Locale changes from Bruno Haible <haible@clisp.cons.org>.
[deliverable/binutils-gdb.git] / gas / config / tc-cris.c
1 /* tc-cris.c -- Assembler code for the CRIS CPU core.
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3
4 Contributed by Axis Communications AB, Lund, Sweden.
5 Originally written for GAS 1.38.1 by Mikael Asker.
6 Updates, BFDizing, GNUifying and ELF support by Hans-Peter Nilsson.
7
8 This file is part of GAS, the GNU Assembler.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the
22 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
23 MA 02111-1307, USA. */
24
25 #include <stdio.h>
26 #include "as.h"
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "opcode/cris.h"
30 #include "dwarf2dbg.h"
31
32 /* Conventions used here:
33 Generally speaking, pointers to binutils types such as "fragS" and
34 "expressionS" get parameter and variable names ending in "P", such as
35 "fragP", to harmonize with the rest of the binutils code. Other
36 pointers get a "p" suffix, such as "bufp". Any function or type-name
37 that could clash with a current or future binutils or GAS function get
38 a "cris_" prefix. */
39
40 #define SYNTAX_RELAX_REG_PREFIX "no_register_prefix"
41 #define SYNTAX_ENFORCE_REG_PREFIX "register_prefix"
42 #define SYNTAX_USER_SYM_LEADING_UNDERSCORE "leading_underscore"
43 #define SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE "no_leading_underscore"
44 #define REGISTER_PREFIX_CHAR '$'
45
46 /* Like in ":GOT", ":GOTOFF" etc. Other ports use '@', but that's in
47 line_separator_chars for CRIS, so we avoid it. */
48 #define PIC_SUFFIX_CHAR ':'
49
50 /* This might be CRIS_INSN_NONE if we're assembling a prefix-insn only.
51 Note that some prefix-insns might be assembled as CRIS_INSN_NORMAL. */
52 enum cris_insn_kind
53 {
54 CRIS_INSN_NORMAL, CRIS_INSN_NONE, CRIS_INSN_BRANCH
55 };
56
57 /* An instruction will have one of these prefixes.
58 Although the same bit-pattern, we handle BDAP with an immediate
59 expression (eventually quick or [pc+]) different from when we only have
60 register expressions. */
61 enum prefix_kind
62 {
63 PREFIX_NONE, PREFIX_BDAP_IMM, PREFIX_BDAP, PREFIX_BIAP, PREFIX_DIP,
64 PREFIX_PUSH
65 };
66
67 /* The prefix for an instruction. */
68 struct cris_prefix
69 {
70 enum prefix_kind kind;
71 int base_reg_number;
72 unsigned int opcode;
73
74 /* There might be an expression to be evaluated, like I in [rN+I]. */
75 expressionS expr;
76
77 /* If there's an expression, we might need a relocation. Here's the
78 type of what relocation to start relaxaton with.
79 The relocation is assumed to start immediately after the prefix insn,
80 so we don't provide an offset. */
81 enum bfd_reloc_code_real reloc;
82 };
83
84 /* The description of the instruction being assembled. */
85 struct cris_instruction
86 {
87 /* If CRIS_INSN_NONE, then this insn is of zero length. */
88 enum cris_insn_kind insn_type;
89
90 /* If a special register was mentioned, this is its description, else
91 it is NULL. */
92 const struct cris_spec_reg *spec_reg;
93
94 unsigned int opcode;
95
96 /* An insn may have at most one expression; theoretically there could be
97 another in its prefix (but I don't see how that could happen). */
98 expressionS expr;
99
100 /* The expression might need a relocation. Here's one to start
101 relaxation with. */
102 enum bfd_reloc_code_real reloc;
103
104 /* The size in bytes of an immediate expression, or zero if
105 nonapplicable. */
106 int imm_oprnd_size;
107 };
108
109 static void cris_process_instruction PARAMS ((char *,
110 struct cris_instruction *,
111 struct cris_prefix *));
112 static int get_bwd_size_modifier PARAMS ((char **, int *));
113 static int get_bw_size_modifier PARAMS ((char **, int *));
114 static int get_gen_reg PARAMS ((char **, int *));
115 static int get_spec_reg PARAMS ((char **,
116 const struct cris_spec_reg **));
117 static int get_autoinc_prefix_or_indir_op PARAMS ((char **,
118 struct cris_prefix *,
119 int *, int *, int *,
120 expressionS *));
121 static int get_3op_or_dip_prefix_op PARAMS ((char **,
122 struct cris_prefix *));
123 static int cris_get_expression PARAMS ((char **, expressionS *));
124 static int get_flags PARAMS ((char **, int *));
125 static void gen_bdap PARAMS ((int, expressionS *));
