1213 /* We handle all bad expressions here, so that we can report the faulty
1214 instruction in the error message. */
1215
1216 void
1217 md_operand (expressionS * exp)
1218 {
1219 if (in_my_get_expression)
1220 exp->X_op = O_illegal;
1221 }
1222
1223 /* Immediate values. */
1224
1225 #ifdef OBJ_ELF
1226 /* Generic immediate-value read function for use in directives.
1227 Accepts anything that 'expression' can fold to a constant.
1228 *val receives the number. */
1229
1230 static int
1231 immediate_for_directive (int *val)
1232 {
1233 expressionS exp;
1234 exp.X_op = O_illegal;
1235
1236 if (is_immediate_prefix (*input_line_pointer))
1237 {
1238 input_line_pointer++;
1239 expression (&exp);
1240 }
1241
1242 if (exp.X_op != O_constant)
1243 {
1244 as_bad (_("expected #constant"));
1245 ignore_rest_of_line ();
1246 return FAIL;
1247 }
1248 *val = exp.X_add_number;
1249 return SUCCESS;
1250 }
1251 #endif
1252
1253 /* Register parsing. */
1254
1255 /* Generic register parser. CCP points to what should be the
1256 beginning of a register name. If it is indeed a valid register
1257 name, advance CCP over it and return the reg_entry structure;
1258 otherwise return NULL. Does not issue diagnostics. */
1259
1260 static struct reg_entry *
1261 arm_reg_parse_multi (char **ccp)
1262 {
1263 char *start = *ccp;
1264 char *p;
1265 struct reg_entry *reg;
1266
1267 skip_whitespace (start);
1268
1269 #ifdef REGISTER_PREFIX
1270 if (*start != REGISTER_PREFIX)
1271 return NULL;
1272 start++;
1273 #endif
1274 #ifdef OPTIONAL_REGISTER_PREFIX
1275 if (*start == OPTIONAL_REGISTER_PREFIX)
1276 start++;
1277 #endif
1278
1279 p = start;
1280 if (!ISALPHA (*p) || !is_name_beginner (*p))
1281 return NULL;
1282
1283 do
1284 p++;
1285 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1286
1287 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1288
1289 if (!reg)
1290 return NULL;
1291
1292 *ccp = p;
1293 return reg;
1294 }
1295
1296 static int
1297 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1298 enum arm_reg_type type)
1299 {
1300 /* Alternative syntaxes are accepted for a few register classes. */
1301 switch (type)
1302 {
1303 case REG_TYPE_MVF:
1304 case REG_TYPE_MVD:
1305 case REG_TYPE_MVFX:
1306 case REG_TYPE_MVDX:
1307 /* Generic coprocessor register names are allowed for these. */
1308 if (reg && reg->type == REG_TYPE_CN)
1309 return reg->number;
1310 break;
1311
1312 case REG_TYPE_CP:
1313 /* For backward compatibility, a bare number is valid here. */
1314 {
1315 unsigned long processor = strtoul (start, ccp, 10);
1316 if (*ccp != start && processor <= 15)
1317 return processor;
1318 }
1319 /* Fall through. */
1320
1321 case REG_TYPE_MMXWC:
1322 /* WC includes WCG. ??? I'm not sure this is true for all
1323 instructions that take WC registers. */
1324 if (reg && reg->type == REG_TYPE_MMXWCG)
1325 return reg->number;
1326 break;
1327
1328 default:
1329 break;
1330 }
1331
1332 return FAIL;
1333 }
1334
1335 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1336 return value is the register number or FAIL. */
1337
1338 static int
1339 arm_reg_parse (char **ccp, enum arm_reg_type type)
1340 {
1341 char *start = *ccp;
1342 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1343 int ret;
1344
1345 /* Do not allow a scalar (reg+index) to parse as a register. */
1346 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1347 return FAIL;
1348
1349 if (reg && reg->type == type)
1350 return reg->number;
1351
1352 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1353 return ret;
1354
1355 *ccp = start;
1356 return FAIL;
1357 }
1358
1359 /* Parse a Neon type specifier. *STR should point at the leading '.'
1360 character. Does no verification at this stage that the type fits the opcode
1361 properly. E.g.,
1362
1363 .i32.i32.s16
1364 .s32.f32
1365 .u16
1366
1367 Can all be legally parsed by this function.
1368
1369 Fills in neon_type struct pointer with parsed information, and updates STR
1370 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1371 type, FAIL if not. */
1372
1373 static int
1374 parse_neon_type (struct neon_type *type, char **str)
1375 {
1376 char *ptr = *str;
1377
1378 if (type)
1379 type->elems = 0;
1380
1381 while (type->elems < NEON_MAX_TYPE_ELS)
1382 {
1383 enum neon_el_type thistype = NT_untyped;
1384 unsigned thissize = -1u;
1385
1386 if (*ptr != '.')
1387 break;
1388
1389 ptr++;
1390
1391 /* Just a size without an explicit type. */
1392 if (ISDIGIT (*ptr))
1393 goto parsesize;
1394
1395 switch (TOLOWER (*ptr))
1396 {
1397 case 'i': thistype = NT_integer; break;
1398 case 'f': thistype = NT_float; break;
1399 case 'p': thistype = NT_poly; break;
1400 case 's': thistype = NT_signed; break;
1401 case 'u': thistype = NT_unsigned; break;
1402 case 'd':
1403 thistype = NT_float;
1404 thissize = 64;
1405 ptr++;
1406 goto done;
1407 default:
1408 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1409 return FAIL;
1410 }
1411
1412 ptr++;
1413
1414 /* .f is an abbreviation for .f32. */
1415 if (thistype == NT_float && !ISDIGIT (*ptr))
1416 thissize = 32;
1417 else
1418 {
1419 parsesize:
1420 thissize = strtoul (ptr, &ptr, 10);
1421
1422 if (thissize != 8 && thissize != 16 && thissize != 32
1423 && thissize != 64)
1424 {
1425 as_bad (_("bad size %d in type specifier"), thissize);
1426 return FAIL;
1427 }
1428 }
1429
1430 done:
1431 if (type)
1432 {
1433 type->el[type->elems].type = thistype;
1434 type->el[type->elems].size = thissize;
1435 type->elems++;
1436 }
1437 }
1438
1439 /* Empty/missing type is not a successful parse. */
1440 if (type->elems == 0)
1441 return FAIL;
1442
1443 *str = ptr;
1444
1445 return SUCCESS;
1446 }
1447
1448 /* Errors may be set multiple times during parsing or bit encoding
1449 (particularly in the Neon bits), but usually the earliest error which is set
1450 will be the most meaningful. Avoid overwriting it with later (cascading)
1451 errors by calling this function. */
1452
1453 static void
1454 first_error (const char *err)
1455 {
1456 if (!inst.error)
1457 inst.error = err;
1458 }
1459
1460 /* Parse a single type, e.g. ".s32", leading period included. */
1461 static int
1462 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1463 {
1464 char *str = *ccp;
1465 struct neon_type optype;
1466
1467 if (*str == '.')
1468 {
1469 if (parse_neon_type (&optype, &str) == SUCCESS)
1470 {
1471 if (optype.elems == 1)
1472 *vectype = optype.el[0];
1473 else
1474 {
1475 first_error (_("only one type should be specified for operand"));
1476 return FAIL;
1477 }
1478 }
1479 else
1480 {
1481 first_error (_("vector type expected"));
1482 return FAIL;
1483 }
1484 }
1485 else
1486 return FAIL;
1487
1488 *ccp = str;
1489
1490 return SUCCESS;
1491 }
1492
1493 /* Special meanings for indices (which have a range of 0-7), which will fit into
1494 a 4-bit integer. */
1495
1496 #define NEON_ALL_LANES 15
1497 #define NEON_INTERLEAVE_LANES 14
1498
1499 /* Parse either a register or a scalar, with an optional type. Return the
1500 register number, and optionally fill in the actual type of the register
1501 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1502 type/index information in *TYPEINFO. */
1503
1504 static int
1505 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1506 enum arm_reg_type *rtype,
1507 struct neon_typed_alias *typeinfo)
1508 {
1509 char *str = *ccp;
1510 struct reg_entry *reg = arm_reg_parse_multi (&str);
1511 struct neon_typed_alias atype;
1512 struct neon_type_el parsetype;
1513
1514 atype.defined = 0;
1515 atype.index = -1;
1516 atype.eltype.type = NT_invtype;
1517 atype.eltype.size = -1;
1518
1519 /* Try alternate syntax for some types of register. Note these are mutually
1520 exclusive with the Neon syntax extensions. */
1521 if (reg == NULL)
1522 {
1523 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1524 if (altreg != FAIL)
1525 *ccp = str;
1526 if (typeinfo)
1527 *typeinfo = atype;
1528 return altreg;
1529 }
1530
1531 /* Undo polymorphism when a set of register types may be accepted. */
1532 if ((type == REG_TYPE_NDQ
1533 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1534 || (type == REG_TYPE_VFSD
1535 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1536 || (type == REG_TYPE_NSDQ
1537 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1538 || reg->type == REG_TYPE_NQ))
1539 || (type == REG_TYPE_NSD
1540 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1541 || (type == REG_TYPE_MMXWC
1542 && (reg->type == REG_TYPE_MMXWCG)))
1543 type = (enum arm_reg_type) reg->type;
1544
1545 if (type != reg->type)
1546 return FAIL;
1547
1548 if (reg->neon)
1549 atype = *reg->neon;
1550
1551 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1552 {
1553 if ((atype.defined & NTA_HASTYPE) != 0)
1554 {
1555 first_error (_("can't redefine type for operand"));
1556 return FAIL;
1557 }
1558 atype.defined |= NTA_HASTYPE;
1559 atype.eltype = parsetype;
1560 }
1561
1562 if (skip_past_char (&str, '[') == SUCCESS)
1563 {
1564 if (type != REG_TYPE_VFD
1565 && !(type == REG_TYPE_VFS
1566 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
1567 {
1568 first_error (_("only D registers may be indexed"));
1569 return FAIL;
1570 }
1571
1572 if ((atype.defined & NTA_HASINDEX) != 0)
1573 {
1574 first_error (_("can't change index for operand"));
1575 return FAIL;
1576 }
1577
1578 atype.defined |= NTA_HASINDEX;
1579
1580 if (skip_past_char (&str, ']') == SUCCESS)
1581 atype.index = NEON_ALL_LANES;
1582 else
1583 {
1584 expressionS exp;
1585
1586 my_get_expression (&exp, &str, GE_NO_PREFIX);
1587
1588 if (exp.X_op != O_constant)
1589 {
1590 first_error (_("constant expression required"));
1591 return FAIL;
1592 }
1593
1594 if (skip_past_char (&str, ']') == FAIL)
1595 return FAIL;
1596
1597 atype.index = exp.X_add_number;
1598 }
1599 }
1600
1601 if (typeinfo)
1602 *typeinfo = atype;
1603
1604 if (rtype)
1605 *rtype = type;
1606
1607 *ccp = str;
1608
1609 return reg->number;
1610 }
1611
1612 /* Like arm_reg_parse, but allow allow the following extra features:
1613 - If RTYPE is non-zero, return the (possibly restricted) type of the
1614 register (e.g. Neon double or quad reg when either has been requested).
1615 - If this is a Neon vector type with additional type information, fill
1616 in the struct pointed to by VECTYPE (if non-NULL).
1617 This function will fault on encountering a scalar. */
1618
1619 static int
1620 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1621 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1622 {
1623 struct neon_typed_alias atype;
1624 char *str = *ccp;
1625 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1626
1627 if (reg == FAIL)
1628 return FAIL;
1629
1630 /* Do not allow regname(... to parse as a register. */
1631 if (*str == '(')
1632 return FAIL;
1633
1634 /* Do not allow a scalar (reg+index) to parse as a register. */
1635 if ((atype.defined & NTA_HASINDEX) != 0)
1636 {
1637 first_error (_("register operand expected, but got scalar"));
1638 return FAIL;
1639 }
1640
1641 if (vectype)
1642 *vectype = atype.eltype;
1643
1644 *ccp = str;
1645
1646 return reg;
1647 }
1648
1649 #define NEON_SCALAR_REG(X) ((X) >> 4)
1650 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1651
1652 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1653 have enough information to be able to do a good job bounds-checking. So, we
1654 just do easy checks here, and do further checks later. */
1655
1656 static int
1657 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1658 {
1659 int reg;
1660 char *str = *ccp;
1661 struct neon_typed_alias atype;
1662 enum arm_reg_type reg_type = REG_TYPE_VFD;
1663
1664 if (elsize == 4)
1665 reg_type = REG_TYPE_VFS;
1666
1667 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1668
1669 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1670 return FAIL;
1671
1672 if (atype.index == NEON_ALL_LANES)
1673 {
1674 first_error (_("scalar must have an index"));
1675 return FAIL;
1676 }
1677 else if (atype.index >= 64 / elsize)
1678 {
1679 first_error (_("scalar index out of range"));
1680 return FAIL;
1681 }
1682
1683 if (type)
1684 *type = atype.eltype;
1685
1686 *ccp = str;
1687
1688 return reg * 16 + atype.index;
1689 }
1690
1691 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1692
1693 static long
1694 parse_reg_list (char ** strp)
1695 {
1696 char * str = * strp;
1697 long range = 0;
1698 int another_range;
1699
1700 /* We come back here if we get ranges concatenated by '+' or '|'. */
1701 do
1702 {
1703 skip_whitespace (str);
1704
1705 another_range = 0;
1706
1707 if (*str == '{')
1708 {
1709 int in_range = 0;
1710 int cur_reg = -1;
1711
1712 str++;
1713 do
1714 {
1715 int reg;
1716
1717 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1718 {
1719 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1720 return FAIL;
1721 }
1722
1723 if (in_range)
1724 {
1725 int i;
1726
1727 if (reg <= cur_reg)
1728 {
1729 first_error (_("bad range in register list"));
1730 return FAIL;
1731 }
1732
1733 for (i = cur_reg + 1; i < reg; i++)
1734 {
1735 if (range & (1 << i))
1736 as_tsktsk
1737 (_("Warning: duplicated register (r%d) in register list"),
1738 i);
1739 else
1740 range |= 1 << i;
1741 }
1742 in_range = 0;
1743 }
1744
1745 if (range & (1 << reg))
1746 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1747 reg);
1748 else if (reg <= cur_reg)
1749 as_tsktsk (_("Warning: register range not in ascending order"));
1750
1751 range |= 1 << reg;
1752 cur_reg = reg;
1753 }
1754 while (skip_past_comma (&str) != FAIL
1755 || (in_range = 1, *str++ == '-'));
1756 str--;
1757
1758 if (skip_past_char (&str, '}') == FAIL)
1759 {
1760 first_error (_("missing `}'"));
1761 return FAIL;
1762 }
1763 }
1764 else
1765 {
1766 expressionS exp;
1767
1768 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1769 return FAIL;
1770
1771 if (exp.X_op == O_constant)
1772 {
1773 if (exp.X_add_number
1774 != (exp.X_add_number & 0x0000ffff))
1775 {
1776 inst.error = _("invalid register mask");
1777 return FAIL;
1778 }
1779
1780 if ((range & exp.X_add_number) != 0)
1781 {
1782 int regno = range & exp.X_add_number;
1783
1784 regno &= -regno;
1785 regno = (1 << regno) - 1;
1786 as_tsktsk
1787 (_("Warning: duplicated register (r%d) in register list"),
1788 regno);
1789 }
1790
1791 range |= exp.X_add_number;
1792 }
1793 else
1794 {
1795 if (inst.relocs[0].type != 0)
1796 {
1797 inst.error = _("expression too complex");
1798 return FAIL;
1799 }
1800
1801 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1802 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1803 inst.relocs[0].pc_rel = 0;
1804 }
1805 }
1806
1807 if (*str == '|' || *str == '+')
1808 {
1809 str++;
1810 another_range = 1;
1811 }
1812 }
1813 while (another_range);
1814
1815 *strp = str;
1816 return range;
1817 }
1818
1819 /* Types of registers in a list. */
1820
1821 enum reg_list_els
1822 {
1823 REGLIST_VFP_S,
1824 REGLIST_VFP_D,
1825 REGLIST_NEON_D
1826 };
1827
1828 /* Parse a VFP register list. If the string is invalid return FAIL.
1829 Otherwise return the number of registers, and set PBASE to the first
1830 register. Parses registers of type ETYPE.
1831 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1832 - Q registers can be used to specify pairs of D registers
1833 - { } can be omitted from around a singleton register list
1834 FIXME: This is not implemented, as it would require backtracking in
1835 some cases, e.g.:
1836 vtbl.8 d3,d4,d5
1837 This could be done (the meaning isn't really ambiguous), but doesn't
1838 fit in well with the current parsing framework.
1839 - 32 D registers may be used (also true for VFPv3).
1840 FIXME: Types are ignored in these register lists, which is probably a
1841 bug. */
1842
1843 static int
1844 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1845 {
1846 char *str = *ccp;
1847 int base_reg;
1848 int new_base;
1849 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1850 int max_regs = 0;
1851 int count = 0;
1852 int warned = 0;
1853 unsigned long mask = 0;
1854 int i;
1855
1856 if (skip_past_char (&str, '{') == FAIL)
1857 {
1858 inst.error = _("expecting {");
1859 return FAIL;
1860 }
1861
1862 switch (etype)
1863 {
1864 case REGLIST_VFP_S:
1865 regtype = REG_TYPE_VFS;
1866 max_regs = 32;
1867 break;
1868
1869 case REGLIST_VFP_D:
1870 regtype = REG_TYPE_VFD;
1871 break;
1872
1873 case REGLIST_NEON_D:
1874 regtype = REG_TYPE_NDQ;
1875 break;
1876 }
1877
1878 if (etype != REGLIST_VFP_S)
1879 {
1880 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1881 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1882 {
1883 max_regs = 32;
1884 if (thumb_mode)
1885 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1886 fpu_vfp_ext_d32);
1887 else
1888 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1889 fpu_vfp_ext_d32);
1890 }
1891 else
1892 max_regs = 16;
1893 }
1894
1895 base_reg = max_regs;
1896
1897 do
1898 {
1899 int setmask = 1, addregs = 1;
1900
1901 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1902
1903 if (new_base == FAIL)
1904 {
1905 first_error (_(reg_expected_msgs[regtype]));
1906 return FAIL;
1907 }
1908
1909 if (new_base >= max_regs)
1910 {
1911 first_error (_("register out of range in list"));
1912 return FAIL;
1913 }
1914
1915 /* Note: a value of 2 * n is returned for the register Q<n>. */
1916 if (regtype == REG_TYPE_NQ)
1917 {
1918 setmask = 3;
1919 addregs = 2;
1920 }
1921
1922 if (new_base < base_reg)
1923 base_reg = new_base;
1924
1925 if (mask & (setmask << new_base))
1926 {
1927 first_error (_("invalid register list"));
1928 return FAIL;
1929 }
1930
1931 if ((mask >> new_base) != 0 && ! warned)
1932 {
1933 as_tsktsk (_("register list not in ascending order"));
1934 warned = 1;
1935 }
1936
1937 mask |= setmask << new_base;
1938 count += addregs;
1939
1940 if (*str == '-') /* We have the start of a range expression */
1941 {
1942 int high_range;
1943
1944 str++;
1945
1946 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1947 == FAIL)
1948 {
1949 inst.error = gettext (reg_expected_msgs[regtype]);
1950 return FAIL;
1951 }
1952
1953 if (high_range >= max_regs)
1954 {
1955 first_error (_("register out of range in list"));
1956 return FAIL;
1957 }
1958
1959 if (regtype == REG_TYPE_NQ)
1960 high_range = high_range + 1;
1961
1962 if (high_range <= new_base)
1963 {
1964 inst.error = _("register range not in ascending order");
1965 return FAIL;
1966 }
1967
1968 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1969 {
1970 if (mask & (setmask << new_base))
1971 {
1972 inst.error = _("invalid register list");
1973 return FAIL;
1974 }
1975
1976 mask |= setmask << new_base;
1977 count += addregs;
1978 }
1979 }
1980 }
1981 while (skip_past_comma (&str) != FAIL);
1982
1983 str++;
1984
1985 /* Sanity check -- should have raised a parse error above. */
1986 if (count == 0 || count > max_regs)
1987 abort ();
1988
1989 *pbase = base_reg;
1990
1991 /* Final test -- the registers must be consecutive. */
1992 mask >>= base_reg;
1993 for (i = 0; i < count; i++)
1994 {
1995 if ((mask & (1u << i)) == 0)
1996 {
1997 inst.error = _("non-contiguous register range");
1998 return FAIL;
1999 }
2000 }
2001
2002 *ccp = str;
2003
2004 return count;
2005 }
2006
2007 /* True if two alias types are the same. */
2008
2009 static bfd_boolean
2010 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2011 {
2012 if (!a && !b)
2013 return TRUE;
2014
2015 if (!a || !b)
2016 return FALSE;
2017
2018 if (a->defined != b->defined)
2019 return FALSE;
2020
2021 if ((a->defined & NTA_HASTYPE) != 0
2022 && (a->eltype.type != b->eltype.type
2023 || a->eltype.size != b->eltype.size))
2024 return FALSE;
2025
2026 if ((a->defined & NTA_HASINDEX) != 0
2027 && (a->index != b->index))
2028 return FALSE;
2029
2030 return TRUE;
2031 }
2032
2033 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2034 The base register is put in *PBASE.
2035 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2036 the return value.
2037 The register stride (minus one) is put in bit 4 of the return value.
2038 Bits [6:5] encode the list length (minus one).
2039 The type of the list elements is put in *ELTYPE, if non-NULL. */
2040
2041 #define NEON_LANE(X) ((X) & 0xf)
2042 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2043 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2044
2045 static int
2046 parse_neon_el_struct_list (char **str, unsigned *pbase,
2047 struct neon_type_el *eltype)
2048 {
2049 char *ptr = *str;
2050 int base_reg = -1;
2051 int reg_incr = -1;
2052 int count = 0;
2053 int lane = -1;
2054 int leading_brace = 0;
2055 enum arm_reg_type rtype = REG_TYPE_NDQ;
2056 const char *const incr_error = _("register stride must be 1 or 2");
2057 const char *const type_error = _("mismatched element/structure types in list");
2058 struct neon_typed_alias firsttype;
2059 firsttype.defined = 0;
2060 firsttype.eltype.type = NT_invtype;
2061 firsttype.eltype.size = -1;
2062 firsttype.index = -1;
2063
2064 if (skip_past_char (&ptr, '{') == SUCCESS)
2065 leading_brace = 1;
2066
2067 do
2068 {
2069 struct neon_typed_alias atype;
2070 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2071
2072 if (getreg == FAIL)
2073 {
2074 first_error (_(reg_expected_msgs[rtype]));
2075 return FAIL;
2076 }
2077
2078 if (base_reg == -1)
2079 {
2080 base_reg = getreg;
2081 if (rtype == REG_TYPE_NQ)
2082 {
2083 reg_incr = 1;
2084 }
2085 firsttype = atype;
2086 }
2087 else if (reg_incr == -1)
2088 {
2089 reg_incr = getreg - base_reg;
2090 if (reg_incr < 1 || reg_incr > 2)
2091 {
2092 first_error (_(incr_error));
2093 return FAIL;
2094 }
2095 }
2096 else if (getreg != base_reg + reg_incr * count)
2097 {
2098 first_error (_(incr_error));
2099 return FAIL;
2100 }
2101
2102 if (! neon_alias_types_same (&atype, &firsttype))
2103 {
2104 first_error (_(type_error));
2105 return FAIL;
2106 }
2107
2108 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2109 modes. */
2110 if (ptr[0] == '-')
2111 {
2112 struct neon_typed_alias htype;
2113 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2114 if (lane == -1)
2115 lane = NEON_INTERLEAVE_LANES;
2116 else if (lane != NEON_INTERLEAVE_LANES)
2117 {
2118 first_error (_(type_error));
2119 return FAIL;
2120 }
2121 if (reg_incr == -1)
2122 reg_incr = 1;
2123 else if (reg_incr != 1)
2124 {
2125 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2126 return FAIL;
2127 }
2128 ptr++;
2129 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2130 if (hireg == FAIL)
2131 {
2132 first_error (_(reg_expected_msgs[rtype]));
2133 return FAIL;
2134 }
2135 if (! neon_alias_types_same (&htype, &firsttype))
2136 {
2137 first_error (_(type_error));
2138 return FAIL;
2139 }
2140 count += hireg + dregs - getreg;
2141 continue;
2142 }
2143
2144 /* If we're using Q registers, we can't use [] or [n] syntax. */
2145 if (rtype == REG_TYPE_NQ)
2146 {
2147 count += 2;
2148 continue;
2149 }
2150
2151 if ((atype.defined & NTA_HASINDEX) != 0)
2152 {
2153 if (lane == -1)
2154 lane = atype.index;
2155 else if (lane != atype.index)
2156 {
2157 first_error (_(type_error));
2158 return FAIL;
2159 }
2160 }
2161 else if (lane == -1)
2162 lane = NEON_INTERLEAVE_LANES;
2163 else if (lane != NEON_INTERLEAVE_LANES)
2164 {
2165 first_error (_(type_error));
2166 return FAIL;
2167 }
2168 count++;
2169 }
2170 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2171
2172 /* No lane set by [x]. We must be interleaving structures. */
2173 if (lane == -1)
2174 lane = NEON_INTERLEAVE_LANES;
2175
2176 /* Sanity check. */
2177 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2178 || (count > 1 && reg_incr == -1))
2179 {
2180 first_error (_("error parsing element/structure list"));
2181 return FAIL;
2182 }
2183
2184 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2185 {
2186 first_error (_("expected }"));
2187 return FAIL;
2188 }
2189
2190 if (reg_incr == -1)
2191 reg_incr = 1;
2192
2193 if (eltype)
2194 *eltype = firsttype.eltype;
2195
2196 *pbase = base_reg;
2197 *str = ptr;
2198
2199 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2200 }
2201
2202 /* Parse an explicit relocation suffix on an expression. This is
2203 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2204 arm_reloc_hsh contains no entries, so this function can only
2205 succeed if there is no () after the word. Returns -1 on error,
2206 BFD_RELOC_UNUSED if there wasn't any suffix. */
2207
2208 static int
2209 parse_reloc (char **str)
2210 {
2211 struct reloc_entry *r;
2212 char *p, *q;
2213
2214 if (**str != '(')
2215 return BFD_RELOC_UNUSED;
2216
2217 p = *str + 1;
2218 q = p;
2219
2220 while (*q && *q != ')' && *q != ',')
2221 q++;
2222 if (*q != ')')
2223 return -1;
2224
2225 if ((r = (struct reloc_entry *)
2226 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2227 return -1;
2228
2229 *str = q + 1;
2230 return r->reloc;
2231 }
2232
2233 /* Directives: register aliases. */
2234
2235 static struct reg_entry *
2236 insert_reg_alias (char *str, unsigned number, int type)
2237 {
2238 struct reg_entry *new_reg;
2239 const char *name;
2240
2241 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2242 {
2243 if (new_reg->builtin)
2244 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2245
2246 /* Only warn about a redefinition if it's not defined as the
2247 same register. */
2248 else if (new_reg->number != number || new_reg->type != type)
2249 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2250
2251 return NULL;
2252 }
2253
2254 name = xstrdup (str);
2255 new_reg = XNEW (struct reg_entry);
2256
2257 new_reg->name = name;
2258 new_reg->number = number;
2259 new_reg->type = type;
2260 new_reg->builtin = FALSE;
2261 new_reg->neon = NULL;
2262
2263 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2264 abort ();
2265
2266 return new_reg;
2267 }
2268
2269 static void
2270 insert_neon_reg_alias (char *str, int number, int type,
2271 struct neon_typed_alias *atype)
2272 {
2273 struct reg_entry *reg = insert_reg_alias (str, number, type);
2274
2275 if (!reg)
2276 {
2277 first_error (_("attempt to redefine typed alias"));
2278 return;
2279 }
2280
2281 if (atype)
2282 {
2283 reg->neon = XNEW (struct neon_typed_alias);
2284 *reg->neon = *atype;
2285 }
2286 }
2287
2288 /* Look for the .req directive. This is of the form:
2289
2290 new_register_name .req existing_register_name
2291
2292 If we find one, or if it looks sufficiently like one that we want to
2293 handle any error here, return TRUE. Otherwise return FALSE. */
2294
2295 static bfd_boolean
2296 create_register_alias (char * newname, char *p)
2297 {
2298 struct reg_entry *old;
2299 char *oldname, *nbuf;
2300 size_t nlen;
2301
2302 /* The input scrubber ensures that whitespace after the mnemonic is
2303 collapsed to single spaces. */
2304 oldname = p;
2305 if (strncmp (oldname, " .req ", 6) != 0)
2306 return FALSE;
2307
2308 oldname += 6;
2309 if (*oldname == '\0')
2310 return FALSE;
2311
2312 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2313 if (!old)
2314 {
2315 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2316 return TRUE;
2317 }
2318
2319 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2320 the desired alias name, and p points to its end. If not, then
2321 the desired alias name is in the global original_case_string. */
2322 #ifdef TC_CASE_SENSITIVE
2323 nlen = p - newname;
2324 #else
2325 newname = original_case_string;
2326 nlen = strlen (newname);
2327 #endif
2328
2329 nbuf = xmemdup0 (newname, nlen);
2330
2331 /* Create aliases under the new name as stated; an all-lowercase
2332 version of the new name; and an all-uppercase version of the new
2333 name. */
2334 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2335 {
2336 for (p = nbuf; *p; p++)
2337 *p = TOUPPER (*p);
2338
2339 if (strncmp (nbuf, newname, nlen))
2340 {
2341 /* If this attempt to create an additional alias fails, do not bother
2342 trying to create the all-lower case alias. We will fail and issue
2343 a second, duplicate error message. This situation arises when the
2344 programmer does something like:
2345 foo .req r0
2346 Foo .req r1
2347 The second .req creates the "Foo" alias but then fails to create
2348 the artificial FOO alias because it has already been created by the
2349 first .req. */
2350 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2351 {
2352 free (nbuf);
2353 return TRUE;
2354 }
2355 }
2356
2357 for (p = nbuf; *p; p++)
2358 *p = TOLOWER (*p);
2359
2360 if (strncmp (nbuf, newname, nlen))
2361 insert_reg_alias (nbuf, old->number, old->type);
2362 }
2363
2364 free (nbuf);
2365 return TRUE;
2366 }
2367
2368 /* Create a Neon typed/indexed register alias using directives, e.g.:
2369 X .dn d5.s32[1]
2370 Y .qn 6.s16
2371 Z .dn d7
2372 T .dn Z[0]
2373 These typed registers can be used instead of the types specified after the
2374 Neon mnemonic, so long as all operands given have types. Types can also be
2375 specified directly, e.g.:
2376 vadd d0.s32, d1.s32, d2.s32 */
2377
2378 static bfd_boolean
2379 create_neon_reg_alias (char *newname, char *p)
2380 {
2381 enum arm_reg_type basetype;
2382 struct reg_entry *basereg;
2383 struct reg_entry mybasereg;
2384 struct neon_type ntype;
2385 struct neon_typed_alias typeinfo;
2386 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2387 int namelen;
2388
2389 typeinfo.defined = 0;
2390 typeinfo.eltype.type = NT_invtype;
2391 typeinfo.eltype.size = -1;
2392 typeinfo.index = -1;
2393
2394 nameend = p;
2395
2396 if (strncmp (p, " .dn ", 5) == 0)
2397 basetype = REG_TYPE_VFD;
2398 else if (strncmp (p, " .qn ", 5) == 0)
2399 basetype = REG_TYPE_NQ;
2400 else
2401 return FALSE;
2402
2403 p += 5;
2404
2405 if (*p == '\0')
2406 return FALSE;
2407
2408 basereg = arm_reg_parse_multi (&p);
2409
2410 if (basereg && basereg->type != basetype)
2411 {
2412 as_bad (_("bad type for register"));
2413 return FALSE;
2414 }
2415
2416 if (basereg == NULL)
2417 {
2418 expressionS exp;
2419 /* Try parsing as an integer. */
2420 my_get_expression (&exp, &p, GE_NO_PREFIX);
2421 if (exp.X_op != O_constant)
2422 {
2423 as_bad (_("expression must be constant"));
2424 return FALSE;
2425 }
2426 basereg = &mybasereg;
2427 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2428 : exp.X_add_number;
2429 basereg->neon = 0;
2430 }
2431
2432 if (basereg->neon)
2433 typeinfo = *basereg->neon;
2434
2435 if (parse_neon_type (&ntype, &p) == SUCCESS)
2436 {
2437 /* We got a type. */
2438 if (typeinfo.defined & NTA_HASTYPE)
2439 {
2440 as_bad (_("can't redefine the type of a register alias"));
2441 return FALSE;
2442 }
2443
2444 typeinfo.defined |= NTA_HASTYPE;
2445 if (ntype.elems != 1)
2446 {
2447 as_bad (_("you must specify a single type only"));
2448 return FALSE;
2449 }
2450 typeinfo.eltype = ntype.el[0];
2451 }
2452
2453 if (skip_past_char (&p, '[') == SUCCESS)
2454 {
2455 expressionS exp;
2456 /* We got a scalar index. */
2457
2458 if (typeinfo.defined & NTA_HASINDEX)
2459 {
2460 as_bad (_("can't redefine the index of a scalar alias"));
2461 return FALSE;
2462 }
2463
2464 my_get_expression (&exp, &p, GE_NO_PREFIX);
2465
2466 if (exp.X_op != O_constant)
2467 {
2468 as_bad (_("scalar index must be constant"));
2469 return FALSE;
2470 }
2471
2472 typeinfo.defined |= NTA_HASINDEX;
2473 typeinfo.index = exp.X_add_number;
2474
2475 if (skip_past_char (&p, ']') == FAIL)
2476 {
2477 as_bad (_("expecting ]"));
2478 return FALSE;
2479 }
2480 }
2481
2482 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2483 the desired alias name, and p points to its end. If not, then
2484 the desired alias name is in the global original_case_string. */
2485 #ifdef TC_CASE_SENSITIVE
2486 namelen = nameend - newname;
2487 #else
2488 newname = original_case_string;
2489 namelen = strlen (newname);
2490 #endif
2491
2492 namebuf = xmemdup0 (newname, namelen);
2493
2494 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2495 typeinfo.defined != 0 ? &typeinfo : NULL);
2496
2497 /* Insert name in all uppercase. */
2498 for (p = namebuf; *p; p++)
2499 *p = TOUPPER (*p);
2500
2501 if (strncmp (namebuf, newname, namelen))
2502 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2503 typeinfo.defined != 0 ? &typeinfo : NULL);
2504
2505 /* Insert name in all lowercase. */
2506 for (p = namebuf; *p; p++)
2507 *p = TOLOWER (*p);
2508
2509 if (strncmp (namebuf, newname, namelen))
2510 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2511 typeinfo.defined != 0 ? &typeinfo : NULL);
2512
2513 free (namebuf);
2514 return TRUE;
2515 }
2516
2517 /* Should never be called, as .req goes between the alias and the
2518 register name, not at the beginning of the line. */
2519
2520 static void
2521 s_req (int a ATTRIBUTE_UNUSED)
2522 {
2523 as_bad (_("invalid syntax for .req directive"));
2524 }
2525
2526 static void
2527 s_dn (int a ATTRIBUTE_UNUSED)
2528 {
2529 as_bad (_("invalid syntax for .dn directive"));
2530 }
2531
2532 static void
2533 s_qn (int a ATTRIBUTE_UNUSED)
2534 {
2535 as_bad (_("invalid syntax for .qn directive"));
2536 }
2537
2538 /* The .unreq directive deletes an alias which was previously defined
2539 by .req. For example:
2540
2541 my_alias .req r11
2542 .unreq my_alias */
2543
2544 static void
2545 s_unreq (int a ATTRIBUTE_UNUSED)
2546 {
2547 char * name;
2548 char saved_char;
2549
2550 name = input_line_pointer;
2551
2552 while (*input_line_pointer != 0
2553 && *input_line_pointer != ' '
2554 && *input_line_pointer != '\n')
2555 ++input_line_pointer;
2556
2557 saved_char = *input_line_pointer;
2558 *input_line_pointer = 0;
2559
2560 if (!*name)
2561 as_bad (_("invalid syntax for .unreq directive"));
2562 else
2563 {
2564 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2565 name);
2566
2567 if (!reg)
2568 as_bad (_("unknown register alias '%s'"), name);
2569 else if (reg->builtin)
2570 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2571 name);
2572 else
2573 {
2574 char * p;
2575 char * nbuf;
2576
2577 hash_delete (arm_reg_hsh, name, FALSE);
2578 free ((char *) reg->name);
2579 if (reg->neon)
2580 free (reg->neon);
2581 free (reg);
2582
2583 /* Also locate the all upper case and all lower case versions.
2584 Do not complain if we cannot find one or the other as it
2585 was probably deleted above. */
2586
2587 nbuf = strdup (name);
2588 for (p = nbuf; *p; p++)
2589 *p = TOUPPER (*p);
2590 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2591 if (reg)
2592 {
2593 hash_delete (arm_reg_hsh, nbuf, FALSE);
2594 free ((char *) reg->name);
2595 if (reg->neon)
2596 free (reg->neon);
2597 free (reg);
2598 }
2599
2600 for (p = nbuf; *p; p++)
2601 *p = TOLOWER (*p);
2602 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2603 if (reg)
2604 {
2605 hash_delete (arm_reg_hsh, nbuf, FALSE);
2606 free ((char *) reg->name);
2607 if (reg->neon)
2608 free (reg->neon);
2609 free (reg);
2610 }
2611
2612 free (nbuf);
2613 }
2614 }
2615
2616 *input_line_pointer = saved_char;
2617 demand_empty_rest_of_line ();
2618 }
2619
2620 /* Directives: Instruction set selection. */
2621
2622 #ifdef OBJ_ELF
2623 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2624 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2625 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2626 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2627
2628 /* Create a new mapping symbol for the transition to STATE. */
2629
2630 static void
2631 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2632 {
2633 symbolS * symbolP;
2634 const char * symname;
2635 int type;
2636
2637 switch (state)
2638 {
2639 case MAP_DATA:
2640 symname = "$d";
2641 type = BSF_NO_FLAGS;
2642 break;
2643 case MAP_ARM:
2644 symname = "$a";
2645 type = BSF_NO_FLAGS;
2646 break;
2647 case MAP_THUMB:
2648 symname = "$t";
2649 type = BSF_NO_FLAGS;
2650 break;
2651 default:
2652 abort ();
2653 }
2654
2655 symbolP = symbol_new (symname, now_seg, value, frag);
2656 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2657
2658 switch (state)
2659 {
2660 case MAP_ARM:
2661 THUMB_SET_FUNC (symbolP, 0);
2662 ARM_SET_THUMB (symbolP, 0);
2663 ARM_SET_INTERWORK (symbolP, support_interwork);
2664 break;
2665
2666 case MAP_THUMB:
2667 THUMB_SET_FUNC (symbolP, 1);
2668 ARM_SET_THUMB (symbolP, 1);
2669 ARM_SET_INTERWORK (symbolP, support_interwork);
2670 break;
2671
2672 case MAP_DATA:
2673 default:
2674 break;
2675 }
2676
2677 /* Save the mapping symbols for future reference. Also check that
2678 we do not place two mapping symbols at the same offset within a
2679 frag. We'll handle overlap between frags in
2680 check_mapping_symbols.
2681
2682 If .fill or other data filling directive generates zero sized data,
2683 the mapping symbol for the following code will have the same value
2684 as the one generated for the data filling directive. In this case,
2685 we replace the old symbol with the new one at the same address. */
2686 if (value == 0)
2687 {
2688 if (frag->tc_frag_data.first_map != NULL)
2689 {
2690 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2691 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2692 }
2693 frag->tc_frag_data.first_map = symbolP;
2694 }
2695 if (frag->tc_frag_data.last_map != NULL)
2696 {
2697 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2698 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2699 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2700 }
2701 frag->tc_frag_data.last_map = symbolP;
2702 }
2703
2704 /* We must sometimes convert a region marked as code to data during
2705 code alignment, if an odd number of bytes have to be padded. The
2706 code mapping symbol is pushed to an aligned address. */
2707
2708 static void
2709 insert_data_mapping_symbol (enum mstate state,
2710 valueT value, fragS *frag, offsetT bytes)
2711 {
2712 /* If there was already a mapping symbol, remove it. */
2713 if (frag->tc_frag_data.last_map != NULL
2714 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2715 {
2716 symbolS *symp = frag->tc_frag_data.last_map;
2717
2718 if (value == 0)
2719 {
2720 know (frag->tc_frag_data.first_map == symp);
2721 frag->tc_frag_data.first_map = NULL;
2722 }
2723 frag->tc_frag_data.last_map = NULL;
2724 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2725 }
2726
2727 make_mapping_symbol (MAP_DATA, value, frag);
2728 make_mapping_symbol (state, value + bytes, frag);
2729 }
2730
2731 static void mapping_state_2 (enum mstate state, int max_chars);
2732
2733 /* Set the mapping state to STATE. Only call this when about to
2734 emit some STATE bytes to the file. */
2735
2736 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2737 void
2738 mapping_state (enum mstate state)
2739 {
2740 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2741
2742 if (mapstate == state)
2743 /* The mapping symbol has already been emitted.
2744 There is nothing else to do. */
2745 return;
2746
2747 if (state == MAP_ARM || state == MAP_THUMB)
2748 /* PR gas/12931
2749 All ARM instructions require 4-byte alignment.
2750 (Almost) all Thumb instructions require 2-byte alignment.
2751
2752 When emitting instructions into any section, mark the section
2753 appropriately.
2754
2755 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2756 but themselves require 2-byte alignment; this applies to some
2757 PC- relative forms. However, these cases will involve implicit
2758 literal pool generation or an explicit .align >=2, both of
2759 which will cause the section to me marked with sufficient
2760 alignment. Thus, we don't handle those cases here. */
2761 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2762
2763 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2764 /* This case will be evaluated later. */
2765 return;
2766
2767 mapping_state_2 (state, 0);
2768 }
2769
2770 /* Same as mapping_state, but MAX_CHARS bytes have already been
2771 allocated. Put the mapping symbol that far back. */
2772
2773 static void
2774 mapping_state_2 (enum mstate state, int max_chars)
2775 {
2776 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2777
2778 if (!SEG_NORMAL (now_seg))
2779 return;
2780
2781 if (mapstate == state)
2782 /* The mapping symbol has already been emitted.
2783 There is nothing else to do. */
2784 return;
2785
2786 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2787 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2788 {
2789 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2790 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2791
2792 if (add_symbol)
2793 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2794 }
2795
2796 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2797 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2798 }
2799 #undef TRANSITION
2800 #else
2801 #define mapping_state(x) ((void)0)
2802 #define mapping_state_2(x, y) ((void)0)
2803 #endif
2804
2805 /* Find the real, Thumb encoded start of a Thumb function. */
2806
2807 #ifdef OBJ_COFF
2808 static symbolS *
2809 find_real_start (symbolS * symbolP)
2810 {
2811 char * real_start;
2812 const char * name = S_GET_NAME (symbolP);
2813 symbolS * new_target;
2814
2815 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2816 #define STUB_NAME ".real_start_of"
2817
2818 if (name == NULL)
2819 abort ();
2820
2821 /* The compiler may generate BL instructions to local labels because
2822 it needs to perform a branch to a far away location. These labels
2823 do not have a corresponding ".real_start_of" label. We check
2824 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2825 the ".real_start_of" convention for nonlocal branches. */
2826 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2827 return symbolP;
2828
2829 real_start = concat (STUB_NAME, name, NULL);
2830 new_target = symbol_find (real_start);
2831 free (real_start);
2832
2833 if (new_target == NULL)
2834 {
2835 as_warn (_("Failed to find real start of function: %s\n"), name);
2836 new_target = symbolP;
2837 }
2838
2839 return new_target;
2840 }
2841 #endif
2842
2843 static void
2844 opcode_select (int width)
2845 {
2846 switch (width)
2847 {
2848 case 16:
2849 if (! thumb_mode)
2850 {
2851 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2852 as_bad (_("selected processor does not support THUMB opcodes"));
2853
2854 thumb_mode = 1;
2855 /* No need to force the alignment, since we will have been
2856 coming from ARM mode, which is word-aligned. */
2857 record_alignment (now_seg, 1);
2858 }
2859 break;
2860
2861 case 32:
2862 if (thumb_mode)
2863 {
2864 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2865 as_bad (_("selected processor does not support ARM opcodes"));
2866
2867 thumb_mode = 0;
2868
2869 if (!need_pass_2)
2870 frag_align (2, 0, 0);
2871
2872 record_alignment (now_seg, 1);
2873 }
2874 break;
2875
2876 default:
2877 as_bad (_("invalid instruction size selected (%d)"), width);
2878 }
2879 }
2880
2881 static void
2882 s_arm (int ignore ATTRIBUTE_UNUSED)
2883 {
2884 opcode_select (32);
2885 demand_empty_rest_of_line ();
2886 }
2887
2888 static void
2889 s_thumb (int ignore ATTRIBUTE_UNUSED)
2890 {
2891 opcode_select (16);
2892 demand_empty_rest_of_line ();
2893 }
2894
2895 static void
2896 s_code (int unused ATTRIBUTE_UNUSED)
2897 {
2898 int temp;
2899
2900 temp = get_absolute_expression ();
2901 switch (temp)
2902 {
2903 case 16:
2904 case 32:
2905 opcode_select (temp);
2906 break;
2907
2908 default:
2909 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2910 }
2911 }
2912
2913 static void
2914 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2915 {
2916 /* If we are not already in thumb mode go into it, EVEN if
2917 the target processor does not support thumb instructions.
2918 This is used by gcc/config/arm/lib1funcs.asm for example
2919 to compile interworking support functions even if the
2920 target processor should not support interworking. */
2921 if (! thumb_mode)
2922 {
2923 thumb_mode = 2;
2924 record_alignment (now_seg, 1);
2925 }
2926
2927 demand_empty_rest_of_line ();
2928 }
2929
2930 static void
2931 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2932 {
2933 s_thumb (0);
2934
2935 /* The following label is the name/address of the start of a Thumb function.
2936 We need to know this for the interworking support. */
2937 label_is_thumb_function_name = TRUE;
2938 }
2939
2940 /* Perform a .set directive, but also mark the alias as
2941 being a thumb function. */
2942
2943 static void
2944 s_thumb_set (int equiv)
2945 {
2946 /* XXX the following is a duplicate of the code for s_set() in read.c
2947 We cannot just call that code as we need to get at the symbol that
2948 is created. */
2949 char * name;
2950 char delim;
2951 char * end_name;
2952 symbolS * symbolP;
2953
2954 /* Especial apologies for the random logic:
2955 This just grew, and could be parsed much more simply!
2956 Dean - in haste. */
2957 delim = get_symbol_name (& name);
2958 end_name = input_line_pointer;
2959 (void) restore_line_pointer (delim);
2960
2961 if (*input_line_pointer != ',')
2962 {
2963 *end_name = 0;
2964 as_bad (_("expected comma after name \"%s\""), name);
2965 *end_name = delim;
2966 ignore_rest_of_line ();
2967 return;
2968 }
2969
2970 input_line_pointer++;
2971 *end_name = 0;
2972
2973 if (name[0] == '.' && name[1] == '\0')
2974 {
2975 /* XXX - this should not happen to .thumb_set. */
2976 abort ();
2977 }
2978
2979 if ((symbolP = symbol_find (name)) == NULL
2980 && (symbolP = md_undefined_symbol (name)) == NULL)
2981 {
2982 #ifndef NO_LISTING
2983 /* When doing symbol listings, play games with dummy fragments living
2984 outside the normal fragment chain to record the file and line info
2985 for this symbol. */
2986 if (listing & LISTING_SYMBOLS)
2987 {
2988 extern struct list_info_struct * listing_tail;
2989 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2990
2991 memset (dummy_frag, 0, sizeof (fragS));
2992 dummy_frag->fr_type = rs_fill;
2993 dummy_frag->line = listing_tail;
2994 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2995 dummy_frag->fr_symbol = symbolP;
2996 }
2997 else
2998 #endif
2999 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3000
3001 #ifdef OBJ_COFF
3002 /* "set" symbols are local unless otherwise specified. */
3003 SF_SET_LOCAL (symbolP);
3004 #endif /* OBJ_COFF */
3005 } /* Make a new symbol. */
3006
3007 symbol_table_insert (symbolP);
3008
3009 * end_name = delim;
3010
3011 if (equiv
3012 && S_IS_DEFINED (symbolP)
3013 && S_GET_SEGMENT (symbolP) != reg_section)
3014 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3015
3016 pseudo_set (symbolP);
3017
3018 demand_empty_rest_of_line ();
3019
3020 /* XXX Now we come to the Thumb specific bit of code. */
3021
3022 THUMB_SET_FUNC (symbolP, 1);
3023 ARM_SET_THUMB (symbolP, 1);
3024 #if defined OBJ_ELF || defined OBJ_COFF
3025 ARM_SET_INTERWORK (symbolP, support_interwork);
3026 #endif
3027 }
3028
3029 /* Directives: Mode selection. */
3030
3031 /* .syntax [unified|divided] - choose the new unified syntax
3032 (same for Arm and Thumb encoding, modulo slight differences in what
3033 can be represented) or the old divergent syntax for each mode. */
3034 static void
3035 s_syntax (int unused ATTRIBUTE_UNUSED)
3036 {
3037 char *name, delim;
3038
3039 delim = get_symbol_name (& name);
3040
3041 if (!strcasecmp (name, "unified"))
3042 unified_syntax = TRUE;
3043 else if (!strcasecmp (name, "divided"))
3044 unified_syntax = FALSE;
3045 else
3046 {
3047 as_bad (_("unrecognized syntax mode \"%s\""), name);
3048 return;
3049 }
3050 (void) restore_line_pointer (delim);
3051 demand_empty_rest_of_line ();
3052 }
3053
3054 /* Directives: sectioning and alignment. */
3055
3056 static void
3057 s_bss (int ignore ATTRIBUTE_UNUSED)
3058 {
3059 /* We don't support putting frags in the BSS segment, we fake it by
3060 marking in_bss, then looking at s_skip for clues. */
3061 subseg_set (bss_section, 0);
3062 demand_empty_rest_of_line ();
3063
3064 #ifdef md_elf_section_change_hook
3065 md_elf_section_change_hook ();
3066 #endif
3067 }
3068
3069 static void
3070 s_even (int ignore ATTRIBUTE_UNUSED)
3071 {
3072 /* Never make frag if expect extra pass. */
3073 if (!need_pass_2)
3074 frag_align (1, 0, 0);
3075
3076 record_alignment (now_seg, 1);
3077
3078 demand_empty_rest_of_line ();
3079 }
3080
3081 /* Directives: CodeComposer Studio. */
3082
3083 /* .ref (for CodeComposer Studio syntax only). */
3084 static void
3085 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3086 {
3087 if (codecomposer_syntax)
3088 ignore_rest_of_line ();
3089 else
3090 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3091 }
3092
3093 /* If name is not NULL, then it is used for marking the beginning of a
3094 function, whereas if it is NULL then it means the function end. */
3095 static void
3096 asmfunc_debug (const char * name)
3097 {
3098 static const char * last_name = NULL;
3099
3100 if (name != NULL)
3101 {
3102 gas_assert (last_name == NULL);
3103 last_name = name;
3104
3105 if (debug_type == DEBUG_STABS)
3106 stabs_generate_asm_func (name, name);
3107 }
3108 else
3109 {
3110 gas_assert (last_name != NULL);
3111
3112 if (debug_type == DEBUG_STABS)
3113 stabs_generate_asm_endfunc (last_name, last_name);
3114
3115 last_name = NULL;
3116 }
3117 }
3118
3119 static void
3120 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3121 {
3122 if (codecomposer_syntax)
3123 {
3124 switch (asmfunc_state)
3125 {
3126 case OUTSIDE_ASMFUNC:
3127 asmfunc_state = WAITING_ASMFUNC_NAME;
3128 break;
3129
3130 case WAITING_ASMFUNC_NAME:
3131 as_bad (_(".asmfunc repeated."));
3132 break;
3133
3134 case WAITING_ENDASMFUNC:
3135 as_bad (_(".asmfunc without function."));
3136 break;
3137 }
3138 demand_empty_rest_of_line ();
3139 }
3140 else
3141 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3142 }
3143
3144 static void
3145 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3146 {
3147 if (codecomposer_syntax)
3148 {
3149 switch (asmfunc_state)
3150 {
3151 case OUTSIDE_ASMFUNC:
3152 as_bad (_(".endasmfunc without a .asmfunc."));
3153 break;
3154
3155 case WAITING_ASMFUNC_NAME:
3156 as_bad (_(".endasmfunc without function."));
3157 break;
3158
3159 case WAITING_ENDASMFUNC:
3160 asmfunc_state = OUTSIDE_ASMFUNC;
3161 asmfunc_debug (NULL);
3162 break;
3163 }
3164 demand_empty_rest_of_line ();
3165 }
3166 else
3167 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3168 }
3169
3170 static void
3171 s_ccs_def (int name)
3172 {
3173 if (codecomposer_syntax)
3174 s_globl (name);
3175 else
3176 as_bad (_(".def pseudo-op only available with -mccs flag."));
3177 }
3178
3179 /* Directives: Literal pools. */
3180
3181 static literal_pool *
3182 find_literal_pool (void)
3183 {
3184 literal_pool * pool;
3185
3186 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3187 {
3188 if (pool->section == now_seg
3189 && pool->sub_section == now_subseg)
3190 break;
3191 }
3192
3193 return pool;
3194 }
3195
3196 static literal_pool *
3197 find_or_make_literal_pool (void)
3198 {
3199 /* Next literal pool ID number. */
3200 static unsigned int latest_pool_num = 1;
3201 literal_pool * pool;
3202
3203 pool = find_literal_pool ();
3204
3205 if (pool == NULL)
3206 {
3207 /* Create a new pool. */
3208 pool = XNEW (literal_pool);
3209 if (! pool)
3210 return NULL;
3211
3212 pool->next_free_entry = 0;
3213 pool->section = now_seg;
3214 pool->sub_section = now_subseg;
3215 pool->next = list_of_pools;
3216 pool->symbol = NULL;
3217 pool->alignment = 2;
3218
3219 /* Add it to the list. */
3220 list_of_pools = pool;
3221 }
3222
3223 /* New pools, and emptied pools, will have a NULL symbol. */
3224 if (pool->symbol == NULL)
3225 {
3226 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3227 (valueT) 0, &zero_address_frag);
3228 pool->id = latest_pool_num ++;
3229 }
3230
3231 /* Done. */
3232 return pool;
3233 }
3234
3235 /* Add the literal in the global 'inst'
3236 structure to the relevant literal pool. */
3237
3238 static int
3239 add_to_lit_pool (unsigned int nbytes)
3240 {
3241 #define PADDING_SLOT 0x1
3242 #define LIT_ENTRY_SIZE_MASK 0xFF
3243 literal_pool * pool;
3244 unsigned int entry, pool_size = 0;
3245 bfd_boolean padding_slot_p = FALSE;
3246 unsigned imm1 = 0;
3247 unsigned imm2 = 0;
3248
3249 if (nbytes == 8)
3250 {
3251 imm1 = inst.operands[1].imm;
3252 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3253 : inst.relocs[0].exp.X_unsigned ? 0
3254 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3255 if (target_big_endian)
3256 {
3257 imm1 = imm2;
3258 imm2 = inst.operands[1].imm;
3259 }
3260 }
3261
3262 pool = find_or_make_literal_pool ();
3263
3264 /* Check if this literal value is already in the pool. */
3265 for (entry = 0; entry < pool->next_free_entry; entry ++)
3266 {
3267 if (nbytes == 4)
3268 {
3269 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3270 && (inst.relocs[0].exp.X_op == O_constant)
3271 && (pool->literals[entry].X_add_number
3272 == inst.relocs[0].exp.X_add_number)
3273 && (pool->literals[entry].X_md == nbytes)
3274 && (pool->literals[entry].X_unsigned
3275 == inst.relocs[0].exp.X_unsigned))
3276 break;
3277
3278 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3279 && (inst.relocs[0].exp.X_op == O_symbol)
3280 && (pool->literals[entry].X_add_number
3281 == inst.relocs[0].exp.X_add_number)
3282 && (pool->literals[entry].X_add_symbol
3283 == inst.relocs[0].exp.X_add_symbol)
3284 && (pool->literals[entry].X_op_symbol
3285 == inst.relocs[0].exp.X_op_symbol)
3286 && (pool->literals[entry].X_md == nbytes))
3287 break;
3288 }
3289 else if ((nbytes == 8)
3290 && !(pool_size & 0x7)
3291 && ((entry + 1) != pool->next_free_entry)
3292 && (pool->literals[entry].X_op == O_constant)
3293 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3294 && (pool->literals[entry].X_unsigned
3295 == inst.relocs[0].exp.X_unsigned)
3296 && (pool->literals[entry + 1].X_op == O_constant)
3297 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3298 && (pool->literals[entry + 1].X_unsigned
3299 == inst.relocs[0].exp.X_unsigned))
3300 break;
3301
3302 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3303 if (padding_slot_p && (nbytes == 4))
3304 break;
3305
3306 pool_size += 4;
3307 }
3308
3309 /* Do we need to create a new entry? */
3310 if (entry == pool->next_free_entry)
3311 {
3312 if (entry >= MAX_LITERAL_POOL_SIZE)
3313 {
3314 inst.error = _("literal pool overflow");
3315 return FAIL;
3316 }
3317
3318 if (nbytes == 8)
3319 {
3320 /* For 8-byte entries, we align to an 8-byte boundary,
3321 and split it into two 4-byte entries, because on 32-bit
3322 host, 8-byte constants are treated as big num, thus
3323 saved in "generic_bignum" which will be overwritten
3324 by later assignments.
3325
3326 We also need to make sure there is enough space for
3327 the split.
3328
3329 We also check to make sure the literal operand is a
3330 constant number. */
3331 if (!(inst.relocs[0].exp.X_op == O_constant
3332 || inst.relocs[0].exp.X_op == O_big))
3333 {
3334 inst.error = _("invalid type for literal pool");
3335 return FAIL;
3336 }
3337 else if (pool_size & 0x7)
3338 {
3339 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3340 {
3341 inst.error = _("literal pool overflow");
3342 return FAIL;
3343 }
3344
3345 pool->literals[entry] = inst.relocs[0].exp;
3346 pool->literals[entry].X_op = O_constant;
3347 pool->literals[entry].X_add_number = 0;
3348 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3349 pool->next_free_entry += 1;
3350 pool_size += 4;
3351 }
3352 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3353 {
3354 inst.error = _("literal pool overflow");
3355 return FAIL;
3356 }
3357
3358 pool->literals[entry] = inst.relocs[0].exp;
3359 pool->literals[entry].X_op = O_constant;
3360 pool->literals[entry].X_add_number = imm1;
3361 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3362 pool->literals[entry++].X_md = 4;
3363 pool->literals[entry] = inst.relocs[0].exp;
3364 pool->literals[entry].X_op = O_constant;
3365 pool->literals[entry].X_add_number = imm2;
3366 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3367 pool->literals[entry].X_md = 4;
3368 pool->alignment = 3;
3369 pool->next_free_entry += 1;
3370 }
3371 else
3372 {
3373 pool->literals[entry] = inst.relocs[0].exp;
3374 pool->literals[entry].X_md = 4;
3375 }
3376
3377 #ifdef OBJ_ELF
3378 /* PR ld/12974: Record the location of the first source line to reference
3379 this entry in the literal pool. If it turns out during linking that the
3380 symbol does not exist we will be able to give an accurate line number for
3381 the (first use of the) missing reference. */
3382 if (debug_type == DEBUG_DWARF2)
3383 dwarf2_where (pool->locs + entry);
3384 #endif
3385 pool->next_free_entry += 1;
3386 }
3387 else if (padding_slot_p)
3388 {
3389 pool->literals[entry] = inst.relocs[0].exp;
3390 pool->literals[entry].X_md = nbytes;
3391 }
3392
3393 inst.relocs[0].exp.X_op = O_symbol;
3394 inst.relocs[0].exp.X_add_number = pool_size;
3395 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3396
3397 return SUCCESS;
3398 }
3399
3400 bfd_boolean
3401 tc_start_label_without_colon (void)
3402 {
3403 bfd_boolean ret = TRUE;
3404
3405 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3406 {
3407 const char *label = input_line_pointer;
3408
3409 while (!is_end_of_line[(int) label[-1]])
3410 --label;
3411
3412 if (*label == '.')
3413 {
3414 as_bad (_("Invalid label '%s'"), label);
3415 ret = FALSE;
3416 }
3417
3418 asmfunc_debug (label);
3419
3420 asmfunc_state = WAITING_ENDASMFUNC;
3421 }
3422
3423 return ret;
3424 }
3425
3426 /* Can't use symbol_new here, so have to create a symbol and then at
3427 a later date assign it a value. That's what these functions do. */
3428
3429 static void
3430 symbol_locate (symbolS * symbolP,
3431 const char * name, /* It is copied, the caller can modify. */
3432 segT segment, /* Segment identifier (SEG_<something>). */
3433 valueT valu, /* Symbol value. */
3434 fragS * frag) /* Associated fragment. */
3435 {
3436 size_t name_length;
3437 char * preserved_copy_of_name;
3438
3439 name_length = strlen (name) + 1; /* +1 for \0. */
3440 obstack_grow (&notes, name, name_length);
3441 preserved_copy_of_name = (char *) obstack_finish (&notes);
3442
3443 #ifdef tc_canonicalize_symbol_name
3444 preserved_copy_of_name =
3445 tc_canonicalize_symbol_name (preserved_copy_of_name);
3446 #endif
3447
3448 S_SET_NAME (symbolP, preserved_copy_of_name);
3449
3450 S_SET_SEGMENT (symbolP, segment);
3451 S_SET_VALUE (symbolP, valu);
3452 symbol_clear_list_pointers (symbolP);
3453
3454 symbol_set_frag (symbolP, frag);
3455
3456 /* Link to end of symbol chain. */
3457 {
3458 extern int symbol_table_frozen;
3459
3460 if (symbol_table_frozen)
3461 abort ();
3462 }
3463
3464 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3465
3466 obj_symbol_new_hook (symbolP);
3467
3468 #ifdef tc_symbol_new_hook
3469 tc_symbol_new_hook (symbolP);
3470 #endif
3471
3472 #ifdef DEBUG_SYMS
3473 verify_symbol_chain (symbol_rootP, symbol_lastP);
3474 #endif /* DEBUG_SYMS */
3475 }
3476
3477 static void
3478 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3479 {
3480 unsigned int entry;
3481 literal_pool * pool;
3482 char sym_name[20];
3483
3484 pool = find_literal_pool ();
3485 if (pool == NULL
3486 || pool->symbol == NULL
3487 || pool->next_free_entry == 0)
3488 return;
3489
3490 /* Align pool as you have word accesses.
3491 Only make a frag if we have to. */
3492 if (!need_pass_2)
3493 frag_align (pool->alignment, 0, 0);
3494
3495 record_alignment (now_seg, 2);
3496
3497 #ifdef OBJ_ELF
3498 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3499 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3500 #endif
3501 sprintf (sym_name, "$$lit_\002%x", pool->id);
3502
3503 symbol_locate (pool->symbol, sym_name, now_seg,
3504 (valueT) frag_now_fix (), frag_now);
3505 symbol_table_insert (pool->symbol);
3506
3507 ARM_SET_THUMB (pool->symbol, thumb_mode);
3508
3509 #if defined OBJ_COFF || defined OBJ_ELF
3510 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3511 #endif
3512
3513 for (entry = 0; entry < pool->next_free_entry; entry ++)
3514 {
3515 #ifdef OBJ_ELF
3516 if (debug_type == DEBUG_DWARF2)
3517 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3518 #endif
3519 /* First output the expression in the instruction to the pool. */
3520 emit_expr (&(pool->literals[entry]),
3521 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3522 }
3523
3524 /* Mark the pool as empty. */
3525 pool->next_free_entry = 0;
3526 pool->symbol = NULL;
3527 }
3528
3529 #ifdef OBJ_ELF
3530 /* Forward declarations for functions below, in the MD interface
3531 section. */
3532 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3533 static valueT create_unwind_entry (int);
3534 static void start_unwind_section (const segT, int);
3535 static void add_unwind_opcode (valueT, int);
3536 static void flush_pending_unwind (void);
3537
3538 /* Directives: Data. */
3539
3540 static void
3541 s_arm_elf_cons (int nbytes)
3542 {
3543 expressionS exp;
3544
3545 #ifdef md_flush_pending_output
3546 md_flush_pending_output ();
3547 #endif
3548
3549 if (is_it_end_of_statement ())
3550 {
3551 demand_empty_rest_of_line ();
3552 return;
3553 }
3554
3555 #ifdef md_cons_align
3556 md_cons_align (nbytes);
3557 #endif
3558
3559 mapping_state (MAP_DATA);
3560 do
3561 {
3562 int reloc;
3563 char *base = input_line_pointer;
3564
3565 expression (& exp);
3566
3567 if (exp.X_op != O_symbol)
3568 emit_expr (&exp, (unsigned int) nbytes);
3569 else
3570 {
3571 char *before_reloc = input_line_pointer;
3572 reloc = parse_reloc (&input_line_pointer);
3573 if (reloc == -1)
3574 {
3575 as_bad (_("unrecognized relocation suffix"));
3576 ignore_rest_of_line ();
3577 return;
3578 }
3579 else if (reloc == BFD_RELOC_UNUSED)
3580 emit_expr (&exp, (unsigned int) nbytes);
3581 else
3582 {
3583 reloc_howto_type *howto = (reloc_howto_type *)
3584 bfd_reloc_type_lookup (stdoutput,
3585 (bfd_reloc_code_real_type) reloc);
3586 int size = bfd_get_reloc_size (howto);
3587
3588 if (reloc == BFD_RELOC_ARM_PLT32)
3589 {
3590 as_bad (_("(plt) is only valid on branch targets"));
3591 reloc = BFD_RELOC_UNUSED;
3592 size = 0;
3593 }
3594
3595 if (size > nbytes)
3596 as_bad (ngettext ("%s relocations do not fit in %d byte",
3597 "%s relocations do not fit in %d bytes",
3598 nbytes),
3599 howto->name, nbytes);
3600 else
3601 {
3602 /* We've parsed an expression stopping at O_symbol.
3603 But there may be more expression left now that we
3604 have parsed the relocation marker. Parse it again.
3605 XXX Surely there is a cleaner way to do this. */
3606 char *p = input_line_pointer;
3607 int offset;
3608 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3609
3610 memcpy (save_buf, base, input_line_pointer - base);
3611 memmove (base + (input_line_pointer - before_reloc),
3612 base, before_reloc - base);
3613
3614 input_line_pointer = base + (input_line_pointer-before_reloc);
3615 expression (&exp);
3616 memcpy (base, save_buf, p - base);
3617
3618 offset = nbytes - size;
3619 p = frag_more (nbytes);
3620 memset (p, 0, nbytes);
3621 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3622 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3623 free (save_buf);
3624 }
3625 }
3626 }
3627 }
3628 while (*input_line_pointer++ == ',');
3629
3630 /* Put terminator back into stream. */
3631 input_line_pointer --;
3632 demand_empty_rest_of_line ();
3633 }
3634
3635 /* Emit an expression containing a 32-bit thumb instruction.
3636 Implementation based on put_thumb32_insn. */
3637
3638 static void
3639 emit_thumb32_expr (expressionS * exp)
3640 {
3641 expressionS exp_high = *exp;
3642
3643 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3644 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3645 exp->X_add_number &= 0xffff;
3646 emit_expr (exp, (unsigned int) THUMB_SIZE);
3647 }
3648
3649 /* Guess the instruction size based on the opcode. */
3650
3651 static int
3652 thumb_insn_size (int opcode)
3653 {
3654 if ((unsigned int) opcode < 0xe800u)
3655 return 2;
3656 else if ((unsigned int) opcode >= 0xe8000000u)
3657 return 4;
3658 else
3659 return 0;
3660 }
3661
3662 static bfd_boolean
3663 emit_insn (expressionS *exp, int nbytes)
3664 {
3665 int size = 0;
3666
3667 if (exp->X_op == O_constant)
3668 {
3669 size = nbytes;
3670
3671 if (size == 0)
3672 size = thumb_insn_size (exp->X_add_number);
3673
3674 if (size != 0)
3675 {
3676 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3677 {
3678 as_bad (_(".inst.n operand too big. "\
3679 "Use .inst.w instead"));
3680 size = 0;
3681 }
3682 else
3683 {
3684 if (now_it.state == AUTOMATIC_IT_BLOCK)
3685 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3686 else
3687 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3688
3689 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3690 emit_thumb32_expr (exp);
3691 else
3692 emit_expr (exp, (unsigned int) size);
3693
3694 it_fsm_post_encode ();
3695 }
3696 }
3697 else
3698 as_bad (_("cannot determine Thumb instruction size. " \
3699 "Use .inst.n/.inst.w instead"));
3700 }
3701 else
3702 as_bad (_("constant expression required"));
3703
3704 return (size != 0);
3705 }
3706
3707 /* Like s_arm_elf_cons but do not use md_cons_align and
3708 set the mapping state to MAP_ARM/MAP_THUMB. */
3709
3710 static void
3711 s_arm_elf_inst (int nbytes)
3712 {
3713 if (is_it_end_of_statement ())
3714 {
3715 demand_empty_rest_of_line ();
3716 return;
3717 }
3718
3719 /* Calling mapping_state () here will not change ARM/THUMB,
3720 but will ensure not to be in DATA state. */
3721
3722 if (thumb_mode)
3723 mapping_state (MAP_THUMB);
3724 else
3725 {
3726 if (nbytes != 0)
3727 {
3728 as_bad (_("width suffixes are invalid in ARM mode"));
3729 ignore_rest_of_line ();
3730 return;
3731 }
3732
3733 nbytes = 4;
3734
3735 mapping_state (MAP_ARM);
3736 }
3737
3738 do
3739 {
3740 expressionS exp;
3741
3742 expression (& exp);
3743
3744 if (! emit_insn (& exp, nbytes))
3745 {
3746 ignore_rest_of_line ();
3747 return;
3748 }
3749 }
3750 while (*input_line_pointer++ == ',');
3751
3752 /* Put terminator back into stream. */
3753 input_line_pointer --;
3754 demand_empty_rest_of_line ();
3755 }
3756
3757 /* Parse a .rel31 directive. */
3758
3759 static void
3760 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3761 {
3762 expressionS exp;
3763 char *p;
3764 valueT highbit;
3765
3766 highbit = 0;
3767 if (*input_line_pointer == '1')
3768 highbit = 0x80000000;
3769 else if (*input_line_pointer != '0')
3770 as_bad (_("expected 0 or 1"));
3771
3772 input_line_pointer++;
3773 if (*input_line_pointer != ',')
3774 as_bad (_("missing comma"));
3775 input_line_pointer++;
3776
3777 #ifdef md_flush_pending_output
3778 md_flush_pending_output ();
3779 #endif
3780
3781 #ifdef md_cons_align
3782 md_cons_align (4);
3783 #endif
3784
3785 mapping_state (MAP_DATA);
3786
3787 expression (&exp);
3788
3789 p = frag_more (4);
3790 md_number_to_chars (p, highbit, 4);
3791 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3792 BFD_RELOC_ARM_PREL31);
3793
3794 demand_empty_rest_of_line ();
3795 }
3796
3797 /* Directives: AEABI stack-unwind tables. */
3798
3799 /* Parse an unwind_fnstart directive. Simply records the current location. */
3800
3801 static void
3802 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3803 {
3804 demand_empty_rest_of_line ();
3805 if (unwind.proc_start)
3806 {
3807 as_bad (_("duplicate .fnstart directive"));
3808 return;
3809 }
3810
3811 /* Mark the start of the function. */
3812 unwind.proc_start = expr_build_dot ();
3813
3814 /* Reset the rest of the unwind info. */
3815 unwind.opcode_count = 0;
3816 unwind.table_entry = NULL;
3817 unwind.personality_routine = NULL;
3818 unwind.personality_index = -1;
3819 unwind.frame_size = 0;
3820 unwind.fp_offset = 0;
3821 unwind.fp_reg = REG_SP;
3822 unwind.fp_used = 0;
3823 unwind.sp_restored = 0;
3824 }
3825
3826
3827 /* Parse a handlerdata directive. Creates the exception handling table entry
3828 for the function. */
3829
3830 static void
3831 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3832 {
3833 demand_empty_rest_of_line ();
3834 if (!unwind.proc_start)
3835 as_bad (MISSING_FNSTART);
3836
3837 if (unwind.table_entry)
3838 as_bad (_("duplicate .handlerdata directive"));
3839
3840 create_unwind_entry (1);
3841 }
3842
3843 /* Parse an unwind_fnend directive. Generates the index table entry. */
3844
3845 static void
3846 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3847 {
3848 long where;
3849 char *ptr;
3850 valueT val;
3851 unsigned int marked_pr_dependency;
3852
3853 demand_empty_rest_of_line ();
3854
3855 if (!unwind.proc_start)
3856 {
3857 as_bad (_(".fnend directive without .fnstart"));
3858 return;
3859 }
3860
3861 /* Add eh table entry. */
3862 if (unwind.table_entry == NULL)
3863 val = create_unwind_entry (0);
3864 else
3865 val = 0;
3866
3867 /* Add index table entry. This is two words. */
3868 start_unwind_section (unwind.saved_seg, 1);
3869 frag_align (2, 0, 0);
3870 record_alignment (now_seg, 2);
3871
3872 ptr = frag_more (8);
3873 memset (ptr, 0, 8);
3874 where = frag_now_fix () - 8;
3875
3876 /* Self relative offset of the function start. */
3877 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3878 BFD_RELOC_ARM_PREL31);
3879
3880 /* Indicate dependency on EHABI-defined personality routines to the
3881 linker, if it hasn't been done already. */
3882 marked_pr_dependency
3883 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3884 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3885 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3886 {
3887 static const char *const name[] =
3888 {
3889 "__aeabi_unwind_cpp_pr0",
3890 "__aeabi_unwind_cpp_pr1",
3891 "__aeabi_unwind_cpp_pr2"
3892 };
3893 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3894 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3895 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3896 |= 1 << unwind.personality_index;
3897 }
3898
3899 if (val)
3900 /* Inline exception table entry. */
3901 md_number_to_chars (ptr + 4, val, 4);
3902 else
3903 /* Self relative offset of the table entry. */
3904 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3905 BFD_RELOC_ARM_PREL31);
3906
3907 /* Restore the original section. */
3908 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3909
3910 unwind.proc_start = NULL;
3911 }
3912
3913
3914 /* Parse an unwind_cantunwind directive. */
3915
3916 static void
3917 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3918 {
3919 demand_empty_rest_of_line ();
3920 if (!unwind.proc_start)
3921 as_bad (MISSING_FNSTART);
3922
3923 if (unwind.personality_routine || unwind.personality_index != -1)
3924 as_bad (_("personality routine specified for cantunwind frame"));
3925
3926 unwind.personality_index = -2;
3927 }
3928
3929
3930 /* Parse a personalityindex directive. */
3931
3932 static void
3933 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3934 {
3935 expressionS exp;
3936
3937 if (!unwind.proc_start)
3938 as_bad (MISSING_FNSTART);
3939
3940 if (unwind.personality_routine || unwind.personality_index != -1)
3941 as_bad (_("duplicate .personalityindex directive"));
3942
3943 expression (&exp);
3944
3945 if (exp.X_op != O_constant
3946 || exp.X_add_number < 0 || exp.X_add_number > 15)
3947 {
3948 as_bad (_("bad personality routine number"));
3949 ignore_rest_of_line ();
3950 return;
3951 }
3952
3953 unwind.personality_index = exp.X_add_number;
3954
3955 demand_empty_rest_of_line ();
3956 }
3957
3958
3959 /* Parse a personality directive. */
3960
3961 static void
3962 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3963 {
3964 char *name, *p, c;
3965
3966 if (!unwind.proc_start)
3967 as_bad (MISSING_FNSTART);
3968
3969 if (unwind.personality_routine || unwind.personality_index != -1)
3970 as_bad (_("duplicate .personality directive"));
3971
3972 c = get_symbol_name (& name);
3973 p = input_line_pointer;
3974 if (c == '"')
3975 ++ input_line_pointer;
3976 unwind.personality_routine = symbol_find_or_make (name);
3977 *p = c;
3978 demand_empty_rest_of_line ();
3979 }
3980
3981
3982 /* Parse a directive saving core registers. */
3983
3984 static void
3985 s_arm_unwind_save_core (void)
3986 {
3987 valueT op;
3988 long range;
3989 int n;
3990
3991 range = parse_reg_list (&input_line_pointer);
3992 if (range == FAIL)
3993 {
3994 as_bad (_("expected register list"));
3995 ignore_rest_of_line ();
3996 return;
3997 }
3998
3999 demand_empty_rest_of_line ();
4000
4001 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4002 into .unwind_save {..., sp...}. We aren't bothered about the value of
4003 ip because it is clobbered by calls. */
4004 if (unwind.sp_restored && unwind.fp_reg == 12
4005 && (range & 0x3000) == 0x1000)
4006 {
4007 unwind.opcode_count--;
4008 unwind.sp_restored = 0;
4009 range = (range | 0x2000) & ~0x1000;
4010 unwind.pending_offset = 0;
4011 }
4012
4013 /* Pop r4-r15. */
4014 if (range & 0xfff0)
4015 {
4016 /* See if we can use the short opcodes. These pop a block of up to 8
4017 registers starting with r4, plus maybe r14. */
4018 for (n = 0; n < 8; n++)
4019 {
4020 /* Break at the first non-saved register. */
4021 if ((range & (1 << (n + 4))) == 0)
4022 break;
4023 }
4024 /* See if there are any other bits set. */
4025 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4026 {
4027 /* Use the long form. */
4028 op = 0x8000 | ((range >> 4) & 0xfff);
4029 add_unwind_opcode (op, 2);
4030 }
4031 else
4032 {
4033 /* Use the short form. */
4034 if (range & 0x4000)
4035 op = 0xa8; /* Pop r14. */
4036 else
4037 op = 0xa0; /* Do not pop r14. */
4038 op |= (n - 1);
4039 add_unwind_opcode (op, 1);
4040 }
4041 }
4042
4043 /* Pop r0-r3. */
4044 if (range & 0xf)
4045 {
4046 op = 0xb100 | (range & 0xf);
4047 add_unwind_opcode (op, 2);
4048 }
4049
4050 /* Record the number of bytes pushed. */
4051 for (n = 0; n < 16; n++)
4052 {
4053 if (range & (1 << n))
4054 unwind.frame_size += 4;
4055 }
4056 }
4057
4058
4059 /* Parse a directive saving FPA registers. */
4060
4061 static void
4062 s_arm_unwind_save_fpa (int reg)
4063 {
4064 expressionS exp;
4065 int num_regs;
4066 valueT op;
4067
4068 /* Get Number of registers to transfer. */
4069 if (skip_past_comma (&input_line_pointer) != FAIL)
4070 expression (&exp);
4071 else
4072 exp.X_op = O_illegal;
4073
4074 if (exp.X_op != O_constant)
4075 {
4076 as_bad (_("expected , <constant>"));
4077 ignore_rest_of_line ();
4078 return;
4079 }
4080
4081 num_regs = exp.X_add_number;
4082
4083 if (num_regs < 1 || num_regs > 4)
4084 {
4085 as_bad (_("number of registers must be in the range [1:4]"));
4086 ignore_rest_of_line ();
4087 return;
4088 }
4089
4090 demand_empty_rest_of_line ();
4091
4092 if (reg == 4)
4093 {
4094 /* Short form. */
4095 op = 0xb4 | (num_regs - 1);
4096 add_unwind_opcode (op, 1);
4097 }
4098 else
4099 {
4100 /* Long form. */
4101 op = 0xc800 | (reg << 4) | (num_regs - 1);
4102 add_unwind_opcode (op, 2);
4103 }
4104 unwind.frame_size += num_regs * 12;
4105 }
4106
4107
4108 /* Parse a directive saving VFP registers for ARMv6 and above. */
4109
4110 static void
4111 s_arm_unwind_save_vfp_armv6 (void)
4112 {
4113 int count;
4114 unsigned int start;
4115 valueT op;
4116 int num_vfpv3_regs = 0;
4117 int num_regs_below_16;
4118
4119 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4120 if (count == FAIL)
4121 {
4122 as_bad (_("expected register list"));
4123 ignore_rest_of_line ();
4124 return;
4125 }
4126
4127 demand_empty_rest_of_line ();
4128
4129 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4130 than FSTMX/FLDMX-style ones). */
4131
4132 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4133 if (start >= 16)
4134 num_vfpv3_regs = count;
4135 else if (start + count > 16)
4136 num_vfpv3_regs = start + count - 16;
4137
4138 if (num_vfpv3_regs > 0)
4139 {
4140 int start_offset = start > 16 ? start - 16 : 0;
4141 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4142 add_unwind_opcode (op, 2);
4143 }
4144
4145 /* Generate opcode for registers numbered in the range 0 .. 15. */
4146 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4147 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4148 if (num_regs_below_16 > 0)
4149 {
4150 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4151 add_unwind_opcode (op, 2);
4152 }
4153
4154 unwind.frame_size += count * 8;
4155 }
4156
4157
4158 /* Parse a directive saving VFP registers for pre-ARMv6. */
4159
4160 static void
4161 s_arm_unwind_save_vfp (void)
4162 {
4163 int count;
4164 unsigned int reg;
4165 valueT op;
4166
4167 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4168 if (count == FAIL)
4169 {
4170 as_bad (_("expected register list"));
4171 ignore_rest_of_line ();
4172 return;
4173 }
4174
4175 demand_empty_rest_of_line ();
4176
4177 if (reg == 8)
4178 {
4179 /* Short form. */
4180 op = 0xb8 | (count - 1);
4181 add_unwind_opcode (op, 1);
4182 }
4183 else
4184 {
4185 /* Long form. */
4186 op = 0xb300 | (reg << 4) | (count - 1);
4187 add_unwind_opcode (op, 2);
4188 }
4189 unwind.frame_size += count * 8 + 4;
4190 }
4191
4192
4193 /* Parse a directive saving iWMMXt data registers. */
4194
4195 static void
4196 s_arm_unwind_save_mmxwr (void)
4197 {
4198 int reg;
4199 int hi_reg;
4200 int i;
4201 unsigned mask = 0;
4202 valueT op;
4203
4204 if (*input_line_pointer == '{')
4205 input_line_pointer++;
4206
4207 do
4208 {
4209 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4210
4211 if (reg == FAIL)
4212 {
4213 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4214 goto error;
4215 }
4216
4217 if (mask >> reg)
4218 as_tsktsk (_("register list not in ascending order"));
4219 mask |= 1 << reg;
4220
4221 if (*input_line_pointer == '-')
4222 {
4223 input_line_pointer++;
4224 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4225 if (hi_reg == FAIL)
4226 {
4227 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4228 goto error;
4229 }
4230 else if (reg >= hi_reg)
4231 {
4232 as_bad (_("bad register range"));
4233 goto error;
4234 }
4235 for (; reg < hi_reg; reg++)
4236 mask |= 1 << reg;
4237 }
4238 }
4239 while (skip_past_comma (&input_line_pointer) != FAIL);
4240
4241 skip_past_char (&input_line_pointer, '}');
4242
4243 demand_empty_rest_of_line ();
4244
4245 /* Generate any deferred opcodes because we're going to be looking at
4246 the list. */
4247 flush_pending_unwind ();
4248
4249 for (i = 0; i < 16; i++)
4250 {
4251 if (mask & (1 << i))
4252 unwind.frame_size += 8;
4253 }
4254
4255 /* Attempt to combine with a previous opcode. We do this because gcc
4256 likes to output separate unwind directives for a single block of
4257 registers. */
4258 if (unwind.opcode_count > 0)
4259 {
4260 i = unwind.opcodes[unwind.opcode_count - 1];
4261 if ((i & 0xf8) == 0xc0)
4262 {
4263 i &= 7;
4264 /* Only merge if the blocks are contiguous. */
4265 if (i < 6)
4266 {
4267 if ((mask & 0xfe00) == (1 << 9))
4268 {
4269 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4270 unwind.opcode_count--;
4271 }
4272 }
4273 else if (i == 6 && unwind.opcode_count >= 2)
4274 {
4275 i = unwind.opcodes[unwind.opcode_count - 2];
4276 reg = i >> 4;
4277 i &= 0xf;
4278
4279 op = 0xffff << (reg - 1);
4280 if (reg > 0
4281 && ((mask & op) == (1u << (reg - 1))))
4282 {
4283 op = (1 << (reg + i + 1)) - 1;
4284 op &= ~((1 << reg) - 1);
4285 mask |= op;
4286 unwind.opcode_count -= 2;
4287 }
4288 }
4289 }
4290 }
4291
4292 hi_reg = 15;
4293 /* We want to generate opcodes in the order the registers have been
4294 saved, ie. descending order. */
4295 for (reg = 15; reg >= -1; reg--)
4296 {
4297 /* Save registers in blocks. */
4298 if (reg < 0
4299 || !(mask & (1 << reg)))
4300 {
4301 /* We found an unsaved reg. Generate opcodes to save the
4302 preceding block. */
4303 if (reg != hi_reg)
4304 {
4305 if (reg == 9)
4306 {
4307 /* Short form. */
4308 op = 0xc0 | (hi_reg - 10);
4309 add_unwind_opcode (op, 1);
4310 }
4311 else
4312 {
4313 /* Long form. */
4314 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4315 add_unwind_opcode (op, 2);
4316 }
4317 }
4318 hi_reg = reg - 1;
4319 }
4320 }
4321
4322 return;
4323 error:
4324 ignore_rest_of_line ();
4325 }
4326
4327 static void
4328 s_arm_unwind_save_mmxwcg (void)
4329 {
4330 int reg;
4331 int hi_reg;
4332 unsigned mask = 0;
4333 valueT op;
4334
4335 if (*input_line_pointer == '{')
4336 input_line_pointer++;
4337
4338 skip_whitespace (input_line_pointer);
4339
4340 do
4341 {
4342 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4343
4344 if (reg == FAIL)
4345 {
4346 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4347 goto error;
4348 }
4349
4350 reg -= 8;
4351 if (mask >> reg)
4352 as_tsktsk (_("register list not in ascending order"));
4353 mask |= 1 << reg;
4354
4355 if (*input_line_pointer == '-')
4356 {
4357 input_line_pointer++;
4358 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4359 if (hi_reg == FAIL)
4360 {
4361 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4362 goto error;
4363 }
4364 else if (reg >= hi_reg)
4365 {
4366 as_bad (_("bad register range"));
4367 goto error;
4368 }
4369 for (; reg < hi_reg; reg++)
4370 mask |= 1 << reg;
4371 }
4372 }
4373 while (skip_past_comma (&input_line_pointer) != FAIL);
4374
4375 skip_past_char (&input_line_pointer, '}');
4376
4377 demand_empty_rest_of_line ();
4378
4379 /* Generate any deferred opcodes because we're going to be looking at
4380 the list. */
4381 flush_pending_unwind ();
4382
4383 for (reg = 0; reg < 16; reg++)
4384 {
4385 if (mask & (1 << reg))
4386 unwind.frame_size += 4;
4387 }
4388 op = 0xc700 | mask;
4389 add_unwind_opcode (op, 2);
4390 return;
4391 error:
4392 ignore_rest_of_line ();
4393 }
4394
4395
4396 /* Parse an unwind_save directive.
4397 If the argument is non-zero, this is a .vsave directive. */
4398
4399 static void
4400 s_arm_unwind_save (int arch_v6)
4401 {
4402 char *peek;
4403 struct reg_entry *reg;
4404 bfd_boolean had_brace = FALSE;
4405
4406 if (!unwind.proc_start)
4407 as_bad (MISSING_FNSTART);
4408
4409 /* Figure out what sort of save we have. */
4410 peek = input_line_pointer;
4411
4412 if (*peek == '{')
4413 {
4414 had_brace = TRUE;
4415 peek++;
4416 }
4417
4418 reg = arm_reg_parse_multi (&peek);
4419
4420 if (!reg)
4421 {
4422 as_bad (_("register expected"));
4423 ignore_rest_of_line ();
4424 return;
4425 }
4426
4427 switch (reg->type)
4428 {
4429 case REG_TYPE_FN:
4430 if (had_brace)
4431 {
4432 as_bad (_("FPA .unwind_save does not take a register list"));
4433 ignore_rest_of_line ();
4434 return;
4435 }
4436 input_line_pointer = peek;
4437 s_arm_unwind_save_fpa (reg->number);
4438 return;
4439
4440 case REG_TYPE_RN:
4441 s_arm_unwind_save_core ();
4442 return;
4443
4444 case REG_TYPE_VFD:
4445 if (arch_v6)
4446 s_arm_unwind_save_vfp_armv6 ();
4447 else
4448 s_arm_unwind_save_vfp ();
4449 return;
4450
4451 case REG_TYPE_MMXWR:
4452 s_arm_unwind_save_mmxwr ();
4453 return;
4454
4455 case REG_TYPE_MMXWCG:
4456 s_arm_unwind_save_mmxwcg ();
4457 return;
4458
4459 default:
4460 as_bad (_(".unwind_save does not support this kind of register"));
4461 ignore_rest_of_line ();
4462 }
4463 }
4464
4465
4466 /* Parse an unwind_movsp directive. */
4467
4468 static void
4469 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4470 {
4471 int reg;
4472 valueT op;
4473 int offset;
4474
4475 if (!unwind.proc_start)
4476 as_bad (MISSING_FNSTART);
4477
4478 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4479 if (reg == FAIL)
4480 {
4481 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4482 ignore_rest_of_line ();
4483 return;
4484 }
4485
4486 /* Optional constant. */
4487 if (skip_past_comma (&input_line_pointer) != FAIL)
4488 {
4489 if (immediate_for_directive (&offset) == FAIL)
4490 return;
4491 }
4492 else
4493 offset = 0;
4494
4495 demand_empty_rest_of_line ();
4496
4497 if (reg == REG_SP || reg == REG_PC)
4498 {
4499 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4500 return;
4501 }
4502
4503 if (unwind.fp_reg != REG_SP)
4504 as_bad (_("unexpected .unwind_movsp directive"));
4505
4506 /* Generate opcode to restore the value. */
4507 op = 0x90 | reg;
4508 add_unwind_opcode (op, 1);
4509
4510 /* Record the information for later. */
4511 unwind.fp_reg = reg;
4512 unwind.fp_offset = unwind.frame_size - offset;
4513 unwind.sp_restored = 1;
4514 }
4515
4516 /* Parse an unwind_pad directive. */
4517
4518 static void
4519 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4520 {
4521 int offset;
4522
4523 if (!unwind.proc_start)
4524 as_bad (MISSING_FNSTART);
4525
4526 if (immediate_for_directive (&offset) == FAIL)
4527 return;
4528
4529 if (offset & 3)
4530 {
4531 as_bad (_("stack increment must be multiple of 4"));
4532 ignore_rest_of_line ();
4533 return;
4534 }
4535
4536 /* Don't generate any opcodes, just record the details for later. */
4537 unwind.frame_size += offset;
4538 unwind.pending_offset += offset;
4539
4540 demand_empty_rest_of_line ();
4541 }
4542
4543 /* Parse an unwind_setfp directive. */
4544
4545 static void
4546 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4547 {
4548 int sp_reg;
4549 int fp_reg;
4550 int offset;
4551
4552 if (!unwind.proc_start)
4553 as_bad (MISSING_FNSTART);
4554
4555 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4556 if (skip_past_comma (&input_line_pointer) == FAIL)
4557 sp_reg = FAIL;
4558 else
4559 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4560
4561 if (fp_reg == FAIL || sp_reg == FAIL)
4562 {
4563 as_bad (_("expected <reg>, <reg>"));
4564 ignore_rest_of_line ();
4565 return;
4566 }
4567
4568 /* Optional constant. */
4569 if (skip_past_comma (&input_line_pointer) != FAIL)
4570 {
4571 if (immediate_for_directive (&offset) == FAIL)
4572 return;
4573 }
4574 else
4575 offset = 0;
4576
4577 demand_empty_rest_of_line ();
4578
4579 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4580 {
4581 as_bad (_("register must be either sp or set by a previous"
4582 "unwind_movsp directive"));
4583 return;
4584 }
4585
4586 /* Don't generate any opcodes, just record the information for later. */
4587 unwind.fp_reg = fp_reg;
4588 unwind.fp_used = 1;
4589 if (sp_reg == REG_SP)
4590 unwind.fp_offset = unwind.frame_size - offset;
4591 else
4592 unwind.fp_offset -= offset;
4593 }
4594
4595 /* Parse an unwind_raw directive. */
4596
4597 static void
4598 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4599 {
4600 expressionS exp;
4601 /* This is an arbitrary limit. */
4602 unsigned char op[16];
4603 int count;
4604
4605 if (!unwind.proc_start)
4606 as_bad (MISSING_FNSTART);
4607
4608 expression (&exp);
4609 if (exp.X_op == O_constant
4610 && skip_past_comma (&input_line_pointer) != FAIL)
4611 {
4612 unwind.frame_size += exp.X_add_number;
4613 expression (&exp);
4614 }
4615 else
4616 exp.X_op = O_illegal;
4617
4618 if (exp.X_op != O_constant)
4619 {
4620 as_bad (_("expected <offset>, <opcode>"));
4621 ignore_rest_of_line ();
4622 return;
4623 }
4624
4625 count = 0;
4626
4627 /* Parse the opcode. */
4628 for (;;)
4629 {
4630 if (count >= 16)
4631 {
4632 as_bad (_("unwind opcode too long"));
4633 ignore_rest_of_line ();
4634 }
4635 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4636 {
4637 as_bad (_("invalid unwind opcode"));
4638 ignore_rest_of_line ();
4639 return;
4640 }
4641 op[count++] = exp.X_add_number;
4642
4643 /* Parse the next byte. */
4644 if (skip_past_comma (&input_line_pointer) == FAIL)
4645 break;
4646
4647 expression (&exp);
4648 }
4649
4650 /* Add the opcode bytes in reverse order. */
4651 while (count--)
4652 add_unwind_opcode (op[count], 1);
4653
4654 demand_empty_rest_of_line ();
4655 }
4656
4657
4658 /* Parse a .eabi_attribute directive. */
4659
4660 static void
4661 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4662 {
4663 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4664
4665 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4666 attributes_set_explicitly[tag] = 1;
4667 }
4668
4669 /* Emit a tls fix for the symbol. */
4670
4671 static void
4672 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 char *p;
4675 expressionS exp;
4676 #ifdef md_flush_pending_output
4677 md_flush_pending_output ();
4678 #endif
4679
4680 #ifdef md_cons_align
4681 md_cons_align (4);
4682 #endif
4683
4684 /* Since we're just labelling the code, there's no need to define a
4685 mapping symbol. */
4686 expression (&exp);
4687 p = obstack_next_free (&frchain_now->frch_obstack);
4688 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4689 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4690 : BFD_RELOC_ARM_TLS_DESCSEQ);
4691 }
4692 #endif /* OBJ_ELF */
4693
4694 static void s_arm_arch (int);
4695 static void s_arm_object_arch (int);
4696 static void s_arm_cpu (int);
4697 static void s_arm_fpu (int);
4698 static void s_arm_arch_extension (int);
4699
4700 #ifdef TE_PE
4701
4702 static void
4703 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4704 {
4705 expressionS exp;
4706
4707 do
4708 {
4709 expression (&exp);
4710 if (exp.X_op == O_symbol)
4711 exp.X_op = O_secrel;
4712
4713 emit_expr (&exp, 4);
4714 }
4715 while (*input_line_pointer++ == ',');
4716
4717 input_line_pointer--;
4718 demand_empty_rest_of_line ();
4719 }
4720 #endif /* TE_PE */
4721
4722 /* This table describes all the machine specific pseudo-ops the assembler
4723 has to support. The fields are:
4724 pseudo-op name without dot
4725 function to call to execute this pseudo-op
4726 Integer arg to pass to the function. */
4727
4728 const pseudo_typeS md_pseudo_table[] =
4729 {
4730 /* Never called because '.req' does not start a line. */
4731 { "req", s_req, 0 },
4732 /* Following two are likewise never called. */
4733 { "dn", s_dn, 0 },
4734 { "qn", s_qn, 0 },
4735 { "unreq", s_unreq, 0 },
4736 { "bss", s_bss, 0 },
4737 { "align", s_align_ptwo, 2 },
4738 { "arm", s_arm, 0 },
4739 { "thumb", s_thumb, 0 },
4740 { "code", s_code, 0 },
4741 { "force_thumb", s_force_thumb, 0 },
4742 { "thumb_func", s_thumb_func, 0 },
4743 { "thumb_set", s_thumb_set, 0 },
4744 { "even", s_even, 0 },
4745 { "ltorg", s_ltorg, 0 },
4746 { "pool", s_ltorg, 0 },
4747 { "syntax", s_syntax, 0 },
4748 { "cpu", s_arm_cpu, 0 },
4749 { "arch", s_arm_arch, 0 },
4750 { "object_arch", s_arm_object_arch, 0 },
4751 { "fpu", s_arm_fpu, 0 },
4752 { "arch_extension", s_arm_arch_extension, 0 },
4753 #ifdef OBJ_ELF
4754 { "word", s_arm_elf_cons, 4 },
4755 { "long", s_arm_elf_cons, 4 },
4756 { "inst.n", s_arm_elf_inst, 2 },
4757 { "inst.w", s_arm_elf_inst, 4 },
4758 { "inst", s_arm_elf_inst, 0 },
4759 { "rel31", s_arm_rel31, 0 },
4760 { "fnstart", s_arm_unwind_fnstart, 0 },
4761 { "fnend", s_arm_unwind_fnend, 0 },
4762 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4763 { "personality", s_arm_unwind_personality, 0 },
4764 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4765 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4766 { "save", s_arm_unwind_save, 0 },
4767 { "vsave", s_arm_unwind_save, 1 },
4768 { "movsp", s_arm_unwind_movsp, 0 },
4769 { "pad", s_arm_unwind_pad, 0 },
4770 { "setfp", s_arm_unwind_setfp, 0 },
4771 { "unwind_raw", s_arm_unwind_raw, 0 },
4772 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4773 { "tlsdescseq", s_arm_tls_descseq, 0 },
4774 #else
4775 { "word", cons, 4},
4776
4777 /* These are used for dwarf. */
4778 {"2byte", cons, 2},
4779 {"4byte", cons, 4},
4780 {"8byte", cons, 8},
4781 /* These are used for dwarf2. */
4782 { "file", dwarf2_directive_file, 0 },
4783 { "loc", dwarf2_directive_loc, 0 },
4784 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4785 #endif
4786 { "extend", float_cons, 'x' },
4787 { "ldouble", float_cons, 'x' },
4788 { "packed", float_cons, 'p' },
4789 #ifdef TE_PE
4790 {"secrel32", pe_directive_secrel, 0},
4791 #endif
4792
4793 /* These are for compatibility with CodeComposer Studio. */
4794 {"ref", s_ccs_ref, 0},
4795 {"def", s_ccs_def, 0},
4796 {"asmfunc", s_ccs_asmfunc, 0},
4797 {"endasmfunc", s_ccs_endasmfunc, 0},
4798
4799 { 0, 0, 0 }
4800 };
4801 \f
4802 /* Parser functions used exclusively in instruction operands. */
4803
4804 /* Generic immediate-value read function for use in insn parsing.
4805 STR points to the beginning of the immediate (the leading #);
4806 VAL receives the value; if the value is outside [MIN, MAX]
4807 issue an error. PREFIX_OPT is true if the immediate prefix is
4808 optional. */
4809
4810 static int
4811 parse_immediate (char **str, int *val, int min, int max,
4812 bfd_boolean prefix_opt)
4813 {
4814 expressionS exp;
4815
4816 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4817 if (exp.X_op != O_constant)
4818 {
4819 inst.error = _("constant expression required");
4820 return FAIL;
4821 }
4822
4823 if (exp.X_add_number < min || exp.X_add_number > max)
4824 {
4825 inst.error = _("immediate value out of range");
4826 return FAIL;
4827 }
4828
4829 *val = exp.X_add_number;
4830 return SUCCESS;
4831 }
4832
4833 /* Less-generic immediate-value read function with the possibility of loading a
4834 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4835 instructions. Puts the result directly in inst.operands[i]. */
4836
4837 static int
4838 parse_big_immediate (char **str, int i, expressionS *in_exp,
4839 bfd_boolean allow_symbol_p)
4840 {
4841 expressionS exp;
4842 expressionS *exp_p = in_exp ? in_exp : &exp;
4843 char *ptr = *str;
4844
4845 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4846
4847 if (exp_p->X_op == O_constant)
4848 {
4849 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4850 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4851 O_constant. We have to be careful not to break compilation for
4852 32-bit X_add_number, though. */
4853 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4854 {
4855 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4856 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4857 & 0xffffffff);
4858 inst.operands[i].regisimm = 1;
4859 }
4860 }
4861 else if (exp_p->X_op == O_big
4862 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4863 {
4864 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4865
4866 /* Bignums have their least significant bits in
4867 generic_bignum[0]. Make sure we put 32 bits in imm and
4868 32 bits in reg, in a (hopefully) portable way. */
4869 gas_assert (parts != 0);
4870
4871 /* Make sure that the number is not too big.
4872 PR 11972: Bignums can now be sign-extended to the
4873 size of a .octa so check that the out of range bits
4874 are all zero or all one. */
4875 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4876 {
4877 LITTLENUM_TYPE m = -1;
4878
4879 if (generic_bignum[parts * 2] != 0
4880 && generic_bignum[parts * 2] != m)
4881 return FAIL;
4882
4883 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4884 if (generic_bignum[j] != generic_bignum[j-1])
4885 return FAIL;
4886 }
4887
4888 inst.operands[i].imm = 0;
4889 for (j = 0; j < parts; j++, idx++)
4890 inst.operands[i].imm |= generic_bignum[idx]
4891 << (LITTLENUM_NUMBER_OF_BITS * j);
4892 inst.operands[i].reg = 0;
4893 for (j = 0; j < parts; j++, idx++)
4894 inst.operands[i].reg |= generic_bignum[idx]
4895 << (LITTLENUM_NUMBER_OF_BITS * j);
4896 inst.operands[i].regisimm = 1;
4897 }
4898 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4899 return FAIL;
4900
4901 *str = ptr;
4902
4903 return SUCCESS;
4904 }
4905
4906 /* Returns the pseudo-register number of an FPA immediate constant,
4907 or FAIL if there isn't a valid constant here. */
4908
4909 static int
4910 parse_fpa_immediate (char ** str)
4911 {
4912 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4913 char * save_in;
4914 expressionS exp;
4915 int i;
4916 int j;
4917
4918 /* First try and match exact strings, this is to guarantee
4919 that some formats will work even for cross assembly. */
4920
4921 for (i = 0; fp_const[i]; i++)
4922 {
4923 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4924 {
4925 char *start = *str;
4926
4927 *str += strlen (fp_const[i]);
4928 if (is_end_of_line[(unsigned char) **str])
4929 return i + 8;
4930 *str = start;
4931 }
4932 }
4933
4934 /* Just because we didn't get a match doesn't mean that the constant
4935 isn't valid, just that it is in a format that we don't
4936 automatically recognize. Try parsing it with the standard
4937 expression routines. */
4938
4939 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4940
4941 /* Look for a raw floating point number. */
4942 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4943 && is_end_of_line[(unsigned char) *save_in])
4944 {
4945 for (i = 0; i < NUM_FLOAT_VALS; i++)
4946 {
4947 for (j = 0; j < MAX_LITTLENUMS; j++)
4948 {
4949 if (words[j] != fp_values[i][j])
4950 break;
4951 }
4952
4953 if (j == MAX_LITTLENUMS)
4954 {
4955 *str = save_in;
4956 return i + 8;
4957 }
4958 }
4959 }
4960
4961 /* Try and parse a more complex expression, this will probably fail
4962 unless the code uses a floating point prefix (eg "0f"). */
4963 save_in = input_line_pointer;
4964 input_line_pointer = *str;
4965 if (expression (&exp) == absolute_section
4966 && exp.X_op == O_big
4967 && exp.X_add_number < 0)
4968 {
4969 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4970 Ditto for 15. */
4971 #define X_PRECISION 5
4972 #define E_PRECISION 15L
4973 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4974 {
4975 for (i = 0; i < NUM_FLOAT_VALS; i++)
4976 {
4977 for (j = 0; j < MAX_LITTLENUMS; j++)
4978 {
4979 if (words[j] != fp_values[i][j])
4980 break;
4981 }
4982
4983 if (j == MAX_LITTLENUMS)
4984 {
4985 *str = input_line_pointer;
4986 input_line_pointer = save_in;
4987 return i + 8;
4988 }
4989 }
4990 }
4991 }
4992
4993 *str = input_line_pointer;
4994 input_line_pointer = save_in;
4995 inst.error = _("invalid FPA immediate expression");
4996 return FAIL;
4997 }
4998
4999 /* Returns 1 if a number has "quarter-precision" float format
5000 0baBbbbbbc defgh000 00000000 00000000. */
5001
5002 static int
5003 is_quarter_float (unsigned imm)
5004 {
5005 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5006 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5007 }
5008
5009
5010 /* Detect the presence of a floating point or integer zero constant,
5011 i.e. #0.0 or #0. */
5012
5013 static bfd_boolean
5014 parse_ifimm_zero (char **in)
5015 {
5016 int error_code;
5017
5018 if (!is_immediate_prefix (**in))
5019 {
5020 /* In unified syntax, all prefixes are optional. */
5021 if (!unified_syntax)
5022 return FALSE;
5023 }
5024 else
5025 ++*in;
5026
5027 /* Accept #0x0 as a synonym for #0. */
5028 if (strncmp (*in, "0x", 2) == 0)
5029 {
5030 int val;
5031 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5032 return FALSE;
5033 return TRUE;
5034 }
5035
5036 error_code = atof_generic (in, ".", EXP_CHARS,
5037 &generic_floating_point_number);
5038
5039 if (!error_code
5040 && generic_floating_point_number.sign == '+'
5041 && (generic_floating_point_number.low
5042 > generic_floating_point_number.leader))
5043 return TRUE;
5044
5045 return FALSE;
5046 }
5047
5048 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5049 0baBbbbbbc defgh000 00000000 00000000.
5050 The zero and minus-zero cases need special handling, since they can't be
5051 encoded in the "quarter-precision" float format, but can nonetheless be
5052 loaded as integer constants. */
5053
5054 static unsigned
5055 parse_qfloat_immediate (char **ccp, int *immed)
5056 {
5057 char *str = *ccp;
5058 char *fpnum;
5059 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5060 int found_fpchar = 0;
5061
5062 skip_past_char (&str, '#');
5063
5064 /* We must not accidentally parse an integer as a floating-point number. Make
5065 sure that the value we parse is not an integer by checking for special
5066 characters '.' or 'e'.
5067 FIXME: This is a horrible hack, but doing better is tricky because type
5068 information isn't in a very usable state at parse time. */
5069 fpnum = str;
5070 skip_whitespace (fpnum);
5071
5072 if (strncmp (fpnum, "0x", 2) == 0)
5073 return FAIL;
5074 else
5075 {
5076 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5077 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5078 {
5079 found_fpchar = 1;
5080 break;
5081 }
5082
5083 if (!found_fpchar)
5084 return FAIL;
5085 }
5086
5087 if ((str = atof_ieee (str, 's', words)) != NULL)
5088 {
5089 unsigned fpword = 0;
5090 int i;
5091
5092 /* Our FP word must be 32 bits (single-precision FP). */
5093 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5094 {
5095 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5096 fpword |= words[i];
5097 }
5098
5099 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5100 *immed = fpword;
5101 else
5102 return FAIL;
5103
5104 *ccp = str;
5105
5106 return SUCCESS;
5107 }
5108
5109 return FAIL;
5110 }
5111
5112 /* Shift operands. */
5113 enum shift_kind
5114 {
5115 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5116 };
5117
5118 struct asm_shift_name
5119 {
5120 const char *name;
5121 enum shift_kind kind;
5122 };
5123
5124 /* Third argument to parse_shift. */
5125 enum parse_shift_mode
5126 {
5127 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5128 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5129 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5130 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5131 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5132 };
5133
5134 /* Parse a <shift> specifier on an ARM data processing instruction.
5135 This has three forms:
5136
5137 (LSL|LSR|ASL|ASR|ROR) Rs
5138 (LSL|LSR|ASL|ASR|ROR) #imm
5139 RRX
5140
5141 Note that ASL is assimilated to LSL in the instruction encoding, and
5142 RRX to ROR #0 (which cannot be written as such). */
5143
5144 static int
5145 parse_shift (char **str, int i, enum parse_shift_mode mode)
5146 {
5147 const struct asm_shift_name *shift_name;
5148 enum shift_kind shift;
5149 char *s = *str;
5150 char *p = s;
5151 int reg;
5152
5153 for (p = *str; ISALPHA (*p); p++)
5154 ;
5155
5156 if (p == *str)
5157 {
5158 inst.error = _("shift expression expected");
5159 return FAIL;
5160 }
5161
5162 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5163 p - *str);
5164
5165 if (shift_name == NULL)
5166 {
5167 inst.error = _("shift expression expected");
5168 return FAIL;
5169 }
5170
5171 shift = shift_name->kind;
5172
5173 switch (mode)
5174 {
5175 case NO_SHIFT_RESTRICT:
5176 case SHIFT_IMMEDIATE: break;
5177
5178 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5179 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5180 {
5181 inst.error = _("'LSL' or 'ASR' required");
5182 return FAIL;
5183 }
5184 break;
5185
5186 case SHIFT_LSL_IMMEDIATE:
5187 if (shift != SHIFT_LSL)
5188 {
5189 inst.error = _("'LSL' required");
5190 return FAIL;
5191 }
5192 break;
5193
5194 case SHIFT_ASR_IMMEDIATE:
5195 if (shift != SHIFT_ASR)
5196 {
5197 inst.error = _("'ASR' required");
5198 return FAIL;
5199 }
5200 break;
5201
5202 default: abort ();
5203 }
5204
5205 if (shift != SHIFT_RRX)
5206 {
5207 /* Whitespace can appear here if the next thing is a bare digit. */
5208 skip_whitespace (p);
5209
5210 if (mode == NO_SHIFT_RESTRICT
5211 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5212 {
5213 inst.operands[i].imm = reg;
5214 inst.operands[i].immisreg = 1;
5215 }
5216 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5217 return FAIL;
5218 }
5219 inst.operands[i].shift_kind = shift;
5220 inst.operands[i].shifted = 1;
5221 *str = p;
5222 return SUCCESS;
5223 }
5224
5225 /* Parse a <shifter_operand> for an ARM data processing instruction:
5226
5227 #<immediate>
5228 #<immediate>, <rotate>
5229 <Rm>
5230 <Rm>, <shift>
5231
5232 where <shift> is defined by parse_shift above, and <rotate> is a
5233 multiple of 2 between 0 and 30. Validation of immediate operands
5234 is deferred to md_apply_fix. */
5235
5236 static int
5237 parse_shifter_operand (char **str, int i)
5238 {
5239 int value;
5240 expressionS exp;
5241
5242 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5243 {
5244 inst.operands[i].reg = value;
5245 inst.operands[i].isreg = 1;
5246
5247 /* parse_shift will override this if appropriate */
5248 inst.relocs[0].exp.X_op = O_constant;
5249 inst.relocs[0].exp.X_add_number = 0;
5250
5251 if (skip_past_comma (str) == FAIL)
5252 return SUCCESS;
5253
5254 /* Shift operation on register. */
5255 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5256 }
5257
5258 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5259 return FAIL;
5260
5261 if (skip_past_comma (str) == SUCCESS)
5262 {
5263 /* #x, y -- ie explicit rotation by Y. */
5264 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5265 return FAIL;
5266
5267 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5268 {
5269 inst.error = _("constant expression expected");
5270 return FAIL;
5271 }
5272
5273 value = exp.X_add_number;
5274 if (value < 0 || value > 30 || value % 2 != 0)
5275 {
5276 inst.error = _("invalid rotation");
5277 return FAIL;
5278 }
5279 if (inst.relocs[0].exp.X_add_number < 0
5280 || inst.relocs[0].exp.X_add_number > 255)
5281 {
5282 inst.error = _("invalid constant");
5283 return FAIL;
5284 }
5285
5286 /* Encode as specified. */
5287 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5288 return SUCCESS;
5289 }
5290
5291 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5292 inst.relocs[0].pc_rel = 0;
5293 return SUCCESS;
5294 }
5295
5296 /* Group relocation information. Each entry in the table contains the
5297 textual name of the relocation as may appear in assembler source
5298 and must end with a colon.
5299 Along with this textual name are the relocation codes to be used if
5300 the corresponding instruction is an ALU instruction (ADD or SUB only),
5301 an LDR, an LDRS, or an LDC. */
5302
5303 struct group_reloc_table_entry
5304 {
5305 const char *name;
5306 int alu_code;
5307 int ldr_code;
5308 int ldrs_code;
5309 int ldc_code;
5310 };
5311
5312 typedef enum
5313 {
5314 /* Varieties of non-ALU group relocation. */
5315
5316 GROUP_LDR,
5317 GROUP_LDRS,
5318 GROUP_LDC
5319 } group_reloc_type;
5320
5321 static struct group_reloc_table_entry group_reloc_table[] =
5322 { /* Program counter relative: */
5323 { "pc_g0_nc",
5324 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5325 0, /* LDR */
5326 0, /* LDRS */
5327 0 }, /* LDC */
5328 { "pc_g0",
5329 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5330 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5331 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5332 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5333 { "pc_g1_nc",
5334 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5335 0, /* LDR */
5336 0, /* LDRS */
5337 0 }, /* LDC */
5338 { "pc_g1",
5339 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5340 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5341 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5342 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5343 { "pc_g2",
5344 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5345 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5346 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5347 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5348 /* Section base relative */
5349 { "sb_g0_nc",
5350 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5351 0, /* LDR */
5352 0, /* LDRS */
5353 0 }, /* LDC */
5354 { "sb_g0",
5355 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5356 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5357 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5358 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5359 { "sb_g1_nc",
5360 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5361 0, /* LDR */
5362 0, /* LDRS */
5363 0 }, /* LDC */
5364 { "sb_g1",
5365 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5366 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5367 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5368 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5369 { "sb_g2",
5370 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5371 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5372 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5373 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5374 /* Absolute thumb alu relocations. */
5375 { "lower0_7",
5376 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5377 0, /* LDR. */
5378 0, /* LDRS. */
5379 0 }, /* LDC. */
5380 { "lower8_15",
5381 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5382 0, /* LDR. */
5383 0, /* LDRS. */
5384 0 }, /* LDC. */
5385 { "upper0_7",
5386 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5387 0, /* LDR. */
5388 0, /* LDRS. */
5389 0 }, /* LDC. */
5390 { "upper8_15",
5391 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5392 0, /* LDR. */
5393 0, /* LDRS. */
5394 0 } }; /* LDC. */
5395
5396 /* Given the address of a pointer pointing to the textual name of a group
5397 relocation as may appear in assembler source, attempt to find its details
5398 in group_reloc_table. The pointer will be updated to the character after
5399 the trailing colon. On failure, FAIL will be returned; SUCCESS
5400 otherwise. On success, *entry will be updated to point at the relevant
5401 group_reloc_table entry. */
5402
5403 static int
5404 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5405 {
5406 unsigned int i;
5407 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5408 {
5409 int length = strlen (group_reloc_table[i].name);
5410
5411 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5412 && (*str)[length] == ':')
5413 {
5414 *out = &group_reloc_table[i];
5415 *str += (length + 1);
5416 return SUCCESS;
5417 }
5418 }
5419
5420 return FAIL;
5421 }
5422
5423 /* Parse a <shifter_operand> for an ARM data processing instruction
5424 (as for parse_shifter_operand) where group relocations are allowed:
5425
5426 #<immediate>
5427 #<immediate>, <rotate>
5428 #:<group_reloc>:<expression>
5429 <Rm>
5430 <Rm>, <shift>
5431
5432 where <group_reloc> is one of the strings defined in group_reloc_table.
5433 The hashes are optional.
5434
5435 Everything else is as for parse_shifter_operand. */
5436
5437 static parse_operand_result
5438 parse_shifter_operand_group_reloc (char **str, int i)
5439 {
5440 /* Determine if we have the sequence of characters #: or just :
5441 coming next. If we do, then we check for a group relocation.
5442 If we don't, punt the whole lot to parse_shifter_operand. */
5443
5444 if (((*str)[0] == '#' && (*str)[1] == ':')
5445 || (*str)[0] == ':')
5446 {
5447 struct group_reloc_table_entry *entry;
5448
5449 if ((*str)[0] == '#')
5450 (*str) += 2;
5451 else
5452 (*str)++;
5453
5454 /* Try to parse a group relocation. Anything else is an error. */
5455 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5456 {
5457 inst.error = _("unknown group relocation");
5458 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5459 }
5460
5461 /* We now have the group relocation table entry corresponding to
5462 the name in the assembler source. Next, we parse the expression. */
5463 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5464 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5465
5466 /* Record the relocation type (always the ALU variant here). */
5467 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5468 gas_assert (inst.relocs[0].type != 0);
5469
5470 return PARSE_OPERAND_SUCCESS;
5471 }
5472 else
5473 return parse_shifter_operand (str, i) == SUCCESS
5474 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5475
5476 /* Never reached. */
5477 }
5478
5479 /* Parse a Neon alignment expression. Information is written to
5480 inst.operands[i]. We assume the initial ':' has been skipped.
5481
5482 align .imm = align << 8, .immisalign=1, .preind=0 */
5483 static parse_operand_result
5484 parse_neon_alignment (char **str, int i)
5485 {
5486 char *p = *str;
5487 expressionS exp;
5488
5489 my_get_expression (&exp, &p, GE_NO_PREFIX);
5490
5491 if (exp.X_op != O_constant)
5492 {
5493 inst.error = _("alignment must be constant");
5494 return PARSE_OPERAND_FAIL;
5495 }
5496
5497 inst.operands[i].imm = exp.X_add_number << 8;
5498 inst.operands[i].immisalign = 1;
5499 /* Alignments are not pre-indexes. */
5500 inst.operands[i].preind = 0;
5501
5502 *str = p;
5503 return PARSE_OPERAND_SUCCESS;
5504 }
5505
5506 /* Parse all forms of an ARM address expression. Information is written
5507 to inst.operands[i] and/or inst.relocs[0].
5508
5509 Preindexed addressing (.preind=1):
5510
5511 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5512 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5513 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5514 .shift_kind=shift .relocs[0].exp=shift_imm
5515
5516 These three may have a trailing ! which causes .writeback to be set also.
5517
5518 Postindexed addressing (.postind=1, .writeback=1):
5519
5520 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5521 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5522 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5523 .shift_kind=shift .relocs[0].exp=shift_imm
5524
5525 Unindexed addressing (.preind=0, .postind=0):
5526
5527 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5528
5529 Other:
5530
5531 [Rn]{!} shorthand for [Rn,#0]{!}
5532 =immediate .isreg=0 .relocs[0].exp=immediate
5533 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5534
5535 It is the caller's responsibility to check for addressing modes not
5536 supported by the instruction, and to set inst.relocs[0].type. */
5537
5538 static parse_operand_result
5539 parse_address_main (char **str, int i, int group_relocations,
5540 group_reloc_type group_type)
5541 {
5542 char *p = *str;
5543 int reg;
5544
5545 if (skip_past_char (&p, '[') == FAIL)
5546 {
5547 if (skip_past_char (&p, '=') == FAIL)
5548 {
5549 /* Bare address - translate to PC-relative offset. */
5550 inst.relocs[0].pc_rel = 1;
5551 inst.operands[i].reg = REG_PC;
5552 inst.operands[i].isreg = 1;
5553 inst.operands[i].preind = 1;
5554
5555 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5556 return PARSE_OPERAND_FAIL;
5557 }
5558 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5559 /*allow_symbol_p=*/TRUE))
5560 return PARSE_OPERAND_FAIL;
5561
5562 *str = p;
5563 return PARSE_OPERAND_SUCCESS;
5564 }
5565
5566 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5567 skip_whitespace (p);
5568
5569 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5570 {
5571 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5572 return PARSE_OPERAND_FAIL;
5573 }
5574 inst.operands[i].reg = reg;
5575 inst.operands[i].isreg = 1;
5576
5577 if (skip_past_comma (&p) == SUCCESS)
5578 {
5579 inst.operands[i].preind = 1;
5580
5581 if (*p == '+') p++;
5582 else if (*p == '-') p++, inst.operands[i].negative = 1;
5583
5584 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5585 {
5586 inst.operands[i].imm = reg;
5587 inst.operands[i].immisreg = 1;
5588
5589 if (skip_past_comma (&p) == SUCCESS)
5590 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5591 return PARSE_OPERAND_FAIL;
5592 }
5593 else if (skip_past_char (&p, ':') == SUCCESS)
5594 {
5595 /* FIXME: '@' should be used here, but it's filtered out by generic
5596 code before we get to see it here. This may be subject to
5597 change. */
5598 parse_operand_result result = parse_neon_alignment (&p, i);
5599
5600 if (result != PARSE_OPERAND_SUCCESS)
5601 return result;
5602 }
5603 else
5604 {
5605 if (inst.operands[i].negative)
5606 {
5607 inst.operands[i].negative = 0;
5608 p--;
5609 }
5610
5611 if (group_relocations
5612 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5613 {
5614 struct group_reloc_table_entry *entry;
5615
5616 /* Skip over the #: or : sequence. */
5617 if (*p == '#')
5618 p += 2;
5619 else
5620 p++;
5621
5622 /* Try to parse a group relocation. Anything else is an
5623 error. */
5624 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5625 {
5626 inst.error = _("unknown group relocation");
5627 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5628 }
5629
5630 /* We now have the group relocation table entry corresponding to
5631 the name in the assembler source. Next, we parse the
5632 expression. */
5633 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5634 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5635
5636 /* Record the relocation type. */
5637 switch (group_type)
5638 {
5639 case GROUP_LDR:
5640 inst.relocs[0].type
5641 = (bfd_reloc_code_real_type) entry->ldr_code;
5642 break;
5643
5644 case GROUP_LDRS:
5645 inst.relocs[0].type
5646 = (bfd_reloc_code_real_type) entry->ldrs_code;
5647 break;
5648
5649 case GROUP_LDC:
5650 inst.relocs[0].type
5651 = (bfd_reloc_code_real_type) entry->ldc_code;
5652 break;
5653
5654 default:
5655 gas_assert (0);
5656 }
5657
5658 if (inst.relocs[0].type == 0)
5659 {
5660 inst.error = _("this group relocation is not allowed on this instruction");
5661 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5662 }
5663 }
5664 else
5665 {
5666 char *q = p;
5667
5668 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5669 return PARSE_OPERAND_FAIL;
5670 /* If the offset is 0, find out if it's a +0 or -0. */
5671 if (inst.relocs[0].exp.X_op == O_constant
5672 && inst.relocs[0].exp.X_add_number == 0)
5673 {
5674 skip_whitespace (q);
5675 if (*q == '#')
5676 {
5677 q++;
5678 skip_whitespace (q);
5679 }
5680 if (*q == '-')
5681 inst.operands[i].negative = 1;
5682 }
5683 }
5684 }
5685 }
5686 else if (skip_past_char (&p, ':') == SUCCESS)
5687 {
5688 /* FIXME: '@' should be used here, but it's filtered out by generic code
5689 before we get to see it here. This may be subject to change. */
5690 parse_operand_result result = parse_neon_alignment (&p, i);
5691
5692 if (result != PARSE_OPERAND_SUCCESS)
5693 return result;
5694 }
5695
5696 if (skip_past_char (&p, ']') == FAIL)
5697 {
5698 inst.error = _("']' expected");
5699 return PARSE_OPERAND_FAIL;
5700 }
5701
5702 if (skip_past_char (&p, '!') == SUCCESS)
5703 inst.operands[i].writeback = 1;
5704
5705 else if (skip_past_comma (&p) == SUCCESS)
5706 {
5707 if (skip_past_char (&p, '{') == SUCCESS)
5708 {
5709 /* [Rn], {expr} - unindexed, with option */
5710 if (parse_immediate (&p, &inst.operands[i].imm,
5711 0, 255, TRUE) == FAIL)
5712 return PARSE_OPERAND_FAIL;
5713
5714 if (skip_past_char (&p, '}') == FAIL)
5715 {
5716 inst.error = _("'}' expected at end of 'option' field");
5717 return PARSE_OPERAND_FAIL;
5718 }
5719 if (inst.operands[i].preind)
5720 {
5721 inst.error = _("cannot combine index with option");
5722 return PARSE_OPERAND_FAIL;
5723 }
5724 *str = p;
5725 return PARSE_OPERAND_SUCCESS;
5726 }
5727 else
5728 {
5729 inst.operands[i].postind = 1;
5730 inst.operands[i].writeback = 1;
5731
5732 if (inst.operands[i].preind)
5733 {
5734 inst.error = _("cannot combine pre- and post-indexing");
5735 return PARSE_OPERAND_FAIL;
5736 }
5737
5738 if (*p == '+') p++;
5739 else if (*p == '-') p++, inst.operands[i].negative = 1;
5740
5741 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5742 {
5743 /* We might be using the immediate for alignment already. If we
5744 are, OR the register number into the low-order bits. */
5745 if (inst.operands[i].immisalign)
5746 inst.operands[i].imm |= reg;
5747 else
5748 inst.operands[i].imm = reg;
5749 inst.operands[i].immisreg = 1;
5750
5751 if (skip_past_comma (&p) == SUCCESS)
5752 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5753 return PARSE_OPERAND_FAIL;
5754 }
5755 else
5756 {
5757 char *q = p;
5758
5759 if (inst.operands[i].negative)
5760 {
5761 inst.operands[i].negative = 0;
5762 p--;
5763 }
5764 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5765 return PARSE_OPERAND_FAIL;
5766 /* If the offset is 0, find out if it's a +0 or -0. */
5767 if (inst.relocs[0].exp.X_op == O_constant
5768 && inst.relocs[0].exp.X_add_number == 0)
5769 {
5770 skip_whitespace (q);
5771 if (*q == '#')
5772 {
5773 q++;
5774 skip_whitespace (q);
5775 }
5776 if (*q == '-')
5777 inst.operands[i].negative = 1;
5778 }
5779 }
5780 }
5781 }
5782
5783 /* If at this point neither .preind nor .postind is set, we have a
5784 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5785 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5786 {
5787 inst.operands[i].preind = 1;
5788 inst.relocs[0].exp.X_op = O_constant;
5789 inst.relocs[0].exp.X_add_number = 0;
5790 }
5791 *str = p;
5792 return PARSE_OPERAND_SUCCESS;
5793 }
5794
5795 static int
5796 parse_address (char **str, int i)
5797 {
5798 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5799 ? SUCCESS : FAIL;
5800 }
5801
5802 static parse_operand_result
5803 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5804 {
5805 return parse_address_main (str, i, 1, type);
5806 }
5807
5808 /* Parse an operand for a MOVW or MOVT instruction. */
5809 static int
5810 parse_half (char **str)
5811 {
5812 char * p;
5813
5814 p = *str;
5815 skip_past_char (&p, '#');
5816 if (strncasecmp (p, ":lower16:", 9) == 0)
5817 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
5818 else if (strncasecmp (p, ":upper16:", 9) == 0)
5819 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
5820
5821 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
5822 {
5823 p += 9;
5824 skip_whitespace (p);
5825 }
5826
5827 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5828 return FAIL;
5829
5830 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
5831 {
5832 if (inst.relocs[0].exp.X_op != O_constant)
5833 {
5834 inst.error = _("constant expression expected");
5835 return FAIL;
5836 }
5837 if (inst.relocs[0].exp.X_add_number < 0
5838 || inst.relocs[0].exp.X_add_number > 0xffff)
5839 {
5840 inst.error = _("immediate value out of range");
5841 return FAIL;
5842 }
5843 }
5844 *str = p;
5845 return SUCCESS;
5846 }
5847
5848 /* Miscellaneous. */
5849
5850 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5851 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5852 static int
5853 parse_psr (char **str, bfd_boolean lhs)
5854 {
5855 char *p;
5856 unsigned long psr_field;
5857 const struct asm_psr *psr;
5858 char *start;
5859 bfd_boolean is_apsr = FALSE;
5860 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5861
5862 /* PR gas/12698: If the user has specified -march=all then m_profile will
5863 be TRUE, but we want to ignore it in this case as we are building for any
5864 CPU type, including non-m variants. */
5865 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5866 m_profile = FALSE;
5867
5868 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5869 feature for ease of use and backwards compatibility. */
5870 p = *str;
5871 if (strncasecmp (p, "SPSR", 4) == 0)
5872 {
5873 if (m_profile)
5874 goto unsupported_psr;
5875
5876 psr_field = SPSR_BIT;
5877 }
5878 else if (strncasecmp (p, "CPSR", 4) == 0)
5879 {
5880 if (m_profile)
5881 goto unsupported_psr;
5882
5883 psr_field = 0;
5884 }
5885 else if (strncasecmp (p, "APSR", 4) == 0)
5886 {
5887 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5888 and ARMv7-R architecture CPUs. */
5889 is_apsr = TRUE;
5890 psr_field = 0;
5891 }
5892 else if (m_profile)
5893 {
5894 start = p;
5895 do
5896 p++;
5897 while (ISALNUM (*p) || *p == '_');
5898
5899 if (strncasecmp (start, "iapsr", 5) == 0
5900 || strncasecmp (start, "eapsr", 5) == 0
5901 || strncasecmp (start, "xpsr", 4) == 0
5902 || strncasecmp (start, "psr", 3) == 0)
5903 p = start + strcspn (start, "rR") + 1;
5904
5905 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5906 p - start);
5907
5908 if (!psr)
5909 return FAIL;
5910
5911 /* If APSR is being written, a bitfield may be specified. Note that
5912 APSR itself is handled above. */
5913 if (psr->field <= 3)
5914 {
5915 psr_field = psr->field;
5916 is_apsr = TRUE;
5917 goto check_suffix;
5918 }
5919
5920 *str = p;
5921 /* M-profile MSR instructions have the mask field set to "10", except
5922 *PSR variants which modify APSR, which may use a different mask (and
5923 have been handled already). Do that by setting the PSR_f field
5924 here. */
5925 return psr->field | (lhs ? PSR_f : 0);
5926 }
5927 else
5928 goto unsupported_psr;
5929
5930 p += 4;
5931 check_suffix:
5932 if (*p == '_')
5933 {
5934 /* A suffix follows. */
5935 p++;
5936 start = p;
5937
5938 do
5939 p++;
5940 while (ISALNUM (*p) || *p == '_');
5941
5942 if (is_apsr)
5943 {
5944 /* APSR uses a notation for bits, rather than fields. */
5945 unsigned int nzcvq_bits = 0;
5946 unsigned int g_bit = 0;
5947 char *bit;
5948
5949 for (bit = start; bit != p; bit++)
5950 {
5951 switch (TOLOWER (*bit))
5952 {
5953 case 'n':
5954 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5955 break;
5956
5957 case 'z':
5958 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5959 break;
5960
5961 case 'c':
5962 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5963 break;
5964
5965 case 'v':
5966 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5967 break;
5968
5969 case 'q':
5970 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5971 break;
5972
5973 case 'g':
5974 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5975 break;
5976
5977 default:
5978 inst.error = _("unexpected bit specified after APSR");
5979 return FAIL;
5980 }
5981 }
5982
5983 if (nzcvq_bits == 0x1f)
5984 psr_field |= PSR_f;
5985
5986 if (g_bit == 0x1)
5987 {
5988 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5989 {
5990 inst.error = _("selected processor does not "
5991 "support DSP extension");
5992 return FAIL;
5993 }
5994
5995 psr_field |= PSR_s;
5996 }
5997
5998 if ((nzcvq_bits & 0x20) != 0
5999 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6000 || (g_bit & 0x2) != 0)
6001 {
6002 inst.error = _("bad bitmask specified after APSR");
6003 return FAIL;
6004 }
6005 }
6006 else
6007 {
6008 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6009 p - start);
6010 if (!psr)
6011 goto error;
6012
6013 psr_field |= psr->field;
6014 }
6015 }
6016 else
6017 {
6018 if (ISALNUM (*p))
6019 goto error; /* Garbage after "[CS]PSR". */
6020
6021 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6022 is deprecated, but allow it anyway. */
6023 if (is_apsr && lhs)
6024 {
6025 psr_field |= PSR_f;
6026 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6027 "deprecated"));
6028 }
6029 else if (!m_profile)
6030 /* These bits are never right for M-profile devices: don't set them
6031 (only code paths which read/write APSR reach here). */
6032 psr_field |= (PSR_c | PSR_f);
6033 }
6034 *str = p;
6035 return psr_field;
6036
6037 unsupported_psr:
6038 inst.error = _("selected processor does not support requested special "
6039 "purpose register");
6040 return FAIL;
6041
6042 error:
6043 inst.error = _("flag for {c}psr instruction expected");
6044 return FAIL;
6045 }
6046
6047 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6048 value suitable for splatting into the AIF field of the instruction. */
6049
6050 static int
6051 parse_cps_flags (char **str)
6052 {
6053 int val = 0;
6054 int saw_a_flag = 0;
6055 char *s = *str;
6056
6057 for (;;)
6058 switch (*s++)
6059 {
6060 case '\0': case ',':
6061 goto done;
6062
6063 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6064 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6065 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6066
6067 default:
6068 inst.error = _("unrecognized CPS flag");
6069 return FAIL;
6070 }
6071
6072 done:
6073 if (saw_a_flag == 0)
6074 {
6075 inst.error = _("missing CPS flags");
6076 return FAIL;
6077 }
6078
6079 *str = s - 1;
6080 return val;
6081 }
6082
6083 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6084 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6085
6086 static int
6087 parse_endian_specifier (char **str)
6088 {
6089 int little_endian;
6090 char *s = *str;
6091
6092 if (strncasecmp (s, "BE", 2))
6093 little_endian = 0;
6094 else if (strncasecmp (s, "LE", 2))
6095 little_endian = 1;
6096 else
6097 {
6098 inst.error = _("valid endian specifiers are be or le");
6099 return FAIL;
6100 }
6101
6102 if (ISALNUM (s[2]) || s[2] == '_')
6103 {
6104 inst.error = _("valid endian specifiers are be or le");
6105 return FAIL;
6106 }
6107
6108 *str = s + 2;
6109 return little_endian;
6110 }
6111
6112 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6113 value suitable for poking into the rotate field of an sxt or sxta
6114 instruction, or FAIL on error. */
6115
6116 static int
6117 parse_ror (char **str)
6118 {
6119 int rot;
6120 char *s = *str;
6121
6122 if (strncasecmp (s, "ROR", 3) == 0)
6123 s += 3;
6124 else
6125 {
6126 inst.error = _("missing rotation field after comma");
6127 return FAIL;
6128 }
6129
6130 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6131 return FAIL;
6132
6133 switch (rot)
6134 {
6135 case 0: *str = s; return 0x0;
6136 case 8: *str = s; return 0x1;
6137 case 16: *str = s; return 0x2;
6138 case 24: *str = s; return 0x3;
6139
6140 default:
6141 inst.error = _("rotation can only be 0, 8, 16, or 24");
6142 return FAIL;
6143 }
6144 }
6145
6146 /* Parse a conditional code (from conds[] below). The value returned is in the
6147 range 0 .. 14, or FAIL. */
6148 static int
6149 parse_cond (char **str)
6150 {
6151 char *q;
6152 const struct asm_cond *c;
6153 int n;
6154 /* Condition codes are always 2 characters, so matching up to
6155 3 characters is sufficient. */
6156 char cond[3];
6157
6158 q = *str;
6159 n = 0;
6160 while (ISALPHA (*q) && n < 3)
6161 {
6162 cond[n] = TOLOWER (*q);
6163 q++;
6164 n++;
6165 }
6166
6167 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6168 if (!c)
6169 {
6170 inst.error = _("condition required");
6171 return FAIL;
6172 }
6173
6174 *str = q;
6175 return c->value;
6176 }
6177
6178 /* Record a use of the given feature. */
6179 static void
6180 record_feature_use (const arm_feature_set *feature)
6181 {
6182 if (thumb_mode)
6183 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6184 else
6185 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6186 }
6187
6188 /* If the given feature is currently allowed, mark it as used and return TRUE.
6189 Return FALSE otherwise. */
6190 static bfd_boolean
6191 mark_feature_used (const arm_feature_set *feature)
6192 {
6193 /* Ensure the option is currently allowed. */
6194 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6195 return FALSE;
6196
6197 /* Add the appropriate architecture feature for the barrier option used. */
6198 record_feature_use (feature);
6199
6200 return TRUE;
6201 }
6202
6203 /* Parse an option for a barrier instruction. Returns the encoding for the
6204 option, or FAIL. */
6205 static int
6206 parse_barrier (char **str)
6207 {
6208 char *p, *q;
6209 const struct asm_barrier_opt *o;
6210
6211 p = q = *str;
6212 while (ISALPHA (*q))
6213 q++;
6214
6215 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6216 q - p);
6217 if (!o)
6218 return FAIL;
6219
6220 if (!mark_feature_used (&o->arch))
6221 return FAIL;
6222
6223 *str = q;
6224 return o->value;
6225 }
6226
6227 /* Parse the operands of a table branch instruction. Similar to a memory
6228 operand. */
6229 static int
6230 parse_tb (char **str)
6231 {
6232 char * p = *str;
6233 int reg;
6234
6235 if (skip_past_char (&p, '[') == FAIL)
6236 {
6237 inst.error = _("'[' expected");
6238 return FAIL;
6239 }
6240
6241 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6242 {
6243 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6244 return FAIL;
6245 }
6246 inst.operands[0].reg = reg;
6247
6248 if (skip_past_comma (&p) == FAIL)
6249 {
6250 inst.error = _("',' expected");
6251 return FAIL;
6252 }
6253
6254 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6255 {
6256 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6257 return FAIL;
6258 }
6259 inst.operands[0].imm = reg;
6260
6261 if (skip_past_comma (&p) == SUCCESS)
6262 {
6263 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6264 return FAIL;
6265 if (inst.relocs[0].exp.X_add_number != 1)
6266 {
6267 inst.error = _("invalid shift");
6268 return FAIL;
6269 }
6270 inst.operands[0].shifted = 1;
6271 }
6272
6273 if (skip_past_char (&p, ']') == FAIL)
6274 {
6275 inst.error = _("']' expected");
6276 return FAIL;
6277 }
6278 *str = p;
6279 return SUCCESS;
6280 }
6281
6282 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6283 information on the types the operands can take and how they are encoded.
6284 Up to four operands may be read; this function handles setting the
6285 ".present" field for each read operand itself.
6286 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6287 else returns FAIL. */
6288
6289 static int
6290 parse_neon_mov (char **str, int *which_operand)
6291 {
6292 int i = *which_operand, val;
6293 enum arm_reg_type rtype;
6294 char *ptr = *str;
6295 struct neon_type_el optype;
6296
6297 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6298 {
6299 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6300 inst.operands[i].reg = val;
6301 inst.operands[i].isscalar = 1;
6302 inst.operands[i].vectype = optype;
6303 inst.operands[i++].present = 1;
6304
6305 if (skip_past_comma (&ptr) == FAIL)
6306 goto wanted_comma;
6307
6308 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6309 goto wanted_arm;
6310
6311 inst.operands[i].reg = val;
6312 inst.operands[i].isreg = 1;
6313 inst.operands[i].present = 1;
6314 }
6315 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6316 != FAIL)
6317 {
6318 /* Cases 0, 1, 2, 3, 5 (D only). */
6319 if (skip_past_comma (&ptr) == FAIL)
6320 goto wanted_comma;
6321
6322 inst.operands[i].reg = val;
6323 inst.operands[i].isreg = 1;
6324 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6325 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6326 inst.operands[i].isvec = 1;
6327 inst.operands[i].vectype = optype;
6328 inst.operands[i++].present = 1;
6329
6330 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6331 {
6332 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6333 Case 13: VMOV <Sd>, <Rm> */
6334 inst.operands[i].reg = val;
6335 inst.operands[i].isreg = 1;
6336 inst.operands[i].present = 1;
6337
6338 if (rtype == REG_TYPE_NQ)
6339 {
6340 first_error (_("can't use Neon quad register here"));
6341 return FAIL;
6342 }
6343 else if (rtype != REG_TYPE_VFS)
6344 {
6345 i++;
6346 if (skip_past_comma (&ptr) == FAIL)
6347 goto wanted_comma;
6348 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6349 goto wanted_arm;
6350 inst.operands[i].reg = val;
6351 inst.operands[i].isreg = 1;
6352 inst.operands[i].present = 1;
6353 }
6354 }
6355 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6356 &optype)) != FAIL)
6357 {
6358 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6359 Case 1: VMOV<c><q> <Dd>, <Dm>
6360 Case 8: VMOV.F32 <Sd>, <Sm>
6361 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6362
6363 inst.operands[i].reg = val;
6364 inst.operands[i].isreg = 1;
6365 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6366 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6367 inst.operands[i].isvec = 1;
6368 inst.operands[i].vectype = optype;
6369 inst.operands[i].present = 1;
6370
6371 if (skip_past_comma (&ptr) == SUCCESS)
6372 {
6373 /* Case 15. */
6374 i++;
6375
6376 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6377 goto wanted_arm;
6378
6379 inst.operands[i].reg = val;
6380 inst.operands[i].isreg = 1;
6381 inst.operands[i++].present = 1;
6382
6383 if (skip_past_comma (&ptr) == FAIL)
6384 goto wanted_comma;
6385
6386 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6387 goto wanted_arm;
6388
6389 inst.operands[i].reg = val;
6390 inst.operands[i].isreg = 1;
6391 inst.operands[i].present = 1;
6392 }
6393 }
6394 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6395 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6396 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6397 Case 10: VMOV.F32 <Sd>, #<imm>
6398 Case 11: VMOV.F64 <Dd>, #<imm> */
6399 inst.operands[i].immisfloat = 1;
6400 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6401 == SUCCESS)
6402 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6403 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6404 ;
6405 else
6406 {
6407 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6408 return FAIL;
6409 }
6410 }
6411 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6412 {
6413 /* Cases 6, 7. */
6414 inst.operands[i].reg = val;
6415 inst.operands[i].isreg = 1;
6416 inst.operands[i++].present = 1;
6417
6418 if (skip_past_comma (&ptr) == FAIL)
6419 goto wanted_comma;
6420
6421 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6422 {
6423 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6424 inst.operands[i].reg = val;
6425 inst.operands[i].isscalar = 1;
6426 inst.operands[i].present = 1;
6427 inst.operands[i].vectype = optype;
6428 }
6429 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6430 {
6431 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6432 inst.operands[i].reg = val;
6433 inst.operands[i].isreg = 1;
6434 inst.operands[i++].present = 1;
6435
6436 if (skip_past_comma (&ptr) == FAIL)
6437 goto wanted_comma;
6438
6439 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6440 == FAIL)
6441 {
6442 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6443 return FAIL;
6444 }
6445
6446 inst.operands[i].reg = val;
6447 inst.operands[i].isreg = 1;
6448 inst.operands[i].isvec = 1;
6449 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6450 inst.operands[i].vectype = optype;
6451 inst.operands[i].present = 1;
6452
6453 if (rtype == REG_TYPE_VFS)
6454 {
6455 /* Case 14. */
6456 i++;
6457 if (skip_past_comma (&ptr) == FAIL)
6458 goto wanted_comma;
6459 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6460 &optype)) == FAIL)
6461 {
6462 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6463 return FAIL;
6464 }
6465 inst.operands[i].reg = val;
6466 inst.operands[i].isreg = 1;
6467 inst.operands[i].isvec = 1;
6468 inst.operands[i].issingle = 1;
6469 inst.operands[i].vectype = optype;
6470 inst.operands[i].present = 1;
6471 }
6472 }
6473 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6474 != FAIL)
6475 {
6476 /* Case 13. */
6477 inst.operands[i].reg = val;
6478 inst.operands[i].isreg = 1;
6479 inst.operands[i].isvec = 1;
6480 inst.operands[i].issingle = 1;
6481 inst.operands[i].vectype = optype;
6482 inst.operands[i].present = 1;
6483 }
6484 }
6485 else
6486 {
6487 first_error (_("parse error"));
6488 return FAIL;
6489 }
6490
6491 /* Successfully parsed the operands. Update args. */
6492 *which_operand = i;
6493 *str = ptr;
6494 return SUCCESS;
6495
6496 wanted_comma:
6497 first_error (_("expected comma"));
6498 return FAIL;
6499
6500 wanted_arm:
6501 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6502 return FAIL;
6503 }
6504
6505 /* Use this macro when the operand constraints are different
6506 for ARM and THUMB (e.g. ldrd). */
6507 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6508 ((arm_operand) | ((thumb_operand) << 16))
6509
6510 /* Matcher codes for parse_operands. */
6511 enum operand_parse_code
6512 {
6513 OP_stop, /* end of line */
6514
6515 OP_RR, /* ARM register */
6516 OP_RRnpc, /* ARM register, not r15 */
6517 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6518 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6519 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6520 optional trailing ! */
6521 OP_RRw, /* ARM register, not r15, optional trailing ! */
6522 OP_RCP, /* Coprocessor number */
6523 OP_RCN, /* Coprocessor register */
6524 OP_RF, /* FPA register */
6525 OP_RVS, /* VFP single precision register */
6526 OP_RVD, /* VFP double precision register (0..15) */
6527 OP_RND, /* Neon double precision register (0..31) */
6528 OP_RNQ, /* Neon quad precision register */
6529 OP_RVSD, /* VFP single or double precision register */
6530 OP_RNSD, /* Neon single or double precision register */
6531 OP_RNDQ, /* Neon double or quad precision register */
6532 OP_RNSDQ, /* Neon single, double or quad precision register */
6533 OP_RNSC, /* Neon scalar D[X] */
6534 OP_RVC, /* VFP control register */
6535 OP_RMF, /* Maverick F register */
6536 OP_RMD, /* Maverick D register */
6537 OP_RMFX, /* Maverick FX register */
6538 OP_RMDX, /* Maverick DX register */
6539 OP_RMAX, /* Maverick AX register */
6540 OP_RMDS, /* Maverick DSPSC register */
6541 OP_RIWR, /* iWMMXt wR register */
6542 OP_RIWC, /* iWMMXt wC register */
6543 OP_RIWG, /* iWMMXt wCG register */
6544 OP_RXA, /* XScale accumulator register */
6545
6546 OP_REGLST, /* ARM register list */
6547 OP_VRSLST, /* VFP single-precision register list */
6548 OP_VRDLST, /* VFP double-precision register list */
6549 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6550 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6551 OP_NSTRLST, /* Neon element/structure list */
6552
6553 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6554 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6555 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6556 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6557 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6558 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6559 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6560 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6561 OP_VMOV, /* Neon VMOV operands. */
6562 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6563 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6564 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6565
6566 OP_I0, /* immediate zero */
6567 OP_I7, /* immediate value 0 .. 7 */
6568 OP_I15, /* 0 .. 15 */
6569 OP_I16, /* 1 .. 16 */
6570 OP_I16z, /* 0 .. 16 */
6571 OP_I31, /* 0 .. 31 */
6572 OP_I31w, /* 0 .. 31, optional trailing ! */
6573 OP_I32, /* 1 .. 32 */
6574 OP_I32z, /* 0 .. 32 */
6575 OP_I63, /* 0 .. 63 */
6576 OP_I63s, /* -64 .. 63 */
6577 OP_I64, /* 1 .. 64 */
6578 OP_I64z, /* 0 .. 64 */
6579 OP_I255, /* 0 .. 255 */
6580
6581 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6582 OP_I7b, /* 0 .. 7 */
6583 OP_I15b, /* 0 .. 15 */
6584 OP_I31b, /* 0 .. 31 */
6585
6586 OP_SH, /* shifter operand */
6587 OP_SHG, /* shifter operand with possible group relocation */
6588 OP_ADDR, /* Memory address expression (any mode) */
6589 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6590 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6591 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6592 OP_EXP, /* arbitrary expression */
6593 OP_EXPi, /* same, with optional immediate prefix */
6594 OP_EXPr, /* same, with optional relocation suffix */
6595 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6596 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6597 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6598 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6599
6600 OP_CPSF, /* CPS flags */
6601 OP_ENDI, /* Endianness specifier */
6602 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6603 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6604 OP_COND, /* conditional code */
6605 OP_TB, /* Table branch. */
6606
6607 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6608
6609 OP_RRnpc_I0, /* ARM register or literal 0 */
6610 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
6611 OP_RR_EXi, /* ARM register or expression with imm prefix */
6612 OP_RF_IF, /* FPA register or immediate */
6613 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6614 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6615
6616 /* Optional operands. */
6617 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6618 OP_oI31b, /* 0 .. 31 */
6619 OP_oI32b, /* 1 .. 32 */
6620 OP_oI32z, /* 0 .. 32 */
6621 OP_oIffffb, /* 0 .. 65535 */
6622 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6623
6624 OP_oRR, /* ARM register */
6625 OP_oRRnpc, /* ARM register, not the PC */
6626 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6627 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6628 OP_oRND, /* Optional Neon double precision register */
6629 OP_oRNQ, /* Optional Neon quad precision register */
6630 OP_oRNDQ, /* Optional Neon double or quad precision register */
6631 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6632 OP_oSHll, /* LSL immediate */
6633 OP_oSHar, /* ASR immediate */
6634 OP_oSHllar, /* LSL or ASR immediate */
6635 OP_oROR, /* ROR 0/8/16/24 */
6636 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6637
6638 /* Some pre-defined mixed (ARM/THUMB) operands. */
6639 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6640 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6641 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6642
6643 OP_FIRST_OPTIONAL = OP_oI7b
6644 };
6645
6646 /* Generic instruction operand parser. This does no encoding and no
6647 semantic validation; it merely squirrels values away in the inst
6648 structure. Returns SUCCESS or FAIL depending on whether the
6649 specified grammar matched. */
6650 static int
6651 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6652 {
6653 unsigned const int *upat = pattern;
6654 char *backtrack_pos = 0;
6655 const char *backtrack_error = 0;
6656 int i, val = 0, backtrack_index = 0;
6657 enum arm_reg_type rtype;
6658 parse_operand_result result;
6659 unsigned int op_parse_code;
6660
6661 #define po_char_or_fail(chr) \
6662 do \
6663 { \
6664 if (skip_past_char (&str, chr) == FAIL) \
6665 goto bad_args; \
6666 } \
6667 while (0)
6668
6669 #define po_reg_or_fail(regtype) \
6670 do \
6671 { \
6672 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6673 & inst.operands[i].vectype); \
6674 if (val == FAIL) \
6675 { \
6676 first_error (_(reg_expected_msgs[regtype])); \
6677 goto failure; \
6678 } \
6679 inst.operands[i].reg = val; \
6680 inst.operands[i].isreg = 1; \
6681 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6682 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6683 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6684 || rtype == REG_TYPE_VFD \
6685 || rtype == REG_TYPE_NQ); \
6686 } \
6687 while (0)
6688
6689 #define po_reg_or_goto(regtype, label) \
6690 do \
6691 { \
6692 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6693 & inst.operands[i].vectype); \
6694 if (val == FAIL) \
6695 goto label; \
6696 \
6697 inst.operands[i].reg = val; \
6698 inst.operands[i].isreg = 1; \
6699 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6700 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6701 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6702 || rtype == REG_TYPE_VFD \
6703 || rtype == REG_TYPE_NQ); \
6704 } \
6705 while (0)
6706
6707 #define po_imm_or_fail(min, max, popt) \
6708 do \
6709 { \
6710 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6711 goto failure; \
6712 inst.operands[i].imm = val; \
6713 } \
6714 while (0)
6715
6716 #define po_scalar_or_goto(elsz, label) \
6717 do \
6718 { \
6719 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6720 if (val == FAIL) \
6721 goto label; \
6722 inst.operands[i].reg = val; \
6723 inst.operands[i].isscalar = 1; \
6724 } \
6725 while (0)
6726
6727 #define po_misc_or_fail(expr) \
6728 do \
6729 { \
6730 if (expr) \
6731 goto failure; \
6732 } \
6733 while (0)
6734
6735 #define po_misc_or_fail_no_backtrack(expr) \
6736 do \
6737 { \
6738 result = expr; \
6739 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6740 backtrack_pos = 0; \
6741 if (result != PARSE_OPERAND_SUCCESS) \
6742 goto failure; \
6743 } \
6744 while (0)
6745
6746 #define po_barrier_or_imm(str) \
6747 do \
6748 { \
6749 val = parse_barrier (&str); \
6750 if (val == FAIL && ! ISALPHA (*str)) \
6751 goto immediate; \
6752 if (val == FAIL \
6753 /* ISB can only take SY as an option. */ \
6754 || ((inst.instruction & 0xf0) == 0x60 \
6755 && val != 0xf)) \
6756 { \
6757 inst.error = _("invalid barrier type"); \
6758 backtrack_pos = 0; \
6759 goto failure; \
6760 } \
6761 } \
6762 while (0)
6763
6764 skip_whitespace (str);
6765
6766 for (i = 0; upat[i] != OP_stop; i++)
6767 {
6768 op_parse_code = upat[i];
6769 if (op_parse_code >= 1<<16)
6770 op_parse_code = thumb ? (op_parse_code >> 16)
6771 : (op_parse_code & ((1<<16)-1));
6772
6773 if (op_parse_code >= OP_FIRST_OPTIONAL)
6774 {
6775 /* Remember where we are in case we need to backtrack. */
6776 gas_assert (!backtrack_pos);
6777 backtrack_pos = str;
6778 backtrack_error = inst.error;
6779 backtrack_index = i;
6780 }
6781
6782 if (i > 0 && (i > 1 || inst.operands[0].present))
6783 po_char_or_fail (',');
6784
6785 switch (op_parse_code)
6786 {
6787 /* Registers */
6788 case OP_oRRnpc:
6789 case OP_oRRnpcsp:
6790 case OP_RRnpc:
6791 case OP_RRnpcsp:
6792 case OP_oRR:
6793 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6794 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6795 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6796 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6797 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6798 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6799 case OP_oRND:
6800 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6801 case OP_RVC:
6802 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6803 break;
6804 /* Also accept generic coprocessor regs for unknown registers. */
6805 coproc_reg:
6806 po_reg_or_fail (REG_TYPE_CN);
6807 break;
6808 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6809 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6810 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6811 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6812 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6813 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6814 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6815 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6816 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6817 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6818 case OP_oRNQ:
6819 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6820 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
6821 case OP_oRNDQ:
6822 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6823 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6824 case OP_oRNSDQ:
6825 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6826
6827 /* Neon scalar. Using an element size of 8 means that some invalid
6828 scalars are accepted here, so deal with those in later code. */
6829 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6830
6831 case OP_RNDQ_I0:
6832 {
6833 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6834 break;
6835 try_imm0:
6836 po_imm_or_fail (0, 0, TRUE);
6837 }
6838 break;
6839
6840 case OP_RVSD_I0:
6841 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6842 break;
6843
6844 case OP_RSVD_FI0:
6845 {
6846 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6847 break;
6848 try_ifimm0:
6849 if (parse_ifimm_zero (&str))
6850 inst.operands[i].imm = 0;
6851 else
6852 {
6853 inst.error
6854 = _("only floating point zero is allowed as immediate value");
6855 goto failure;
6856 }
6857 }
6858 break;
6859
6860 case OP_RR_RNSC:
6861 {
6862 po_scalar_or_goto (8, try_rr);
6863 break;
6864 try_rr:
6865 po_reg_or_fail (REG_TYPE_RN);
6866 }
6867 break;
6868
6869 case OP_RNSDQ_RNSC:
6870 {
6871 po_scalar_or_goto (8, try_nsdq);
6872 break;
6873 try_nsdq:
6874 po_reg_or_fail (REG_TYPE_NSDQ);
6875 }
6876 break;
6877
6878 case OP_RNSD_RNSC:
6879 {
6880 po_scalar_or_goto (8, try_s_scalar);
6881 break;
6882 try_s_scalar:
6883 po_scalar_or_goto (4, try_nsd);
6884 break;
6885 try_nsd:
6886 po_reg_or_fail (REG_TYPE_NSD);
6887 }
6888 break;
6889
6890 case OP_RNDQ_RNSC:
6891 {
6892 po_scalar_or_goto (8, try_ndq);
6893 break;
6894 try_ndq:
6895 po_reg_or_fail (REG_TYPE_NDQ);
6896 }
6897 break;
6898
6899 case OP_RND_RNSC:
6900 {
6901 po_scalar_or_goto (8, try_vfd);
6902 break;
6903 try_vfd:
6904 po_reg_or_fail (REG_TYPE_VFD);
6905 }
6906 break;
6907
6908 case OP_VMOV:
6909 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6910 not careful then bad things might happen. */
6911 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6912 break;
6913
6914 case OP_RNDQ_Ibig:
6915 {
6916 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6917 break;
6918 try_immbig:
6919 /* There's a possibility of getting a 64-bit immediate here, so
6920 we need special handling. */
6921 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6922 == FAIL)
6923 {
6924 inst.error = _("immediate value is out of range");
6925 goto failure;
6926 }
6927 }
6928 break;
6929
6930 case OP_RNDQ_I63b:
6931 {
6932 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6933 break;
6934 try_shimm:
6935 po_imm_or_fail (0, 63, TRUE);
6936 }
6937 break;
6938
6939 case OP_RRnpcb:
6940 po_char_or_fail ('[');
6941 po_reg_or_fail (REG_TYPE_RN);
6942 po_char_or_fail (']');
6943 break;
6944
6945 case OP_RRnpctw:
6946 case OP_RRw:
6947 case OP_oRRw:
6948 po_reg_or_fail (REG_TYPE_RN);
6949 if (skip_past_char (&str, '!') == SUCCESS)
6950 inst.operands[i].writeback = 1;
6951 break;
6952
6953 /* Immediates */
6954 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6955 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6956 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6957 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6958 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6959 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6960 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6961 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6962 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6963 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6964 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6965 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6966
6967 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6968 case OP_oI7b:
6969 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6970 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6971 case OP_oI31b:
6972 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6973 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6974 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6975 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6976
6977 /* Immediate variants */
6978 case OP_oI255c:
6979 po_char_or_fail ('{');
6980 po_imm_or_fail (0, 255, TRUE);
6981 po_char_or_fail ('}');
6982 break;
6983
6984 case OP_I31w:
6985 /* The expression parser chokes on a trailing !, so we have
6986 to find it first and zap it. */
6987 {
6988 char *s = str;
6989 while (*s && *s != ',')
6990 s++;
6991 if (s[-1] == '!')
6992 {
6993 s[-1] = '\0';
6994 inst.operands[i].writeback = 1;
6995 }
6996 po_imm_or_fail (0, 31, TRUE);
6997 if (str == s - 1)
6998 str = s;
6999 }
7000 break;
7001
7002 /* Expressions */
7003 case OP_EXPi: EXPi:
7004 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7005 GE_OPT_PREFIX));
7006 break;
7007
7008 case OP_EXP:
7009 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7010 GE_NO_PREFIX));
7011 break;
7012
7013 case OP_EXPr: EXPr:
7014 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7015 GE_NO_PREFIX));
7016 if (inst.relocs[0].exp.X_op == O_symbol)
7017 {
7018 val = parse_reloc (&str);
7019 if (val == -1)
7020 {
7021 inst.error = _("unrecognized relocation suffix");
7022 goto failure;
7023 }
7024 else if (val != BFD_RELOC_UNUSED)
7025 {
7026 inst.operands[i].imm = val;
7027 inst.operands[i].hasreloc = 1;
7028 }
7029 }
7030 break;
7031
7032 case OP_EXPs:
7033 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7034 GE_NO_PREFIX));
7035 if (inst.relocs[i].exp.X_op == O_symbol)
7036 {
7037 inst.operands[i].hasreloc = 1;
7038 }
7039 else if (inst.relocs[i].exp.X_op == O_constant)
7040 {
7041 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7042 inst.operands[i].hasreloc = 0;
7043 }
7044 break;
7045
7046 /* Operand for MOVW or MOVT. */
7047 case OP_HALF:
7048 po_misc_or_fail (parse_half (&str));
7049 break;
7050
7051 /* Register or expression. */
7052 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7053 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7054
7055 /* Register or immediate. */
7056 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7057 I0: po_imm_or_fail (0, 0, FALSE); break;
7058
7059 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7060 IF:
7061 if (!is_immediate_prefix (*str))
7062 goto bad_args;
7063 str++;
7064 val = parse_fpa_immediate (&str);
7065 if (val == FAIL)
7066 goto failure;
7067 /* FPA immediates are encoded as registers 8-15.
7068 parse_fpa_immediate has already applied the offset. */
7069 inst.operands[i].reg = val;
7070 inst.operands[i].isreg = 1;
7071 break;
7072
7073 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7074 I32z: po_imm_or_fail (0, 32, FALSE); break;
7075
7076 /* Two kinds of register. */
7077 case OP_RIWR_RIWC:
7078 {
7079 struct reg_entry *rege = arm_reg_parse_multi (&str);
7080 if (!rege
7081 || (rege->type != REG_TYPE_MMXWR
7082 && rege->type != REG_TYPE_MMXWC
7083 && rege->type != REG_TYPE_MMXWCG))
7084 {
7085 inst.error = _("iWMMXt data or control register expected");
7086 goto failure;
7087 }
7088 inst.operands[i].reg = rege->number;
7089 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7090 }
7091 break;
7092
7093 case OP_RIWC_RIWG:
7094 {
7095 struct reg_entry *rege = arm_reg_parse_multi (&str);
7096 if (!rege
7097 || (rege->type != REG_TYPE_MMXWC
7098 && rege->type != REG_TYPE_MMXWCG))
7099 {
7100 inst.error = _("iWMMXt control register expected");
7101 goto failure;
7102 }
7103 inst.operands[i].reg = rege->number;
7104 inst.operands[i].isreg = 1;
7105 }
7106 break;
7107
7108 /* Misc */
7109 case OP_CPSF: val = parse_cps_flags (&str); break;
7110 case OP_ENDI: val = parse_endian_specifier (&str); break;
7111 case OP_oROR: val = parse_ror (&str); break;
7112 case OP_COND: val = parse_cond (&str); break;
7113 case OP_oBARRIER_I15:
7114 po_barrier_or_imm (str); break;
7115 immediate:
7116 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7117 goto failure;
7118 break;
7119
7120 case OP_wPSR:
7121 case OP_rPSR:
7122 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7123 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7124 {
7125 inst.error = _("Banked registers are not available with this "
7126 "architecture.");
7127 goto failure;
7128 }
7129 break;
7130 try_psr:
7131 val = parse_psr (&str, op_parse_code == OP_wPSR);
7132 break;
7133
7134 case OP_APSR_RR:
7135 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7136 break;
7137 try_apsr:
7138 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7139 instruction). */
7140 if (strncasecmp (str, "APSR_", 5) == 0)
7141 {
7142 unsigned found = 0;
7143 str += 5;
7144 while (found < 15)
7145 switch (*str++)
7146 {
7147 case 'c': found = (found & 1) ? 16 : found | 1; break;
7148 case 'n': found = (found & 2) ? 16 : found | 2; break;
7149 case 'z': found = (found & 4) ? 16 : found | 4; break;
7150 case 'v': found = (found & 8) ? 16 : found | 8; break;
7151 default: found = 16;
7152 }
7153 if (found != 15)
7154 goto failure;
7155 inst.operands[i].isvec = 1;
7156 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7157 inst.operands[i].reg = REG_PC;
7158 }
7159 else
7160 goto failure;
7161 break;
7162
7163 case OP_TB:
7164 po_misc_or_fail (parse_tb (&str));
7165 break;
7166
7167 /* Register lists. */
7168 case OP_REGLST:
7169 val = parse_reg_list (&str);
7170 if (*str == '^')
7171 {
7172 inst.operands[i].writeback = 1;
7173 str++;
7174 }
7175 break;
7176
7177 case OP_VRSLST:
7178 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7179 break;
7180
7181 case OP_VRDLST:
7182 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7183 break;
7184
7185 case OP_VRSDLST:
7186 /* Allow Q registers too. */
7187 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7188 REGLIST_NEON_D);
7189 if (val == FAIL)
7190 {
7191 inst.error = NULL;
7192 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7193 REGLIST_VFP_S);
7194 inst.operands[i].issingle = 1;
7195 }
7196 break;
7197
7198 case OP_NRDLST:
7199 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7200 REGLIST_NEON_D);
7201 break;
7202
7203 case OP_NSTRLST:
7204 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7205 &inst.operands[i].vectype);
7206 break;
7207
7208 /* Addressing modes */
7209 case OP_ADDR:
7210 po_misc_or_fail (parse_address (&str, i));
7211 break;
7212
7213 case OP_ADDRGLDR:
7214 po_misc_or_fail_no_backtrack (
7215 parse_address_group_reloc (&str, i, GROUP_LDR));
7216 break;
7217
7218 case OP_ADDRGLDRS:
7219 po_misc_or_fail_no_backtrack (
7220 parse_address_group_reloc (&str, i, GROUP_LDRS));
7221 break;
7222
7223 case OP_ADDRGLDC:
7224 po_misc_or_fail_no_backtrack (
7225 parse_address_group_reloc (&str, i, GROUP_LDC));
7226 break;
7227
7228 case OP_SH:
7229 po_misc_or_fail (parse_shifter_operand (&str, i));
7230 break;
7231
7232 case OP_SHG:
7233 po_misc_or_fail_no_backtrack (
7234 parse_shifter_operand_group_reloc (&str, i));
7235 break;
7236
7237 case OP_oSHll:
7238 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7239 break;
7240
7241 case OP_oSHar:
7242 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7243 break;
7244
7245 case OP_oSHllar:
7246 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7247 break;
7248
7249 default:
7250 as_fatal (_("unhandled operand code %d"), op_parse_code);
7251 }
7252
7253 /* Various value-based sanity checks and shared operations. We
7254 do not signal immediate failures for the register constraints;
7255 this allows a syntax error to take precedence. */
7256 switch (op_parse_code)
7257 {
7258 case OP_oRRnpc:
7259 case OP_RRnpc:
7260 case OP_RRnpcb:
7261 case OP_RRw:
7262 case OP_oRRw:
7263 case OP_RRnpc_I0:
7264 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7265 inst.error = BAD_PC;
7266 break;
7267
7268 case OP_oRRnpcsp:
7269 case OP_RRnpcsp:
7270 if (inst.operands[i].isreg)
7271 {
7272 if (inst.operands[i].reg == REG_PC)
7273 inst.error = BAD_PC;
7274 else if (inst.operands[i].reg == REG_SP
7275 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7276 relaxed since ARMv8-A. */
7277 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7278 {
7279 gas_assert (thumb);
7280 inst.error = BAD_SP;
7281 }
7282 }
7283 break;
7284
7285 case OP_RRnpctw:
7286 if (inst.operands[i].isreg
7287 && inst.operands[i].reg == REG_PC
7288 && (inst.operands[i].writeback || thumb))
7289 inst.error = BAD_PC;
7290 break;
7291
7292 case OP_CPSF:
7293 case OP_ENDI:
7294 case OP_oROR:
7295 case OP_wPSR:
7296 case OP_rPSR:
7297 case OP_COND:
7298 case OP_oBARRIER_I15:
7299 case OP_REGLST:
7300 case OP_VRSLST:
7301 case OP_VRDLST:
7302 case OP_VRSDLST:
7303 case OP_NRDLST:
7304 case OP_NSTRLST:
7305 if (val == FAIL)
7306 goto failure;
7307 inst.operands[i].imm = val;
7308 break;
7309
7310 default:
7311 break;
7312 }
7313
7314 /* If we get here, this operand was successfully parsed. */
7315 inst.operands[i].present = 1;
7316 continue;
7317
7318 bad_args:
7319 inst.error = BAD_ARGS;
7320
7321 failure:
7322 if (!backtrack_pos)
7323 {
7324 /* The parse routine should already have set inst.error, but set a
7325 default here just in case. */
7326 if (!inst.error)
7327 inst.error = _("syntax error");
7328 return FAIL;
7329 }
7330
7331 /* Do not backtrack over a trailing optional argument that
7332 absorbed some text. We will only fail again, with the
7333 'garbage following instruction' error message, which is
7334 probably less helpful than the current one. */
7335 if (backtrack_index == i && backtrack_pos != str
7336 && upat[i+1] == OP_stop)
7337 {
7338 if (!inst.error)
7339 inst.error = _("syntax error");
7340 return FAIL;
7341 }
7342
7343 /* Try again, skipping the optional argument at backtrack_pos. */
7344 str = backtrack_pos;
7345 inst.error = backtrack_error;
7346 inst.operands[backtrack_index].present = 0;
7347 i = backtrack_index;
7348 backtrack_pos = 0;
7349 }
7350
7351 /* Check that we have parsed all the arguments. */
7352 if (*str != '\0' && !inst.error)
7353 inst.error = _("garbage following instruction");
7354
7355 return inst.error ? FAIL : SUCCESS;
7356 }
7357
7358 #undef po_char_or_fail
7359 #undef po_reg_or_fail
7360 #undef po_reg_or_goto
7361 #undef po_imm_or_fail
7362 #undef po_scalar_or_fail
7363 #undef po_barrier_or_imm
7364
7365 /* Shorthand macro for instruction encoding functions issuing errors. */
7366 #define constraint(expr, err) \
7367 do \
7368 { \
7369 if (expr) \
7370 { \
7371 inst.error = err; \
7372 return; \
7373 } \
7374 } \
7375 while (0)
7376
7377 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7378 instructions are unpredictable if these registers are used. This
7379 is the BadReg predicate in ARM's Thumb-2 documentation.
7380
7381 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7382 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7383 #define reject_bad_reg(reg) \
7384 do \
7385 if (reg == REG_PC) \
7386 { \
7387 inst.error = BAD_PC; \
7388 return; \
7389 } \
7390 else if (reg == REG_SP \
7391 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7392 { \
7393 inst.error = BAD_SP; \
7394 return; \
7395 } \
7396 while (0)
7397
7398 /* If REG is R13 (the stack pointer), warn that its use is
7399 deprecated. */
7400 #define warn_deprecated_sp(reg) \
7401 do \
7402 if (warn_on_deprecated && reg == REG_SP) \
7403 as_tsktsk (_("use of r13 is deprecated")); \
7404 while (0)
7405
7406 /* Functions for operand encoding. ARM, then Thumb. */
7407
7408 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7409
7410 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7411
7412 The only binary encoding difference is the Coprocessor number. Coprocessor
7413 9 is used for half-precision calculations or conversions. The format of the
7414 instruction is the same as the equivalent Coprocessor 10 instruction that
7415 exists for Single-Precision operation. */
7416
7417 static void
7418 do_scalar_fp16_v82_encode (void)
7419 {
7420 if (inst.cond != COND_ALWAYS)
7421 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7422 " the behaviour is UNPREDICTABLE"));
7423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7424 _(BAD_FP16));
7425
7426 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7427 mark_feature_used (&arm_ext_fp16);
7428 }
7429
7430 /* If VAL can be encoded in the immediate field of an ARM instruction,
7431 return the encoded form. Otherwise, return FAIL. */
7432
7433 static unsigned int
7434 encode_arm_immediate (unsigned int val)
7435 {
7436 unsigned int a, i;
7437
7438 if (val <= 0xff)
7439 return val;
7440
7441 for (i = 2; i < 32; i += 2)
7442 if ((a = rotate_left (val, i)) <= 0xff)
7443 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7444
7445 return FAIL;
7446 }
7447
7448 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7449 return the encoded form. Otherwise, return FAIL. */
7450 static unsigned int
7451 encode_thumb32_immediate (unsigned int val)
7452 {
7453 unsigned int a, i;
7454
7455 if (val <= 0xff)
7456 return val;
7457
7458 for (i = 1; i <= 24; i++)
7459 {
7460 a = val >> i;
7461 if ((val & ~(0xff << i)) == 0)
7462 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7463 }
7464
7465 a = val & 0xff;
7466 if (val == ((a << 16) | a))
7467 return 0x100 | a;
7468 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7469 return 0x300 | a;
7470
7471 a = val & 0xff00;
7472 if (val == ((a << 16) | a))
7473 return 0x200 | (a >> 8);
7474
7475 return FAIL;
7476 }
7477 /* Encode a VFP SP or DP register number into inst.instruction. */
7478
7479 static void
7480 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7481 {
7482 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7483 && reg > 15)
7484 {
7485 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7486 {
7487 if (thumb_mode)
7488 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7489 fpu_vfp_ext_d32);
7490 else
7491 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7492 fpu_vfp_ext_d32);
7493 }
7494 else
7495 {
7496 first_error (_("D register out of range for selected VFP version"));
7497 return;
7498 }
7499 }
7500
7501 switch (pos)
7502 {
7503 case VFP_REG_Sd:
7504 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7505 break;
7506
7507 case VFP_REG_Sn:
7508 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7509 break;
7510
7511 case VFP_REG_Sm:
7512 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7513 break;
7514
7515 case VFP_REG_Dd:
7516 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7517 break;
7518
7519 case VFP_REG_Dn:
7520 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7521 break;
7522
7523 case VFP_REG_Dm:
7524 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7525 break;
7526
7527 default:
7528 abort ();
7529 }
7530 }
7531
7532 /* Encode a <shift> in an ARM-format instruction. The immediate,
7533 if any, is handled by md_apply_fix. */
7534 static void
7535 encode_arm_shift (int i)
7536 {
7537 /* register-shifted register. */
7538 if (inst.operands[i].immisreg)
7539 {
7540 int op_index;
7541 for (op_index = 0; op_index <= i; ++op_index)
7542 {
7543 /* Check the operand only when it's presented. In pre-UAL syntax,
7544 if the destination register is the same as the first operand, two
7545 register form of the instruction can be used. */
7546 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7547 && inst.operands[op_index].reg == REG_PC)
7548 as_warn (UNPRED_REG ("r15"));
7549 }
7550
7551 if (inst.operands[i].imm == REG_PC)
7552 as_warn (UNPRED_REG ("r15"));
7553 }
7554
7555 if (inst.operands[i].shift_kind == SHIFT_RRX)
7556 inst.instruction |= SHIFT_ROR << 5;
7557 else
7558 {
7559 inst.instruction |= inst.operands[i].shift_kind << 5;
7560 if (inst.operands[i].immisreg)
7561 {
7562 inst.instruction |= SHIFT_BY_REG;
7563 inst.instruction |= inst.operands[i].imm << 8;
7564 }
7565 else
7566 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
7567 }
7568 }
7569
7570 static void
7571 encode_arm_shifter_operand (int i)
7572 {
7573 if (inst.operands[i].isreg)
7574 {
7575 inst.instruction |= inst.operands[i].reg;
7576 encode_arm_shift (i);
7577 }
7578 else
7579 {
7580 inst.instruction |= INST_IMMEDIATE;
7581 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
7582 inst.instruction |= inst.operands[i].imm;
7583 }
7584 }
7585
7586 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7587 static void
7588 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7589 {
7590 /* PR 14260:
7591 Generate an error if the operand is not a register. */
7592 constraint (!inst.operands[i].isreg,
7593 _("Instruction does not support =N addresses"));
7594
7595 inst.instruction |= inst.operands[i].reg << 16;
7596
7597 if (inst.operands[i].preind)
7598 {
7599 if (is_t)
7600 {
7601 inst.error = _("instruction does not accept preindexed addressing");
7602 return;
7603 }
7604 inst.instruction |= PRE_INDEX;
7605 if (inst.operands[i].writeback)
7606 inst.instruction |= WRITE_BACK;
7607
7608 }
7609 else if (inst.operands[i].postind)
7610 {
7611 gas_assert (inst.operands[i].writeback);
7612 if (is_t)
7613 inst.instruction |= WRITE_BACK;
7614 }
7615 else /* unindexed - only for coprocessor */
7616 {
7617 inst.error = _("instruction does not accept unindexed addressing");
7618 return;
7619 }
7620
7621 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7622 && (((inst.instruction & 0x000f0000) >> 16)
7623 == ((inst.instruction & 0x0000f000) >> 12)))
7624 as_warn ((inst.instruction & LOAD_BIT)
7625 ? _("destination register same as write-back base")
7626 : _("source register same as write-back base"));
7627 }
7628
7629 /* inst.operands[i] was set up by parse_address. Encode it into an
7630 ARM-format mode 2 load or store instruction. If is_t is true,
7631 reject forms that cannot be used with a T instruction (i.e. not
7632 post-indexed). */
7633 static void
7634 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7635 {
7636 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7637
7638 encode_arm_addr_mode_common (i, is_t);
7639
7640 if (inst.operands[i].immisreg)
7641 {
7642 constraint ((inst.operands[i].imm == REG_PC
7643 || (is_pc && inst.operands[i].writeback)),
7644 BAD_PC_ADDRESSING);
7645 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7646 inst.instruction |= inst.operands[i].imm;
7647 if (!inst.operands[i].negative)
7648 inst.instruction |= INDEX_UP;
7649 if (inst.operands[i].shifted)
7650 {
7651 if (inst.operands[i].shift_kind == SHIFT_RRX)
7652 inst.instruction |= SHIFT_ROR << 5;
7653 else
7654 {
7655 inst.instruction |= inst.operands[i].shift_kind << 5;
7656 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
7657 }
7658 }
7659 }
7660 else /* immediate offset in inst.relocs[0] */
7661 {
7662 if (is_pc && !inst.relocs[0].pc_rel)
7663 {
7664 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7665
7666 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7667 cannot use PC in addressing.
7668 PC cannot be used in writeback addressing, either. */
7669 constraint ((is_t || inst.operands[i].writeback),
7670 BAD_PC_ADDRESSING);
7671
7672 /* Use of PC in str is deprecated for ARMv7. */
7673 if (warn_on_deprecated
7674 && !is_load
7675 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7676 as_tsktsk (_("use of PC in this instruction is deprecated"));
7677 }
7678
7679 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
7680 {
7681 /* Prefer + for zero encoded value. */
7682 if (!inst.operands[i].negative)
7683 inst.instruction |= INDEX_UP;
7684 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
7685 }
7686 }
7687 }
7688
7689 /* inst.operands[i] was set up by parse_address. Encode it into an
7690 ARM-format mode 3 load or store instruction. Reject forms that
7691 cannot be used with such instructions. If is_t is true, reject
7692 forms that cannot be used with a T instruction (i.e. not
7693 post-indexed). */
7694 static void
7695 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7696 {
7697 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7698 {
7699 inst.error = _("instruction does not accept scaled register index");
7700 return;
7701 }
7702
7703 encode_arm_addr_mode_common (i, is_t);
7704
7705 if (inst.operands[i].immisreg)
7706 {
7707 constraint ((inst.operands[i].imm == REG_PC
7708 || (is_t && inst.operands[i].reg == REG_PC)),
7709 BAD_PC_ADDRESSING);
7710 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7711 BAD_PC_WRITEBACK);
7712 inst.instruction |= inst.operands[i].imm;
7713 if (!inst.operands[i].negative)
7714 inst.instruction |= INDEX_UP;
7715 }
7716 else /* immediate offset in inst.relocs[0] */
7717 {
7718 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
7719 && inst.operands[i].writeback),
7720 BAD_PC_WRITEBACK);
7721 inst.instruction |= HWOFFSET_IMM;
7722 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
7723 {
7724 /* Prefer + for zero encoded value. */
7725 if (!inst.operands[i].negative)
7726 inst.instruction |= INDEX_UP;
7727
7728 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
7729 }
7730 }
7731 }
7732
7733 /* Write immediate bits [7:0] to the following locations:
7734
7735 |28/24|23 19|18 16|15 4|3 0|
7736 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7737
7738 This function is used by VMOV/VMVN/VORR/VBIC. */
7739
7740 static void
7741 neon_write_immbits (unsigned immbits)
7742 {
7743 inst.instruction |= immbits & 0xf;
7744 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7745 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7746 }
7747
7748 /* Invert low-order SIZE bits of XHI:XLO. */
7749
7750 static void
7751 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7752 {
7753 unsigned immlo = xlo ? *xlo : 0;
7754 unsigned immhi = xhi ? *xhi : 0;
7755
7756 switch (size)
7757 {
7758 case 8:
7759 immlo = (~immlo) & 0xff;
7760 break;
7761
7762 case 16:
7763 immlo = (~immlo) & 0xffff;
7764 break;
7765
7766 case 64:
7767 immhi = (~immhi) & 0xffffffff;
7768 /* fall through. */
7769
7770 case 32:
7771 immlo = (~immlo) & 0xffffffff;
7772 break;
7773
7774 default:
7775 abort ();
7776 }
7777
7778 if (xlo)
7779 *xlo = immlo;
7780
7781 if (xhi)
7782 *xhi = immhi;
7783 }
7784
7785 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7786 A, B, C, D. */
7787
7788 static int
7789 neon_bits_same_in_bytes (unsigned imm)
7790 {
7791 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7792 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7793 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7794 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7795 }
7796
7797 /* For immediate of above form, return 0bABCD. */
7798
7799 static unsigned
7800 neon_squash_bits (unsigned imm)
7801 {
7802 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7803 | ((imm & 0x01000000) >> 21);
7804 }
7805
7806 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7807
7808 static unsigned
7809 neon_qfloat_bits (unsigned imm)
7810 {
7811 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7812 }
7813
7814 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7815 the instruction. *OP is passed as the initial value of the op field, and
7816 may be set to a different value depending on the constant (i.e.
7817 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7818 MVN). If the immediate looks like a repeated pattern then also
7819 try smaller element sizes. */
7820
7821 static int
7822 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7823 unsigned *immbits, int *op, int size,
7824 enum neon_el_type type)
7825 {
7826 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7827 float. */
7828 if (type == NT_float && !float_p)
7829 return FAIL;
7830
7831 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7832 {
7833 if (size != 32 || *op == 1)
7834 return FAIL;
7835 *immbits = neon_qfloat_bits (immlo);
7836 return 0xf;
7837 }
7838
7839 if (size == 64)
7840 {
7841 if (neon_bits_same_in_bytes (immhi)
7842 && neon_bits_same_in_bytes (immlo))
7843 {
7844 if (*op == 1)
7845 return FAIL;
7846 *immbits = (neon_squash_bits (immhi) << 4)
7847 | neon_squash_bits (immlo);
7848 *op = 1;
7849 return 0xe;
7850 }
7851
7852 if (immhi != immlo)
7853 return FAIL;
7854 }
7855
7856 if (size >= 32)
7857 {
7858 if (immlo == (immlo & 0x000000ff))
7859 {
7860 *immbits = immlo;
7861 return 0x0;
7862 }
7863 else if (immlo == (immlo & 0x0000ff00))
7864 {
7865 *immbits = immlo >> 8;
7866 return 0x2;
7867 }
7868 else if (immlo == (immlo & 0x00ff0000))
7869 {
7870 *immbits = immlo >> 16;
7871 return 0x4;
7872 }
7873 else if (immlo == (immlo & 0xff000000))
7874 {
7875 *immbits = immlo >> 24;
7876 return 0x6;
7877 }
7878 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7879 {
7880 *immbits = (immlo >> 8) & 0xff;
7881 return 0xc;
7882 }
7883 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7884 {
7885 *immbits = (immlo >> 16) & 0xff;
7886 return 0xd;
7887 }
7888
7889 if ((immlo & 0xffff) != (immlo >> 16))
7890 return FAIL;
7891 immlo &= 0xffff;
7892 }
7893
7894 if (size >= 16)
7895 {
7896 if (immlo == (immlo & 0x000000ff))
7897 {
7898 *immbits = immlo;
7899 return 0x8;
7900 }
7901 else if (immlo == (immlo & 0x0000ff00))
7902 {
7903 *immbits = immlo >> 8;
7904 return 0xa;
7905 }
7906
7907 if ((immlo & 0xff) != (immlo >> 8))
7908 return FAIL;
7909 immlo &= 0xff;
7910 }
7911
7912 if (immlo == (immlo & 0x000000ff))
7913 {
7914 /* Don't allow MVN with 8-bit immediate. */
7915 if (*op == 1)
7916 return FAIL;
7917 *immbits = immlo;
7918 return 0xe;
7919 }
7920
7921 return FAIL;
7922 }
7923
7924 #if defined BFD_HOST_64_BIT
7925 /* Returns TRUE if double precision value V may be cast
7926 to single precision without loss of accuracy. */
7927
7928 static bfd_boolean
7929 is_double_a_single (bfd_int64_t v)
7930 {
7931 int exp = (int)((v >> 52) & 0x7FF);
7932 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7933
7934 return (exp == 0 || exp == 0x7FF
7935 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7936 && (mantissa & 0x1FFFFFFFl) == 0;
7937 }
7938
7939 /* Returns a double precision value casted to single precision
7940 (ignoring the least significant bits in exponent and mantissa). */
7941
7942 static int
7943 double_to_single (bfd_int64_t v)
7944 {
7945 int sign = (int) ((v >> 63) & 1l);
7946 int exp = (int) ((v >> 52) & 0x7FF);
7947 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7948
7949 if (exp == 0x7FF)
7950 exp = 0xFF;
7951 else
7952 {
7953 exp = exp - 1023 + 127;
7954 if (exp >= 0xFF)
7955 {
7956 /* Infinity. */
7957 exp = 0x7F;
7958 mantissa = 0;
7959 }
7960 else if (exp < 0)
7961 {
7962 /* No denormalized numbers. */
7963 exp = 0;
7964 mantissa = 0;
7965 }
7966 }
7967 mantissa >>= 29;
7968 return (sign << 31) | (exp << 23) | mantissa;
7969 }
7970 #endif /* BFD_HOST_64_BIT */
7971
7972 enum lit_type
7973 {
7974 CONST_THUMB,
7975 CONST_ARM,
7976 CONST_VEC
7977 };
7978
7979 static void do_vfp_nsyn_opcode (const char *);
7980
7981 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
7982 Determine whether it can be performed with a move instruction; if
7983 it can, convert inst.instruction to that move instruction and
7984 return TRUE; if it can't, convert inst.instruction to a literal-pool
7985 load and return FALSE. If this is not a valid thing to do in the
7986 current context, set inst.error and return TRUE.
7987
7988 inst.operands[i] describes the destination register. */
7989
7990 static bfd_boolean
7991 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7992 {
7993 unsigned long tbit;
7994 bfd_boolean thumb_p = (t == CONST_THUMB);
7995 bfd_boolean arm_p = (t == CONST_ARM);
7996
7997 if (thumb_p)
7998 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7999 else
8000 tbit = LOAD_BIT;
8001
8002 if ((inst.instruction & tbit) == 0)
8003 {
8004 inst.error = _("invalid pseudo operation");
8005 return TRUE;
8006 }
8007
8008 if (inst.relocs[0].exp.X_op != O_constant
8009 && inst.relocs[0].exp.X_op != O_symbol
8010 && inst.relocs[0].exp.X_op != O_big)
8011 {
8012 inst.error = _("constant expression expected");
8013 return TRUE;
8014 }
8015
8016 if (inst.relocs[0].exp.X_op == O_constant
8017 || inst.relocs[0].exp.X_op == O_big)
8018 {
8019 #if defined BFD_HOST_64_BIT
8020 bfd_int64_t v;
8021 #else
8022 offsetT v;
8023 #endif
8024 if (inst.relocs[0].exp.X_op == O_big)
8025 {
8026 LITTLENUM_TYPE w[X_PRECISION];
8027 LITTLENUM_TYPE * l;
8028
8029 if (inst.relocs[0].exp.X_add_number == -1)
8030 {
8031 gen_to_words (w, X_PRECISION, E_PRECISION);
8032 l = w;
8033 /* FIXME: Should we check words w[2..5] ? */
8034 }
8035 else
8036 l = generic_bignum;
8037
8038 #if defined BFD_HOST_64_BIT
8039 v =
8040 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8041 << LITTLENUM_NUMBER_OF_BITS)
8042 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8043 << LITTLENUM_NUMBER_OF_BITS)
8044 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8045 << LITTLENUM_NUMBER_OF_BITS)
8046 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8047 #else
8048 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8049 | (l[0] & LITTLENUM_MASK);
8050 #endif
8051 }
8052 else
8053 v = inst.relocs[0].exp.X_add_number;
8054
8055 if (!inst.operands[i].issingle)
8056 {
8057 if (thumb_p)
8058 {
8059 /* LDR should not use lead in a flag-setting instruction being
8060 chosen so we do not check whether movs can be used. */
8061
8062 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8063 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8064 && inst.operands[i].reg != 13
8065 && inst.operands[i].reg != 15)
8066 {
8067 /* Check if on thumb2 it can be done with a mov.w, mvn or
8068 movw instruction. */
8069 unsigned int newimm;
8070 bfd_boolean isNegated;
8071
8072 newimm = encode_thumb32_immediate (v);
8073 if (newimm != (unsigned int) FAIL)
8074 isNegated = FALSE;
8075 else
8076 {
8077 newimm = encode_thumb32_immediate (~v);
8078 if (newimm != (unsigned int) FAIL)
8079 isNegated = TRUE;
8080 }
8081
8082 /* The number can be loaded with a mov.w or mvn
8083 instruction. */
8084 if (newimm != (unsigned int) FAIL
8085 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8086 {
8087 inst.instruction = (0xf04f0000 /* MOV.W. */
8088 | (inst.operands[i].reg << 8));
8089 /* Change to MOVN. */
8090 inst.instruction |= (isNegated ? 0x200000 : 0);
8091 inst.instruction |= (newimm & 0x800) << 15;
8092 inst.instruction |= (newimm & 0x700) << 4;
8093 inst.instruction |= (newimm & 0x0ff);
8094 return TRUE;
8095 }
8096 /* The number can be loaded with a movw instruction. */
8097 else if ((v & ~0xFFFF) == 0
8098 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8099 {
8100 int imm = v & 0xFFFF;
8101
8102 inst.instruction = 0xf2400000; /* MOVW. */
8103 inst.instruction |= (inst.operands[i].reg << 8);
8104 inst.instruction |= (imm & 0xf000) << 4;
8105 inst.instruction |= (imm & 0x0800) << 15;
8106 inst.instruction |= (imm & 0x0700) << 4;
8107 inst.instruction |= (imm & 0x00ff);
8108 return TRUE;
8109 }
8110 }
8111 }
8112 else if (arm_p)
8113 {
8114 int value = encode_arm_immediate (v);
8115
8116 if (value != FAIL)
8117 {
8118 /* This can be done with a mov instruction. */
8119 inst.instruction &= LITERAL_MASK;
8120 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8121 inst.instruction |= value & 0xfff;
8122 return TRUE;
8123 }
8124
8125 value = encode_arm_immediate (~ v);
8126 if (value != FAIL)
8127 {
8128 /* This can be done with a mvn instruction. */
8129 inst.instruction &= LITERAL_MASK;
8130 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8131 inst.instruction |= value & 0xfff;
8132 return TRUE;
8133 }
8134 }
8135 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8136 {
8137 int op = 0;
8138 unsigned immbits = 0;
8139 unsigned immlo = inst.operands[1].imm;
8140 unsigned immhi = inst.operands[1].regisimm
8141 ? inst.operands[1].reg
8142 : inst.relocs[0].exp.X_unsigned
8143 ? 0
8144 : ((bfd_int64_t)((int) immlo)) >> 32;
8145 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8146 &op, 64, NT_invtype);
8147
8148 if (cmode == FAIL)
8149 {
8150 neon_invert_size (&immlo, &immhi, 64);
8151 op = !op;
8152 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8153 &op, 64, NT_invtype);
8154 }
8155
8156 if (cmode != FAIL)
8157 {
8158 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8159 | (1 << 23)
8160 | (cmode << 8)
8161 | (op << 5)
8162 | (1 << 4);
8163
8164 /* Fill other bits in vmov encoding for both thumb and arm. */
8165 if (thumb_mode)
8166 inst.instruction |= (0x7U << 29) | (0xF << 24);
8167 else
8168 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8169 neon_write_immbits (immbits);
8170 return TRUE;
8171 }
8172 }
8173 }
8174
8175 if (t == CONST_VEC)
8176 {
8177 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8178 if (inst.operands[i].issingle
8179 && is_quarter_float (inst.operands[1].imm)
8180 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8181 {
8182 inst.operands[1].imm =
8183 neon_qfloat_bits (v);
8184 do_vfp_nsyn_opcode ("fconsts");
8185 return TRUE;
8186 }
8187
8188 /* If our host does not support a 64-bit type then we cannot perform
8189 the following optimization. This mean that there will be a
8190 discrepancy between the output produced by an assembler built for
8191 a 32-bit-only host and the output produced from a 64-bit host, but
8192 this cannot be helped. */
8193 #if defined BFD_HOST_64_BIT
8194 else if (!inst.operands[1].issingle
8195 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8196 {
8197 if (is_double_a_single (v)
8198 && is_quarter_float (double_to_single (v)))
8199 {
8200 inst.operands[1].imm =
8201 neon_qfloat_bits (double_to_single (v));
8202 do_vfp_nsyn_opcode ("fconstd");
8203 return TRUE;
8204 }
8205 }
8206 #endif
8207 }
8208 }
8209
8210 if (add_to_lit_pool ((!inst.operands[i].isvec
8211 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8212 return TRUE;
8213
8214 inst.operands[1].reg = REG_PC;
8215 inst.operands[1].isreg = 1;
8216 inst.operands[1].preind = 1;
8217 inst.relocs[0].pc_rel = 1;
8218 inst.relocs[0].type = (thumb_p
8219 ? BFD_RELOC_ARM_THUMB_OFFSET
8220 : (mode_3
8221 ? BFD_RELOC_ARM_HWLITERAL
8222 : BFD_RELOC_ARM_LITERAL));
8223 return FALSE;
8224 }
8225
8226 /* inst.operands[i] was set up by parse_address. Encode it into an
8227 ARM-format instruction. Reject all forms which cannot be encoded
8228 into a coprocessor load/store instruction. If wb_ok is false,
8229 reject use of writeback; if unind_ok is false, reject use of
8230 unindexed addressing. If reloc_override is not 0, use it instead
8231 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8232 (in which case it is preserved). */
8233
8234 static int
8235 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8236 {
8237 if (!inst.operands[i].isreg)
8238 {
8239 /* PR 18256 */
8240 if (! inst.operands[0].isvec)
8241 {
8242 inst.error = _("invalid co-processor operand");
8243 return FAIL;
8244 }
8245 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8246 return SUCCESS;
8247 }
8248
8249 inst.instruction |= inst.operands[i].reg << 16;
8250
8251 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8252
8253 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8254 {
8255 gas_assert (!inst.operands[i].writeback);
8256 if (!unind_ok)
8257 {
8258 inst.error = _("instruction does not support unindexed addressing");
8259 return FAIL;
8260 }
8261 inst.instruction |= inst.operands[i].imm;
8262 inst.instruction |= INDEX_UP;
8263 return SUCCESS;
8264 }
8265
8266 if (inst.operands[i].preind)
8267 inst.instruction |= PRE_INDEX;
8268
8269 if (inst.operands[i].writeback)
8270 {
8271 if (inst.operands[i].reg == REG_PC)
8272 {
8273 inst.error = _("pc may not be used with write-back");
8274 return FAIL;
8275 }
8276 if (!wb_ok)
8277 {
8278 inst.error = _("instruction does not support writeback");
8279 return FAIL;
8280 }
8281 inst.instruction |= WRITE_BACK;
8282 }
8283
8284 if (reloc_override)
8285 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8286 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8287 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8288 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8289 {
8290 if (thumb_mode)
8291 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8292 else
8293 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8294 }
8295
8296 /* Prefer + for zero encoded value. */
8297 if (!inst.operands[i].negative)
8298 inst.instruction |= INDEX_UP;
8299
8300 return SUCCESS;
8301 }
8302
8303 /* Functions for instruction encoding, sorted by sub-architecture.
8304 First some generics; their names are taken from the conventional
8305 bit positions for register arguments in ARM format instructions. */
8306
8307 static void
8308 do_noargs (void)
8309 {
8310 }
8311
8312 static void
8313 do_rd (void)
8314 {
8315 inst.instruction |= inst.operands[0].reg << 12;
8316 }
8317
8318 static void
8319 do_rn (void)
8320 {
8321 inst.instruction |= inst.operands[0].reg << 16;
8322 }
8323
8324 static void
8325 do_rd_rm (void)
8326 {
8327 inst.instruction |= inst.operands[0].reg << 12;
8328 inst.instruction |= inst.operands[1].reg;
8329 }
8330
8331 static void
8332 do_rm_rn (void)
8333 {
8334 inst.instruction |= inst.operands[0].reg;
8335 inst.instruction |= inst.operands[1].reg << 16;
8336 }
8337
8338 static void
8339 do_rd_rn (void)
8340 {
8341 inst.instruction |= inst.operands[0].reg << 12;
8342 inst.instruction |= inst.operands[1].reg << 16;
8343 }
8344
8345 static void
8346 do_rn_rd (void)
8347 {
8348 inst.instruction |= inst.operands[0].reg << 16;
8349 inst.instruction |= inst.operands[1].reg << 12;
8350 }
8351
8352 static void
8353 do_tt (void)
8354 {
8355 inst.instruction |= inst.operands[0].reg << 8;
8356 inst.instruction |= inst.operands[1].reg << 16;
8357 }
8358
8359 static bfd_boolean
8360 check_obsolete (const arm_feature_set *feature, const char *msg)
8361 {
8362 if (ARM_CPU_IS_ANY (cpu_variant))
8363 {
8364 as_tsktsk ("%s", msg);
8365 return TRUE;
8366 }
8367 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8368 {
8369 as_bad ("%s", msg);
8370 return TRUE;
8371 }
8372
8373 return FALSE;
8374 }
8375
8376 static void
8377 do_rd_rm_rn (void)
8378 {
8379 unsigned Rn = inst.operands[2].reg;
8380 /* Enforce restrictions on SWP instruction. */
8381 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8382 {
8383 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8384 _("Rn must not overlap other operands"));
8385
8386 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8387 */
8388 if (!check_obsolete (&arm_ext_v8,
8389 _("swp{b} use is obsoleted for ARMv8 and later"))
8390 && warn_on_deprecated
8391 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8392 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8393 }
8394
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 inst.instruction |= inst.operands[1].reg;
8397 inst.instruction |= Rn << 16;
8398 }
8399
8400 static void
8401 do_rd_rn_rm (void)
8402 {
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg << 16;
8405 inst.instruction |= inst.operands[2].reg;
8406 }
8407
8408 static void
8409 do_rm_rd_rn (void)
8410 {
8411 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8412 constraint (((inst.relocs[0].exp.X_op != O_constant
8413 && inst.relocs[0].exp.X_op != O_illegal)
8414 || inst.relocs[0].exp.X_add_number != 0),
8415 BAD_ADDR_MODE);
8416 inst.instruction |= inst.operands[0].reg;
8417 inst.instruction |= inst.operands[1].reg << 12;
8418 inst.instruction |= inst.operands[2].reg << 16;
8419 }
8420
8421 static void
8422 do_imm0 (void)
8423 {
8424 inst.instruction |= inst.operands[0].imm;
8425 }
8426
8427 static void
8428 do_rd_cpaddr (void)
8429 {
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 encode_arm_cp_address (1, TRUE, TRUE, 0);
8432 }
8433
8434 /* ARM instructions, in alphabetical order by function name (except
8435 that wrapper functions appear immediately after the function they
8436 wrap). */
8437
8438 /* This is a pseudo-op of the form "adr rd, label" to be converted
8439 into a relative address of the form "add rd, pc, #label-.-8". */
8440
8441 static void
8442 do_adr (void)
8443 {
8444 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8445
8446 /* Frag hacking will turn this into a sub instruction if the offset turns
8447 out to be negative. */
8448 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
8449 inst.relocs[0].pc_rel = 1;
8450 inst.relocs[0].exp.X_add_number -= 8;
8451
8452 if (support_interwork
8453 && inst.relocs[0].exp.X_op == O_symbol
8454 && inst.relocs[0].exp.X_add_symbol != NULL
8455 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8456 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8457 inst.relocs[0].exp.X_add_number |= 1;
8458 }
8459
8460 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8461 into a relative address of the form:
8462 add rd, pc, #low(label-.-8)"
8463 add rd, rd, #high(label-.-8)" */
8464
8465 static void
8466 do_adrl (void)
8467 {
8468 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8469
8470 /* Frag hacking will turn this into a sub instruction if the offset turns
8471 out to be negative. */
8472 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8473 inst.relocs[0].pc_rel = 1;
8474 inst.size = INSN_SIZE * 2;
8475 inst.relocs[0].exp.X_add_number -= 8;
8476
8477 if (support_interwork
8478 && inst.relocs[0].exp.X_op == O_symbol
8479 && inst.relocs[0].exp.X_add_symbol != NULL
8480 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8481 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8482 inst.relocs[0].exp.X_add_number |= 1;
8483 }
8484
8485 static void
8486 do_arit (void)
8487 {
8488 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8489 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8490 THUMB1_RELOC_ONLY);
8491 if (!inst.operands[1].present)
8492 inst.operands[1].reg = inst.operands[0].reg;
8493 inst.instruction |= inst.operands[0].reg << 12;
8494 inst.instruction |= inst.operands[1].reg << 16;
8495 encode_arm_shifter_operand (2);
8496 }
8497
8498 static void
8499 do_barrier (void)
8500 {
8501 if (inst.operands[0].present)
8502 inst.instruction |= inst.operands[0].imm;
8503 else
8504 inst.instruction |= 0xf;
8505 }
8506
8507 static void
8508 do_bfc (void)
8509 {
8510 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8511 constraint (msb > 32, _("bit-field extends past end of register"));
8512 /* The instruction encoding stores the LSB and MSB,
8513 not the LSB and width. */
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].imm << 7;
8516 inst.instruction |= (msb - 1) << 16;
8517 }
8518
8519 static void
8520 do_bfi (void)
8521 {
8522 unsigned int msb;
8523
8524 /* #0 in second position is alternative syntax for bfc, which is
8525 the same instruction but with REG_PC in the Rm field. */
8526 if (!inst.operands[1].isreg)
8527 inst.operands[1].reg = REG_PC;
8528
8529 msb = inst.operands[2].imm + inst.operands[3].imm;
8530 constraint (msb > 32, _("bit-field extends past end of register"));
8531 /* The instruction encoding stores the LSB and MSB,
8532 not the LSB and width. */
8533 inst.instruction |= inst.operands[0].reg << 12;
8534 inst.instruction |= inst.operands[1].reg;
8535 inst.instruction |= inst.operands[2].imm << 7;
8536 inst.instruction |= (msb - 1) << 16;
8537 }
8538
8539 static void
8540 do_bfx (void)
8541 {
8542 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8543 _("bit-field extends past end of register"));
8544 inst.instruction |= inst.operands[0].reg << 12;
8545 inst.instruction |= inst.operands[1].reg;
8546 inst.instruction |= inst.operands[2].imm << 7;
8547 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8548 }
8549
8550 /* ARM V5 breakpoint instruction (argument parse)
8551 BKPT <16 bit unsigned immediate>
8552 Instruction is not conditional.
8553 The bit pattern given in insns[] has the COND_ALWAYS condition,
8554 and it is an error if the caller tried to override that. */
8555
8556 static void
8557 do_bkpt (void)
8558 {
8559 /* Top 12 of 16 bits to bits 19:8. */
8560 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8561
8562 /* Bottom 4 of 16 bits to bits 3:0. */
8563 inst.instruction |= inst.operands[0].imm & 0xf;
8564 }
8565
8566 static void
8567 encode_branch (int default_reloc)
8568 {
8569 if (inst.operands[0].hasreloc)
8570 {
8571 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8572 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8573 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8574 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8575 ? BFD_RELOC_ARM_PLT32
8576 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8577 }
8578 else
8579 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
8580 inst.relocs[0].pc_rel = 1;
8581 }
8582
8583 static void
8584 do_branch (void)
8585 {
8586 #ifdef OBJ_ELF
8587 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8588 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8589 else
8590 #endif
8591 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8592 }
8593
8594 static void
8595 do_bl (void)
8596 {
8597 #ifdef OBJ_ELF
8598 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8599 {
8600 if (inst.cond == COND_ALWAYS)
8601 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8602 else
8603 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8604 }
8605 else
8606 #endif
8607 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8608 }
8609
8610 /* ARM V5 branch-link-exchange instruction (argument parse)
8611 BLX <target_addr> ie BLX(1)
8612 BLX{<condition>} <Rm> ie BLX(2)
8613 Unfortunately, there are two different opcodes for this mnemonic.
8614 So, the insns[].value is not used, and the code here zaps values
8615 into inst.instruction.
8616 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8617
8618 static void
8619 do_blx (void)
8620 {
8621 if (inst.operands[0].isreg)
8622 {
8623 /* Arg is a register; the opcode provided by insns[] is correct.
8624 It is not illegal to do "blx pc", just useless. */
8625 if (inst.operands[0].reg == REG_PC)
8626 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8627
8628 inst.instruction |= inst.operands[0].reg;
8629 }
8630 else
8631 {
8632 /* Arg is an address; this instruction cannot be executed
8633 conditionally, and the opcode must be adjusted.
8634 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8635 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8636 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8637 inst.instruction = 0xfa000000;
8638 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8639 }
8640 }
8641
8642 static void
8643 do_bx (void)
8644 {
8645 bfd_boolean want_reloc;
8646
8647 if (inst.operands[0].reg == REG_PC)
8648 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8649
8650 inst.instruction |= inst.operands[0].reg;
8651 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8652 it is for ARMv4t or earlier. */
8653 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8654 if (!ARM_FEATURE_ZERO (selected_object_arch)
8655 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
8656 want_reloc = TRUE;
8657
8658 #ifdef OBJ_ELF
8659 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8660 #endif
8661 want_reloc = FALSE;
8662
8663 if (want_reloc)
8664 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
8665 }
8666
8667
8668 /* ARM v5TEJ. Jump to Jazelle code. */
8669
8670 static void
8671 do_bxj (void)
8672 {
8673 if (inst.operands[0].reg == REG_PC)
8674 as_tsktsk (_("use of r15 in bxj is not really useful"));
8675
8676 inst.instruction |= inst.operands[0].reg;
8677 }
8678
8679 /* Co-processor data operation:
8680 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8681 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8682 static void
8683 do_cdp (void)
8684 {
8685 inst.instruction |= inst.operands[0].reg << 8;
8686 inst.instruction |= inst.operands[1].imm << 20;
8687 inst.instruction |= inst.operands[2].reg << 12;
8688 inst.instruction |= inst.operands[3].reg << 16;
8689 inst.instruction |= inst.operands[4].reg;
8690 inst.instruction |= inst.operands[5].imm << 5;
8691 }
8692
8693 static void
8694 do_cmp (void)
8695 {
8696 inst.instruction |= inst.operands[0].reg << 16;
8697 encode_arm_shifter_operand (1);
8698 }
8699
8700 /* Transfer between coprocessor and ARM registers.
8701 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8702 MRC2
8703 MCR{cond}
8704 MCR2
8705
8706 No special properties. */
8707
8708 struct deprecated_coproc_regs_s
8709 {
8710 unsigned cp;
8711 int opc1;
8712 unsigned crn;
8713 unsigned crm;
8714 int opc2;
8715 arm_feature_set deprecated;
8716 arm_feature_set obsoleted;
8717 const char *dep_msg;
8718 const char *obs_msg;
8719 };
8720
8721 #define DEPR_ACCESS_V8 \
8722 N_("This coprocessor register access is deprecated in ARMv8")
8723
8724 /* Table of all deprecated coprocessor registers. */
8725 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8726 {
8727 {15, 0, 7, 10, 5, /* CP15DMB. */
8728 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8729 DEPR_ACCESS_V8, NULL},
8730 {15, 0, 7, 10, 4, /* CP15DSB. */
8731 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8732 DEPR_ACCESS_V8, NULL},
8733 {15, 0, 7, 5, 4, /* CP15ISB. */
8734 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8735 DEPR_ACCESS_V8, NULL},
8736 {14, 6, 1, 0, 0, /* TEEHBR. */
8737 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8738 DEPR_ACCESS_V8, NULL},
8739 {14, 6, 0, 0, 0, /* TEECR. */
8740 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8741 DEPR_ACCESS_V8, NULL},
8742 };
8743
8744 #undef DEPR_ACCESS_V8
8745
8746 static const size_t deprecated_coproc_reg_count =
8747 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8748
8749 static void
8750 do_co_reg (void)
8751 {
8752 unsigned Rd;
8753 size_t i;
8754
8755 Rd = inst.operands[2].reg;
8756 if (thumb_mode)
8757 {
8758 if (inst.instruction == 0xee000010
8759 || inst.instruction == 0xfe000010)
8760 /* MCR, MCR2 */
8761 reject_bad_reg (Rd);
8762 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8763 /* MRC, MRC2 */
8764 constraint (Rd == REG_SP, BAD_SP);
8765 }
8766 else
8767 {
8768 /* MCR */
8769 if (inst.instruction == 0xe000010)
8770 constraint (Rd == REG_PC, BAD_PC);
8771 }
8772
8773 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8774 {
8775 const struct deprecated_coproc_regs_s *r =
8776 deprecated_coproc_regs + i;
8777
8778 if (inst.operands[0].reg == r->cp
8779 && inst.operands[1].imm == r->opc1
8780 && inst.operands[3].reg == r->crn
8781 && inst.operands[4].reg == r->crm
8782 && inst.operands[5].imm == r->opc2)
8783 {
8784 if (! ARM_CPU_IS_ANY (cpu_variant)
8785 && warn_on_deprecated
8786 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8787 as_tsktsk ("%s", r->dep_msg);
8788 }
8789 }
8790
8791 inst.instruction |= inst.operands[0].reg << 8;
8792 inst.instruction |= inst.operands[1].imm << 21;
8793 inst.instruction |= Rd << 12;
8794 inst.instruction |= inst.operands[3].reg << 16;
8795 inst.instruction |= inst.operands[4].reg;
8796 inst.instruction |= inst.operands[5].imm << 5;
8797 }
8798
8799 /* Transfer between coprocessor register and pair of ARM registers.
8800 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8801 MCRR2
8802 MRRC{cond}
8803 MRRC2
8804
8805 Two XScale instructions are special cases of these:
8806
8807 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8808 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8809
8810 Result unpredictable if Rd or Rn is R15. */
8811
8812 static void
8813 do_co_reg2c (void)
8814 {
8815 unsigned Rd, Rn;
8816
8817 Rd = inst.operands[2].reg;
8818 Rn = inst.operands[3].reg;
8819
8820 if (thumb_mode)
8821 {
8822 reject_bad_reg (Rd);
8823 reject_bad_reg (Rn);
8824 }
8825 else
8826 {
8827 constraint (Rd == REG_PC, BAD_PC);
8828 constraint (Rn == REG_PC, BAD_PC);
8829 }
8830
8831 /* Only check the MRRC{2} variants. */
8832 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8833 {
8834 /* If Rd == Rn, error that the operation is
8835 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8836 constraint (Rd == Rn, BAD_OVERLAP);
8837 }
8838
8839 inst.instruction |= inst.operands[0].reg << 8;
8840 inst.instruction |= inst.operands[1].imm << 4;
8841 inst.instruction |= Rd << 12;
8842 inst.instruction |= Rn << 16;
8843 inst.instruction |= inst.operands[4].reg;
8844 }
8845
8846 static void
8847 do_cpsi (void)
8848 {
8849 inst.instruction |= inst.operands[0].imm << 6;
8850 if (inst.operands[1].present)
8851 {
8852 inst.instruction |= CPSI_MMOD;
8853 inst.instruction |= inst.operands[1].imm;
8854 }
8855 }
8856
8857 static void
8858 do_dbg (void)
8859 {
8860 inst.instruction |= inst.operands[0].imm;
8861 }
8862
8863 static void
8864 do_div (void)
8865 {
8866 unsigned Rd, Rn, Rm;
8867
8868 Rd = inst.operands[0].reg;
8869 Rn = (inst.operands[1].present
8870 ? inst.operands[1].reg : Rd);
8871 Rm = inst.operands[2].reg;
8872
8873 constraint ((Rd == REG_PC), BAD_PC);
8874 constraint ((Rn == REG_PC), BAD_PC);
8875 constraint ((Rm == REG_PC), BAD_PC);
8876
8877 inst.instruction |= Rd << 16;
8878 inst.instruction |= Rn << 0;
8879 inst.instruction |= Rm << 8;
8880 }
8881
8882 static void
8883 do_it (void)
8884 {
8885 /* There is no IT instruction in ARM mode. We
8886 process it to do the validation as if in
8887 thumb mode, just in case the code gets
8888 assembled for thumb using the unified syntax. */
8889
8890 inst.size = 0;
8891 if (unified_syntax)
8892 {
8893 set_it_insn_type (IT_INSN);
8894 now_it.mask = (inst.instruction & 0xf) | 0x10;
8895 now_it.cc = inst.operands[0].imm;
8896 }
8897 }
8898
8899 /* If there is only one register in the register list,
8900 then return its register number. Otherwise return -1. */
8901 static int
8902 only_one_reg_in_list (int range)
8903 {
8904 int i = ffs (range) - 1;
8905 return (i > 15 || range != (1 << i)) ? -1 : i;
8906 }
8907
8908 static void
8909 encode_ldmstm(int from_push_pop_mnem)
8910 {
8911 int base_reg = inst.operands[0].reg;
8912 int range = inst.operands[1].imm;
8913 int one_reg;
8914
8915 inst.instruction |= base_reg << 16;
8916 inst.instruction |= range;
8917
8918 if (inst.operands[1].writeback)
8919 inst.instruction |= LDM_TYPE_2_OR_3;
8920
8921 if (inst.operands[0].writeback)
8922 {
8923 inst.instruction |= WRITE_BACK;
8924 /* Check for unpredictable uses of writeback. */
8925 if (inst.instruction & LOAD_BIT)
8926 {
8927 /* Not allowed in LDM type 2. */
8928 if ((inst.instruction & LDM_TYPE_2_OR_3)
8929 && ((range & (1 << REG_PC)) == 0))
8930 as_warn (_("writeback of base register is UNPREDICTABLE"));
8931 /* Only allowed if base reg not in list for other types. */
8932 else if (range & (1 << base_reg))
8933 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8934 }
8935 else /* STM. */
8936 {
8937 /* Not allowed for type 2. */
8938 if (inst.instruction & LDM_TYPE_2_OR_3)
8939 as_warn (_("writeback of base register is UNPREDICTABLE"));
8940 /* Only allowed if base reg not in list, or first in list. */
8941 else if ((range & (1 << base_reg))
8942 && (range & ((1 << base_reg) - 1)))
8943 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8944 }
8945 }
8946
8947 /* If PUSH/POP has only one register, then use the A2 encoding. */
8948 one_reg = only_one_reg_in_list (range);
8949 if (from_push_pop_mnem && one_reg >= 0)
8950 {
8951 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8952
8953 if (is_push && one_reg == 13 /* SP */)
8954 /* PR 22483: The A2 encoding cannot be used when
8955 pushing the stack pointer as this is UNPREDICTABLE. */
8956 return;
8957
8958 inst.instruction &= A_COND_MASK;
8959 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8960 inst.instruction |= one_reg << 12;
8961 }
8962 }
8963
8964 static void
8965 do_ldmstm (void)
8966 {
8967 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8968 }
8969
8970 /* ARMv5TE load-consecutive (argument parse)
8971 Mode is like LDRH.
8972
8973 LDRccD R, mode
8974 STRccD R, mode. */
8975
8976 static void
8977 do_ldrd (void)
8978 {
8979 constraint (inst.operands[0].reg % 2 != 0,
8980 _("first transfer register must be even"));
8981 constraint (inst.operands[1].present
8982 && inst.operands[1].reg != inst.operands[0].reg + 1,
8983 _("can only transfer two consecutive registers"));
8984 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8985 constraint (!inst.operands[2].isreg, _("'[' expected"));
8986
8987 if (!inst.operands[1].present)
8988 inst.operands[1].reg = inst.operands[0].reg + 1;
8989
8990 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8991 register and the first register written; we have to diagnose
8992 overlap between the base and the second register written here. */
8993
8994 if (inst.operands[2].reg == inst.operands[1].reg
8995 && (inst.operands[2].writeback || inst.operands[2].postind))
8996 as_warn (_("base register written back, and overlaps "
8997 "second transfer register"));
8998
8999 if (!(inst.instruction & V4_STR_BIT))
9000 {
9001 /* For an index-register load, the index register must not overlap the
9002 destination (even if not write-back). */
9003 if (inst.operands[2].immisreg
9004 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9005 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9006 as_warn (_("index register overlaps transfer register"));
9007 }
9008 inst.instruction |= inst.operands[0].reg << 12;
9009 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9010 }
9011
9012 static void
9013 do_ldrex (void)
9014 {
9015 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9016 || inst.operands[1].postind || inst.operands[1].writeback
9017 || inst.operands[1].immisreg || inst.operands[1].shifted
9018 || inst.operands[1].negative
9019 /* This can arise if the programmer has written
9020 strex rN, rM, foo
9021 or if they have mistakenly used a register name as the last
9022 operand, eg:
9023 strex rN, rM, rX
9024 It is very difficult to distinguish between these two cases
9025 because "rX" might actually be a label. ie the register
9026 name has been occluded by a symbol of the same name. So we
9027 just generate a general 'bad addressing mode' type error
9028 message and leave it up to the programmer to discover the
9029 true cause and fix their mistake. */
9030 || (inst.operands[1].reg == REG_PC),
9031 BAD_ADDR_MODE);
9032
9033 constraint (inst.relocs[0].exp.X_op != O_constant
9034 || inst.relocs[0].exp.X_add_number != 0,
9035 _("offset must be zero in ARM encoding"));
9036
9037 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9038
9039 inst.instruction |= inst.operands[0].reg << 12;
9040 inst.instruction |= inst.operands[1].reg << 16;
9041 inst.relocs[0].type = BFD_RELOC_UNUSED;
9042 }
9043
9044 static void
9045 do_ldrexd (void)
9046 {
9047 constraint (inst.operands[0].reg % 2 != 0,
9048 _("even register required"));
9049 constraint (inst.operands[1].present
9050 && inst.operands[1].reg != inst.operands[0].reg + 1,
9051 _("can only load two consecutive registers"));
9052 /* If op 1 were present and equal to PC, this function wouldn't
9053 have been called in the first place. */
9054 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9055
9056 inst.instruction |= inst.operands[0].reg << 12;
9057 inst.instruction |= inst.operands[2].reg << 16;
9058 }
9059
9060 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9061 which is not a multiple of four is UNPREDICTABLE. */
9062 static void
9063 check_ldr_r15_aligned (void)
9064 {
9065 constraint (!(inst.operands[1].immisreg)
9066 && (inst.operands[0].reg == REG_PC
9067 && inst.operands[1].reg == REG_PC
9068 && (inst.relocs[0].exp.X_add_number & 0x3)),
9069 _("ldr to register 15 must be 4-byte aligned"));
9070 }
9071
9072 static void
9073 do_ldst (void)
9074 {
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 if (!inst.operands[1].isreg)
9077 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9078 return;
9079 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9080 check_ldr_r15_aligned ();
9081 }
9082
9083 static void
9084 do_ldstt (void)
9085 {
9086 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9087 reject [Rn,...]. */
9088 if (inst.operands[1].preind)
9089 {
9090 constraint (inst.relocs[0].exp.X_op != O_constant
9091 || inst.relocs[0].exp.X_add_number != 0,
9092 _("this instruction requires a post-indexed address"));
9093
9094 inst.operands[1].preind = 0;
9095 inst.operands[1].postind = 1;
9096 inst.operands[1].writeback = 1;
9097 }
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9100 }
9101
9102 /* Halfword and signed-byte load/store operations. */
9103
9104 static void
9105 do_ldstv4 (void)
9106 {
9107 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9108 inst.instruction |= inst.operands[0].reg << 12;
9109 if (!inst.operands[1].isreg)
9110 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9111 return;
9112 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9113 }
9114
9115 static void
9116 do_ldsttv4 (void)
9117 {
9118 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9119 reject [Rn,...]. */
9120 if (inst.operands[1].preind)
9121 {
9122 constraint (inst.relocs[0].exp.X_op != O_constant
9123 || inst.relocs[0].exp.X_add_number != 0,
9124 _("this instruction requires a post-indexed address"));
9125
9126 inst.operands[1].preind = 0;
9127 inst.operands[1].postind = 1;
9128 inst.operands[1].writeback = 1;
9129 }
9130 inst.instruction |= inst.operands[0].reg << 12;
9131 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9132 }
9133
9134 /* Co-processor register load/store.
9135 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9136 static void
9137 do_lstc (void)
9138 {
9139 inst.instruction |= inst.operands[0].reg << 8;
9140 inst.instruction |= inst.operands[1].reg << 12;
9141 encode_arm_cp_address (2, TRUE, TRUE, 0);
9142 }
9143
9144 static void
9145 do_mlas (void)
9146 {
9147 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9148 if (inst.operands[0].reg == inst.operands[1].reg
9149 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9150 && !(inst.instruction & 0x00400000))
9151 as_tsktsk (_("Rd and Rm should be different in mla"));
9152
9153 inst.instruction |= inst.operands[0].reg << 16;
9154 inst.instruction |= inst.operands[1].reg;
9155 inst.instruction |= inst.operands[2].reg << 8;
9156 inst.instruction |= inst.operands[3].reg << 12;
9157 }
9158
9159 static void
9160 do_mov (void)
9161 {
9162 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9163 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9164 THUMB1_RELOC_ONLY);
9165 inst.instruction |= inst.operands[0].reg << 12;
9166 encode_arm_shifter_operand (1);
9167 }
9168
9169 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9170 static void
9171 do_mov16 (void)
9172 {
9173 bfd_vma imm;
9174 bfd_boolean top;
9175
9176 top = (inst.instruction & 0x00400000) != 0;
9177 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9178 _(":lower16: not allowed in this instruction"));
9179 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9180 _(":upper16: not allowed in this instruction"));
9181 inst.instruction |= inst.operands[0].reg << 12;
9182 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9183 {
9184 imm = inst.relocs[0].exp.X_add_number;
9185 /* The value is in two pieces: 0:11, 16:19. */
9186 inst.instruction |= (imm & 0x00000fff);
9187 inst.instruction |= (imm & 0x0000f000) << 4;
9188 }
9189 }
9190
9191 static int
9192 do_vfp_nsyn_mrs (void)
9193 {
9194 if (inst.operands[0].isvec)
9195 {
9196 if (inst.operands[1].reg != 1)
9197 first_error (_("operand 1 must be FPSCR"));
9198 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9199 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9200 do_vfp_nsyn_opcode ("fmstat");
9201 }
9202 else if (inst.operands[1].isvec)
9203 do_vfp_nsyn_opcode ("fmrx");
9204 else
9205 return FAIL;
9206
9207 return SUCCESS;
9208 }
9209
9210 static int
9211 do_vfp_nsyn_msr (void)
9212 {
9213 if (inst.operands[0].isvec)
9214 do_vfp_nsyn_opcode ("fmxr");
9215 else
9216 return FAIL;
9217
9218 return SUCCESS;
9219 }
9220
9221 static void
9222 do_vmrs (void)
9223 {
9224 unsigned Rt = inst.operands[0].reg;
9225
9226 if (thumb_mode && Rt == REG_SP)
9227 {
9228 inst.error = BAD_SP;
9229 return;
9230 }
9231
9232 /* MVFR2 is only valid at ARMv8-A. */
9233 if (inst.operands[1].reg == 5)
9234 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9235 _(BAD_FPU));
9236
9237 /* APSR_ sets isvec. All other refs to PC are illegal. */
9238 if (!inst.operands[0].isvec && Rt == REG_PC)
9239 {
9240 inst.error = BAD_PC;
9241 return;
9242 }
9243
9244 /* If we get through parsing the register name, we just insert the number
9245 generated into the instruction without further validation. */
9246 inst.instruction |= (inst.operands[1].reg << 16);
9247 inst.instruction |= (Rt << 12);
9248 }
9249
9250 static void
9251 do_vmsr (void)
9252 {
9253 unsigned Rt = inst.operands[1].reg;
9254
9255 if (thumb_mode)
9256 reject_bad_reg (Rt);
9257 else if (Rt == REG_PC)
9258 {
9259 inst.error = BAD_PC;
9260 return;
9261 }
9262
9263 /* MVFR2 is only valid for ARMv8-A. */
9264 if (inst.operands[0].reg == 5)
9265 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9266 _(BAD_FPU));
9267
9268 /* If we get through parsing the register name, we just insert the number
9269 generated into the instruction without further validation. */
9270 inst.instruction |= (inst.operands[0].reg << 16);
9271 inst.instruction |= (Rt << 12);
9272 }
9273
9274 static void
9275 do_mrs (void)
9276 {
9277 unsigned br;
9278
9279 if (do_vfp_nsyn_mrs () == SUCCESS)
9280 return;
9281
9282 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9283 inst.instruction |= inst.operands[0].reg << 12;
9284
9285 if (inst.operands[1].isreg)
9286 {
9287 br = inst.operands[1].reg;
9288 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9289 as_bad (_("bad register for mrs"));
9290 }
9291 else
9292 {
9293 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9294 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9295 != (PSR_c|PSR_f),
9296 _("'APSR', 'CPSR' or 'SPSR' expected"));
9297 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9298 }
9299
9300 inst.instruction |= br;
9301 }
9302
9303 /* Two possible forms:
9304 "{C|S}PSR_<field>, Rm",
9305 "{C|S}PSR_f, #expression". */
9306
9307 static void
9308 do_msr (void)
9309 {
9310 if (do_vfp_nsyn_msr () == SUCCESS)
9311 return;
9312
9313 inst.instruction |= inst.operands[0].imm;
9314 if (inst.operands[1].isreg)
9315 inst.instruction |= inst.operands[1].reg;
9316 else
9317 {
9318 inst.instruction |= INST_IMMEDIATE;
9319 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9320 inst.relocs[0].pc_rel = 0;
9321 }
9322 }
9323
9324 static void
9325 do_mul (void)
9326 {
9327 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9328
9329 if (!inst.operands[2].present)
9330 inst.operands[2].reg = inst.operands[0].reg;
9331 inst.instruction |= inst.operands[0].reg << 16;
9332 inst.instruction |= inst.operands[1].reg;
9333 inst.instruction |= inst.operands[2].reg << 8;
9334
9335 if (inst.operands[0].reg == inst.operands[1].reg
9336 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9337 as_tsktsk (_("Rd and Rm should be different in mul"));
9338 }
9339
9340 /* Long Multiply Parser
9341 UMULL RdLo, RdHi, Rm, Rs
9342 SMULL RdLo, RdHi, Rm, Rs
9343 UMLAL RdLo, RdHi, Rm, Rs
9344 SMLAL RdLo, RdHi, Rm, Rs. */
9345
9346 static void
9347 do_mull (void)
9348 {
9349 inst.instruction |= inst.operands[0].reg << 12;
9350 inst.instruction |= inst.operands[1].reg << 16;
9351 inst.instruction |= inst.operands[2].reg;
9352 inst.instruction |= inst.operands[3].reg << 8;
9353
9354 /* rdhi and rdlo must be different. */
9355 if (inst.operands[0].reg == inst.operands[1].reg)
9356 as_tsktsk (_("rdhi and rdlo must be different"));
9357
9358 /* rdhi, rdlo and rm must all be different before armv6. */
9359 if ((inst.operands[0].reg == inst.operands[2].reg
9360 || inst.operands[1].reg == inst.operands[2].reg)
9361 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9362 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9363 }
9364
9365 static void
9366 do_nop (void)
9367 {
9368 if (inst.operands[0].present
9369 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9370 {
9371 /* Architectural NOP hints are CPSR sets with no bits selected. */
9372 inst.instruction &= 0xf0000000;
9373 inst.instruction |= 0x0320f000;
9374 if (inst.operands[0].present)
9375 inst.instruction |= inst.operands[0].imm;
9376 }
9377 }
9378
9379 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9380 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9381 Condition defaults to COND_ALWAYS.
9382 Error if Rd, Rn or Rm are R15. */
9383
9384 static void
9385 do_pkhbt (void)
9386 {
9387 inst.instruction |= inst.operands[0].reg << 12;
9388 inst.instruction |= inst.operands[1].reg << 16;
9389 inst.instruction |= inst.operands[2].reg;
9390 if (inst.operands[3].present)
9391 encode_arm_shift (3);
9392 }
9393
9394 /* ARM V6 PKHTB (Argument Parse). */
9395
9396 static void
9397 do_pkhtb (void)
9398 {
9399 if (!inst.operands[3].present)
9400 {
9401 /* If the shift specifier is omitted, turn the instruction
9402 into pkhbt rd, rm, rn. */
9403 inst.instruction &= 0xfff00010;
9404 inst.instruction |= inst.operands[0].reg << 12;
9405 inst.instruction |= inst.operands[1].reg;
9406 inst.instruction |= inst.operands[2].reg << 16;
9407 }
9408 else
9409 {
9410 inst.instruction |= inst.operands[0].reg << 12;
9411 inst.instruction |= inst.operands[1].reg << 16;
9412 inst.instruction |= inst.operands[2].reg;
9413 encode_arm_shift (3);
9414 }
9415 }
9416
9417 /* ARMv5TE: Preload-Cache
9418 MP Extensions: Preload for write
9419
9420 PLD(W) <addr_mode>
9421
9422 Syntactically, like LDR with B=1, W=0, L=1. */
9423
9424 static void
9425 do_pld (void)
9426 {
9427 constraint (!inst.operands[0].isreg,
9428 _("'[' expected after PLD mnemonic"));
9429 constraint (inst.operands[0].postind,
9430 _("post-indexed expression used in preload instruction"));
9431 constraint (inst.operands[0].writeback,
9432 _("writeback used in preload instruction"));
9433 constraint (!inst.operands[0].preind,
9434 _("unindexed addressing used in preload instruction"));
9435 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9436 }
9437
9438 /* ARMv7: PLI <addr_mode> */
9439 static void
9440 do_pli (void)
9441 {
9442 constraint (!inst.operands[0].isreg,
9443 _("'[' expected after PLI mnemonic"));
9444 constraint (inst.operands[0].postind,
9445 _("post-indexed expression used in preload instruction"));
9446 constraint (inst.operands[0].writeback,
9447 _("writeback used in preload instruction"));
9448 constraint (!inst.operands[0].preind,
9449 _("unindexed addressing used in preload instruction"));
9450 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9451 inst.instruction &= ~PRE_INDEX;
9452 }
9453
9454 static void
9455 do_push_pop (void)
9456 {
9457 constraint (inst.operands[0].writeback,
9458 _("push/pop do not support {reglist}^"));
9459 inst.operands[1] = inst.operands[0];
9460 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9461 inst.operands[0].isreg = 1;
9462 inst.operands[0].writeback = 1;
9463 inst.operands[0].reg = REG_SP;
9464 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9465 }
9466
9467 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9468 word at the specified address and the following word
9469 respectively.
9470 Unconditionally executed.
9471 Error if Rn is R15. */
9472
9473 static void
9474 do_rfe (void)
9475 {
9476 inst.instruction |= inst.operands[0].reg << 16;
9477 if (inst.operands[0].writeback)
9478 inst.instruction |= WRITE_BACK;
9479 }
9480
9481 /* ARM V6 ssat (argument parse). */
9482
9483 static void
9484 do_ssat (void)
9485 {
9486 inst.instruction |= inst.operands[0].reg << 12;
9487 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9488 inst.instruction |= inst.operands[2].reg;
9489
9490 if (inst.operands[3].present)
9491 encode_arm_shift (3);
9492 }
9493
9494 /* ARM V6 usat (argument parse). */
9495
9496 static void
9497 do_usat (void)
9498 {
9499 inst.instruction |= inst.operands[0].reg << 12;
9500 inst.instruction |= inst.operands[1].imm << 16;
9501 inst.instruction |= inst.operands[2].reg;
9502
9503 if (inst.operands[3].present)
9504 encode_arm_shift (3);
9505 }
9506
9507 /* ARM V6 ssat16 (argument parse). */
9508
9509 static void
9510 do_ssat16 (void)
9511 {
9512 inst.instruction |= inst.operands[0].reg << 12;
9513 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9514 inst.instruction |= inst.operands[2].reg;
9515 }
9516
9517 static void
9518 do_usat16 (void)
9519 {
9520 inst.instruction |= inst.operands[0].reg << 12;
9521 inst.instruction |= inst.operands[1].imm << 16;
9522 inst.instruction |= inst.operands[2].reg;
9523 }
9524
9525 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9526 preserving the other bits.
9527
9528 setend <endian_specifier>, where <endian_specifier> is either
9529 BE or LE. */
9530
9531 static void
9532 do_setend (void)
9533 {
9534 if (warn_on_deprecated
9535 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9536 as_tsktsk (_("setend use is deprecated for ARMv8"));
9537
9538 if (inst.operands[0].imm)
9539 inst.instruction |= 0x200;
9540 }
9541
9542 static void
9543 do_shift (void)
9544 {
9545 unsigned int Rm = (inst.operands[1].present
9546 ? inst.operands[1].reg
9547 : inst.operands[0].reg);
9548
9549 inst.instruction |= inst.operands[0].reg << 12;
9550 inst.instruction |= Rm;
9551 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9552 {
9553 inst.instruction |= inst.operands[2].reg << 8;
9554 inst.instruction |= SHIFT_BY_REG;
9555 /* PR 12854: Error on extraneous shifts. */
9556 constraint (inst.operands[2].shifted,
9557 _("extraneous shift as part of operand to shift insn"));
9558 }
9559 else
9560 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
9561 }
9562
9563 static void
9564 do_smc (void)
9565 {
9566 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
9567 inst.relocs[0].pc_rel = 0;
9568 }
9569
9570 static void
9571 do_hvc (void)
9572 {
9573 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
9574 inst.relocs[0].pc_rel = 0;
9575 }
9576
9577 static void
9578 do_swi (void)
9579 {
9580 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
9581 inst.relocs[0].pc_rel = 0;
9582 }
9583
9584 static void
9585 do_setpan (void)
9586 {
9587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9588 _("selected processor does not support SETPAN instruction"));
9589
9590 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9591 }
9592
9593 static void
9594 do_t_setpan (void)
9595 {
9596 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9597 _("selected processor does not support SETPAN instruction"));
9598
9599 inst.instruction |= (inst.operands[0].imm << 3);
9600 }
9601
9602 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9603 SMLAxy{cond} Rd,Rm,Rs,Rn
9604 SMLAWy{cond} Rd,Rm,Rs,Rn
9605 Error if any register is R15. */
9606
9607 static void
9608 do_smla (void)
9609 {
9610 inst.instruction |= inst.operands[0].reg << 16;
9611 inst.instruction |= inst.operands[1].reg;
9612 inst.instruction |= inst.operands[2].reg << 8;
9613 inst.instruction |= inst.operands[3].reg << 12;
9614 }
9615
9616 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9617 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9618 Error if any register is R15.
9619 Warning if Rdlo == Rdhi. */
9620
9621 static void
9622 do_smlal (void)
9623 {
9624 inst.instruction |= inst.operands[0].reg << 12;
9625 inst.instruction |= inst.operands[1].reg << 16;
9626 inst.instruction |= inst.operands[2].reg;
9627 inst.instruction |= inst.operands[3].reg << 8;
9628
9629 if (inst.operands[0].reg == inst.operands[1].reg)
9630 as_tsktsk (_("rdhi and rdlo must be different"));
9631 }
9632
9633 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9634 SMULxy{cond} Rd,Rm,Rs
9635 Error if any register is R15. */
9636
9637 static void
9638 do_smul (void)
9639 {
9640 inst.instruction |= inst.operands[0].reg << 16;
9641 inst.instruction |= inst.operands[1].reg;
9642 inst.instruction |= inst.operands[2].reg << 8;
9643 }
9644
9645 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9646 the same for both ARM and Thumb-2. */
9647
9648 static void
9649 do_srs (void)
9650 {
9651 int reg;
9652
9653 if (inst.operands[0].present)
9654 {
9655 reg = inst.operands[0].reg;
9656 constraint (reg != REG_SP, _("SRS base register must be r13"));
9657 }
9658 else
9659 reg = REG_SP;
9660
9661 inst.instruction |= reg << 16;
9662 inst.instruction |= inst.operands[1].imm;
9663 if (inst.operands[0].writeback || inst.operands[1].writeback)
9664 inst.instruction |= WRITE_BACK;
9665 }
9666
9667 /* ARM V6 strex (argument parse). */
9668
9669 static void
9670 do_strex (void)
9671 {
9672 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9673 || inst.operands[2].postind || inst.operands[2].writeback
9674 || inst.operands[2].immisreg || inst.operands[2].shifted
9675 || inst.operands[2].negative
9676 /* See comment in do_ldrex(). */
9677 || (inst.operands[2].reg == REG_PC),
9678 BAD_ADDR_MODE);
9679
9680 constraint (inst.operands[0].reg == inst.operands[1].reg
9681 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9682
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
9685 _("offset must be zero in ARM encoding"));
9686
9687 inst.instruction |= inst.operands[0].reg << 12;
9688 inst.instruction |= inst.operands[1].reg;
9689 inst.instruction |= inst.operands[2].reg << 16;
9690 inst.relocs[0].type = BFD_RELOC_UNUSED;
9691 }
9692
9693 static void
9694 do_t_strexbh (void)
9695 {
9696 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9697 || inst.operands[2].postind || inst.operands[2].writeback
9698 || inst.operands[2].immisreg || inst.operands[2].shifted
9699 || inst.operands[2].negative,
9700 BAD_ADDR_MODE);
9701
9702 constraint (inst.operands[0].reg == inst.operands[1].reg
9703 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9704
9705 do_rm_rd_rn ();
9706 }
9707
9708 static void
9709 do_strexd (void)
9710 {
9711 constraint (inst.operands[1].reg % 2 != 0,
9712 _("even register required"));
9713 constraint (inst.operands[2].present
9714 && inst.operands[2].reg != inst.operands[1].reg + 1,
9715 _("can only store two consecutive registers"));
9716 /* If op 2 were present and equal to PC, this function wouldn't
9717 have been called in the first place. */
9718 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9719
9720 constraint (inst.operands[0].reg == inst.operands[1].reg
9721 || inst.operands[0].reg == inst.operands[1].reg + 1
9722 || inst.operands[0].reg == inst.operands[3].reg,
9723 BAD_OVERLAP);
9724
9725 inst.instruction |= inst.operands[0].reg << 12;
9726 inst.instruction |= inst.operands[1].reg;
9727 inst.instruction |= inst.operands[3].reg << 16;
9728 }
9729
9730 /* ARM V8 STRL. */
9731 static void
9732 do_stlex (void)
9733 {
9734 constraint (inst.operands[0].reg == inst.operands[1].reg
9735 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9736
9737 do_rd_rm_rn ();
9738 }
9739
9740 static void
9741 do_t_stlex (void)
9742 {
9743 constraint (inst.operands[0].reg == inst.operands[1].reg
9744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9745
9746 do_rm_rd_rn ();
9747 }
9748
9749 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9750 extends it to 32-bits, and adds the result to a value in another
9751 register. You can specify a rotation by 0, 8, 16, or 24 bits
9752 before extracting the 16-bit value.
9753 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9754 Condition defaults to COND_ALWAYS.
9755 Error if any register uses R15. */
9756
9757 static void
9758 do_sxtah (void)
9759 {
9760 inst.instruction |= inst.operands[0].reg << 12;
9761 inst.instruction |= inst.operands[1].reg << 16;
9762 inst.instruction |= inst.operands[2].reg;
9763 inst.instruction |= inst.operands[3].imm << 10;
9764 }
9765
9766 /* ARM V6 SXTH.
9767
9768 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9769 Condition defaults to COND_ALWAYS.
9770 Error if any register uses R15. */
9771
9772 static void
9773 do_sxth (void)
9774 {
9775 inst.instruction |= inst.operands[0].reg << 12;
9776 inst.instruction |= inst.operands[1].reg;
9777 inst.instruction |= inst.operands[2].imm << 10;
9778 }
9779 \f
9780 /* VFP instructions. In a logical order: SP variant first, monad
9781 before dyad, arithmetic then move then load/store. */
9782
9783 static void
9784 do_vfp_sp_monadic (void)
9785 {
9786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9788 }
9789
9790 static void
9791 do_vfp_sp_dyadic (void)
9792 {
9793 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9794 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9795 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9796 }
9797
9798 static void
9799 do_vfp_sp_compare_z (void)
9800 {
9801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9802 }
9803
9804 static void
9805 do_vfp_dp_sp_cvt (void)
9806 {
9807 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9808 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9809 }
9810
9811 static void
9812 do_vfp_sp_dp_cvt (void)
9813 {
9814 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9815 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9816 }
9817
9818 static void
9819 do_vfp_reg_from_sp (void)
9820 {
9821 inst.instruction |= inst.operands[0].reg << 12;
9822 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9823 }
9824
9825 static void
9826 do_vfp_reg2_from_sp2 (void)
9827 {
9828 constraint (inst.operands[2].imm != 2,
9829 _("only two consecutive VFP SP registers allowed here"));
9830 inst.instruction |= inst.operands[0].reg << 12;
9831 inst.instruction |= inst.operands[1].reg << 16;
9832 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9833 }
9834
9835 static void
9836 do_vfp_sp_from_reg (void)
9837 {
9838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9839 inst.instruction |= inst.operands[1].reg << 12;
9840 }
9841
9842 static void
9843 do_vfp_sp2_from_reg2 (void)
9844 {
9845 constraint (inst.operands[0].imm != 2,
9846 _("only two consecutive VFP SP registers allowed here"));
9847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9848 inst.instruction |= inst.operands[1].reg << 12;
9849 inst.instruction |= inst.operands[2].reg << 16;
9850 }
9851
9852 static void
9853 do_vfp_sp_ldst (void)
9854 {
9855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9856 encode_arm_cp_address (1, FALSE, TRUE, 0);
9857 }
9858
9859 static void
9860 do_vfp_dp_ldst (void)
9861 {
9862 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9863 encode_arm_cp_address (1, FALSE, TRUE, 0);
9864 }
9865
9866
9867 static void
9868 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9869 {
9870 if (inst.operands[0].writeback)
9871 inst.instruction |= WRITE_BACK;
9872 else
9873 constraint (ldstm_type != VFP_LDSTMIA,
9874 _("this addressing mode requires base-register writeback"));
9875 inst.instruction |= inst.operands[0].reg << 16;
9876 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9877 inst.instruction |= inst.operands[1].imm;
9878 }
9879
9880 static void
9881 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9882 {
9883 int count;
9884
9885 if (inst.operands[0].writeback)
9886 inst.instruction |= WRITE_BACK;
9887 else
9888 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9889 _("this addressing mode requires base-register writeback"));
9890
9891 inst.instruction |= inst.operands[0].reg << 16;
9892 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9893
9894 count = inst.operands[1].imm << 1;
9895 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9896 count += 1;
9897
9898 inst.instruction |= count;
9899 }
9900
9901 static void
9902 do_vfp_sp_ldstmia (void)
9903 {
9904 vfp_sp_ldstm (VFP_LDSTMIA);
9905 }
9906
9907 static void
9908 do_vfp_sp_ldstmdb (void)
9909 {
9910 vfp_sp_ldstm (VFP_LDSTMDB);
9911 }
9912
9913 static void
9914 do_vfp_dp_ldstmia (void)
9915 {
9916 vfp_dp_ldstm (VFP_LDSTMIA);
9917 }
9918
9919 static void
9920 do_vfp_dp_ldstmdb (void)
9921 {
9922 vfp_dp_ldstm (VFP_LDSTMDB);
9923 }
9924
9925 static void
9926 do_vfp_xp_ldstmia (void)
9927 {
9928 vfp_dp_ldstm (VFP_LDSTMIAX);
9929 }
9930
9931 static void
9932 do_vfp_xp_ldstmdb (void)
9933 {
9934 vfp_dp_ldstm (VFP_LDSTMDBX);
9935 }
9936
9937 static void
9938 do_vfp_dp_rd_rm (void)
9939 {
9940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9941 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9942 }
9943
9944 static void
9945 do_vfp_dp_rn_rd (void)
9946 {
9947 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9948 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9949 }
9950
9951 static void
9952 do_vfp_dp_rd_rn (void)
9953 {
9954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9955 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9956 }
9957
9958 static void
9959 do_vfp_dp_rd_rn_rm (void)
9960 {
9961 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9962 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9963 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9964 }
9965
9966 static void
9967 do_vfp_dp_rd (void)
9968 {
9969 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9970 }
9971
9972 static void
9973 do_vfp_dp_rm_rd_rn (void)
9974 {
9975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9976 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9977 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9978 }
9979
9980 /* VFPv3 instructions. */
9981 static void
9982 do_vfp_sp_const (void)
9983 {
9984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9985 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9986 inst.instruction |= (inst.operands[1].imm & 0x0f);
9987 }
9988
9989 static void
9990 do_vfp_dp_const (void)
9991 {
9992 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9993 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9994 inst.instruction |= (inst.operands[1].imm & 0x0f);
9995 }
9996
9997 static void
9998 vfp_conv (int srcsize)
9999 {
10000 int immbits = srcsize - inst.operands[1].imm;
10001
10002 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10003 {
10004 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10005 i.e. immbits must be in range 0 - 16. */
10006 inst.error = _("immediate value out of range, expected range [0, 16]");
10007 return;
10008 }
10009 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10010 {
10011 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10012 i.e. immbits must be in range 0 - 31. */
10013 inst.error = _("immediate value out of range, expected range [1, 32]");
10014 return;
10015 }
10016
10017 inst.instruction |= (immbits & 1) << 5;
10018 inst.instruction |= (immbits >> 1);
10019 }
10020
10021 static void
10022 do_vfp_sp_conv_16 (void)
10023 {
10024 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10025 vfp_conv (16);
10026 }
10027
10028 static void
10029 do_vfp_dp_conv_16 (void)
10030 {
10031 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10032 vfp_conv (16);
10033 }
10034
10035 static void
10036 do_vfp_sp_conv_32 (void)
10037 {
10038 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10039 vfp_conv (32);
10040 }
10041
10042 static void
10043 do_vfp_dp_conv_32 (void)
10044 {
10045 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10046 vfp_conv (32);
10047 }
10048 \f
10049 /* FPA instructions. Also in a logical order. */
10050
10051 static void
10052 do_fpa_cmp (void)
10053 {
10054 inst.instruction |= inst.operands[0].reg << 16;
10055 inst.instruction |= inst.operands[1].reg;
10056 }
10057
10058 static void
10059 do_fpa_ldmstm (void)
10060 {
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 switch (inst.operands[1].imm)
10063 {
10064 case 1: inst.instruction |= CP_T_X; break;
10065 case 2: inst.instruction |= CP_T_Y; break;
10066 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10067 case 4: break;
10068 default: abort ();
10069 }
10070
10071 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10072 {
10073 /* The instruction specified "ea" or "fd", so we can only accept
10074 [Rn]{!}. The instruction does not really support stacking or
10075 unstacking, so we have to emulate these by setting appropriate
10076 bits and offsets. */
10077 constraint (inst.relocs[0].exp.X_op != O_constant
10078 || inst.relocs[0].exp.X_add_number != 0,
10079 _("this instruction does not support indexing"));
10080
10081 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10082 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10083
10084 if (!(inst.instruction & INDEX_UP))
10085 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10086
10087 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10088 {
10089 inst.operands[2].preind = 0;
10090 inst.operands[2].postind = 1;
10091 }
10092 }
10093
10094 encode_arm_cp_address (2, TRUE, TRUE, 0);
10095 }
10096 \f
10097 /* iWMMXt instructions: strictly in alphabetical order. */
10098
10099 static void
10100 do_iwmmxt_tandorc (void)
10101 {
10102 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10103 }
10104
10105 static void
10106 do_iwmmxt_textrc (void)
10107 {
10108 inst.instruction |= inst.operands[0].reg << 12;
10109 inst.instruction |= inst.operands[1].imm;
10110 }
10111
10112 static void
10113 do_iwmmxt_textrm (void)
10114 {
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 inst.instruction |= inst.operands[1].reg << 16;
10117 inst.instruction |= inst.operands[2].imm;
10118 }
10119
10120 static void
10121 do_iwmmxt_tinsr (void)
10122 {
10123 inst.instruction |= inst.operands[0].reg << 16;
10124 inst.instruction |= inst.operands[1].reg << 12;
10125 inst.instruction |= inst.operands[2].imm;
10126 }
10127
10128 static void
10129 do_iwmmxt_tmia (void)
10130 {
10131 inst.instruction |= inst.operands[0].reg << 5;
10132 inst.instruction |= inst.operands[1].reg;
10133 inst.instruction |= inst.operands[2].reg << 12;
10134 }
10135
10136 static void
10137 do_iwmmxt_waligni (void)
10138 {
10139 inst.instruction |= inst.operands[0].reg << 12;
10140 inst.instruction |= inst.operands[1].reg << 16;
10141 inst.instruction |= inst.operands[2].reg;
10142 inst.instruction |= inst.operands[3].imm << 20;
10143 }
10144
10145 static void
10146 do_iwmmxt_wmerge (void)
10147 {
10148 inst.instruction |= inst.operands[0].reg << 12;
10149 inst.instruction |= inst.operands[1].reg << 16;
10150 inst.instruction |= inst.operands[2].reg;
10151 inst.instruction |= inst.operands[3].imm << 21;
10152 }
10153
10154 static void
10155 do_iwmmxt_wmov (void)
10156 {
10157 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10158 inst.instruction |= inst.operands[0].reg << 12;
10159 inst.instruction |= inst.operands[1].reg << 16;
10160 inst.instruction |= inst.operands[1].reg;
10161 }
10162
10163 static void
10164 do_iwmmxt_wldstbh (void)
10165 {
10166 int reloc;
10167 inst.instruction |= inst.operands[0].reg << 12;
10168 if (thumb_mode)
10169 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10170 else
10171 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10172 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10173 }
10174
10175 static void
10176 do_iwmmxt_wldstw (void)
10177 {
10178 /* RIWR_RIWC clears .isreg for a control register. */
10179 if (!inst.operands[0].isreg)
10180 {
10181 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10182 inst.instruction |= 0xf0000000;
10183 }
10184
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 encode_arm_cp_address (1, TRUE, TRUE, 0);
10187 }
10188
10189 static void
10190 do_iwmmxt_wldstd (void)
10191 {
10192 inst.instruction |= inst.operands[0].reg << 12;
10193 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10194 && inst.operands[1].immisreg)
10195 {
10196 inst.instruction &= ~0x1a000ff;
10197 inst.instruction |= (0xfU << 28);
10198 if (inst.operands[1].preind)
10199 inst.instruction |= PRE_INDEX;
10200 if (!inst.operands[1].negative)
10201 inst.instruction |= INDEX_UP;
10202 if (inst.operands[1].writeback)
10203 inst.instruction |= WRITE_BACK;
10204 inst.instruction |= inst.operands[1].reg << 16;
10205 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10206 inst.instruction |= inst.operands[1].imm;
10207 }
10208 else
10209 encode_arm_cp_address (1, TRUE, FALSE, 0);
10210 }
10211
10212 static void
10213 do_iwmmxt_wshufh (void)
10214 {
10215 inst.instruction |= inst.operands[0].reg << 12;
10216 inst.instruction |= inst.operands[1].reg << 16;
10217 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10218 inst.instruction |= (inst.operands[2].imm & 0x0f);
10219 }
10220
10221 static void
10222 do_iwmmxt_wzero (void)
10223 {
10224 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10225 inst.instruction |= inst.operands[0].reg;
10226 inst.instruction |= inst.operands[0].reg << 12;
10227 inst.instruction |= inst.operands[0].reg << 16;
10228 }
10229
10230 static void
10231 do_iwmmxt_wrwrwr_or_imm5 (void)
10232 {
10233 if (inst.operands[2].isreg)
10234 do_rd_rn_rm ();
10235 else {
10236 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10237 _("immediate operand requires iWMMXt2"));
10238 do_rd_rn ();
10239 if (inst.operands[2].imm == 0)
10240 {
10241 switch ((inst.instruction >> 20) & 0xf)
10242 {
10243 case 4:
10244 case 5:
10245 case 6:
10246 case 7:
10247 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10248 inst.operands[2].imm = 16;
10249 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10250 break;
10251 case 8:
10252 case 9:
10253 case 10:
10254 case 11:
10255 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10256 inst.operands[2].imm = 32;
10257 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10258 break;
10259 case 12:
10260 case 13:
10261 case 14:
10262 case 15:
10263 {
10264 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10265 unsigned long wrn;
10266 wrn = (inst.instruction >> 16) & 0xf;
10267 inst.instruction &= 0xff0fff0f;
10268 inst.instruction |= wrn;
10269 /* Bail out here; the instruction is now assembled. */
10270 return;
10271 }
10272 }
10273 }
10274 /* Map 32 -> 0, etc. */
10275 inst.operands[2].imm &= 0x1f;
10276 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10277 }
10278 }
10279 \f
10280 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10281 operations first, then control, shift, and load/store. */
10282
10283 /* Insns like "foo X,Y,Z". */
10284
10285 static void
10286 do_mav_triple (void)
10287 {
10288 inst.instruction |= inst.operands[0].reg << 16;
10289 inst.instruction |= inst.operands[1].reg;
10290 inst.instruction |= inst.operands[2].reg << 12;
10291 }
10292
10293 /* Insns like "foo W,X,Y,Z".
10294 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10295
10296 static void
10297 do_mav_quad (void)
10298 {
10299 inst.instruction |= inst.operands[0].reg << 5;
10300 inst.instruction |= inst.operands[1].reg << 12;
10301 inst.instruction |= inst.operands[2].reg << 16;
10302 inst.instruction |= inst.operands[3].reg;
10303 }
10304
10305 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10306 static void
10307 do_mav_dspsc (void)
10308 {
10309 inst.instruction |= inst.operands[1].reg << 12;
10310 }
10311
10312 /* Maverick shift immediate instructions.
10313 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10314 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10315
10316 static void
10317 do_mav_shift (void)
10318 {
10319 int imm = inst.operands[2].imm;
10320
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
10323
10324 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10325 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10326 Bit 4 should be 0. */
10327 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10328
10329 inst.instruction |= imm;
10330 }
10331 \f
10332 /* XScale instructions. Also sorted arithmetic before move. */
10333
10334 /* Xscale multiply-accumulate (argument parse)
10335 MIAcc acc0,Rm,Rs
10336 MIAPHcc acc0,Rm,Rs
10337 MIAxycc acc0,Rm,Rs. */
10338
10339 static void
10340 do_xsc_mia (void)
10341 {
10342 inst.instruction |= inst.operands[1].reg;
10343 inst.instruction |= inst.operands[2].reg << 12;
10344 }
10345
10346 /* Xscale move-accumulator-register (argument parse)
10347
10348 MARcc acc0,RdLo,RdHi. */
10349
10350 static void
10351 do_xsc_mar (void)
10352 {
10353 inst.instruction |= inst.operands[1].reg << 12;
10354 inst.instruction |= inst.operands[2].reg << 16;
10355 }
10356
10357 /* Xscale move-register-accumulator (argument parse)
10358
10359 MRAcc RdLo,RdHi,acc0. */
10360
10361 static void
10362 do_xsc_mra (void)
10363 {
10364 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10365 inst.instruction |= inst.operands[0].reg << 12;
10366 inst.instruction |= inst.operands[1].reg << 16;
10367 }
10368 \f
10369 /* Encoding functions relevant only to Thumb. */
10370
10371 /* inst.operands[i] is a shifted-register operand; encode
10372 it into inst.instruction in the format used by Thumb32. */
10373
10374 static void
10375 encode_thumb32_shifted_operand (int i)
10376 {
10377 unsigned int value = inst.relocs[0].exp.X_add_number;
10378 unsigned int shift = inst.operands[i].shift_kind;
10379
10380 constraint (inst.operands[i].immisreg,
10381 _("shift by register not allowed in thumb mode"));
10382 inst.instruction |= inst.operands[i].reg;
10383 if (shift == SHIFT_RRX)
10384 inst.instruction |= SHIFT_ROR << 4;
10385 else
10386 {
10387 constraint (inst.relocs[0].exp.X_op != O_constant,
10388 _("expression too complex"));
10389
10390 constraint (value > 32
10391 || (value == 32 && (shift == SHIFT_LSL
10392 || shift == SHIFT_ROR)),
10393 _("shift expression is too large"));
10394
10395 if (value == 0)
10396 shift = SHIFT_LSL;
10397 else if (value == 32)
10398 value = 0;
10399
10400 inst.instruction |= shift << 4;
10401 inst.instruction |= (value & 0x1c) << 10;
10402 inst.instruction |= (value & 0x03) << 6;
10403 }
10404 }
10405
10406
10407 /* inst.operands[i] was set up by parse_address. Encode it into a
10408 Thumb32 format load or store instruction. Reject forms that cannot
10409 be used with such instructions. If is_t is true, reject forms that
10410 cannot be used with a T instruction; if is_d is true, reject forms
10411 that cannot be used with a D instruction. If it is a store insn,
10412 reject PC in Rn. */
10413
10414 static void
10415 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10416 {
10417 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10418
10419 constraint (!inst.operands[i].isreg,
10420 _("Instruction does not support =N addresses"));
10421
10422 inst.instruction |= inst.operands[i].reg << 16;
10423 if (inst.operands[i].immisreg)
10424 {
10425 constraint (is_pc, BAD_PC_ADDRESSING);
10426 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10427 constraint (inst.operands[i].negative,
10428 _("Thumb does not support negative register indexing"));
10429 constraint (inst.operands[i].postind,
10430 _("Thumb does not support register post-indexing"));
10431 constraint (inst.operands[i].writeback,
10432 _("Thumb does not support register indexing with writeback"));
10433 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10434 _("Thumb supports only LSL in shifted register indexing"));
10435
10436 inst.instruction |= inst.operands[i].imm;
10437 if (inst.operands[i].shifted)
10438 {
10439 constraint (inst.relocs[0].exp.X_op != O_constant,
10440 _("expression too complex"));
10441 constraint (inst.relocs[0].exp.X_add_number < 0
10442 || inst.relocs[0].exp.X_add_number > 3,
10443 _("shift out of range"));
10444 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10445 }
10446 inst.relocs[0].type = BFD_RELOC_UNUSED;
10447 }
10448 else if (inst.operands[i].preind)
10449 {
10450 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10451 constraint (is_t && inst.operands[i].writeback,
10452 _("cannot use writeback with this instruction"));
10453 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10454 BAD_PC_ADDRESSING);
10455
10456 if (is_d)
10457 {
10458 inst.instruction |= 0x01000000;
10459 if (inst.operands[i].writeback)
10460 inst.instruction |= 0x00200000;
10461 }
10462 else
10463 {
10464 inst.instruction |= 0x00000c00;
10465 if (inst.operands[i].writeback)
10466 inst.instruction |= 0x00000100;
10467 }
10468 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10469 }
10470 else if (inst.operands[i].postind)
10471 {
10472 gas_assert (inst.operands[i].writeback);
10473 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10474 constraint (is_t, _("cannot use post-indexing with this instruction"));
10475
10476 if (is_d)
10477 inst.instruction |= 0x00200000;
10478 else
10479 inst.instruction |= 0x00000900;
10480 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10481 }
10482 else /* unindexed - only for coprocessor */
10483 inst.error = _("instruction does not accept unindexed addressing");
10484 }
10485
10486 /* Table of Thumb instructions which exist in both 16- and 32-bit
10487 encodings (the latter only in post-V6T2 cores). The index is the
10488 value used in the insns table below. When there is more than one
10489 possible 16-bit encoding for the instruction, this table always
10490 holds variant (1).
10491 Also contains several pseudo-instructions used during relaxation. */
10492 #define T16_32_TAB \
10493 X(_adc, 4140, eb400000), \
10494 X(_adcs, 4140, eb500000), \
10495 X(_add, 1c00, eb000000), \
10496 X(_adds, 1c00, eb100000), \
10497 X(_addi, 0000, f1000000), \
10498 X(_addis, 0000, f1100000), \
10499 X(_add_pc,000f, f20f0000), \
10500 X(_add_sp,000d, f10d0000), \
10501 X(_adr, 000f, f20f0000), \
10502 X(_and, 4000, ea000000), \
10503 X(_ands, 4000, ea100000), \
10504 X(_asr, 1000, fa40f000), \
10505 X(_asrs, 1000, fa50f000), \
10506 X(_b, e000, f000b000), \
10507 X(_bcond, d000, f0008000), \
10508 X(_bf, 0000, f040e001), \
10509 X(_bfcsel,0000, f000e001), \
10510 X(_bfx, 0000, f060e001), \
10511 X(_bfl, 0000, f000c001), \
10512 X(_bflx, 0000, f070e001), \
10513 X(_bic, 4380, ea200000), \
10514 X(_bics, 4380, ea300000), \
10515 X(_cmn, 42c0, eb100f00), \
10516 X(_cmp, 2800, ebb00f00), \
10517 X(_cpsie, b660, f3af8400), \
10518 X(_cpsid, b670, f3af8600), \
10519 X(_cpy, 4600, ea4f0000), \
10520 X(_dec_sp,80dd, f1ad0d00), \
10521 X(_eor, 4040, ea800000), \
10522 X(_eors, 4040, ea900000), \
10523 X(_inc_sp,00dd, f10d0d00), \
10524 X(_ldmia, c800, e8900000), \
10525 X(_ldr, 6800, f8500000), \
10526 X(_ldrb, 7800, f8100000), \
10527 X(_ldrh, 8800, f8300000), \
10528 X(_ldrsb, 5600, f9100000), \
10529 X(_ldrsh, 5e00, f9300000), \
10530 X(_ldr_pc,4800, f85f0000), \
10531 X(_ldr_pc2,4800, f85f0000), \
10532 X(_ldr_sp,9800, f85d0000), \
10533 X(_lsl, 0000, fa00f000), \
10534 X(_lsls, 0000, fa10f000), \
10535 X(_lsr, 0800, fa20f000), \
10536 X(_lsrs, 0800, fa30f000), \
10537 X(_mov, 2000, ea4f0000), \
10538 X(_movs, 2000, ea5f0000), \
10539 X(_mul, 4340, fb00f000), \
10540 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10541 X(_mvn, 43c0, ea6f0000), \
10542 X(_mvns, 43c0, ea7f0000), \
10543 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10544 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10545 X(_orr, 4300, ea400000), \
10546 X(_orrs, 4300, ea500000), \
10547 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10548 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10549 X(_rev, ba00, fa90f080), \
10550 X(_rev16, ba40, fa90f090), \
10551 X(_revsh, bac0, fa90f0b0), \
10552 X(_ror, 41c0, fa60f000), \
10553 X(_rors, 41c0, fa70f000), \
10554 X(_sbc, 4180, eb600000), \
10555 X(_sbcs, 4180, eb700000), \
10556 X(_stmia, c000, e8800000), \
10557 X(_str, 6000, f8400000), \
10558 X(_strb, 7000, f8000000), \
10559 X(_strh, 8000, f8200000), \
10560 X(_str_sp,9000, f84d0000), \
10561 X(_sub, 1e00, eba00000), \
10562 X(_subs, 1e00, ebb00000), \
10563 X(_subi, 8000, f1a00000), \
10564 X(_subis, 8000, f1b00000), \
10565 X(_sxtb, b240, fa4ff080), \
10566 X(_sxth, b200, fa0ff080), \
10567 X(_tst, 4200, ea100f00), \
10568 X(_uxtb, b2c0, fa5ff080), \
10569 X(_uxth, b280, fa1ff080), \
10570 X(_nop, bf00, f3af8000), \
10571 X(_yield, bf10, f3af8001), \
10572 X(_wfe, bf20, f3af8002), \
10573 X(_wfi, bf30, f3af8003), \
10574 X(_sev, bf40, f3af8004), \
10575 X(_sevl, bf50, f3af8005), \
10576 X(_udf, de00, f7f0a000)
10577
10578 /* To catch errors in encoding functions, the codes are all offset by
10579 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10580 as 16-bit instructions. */
10581 #define X(a,b,c) T_MNEM##a
10582 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10583 #undef X
10584
10585 #define X(a,b,c) 0x##b
10586 static const unsigned short thumb_op16[] = { T16_32_TAB };
10587 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10588 #undef X
10589
10590 #define X(a,b,c) 0x##c
10591 static const unsigned int thumb_op32[] = { T16_32_TAB };
10592 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10593 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10594 #undef X
10595 #undef T16_32_TAB
10596
10597 /* Thumb instruction encoders, in alphabetical order. */
10598
10599 /* ADDW or SUBW. */
10600
10601 static void
10602 do_t_add_sub_w (void)
10603 {
10604 int Rd, Rn;
10605
10606 Rd = inst.operands[0].reg;
10607 Rn = inst.operands[1].reg;
10608
10609 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10610 is the SP-{plus,minus}-immediate form of the instruction. */
10611 if (Rn == REG_SP)
10612 constraint (Rd == REG_PC, BAD_PC);
10613 else
10614 reject_bad_reg (Rd);
10615
10616 inst.instruction |= (Rn << 16) | (Rd << 8);
10617 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
10618 }
10619
10620 /* Parse an add or subtract instruction. We get here with inst.instruction
10621 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
10622
10623 static void
10624 do_t_add_sub (void)
10625 {
10626 int Rd, Rs, Rn;
10627
10628 Rd = inst.operands[0].reg;
10629 Rs = (inst.operands[1].present
10630 ? inst.operands[1].reg /* Rd, Rs, foo */
10631 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10632
10633 if (Rd == REG_PC)
10634 set_it_insn_type_last ();
10635
10636 if (unified_syntax)
10637 {
10638 bfd_boolean flags;
10639 bfd_boolean narrow;
10640 int opcode;
10641
10642 flags = (inst.instruction == T_MNEM_adds
10643 || inst.instruction == T_MNEM_subs);
10644 if (flags)
10645 narrow = !in_it_block ();
10646 else
10647 narrow = in_it_block ();
10648 if (!inst.operands[2].isreg)
10649 {
10650 int add;
10651
10652 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10653 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10654
10655 add = (inst.instruction == T_MNEM_add
10656 || inst.instruction == T_MNEM_adds);
10657 opcode = 0;
10658 if (inst.size_req != 4)
10659 {
10660 /* Attempt to use a narrow opcode, with relaxation if
10661 appropriate. */
10662 if (Rd == REG_SP && Rs == REG_SP && !flags)
10663 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10664 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10665 opcode = T_MNEM_add_sp;
10666 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10667 opcode = T_MNEM_add_pc;
10668 else if (Rd <= 7 && Rs <= 7 && narrow)
10669 {
10670 if (flags)
10671 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10672 else
10673 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10674 }
10675 if (opcode)
10676 {
10677 inst.instruction = THUMB_OP16(opcode);
10678 inst.instruction |= (Rd << 4) | Rs;
10679 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10680 || (inst.relocs[0].type
10681 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
10682 {
10683 if (inst.size_req == 2)
10684 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10685 else
10686 inst.relax = opcode;
10687 }
10688 }
10689 else
10690 constraint (inst.size_req == 2, BAD_HIREG);
10691 }
10692 if (inst.size_req == 4
10693 || (inst.size_req != 2 && !opcode))
10694 {
10695 constraint ((inst.relocs[0].type
10696 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
10697 && (inst.relocs[0].type
10698 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
10699 THUMB1_RELOC_ONLY);
10700 if (Rd == REG_PC)
10701 {
10702 constraint (add, BAD_PC);
10703 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10704 _("only SUBS PC, LR, #const allowed"));
10705 constraint (inst.relocs[0].exp.X_op != O_constant,
10706 _("expression too complex"));
10707 constraint (inst.relocs[0].exp.X_add_number < 0
10708 || inst.relocs[0].exp.X_add_number > 0xff,
10709 _("immediate value out of range"));
10710 inst.instruction = T2_SUBS_PC_LR
10711 | inst.relocs[0].exp.X_add_number;
10712 inst.relocs[0].type = BFD_RELOC_UNUSED;
10713 return;
10714 }
10715 else if (Rs == REG_PC)
10716 {
10717 /* Always use addw/subw. */
10718 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10719 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
10720 }
10721 else
10722 {
10723 inst.instruction = THUMB_OP32 (inst.instruction);
10724 inst.instruction = (inst.instruction & 0xe1ffffff)
10725 | 0x10000000;
10726 if (flags)
10727 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
10728 else
10729 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
10730 }
10731 inst.instruction |= Rd << 8;
10732 inst.instruction |= Rs << 16;
10733 }
10734 }
10735 else
10736 {
10737 unsigned int value = inst.relocs[0].exp.X_add_number;
10738 unsigned int shift = inst.operands[2].shift_kind;
10739
10740 Rn = inst.operands[2].reg;
10741 /* See if we can do this with a 16-bit instruction. */
10742 if (!inst.operands[2].shifted && inst.size_req != 4)
10743 {
10744 if (Rd > 7 || Rs > 7 || Rn > 7)
10745 narrow = FALSE;
10746
10747 if (narrow)
10748 {
10749 inst.instruction = ((inst.instruction == T_MNEM_adds
10750 || inst.instruction == T_MNEM_add)
10751 ? T_OPCODE_ADD_R3
10752 : T_OPCODE_SUB_R3);
10753 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10754 return;
10755 }
10756
10757 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10758 {
10759 /* Thumb-1 cores (except v6-M) require at least one high
10760 register in a narrow non flag setting add. */
10761 if (Rd > 7 || Rn > 7
10762 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10763 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10764 {
10765 if (Rd == Rn)
10766 {
10767 Rn = Rs;
10768 Rs = Rd;
10769 }
10770 inst.instruction = T_OPCODE_ADD_HI;
10771 inst.instruction |= (Rd & 8) << 4;
10772 inst.instruction |= (Rd & 7);
10773 inst.instruction |= Rn << 3;
10774 return;
10775 }
10776 }
10777 }
10778
10779 constraint (Rd == REG_PC, BAD_PC);
10780 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10781 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10782 constraint (Rs == REG_PC, BAD_PC);
10783 reject_bad_reg (Rn);
10784
10785 /* If we get here, it can't be done in 16 bits. */
10786 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10787 _("shift must be constant"));
10788 inst.instruction = THUMB_OP32 (inst.instruction);
10789 inst.instruction |= Rd << 8;
10790 inst.instruction |= Rs << 16;
10791 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10792 _("shift value over 3 not allowed in thumb mode"));
10793 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10794 _("only LSL shift allowed in thumb mode"));
10795 encode_thumb32_shifted_operand (2);
10796 }
10797 }
10798 else
10799 {
10800 constraint (inst.instruction == T_MNEM_adds
10801 || inst.instruction == T_MNEM_subs,
10802 BAD_THUMB32);
10803
10804 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10805 {
10806 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10807 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10808 BAD_HIREG);
10809
10810 inst.instruction = (inst.instruction == T_MNEM_add
10811 ? 0x0000 : 0x8000);
10812 inst.instruction |= (Rd << 4) | Rs;
10813 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10814 return;
10815 }
10816
10817 Rn = inst.operands[2].reg;
10818 constraint (inst.operands[2].shifted, _("unshifted register required"));
10819
10820 /* We now have Rd, Rs, and Rn set to registers. */
10821 if (Rd > 7 || Rs > 7 || Rn > 7)
10822 {
10823 /* Can't do this for SUB. */
10824 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10825 inst.instruction = T_OPCODE_ADD_HI;
10826 inst.instruction |= (Rd & 8) << 4;
10827 inst.instruction |= (Rd & 7);
10828 if (Rs == Rd)
10829 inst.instruction |= Rn << 3;
10830 else if (Rn == Rd)
10831 inst.instruction |= Rs << 3;
10832 else
10833 constraint (1, _("dest must overlap one source register"));
10834 }
10835 else
10836 {
10837 inst.instruction = (inst.instruction == T_MNEM_add
10838 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10839 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10840 }
10841 }
10842 }
10843
10844 static void
10845 do_t_adr (void)
10846 {
10847 unsigned Rd;
10848
10849 Rd = inst.operands[0].reg;
10850 reject_bad_reg (Rd);
10851
10852 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10853 {
10854 /* Defer to section relaxation. */
10855 inst.relax = inst.instruction;
10856 inst.instruction = THUMB_OP16 (inst.instruction);
10857 inst.instruction |= Rd << 4;
10858 }
10859 else if (unified_syntax && inst.size_req != 2)
10860 {
10861 /* Generate a 32-bit opcode. */
10862 inst.instruction = THUMB_OP32 (inst.instruction);
10863 inst.instruction |= Rd << 8;
10864 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
10865 inst.relocs[0].pc_rel = 1;
10866 }
10867 else
10868 {
10869 /* Generate a 16-bit opcode. */
10870 inst.instruction = THUMB_OP16 (inst.instruction);
10871 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10872 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
10873 inst.relocs[0].pc_rel = 1;
10874 inst.instruction |= Rd << 4;
10875 }
10876
10877 if (inst.relocs[0].exp.X_op == O_symbol
10878 && inst.relocs[0].exp.X_add_symbol != NULL
10879 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
10880 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
10881 inst.relocs[0].exp.X_add_number += 1;
10882 }
10883
10884 /* Arithmetic instructions for which there is just one 16-bit
10885 instruction encoding, and it allows only two low registers.
10886 For maximal compatibility with ARM syntax, we allow three register
10887 operands even when Thumb-32 instructions are not available, as long
10888 as the first two are identical. For instance, both "sbc r0,r1" and
10889 "sbc r0,r0,r1" are allowed. */
10890 static void
10891 do_t_arit3 (void)
10892 {
10893 int Rd, Rs, Rn;
10894
10895 Rd = inst.operands[0].reg;
10896 Rs = (inst.operands[1].present
10897 ? inst.operands[1].reg /* Rd, Rs, foo */
10898 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10899 Rn = inst.operands[2].reg;
10900
10901 reject_bad_reg (Rd);
10902 reject_bad_reg (Rs);
10903 if (inst.operands[2].isreg)
10904 reject_bad_reg (Rn);
10905
10906 if (unified_syntax)
10907 {
10908 if (!inst.operands[2].isreg)
10909 {
10910 /* For an immediate, we always generate a 32-bit opcode;
10911 section relaxation will shrink it later if possible. */
10912 inst.instruction = THUMB_OP32 (inst.instruction);
10913 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10914 inst.instruction |= Rd << 8;
10915 inst.instruction |= Rs << 16;
10916 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
10917 }
10918 else
10919 {
10920 bfd_boolean narrow;
10921
10922 /* See if we can do this with a 16-bit instruction. */
10923 if (THUMB_SETS_FLAGS (inst.instruction))
10924 narrow = !in_it_block ();
10925 else
10926 narrow = in_it_block ();
10927
10928 if (Rd > 7 || Rn > 7 || Rs > 7)
10929 narrow = FALSE;
10930 if (inst.operands[2].shifted)
10931 narrow = FALSE;
10932 if (inst.size_req == 4)
10933 narrow = FALSE;
10934
10935 if (narrow
10936 && Rd == Rs)
10937 {
10938 inst.instruction = THUMB_OP16 (inst.instruction);
10939 inst.instruction |= Rd;
10940 inst.instruction |= Rn << 3;
10941 return;
10942 }
10943
10944 /* If we get here, it can't be done in 16 bits. */
10945 constraint (inst.operands[2].shifted
10946 && inst.operands[2].immisreg,
10947 _("shift must be constant"));
10948 inst.instruction = THUMB_OP32 (inst.instruction);
10949 inst.instruction |= Rd << 8;
10950 inst.instruction |= Rs << 16;
10951 encode_thumb32_shifted_operand (2);
10952 }
10953 }
10954 else
10955 {
10956 /* On its face this is a lie - the instruction does set the
10957 flags. However, the only supported mnemonic in this mode
10958 says it doesn't. */
10959 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10960
10961 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10962 _("unshifted register required"));
10963 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10964 constraint (Rd != Rs,
10965 _("dest and source1 must be the same register"));
10966
10967 inst.instruction = THUMB_OP16 (inst.instruction);
10968 inst.instruction |= Rd;
10969 inst.instruction |= Rn << 3;
10970 }
10971 }
10972
10973 /* Similarly, but for instructions where the arithmetic operation is
10974 commutative, so we can allow either of them to be different from
10975 the destination operand in a 16-bit instruction. For instance, all
10976 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10977 accepted. */
10978 static void
10979 do_t_arit3c (void)
10980 {
10981 int Rd, Rs, Rn;
10982
10983 Rd = inst.operands[0].reg;
10984 Rs = (inst.operands[1].present
10985 ? inst.operands[1].reg /* Rd, Rs, foo */
10986 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10987 Rn = inst.operands[2].reg;
10988
10989 reject_bad_reg (Rd);
10990 reject_bad_reg (Rs);
10991 if (inst.operands[2].isreg)
10992 reject_bad_reg (Rn);
10993
10994 if (unified_syntax)
10995 {
10996 if (!inst.operands[2].isreg)
10997 {
10998 /* For an immediate, we always generate a 32-bit opcode;
10999 section relaxation will shrink it later if possible. */
11000 inst.instruction = THUMB_OP32 (inst.instruction);
11001 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11002 inst.instruction |= Rd << 8;
11003 inst.instruction |= Rs << 16;
11004 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11005 }
11006 else
11007 {
11008 bfd_boolean narrow;
11009
11010 /* See if we can do this with a 16-bit instruction. */
11011 if (THUMB_SETS_FLAGS (inst.instruction))
11012 narrow = !in_it_block ();
11013 else
11014 narrow = in_it_block ();
11015
11016 if (Rd > 7 || Rn > 7 || Rs > 7)
11017 narrow = FALSE;
11018 if (inst.operands[2].shifted)
11019 narrow = FALSE;
11020 if (inst.size_req == 4)
11021 narrow = FALSE;
11022
11023 if (narrow)
11024 {
11025 if (Rd == Rs)
11026 {
11027 inst.instruction = THUMB_OP16 (inst.instruction);
11028 inst.instruction |= Rd;
11029 inst.instruction |= Rn << 3;
11030 return;
11031 }
11032 if (Rd == Rn)
11033 {
11034 inst.instruction = THUMB_OP16 (inst.instruction);
11035 inst.instruction |= Rd;
11036 inst.instruction |= Rs << 3;
11037 return;
11038 }
11039 }
11040
11041 /* If we get here, it can't be done in 16 bits. */
11042 constraint (inst.operands[2].shifted
11043 && inst.operands[2].immisreg,
11044 _("shift must be constant"));
11045 inst.instruction = THUMB_OP32 (inst.instruction);
11046 inst.instruction |= Rd << 8;
11047 inst.instruction |= Rs << 16;
11048 encode_thumb32_shifted_operand (2);
11049 }
11050 }
11051 else
11052 {
11053 /* On its face this is a lie - the instruction does set the
11054 flags. However, the only supported mnemonic in this mode
11055 says it doesn't. */
11056 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11057
11058 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11059 _("unshifted register required"));
11060 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11061
11062 inst.instruction = THUMB_OP16 (inst.instruction);
11063 inst.instruction |= Rd;
11064
11065 if (Rd == Rs)
11066 inst.instruction |= Rn << 3;
11067 else if (Rd == Rn)
11068 inst.instruction |= Rs << 3;
11069 else
11070 constraint (1, _("dest must overlap one source register"));
11071 }
11072 }
11073
11074 static void
11075 do_t_bfc (void)
11076 {
11077 unsigned Rd;
11078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11079 constraint (msb > 32, _("bit-field extends past end of register"));
11080 /* The instruction encoding stores the LSB and MSB,
11081 not the LSB and width. */
11082 Rd = inst.operands[0].reg;
11083 reject_bad_reg (Rd);
11084 inst.instruction |= Rd << 8;
11085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11087 inst.instruction |= msb - 1;
11088 }
11089
11090 static void
11091 do_t_bfi (void)
11092 {
11093 int Rd, Rn;
11094 unsigned int msb;
11095
11096 Rd = inst.operands[0].reg;
11097 reject_bad_reg (Rd);
11098
11099 /* #0 in second position is alternative syntax for bfc, which is
11100 the same instruction but with REG_PC in the Rm field. */
11101 if (!inst.operands[1].isreg)
11102 Rn = REG_PC;
11103 else
11104 {
11105 Rn = inst.operands[1].reg;
11106 reject_bad_reg (Rn);
11107 }
11108
11109 msb = inst.operands[2].imm + inst.operands[3].imm;
11110 constraint (msb > 32, _("bit-field extends past end of register"));
11111 /* The instruction encoding stores the LSB and MSB,
11112 not the LSB and width. */
11113 inst.instruction |= Rd << 8;
11114 inst.instruction |= Rn << 16;
11115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11117 inst.instruction |= msb - 1;
11118 }
11119
11120 static void
11121 do_t_bfx (void)
11122 {
11123 unsigned Rd, Rn;
11124
11125 Rd = inst.operands[0].reg;
11126 Rn = inst.operands[1].reg;
11127
11128 reject_bad_reg (Rd);
11129 reject_bad_reg (Rn);
11130
11131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11132 _("bit-field extends past end of register"));
11133 inst.instruction |= Rd << 8;
11134 inst.instruction |= Rn << 16;
11135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11137 inst.instruction |= inst.operands[3].imm - 1;
11138 }
11139
11140 /* ARM V5 Thumb BLX (argument parse)
11141 BLX <target_addr> which is BLX(1)
11142 BLX <Rm> which is BLX(2)
11143 Unfortunately, there are two different opcodes for this mnemonic.
11144 So, the insns[].value is not used, and the code here zaps values
11145 into inst.instruction.
11146
11147 ??? How to take advantage of the additional two bits of displacement
11148 available in Thumb32 mode? Need new relocation? */
11149
11150 static void
11151 do_t_blx (void)
11152 {
11153 set_it_insn_type_last ();
11154
11155 if (inst.operands[0].isreg)
11156 {
11157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11158 /* We have a register, so this is BLX(2). */
11159 inst.instruction |= inst.operands[0].reg << 3;
11160 }
11161 else
11162 {
11163 /* No register. This must be BLX(1). */
11164 inst.instruction = 0xf000e800;
11165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11166 }
11167 }
11168
11169 static void
11170 do_t_branch (void)
11171 {
11172 int opcode;
11173 int cond;
11174 bfd_reloc_code_real_type reloc;
11175
11176 cond = inst.cond;
11177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11178
11179 if (in_it_block ())
11180 {
11181 /* Conditional branches inside IT blocks are encoded as unconditional
11182 branches. */
11183 cond = COND_ALWAYS;
11184 }
11185 else
11186 cond = inst.cond;
11187
11188 if (cond != COND_ALWAYS)
11189 opcode = T_MNEM_bcond;
11190 else
11191 opcode = inst.instruction;
11192
11193 if (unified_syntax
11194 && (inst.size_req == 4
11195 || (inst.size_req != 2
11196 && (inst.operands[0].hasreloc
11197 || inst.relocs[0].exp.X_op == O_constant))))
11198 {
11199 inst.instruction = THUMB_OP32(opcode);
11200 if (cond == COND_ALWAYS)
11201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11202 else
11203 {
11204 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11205 _("selected architecture does not support "
11206 "wide conditional branch instruction"));
11207
11208 gas_assert (cond != 0xF);
11209 inst.instruction |= cond << 22;
11210 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11211 }
11212 }
11213 else
11214 {
11215 inst.instruction = THUMB_OP16(opcode);
11216 if (cond == COND_ALWAYS)
11217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11218 else
11219 {
11220 inst.instruction |= cond << 8;
11221 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11222 }
11223 /* Allow section relaxation. */
11224 if (unified_syntax && inst.size_req != 2)
11225 inst.relax = opcode;
11226 }
11227 inst.relocs[0].type = reloc;
11228 inst.relocs[0].pc_rel = 1;
11229 }
11230
11231 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11232 between the two is the maximum immediate allowed - which is passed in
11233 RANGE. */
11234 static void
11235 do_t_bkpt_hlt1 (int range)
11236 {
11237 constraint (inst.cond != COND_ALWAYS,
11238 _("instruction is always unconditional"));
11239 if (inst.operands[0].present)
11240 {
11241 constraint (inst.operands[0].imm > range,
11242 _("immediate value out of range"));
11243 inst.instruction |= inst.operands[0].imm;
11244 }
11245
11246 set_it_insn_type (NEUTRAL_IT_INSN);
11247 }
11248
11249 static void
11250 do_t_hlt (void)
11251 {
11252 do_t_bkpt_hlt1 (63);
11253 }
11254
11255 static void
11256 do_t_bkpt (void)
11257 {
11258 do_t_bkpt_hlt1 (255);
11259 }
11260
11261 static void
11262 do_t_branch23 (void)
11263 {
11264 set_it_insn_type_last ();
11265 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11266
11267 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11268 this file. We used to simply ignore the PLT reloc type here --
11269 the branch encoding is now needed to deal with TLSCALL relocs.
11270 So if we see a PLT reloc now, put it back to how it used to be to
11271 keep the preexisting behaviour. */
11272 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11273 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11274
11275 #if defined(OBJ_COFF)
11276 /* If the destination of the branch is a defined symbol which does not have
11277 the THUMB_FUNC attribute, then we must be calling a function which has
11278 the (interfacearm) attribute. We look for the Thumb entry point to that
11279 function and change the branch to refer to that function instead. */
11280 if ( inst.relocs[0].exp.X_op == O_symbol
11281 && inst.relocs[0].exp.X_add_symbol != NULL
11282 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11283 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11284 inst.relocs[0].exp.X_add_symbol
11285 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11286 #endif
11287 }
11288
11289 static void
11290 do_t_bx (void)
11291 {
11292 set_it_insn_type_last ();
11293 inst.instruction |= inst.operands[0].reg << 3;
11294 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11295 should cause the alignment to be checked once it is known. This is
11296 because BX PC only works if the instruction is word aligned. */
11297 }
11298
11299 static void
11300 do_t_bxj (void)
11301 {
11302 int Rm;
11303
11304 set_it_insn_type_last ();
11305 Rm = inst.operands[0].reg;
11306 reject_bad_reg (Rm);
11307 inst.instruction |= Rm << 16;
11308 }
11309
11310 static void
11311 do_t_clz (void)
11312 {
11313 unsigned Rd;
11314 unsigned Rm;
11315
11316 Rd = inst.operands[0].reg;
11317 Rm = inst.operands[1].reg;
11318
11319 reject_bad_reg (Rd);
11320 reject_bad_reg (Rm);
11321
11322 inst.instruction |= Rd << 8;
11323 inst.instruction |= Rm << 16;
11324 inst.instruction |= Rm;
11325 }
11326
11327 static void
11328 do_t_csdb (void)
11329 {
11330 set_it_insn_type (OUTSIDE_IT_INSN);
11331 }
11332
11333 static void
11334 do_t_cps (void)
11335 {
11336 set_it_insn_type (OUTSIDE_IT_INSN);
11337 inst.instruction |= inst.operands[0].imm;
11338 }
11339
11340 static void
11341 do_t_cpsi (void)
11342 {
11343 set_it_insn_type (OUTSIDE_IT_INSN);
11344 if (unified_syntax
11345 && (inst.operands[1].present || inst.size_req == 4)
11346 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11347 {
11348 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11349 inst.instruction = 0xf3af8000;
11350 inst.instruction |= imod << 9;
11351 inst.instruction |= inst.operands[0].imm << 5;
11352 if (inst.operands[1].present)
11353 inst.instruction |= 0x100 | inst.operands[1].imm;
11354 }
11355 else
11356 {
11357 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11358 && (inst.operands[0].imm & 4),
11359 _("selected processor does not support 'A' form "
11360 "of this instruction"));
11361 constraint (inst.operands[1].present || inst.size_req == 4,
11362 _("Thumb does not support the 2-argument "
11363 "form of this instruction"));
11364 inst.instruction |= inst.operands[0].imm;
11365 }
11366 }
11367
11368 /* THUMB CPY instruction (argument parse). */
11369
11370 static void
11371 do_t_cpy (void)
11372 {
11373 if (inst.size_req == 4)
11374 {
11375 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11376 inst.instruction |= inst.operands[0].reg << 8;
11377 inst.instruction |= inst.operands[1].reg;
11378 }
11379 else
11380 {
11381 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11382 inst.instruction |= (inst.operands[0].reg & 0x7);
11383 inst.instruction |= inst.operands[1].reg << 3;
11384 }
11385 }
11386
11387 static void
11388 do_t_cbz (void)
11389 {
11390 set_it_insn_type (OUTSIDE_IT_INSN);
11391 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11392 inst.instruction |= inst.operands[0].reg;
11393 inst.relocs[0].pc_rel = 1;
11394 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11395 }
11396
11397 static void
11398 do_t_dbg (void)
11399 {
11400 inst.instruction |= inst.operands[0].imm;
11401 }
11402
11403 static void
11404 do_t_div (void)
11405 {
11406 unsigned Rd, Rn, Rm;
11407
11408 Rd = inst.operands[0].reg;
11409 Rn = (inst.operands[1].present
11410 ? inst.operands[1].reg : Rd);
11411 Rm = inst.operands[2].reg;
11412
11413 reject_bad_reg (Rd);
11414 reject_bad_reg (Rn);
11415 reject_bad_reg (Rm);
11416
11417 inst.instruction |= Rd << 8;
11418 inst.instruction |= Rn << 16;
11419 inst.instruction |= Rm;
11420 }
11421
11422 static void
11423 do_t_hint (void)
11424 {
11425 if (unified_syntax && inst.size_req == 4)
11426 inst.instruction = THUMB_OP32 (inst.instruction);
11427 else
11428 inst.instruction = THUMB_OP16 (inst.instruction);
11429 }
11430
11431 static void
11432 do_t_it (void)
11433 {
11434 unsigned int cond = inst.operands[0].imm;
11435
11436 set_it_insn_type (IT_INSN);
11437 now_it.mask = (inst.instruction & 0xf) | 0x10;
11438 now_it.cc = cond;
11439 now_it.warn_deprecated = FALSE;
11440
11441 /* If the condition is a negative condition, invert the mask. */
11442 if ((cond & 0x1) == 0x0)
11443 {
11444 unsigned int mask = inst.instruction & 0x000f;
11445
11446 if ((mask & 0x7) == 0)
11447 {
11448 /* No conversion needed. */
11449 now_it.block_length = 1;
11450 }
11451 else if ((mask & 0x3) == 0)
11452 {
11453 mask ^= 0x8;
11454 now_it.block_length = 2;
11455 }
11456 else if ((mask & 0x1) == 0)
11457 {
11458 mask ^= 0xC;
11459 now_it.block_length = 3;
11460 }
11461 else
11462 {
11463 mask ^= 0xE;
11464 now_it.block_length = 4;
11465 }
11466
11467 inst.instruction &= 0xfff0;
11468 inst.instruction |= mask;
11469 }
11470
11471 inst.instruction |= cond << 4;
11472 }
11473
11474 /* Helper function used for both push/pop and ldm/stm. */
11475 static void
11476 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11477 {
11478 bfd_boolean load;
11479
11480 load = (inst.instruction & (1 << 20)) != 0;
11481
11482 if (mask & (1 << 13))
11483 inst.error = _("SP not allowed in register list");
11484
11485 if ((mask & (1 << base)) != 0
11486 && writeback)
11487 inst.error = _("having the base register in the register list when "
11488 "using write back is UNPREDICTABLE");
11489
11490 if (load)
11491 {
11492 if (mask & (1 << 15))
11493 {
11494 if (mask & (1 << 14))
11495 inst.error = _("LR and PC should not both be in register list");
11496 else
11497 set_it_insn_type_last ();
11498 }
11499 }
11500 else
11501 {
11502 if (mask & (1 << 15))
11503 inst.error = _("PC not allowed in register list");
11504 }
11505
11506 if ((mask & (mask - 1)) == 0)
11507 {
11508 /* Single register transfers implemented as str/ldr. */
11509 if (writeback)
11510 {
11511 if (inst.instruction & (1 << 23))
11512 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11513 else
11514 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11515 }
11516 else
11517 {
11518 if (inst.instruction & (1 << 23))
11519 inst.instruction = 0x00800000; /* ia -> [base] */
11520 else
11521 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11522 }
11523
11524 inst.instruction |= 0xf8400000;
11525 if (load)
11526 inst.instruction |= 0x00100000;
11527
11528 mask = ffs (mask) - 1;
11529 mask <<= 12;
11530 }
11531 else if (writeback)
11532 inst.instruction |= WRITE_BACK;
11533
11534 inst.instruction |= mask;
11535 inst.instruction |= base << 16;
11536 }
11537
11538 static void
11539 do_t_ldmstm (void)
11540 {
11541 /* This really doesn't seem worth it. */
11542 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
11543 _("expression too complex"));
11544 constraint (inst.operands[1].writeback,
11545 _("Thumb load/store multiple does not support {reglist}^"));
11546
11547 if (unified_syntax)
11548 {
11549 bfd_boolean narrow;
11550 unsigned mask;
11551
11552 narrow = FALSE;
11553 /* See if we can use a 16-bit instruction. */
11554 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11555 && inst.size_req != 4
11556 && !(inst.operands[1].imm & ~0xff))
11557 {
11558 mask = 1 << inst.operands[0].reg;
11559
11560 if (inst.operands[0].reg <= 7)
11561 {
11562 if (inst.instruction == T_MNEM_stmia
11563 ? inst.operands[0].writeback
11564 : (inst.operands[0].writeback
11565 == !(inst.operands[1].imm & mask)))
11566 {
11567 if (inst.instruction == T_MNEM_stmia
11568 && (inst.operands[1].imm & mask)
11569 && (inst.operands[1].imm & (mask - 1)))
11570 as_warn (_("value stored for r%d is UNKNOWN"),
11571 inst.operands[0].reg);
11572
11573 inst.instruction = THUMB_OP16 (inst.instruction);
11574 inst.instruction |= inst.operands[0].reg << 8;
11575 inst.instruction |= inst.operands[1].imm;
11576 narrow = TRUE;
11577 }
11578 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11579 {
11580 /* This means 1 register in reg list one of 3 situations:
11581 1. Instruction is stmia, but without writeback.
11582 2. lmdia without writeback, but with Rn not in
11583 reglist.
11584 3. ldmia with writeback, but with Rn in reglist.
11585 Case 3 is UNPREDICTABLE behaviour, so we handle
11586 case 1 and 2 which can be converted into a 16-bit
11587 str or ldr. The SP cases are handled below. */
11588 unsigned long opcode;
11589 /* First, record an error for Case 3. */
11590 if (inst.operands[1].imm & mask
11591 && inst.operands[0].writeback)
11592 inst.error =
11593 _("having the base register in the register list when "
11594 "using write back is UNPREDICTABLE");
11595
11596 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11597 : T_MNEM_ldr);
11598 inst.instruction = THUMB_OP16 (opcode);
11599 inst.instruction |= inst.operands[0].reg << 3;
11600 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11601 narrow = TRUE;
11602 }
11603 }
11604 else if (inst.operands[0] .reg == REG_SP)
11605 {
11606 if (inst.operands[0].writeback)
11607 {
11608 inst.instruction =
11609 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11610 ? T_MNEM_push : T_MNEM_pop);
11611 inst.instruction |= inst.operands[1].imm;
11612 narrow = TRUE;
11613 }
11614 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11615 {
11616 inst.instruction =
11617 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11618 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11619 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11620 narrow = TRUE;
11621 }
11622 }
11623 }
11624
11625 if (!narrow)
11626 {
11627 if (inst.instruction < 0xffff)
11628 inst.instruction = THUMB_OP32 (inst.instruction);
11629
11630 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11631 inst.operands[0].writeback);
11632 }
11633 }
11634 else
11635 {
11636 constraint (inst.operands[0].reg > 7
11637 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11638 constraint (inst.instruction != T_MNEM_ldmia
11639 && inst.instruction != T_MNEM_stmia,
11640 _("Thumb-2 instruction only valid in unified syntax"));
11641 if (inst.instruction == T_MNEM_stmia)
11642 {
11643 if (!inst.operands[0].writeback)
11644 as_warn (_("this instruction will write back the base register"));
11645 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11646 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11647 as_warn (_("value stored for r%d is UNKNOWN"),
11648 inst.operands[0].reg);
11649 }
11650 else
11651 {
11652 if (!inst.operands[0].writeback
11653 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11654 as_warn (_("this instruction will write back the base register"));
11655 else if (inst.operands[0].writeback
11656 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11657 as_warn (_("this instruction will not write back the base register"));
11658 }
11659
11660 inst.instruction = THUMB_OP16 (inst.instruction);
11661 inst.instruction |= inst.operands[0].reg << 8;
11662 inst.instruction |= inst.operands[1].imm;
11663 }
11664 }
11665
11666 static void
11667 do_t_ldrex (void)
11668 {
11669 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11670 || inst.operands[1].postind || inst.operands[1].writeback
11671 || inst.operands[1].immisreg || inst.operands[1].shifted
11672 || inst.operands[1].negative,
11673 BAD_ADDR_MODE);
11674
11675 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11676
11677 inst.instruction |= inst.operands[0].reg << 12;
11678 inst.instruction |= inst.operands[1].reg << 16;
11679 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
11680 }
11681
11682 static void
11683 do_t_ldrexd (void)
11684 {
11685 if (!inst.operands[1].present)
11686 {
11687 constraint (inst.operands[0].reg == REG_LR,
11688 _("r14 not allowed as first register "
11689 "when second register is omitted"));
11690 inst.operands[1].reg = inst.operands[0].reg + 1;
11691 }
11692 constraint (inst.operands[0].reg == inst.operands[1].reg,
11693 BAD_OVERLAP);
11694
11695 inst.instruction |= inst.operands[0].reg << 12;
11696 inst.instruction |= inst.operands[1].reg << 8;
11697 inst.instruction |= inst.operands[2].reg << 16;
11698 }
11699
11700 static void
11701 do_t_ldst (void)
11702 {
11703 unsigned long opcode;
11704 int Rn;
11705
11706 if (inst.operands[0].isreg
11707 && !inst.operands[0].preind
11708 && inst.operands[0].reg == REG_PC)
11709 set_it_insn_type_last ();
11710
11711 opcode = inst.instruction;
11712 if (unified_syntax)
11713 {
11714 if (!inst.operands[1].isreg)
11715 {
11716 if (opcode <= 0xffff)
11717 inst.instruction = THUMB_OP32 (opcode);
11718 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11719 return;
11720 }
11721 if (inst.operands[1].isreg
11722 && !inst.operands[1].writeback
11723 && !inst.operands[1].shifted && !inst.operands[1].postind
11724 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11725 && opcode <= 0xffff
11726 && inst.size_req != 4)
11727 {
11728 /* Insn may have a 16-bit form. */
11729 Rn = inst.operands[1].reg;
11730 if (inst.operands[1].immisreg)
11731 {
11732 inst.instruction = THUMB_OP16 (opcode);
11733 /* [Rn, Rik] */
11734 if (Rn <= 7 && inst.operands[1].imm <= 7)
11735 goto op16;
11736 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11737 reject_bad_reg (inst.operands[1].imm);
11738 }
11739 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11740 && opcode != T_MNEM_ldrsb)
11741 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11742 || (Rn == REG_SP && opcode == T_MNEM_str))
11743 {
11744 /* [Rn, #const] */
11745 if (Rn > 7)
11746 {
11747 if (Rn == REG_PC)
11748 {
11749 if (inst.relocs[0].pc_rel)
11750 opcode = T_MNEM_ldr_pc2;
11751 else
11752 opcode = T_MNEM_ldr_pc;
11753 }
11754 else
11755 {
11756 if (opcode == T_MNEM_ldr)
11757 opcode = T_MNEM_ldr_sp;
11758 else
11759 opcode = T_MNEM_str_sp;
11760 }
11761 inst.instruction = inst.operands[0].reg << 8;
11762 }
11763 else
11764 {
11765 inst.instruction = inst.operands[0].reg;
11766 inst.instruction |= inst.operands[1].reg << 3;
11767 }
11768 inst.instruction |= THUMB_OP16 (opcode);
11769 if (inst.size_req == 2)
11770 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
11771 else
11772 inst.relax = opcode;
11773 return;
11774 }
11775 }
11776 /* Definitely a 32-bit variant. */
11777
11778 /* Warning for Erratum 752419. */
11779 if (opcode == T_MNEM_ldr
11780 && inst.operands[0].reg == REG_SP
11781 && inst.operands[1].writeback == 1
11782 && !inst.operands[1].immisreg)
11783 {
11784 if (no_cpu_selected ()
11785 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11786 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11787 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11788 as_warn (_("This instruction may be unpredictable "
11789 "if executed on M-profile cores "
11790 "with interrupts enabled."));
11791 }
11792
11793 /* Do some validations regarding addressing modes. */
11794 if (inst.operands[1].immisreg)
11795 reject_bad_reg (inst.operands[1].imm);
11796
11797 constraint (inst.operands[1].writeback == 1
11798 && inst.operands[0].reg == inst.operands[1].reg,
11799 BAD_OVERLAP);
11800
11801 inst.instruction = THUMB_OP32 (opcode);
11802 inst.instruction |= inst.operands[0].reg << 12;
11803 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11804 check_ldr_r15_aligned ();
11805 return;
11806 }
11807
11808 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11809
11810 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11811 {
11812 /* Only [Rn,Rm] is acceptable. */
11813 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11814 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11815 || inst.operands[1].postind || inst.operands[1].shifted
11816 || inst.operands[1].negative,
11817 _("Thumb does not support this addressing mode"));
11818 inst.instruction = THUMB_OP16 (inst.instruction);
11819 goto op16;
11820 }
11821
11822 inst.instruction = THUMB_OP16 (inst.instruction);
11823 if (!inst.operands[1].isreg)
11824 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11825 return;
11826
11827 constraint (!inst.operands[1].preind
11828 || inst.operands[1].shifted
11829 || inst.operands[1].writeback,
11830 _("Thumb does not support this addressing mode"));
11831 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11832 {
11833 constraint (inst.instruction & 0x0600,
11834 _("byte or halfword not valid for base register"));
11835 constraint (inst.operands[1].reg == REG_PC
11836 && !(inst.instruction & THUMB_LOAD_BIT),
11837 _("r15 based store not allowed"));
11838 constraint (inst.operands[1].immisreg,
11839 _("invalid base register for register offset"));
11840
11841 if (inst.operands[1].reg == REG_PC)
11842 inst.instruction = T_OPCODE_LDR_PC;
11843 else if (inst.instruction & THUMB_LOAD_BIT)
11844 inst.instruction = T_OPCODE_LDR_SP;
11845 else
11846 inst.instruction = T_OPCODE_STR_SP;
11847
11848 inst.instruction |= inst.operands[0].reg << 8;
11849 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
11850 return;
11851 }
11852
11853 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11854 if (!inst.operands[1].immisreg)
11855 {
11856 /* Immediate offset. */
11857 inst.instruction |= inst.operands[0].reg;
11858 inst.instruction |= inst.operands[1].reg << 3;
11859 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
11860 return;
11861 }
11862
11863 /* Register offset. */
11864 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11865 constraint (inst.operands[1].negative,
11866 _("Thumb does not support this addressing mode"));
11867
11868 op16:
11869 switch (inst.instruction)
11870 {
11871 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11872 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11873 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11874 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11875 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11876 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11877 case 0x5600 /* ldrsb */:
11878 case 0x5e00 /* ldrsh */: break;
11879 default: abort ();
11880 }
11881
11882 inst.instruction |= inst.operands[0].reg;
11883 inst.instruction |= inst.operands[1].reg << 3;
11884 inst.instruction |= inst.operands[1].imm << 6;
11885 }
11886
11887 static void
11888 do_t_ldstd (void)
11889 {
11890 if (!inst.operands[1].present)
11891 {
11892 inst.operands[1].reg = inst.operands[0].reg + 1;
11893 constraint (inst.operands[0].reg == REG_LR,
11894 _("r14 not allowed here"));
11895 constraint (inst.operands[0].reg == REG_R12,
11896 _("r12 not allowed here"));
11897 }
11898
11899 if (inst.operands[2].writeback
11900 && (inst.operands[0].reg == inst.operands[2].reg
11901 || inst.operands[1].reg == inst.operands[2].reg))
11902 as_warn (_("base register written back, and overlaps "
11903 "one of transfer registers"));
11904
11905 inst.instruction |= inst.operands[0].reg << 12;
11906 inst.instruction |= inst.operands[1].reg << 8;
11907 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11908 }
11909
11910 static void
11911 do_t_ldstt (void)
11912 {
11913 inst.instruction |= inst.operands[0].reg << 12;
11914 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11915 }
11916
11917 static void
11918 do_t_mla (void)
11919 {
11920 unsigned Rd, Rn, Rm, Ra;
11921
11922 Rd = inst.operands[0].reg;
11923 Rn = inst.operands[1].reg;
11924 Rm = inst.operands[2].reg;
11925 Ra = inst.operands[3].reg;
11926
11927 reject_bad_reg (Rd);
11928 reject_bad_reg (Rn);
11929 reject_bad_reg (Rm);
11930 reject_bad_reg (Ra);
11931
11932 inst.instruction |= Rd << 8;
11933 inst.instruction |= Rn << 16;
11934 inst.instruction |= Rm;
11935 inst.instruction |= Ra << 12;
11936 }
11937
11938 static void
11939 do_t_mlal (void)
11940 {
11941 unsigned RdLo, RdHi, Rn, Rm;
11942
11943 RdLo = inst.operands[0].reg;
11944 RdHi = inst.operands[1].reg;
11945 Rn = inst.operands[2].reg;
11946 Rm = inst.operands[3].reg;
11947
11948 reject_bad_reg (RdLo);
11949 reject_bad_reg (RdHi);
11950 reject_bad_reg (Rn);
11951 reject_bad_reg (Rm);
11952
11953 inst.instruction |= RdLo << 12;
11954 inst.instruction |= RdHi << 8;
11955 inst.instruction |= Rn << 16;
11956 inst.instruction |= Rm;
11957 }
11958
11959 static void
11960 do_t_mov_cmp (void)
11961 {
11962 unsigned Rn, Rm;
11963
11964 Rn = inst.operands[0].reg;
11965 Rm = inst.operands[1].reg;
11966
11967 if (Rn == REG_PC)
11968 set_it_insn_type_last ();
11969
11970 if (unified_syntax)
11971 {
11972 int r0off = (inst.instruction == T_MNEM_mov
11973 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11974 unsigned long opcode;
11975 bfd_boolean narrow;
11976 bfd_boolean low_regs;
11977
11978 low_regs = (Rn <= 7 && Rm <= 7);
11979 opcode = inst.instruction;
11980 if (in_it_block ())
11981 narrow = opcode != T_MNEM_movs;
11982 else
11983 narrow = opcode != T_MNEM_movs || low_regs;
11984 if (inst.size_req == 4
11985 || inst.operands[1].shifted)
11986 narrow = FALSE;
11987
11988 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11989 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11990 && !inst.operands[1].shifted
11991 && Rn == REG_PC
11992 && Rm == REG_LR)
11993 {
11994 inst.instruction = T2_SUBS_PC_LR;
11995 return;
11996 }
11997
11998 if (opcode == T_MNEM_cmp)
11999 {
12000 constraint (Rn == REG_PC, BAD_PC);
12001 if (narrow)
12002 {
12003 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12004 but valid. */
12005 warn_deprecated_sp (Rm);
12006 /* R15 was documented as a valid choice for Rm in ARMv6,
12007 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12008 tools reject R15, so we do too. */
12009 constraint (Rm == REG_PC, BAD_PC);
12010 }
12011 else
12012 reject_bad_reg (Rm);
12013 }
12014 else if (opcode == T_MNEM_mov
12015 || opcode == T_MNEM_movs)
12016 {
12017 if (inst.operands[1].isreg)
12018 {
12019 if (opcode == T_MNEM_movs)
12020 {
12021 reject_bad_reg (Rn);
12022 reject_bad_reg (Rm);
12023 }
12024 else if (narrow)
12025 {
12026 /* This is mov.n. */
12027 if ((Rn == REG_SP || Rn == REG_PC)
12028 && (Rm == REG_SP || Rm == REG_PC))
12029 {
12030 as_tsktsk (_("Use of r%u as a source register is "
12031 "deprecated when r%u is the destination "
12032 "register."), Rm, Rn);
12033 }
12034 }
12035 else
12036 {
12037 /* This is mov.w. */
12038 constraint (Rn == REG_PC, BAD_PC);
12039 constraint (Rm == REG_PC, BAD_PC);
12040 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12041 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12042 }
12043 }
12044 else
12045 reject_bad_reg (Rn);
12046 }
12047
12048 if (!inst.operands[1].isreg)
12049 {
12050 /* Immediate operand. */
12051 if (!in_it_block () && opcode == T_MNEM_mov)
12052 narrow = 0;
12053 if (low_regs && narrow)
12054 {
12055 inst.instruction = THUMB_OP16 (opcode);
12056 inst.instruction |= Rn << 8;
12057 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12058 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12059 {
12060 if (inst.size_req == 2)
12061 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12062 else
12063 inst.relax = opcode;
12064 }
12065 }
12066 else
12067 {
12068 constraint ((inst.relocs[0].type
12069 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12070 && (inst.relocs[0].type
12071 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12072 THUMB1_RELOC_ONLY);
12073
12074 inst.instruction = THUMB_OP32 (inst.instruction);
12075 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12076 inst.instruction |= Rn << r0off;
12077 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12078 }
12079 }
12080 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12081 && (inst.instruction == T_MNEM_mov
12082 || inst.instruction == T_MNEM_movs))
12083 {
12084 /* Register shifts are encoded as separate shift instructions. */
12085 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12086
12087 if (in_it_block ())
12088 narrow = !flags;
12089 else
12090 narrow = flags;
12091
12092 if (inst.size_req == 4)
12093 narrow = FALSE;
12094
12095 if (!low_regs || inst.operands[1].imm > 7)
12096 narrow = FALSE;
12097
12098 if (Rn != Rm)
12099 narrow = FALSE;
12100
12101 switch (inst.operands[1].shift_kind)
12102 {
12103 case SHIFT_LSL:
12104 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12105 break;
12106 case SHIFT_ASR:
12107 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12108 break;
12109 case SHIFT_LSR:
12110 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12111 break;
12112 case SHIFT_ROR:
12113 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12114 break;
12115 default:
12116 abort ();
12117 }
12118
12119 inst.instruction = opcode;
12120 if (narrow)
12121 {
12122 inst.instruction |= Rn;
12123 inst.instruction |= inst.operands[1].imm << 3;
12124 }
12125 else
12126 {
12127 if (flags)
12128 inst.instruction |= CONDS_BIT;
12129
12130 inst.instruction |= Rn << 8;
12131 inst.instruction |= Rm << 16;
12132 inst.instruction |= inst.operands[1].imm;
12133 }
12134 }
12135 else if (!narrow)
12136 {
12137 /* Some mov with immediate shift have narrow variants.
12138 Register shifts are handled above. */
12139 if (low_regs && inst.operands[1].shifted
12140 && (inst.instruction == T_MNEM_mov
12141 || inst.instruction == T_MNEM_movs))
12142 {
12143 if (in_it_block ())
12144 narrow = (inst.instruction == T_MNEM_mov);
12145 else
12146 narrow = (inst.instruction == T_MNEM_movs);
12147 }
12148
12149 if (narrow)
12150 {
12151 switch (inst.operands[1].shift_kind)
12152 {
12153 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12154 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12155 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12156 default: narrow = FALSE; break;
12157 }
12158 }
12159
12160 if (narrow)
12161 {
12162 inst.instruction |= Rn;
12163 inst.instruction |= Rm << 3;
12164 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12165 }
12166 else
12167 {
12168 inst.instruction = THUMB_OP32 (inst.instruction);
12169 inst.instruction |= Rn << r0off;
12170 encode_thumb32_shifted_operand (1);
12171 }
12172 }
12173 else
12174 switch (inst.instruction)
12175 {
12176 case T_MNEM_mov:
12177 /* In v4t or v5t a move of two lowregs produces unpredictable
12178 results. Don't allow this. */
12179 if (low_regs)
12180 {
12181 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12182 "MOV Rd, Rs with two low registers is not "
12183 "permitted on this architecture");
12184 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12185 arm_ext_v6);
12186 }
12187
12188 inst.instruction = T_OPCODE_MOV_HR;
12189 inst.instruction |= (Rn & 0x8) << 4;
12190 inst.instruction |= (Rn & 0x7);
12191 inst.instruction |= Rm << 3;
12192 break;
12193
12194 case T_MNEM_movs:
12195 /* We know we have low registers at this point.
12196 Generate LSLS Rd, Rs, #0. */
12197 inst.instruction = T_OPCODE_LSL_I;
12198 inst.instruction |= Rn;
12199 inst.instruction |= Rm << 3;
12200 break;
12201
12202 case T_MNEM_cmp:
12203 if (low_regs)
12204 {
12205 inst.instruction = T_OPCODE_CMP_LR;
12206 inst.instruction |= Rn;
12207 inst.instruction |= Rm << 3;
12208 }
12209 else
12210 {
12211 inst.instruction = T_OPCODE_CMP_HR;
12212 inst.instruction |= (Rn & 0x8) << 4;
12213 inst.instruction |= (Rn & 0x7);
12214 inst.instruction |= Rm << 3;
12215 }
12216 break;
12217 }
12218 return;
12219 }
12220
12221 inst.instruction = THUMB_OP16 (inst.instruction);
12222
12223 /* PR 10443: Do not silently ignore shifted operands. */
12224 constraint (inst.operands[1].shifted,
12225 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12226
12227 if (inst.operands[1].isreg)
12228 {
12229 if (Rn < 8 && Rm < 8)
12230 {
12231 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12232 since a MOV instruction produces unpredictable results. */
12233 if (inst.instruction == T_OPCODE_MOV_I8)
12234 inst.instruction = T_OPCODE_ADD_I3;
12235 else
12236 inst.instruction = T_OPCODE_CMP_LR;
12237
12238 inst.instruction |= Rn;
12239 inst.instruction |= Rm << 3;
12240 }
12241 else
12242 {
12243 if (inst.instruction == T_OPCODE_MOV_I8)
12244 inst.instruction = T_OPCODE_MOV_HR;
12245 else
12246 inst.instruction = T_OPCODE_CMP_HR;
12247 do_t_cpy ();
12248 }
12249 }
12250 else
12251 {
12252 constraint (Rn > 7,
12253 _("only lo regs allowed with immediate"));
12254 inst.instruction |= Rn << 8;
12255 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12256 }
12257 }
12258
12259 static void
12260 do_t_mov16 (void)
12261 {
12262 unsigned Rd;
12263 bfd_vma imm;
12264 bfd_boolean top;
12265
12266 top = (inst.instruction & 0x00800000) != 0;
12267 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12268 {
12269 constraint (top, _(":lower16: not allowed in this instruction"));
12270 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12271 }
12272 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12273 {
12274 constraint (!top, _(":upper16: not allowed in this instruction"));
12275 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12276 }
12277
12278 Rd = inst.operands[0].reg;
12279 reject_bad_reg (Rd);
12280
12281 inst.instruction |= Rd << 8;
12282 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12283 {
12284 imm = inst.relocs[0].exp.X_add_number;
12285 inst.instruction |= (imm & 0xf000) << 4;
12286 inst.instruction |= (imm & 0x0800) << 15;
12287 inst.instruction |= (imm & 0x0700) << 4;
12288 inst.instruction |= (imm & 0x00ff);
12289 }
12290 }
12291
12292 static void
12293 do_t_mvn_tst (void)
12294 {
12295 unsigned Rn, Rm;
12296
12297 Rn = inst.operands[0].reg;
12298 Rm = inst.operands[1].reg;
12299
12300 if (inst.instruction == T_MNEM_cmp
12301 || inst.instruction == T_MNEM_cmn)
12302 constraint (Rn == REG_PC, BAD_PC);
12303 else
12304 reject_bad_reg (Rn);
12305 reject_bad_reg (Rm);
12306
12307 if (unified_syntax)
12308 {
12309 int r0off = (inst.instruction == T_MNEM_mvn
12310 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12311 bfd_boolean narrow;
12312
12313 if (inst.size_req == 4
12314 || inst.instruction > 0xffff
12315 || inst.operands[1].shifted
12316 || Rn > 7 || Rm > 7)
12317 narrow = FALSE;
12318 else if (inst.instruction == T_MNEM_cmn
12319 || inst.instruction == T_MNEM_tst)
12320 narrow = TRUE;
12321 else if (THUMB_SETS_FLAGS (inst.instruction))
12322 narrow = !in_it_block ();
12323 else
12324 narrow = in_it_block ();
12325
12326 if (!inst.operands[1].isreg)
12327 {
12328 /* For an immediate, we always generate a 32-bit opcode;
12329 section relaxation will shrink it later if possible. */
12330 if (inst.instruction < 0xffff)
12331 inst.instruction = THUMB_OP32 (inst.instruction);
12332 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12333 inst.instruction |= Rn << r0off;
12334 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12335 }
12336 else
12337 {
12338 /* See if we can do this with a 16-bit instruction. */
12339 if (narrow)
12340 {
12341 inst.instruction = THUMB_OP16 (inst.instruction);
12342 inst.instruction |= Rn;
12343 inst.instruction |= Rm << 3;
12344 }
12345 else
12346 {
12347 constraint (inst.operands[1].shifted
12348 && inst.operands[1].immisreg,
12349 _("shift must be constant"));
12350 if (inst.instruction < 0xffff)
12351 inst.instruction = THUMB_OP32 (inst.instruction);
12352 inst.instruction |= Rn << r0off;
12353 encode_thumb32_shifted_operand (1);
12354 }
12355 }
12356 }
12357 else
12358 {
12359 constraint (inst.instruction > 0xffff
12360 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12361 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12362 _("unshifted register required"));
12363 constraint (Rn > 7 || Rm > 7,
12364 BAD_HIREG);
12365
12366 inst.instruction = THUMB_OP16 (inst.instruction);
12367 inst.instruction |= Rn;
12368 inst.instruction |= Rm << 3;
12369 }
12370 }
12371
12372 static void
12373 do_t_mrs (void)
12374 {
12375 unsigned Rd;
12376
12377 if (do_vfp_nsyn_mrs () == SUCCESS)
12378 return;
12379
12380 Rd = inst.operands[0].reg;
12381 reject_bad_reg (Rd);
12382 inst.instruction |= Rd << 8;
12383
12384 if (inst.operands[1].isreg)
12385 {
12386 unsigned br = inst.operands[1].reg;
12387 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12388 as_bad (_("bad register for mrs"));
12389
12390 inst.instruction |= br & (0xf << 16);
12391 inst.instruction |= (br & 0x300) >> 4;
12392 inst.instruction |= (br & SPSR_BIT) >> 2;
12393 }
12394 else
12395 {
12396 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12397
12398 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12399 {
12400 /* PR gas/12698: The constraint is only applied for m_profile.
12401 If the user has specified -march=all, we want to ignore it as
12402 we are building for any CPU type, including non-m variants. */
12403 bfd_boolean m_profile =
12404 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12405 constraint ((flags != 0) && m_profile, _("selected processor does "
12406 "not support requested special purpose register"));
12407 }
12408 else
12409 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12410 devices). */
12411 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12412 _("'APSR', 'CPSR' or 'SPSR' expected"));
12413
12414 inst.instruction |= (flags & SPSR_BIT) >> 2;
12415 inst.instruction |= inst.operands[1].imm & 0xff;
12416 inst.instruction |= 0xf0000;
12417 }
12418 }
12419
12420 static void
12421 do_t_msr (void)
12422 {
12423 int flags;
12424 unsigned Rn;
12425
12426 if (do_vfp_nsyn_msr () == SUCCESS)
12427 return;
12428
12429 constraint (!inst.operands[1].isreg,
12430 _("Thumb encoding does not support an immediate here"));
12431
12432 if (inst.operands[0].isreg)
12433 flags = (int)(inst.operands[0].reg);
12434 else
12435 flags = inst.operands[0].imm;
12436
12437 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12438 {
12439 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12440
12441 /* PR gas/12698: The constraint is only applied for m_profile.
12442 If the user has specified -march=all, we want to ignore it as
12443 we are building for any CPU type, including non-m variants. */
12444 bfd_boolean m_profile =
12445 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12446 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12447 && (bits & ~(PSR_s | PSR_f)) != 0)
12448 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12449 && bits != PSR_f)) && m_profile,
12450 _("selected processor does not support requested special "
12451 "purpose register"));
12452 }
12453 else
12454 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12455 "requested special purpose register"));
12456
12457 Rn = inst.operands[1].reg;
12458 reject_bad_reg (Rn);
12459
12460 inst.instruction |= (flags & SPSR_BIT) >> 2;
12461 inst.instruction |= (flags & 0xf0000) >> 8;
12462 inst.instruction |= (flags & 0x300) >> 4;
12463 inst.instruction |= (flags & 0xff);
12464 inst.instruction |= Rn << 16;
12465 }
12466
12467 static void
12468 do_t_mul (void)
12469 {
12470 bfd_boolean narrow;
12471 unsigned Rd, Rn, Rm;
12472
12473 if (!inst.operands[2].present)
12474 inst.operands[2].reg = inst.operands[0].reg;
12475
12476 Rd = inst.operands[0].reg;
12477 Rn = inst.operands[1].reg;
12478 Rm = inst.operands[2].reg;
12479
12480 if (unified_syntax)
12481 {
12482 if (inst.size_req == 4
12483 || (Rd != Rn
12484 && Rd != Rm)
12485 || Rn > 7
12486 || Rm > 7)
12487 narrow = FALSE;
12488 else if (inst.instruction == T_MNEM_muls)
12489 narrow = !in_it_block ();
12490 else
12491 narrow = in_it_block ();
12492 }
12493 else
12494 {
12495 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12496 constraint (Rn > 7 || Rm > 7,
12497 BAD_HIREG);
12498 narrow = TRUE;
12499 }
12500
12501 if (narrow)
12502 {
12503 /* 16-bit MULS/Conditional MUL. */
12504 inst.instruction = THUMB_OP16 (inst.instruction);
12505 inst.instruction |= Rd;
12506
12507 if (Rd == Rn)
12508 inst.instruction |= Rm << 3;
12509 else if (Rd == Rm)
12510 inst.instruction |= Rn << 3;
12511 else
12512 constraint (1, _("dest must overlap one source register"));
12513 }
12514 else
12515 {
12516 constraint (inst.instruction != T_MNEM_mul,
12517 _("Thumb-2 MUL must not set flags"));
12518 /* 32-bit MUL. */
12519 inst.instruction = THUMB_OP32 (inst.instruction);
12520 inst.instruction |= Rd << 8;
12521 inst.instruction |= Rn << 16;
12522 inst.instruction |= Rm << 0;
12523
12524 reject_bad_reg (Rd);
12525 reject_bad_reg (Rn);
12526 reject_bad_reg (Rm);
12527 }
12528 }
12529
12530 static void
12531 do_t_mull (void)
12532 {
12533 unsigned RdLo, RdHi, Rn, Rm;
12534
12535 RdLo = inst.operands[0].reg;
12536 RdHi = inst.operands[1].reg;
12537 Rn = inst.operands[2].reg;
12538 Rm = inst.operands[3].reg;
12539
12540 reject_bad_reg (RdLo);
12541 reject_bad_reg (RdHi);
12542 reject_bad_reg (Rn);
12543 reject_bad_reg (Rm);
12544
12545 inst.instruction |= RdLo << 12;
12546 inst.instruction |= RdHi << 8;
12547 inst.instruction |= Rn << 16;
12548 inst.instruction |= Rm;
12549
12550 if (RdLo == RdHi)
12551 as_tsktsk (_("rdhi and rdlo must be different"));
12552 }
12553
12554 static void
12555 do_t_nop (void)
12556 {
12557 set_it_insn_type (NEUTRAL_IT_INSN);
12558
12559 if (unified_syntax)
12560 {
12561 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12562 {
12563 inst.instruction = THUMB_OP32 (inst.instruction);
12564 inst.instruction |= inst.operands[0].imm;
12565 }
12566 else
12567 {
12568 /* PR9722: Check for Thumb2 availability before
12569 generating a thumb2 nop instruction. */
12570 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12571 {
12572 inst.instruction = THUMB_OP16 (inst.instruction);
12573 inst.instruction |= inst.operands[0].imm << 4;
12574 }
12575 else
12576 inst.instruction = 0x46c0;
12577 }
12578 }
12579 else
12580 {
12581 constraint (inst.operands[0].present,
12582 _("Thumb does not support NOP with hints"));
12583 inst.instruction = 0x46c0;
12584 }
12585 }
12586
12587 static void
12588 do_t_neg (void)
12589 {
12590 if (unified_syntax)
12591 {
12592 bfd_boolean narrow;
12593
12594 if (THUMB_SETS_FLAGS (inst.instruction))
12595 narrow = !in_it_block ();
12596 else
12597 narrow = in_it_block ();
12598 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12599 narrow = FALSE;
12600 if (inst.size_req == 4)
12601 narrow = FALSE;
12602
12603 if (!narrow)
12604 {
12605 inst.instruction = THUMB_OP32 (inst.instruction);
12606 inst.instruction |= inst.operands[0].reg << 8;
12607 inst.instruction |= inst.operands[1].reg << 16;
12608 }
12609 else
12610 {
12611 inst.instruction = THUMB_OP16 (inst.instruction);
12612 inst.instruction |= inst.operands[0].reg;
12613 inst.instruction |= inst.operands[1].reg << 3;
12614 }
12615 }
12616 else
12617 {
12618 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12619 BAD_HIREG);
12620 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12621
12622 inst.instruction = THUMB_OP16 (inst.instruction);
12623 inst.instruction |= inst.operands[0].reg;
12624 inst.instruction |= inst.operands[1].reg << 3;
12625 }
12626 }
12627
12628 static void
12629 do_t_orn (void)
12630 {
12631 unsigned Rd, Rn;
12632
12633 Rd = inst.operands[0].reg;
12634 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12635
12636 reject_bad_reg (Rd);
12637 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12638 reject_bad_reg (Rn);
12639
12640 inst.instruction |= Rd << 8;
12641 inst.instruction |= Rn << 16;
12642
12643 if (!inst.operands[2].isreg)
12644 {
12645 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12646 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12647 }
12648 else
12649 {
12650 unsigned Rm;
12651
12652 Rm = inst.operands[2].reg;
12653 reject_bad_reg (Rm);
12654
12655 constraint (inst.operands[2].shifted
12656 && inst.operands[2].immisreg,
12657 _("shift must be constant"));
12658 encode_thumb32_shifted_operand (2);
12659 }
12660 }
12661
12662 static void
12663 do_t_pkhbt (void)
12664 {
12665 unsigned Rd, Rn, Rm;
12666
12667 Rd = inst.operands[0].reg;
12668 Rn = inst.operands[1].reg;
12669 Rm = inst.operands[2].reg;
12670
12671 reject_bad_reg (Rd);
12672 reject_bad_reg (Rn);
12673 reject_bad_reg (Rm);
12674
12675 inst.instruction |= Rd << 8;
12676 inst.instruction |= Rn << 16;
12677 inst.instruction |= Rm;
12678 if (inst.operands[3].present)
12679 {
12680 unsigned int val = inst.relocs[0].exp.X_add_number;
12681 constraint (inst.relocs[0].exp.X_op != O_constant,
12682 _("expression too complex"));
12683 inst.instruction |= (val & 0x1c) << 10;
12684 inst.instruction |= (val & 0x03) << 6;
12685 }
12686 }
12687
12688 static void
12689 do_t_pkhtb (void)
12690 {
12691 if (!inst.operands[3].present)
12692 {
12693 unsigned Rtmp;
12694
12695 inst.instruction &= ~0x00000020;
12696
12697 /* PR 10168. Swap the Rm and Rn registers. */
12698 Rtmp = inst.operands[1].reg;
12699 inst.operands[1].reg = inst.operands[2].reg;
12700 inst.operands[2].reg = Rtmp;
12701 }
12702 do_t_pkhbt ();
12703 }
12704
12705 static void
12706 do_t_pld (void)
12707 {
12708 if (inst.operands[0].immisreg)
12709 reject_bad_reg (inst.operands[0].imm);
12710
12711 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12712 }
12713
12714 static void
12715 do_t_push_pop (void)
12716 {
12717 unsigned mask;
12718
12719 constraint (inst.operands[0].writeback,
12720 _("push/pop do not support {reglist}^"));
12721 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12722 _("expression too complex"));
12723
12724 mask = inst.operands[0].imm;
12725 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12726 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12727 else if (inst.size_req != 4
12728 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
12729 ? REG_LR : REG_PC)))
12730 {
12731 inst.instruction = THUMB_OP16 (inst.instruction);
12732 inst.instruction |= THUMB_PP_PC_LR;
12733 inst.instruction |= mask & 0xff;
12734 }
12735 else if (unified_syntax)
12736 {
12737 inst.instruction = THUMB_OP32 (inst.instruction);
12738 encode_thumb2_ldmstm (13, mask, TRUE);
12739 }
12740 else
12741 {
12742 inst.error = _("invalid register list to push/pop instruction");
12743 return;
12744 }
12745 }
12746
12747 static void
12748 do_t_rbit (void)
12749 {
12750 unsigned Rd, Rm;
12751
12752 Rd = inst.operands[0].reg;
12753 Rm = inst.operands[1].reg;
12754
12755 reject_bad_reg (Rd);
12756 reject_bad_reg (Rm);
12757
12758 inst.instruction |= Rd << 8;
12759 inst.instruction |= Rm << 16;
12760 inst.instruction |= Rm;
12761 }
12762
12763 static void
12764 do_t_rev (void)
12765 {
12766 unsigned Rd, Rm;
12767
12768 Rd = inst.operands[0].reg;
12769 Rm = inst.operands[1].reg;
12770
12771 reject_bad_reg (Rd);
12772 reject_bad_reg (Rm);
12773
12774 if (Rd <= 7 && Rm <= 7
12775 && inst.size_req != 4)
12776 {
12777 inst.instruction = THUMB_OP16 (inst.instruction);
12778 inst.instruction |= Rd;
12779 inst.instruction |= Rm << 3;
12780 }
12781 else if (unified_syntax)
12782 {
12783 inst.instruction = THUMB_OP32 (inst.instruction);
12784 inst.instruction |= Rd << 8;
12785 inst.instruction |= Rm << 16;
12786 inst.instruction |= Rm;
12787 }
12788 else
12789 inst.error = BAD_HIREG;
12790 }
12791
12792 static void
12793 do_t_rrx (void)
12794 {
12795 unsigned Rd, Rm;
12796
12797 Rd = inst.operands[0].reg;
12798 Rm = inst.operands[1].reg;
12799
12800 reject_bad_reg (Rd);
12801 reject_bad_reg (Rm);
12802
12803 inst.instruction |= Rd << 8;
12804 inst.instruction |= Rm;
12805 }
12806
12807 static void
12808 do_t_rsb (void)
12809 {
12810 unsigned Rd, Rs;
12811
12812 Rd = inst.operands[0].reg;
12813 Rs = (inst.operands[1].present
12814 ? inst.operands[1].reg /* Rd, Rs, foo */
12815 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12816
12817 reject_bad_reg (Rd);
12818 reject_bad_reg (Rs);
12819 if (inst.operands[2].isreg)
12820 reject_bad_reg (inst.operands[2].reg);
12821
12822 inst.instruction |= Rd << 8;
12823 inst.instruction |= Rs << 16;
12824 if (!inst.operands[2].isreg)
12825 {
12826 bfd_boolean narrow;
12827
12828 if ((inst.instruction & 0x00100000) != 0)
12829 narrow = !in_it_block ();
12830 else
12831 narrow = in_it_block ();
12832
12833 if (Rd > 7 || Rs > 7)
12834 narrow = FALSE;
12835
12836 if (inst.size_req == 4 || !unified_syntax)
12837 narrow = FALSE;
12838
12839 if (inst.relocs[0].exp.X_op != O_constant
12840 || inst.relocs[0].exp.X_add_number != 0)
12841 narrow = FALSE;
12842
12843 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12844 relaxation, but it doesn't seem worth the hassle. */
12845 if (narrow)
12846 {
12847 inst.relocs[0].type = BFD_RELOC_UNUSED;
12848 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12849 inst.instruction |= Rs << 3;
12850 inst.instruction |= Rd;
12851 }
12852 else
12853 {
12854 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12855 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12856 }
12857 }
12858 else
12859 encode_thumb32_shifted_operand (2);
12860 }
12861
12862 static void
12863 do_t_setend (void)
12864 {
12865 if (warn_on_deprecated
12866 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12867 as_tsktsk (_("setend use is deprecated for ARMv8"));
12868
12869 set_it_insn_type (OUTSIDE_IT_INSN);
12870 if (inst.operands[0].imm)
12871 inst.instruction |= 0x8;
12872 }
12873
12874 static void
12875 do_t_shift (void)
12876 {
12877 if (!inst.operands[1].present)
12878 inst.operands[1].reg = inst.operands[0].reg;
12879
12880 if (unified_syntax)
12881 {
12882 bfd_boolean narrow;
12883 int shift_kind;
12884
12885 switch (inst.instruction)
12886 {
12887 case T_MNEM_asr:
12888 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12889 case T_MNEM_lsl:
12890 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12891 case T_MNEM_lsr:
12892 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12893 case T_MNEM_ror:
12894 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12895 default: abort ();
12896 }
12897
12898 if (THUMB_SETS_FLAGS (inst.instruction))
12899 narrow = !in_it_block ();
12900 else
12901 narrow = in_it_block ();
12902 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12903 narrow = FALSE;
12904 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12905 narrow = FALSE;
12906 if (inst.operands[2].isreg
12907 && (inst.operands[1].reg != inst.operands[0].reg
12908 || inst.operands[2].reg > 7))
12909 narrow = FALSE;
12910 if (inst.size_req == 4)
12911 narrow = FALSE;
12912
12913 reject_bad_reg (inst.operands[0].reg);
12914 reject_bad_reg (inst.operands[1].reg);
12915
12916 if (!narrow)
12917 {
12918 if (inst.operands[2].isreg)
12919 {
12920 reject_bad_reg (inst.operands[2].reg);
12921 inst.instruction = THUMB_OP32 (inst.instruction);
12922 inst.instruction |= inst.operands[0].reg << 8;
12923 inst.instruction |= inst.operands[1].reg << 16;
12924 inst.instruction |= inst.operands[2].reg;
12925
12926 /* PR 12854: Error on extraneous shifts. */
12927 constraint (inst.operands[2].shifted,
12928 _("extraneous shift as part of operand to shift insn"));
12929 }
12930 else
12931 {
12932 inst.operands[1].shifted = 1;
12933 inst.operands[1].shift_kind = shift_kind;
12934 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12935 ? T_MNEM_movs : T_MNEM_mov);
12936 inst.instruction |= inst.operands[0].reg << 8;
12937 encode_thumb32_shifted_operand (1);
12938 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12939 inst.relocs[0].type = BFD_RELOC_UNUSED;
12940 }
12941 }
12942 else
12943 {
12944 if (inst.operands[2].isreg)
12945 {
12946 switch (shift_kind)
12947 {
12948 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12949 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12950 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12951 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12952 default: abort ();
12953 }
12954
12955 inst.instruction |= inst.operands[0].reg;
12956 inst.instruction |= inst.operands[2].reg << 3;
12957
12958 /* PR 12854: Error on extraneous shifts. */
12959 constraint (inst.operands[2].shifted,
12960 _("extraneous shift as part of operand to shift insn"));
12961 }
12962 else
12963 {
12964 switch (shift_kind)
12965 {
12966 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12967 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12968 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12969 default: abort ();
12970 }
12971 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12972 inst.instruction |= inst.operands[0].reg;
12973 inst.instruction |= inst.operands[1].reg << 3;
12974 }
12975 }
12976 }
12977 else
12978 {
12979 constraint (inst.operands[0].reg > 7
12980 || inst.operands[1].reg > 7, BAD_HIREG);
12981 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12982
12983 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12984 {
12985 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12986 constraint (inst.operands[0].reg != inst.operands[1].reg,
12987 _("source1 and dest must be same register"));
12988
12989 switch (inst.instruction)
12990 {
12991 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12992 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12993 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12994 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12995 default: abort ();
12996 }
12997
12998 inst.instruction |= inst.operands[0].reg;
12999 inst.instruction |= inst.operands[2].reg << 3;
13000
13001 /* PR 12854: Error on extraneous shifts. */
13002 constraint (inst.operands[2].shifted,
13003 _("extraneous shift as part of operand to shift insn"));
13004 }
13005 else
13006 {
13007 switch (inst.instruction)
13008 {
13009 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13010 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13011 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13012 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13013 default: abort ();
13014 }
13015 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13016 inst.instruction |= inst.operands[0].reg;
13017 inst.instruction |= inst.operands[1].reg << 3;
13018 }
13019 }
13020 }
13021
13022 static void
13023 do_t_simd (void)
13024 {
13025 unsigned Rd, Rn, Rm;
13026
13027 Rd = inst.operands[0].reg;
13028 Rn = inst.operands[1].reg;
13029 Rm = inst.operands[2].reg;
13030
13031 reject_bad_reg (Rd);
13032 reject_bad_reg (Rn);
13033 reject_bad_reg (Rm);
13034
13035 inst.instruction |= Rd << 8;
13036 inst.instruction |= Rn << 16;
13037 inst.instruction |= Rm;
13038 }
13039
13040 static void
13041 do_t_simd2 (void)
13042 {
13043 unsigned Rd, Rn, Rm;
13044
13045 Rd = inst.operands[0].reg;
13046 Rm = inst.operands[1].reg;
13047 Rn = inst.operands[2].reg;
13048
13049 reject_bad_reg (Rd);
13050 reject_bad_reg (Rn);
13051 reject_bad_reg (Rm);
13052
13053 inst.instruction |= Rd << 8;
13054 inst.instruction |= Rn << 16;
13055 inst.instruction |= Rm;
13056 }
13057
13058 static void
13059 do_t_smc (void)
13060 {
13061 unsigned int value = inst.relocs[0].exp.X_add_number;
13062 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13063 _("SMC is not permitted on this architecture"));
13064 constraint (inst.relocs[0].exp.X_op != O_constant,
13065 _("expression too complex"));
13066 inst.relocs[0].type = BFD_RELOC_UNUSED;
13067 inst.instruction |= (value & 0xf000) >> 12;
13068 inst.instruction |= (value & 0x0ff0);
13069 inst.instruction |= (value & 0x000f) << 16;
13070 /* PR gas/15623: SMC instructions must be last in an IT block. */
13071 set_it_insn_type_last ();
13072 }
13073
13074 static void
13075 do_t_hvc (void)
13076 {
13077 unsigned int value = inst.relocs[0].exp.X_add_number;
13078
13079 inst.relocs[0].type = BFD_RELOC_UNUSED;
13080 inst.instruction |= (value & 0x0fff);
13081 inst.instruction |= (value & 0xf000) << 4;
13082 }
13083
13084 static void
13085 do_t_ssat_usat (int bias)
13086 {
13087 unsigned Rd, Rn;
13088
13089 Rd = inst.operands[0].reg;
13090 Rn = inst.operands[2].reg;
13091
13092 reject_bad_reg (Rd);
13093 reject_bad_reg (Rn);
13094
13095 inst.instruction |= Rd << 8;
13096 inst.instruction |= inst.operands[1].imm - bias;
13097 inst.instruction |= Rn << 16;
13098
13099 if (inst.operands[3].present)
13100 {
13101 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13102
13103 inst.relocs[0].type = BFD_RELOC_UNUSED;
13104
13105 constraint (inst.relocs[0].exp.X_op != O_constant,
13106 _("expression too complex"));
13107
13108 if (shift_amount != 0)
13109 {
13110 constraint (shift_amount > 31,
13111 _("shift expression is too large"));
13112
13113 if (inst.operands[3].shift_kind == SHIFT_ASR)
13114 inst.instruction |= 0x00200000; /* sh bit. */
13115
13116 inst.instruction |= (shift_amount & 0x1c) << 10;
13117 inst.instruction |= (shift_amount & 0x03) << 6;
13118 }
13119 }
13120 }
13121
13122 static void
13123 do_t_ssat (void)
13124 {
13125 do_t_ssat_usat (1);
13126 }
13127
13128 static void
13129 do_t_ssat16 (void)
13130 {
13131 unsigned Rd, Rn;
13132
13133 Rd = inst.operands[0].reg;
13134 Rn = inst.operands[2].reg;
13135
13136 reject_bad_reg (Rd);
13137 reject_bad_reg (Rn);
13138
13139 inst.instruction |= Rd << 8;
13140 inst.instruction |= inst.operands[1].imm - 1;
13141 inst.instruction |= Rn << 16;
13142 }
13143
13144 static void
13145 do_t_strex (void)
13146 {
13147 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13148 || inst.operands[2].postind || inst.operands[2].writeback
13149 || inst.operands[2].immisreg || inst.operands[2].shifted
13150 || inst.operands[2].negative,
13151 BAD_ADDR_MODE);
13152
13153 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13154
13155 inst.instruction |= inst.operands[0].reg << 8;
13156 inst.instruction |= inst.operands[1].reg << 12;
13157 inst.instruction |= inst.operands[2].reg << 16;
13158 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13159 }
13160
13161 static void
13162 do_t_strexd (void)
13163 {
13164 if (!inst.operands[2].present)
13165 inst.operands[2].reg = inst.operands[1].reg + 1;
13166
13167 constraint (inst.operands[0].reg == inst.operands[1].reg
13168 || inst.operands[0].reg == inst.operands[2].reg
13169 || inst.operands[0].reg == inst.operands[3].reg,
13170 BAD_OVERLAP);
13171
13172 inst.instruction |= inst.operands[0].reg;
13173 inst.instruction |= inst.operands[1].reg << 12;
13174 inst.instruction |= inst.operands[2].reg << 8;
13175 inst.instruction |= inst.operands[3].reg << 16;
13176 }
13177
13178 static void
13179 do_t_sxtah (void)
13180 {
13181 unsigned Rd, Rn, Rm;
13182
13183 Rd = inst.operands[0].reg;
13184 Rn = inst.operands[1].reg;
13185 Rm = inst.operands[2].reg;
13186
13187 reject_bad_reg (Rd);
13188 reject_bad_reg (Rn);
13189 reject_bad_reg (Rm);
13190
13191 inst.instruction |= Rd << 8;
13192 inst.instruction |= Rn << 16;
13193 inst.instruction |= Rm;
13194 inst.instruction |= inst.operands[3].imm << 4;
13195 }
13196
13197 static void
13198 do_t_sxth (void)
13199 {
13200 unsigned Rd, Rm;
13201
13202 Rd = inst.operands[0].reg;
13203 Rm = inst.operands[1].reg;
13204
13205 reject_bad_reg (Rd);
13206 reject_bad_reg (Rm);
13207
13208 if (inst.instruction <= 0xffff
13209 && inst.size_req != 4
13210 && Rd <= 7 && Rm <= 7
13211 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13212 {
13213 inst.instruction = THUMB_OP16 (inst.instruction);
13214 inst.instruction |= Rd;
13215 inst.instruction |= Rm << 3;
13216 }
13217 else if (unified_syntax)
13218 {
13219 if (inst.instruction <= 0xffff)
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= Rd << 8;
13222 inst.instruction |= Rm;
13223 inst.instruction |= inst.operands[2].imm << 4;
13224 }
13225 else
13226 {
13227 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13228 _("Thumb encoding does not support rotation"));
13229 constraint (1, BAD_HIREG);
13230 }
13231 }
13232
13233 static void
13234 do_t_swi (void)
13235 {
13236 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13237 }
13238
13239 static void
13240 do_t_tb (void)
13241 {
13242 unsigned Rn, Rm;
13243 int half;
13244
13245 half = (inst.instruction & 0x10) != 0;
13246 set_it_insn_type_last ();
13247 constraint (inst.operands[0].immisreg,
13248 _("instruction requires register index"));
13249
13250 Rn = inst.operands[0].reg;
13251 Rm = inst.operands[0].imm;
13252
13253 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13254 constraint (Rn == REG_SP, BAD_SP);
13255 reject_bad_reg (Rm);
13256
13257 constraint (!half && inst.operands[0].shifted,
13258 _("instruction does not allow shifted index"));
13259 inst.instruction |= (Rn << 16) | Rm;
13260 }
13261
13262 static void
13263 do_t_udf (void)
13264 {
13265 if (!inst.operands[0].present)
13266 inst.operands[0].imm = 0;
13267
13268 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13269 {
13270 constraint (inst.size_req == 2,
13271 _("immediate value out of range"));
13272 inst.instruction = THUMB_OP32 (inst.instruction);
13273 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13274 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13275 }
13276 else
13277 {
13278 inst.instruction = THUMB_OP16 (inst.instruction);
13279 inst.instruction |= inst.operands[0].imm;
13280 }
13281
13282 set_it_insn_type (NEUTRAL_IT_INSN);
13283 }
13284
13285
13286 static void
13287 do_t_usat (void)
13288 {
13289 do_t_ssat_usat (0);
13290 }
13291
13292 static void
13293 do_t_usat16 (void)
13294 {
13295 unsigned Rd, Rn;
13296
13297 Rd = inst.operands[0].reg;
13298 Rn = inst.operands[2].reg;
13299
13300 reject_bad_reg (Rd);
13301 reject_bad_reg (Rn);
13302
13303 inst.instruction |= Rd << 8;
13304 inst.instruction |= inst.operands[1].imm;
13305 inst.instruction |= Rn << 16;
13306 }
13307
13308 /* Checking the range of the branch offset (VAL) with NBITS bits
13309 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13310 static int
13311 v8_1_branch_value_check (int val, int nbits, int is_signed)
13312 {
13313 gas_assert (nbits > 0 && nbits <= 32);
13314 if (is_signed)
13315 {
13316 int cmp = (1 << (nbits - 1));
13317 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13318 return FAIL;
13319 }
13320 else
13321 {
13322 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13323 return FAIL;
13324 }
13325 return SUCCESS;
13326 }
13327
13328 /* For branches in Armv8.1-M Mainline. */
13329 static void
13330 do_t_branch_future (void)
13331 {
13332 unsigned long insn = inst.instruction;
13333
13334 inst.instruction = THUMB_OP32 (inst.instruction);
13335 if (inst.operands[0].hasreloc == 0)
13336 {
13337 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13338 as_bad (BAD_BRANCH_OFF);
13339
13340 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13341 }
13342 else
13343 {
13344 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13345 inst.relocs[0].pc_rel = 1;
13346 }
13347
13348 switch (insn)
13349 {
13350 case T_MNEM_bf:
13351 if (inst.operands[1].hasreloc == 0)
13352 {
13353 int val = inst.operands[1].imm;
13354 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13355 as_bad (BAD_BRANCH_OFF);
13356
13357 int immA = (val & 0x0001f000) >> 12;
13358 int immB = (val & 0x00000ffc) >> 2;
13359 int immC = (val & 0x00000002) >> 1;
13360 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13361 }
13362 else
13363 {
13364 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13365 inst.relocs[1].pc_rel = 1;
13366 }
13367 break;
13368
13369 case T_MNEM_bfl:
13370 if (inst.operands[1].hasreloc == 0)
13371 {
13372 int val = inst.operands[1].imm;
13373 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13374 as_bad (BAD_BRANCH_OFF);
13375
13376 int immA = (val & 0x0007f000) >> 12;
13377 int immB = (val & 0x00000ffc) >> 2;
13378 int immC = (val & 0x00000002) >> 1;
13379 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13380 }
13381 else
13382 {
13383 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
13384 inst.relocs[1].pc_rel = 1;
13385 }
13386 break;
13387
13388 case T_MNEM_bfcsel:
13389 /* Operand 1. */
13390 if (inst.operands[1].hasreloc == 0)
13391 {
13392 int val = inst.operands[1].imm;
13393 int immA = (val & 0x00001000) >> 12;
13394 int immB = (val & 0x00000ffc) >> 2;
13395 int immC = (val & 0x00000002) >> 1;
13396 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13397 }
13398 else
13399 {
13400 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
13401 inst.relocs[1].pc_rel = 1;
13402 }
13403
13404 /* Operand 2. */
13405 if (inst.operands[2].hasreloc == 0)
13406 {
13407 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
13408 int val2 = inst.operands[2].imm;
13409 int val0 = inst.operands[0].imm & 0x1f;
13410 int diff = val2 - val0;
13411 if (diff == 4)
13412 inst.instruction |= 1 << 17; /* T bit. */
13413 else if (diff != 2)
13414 as_bad (_("out of range label-relative fixup value"));
13415 }
13416 else
13417 {
13418 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
13419 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
13420 inst.relocs[2].pc_rel = 1;
13421 }
13422
13423 /* Operand 3. */
13424 constraint (inst.cond != COND_ALWAYS, BAD_COND);
13425 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
13426 break;
13427
13428 case T_MNEM_bfx:
13429 case T_MNEM_bflx:
13430 inst.instruction |= inst.operands[1].reg << 16;
13431 break;
13432
13433 default: abort ();
13434 }
13435 }
13436
13437 /* Neon instruction encoder helpers. */
13438
13439 /* Encodings for the different types for various Neon opcodes. */
13440
13441 /* An "invalid" code for the following tables. */
13442 #define N_INV -1u
13443
13444 struct neon_tab_entry
13445 {
13446 unsigned integer;
13447 unsigned float_or_poly;
13448 unsigned scalar_or_imm;
13449 };
13450
13451 /* Map overloaded Neon opcodes to their respective encodings. */
13452 #define NEON_ENC_TAB \
13453 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13454 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13455 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13456 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13457 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13458 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13459 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13460 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13461 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13462 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13463 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13464 /* Register variants of the following two instructions are encoded as
13465 vcge / vcgt with the operands reversed. */ \
13466 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13467 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13468 X(vfma, N_INV, 0x0000c10, N_INV), \
13469 X(vfms, N_INV, 0x0200c10, N_INV), \
13470 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13471 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13472 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13473 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13474 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13475 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13476 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13477 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13478 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13479 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13480 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13481 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13482 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13483 X(vshl, 0x0000400, N_INV, 0x0800510), \
13484 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13485 X(vand, 0x0000110, N_INV, 0x0800030), \
13486 X(vbic, 0x0100110, N_INV, 0x0800030), \
13487 X(veor, 0x1000110, N_INV, N_INV), \
13488 X(vorn, 0x0300110, N_INV, 0x0800010), \
13489 X(vorr, 0x0200110, N_INV, 0x0800010), \
13490 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13491 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13492 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13493 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13494 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13495 X(vst1, 0x0000000, 0x0800000, N_INV), \
13496 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13497 X(vst2, 0x0000100, 0x0800100, N_INV), \
13498 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13499 X(vst3, 0x0000200, 0x0800200, N_INV), \
13500 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13501 X(vst4, 0x0000300, 0x0800300, N_INV), \
13502 X(vmovn, 0x1b20200, N_INV, N_INV), \
13503 X(vtrn, 0x1b20080, N_INV, N_INV), \
13504 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13505 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13506 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13507 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13508 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13509 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13510 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13511 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13512 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13513 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13514 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13515 X(vseleq, 0xe000a00, N_INV, N_INV), \
13516 X(vselvs, 0xe100a00, N_INV, N_INV), \
13517 X(vselge, 0xe200a00, N_INV, N_INV), \
13518 X(vselgt, 0xe300a00, N_INV, N_INV), \
13519 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13520 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13521 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13522 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13523 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13524 X(aes, 0x3b00300, N_INV, N_INV), \
13525 X(sha3op, 0x2000c00, N_INV, N_INV), \
13526 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13527 X(sha2op, 0x3ba0380, N_INV, N_INV)
13528
13529 enum neon_opc
13530 {
13531 #define X(OPC,I,F,S) N_MNEM_##OPC
13532 NEON_ENC_TAB
13533 #undef X
13534 };
13535
13536 static const struct neon_tab_entry neon_enc_tab[] =
13537 {
13538 #define X(OPC,I,F,S) { (I), (F), (S) }
13539 NEON_ENC_TAB
13540 #undef X
13541 };
13542
13543 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13544 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13545 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13546 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13547 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13548 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13549 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13550 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13551 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13552 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13553 #define NEON_ENC_SINGLE_(X) \
13554 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13555 #define NEON_ENC_DOUBLE_(X) \
13556 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13557 #define NEON_ENC_FPV8_(X) \
13558 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13559
13560 #define NEON_ENCODE(type, inst) \
13561 do \
13562 { \
13563 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13564 inst.is_neon = 1; \
13565 } \
13566 while (0)
13567
13568 #define check_neon_suffixes \
13569 do \
13570 { \
13571 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13572 { \
13573 as_bad (_("invalid neon suffix for non neon instruction")); \
13574 return; \
13575 } \
13576 } \
13577 while (0)
13578
13579 /* Define shapes for instruction operands. The following mnemonic characters
13580 are used in this table:
13581
13582 F - VFP S<n> register
13583 D - Neon D<n> register
13584 Q - Neon Q<n> register
13585 I - Immediate
13586 S - Scalar
13587 R - ARM register
13588 L - D<n> register list
13589
13590 This table is used to generate various data:
13591 - enumerations of the form NS_DDR to be used as arguments to
13592 neon_select_shape.
13593 - a table classifying shapes into single, double, quad, mixed.
13594 - a table used to drive neon_select_shape. */
13595
13596 #define NEON_SHAPE_DEF \
13597 X(3, (D, D, D), DOUBLE), \
13598 X(3, (Q, Q, Q), QUAD), \
13599 X(3, (D, D, I), DOUBLE), \
13600 X(3, (Q, Q, I), QUAD), \
13601 X(3, (D, D, S), DOUBLE), \
13602 X(3, (Q, Q, S), QUAD), \
13603 X(2, (D, D), DOUBLE), \
13604 X(2, (Q, Q), QUAD), \
13605 X(2, (D, S), DOUBLE), \
13606 X(2, (Q, S), QUAD), \
13607 X(2, (D, R), DOUBLE), \
13608 X(2, (Q, R), QUAD), \
13609 X(2, (D, I), DOUBLE), \
13610 X(2, (Q, I), QUAD), \
13611 X(3, (D, L, D), DOUBLE), \
13612 X(2, (D, Q), MIXED), \
13613 X(2, (Q, D), MIXED), \
13614 X(3, (D, Q, I), MIXED), \
13615 X(3, (Q, D, I), MIXED), \
13616 X(3, (Q, D, D), MIXED), \
13617 X(3, (D, Q, Q), MIXED), \
13618 X(3, (Q, Q, D), MIXED), \
13619 X(3, (Q, D, S), MIXED), \
13620 X(3, (D, Q, S), MIXED), \
13621 X(4, (D, D, D, I), DOUBLE), \
13622 X(4, (Q, Q, Q, I), QUAD), \
13623 X(4, (D, D, S, I), DOUBLE), \
13624 X(4, (Q, Q, S, I), QUAD), \
13625 X(2, (F, F), SINGLE), \
13626 X(3, (F, F, F), SINGLE), \
13627 X(2, (F, I), SINGLE), \
13628 X(2, (F, D), MIXED), \
13629 X(2, (D, F), MIXED), \
13630 X(3, (F, F, I), MIXED), \
13631 X(4, (R, R, F, F), SINGLE), \
13632 X(4, (F, F, R, R), SINGLE), \
13633 X(3, (D, R, R), DOUBLE), \
13634 X(3, (R, R, D), DOUBLE), \
13635 X(2, (S, R), SINGLE), \
13636 X(2, (R, S), SINGLE), \
13637 X(2, (F, R), SINGLE), \
13638 X(2, (R, F), SINGLE), \
13639 /* Half float shape supported so far. */\
13640 X (2, (H, D), MIXED), \
13641 X (2, (D, H), MIXED), \
13642 X (2, (H, F), MIXED), \
13643 X (2, (F, H), MIXED), \
13644 X (2, (H, H), HALF), \
13645 X (2, (H, R), HALF), \
13646 X (2, (R, H), HALF), \
13647 X (2, (H, I), HALF), \
13648 X (3, (H, H, H), HALF), \
13649 X (3, (H, F, I), MIXED), \
13650 X (3, (F, H, I), MIXED), \
13651 X (3, (D, H, H), MIXED), \
13652 X (3, (D, H, S), MIXED)
13653
13654 #define S2(A,B) NS_##A##B
13655 #define S3(A,B,C) NS_##A##B##C
13656 #define S4(A,B,C,D) NS_##A##B##C##D
13657
13658 #define X(N, L, C) S##N L
13659
13660 enum neon_shape
13661 {
13662 NEON_SHAPE_DEF,
13663 NS_NULL
13664 };
13665
13666 #undef X
13667 #undef S2
13668 #undef S3
13669 #undef S4
13670
13671 enum neon_shape_class
13672 {
13673 SC_HALF,
13674 SC_SINGLE,
13675 SC_DOUBLE,
13676 SC_QUAD,
13677 SC_MIXED
13678 };
13679
13680 #define X(N, L, C) SC_##C
13681
13682 static enum neon_shape_class neon_shape_class[] =
13683 {
13684 NEON_SHAPE_DEF
13685 };
13686
13687 #undef X
13688
13689 enum neon_shape_el
13690 {
13691 SE_H,
13692 SE_F,
13693 SE_D,
13694 SE_Q,
13695 SE_I,
13696 SE_S,
13697 SE_R,
13698 SE_L
13699 };
13700
13701 /* Register widths of above. */
13702 static unsigned neon_shape_el_size[] =
13703 {
13704 16,
13705 32,
13706 64,
13707 128,
13708 0,
13709 32,
13710 32,
13711 0
13712 };
13713
13714 struct neon_shape_info
13715 {
13716 unsigned els;
13717 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13718 };
13719
13720 #define S2(A,B) { SE_##A, SE_##B }
13721 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13722 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13723
13724 #define X(N, L, C) { N, S##N L }
13725
13726 static struct neon_shape_info neon_shape_tab[] =
13727 {
13728 NEON_SHAPE_DEF
13729 };
13730
13731 #undef X
13732 #undef S2
13733 #undef S3
13734 #undef S4
13735
13736 /* Bit masks used in type checking given instructions.
13737 'N_EQK' means the type must be the same as (or based on in some way) the key
13738 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13739 set, various other bits can be set as well in order to modify the meaning of
13740 the type constraint. */
13741
13742 enum neon_type_mask
13743 {
13744 N_S8 = 0x0000001,
13745 N_S16 = 0x0000002,
13746 N_S32 = 0x0000004,
13747 N_S64 = 0x0000008,
13748 N_U8 = 0x0000010,
13749 N_U16 = 0x0000020,
13750 N_U32 = 0x0000040,
13751 N_U64 = 0x0000080,
13752 N_I8 = 0x0000100,
13753 N_I16 = 0x0000200,
13754 N_I32 = 0x0000400,
13755 N_I64 = 0x0000800,
13756 N_8 = 0x0001000,
13757 N_16 = 0x0002000,
13758 N_32 = 0x0004000,
13759 N_64 = 0x0008000,
13760 N_P8 = 0x0010000,
13761 N_P16 = 0x0020000,
13762 N_F16 = 0x0040000,
13763 N_F32 = 0x0080000,
13764 N_F64 = 0x0100000,
13765 N_P64 = 0x0200000,
13766 N_KEY = 0x1000000, /* Key element (main type specifier). */
13767 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13768 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13769 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13770 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13771 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13772 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13773 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13774 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13775 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13776 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13777 N_UTYP = 0,
13778 N_MAX_NONSPECIAL = N_P64
13779 };
13780
13781 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13782
13783 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13784 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13785 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13786 #define N_S_32 (N_S8 | N_S16 | N_S32)
13787 #define N_F_16_32 (N_F16 | N_F32)
13788 #define N_SUF_32 (N_SU_32 | N_F_16_32)
13789 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13790 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
13791 #define N_F_ALL (N_F16 | N_F32 | N_F64)
13792
13793 /* Pass this as the first type argument to neon_check_type to ignore types
13794 altogether. */
13795 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13796
13797 /* Select a "shape" for the current instruction (describing register types or
13798 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13799 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13800 function of operand parsing, so this function doesn't need to be called.
13801 Shapes should be listed in order of decreasing length. */
13802
13803 static enum neon_shape
13804 neon_select_shape (enum neon_shape shape, ...)
13805 {
13806 va_list ap;
13807 enum neon_shape first_shape = shape;
13808
13809 /* Fix missing optional operands. FIXME: we don't know at this point how
13810 many arguments we should have, so this makes the assumption that we have
13811 > 1. This is true of all current Neon opcodes, I think, but may not be
13812 true in the future. */
13813 if (!inst.operands[1].present)
13814 inst.operands[1] = inst.operands[0];
13815
13816 va_start (ap, shape);
13817
13818 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13819 {
13820 unsigned j;
13821 int matches = 1;
13822
13823 for (j = 0; j < neon_shape_tab[shape].els; j++)
13824 {
13825 if (!inst.operands[j].present)
13826 {
13827 matches = 0;
13828 break;
13829 }
13830
13831 switch (neon_shape_tab[shape].el[j])
13832 {
13833 /* If a .f16, .16, .u16, .s16 type specifier is given over
13834 a VFP single precision register operand, it's essentially
13835 means only half of the register is used.
13836
13837 If the type specifier is given after the mnemonics, the
13838 information is stored in inst.vectype. If the type specifier
13839 is given after register operand, the information is stored
13840 in inst.operands[].vectype.
13841
13842 When there is only one type specifier, and all the register
13843 operands are the same type of hardware register, the type
13844 specifier applies to all register operands.
13845
13846 If no type specifier is given, the shape is inferred from
13847 operand information.
13848
13849 for example:
13850 vadd.f16 s0, s1, s2: NS_HHH
13851 vabs.f16 s0, s1: NS_HH
13852 vmov.f16 s0, r1: NS_HR
13853 vmov.f16 r0, s1: NS_RH
13854 vcvt.f16 r0, s1: NS_RH
13855 vcvt.f16.s32 s2, s2, #29: NS_HFI
13856 vcvt.f16.s32 s2, s2: NS_HF
13857 */
13858 case SE_H:
13859 if (!(inst.operands[j].isreg
13860 && inst.operands[j].isvec
13861 && inst.operands[j].issingle
13862 && !inst.operands[j].isquad
13863 && ((inst.vectype.elems == 1
13864 && inst.vectype.el[0].size == 16)
13865 || (inst.vectype.elems > 1
13866 && inst.vectype.el[j].size == 16)
13867 || (inst.vectype.elems == 0
13868 && inst.operands[j].vectype.type != NT_invtype
13869 && inst.operands[j].vectype.size == 16))))
13870 matches = 0;
13871 break;
13872
13873 case SE_F:
13874 if (!(inst.operands[j].isreg
13875 && inst.operands[j].isvec
13876 && inst.operands[j].issingle
13877 && !inst.operands[j].isquad
13878 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13879 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13880 || (inst.vectype.elems == 0
13881 && (inst.operands[j].vectype.size == 32
13882 || inst.operands[j].vectype.type == NT_invtype)))))
13883 matches = 0;
13884 break;
13885
13886 case SE_D:
13887 if (!(inst.operands[j].isreg
13888 && inst.operands[j].isvec
13889 && !inst.operands[j].isquad
13890 && !inst.operands[j].issingle))
13891 matches = 0;
13892 break;
13893
13894 case SE_R:
13895 if (!(inst.operands[j].isreg
13896 && !inst.operands[j].isvec))
13897 matches = 0;
13898 break;
13899
13900 case SE_Q:
13901 if (!(inst.operands[j].isreg
13902 && inst.operands[j].isvec
13903 && inst.operands[j].isquad
13904 && !inst.operands[j].issingle))
13905 matches = 0;
13906 break;
13907
13908 case SE_I:
13909 if (!(!inst.operands[j].isreg
13910 && !inst.operands[j].isscalar))
13911 matches = 0;
13912 break;
13913
13914 case SE_S:
13915 if (!(!inst.operands[j].isreg
13916 && inst.operands[j].isscalar))
13917 matches = 0;
13918 break;
13919
13920 case SE_L:
13921 break;
13922 }
13923 if (!matches)
13924 break;
13925 }
13926 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13927 /* We've matched all the entries in the shape table, and we don't
13928 have any left over operands which have not been matched. */
13929 break;
13930 }
13931
13932 va_end (ap);
13933
13934 if (shape == NS_NULL && first_shape != NS_NULL)
13935 first_error (_("invalid instruction shape"));
13936
13937 return shape;
13938 }
13939
13940 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13941 means the Q bit should be set). */
13942
13943 static int
13944 neon_quad (enum neon_shape shape)
13945 {
13946 return neon_shape_class[shape] == SC_QUAD;
13947 }
13948
13949 static void
13950 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13951 unsigned *g_size)
13952 {
13953 /* Allow modification to be made to types which are constrained to be
13954 based on the key element, based on bits set alongside N_EQK. */
13955 if ((typebits & N_EQK) != 0)
13956 {
13957 if ((typebits & N_HLF) != 0)
13958 *g_size /= 2;
13959 else if ((typebits & N_DBL) != 0)
13960 *g_size *= 2;
13961 if ((typebits & N_SGN) != 0)
13962 *g_type = NT_signed;
13963 else if ((typebits & N_UNS) != 0)
13964 *g_type = NT_unsigned;
13965 else if ((typebits & N_INT) != 0)
13966 *g_type = NT_integer;
13967 else if ((typebits & N_FLT) != 0)
13968 *g_type = NT_float;
13969 else if ((typebits & N_SIZ) != 0)
13970 *g_type = NT_untyped;
13971 }
13972 }
13973
13974 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13975 operand type, i.e. the single type specified in a Neon instruction when it
13976 is the only one given. */
13977
13978 static struct neon_type_el
13979 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13980 {
13981 struct neon_type_el dest = *key;
13982
13983 gas_assert ((thisarg & N_EQK) != 0);
13984
13985 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13986
13987 return dest;
13988 }
13989
13990 /* Convert Neon type and size into compact bitmask representation. */
13991
13992 static enum neon_type_mask
13993 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13994 {
13995 switch (type)
13996 {
13997 case NT_untyped:
13998 switch (size)
13999 {
14000 case 8: return N_8;
14001 case 16: return N_16;
14002 case 32: return N_32;
14003 case 64: return N_64;
14004 default: ;
14005 }
14006 break;
14007
14008 case NT_integer:
14009 switch (size)
14010 {
14011 case 8: return N_I8;
14012 case 16: return N_I16;
14013 case 32: return N_I32;
14014 case 64: return N_I64;
14015 default: ;
14016 }
14017 break;
14018
14019 case NT_float:
14020 switch (size)
14021 {
14022 case 16: return N_F16;
14023 case 32: return N_F32;
14024 case 64: return N_F64;
14025 default: ;
14026 }
14027 break;
14028
14029 case NT_poly:
14030 switch (size)
14031 {
14032 case 8: return N_P8;
14033 case 16: return N_P16;
14034 case 64: return N_P64;
14035 default: ;
14036 }
14037 break;
14038
14039 case NT_signed:
14040 switch (size)
14041 {
14042 case 8: return N_S8;
14043 case 16: return N_S16;
14044 case 32: return N_S32;
14045 case 64: return N_S64;
14046 default: ;
14047 }
14048 break;
14049
14050 case NT_unsigned:
14051 switch (size)
14052 {
14053 case 8: return N_U8;
14054 case 16: return N_U16;
14055 case 32: return N_U32;
14056 case 64: return N_U64;
14057 default: ;
14058 }
14059 break;
14060
14061 default: ;
14062 }
14063
14064 return N_UTYP;
14065 }
14066
14067 /* Convert compact Neon bitmask type representation to a type and size. Only
14068 handles the case where a single bit is set in the mask. */
14069
14070 static int
14071 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14072 enum neon_type_mask mask)
14073 {
14074 if ((mask & N_EQK) != 0)
14075 return FAIL;
14076
14077 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14078 *size = 8;
14079 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14080 *size = 16;
14081 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14082 *size = 32;
14083 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14084 *size = 64;
14085 else
14086 return FAIL;
14087
14088 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14089 *type = NT_signed;
14090 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14091 *type = NT_unsigned;
14092 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14093 *type = NT_integer;
14094 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14095 *type = NT_untyped;
14096 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14097 *type = NT_poly;
14098 else if ((mask & (N_F_ALL)) != 0)
14099 *type = NT_float;
14100 else
14101 return FAIL;
14102
14103 return SUCCESS;
14104 }
14105
14106 /* Modify a bitmask of allowed types. This is only needed for type
14107 relaxation. */
14108
14109 static unsigned
14110 modify_types_allowed (unsigned allowed, unsigned mods)
14111 {
14112 unsigned size;
14113 enum neon_el_type type;
14114 unsigned destmask;
14115 int i;
14116
14117 destmask = 0;
14118
14119 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14120 {
14121 if (el_type_of_type_chk (&type, &size,
14122 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14123 {
14124 neon_modify_type_size (mods, &type, &size);
14125 destmask |= type_chk_of_el_type (type, size);
14126 }
14127 }
14128
14129 return destmask;
14130 }
14131
14132 /* Check type and return type classification.
14133 The manual states (paraphrase): If one datatype is given, it indicates the
14134 type given in:
14135 - the second operand, if there is one
14136 - the operand, if there is no second operand
14137 - the result, if there are no operands.
14138 This isn't quite good enough though, so we use a concept of a "key" datatype
14139 which is set on a per-instruction basis, which is the one which matters when
14140 only one data type is written.
14141 Note: this function has side-effects (e.g. filling in missing operands). All
14142 Neon instructions should call it before performing bit encoding. */
14143
14144 static struct neon_type_el
14145 neon_check_type (unsigned els, enum neon_shape ns, ...)
14146 {
14147 va_list ap;
14148 unsigned i, pass, key_el = 0;
14149 unsigned types[NEON_MAX_TYPE_ELS];
14150 enum neon_el_type k_type = NT_invtype;
14151 unsigned k_size = -1u;
14152 struct neon_type_el badtype = {NT_invtype, -1};
14153 unsigned key_allowed = 0;
14154
14155 /* Optional registers in Neon instructions are always (not) in operand 1.
14156 Fill in the missing operand here, if it was omitted. */
14157 if (els > 1 && !inst.operands[1].present)
14158 inst.operands[1] = inst.operands[0];
14159
14160 /* Suck up all the varargs. */
14161 va_start (ap, ns);
14162 for (i = 0; i < els; i++)
14163 {
14164 unsigned thisarg = va_arg (ap, unsigned);
14165 if (thisarg == N_IGNORE_TYPE)
14166 {
14167 va_end (ap);
14168 return badtype;
14169 }
14170 types[i] = thisarg;
14171 if ((thisarg & N_KEY) != 0)
14172 key_el = i;
14173 }
14174 va_end (ap);
14175
14176 if (inst.vectype.elems > 0)
14177 for (i = 0; i < els; i++)
14178 if (inst.operands[i].vectype.type != NT_invtype)
14179 {
14180 first_error (_("types specified in both the mnemonic and operands"));
14181 return badtype;
14182 }
14183
14184 /* Duplicate inst.vectype elements here as necessary.
14185 FIXME: No idea if this is exactly the same as the ARM assembler,
14186 particularly when an insn takes one register and one non-register
14187 operand. */
14188 if (inst.vectype.elems == 1 && els > 1)
14189 {
14190 unsigned j;
14191 inst.vectype.elems = els;
14192 inst.vectype.el[key_el] = inst.vectype.el[0];
14193 for (j = 0; j < els; j++)
14194 if (j != key_el)
14195 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14196 types[j]);
14197 }
14198 else if (inst.vectype.elems == 0 && els > 0)
14199 {
14200 unsigned j;
14201 /* No types were given after the mnemonic, so look for types specified
14202 after each operand. We allow some flexibility here; as long as the
14203 "key" operand has a type, we can infer the others. */
14204 for (j = 0; j < els; j++)
14205 if (inst.operands[j].vectype.type != NT_invtype)
14206 inst.vectype.el[j] = inst.operands[j].vectype;
14207
14208 if (inst.operands[key_el].vectype.type != NT_invtype)
14209 {
14210 for (j = 0; j < els; j++)
14211 if (inst.operands[j].vectype.type == NT_invtype)
14212 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14213 types[j]);
14214 }
14215 else
14216 {
14217 first_error (_("operand types can't be inferred"));
14218 return badtype;
14219 }
14220 }
14221 else if (inst.vectype.elems != els)
14222 {
14223 first_error (_("type specifier has the wrong number of parts"));
14224 return badtype;
14225 }
14226
14227 for (pass = 0; pass < 2; pass++)
14228 {
14229 for (i = 0; i < els; i++)
14230 {
14231 unsigned thisarg = types[i];
14232 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14233 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14234 enum neon_el_type g_type = inst.vectype.el[i].type;
14235 unsigned g_size = inst.vectype.el[i].size;
14236
14237 /* Decay more-specific signed & unsigned types to sign-insensitive
14238 integer types if sign-specific variants are unavailable. */
14239 if ((g_type == NT_signed || g_type == NT_unsigned)
14240 && (types_allowed & N_SU_ALL) == 0)
14241 g_type = NT_integer;
14242
14243 /* If only untyped args are allowed, decay any more specific types to
14244 them. Some instructions only care about signs for some element
14245 sizes, so handle that properly. */
14246 if (((types_allowed & N_UNT) == 0)
14247 && ((g_size == 8 && (types_allowed & N_8) != 0)
14248 || (g_size == 16 && (types_allowed & N_16) != 0)
14249 || (g_size == 32 && (types_allowed & N_32) != 0)
14250 || (g_size == 64 && (types_allowed & N_64) != 0)))
14251 g_type = NT_untyped;
14252
14253 if (pass == 0)
14254 {
14255 if ((thisarg & N_KEY) != 0)
14256 {
14257 k_type = g_type;
14258 k_size = g_size;
14259 key_allowed = thisarg & ~N_KEY;
14260
14261 /* Check architecture constraint on FP16 extension. */
14262 if (k_size == 16
14263 && k_type == NT_float
14264 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14265 {
14266 inst.error = _(BAD_FP16);
14267 return badtype;
14268 }
14269 }
14270 }
14271 else
14272 {
14273 if ((thisarg & N_VFP) != 0)
14274 {
14275 enum neon_shape_el regshape;
14276 unsigned regwidth, match;
14277
14278 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14279 if (ns == NS_NULL)
14280 {
14281 first_error (_("invalid instruction shape"));
14282 return badtype;
14283 }
14284 regshape = neon_shape_tab[ns].el[i];
14285 regwidth = neon_shape_el_size[regshape];
14286
14287 /* In VFP mode, operands must match register widths. If we
14288 have a key operand, use its width, else use the width of
14289 the current operand. */
14290 if (k_size != -1u)
14291 match = k_size;
14292 else
14293 match = g_size;
14294
14295 /* FP16 will use a single precision register. */
14296 if (regwidth == 32 && match == 16)
14297 {
14298 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14299 match = regwidth;
14300 else
14301 {
14302 inst.error = _(BAD_FP16);
14303 return badtype;
14304 }
14305 }
14306
14307 if (regwidth != match)
14308 {
14309 first_error (_("operand size must match register width"));
14310 return badtype;
14311 }
14312 }
14313
14314 if ((thisarg & N_EQK) == 0)
14315 {
14316 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14317
14318 if ((given_type & types_allowed) == 0)
14319 {
14320 first_error (_("bad type in Neon instruction"));
14321 return badtype;
14322 }
14323 }
14324 else
14325 {
14326 enum neon_el_type mod_k_type = k_type;
14327 unsigned mod_k_size = k_size;
14328 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14329 if (g_type != mod_k_type || g_size != mod_k_size)
14330 {
14331 first_error (_("inconsistent types in Neon instruction"));
14332 return badtype;
14333 }
14334 }
14335 }
14336 }
14337 }
14338
14339 return inst.vectype.el[key_el];
14340 }
14341
14342 /* Neon-style VFP instruction forwarding. */
14343
14344 /* Thumb VFP instructions have 0xE in the condition field. */
14345
14346 static void
14347 do_vfp_cond_or_thumb (void)
14348 {
14349 inst.is_neon = 1;
14350
14351 if (thumb_mode)
14352 inst.instruction |= 0xe0000000;
14353 else
14354 inst.instruction |= inst.cond << 28;
14355 }
14356
14357 /* Look up and encode a simple mnemonic, for use as a helper function for the
14358 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14359 etc. It is assumed that operand parsing has already been done, and that the
14360 operands are in the form expected by the given opcode (this isn't necessarily
14361 the same as the form in which they were parsed, hence some massaging must
14362 take place before this function is called).
14363 Checks current arch version against that in the looked-up opcode. */
14364
14365 static void
14366 do_vfp_nsyn_opcode (const char *opname)
14367 {
14368 const struct asm_opcode *opcode;
14369
14370 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
14371
14372 if (!opcode)
14373 abort ();
14374
14375 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
14376 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14377 _(BAD_FPU));
14378
14379 inst.is_neon = 1;
14380
14381 if (thumb_mode)
14382 {
14383 inst.instruction = opcode->tvalue;
14384 opcode->tencode ();
14385 }
14386 else
14387 {
14388 inst.instruction = (inst.cond << 28) | opcode->avalue;
14389 opcode->aencode ();
14390 }
14391 }
14392
14393 static void
14394 do_vfp_nsyn_add_sub (enum neon_shape rs)
14395 {
14396 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14397
14398 if (rs == NS_FFF || rs == NS_HHH)
14399 {
14400 if (is_add)
14401 do_vfp_nsyn_opcode ("fadds");
14402 else
14403 do_vfp_nsyn_opcode ("fsubs");
14404
14405 /* ARMv8.2 fp16 instruction. */
14406 if (rs == NS_HHH)
14407 do_scalar_fp16_v82_encode ();
14408 }
14409 else
14410 {
14411 if (is_add)
14412 do_vfp_nsyn_opcode ("faddd");
14413 else
14414 do_vfp_nsyn_opcode ("fsubd");
14415 }
14416 }
14417
14418 /* Check operand types to see if this is a VFP instruction, and if so call
14419 PFN (). */
14420
14421 static int
14422 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14423 {
14424 enum neon_shape rs;
14425 struct neon_type_el et;
14426
14427 switch (args)
14428 {
14429 case 2:
14430 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14431 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14432 break;
14433
14434 case 3:
14435 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14436 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14437 N_F_ALL | N_KEY | N_VFP);
14438 break;
14439
14440 default:
14441 abort ();
14442 }
14443
14444 if (et.type != NT_invtype)
14445 {
14446 pfn (rs);
14447 return SUCCESS;
14448 }
14449
14450 inst.error = NULL;
14451 return FAIL;
14452 }
14453
14454 static void
14455 do_vfp_nsyn_mla_mls (enum neon_shape rs)
14456 {
14457 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
14458
14459 if (rs == NS_FFF || rs == NS_HHH)
14460 {
14461 if (is_mla)
14462 do_vfp_nsyn_opcode ("fmacs");
14463 else
14464 do_vfp_nsyn_opcode ("fnmacs");
14465
14466 /* ARMv8.2 fp16 instruction. */
14467 if (rs == NS_HHH)
14468 do_scalar_fp16_v82_encode ();
14469 }
14470 else
14471 {
14472 if (is_mla)
14473 do_vfp_nsyn_opcode ("fmacd");
14474 else
14475 do_vfp_nsyn_opcode ("fnmacd");
14476 }
14477 }
14478
14479 static void
14480 do_vfp_nsyn_fma_fms (enum neon_shape rs)
14481 {
14482 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14483
14484 if (rs == NS_FFF || rs == NS_HHH)
14485 {
14486 if (is_fma)
14487 do_vfp_nsyn_opcode ("ffmas");
14488 else
14489 do_vfp_nsyn_opcode ("ffnmas");
14490
14491 /* ARMv8.2 fp16 instruction. */
14492 if (rs == NS_HHH)
14493 do_scalar_fp16_v82_encode ();
14494 }
14495 else
14496 {
14497 if (is_fma)
14498 do_vfp_nsyn_opcode ("ffmad");
14499 else
14500 do_vfp_nsyn_opcode ("ffnmad");
14501 }
14502 }
14503
14504 static void
14505 do_vfp_nsyn_mul (enum neon_shape rs)
14506 {
14507 if (rs == NS_FFF || rs == NS_HHH)
14508 {
14509 do_vfp_nsyn_opcode ("fmuls");
14510
14511 /* ARMv8.2 fp16 instruction. */
14512 if (rs == NS_HHH)
14513 do_scalar_fp16_v82_encode ();
14514 }
14515 else
14516 do_vfp_nsyn_opcode ("fmuld");
14517 }
14518
14519 static void
14520 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14521 {
14522 int is_neg = (inst.instruction & 0x80) != 0;
14523 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
14524
14525 if (rs == NS_FF || rs == NS_HH)
14526 {
14527 if (is_neg)
14528 do_vfp_nsyn_opcode ("fnegs");
14529 else
14530 do_vfp_nsyn_opcode ("fabss");
14531
14532 /* ARMv8.2 fp16 instruction. */
14533 if (rs == NS_HH)
14534 do_scalar_fp16_v82_encode ();
14535 }
14536 else
14537 {
14538 if (is_neg)
14539 do_vfp_nsyn_opcode ("fnegd");
14540 else
14541 do_vfp_nsyn_opcode ("fabsd");
14542 }
14543 }
14544
14545 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14546 insns belong to Neon, and are handled elsewhere. */
14547
14548 static void
14549 do_vfp_nsyn_ldm_stm (int is_dbmode)
14550 {
14551 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14552 if (is_ldm)
14553 {
14554 if (is_dbmode)
14555 do_vfp_nsyn_opcode ("fldmdbs");
14556 else
14557 do_vfp_nsyn_opcode ("fldmias");
14558 }
14559 else
14560 {
14561 if (is_dbmode)
14562 do_vfp_nsyn_opcode ("fstmdbs");
14563 else
14564 do_vfp_nsyn_opcode ("fstmias");
14565 }
14566 }
14567
14568 static void
14569 do_vfp_nsyn_sqrt (void)
14570 {
14571 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14572 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14573
14574 if (rs == NS_FF || rs == NS_HH)
14575 {
14576 do_vfp_nsyn_opcode ("fsqrts");
14577
14578 /* ARMv8.2 fp16 instruction. */
14579 if (rs == NS_HH)
14580 do_scalar_fp16_v82_encode ();
14581 }
14582 else
14583 do_vfp_nsyn_opcode ("fsqrtd");
14584 }
14585
14586 static void
14587 do_vfp_nsyn_div (void)
14588 {
14589 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14590 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14591 N_F_ALL | N_KEY | N_VFP);
14592
14593 if (rs == NS_FFF || rs == NS_HHH)
14594 {
14595 do_vfp_nsyn_opcode ("fdivs");
14596
14597 /* ARMv8.2 fp16 instruction. */
14598 if (rs == NS_HHH)
14599 do_scalar_fp16_v82_encode ();
14600 }
14601 else
14602 do_vfp_nsyn_opcode ("fdivd");
14603 }
14604
14605 static void
14606 do_vfp_nsyn_nmul (void)
14607 {
14608 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14609 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14610 N_F_ALL | N_KEY | N_VFP);
14611
14612 if (rs == NS_FFF || rs == NS_HHH)
14613 {
14614 NEON_ENCODE (SINGLE, inst);
14615 do_vfp_sp_dyadic ();
14616
14617 /* ARMv8.2 fp16 instruction. */
14618 if (rs == NS_HHH)
14619 do_scalar_fp16_v82_encode ();
14620 }
14621 else
14622 {
14623 NEON_ENCODE (DOUBLE, inst);
14624 do_vfp_dp_rd_rn_rm ();
14625 }
14626 do_vfp_cond_or_thumb ();
14627
14628 }
14629
14630 static void
14631 do_vfp_nsyn_cmp (void)
14632 {
14633 enum neon_shape rs;
14634 if (inst.operands[1].isreg)
14635 {
14636 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14637 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14638
14639 if (rs == NS_FF || rs == NS_HH)
14640 {
14641 NEON_ENCODE (SINGLE, inst);
14642 do_vfp_sp_monadic ();
14643 }
14644 else
14645 {
14646 NEON_ENCODE (DOUBLE, inst);
14647 do_vfp_dp_rd_rm ();
14648 }
14649 }
14650 else
14651 {
14652 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14653 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
14654
14655 switch (inst.instruction & 0x0fffffff)
14656 {
14657 case N_MNEM_vcmp:
14658 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14659 break;
14660 case N_MNEM_vcmpe:
14661 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14662 break;
14663 default:
14664 abort ();
14665 }
14666
14667 if (rs == NS_FI || rs == NS_HI)
14668 {
14669 NEON_ENCODE (SINGLE, inst);
14670 do_vfp_sp_compare_z ();
14671 }
14672 else
14673 {
14674 NEON_ENCODE (DOUBLE, inst);
14675 do_vfp_dp_rd ();
14676 }
14677 }
14678 do_vfp_cond_or_thumb ();
14679
14680 /* ARMv8.2 fp16 instruction. */
14681 if (rs == NS_HI || rs == NS_HH)
14682 do_scalar_fp16_v82_encode ();
14683 }
14684
14685 static void
14686 nsyn_insert_sp (void)
14687 {
14688 inst.operands[1] = inst.operands[0];
14689 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14690 inst.operands[0].reg = REG_SP;
14691 inst.operands[0].isreg = 1;
14692 inst.operands[0].writeback = 1;
14693 inst.operands[0].present = 1;
14694 }
14695
14696 static void
14697 do_vfp_nsyn_push (void)
14698 {
14699 nsyn_insert_sp ();
14700
14701 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14702 _("register list must contain at least 1 and at most 16 "
14703 "registers"));
14704
14705 if (inst.operands[1].issingle)
14706 do_vfp_nsyn_opcode ("fstmdbs");
14707 else
14708 do_vfp_nsyn_opcode ("fstmdbd");
14709 }
14710
14711 static void
14712 do_vfp_nsyn_pop (void)
14713 {
14714 nsyn_insert_sp ();
14715
14716 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14717 _("register list must contain at least 1 and at most 16 "
14718 "registers"));
14719
14720 if (inst.operands[1].issingle)
14721 do_vfp_nsyn_opcode ("fldmias");
14722 else
14723 do_vfp_nsyn_opcode ("fldmiad");
14724 }
14725
14726 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14727 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14728
14729 static void
14730 neon_dp_fixup (struct arm_it* insn)
14731 {
14732 unsigned int i = insn->instruction;
14733 insn->is_neon = 1;
14734
14735 if (thumb_mode)
14736 {
14737 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14738 if (i & (1 << 24))
14739 i |= 1 << 28;
14740
14741 i &= ~(1 << 24);
14742
14743 i |= 0xef000000;
14744 }
14745 else
14746 i |= 0xf2000000;
14747
14748 insn->instruction = i;
14749 }
14750
14751 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14752 (0, 1, 2, 3). */
14753
14754 static unsigned
14755 neon_logbits (unsigned x)
14756 {
14757 return ffs (x) - 4;
14758 }
14759
14760 #define LOW4(R) ((R) & 0xf)
14761 #define HI1(R) (((R) >> 4) & 1)
14762
14763 /* Encode insns with bit pattern:
14764
14765 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14766 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14767
14768 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14769 different meaning for some instruction. */
14770
14771 static void
14772 neon_three_same (int isquad, int ubit, int size)
14773 {
14774 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14775 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14776 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14777 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14778 inst.instruction |= LOW4 (inst.operands[2].reg);
14779 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14780 inst.instruction |= (isquad != 0) << 6;
14781 inst.instruction |= (ubit != 0) << 24;
14782 if (size != -1)
14783 inst.instruction |= neon_logbits (size) << 20;
14784
14785 neon_dp_fixup (&inst);
14786 }
14787
14788 /* Encode instructions of the form:
14789
14790 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14791 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14792
14793 Don't write size if SIZE == -1. */
14794
14795 static void
14796 neon_two_same (int qbit, int ubit, int size)
14797 {
14798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14800 inst.instruction |= LOW4 (inst.operands[1].reg);
14801 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14802 inst.instruction |= (qbit != 0) << 6;
14803 inst.instruction |= (ubit != 0) << 24;
14804
14805 if (size != -1)
14806 inst.instruction |= neon_logbits (size) << 18;
14807
14808 neon_dp_fixup (&inst);
14809 }
14810
14811 /* Neon instruction encoders, in approximate order of appearance. */
14812
14813 static void
14814 do_neon_dyadic_i_su (void)
14815 {
14816 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14817 struct neon_type_el et = neon_check_type (3, rs,
14818 N_EQK, N_EQK, N_SU_32 | N_KEY);
14819 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14820 }
14821
14822 static void
14823 do_neon_dyadic_i64_su (void)
14824 {
14825 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14826 struct neon_type_el et = neon_check_type (3, rs,
14827 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14828 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14829 }
14830
14831 static void
14832 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14833 unsigned immbits)
14834 {
14835 unsigned size = et.size >> 3;
14836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14837 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14838 inst.instruction |= LOW4 (inst.operands[1].reg);
14839 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14840 inst.instruction |= (isquad != 0) << 6;
14841 inst.instruction |= immbits << 16;
14842 inst.instruction |= (size >> 3) << 7;
14843 inst.instruction |= (size & 0x7) << 19;
14844 if (write_ubit)
14845 inst.instruction |= (uval != 0) << 24;
14846
14847 neon_dp_fixup (&inst);
14848 }
14849
14850 static void
14851 do_neon_shl_imm (void)
14852 {
14853 if (!inst.operands[2].isreg)
14854 {
14855 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14856 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14857 int imm = inst.operands[2].imm;
14858
14859 constraint (imm < 0 || (unsigned)imm >= et.size,
14860 _("immediate out of range for shift"));
14861 NEON_ENCODE (IMMED, inst);
14862 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14863 }
14864 else
14865 {
14866 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14867 struct neon_type_el et = neon_check_type (3, rs,
14868 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14869 unsigned int tmp;
14870
14871 /* VSHL/VQSHL 3-register variants have syntax such as:
14872 vshl.xx Dd, Dm, Dn
14873 whereas other 3-register operations encoded by neon_three_same have
14874 syntax like:
14875 vadd.xx Dd, Dn, Dm
14876 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14877 here. */
14878 tmp = inst.operands[2].reg;
14879 inst.operands[2].reg = inst.operands[1].reg;
14880 inst.operands[1].reg = tmp;
14881 NEON_ENCODE (INTEGER, inst);
14882 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14883 }
14884 }
14885
14886 static void
14887 do_neon_qshl_imm (void)
14888 {
14889 if (!inst.operands[2].isreg)
14890 {
14891 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14892 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14893 int imm = inst.operands[2].imm;
14894
14895 constraint (imm < 0 || (unsigned)imm >= et.size,
14896 _("immediate out of range for shift"));
14897 NEON_ENCODE (IMMED, inst);
14898 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14899 }
14900 else
14901 {
14902 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14903 struct neon_type_el et = neon_check_type (3, rs,
14904 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14905 unsigned int tmp;
14906
14907 /* See note in do_neon_shl_imm. */
14908 tmp = inst.operands[2].reg;
14909 inst.operands[2].reg = inst.operands[1].reg;
14910 inst.operands[1].reg = tmp;
14911 NEON_ENCODE (INTEGER, inst);
14912 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14913 }
14914 }
14915
14916 static void
14917 do_neon_rshl (void)
14918 {
14919 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14920 struct neon_type_el et = neon_check_type (3, rs,
14921 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14922 unsigned int tmp;
14923
14924 tmp = inst.operands[2].reg;
14925 inst.operands[2].reg = inst.operands[1].reg;
14926 inst.operands[1].reg = tmp;
14927 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14928 }
14929
14930 static int
14931 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14932 {
14933 /* Handle .I8 pseudo-instructions. */
14934 if (size == 8)
14935 {
14936 /* Unfortunately, this will make everything apart from zero out-of-range.
14937 FIXME is this the intended semantics? There doesn't seem much point in
14938 accepting .I8 if so. */
14939 immediate |= immediate << 8;
14940 size = 16;
14941 }
14942
14943 if (size >= 32)
14944 {
14945 if (immediate == (immediate & 0x000000ff))
14946 {
14947 *immbits = immediate;
14948 return 0x1;
14949 }
14950 else if (immediate == (immediate & 0x0000ff00))
14951 {
14952 *immbits = immediate >> 8;
14953 return 0x3;
14954 }
14955 else if (immediate == (immediate & 0x00ff0000))
14956 {
14957 *immbits = immediate >> 16;
14958 return 0x5;
14959 }
14960 else if (immediate == (immediate & 0xff000000))
14961 {
14962 *immbits = immediate >> 24;
14963 return 0x7;
14964 }
14965 if ((immediate & 0xffff) != (immediate >> 16))
14966 goto bad_immediate;
14967 immediate &= 0xffff;
14968 }
14969
14970 if (immediate == (immediate & 0x000000ff))
14971 {
14972 *immbits = immediate;
14973 return 0x9;
14974 }
14975 else if (immediate == (immediate & 0x0000ff00))
14976 {
14977 *immbits = immediate >> 8;
14978 return 0xb;
14979 }
14980
14981 bad_immediate:
14982 first_error (_("immediate value out of range"));
14983 return FAIL;
14984 }
14985
14986 static void
14987 do_neon_logic (void)
14988 {
14989 if (inst.operands[2].present && inst.operands[2].isreg)
14990 {
14991 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14992 neon_check_type (3, rs, N_IGNORE_TYPE);
14993 /* U bit and size field were set as part of the bitmask. */
14994 NEON_ENCODE (INTEGER, inst);
14995 neon_three_same (neon_quad (rs), 0, -1);
14996 }
14997 else
14998 {
14999 const int three_ops_form = (inst.operands[2].present
15000 && !inst.operands[2].isreg);
15001 const int immoperand = (three_ops_form ? 2 : 1);
15002 enum neon_shape rs = (three_ops_form
15003 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
15004 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
15005 struct neon_type_el et = neon_check_type (2, rs,
15006 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15007 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
15008 unsigned immbits;
15009 int cmode;
15010
15011 if (et.type == NT_invtype)
15012 return;
15013
15014 if (three_ops_form)
15015 constraint (inst.operands[0].reg != inst.operands[1].reg,
15016 _("first and second operands shall be the same register"));
15017
15018 NEON_ENCODE (IMMED, inst);
15019
15020 immbits = inst.operands[immoperand].imm;
15021 if (et.size == 64)
15022 {
15023 /* .i64 is a pseudo-op, so the immediate must be a repeating
15024 pattern. */
15025 if (immbits != (inst.operands[immoperand].regisimm ?
15026 inst.operands[immoperand].reg : 0))
15027 {
15028 /* Set immbits to an invalid constant. */
15029 immbits = 0xdeadbeef;
15030 }
15031 }
15032
15033 switch (opcode)
15034 {
15035 case N_MNEM_vbic:
15036 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
15037 break;
15038
15039 case N_MNEM_vorr:
15040 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
15041 break;
15042
15043 case N_MNEM_vand:
15044 /* Pseudo-instruction for VBIC. */
15045 neon_invert_size (&immbits, 0, et.size);
15046 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
15047 break;
15048
15049 case N_MNEM_vorn:
15050 /* Pseudo-instruction for VORR. */
15051 neon_invert_size (&immbits, 0, et.size);
15052 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
15053 break;
15054
15055 default:
15056 abort ();
15057 }
15058
15059 if (cmode == FAIL)
15060 return;
15061
15062 inst.instruction |= neon_quad (rs) << 6;
15063 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15064 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15065 inst.instruction |= cmode << 8;
15066 neon_write_immbits (immbits);
15067
15068 neon_dp_fixup (&inst);
15069 }
15070 }
15071
15072 static void
15073 do_neon_bitfield (void)
15074 {
15075 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15076 neon_check_type (3, rs, N_IGNORE_TYPE);
15077 neon_three_same (neon_quad (rs), 0, -1);
15078 }
15079
15080 static void
15081 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
15082 unsigned destbits)
15083 {
15084 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15085 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
15086 types | N_KEY);
15087 if (et.type == NT_float)
15088 {
15089 NEON_ENCODE (FLOAT, inst);
15090 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15091 }
15092 else
15093 {
15094 NEON_ENCODE (INTEGER, inst);
15095 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
15096 }
15097 }
15098
15099 static void
15100 do_neon_dyadic_if_su (void)
15101 {
15102 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
15103 }
15104
15105 static void
15106 do_neon_dyadic_if_su_d (void)
15107 {
15108 /* This version only allow D registers, but that constraint is enforced during
15109 operand parsing so we don't need to do anything extra here. */
15110 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
15111 }
15112
15113 static void
15114 do_neon_dyadic_if_i_d (void)
15115 {
15116 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15117 affected if we specify unsigned args. */
15118 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15119 }
15120
15121 enum vfp_or_neon_is_neon_bits
15122 {
15123 NEON_CHECK_CC = 1,
15124 NEON_CHECK_ARCH = 2,
15125 NEON_CHECK_ARCH8 = 4
15126 };
15127
15128 /* Call this function if an instruction which may have belonged to the VFP or
15129 Neon instruction sets, but turned out to be a Neon instruction (due to the
15130 operand types involved, etc.). We have to check and/or fix-up a couple of
15131 things:
15132
15133 - Make sure the user hasn't attempted to make a Neon instruction
15134 conditional.
15135 - Alter the value in the condition code field if necessary.
15136 - Make sure that the arch supports Neon instructions.
15137
15138 Which of these operations take place depends on bits from enum
15139 vfp_or_neon_is_neon_bits.
15140
15141 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
15142 current instruction's condition is COND_ALWAYS, the condition field is
15143 changed to inst.uncond_value. This is necessary because instructions shared
15144 between VFP and Neon may be conditional for the VFP variants only, and the
15145 unconditional Neon version must have, e.g., 0xF in the condition field. */
15146
15147 static int
15148 vfp_or_neon_is_neon (unsigned check)
15149 {
15150 /* Conditions are always legal in Thumb mode (IT blocks). */
15151 if (!thumb_mode && (check & NEON_CHECK_CC))
15152 {
15153 if (inst.cond != COND_ALWAYS)
15154 {
15155 first_error (_(BAD_COND));
15156 return FAIL;
15157 }
15158 if (inst.uncond_value != -1)
15159 inst.instruction |= inst.uncond_value << 28;
15160 }
15161
15162 if ((check & NEON_CHECK_ARCH)
15163 && !mark_feature_used (&fpu_neon_ext_v1))
15164 {
15165 first_error (_(BAD_FPU));
15166 return FAIL;
15167 }
15168
15169 if ((check & NEON_CHECK_ARCH8)
15170 && !mark_feature_used (&fpu_neon_ext_armv8))
15171 {
15172 first_error (_(BAD_FPU));
15173 return FAIL;
15174 }
15175
15176 return SUCCESS;
15177 }
15178
15179 static void
15180 do_neon_addsub_if_i (void)
15181 {
15182 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15183 return;
15184
15185 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15186 return;
15187
15188 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15189 affected if we specify unsigned args. */
15190 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
15191 }
15192
15193 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15194 result to be:
15195 V<op> A,B (A is operand 0, B is operand 2)
15196 to mean:
15197 V<op> A,B,A
15198 not:
15199 V<op> A,B,B
15200 so handle that case specially. */
15201
15202 static void
15203 neon_exchange_operands (void)
15204 {
15205 if (inst.operands[1].present)
15206 {
15207 void *scratch = xmalloc (sizeof (inst.operands[0]));
15208
15209 /* Swap operands[1] and operands[2]. */
15210 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15211 inst.operands[1] = inst.operands[2];
15212 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
15213 free (scratch);
15214 }
15215 else
15216 {
15217 inst.operands[1] = inst.operands[2];
15218 inst.operands[2] = inst.operands[0];
15219 }
15220 }
15221
15222 static void
15223 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15224 {
15225 if (inst.operands[2].isreg)
15226 {
15227 if (invert)
15228 neon_exchange_operands ();
15229 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
15230 }
15231 else
15232 {
15233 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15234 struct neon_type_el et = neon_check_type (2, rs,
15235 N_EQK | N_SIZ, immtypes | N_KEY);
15236
15237 NEON_ENCODE (IMMED, inst);
15238 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15239 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15240 inst.instruction |= LOW4 (inst.operands[1].reg);
15241 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15242 inst.instruction |= neon_quad (rs) << 6;
15243 inst.instruction |= (et.type == NT_float) << 10;
15244 inst.instruction |= neon_logbits (et.size) << 18;
15245
15246 neon_dp_fixup (&inst);
15247 }
15248 }
15249
15250 static void
15251 do_neon_cmp (void)
15252 {
15253 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
15254 }
15255
15256 static void
15257 do_neon_cmp_inv (void)
15258 {
15259 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
15260 }
15261
15262 static void
15263 do_neon_ceq (void)
15264 {
15265 neon_compare (N_IF_32, N_IF_32, FALSE);
15266 }
15267
15268 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
15269 scalars, which are encoded in 5 bits, M : Rm.
15270 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15271 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
15272 index in M.
15273
15274 Dot Product instructions are similar to multiply instructions except elsize
15275 should always be 32.
15276
15277 This function translates SCALAR, which is GAS's internal encoding of indexed
15278 scalar register, to raw encoding. There is also register and index range
15279 check based on ELSIZE. */
15280
15281 static unsigned
15282 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15283 {
15284 unsigned regno = NEON_SCALAR_REG (scalar);
15285 unsigned elno = NEON_SCALAR_INDEX (scalar);
15286
15287 switch (elsize)
15288 {
15289 case 16:
15290 if (regno > 7 || elno > 3)
15291 goto bad_scalar;
15292 return regno | (elno << 3);
15293
15294 case 32:
15295 if (regno > 15 || elno > 1)
15296 goto bad_scalar;
15297 return regno | (elno << 4);
15298
15299 default:
15300 bad_scalar:
15301 first_error (_("scalar out of range for multiply instruction"));
15302 }
15303
15304 return 0;
15305 }
15306
15307 /* Encode multiply / multiply-accumulate scalar instructions. */
15308
15309 static void
15310 neon_mul_mac (struct neon_type_el et, int ubit)
15311 {
15312 unsigned scalar;
15313
15314 /* Give a more helpful error message if we have an invalid type. */
15315 if (et.type == NT_invtype)
15316 return;
15317
15318 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
15319 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15320 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15321 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15322 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15323 inst.instruction |= LOW4 (scalar);
15324 inst.instruction |= HI1 (scalar) << 5;
15325 inst.instruction |= (et.type == NT_float) << 8;
15326 inst.instruction |= neon_logbits (et.size) << 20;
15327 inst.instruction |= (ubit != 0) << 24;
15328
15329 neon_dp_fixup (&inst);
15330 }
15331
15332 static void
15333 do_neon_mac_maybe_scalar (void)
15334 {
15335 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15336 return;
15337
15338 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15339 return;
15340
15341 if (inst.operands[2].isscalar)
15342 {
15343 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15344 struct neon_type_el et = neon_check_type (3, rs,
15345 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
15346 NEON_ENCODE (SCALAR, inst);
15347 neon_mul_mac (et, neon_quad (rs));
15348 }
15349 else
15350 {
15351 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15352 affected if we specify unsigned args. */
15353 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15354 }
15355 }
15356
15357 static void
15358 do_neon_fmac (void)
15359 {
15360 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15361 return;
15362
15363 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15364 return;
15365
15366 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15367 }
15368
15369 static void
15370 do_neon_tst (void)
15371 {
15372 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15373 struct neon_type_el et = neon_check_type (3, rs,
15374 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
15375 neon_three_same (neon_quad (rs), 0, et.size);
15376 }
15377
15378 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
15379 same types as the MAC equivalents. The polynomial type for this instruction
15380 is encoded the same as the integer type. */
15381
15382 static void
15383 do_neon_mul (void)
15384 {
15385 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15386 return;
15387
15388 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15389 return;
15390
15391 if (inst.operands[2].isscalar)
15392 do_neon_mac_maybe_scalar ();
15393 else
15394 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
15395 }
15396
15397 static void
15398 do_neon_qdmulh (void)
15399 {
15400 if (inst.operands[2].isscalar)
15401 {
15402 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15403 struct neon_type_el et = neon_check_type (3, rs,
15404 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15405 NEON_ENCODE (SCALAR, inst);
15406 neon_mul_mac (et, neon_quad (rs));
15407 }
15408 else
15409 {
15410 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15411 struct neon_type_el et = neon_check_type (3, rs,
15412 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15413 NEON_ENCODE (INTEGER, inst);
15414 /* The U bit (rounding) comes from bit mask. */
15415 neon_three_same (neon_quad (rs), 0, et.size);
15416 }
15417 }
15418
15419 static void
15420 do_neon_qrdmlah (void)
15421 {
15422 /* Check we're on the correct architecture. */
15423 if (!mark_feature_used (&fpu_neon_ext_armv8))
15424 inst.error =
15425 _("instruction form not available on this architecture.");
15426 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15427 {
15428 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15429 record_feature_use (&fpu_neon_ext_v8_1);
15430 }
15431
15432 if (inst.operands[2].isscalar)
15433 {
15434 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15435 struct neon_type_el et = neon_check_type (3, rs,
15436 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15437 NEON_ENCODE (SCALAR, inst);
15438 neon_mul_mac (et, neon_quad (rs));
15439 }
15440 else
15441 {
15442 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15443 struct neon_type_el et = neon_check_type (3, rs,
15444 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15445 NEON_ENCODE (INTEGER, inst);
15446 /* The U bit (rounding) comes from bit mask. */
15447 neon_three_same (neon_quad (rs), 0, et.size);
15448 }
15449 }
15450
15451 static void
15452 do_neon_fcmp_absolute (void)
15453 {
15454 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15455 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15456 N_F_16_32 | N_KEY);
15457 /* Size field comes from bit mask. */
15458 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
15459 }
15460
15461 static void
15462 do_neon_fcmp_absolute_inv (void)
15463 {
15464 neon_exchange_operands ();
15465 do_neon_fcmp_absolute ();
15466 }
15467
15468 static void
15469 do_neon_step (void)
15470 {
15471 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15472 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15473 N_F_16_32 | N_KEY);
15474 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15475 }
15476
15477 static void
15478 do_neon_abs_neg (void)
15479 {
15480 enum neon_shape rs;
15481 struct neon_type_el et;
15482
15483 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15484 return;
15485
15486 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15487 return;
15488
15489 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15490 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
15491
15492 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15493 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15494 inst.instruction |= LOW4 (inst.operands[1].reg);
15495 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15496 inst.instruction |= neon_quad (rs) << 6;
15497 inst.instruction |= (et.type == NT_float) << 10;
15498 inst.instruction |= neon_logbits (et.size) << 18;
15499
15500 neon_dp_fixup (&inst);
15501 }
15502
15503 static void
15504 do_neon_sli (void)
15505 {
15506 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15507 struct neon_type_el et = neon_check_type (2, rs,
15508 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15509 int imm = inst.operands[2].imm;
15510 constraint (imm < 0 || (unsigned)imm >= et.size,
15511 _("immediate out of range for insert"));
15512 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15513 }
15514
15515 static void
15516 do_neon_sri (void)
15517 {
15518 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15519 struct neon_type_el et = neon_check_type (2, rs,
15520 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15521 int imm = inst.operands[2].imm;
15522 constraint (imm < 1 || (unsigned)imm > et.size,
15523 _("immediate out of range for insert"));
15524 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
15525 }
15526
15527 static void
15528 do_neon_qshlu_imm (void)
15529 {
15530 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15531 struct neon_type_el et = neon_check_type (2, rs,
15532 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15533 int imm = inst.operands[2].imm;
15534 constraint (imm < 0 || (unsigned)imm >= et.size,
15535 _("immediate out of range for shift"));
15536 /* Only encodes the 'U present' variant of the instruction.
15537 In this case, signed types have OP (bit 8) set to 0.
15538 Unsigned types have OP set to 1. */
15539 inst.instruction |= (et.type == NT_unsigned) << 8;
15540 /* The rest of the bits are the same as other immediate shifts. */
15541 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15542 }
15543
15544 static void
15545 do_neon_qmovn (void)
15546 {
15547 struct neon_type_el et = neon_check_type (2, NS_DQ,
15548 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15549 /* Saturating move where operands can be signed or unsigned, and the
15550 destination has the same signedness. */
15551 NEON_ENCODE (INTEGER, inst);
15552 if (et.type == NT_unsigned)
15553 inst.instruction |= 0xc0;
15554 else
15555 inst.instruction |= 0x80;
15556 neon_two_same (0, 1, et.size / 2);
15557 }
15558
15559 static void
15560 do_neon_qmovun (void)
15561 {
15562 struct neon_type_el et = neon_check_type (2, NS_DQ,
15563 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15564 /* Saturating move with unsigned results. Operands must be signed. */
15565 NEON_ENCODE (INTEGER, inst);
15566 neon_two_same (0, 1, et.size / 2);
15567 }
15568
15569 static void
15570 do_neon_rshift_sat_narrow (void)
15571 {
15572 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15573 or unsigned. If operands are unsigned, results must also be unsigned. */
15574 struct neon_type_el et = neon_check_type (2, NS_DQI,
15575 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15576 int imm = inst.operands[2].imm;
15577 /* This gets the bounds check, size encoding and immediate bits calculation
15578 right. */
15579 et.size /= 2;
15580
15581 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15582 VQMOVN.I<size> <Dd>, <Qm>. */
15583 if (imm == 0)
15584 {
15585 inst.operands[2].present = 0;
15586 inst.instruction = N_MNEM_vqmovn;
15587 do_neon_qmovn ();
15588 return;
15589 }
15590
15591 constraint (imm < 1 || (unsigned)imm > et.size,
15592 _("immediate out of range"));
15593 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15594 }
15595
15596 static void
15597 do_neon_rshift_sat_narrow_u (void)
15598 {
15599 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15600 or unsigned. If operands are unsigned, results must also be unsigned. */
15601 struct neon_type_el et = neon_check_type (2, NS_DQI,
15602 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15603 int imm = inst.operands[2].imm;
15604 /* This gets the bounds check, size encoding and immediate bits calculation
15605 right. */
15606 et.size /= 2;
15607
15608 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15609 VQMOVUN.I<size> <Dd>, <Qm>. */
15610 if (imm == 0)
15611 {
15612 inst.operands[2].present = 0;
15613 inst.instruction = N_MNEM_vqmovun;
15614 do_neon_qmovun ();
15615 return;
15616 }
15617
15618 constraint (imm < 1 || (unsigned)imm > et.size,
15619 _("immediate out of range"));
15620 /* FIXME: The manual is kind of unclear about what value U should have in
15621 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15622 must be 1. */
15623 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15624 }
15625
15626 static void
15627 do_neon_movn (void)
15628 {
15629 struct neon_type_el et = neon_check_type (2, NS_DQ,
15630 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15631 NEON_ENCODE (INTEGER, inst);
15632 neon_two_same (0, 1, et.size / 2);
15633 }
15634
15635 static void
15636 do_neon_rshift_narrow (void)
15637 {
15638 struct neon_type_el et = neon_check_type (2, NS_DQI,
15639 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15640 int imm = inst.operands[2].imm;
15641 /* This gets the bounds check, size encoding and immediate bits calculation
15642 right. */
15643 et.size /= 2;
15644
15645 /* If immediate is zero then we are a pseudo-instruction for
15646 VMOVN.I<size> <Dd>, <Qm> */
15647 if (imm == 0)
15648 {
15649 inst.operands[2].present = 0;
15650 inst.instruction = N_MNEM_vmovn;
15651 do_neon_movn ();
15652 return;
15653 }
15654
15655 constraint (imm < 1 || (unsigned)imm > et.size,
15656 _("immediate out of range for narrowing operation"));
15657 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15658 }
15659
15660 static void
15661 do_neon_shll (void)
15662 {
15663 /* FIXME: Type checking when lengthening. */
15664 struct neon_type_el et = neon_check_type (2, NS_QDI,
15665 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15666 unsigned imm = inst.operands[2].imm;
15667
15668 if (imm == et.size)
15669 {
15670 /* Maximum shift variant. */
15671 NEON_ENCODE (INTEGER, inst);
15672 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15673 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15674 inst.instruction |= LOW4 (inst.operands[1].reg);
15675 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15676 inst.instruction |= neon_logbits (et.size) << 18;
15677
15678 neon_dp_fixup (&inst);
15679 }
15680 else
15681 {
15682 /* A more-specific type check for non-max versions. */
15683 et = neon_check_type (2, NS_QDI,
15684 N_EQK | N_DBL, N_SU_32 | N_KEY);
15685 NEON_ENCODE (IMMED, inst);
15686 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15687 }
15688 }
15689
15690 /* Check the various types for the VCVT instruction, and return which version
15691 the current instruction is. */
15692
15693 #define CVT_FLAVOUR_VAR \
15694 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15695 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15696 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15697 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15698 /* Half-precision conversions. */ \
15699 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15700 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15701 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15702 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
15703 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15704 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15705 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15706 Compared with single/double precision variants, only the co-processor \
15707 field is different, so the encoding flow is reused here. */ \
15708 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15709 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15710 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15711 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
15712 /* VFP instructions. */ \
15713 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15714 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15715 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15716 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15717 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15718 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15719 /* VFP instructions with bitshift. */ \
15720 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15721 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15722 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15723 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15724 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15725 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15726 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15727 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15728
15729 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15730 neon_cvt_flavour_##C,
15731
15732 /* The different types of conversions we can do. */
15733 enum neon_cvt_flavour
15734 {
15735 CVT_FLAVOUR_VAR
15736 neon_cvt_flavour_invalid,
15737 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15738 };
15739
15740 #undef CVT_VAR
15741
15742 static enum neon_cvt_flavour
15743 get_neon_cvt_flavour (enum neon_shape rs)
15744 {
15745 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15746 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15747 if (et.type != NT_invtype) \
15748 { \
15749 inst.error = NULL; \
15750 return (neon_cvt_flavour_##C); \
15751 }
15752
15753 struct neon_type_el et;
15754 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15755 || rs == NS_FF) ? N_VFP : 0;
15756 /* The instruction versions which take an immediate take one register
15757 argument, which is extended to the width of the full register. Thus the
15758 "source" and "destination" registers must have the same width. Hack that
15759 here by making the size equal to the key (wider, in this case) operand. */
15760 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15761
15762 CVT_FLAVOUR_VAR;
15763
15764 return neon_cvt_flavour_invalid;
15765 #undef CVT_VAR
15766 }
15767
15768 enum neon_cvt_mode
15769 {
15770 neon_cvt_mode_a,
15771 neon_cvt_mode_n,
15772 neon_cvt_mode_p,
15773 neon_cvt_mode_m,
15774 neon_cvt_mode_z,
15775 neon_cvt_mode_x,
15776 neon_cvt_mode_r
15777 };
15778
15779 /* Neon-syntax VFP conversions. */
15780
15781 static void
15782 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15783 {
15784 const char *opname = 0;
15785
15786 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15787 || rs == NS_FHI || rs == NS_HFI)
15788 {
15789 /* Conversions with immediate bitshift. */
15790 const char *enc[] =
15791 {
15792 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15793 CVT_FLAVOUR_VAR
15794 NULL
15795 #undef CVT_VAR
15796 };
15797
15798 if (flavour < (int) ARRAY_SIZE (enc))
15799 {
15800 opname = enc[flavour];
15801 constraint (inst.operands[0].reg != inst.operands[1].reg,
15802 _("operands 0 and 1 must be the same register"));
15803 inst.operands[1] = inst.operands[2];
15804 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15805 }
15806 }
15807 else
15808 {
15809 /* Conversions without bitshift. */
15810 const char *enc[] =
15811 {
15812 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15813 CVT_FLAVOUR_VAR
15814 NULL
15815 #undef CVT_VAR
15816 };
15817
15818 if (flavour < (int) ARRAY_SIZE (enc))
15819 opname = enc[flavour];
15820 }
15821
15822 if (opname)
15823 do_vfp_nsyn_opcode (opname);
15824
15825 /* ARMv8.2 fp16 VCVT instruction. */
15826 if (flavour == neon_cvt_flavour_s32_f16
15827 || flavour == neon_cvt_flavour_u32_f16
15828 || flavour == neon_cvt_flavour_f16_u32
15829 || flavour == neon_cvt_flavour_f16_s32)
15830 do_scalar_fp16_v82_encode ();
15831 }
15832
15833 static void
15834 do_vfp_nsyn_cvtz (void)
15835 {
15836 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
15837 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15838 const char *enc[] =
15839 {
15840 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15841 CVT_FLAVOUR_VAR
15842 NULL
15843 #undef CVT_VAR
15844 };
15845
15846 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15847 do_vfp_nsyn_opcode (enc[flavour]);
15848 }
15849
15850 static void
15851 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15852 enum neon_cvt_mode mode)
15853 {
15854 int sz, op;
15855 int rm;
15856
15857 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15858 D register operands. */
15859 if (flavour == neon_cvt_flavour_s32_f64
15860 || flavour == neon_cvt_flavour_u32_f64)
15861 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15862 _(BAD_FPU));
15863
15864 if (flavour == neon_cvt_flavour_s32_f16
15865 || flavour == neon_cvt_flavour_u32_f16)
15866 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15867 _(BAD_FP16));
15868
15869 set_it_insn_type (OUTSIDE_IT_INSN);
15870
15871 switch (flavour)
15872 {
15873 case neon_cvt_flavour_s32_f64:
15874 sz = 1;
15875 op = 1;
15876 break;
15877 case neon_cvt_flavour_s32_f32:
15878 sz = 0;
15879 op = 1;
15880 break;
15881 case neon_cvt_flavour_s32_f16:
15882 sz = 0;
15883 op = 1;
15884 break;
15885 case neon_cvt_flavour_u32_f64:
15886 sz = 1;
15887 op = 0;
15888 break;
15889 case neon_cvt_flavour_u32_f32:
15890 sz = 0;
15891 op = 0;
15892 break;
15893 case neon_cvt_flavour_u32_f16:
15894 sz = 0;
15895 op = 0;
15896 break;
15897 default:
15898 first_error (_("invalid instruction shape"));
15899 return;
15900 }
15901
15902 switch (mode)
15903 {
15904 case neon_cvt_mode_a: rm = 0; break;
15905 case neon_cvt_mode_n: rm = 1; break;
15906 case neon_cvt_mode_p: rm = 2; break;
15907 case neon_cvt_mode_m: rm = 3; break;
15908 default: first_error (_("invalid rounding mode")); return;
15909 }
15910
15911 NEON_ENCODE (FPV8, inst);
15912 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15913 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15914 inst.instruction |= sz << 8;
15915
15916 /* ARMv8.2 fp16 VCVT instruction. */
15917 if (flavour == neon_cvt_flavour_s32_f16
15918 ||flavour == neon_cvt_flavour_u32_f16)
15919 do_scalar_fp16_v82_encode ();
15920 inst.instruction |= op << 7;
15921 inst.instruction |= rm << 16;
15922 inst.instruction |= 0xf0000000;
15923 inst.is_neon = TRUE;
15924 }
15925
15926 static void
15927 do_neon_cvt_1 (enum neon_cvt_mode mode)
15928 {
15929 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15930 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15931 NS_FH, NS_HF, NS_FHI, NS_HFI,
15932 NS_NULL);
15933 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15934
15935 if (flavour == neon_cvt_flavour_invalid)
15936 return;
15937
15938 /* PR11109: Handle round-to-zero for VCVT conversions. */
15939 if (mode == neon_cvt_mode_z
15940 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15941 && (flavour == neon_cvt_flavour_s16_f16
15942 || flavour == neon_cvt_flavour_u16_f16
15943 || flavour == neon_cvt_flavour_s32_f32
15944 || flavour == neon_cvt_flavour_u32_f32
15945 || flavour == neon_cvt_flavour_s32_f64
15946 || flavour == neon_cvt_flavour_u32_f64)
15947 && (rs == NS_FD || rs == NS_FF))
15948 {
15949 do_vfp_nsyn_cvtz ();
15950 return;
15951 }
15952
15953 /* ARMv8.2 fp16 VCVT conversions. */
15954 if (mode == neon_cvt_mode_z
15955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15956 && (flavour == neon_cvt_flavour_s32_f16
15957 || flavour == neon_cvt_flavour_u32_f16)
15958 && (rs == NS_FH))
15959 {
15960 do_vfp_nsyn_cvtz ();
15961 do_scalar_fp16_v82_encode ();
15962 return;
15963 }
15964
15965 /* VFP rather than Neon conversions. */
15966 if (flavour >= neon_cvt_flavour_first_fp)
15967 {
15968 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15969 do_vfp_nsyn_cvt (rs, flavour);
15970 else
15971 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15972
15973 return;
15974 }
15975
15976 switch (rs)
15977 {
15978 case NS_DDI:
15979 case NS_QQI:
15980 {
15981 unsigned immbits;
15982 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15983 0x0000100, 0x1000100, 0x0, 0x1000000};
15984
15985 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15986 return;
15987
15988 /* Fixed-point conversion with #0 immediate is encoded as an
15989 integer conversion. */
15990 if (inst.operands[2].present && inst.operands[2].imm == 0)
15991 goto int_encode;
15992 NEON_ENCODE (IMMED, inst);
15993 if (flavour != neon_cvt_flavour_invalid)
15994 inst.instruction |= enctab[flavour];
15995 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15996 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15997 inst.instruction |= LOW4 (inst.operands[1].reg);
15998 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15999 inst.instruction |= neon_quad (rs) << 6;
16000 inst.instruction |= 1 << 21;
16001 if (flavour < neon_cvt_flavour_s16_f16)
16002 {
16003 inst.instruction |= 1 << 21;
16004 immbits = 32 - inst.operands[2].imm;
16005 inst.instruction |= immbits << 16;
16006 }
16007 else
16008 {
16009 inst.instruction |= 3 << 20;
16010 immbits = 16 - inst.operands[2].imm;
16011 inst.instruction |= immbits << 16;
16012 inst.instruction &= ~(1 << 9);
16013 }
16014
16015 neon_dp_fixup (&inst);
16016 }
16017 break;
16018
16019 case NS_DD:
16020 case NS_QQ:
16021 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
16022 {
16023 NEON_ENCODE (FLOAT, inst);
16024 set_it_insn_type (OUTSIDE_IT_INSN);
16025
16026 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16027 return;
16028
16029 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16030 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16031 inst.instruction |= LOW4 (inst.operands[1].reg);
16032 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16033 inst.instruction |= neon_quad (rs) << 6;
16034 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
16035 || flavour == neon_cvt_flavour_u32_f32) << 7;
16036 inst.instruction |= mode << 8;
16037 if (flavour == neon_cvt_flavour_u16_f16
16038 || flavour == neon_cvt_flavour_s16_f16)
16039 /* Mask off the original size bits and reencode them. */
16040 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
16041
16042 if (thumb_mode)
16043 inst.instruction |= 0xfc000000;
16044 else
16045 inst.instruction |= 0xf0000000;
16046 }
16047 else
16048 {
16049 int_encode:
16050 {
16051 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
16052 0x100, 0x180, 0x0, 0x080};
16053
16054 NEON_ENCODE (INTEGER, inst);
16055
16056 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16057 return;
16058
16059 if (flavour != neon_cvt_flavour_invalid)
16060 inst.instruction |= enctab[flavour];
16061
16062 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16063 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16064 inst.instruction |= LOW4 (inst.operands[1].reg);
16065 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16066 inst.instruction |= neon_quad (rs) << 6;
16067 if (flavour >= neon_cvt_flavour_s16_f16
16068 && flavour <= neon_cvt_flavour_f16_u16)
16069 /* Half precision. */
16070 inst.instruction |= 1 << 18;
16071 else
16072 inst.instruction |= 2 << 18;
16073
16074 neon_dp_fixup (&inst);
16075 }
16076 }
16077 break;
16078
16079 /* Half-precision conversions for Advanced SIMD -- neon. */
16080 case NS_QD:
16081 case NS_DQ:
16082 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16083 return;
16084
16085 if ((rs == NS_DQ)
16086 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
16087 {
16088 as_bad (_("operand size must match register width"));
16089 break;
16090 }
16091
16092 if ((rs == NS_QD)
16093 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
16094 {
16095 as_bad (_("operand size must match register width"));
16096 break;
16097 }
16098
16099 if (rs == NS_DQ)
16100 inst.instruction = 0x3b60600;
16101 else
16102 inst.instruction = 0x3b60700;
16103
16104 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16105 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16106 inst.instruction |= LOW4 (inst.operands[1].reg);
16107 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16108 neon_dp_fixup (&inst);
16109 break;
16110
16111 default:
16112 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
16113 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
16114 do_vfp_nsyn_cvt (rs, flavour);
16115 else
16116 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
16117 }
16118 }
16119
16120 static void
16121 do_neon_cvtr (void)
16122 {
16123 do_neon_cvt_1 (neon_cvt_mode_x);
16124 }
16125
16126 static void
16127 do_neon_cvt (void)
16128 {
16129 do_neon_cvt_1 (neon_cvt_mode_z);
16130 }
16131
16132 static void
16133 do_neon_cvta (void)
16134 {
16135 do_neon_cvt_1 (neon_cvt_mode_a);
16136 }
16137
16138 static void
16139 do_neon_cvtn (void)
16140 {
16141 do_neon_cvt_1 (neon_cvt_mode_n);
16142 }
16143
16144 static void
16145 do_neon_cvtp (void)
16146 {
16147 do_neon_cvt_1 (neon_cvt_mode_p);
16148 }
16149
16150 static void
16151 do_neon_cvtm (void)
16152 {
16153 do_neon_cvt_1 (neon_cvt_mode_m);
16154 }
16155
16156 static void
16157 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
16158 {
16159 if (is_double)
16160 mark_feature_used (&fpu_vfp_ext_armv8);
16161
16162 encode_arm_vfp_reg (inst.operands[0].reg,
16163 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
16164 encode_arm_vfp_reg (inst.operands[1].reg,
16165 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
16166 inst.instruction |= to ? 0x10000 : 0;
16167 inst.instruction |= t ? 0x80 : 0;
16168 inst.instruction |= is_double ? 0x100 : 0;
16169 do_vfp_cond_or_thumb ();
16170 }
16171
16172 static void
16173 do_neon_cvttb_1 (bfd_boolean t)
16174 {
16175 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
16176 NS_DF, NS_DH, NS_NULL);
16177
16178 if (rs == NS_NULL)
16179 return;
16180 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
16181 {
16182 inst.error = NULL;
16183 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16184 }
16185 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16186 {
16187 inst.error = NULL;
16188 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16189 }
16190 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16191 {
16192 /* The VCVTB and VCVTT instructions with D-register operands
16193 don't work for SP only targets. */
16194 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16195 _(BAD_FPU));
16196
16197 inst.error = NULL;
16198 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16199 }
16200 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16201 {
16202 /* The VCVTB and VCVTT instructions with D-register operands
16203 don't work for SP only targets. */
16204 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16205 _(BAD_FPU));
16206
16207 inst.error = NULL;
16208 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16209 }
16210 else
16211 return;
16212 }
16213
16214 static void
16215 do_neon_cvtb (void)
16216 {
16217 do_neon_cvttb_1 (FALSE);
16218 }
16219
16220
16221 static void
16222 do_neon_cvtt (void)
16223 {
16224 do_neon_cvttb_1 (TRUE);
16225 }
16226
16227 static void
16228 neon_move_immediate (void)
16229 {
16230 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16231 struct neon_type_el et = neon_check_type (2, rs,
16232 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
16233 unsigned immlo, immhi = 0, immbits;
16234 int op, cmode, float_p;
16235
16236 constraint (et.type == NT_invtype,
16237 _("operand size must be specified for immediate VMOV"));
16238
16239 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16240 op = (inst.instruction & (1 << 5)) != 0;
16241
16242 immlo = inst.operands[1].imm;
16243 if (inst.operands[1].regisimm)
16244 immhi = inst.operands[1].reg;
16245
16246 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
16247 _("immediate has bits set outside the operand size"));
16248
16249 float_p = inst.operands[1].immisfloat;
16250
16251 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
16252 et.size, et.type)) == FAIL)
16253 {
16254 /* Invert relevant bits only. */
16255 neon_invert_size (&immlo, &immhi, et.size);
16256 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
16257 with one or the other; those cases are caught by
16258 neon_cmode_for_move_imm. */
16259 op = !op;
16260 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16261 &op, et.size, et.type)) == FAIL)
16262 {
16263 first_error (_("immediate out of range"));
16264 return;
16265 }
16266 }
16267
16268 inst.instruction &= ~(1 << 5);
16269 inst.instruction |= op << 5;
16270
16271 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16273 inst.instruction |= neon_quad (rs) << 6;
16274 inst.instruction |= cmode << 8;
16275
16276 neon_write_immbits (immbits);
16277 }
16278
16279 static void
16280 do_neon_mvn (void)
16281 {
16282 if (inst.operands[1].isreg)
16283 {
16284 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16285
16286 NEON_ENCODE (INTEGER, inst);
16287 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16288 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16289 inst.instruction |= LOW4 (inst.operands[1].reg);
16290 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16291 inst.instruction |= neon_quad (rs) << 6;
16292 }
16293 else
16294 {
16295 NEON_ENCODE (IMMED, inst);
16296 neon_move_immediate ();
16297 }
16298
16299 neon_dp_fixup (&inst);
16300 }
16301
16302 /* Encode instructions of form:
16303
16304 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16305 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
16306
16307 static void
16308 neon_mixed_length (struct neon_type_el et, unsigned size)
16309 {
16310 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16311 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16312 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16313 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16314 inst.instruction |= LOW4 (inst.operands[2].reg);
16315 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16316 inst.instruction |= (et.type == NT_unsigned) << 24;
16317 inst.instruction |= neon_logbits (size) << 20;
16318
16319 neon_dp_fixup (&inst);
16320 }
16321
16322 static void
16323 do_neon_dyadic_long (void)
16324 {
16325 /* FIXME: Type checking for lengthening op. */
16326 struct neon_type_el et = neon_check_type (3, NS_QDD,
16327 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16328 neon_mixed_length (et, et.size);
16329 }
16330
16331 static void
16332 do_neon_abal (void)
16333 {
16334 struct neon_type_el et = neon_check_type (3, NS_QDD,
16335 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16336 neon_mixed_length (et, et.size);
16337 }
16338
16339 static void
16340 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16341 {
16342 if (inst.operands[2].isscalar)
16343 {
16344 struct neon_type_el et = neon_check_type (3, NS_QDS,
16345 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
16346 NEON_ENCODE (SCALAR, inst);
16347 neon_mul_mac (et, et.type == NT_unsigned);
16348 }
16349 else
16350 {
16351 struct neon_type_el et = neon_check_type (3, NS_QDD,
16352 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
16353 NEON_ENCODE (INTEGER, inst);
16354 neon_mixed_length (et, et.size);
16355 }
16356 }
16357
16358 static void
16359 do_neon_mac_maybe_scalar_long (void)
16360 {
16361 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16362 }
16363
16364 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16365 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16366
16367 static unsigned
16368 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16369 {
16370 unsigned regno = NEON_SCALAR_REG (scalar);
16371 unsigned elno = NEON_SCALAR_INDEX (scalar);
16372
16373 if (quad_p)
16374 {
16375 if (regno > 7 || elno > 3)
16376 goto bad_scalar;
16377
16378 return ((regno & 0x7)
16379 | ((elno & 0x1) << 3)
16380 | (((elno >> 1) & 0x1) << 5));
16381 }
16382 else
16383 {
16384 if (regno > 15 || elno > 1)
16385 goto bad_scalar;
16386
16387 return (((regno & 0x1) << 5)
16388 | ((regno >> 1) & 0x7)
16389 | ((elno & 0x1) << 3));
16390 }
16391
16392 bad_scalar:
16393 first_error (_("scalar out of range for multiply instruction"));
16394 return 0;
16395 }
16396
16397 static void
16398 do_neon_fmac_maybe_scalar_long (int subtype)
16399 {
16400 enum neon_shape rs;
16401 int high8;
16402 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16403 field (bits[21:20]) has different meaning. For scalar index variant, it's
16404 used to differentiate add and subtract, otherwise it's with fixed value
16405 0x2. */
16406 int size = -1;
16407
16408 if (inst.cond != COND_ALWAYS)
16409 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16410 "behaviour is UNPREDICTABLE"));
16411
16412 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
16413 _(BAD_FP16));
16414
16415 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16416 _(BAD_FPU));
16417
16418 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16419 be a scalar index register. */
16420 if (inst.operands[2].isscalar)
16421 {
16422 high8 = 0xfe000000;
16423 if (subtype)
16424 size = 16;
16425 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16426 }
16427 else
16428 {
16429 high8 = 0xfc000000;
16430 size = 32;
16431 if (subtype)
16432 inst.instruction |= (0x1 << 23);
16433 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16434 }
16435
16436 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16437
16438 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16439 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16440 so we simply pass -1 as size. */
16441 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16442 neon_three_same (quad_p, 0, size);
16443
16444 /* Undo neon_dp_fixup. Redo the high eight bits. */
16445 inst.instruction &= 0x00ffffff;
16446 inst.instruction |= high8;
16447
16448 #define LOW1(R) ((R) & 0x1)
16449 #define HI4(R) (((R) >> 1) & 0xf)
16450 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16451 whether the instruction is in Q form and whether Vm is a scalar indexed
16452 operand. */
16453 if (inst.operands[2].isscalar)
16454 {
16455 unsigned rm
16456 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16457 inst.instruction &= 0xffffffd0;
16458 inst.instruction |= rm;
16459
16460 if (!quad_p)
16461 {
16462 /* Redo Rn as well. */
16463 inst.instruction &= 0xfff0ff7f;
16464 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16465 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16466 }
16467 }
16468 else if (!quad_p)
16469 {
16470 /* Redo Rn and Rm. */
16471 inst.instruction &= 0xfff0ff50;
16472 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16473 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16474 inst.instruction |= HI4 (inst.operands[2].reg);
16475 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16476 }
16477 }
16478
16479 static void
16480 do_neon_vfmal (void)
16481 {
16482 return do_neon_fmac_maybe_scalar_long (0);
16483 }
16484
16485 static void
16486 do_neon_vfmsl (void)
16487 {
16488 return do_neon_fmac_maybe_scalar_long (1);
16489 }
16490
16491 static void
16492 do_neon_dyadic_wide (void)
16493 {
16494 struct neon_type_el et = neon_check_type (3, NS_QQD,
16495 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16496 neon_mixed_length (et, et.size);
16497 }
16498
16499 static void
16500 do_neon_dyadic_narrow (void)
16501 {
16502 struct neon_type_el et = neon_check_type (3, NS_QDD,
16503 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
16504 /* Operand sign is unimportant, and the U bit is part of the opcode,
16505 so force the operand type to integer. */
16506 et.type = NT_integer;
16507 neon_mixed_length (et, et.size / 2);
16508 }
16509
16510 static void
16511 do_neon_mul_sat_scalar_long (void)
16512 {
16513 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16514 }
16515
16516 static void
16517 do_neon_vmull (void)
16518 {
16519 if (inst.operands[2].isscalar)
16520 do_neon_mac_maybe_scalar_long ();
16521 else
16522 {
16523 struct neon_type_el et = neon_check_type (3, NS_QDD,
16524 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
16525
16526 if (et.type == NT_poly)
16527 NEON_ENCODE (POLY, inst);
16528 else
16529 NEON_ENCODE (INTEGER, inst);
16530
16531 /* For polynomial encoding the U bit must be zero, and the size must
16532 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16533 obviously, as 0b10). */
16534 if (et.size == 64)
16535 {
16536 /* Check we're on the correct architecture. */
16537 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16538 inst.error =
16539 _("Instruction form not available on this architecture.");
16540
16541 et.size = 32;
16542 }
16543
16544 neon_mixed_length (et, et.size);
16545 }
16546 }
16547
16548 static void
16549 do_neon_ext (void)
16550 {
16551 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
16552 struct neon_type_el et = neon_check_type (3, rs,
16553 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16554 unsigned imm = (inst.operands[3].imm * et.size) / 8;
16555
16556 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16557 _("shift out of range"));
16558 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16559 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16560 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16561 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16562 inst.instruction |= LOW4 (inst.operands[2].reg);
16563 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16564 inst.instruction |= neon_quad (rs) << 6;
16565 inst.instruction |= imm << 8;
16566
16567 neon_dp_fixup (&inst);
16568 }
16569
16570 static void
16571 do_neon_rev (void)
16572 {
16573 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16574 struct neon_type_el et = neon_check_type (2, rs,
16575 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16576 unsigned op = (inst.instruction >> 7) & 3;
16577 /* N (width of reversed regions) is encoded as part of the bitmask. We
16578 extract it here to check the elements to be reversed are smaller.
16579 Otherwise we'd get a reserved instruction. */
16580 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
16581 gas_assert (elsize != 0);
16582 constraint (et.size >= elsize,
16583 _("elements must be smaller than reversal region"));
16584 neon_two_same (neon_quad (rs), 1, et.size);
16585 }
16586
16587 static void
16588 do_neon_dup (void)
16589 {
16590 if (inst.operands[1].isscalar)
16591 {
16592 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
16593 struct neon_type_el et = neon_check_type (2, rs,
16594 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16595 unsigned sizebits = et.size >> 3;
16596 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
16597 int logsize = neon_logbits (et.size);
16598 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
16599
16600 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
16601 return;
16602
16603 NEON_ENCODE (SCALAR, inst);
16604 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16605 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16606 inst.instruction |= LOW4 (dm);
16607 inst.instruction |= HI1 (dm) << 5;
16608 inst.instruction |= neon_quad (rs) << 6;
16609 inst.instruction |= x << 17;
16610 inst.instruction |= sizebits << 16;
16611
16612 neon_dp_fixup (&inst);
16613 }
16614 else
16615 {
16616 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16617 struct neon_type_el et = neon_check_type (2, rs,
16618 N_8 | N_16 | N_32 | N_KEY, N_EQK);
16619 /* Duplicate ARM register to lanes of vector. */
16620 NEON_ENCODE (ARMREG, inst);
16621 switch (et.size)
16622 {
16623 case 8: inst.instruction |= 0x400000; break;
16624 case 16: inst.instruction |= 0x000020; break;
16625 case 32: inst.instruction |= 0x000000; break;
16626 default: break;
16627 }
16628 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16629 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16630 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
16631 inst.instruction |= neon_quad (rs) << 21;
16632 /* The encoding for this instruction is identical for the ARM and Thumb
16633 variants, except for the condition field. */
16634 do_vfp_cond_or_thumb ();
16635 }
16636 }
16637
16638 /* VMOV has particularly many variations. It can be one of:
16639 0. VMOV<c><q> <Qd>, <Qm>
16640 1. VMOV<c><q> <Dd>, <Dm>
16641 (Register operations, which are VORR with Rm = Rn.)
16642 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16643 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16644 (Immediate loads.)
16645 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16646 (ARM register to scalar.)
16647 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16648 (Two ARM registers to vector.)
16649 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16650 (Scalar to ARM register.)
16651 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16652 (Vector to two ARM registers.)
16653 8. VMOV.F32 <Sd>, <Sm>
16654 9. VMOV.F64 <Dd>, <Dm>
16655 (VFP register moves.)
16656 10. VMOV.F32 <Sd>, #imm
16657 11. VMOV.F64 <Dd>, #imm
16658 (VFP float immediate load.)
16659 12. VMOV <Rd>, <Sm>
16660 (VFP single to ARM reg.)
16661 13. VMOV <Sd>, <Rm>
16662 (ARM reg to VFP single.)
16663 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16664 (Two ARM regs to two VFP singles.)
16665 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16666 (Two VFP singles to two ARM regs.)
16667
16668 These cases can be disambiguated using neon_select_shape, except cases 1/9
16669 and 3/11 which depend on the operand type too.
16670
16671 All the encoded bits are hardcoded by this function.
16672
16673 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16674 Cases 5, 7 may be used with VFPv2 and above.
16675
16676 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
16677 can specify a type where it doesn't make sense to, and is ignored). */
16678
16679 static void
16680 do_neon_mov (void)
16681 {
16682 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
16683 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16684 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16685 NS_HR, NS_RH, NS_HI, NS_NULL);
16686 struct neon_type_el et;
16687 const char *ldconst = 0;
16688
16689 switch (rs)
16690 {
16691 case NS_DD: /* case 1/9. */
16692 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16693 /* It is not an error here if no type is given. */
16694 inst.error = NULL;
16695 if (et.type == NT_float && et.size == 64)
16696 {
16697 do_vfp_nsyn_opcode ("fcpyd");
16698 break;
16699 }
16700 /* fall through. */
16701
16702 case NS_QQ: /* case 0/1. */
16703 {
16704 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16705 return;
16706 /* The architecture manual I have doesn't explicitly state which
16707 value the U bit should have for register->register moves, but
16708 the equivalent VORR instruction has U = 0, so do that. */
16709 inst.instruction = 0x0200110;
16710 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16711 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16712 inst.instruction |= LOW4 (inst.operands[1].reg);
16713 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16714 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16715 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16716 inst.instruction |= neon_quad (rs) << 6;
16717
16718 neon_dp_fixup (&inst);
16719 }
16720 break;
16721
16722 case NS_DI: /* case 3/11. */
16723 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16724 inst.error = NULL;
16725 if (et.type == NT_float && et.size == 64)
16726 {
16727 /* case 11 (fconstd). */
16728 ldconst = "fconstd";
16729 goto encode_fconstd;
16730 }
16731 /* fall through. */
16732
16733 case NS_QI: /* case 2/3. */
16734 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16735 return;
16736 inst.instruction = 0x0800010;
16737 neon_move_immediate ();
16738 neon_dp_fixup (&inst);
16739 break;
16740
16741 case NS_SR: /* case 4. */
16742 {
16743 unsigned bcdebits = 0;
16744 int logsize;
16745 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16746 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
16747
16748 /* .<size> is optional here, defaulting to .32. */
16749 if (inst.vectype.elems == 0
16750 && inst.operands[0].vectype.type == NT_invtype
16751 && inst.operands[1].vectype.type == NT_invtype)
16752 {
16753 inst.vectype.el[0].type = NT_untyped;
16754 inst.vectype.el[0].size = 32;
16755 inst.vectype.elems = 1;
16756 }
16757
16758 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16759 logsize = neon_logbits (et.size);
16760
16761 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16762 _(BAD_FPU));
16763 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16764 && et.size != 32, _(BAD_FPU));
16765 constraint (et.type == NT_invtype, _("bad type for scalar"));
16766 constraint (x >= 64 / et.size, _("scalar index out of range"));
16767
16768 switch (et.size)
16769 {
16770 case 8: bcdebits = 0x8; break;
16771 case 16: bcdebits = 0x1; break;
16772 case 32: bcdebits = 0x0; break;
16773 default: ;
16774 }
16775
16776 bcdebits |= x << logsize;
16777
16778 inst.instruction = 0xe000b10;
16779 do_vfp_cond_or_thumb ();
16780 inst.instruction |= LOW4 (dn) << 16;
16781 inst.instruction |= HI1 (dn) << 7;
16782 inst.instruction |= inst.operands[1].reg << 12;
16783 inst.instruction |= (bcdebits & 3) << 5;
16784 inst.instruction |= (bcdebits >> 2) << 21;
16785 }
16786 break;
16787
16788 case NS_DRR: /* case 5 (fmdrr). */
16789 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16790 _(BAD_FPU));
16791
16792 inst.instruction = 0xc400b10;
16793 do_vfp_cond_or_thumb ();
16794 inst.instruction |= LOW4 (inst.operands[0].reg);
16795 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16796 inst.instruction |= inst.operands[1].reg << 12;
16797 inst.instruction |= inst.operands[2].reg << 16;
16798 break;
16799
16800 case NS_RS: /* case 6. */
16801 {
16802 unsigned logsize;
16803 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16804 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16805 unsigned abcdebits = 0;
16806
16807 /* .<dt> is optional here, defaulting to .32. */
16808 if (inst.vectype.elems == 0
16809 && inst.operands[0].vectype.type == NT_invtype
16810 && inst.operands[1].vectype.type == NT_invtype)
16811 {
16812 inst.vectype.el[0].type = NT_untyped;
16813 inst.vectype.el[0].size = 32;
16814 inst.vectype.elems = 1;
16815 }
16816
16817 et = neon_check_type (2, NS_NULL,
16818 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16819 logsize = neon_logbits (et.size);
16820
16821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16822 _(BAD_FPU));
16823 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16824 && et.size != 32, _(BAD_FPU));
16825 constraint (et.type == NT_invtype, _("bad type for scalar"));
16826 constraint (x >= 64 / et.size, _("scalar index out of range"));
16827
16828 switch (et.size)
16829 {
16830 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16831 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16832 case 32: abcdebits = 0x00; break;
16833 default: ;
16834 }
16835
16836 abcdebits |= x << logsize;
16837 inst.instruction = 0xe100b10;
16838 do_vfp_cond_or_thumb ();
16839 inst.instruction |= LOW4 (dn) << 16;
16840 inst.instruction |= HI1 (dn) << 7;
16841 inst.instruction |= inst.operands[0].reg << 12;
16842 inst.instruction |= (abcdebits & 3) << 5;
16843 inst.instruction |= (abcdebits >> 2) << 21;
16844 }
16845 break;
16846
16847 case NS_RRD: /* case 7 (fmrrd). */
16848 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16849 _(BAD_FPU));
16850
16851 inst.instruction = 0xc500b10;
16852 do_vfp_cond_or_thumb ();
16853 inst.instruction |= inst.operands[0].reg << 12;
16854 inst.instruction |= inst.operands[1].reg << 16;
16855 inst.instruction |= LOW4 (inst.operands[2].reg);
16856 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16857 break;
16858
16859 case NS_FF: /* case 8 (fcpys). */
16860 do_vfp_nsyn_opcode ("fcpys");
16861 break;
16862
16863 case NS_HI:
16864 case NS_FI: /* case 10 (fconsts). */
16865 ldconst = "fconsts";
16866 encode_fconstd:
16867 if (!inst.operands[1].immisfloat)
16868 {
16869 unsigned new_imm;
16870 /* Immediate has to fit in 8 bits so float is enough. */
16871 float imm = (float) inst.operands[1].imm;
16872 memcpy (&new_imm, &imm, sizeof (float));
16873 /* But the assembly may have been written to provide an integer
16874 bit pattern that equates to a float, so check that the
16875 conversion has worked. */
16876 if (is_quarter_float (new_imm))
16877 {
16878 if (is_quarter_float (inst.operands[1].imm))
16879 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
16880
16881 inst.operands[1].imm = new_imm;
16882 inst.operands[1].immisfloat = 1;
16883 }
16884 }
16885
16886 if (is_quarter_float (inst.operands[1].imm))
16887 {
16888 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16889 do_vfp_nsyn_opcode (ldconst);
16890
16891 /* ARMv8.2 fp16 vmov.f16 instruction. */
16892 if (rs == NS_HI)
16893 do_scalar_fp16_v82_encode ();
16894 }
16895 else
16896 first_error (_("immediate out of range"));
16897 break;
16898
16899 case NS_RH:
16900 case NS_RF: /* case 12 (fmrs). */
16901 do_vfp_nsyn_opcode ("fmrs");
16902 /* ARMv8.2 fp16 vmov.f16 instruction. */
16903 if (rs == NS_RH)
16904 do_scalar_fp16_v82_encode ();
16905 break;
16906
16907 case NS_HR:
16908 case NS_FR: /* case 13 (fmsr). */
16909 do_vfp_nsyn_opcode ("fmsr");
16910 /* ARMv8.2 fp16 vmov.f16 instruction. */
16911 if (rs == NS_HR)
16912 do_scalar_fp16_v82_encode ();
16913 break;
16914
16915 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16916 (one of which is a list), but we have parsed four. Do some fiddling to
16917 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16918 expect. */
16919 case NS_RRFF: /* case 14 (fmrrs). */
16920 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16921 _("VFP registers must be adjacent"));
16922 inst.operands[2].imm = 2;
16923 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16924 do_vfp_nsyn_opcode ("fmrrs");
16925 break;
16926
16927 case NS_FFRR: /* case 15 (fmsrr). */
16928 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16929 _("VFP registers must be adjacent"));
16930 inst.operands[1] = inst.operands[2];
16931 inst.operands[2] = inst.operands[3];
16932 inst.operands[0].imm = 2;
16933 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16934 do_vfp_nsyn_opcode ("fmsrr");
16935 break;
16936
16937 case NS_NULL:
16938 /* neon_select_shape has determined that the instruction
16939 shape is wrong and has already set the error message. */
16940 break;
16941
16942 default:
16943 abort ();
16944 }
16945 }
16946
16947 static void
16948 do_neon_rshift_round_imm (void)
16949 {
16950 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16951 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16952 int imm = inst.operands[2].imm;
16953
16954 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16955 if (imm == 0)
16956 {
16957 inst.operands[2].present = 0;
16958 do_neon_mov ();
16959 return;
16960 }
16961
16962 constraint (imm < 1 || (unsigned)imm > et.size,
16963 _("immediate out of range for shift"));
16964 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16965 et.size - imm);
16966 }
16967
16968 static void
16969 do_neon_movhf (void)
16970 {
16971 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16972 constraint (rs != NS_HH, _("invalid suffix"));
16973
16974 if (inst.cond != COND_ALWAYS)
16975 {
16976 if (thumb_mode)
16977 {
16978 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
16979 " the behaviour is UNPREDICTABLE"));
16980 }
16981 else
16982 {
16983 inst.error = BAD_COND;
16984 return;
16985 }
16986 }
16987
16988 do_vfp_sp_monadic ();
16989
16990 inst.is_neon = 1;
16991 inst.instruction |= 0xf0000000;
16992 }
16993
16994 static void
16995 do_neon_movl (void)
16996 {
16997 struct neon_type_el et = neon_check_type (2, NS_QD,
16998 N_EQK | N_DBL, N_SU_32 | N_KEY);
16999 unsigned sizebits = et.size >> 3;
17000 inst.instruction |= sizebits << 19;
17001 neon_two_same (0, et.type == NT_unsigned, -1);
17002 }
17003
17004 static void
17005 do_neon_trn (void)
17006 {
17007 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17008 struct neon_type_el et = neon_check_type (2, rs,
17009 N_EQK, N_8 | N_16 | N_32 | N_KEY);
17010 NEON_ENCODE (INTEGER, inst);
17011 neon_two_same (neon_quad (rs), 1, et.size);
17012 }
17013
17014 static void
17015 do_neon_zip_uzp (void)
17016 {
17017 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17018 struct neon_type_el et = neon_check_type (2, rs,
17019 N_EQK, N_8 | N_16 | N_32 | N_KEY);
17020 if (rs == NS_DD && et.size == 32)
17021 {
17022 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
17023 inst.instruction = N_MNEM_vtrn;
17024 do_neon_trn ();
17025 return;
17026 }
17027 neon_two_same (neon_quad (rs), 1, et.size);
17028 }
17029
17030 static void
17031 do_neon_sat_abs_neg (void)
17032 {
17033 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17034 struct neon_type_el et = neon_check_type (2, rs,
17035 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17036 neon_two_same (neon_quad (rs), 1, et.size);
17037 }
17038
17039 static void
17040 do_neon_pair_long (void)
17041 {
17042 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17043 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17044 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
17045 inst.instruction |= (et.type == NT_unsigned) << 7;
17046 neon_two_same (neon_quad (rs), 1, et.size);
17047 }
17048
17049 static void
17050 do_neon_recip_est (void)
17051 {
17052 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17053 struct neon_type_el et = neon_check_type (2, rs,
17054 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
17055 inst.instruction |= (et.type == NT_float) << 8;
17056 neon_two_same (neon_quad (rs), 1, et.size);
17057 }
17058
17059 static void
17060 do_neon_cls (void)
17061 {
17062 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17063 struct neon_type_el et = neon_check_type (2, rs,
17064 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17065 neon_two_same (neon_quad (rs), 1, et.size);
17066 }
17067
17068 static void
17069 do_neon_clz (void)
17070 {
17071 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17072 struct neon_type_el et = neon_check_type (2, rs,
17073 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
17074 neon_two_same (neon_quad (rs), 1, et.size);
17075 }
17076
17077 static void
17078 do_neon_cnt (void)
17079 {
17080 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17081 struct neon_type_el et = neon_check_type (2, rs,
17082 N_EQK | N_INT, N_8 | N_KEY);
17083 neon_two_same (neon_quad (rs), 1, et.size);
17084 }
17085
17086 static void
17087 do_neon_swp (void)
17088 {
17089 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17090 neon_two_same (neon_quad (rs), 1, -1);
17091 }
17092
17093 static void
17094 do_neon_tbl_tbx (void)
17095 {
17096 unsigned listlenbits;
17097 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
17098
17099 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
17100 {
17101 first_error (_("bad list length for table lookup"));
17102 return;
17103 }
17104
17105 listlenbits = inst.operands[1].imm - 1;
17106 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17107 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17108 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17109 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17110 inst.instruction |= LOW4 (inst.operands[2].reg);
17111 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
17112 inst.instruction |= listlenbits << 8;
17113
17114 neon_dp_fixup (&inst);
17115 }
17116
17117 static void
17118 do_neon_ldm_stm (void)
17119 {
17120 /* P, U and L bits are part of bitmask. */
17121 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
17122 unsigned offsetbits = inst.operands[1].imm * 2;
17123
17124 if (inst.operands[1].issingle)
17125 {
17126 do_vfp_nsyn_ldm_stm (is_dbmode);
17127 return;
17128 }
17129
17130 constraint (is_dbmode && !inst.operands[0].writeback,
17131 _("writeback (!) must be used for VLDMDB and VSTMDB"));
17132
17133 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
17134 _("register list must contain at least 1 and at most 16 "
17135 "registers"));
17136
17137 inst.instruction |= inst.operands[0].reg << 16;
17138 inst.instruction |= inst.operands[0].writeback << 21;
17139 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
17140 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
17141
17142 inst.instruction |= offsetbits;
17143
17144 do_vfp_cond_or_thumb ();
17145 }
17146
17147 static void
17148 do_neon_ldr_str (void)
17149 {
17150 int is_ldr = (inst.instruction & (1 << 20)) != 0;
17151
17152 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
17153 And is UNPREDICTABLE in thumb mode. */
17154 if (!is_ldr
17155 && inst.operands[1].reg == REG_PC
17156 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
17157 {
17158 if (thumb_mode)
17159 inst.error = _("Use of PC here is UNPREDICTABLE");
17160 else if (warn_on_deprecated)
17161 as_tsktsk (_("Use of PC here is deprecated"));
17162 }
17163
17164 if (inst.operands[0].issingle)
17165 {
17166 if (is_ldr)
17167 do_vfp_nsyn_opcode ("flds");
17168 else
17169 do_vfp_nsyn_opcode ("fsts");
17170
17171 /* ARMv8.2 vldr.16/vstr.16 instruction. */
17172 if (inst.vectype.el[0].size == 16)
17173 do_scalar_fp16_v82_encode ();
17174 }
17175 else
17176 {
17177 if (is_ldr)
17178 do_vfp_nsyn_opcode ("fldd");
17179 else
17180 do_vfp_nsyn_opcode ("fstd");
17181 }
17182 }
17183
17184 /* "interleave" version also handles non-interleaving register VLD1/VST1
17185 instructions. */
17186
17187 static void
17188 do_neon_ld_st_interleave (void)
17189 {
17190 struct neon_type_el et = neon_check_type (1, NS_NULL,
17191 N_8 | N_16 | N_32 | N_64);
17192 unsigned alignbits = 0;
17193 unsigned idx;
17194 /* The bits in this table go:
17195 0: register stride of one (0) or two (1)
17196 1,2: register list length, minus one (1, 2, 3, 4).
17197 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
17198 We use -1 for invalid entries. */
17199 const int typetable[] =
17200 {
17201 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
17202 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
17203 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
17204 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
17205 };
17206 int typebits;
17207
17208 if (et.type == NT_invtype)
17209 return;
17210
17211 if (inst.operands[1].immisalign)
17212 switch (inst.operands[1].imm >> 8)
17213 {
17214 case 64: alignbits = 1; break;
17215 case 128:
17216 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
17217 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17218 goto bad_alignment;
17219 alignbits = 2;
17220 break;
17221 case 256:
17222 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17223 goto bad_alignment;
17224 alignbits = 3;
17225 break;
17226 default:
17227 bad_alignment:
17228 first_error (_("bad alignment"));
17229 return;
17230 }
17231
17232 inst.instruction |= alignbits << 4;
17233 inst.instruction |= neon_logbits (et.size) << 6;
17234
17235 /* Bits [4:6] of the immediate in a list specifier encode register stride
17236 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17237 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17238 up the right value for "type" in a table based on this value and the given
17239 list style, then stick it back. */
17240 idx = ((inst.operands[0].imm >> 4) & 7)
17241 | (((inst.instruction >> 8) & 3) << 3);
17242
17243 typebits = typetable[idx];
17244
17245 constraint (typebits == -1, _("bad list type for instruction"));
17246 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17247 _("bad element type for instruction"));
17248
17249 inst.instruction &= ~0xf00;
17250 inst.instruction |= typebits << 8;
17251 }
17252
17253 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17254 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17255 otherwise. The variable arguments are a list of pairs of legal (size, align)
17256 values, terminated with -1. */
17257
17258 static int
17259 neon_alignment_bit (int size, int align, int *do_alignment, ...)
17260 {
17261 va_list ap;
17262 int result = FAIL, thissize, thisalign;
17263
17264 if (!inst.operands[1].immisalign)
17265 {
17266 *do_alignment = 0;
17267 return SUCCESS;
17268 }
17269
17270 va_start (ap, do_alignment);
17271
17272 do
17273 {
17274 thissize = va_arg (ap, int);
17275 if (thissize == -1)
17276 break;
17277 thisalign = va_arg (ap, int);
17278
17279 if (size == thissize && align == thisalign)
17280 result = SUCCESS;
17281 }
17282 while (result != SUCCESS);
17283
17284 va_end (ap);
17285
17286 if (result == SUCCESS)
17287 *do_alignment = 1;
17288 else
17289 first_error (_("unsupported alignment for instruction"));
17290
17291 return result;
17292 }
17293
17294 static void
17295 do_neon_ld_st_lane (void)
17296 {
17297 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17298 int align_good, do_alignment = 0;
17299 int logsize = neon_logbits (et.size);
17300 int align = inst.operands[1].imm >> 8;
17301 int n = (inst.instruction >> 8) & 3;
17302 int max_el = 64 / et.size;
17303
17304 if (et.type == NT_invtype)
17305 return;
17306
17307 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
17308 _("bad list length"));
17309 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
17310 _("scalar index out of range"));
17311 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
17312 && et.size == 8,
17313 _("stride of 2 unavailable when element size is 8"));
17314
17315 switch (n)
17316 {
17317 case 0: /* VLD1 / VST1. */
17318 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
17319 32, 32, -1);
17320 if (align_good == FAIL)
17321 return;
17322 if (do_alignment)
17323 {
17324 unsigned alignbits = 0;
17325 switch (et.size)
17326 {
17327 case 16: alignbits = 0x1; break;
17328 case 32: alignbits = 0x3; break;
17329 default: ;
17330 }
17331 inst.instruction |= alignbits << 4;
17332 }
17333 break;
17334
17335 case 1: /* VLD2 / VST2. */
17336 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17337 16, 32, 32, 64, -1);
17338 if (align_good == FAIL)
17339 return;
17340 if (do_alignment)
17341 inst.instruction |= 1 << 4;
17342 break;
17343
17344 case 2: /* VLD3 / VST3. */
17345 constraint (inst.operands[1].immisalign,
17346 _("can't use alignment with this instruction"));
17347 break;
17348
17349 case 3: /* VLD4 / VST4. */
17350 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17351 16, 64, 32, 64, 32, 128, -1);
17352 if (align_good == FAIL)
17353 return;
17354 if (do_alignment)
17355 {
17356 unsigned alignbits = 0;
17357 switch (et.size)
17358 {
17359 case 8: alignbits = 0x1; break;
17360 case 16: alignbits = 0x1; break;
17361 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17362 default: ;
17363 }
17364 inst.instruction |= alignbits << 4;
17365 }
17366 break;
17367
17368 default: ;
17369 }
17370
17371 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17372 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17373 inst.instruction |= 1 << (4 + logsize);
17374
17375 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17376 inst.instruction |= logsize << 10;
17377 }
17378
17379 /* Encode single n-element structure to all lanes VLD<n> instructions. */
17380
17381 static void
17382 do_neon_ld_dup (void)
17383 {
17384 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17385 int align_good, do_alignment = 0;
17386
17387 if (et.type == NT_invtype)
17388 return;
17389
17390 switch ((inst.instruction >> 8) & 3)
17391 {
17392 case 0: /* VLD1. */
17393 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
17394 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17395 &do_alignment, 16, 16, 32, 32, -1);
17396 if (align_good == FAIL)
17397 return;
17398 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
17399 {
17400 case 1: break;
17401 case 2: inst.instruction |= 1 << 5; break;
17402 default: first_error (_("bad list length")); return;
17403 }
17404 inst.instruction |= neon_logbits (et.size) << 6;
17405 break;
17406
17407 case 1: /* VLD2. */
17408 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17409 &do_alignment, 8, 16, 16, 32, 32, 64,
17410 -1);
17411 if (align_good == FAIL)
17412 return;
17413 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
17414 _("bad list length"));
17415 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17416 inst.instruction |= 1 << 5;
17417 inst.instruction |= neon_logbits (et.size) << 6;
17418 break;
17419
17420 case 2: /* VLD3. */
17421 constraint (inst.operands[1].immisalign,
17422 _("can't use alignment with this instruction"));
17423 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
17424 _("bad list length"));
17425 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17426 inst.instruction |= 1 << 5;
17427 inst.instruction |= neon_logbits (et.size) << 6;
17428 break;
17429
17430 case 3: /* VLD4. */
17431 {
17432 int align = inst.operands[1].imm >> 8;
17433 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17434 16, 64, 32, 64, 32, 128, -1);
17435 if (align_good == FAIL)
17436 return;
17437 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17438 _("bad list length"));
17439 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17440 inst.instruction |= 1 << 5;
17441 if (et.size == 32 && align == 128)
17442 inst.instruction |= 0x3 << 6;
17443 else
17444 inst.instruction |= neon_logbits (et.size) << 6;
17445 }
17446 break;
17447
17448 default: ;
17449 }
17450
17451 inst.instruction |= do_alignment << 4;
17452 }
17453
17454 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17455 apart from bits [11:4]. */
17456
17457 static void
17458 do_neon_ldx_stx (void)
17459 {
17460 if (inst.operands[1].isreg)
17461 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17462
17463 switch (NEON_LANE (inst.operands[0].imm))
17464 {
17465 case NEON_INTERLEAVE_LANES:
17466 NEON_ENCODE (INTERLV, inst);
17467 do_neon_ld_st_interleave ();
17468 break;
17469
17470 case NEON_ALL_LANES:
17471 NEON_ENCODE (DUP, inst);
17472 if (inst.instruction == N_INV)
17473 {
17474 first_error ("only loads support such operands");
17475 break;
17476 }
17477 do_neon_ld_dup ();
17478 break;
17479
17480 default:
17481 NEON_ENCODE (LANE, inst);
17482 do_neon_ld_st_lane ();
17483 }
17484
17485 /* L bit comes from bit mask. */
17486 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17487 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17488 inst.instruction |= inst.operands[1].reg << 16;
17489
17490 if (inst.operands[1].postind)
17491 {
17492 int postreg = inst.operands[1].imm & 0xf;
17493 constraint (!inst.operands[1].immisreg,
17494 _("post-index must be a register"));
17495 constraint (postreg == 0xd || postreg == 0xf,
17496 _("bad register for post-index"));
17497 inst.instruction |= postreg;
17498 }
17499 else
17500 {
17501 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17502 constraint (inst.relocs[0].exp.X_op != O_constant
17503 || inst.relocs[0].exp.X_add_number != 0,
17504 BAD_ADDR_MODE);
17505
17506 if (inst.operands[1].writeback)
17507 {
17508 inst.instruction |= 0xd;
17509 }
17510 else
17511 inst.instruction |= 0xf;
17512 }
17513
17514 if (thumb_mode)
17515 inst.instruction |= 0xf9000000;
17516 else
17517 inst.instruction |= 0xf4000000;
17518 }
17519
17520 /* FP v8. */
17521 static void
17522 do_vfp_nsyn_fpv8 (enum neon_shape rs)
17523 {
17524 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17525 D register operands. */
17526 if (neon_shape_class[rs] == SC_DOUBLE)
17527 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17528 _(BAD_FPU));
17529
17530 NEON_ENCODE (FPV8, inst);
17531
17532 if (rs == NS_FFF || rs == NS_HHH)
17533 {
17534 do_vfp_sp_dyadic ();
17535
17536 /* ARMv8.2 fp16 instruction. */
17537 if (rs == NS_HHH)
17538 do_scalar_fp16_v82_encode ();
17539 }
17540 else
17541 do_vfp_dp_rd_rn_rm ();
17542
17543 if (rs == NS_DDD)
17544 inst.instruction |= 0x100;
17545
17546 inst.instruction |= 0xf0000000;
17547 }
17548
17549 static void
17550 do_vsel (void)
17551 {
17552 set_it_insn_type (OUTSIDE_IT_INSN);
17553
17554 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17555 first_error (_("invalid instruction shape"));
17556 }
17557
17558 static void
17559 do_vmaxnm (void)
17560 {
17561 set_it_insn_type (OUTSIDE_IT_INSN);
17562
17563 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17564 return;
17565
17566 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17567 return;
17568
17569 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
17570 }
17571
17572 static void
17573 do_vrint_1 (enum neon_cvt_mode mode)
17574 {
17575 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
17576 struct neon_type_el et;
17577
17578 if (rs == NS_NULL)
17579 return;
17580
17581 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17582 D register operands. */
17583 if (neon_shape_class[rs] == SC_DOUBLE)
17584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17585 _(BAD_FPU));
17586
17587 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17588 | N_VFP);
17589 if (et.type != NT_invtype)
17590 {
17591 /* VFP encodings. */
17592 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17593 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17594 set_it_insn_type (OUTSIDE_IT_INSN);
17595
17596 NEON_ENCODE (FPV8, inst);
17597 if (rs == NS_FF || rs == NS_HH)
17598 do_vfp_sp_monadic ();
17599 else
17600 do_vfp_dp_rd_rm ();
17601
17602 switch (mode)
17603 {
17604 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17605 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17606 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17607 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17608 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17609 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17610 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17611 default: abort ();
17612 }
17613
17614 inst.instruction |= (rs == NS_DD) << 8;
17615 do_vfp_cond_or_thumb ();
17616
17617 /* ARMv8.2 fp16 vrint instruction. */
17618 if (rs == NS_HH)
17619 do_scalar_fp16_v82_encode ();
17620 }
17621 else
17622 {
17623 /* Neon encodings (or something broken...). */
17624 inst.error = NULL;
17625 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
17626
17627 if (et.type == NT_invtype)
17628 return;
17629
17630 set_it_insn_type (OUTSIDE_IT_INSN);
17631 NEON_ENCODE (FLOAT, inst);
17632
17633 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17634 return;
17635
17636 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17637 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17638 inst.instruction |= LOW4 (inst.operands[1].reg);
17639 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17640 inst.instruction |= neon_quad (rs) << 6;
17641 /* Mask off the original size bits and reencode them. */
17642 inst.instruction = ((inst.instruction & 0xfff3ffff)
17643 | neon_logbits (et.size) << 18);
17644
17645 switch (mode)
17646 {
17647 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17648 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17649 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17650 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17651 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17652 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17653 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17654 default: abort ();
17655 }
17656
17657 if (thumb_mode)
17658 inst.instruction |= 0xfc000000;
17659 else
17660 inst.instruction |= 0xf0000000;
17661 }
17662 }
17663
17664 static void
17665 do_vrintx (void)
17666 {
17667 do_vrint_1 (neon_cvt_mode_x);
17668 }
17669
17670 static void
17671 do_vrintz (void)
17672 {
17673 do_vrint_1 (neon_cvt_mode_z);
17674 }
17675
17676 static void
17677 do_vrintr (void)
17678 {
17679 do_vrint_1 (neon_cvt_mode_r);
17680 }
17681
17682 static void
17683 do_vrinta (void)
17684 {
17685 do_vrint_1 (neon_cvt_mode_a);
17686 }
17687
17688 static void
17689 do_vrintn (void)
17690 {
17691 do_vrint_1 (neon_cvt_mode_n);
17692 }
17693
17694 static void
17695 do_vrintp (void)
17696 {
17697 do_vrint_1 (neon_cvt_mode_p);
17698 }
17699
17700 static void
17701 do_vrintm (void)
17702 {
17703 do_vrint_1 (neon_cvt_mode_m);
17704 }
17705
17706 static unsigned
17707 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17708 {
17709 unsigned regno = NEON_SCALAR_REG (opnd);
17710 unsigned elno = NEON_SCALAR_INDEX (opnd);
17711
17712 if (elsize == 16 && elno < 2 && regno < 16)
17713 return regno | (elno << 4);
17714 else if (elsize == 32 && elno == 0)
17715 return regno;
17716
17717 first_error (_("scalar out of range"));
17718 return 0;
17719 }
17720
17721 static void
17722 do_vcmla (void)
17723 {
17724 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17725 _(BAD_FPU));
17726 constraint (inst.relocs[0].exp.X_op != O_constant,
17727 _("expression too complex"));
17728 unsigned rot = inst.relocs[0].exp.X_add_number;
17729 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17730 _("immediate out of range"));
17731 rot /= 90;
17732 if (inst.operands[2].isscalar)
17733 {
17734 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17735 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17736 N_KEY | N_F16 | N_F32).size;
17737 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17738 inst.is_neon = 1;
17739 inst.instruction = 0xfe000800;
17740 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17741 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17742 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17743 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17744 inst.instruction |= LOW4 (m);
17745 inst.instruction |= HI1 (m) << 5;
17746 inst.instruction |= neon_quad (rs) << 6;
17747 inst.instruction |= rot << 20;
17748 inst.instruction |= (size == 32) << 23;
17749 }
17750 else
17751 {
17752 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17753 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17754 N_KEY | N_F16 | N_F32).size;
17755 neon_three_same (neon_quad (rs), 0, -1);
17756 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17757 inst.instruction |= 0xfc200800;
17758 inst.instruction |= rot << 23;
17759 inst.instruction |= (size == 32) << 20;
17760 }
17761 }
17762
17763 static void
17764 do_vcadd (void)
17765 {
17766 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17767 _(BAD_FPU));
17768 constraint (inst.relocs[0].exp.X_op != O_constant,
17769 _("expression too complex"));
17770 unsigned rot = inst.relocs[0].exp.X_add_number;
17771 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17772 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17773 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17774 N_KEY | N_F16 | N_F32).size;
17775 neon_three_same (neon_quad (rs), 0, -1);
17776 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17777 inst.instruction |= 0xfc800800;
17778 inst.instruction |= (rot == 270) << 24;
17779 inst.instruction |= (size == 32) << 20;
17780 }
17781
17782 /* Dot Product instructions encoding support. */
17783
17784 static void
17785 do_neon_dotproduct (int unsigned_p)
17786 {
17787 enum neon_shape rs;
17788 unsigned scalar_oprd2 = 0;
17789 int high8;
17790
17791 if (inst.cond != COND_ALWAYS)
17792 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17793 "is UNPREDICTABLE"));
17794
17795 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17796 _(BAD_FPU));
17797
17798 /* Dot Product instructions are in three-same D/Q register format or the third
17799 operand can be a scalar index register. */
17800 if (inst.operands[2].isscalar)
17801 {
17802 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17803 high8 = 0xfe000000;
17804 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17805 }
17806 else
17807 {
17808 high8 = 0xfc000000;
17809 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17810 }
17811
17812 if (unsigned_p)
17813 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17814 else
17815 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17816
17817 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17818 Product instruction, so we pass 0 as the "ubit" parameter. And the
17819 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17820 neon_three_same (neon_quad (rs), 0, 32);
17821
17822 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17823 different NEON three-same encoding. */
17824 inst.instruction &= 0x00ffffff;
17825 inst.instruction |= high8;
17826 /* Encode 'U' bit which indicates signedness. */
17827 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17828 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17829 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17830 the instruction encoding. */
17831 if (inst.operands[2].isscalar)
17832 {
17833 inst.instruction &= 0xffffffd0;
17834 inst.instruction |= LOW4 (scalar_oprd2);
17835 inst.instruction |= HI1 (scalar_oprd2) << 5;
17836 }
17837 }
17838
17839 /* Dot Product instructions for signed integer. */
17840
17841 static void
17842 do_neon_dotproduct_s (void)
17843 {
17844 return do_neon_dotproduct (0);
17845 }
17846
17847 /* Dot Product instructions for unsigned integer. */
17848
17849 static void
17850 do_neon_dotproduct_u (void)
17851 {
17852 return do_neon_dotproduct (1);
17853 }
17854
17855 /* Crypto v1 instructions. */
17856 static void
17857 do_crypto_2op_1 (unsigned elttype, int op)
17858 {
17859 set_it_insn_type (OUTSIDE_IT_INSN);
17860
17861 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17862 == NT_invtype)
17863 return;
17864
17865 inst.error = NULL;
17866
17867 NEON_ENCODE (INTEGER, inst);
17868 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17869 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17870 inst.instruction |= LOW4 (inst.operands[1].reg);
17871 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17872 if (op != -1)
17873 inst.instruction |= op << 6;
17874
17875 if (thumb_mode)
17876 inst.instruction |= 0xfc000000;
17877 else
17878 inst.instruction |= 0xf0000000;
17879 }
17880
17881 static void
17882 do_crypto_3op_1 (int u, int op)
17883 {
17884 set_it_insn_type (OUTSIDE_IT_INSN);
17885
17886 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17887 N_32 | N_UNT | N_KEY).type == NT_invtype)
17888 return;
17889
17890 inst.error = NULL;
17891
17892 NEON_ENCODE (INTEGER, inst);
17893 neon_three_same (1, u, 8 << op);
17894 }
17895
17896 static void
17897 do_aese (void)
17898 {
17899 do_crypto_2op_1 (N_8, 0);
17900 }
17901
17902 static void
17903 do_aesd (void)
17904 {
17905 do_crypto_2op_1 (N_8, 1);
17906 }
17907
17908 static void
17909 do_aesmc (void)
17910 {
17911 do_crypto_2op_1 (N_8, 2);
17912 }
17913
17914 static void
17915 do_aesimc (void)
17916 {
17917 do_crypto_2op_1 (N_8, 3);
17918 }
17919
17920 static void
17921 do_sha1c (void)
17922 {
17923 do_crypto_3op_1 (0, 0);
17924 }
17925
17926 static void
17927 do_sha1p (void)
17928 {
17929 do_crypto_3op_1 (0, 1);
17930 }
17931
17932 static void
17933 do_sha1m (void)
17934 {
17935 do_crypto_3op_1 (0, 2);
17936 }
17937
17938 static void
17939 do_sha1su0 (void)
17940 {
17941 do_crypto_3op_1 (0, 3);
17942 }
17943
17944 static void
17945 do_sha256h (void)
17946 {
17947 do_crypto_3op_1 (1, 0);
17948 }
17949
17950 static void
17951 do_sha256h2 (void)
17952 {
17953 do_crypto_3op_1 (1, 1);
17954 }
17955
17956 static void
17957 do_sha256su1 (void)
17958 {
17959 do_crypto_3op_1 (1, 2);
17960 }
17961
17962 static void
17963 do_sha1h (void)
17964 {
17965 do_crypto_2op_1 (N_32, -1);
17966 }
17967
17968 static void
17969 do_sha1su1 (void)
17970 {
17971 do_crypto_2op_1 (N_32, 0);
17972 }
17973
17974 static void
17975 do_sha256su0 (void)
17976 {
17977 do_crypto_2op_1 (N_32, 1);
17978 }
17979
17980 static void
17981 do_crc32_1 (unsigned int poly, unsigned int sz)
17982 {
17983 unsigned int Rd = inst.operands[0].reg;
17984 unsigned int Rn = inst.operands[1].reg;
17985 unsigned int Rm = inst.operands[2].reg;
17986
17987 set_it_insn_type (OUTSIDE_IT_INSN);
17988 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17989 inst.instruction |= LOW4 (Rn) << 16;
17990 inst.instruction |= LOW4 (Rm);
17991 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17992 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17993
17994 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17995 as_warn (UNPRED_REG ("r15"));
17996 }
17997
17998 static void
17999 do_crc32b (void)
18000 {
18001 do_crc32_1 (0, 0);
18002 }
18003
18004 static void
18005 do_crc32h (void)
18006 {
18007 do_crc32_1 (0, 1);
18008 }
18009
18010 static void
18011 do_crc32w (void)
18012 {
18013 do_crc32_1 (0, 2);
18014 }
18015
18016 static void
18017 do_crc32cb (void)
18018 {
18019 do_crc32_1 (1, 0);
18020 }
18021
18022 static void
18023 do_crc32ch (void)
18024 {
18025 do_crc32_1 (1, 1);
18026 }
18027
18028 static void
18029 do_crc32cw (void)
18030 {
18031 do_crc32_1 (1, 2);
18032 }
18033
18034 static void
18035 do_vjcvt (void)
18036 {
18037 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18038 _(BAD_FPU));
18039 neon_check_type (2, NS_FD, N_S32, N_F64);
18040 do_vfp_sp_dp_cvt ();
18041 do_vfp_cond_or_thumb ();
18042 }
18043
18044 \f
18045 /* Overall per-instruction processing. */
18046
18047 /* We need to be able to fix up arbitrary expressions in some statements.
18048 This is so that we can handle symbols that are an arbitrary distance from
18049 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
18050 which returns part of an address in a form which will be valid for
18051 a data instruction. We do this by pushing the expression into a symbol
18052 in the expr_section, and creating a fix for that. */
18053
18054 static void
18055 fix_new_arm (fragS * frag,
18056 int where,
18057 short int size,
18058 expressionS * exp,
18059 int pc_rel,
18060 int reloc)
18061 {
18062 fixS * new_fix;
18063
18064 switch (exp->X_op)
18065 {
18066 case O_constant:
18067 if (pc_rel)
18068 {
18069 /* Create an absolute valued symbol, so we have something to
18070 refer to in the object file. Unfortunately for us, gas's
18071 generic expression parsing will already have folded out
18072 any use of .set foo/.type foo %function that may have
18073 been used to set type information of the target location,
18074 that's being specified symbolically. We have to presume
18075 the user knows what they are doing. */
18076 char name[16 + 8];
18077 symbolS *symbol;
18078
18079 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
18080
18081 symbol = symbol_find_or_make (name);
18082 S_SET_SEGMENT (symbol, absolute_section);
18083 symbol_set_frag (symbol, &zero_address_frag);
18084 S_SET_VALUE (symbol, exp->X_add_number);
18085 exp->X_op = O_symbol;
18086 exp->X_add_symbol = symbol;
18087 exp->X_add_number = 0;
18088 }
18089 /* FALLTHROUGH */
18090 case O_symbol:
18091 case O_add:
18092 case O_subtract:
18093 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
18094 (enum bfd_reloc_code_real) reloc);
18095 break;
18096
18097 default:
18098 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
18099 pc_rel, (enum bfd_reloc_code_real) reloc);
18100 break;
18101 }
18102
18103 /* Mark whether the fix is to a THUMB instruction, or an ARM
18104 instruction. */
18105 new_fix->tc_fix_data = thumb_mode;
18106 }
18107
18108 /* Create a frg for an instruction requiring relaxation. */
18109 static void
18110 output_relax_insn (void)
18111 {
18112 char * to;
18113 symbolS *sym;
18114 int offset;
18115
18116 /* The size of the instruction is unknown, so tie the debug info to the
18117 start of the instruction. */
18118 dwarf2_emit_insn (0);
18119
18120 switch (inst.relocs[0].exp.X_op)
18121 {
18122 case O_symbol:
18123 sym = inst.relocs[0].exp.X_add_symbol;
18124 offset = inst.relocs[0].exp.X_add_number;
18125 break;
18126 case O_constant:
18127 sym = NULL;
18128 offset = inst.relocs[0].exp.X_add_number;
18129 break;
18130 default:
18131 sym = make_expr_symbol (&inst.relocs[0].exp);
18132 offset = 0;
18133 break;
18134 }
18135 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
18136 inst.relax, sym, offset, NULL/*offset, opcode*/);
18137 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
18138 }
18139
18140 /* Write a 32-bit thumb instruction to buf. */
18141 static void
18142 put_thumb32_insn (char * buf, unsigned long insn)
18143 {
18144 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
18145 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
18146 }
18147
18148 static void
18149 output_inst (const char * str)
18150 {
18151 char * to = NULL;
18152
18153 if (inst.error)
18154 {
18155 as_bad ("%s -- `%s'", inst.error, str);
18156 return;
18157 }
18158 if (inst.relax)
18159 {
18160 output_relax_insn ();
18161 return;
18162 }
18163 if (inst.size == 0)
18164 return;
18165
18166 to = frag_more (inst.size);
18167 /* PR 9814: Record the thumb mode into the current frag so that we know
18168 what type of NOP padding to use, if necessary. We override any previous
18169 setting so that if the mode has changed then the NOPS that we use will
18170 match the encoding of the last instruction in the frag. */
18171 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18172
18173 if (thumb_mode && (inst.size > THUMB_SIZE))
18174 {
18175 gas_assert (inst.size == (2 * THUMB_SIZE));
18176 put_thumb32_insn (to, inst.instruction);
18177 }
18178 else if (inst.size > INSN_SIZE)
18179 {
18180 gas_assert (inst.size == (2 * INSN_SIZE));
18181 md_number_to_chars (to, inst.instruction, INSN_SIZE);
18182 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
18183 }
18184 else
18185 md_number_to_chars (to, inst.instruction, inst.size);
18186
18187 int r;
18188 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18189 {
18190 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
18191 fix_new_arm (frag_now, to - frag_now->fr_literal,
18192 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
18193 inst.relocs[r].type);
18194 }
18195
18196 dwarf2_emit_insn (inst.size);
18197 }
18198
18199 static char *
18200 output_it_inst (int cond, int mask, char * to)
18201 {
18202 unsigned long instruction = 0xbf00;
18203
18204 mask &= 0xf;
18205 instruction |= mask;
18206 instruction |= cond << 4;
18207
18208 if (to == NULL)
18209 {
18210 to = frag_more (2);
18211 #ifdef OBJ_ELF
18212 dwarf2_emit_insn (2);
18213 #endif
18214 }
18215
18216 md_number_to_chars (to, instruction, 2);
18217
18218 return to;
18219 }
18220
18221 /* Tag values used in struct asm_opcode's tag field. */
18222 enum opcode_tag
18223 {
18224 OT_unconditional, /* Instruction cannot be conditionalized.
18225 The ARM condition field is still 0xE. */
18226 OT_unconditionalF, /* Instruction cannot be conditionalized
18227 and carries 0xF in its ARM condition field. */
18228 OT_csuffix, /* Instruction takes a conditional suffix. */
18229 OT_csuffixF, /* Some forms of the instruction take a conditional
18230 suffix, others place 0xF where the condition field
18231 would be. */
18232 OT_cinfix3, /* Instruction takes a conditional infix,
18233 beginning at character index 3. (In
18234 unified mode, it becomes a suffix.) */
18235 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18236 tsts, cmps, cmns, and teqs. */
18237 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18238 character index 3, even in unified mode. Used for
18239 legacy instructions where suffix and infix forms
18240 may be ambiguous. */
18241 OT_csuf_or_in3, /* Instruction takes either a conditional
18242 suffix or an infix at character index 3. */
18243 OT_odd_infix_unc, /* This is the unconditional variant of an
18244 instruction that takes a conditional infix
18245 at an unusual position. In unified mode,
18246 this variant will accept a suffix. */
18247 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18248 are the conditional variants of instructions that
18249 take conditional infixes in unusual positions.
18250 The infix appears at character index
18251 (tag - OT_odd_infix_0). These are not accepted
18252 in unified mode. */
18253 };
18254
18255 /* Subroutine of md_assemble, responsible for looking up the primary
18256 opcode from the mnemonic the user wrote. STR points to the
18257 beginning of the mnemonic.
18258
18259 This is not simply a hash table lookup, because of conditional
18260 variants. Most instructions have conditional variants, which are
18261 expressed with a _conditional affix_ to the mnemonic. If we were
18262 to encode each conditional variant as a literal string in the opcode
18263 table, it would have approximately 20,000 entries.
18264
18265 Most mnemonics take this affix as a suffix, and in unified syntax,
18266 'most' is upgraded to 'all'. However, in the divided syntax, some
18267 instructions take the affix as an infix, notably the s-variants of
18268 the arithmetic instructions. Of those instructions, all but six
18269 have the infix appear after the third character of the mnemonic.
18270
18271 Accordingly, the algorithm for looking up primary opcodes given
18272 an identifier is:
18273
18274 1. Look up the identifier in the opcode table.
18275 If we find a match, go to step U.
18276
18277 2. Look up the last two characters of the identifier in the
18278 conditions table. If we find a match, look up the first N-2
18279 characters of the identifier in the opcode table. If we
18280 find a match, go to step CE.
18281
18282 3. Look up the fourth and fifth characters of the identifier in
18283 the conditions table. If we find a match, extract those
18284 characters from the identifier, and look up the remaining
18285 characters in the opcode table. If we find a match, go
18286 to step CM.
18287
18288 4. Fail.
18289
18290 U. Examine the tag field of the opcode structure, in case this is
18291 one of the six instructions with its conditional infix in an
18292 unusual place. If it is, the tag tells us where to find the
18293 infix; look it up in the conditions table and set inst.cond
18294 accordingly. Otherwise, this is an unconditional instruction.
18295 Again set inst.cond accordingly. Return the opcode structure.
18296
18297 CE. Examine the tag field to make sure this is an instruction that
18298 should receive a conditional suffix. If it is not, fail.
18299 Otherwise, set inst.cond from the suffix we already looked up,
18300 and return the opcode structure.
18301
18302 CM. Examine the tag field to make sure this is an instruction that
18303 should receive a conditional infix after the third character.
18304 If it is not, fail. Otherwise, undo the edits to the current
18305 line of input and proceed as for case CE. */
18306
18307 static const struct asm_opcode *
18308 opcode_lookup (char **str)
18309 {
18310 char *end, *base;
18311 char *affix;
18312 const struct asm_opcode *opcode;
18313 const struct asm_cond *cond;
18314 char save[2];
18315
18316 /* Scan up to the end of the mnemonic, which must end in white space,
18317 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
18318 for (base = end = *str; *end != '\0'; end++)
18319 if (*end == ' ' || *end == '.')
18320 break;
18321
18322 if (end == base)
18323 return NULL;
18324
18325 /* Handle a possible width suffix and/or Neon type suffix. */
18326 if (end[0] == '.')
18327 {
18328 int offset = 2;
18329
18330 /* The .w and .n suffixes are only valid if the unified syntax is in
18331 use. */
18332 if (unified_syntax && end[1] == 'w')
18333 inst.size_req = 4;
18334 else if (unified_syntax && end[1] == 'n')
18335 inst.size_req = 2;
18336 else
18337 offset = 0;
18338
18339 inst.vectype.elems = 0;
18340
18341 *str = end + offset;
18342
18343 if (end[offset] == '.')
18344 {
18345 /* See if we have a Neon type suffix (possible in either unified or
18346 non-unified ARM syntax mode). */
18347 if (parse_neon_type (&inst.vectype, str) == FAIL)
18348 return NULL;
18349 }
18350 else if (end[offset] != '\0' && end[offset] != ' ')
18351 return NULL;
18352 }
18353 else
18354 *str = end;
18355
18356 /* Look for unaffixed or special-case affixed mnemonic. */
18357 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18358 end - base);
18359 if (opcode)
18360 {
18361 /* step U */
18362 if (opcode->tag < OT_odd_infix_0)
18363 {
18364 inst.cond = COND_ALWAYS;
18365 return opcode;
18366 }
18367
18368 if (warn_on_deprecated && unified_syntax)
18369 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18370 affix = base + (opcode->tag - OT_odd_infix_0);
18371 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18372 gas_assert (cond);
18373
18374 inst.cond = cond->value;
18375 return opcode;
18376 }
18377
18378 /* Cannot have a conditional suffix on a mnemonic of less than two
18379 characters. */
18380 if (end - base < 3)
18381 return NULL;
18382
18383 /* Look for suffixed mnemonic. */
18384 affix = end - 2;
18385 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18386 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18387 affix - base);
18388 if (opcode && cond)
18389 {
18390 /* step CE */
18391 switch (opcode->tag)
18392 {
18393 case OT_cinfix3_legacy:
18394 /* Ignore conditional suffixes matched on infix only mnemonics. */
18395 break;
18396
18397 case OT_cinfix3:
18398 case OT_cinfix3_deprecated:
18399 case OT_odd_infix_unc:
18400 if (!unified_syntax)
18401 return NULL;
18402 /* Fall through. */
18403
18404 case OT_csuffix:
18405 case OT_csuffixF:
18406 case OT_csuf_or_in3:
18407 inst.cond = cond->value;
18408 return opcode;
18409
18410 case OT_unconditional:
18411 case OT_unconditionalF:
18412 if (thumb_mode)
18413 inst.cond = cond->value;
18414 else
18415 {
18416 /* Delayed diagnostic. */
18417 inst.error = BAD_COND;
18418 inst.cond = COND_ALWAYS;
18419 }
18420 return opcode;
18421
18422 default:
18423 return NULL;
18424 }
18425 }
18426
18427 /* Cannot have a usual-position infix on a mnemonic of less than
18428 six characters (five would be a suffix). */
18429 if (end - base < 6)
18430 return NULL;
18431
18432 /* Look for infixed mnemonic in the usual position. */
18433 affix = base + 3;
18434 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18435 if (!cond)
18436 return NULL;
18437
18438 memcpy (save, affix, 2);
18439 memmove (affix, affix + 2, (end - affix) - 2);
18440 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18441 (end - base) - 2);
18442 memmove (affix + 2, affix, (end - affix) - 2);
18443 memcpy (affix, save, 2);
18444
18445 if (opcode
18446 && (opcode->tag == OT_cinfix3
18447 || opcode->tag == OT_cinfix3_deprecated
18448 || opcode->tag == OT_csuf_or_in3
18449 || opcode->tag == OT_cinfix3_legacy))
18450 {
18451 /* Step CM. */
18452 if (warn_on_deprecated && unified_syntax
18453 && (opcode->tag == OT_cinfix3
18454 || opcode->tag == OT_cinfix3_deprecated))
18455 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18456
18457 inst.cond = cond->value;
18458 return opcode;
18459 }
18460
18461 return NULL;
18462 }
18463
18464 /* This function generates an initial IT instruction, leaving its block
18465 virtually open for the new instructions. Eventually,
18466 the mask will be updated by now_it_add_mask () each time
18467 a new instruction needs to be included in the IT block.
18468 Finally, the block is closed with close_automatic_it_block ().
18469 The block closure can be requested either from md_assemble (),
18470 a tencode (), or due to a label hook. */
18471
18472 static void
18473 new_automatic_it_block (int cond)
18474 {
18475 now_it.state = AUTOMATIC_IT_BLOCK;
18476 now_it.mask = 0x18;
18477 now_it.cc = cond;
18478 now_it.block_length = 1;
18479 mapping_state (MAP_THUMB);
18480 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
18481 now_it.warn_deprecated = FALSE;
18482 now_it.insn_cond = TRUE;
18483 }
18484
18485 /* Close an automatic IT block.
18486 See comments in new_automatic_it_block (). */
18487
18488 static void
18489 close_automatic_it_block (void)
18490 {
18491 now_it.mask = 0x10;
18492 now_it.block_length = 0;
18493 }
18494
18495 /* Update the mask of the current automatically-generated IT
18496 instruction. See comments in new_automatic_it_block (). */
18497
18498 static void
18499 now_it_add_mask (int cond)
18500 {
18501 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18502 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
18503 | ((bitvalue) << (nbit)))
18504 const int resulting_bit = (cond & 1);
18505
18506 now_it.mask &= 0xf;
18507 now_it.mask = SET_BIT_VALUE (now_it.mask,
18508 resulting_bit,
18509 (5 - now_it.block_length));
18510 now_it.mask = SET_BIT_VALUE (now_it.mask,
18511 1,
18512 ((5 - now_it.block_length) - 1) );
18513 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18514
18515 #undef CLEAR_BIT
18516 #undef SET_BIT_VALUE
18517 }
18518
18519 /* The IT blocks handling machinery is accessed through the these functions:
18520 it_fsm_pre_encode () from md_assemble ()
18521 set_it_insn_type () optional, from the tencode functions
18522 set_it_insn_type_last () ditto
18523 in_it_block () ditto
18524 it_fsm_post_encode () from md_assemble ()
18525 force_automatic_it_block_close () from label handling functions
18526
18527 Rationale:
18528 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
18529 initializing the IT insn type with a generic initial value depending
18530 on the inst.condition.
18531 2) During the tencode function, two things may happen:
18532 a) The tencode function overrides the IT insn type by
18533 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18534 b) The tencode function queries the IT block state by
18535 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18536
18537 Both set_it_insn_type and in_it_block run the internal FSM state
18538 handling function (handle_it_state), because: a) setting the IT insn
18539 type may incur in an invalid state (exiting the function),
18540 and b) querying the state requires the FSM to be updated.
18541 Specifically we want to avoid creating an IT block for conditional
18542 branches, so it_fsm_pre_encode is actually a guess and we can't
18543 determine whether an IT block is required until the tencode () routine
18544 has decided what type of instruction this actually it.
18545 Because of this, if set_it_insn_type and in_it_block have to be used,
18546 set_it_insn_type has to be called first.
18547
18548 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18549 determines the insn IT type depending on the inst.cond code.
18550 When a tencode () routine encodes an instruction that can be
18551 either outside an IT block, or, in the case of being inside, has to be
18552 the last one, set_it_insn_type_last () will determine the proper
18553 IT instruction type based on the inst.cond code. Otherwise,
18554 set_it_insn_type can be called for overriding that logic or
18555 for covering other cases.
18556
18557 Calling handle_it_state () may not transition the IT block state to
18558 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
18559 still queried. Instead, if the FSM determines that the state should
18560 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18561 after the tencode () function: that's what it_fsm_post_encode () does.
18562
18563 Since in_it_block () calls the state handling function to get an
18564 updated state, an error may occur (due to invalid insns combination).
18565 In that case, inst.error is set.
18566 Therefore, inst.error has to be checked after the execution of
18567 the tencode () routine.
18568
18569 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
18570 any pending state change (if any) that didn't take place in
18571 handle_it_state () as explained above. */
18572
18573 static void
18574 it_fsm_pre_encode (void)
18575 {
18576 if (inst.cond != COND_ALWAYS)
18577 inst.it_insn_type = INSIDE_IT_INSN;
18578 else
18579 inst.it_insn_type = OUTSIDE_IT_INSN;
18580
18581 now_it.state_handled = 0;
18582 }
18583
18584 /* IT state FSM handling function. */
18585
18586 static int
18587 handle_it_state (void)
18588 {
18589 now_it.state_handled = 1;
18590 now_it.insn_cond = FALSE;
18591
18592 switch (now_it.state)
18593 {
18594 case OUTSIDE_IT_BLOCK:
18595 switch (inst.it_insn_type)
18596 {
18597 case OUTSIDE_IT_INSN:
18598 break;
18599
18600 case INSIDE_IT_INSN:
18601 case INSIDE_IT_LAST_INSN:
18602 if (thumb_mode == 0)
18603 {
18604 if (unified_syntax
18605 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18606 as_tsktsk (_("Warning: conditional outside an IT block"\
18607 " for Thumb."));
18608 }
18609 else
18610 {
18611 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
18612 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
18613 {
18614 /* Automatically generate the IT instruction. */
18615 new_automatic_it_block (inst.cond);
18616 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18617 close_automatic_it_block ();
18618 }
18619 else
18620 {
18621 inst.error = BAD_OUT_IT;
18622 return FAIL;
18623 }
18624 }
18625 break;
18626
18627 case IF_INSIDE_IT_LAST_INSN:
18628 case NEUTRAL_IT_INSN:
18629 break;
18630
18631 case IT_INSN:
18632 now_it.state = MANUAL_IT_BLOCK;
18633 now_it.block_length = 0;
18634 break;
18635 }
18636 break;
18637
18638 case AUTOMATIC_IT_BLOCK:
18639 /* Three things may happen now:
18640 a) We should increment current it block size;
18641 b) We should close current it block (closing insn or 4 insns);
18642 c) We should close current it block and start a new one (due
18643 to incompatible conditions or
18644 4 insns-length block reached). */
18645
18646 switch (inst.it_insn_type)
18647 {
18648 case OUTSIDE_IT_INSN:
18649 /* The closure of the block shall happen immediately,
18650 so any in_it_block () call reports the block as closed. */
18651 force_automatic_it_block_close ();
18652 break;
18653
18654 case INSIDE_IT_INSN:
18655 case INSIDE_IT_LAST_INSN:
18656 case IF_INSIDE_IT_LAST_INSN:
18657 now_it.block_length++;
18658
18659 if (now_it.block_length > 4
18660 || !now_it_compatible (inst.cond))
18661 {
18662 force_automatic_it_block_close ();
18663 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18664 new_automatic_it_block (inst.cond);
18665 }
18666 else
18667 {
18668 now_it.insn_cond = TRUE;
18669 now_it_add_mask (inst.cond);
18670 }
18671
18672 if (now_it.state == AUTOMATIC_IT_BLOCK
18673 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18674 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18675 close_automatic_it_block ();
18676 break;
18677
18678 case NEUTRAL_IT_INSN:
18679 now_it.block_length++;
18680 now_it.insn_cond = TRUE;
18681
18682 if (now_it.block_length > 4)
18683 force_automatic_it_block_close ();
18684 else
18685 now_it_add_mask (now_it.cc & 1);
18686 break;
18687
18688 case IT_INSN:
18689 close_automatic_it_block ();
18690 now_it.state = MANUAL_IT_BLOCK;
18691 break;
18692 }
18693 break;
18694
18695 case MANUAL_IT_BLOCK:
18696 {
18697 /* Check conditional suffixes. */
18698 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18699 int is_last;
18700 now_it.mask <<= 1;
18701 now_it.mask &= 0x1f;
18702 is_last = (now_it.mask == 0x10);
18703 now_it.insn_cond = TRUE;
18704
18705 switch (inst.it_insn_type)
18706 {
18707 case OUTSIDE_IT_INSN:
18708 inst.error = BAD_NOT_IT;
18709 return FAIL;
18710
18711 case INSIDE_IT_INSN:
18712 if (cond != inst.cond)
18713 {
18714 inst.error = BAD_IT_COND;
18715 return FAIL;
18716 }
18717 break;
18718
18719 case INSIDE_IT_LAST_INSN:
18720 case IF_INSIDE_IT_LAST_INSN:
18721 if (cond != inst.cond)
18722 {
18723 inst.error = BAD_IT_COND;
18724 return FAIL;
18725 }
18726 if (!is_last)
18727 {
18728 inst.error = BAD_BRANCH;
18729 return FAIL;
18730 }
18731 break;
18732
18733 case NEUTRAL_IT_INSN:
18734 /* The BKPT instruction is unconditional even in an IT block. */
18735 break;
18736
18737 case IT_INSN:
18738 inst.error = BAD_IT_IT;
18739 return FAIL;
18740 }
18741 }
18742 break;
18743 }
18744
18745 return SUCCESS;
18746 }
18747
18748 struct depr_insn_mask
18749 {
18750 unsigned long pattern;
18751 unsigned long mask;
18752 const char* description;
18753 };
18754
18755 /* List of 16-bit instruction patterns deprecated in an IT block in
18756 ARMv8. */
18757 static const struct depr_insn_mask depr_it_insns[] = {
18758 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18759 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18760 { 0xa000, 0xb800, N_("ADR") },
18761 { 0x4800, 0xf800, N_("Literal loads") },
18762 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18763 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
18764 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18765 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18766 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
18767 { 0, 0, NULL }
18768 };
18769
18770 static void
18771 it_fsm_post_encode (void)
18772 {
18773 int is_last;
18774
18775 if (!now_it.state_handled)
18776 handle_it_state ();
18777
18778 if (now_it.insn_cond
18779 && !now_it.warn_deprecated
18780 && warn_on_deprecated
18781 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
18782 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
18783 {
18784 if (inst.instruction >= 0x10000)
18785 {
18786 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
18787 "performance deprecated in ARMv8-A and ARMv8-R"));
18788 now_it.warn_deprecated = TRUE;
18789 }
18790 else
18791 {
18792 const struct depr_insn_mask *p = depr_it_insns;
18793
18794 while (p->mask != 0)
18795 {
18796 if ((inst.instruction & p->mask) == p->pattern)
18797 {
18798 as_tsktsk (_("IT blocks containing 16-bit Thumb "
18799 "instructions of the following class are "
18800 "performance deprecated in ARMv8-A and "
18801 "ARMv8-R: %s"), p->description);
18802 now_it.warn_deprecated = TRUE;
18803 break;
18804 }
18805
18806 ++p;
18807 }
18808 }
18809
18810 if (now_it.block_length > 1)
18811 {
18812 as_tsktsk (_("IT blocks containing more than one conditional "
18813 "instruction are performance deprecated in ARMv8-A and "
18814 "ARMv8-R"));
18815 now_it.warn_deprecated = TRUE;
18816 }
18817 }
18818
18819 is_last = (now_it.mask == 0x10);
18820 if (is_last)
18821 {
18822 now_it.state = OUTSIDE_IT_BLOCK;
18823 now_it.mask = 0;
18824 }
18825 }
18826
18827 static void
18828 force_automatic_it_block_close (void)
18829 {
18830 if (now_it.state == AUTOMATIC_IT_BLOCK)
18831 {
18832 close_automatic_it_block ();
18833 now_it.state = OUTSIDE_IT_BLOCK;
18834 now_it.mask = 0;
18835 }
18836 }
18837
18838 static int
18839 in_it_block (void)
18840 {
18841 if (!now_it.state_handled)
18842 handle_it_state ();
18843
18844 return now_it.state != OUTSIDE_IT_BLOCK;
18845 }
18846
18847 /* Whether OPCODE only has T32 encoding. Since this function is only used by
18848 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18849 here, hence the "known" in the function name. */
18850
18851 static bfd_boolean
18852 known_t32_only_insn (const struct asm_opcode *opcode)
18853 {
18854 /* Original Thumb-1 wide instruction. */
18855 if (opcode->tencode == do_t_blx
18856 || opcode->tencode == do_t_branch23
18857 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18858 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18859 return TRUE;
18860
18861 /* Wide-only instruction added to ARMv8-M Baseline. */
18862 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
18863 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18864 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18865 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18866 return TRUE;
18867
18868 return FALSE;
18869 }
18870
18871 /* Whether wide instruction variant can be used if available for a valid OPCODE
18872 in ARCH. */
18873
18874 static bfd_boolean
18875 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18876 {
18877 if (known_t32_only_insn (opcode))
18878 return TRUE;
18879
18880 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18881 of variant T3 of B.W is checked in do_t_branch. */
18882 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18883 && opcode->tencode == do_t_branch)
18884 return TRUE;
18885
18886 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18887 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18888 && opcode->tencode == do_t_mov_cmp
18889 /* Make sure CMP instruction is not affected. */
18890 && opcode->aencode == do_mov)
18891 return TRUE;
18892
18893 /* Wide instruction variants of all instructions with narrow *and* wide
18894 variants become available with ARMv6t2. Other opcodes are either
18895 narrow-only or wide-only and are thus available if OPCODE is valid. */
18896 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18897 return TRUE;
18898
18899 /* OPCODE with narrow only instruction variant or wide variant not
18900 available. */
18901 return FALSE;
18902 }
18903
18904 void
18905 md_assemble (char *str)
18906 {
18907 char *p = str;
18908 const struct asm_opcode * opcode;
18909
18910 /* Align the previous label if needed. */
18911 if (last_label_seen != NULL)
18912 {
18913 symbol_set_frag (last_label_seen, frag_now);
18914 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18915 S_SET_SEGMENT (last_label_seen, now_seg);
18916 }
18917
18918 memset (&inst, '\0', sizeof (inst));
18919 int r;
18920 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18921 inst.relocs[r].type = BFD_RELOC_UNUSED;
18922
18923 opcode = opcode_lookup (&p);
18924 if (!opcode)
18925 {
18926 /* It wasn't an instruction, but it might be a register alias of
18927 the form alias .req reg, or a Neon .dn/.qn directive. */
18928 if (! create_register_alias (str, p)
18929 && ! create_neon_reg_alias (str, p))
18930 as_bad (_("bad instruction `%s'"), str);
18931
18932 return;
18933 }
18934
18935 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
18936 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
18937
18938 /* The value which unconditional instructions should have in place of the
18939 condition field. */
18940 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18941
18942 if (thumb_mode)
18943 {
18944 arm_feature_set variant;
18945
18946 variant = cpu_variant;
18947 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
18948 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18949 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
18950 /* Check that this instruction is supported for this CPU. */
18951 if (!opcode->tvariant
18952 || (thumb_mode == 1
18953 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
18954 {
18955 if (opcode->tencode == do_t_swi)
18956 as_bad (_("SVC is not permitted on this architecture"));
18957 else
18958 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
18959 return;
18960 }
18961 if (inst.cond != COND_ALWAYS && !unified_syntax
18962 && opcode->tencode != do_t_branch)
18963 {
18964 as_bad (_("Thumb does not support conditional execution"));
18965 return;
18966 }
18967
18968 /* Two things are addressed here:
18969 1) Implicit require narrow instructions on Thumb-1.
18970 This avoids relaxation accidentally introducing Thumb-2
18971 instructions.
18972 2) Reject wide instructions in non Thumb-2 cores.
18973
18974 Only instructions with narrow and wide variants need to be handled
18975 but selecting all non wide-only instructions is easier. */
18976 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
18977 && !t32_insn_ok (variant, opcode))
18978 {
18979 if (inst.size_req == 0)
18980 inst.size_req = 2;
18981 else if (inst.size_req == 4)
18982 {
18983 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18984 as_bad (_("selected processor does not support 32bit wide "
18985 "variant of instruction `%s'"), str);
18986 else
18987 as_bad (_("selected processor does not support `%s' in "
18988 "Thumb-2 mode"), str);
18989 return;
18990 }
18991 }
18992
18993 inst.instruction = opcode->tvalue;
18994
18995 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
18996 {
18997 /* Prepare the it_insn_type for those encodings that don't set
18998 it. */
18999 it_fsm_pre_encode ();
19000
19001 opcode->tencode ();
19002
19003 it_fsm_post_encode ();
19004 }
19005
19006 if (!(inst.error || inst.relax))
19007 {
19008 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
19009 inst.size = (inst.instruction > 0xffff ? 4 : 2);
19010 if (inst.size_req && inst.size_req != inst.size)
19011 {
19012 as_bad (_("cannot honor width suffix -- `%s'"), str);
19013 return;
19014 }
19015 }
19016
19017 /* Something has gone badly wrong if we try to relax a fixed size
19018 instruction. */
19019 gas_assert (inst.size_req == 0 || !inst.relax);
19020
19021 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
19022 *opcode->tvariant);
19023 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
19024 set those bits when Thumb-2 32-bit instructions are seen. The impact
19025 of relaxable instructions will be considered later after we finish all
19026 relaxation. */
19027 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
19028 variant = arm_arch_none;
19029 else
19030 variant = cpu_variant;
19031 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
19032 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
19033 arm_ext_v6t2);
19034
19035 check_neon_suffixes;
19036
19037 if (!inst.error)
19038 {
19039 mapping_state (MAP_THUMB);
19040 }
19041 }
19042 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19043 {
19044 bfd_boolean is_bx;
19045
19046 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
19047 is_bx = (opcode->aencode == do_bx);
19048
19049 /* Check that this instruction is supported for this CPU. */
19050 if (!(is_bx && fix_v4bx)
19051 && !(opcode->avariant &&
19052 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
19053 {
19054 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
19055 return;
19056 }
19057 if (inst.size_req)
19058 {
19059 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
19060 return;
19061 }
19062
19063 inst.instruction = opcode->avalue;
19064 if (opcode->tag == OT_unconditionalF)
19065 inst.instruction |= 0xFU << 28;
19066 else
19067 inst.instruction |= inst.cond << 28;
19068 inst.size = INSN_SIZE;
19069 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
19070 {
19071 it_fsm_pre_encode ();
19072 opcode->aencode ();
19073 it_fsm_post_encode ();
19074 }
19075 /* Arm mode bx is marked as both v4T and v5 because it's still required
19076 on a hypothetical non-thumb v5 core. */
19077 if (is_bx)
19078 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
19079 else
19080 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
19081 *opcode->avariant);
19082
19083 check_neon_suffixes;
19084
19085 if (!inst.error)
19086 {
19087 mapping_state (MAP_ARM);
19088 }
19089 }
19090 else
19091 {
19092 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
19093 "-- `%s'"), str);
19094 return;
19095 }
19096 output_inst (str);
19097 }
19098
19099 static void
19100 check_it_blocks_finished (void)
19101 {
19102 #ifdef OBJ_ELF
19103 asection *sect;
19104
19105 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
19106 if (seg_info (sect)->tc_segment_info_data.current_it.state
19107 == MANUAL_IT_BLOCK)
19108 {
19109 as_warn (_("section '%s' finished with an open IT block."),
19110 sect->name);
19111 }
19112 #else
19113 if (now_it.state == MANUAL_IT_BLOCK)
19114 as_warn (_("file finished with an open IT block."));
19115 #endif
19116 }
19117
19118 /* Various frobbings of labels and their addresses. */
19119
19120 void
19121 arm_start_line_hook (void)
19122 {
19123 last_label_seen = NULL;
19124 }
19125
19126 void
19127 arm_frob_label (symbolS * sym)
19128 {
19129 last_label_seen = sym;
19130
19131 ARM_SET_THUMB (sym, thumb_mode);
19132
19133 #if defined OBJ_COFF || defined OBJ_ELF
19134 ARM_SET_INTERWORK (sym, support_interwork);
19135 #endif
19136
19137 force_automatic_it_block_close ();
19138
19139 /* Note - do not allow local symbols (.Lxxx) to be labelled
19140 as Thumb functions. This is because these labels, whilst
19141 they exist inside Thumb code, are not the entry points for
19142 possible ARM->Thumb calls. Also, these labels can be used
19143 as part of a computed goto or switch statement. eg gcc
19144 can generate code that looks like this:
19145
19146 ldr r2, [pc, .Laaa]
19147 lsl r3, r3, #2
19148 ldr r2, [r3, r2]
19149 mov pc, r2
19150
19151 .Lbbb: .word .Lxxx
19152 .Lccc: .word .Lyyy
19153 ..etc...
19154 .Laaa: .word Lbbb
19155
19156 The first instruction loads the address of the jump table.
19157 The second instruction converts a table index into a byte offset.
19158 The third instruction gets the jump address out of the table.
19159 The fourth instruction performs the jump.
19160
19161 If the address stored at .Laaa is that of a symbol which has the
19162 Thumb_Func bit set, then the linker will arrange for this address
19163 to have the bottom bit set, which in turn would mean that the
19164 address computation performed by the third instruction would end
19165 up with the bottom bit set. Since the ARM is capable of unaligned
19166 word loads, the instruction would then load the incorrect address
19167 out of the jump table, and chaos would ensue. */
19168 if (label_is_thumb_function_name
19169 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
19170 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
19171 {
19172 /* When the address of a Thumb function is taken the bottom
19173 bit of that address should be set. This will allow
19174 interworking between Arm and Thumb functions to work
19175 correctly. */
19176
19177 THUMB_SET_FUNC (sym, 1);
19178
19179 label_is_thumb_function_name = FALSE;
19180 }
19181
19182 dwarf2_emit_label (sym);
19183 }
19184
19185 bfd_boolean
19186 arm_data_in_code (void)
19187 {
19188 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
19189 {
19190 *input_line_pointer = '/';
19191 input_line_pointer += 5;
19192 *input_line_pointer = 0;
19193 return TRUE;
19194 }
19195
19196 return FALSE;
19197 }
19198
19199 char *
19200 arm_canonicalize_symbol_name (char * name)
19201 {
19202 int len;
19203
19204 if (thumb_mode && (len = strlen (name)) > 5
19205 && streq (name + len - 5, "/data"))
19206 *(name + len - 5) = 0;
19207
19208 return name;
19209 }
19210 \f
19211 /* Table of all register names defined by default. The user can
19212 define additional names with .req. Note that all register names
19213 should appear in both upper and lowercase variants. Some registers
19214 also have mixed-case names. */
19215
19216 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
19217 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
19218 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
19219 #define REGSET(p,t) \
19220 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
19221 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
19222 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
19223 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
19224 #define REGSETH(p,t) \
19225 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19226 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19227 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19228 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19229 #define REGSET2(p,t) \
19230 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19231 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19232 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19233 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
19234 #define SPLRBANK(base,bank,t) \
19235 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19236 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19237 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19238 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19239 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19240 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
19241
19242 static const struct reg_entry reg_names[] =
19243 {
19244 /* ARM integer registers. */
19245 REGSET(r, RN), REGSET(R, RN),
19246
19247 /* ATPCS synonyms. */
19248 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19249 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19250 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
19251
19252 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19253 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19254 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
19255
19256 /* Well-known aliases. */
19257 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19258 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19259
19260 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19261 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19262
19263 /* Coprocessor numbers. */
19264 REGSET(p, CP), REGSET(P, CP),
19265
19266 /* Coprocessor register numbers. The "cr" variants are for backward
19267 compatibility. */
19268 REGSET(c, CN), REGSET(C, CN),
19269 REGSET(cr, CN), REGSET(CR, CN),
19270
19271 /* ARM banked registers. */
19272 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19273 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19274 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19275 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19276 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19277 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19278 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19279
19280 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19281 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19282 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19283 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19284 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
19285 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
19286 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19287 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19288
19289 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19290 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19291 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19292 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19293 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19294 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19295 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
19296 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
19297 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19298
19299 /* FPA registers. */
19300 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19301 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19302
19303 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19304 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19305
19306 /* VFP SP registers. */
19307 REGSET(s,VFS), REGSET(S,VFS),
19308 REGSETH(s,VFS), REGSETH(S,VFS),
19309
19310 /* VFP DP Registers. */
19311 REGSET(d,VFD), REGSET(D,VFD),
19312 /* Extra Neon DP registers. */
19313 REGSETH(d,VFD), REGSETH(D,VFD),
19314
19315 /* Neon QP registers. */
19316 REGSET2(q,NQ), REGSET2(Q,NQ),
19317
19318 /* VFP control registers. */
19319 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19320 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
19321 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19322 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19323 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19324 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
19325 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
19326
19327 /* Maverick DSP coprocessor registers. */
19328 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19329 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19330
19331 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19332 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19333 REGDEF(dspsc,0,DSPSC),
19334
19335 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19336 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19337 REGDEF(DSPSC,0,DSPSC),
19338
19339 /* iWMMXt data registers - p0, c0-15. */
19340 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19341
19342 /* iWMMXt control registers - p1, c0-3. */
19343 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19344 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19345 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19346 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19347
19348 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19349 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19350 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19351 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19352 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19353
19354 /* XScale accumulator registers. */
19355 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19356 };
19357 #undef REGDEF
19358 #undef REGNUM
19359 #undef REGSET
19360
19361 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19362 within psr_required_here. */
19363 static const struct asm_psr psrs[] =
19364 {
19365 /* Backward compatibility notation. Note that "all" is no longer
19366 truly all possible PSR bits. */
19367 {"all", PSR_c | PSR_f},
19368 {"flg", PSR_f},
19369 {"ctl", PSR_c},
19370
19371 /* Individual flags. */
19372 {"f", PSR_f},
19373 {"c", PSR_c},
19374 {"x", PSR_x},
19375 {"s", PSR_s},
19376
19377 /* Combinations of flags. */
19378 {"fs", PSR_f | PSR_s},
19379 {"fx", PSR_f | PSR_x},
19380 {"fc", PSR_f | PSR_c},
19381 {"sf", PSR_s | PSR_f},
19382 {"sx", PSR_s | PSR_x},
19383 {"sc", PSR_s | PSR_c},
19384 {"xf", PSR_x | PSR_f},
19385 {"xs", PSR_x | PSR_s},
19386 {"xc", PSR_x | PSR_c},
19387 {"cf", PSR_c | PSR_f},
19388 {"cs", PSR_c | PSR_s},
19389 {"cx", PSR_c | PSR_x},
19390 {"fsx", PSR_f | PSR_s | PSR_x},
19391 {"fsc", PSR_f | PSR_s | PSR_c},
19392 {"fxs", PSR_f | PSR_x | PSR_s},
19393 {"fxc", PSR_f | PSR_x | PSR_c},
19394 {"fcs", PSR_f | PSR_c | PSR_s},
19395 {"fcx", PSR_f | PSR_c | PSR_x},
19396 {"sfx", PSR_s | PSR_f | PSR_x},
19397 {"sfc", PSR_s | PSR_f | PSR_c},
19398 {"sxf", PSR_s | PSR_x | PSR_f},
19399 {"sxc", PSR_s | PSR_x | PSR_c},
19400 {"scf", PSR_s | PSR_c | PSR_f},
19401 {"scx", PSR_s | PSR_c | PSR_x},
19402 {"xfs", PSR_x | PSR_f | PSR_s},
19403 {"xfc", PSR_x | PSR_f | PSR_c},
19404 {"xsf", PSR_x | PSR_s | PSR_f},
19405 {"xsc", PSR_x | PSR_s | PSR_c},
19406 {"xcf", PSR_x | PSR_c | PSR_f},
19407 {"xcs", PSR_x | PSR_c | PSR_s},
19408 {"cfs", PSR_c | PSR_f | PSR_s},
19409 {"cfx", PSR_c | PSR_f | PSR_x},
19410 {"csf", PSR_c | PSR_s | PSR_f},
19411 {"csx", PSR_c | PSR_s | PSR_x},
19412 {"cxf", PSR_c | PSR_x | PSR_f},
19413 {"cxs", PSR_c | PSR_x | PSR_s},
19414 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19415 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19416 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19417 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19418 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19419 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19420 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19421 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19422 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19423 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19424 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19425 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19426 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19427 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19428 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19429 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19430 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19431 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19432 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19433 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19434 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19435 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19436 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19437 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19438 };
19439
19440 /* Table of V7M psr names. */
19441 static const struct asm_psr v7m_psrs[] =
19442 {
19443 {"apsr", 0x0 }, {"APSR", 0x0 },
19444 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19445 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19446 {"psr", 0x3 }, {"PSR", 0x3 },
19447 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19448 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19449 {"epsr", 0x6 }, {"EPSR", 0x6 },
19450 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19451 {"msp", 0x8 }, {"MSP", 0x8 },
19452 {"psp", 0x9 }, {"PSP", 0x9 },
19453 {"msplim", 0xa }, {"MSPLIM", 0xa },
19454 {"psplim", 0xb }, {"PSPLIM", 0xb },
19455 {"primask", 0x10}, {"PRIMASK", 0x10},
19456 {"basepri", 0x11}, {"BASEPRI", 0x11},
19457 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
19458 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19459 {"control", 0x14}, {"CONTROL", 0x14},
19460 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19461 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19462 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19463 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19464 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19465 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19466 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19467 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19468 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
19469 };
19470
19471 /* Table of all shift-in-operand names. */
19472 static const struct asm_shift_name shift_names [] =
19473 {
19474 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19475 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19476 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19477 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19478 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19479 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19480 };
19481
19482 /* Table of all explicit relocation names. */
19483 #ifdef OBJ_ELF
19484 static struct reloc_entry reloc_names[] =
19485 {
19486 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19487 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19488 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19489 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19490 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19491 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19492 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19493 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19494 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19495 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
19496 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
19497 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19498 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
19499 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
19500 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
19501 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
19502 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
19503 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
19504 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
19505 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
19506 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19507 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19508 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
19509 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
19510 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
19511 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
19512 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
19513 };
19514 #endif
19515
19516 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
19517 static const struct asm_cond conds[] =
19518 {
19519 {"eq", 0x0},
19520 {"ne", 0x1},
19521 {"cs", 0x2}, {"hs", 0x2},
19522 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19523 {"mi", 0x4},
19524 {"pl", 0x5},
19525 {"vs", 0x6},
19526 {"vc", 0x7},
19527 {"hi", 0x8},
19528 {"ls", 0x9},
19529 {"ge", 0xa},
19530 {"lt", 0xb},
19531 {"gt", 0xc},
19532 {"le", 0xd},
19533 {"al", 0xe}
19534 };
19535
19536 #define UL_BARRIER(L,U,CODE,FEAT) \
19537 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19538 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
19539
19540 static struct asm_barrier_opt barrier_opt_names[] =
19541 {
19542 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19543 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19544 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19545 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19546 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19547 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19548 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19549 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19550 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19551 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19552 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19553 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19554 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19555 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19556 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19557 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
19558 };
19559
19560 #undef UL_BARRIER
19561
19562 /* Table of ARM-format instructions. */
19563
19564 /* Macros for gluing together operand strings. N.B. In all cases
19565 other than OPS0, the trailing OP_stop comes from default
19566 zero-initialization of the unspecified elements of the array. */
19567 #define OPS0() { OP_stop, }
19568 #define OPS1(a) { OP_##a, }
19569 #define OPS2(a,b) { OP_##a,OP_##b, }
19570 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19571 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19572 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19573 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19574
19575 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19576 This is useful when mixing operands for ARM and THUMB, i.e. using the
19577 MIX_ARM_THUMB_OPERANDS macro.
19578 In order to use these macros, prefix the number of operands with _
19579 e.g. _3. */
19580 #define OPS_1(a) { a, }
19581 #define OPS_2(a,b) { a,b, }
19582 #define OPS_3(a,b,c) { a,b,c, }
19583 #define OPS_4(a,b,c,d) { a,b,c,d, }
19584 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19585 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19586
19587 /* These macros abstract out the exact format of the mnemonic table and
19588 save some repeated characters. */
19589
19590 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19591 #define TxCE(mnem, op, top, nops, ops, ae, te) \
19592 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
19593 THUMB_VARIANT, do_##ae, do_##te }
19594
19595 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19596 a T_MNEM_xyz enumerator. */
19597 #define TCE(mnem, aop, top, nops, ops, ae, te) \
19598 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
19599 #define tCE(mnem, aop, top, nops, ops, ae, te) \
19600 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19601
19602 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19603 infix after the third character. */
19604 #define TxC3(mnem, op, top, nops, ops, ae, te) \
19605 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
19606 THUMB_VARIANT, do_##ae, do_##te }
19607 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
19608 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
19609 THUMB_VARIANT, do_##ae, do_##te }
19610 #define TC3(mnem, aop, top, nops, ops, ae, te) \
19611 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
19612 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
19613 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
19614 #define tC3(mnem, aop, top, nops, ops, ae, te) \
19615 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19616 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
19617 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19618
19619 /* Mnemonic that cannot be conditionalized. The ARM condition-code
19620 field is still 0xE. Many of the Thumb variants can be executed
19621 conditionally, so this is checked separately. */
19622 #define TUE(mnem, op, top, nops, ops, ae, te) \
19623 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19624 THUMB_VARIANT, do_##ae, do_##te }
19625
19626 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19627 Used by mnemonics that have very minimal differences in the encoding for
19628 ARM and Thumb variants and can be handled in a common function. */
19629 #define TUEc(mnem, op, top, nops, ops, en) \
19630 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19631 THUMB_VARIANT, do_##en, do_##en }
19632
19633 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19634 condition code field. */
19635 #define TUF(mnem, op, top, nops, ops, ae, te) \
19636 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
19637 THUMB_VARIANT, do_##ae, do_##te }
19638
19639 /* ARM-only variants of all the above. */
19640 #define CE(mnem, op, nops, ops, ae) \
19641 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19642
19643 #define C3(mnem, op, nops, ops, ae) \
19644 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19645
19646 /* Thumb-only variants of TCE and TUE. */
19647 #define ToC(mnem, top, nops, ops, te) \
19648 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
19649 do_##te }
19650
19651 #define ToU(mnem, top, nops, ops, te) \
19652 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
19653 NULL, do_##te }
19654
19655 /* T_MNEM_xyz enumerator variants of ToC. */
19656 #define toC(mnem, top, nops, ops, te) \
19657 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
19658 do_##te }
19659
19660 /* T_MNEM_xyz enumerator variants of ToU. */
19661 #define toU(mnem, top, nops, ops, te) \
19662 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
19663 NULL, do_##te }
19664
19665 /* Legacy mnemonics that always have conditional infix after the third
19666 character. */
19667 #define CL(mnem, op, nops, ops, ae) \
19668 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19669 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19670
19671 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19672 #define cCE(mnem, op, nops, ops, ae) \
19673 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19674
19675 /* Legacy coprocessor instructions where conditional infix and conditional
19676 suffix are ambiguous. For consistency this includes all FPA instructions,
19677 not just the potentially ambiguous ones. */
19678 #define cCL(mnem, op, nops, ops, ae) \
19679 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19680 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19681
19682 /* Coprocessor, takes either a suffix or a position-3 infix
19683 (for an FPA corner case). */
19684 #define C3E(mnem, op, nops, ops, ae) \
19685 { mnem, OPS##nops ops, OT_csuf_or_in3, \
19686 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19687
19688 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
19689 { m1 #m2 m3, OPS##nops ops, \
19690 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
19691 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19692
19693 #define CM(m1, m2, op, nops, ops, ae) \
19694 xCM_ (m1, , m2, op, nops, ops, ae), \
19695 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19696 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19697 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19698 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19699 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19700 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19701 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19702 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19703 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19704 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19705 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19706 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19707 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19708 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19709 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19710 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19711 xCM_ (m1, le, m2, op, nops, ops, ae), \
19712 xCM_ (m1, al, m2, op, nops, ops, ae)
19713
19714 #define UE(mnem, op, nops, ops, ae) \
19715 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19716
19717 #define UF(mnem, op, nops, ops, ae) \
19718 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19719
19720 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
19721 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19722 use the same encoding function for each. */
19723 #define NUF(mnem, op, nops, ops, enc) \
19724 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19725 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19726
19727 /* Neon data processing, version which indirects through neon_enc_tab for
19728 the various overloaded versions of opcodes. */
19729 #define nUF(mnem, op, nops, ops, enc) \
19730 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
19731 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19732
19733 /* Neon insn with conditional suffix for the ARM version, non-overloaded
19734 version. */
19735 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
19736 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
19737 THUMB_VARIANT, do_##enc, do_##enc }
19738
19739 #define NCE(mnem, op, nops, ops, enc) \
19740 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19741
19742 #define NCEF(mnem, op, nops, ops, enc) \
19743 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19744
19745 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
19746 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
19747 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
19748 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19749
19750 #define nCE(mnem, op, nops, ops, enc) \
19751 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19752
19753 #define nCEF(mnem, op, nops, ops, enc) \
19754 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19755
19756 #define do_0 0
19757
19758 static const struct asm_opcode insns[] =
19759 {
19760 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19761 #define THUMB_VARIANT & arm_ext_v4t
19762 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19763 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19764 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19765 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19766 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19767 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19768 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19769 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19770 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19771 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19772 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19773 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19774 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19775 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19776 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19777 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
19778
19779 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19780 for setting PSR flag bits. They are obsolete in V6 and do not
19781 have Thumb equivalents. */
19782 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19783 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19784 CL("tstp", 110f000, 2, (RR, SH), cmp),
19785 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19786 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19787 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19788 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19789 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19790 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19791
19792 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
19793 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
19794 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19795 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19796
19797 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
19798 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19799 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19800 OP_RRnpc),
19801 OP_ADDRGLDR),ldst, t_ldst),
19802 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19803
19804 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19805 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19806 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19807 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19808 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19809 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19810
19811 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19812 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
19813
19814 /* Pseudo ops. */
19815 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
19816 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
19817 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
19818 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
19819
19820 /* Thumb-compatibility pseudo ops. */
19821 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19822 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19823 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19824 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19825 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19826 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19827 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19828 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19829 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19830 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19831 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19832 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
19833
19834 /* These may simplify to neg. */
19835 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19836 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
19837
19838 #undef THUMB_VARIANT
19839 #define THUMB_VARIANT & arm_ext_os
19840
19841 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19842 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19843
19844 #undef THUMB_VARIANT
19845 #define THUMB_VARIANT & arm_ext_v6
19846
19847 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
19848
19849 /* V1 instructions with no Thumb analogue prior to V6T2. */
19850 #undef THUMB_VARIANT
19851 #define THUMB_VARIANT & arm_ext_v6t2
19852
19853 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19854 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19855 CL("teqp", 130f000, 2, (RR, SH), cmp),
19856
19857 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19858 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19859 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19860 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19861
19862 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19863 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19864
19865 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19866 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19867
19868 /* V1 instructions with no Thumb analogue at all. */
19869 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
19870 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19871
19872 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19873 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19874 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19875 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19876 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19877 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19878 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19879 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19880
19881 #undef ARM_VARIANT
19882 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19883 #undef THUMB_VARIANT
19884 #define THUMB_VARIANT & arm_ext_v4t
19885
19886 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19887 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19888
19889 #undef THUMB_VARIANT
19890 #define THUMB_VARIANT & arm_ext_v6t2
19891
19892 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19893 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19894
19895 /* Generic coprocessor instructions. */
19896 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19897 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19898 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19899 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19900 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19901 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19902 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
19903
19904 #undef ARM_VARIANT
19905 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19906
19907 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19908 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19909
19910 #undef ARM_VARIANT
19911 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19912 #undef THUMB_VARIANT
19913 #define THUMB_VARIANT & arm_ext_msr
19914
19915 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19916 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
19917
19918 #undef ARM_VARIANT
19919 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19920 #undef THUMB_VARIANT
19921 #define THUMB_VARIANT & arm_ext_v6t2
19922
19923 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19924 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19925 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19926 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19927 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19928 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19929 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19930 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19931
19932 #undef ARM_VARIANT
19933 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19934 #undef THUMB_VARIANT
19935 #define THUMB_VARIANT & arm_ext_v4t
19936
19937 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19938 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19939 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19940 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19941 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19942 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19943
19944 #undef ARM_VARIANT
19945 #define ARM_VARIANT & arm_ext_v4t_5
19946
19947 /* ARM Architecture 4T. */
19948 /* Note: bx (and blx) are required on V5, even if the processor does
19949 not support Thumb. */
19950 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
19951
19952 #undef ARM_VARIANT
19953 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19954 #undef THUMB_VARIANT
19955 #define THUMB_VARIANT & arm_ext_v5t
19956
19957 /* Note: blx has 2 variants; the .value coded here is for
19958 BLX(2). Only this variant has conditional execution. */
19959 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19960 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
19961
19962 #undef THUMB_VARIANT
19963 #define THUMB_VARIANT & arm_ext_v6t2
19964
19965 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19966 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19967 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19968 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19969 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19970 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19971 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19972 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19973
19974 #undef ARM_VARIANT
19975 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19976 #undef THUMB_VARIANT
19977 #define THUMB_VARIANT & arm_ext_v5exp
19978
19979 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19980 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19981 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19982 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19983
19984 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19985 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19986
19987 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19988 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19989 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19990 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19991
19992 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19993 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19994 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19995 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19996
19997 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19998 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19999
20000 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
20001 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
20002 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
20003 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
20004
20005 #undef ARM_VARIANT
20006 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
20007 #undef THUMB_VARIANT
20008 #define THUMB_VARIANT & arm_ext_v6t2
20009
20010 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
20011 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
20012 ldrd, t_ldstd),
20013 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
20014 ADDRGLDRS), ldrd, t_ldstd),
20015
20016 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
20017 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
20018
20019 #undef ARM_VARIANT
20020 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
20021
20022 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
20023
20024 #undef ARM_VARIANT
20025 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
20026 #undef THUMB_VARIANT
20027 #define THUMB_VARIANT & arm_ext_v6
20028
20029 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
20030 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
20031 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
20032 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
20033 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
20034 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20035 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20036 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20037 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20038 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
20039
20040 #undef THUMB_VARIANT
20041 #define THUMB_VARIANT & arm_ext_v6t2_v8m
20042
20043 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
20044 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
20045 strex, t_strex),
20046 #undef THUMB_VARIANT
20047 #define THUMB_VARIANT & arm_ext_v6t2
20048
20049 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
20050 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
20051
20052 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
20053 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
20054
20055 /* ARM V6 not included in V7M. */
20056 #undef THUMB_VARIANT
20057 #define THUMB_VARIANT & arm_ext_v6_notm
20058 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
20059 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
20060 UF(rfeib, 9900a00, 1, (RRw), rfe),
20061 UF(rfeda, 8100a00, 1, (RRw), rfe),
20062 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
20063 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
20064 UF(rfefa, 8100a00, 1, (RRw), rfe),
20065 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
20066 UF(rfeed, 9900a00, 1, (RRw), rfe),
20067 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20068 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20069 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20070 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
20071 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
20072 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
20073 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
20074 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
20075 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
20076 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
20077
20078 /* ARM V6 not included in V7M (eg. integer SIMD). */
20079 #undef THUMB_VARIANT
20080 #define THUMB_VARIANT & arm_ext_v6_dsp
20081 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
20082 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
20083 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20084 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20085 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20086 /* Old name for QASX. */
20087 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20088 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20089 /* Old name for QSAX. */
20090 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20091 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20092 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20093 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20094 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20095 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20096 /* Old name for SASX. */
20097 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20098 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20099 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20100 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20101 /* Old name for SHASX. */
20102 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20103 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20104 /* Old name for SHSAX. */
20105 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20106 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20107 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20108 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20109 /* Old name for SSAX. */
20110 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20111 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20112 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20113 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20114 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20115 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20116 /* Old name for UASX. */
20117 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20118 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20119 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20120 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20121 /* Old name for UHASX. */
20122 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20123 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20124 /* Old name for UHSAX. */
20125 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20126 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20127 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20128 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20129 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20130 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20131 /* Old name for UQASX. */
20132 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20133 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20134 /* Old name for UQSAX. */
20135 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20136 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20137 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20138 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20139 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20140 /* Old name for USAX. */
20141 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20142 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20143 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20144 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20145 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20146 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20147 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20148 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20149 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20150 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20151 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20152 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20153 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20154 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20155 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20156 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20157 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20158 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20159 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20160 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20161 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20162 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20163 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20164 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20165 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20166 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20167 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20168 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20169 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20170 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
20171 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
20172 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20173 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20174 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
20175
20176 #undef ARM_VARIANT
20177 #define ARM_VARIANT & arm_ext_v6k_v6t2
20178 #undef THUMB_VARIANT
20179 #define THUMB_VARIANT & arm_ext_v6k_v6t2
20180
20181 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
20182 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
20183 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
20184 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
20185
20186 #undef THUMB_VARIANT
20187 #define THUMB_VARIANT & arm_ext_v6_notm
20188 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
20189 ldrexd, t_ldrexd),
20190 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
20191 RRnpcb), strexd, t_strexd),
20192
20193 #undef THUMB_VARIANT
20194 #define THUMB_VARIANT & arm_ext_v6t2_v8m
20195 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
20196 rd_rn, rd_rn),
20197 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
20198 rd_rn, rd_rn),
20199 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
20200 strex, t_strexbh),
20201 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
20202 strex, t_strexbh),
20203 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
20204
20205 #undef ARM_VARIANT
20206 #define ARM_VARIANT & arm_ext_sec
20207 #undef THUMB_VARIANT
20208 #define THUMB_VARIANT & arm_ext_sec
20209
20210 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
20211
20212 #undef ARM_VARIANT
20213 #define ARM_VARIANT & arm_ext_virt
20214 #undef THUMB_VARIANT
20215 #define THUMB_VARIANT & arm_ext_virt
20216
20217 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
20218 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
20219
20220 #undef ARM_VARIANT
20221 #define ARM_VARIANT & arm_ext_pan
20222 #undef THUMB_VARIANT
20223 #define THUMB_VARIANT & arm_ext_pan
20224
20225 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
20226
20227 #undef ARM_VARIANT
20228 #define ARM_VARIANT & arm_ext_v6t2
20229 #undef THUMB_VARIANT
20230 #define THUMB_VARIANT & arm_ext_v6t2
20231
20232 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
20233 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
20234 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20235 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20236
20237 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
20238 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
20239
20240 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20241 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20242 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20243 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20244
20245 #undef ARM_VARIANT
20246 #define ARM_VARIANT & arm_ext_v3
20247 #undef THUMB_VARIANT
20248 #define THUMB_VARIANT & arm_ext_v6t2
20249
20250 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
20251 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
20252 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
20253
20254 #undef ARM_VARIANT
20255 #define ARM_VARIANT & arm_ext_v6t2
20256 #undef THUMB_VARIANT
20257 #define THUMB_VARIANT & arm_ext_v6t2_v8m
20258 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20259 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20260
20261 /* Thumb-only instructions. */
20262 #undef ARM_VARIANT
20263 #define ARM_VARIANT NULL
20264 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20265 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
20266
20267 /* ARM does not really have an IT instruction, so always allow it.
20268 The opcode is copied from Thumb in order to allow warnings in
20269 -mimplicit-it=[never | arm] modes. */
20270 #undef ARM_VARIANT
20271 #define ARM_VARIANT & arm_ext_v1
20272 #undef THUMB_VARIANT
20273 #define THUMB_VARIANT & arm_ext_v6t2
20274
20275 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20276 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20277 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20278 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20279 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20280 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20281 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20282 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20283 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20284 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20285 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20286 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20287 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20288 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20289 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
20290 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
20291 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20292 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
20293
20294 /* Thumb2 only instructions. */
20295 #undef ARM_VARIANT
20296 #define ARM_VARIANT NULL
20297
20298 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20299 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20300 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20301 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20302 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20303 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
20304
20305 /* Hardware division instructions. */
20306 #undef ARM_VARIANT
20307 #define ARM_VARIANT & arm_ext_adiv
20308 #undef THUMB_VARIANT
20309 #define THUMB_VARIANT & arm_ext_div
20310
20311 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20312 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
20313
20314 /* ARM V6M/V7 instructions. */
20315 #undef ARM_VARIANT
20316 #define ARM_VARIANT & arm_ext_barrier
20317 #undef THUMB_VARIANT
20318 #define THUMB_VARIANT & arm_ext_barrier
20319
20320 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20321 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20322 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
20323
20324 /* ARM V7 instructions. */
20325 #undef ARM_VARIANT
20326 #define ARM_VARIANT & arm_ext_v7
20327 #undef THUMB_VARIANT
20328 #define THUMB_VARIANT & arm_ext_v7
20329
20330 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20331 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
20332
20333 #undef ARM_VARIANT
20334 #define ARM_VARIANT & arm_ext_mp
20335 #undef THUMB_VARIANT
20336 #define THUMB_VARIANT & arm_ext_mp
20337
20338 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20339
20340 /* AArchv8 instructions. */
20341 #undef ARM_VARIANT
20342 #define ARM_VARIANT & arm_ext_v8
20343
20344 /* Instructions shared between armv8-a and armv8-m. */
20345 #undef THUMB_VARIANT
20346 #define THUMB_VARIANT & arm_ext_atomics
20347
20348 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20349 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20350 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20351 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20352 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20353 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20354 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20355 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20356 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20357 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20358 stlex, t_stlex),
20359 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20360 stlex, t_stlex),
20361 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20362 stlex, t_stlex),
20363 #undef THUMB_VARIANT
20364 #define THUMB_VARIANT & arm_ext_v8
20365
20366 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
20367 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20368 ldrexd, t_ldrexd),
20369 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20370 strexd, t_strexd),
20371
20372 /* Defined in V8 but is in undefined encoding space for earlier
20373 architectures. However earlier architectures are required to treat
20374 this instuction as a semihosting trap as well. Hence while not explicitly
20375 defined as such, it is in fact correct to define the instruction for all
20376 architectures. */
20377 #undef THUMB_VARIANT
20378 #define THUMB_VARIANT & arm_ext_v1
20379 #undef ARM_VARIANT
20380 #define ARM_VARIANT & arm_ext_v1
20381 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20382
20383 /* ARMv8 T32 only. */
20384 #undef ARM_VARIANT
20385 #define ARM_VARIANT NULL
20386 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20387 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20388 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20389
20390 /* FP for ARMv8. */
20391 #undef ARM_VARIANT
20392 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
20393 #undef THUMB_VARIANT
20394 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
20395
20396 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20397 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20398 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20399 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
20400 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20401 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20402 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20403 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20404 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20405 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
20406 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20407 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20408 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20409 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20410 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20411 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20412 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
20413
20414 /* Crypto v1 extensions. */
20415 #undef ARM_VARIANT
20416 #define ARM_VARIANT & fpu_crypto_ext_armv8
20417 #undef THUMB_VARIANT
20418 #define THUMB_VARIANT & fpu_crypto_ext_armv8
20419
20420 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20421 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20422 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20423 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
20424 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20425 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20426 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20427 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20428 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20429 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20430 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
20431 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20432 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20433 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
20434
20435 #undef ARM_VARIANT
20436 #define ARM_VARIANT & crc_ext_armv8
20437 #undef THUMB_VARIANT
20438 #define THUMB_VARIANT & crc_ext_armv8
20439 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20440 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20441 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20442 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20443 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20444 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20445
20446 /* ARMv8.2 RAS extension. */
20447 #undef ARM_VARIANT
20448 #define ARM_VARIANT & arm_ext_ras
20449 #undef THUMB_VARIANT
20450 #define THUMB_VARIANT & arm_ext_ras
20451 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20452
20453 #undef ARM_VARIANT
20454 #define ARM_VARIANT & arm_ext_v8_3
20455 #undef THUMB_VARIANT
20456 #define THUMB_VARIANT & arm_ext_v8_3
20457 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
20458 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20459 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
20460
20461 #undef ARM_VARIANT
20462 #define ARM_VARIANT & fpu_neon_ext_dotprod
20463 #undef THUMB_VARIANT
20464 #define THUMB_VARIANT & fpu_neon_ext_dotprod
20465 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20466 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20467
20468 #undef ARM_VARIANT
20469 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
20470 #undef THUMB_VARIANT
20471 #define THUMB_VARIANT NULL
20472
20473 cCE("wfs", e200110, 1, (RR), rd),
20474 cCE("rfs", e300110, 1, (RR), rd),
20475 cCE("wfc", e400110, 1, (RR), rd),
20476 cCE("rfc", e500110, 1, (RR), rd),
20477
20478 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20479 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20480 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20481 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20482
20483 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20484 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20485 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20486 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20487
20488 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20489 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20490 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20491 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20492 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20493 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20494 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20495 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20496 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20497 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20498 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20499 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20500
20501 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20502 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20503 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20504 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20505 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20506 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20507 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20508 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20509 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20510 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20511 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20512 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20513
20514 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20515 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20516 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20517 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20518 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20519 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20520 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20521 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20522 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20523 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20524 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20525 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20526
20527 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20528 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20529 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20530 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20531 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20532 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20533 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20534 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20535 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20536 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20537 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20538 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20539
20540 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20541 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20542 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20543 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20544 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20545 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20546 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20547 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20548 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20549 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20550 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20551 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20552
20553 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20554 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20555 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20556 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20557 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20558 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20559 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20560 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20561 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20562 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20563 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20564 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20565
20566 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20567 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20568 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20569 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20570 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20571 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20572 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20573 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20574 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20575 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20576 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20577 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20578
20579 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20580 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20581 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20582 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20583 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20584 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20585 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20586 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20587 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20588 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20589 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20590 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20591
20592 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20593 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20594 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20595 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20596 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20597 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20598 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20599 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20600 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20601 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20602 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20603 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20604
20605 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20606 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20607 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20608 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20609 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20610 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20611 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20612 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20613 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20614 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20615 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20616 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20617
20618 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20619 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20620 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20621 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20622 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20623 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20624 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20625 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20626 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20627 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20628 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20629 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20630
20631 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20632 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20633 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20634 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20635 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20636 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20637 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20638 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20639 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20640 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20641 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20642 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20643
20644 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20645 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20646 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20647 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20648 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20649 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20650 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20651 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20652 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20653 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20654 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20655 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20656
20657 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20658 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20659 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20660 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20661 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20662 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20663 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20664 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20665 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20666 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20667 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20668 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20669
20670 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20671 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20672 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20673 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20674 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20675 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20676 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20677 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20678 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20679 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20680 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20681 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20682
20683 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20684 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20685 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20686 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20687 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20688 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20689 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20690 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20691 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20692 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20693 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20694 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20695
20696 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20697 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20698 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20699 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20700 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20701 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20702 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20703 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20704 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20705 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20706 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20707 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20708
20709 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20710 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20711 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20712 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20713 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20714 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20715 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20716 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20717 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20718 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20719 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20720 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20721
20722 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20723 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20724 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20725 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20726 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20727 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20728 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20729 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20730 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20731 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20732 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20733 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20734
20735 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20736 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20737 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20738 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20739 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20740 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20741 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20742 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20743 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20744 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20745 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20746 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20747
20748 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20749 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20750 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20751 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20752 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20753 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20754 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20755 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20756 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20757 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20758 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20759 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20760
20761 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20762 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20763 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20764 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20765 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20766 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20767 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20768 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20769 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20770 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20771 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20772 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20773
20774 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20775 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20776 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20777 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20778 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20779 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20780 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20781 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20782 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20783 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20784 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20785 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20786
20787 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20788 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20789 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20790 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20791 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20792 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20793 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20794 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20795 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20796 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20797 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20798 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20799
20800 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20801 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20802 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20803 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20804 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20805 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20806 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20807 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20808 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20809 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20810 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20811 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20812
20813 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20814 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20815 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20816 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20817 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20818 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20819 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20820 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20821 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20822 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20823 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20824 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20825
20826 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20827 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20828 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20829 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20830 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20831 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20832 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20833 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20834 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20835 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20836 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20837 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20838
20839 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20840 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20841 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20842 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20843 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20844 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20845 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20846 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20847 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20848 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20849 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20850 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20851
20852 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20853 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20854 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20855 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20856 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20857 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20858 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20859 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20860 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20861 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20862 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20863 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20864
20865 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20866 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20867 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20868 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20869
20870 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20871 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20872 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20873 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20874 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20875 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20876 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20877 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20878 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20879 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20880 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20881 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
20882
20883 /* The implementation of the FIX instruction is broken on some
20884 assemblers, in that it accepts a precision specifier as well as a
20885 rounding specifier, despite the fact that this is meaningless.
20886 To be more compatible, we accept it as well, though of course it
20887 does not set any bits. */
20888 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20889 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20890 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20891 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20892 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20893 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20894 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20895 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20896 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20897 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20898 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20899 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20900 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
20901
20902 /* Instructions that were new with the real FPA, call them V2. */
20903 #undef ARM_VARIANT
20904 #define ARM_VARIANT & fpu_fpa_ext_v2
20905
20906 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20907 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20908 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20909 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20910 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20911 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20912
20913 #undef ARM_VARIANT
20914 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20915
20916 /* Moves and type conversions. */
20917 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20918 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20919 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20920 cCE("fmstat", ef1fa10, 0, (), noargs),
20921 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20922 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
20923 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20924 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20925 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20926 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20927 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20928 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20929 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20930 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
20931
20932 /* Memory operations. */
20933 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20934 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20935 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20936 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20937 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20938 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20939 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20940 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20941 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20942 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20943 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20944 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20945 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20946 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20947 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20948 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20949 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20950 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20951
20952 /* Monadic operations. */
20953 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20954 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20955 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
20956
20957 /* Dyadic operations. */
20958 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20959 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20960 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20961 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20962 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20963 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20964 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20965 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20966 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20967
20968 /* Comparisons. */
20969 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20970 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20971 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20972 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
20973
20974 /* Double precision load/store are still present on single precision
20975 implementations. */
20976 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20977 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20978 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20979 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20980 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20981 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20982 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20983 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20984 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20985 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20986
20987 #undef ARM_VARIANT
20988 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20989
20990 /* Moves and type conversions. */
20991 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20992 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20993 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20994 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20995 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20996 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20997 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20998 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20999 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
21000 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
21001 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
21002 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
21003 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
21004
21005 /* Monadic operations. */
21006 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
21007 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
21008 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
21009
21010 /* Dyadic operations. */
21011 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21012 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21013 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21014 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21015 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21016 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21017 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21018 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21019 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21020
21021 /* Comparisons. */
21022 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
21023 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
21024 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
21025 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
21026
21027 #undef ARM_VARIANT
21028 #define ARM_VARIANT & fpu_vfp_ext_v2
21029
21030 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
21031 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
21032 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
21033 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
21034
21035 /* Instructions which may belong to either the Neon or VFP instruction sets.
21036 Individual encoder functions perform additional architecture checks. */
21037 #undef ARM_VARIANT
21038 #define ARM_VARIANT & fpu_vfp_ext_v1xd
21039 #undef THUMB_VARIANT
21040 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
21041
21042 /* These mnemonics are unique to VFP. */
21043 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
21044 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21045 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21046 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21047 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21048 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
21049 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
21050 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
21051 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
21052 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
21053
21054 /* Mnemonics shared by Neon and VFP. */
21055 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
21056 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
21057 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
21058
21059 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
21060 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
21061
21062 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
21063 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
21064
21065 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21066 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21067 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21068 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21069 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21070 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21071 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
21072 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
21073
21074 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
21075 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21076 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
21077 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
21078
21079
21080 /* NOTE: All VMOV encoding is special-cased! */
21081 NCE(vmov, 0, 1, (VMOV), neon_mov),
21082 NCE(vmovq, 0, 1, (VMOV), neon_mov),
21083
21084 #undef ARM_VARIANT
21085 #define ARM_VARIANT & arm_ext_fp16
21086 #undef THUMB_VARIANT
21087 #define THUMB_VARIANT & arm_ext_fp16
21088 /* New instructions added from v8.2, allowing the extraction and insertion of
21089 the upper 16 bits of a 32-bit vector register. */
21090 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
21091 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
21092
21093 /* New backported fma/fms instructions optional in v8.2. */
21094 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
21095 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
21096
21097 #undef THUMB_VARIANT
21098 #define THUMB_VARIANT & fpu_neon_ext_v1
21099 #undef ARM_VARIANT
21100 #define ARM_VARIANT & fpu_neon_ext_v1
21101
21102 /* Data processing with three registers of the same length. */
21103 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
21104 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
21105 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
21106 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21107 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21108 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21109 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21110 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21111 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21112 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
21113 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21114 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
21115 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21116 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
21117 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21118 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
21119 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21120 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
21121 /* If not immediate, fall back to neon_dyadic_i64_su.
21122 shl_imm should accept I8 I16 I32 I64,
21123 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21124 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
21125 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
21126 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
21127 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
21128 /* Logic ops, types optional & ignored. */
21129 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21130 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21131 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21132 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21133 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21134 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21135 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21136 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21137 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
21138 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
21139 /* Bitfield ops, untyped. */
21140 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21141 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21142 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21143 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21144 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21145 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21146 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21147 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21148 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21149 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21150 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21151 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21152 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21153 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
21154 back to neon_dyadic_if_su. */
21155 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21156 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21157 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21158 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21159 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21160 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
21161 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21162 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
21163 /* Comparison. Type I8 I16 I32 F32. */
21164 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
21165 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
21166 /* As above, D registers only. */
21167 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
21168 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
21169 /* Int and float variants, signedness unimportant. */
21170 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21171 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21172 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
21173 /* Add/sub take types I8 I16 I32 I64 F32. */
21174 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
21175 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
21176 /* vtst takes sizes 8, 16, 32. */
21177 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
21178 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
21179 /* VMUL takes I8 I16 I32 F32 P8. */
21180 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
21181 /* VQD{R}MULH takes S16 S32. */
21182 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21183 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21184 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21185 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21186 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21187 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
21188 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21189 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
21190 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21191 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21192 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21193 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21194 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21195 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21196 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21197 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21198 /* ARM v8.1 extension. */
21199 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21200 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21201 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21202 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21203
21204 /* Two address, int/float. Types S8 S16 S32 F32. */
21205 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
21206 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
21207
21208 /* Data processing with two registers and a shift amount. */
21209 /* Right shifts, and variants with rounding.
21210 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
21211 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21212 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21213 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21214 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21215 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21216 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21217 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21218 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21219 /* Shift and insert. Sizes accepted 8 16 32 64. */
21220 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
21221 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
21222 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
21223 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
21224 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
21225 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
21226 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
21227 /* Right shift immediate, saturating & narrowing, with rounding variants.
21228 Types accepted S16 S32 S64 U16 U32 U64. */
21229 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21230 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21231 /* As above, unsigned. Types accepted S16 S32 S64. */
21232 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21233 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21234 /* Right shift narrowing. Types accepted I16 I32 I64. */
21235 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21236 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21237 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21238 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
21239 /* CVT with optional immediate for fixed-point variant. */
21240 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
21241
21242 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
21243 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
21244
21245 /* Data processing, three registers of different lengths. */
21246 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
21247 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
21248 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
21249 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
21250 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
21251 /* If not scalar, fall back to neon_dyadic_long.
21252 Vector types as above, scalar types S16 S32 U16 U32. */
21253 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21254 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21255 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
21256 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21257 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21258 /* Dyadic, narrowing insns. Types I16 I32 I64. */
21259 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21260 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21261 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21262 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21263 /* Saturating doubling multiplies. Types S16 S32. */
21264 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21265 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21266 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21267 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21268 S16 S32 U16 U32. */
21269 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
21270
21271 /* Extract. Size 8. */
21272 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21273 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
21274
21275 /* Two registers, miscellaneous. */
21276 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21277 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21278 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21279 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21280 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21281 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21282 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21283 /* Vector replicate. Sizes 8 16 32. */
21284 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21285 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
21286 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21287 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21288 /* VMOVN. Types I16 I32 I64. */
21289 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
21290 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21291 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
21292 /* VQMOVUN. Types S16 S32 S64. */
21293 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
21294 /* VZIP / VUZP. Sizes 8 16 32. */
21295 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21296 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21297 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21298 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21299 /* VQABS / VQNEG. Types S8 S16 S32. */
21300 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21301 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21302 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21303 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21304 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21305 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21306 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21307 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21308 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
21309 /* Reciprocal estimates. Types U32 F16 F32. */
21310 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21311 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21312 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21313 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21314 /* VCLS. Types S8 S16 S32. */
21315 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21316 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21317 /* VCLZ. Types I8 I16 I32. */
21318 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21319 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21320 /* VCNT. Size 8. */
21321 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21322 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21323 /* Two address, untyped. */
21324 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21325 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21326 /* VTRN. Sizes 8 16 32. */
21327 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21328 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
21329
21330 /* Table lookup. Size 8. */
21331 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21332 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21333
21334 #undef THUMB_VARIANT
21335 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21336 #undef ARM_VARIANT
21337 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21338
21339 /* Neon element/structure load/store. */
21340 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21341 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21342 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21343 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21344 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21345 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21346 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21347 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21348
21349 #undef THUMB_VARIANT
21350 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
21351 #undef ARM_VARIANT
21352 #define ARM_VARIANT & fpu_vfp_ext_v3xd
21353 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21354 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21355 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21356 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21357 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21358 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21359 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21360 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21361 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21362
21363 #undef THUMB_VARIANT
21364 #define THUMB_VARIANT & fpu_vfp_ext_v3
21365 #undef ARM_VARIANT
21366 #define ARM_VARIANT & fpu_vfp_ext_v3
21367
21368 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21369 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21370 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21371 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21372 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21373 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21374 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21375 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21376 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21377
21378 #undef ARM_VARIANT
21379 #define ARM_VARIANT & fpu_vfp_ext_fma
21380 #undef THUMB_VARIANT
21381 #define THUMB_VARIANT & fpu_vfp_ext_fma
21382 /* Mnemonics shared by Neon and VFP. These are included in the
21383 VFP FMA variant; NEON and VFP FMA always includes the NEON
21384 FMA instructions. */
21385 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21386 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21387 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21388 the v form should always be used. */
21389 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21390 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21391 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21392 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21393 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21394 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21395
21396 #undef THUMB_VARIANT
21397 #undef ARM_VARIANT
21398 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21399
21400 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21401 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21402 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21403 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21404 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21405 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21406 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21407 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
21408
21409 #undef ARM_VARIANT
21410 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21411
21412 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21413 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21414 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21415 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21416 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21417 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21418 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21419 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21420 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
21421 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21422 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21423 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21424 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21425 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21426 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21427 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21428 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21429 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21430 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21431 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21432 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21433 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21434 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21435 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21436 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21437 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21438 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21439 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21440 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21441 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21442 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21443 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21444 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21445 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21446 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21447 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21448 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21449 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21450 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21451 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21452 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21453 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21454 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21455 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21456 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21457 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21458 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
21459 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21460 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21461 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21462 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21463 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21464 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21465 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21466 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21467 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21468 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21469 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21470 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21471 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21472 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21473 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21474 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21475 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21476 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21477 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21478 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21479 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21480 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21481 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21482 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21483 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21484 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21485 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21486 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21487 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21488 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21489 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21490 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21491 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21492 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21493 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21494 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21495 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21496 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21497 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21498 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21499 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21500 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21501 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21502 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21503 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21504 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21505 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21506 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21507 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21508 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21509 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21510 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21511 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21512 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21513 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21514 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21515 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21516 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21517 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21518 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21519 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21520 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21521 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21522 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21523 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21524 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21525 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21526 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21527 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21528 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21529 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21530 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21531 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21532 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21533 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21534 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21535 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21536 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21537 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21538 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21539 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21540 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21541 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21542 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21543 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21544 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21545 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21546 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21547 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21548 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21549 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21550 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21551 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21552 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21553 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21554 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21555 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21556 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21557 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21558 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21559 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21560 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21561 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21562 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21563 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21564 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21565 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21566 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21567 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21568 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21569 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21570 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21571 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21572 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21573 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
21574
21575 #undef ARM_VARIANT
21576 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21577
21578 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21579 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21580 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21581 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21582 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21583 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21584 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21585 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21586 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21587 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21588 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21589 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21590 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21591 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21592 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21593 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21594 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21595 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21596 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21597 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21598 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21599 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21600 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21601 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21602 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21603 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21604 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21605 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21606 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21607 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21608 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21609 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21610 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21611 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21612 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21613 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21614 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21615 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21616 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21617 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21618 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21619 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21620 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21621 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21622 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21623 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21624 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21625 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21626 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21627 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21628 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21629 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21630 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21631 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21632 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21633 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21634 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21635
21636 #undef ARM_VARIANT
21637 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21638
21639 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21640 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21641 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21642 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21643 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21644 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21645 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21646 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21647 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21648 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21649 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21650 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21651 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21652 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
21653 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21654 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21655 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21656 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21657 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21658 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21659 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21660 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21661 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21662 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21663 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21664 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21665 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21666 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
21667 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21668 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21669 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21670 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21671 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21672 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
21673 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21674 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21675 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21676 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21677 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21678 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21679 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21680 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
21681 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21682 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21683 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21684 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21685 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21686 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21687 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21688 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21689 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21690 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21691 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21692 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21693 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21694 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21695 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21696 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21697 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21698 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21699 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21700 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21701 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21702 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21703 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21704 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21705 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21706 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21707 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21708 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21709 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21710 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21711 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21712 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21713 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21714 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21715
21716 /* ARMv8.5-A instructions. */
21717 #undef ARM_VARIANT
21718 #define ARM_VARIANT & arm_ext_sb
21719 #undef THUMB_VARIANT
21720 #define THUMB_VARIANT & arm_ext_sb
21721 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
21722
21723 #undef ARM_VARIANT
21724 #define ARM_VARIANT & arm_ext_predres
21725 #undef THUMB_VARIANT
21726 #define THUMB_VARIANT & arm_ext_predres
21727 CE("cfprctx", e070f93, 1, (RRnpc), rd),
21728 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
21729 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
21730
21731 /* ARMv8-M instructions. */
21732 #undef ARM_VARIANT
21733 #define ARM_VARIANT NULL
21734 #undef THUMB_VARIANT
21735 #define THUMB_VARIANT & arm_ext_v8m
21736 ToU("sg", e97fe97f, 0, (), noargs),
21737 ToC("blxns", 4784, 1, (RRnpc), t_blx),
21738 ToC("bxns", 4704, 1, (RRnpc), t_bx),
21739 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
21740 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
21741 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
21742 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
21743
21744 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21745 instructions behave as nop if no VFP is present. */
21746 #undef THUMB_VARIANT
21747 #define THUMB_VARIANT & arm_ext_v8m_main
21748 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
21749 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
21750
21751 /* Armv8.1-M Mainline instructions. */
21752 #undef THUMB_VARIANT
21753 #define THUMB_VARIANT & arm_ext_v8_1m_main
21754 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
21755 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
21756 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
21757 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
21758 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
21759 };
21760 #undef ARM_VARIANT
21761 #undef THUMB_VARIANT
21762 #undef TCE
21763 #undef TUE
21764 #undef TUF
21765 #undef TCC
21766 #undef cCE
21767 #undef cCL
21768 #undef C3E
21769 #undef C3
21770 #undef CE
21771 #undef CM
21772 #undef CL
21773 #undef UE
21774 #undef UF
21775 #undef UT
21776 #undef NUF
21777 #undef nUF
21778 #undef NCE
21779 #undef nCE
21780 #undef OPS0
21781 #undef OPS1
21782 #undef OPS2
21783 #undef OPS3
21784 #undef OPS4
21785 #undef OPS5
21786 #undef OPS6
21787 #undef do_0
21788 #undef ToC
21789 #undef toC
21790 #undef ToU
21791 #undef toU
21792 \f
21793 /* MD interface: bits in the object file. */
21794
21795 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21796 for use in the a.out file, and stores them in the array pointed to by buf.
21797 This knows about the endian-ness of the target machine and does
21798 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21799 2 (short) and 4 (long) Floating numbers are put out as a series of
21800 LITTLENUMS (shorts, here at least). */
21801
21802 void
21803 md_number_to_chars (char * buf, valueT val, int n)
21804 {
21805 if (target_big_endian)
21806 number_to_chars_bigendian (buf, val, n);
21807 else
21808 number_to_chars_littleendian (buf, val, n);
21809 }
21810
21811 static valueT
21812 md_chars_to_number (char * buf, int n)
21813 {
21814 valueT result = 0;
21815 unsigned char * where = (unsigned char *) buf;
21816
21817 if (target_big_endian)
21818 {
21819 while (n--)
21820 {
21821 result <<= 8;
21822 result |= (*where++ & 255);
21823 }
21824 }
21825 else
21826 {
21827 while (n--)
21828 {
21829 result <<= 8;
21830 result |= (where[n] & 255);
21831 }
21832 }
21833
21834 return result;
21835 }
21836
21837 /* MD interface: Sections. */
21838
21839 /* Calculate the maximum variable size (i.e., excluding fr_fix)
21840 that an rs_machine_dependent frag may reach. */
21841
21842 unsigned int
21843 arm_frag_max_var (fragS *fragp)
21844 {
21845 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21846 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21847
21848 Note that we generate relaxable instructions even for cases that don't
21849 really need it, like an immediate that's a trivial constant. So we're
21850 overestimating the instruction size for some of those cases. Rather
21851 than putting more intelligence here, it would probably be better to
21852 avoid generating a relaxation frag in the first place when it can be
21853 determined up front that a short instruction will suffice. */
21854
21855 gas_assert (fragp->fr_type == rs_machine_dependent);
21856 return INSN_SIZE;
21857 }
21858
21859 /* Estimate the size of a frag before relaxing. Assume everything fits in
21860 2 bytes. */
21861
21862 int
21863 md_estimate_size_before_relax (fragS * fragp,
21864 segT segtype ATTRIBUTE_UNUSED)
21865 {
21866 fragp->fr_var = 2;
21867 return 2;
21868 }
21869
21870 /* Convert a machine dependent frag. */
21871
21872 void
21873 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21874 {
21875 unsigned long insn;
21876 unsigned long old_op;
21877 char *buf;
21878 expressionS exp;
21879 fixS *fixp;
21880 int reloc_type;
21881 int pc_rel;
21882 int opcode;
21883
21884 buf = fragp->fr_literal + fragp->fr_fix;
21885
21886 old_op = bfd_get_16(abfd, buf);
21887 if (fragp->fr_symbol)
21888 {
21889 exp.X_op = O_symbol;
21890 exp.X_add_symbol = fragp->fr_symbol;
21891 }
21892 else
21893 {
21894 exp.X_op = O_constant;
21895 }
21896 exp.X_add_number = fragp->fr_offset;
21897 opcode = fragp->fr_subtype;
21898 switch (opcode)
21899 {
21900 case T_MNEM_ldr_pc:
21901 case T_MNEM_ldr_pc2:
21902 case T_MNEM_ldr_sp:
21903 case T_MNEM_str_sp:
21904 case T_MNEM_ldr:
21905 case T_MNEM_ldrb:
21906 case T_MNEM_ldrh:
21907 case T_MNEM_str:
21908 case T_MNEM_strb:
21909 case T_MNEM_strh:
21910 if (fragp->fr_var == 4)
21911 {
21912 insn = THUMB_OP32 (opcode);
21913 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21914 {
21915 insn |= (old_op & 0x700) << 4;
21916 }
21917 else
21918 {
21919 insn |= (old_op & 7) << 12;
21920 insn |= (old_op & 0x38) << 13;
21921 }
21922 insn |= 0x00000c00;
21923 put_thumb32_insn (buf, insn);
21924 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21925 }
21926 else
21927 {
21928 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21929 }
21930 pc_rel = (opcode == T_MNEM_ldr_pc2);
21931 break;
21932 case T_MNEM_adr:
21933 if (fragp->fr_var == 4)
21934 {
21935 insn = THUMB_OP32 (opcode);
21936 insn |= (old_op & 0xf0) << 4;
21937 put_thumb32_insn (buf, insn);
21938 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21939 }
21940 else
21941 {
21942 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21943 exp.X_add_number -= 4;
21944 }
21945 pc_rel = 1;
21946 break;
21947 case T_MNEM_mov:
21948 case T_MNEM_movs:
21949 case T_MNEM_cmp:
21950 case T_MNEM_cmn:
21951 if (fragp->fr_var == 4)
21952 {
21953 int r0off = (opcode == T_MNEM_mov
21954 || opcode == T_MNEM_movs) ? 0 : 8;
21955 insn = THUMB_OP32 (opcode);
21956 insn = (insn & 0xe1ffffff) | 0x10000000;
21957 insn |= (old_op & 0x700) << r0off;
21958 put_thumb32_insn (buf, insn);
21959 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21960 }
21961 else
21962 {
21963 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21964 }
21965 pc_rel = 0;
21966 break;
21967 case T_MNEM_b:
21968 if (fragp->fr_var == 4)
21969 {
21970 insn = THUMB_OP32(opcode);
21971 put_thumb32_insn (buf, insn);
21972 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21973 }
21974 else
21975 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21976 pc_rel = 1;
21977 break;
21978 case T_MNEM_bcond:
21979 if (fragp->fr_var == 4)
21980 {
21981 insn = THUMB_OP32(opcode);
21982 insn |= (old_op & 0xf00) << 14;
21983 put_thumb32_insn (buf, insn);
21984 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21985 }
21986 else
21987 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21988 pc_rel = 1;
21989 break;
21990 case T_MNEM_add_sp:
21991 case T_MNEM_add_pc:
21992 case T_MNEM_inc_sp:
21993 case T_MNEM_dec_sp:
21994 if (fragp->fr_var == 4)
21995 {
21996 /* ??? Choose between add and addw. */
21997 insn = THUMB_OP32 (opcode);
21998 insn |= (old_op & 0xf0) << 4;
21999 put_thumb32_insn (buf, insn);
22000 if (opcode == T_MNEM_add_pc)
22001 reloc_type = BFD_RELOC_ARM_T32_IMM12;
22002 else
22003 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
22004 }
22005 else
22006 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
22007 pc_rel = 0;
22008 break;
22009
22010 case T_MNEM_addi:
22011 case T_MNEM_addis:
22012 case T_MNEM_subi:
22013 case T_MNEM_subis:
22014 if (fragp->fr_var == 4)
22015 {
22016 insn = THUMB_OP32 (opcode);
22017 insn |= (old_op & 0xf0) << 4;
22018 insn |= (old_op & 0xf) << 16;
22019 put_thumb32_insn (buf, insn);
22020 if (insn & (1 << 20))
22021 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
22022 else
22023 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
22024 }
22025 else
22026 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
22027 pc_rel = 0;
22028 break;
22029 default:
22030 abort ();
22031 }
22032 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
22033 (enum bfd_reloc_code_real) reloc_type);
22034 fixp->fx_file = fragp->fr_file;
22035 fixp->fx_line = fragp->fr_line;
22036 fragp->fr_fix += fragp->fr_var;
22037
22038 /* Set whether we use thumb-2 ISA based on final relaxation results. */
22039 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
22040 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
22041 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
22042 }
22043
22044 /* Return the size of a relaxable immediate operand instruction.
22045 SHIFT and SIZE specify the form of the allowable immediate. */
22046 static int
22047 relax_immediate (fragS *fragp, int size, int shift)
22048 {
22049 offsetT offset;
22050 offsetT mask;
22051 offsetT low;
22052
22053 /* ??? Should be able to do better than this. */
22054 if (fragp->fr_symbol)
22055 return 4;
22056
22057 low = (1 << shift) - 1;
22058 mask = (1 << (shift + size)) - (1 << shift);
22059 offset = fragp->fr_offset;
22060 /* Force misaligned offsets to 32-bit variant. */
22061 if (offset & low)
22062 return 4;
22063 if (offset & ~mask)
22064 return 4;
22065 return 2;
22066 }
22067
22068 /* Get the address of a symbol during relaxation. */
22069 static addressT
22070 relaxed_symbol_addr (fragS *fragp, long stretch)
22071 {
22072 fragS *sym_frag;
22073 addressT addr;
22074 symbolS *sym;
22075
22076 sym = fragp->fr_symbol;
22077 sym_frag = symbol_get_frag (sym);
22078 know (S_GET_SEGMENT (sym) != absolute_section
22079 || sym_frag == &zero_address_frag);
22080 addr = S_GET_VALUE (sym) + fragp->fr_offset;
22081
22082 /* If frag has yet to be reached on this pass, assume it will
22083 move by STRETCH just as we did. If this is not so, it will
22084 be because some frag between grows, and that will force
22085 another pass. */
22086
22087 if (stretch != 0
22088 && sym_frag->relax_marker != fragp->relax_marker)
22089 {
22090 fragS *f;
22091
22092 /* Adjust stretch for any alignment frag. Note that if have
22093 been expanding the earlier code, the symbol may be
22094 defined in what appears to be an earlier frag. FIXME:
22095 This doesn't handle the fr_subtype field, which specifies
22096 a maximum number of bytes to skip when doing an
22097 alignment. */
22098 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
22099 {
22100 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
22101 {
22102 if (stretch < 0)
22103 stretch = - ((- stretch)
22104 & ~ ((1 << (int) f->fr_offset) - 1));
22105 else
22106 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
22107 if (stretch == 0)
22108 break;
22109 }
22110 }
22111 if (f != NULL)
22112 addr += stretch;
22113 }
22114
22115 return addr;
22116 }
22117
22118 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
22119 load. */
22120 static int
22121 relax_adr (fragS *fragp, asection *sec, long stretch)
22122 {
22123 addressT addr;
22124 offsetT val;
22125
22126 /* Assume worst case for symbols not known to be in the same section. */
22127 if (fragp->fr_symbol == NULL
22128 || !S_IS_DEFINED (fragp->fr_symbol)
22129 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22130 || S_IS_WEAK (fragp->fr_symbol))
22131 return 4;
22132
22133 val = relaxed_symbol_addr (fragp, stretch);
22134 addr = fragp->fr_address + fragp->fr_fix;
22135 addr = (addr + 4) & ~3;
22136 /* Force misaligned targets to 32-bit variant. */
22137 if (val & 3)
22138 return 4;
22139 val -= addr;
22140 if (val < 0 || val > 1020)
22141 return 4;
22142 return 2;
22143 }
22144
22145 /* Return the size of a relaxable add/sub immediate instruction. */
22146 static int
22147 relax_addsub (fragS *fragp, asection *sec)
22148 {
22149 char *buf;
22150 int op;
22151
22152 buf = fragp->fr_literal + fragp->fr_fix;
22153 op = bfd_get_16(sec->owner, buf);
22154 if ((op & 0xf) == ((op >> 4) & 0xf))
22155 return relax_immediate (fragp, 8, 0);
22156 else
22157 return relax_immediate (fragp, 3, 0);
22158 }
22159
22160 /* Return TRUE iff the definition of symbol S could be pre-empted
22161 (overridden) at link or load time. */
22162 static bfd_boolean
22163 symbol_preemptible (symbolS *s)
22164 {
22165 /* Weak symbols can always be pre-empted. */
22166 if (S_IS_WEAK (s))
22167 return TRUE;
22168
22169 /* Non-global symbols cannot be pre-empted. */
22170 if (! S_IS_EXTERNAL (s))
22171 return FALSE;
22172
22173 #ifdef OBJ_ELF
22174 /* In ELF, a global symbol can be marked protected, or private. In that
22175 case it can't be pre-empted (other definitions in the same link unit
22176 would violate the ODR). */
22177 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
22178 return FALSE;
22179 #endif
22180
22181 /* Other global symbols might be pre-empted. */
22182 return TRUE;
22183 }
22184
22185 /* Return the size of a relaxable branch instruction. BITS is the
22186 size of the offset field in the narrow instruction. */
22187
22188 static int
22189 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
22190 {
22191 addressT addr;
22192 offsetT val;
22193 offsetT limit;
22194
22195 /* Assume worst case for symbols not known to be in the same section. */
22196 if (!S_IS_DEFINED (fragp->fr_symbol)
22197 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22198 || S_IS_WEAK (fragp->fr_symbol))
22199 return 4;
22200
22201 #ifdef OBJ_ELF
22202 /* A branch to a function in ARM state will require interworking. */
22203 if (S_IS_DEFINED (fragp->fr_symbol)
22204 && ARM_IS_FUNC (fragp->fr_symbol))
22205 return 4;
22206 #endif
22207
22208 if (symbol_preemptible (fragp->fr_symbol))
22209 return 4;
22210
22211 val = relaxed_symbol_addr (fragp, stretch);
22212 addr = fragp->fr_address + fragp->fr_fix + 4;
22213 val -= addr;
22214
22215 /* Offset is a signed value *2 */
22216 limit = 1 << bits;
22217 if (val >= limit || val < -limit)
22218 return 4;
22219 return 2;
22220 }
22221
22222
22223 /* Relax a machine dependent frag. This returns the amount by which
22224 the current size of the frag should change. */
22225
22226 int
22227 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
22228 {
22229 int oldsize;
22230 int newsize;
22231
22232 oldsize = fragp->fr_var;
22233 switch (fragp->fr_subtype)
22234 {
22235 case T_MNEM_ldr_pc2:
22236 newsize = relax_adr (fragp, sec, stretch);
22237 break;
22238 case T_MNEM_ldr_pc:
22239 case T_MNEM_ldr_sp:
22240 case T_MNEM_str_sp:
22241 newsize = relax_immediate (fragp, 8, 2);
22242 break;
22243 case T_MNEM_ldr:
22244 case T_MNEM_str:
22245 newsize = relax_immediate (fragp, 5, 2);
22246 break;
22247 case T_MNEM_ldrh:
22248 case T_MNEM_strh:
22249 newsize = relax_immediate (fragp, 5, 1);
22250 break;
22251 case T_MNEM_ldrb:
22252 case T_MNEM_strb:
22253 newsize = relax_immediate (fragp, 5, 0);
22254 break;
22255 case T_MNEM_adr:
22256 newsize = relax_adr (fragp, sec, stretch);
22257 break;
22258 case T_MNEM_mov:
22259 case T_MNEM_movs:
22260 case T_MNEM_cmp:
22261 case T_MNEM_cmn:
22262 newsize = relax_immediate (fragp, 8, 0);
22263 break;
22264 case T_MNEM_b:
22265 newsize = relax_branch (fragp, sec, 11, stretch);
22266 break;
22267 case T_MNEM_bcond:
22268 newsize = relax_branch (fragp, sec, 8, stretch);
22269 break;
22270 case T_MNEM_add_sp:
22271 case T_MNEM_add_pc:
22272 newsize = relax_immediate (fragp, 8, 2);
22273 break;
22274 case T_MNEM_inc_sp:
22275 case T_MNEM_dec_sp:
22276 newsize = relax_immediate (fragp, 7, 2);
22277 break;
22278 case T_MNEM_addi:
22279 case T_MNEM_addis:
22280 case T_MNEM_subi:
22281 case T_MNEM_subis:
22282 newsize = relax_addsub (fragp, sec);
22283 break;
22284 default:
22285 abort ();
22286 }
22287
22288 fragp->fr_var = newsize;
22289 /* Freeze wide instructions that are at or before the same location as
22290 in the previous pass. This avoids infinite loops.
22291 Don't freeze them unconditionally because targets may be artificially
22292 misaligned by the expansion of preceding frags. */
22293 if (stretch <= 0 && newsize > 2)
22294 {
22295 md_convert_frag (sec->owner, sec, fragp);
22296 frag_wane (fragp);
22297 }
22298
22299 return newsize - oldsize;
22300 }
22301
22302 /* Round up a section size to the appropriate boundary. */
22303
22304 valueT
22305 md_section_align (segT segment ATTRIBUTE_UNUSED,
22306 valueT size)
22307 {
22308 return size;
22309 }
22310
22311 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22312 of an rs_align_code fragment. */
22313
22314 void
22315 arm_handle_align (fragS * fragP)
22316 {
22317 static unsigned char const arm_noop[2][2][4] =
22318 {
22319 { /* ARMv1 */
22320 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22321 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22322 },
22323 { /* ARMv6k */
22324 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22325 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22326 },
22327 };
22328 static unsigned char const thumb_noop[2][2][2] =
22329 {
22330 { /* Thumb-1 */
22331 {0xc0, 0x46}, /* LE */
22332 {0x46, 0xc0}, /* BE */
22333 },
22334 { /* Thumb-2 */
22335 {0x00, 0xbf}, /* LE */
22336 {0xbf, 0x00} /* BE */
22337 }
22338 };
22339 static unsigned char const wide_thumb_noop[2][4] =
22340 { /* Wide Thumb-2 */
22341 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22342 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22343 };
22344
22345 unsigned bytes, fix, noop_size;
22346 char * p;
22347 const unsigned char * noop;
22348 const unsigned char *narrow_noop = NULL;
22349 #ifdef OBJ_ELF
22350 enum mstate state;
22351 #endif
22352
22353 if (fragP->fr_type != rs_align_code)
22354 return;
22355
22356 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22357 p = fragP->fr_literal + fragP->fr_fix;
22358 fix = 0;
22359
22360 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22361 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
22362
22363 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
22364
22365 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
22366 {
22367 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22368 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
22369 {
22370 narrow_noop = thumb_noop[1][target_big_endian];
22371 noop = wide_thumb_noop[target_big_endian];
22372 }
22373 else
22374 noop = thumb_noop[0][target_big_endian];
22375 noop_size = 2;
22376 #ifdef OBJ_ELF
22377 state = MAP_THUMB;
22378 #endif
22379 }
22380 else
22381 {
22382 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22383 ? selected_cpu : arm_arch_none,
22384 arm_ext_v6k) != 0]
22385 [target_big_endian];
22386 noop_size = 4;
22387 #ifdef OBJ_ELF
22388 state = MAP_ARM;
22389 #endif
22390 }
22391
22392 fragP->fr_var = noop_size;
22393
22394 if (bytes & (noop_size - 1))
22395 {
22396 fix = bytes & (noop_size - 1);
22397 #ifdef OBJ_ELF
22398 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22399 #endif
22400 memset (p, 0, fix);
22401 p += fix;
22402 bytes -= fix;
22403 }
22404
22405 if (narrow_noop)
22406 {
22407 if (bytes & noop_size)
22408 {
22409 /* Insert a narrow noop. */
22410 memcpy (p, narrow_noop, noop_size);
22411 p += noop_size;
22412 bytes -= noop_size;
22413 fix += noop_size;
22414 }
22415
22416 /* Use wide noops for the remainder */
22417 noop_size = 4;
22418 }
22419
22420 while (bytes >= noop_size)
22421 {
22422 memcpy (p, noop, noop_size);
22423 p += noop_size;
22424 bytes -= noop_size;
22425 fix += noop_size;
22426 }
22427
22428 fragP->fr_fix += fix;
22429 }
22430
22431 /* Called from md_do_align. Used to create an alignment
22432 frag in a code section. */
22433
22434 void
22435 arm_frag_align_code (int n, int max)
22436 {
22437 char * p;
22438
22439 /* We assume that there will never be a requirement
22440 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
22441 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
22442 {
22443 char err_msg[128];
22444
22445 sprintf (err_msg,
22446 _("alignments greater than %d bytes not supported in .text sections."),
22447 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
22448 as_fatal ("%s", err_msg);
22449 }
22450
22451 p = frag_var (rs_align_code,
22452 MAX_MEM_FOR_RS_ALIGN_CODE,
22453 1,
22454 (relax_substateT) max,
22455 (symbolS *) NULL,
22456 (offsetT) n,
22457 (char *) NULL);
22458 *p = 0;
22459 }
22460
22461 /* Perform target specific initialisation of a frag.
22462 Note - despite the name this initialisation is not done when the frag
22463 is created, but only when its type is assigned. A frag can be created
22464 and used a long time before its type is set, so beware of assuming that
22465 this initialisation is performed first. */
22466
22467 #ifndef OBJ_ELF
22468 void
22469 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22470 {
22471 /* Record whether this frag is in an ARM or a THUMB area. */
22472 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22473 }
22474
22475 #else /* OBJ_ELF is defined. */
22476 void
22477 arm_init_frag (fragS * fragP, int max_chars)
22478 {
22479 bfd_boolean frag_thumb_mode;
22480
22481 /* If the current ARM vs THUMB mode has not already
22482 been recorded into this frag then do so now. */
22483 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
22484 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22485
22486 /* PR 21809: Do not set a mapping state for debug sections
22487 - it just confuses other tools. */
22488 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22489 return;
22490
22491 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
22492
22493 /* Record a mapping symbol for alignment frags. We will delete this
22494 later if the alignment ends up empty. */
22495 switch (fragP->fr_type)
22496 {
22497 case rs_align:
22498 case rs_align_test:
22499 case rs_fill:
22500 mapping_state_2 (MAP_DATA, max_chars);
22501 break;
22502 case rs_align_code:
22503 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
22504 break;
22505 default:
22506 break;
22507 }
22508 }
22509
22510 /* When we change sections we need to issue a new mapping symbol. */
22511
22512 void
22513 arm_elf_change_section (void)
22514 {
22515 /* Link an unlinked unwind index table section to the .text section. */
22516 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22517 && elf_linked_to_section (now_seg) == NULL)
22518 elf_linked_to_section (now_seg) = text_section;
22519 }
22520
22521 int
22522 arm_elf_section_type (const char * str, size_t len)
22523 {
22524 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22525 return SHT_ARM_EXIDX;
22526
22527 return -1;
22528 }
22529 \f
22530 /* Code to deal with unwinding tables. */
22531
22532 static void add_unwind_adjustsp (offsetT);
22533
22534 /* Generate any deferred unwind frame offset. */
22535
22536 static void
22537 flush_pending_unwind (void)
22538 {
22539 offsetT offset;
22540
22541 offset = unwind.pending_offset;
22542 unwind.pending_offset = 0;
22543 if (offset != 0)
22544 add_unwind_adjustsp (offset);
22545 }
22546
22547 /* Add an opcode to this list for this function. Two-byte opcodes should
22548 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22549 order. */
22550
22551 static void
22552 add_unwind_opcode (valueT op, int length)
22553 {
22554 /* Add any deferred stack adjustment. */
22555 if (unwind.pending_offset)
22556 flush_pending_unwind ();
22557
22558 unwind.sp_restored = 0;
22559
22560 if (unwind.opcode_count + length > unwind.opcode_alloc)
22561 {
22562 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22563 if (unwind.opcodes)
22564 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22565 unwind.opcode_alloc);
22566 else
22567 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
22568 }
22569 while (length > 0)
22570 {
22571 length--;
22572 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22573 op >>= 8;
22574 unwind.opcode_count++;
22575 }
22576 }
22577
22578 /* Add unwind opcodes to adjust the stack pointer. */
22579
22580 static void
22581 add_unwind_adjustsp (offsetT offset)
22582 {
22583 valueT op;
22584
22585 if (offset > 0x200)
22586 {
22587 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22588 char bytes[5];
22589 int n;
22590 valueT o;
22591
22592 /* Long form: 0xb2, uleb128. */
22593 /* This might not fit in a word so add the individual bytes,
22594 remembering the list is built in reverse order. */
22595 o = (valueT) ((offset - 0x204) >> 2);
22596 if (o == 0)
22597 add_unwind_opcode (0, 1);
22598
22599 /* Calculate the uleb128 encoding of the offset. */
22600 n = 0;
22601 while (o)
22602 {
22603 bytes[n] = o & 0x7f;
22604 o >>= 7;
22605 if (o)
22606 bytes[n] |= 0x80;
22607 n++;
22608 }
22609 /* Add the insn. */
22610 for (; n; n--)
22611 add_unwind_opcode (bytes[n - 1], 1);
22612 add_unwind_opcode (0xb2, 1);
22613 }
22614 else if (offset > 0x100)
22615 {
22616 /* Two short opcodes. */
22617 add_unwind_opcode (0x3f, 1);
22618 op = (offset - 0x104) >> 2;
22619 add_unwind_opcode (op, 1);
22620 }
22621 else if (offset > 0)
22622 {
22623 /* Short opcode. */
22624 op = (offset - 4) >> 2;
22625 add_unwind_opcode (op, 1);
22626 }
22627 else if (offset < 0)
22628 {
22629 offset = -offset;
22630 while (offset > 0x100)
22631 {
22632 add_unwind_opcode (0x7f, 1);
22633 offset -= 0x100;
22634 }
22635 op = ((offset - 4) >> 2) | 0x40;
22636 add_unwind_opcode (op, 1);
22637 }
22638 }
22639
22640 /* Finish the list of unwind opcodes for this function. */
22641
22642 static void
22643 finish_unwind_opcodes (void)
22644 {
22645 valueT op;
22646
22647 if (unwind.fp_used)
22648 {
22649 /* Adjust sp as necessary. */
22650 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22651 flush_pending_unwind ();
22652
22653 /* After restoring sp from the frame pointer. */
22654 op = 0x90 | unwind.fp_reg;
22655 add_unwind_opcode (op, 1);
22656 }
22657 else
22658 flush_pending_unwind ();
22659 }
22660
22661
22662 /* Start an exception table entry. If idx is nonzero this is an index table
22663 entry. */
22664
22665 static void
22666 start_unwind_section (const segT text_seg, int idx)
22667 {
22668 const char * text_name;
22669 const char * prefix;
22670 const char * prefix_once;
22671 const char * group_name;
22672 char * sec_name;
22673 int type;
22674 int flags;
22675 int linkonce;
22676
22677 if (idx)
22678 {
22679 prefix = ELF_STRING_ARM_unwind;
22680 prefix_once = ELF_STRING_ARM_unwind_once;
22681 type = SHT_ARM_EXIDX;
22682 }
22683 else
22684 {
22685 prefix = ELF_STRING_ARM_unwind_info;
22686 prefix_once = ELF_STRING_ARM_unwind_info_once;
22687 type = SHT_PROGBITS;
22688 }
22689
22690 text_name = segment_name (text_seg);
22691 if (streq (text_name, ".text"))
22692 text_name = "";
22693
22694 if (strncmp (text_name, ".gnu.linkonce.t.",
22695 strlen (".gnu.linkonce.t.")) == 0)
22696 {
22697 prefix = prefix_once;
22698 text_name += strlen (".gnu.linkonce.t.");
22699 }
22700
22701 sec_name = concat (prefix, text_name, (char *) NULL);
22702
22703 flags = SHF_ALLOC;
22704 linkonce = 0;
22705 group_name = 0;
22706
22707 /* Handle COMDAT group. */
22708 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
22709 {
22710 group_name = elf_group_name (text_seg);
22711 if (group_name == NULL)
22712 {
22713 as_bad (_("Group section `%s' has no group signature"),
22714 segment_name (text_seg));
22715 ignore_rest_of_line ();
22716 return;
22717 }
22718 flags |= SHF_GROUP;
22719 linkonce = 1;
22720 }
22721
22722 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22723 linkonce, 0);
22724
22725 /* Set the section link for index tables. */
22726 if (idx)
22727 elf_linked_to_section (now_seg) = text_seg;
22728 }
22729
22730
22731 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22732 personality routine data. Returns zero, or the index table value for
22733 an inline entry. */
22734
22735 static valueT
22736 create_unwind_entry (int have_data)
22737 {
22738 int size;
22739 addressT where;
22740 char *ptr;
22741 /* The current word of data. */
22742 valueT data;
22743 /* The number of bytes left in this word. */
22744 int n;
22745
22746 finish_unwind_opcodes ();
22747
22748 /* Remember the current text section. */
22749 unwind.saved_seg = now_seg;
22750 unwind.saved_subseg = now_subseg;
22751
22752 start_unwind_section (now_seg, 0);
22753
22754 if (unwind.personality_routine == NULL)
22755 {
22756 if (unwind.personality_index == -2)
22757 {
22758 if (have_data)
22759 as_bad (_("handlerdata in cantunwind frame"));
22760 return 1; /* EXIDX_CANTUNWIND. */
22761 }
22762
22763 /* Use a default personality routine if none is specified. */
22764 if (unwind.personality_index == -1)
22765 {
22766 if (unwind.opcode_count > 3)
22767 unwind.personality_index = 1;
22768 else
22769 unwind.personality_index = 0;
22770 }
22771
22772 /* Space for the personality routine entry. */
22773 if (unwind.personality_index == 0)
22774 {
22775 if (unwind.opcode_count > 3)
22776 as_bad (_("too many unwind opcodes for personality routine 0"));
22777
22778 if (!have_data)
22779 {
22780 /* All the data is inline in the index table. */
22781 data = 0x80;
22782 n = 3;
22783 while (unwind.opcode_count > 0)
22784 {
22785 unwind.opcode_count--;
22786 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22787 n--;
22788 }
22789
22790 /* Pad with "finish" opcodes. */
22791 while (n--)
22792 data = (data << 8) | 0xb0;
22793
22794 return data;
22795 }
22796 size = 0;
22797 }
22798 else
22799 /* We get two opcodes "free" in the first word. */
22800 size = unwind.opcode_count - 2;
22801 }
22802 else
22803 {
22804 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22805 if (unwind.personality_index != -1)
22806 {
22807 as_bad (_("attempt to recreate an unwind entry"));
22808 return 1;
22809 }
22810
22811 /* An extra byte is required for the opcode count. */
22812 size = unwind.opcode_count + 1;
22813 }
22814
22815 size = (size + 3) >> 2;
22816 if (size > 0xff)
22817 as_bad (_("too many unwind opcodes"));
22818
22819 frag_align (2, 0, 0);
22820 record_alignment (now_seg, 2);
22821 unwind.table_entry = expr_build_dot ();
22822
22823 /* Allocate the table entry. */
22824 ptr = frag_more ((size << 2) + 4);
22825 /* PR 13449: Zero the table entries in case some of them are not used. */
22826 memset (ptr, 0, (size << 2) + 4);
22827 where = frag_now_fix () - ((size << 2) + 4);
22828
22829 switch (unwind.personality_index)
22830 {
22831 case -1:
22832 /* ??? Should this be a PLT generating relocation? */
22833 /* Custom personality routine. */
22834 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22835 BFD_RELOC_ARM_PREL31);
22836
22837 where += 4;
22838 ptr += 4;
22839
22840 /* Set the first byte to the number of additional words. */
22841 data = size > 0 ? size - 1 : 0;
22842 n = 3;
22843 break;
22844
22845 /* ABI defined personality routines. */
22846 case 0:
22847 /* Three opcodes bytes are packed into the first word. */
22848 data = 0x80;
22849 n = 3;
22850 break;
22851
22852 case 1:
22853 case 2:
22854 /* The size and first two opcode bytes go in the first word. */
22855 data = ((0x80 + unwind.personality_index) << 8) | size;
22856 n = 2;
22857 break;
22858
22859 default:
22860 /* Should never happen. */
22861 abort ();
22862 }
22863
22864 /* Pack the opcodes into words (MSB first), reversing the list at the same
22865 time. */
22866 while (unwind.opcode_count > 0)
22867 {
22868 if (n == 0)
22869 {
22870 md_number_to_chars (ptr, data, 4);
22871 ptr += 4;
22872 n = 4;
22873 data = 0;
22874 }
22875 unwind.opcode_count--;
22876 n--;
22877 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22878 }
22879
22880 /* Finish off the last word. */
22881 if (n < 4)
22882 {
22883 /* Pad with "finish" opcodes. */
22884 while (n--)
22885 data = (data << 8) | 0xb0;
22886
22887 md_number_to_chars (ptr, data, 4);
22888 }
22889
22890 if (!have_data)
22891 {
22892 /* Add an empty descriptor if there is no user-specified data. */
22893 ptr = frag_more (4);
22894 md_number_to_chars (ptr, 0, 4);
22895 }
22896
22897 return 0;
22898 }
22899
22900
22901 /* Initialize the DWARF-2 unwind information for this procedure. */
22902
22903 void
22904 tc_arm_frame_initial_instructions (void)
22905 {
22906 cfi_add_CFA_def_cfa (REG_SP, 0);
22907 }
22908 #endif /* OBJ_ELF */
22909
22910 /* Convert REGNAME to a DWARF-2 register number. */
22911
22912 int
22913 tc_arm_regname_to_dw2regnum (char *regname)
22914 {
22915 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
22916 if (reg != FAIL)
22917 return reg;
22918
22919 /* PR 16694: Allow VFP registers as well. */
22920 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22921 if (reg != FAIL)
22922 return 64 + reg;
22923
22924 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22925 if (reg != FAIL)
22926 return reg + 256;
22927
22928 return FAIL;
22929 }
22930
22931 #ifdef TE_PE
22932 void
22933 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
22934 {
22935 expressionS exp;
22936
22937 exp.X_op = O_secrel;
22938 exp.X_add_symbol = symbol;
22939 exp.X_add_number = 0;
22940 emit_expr (&exp, size);
22941 }
22942 #endif
22943
22944 /* MD interface: Symbol and relocation handling. */
22945
22946 /* Return the address within the segment that a PC-relative fixup is
22947 relative to. For ARM, PC-relative fixups applied to instructions
22948 are generally relative to the location of the fixup plus 8 bytes.
22949 Thumb branches are offset by 4, and Thumb loads relative to PC
22950 require special handling. */
22951
22952 long
22953 md_pcrel_from_section (fixS * fixP, segT seg)
22954 {
22955 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22956
22957 /* If this is pc-relative and we are going to emit a relocation
22958 then we just want to put out any pipeline compensation that the linker
22959 will need. Otherwise we want to use the calculated base.
22960 For WinCE we skip the bias for externals as well, since this
22961 is how the MS ARM-CE assembler behaves and we want to be compatible. */
22962 if (fixP->fx_pcrel
22963 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
22964 || (arm_force_relocation (fixP)
22965 #ifdef TE_WINCE
22966 && !S_IS_EXTERNAL (fixP->fx_addsy)
22967 #endif
22968 )))
22969 base = 0;
22970
22971
22972 switch (fixP->fx_r_type)
22973 {
22974 /* PC relative addressing on the Thumb is slightly odd as the
22975 bottom two bits of the PC are forced to zero for the
22976 calculation. This happens *after* application of the
22977 pipeline offset. However, Thumb adrl already adjusts for
22978 this, so we need not do it again. */
22979 case BFD_RELOC_ARM_THUMB_ADD:
22980 return base & ~3;
22981
22982 case BFD_RELOC_ARM_THUMB_OFFSET:
22983 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22984 case BFD_RELOC_ARM_T32_ADD_PC12:
22985 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22986 return (base + 4) & ~3;
22987
22988 /* Thumb branches are simply offset by +4. */
22989 case BFD_RELOC_THUMB_PCREL_BRANCH5:
22990 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22991 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22992 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22993 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22994 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22995 case BFD_RELOC_THUMB_PCREL_BFCSEL:
22996 case BFD_RELOC_ARM_THUMB_BF17:
22997 case BFD_RELOC_ARM_THUMB_BF19:
22998 case BFD_RELOC_ARM_THUMB_BF13:
22999 return base + 4;
23000
23001 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23002 if (fixP->fx_addsy
23003 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23004 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23005 && ARM_IS_FUNC (fixP->fx_addsy)
23006 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23007 base = fixP->fx_where + fixP->fx_frag->fr_address;
23008 return base + 4;
23009
23010 /* BLX is like branches above, but forces the low two bits of PC to
23011 zero. */
23012 case BFD_RELOC_THUMB_PCREL_BLX:
23013 if (fixP->fx_addsy
23014 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23015 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23016 && THUMB_IS_FUNC (fixP->fx_addsy)
23017 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23018 base = fixP->fx_where + fixP->fx_frag->fr_address;
23019 return (base + 4) & ~3;
23020
23021 /* ARM mode branches are offset by +8. However, the Windows CE
23022 loader expects the relocation not to take this into account. */
23023 case BFD_RELOC_ARM_PCREL_BLX:
23024 if (fixP->fx_addsy
23025 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23026 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23027 && ARM_IS_FUNC (fixP->fx_addsy)
23028 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23029 base = fixP->fx_where + fixP->fx_frag->fr_address;
23030 return base + 8;
23031
23032 case BFD_RELOC_ARM_PCREL_CALL:
23033 if (fixP->fx_addsy
23034 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23035 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23036 && THUMB_IS_FUNC (fixP->fx_addsy)
23037 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23038 base = fixP->fx_where + fixP->fx_frag->fr_address;
23039 return base + 8;
23040
23041 case BFD_RELOC_ARM_PCREL_BRANCH:
23042 case BFD_RELOC_ARM_PCREL_JUMP:
23043 case BFD_RELOC_ARM_PLT32:
23044 #ifdef TE_WINCE
23045 /* When handling fixups immediately, because we have already
23046 discovered the value of a symbol, or the address of the frag involved
23047 we must account for the offset by +8, as the OS loader will never see the reloc.
23048 see fixup_segment() in write.c
23049 The S_IS_EXTERNAL test handles the case of global symbols.
23050 Those need the calculated base, not just the pipe compensation the linker will need. */
23051 if (fixP->fx_pcrel
23052 && fixP->fx_addsy != NULL
23053 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23054 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
23055 return base + 8;
23056 return base;
23057 #else
23058 return base + 8;
23059 #endif
23060
23061
23062 /* ARM mode loads relative to PC are also offset by +8. Unlike
23063 branches, the Windows CE loader *does* expect the relocation
23064 to take this into account. */
23065 case BFD_RELOC_ARM_OFFSET_IMM:
23066 case BFD_RELOC_ARM_OFFSET_IMM8:
23067 case BFD_RELOC_ARM_HWLITERAL:
23068 case BFD_RELOC_ARM_LITERAL:
23069 case BFD_RELOC_ARM_CP_OFF_IMM:
23070 return base + 8;
23071
23072
23073 /* Other PC-relative relocations are un-offset. */
23074 default:
23075 return base;
23076 }
23077 }
23078
23079 static bfd_boolean flag_warn_syms = TRUE;
23080
23081 bfd_boolean
23082 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
23083 {
23084 /* PR 18347 - Warn if the user attempts to create a symbol with the same
23085 name as an ARM instruction. Whilst strictly speaking it is allowed, it
23086 does mean that the resulting code might be very confusing to the reader.
23087 Also this warning can be triggered if the user omits an operand before
23088 an immediate address, eg:
23089
23090 LDR =foo
23091
23092 GAS treats this as an assignment of the value of the symbol foo to a
23093 symbol LDR, and so (without this code) it will not issue any kind of
23094 warning or error message.
23095
23096 Note - ARM instructions are case-insensitive but the strings in the hash
23097 table are all stored in lower case, so we must first ensure that name is
23098 lower case too. */
23099 if (flag_warn_syms && arm_ops_hsh)
23100 {
23101 char * nbuf = strdup (name);
23102 char * p;
23103
23104 for (p = nbuf; *p; p++)
23105 *p = TOLOWER (*p);
23106 if (hash_find (arm_ops_hsh, nbuf) != NULL)
23107 {
23108 static struct hash_control * already_warned = NULL;
23109
23110 if (already_warned == NULL)
23111 already_warned = hash_new ();
23112 /* Only warn about the symbol once. To keep the code
23113 simple we let hash_insert do the lookup for us. */
23114 if (hash_insert (already_warned, name, NULL) == NULL)
23115 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
23116 }
23117 else
23118 free (nbuf);
23119 }
23120
23121 return FALSE;
23122 }
23123
23124 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
23125 Otherwise we have no need to default values of symbols. */
23126
23127 symbolS *
23128 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
23129 {
23130 #ifdef OBJ_ELF
23131 if (name[0] == '_' && name[1] == 'G'
23132 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
23133 {
23134 if (!GOT_symbol)
23135 {
23136 if (symbol_find (name))
23137 as_bad (_("GOT already in the symbol table"));
23138
23139 GOT_symbol = symbol_new (name, undefined_section,
23140 (valueT) 0, & zero_address_frag);
23141 }
23142
23143 return GOT_symbol;
23144 }
23145 #endif
23146
23147 return NULL;
23148 }
23149
23150 /* Subroutine of md_apply_fix. Check to see if an immediate can be
23151 computed as two separate immediate values, added together. We
23152 already know that this value cannot be computed by just one ARM
23153 instruction. */
23154
23155 static unsigned int
23156 validate_immediate_twopart (unsigned int val,
23157 unsigned int * highpart)
23158 {
23159 unsigned int a;
23160 unsigned int i;
23161
23162 for (i = 0; i < 32; i += 2)
23163 if (((a = rotate_left (val, i)) & 0xff) != 0)
23164 {
23165 if (a & 0xff00)
23166 {
23167 if (a & ~ 0xffff)
23168 continue;
23169 * highpart = (a >> 8) | ((i + 24) << 7);
23170 }
23171 else if (a & 0xff0000)
23172 {
23173 if (a & 0xff000000)
23174 continue;
23175 * highpart = (a >> 16) | ((i + 16) << 7);
23176 }
23177 else
23178 {
23179 gas_assert (a & 0xff000000);
23180 * highpart = (a >> 24) | ((i + 8) << 7);
23181 }
23182
23183 return (a & 0xff) | (i << 7);
23184 }
23185
23186 return FAIL;
23187 }
23188
23189 static int
23190 validate_offset_imm (unsigned int val, int hwse)
23191 {
23192 if ((hwse && val > 255) || val > 4095)
23193 return FAIL;
23194 return val;
23195 }
23196
23197 /* Subroutine of md_apply_fix. Do those data_ops which can take a
23198 negative immediate constant by altering the instruction. A bit of
23199 a hack really.
23200 MOV <-> MVN
23201 AND <-> BIC
23202 ADC <-> SBC
23203 by inverting the second operand, and
23204 ADD <-> SUB
23205 CMP <-> CMN
23206 by negating the second operand. */
23207
23208 static int
23209 negate_data_op (unsigned long * instruction,
23210 unsigned long value)
23211 {
23212 int op, new_inst;
23213 unsigned long negated, inverted;
23214
23215 negated = encode_arm_immediate (-value);
23216 inverted = encode_arm_immediate (~value);
23217
23218 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
23219 switch (op)
23220 {
23221 /* First negates. */
23222 case OPCODE_SUB: /* ADD <-> SUB */
23223 new_inst = OPCODE_ADD;
23224 value = negated;
23225 break;
23226
23227 case OPCODE_ADD:
23228 new_inst = OPCODE_SUB;
23229 value = negated;
23230 break;
23231
23232 case OPCODE_CMP: /* CMP <-> CMN */
23233 new_inst = OPCODE_CMN;
23234 value = negated;
23235 break;
23236
23237 case OPCODE_CMN:
23238 new_inst = OPCODE_CMP;
23239 value = negated;
23240 break;
23241
23242 /* Now Inverted ops. */
23243 case OPCODE_MOV: /* MOV <-> MVN */
23244 new_inst = OPCODE_MVN;
23245 value = inverted;
23246 break;
23247
23248 case OPCODE_MVN:
23249 new_inst = OPCODE_MOV;
23250 value = inverted;
23251 break;
23252
23253 case OPCODE_AND: /* AND <-> BIC */
23254 new_inst = OPCODE_BIC;
23255 value = inverted;
23256 break;
23257
23258 case OPCODE_BIC:
23259 new_inst = OPCODE_AND;
23260 value = inverted;
23261 break;
23262
23263 case OPCODE_ADC: /* ADC <-> SBC */
23264 new_inst = OPCODE_SBC;
23265 value = inverted;
23266 break;
23267
23268 case OPCODE_SBC:
23269 new_inst = OPCODE_ADC;
23270 value = inverted;
23271 break;
23272
23273 /* We cannot do anything. */
23274 default:
23275 return FAIL;
23276 }
23277
23278 if (value == (unsigned) FAIL)
23279 return FAIL;
23280
23281 *instruction &= OPCODE_MASK;
23282 *instruction |= new_inst << DATA_OP_SHIFT;
23283 return value;
23284 }
23285
23286 /* Like negate_data_op, but for Thumb-2. */
23287
23288 static unsigned int
23289 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
23290 {
23291 int op, new_inst;
23292 int rd;
23293 unsigned int negated, inverted;
23294
23295 negated = encode_thumb32_immediate (-value);
23296 inverted = encode_thumb32_immediate (~value);
23297
23298 rd = (*instruction >> 8) & 0xf;
23299 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23300 switch (op)
23301 {
23302 /* ADD <-> SUB. Includes CMP <-> CMN. */
23303 case T2_OPCODE_SUB:
23304 new_inst = T2_OPCODE_ADD;
23305 value = negated;
23306 break;
23307
23308 case T2_OPCODE_ADD:
23309 new_inst = T2_OPCODE_SUB;
23310 value = negated;
23311 break;
23312
23313 /* ORR <-> ORN. Includes MOV <-> MVN. */
23314 case T2_OPCODE_ORR:
23315 new_inst = T2_OPCODE_ORN;
23316 value = inverted;
23317 break;
23318
23319 case T2_OPCODE_ORN:
23320 new_inst = T2_OPCODE_ORR;
23321 value = inverted;
23322 break;
23323
23324 /* AND <-> BIC. TST has no inverted equivalent. */
23325 case T2_OPCODE_AND:
23326 new_inst = T2_OPCODE_BIC;
23327 if (rd == 15)
23328 value = FAIL;
23329 else
23330 value = inverted;
23331 break;
23332
23333 case T2_OPCODE_BIC:
23334 new_inst = T2_OPCODE_AND;
23335 value = inverted;
23336 break;
23337
23338 /* ADC <-> SBC */
23339 case T2_OPCODE_ADC:
23340 new_inst = T2_OPCODE_SBC;
23341 value = inverted;
23342 break;
23343
23344 case T2_OPCODE_SBC:
23345 new_inst = T2_OPCODE_ADC;
23346 value = inverted;
23347 break;
23348
23349 /* We cannot do anything. */
23350 default:
23351 return FAIL;
23352 }
23353
23354 if (value == (unsigned int)FAIL)
23355 return FAIL;
23356
23357 *instruction &= T2_OPCODE_MASK;
23358 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23359 return value;
23360 }
23361
23362 /* Read a 32-bit thumb instruction from buf. */
23363
23364 static unsigned long
23365 get_thumb32_insn (char * buf)
23366 {
23367 unsigned long insn;
23368 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23369 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23370
23371 return insn;
23372 }
23373
23374 /* We usually want to set the low bit on the address of thumb function
23375 symbols. In particular .word foo - . should have the low bit set.
23376 Generic code tries to fold the difference of two symbols to
23377 a constant. Prevent this and force a relocation when the first symbols
23378 is a thumb function. */
23379
23380 bfd_boolean
23381 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23382 {
23383 if (op == O_subtract
23384 && l->X_op == O_symbol
23385 && r->X_op == O_symbol
23386 && THUMB_IS_FUNC (l->X_add_symbol))
23387 {
23388 l->X_op = O_subtract;
23389 l->X_op_symbol = r->X_add_symbol;
23390 l->X_add_number -= r->X_add_number;
23391 return TRUE;
23392 }
23393
23394 /* Process as normal. */
23395 return FALSE;
23396 }
23397
23398 /* Encode Thumb2 unconditional branches and calls. The encoding
23399 for the 2 are identical for the immediate values. */
23400
23401 static void
23402 encode_thumb2_b_bl_offset (char * buf, offsetT value)
23403 {
23404 #define T2I1I2MASK ((1 << 13) | (1 << 11))
23405 offsetT newval;
23406 offsetT newval2;
23407 addressT S, I1, I2, lo, hi;
23408
23409 S = (value >> 24) & 0x01;
23410 I1 = (value >> 23) & 0x01;
23411 I2 = (value >> 22) & 0x01;
23412 hi = (value >> 12) & 0x3ff;
23413 lo = (value >> 1) & 0x7ff;
23414 newval = md_chars_to_number (buf, THUMB_SIZE);
23415 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23416 newval |= (S << 10) | hi;
23417 newval2 &= ~T2I1I2MASK;
23418 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23419 md_number_to_chars (buf, newval, THUMB_SIZE);
23420 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23421 }
23422
23423 void
23424 md_apply_fix (fixS * fixP,
23425 valueT * valP,
23426 segT seg)
23427 {
23428 offsetT value = * valP;
23429 offsetT newval;
23430 unsigned int newimm;
23431 unsigned long temp;
23432 int sign;
23433 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
23434
23435 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
23436
23437 /* Note whether this will delete the relocation. */
23438
23439 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23440 fixP->fx_done = 1;
23441
23442 /* On a 64-bit host, silently truncate 'value' to 32 bits for
23443 consistency with the behaviour on 32-bit hosts. Remember value
23444 for emit_reloc. */
23445 value &= 0xffffffff;
23446 value ^= 0x80000000;
23447 value -= 0x80000000;
23448
23449 *valP = value;
23450 fixP->fx_addnumber = value;
23451
23452 /* Same treatment for fixP->fx_offset. */
23453 fixP->fx_offset &= 0xffffffff;
23454 fixP->fx_offset ^= 0x80000000;
23455 fixP->fx_offset -= 0x80000000;
23456
23457 switch (fixP->fx_r_type)
23458 {
23459 case BFD_RELOC_NONE:
23460 /* This will need to go in the object file. */
23461 fixP->fx_done = 0;
23462 break;
23463
23464 case BFD_RELOC_ARM_IMMEDIATE:
23465 /* We claim that this fixup has been processed here,
23466 even if in fact we generate an error because we do
23467 not have a reloc for it, so tc_gen_reloc will reject it. */
23468 fixP->fx_done = 1;
23469
23470 if (fixP->fx_addsy)
23471 {
23472 const char *msg = 0;
23473
23474 if (! S_IS_DEFINED (fixP->fx_addsy))
23475 msg = _("undefined symbol %s used as an immediate value");
23476 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23477 msg = _("symbol %s is in a different section");
23478 else if (S_IS_WEAK (fixP->fx_addsy))
23479 msg = _("symbol %s is weak and may be overridden later");
23480
23481 if (msg)
23482 {
23483 as_bad_where (fixP->fx_file, fixP->fx_line,
23484 msg, S_GET_NAME (fixP->fx_addsy));
23485 break;
23486 }
23487 }
23488
23489 temp = md_chars_to_number (buf, INSN_SIZE);
23490
23491 /* If the offset is negative, we should use encoding A2 for ADR. */
23492 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23493 newimm = negate_data_op (&temp, value);
23494 else
23495 {
23496 newimm = encode_arm_immediate (value);
23497
23498 /* If the instruction will fail, see if we can fix things up by
23499 changing the opcode. */
23500 if (newimm == (unsigned int) FAIL)
23501 newimm = negate_data_op (&temp, value);
23502 /* MOV accepts both ARM modified immediate (A1 encoding) and
23503 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23504 When disassembling, MOV is preferred when there is no encoding
23505 overlap. */
23506 if (newimm == (unsigned int) FAIL
23507 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23508 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23509 && !((temp >> SBIT_SHIFT) & 0x1)
23510 && value >= 0 && value <= 0xffff)
23511 {
23512 /* Clear bits[23:20] to change encoding from A1 to A2. */
23513 temp &= 0xff0fffff;
23514 /* Encoding high 4bits imm. Code below will encode the remaining
23515 low 12bits. */
23516 temp |= (value & 0x0000f000) << 4;
23517 newimm = value & 0x00000fff;
23518 }
23519 }
23520
23521 if (newimm == (unsigned int) FAIL)
23522 {
23523 as_bad_where (fixP->fx_file, fixP->fx_line,
23524 _("invalid constant (%lx) after fixup"),
23525 (unsigned long) value);
23526 break;
23527 }
23528
23529 newimm |= (temp & 0xfffff000);
23530 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23531 break;
23532
23533 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23534 {
23535 unsigned int highpart = 0;
23536 unsigned int newinsn = 0xe1a00000; /* nop. */
23537
23538 if (fixP->fx_addsy)
23539 {
23540 const char *msg = 0;
23541
23542 if (! S_IS_DEFINED (fixP->fx_addsy))
23543 msg = _("undefined symbol %s used as an immediate value");
23544 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23545 msg = _("symbol %s is in a different section");
23546 else if (S_IS_WEAK (fixP->fx_addsy))
23547 msg = _("symbol %s is weak and may be overridden later");
23548
23549 if (msg)
23550 {
23551 as_bad_where (fixP->fx_file, fixP->fx_line,
23552 msg, S_GET_NAME (fixP->fx_addsy));
23553 break;
23554 }
23555 }
23556
23557 newimm = encode_arm_immediate (value);
23558 temp = md_chars_to_number (buf, INSN_SIZE);
23559
23560 /* If the instruction will fail, see if we can fix things up by
23561 changing the opcode. */
23562 if (newimm == (unsigned int) FAIL
23563 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23564 {
23565 /* No ? OK - try using two ADD instructions to generate
23566 the value. */
23567 newimm = validate_immediate_twopart (value, & highpart);
23568
23569 /* Yes - then make sure that the second instruction is
23570 also an add. */
23571 if (newimm != (unsigned int) FAIL)
23572 newinsn = temp;
23573 /* Still No ? Try using a negated value. */
23574 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23575 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23576 /* Otherwise - give up. */
23577 else
23578 {
23579 as_bad_where (fixP->fx_file, fixP->fx_line,
23580 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23581 (long) value);
23582 break;
23583 }
23584
23585 /* Replace the first operand in the 2nd instruction (which
23586 is the PC) with the destination register. We have
23587 already added in the PC in the first instruction and we
23588 do not want to do it again. */
23589 newinsn &= ~ 0xf0000;
23590 newinsn |= ((newinsn & 0x0f000) << 4);
23591 }
23592
23593 newimm |= (temp & 0xfffff000);
23594 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23595
23596 highpart |= (newinsn & 0xfffff000);
23597 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23598 }
23599 break;
23600
23601 case BFD_RELOC_ARM_OFFSET_IMM:
23602 if (!fixP->fx_done && seg->use_rela_p)
23603 value = 0;
23604 /* Fall through. */
23605
23606 case BFD_RELOC_ARM_LITERAL:
23607 sign = value > 0;
23608
23609 if (value < 0)
23610 value = - value;
23611
23612 if (validate_offset_imm (value, 0) == FAIL)
23613 {
23614 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23615 as_bad_where (fixP->fx_file, fixP->fx_line,
23616 _("invalid literal constant: pool needs to be closer"));
23617 else
23618 as_bad_where (fixP->fx_file, fixP->fx_line,
23619 _("bad immediate value for offset (%ld)"),
23620 (long) value);
23621 break;
23622 }
23623
23624 newval = md_chars_to_number (buf, INSN_SIZE);
23625 if (value == 0)
23626 newval &= 0xfffff000;
23627 else
23628 {
23629 newval &= 0xff7ff000;
23630 newval |= value | (sign ? INDEX_UP : 0);
23631 }
23632 md_number_to_chars (buf, newval, INSN_SIZE);
23633 break;
23634
23635 case BFD_RELOC_ARM_OFFSET_IMM8:
23636 case BFD_RELOC_ARM_HWLITERAL:
23637 sign = value > 0;
23638
23639 if (value < 0)
23640 value = - value;
23641
23642 if (validate_offset_imm (value, 1) == FAIL)
23643 {
23644 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23645 as_bad_where (fixP->fx_file, fixP->fx_line,
23646 _("invalid literal constant: pool needs to be closer"));
23647 else
23648 as_bad_where (fixP->fx_file, fixP->fx_line,
23649 _("bad immediate value for 8-bit offset (%ld)"),
23650 (long) value);
23651 break;
23652 }
23653
23654 newval = md_chars_to_number (buf, INSN_SIZE);
23655 if (value == 0)
23656 newval &= 0xfffff0f0;
23657 else
23658 {
23659 newval &= 0xff7ff0f0;
23660 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23661 }
23662 md_number_to_chars (buf, newval, INSN_SIZE);
23663 break;
23664
23665 case BFD_RELOC_ARM_T32_OFFSET_U8:
23666 if (value < 0 || value > 1020 || value % 4 != 0)
23667 as_bad_where (fixP->fx_file, fixP->fx_line,
23668 _("bad immediate value for offset (%ld)"), (long) value);
23669 value /= 4;
23670
23671 newval = md_chars_to_number (buf+2, THUMB_SIZE);
23672 newval |= value;
23673 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23674 break;
23675
23676 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23677 /* This is a complicated relocation used for all varieties of Thumb32
23678 load/store instruction with immediate offset:
23679
23680 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
23681 *4, optional writeback(W)
23682 (doubleword load/store)
23683
23684 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23685 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23686 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23687 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23688 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23689
23690 Uppercase letters indicate bits that are already encoded at
23691 this point. Lowercase letters are our problem. For the
23692 second block of instructions, the secondary opcode nybble
23693 (bits 8..11) is present, and bit 23 is zero, even if this is
23694 a PC-relative operation. */
23695 newval = md_chars_to_number (buf, THUMB_SIZE);
23696 newval <<= 16;
23697 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
23698
23699 if ((newval & 0xf0000000) == 0xe0000000)
23700 {
23701 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23702 if (value >= 0)
23703 newval |= (1 << 23);
23704 else
23705 value = -value;
23706 if (value % 4 != 0)
23707 {
23708 as_bad_where (fixP->fx_file, fixP->fx_line,
23709 _("offset not a multiple of 4"));
23710 break;
23711 }
23712 value /= 4;
23713 if (value > 0xff)
23714 {
23715 as_bad_where (fixP->fx_file, fixP->fx_line,
23716 _("offset out of range"));
23717 break;
23718 }
23719 newval &= ~0xff;
23720 }
23721 else if ((newval & 0x000f0000) == 0x000f0000)
23722 {
23723 /* PC-relative, 12-bit offset. */
23724 if (value >= 0)
23725 newval |= (1 << 23);
23726 else
23727 value = -value;
23728 if (value > 0xfff)
23729 {
23730 as_bad_where (fixP->fx_file, fixP->fx_line,
23731 _("offset out of range"));
23732 break;
23733 }
23734 newval &= ~0xfff;
23735 }
23736 else if ((newval & 0x00000100) == 0x00000100)
23737 {
23738 /* Writeback: 8-bit, +/- offset. */
23739 if (value >= 0)
23740 newval |= (1 << 9);
23741 else
23742 value = -value;
23743 if (value > 0xff)
23744 {
23745 as_bad_where (fixP->fx_file, fixP->fx_line,
23746 _("offset out of range"));
23747 break;
23748 }
23749 newval &= ~0xff;
23750 }
23751 else if ((newval & 0x00000f00) == 0x00000e00)
23752 {
23753 /* T-instruction: positive 8-bit offset. */
23754 if (value < 0 || value > 0xff)
23755 {
23756 as_bad_where (fixP->fx_file, fixP->fx_line,
23757 _("offset out of range"));
23758 break;
23759 }
23760 newval &= ~0xff;
23761 newval |= value;
23762 }
23763 else
23764 {
23765 /* Positive 12-bit or negative 8-bit offset. */
23766 int limit;
23767 if (value >= 0)
23768 {
23769 newval |= (1 << 23);
23770 limit = 0xfff;
23771 }
23772 else
23773 {
23774 value = -value;
23775 limit = 0xff;
23776 }
23777 if (value > limit)
23778 {
23779 as_bad_where (fixP->fx_file, fixP->fx_line,
23780 _("offset out of range"));
23781 break;
23782 }
23783 newval &= ~limit;
23784 }
23785
23786 newval |= value;
23787 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23788 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23789 break;
23790
23791 case BFD_RELOC_ARM_SHIFT_IMM:
23792 newval = md_chars_to_number (buf, INSN_SIZE);
23793 if (((unsigned long) value) > 32
23794 || (value == 32
23795 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23796 {
23797 as_bad_where (fixP->fx_file, fixP->fx_line,
23798 _("shift expression is too large"));
23799 break;
23800 }
23801
23802 if (value == 0)
23803 /* Shifts of zero must be done as lsl. */
23804 newval &= ~0x60;
23805 else if (value == 32)
23806 value = 0;
23807 newval &= 0xfffff07f;
23808 newval |= (value & 0x1f) << 7;
23809 md_number_to_chars (buf, newval, INSN_SIZE);
23810 break;
23811
23812 case BFD_RELOC_ARM_T32_IMMEDIATE:
23813 case BFD_RELOC_ARM_T32_ADD_IMM:
23814 case BFD_RELOC_ARM_T32_IMM12:
23815 case BFD_RELOC_ARM_T32_ADD_PC12:
23816 /* We claim that this fixup has been processed here,
23817 even if in fact we generate an error because we do
23818 not have a reloc for it, so tc_gen_reloc will reject it. */
23819 fixP->fx_done = 1;
23820
23821 if (fixP->fx_addsy
23822 && ! S_IS_DEFINED (fixP->fx_addsy))
23823 {
23824 as_bad_where (fixP->fx_file, fixP->fx_line,
23825 _("undefined symbol %s used as an immediate value"),
23826 S_GET_NAME (fixP->fx_addsy));
23827 break;
23828 }
23829
23830 newval = md_chars_to_number (buf, THUMB_SIZE);
23831 newval <<= 16;
23832 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
23833
23834 newimm = FAIL;
23835 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23836 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23837 Thumb2 modified immediate encoding (T2). */
23838 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
23839 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23840 {
23841 newimm = encode_thumb32_immediate (value);
23842 if (newimm == (unsigned int) FAIL)
23843 newimm = thumb32_negate_data_op (&newval, value);
23844 }
23845 if (newimm == (unsigned int) FAIL)
23846 {
23847 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
23848 {
23849 /* Turn add/sum into addw/subw. */
23850 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23851 newval = (newval & 0xfeffffff) | 0x02000000;
23852 /* No flat 12-bit imm encoding for addsw/subsw. */
23853 if ((newval & 0x00100000) == 0)
23854 {
23855 /* 12 bit immediate for addw/subw. */
23856 if (value < 0)
23857 {
23858 value = -value;
23859 newval ^= 0x00a00000;
23860 }
23861 if (value > 0xfff)
23862 newimm = (unsigned int) FAIL;
23863 else
23864 newimm = value;
23865 }
23866 }
23867 else
23868 {
23869 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23870 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23871 disassembling, MOV is preferred when there is no encoding
23872 overlap. */
23873 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23874 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
23875 but with the Rn field [19:16] set to 1111. */
23876 && (((newval >> 16) & 0xf) == 0xf)
23877 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23878 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23879 && value >= 0 && value <= 0xffff)
23880 {
23881 /* Toggle bit[25] to change encoding from T2 to T3. */
23882 newval ^= 1 << 25;
23883 /* Clear bits[19:16]. */
23884 newval &= 0xfff0ffff;
23885 /* Encoding high 4bits imm. Code below will encode the
23886 remaining low 12bits. */
23887 newval |= (value & 0x0000f000) << 4;
23888 newimm = value & 0x00000fff;
23889 }
23890 }
23891 }
23892
23893 if (newimm == (unsigned int)FAIL)
23894 {
23895 as_bad_where (fixP->fx_file, fixP->fx_line,
23896 _("invalid constant (%lx) after fixup"),
23897 (unsigned long) value);
23898 break;
23899 }
23900
23901 newval |= (newimm & 0x800) << 15;
23902 newval |= (newimm & 0x700) << 4;
23903 newval |= (newimm & 0x0ff);
23904
23905 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23906 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23907 break;
23908
23909 case BFD_RELOC_ARM_SMC:
23910 if (((unsigned long) value) > 0xffff)
23911 as_bad_where (fixP->fx_file, fixP->fx_line,
23912 _("invalid smc expression"));
23913 newval = md_chars_to_number (buf, INSN_SIZE);
23914 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23915 md_number_to_chars (buf, newval, INSN_SIZE);
23916 break;
23917
23918 case BFD_RELOC_ARM_HVC:
23919 if (((unsigned long) value) > 0xffff)
23920 as_bad_where (fixP->fx_file, fixP->fx_line,
23921 _("invalid hvc expression"));
23922 newval = md_chars_to_number (buf, INSN_SIZE);
23923 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23924 md_number_to_chars (buf, newval, INSN_SIZE);
23925 break;
23926
23927 case BFD_RELOC_ARM_SWI:
23928 if (fixP->tc_fix_data != 0)
23929 {
23930 if (((unsigned long) value) > 0xff)
23931 as_bad_where (fixP->fx_file, fixP->fx_line,
23932 _("invalid swi expression"));
23933 newval = md_chars_to_number (buf, THUMB_SIZE);
23934 newval |= value;
23935 md_number_to_chars (buf, newval, THUMB_SIZE);
23936 }
23937 else
23938 {
23939 if (((unsigned long) value) > 0x00ffffff)
23940 as_bad_where (fixP->fx_file, fixP->fx_line,
23941 _("invalid swi expression"));
23942 newval = md_chars_to_number (buf, INSN_SIZE);
23943 newval |= value;
23944 md_number_to_chars (buf, newval, INSN_SIZE);
23945 }
23946 break;
23947
23948 case BFD_RELOC_ARM_MULTI:
23949 if (((unsigned long) value) > 0xffff)
23950 as_bad_where (fixP->fx_file, fixP->fx_line,
23951 _("invalid expression in load/store multiple"));
23952 newval = value | md_chars_to_number (buf, INSN_SIZE);
23953 md_number_to_chars (buf, newval, INSN_SIZE);
23954 break;
23955
23956 #ifdef OBJ_ELF
23957 case BFD_RELOC_ARM_PCREL_CALL:
23958
23959 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23960 && fixP->fx_addsy
23961 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23962 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23963 && THUMB_IS_FUNC (fixP->fx_addsy))
23964 /* Flip the bl to blx. This is a simple flip
23965 bit here because we generate PCREL_CALL for
23966 unconditional bls. */
23967 {
23968 newval = md_chars_to_number (buf, INSN_SIZE);
23969 newval = newval | 0x10000000;
23970 md_number_to_chars (buf, newval, INSN_SIZE);
23971 temp = 1;
23972 fixP->fx_done = 1;
23973 }
23974 else
23975 temp = 3;
23976 goto arm_branch_common;
23977
23978 case BFD_RELOC_ARM_PCREL_JUMP:
23979 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23980 && fixP->fx_addsy
23981 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23982 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23983 && THUMB_IS_FUNC (fixP->fx_addsy))
23984 {
23985 /* This would map to a bl<cond>, b<cond>,
23986 b<always> to a Thumb function. We
23987 need to force a relocation for this particular
23988 case. */
23989 newval = md_chars_to_number (buf, INSN_SIZE);
23990 fixP->fx_done = 0;
23991 }
23992 /* Fall through. */
23993
23994 case BFD_RELOC_ARM_PLT32:
23995 #endif
23996 case BFD_RELOC_ARM_PCREL_BRANCH:
23997 temp = 3;
23998 goto arm_branch_common;
23999
24000 case BFD_RELOC_ARM_PCREL_BLX:
24001
24002 temp = 1;
24003 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24004 && fixP->fx_addsy
24005 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24006 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24007 && ARM_IS_FUNC (fixP->fx_addsy))
24008 {
24009 /* Flip the blx to a bl and warn. */
24010 const char *name = S_GET_NAME (fixP->fx_addsy);
24011 newval = 0xeb000000;
24012 as_warn_where (fixP->fx_file, fixP->fx_line,
24013 _("blx to '%s' an ARM ISA state function changed to bl"),
24014 name);
24015 md_number_to_chars (buf, newval, INSN_SIZE);
24016 temp = 3;
24017 fixP->fx_done = 1;
24018 }
24019
24020 #ifdef OBJ_ELF
24021 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24022 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
24023 #endif
24024
24025 arm_branch_common:
24026 /* We are going to store value (shifted right by two) in the
24027 instruction, in a 24 bit, signed field. Bits 26 through 32 either
24028 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
24029 also be clear. */
24030 if (value & temp)
24031 as_bad_where (fixP->fx_file, fixP->fx_line,
24032 _("misaligned branch destination"));
24033 if ((value & (offsetT)0xfe000000) != (offsetT)0
24034 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
24035 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24036
24037 if (fixP->fx_done || !seg->use_rela_p)
24038 {
24039 newval = md_chars_to_number (buf, INSN_SIZE);
24040 newval |= (value >> 2) & 0x00ffffff;
24041 /* Set the H bit on BLX instructions. */
24042 if (temp == 1)
24043 {
24044 if (value & 2)
24045 newval |= 0x01000000;
24046 else
24047 newval &= ~0x01000000;
24048 }
24049 md_number_to_chars (buf, newval, INSN_SIZE);
24050 }
24051 break;
24052
24053 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
24054 /* CBZ can only branch forward. */
24055
24056 /* Attempts to use CBZ to branch to the next instruction
24057 (which, strictly speaking, are prohibited) will be turned into
24058 no-ops.
24059
24060 FIXME: It may be better to remove the instruction completely and
24061 perform relaxation. */
24062 if (value == -2)
24063 {
24064 newval = md_chars_to_number (buf, THUMB_SIZE);
24065 newval = 0xbf00; /* NOP encoding T1 */
24066 md_number_to_chars (buf, newval, THUMB_SIZE);
24067 }
24068 else
24069 {
24070 if (value & ~0x7e)
24071 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24072
24073 if (fixP->fx_done || !seg->use_rela_p)
24074 {
24075 newval = md_chars_to_number (buf, THUMB_SIZE);
24076 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
24077 md_number_to_chars (buf, newval, THUMB_SIZE);
24078 }
24079 }
24080 break;
24081
24082 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
24083 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
24084 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24085
24086 if (fixP->fx_done || !seg->use_rela_p)
24087 {
24088 newval = md_chars_to_number (buf, THUMB_SIZE);
24089 newval |= (value & 0x1ff) >> 1;
24090 md_number_to_chars (buf, newval, THUMB_SIZE);
24091 }
24092 break;
24093
24094 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
24095 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
24096 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24097
24098 if (fixP->fx_done || !seg->use_rela_p)
24099 {
24100 newval = md_chars_to_number (buf, THUMB_SIZE);
24101 newval |= (value & 0xfff) >> 1;
24102 md_number_to_chars (buf, newval, THUMB_SIZE);
24103 }
24104 break;
24105
24106 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24107 if (fixP->fx_addsy
24108 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24109 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24110 && ARM_IS_FUNC (fixP->fx_addsy)
24111 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24112 {
24113 /* Force a relocation for a branch 20 bits wide. */
24114 fixP->fx_done = 0;
24115 }
24116 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
24117 as_bad_where (fixP->fx_file, fixP->fx_line,
24118 _("conditional branch out of range"));
24119
24120 if (fixP->fx_done || !seg->use_rela_p)
24121 {
24122 offsetT newval2;
24123 addressT S, J1, J2, lo, hi;
24124
24125 S = (value & 0x00100000) >> 20;
24126 J2 = (value & 0x00080000) >> 19;
24127 J1 = (value & 0x00040000) >> 18;
24128 hi = (value & 0x0003f000) >> 12;
24129 lo = (value & 0x00000ffe) >> 1;
24130
24131 newval = md_chars_to_number (buf, THUMB_SIZE);
24132 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24133 newval |= (S << 10) | hi;
24134 newval2 |= (J1 << 13) | (J2 << 11) | lo;
24135 md_number_to_chars (buf, newval, THUMB_SIZE);
24136 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24137 }
24138 break;
24139
24140 case BFD_RELOC_THUMB_PCREL_BLX:
24141 /* If there is a blx from a thumb state function to
24142 another thumb function flip this to a bl and warn
24143 about it. */
24144
24145 if (fixP->fx_addsy
24146 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24147 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24148 && THUMB_IS_FUNC (fixP->fx_addsy))
24149 {
24150 const char *name = S_GET_NAME (fixP->fx_addsy);
24151 as_warn_where (fixP->fx_file, fixP->fx_line,
24152 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
24153 name);
24154 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24155 newval = newval | 0x1000;
24156 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24157 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24158 fixP->fx_done = 1;
24159 }
24160
24161
24162 goto thumb_bl_common;
24163
24164 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24165 /* A bl from Thumb state ISA to an internal ARM state function
24166 is converted to a blx. */
24167 if (fixP->fx_addsy
24168 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24169 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24170 && ARM_IS_FUNC (fixP->fx_addsy)
24171 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24172 {
24173 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24174 newval = newval & ~0x1000;
24175 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24176 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
24177 fixP->fx_done = 1;
24178 }
24179
24180 thumb_bl_common:
24181
24182 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24183 /* For a BLX instruction, make sure that the relocation is rounded up
24184 to a word boundary. This follows the semantics of the instruction
24185 which specifies that bit 1 of the target address will come from bit
24186 1 of the base address. */
24187 value = (value + 3) & ~ 3;
24188
24189 #ifdef OBJ_ELF
24190 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
24191 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24192 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24193 #endif
24194
24195 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
24196 {
24197 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
24198 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24199 else if ((value & ~0x1ffffff)
24200 && ((value & ~0x1ffffff) != ~0x1ffffff))
24201 as_bad_where (fixP->fx_file, fixP->fx_line,
24202 _("Thumb2 branch out of range"));
24203 }
24204
24205 if (fixP->fx_done || !seg->use_rela_p)
24206 encode_thumb2_b_bl_offset (buf, value);
24207
24208 break;
24209
24210 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24211 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
24212 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24213
24214 if (fixP->fx_done || !seg->use_rela_p)
24215 encode_thumb2_b_bl_offset (buf, value);
24216
24217 break;
24218
24219 case BFD_RELOC_8:
24220 if (fixP->fx_done || !seg->use_rela_p)
24221 *buf = value;
24222 break;
24223
24224 case BFD_RELOC_16:
24225 if (fixP->fx_done || !seg->use_rela_p)
24226 md_number_to_chars (buf, value, 2);
24227 break;
24228
24229 #ifdef OBJ_ELF
24230 case BFD_RELOC_ARM_TLS_CALL:
24231 case BFD_RELOC_ARM_THM_TLS_CALL:
24232 case BFD_RELOC_ARM_TLS_DESCSEQ:
24233 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24234 case BFD_RELOC_ARM_TLS_GOTDESC:
24235 case BFD_RELOC_ARM_TLS_GD32:
24236 case BFD_RELOC_ARM_TLS_LE32:
24237 case BFD_RELOC_ARM_TLS_IE32:
24238 case BFD_RELOC_ARM_TLS_LDM32:
24239 case BFD_RELOC_ARM_TLS_LDO32:
24240 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24241 break;
24242
24243 /* Same handling as above, but with the arm_fdpic guard. */
24244 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24245 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24246 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24247 if (arm_fdpic)
24248 {
24249 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24250 }
24251 else
24252 {
24253 as_bad_where (fixP->fx_file, fixP->fx_line,
24254 _("Relocation supported only in FDPIC mode"));
24255 }
24256 break;
24257
24258 case BFD_RELOC_ARM_GOT32:
24259 case BFD_RELOC_ARM_GOTOFF:
24260 break;
24261
24262 case BFD_RELOC_ARM_GOT_PREL:
24263 if (fixP->fx_done || !seg->use_rela_p)
24264 md_number_to_chars (buf, value, 4);
24265 break;
24266
24267 case BFD_RELOC_ARM_TARGET2:
24268 /* TARGET2 is not partial-inplace, so we need to write the
24269 addend here for REL targets, because it won't be written out
24270 during reloc processing later. */
24271 if (fixP->fx_done || !seg->use_rela_p)
24272 md_number_to_chars (buf, fixP->fx_offset, 4);
24273 break;
24274
24275 /* Relocations for FDPIC. */
24276 case BFD_RELOC_ARM_GOTFUNCDESC:
24277 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24278 case BFD_RELOC_ARM_FUNCDESC:
24279 if (arm_fdpic)
24280 {
24281 if (fixP->fx_done || !seg->use_rela_p)
24282 md_number_to_chars (buf, 0, 4);
24283 }
24284 else
24285 {
24286 as_bad_where (fixP->fx_file, fixP->fx_line,
24287 _("Relocation supported only in FDPIC mode"));
24288 }
24289 break;
24290 #endif
24291
24292 case BFD_RELOC_RVA:
24293 case BFD_RELOC_32:
24294 case BFD_RELOC_ARM_TARGET1:
24295 case BFD_RELOC_ARM_ROSEGREL32:
24296 case BFD_RELOC_ARM_SBREL32:
24297 case BFD_RELOC_32_PCREL:
24298 #ifdef TE_PE
24299 case BFD_RELOC_32_SECREL:
24300 #endif
24301 if (fixP->fx_done || !seg->use_rela_p)
24302 #ifdef TE_WINCE
24303 /* For WinCE we only do this for pcrel fixups. */
24304 if (fixP->fx_done || fixP->fx_pcrel)
24305 #endif
24306 md_number_to_chars (buf, value, 4);
24307 break;
24308
24309 #ifdef OBJ_ELF
24310 case BFD_RELOC_ARM_PREL31:
24311 if (fixP->fx_done || !seg->use_rela_p)
24312 {
24313 newval = md_chars_to_number (buf, 4) & 0x80000000;
24314 if ((value ^ (value >> 1)) & 0x40000000)
24315 {
24316 as_bad_where (fixP->fx_file, fixP->fx_line,
24317 _("rel31 relocation overflow"));
24318 }
24319 newval |= value & 0x7fffffff;
24320 md_number_to_chars (buf, newval, 4);
24321 }
24322 break;
24323 #endif
24324
24325 case BFD_RELOC_ARM_CP_OFF_IMM:
24326 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
24327 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24328 newval = md_chars_to_number (buf, INSN_SIZE);
24329 else
24330 newval = get_thumb32_insn (buf);
24331 if ((newval & 0x0f200f00) == 0x0d000900)
24332 {
24333 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24334 has permitted values that are multiples of 2, in the range 0
24335 to 510. */
24336 if (value < -510 || value > 510 || (value & 1))
24337 as_bad_where (fixP->fx_file, fixP->fx_line,
24338 _("co-processor offset out of range"));
24339 }
24340 else if (value < -1023 || value > 1023 || (value & 3))
24341 as_bad_where (fixP->fx_file, fixP->fx_line,
24342 _("co-processor offset out of range"));
24343 cp_off_common:
24344 sign = value > 0;
24345 if (value < 0)
24346 value = -value;
24347 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24348 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24349 newval = md_chars_to_number (buf, INSN_SIZE);
24350 else
24351 newval = get_thumb32_insn (buf);
24352 if (value == 0)
24353 newval &= 0xffffff00;
24354 else
24355 {
24356 newval &= 0xff7fff00;
24357 if ((newval & 0x0f200f00) == 0x0d000900)
24358 {
24359 /* This is a fp16 vstr/vldr.
24360
24361 It requires the immediate offset in the instruction is shifted
24362 left by 1 to be a half-word offset.
24363
24364 Here, left shift by 1 first, and later right shift by 2
24365 should get the right offset. */
24366 value <<= 1;
24367 }
24368 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24369 }
24370 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24371 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24372 md_number_to_chars (buf, newval, INSN_SIZE);
24373 else
24374 put_thumb32_insn (buf, newval);
24375 break;
24376
24377 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
24378 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
24379 if (value < -255 || value > 255)
24380 as_bad_where (fixP->fx_file, fixP->fx_line,
24381 _("co-processor offset out of range"));
24382 value *= 4;
24383 goto cp_off_common;
24384
24385 case BFD_RELOC_ARM_THUMB_OFFSET:
24386 newval = md_chars_to_number (buf, THUMB_SIZE);
24387 /* Exactly what ranges, and where the offset is inserted depends
24388 on the type of instruction, we can establish this from the
24389 top 4 bits. */
24390 switch (newval >> 12)
24391 {
24392 case 4: /* PC load. */
24393 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24394 forced to zero for these loads; md_pcrel_from has already
24395 compensated for this. */
24396 if (value & 3)
24397 as_bad_where (fixP->fx_file, fixP->fx_line,
24398 _("invalid offset, target not word aligned (0x%08lX)"),
24399 (((unsigned long) fixP->fx_frag->fr_address
24400 + (unsigned long) fixP->fx_where) & ~3)
24401 + (unsigned long) value);
24402
24403 if (value & ~0x3fc)
24404 as_bad_where (fixP->fx_file, fixP->fx_line,
24405 _("invalid offset, value too big (0x%08lX)"),
24406 (long) value);
24407
24408 newval |= value >> 2;
24409 break;
24410
24411 case 9: /* SP load/store. */
24412 if (value & ~0x3fc)
24413 as_bad_where (fixP->fx_file, fixP->fx_line,
24414 _("invalid offset, value too big (0x%08lX)"),
24415 (long) value);
24416 newval |= value >> 2;
24417 break;
24418
24419 case 6: /* Word load/store. */
24420 if (value & ~0x7c)
24421 as_bad_where (fixP->fx_file, fixP->fx_line,
24422 _("invalid offset, value too big (0x%08lX)"),
24423 (long) value);
24424 newval |= value << 4; /* 6 - 2. */
24425 break;
24426
24427 case 7: /* Byte load/store. */
24428 if (value & ~0x1f)
24429 as_bad_where (fixP->fx_file, fixP->fx_line,
24430 _("invalid offset, value too big (0x%08lX)"),
24431 (long) value);
24432 newval |= value << 6;
24433 break;
24434
24435 case 8: /* Halfword load/store. */
24436 if (value & ~0x3e)
24437 as_bad_where (fixP->fx_file, fixP->fx_line,
24438 _("invalid offset, value too big (0x%08lX)"),
24439 (long) value);
24440 newval |= value << 5; /* 6 - 1. */
24441 break;
24442
24443 default:
24444 as_bad_where (fixP->fx_file, fixP->fx_line,
24445 "Unable to process relocation for thumb opcode: %lx",
24446 (unsigned long) newval);
24447 break;
24448 }
24449 md_number_to_chars (buf, newval, THUMB_SIZE);
24450 break;
24451
24452 case BFD_RELOC_ARM_THUMB_ADD:
24453 /* This is a complicated relocation, since we use it for all of
24454 the following immediate relocations:
24455
24456 3bit ADD/SUB
24457 8bit ADD/SUB
24458 9bit ADD/SUB SP word-aligned
24459 10bit ADD PC/SP word-aligned
24460
24461 The type of instruction being processed is encoded in the
24462 instruction field:
24463
24464 0x8000 SUB
24465 0x00F0 Rd
24466 0x000F Rs
24467 */
24468 newval = md_chars_to_number (buf, THUMB_SIZE);
24469 {
24470 int rd = (newval >> 4) & 0xf;
24471 int rs = newval & 0xf;
24472 int subtract = !!(newval & 0x8000);
24473
24474 /* Check for HI regs, only very restricted cases allowed:
24475 Adjusting SP, and using PC or SP to get an address. */
24476 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24477 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24478 as_bad_where (fixP->fx_file, fixP->fx_line,
24479 _("invalid Hi register with immediate"));
24480
24481 /* If value is negative, choose the opposite instruction. */
24482 if (value < 0)
24483 {
24484 value = -value;
24485 subtract = !subtract;
24486 if (value < 0)
24487 as_bad_where (fixP->fx_file, fixP->fx_line,
24488 _("immediate value out of range"));
24489 }
24490
24491 if (rd == REG_SP)
24492 {
24493 if (value & ~0x1fc)
24494 as_bad_where (fixP->fx_file, fixP->fx_line,
24495 _("invalid immediate for stack address calculation"));
24496 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24497 newval |= value >> 2;
24498 }
24499 else if (rs == REG_PC || rs == REG_SP)
24500 {
24501 /* PR gas/18541. If the addition is for a defined symbol
24502 within range of an ADR instruction then accept it. */
24503 if (subtract
24504 && value == 4
24505 && fixP->fx_addsy != NULL)
24506 {
24507 subtract = 0;
24508
24509 if (! S_IS_DEFINED (fixP->fx_addsy)
24510 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24511 || S_IS_WEAK (fixP->fx_addsy))
24512 {
24513 as_bad_where (fixP->fx_file, fixP->fx_line,
24514 _("address calculation needs a strongly defined nearby symbol"));
24515 }
24516 else
24517 {
24518 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24519
24520 /* Round up to the next 4-byte boundary. */
24521 if (v & 3)
24522 v = (v + 3) & ~ 3;
24523 else
24524 v += 4;
24525 v = S_GET_VALUE (fixP->fx_addsy) - v;
24526
24527 if (v & ~0x3fc)
24528 {
24529 as_bad_where (fixP->fx_file, fixP->fx_line,
24530 _("symbol too far away"));
24531 }
24532 else
24533 {
24534 fixP->fx_done = 1;
24535 value = v;
24536 }
24537 }
24538 }
24539
24540 if (subtract || value & ~0x3fc)
24541 as_bad_where (fixP->fx_file, fixP->fx_line,
24542 _("invalid immediate for address calculation (value = 0x%08lX)"),
24543 (unsigned long) (subtract ? - value : value));
24544 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24545 newval |= rd << 8;
24546 newval |= value >> 2;
24547 }
24548 else if (rs == rd)
24549 {
24550 if (value & ~0xff)
24551 as_bad_where (fixP->fx_file, fixP->fx_line,
24552 _("immediate value out of range"));
24553 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24554 newval |= (rd << 8) | value;
24555 }
24556 else
24557 {
24558 if (value & ~0x7)
24559 as_bad_where (fixP->fx_file, fixP->fx_line,
24560 _("immediate value out of range"));
24561 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24562 newval |= rd | (rs << 3) | (value << 6);
24563 }
24564 }
24565 md_number_to_chars (buf, newval, THUMB_SIZE);
24566 break;
24567
24568 case BFD_RELOC_ARM_THUMB_IMM:
24569 newval = md_chars_to_number (buf, THUMB_SIZE);
24570 if (value < 0 || value > 255)
24571 as_bad_where (fixP->fx_file, fixP->fx_line,
24572 _("invalid immediate: %ld is out of range"),
24573 (long) value);
24574 newval |= value;
24575 md_number_to_chars (buf, newval, THUMB_SIZE);
24576 break;
24577
24578 case BFD_RELOC_ARM_THUMB_SHIFT:
24579 /* 5bit shift value (0..32). LSL cannot take 32. */
24580 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24581 temp = newval & 0xf800;
24582 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24583 as_bad_where (fixP->fx_file, fixP->fx_line,
24584 _("invalid shift value: %ld"), (long) value);
24585 /* Shifts of zero must be encoded as LSL. */
24586 if (value == 0)
24587 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24588 /* Shifts of 32 are encoded as zero. */
24589 else if (value == 32)
24590 value = 0;
24591 newval |= value << 6;
24592 md_number_to_chars (buf, newval, THUMB_SIZE);
24593 break;
24594
24595 case BFD_RELOC_VTABLE_INHERIT:
24596 case BFD_RELOC_VTABLE_ENTRY:
24597 fixP->fx_done = 0;
24598 return;
24599
24600 case BFD_RELOC_ARM_MOVW:
24601 case BFD_RELOC_ARM_MOVT:
24602 case BFD_RELOC_ARM_THUMB_MOVW:
24603 case BFD_RELOC_ARM_THUMB_MOVT:
24604 if (fixP->fx_done || !seg->use_rela_p)
24605 {
24606 /* REL format relocations are limited to a 16-bit addend. */
24607 if (!fixP->fx_done)
24608 {
24609 if (value < -0x8000 || value > 0x7fff)
24610 as_bad_where (fixP->fx_file, fixP->fx_line,
24611 _("offset out of range"));
24612 }
24613 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24614 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24615 {
24616 value >>= 16;
24617 }
24618
24619 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24620 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24621 {
24622 newval = get_thumb32_insn (buf);
24623 newval &= 0xfbf08f00;
24624 newval |= (value & 0xf000) << 4;
24625 newval |= (value & 0x0800) << 15;
24626 newval |= (value & 0x0700) << 4;
24627 newval |= (value & 0x00ff);
24628 put_thumb32_insn (buf, newval);
24629 }
24630 else
24631 {
24632 newval = md_chars_to_number (buf, 4);
24633 newval &= 0xfff0f000;
24634 newval |= value & 0x0fff;
24635 newval |= (value & 0xf000) << 4;
24636 md_number_to_chars (buf, newval, 4);
24637 }
24638 }
24639 return;
24640
24641 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24642 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24643 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24644 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24645 gas_assert (!fixP->fx_done);
24646 {
24647 bfd_vma insn;
24648 bfd_boolean is_mov;
24649 bfd_vma encoded_addend = value;
24650
24651 /* Check that addend can be encoded in instruction. */
24652 if (!seg->use_rela_p && (value < 0 || value > 255))
24653 as_bad_where (fixP->fx_file, fixP->fx_line,
24654 _("the offset 0x%08lX is not representable"),
24655 (unsigned long) encoded_addend);
24656
24657 /* Extract the instruction. */
24658 insn = md_chars_to_number (buf, THUMB_SIZE);
24659 is_mov = (insn & 0xf800) == 0x2000;
24660
24661 /* Encode insn. */
24662 if (is_mov)
24663 {
24664 if (!seg->use_rela_p)
24665 insn |= encoded_addend;
24666 }
24667 else
24668 {
24669 int rd, rs;
24670
24671 /* Extract the instruction. */
24672 /* Encoding is the following
24673 0x8000 SUB
24674 0x00F0 Rd
24675 0x000F Rs
24676 */
24677 /* The following conditions must be true :
24678 - ADD
24679 - Rd == Rs
24680 - Rd <= 7
24681 */
24682 rd = (insn >> 4) & 0xf;
24683 rs = insn & 0xf;
24684 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24685 as_bad_where (fixP->fx_file, fixP->fx_line,
24686 _("Unable to process relocation for thumb opcode: %lx"),
24687 (unsigned long) insn);
24688
24689 /* Encode as ADD immediate8 thumb 1 code. */
24690 insn = 0x3000 | (rd << 8);
24691
24692 /* Place the encoded addend into the first 8 bits of the
24693 instruction. */
24694 if (!seg->use_rela_p)
24695 insn |= encoded_addend;
24696 }
24697
24698 /* Update the instruction. */
24699 md_number_to_chars (buf, insn, THUMB_SIZE);
24700 }
24701 break;
24702
24703 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24704 case BFD_RELOC_ARM_ALU_PC_G0:
24705 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24706 case BFD_RELOC_ARM_ALU_PC_G1:
24707 case BFD_RELOC_ARM_ALU_PC_G2:
24708 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24709 case BFD_RELOC_ARM_ALU_SB_G0:
24710 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24711 case BFD_RELOC_ARM_ALU_SB_G1:
24712 case BFD_RELOC_ARM_ALU_SB_G2:
24713 gas_assert (!fixP->fx_done);
24714 if (!seg->use_rela_p)
24715 {
24716 bfd_vma insn;
24717 bfd_vma encoded_addend;
24718 bfd_vma addend_abs = llabs (value);
24719
24720 /* Check that the absolute value of the addend can be
24721 expressed as an 8-bit constant plus a rotation. */
24722 encoded_addend = encode_arm_immediate (addend_abs);
24723 if (encoded_addend == (unsigned int) FAIL)
24724 as_bad_where (fixP->fx_file, fixP->fx_line,
24725 _("the offset 0x%08lX is not representable"),
24726 (unsigned long) addend_abs);
24727
24728 /* Extract the instruction. */
24729 insn = md_chars_to_number (buf, INSN_SIZE);
24730
24731 /* If the addend is positive, use an ADD instruction.
24732 Otherwise use a SUB. Take care not to destroy the S bit. */
24733 insn &= 0xff1fffff;
24734 if (value < 0)
24735 insn |= 1 << 22;
24736 else
24737 insn |= 1 << 23;
24738
24739 /* Place the encoded addend into the first 12 bits of the
24740 instruction. */
24741 insn &= 0xfffff000;
24742 insn |= encoded_addend;
24743
24744 /* Update the instruction. */
24745 md_number_to_chars (buf, insn, INSN_SIZE);
24746 }
24747 break;
24748
24749 case BFD_RELOC_ARM_LDR_PC_G0:
24750 case BFD_RELOC_ARM_LDR_PC_G1:
24751 case BFD_RELOC_ARM_LDR_PC_G2:
24752 case BFD_RELOC_ARM_LDR_SB_G0:
24753 case BFD_RELOC_ARM_LDR_SB_G1:
24754 case BFD_RELOC_ARM_LDR_SB_G2:
24755 gas_assert (!fixP->fx_done);
24756 if (!seg->use_rela_p)
24757 {
24758 bfd_vma insn;
24759 bfd_vma addend_abs = llabs (value);
24760
24761 /* Check that the absolute value of the addend can be
24762 encoded in 12 bits. */
24763 if (addend_abs >= 0x1000)
24764 as_bad_where (fixP->fx_file, fixP->fx_line,
24765 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24766 (unsigned long) addend_abs);
24767
24768 /* Extract the instruction. */
24769 insn = md_chars_to_number (buf, INSN_SIZE);
24770
24771 /* If the addend is negative, clear bit 23 of the instruction.
24772 Otherwise set it. */
24773 if (value < 0)
24774 insn &= ~(1 << 23);
24775 else
24776 insn |= 1 << 23;
24777
24778 /* Place the absolute value of the addend into the first 12 bits
24779 of the instruction. */
24780 insn &= 0xfffff000;
24781 insn |= addend_abs;
24782
24783 /* Update the instruction. */
24784 md_number_to_chars (buf, insn, INSN_SIZE);
24785 }
24786 break;
24787
24788 case BFD_RELOC_ARM_LDRS_PC_G0:
24789 case BFD_RELOC_ARM_LDRS_PC_G1:
24790 case BFD_RELOC_ARM_LDRS_PC_G2:
24791 case BFD_RELOC_ARM_LDRS_SB_G0:
24792 case BFD_RELOC_ARM_LDRS_SB_G1:
24793 case BFD_RELOC_ARM_LDRS_SB_G2:
24794 gas_assert (!fixP->fx_done);
24795 if (!seg->use_rela_p)
24796 {
24797 bfd_vma insn;
24798 bfd_vma addend_abs = llabs (value);
24799
24800 /* Check that the absolute value of the addend can be
24801 encoded in 8 bits. */
24802 if (addend_abs >= 0x100)
24803 as_bad_where (fixP->fx_file, fixP->fx_line,
24804 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24805 (unsigned long) addend_abs);
24806
24807 /* Extract the instruction. */
24808 insn = md_chars_to_number (buf, INSN_SIZE);
24809
24810 /* If the addend is negative, clear bit 23 of the instruction.
24811 Otherwise set it. */
24812 if (value < 0)
24813 insn &= ~(1 << 23);
24814 else
24815 insn |= 1 << 23;
24816
24817 /* Place the first four bits of the absolute value of the addend
24818 into the first 4 bits of the instruction, and the remaining
24819 four into bits 8 .. 11. */
24820 insn &= 0xfffff0f0;
24821 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24822
24823 /* Update the instruction. */
24824 md_number_to_chars (buf, insn, INSN_SIZE);
24825 }
24826 break;
24827
24828 case BFD_RELOC_ARM_LDC_PC_G0:
24829 case BFD_RELOC_ARM_LDC_PC_G1:
24830 case BFD_RELOC_ARM_LDC_PC_G2:
24831 case BFD_RELOC_ARM_LDC_SB_G0:
24832 case BFD_RELOC_ARM_LDC_SB_G1:
24833 case BFD_RELOC_ARM_LDC_SB_G2:
24834 gas_assert (!fixP->fx_done);
24835 if (!seg->use_rela_p)
24836 {
24837 bfd_vma insn;
24838 bfd_vma addend_abs = llabs (value);
24839
24840 /* Check that the absolute value of the addend is a multiple of
24841 four and, when divided by four, fits in 8 bits. */
24842 if (addend_abs & 0x3)
24843 as_bad_where (fixP->fx_file, fixP->fx_line,
24844 _("bad offset 0x%08lX (must be word-aligned)"),
24845 (unsigned long) addend_abs);
24846
24847 if ((addend_abs >> 2) > 0xff)
24848 as_bad_where (fixP->fx_file, fixP->fx_line,
24849 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24850 (unsigned long) addend_abs);
24851
24852 /* Extract the instruction. */
24853 insn = md_chars_to_number (buf, INSN_SIZE);
24854
24855 /* If the addend is negative, clear bit 23 of the instruction.
24856 Otherwise set it. */
24857 if (value < 0)
24858 insn &= ~(1 << 23);
24859 else
24860 insn |= 1 << 23;
24861
24862 /* Place the addend (divided by four) into the first eight
24863 bits of the instruction. */
24864 insn &= 0xfffffff0;
24865 insn |= addend_abs >> 2;
24866
24867 /* Update the instruction. */
24868 md_number_to_chars (buf, insn, INSN_SIZE);
24869 }
24870 break;
24871
24872 case BFD_RELOC_THUMB_PCREL_BRANCH5:
24873 if (fixP->fx_addsy
24874 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24875 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24876 && ARM_IS_FUNC (fixP->fx_addsy)
24877 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24878 {
24879 /* Force a relocation for a branch 5 bits wide. */
24880 fixP->fx_done = 0;
24881 }
24882 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
24883 as_bad_where (fixP->fx_file, fixP->fx_line,
24884 BAD_BRANCH_OFF);
24885
24886 if (fixP->fx_done || !seg->use_rela_p)
24887 {
24888 addressT boff = value >> 1;
24889
24890 newval = md_chars_to_number (buf, THUMB_SIZE);
24891 newval |= (boff << 7);
24892 md_number_to_chars (buf, newval, THUMB_SIZE);
24893 }
24894 break;
24895
24896 case BFD_RELOC_THUMB_PCREL_BFCSEL:
24897 if (fixP->fx_addsy
24898 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24899 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24900 && ARM_IS_FUNC (fixP->fx_addsy)
24901 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24902 {
24903 fixP->fx_done = 0;
24904 }
24905 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
24906 as_bad_where (fixP->fx_file, fixP->fx_line,
24907 _("branch out of range"));
24908
24909 if (fixP->fx_done || !seg->use_rela_p)
24910 {
24911 newval = md_chars_to_number (buf, THUMB_SIZE);
24912
24913 addressT boff = ((newval & 0x0780) >> 7) << 1;
24914 addressT diff = value - boff;
24915
24916 if (diff == 4)
24917 {
24918 newval |= 1 << 1; /* T bit. */
24919 }
24920 else if (diff != 2)
24921 {
24922 as_bad_where (fixP->fx_file, fixP->fx_line,
24923 _("out of range label-relative fixup value"));
24924 }
24925 md_number_to_chars (buf, newval, THUMB_SIZE);
24926 }
24927 break;
24928
24929 case BFD_RELOC_ARM_THUMB_BF17:
24930 if (fixP->fx_addsy
24931 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24932 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24933 && ARM_IS_FUNC (fixP->fx_addsy)
24934 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24935 {
24936 /* Force a relocation for a branch 17 bits wide. */
24937 fixP->fx_done = 0;
24938 }
24939
24940 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
24941 as_bad_where (fixP->fx_file, fixP->fx_line,
24942 BAD_BRANCH_OFF);
24943
24944 if (fixP->fx_done || !seg->use_rela_p)
24945 {
24946 offsetT newval2;
24947 addressT immA, immB, immC;
24948
24949 immA = (value & 0x0001f000) >> 12;
24950 immB = (value & 0x00000ffc) >> 2;
24951 immC = (value & 0x00000002) >> 1;
24952
24953 newval = md_chars_to_number (buf, THUMB_SIZE);
24954 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24955 newval |= immA;
24956 newval2 |= (immC << 11) | (immB << 1);
24957 md_number_to_chars (buf, newval, THUMB_SIZE);
24958 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24959 }
24960 break;
24961
24962 case BFD_RELOC_ARM_THUMB_BF19:
24963 if (fixP->fx_addsy
24964 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24965 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24966 && ARM_IS_FUNC (fixP->fx_addsy)
24967 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24968 {
24969 /* Force a relocation for a branch 19 bits wide. */
24970 fixP->fx_done = 0;
24971 }
24972
24973 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
24974 as_bad_where (fixP->fx_file, fixP->fx_line,
24975 BAD_BRANCH_OFF);
24976
24977 if (fixP->fx_done || !seg->use_rela_p)
24978 {
24979 offsetT newval2;
24980 addressT immA, immB, immC;
24981
24982 immA = (value & 0x0007f000) >> 12;
24983 immB = (value & 0x00000ffc) >> 2;
24984 immC = (value & 0x00000002) >> 1;
24985
24986 newval = md_chars_to_number (buf, THUMB_SIZE);
24987 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24988 newval |= immA;
24989 newval2 |= (immC << 11) | (immB << 1);
24990 md_number_to_chars (buf, newval, THUMB_SIZE);
24991 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24992 }
24993 break;
24994
24995 case BFD_RELOC_ARM_THUMB_BF13:
24996 if (fixP->fx_addsy
24997 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24998 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24999 && ARM_IS_FUNC (fixP->fx_addsy)
25000 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
25001 {
25002 /* Force a relocation for a branch 13 bits wide. */
25003 fixP->fx_done = 0;
25004 }
25005
25006 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
25007 as_bad_where (fixP->fx_file, fixP->fx_line,
25008 BAD_BRANCH_OFF);
25009
25010 if (fixP->fx_done || !seg->use_rela_p)
25011 {
25012 offsetT newval2;
25013 addressT immA, immB, immC;
25014
25015 immA = (value & 0x00001000) >> 12;
25016 immB = (value & 0x00000ffc) >> 2;
25017 immC = (value & 0x00000002) >> 1;
25018
25019 newval = md_chars_to_number (buf, THUMB_SIZE);
25020 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25021 newval |= immA;
25022 newval2 |= (immC << 11) | (immB << 1);
25023 md_number_to_chars (buf, newval, THUMB_SIZE);
25024 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
25025 }
25026 break;
25027
25028 case BFD_RELOC_ARM_V4BX:
25029 /* This will need to go in the object file. */
25030 fixP->fx_done = 0;
25031 break;
25032
25033 case BFD_RELOC_UNUSED:
25034 default:
25035 as_bad_where (fixP->fx_file, fixP->fx_line,
25036 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
25037 }
25038 }
25039
25040 /* Translate internal representation of relocation info to BFD target
25041 format. */
25042
25043 arelent *
25044 tc_gen_reloc (asection *section, fixS *fixp)
25045 {
25046 arelent * reloc;
25047 bfd_reloc_code_real_type code;
25048
25049 reloc = XNEW (arelent);
25050
25051 reloc->sym_ptr_ptr = XNEW (asymbol *);
25052 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
25053 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
25054
25055 if (fixp->fx_pcrel)
25056 {
25057 if (section->use_rela_p)
25058 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
25059 else
25060 fixp->fx_offset = reloc->address;
25061 }
25062 reloc->addend = fixp->fx_offset;
25063
25064 switch (fixp->fx_r_type)
25065 {
25066 case BFD_RELOC_8:
25067 if (fixp->fx_pcrel)
25068 {
25069 code = BFD_RELOC_8_PCREL;
25070 break;
25071 }
25072 /* Fall through. */
25073
25074 case BFD_RELOC_16:
25075 if (fixp->fx_pcrel)
25076 {
25077 code = BFD_RELOC_16_PCREL;
25078 break;
25079 }
25080 /* Fall through. */
25081
25082 case BFD_RELOC_32:
25083 if (fixp->fx_pcrel)
25084 {
25085 code = BFD_RELOC_32_PCREL;
25086 break;
25087 }
25088 /* Fall through. */
25089
25090 case BFD_RELOC_ARM_MOVW:
25091 if (fixp->fx_pcrel)
25092 {
25093 code = BFD_RELOC_ARM_MOVW_PCREL;
25094 break;
25095 }
25096 /* Fall through. */
25097
25098 case BFD_RELOC_ARM_MOVT:
25099 if (fixp->fx_pcrel)
25100 {
25101 code = BFD_RELOC_ARM_MOVT_PCREL;
25102 break;
25103 }
25104 /* Fall through. */
25105
25106 case BFD_RELOC_ARM_THUMB_MOVW:
25107 if (fixp->fx_pcrel)
25108 {
25109 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
25110 break;
25111 }
25112 /* Fall through. */
25113
25114 case BFD_RELOC_ARM_THUMB_MOVT:
25115 if (fixp->fx_pcrel)
25116 {
25117 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
25118 break;
25119 }
25120 /* Fall through. */
25121
25122 case BFD_RELOC_NONE:
25123 case BFD_RELOC_ARM_PCREL_BRANCH:
25124 case BFD_RELOC_ARM_PCREL_BLX:
25125 case BFD_RELOC_RVA:
25126 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25127 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25128 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25129 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25130 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25131 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25132 case BFD_RELOC_VTABLE_ENTRY:
25133 case BFD_RELOC_VTABLE_INHERIT:
25134 #ifdef TE_PE
25135 case BFD_RELOC_32_SECREL:
25136 #endif
25137 code = fixp->fx_r_type;
25138 break;
25139
25140 case BFD_RELOC_THUMB_PCREL_BLX:
25141 #ifdef OBJ_ELF
25142 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
25143 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
25144 else
25145 #endif
25146 code = BFD_RELOC_THUMB_PCREL_BLX;
25147 break;
25148
25149 case BFD_RELOC_ARM_LITERAL:
25150 case BFD_RELOC_ARM_HWLITERAL:
25151 /* If this is called then the a literal has
25152 been referenced across a section boundary. */
25153 as_bad_where (fixp->fx_file, fixp->fx_line,
25154 _("literal referenced across section boundary"));
25155 return NULL;
25156
25157 #ifdef OBJ_ELF
25158 case BFD_RELOC_ARM_TLS_CALL:
25159 case BFD_RELOC_ARM_THM_TLS_CALL:
25160 case BFD_RELOC_ARM_TLS_DESCSEQ:
25161 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
25162 case BFD_RELOC_ARM_GOT32:
25163 case BFD_RELOC_ARM_GOTOFF:
25164 case BFD_RELOC_ARM_GOT_PREL:
25165 case BFD_RELOC_ARM_PLT32:
25166 case BFD_RELOC_ARM_TARGET1:
25167 case BFD_RELOC_ARM_ROSEGREL32:
25168 case BFD_RELOC_ARM_SBREL32:
25169 case BFD_RELOC_ARM_PREL31:
25170 case BFD_RELOC_ARM_TARGET2:
25171 case BFD_RELOC_ARM_TLS_LDO32:
25172 case BFD_RELOC_ARM_PCREL_CALL:
25173 case BFD_RELOC_ARM_PCREL_JUMP:
25174 case BFD_RELOC_ARM_ALU_PC_G0_NC:
25175 case BFD_RELOC_ARM_ALU_PC_G0:
25176 case BFD_RELOC_ARM_ALU_PC_G1_NC:
25177 case BFD_RELOC_ARM_ALU_PC_G1:
25178 case BFD_RELOC_ARM_ALU_PC_G2:
25179 case BFD_RELOC_ARM_LDR_PC_G0:
25180 case BFD_RELOC_ARM_LDR_PC_G1:
25181 case BFD_RELOC_ARM_LDR_PC_G2:
25182 case BFD_RELOC_ARM_LDRS_PC_G0:
25183 case BFD_RELOC_ARM_LDRS_PC_G1:
25184 case BFD_RELOC_ARM_LDRS_PC_G2:
25185 case BFD_RELOC_ARM_LDC_PC_G0:
25186 case BFD_RELOC_ARM_LDC_PC_G1:
25187 case BFD_RELOC_ARM_LDC_PC_G2:
25188 case BFD_RELOC_ARM_ALU_SB_G0_NC:
25189 case BFD_RELOC_ARM_ALU_SB_G0:
25190 case BFD_RELOC_ARM_ALU_SB_G1_NC:
25191 case BFD_RELOC_ARM_ALU_SB_G1:
25192 case BFD_RELOC_ARM_ALU_SB_G2:
25193 case BFD_RELOC_ARM_LDR_SB_G0:
25194 case BFD_RELOC_ARM_LDR_SB_G1:
25195 case BFD_RELOC_ARM_LDR_SB_G2:
25196 case BFD_RELOC_ARM_LDRS_SB_G0:
25197 case BFD_RELOC_ARM_LDRS_SB_G1:
25198 case BFD_RELOC_ARM_LDRS_SB_G2:
25199 case BFD_RELOC_ARM_LDC_SB_G0:
25200 case BFD_RELOC_ARM_LDC_SB_G1:
25201 case BFD_RELOC_ARM_LDC_SB_G2:
25202 case BFD_RELOC_ARM_V4BX:
25203 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
25204 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
25205 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
25206 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
25207 case BFD_RELOC_ARM_GOTFUNCDESC:
25208 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
25209 case BFD_RELOC_ARM_FUNCDESC:
25210 case BFD_RELOC_ARM_THUMB_BF17:
25211 case BFD_RELOC_ARM_THUMB_BF19:
25212 case BFD_RELOC_ARM_THUMB_BF13:
25213 code = fixp->fx_r_type;
25214 break;
25215
25216 case BFD_RELOC_ARM_TLS_GOTDESC:
25217 case BFD_RELOC_ARM_TLS_GD32:
25218 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
25219 case BFD_RELOC_ARM_TLS_LE32:
25220 case BFD_RELOC_ARM_TLS_IE32:
25221 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
25222 case BFD_RELOC_ARM_TLS_LDM32:
25223 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
25224 /* BFD will include the symbol's address in the addend.
25225 But we don't want that, so subtract it out again here. */
25226 if (!S_IS_COMMON (fixp->fx_addsy))
25227 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
25228 code = fixp->fx_r_type;
25229 break;
25230 #endif
25231
25232 case BFD_RELOC_ARM_IMMEDIATE:
25233 as_bad_where (fixp->fx_file, fixp->fx_line,
25234 _("internal relocation (type: IMMEDIATE) not fixed up"));
25235 return NULL;
25236
25237 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
25238 as_bad_where (fixp->fx_file, fixp->fx_line,
25239 _("ADRL used for a symbol not defined in the same file"));
25240 return NULL;
25241
25242 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25243 case BFD_RELOC_THUMB_PCREL_BFCSEL:
25244 as_bad_where (fixp->fx_file, fixp->fx_line,
25245 _("%s used for a symbol not defined in the same file"),
25246 bfd_get_reloc_code_name (fixp->fx_r_type));
25247 return NULL;
25248
25249 case BFD_RELOC_ARM_OFFSET_IMM:
25250 if (section->use_rela_p)
25251 {
25252 code = fixp->fx_r_type;
25253 break;
25254 }
25255
25256 if (fixp->fx_addsy != NULL
25257 && !S_IS_DEFINED (fixp->fx_addsy)
25258 && S_IS_LOCAL (fixp->fx_addsy))
25259 {
25260 as_bad_where (fixp->fx_file, fixp->fx_line,
25261 _("undefined local label `%s'"),
25262 S_GET_NAME (fixp->fx_addsy));
25263 return NULL;
25264 }
25265
25266 as_bad_where (fixp->fx_file, fixp->fx_line,
25267 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
25268 return NULL;
25269
25270 default:
25271 {
25272 const char * type;
25273
25274 switch (fixp->fx_r_type)
25275 {
25276 case BFD_RELOC_NONE: type = "NONE"; break;
25277 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
25278 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
25279 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
25280 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
25281 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
25282 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
25283 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
25284 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
25285 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
25286 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
25287 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
25288 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
25289 default: type = _("<unknown>"); break;
25290 }
25291 as_bad_where (fixp->fx_file, fixp->fx_line,
25292 _("cannot represent %s relocation in this object file format"),
25293 type);
25294 return NULL;
25295 }
25296 }
25297
25298 #ifdef OBJ_ELF
25299 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
25300 && GOT_symbol
25301 && fixp->fx_addsy == GOT_symbol)
25302 {
25303 code = BFD_RELOC_ARM_GOTPC;
25304 reloc->addend = fixp->fx_offset = reloc->address;
25305 }
25306 #endif
25307
25308 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
25309
25310 if (reloc->howto == NULL)
25311 {
25312 as_bad_where (fixp->fx_file, fixp->fx_line,
25313 _("cannot represent %s relocation in this object file format"),
25314 bfd_get_reloc_code_name (code));
25315 return NULL;
25316 }
25317
25318 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
25319 vtable entry to be used in the relocation's section offset. */
25320 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25321 reloc->address = fixp->fx_offset;
25322
25323 return reloc;
25324 }
25325
25326 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
25327
25328 void
25329 cons_fix_new_arm (fragS * frag,
25330 int where,
25331 int size,
25332 expressionS * exp,
25333 bfd_reloc_code_real_type reloc)
25334 {
25335 int pcrel = 0;
25336
25337 /* Pick a reloc.
25338 FIXME: @@ Should look at CPU word size. */
25339 switch (size)
25340 {
25341 case 1:
25342 reloc = BFD_RELOC_8;
25343 break;
25344 case 2:
25345 reloc = BFD_RELOC_16;
25346 break;
25347 case 4:
25348 default:
25349 reloc = BFD_RELOC_32;
25350 break;
25351 case 8:
25352 reloc = BFD_RELOC_64;
25353 break;
25354 }
25355
25356 #ifdef TE_PE
25357 if (exp->X_op == O_secrel)
25358 {
25359 exp->X_op = O_symbol;
25360 reloc = BFD_RELOC_32_SECREL;
25361 }
25362 #endif
25363
25364 fix_new_exp (frag, where, size, exp, pcrel, reloc);
25365 }
25366
25367 #if defined (OBJ_COFF)
25368 void
25369 arm_validate_fix (fixS * fixP)
25370 {
25371 /* If the destination of the branch is a defined symbol which does not have
25372 the THUMB_FUNC attribute, then we must be calling a function which has
25373 the (interfacearm) attribute. We look for the Thumb entry point to that
25374 function and change the branch to refer to that function instead. */
25375 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
25376 && fixP->fx_addsy != NULL
25377 && S_IS_DEFINED (fixP->fx_addsy)
25378 && ! THUMB_IS_FUNC (fixP->fx_addsy))
25379 {
25380 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
25381 }
25382 }
25383 #endif
25384
25385
25386 int
25387 arm_force_relocation (struct fix * fixp)
25388 {
25389 #if defined (OBJ_COFF) && defined (TE_PE)
25390 if (fixp->fx_r_type == BFD_RELOC_RVA)
25391 return 1;
25392 #endif
25393
25394 /* In case we have a call or a branch to a function in ARM ISA mode from
25395 a thumb function or vice-versa force the relocation. These relocations
25396 are cleared off for some cores that might have blx and simple transformations
25397 are possible. */
25398
25399 #ifdef OBJ_ELF
25400 switch (fixp->fx_r_type)
25401 {
25402 case BFD_RELOC_ARM_PCREL_JUMP:
25403 case BFD_RELOC_ARM_PCREL_CALL:
25404 case BFD_RELOC_THUMB_PCREL_BLX:
25405 if (THUMB_IS_FUNC (fixp->fx_addsy))
25406 return 1;
25407 break;
25408
25409 case BFD_RELOC_ARM_PCREL_BLX:
25410 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25411 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25412 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25413 if (ARM_IS_FUNC (fixp->fx_addsy))
25414 return 1;
25415 break;
25416
25417 default:
25418 break;
25419 }
25420 #endif
25421
25422 /* Resolve these relocations even if the symbol is extern or weak.
25423 Technically this is probably wrong due to symbol preemption.
25424 In practice these relocations do not have enough range to be useful
25425 at dynamic link time, and some code (e.g. in the Linux kernel)
25426 expects these references to be resolved. */
25427 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
25428 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
25429 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
25430 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
25431 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
25432 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
25433 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
25434 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
25435 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
25436 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
25437 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
25438 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
25439 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
25440 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
25441 return 0;
25442
25443 /* Always leave these relocations for the linker. */
25444 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25445 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25446 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25447 return 1;
25448
25449 /* Always generate relocations against function symbols. */
25450 if (fixp->fx_r_type == BFD_RELOC_32
25451 && fixp->fx_addsy
25452 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
25453 return 1;
25454
25455 return generic_force_reloc (fixp);
25456 }
25457
25458 #if defined (OBJ_ELF) || defined (OBJ_COFF)
25459 /* Relocations against function names must be left unadjusted,
25460 so that the linker can use this information to generate interworking
25461 stubs. The MIPS version of this function
25462 also prevents relocations that are mips-16 specific, but I do not
25463 know why it does this.
25464
25465 FIXME:
25466 There is one other problem that ought to be addressed here, but
25467 which currently is not: Taking the address of a label (rather
25468 than a function) and then later jumping to that address. Such
25469 addresses also ought to have their bottom bit set (assuming that
25470 they reside in Thumb code), but at the moment they will not. */
25471
25472 bfd_boolean
25473 arm_fix_adjustable (fixS * fixP)
25474 {
25475 if (fixP->fx_addsy == NULL)
25476 return 1;
25477
25478 /* Preserve relocations against symbols with function type. */
25479 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
25480 return FALSE;
25481
25482 if (THUMB_IS_FUNC (fixP->fx_addsy)
25483 && fixP->fx_subsy == NULL)
25484 return FALSE;
25485
25486 /* We need the symbol name for the VTABLE entries. */
25487 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
25488 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25489 return FALSE;
25490
25491 /* Don't allow symbols to be discarded on GOT related relocs. */
25492 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25493 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25494 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25495 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
25496 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
25497 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25498 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
25499 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
25500 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
25501 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
25502 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
25503 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25504 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25505 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25506 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25507 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
25508 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
25509 return FALSE;
25510
25511 /* Similarly for group relocations. */
25512 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25513 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25514 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25515 return FALSE;
25516
25517 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25518 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25519 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25520 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25521 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25522 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25523 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25524 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25525 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
25526 return FALSE;
25527
25528 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25529 offsets, so keep these symbols. */
25530 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25531 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25532 return FALSE;
25533
25534 return TRUE;
25535 }
25536 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25537
25538 #ifdef OBJ_ELF
25539 const char *
25540 elf32_arm_target_format (void)
25541 {
25542 #ifdef TE_SYMBIAN
25543 return (target_big_endian
25544 ? "elf32-bigarm-symbian"
25545 : "elf32-littlearm-symbian");
25546 #elif defined (TE_VXWORKS)
25547 return (target_big_endian
25548 ? "elf32-bigarm-vxworks"
25549 : "elf32-littlearm-vxworks");
25550 #elif defined (TE_NACL)
25551 return (target_big_endian
25552 ? "elf32-bigarm-nacl"
25553 : "elf32-littlearm-nacl");
25554 #else
25555 if (arm_fdpic)
25556 {
25557 if (target_big_endian)
25558 return "elf32-bigarm-fdpic";
25559 else
25560 return "elf32-littlearm-fdpic";
25561 }
25562 else
25563 {
25564 if (target_big_endian)
25565 return "elf32-bigarm";
25566 else
25567 return "elf32-littlearm";
25568 }
25569 #endif
25570 }
25571
25572 void
25573 armelf_frob_symbol (symbolS * symp,
25574 int * puntp)
25575 {
25576 elf_frob_symbol (symp, puntp);
25577 }
25578 #endif
25579
25580 /* MD interface: Finalization. */
25581
25582 void
25583 arm_cleanup (void)
25584 {
25585 literal_pool * pool;
25586
25587 /* Ensure that all the IT blocks are properly closed. */
25588 check_it_blocks_finished ();
25589
25590 for (pool = list_of_pools; pool; pool = pool->next)
25591 {
25592 /* Put it at the end of the relevant section. */
25593 subseg_set (pool->section, pool->sub_section);
25594 #ifdef OBJ_ELF
25595 arm_elf_change_section ();
25596 #endif
25597 s_ltorg (0);
25598 }
25599 }
25600
25601 #ifdef OBJ_ELF
25602 /* Remove any excess mapping symbols generated for alignment frags in
25603 SEC. We may have created a mapping symbol before a zero byte
25604 alignment; remove it if there's a mapping symbol after the
25605 alignment. */
25606 static void
25607 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25608 void *dummy ATTRIBUTE_UNUSED)
25609 {
25610 segment_info_type *seginfo = seg_info (sec);
25611 fragS *fragp;
25612
25613 if (seginfo == NULL || seginfo->frchainP == NULL)
25614 return;
25615
25616 for (fragp = seginfo->frchainP->frch_root;
25617 fragp != NULL;
25618 fragp = fragp->fr_next)
25619 {
25620 symbolS *sym = fragp->tc_frag_data.last_map;
25621 fragS *next = fragp->fr_next;
25622
25623 /* Variable-sized frags have been converted to fixed size by
25624 this point. But if this was variable-sized to start with,
25625 there will be a fixed-size frag after it. So don't handle
25626 next == NULL. */
25627 if (sym == NULL || next == NULL)
25628 continue;
25629
25630 if (S_GET_VALUE (sym) < next->fr_address)
25631 /* Not at the end of this frag. */
25632 continue;
25633 know (S_GET_VALUE (sym) == next->fr_address);
25634
25635 do
25636 {
25637 if (next->tc_frag_data.first_map != NULL)
25638 {
25639 /* Next frag starts with a mapping symbol. Discard this
25640 one. */
25641 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25642 break;
25643 }
25644
25645 if (next->fr_next == NULL)
25646 {
25647 /* This mapping symbol is at the end of the section. Discard
25648 it. */
25649 know (next->fr_fix == 0 && next->fr_var == 0);
25650 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25651 break;
25652 }
25653
25654 /* As long as we have empty frags without any mapping symbols,
25655 keep looking. */
25656 /* If the next frag is non-empty and does not start with a
25657 mapping symbol, then this mapping symbol is required. */
25658 if (next->fr_address != next->fr_next->fr_address)
25659 break;
25660
25661 next = next->fr_next;
25662 }
25663 while (next != NULL);
25664 }
25665 }
25666 #endif
25667
25668 /* Adjust the symbol table. This marks Thumb symbols as distinct from
25669 ARM ones. */
25670
25671 void
25672 arm_adjust_symtab (void)
25673 {
25674 #ifdef OBJ_COFF
25675 symbolS * sym;
25676
25677 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25678 {
25679 if (ARM_IS_THUMB (sym))
25680 {
25681 if (THUMB_IS_FUNC (sym))
25682 {
25683 /* Mark the symbol as a Thumb function. */
25684 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25685 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25686 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
25687
25688 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25689 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25690 else
25691 as_bad (_("%s: unexpected function type: %d"),
25692 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25693 }
25694 else switch (S_GET_STORAGE_CLASS (sym))
25695 {
25696 case C_EXT:
25697 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25698 break;
25699 case C_STAT:
25700 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25701 break;
25702 case C_LABEL:
25703 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25704 break;
25705 default:
25706 /* Do nothing. */
25707 break;
25708 }
25709 }
25710
25711 if (ARM_IS_INTERWORK (sym))
25712 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
25713 }
25714 #endif
25715 #ifdef OBJ_ELF
25716 symbolS * sym;
25717 char bind;
25718
25719 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25720 {
25721 if (ARM_IS_THUMB (sym))
25722 {
25723 elf_symbol_type * elf_sym;
25724
25725 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25726 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
25727
25728 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25729 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
25730 {
25731 /* If it's a .thumb_func, declare it as so,
25732 otherwise tag label as .code 16. */
25733 if (THUMB_IS_FUNC (sym))
25734 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25735 ST_BRANCH_TO_THUMB);
25736 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25737 elf_sym->internal_elf_sym.st_info =
25738 ELF_ST_INFO (bind, STT_ARM_16BIT);
25739 }
25740 }
25741 }
25742
25743 /* Remove any overlapping mapping symbols generated by alignment frags. */
25744 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
25745 /* Now do generic ELF adjustments. */
25746 elf_adjust_symtab ();
25747 #endif
25748 }
25749
25750 /* MD interface: Initialization. */
25751
25752 static void
25753 set_constant_flonums (void)
25754 {
25755 int i;
25756
25757 for (i = 0; i < NUM_FLOAT_VALS; i++)
25758 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25759 abort ();
25760 }
25761
25762 /* Auto-select Thumb mode if it's the only available instruction set for the
25763 given architecture. */
25764
25765 static void
25766 autoselect_thumb_from_cpu_variant (void)
25767 {
25768 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25769 opcode_select (16);
25770 }
25771
25772 void
25773 md_begin (void)
25774 {
25775 unsigned mach;
25776 unsigned int i;
25777
25778 if ( (arm_ops_hsh = hash_new ()) == NULL
25779 || (arm_cond_hsh = hash_new ()) == NULL
25780 || (arm_shift_hsh = hash_new ()) == NULL
25781 || (arm_psr_hsh = hash_new ()) == NULL
25782 || (arm_v7m_psr_hsh = hash_new ()) == NULL
25783 || (arm_reg_hsh = hash_new ()) == NULL
25784 || (arm_reloc_hsh = hash_new ()) == NULL
25785 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
25786 as_fatal (_("virtual memory exhausted"));
25787
25788 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
25789 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
25790 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
25791 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
25792 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
25793 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
25794 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
25795 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
25796 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
25797 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
25798 (void *) (v7m_psrs + i));
25799 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
25800 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
25801 for (i = 0;
25802 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25803 i++)
25804 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
25805 (void *) (barrier_opt_names + i));
25806 #ifdef OBJ_ELF
25807 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25808 {
25809 struct reloc_entry * entry = reloc_names + i;
25810
25811 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25812 /* This makes encode_branch() use the EABI versions of this relocation. */
25813 entry->reloc = BFD_RELOC_UNUSED;
25814
25815 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25816 }
25817 #endif
25818
25819 set_constant_flonums ();
25820
25821 /* Set the cpu variant based on the command-line options. We prefer
25822 -mcpu= over -march= if both are set (as for GCC); and we prefer
25823 -mfpu= over any other way of setting the floating point unit.
25824 Use of legacy options with new options are faulted. */
25825 if (legacy_cpu)
25826 {
25827 if (mcpu_cpu_opt || march_cpu_opt)
25828 as_bad (_("use of old and new-style options to set CPU type"));
25829
25830 selected_arch = *legacy_cpu;
25831 }
25832 else if (mcpu_cpu_opt)
25833 {
25834 selected_arch = *mcpu_cpu_opt;
25835 selected_ext = *mcpu_ext_opt;
25836 }
25837 else if (march_cpu_opt)
25838 {
25839 selected_arch = *march_cpu_opt;
25840 selected_ext = *march_ext_opt;
25841 }
25842 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
25843
25844 if (legacy_fpu)
25845 {
25846 if (mfpu_opt)
25847 as_bad (_("use of old and new-style options to set FPU type"));
25848
25849 selected_fpu = *legacy_fpu;
25850 }
25851 else if (mfpu_opt)
25852 selected_fpu = *mfpu_opt;
25853 else
25854 {
25855 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25856 || defined (TE_NetBSD) || defined (TE_VXWORKS))
25857 /* Some environments specify a default FPU. If they don't, infer it
25858 from the processor. */
25859 if (mcpu_fpu_opt)
25860 selected_fpu = *mcpu_fpu_opt;
25861 else if (march_fpu_opt)
25862 selected_fpu = *march_fpu_opt;
25863 #else
25864 selected_fpu = fpu_default;
25865 #endif
25866 }
25867
25868 if (ARM_FEATURE_ZERO (selected_fpu))
25869 {
25870 if (!no_cpu_selected ())
25871 selected_fpu = fpu_default;
25872 else
25873 selected_fpu = fpu_arch_fpa;
25874 }
25875
25876 #ifdef CPU_DEFAULT
25877 if (ARM_FEATURE_ZERO (selected_arch))
25878 {
25879 selected_arch = cpu_default;
25880 selected_cpu = selected_arch;
25881 }
25882 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
25883 #else
25884 /* Autodection of feature mode: allow all features in cpu_variant but leave
25885 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
25886 after all instruction have been processed and we can decide what CPU
25887 should be selected. */
25888 if (ARM_FEATURE_ZERO (selected_arch))
25889 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
25890 else
25891 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
25892 #endif
25893
25894 autoselect_thumb_from_cpu_variant ();
25895
25896 arm_arch_used = thumb_arch_used = arm_arch_none;
25897
25898 #if defined OBJ_COFF || defined OBJ_ELF
25899 {
25900 unsigned int flags = 0;
25901
25902 #if defined OBJ_ELF
25903 flags = meabi_flags;
25904
25905 switch (meabi_flags)
25906 {
25907 case EF_ARM_EABI_UNKNOWN:
25908 #endif
25909 /* Set the flags in the private structure. */
25910 if (uses_apcs_26) flags |= F_APCS26;
25911 if (support_interwork) flags |= F_INTERWORK;
25912 if (uses_apcs_float) flags |= F_APCS_FLOAT;
25913 if (pic_code) flags |= F_PIC;
25914 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
25915 flags |= F_SOFT_FLOAT;
25916
25917 switch (mfloat_abi_opt)
25918 {
25919 case ARM_FLOAT_ABI_SOFT:
25920 case ARM_FLOAT_ABI_SOFTFP:
25921 flags |= F_SOFT_FLOAT;
25922 break;
25923
25924 case ARM_FLOAT_ABI_HARD:
25925 if (flags & F_SOFT_FLOAT)
25926 as_bad (_("hard-float conflicts with specified fpu"));
25927 break;
25928 }
25929
25930 /* Using pure-endian doubles (even if soft-float). */
25931 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
25932 flags |= F_VFP_FLOAT;
25933
25934 #if defined OBJ_ELF
25935 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
25936 flags |= EF_ARM_MAVERICK_FLOAT;
25937 break;
25938
25939 case EF_ARM_EABI_VER4:
25940 case EF_ARM_EABI_VER5:
25941 /* No additional flags to set. */
25942 break;
25943
25944 default:
25945 abort ();
25946 }
25947 #endif
25948 bfd_set_private_flags (stdoutput, flags);
25949
25950 /* We have run out flags in the COFF header to encode the
25951 status of ATPCS support, so instead we create a dummy,
25952 empty, debug section called .arm.atpcs. */
25953 if (atpcs)
25954 {
25955 asection * sec;
25956
25957 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25958
25959 if (sec != NULL)
25960 {
25961 bfd_set_section_flags
25962 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25963 bfd_set_section_size (stdoutput, sec, 0);
25964 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25965 }
25966 }
25967 }
25968 #endif
25969
25970 /* Record the CPU type as well. */
25971 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25972 mach = bfd_mach_arm_iWMMXt2;
25973 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
25974 mach = bfd_mach_arm_iWMMXt;
25975 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
25976 mach = bfd_mach_arm_XScale;
25977 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
25978 mach = bfd_mach_arm_ep9312;
25979 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
25980 mach = bfd_mach_arm_5TE;
25981 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
25982 {
25983 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25984 mach = bfd_mach_arm_5T;
25985 else
25986 mach = bfd_mach_arm_5;
25987 }
25988 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
25989 {
25990 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25991 mach = bfd_mach_arm_4T;
25992 else
25993 mach = bfd_mach_arm_4;
25994 }
25995 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
25996 mach = bfd_mach_arm_3M;
25997 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25998 mach = bfd_mach_arm_3;
25999 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
26000 mach = bfd_mach_arm_2a;
26001 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
26002 mach = bfd_mach_arm_2;
26003 else
26004 mach = bfd_mach_arm_unknown;
26005
26006 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
26007 }
26008
26009 /* Command line processing. */
26010
26011 /* md_parse_option
26012 Invocation line includes a switch not recognized by the base assembler.
26013 See if it's a processor-specific option.
26014
26015 This routine is somewhat complicated by the need for backwards
26016 compatibility (since older releases of gcc can't be changed).
26017 The new options try to make the interface as compatible as
26018 possible with GCC.
26019
26020 New options (supported) are:
26021
26022 -mcpu=<cpu name> Assemble for selected processor
26023 -march=<architecture name> Assemble for selected architecture
26024 -mfpu=<fpu architecture> Assemble for selected FPU.
26025 -EB/-mbig-endian Big-endian
26026 -EL/-mlittle-endian Little-endian
26027 -k Generate PIC code
26028 -mthumb Start in Thumb mode
26029 -mthumb-interwork Code supports ARM/Thumb interworking
26030
26031 -m[no-]warn-deprecated Warn about deprecated features
26032 -m[no-]warn-syms Warn when symbols match instructions
26033
26034 For now we will also provide support for:
26035
26036 -mapcs-32 32-bit Program counter
26037 -mapcs-26 26-bit Program counter
26038 -macps-float Floats passed in FP registers
26039 -mapcs-reentrant Reentrant code
26040 -matpcs
26041 (sometime these will probably be replaced with -mapcs=<list of options>
26042 and -matpcs=<list of options>)
26043
26044 The remaining options are only supported for back-wards compatibility.
26045 Cpu variants, the arm part is optional:
26046 -m[arm]1 Currently not supported.
26047 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
26048 -m[arm]3 Arm 3 processor
26049 -m[arm]6[xx], Arm 6 processors
26050 -m[arm]7[xx][t][[d]m] Arm 7 processors
26051 -m[arm]8[10] Arm 8 processors
26052 -m[arm]9[20][tdmi] Arm 9 processors
26053 -mstrongarm[110[0]] StrongARM processors
26054 -mxscale XScale processors
26055 -m[arm]v[2345[t[e]]] Arm architectures
26056 -mall All (except the ARM1)
26057 FP variants:
26058 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
26059 -mfpe-old (No float load/store multiples)
26060 -mvfpxd VFP Single precision
26061 -mvfp All VFP
26062 -mno-fpu Disable all floating point instructions
26063
26064 The following CPU names are recognized:
26065 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
26066 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
26067 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
26068 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
26069 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
26070 arm10t arm10e, arm1020t, arm1020e, arm10200e,
26071 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
26072
26073 */
26074
26075 const char * md_shortopts = "m:k";
26076
26077 #ifdef ARM_BI_ENDIAN
26078 #define OPTION_EB (OPTION_MD_BASE + 0)
26079 #define OPTION_EL (OPTION_MD_BASE + 1)
26080 #else
26081 #if TARGET_BYTES_BIG_ENDIAN
26082 #define OPTION_EB (OPTION_MD_BASE + 0)
26083 #else
26084 #define OPTION_EL (OPTION_MD_BASE + 1)
26085 #endif
26086 #endif
26087 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
26088 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
26089
26090 struct option md_longopts[] =
26091 {
26092 #ifdef OPTION_EB
26093 {"EB", no_argument, NULL, OPTION_EB},
26094 #endif
26095 #ifdef OPTION_EL
26096 {"EL", no_argument, NULL, OPTION_EL},
26097 #endif
26098 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
26099 #ifdef OBJ_ELF
26100 {"fdpic", no_argument, NULL, OPTION_FDPIC},
26101 #endif
26102 {NULL, no_argument, NULL, 0}
26103 };
26104
26105 size_t md_longopts_size = sizeof (md_longopts);
26106
26107 struct arm_option_table
26108 {
26109 const char * option; /* Option name to match. */
26110 const char * help; /* Help information. */
26111 int * var; /* Variable to change. */
26112 int value; /* What to change it to. */
26113 const char * deprecated; /* If non-null, print this message. */
26114 };
26115
26116 struct arm_option_table arm_opts[] =
26117 {
26118 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
26119 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
26120 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
26121 &support_interwork, 1, NULL},
26122 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
26123 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
26124 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
26125 1, NULL},
26126 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
26127 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
26128 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
26129 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
26130 NULL},
26131
26132 /* These are recognized by the assembler, but have no affect on code. */
26133 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
26134 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
26135
26136 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
26137 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
26138 &warn_on_deprecated, 0, NULL},
26139 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
26140 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
26141 {NULL, NULL, NULL, 0, NULL}
26142 };
26143
26144 struct arm_legacy_option_table
26145 {
26146 const char * option; /* Option name to match. */
26147 const arm_feature_set ** var; /* Variable to change. */
26148 const arm_feature_set value; /* What to change it to. */
26149 const char * deprecated; /* If non-null, print this message. */
26150 };
26151
26152 const struct arm_legacy_option_table arm_legacy_opts[] =
26153 {
26154 /* DON'T add any new processors to this list -- we want the whole list
26155 to go away... Add them to the processors table instead. */
26156 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
26157 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
26158 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
26159 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
26160 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
26161 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
26162 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
26163 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
26164 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
26165 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
26166 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
26167 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
26168 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
26169 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
26170 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
26171 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
26172 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
26173 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
26174 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26175 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26176 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26177 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26178 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26179 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26180 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26181 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26182 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26183 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26184 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26185 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26186 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26187 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26188 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26189 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26190 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26191 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26192 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26193 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26194 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26195 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26196 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26197 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26198 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26199 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26200 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26201 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26202 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26203 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26204 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26205 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26206 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26207 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26208 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26209 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26210 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26211 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26212 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26213 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26214 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26215 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26216 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26217 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26218 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26219 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26220 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26221 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26222 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26223 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26224 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
26225 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
26226 N_("use -mcpu=strongarm110")},
26227 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
26228 N_("use -mcpu=strongarm1100")},
26229 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
26230 N_("use -mcpu=strongarm1110")},
26231 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
26232 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
26233 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
26234
26235 /* Architecture variants -- don't add any more to this list either. */
26236 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26237 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26238 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26239 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26240 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26241 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26242 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26243 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26244 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26245 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26246 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26247 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26248 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26249 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26250 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26251 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26252 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
26253 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
26254
26255 /* Floating point variants -- don't add any more to this list either. */
26256 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
26257 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
26258 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
26259 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
26260 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
26261
26262 {NULL, NULL, ARM_ARCH_NONE, NULL}
26263 };
26264
26265 struct arm_cpu_option_table
26266 {
26267 const char * name;
26268 size_t name_len;
26269 const arm_feature_set value;
26270 const arm_feature_set ext;
26271 /* For some CPUs we assume an FPU unless the user explicitly sets
26272 -mfpu=... */
26273 const arm_feature_set default_fpu;
26274 /* The canonical name of the CPU, or NULL to use NAME converted to upper
26275 case. */
26276 const char * canonical_name;
26277 };
26278
26279 /* This list should, at a minimum, contain all the cpu names
26280 recognized by GCC. */
26281 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
26282
26283 static const struct arm_cpu_option_table arm_cpus[] =
26284 {
26285 ARM_CPU_OPT ("all", NULL, ARM_ANY,
26286 ARM_ARCH_NONE,
26287 FPU_ARCH_FPA),
26288 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
26289 ARM_ARCH_NONE,
26290 FPU_ARCH_FPA),
26291 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
26292 ARM_ARCH_NONE,
26293 FPU_ARCH_FPA),
26294 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
26295 ARM_ARCH_NONE,
26296 FPU_ARCH_FPA),
26297 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
26298 ARM_ARCH_NONE,
26299 FPU_ARCH_FPA),
26300 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
26301 ARM_ARCH_NONE,
26302 FPU_ARCH_FPA),
26303 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
26304 ARM_ARCH_NONE,
26305 FPU_ARCH_FPA),
26306 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
26307 ARM_ARCH_NONE,
26308 FPU_ARCH_FPA),
26309 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
26310 ARM_ARCH_NONE,
26311 FPU_ARCH_FPA),
26312 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
26313 ARM_ARCH_NONE,
26314 FPU_ARCH_FPA),
26315 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
26316 ARM_ARCH_NONE,
26317 FPU_ARCH_FPA),
26318 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
26319 ARM_ARCH_NONE,
26320 FPU_ARCH_FPA),
26321 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
26322 ARM_ARCH_NONE,
26323 FPU_ARCH_FPA),
26324 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
26325 ARM_ARCH_NONE,
26326 FPU_ARCH_FPA),
26327 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
26328 ARM_ARCH_NONE,
26329 FPU_ARCH_FPA),
26330 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
26331 ARM_ARCH_NONE,
26332 FPU_ARCH_FPA),
26333 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
26334 ARM_ARCH_NONE,
26335 FPU_ARCH_FPA),
26336 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
26337 ARM_ARCH_NONE,
26338 FPU_ARCH_FPA),
26339 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
26340 ARM_ARCH_NONE,
26341 FPU_ARCH_FPA),
26342 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
26343 ARM_ARCH_NONE,
26344 FPU_ARCH_FPA),
26345 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
26346 ARM_ARCH_NONE,
26347 FPU_ARCH_FPA),
26348 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
26349 ARM_ARCH_NONE,
26350 FPU_ARCH_FPA),
26351 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
26352 ARM_ARCH_NONE,
26353 FPU_ARCH_FPA),
26354 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
26355 ARM_ARCH_NONE,
26356 FPU_ARCH_FPA),
26357 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
26358 ARM_ARCH_NONE,
26359 FPU_ARCH_FPA),
26360 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
26361 ARM_ARCH_NONE,
26362 FPU_ARCH_FPA),
26363 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
26364 ARM_ARCH_NONE,
26365 FPU_ARCH_FPA),
26366 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
26367 ARM_ARCH_NONE,
26368 FPU_ARCH_FPA),
26369 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
26370 ARM_ARCH_NONE,
26371 FPU_ARCH_FPA),
26372 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
26373 ARM_ARCH_NONE,
26374 FPU_ARCH_FPA),
26375 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
26376 ARM_ARCH_NONE,
26377 FPU_ARCH_FPA),
26378 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
26379 ARM_ARCH_NONE,
26380 FPU_ARCH_FPA),
26381 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
26382 ARM_ARCH_NONE,
26383 FPU_ARCH_FPA),
26384 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
26385 ARM_ARCH_NONE,
26386 FPU_ARCH_FPA),
26387 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
26388 ARM_ARCH_NONE,
26389 FPU_ARCH_FPA),
26390 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
26391 ARM_ARCH_NONE,
26392 FPU_ARCH_FPA),
26393 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
26394 ARM_ARCH_NONE,
26395 FPU_ARCH_FPA),
26396 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
26397 ARM_ARCH_NONE,
26398 FPU_ARCH_FPA),
26399 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
26400 ARM_ARCH_NONE,
26401 FPU_ARCH_FPA),
26402 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
26403 ARM_ARCH_NONE,
26404 FPU_ARCH_FPA),
26405 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
26406 ARM_ARCH_NONE,
26407 FPU_ARCH_FPA),
26408 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
26409 ARM_ARCH_NONE,
26410 FPU_ARCH_FPA),
26411 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
26412 ARM_ARCH_NONE,
26413 FPU_ARCH_FPA),
26414 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
26415 ARM_ARCH_NONE,
26416 FPU_ARCH_FPA),
26417 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
26418 ARM_ARCH_NONE,
26419 FPU_ARCH_FPA),
26420 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
26421 ARM_ARCH_NONE,
26422 FPU_ARCH_FPA),
26423
26424 /* For V5 or later processors we default to using VFP; but the user
26425 should really set the FPU type explicitly. */
26426 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
26427 ARM_ARCH_NONE,
26428 FPU_ARCH_VFP_V2),
26429 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
26430 ARM_ARCH_NONE,
26431 FPU_ARCH_VFP_V2),
26432 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26433 ARM_ARCH_NONE,
26434 FPU_ARCH_VFP_V2),
26435 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26436 ARM_ARCH_NONE,
26437 FPU_ARCH_VFP_V2),
26438 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
26439 ARM_ARCH_NONE,
26440 FPU_ARCH_VFP_V2),
26441 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
26442 ARM_ARCH_NONE,
26443 FPU_ARCH_VFP_V2),
26444 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
26445 ARM_ARCH_NONE,
26446 FPU_ARCH_VFP_V2),
26447 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
26448 ARM_ARCH_NONE,
26449 FPU_ARCH_VFP_V2),
26450 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
26451 ARM_ARCH_NONE,
26452 FPU_ARCH_VFP_V2),
26453 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
26454 ARM_ARCH_NONE,
26455 FPU_ARCH_VFP_V2),
26456 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
26457 ARM_ARCH_NONE,
26458 FPU_ARCH_VFP_V2),
26459 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
26460 ARM_ARCH_NONE,
26461 FPU_ARCH_VFP_V2),
26462 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
26463 ARM_ARCH_NONE,
26464 FPU_ARCH_VFP_V1),
26465 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
26466 ARM_ARCH_NONE,
26467 FPU_ARCH_VFP_V1),
26468 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
26469 ARM_ARCH_NONE,
26470 FPU_ARCH_VFP_V2),
26471 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
26472 ARM_ARCH_NONE,
26473 FPU_ARCH_VFP_V2),
26474 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
26475 ARM_ARCH_NONE,
26476 FPU_ARCH_VFP_V1),
26477 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
26478 ARM_ARCH_NONE,
26479 FPU_ARCH_VFP_V2),
26480 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
26481 ARM_ARCH_NONE,
26482 FPU_ARCH_VFP_V2),
26483 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
26484 ARM_ARCH_NONE,
26485 FPU_ARCH_VFP_V2),
26486 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
26487 ARM_ARCH_NONE,
26488 FPU_ARCH_VFP_V2),
26489 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
26490 ARM_ARCH_NONE,
26491 FPU_ARCH_VFP_V2),
26492 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
26493 ARM_ARCH_NONE,
26494 FPU_ARCH_VFP_V2),
26495 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
26496 ARM_ARCH_NONE,
26497 FPU_ARCH_VFP_V2),
26498 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
26499 ARM_ARCH_NONE,
26500 FPU_ARCH_VFP_V2),
26501 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
26502 ARM_ARCH_NONE,
26503 FPU_ARCH_VFP_V2),
26504 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
26505 ARM_ARCH_NONE,
26506 FPU_NONE),
26507 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26508 ARM_ARCH_NONE,
26509 FPU_NONE),
26510 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26511 ARM_ARCH_NONE,
26512 FPU_ARCH_VFP_V2),
26513 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26514 ARM_ARCH_NONE,
26515 FPU_ARCH_VFP_V2),
26516 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26517 ARM_ARCH_NONE,
26518 FPU_ARCH_VFP_V2),
26519 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26520 ARM_ARCH_NONE,
26521 FPU_NONE),
26522 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26523 ARM_ARCH_NONE,
26524 FPU_NONE),
26525 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26526 ARM_ARCH_NONE,
26527 FPU_ARCH_VFP_V2),
26528 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26529 ARM_ARCH_NONE,
26530 FPU_NONE),
26531 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26532 ARM_ARCH_NONE,
26533 FPU_ARCH_VFP_V2),
26534 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26535 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26536 FPU_NONE),
26537 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26538 ARM_ARCH_NONE,
26539 FPU_ARCH_NEON_VFP_V4),
26540 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26541 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26542 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26543 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26544 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26545 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26546 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26547 ARM_ARCH_NONE,
26548 FPU_ARCH_NEON_VFP_V4),
26549 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26550 ARM_ARCH_NONE,
26551 FPU_ARCH_NEON_VFP_V4),
26552 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26553 ARM_ARCH_NONE,
26554 FPU_ARCH_NEON_VFP_V4),
26555 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26556 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26557 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26558 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26559 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26560 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26561 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26562 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26563 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26564 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26565 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26566 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26567 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26568 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26569 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26570 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26571 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26572 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26573 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26574 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26575 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26576 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26577 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26578 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26579 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
26580 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26581 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26582 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
26583 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26584 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26585 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26586 ARM_ARCH_NONE,
26587 FPU_NONE),
26588 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26589 ARM_ARCH_NONE,
26590 FPU_ARCH_VFP_V3D16),
26591 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26592 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26593 FPU_NONE),
26594 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26595 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26596 FPU_ARCH_VFP_V3D16),
26597 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26598 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26599 FPU_ARCH_VFP_V3D16),
26600 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26601 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26602 FPU_ARCH_NEON_VFP_ARMV8),
26603 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26604 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26605 FPU_NONE),
26606 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26607 ARM_ARCH_NONE,
26608 FPU_NONE),
26609 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26610 ARM_ARCH_NONE,
26611 FPU_NONE),
26612 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26613 ARM_ARCH_NONE,
26614 FPU_NONE),
26615 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26616 ARM_ARCH_NONE,
26617 FPU_NONE),
26618 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26619 ARM_ARCH_NONE,
26620 FPU_NONE),
26621 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26622 ARM_ARCH_NONE,
26623 FPU_NONE),
26624 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26625 ARM_ARCH_NONE,
26626 FPU_NONE),
26627 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26628 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26629 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26630 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
26631 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26632 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26633 /* ??? XSCALE is really an architecture. */
26634 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26635 ARM_ARCH_NONE,
26636 FPU_ARCH_VFP_V2),
26637
26638 /* ??? iwmmxt is not a processor. */
26639 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26640 ARM_ARCH_NONE,
26641 FPU_ARCH_VFP_V2),
26642 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26643 ARM_ARCH_NONE,
26644 FPU_ARCH_VFP_V2),
26645 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26646 ARM_ARCH_NONE,
26647 FPU_ARCH_VFP_V2),
26648
26649 /* Maverick. */
26650 ARM_CPU_OPT ("ep9312", "ARM920T",
26651 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26652 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26653
26654 /* Marvell processors. */
26655 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26656 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26657 FPU_ARCH_VFP_V3D16),
26658 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26659 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26660 FPU_ARCH_NEON_VFP_V4),
26661
26662 /* APM X-Gene family. */
26663 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26664 ARM_ARCH_NONE,
26665 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26666 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26667 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26668 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26669
26670 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
26671 };
26672 #undef ARM_CPU_OPT
26673
26674 struct arm_ext_table
26675 {
26676 const char * name;
26677 size_t name_len;
26678 const arm_feature_set merge;
26679 const arm_feature_set clear;
26680 };
26681
26682 struct arm_arch_option_table
26683 {
26684 const char * name;
26685 size_t name_len;
26686 const arm_feature_set value;
26687 const arm_feature_set default_fpu;
26688 const struct arm_ext_table * ext_table;
26689 };
26690
26691 /* Used to add support for +E and +noE extension. */
26692 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
26693 /* Used to add support for a +E extension. */
26694 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
26695 /* Used to add support for a +noE extension. */
26696 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
26697
26698 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
26699 ~0 & ~FPU_ENDIAN_PURE)
26700
26701 static const struct arm_ext_table armv5te_ext_table[] =
26702 {
26703 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
26704 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26705 };
26706
26707 static const struct arm_ext_table armv7_ext_table[] =
26708 {
26709 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26710 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26711 };
26712
26713 static const struct arm_ext_table armv7ve_ext_table[] =
26714 {
26715 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
26716 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
26717 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26718 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26719 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26720 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
26721 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26722
26723 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
26724 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26725
26726 /* Aliases for +simd. */
26727 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26728
26729 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26730 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26731 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26732
26733 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26734 };
26735
26736 static const struct arm_ext_table armv7a_ext_table[] =
26737 {
26738 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26739 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26740 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26741 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26742 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26743 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
26744 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26745
26746 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
26747 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26748
26749 /* Aliases for +simd. */
26750 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26751 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26752
26753 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26754 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26755
26756 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
26757 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
26758 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26759 };
26760
26761 static const struct arm_ext_table armv7r_ext_table[] =
26762 {
26763 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
26764 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
26765 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26766 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26767 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
26768 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26769 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26770 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
26771 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26772 };
26773
26774 static const struct arm_ext_table armv7em_ext_table[] =
26775 {
26776 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
26777 /* Alias for +fp, used to be known as fpv4-sp-d16. */
26778 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
26779 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
26780 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26781 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
26782 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26783 };
26784
26785 static const struct arm_ext_table armv8a_ext_table[] =
26786 {
26787 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26788 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26789 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26790 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26791
26792 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26793 should use the +simd option to turn on FP. */
26794 ARM_REMOVE ("fp", ALL_FP),
26795 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26796 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26797 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26798 };
26799
26800
26801 static const struct arm_ext_table armv81a_ext_table[] =
26802 {
26803 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26804 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26805 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26806
26807 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26808 should use the +simd option to turn on FP. */
26809 ARM_REMOVE ("fp", ALL_FP),
26810 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26811 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26812 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26813 };
26814
26815 static const struct arm_ext_table armv82a_ext_table[] =
26816 {
26817 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26818 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
26819 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
26820 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26821 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26822 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26823
26824 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26825 should use the +simd option to turn on FP. */
26826 ARM_REMOVE ("fp", ALL_FP),
26827 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26828 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26829 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26830 };
26831
26832 static const struct arm_ext_table armv84a_ext_table[] =
26833 {
26834 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26835 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26836 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26837 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26838
26839 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26840 should use the +simd option to turn on FP. */
26841 ARM_REMOVE ("fp", ALL_FP),
26842 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26843 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26844 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26845 };
26846
26847 static const struct arm_ext_table armv85a_ext_table[] =
26848 {
26849 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26850 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26851 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26852 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26853
26854 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26855 should use the +simd option to turn on FP. */
26856 ARM_REMOVE ("fp", ALL_FP),
26857 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26858 };
26859
26860 static const struct arm_ext_table armv8m_main_ext_table[] =
26861 {
26862 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26863 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26864 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
26865 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26866 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26867 };
26868
26869 static const struct arm_ext_table armv8_1m_main_ext_table[] =
26870 {
26871 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26872 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26873 ARM_EXT ("fp",
26874 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26875 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
26876 ALL_FP),
26877 ARM_ADD ("fp.dp",
26878 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26879 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
26880 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26881 };
26882
26883 static const struct arm_ext_table armv8r_ext_table[] =
26884 {
26885 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26886 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26887 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26888 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26889 ARM_REMOVE ("fp", ALL_FP),
26890 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
26891 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26892 };
26893
26894 /* This list should, at a minimum, contain all the architecture names
26895 recognized by GCC. */
26896 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
26897 #define ARM_ARCH_OPT2(N, V, DF, ext) \
26898 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
26899
26900 static const struct arm_arch_option_table arm_archs[] =
26901 {
26902 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26903 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26904 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26905 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26906 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26907 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26908 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26909 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26910 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26911 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26912 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26913 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26914 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26915 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
26916 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
26917 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
26918 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
26919 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26920 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26921 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
26922 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
26923 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26924 kept to preserve existing behaviour. */
26925 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26926 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26927 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
26928 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
26929 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
26930 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26931 kept to preserve existing behaviour. */
26932 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
26933 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
26934 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26935 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26936 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
26937 /* The official spelling of the ARMv7 profile variants is the dashed form.
26938 Accept the non-dashed form for compatibility with old toolchains. */
26939 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26940 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
26941 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
26942 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26943 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26944 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
26945 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26946 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
26947 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
26948 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
26949 armv8m_main),
26950 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
26951 armv8_1m_main),
26952 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
26953 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
26954 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
26955 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
26956 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
26957 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
26958 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
26959 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26960 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26961 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
26962 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
26963 };
26964 #undef ARM_ARCH_OPT
26965
26966 /* ISA extensions in the co-processor and main instruction set space. */
26967
26968 struct arm_option_extension_value_table
26969 {
26970 const char * name;
26971 size_t name_len;
26972 const arm_feature_set merge_value;
26973 const arm_feature_set clear_value;
26974 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26975 indicates that an extension is available for all architectures while
26976 ARM_ANY marks an empty entry. */
26977 const arm_feature_set allowed_archs[2];
26978 };
26979
26980 /* The following table must be in alphabetical order with a NULL last entry. */
26981
26982 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26983 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
26984
26985 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
26986 use the context sensitive approach using arm_ext_table's. */
26987 static const struct arm_option_extension_value_table arm_extensions[] =
26988 {
26989 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26990 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26991 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26992 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26993 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26994 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26995 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26996 ARM_ARCH_V8_2A),
26997 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26998 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26999 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
27000 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
27001 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
27002 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
27003 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
27004 ARM_ARCH_V8_2A),
27005 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
27006 | ARM_EXT2_FP16_FML),
27007 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
27008 | ARM_EXT2_FP16_FML),
27009 ARM_ARCH_V8_2A),
27010 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
27011 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
27012 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
27013 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
27014 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
27015 Thumb divide instruction. Due to this having the same name as the
27016 previous entry, this will be ignored when doing command-line parsing and
27017 only considered by build attribute selection code. */
27018 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
27019 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
27020 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
27021 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
27022 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
27023 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
27024 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
27025 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
27026 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
27027 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
27028 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
27029 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
27030 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
27031 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
27032 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
27033 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
27034 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
27035 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
27036 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
27037 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
27038 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
27039 ARM_ARCH_V8A),
27040 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
27041 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
27042 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
27043 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
27044 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
27045 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
27046 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
27047 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
27048 ARM_ARCH_V8A),
27049 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
27050 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
27051 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
27052 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
27053 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
27054 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
27055 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
27056 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
27057 | ARM_EXT_DIV),
27058 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
27059 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
27060 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
27061 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
27062 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
27063 };
27064 #undef ARM_EXT_OPT
27065
27066 /* ISA floating-point and Advanced SIMD extensions. */
27067 struct arm_option_fpu_value_table
27068 {
27069 const char * name;
27070 const arm_feature_set value;
27071 };
27072
27073 /* This list should, at a minimum, contain all the fpu names
27074 recognized by GCC. */
27075 static const struct arm_option_fpu_value_table arm_fpus[] =
27076 {
27077 {"softfpa", FPU_NONE},
27078 {"fpe", FPU_ARCH_FPE},
27079 {"fpe2", FPU_ARCH_FPE},
27080 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
27081 {"fpa", FPU_ARCH_FPA},
27082 {"fpa10", FPU_ARCH_FPA},
27083 {"fpa11", FPU_ARCH_FPA},
27084 {"arm7500fe", FPU_ARCH_FPA},
27085 {"softvfp", FPU_ARCH_VFP},
27086 {"softvfp+vfp", FPU_ARCH_VFP_V2},
27087 {"vfp", FPU_ARCH_VFP_V2},
27088 {"vfp9", FPU_ARCH_VFP_V2},
27089 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
27090 {"vfp10", FPU_ARCH_VFP_V2},
27091 {"vfp10-r0", FPU_ARCH_VFP_V1},
27092 {"vfpxd", FPU_ARCH_VFP_V1xD},
27093 {"vfpv2", FPU_ARCH_VFP_V2},
27094 {"vfpv3", FPU_ARCH_VFP_V3},
27095 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
27096 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
27097 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
27098 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
27099 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
27100 {"arm1020t", FPU_ARCH_VFP_V1},
27101 {"arm1020e", FPU_ARCH_VFP_V2},
27102 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
27103 {"arm1136jf-s", FPU_ARCH_VFP_V2},
27104 {"maverick", FPU_ARCH_MAVERICK},
27105 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
27106 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
27107 {"neon-fp16", FPU_ARCH_NEON_FP16},
27108 {"vfpv4", FPU_ARCH_VFP_V4},
27109 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
27110 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
27111 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
27112 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
27113 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
27114 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
27115 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
27116 {"crypto-neon-fp-armv8",
27117 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
27118 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
27119 {"crypto-neon-fp-armv8.1",
27120 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
27121 {NULL, ARM_ARCH_NONE}
27122 };
27123
27124 struct arm_option_value_table
27125 {
27126 const char *name;
27127 long value;
27128 };
27129
27130 static const struct arm_option_value_table arm_float_abis[] =
27131 {
27132 {"hard", ARM_FLOAT_ABI_HARD},
27133 {"softfp", ARM_FLOAT_ABI_SOFTFP},
27134 {"soft", ARM_FLOAT_ABI_SOFT},
27135 {NULL, 0}
27136 };
27137
27138 #ifdef OBJ_ELF
27139 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
27140 static const struct arm_option_value_table arm_eabis[] =
27141 {
27142 {"gnu", EF_ARM_EABI_UNKNOWN},
27143 {"4", EF_ARM_EABI_VER4},
27144 {"5", EF_ARM_EABI_VER5},
27145 {NULL, 0}
27146 };
27147 #endif
27148
27149 struct arm_long_option_table
27150 {
27151 const char * option; /* Substring to match. */
27152 const char * help; /* Help information. */
27153 int (* func) (const char * subopt); /* Function to decode sub-option. */
27154 const char * deprecated; /* If non-null, print this message. */
27155 };
27156
27157 static bfd_boolean
27158 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
27159 arm_feature_set *ext_set,
27160 const struct arm_ext_table *ext_table)
27161 {
27162 /* We insist on extensions being specified in alphabetical order, and with
27163 extensions being added before being removed. We achieve this by having
27164 the global ARM_EXTENSIONS table in alphabetical order, and using the
27165 ADDING_VALUE variable to indicate whether we are adding an extension (1)
27166 or removing it (0) and only allowing it to change in the order
27167 -1 -> 1 -> 0. */
27168 const struct arm_option_extension_value_table * opt = NULL;
27169 const arm_feature_set arm_any = ARM_ANY;
27170 int adding_value = -1;
27171
27172 while (str != NULL && *str != 0)
27173 {
27174 const char *ext;
27175 size_t len;
27176
27177 if (*str != '+')
27178 {
27179 as_bad (_("invalid architectural extension"));
27180 return FALSE;
27181 }
27182
27183 str++;
27184 ext = strchr (str, '+');
27185
27186 if (ext != NULL)
27187 len = ext - str;
27188 else
27189 len = strlen (str);
27190
27191 if (len >= 2 && strncmp (str, "no", 2) == 0)
27192 {
27193 if (adding_value != 0)
27194 {
27195 adding_value = 0;
27196 opt = arm_extensions;
27197 }
27198
27199 len -= 2;
27200 str += 2;
27201 }
27202 else if (len > 0)
27203 {
27204 if (adding_value == -1)
27205 {
27206 adding_value = 1;
27207 opt = arm_extensions;
27208 }
27209 else if (adding_value != 1)
27210 {
27211 as_bad (_("must specify extensions to add before specifying "
27212 "those to remove"));
27213 return FALSE;
27214 }
27215 }
27216
27217 if (len == 0)
27218 {
27219 as_bad (_("missing architectural extension"));
27220 return FALSE;
27221 }
27222
27223 gas_assert (adding_value != -1);
27224 gas_assert (opt != NULL);
27225
27226 if (ext_table != NULL)
27227 {
27228 const struct arm_ext_table * ext_opt = ext_table;
27229 bfd_boolean found = FALSE;
27230 for (; ext_opt->name != NULL; ext_opt++)
27231 if (ext_opt->name_len == len
27232 && strncmp (ext_opt->name, str, len) == 0)
27233 {
27234 if (adding_value)
27235 {
27236 if (ARM_FEATURE_ZERO (ext_opt->merge))
27237 /* TODO: Option not supported. When we remove the
27238 legacy table this case should error out. */
27239 continue;
27240
27241 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
27242 }
27243 else
27244 {
27245 if (ARM_FEATURE_ZERO (ext_opt->clear))
27246 /* TODO: Option not supported. When we remove the
27247 legacy table this case should error out. */
27248 continue;
27249 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
27250 }
27251 found = TRUE;
27252 break;
27253 }
27254 if (found)
27255 {
27256 str = ext;
27257 continue;
27258 }
27259 }
27260
27261 /* Scan over the options table trying to find an exact match. */
27262 for (; opt->name != NULL; opt++)
27263 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27264 {
27265 int i, nb_allowed_archs =
27266 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27267 /* Check we can apply the extension to this architecture. */
27268 for (i = 0; i < nb_allowed_archs; i++)
27269 {
27270 /* Empty entry. */
27271 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27272 continue;
27273 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
27274 break;
27275 }
27276 if (i == nb_allowed_archs)
27277 {
27278 as_bad (_("extension does not apply to the base architecture"));
27279 return FALSE;
27280 }
27281
27282 /* Add or remove the extension. */
27283 if (adding_value)
27284 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
27285 else
27286 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
27287
27288 /* Allowing Thumb division instructions for ARMv7 in autodetection
27289 rely on this break so that duplicate extensions (extensions
27290 with the same name as a previous extension in the list) are not
27291 considered for command-line parsing. */
27292 break;
27293 }
27294
27295 if (opt->name == NULL)
27296 {
27297 /* Did we fail to find an extension because it wasn't specified in
27298 alphabetical order, or because it does not exist? */
27299
27300 for (opt = arm_extensions; opt->name != NULL; opt++)
27301 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27302 break;
27303
27304 if (opt->name == NULL)
27305 as_bad (_("unknown architectural extension `%s'"), str);
27306 else
27307 as_bad (_("architectural extensions must be specified in "
27308 "alphabetical order"));
27309
27310 return FALSE;
27311 }
27312 else
27313 {
27314 /* We should skip the extension we've just matched the next time
27315 round. */
27316 opt++;
27317 }
27318
27319 str = ext;
27320 };
27321
27322 return TRUE;
27323 }
27324
27325 static bfd_boolean
27326 arm_parse_cpu (const char *str)
27327 {
27328 const struct arm_cpu_option_table *opt;
27329 const char *ext = strchr (str, '+');
27330 size_t len;
27331
27332 if (ext != NULL)
27333 len = ext - str;
27334 else
27335 len = strlen (str);
27336
27337 if (len == 0)
27338 {
27339 as_bad (_("missing cpu name `%s'"), str);
27340 return FALSE;
27341 }
27342
27343 for (opt = arm_cpus; opt->name != NULL; opt++)
27344 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27345 {
27346 mcpu_cpu_opt = &opt->value;
27347 if (mcpu_ext_opt == NULL)
27348 mcpu_ext_opt = XNEW (arm_feature_set);
27349 *mcpu_ext_opt = opt->ext;
27350 mcpu_fpu_opt = &opt->default_fpu;
27351 if (opt->canonical_name)
27352 {
27353 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
27354 strcpy (selected_cpu_name, opt->canonical_name);
27355 }
27356 else
27357 {
27358 size_t i;
27359
27360 if (len >= sizeof selected_cpu_name)
27361 len = (sizeof selected_cpu_name) - 1;
27362
27363 for (i = 0; i < len; i++)
27364 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27365 selected_cpu_name[i] = 0;
27366 }
27367
27368 if (ext != NULL)
27369 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
27370
27371 return TRUE;
27372 }
27373
27374 as_bad (_("unknown cpu `%s'"), str);
27375 return FALSE;
27376 }
27377
27378 static bfd_boolean
27379 arm_parse_arch (const char *str)
27380 {
27381 const struct arm_arch_option_table *opt;
27382 const char *ext = strchr (str, '+');
27383 size_t len;
27384
27385 if (ext != NULL)
27386 len = ext - str;
27387 else
27388 len = strlen (str);
27389
27390 if (len == 0)
27391 {
27392 as_bad (_("missing architecture name `%s'"), str);
27393 return FALSE;
27394 }
27395
27396 for (opt = arm_archs; opt->name != NULL; opt++)
27397 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27398 {
27399 march_cpu_opt = &opt->value;
27400 if (march_ext_opt == NULL)
27401 march_ext_opt = XNEW (arm_feature_set);
27402 *march_ext_opt = arm_arch_none;
27403 march_fpu_opt = &opt->default_fpu;
27404 strcpy (selected_cpu_name, opt->name);
27405
27406 if (ext != NULL)
27407 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
27408 opt->ext_table);
27409
27410 return TRUE;
27411 }
27412
27413 as_bad (_("unknown architecture `%s'\n"), str);
27414 return FALSE;
27415 }
27416
27417 static bfd_boolean
27418 arm_parse_fpu (const char * str)
27419 {
27420 const struct arm_option_fpu_value_table * opt;
27421
27422 for (opt = arm_fpus; opt->name != NULL; opt++)
27423 if (streq (opt->name, str))
27424 {
27425 mfpu_opt = &opt->value;
27426 return TRUE;
27427 }
27428
27429 as_bad (_("unknown floating point format `%s'\n"), str);
27430 return FALSE;
27431 }
27432
27433 static bfd_boolean
27434 arm_parse_float_abi (const char * str)
27435 {
27436 const struct arm_option_value_table * opt;
27437
27438 for (opt = arm_float_abis; opt->name != NULL; opt++)
27439 if (streq (opt->name, str))
27440 {
27441 mfloat_abi_opt = opt->value;
27442 return TRUE;
27443 }
27444
27445 as_bad (_("unknown floating point abi `%s'\n"), str);
27446 return FALSE;
27447 }
27448
27449 #ifdef OBJ_ELF
27450 static bfd_boolean
27451 arm_parse_eabi (const char * str)
27452 {
27453 const struct arm_option_value_table *opt;
27454
27455 for (opt = arm_eabis; opt->name != NULL; opt++)
27456 if (streq (opt->name, str))
27457 {
27458 meabi_flags = opt->value;
27459 return TRUE;
27460 }
27461 as_bad (_("unknown EABI `%s'\n"), str);
27462 return FALSE;
27463 }
27464 #endif
27465
27466 static bfd_boolean
27467 arm_parse_it_mode (const char * str)
27468 {
27469 bfd_boolean ret = TRUE;
27470
27471 if (streq ("arm", str))
27472 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
27473 else if (streq ("thumb", str))
27474 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
27475 else if (streq ("always", str))
27476 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
27477 else if (streq ("never", str))
27478 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
27479 else
27480 {
27481 as_bad (_("unknown implicit IT mode `%s', should be "\
27482 "arm, thumb, always, or never."), str);
27483 ret = FALSE;
27484 }
27485
27486 return ret;
27487 }
27488
27489 static bfd_boolean
27490 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
27491 {
27492 codecomposer_syntax = TRUE;
27493 arm_comment_chars[0] = ';';
27494 arm_line_separator_chars[0] = 0;
27495 return TRUE;
27496 }
27497
27498 struct arm_long_option_table arm_long_opts[] =
27499 {
27500 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
27501 arm_parse_cpu, NULL},
27502 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
27503 arm_parse_arch, NULL},
27504 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
27505 arm_parse_fpu, NULL},
27506 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
27507 arm_parse_float_abi, NULL},
27508 #ifdef OBJ_ELF
27509 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
27510 arm_parse_eabi, NULL},
27511 #endif
27512 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
27513 arm_parse_it_mode, NULL},
27514 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
27515 arm_ccs_mode, NULL},
27516 {NULL, NULL, 0, NULL}
27517 };
27518
27519 int
27520 md_parse_option (int c, const char * arg)
27521 {
27522 struct arm_option_table *opt;
27523 const struct arm_legacy_option_table *fopt;
27524 struct arm_long_option_table *lopt;
27525
27526 switch (c)
27527 {
27528 #ifdef OPTION_EB
27529 case OPTION_EB:
27530 target_big_endian = 1;
27531 break;
27532 #endif
27533
27534 #ifdef OPTION_EL
27535 case OPTION_EL:
27536 target_big_endian = 0;
27537 break;
27538 #endif
27539
27540 case OPTION_FIX_V4BX:
27541 fix_v4bx = TRUE;
27542 break;
27543
27544 #ifdef OBJ_ELF
27545 case OPTION_FDPIC:
27546 arm_fdpic = TRUE;
27547 break;
27548 #endif /* OBJ_ELF */
27549
27550 case 'a':
27551 /* Listing option. Just ignore these, we don't support additional
27552 ones. */
27553 return 0;
27554
27555 default:
27556 for (opt = arm_opts; opt->option != NULL; opt++)
27557 {
27558 if (c == opt->option[0]
27559 && ((arg == NULL && opt->option[1] == 0)
27560 || streq (arg, opt->option + 1)))
27561 {
27562 /* If the option is deprecated, tell the user. */
27563 if (warn_on_deprecated && opt->deprecated != NULL)
27564 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27565 arg ? arg : "", _(opt->deprecated));
27566
27567 if (opt->var != NULL)
27568 *opt->var = opt->value;
27569
27570 return 1;
27571 }
27572 }
27573
27574 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
27575 {
27576 if (c == fopt->option[0]
27577 && ((arg == NULL && fopt->option[1] == 0)
27578 || streq (arg, fopt->option + 1)))
27579 {
27580 /* If the option is deprecated, tell the user. */
27581 if (warn_on_deprecated && fopt->deprecated != NULL)
27582 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27583 arg ? arg : "", _(fopt->deprecated));
27584
27585 if (fopt->var != NULL)
27586 *fopt->var = &fopt->value;
27587
27588 return 1;
27589 }
27590 }
27591
27592 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27593 {
27594 /* These options are expected to have an argument. */
27595 if (c == lopt->option[0]
27596 && arg != NULL
27597 && strncmp (arg, lopt->option + 1,
27598 strlen (lopt->option + 1)) == 0)
27599 {
27600 /* If the option is deprecated, tell the user. */
27601 if (warn_on_deprecated && lopt->deprecated != NULL)
27602 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
27603 _(lopt->deprecated));
27604
27605 /* Call the sup-option parser. */
27606 return lopt->func (arg + strlen (lopt->option) - 1);
27607 }
27608 }
27609
27610 return 0;
27611 }
27612
27613 return 1;
27614 }
27615
27616 void
27617 md_show_usage (FILE * fp)
27618 {
27619 struct arm_option_table *opt;
27620 struct arm_long_option_table *lopt;
27621
27622 fprintf (fp, _(" ARM-specific assembler options:\n"));
27623
27624 for (opt = arm_opts; opt->option != NULL; opt++)
27625 if (opt->help != NULL)
27626 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
27627
27628 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27629 if (lopt->help != NULL)
27630 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
27631
27632 #ifdef OPTION_EB
27633 fprintf (fp, _("\
27634 -EB assemble code for a big-endian cpu\n"));
27635 #endif
27636
27637 #ifdef OPTION_EL
27638 fprintf (fp, _("\
27639 -EL assemble code for a little-endian cpu\n"));
27640 #endif
27641
27642 fprintf (fp, _("\
27643 --fix-v4bx Allow BX in ARMv4 code\n"));
27644
27645 #ifdef OBJ_ELF
27646 fprintf (fp, _("\
27647 --fdpic generate an FDPIC object file\n"));
27648 #endif /* OBJ_ELF */
27649 }
27650
27651 #ifdef OBJ_ELF
27652
27653 typedef struct
27654 {
27655 int val;
27656 arm_feature_set flags;
27657 } cpu_arch_ver_table;
27658
27659 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
27660 chronologically for architectures, with an exception for ARMv6-M and
27661 ARMv6S-M due to legacy reasons. No new architecture should have a
27662 special case. This allows for build attribute selection results to be
27663 stable when new architectures are added. */
27664 static const cpu_arch_ver_table cpu_arch_ver[] =
27665 {
27666 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
27667 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
27668 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
27669 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
27670 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
27671 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
27672 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
27673 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
27674 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
27675 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
27676 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
27677 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
27678 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
27679 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
27680 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
27681 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
27682 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
27683 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
27684 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
27685 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
27686 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
27687 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
27688 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
27689 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
27690
27691 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
27692 always selected build attributes to match those of ARMv6-M
27693 (resp. ARMv6S-M). However, due to these architectures being a strict
27694 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
27695 would be selected when fully respecting chronology of architectures.
27696 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
27697 move them before ARMv7 architectures. */
27698 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
27699 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
27700
27701 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
27702 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
27703 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
27704 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
27705 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
27706 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
27707 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
27708 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
27709 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
27710 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
27711 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
27712 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
27713 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
27714 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
27715 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
27716 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
27717 {-1, ARM_ARCH_NONE}
27718 };
27719
27720 /* Set an attribute if it has not already been set by the user. */
27721
27722 static void
27723 aeabi_set_attribute_int (int tag, int value)
27724 {
27725 if (tag < 1
27726 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27727 || !attributes_set_explicitly[tag])
27728 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
27729 }
27730
27731 static void
27732 aeabi_set_attribute_string (int tag, const char *value)
27733 {
27734 if (tag < 1
27735 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27736 || !attributes_set_explicitly[tag])
27737 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
27738 }
27739
27740 /* Return whether features in the *NEEDED feature set are available via
27741 extensions for the architecture whose feature set is *ARCH_FSET. */
27742
27743 static bfd_boolean
27744 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
27745 const arm_feature_set *needed)
27746 {
27747 int i, nb_allowed_archs;
27748 arm_feature_set ext_fset;
27749 const struct arm_option_extension_value_table *opt;
27750
27751 ext_fset = arm_arch_none;
27752 for (opt = arm_extensions; opt->name != NULL; opt++)
27753 {
27754 /* Extension does not provide any feature we need. */
27755 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
27756 continue;
27757
27758 nb_allowed_archs =
27759 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27760 for (i = 0; i < nb_allowed_archs; i++)
27761 {
27762 /* Empty entry. */
27763 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
27764 break;
27765
27766 /* Extension is available, add it. */
27767 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
27768 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
27769 }
27770 }
27771
27772 /* Can we enable all features in *needed? */
27773 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
27774 }
27775
27776 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
27777 a given architecture feature set *ARCH_EXT_FSET including extension feature
27778 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
27779 - if true, check for an exact match of the architecture modulo extensions;
27780 - otherwise, select build attribute value of the first superset
27781 architecture released so that results remains stable when new architectures
27782 are added.
27783 For -march/-mcpu=all the build attribute value of the most featureful
27784 architecture is returned. Tag_CPU_arch_profile result is returned in
27785 PROFILE. */
27786
27787 static int
27788 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27789 const arm_feature_set *ext_fset,
27790 char *profile, int exact_match)
27791 {
27792 arm_feature_set arch_fset;
27793 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27794
27795 /* Select most featureful architecture with all its extensions if building
27796 for -march=all as the feature sets used to set build attributes. */
27797 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27798 {
27799 /* Force revisiting of decision for each new architecture. */
27800 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
27801 *profile = 'A';
27802 return TAG_CPU_ARCH_V8;
27803 }
27804
27805 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27806
27807 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27808 {
27809 arm_feature_set known_arch_fset;
27810
27811 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27812 if (exact_match)
27813 {
27814 /* Base architecture match user-specified architecture and
27815 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27816 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27817 {
27818 p_ver_ret = p_ver;
27819 goto found;
27820 }
27821 /* Base architecture match user-specified architecture only
27822 (eg. ARMv6-M in the same case as above). Record it in case we
27823 find a match with above condition. */
27824 else if (p_ver_ret == NULL
27825 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27826 p_ver_ret = p_ver;
27827 }
27828 else
27829 {
27830
27831 /* Architecture has all features wanted. */
27832 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27833 {
27834 arm_feature_set added_fset;
27835
27836 /* Compute features added by this architecture over the one
27837 recorded in p_ver_ret. */
27838 if (p_ver_ret != NULL)
27839 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27840 p_ver_ret->flags);
27841 /* First architecture that match incl. with extensions, or the
27842 only difference in features over the recorded match is
27843 features that were optional and are now mandatory. */
27844 if (p_ver_ret == NULL
27845 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27846 {
27847 p_ver_ret = p_ver;
27848 goto found;
27849 }
27850 }
27851 else if (p_ver_ret == NULL)
27852 {
27853 arm_feature_set needed_ext_fset;
27854
27855 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27856
27857 /* Architecture has all features needed when using some
27858 extensions. Record it and continue searching in case there
27859 exist an architecture providing all needed features without
27860 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27861 OS extension). */
27862 if (have_ext_for_needed_feat_p (&known_arch_fset,
27863 &needed_ext_fset))
27864 p_ver_ret = p_ver;
27865 }
27866 }
27867 }
27868
27869 if (p_ver_ret == NULL)
27870 return -1;
27871
27872 found:
27873 /* Tag_CPU_arch_profile. */
27874 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27875 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27876 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27877 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27878 *profile = 'A';
27879 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27880 *profile = 'R';
27881 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27882 *profile = 'M';
27883 else
27884 *profile = '\0';
27885 return p_ver_ret->val;
27886 }
27887
27888 /* Set the public EABI object attributes. */
27889
27890 static void
27891 aeabi_set_public_attributes (void)
27892 {
27893 char profile = '\0';
27894 int arch = -1;
27895 int virt_sec = 0;
27896 int fp16_optional = 0;
27897 int skip_exact_match = 0;
27898 arm_feature_set flags, flags_arch, flags_ext;
27899
27900 /* Autodetection mode, choose the architecture based the instructions
27901 actually used. */
27902 if (no_cpu_selected ())
27903 {
27904 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
27905
27906 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27907 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
27908
27909 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27910 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
27911
27912 /* Code run during relaxation relies on selected_cpu being set. */
27913 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27914 flags_ext = arm_arch_none;
27915 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
27916 selected_ext = flags_ext;
27917 selected_cpu = flags;
27918 }
27919 /* Otherwise, choose the architecture based on the capabilities of the
27920 requested cpu. */
27921 else
27922 {
27923 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
27924 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
27925 flags_ext = selected_ext;
27926 flags = selected_cpu;
27927 }
27928 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
27929
27930 /* Allow the user to override the reported architecture. */
27931 if (!ARM_FEATURE_ZERO (selected_object_arch))
27932 {
27933 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
27934 flags_ext = arm_arch_none;
27935 }
27936 else
27937 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
27938
27939 /* When this function is run again after relaxation has happened there is no
27940 way to determine whether an architecture or CPU was specified by the user:
27941 - selected_cpu is set above for relaxation to work;
27942 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27943 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27944 Therefore, if not in -march=all case we first try an exact match and fall
27945 back to autodetection. */
27946 if (!skip_exact_match)
27947 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27948 if (arch == -1)
27949 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27950 if (arch == -1)
27951 as_bad (_("no architecture contains all the instructions used\n"));
27952
27953 /* Tag_CPU_name. */
27954 if (selected_cpu_name[0])
27955 {
27956 char *q;
27957
27958 q = selected_cpu_name;
27959 if (strncmp (q, "armv", 4) == 0)
27960 {
27961 int i;
27962
27963 q += 4;
27964 for (i = 0; q[i]; i++)
27965 q[i] = TOUPPER (q[i]);
27966 }
27967 aeabi_set_attribute_string (Tag_CPU_name, q);
27968 }
27969
27970 /* Tag_CPU_arch. */
27971 aeabi_set_attribute_int (Tag_CPU_arch, arch);
27972
27973 /* Tag_CPU_arch_profile. */
27974 if (profile != '\0')
27975 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
27976
27977 /* Tag_DSP_extension. */
27978 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
27979 aeabi_set_attribute_int (Tag_DSP_extension, 1);
27980
27981 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27982 /* Tag_ARM_ISA_use. */
27983 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
27984 || ARM_FEATURE_ZERO (flags_arch))
27985 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
27986
27987 /* Tag_THUMB_ISA_use. */
27988 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
27989 || ARM_FEATURE_ZERO (flags_arch))
27990 {
27991 int thumb_isa_use;
27992
27993 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27994 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
27995 thumb_isa_use = 3;
27996 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27997 thumb_isa_use = 2;
27998 else
27999 thumb_isa_use = 1;
28000 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
28001 }
28002
28003 /* Tag_VFP_arch. */
28004 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
28005 aeabi_set_attribute_int (Tag_VFP_arch,
28006 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
28007 ? 7 : 8);
28008 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
28009 aeabi_set_attribute_int (Tag_VFP_arch,
28010 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
28011 ? 5 : 6);
28012 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
28013 {
28014 fp16_optional = 1;
28015 aeabi_set_attribute_int (Tag_VFP_arch, 3);
28016 }
28017 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
28018 {
28019 aeabi_set_attribute_int (Tag_VFP_arch, 4);
28020 fp16_optional = 1;
28021 }
28022 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
28023 aeabi_set_attribute_int (Tag_VFP_arch, 2);
28024 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
28025 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
28026 aeabi_set_attribute_int (Tag_VFP_arch, 1);
28027
28028 /* Tag_ABI_HardFP_use. */
28029 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
28030 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
28031 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
28032
28033 /* Tag_WMMX_arch. */
28034 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
28035 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
28036 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
28037 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
28038
28039 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
28040 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
28041 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
28042 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
28043 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
28044 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
28045 {
28046 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
28047 {
28048 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
28049 }
28050 else
28051 {
28052 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
28053 fp16_optional = 1;
28054 }
28055 }
28056
28057 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
28058 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
28059 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
28060
28061 /* Tag_DIV_use.
28062
28063 We set Tag_DIV_use to two when integer divide instructions have been used
28064 in ARM state, or when Thumb integer divide instructions have been used,
28065 but we have no architecture profile set, nor have we any ARM instructions.
28066
28067 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
28068 by the base architecture.
28069
28070 For new architectures we will have to check these tests. */
28071 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
28072 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
28073 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
28074 aeabi_set_attribute_int (Tag_DIV_use, 0);
28075 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
28076 || (profile == '\0'
28077 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
28078 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
28079 aeabi_set_attribute_int (Tag_DIV_use, 2);
28080
28081 /* Tag_MP_extension_use. */
28082 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
28083 aeabi_set_attribute_int (Tag_MPextension_use, 1);
28084
28085 /* Tag Virtualization_use. */
28086 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
28087 virt_sec |= 1;
28088 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
28089 virt_sec |= 2;
28090 if (virt_sec != 0)
28091 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
28092 }
28093
28094 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
28095 finished and free extension feature bits which will not be used anymore. */
28096
28097 void
28098 arm_md_post_relax (void)
28099 {
28100 aeabi_set_public_attributes ();
28101 XDELETE (mcpu_ext_opt);
28102 mcpu_ext_opt = NULL;
28103 XDELETE (march_ext_opt);
28104 march_ext_opt = NULL;
28105 }
28106
28107 /* Add the default contents for the .ARM.attributes section. */
28108
28109 void
28110 arm_md_end (void)
28111 {
28112 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28113 return;
28114
28115 aeabi_set_public_attributes ();
28116 }
28117 #endif /* OBJ_ELF */
28118
28119 /* Parse a .cpu directive. */
28120
28121 static void
28122 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
28123 {
28124 const struct arm_cpu_option_table *opt;
28125 char *name;
28126 char saved_char;
28127
28128 name = input_line_pointer;
28129 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28130 input_line_pointer++;
28131 saved_char = *input_line_pointer;
28132 *input_line_pointer = 0;
28133
28134 /* Skip the first "all" entry. */
28135 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
28136 if (streq (opt->name, name))
28137 {
28138 selected_arch = opt->value;
28139 selected_ext = opt->ext;
28140 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28141 if (opt->canonical_name)
28142 strcpy (selected_cpu_name, opt->canonical_name);
28143 else
28144 {
28145 int i;
28146 for (i = 0; opt->name[i]; i++)
28147 selected_cpu_name[i] = TOUPPER (opt->name[i]);
28148
28149 selected_cpu_name[i] = 0;
28150 }
28151 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28152
28153 *input_line_pointer = saved_char;
28154 demand_empty_rest_of_line ();
28155 return;
28156 }
28157 as_bad (_("unknown cpu `%s'"), name);
28158 *input_line_pointer = saved_char;
28159 ignore_rest_of_line ();
28160 }
28161
28162 /* Parse a .arch directive. */
28163
28164 static void
28165 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
28166 {
28167 const struct arm_arch_option_table *opt;
28168 char saved_char;
28169 char *name;
28170
28171 name = input_line_pointer;
28172 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28173 input_line_pointer++;
28174 saved_char = *input_line_pointer;
28175 *input_line_pointer = 0;
28176
28177 /* Skip the first "all" entry. */
28178 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28179 if (streq (opt->name, name))
28180 {
28181 selected_arch = opt->value;
28182 selected_ext = arm_arch_none;
28183 selected_cpu = selected_arch;
28184 strcpy (selected_cpu_name, opt->name);
28185 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28186 *input_line_pointer = saved_char;
28187 demand_empty_rest_of_line ();
28188 return;
28189 }
28190
28191 as_bad (_("unknown architecture `%s'\n"), name);
28192 *input_line_pointer = saved_char;
28193 ignore_rest_of_line ();
28194 }
28195
28196 /* Parse a .object_arch directive. */
28197
28198 static void
28199 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
28200 {
28201 const struct arm_arch_option_table *opt;
28202 char saved_char;
28203 char *name;
28204
28205 name = input_line_pointer;
28206 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28207 input_line_pointer++;
28208 saved_char = *input_line_pointer;
28209 *input_line_pointer = 0;
28210
28211 /* Skip the first "all" entry. */
28212 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28213 if (streq (opt->name, name))
28214 {
28215 selected_object_arch = opt->value;
28216 *input_line_pointer = saved_char;
28217 demand_empty_rest_of_line ();
28218 return;
28219 }
28220
28221 as_bad (_("unknown architecture `%s'\n"), name);
28222 *input_line_pointer = saved_char;
28223 ignore_rest_of_line ();
28224 }
28225
28226 /* Parse a .arch_extension directive. */
28227
28228 static void
28229 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
28230 {
28231 const struct arm_option_extension_value_table *opt;
28232 char saved_char;
28233 char *name;
28234 int adding_value = 1;
28235
28236 name = input_line_pointer;
28237 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28238 input_line_pointer++;
28239 saved_char = *input_line_pointer;
28240 *input_line_pointer = 0;
28241
28242 if (strlen (name) >= 2
28243 && strncmp (name, "no", 2) == 0)
28244 {
28245 adding_value = 0;
28246 name += 2;
28247 }
28248
28249 for (opt = arm_extensions; opt->name != NULL; opt++)
28250 if (streq (opt->name, name))
28251 {
28252 int i, nb_allowed_archs =
28253 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
28254 for (i = 0; i < nb_allowed_archs; i++)
28255 {
28256 /* Empty entry. */
28257 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
28258 continue;
28259 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
28260 break;
28261 }
28262
28263 if (i == nb_allowed_archs)
28264 {
28265 as_bad (_("architectural extension `%s' is not allowed for the "
28266 "current base architecture"), name);
28267 break;
28268 }
28269
28270 if (adding_value)
28271 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
28272 opt->merge_value);
28273 else
28274 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
28275
28276 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28277 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28278 *input_line_pointer = saved_char;
28279 demand_empty_rest_of_line ();
28280 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
28281 on this return so that duplicate extensions (extensions with the
28282 same name as a previous extension in the list) are not considered
28283 for command-line parsing. */
28284 return;
28285 }
28286
28287 if (opt->name == NULL)
28288 as_bad (_("unknown architecture extension `%s'\n"), name);
28289
28290 *input_line_pointer = saved_char;
28291 ignore_rest_of_line ();
28292 }
28293
28294 /* Parse a .fpu directive. */
28295
28296 static void
28297 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
28298 {
28299 const struct arm_option_fpu_value_table *opt;
28300 char saved_char;
28301 char *name;
28302
28303 name = input_line_pointer;
28304 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28305 input_line_pointer++;
28306 saved_char = *input_line_pointer;
28307 *input_line_pointer = 0;
28308
28309 for (opt = arm_fpus; opt->name != NULL; opt++)
28310 if (streq (opt->name, name))
28311 {
28312 selected_fpu = opt->value;
28313 #ifndef CPU_DEFAULT
28314 if (no_cpu_selected ())
28315 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28316 else
28317 #endif
28318 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28319 *input_line_pointer = saved_char;
28320 demand_empty_rest_of_line ();
28321 return;
28322 }
28323
28324 as_bad (_("unknown floating point format `%s'\n"), name);
28325 *input_line_pointer = saved_char;
28326 ignore_rest_of_line ();
28327 }
28328
28329 /* Copy symbol information. */
28330
28331 void
28332 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
28333 {
28334 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
28335 }
28336
28337 #ifdef OBJ_ELF
28338 /* Given a symbolic attribute NAME, return the proper integer value.
28339 Returns -1 if the attribute is not known. */
28340
28341 int
28342 arm_convert_symbolic_attribute (const char *name)
28343 {
28344 static const struct
28345 {
28346 const char * name;
28347 const int tag;
28348 }
28349 attribute_table[] =
28350 {
28351 /* When you modify this table you should
28352 also modify the list in doc/c-arm.texi. */
28353 #define T(tag) {#tag, tag}
28354 T (Tag_CPU_raw_name),
28355 T (Tag_CPU_name),
28356 T (Tag_CPU_arch),
28357 T (Tag_CPU_arch_profile),
28358 T (Tag_ARM_ISA_use),
28359 T (Tag_THUMB_ISA_use),
28360 T (Tag_FP_arch),
28361 T (Tag_VFP_arch),
28362 T (Tag_WMMX_arch),
28363 T (Tag_Advanced_SIMD_arch),
28364 T (Tag_PCS_config),
28365 T (Tag_ABI_PCS_R9_use),
28366 T (Tag_ABI_PCS_RW_data),
28367 T (Tag_ABI_PCS_RO_data),
28368 T (Tag_ABI_PCS_GOT_use),
28369 T (Tag_ABI_PCS_wchar_t),
28370 T (Tag_ABI_FP_rounding),
28371 T (Tag_ABI_FP_denormal),
28372 T (Tag_ABI_FP_exceptions),
28373 T (Tag_ABI_FP_user_exceptions),
28374 T (Tag_ABI_FP_number_model),
28375 T (Tag_ABI_align_needed),
28376 T (Tag_ABI_align8_needed),
28377 T (Tag_ABI_align_preserved),
28378 T (Tag_ABI_align8_preserved),
28379 T (Tag_ABI_enum_size),
28380 T (Tag_ABI_HardFP_use),
28381 T (Tag_ABI_VFP_args),
28382 T (Tag_ABI_WMMX_args),
28383 T (Tag_ABI_optimization_goals),
28384 T (Tag_ABI_FP_optimization_goals),
28385 T (Tag_compatibility),
28386 T (Tag_CPU_unaligned_access),
28387 T (Tag_FP_HP_extension),
28388 T (Tag_VFP_HP_extension),
28389 T (Tag_ABI_FP_16bit_format),
28390 T (Tag_MPextension_use),
28391 T (Tag_DIV_use),
28392 T (Tag_nodefaults),
28393 T (Tag_also_compatible_with),
28394 T (Tag_conformance),
28395 T (Tag_T2EE_use),
28396 T (Tag_Virtualization_use),
28397 T (Tag_DSP_extension),
28398 /* We deliberately do not include Tag_MPextension_use_legacy. */
28399 #undef T
28400 };
28401 unsigned int i;
28402
28403 if (name == NULL)
28404 return -1;
28405
28406 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
28407 if (streq (name, attribute_table[i].name))
28408 return attribute_table[i].tag;
28409
28410 return -1;
28411 }
28412
28413 /* Apply sym value for relocations only in the case that they are for
28414 local symbols in the same segment as the fixup and you have the
28415 respective architectural feature for blx and simple switches. */
28416
28417 int
28418 arm_apply_sym_value (struct fix * fixP, segT this_seg)
28419 {
28420 if (fixP->fx_addsy
28421 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28422 /* PR 17444: If the local symbol is in a different section then a reloc
28423 will always be generated for it, so applying the symbol value now
28424 will result in a double offset being stored in the relocation. */
28425 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
28426 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
28427 {
28428 switch (fixP->fx_r_type)
28429 {
28430 case BFD_RELOC_ARM_PCREL_BLX:
28431 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28432 if (ARM_IS_FUNC (fixP->fx_addsy))
28433 return 1;
28434 break;
28435
28436 case BFD_RELOC_ARM_PCREL_CALL:
28437 case BFD_RELOC_THUMB_PCREL_BLX:
28438 if (THUMB_IS_FUNC (fixP->fx_addsy))
28439 return 1;
28440 break;
28441
28442 default:
28443 break;
28444 }
28445
28446 }
28447 return 0;
28448 }
28449 #endif /* OBJ_ELF */
This page took 0.937568 seconds and 5 git commands to generate.