126 static int branch_disp PARAMS ((int));
127 static void gen_cond_branch_32 PARAMS ((char *, char *, fragS *,
128 symbolS *, symbolS *, long int));
129 static void cris_number_to_imm PARAMS ((char *, long, int, fixS *, segT));
130 static void cris_create_short_jump PARAMS ((char *, addressT, addressT,
131 fragS *, symbolS *));
132 static void s_syntax PARAMS ((int));
133 static void s_cris_file PARAMS ((int));
134 static void s_cris_loc PARAMS ((int));
135
136 /* Get ":GOT", ":GOTOFF", ":PLT" etc. suffixes. */
137 static void cris_get_pic_suffix PARAMS ((char **,
138 bfd_reloc_code_real_type *,
139 expressionS *));
140 static unsigned int cris_get_pic_reloc_size
141 PARAMS ((bfd_reloc_code_real_type));
142
143 /* All the .syntax functions. */
144 static void cris_force_reg_prefix PARAMS ((void));
145 static void cris_relax_reg_prefix PARAMS ((void));
146 static void cris_sym_leading_underscore PARAMS ((void));
147 static void cris_sym_no_leading_underscore PARAMS ((void));
148 static char *cris_insn_first_word_frag PARAMS ((void));
149
150 /* Handle to the opcode hash table. */
151 static struct hash_control *op_hash = NULL;
152
153 /* Whether we demand that registers have a `$' prefix. Default here. */
154 static boolean demand_register_prefix = false;
155
156 /* Whether global user symbols have a leading underscore. Default here. */
157 static boolean symbols_have_leading_underscore = true;
158
159 /* Whether or not we allow PIC, and expand to PIC-friendly constructs. */
160 static boolean pic = false;
161
162 const pseudo_typeS md_pseudo_table[] =
163 {
164 {"dword", cons, 4},
165 {"syntax", s_syntax, 0},
166 {"file", s_cris_file, 0},
167 {"loc", s_cris_loc, 0},
168 {NULL, 0, 0}
169 };
170
171 static int warn_for_branch_expansion = 0;
172
173 const char cris_comment_chars[] = ";";
174
175 /* This array holds the chars that only start a comment at the beginning of
176 a line. If the line seems to have the form '# 123 filename'
177 .line and .file directives will appear in the pre-processed output. */
178 /* Note that input_file.c hand-checks for '#' at the beginning of the
179 first line of the input file. This is because the compiler outputs
180 #NO_APP at the beginning of its output. */
181 /* Also note that slash-star will always start a comment. */
182 const char line_comment_chars[] = "#";
183 const char line_separator_chars[] = "@";
184
185 /* Now all floating point support is shut off. See md_atof. */
186 const char EXP_CHARS[] = "";
187 const char FLT_CHARS[] = "";
188
189 /* For CRIS, we encode the relax_substateTs (in e.g. fr_substate) as:
190 2 1 0
191 ---/ /--+-----------------+-----------------+-----------------+
192 | what state ? | how long ? |
193 ---/ /--+-----------------+-----------------+-----------------+
194
195 The "how long" bits are 00 = byte, 01 = word, 10 = dword (long).
196 This is a Un*x convention.
197 Not all lengths are legit for a given value of (what state).
198
199 Groups for CRIS address relaxing:
200
201 1. Bcc
202 length: byte, word, 10-byte expansion
203
204 2. BDAP
205 length: byte, word, dword */
206
207 #define STATE_CONDITIONAL_BRANCH (1)
208 #define STATE_BASE_PLUS_DISP_PREFIX (2)
209
210 #define STATE_LENGTH_MASK (3)
211 #define STATE_BYTE (0)
212 #define STATE_WORD (1)
213 #define STATE_DWORD (2)
214 /* Symbol undefined. */
215 #define STATE_UNDF (3)
216 #define STATE_MAX_LENGTH (3)
217
218 /* These displacements are relative to the adress following the opcode
219 word of the instruction. The first letter is Byte, Word. The 2nd
220 letter is Forward, Backward. */
221
222 #define BRANCH_BF ( 254)
223 #define BRANCH_BB (-256)
224 #define BRANCH_WF (2 + 32767)
225 #define BRANCH_WB (2 + -32768)
226
227 #define BDAP_BF ( 127)
228 #define BDAP_BB (-128)
229 #define BDAP_WF ( 32767)
230 #define BDAP_WB (-32768)
231
232 #define ENCODE_RELAX(what, length) (((what) << 2) + (length))
233
234 const relax_typeS md_cris_relax_table[] =
235 {
236 /* Error sentinel (0, 0). */
237 {1, 1, 0, 0},
238
239 /* Unused (0, 1). */
240 {1, 1, 0, 0},
241
242 /* Unused (0, 2). */
243 {1, 1, 0, 0},
244
245 /* Unused (0, 3). */
246 {1, 1, 0, 0},
247
248 /* Bcc o (1, 0). */
249 {BRANCH_BF, BRANCH_BB, 0, ENCODE_RELAX (1, 1)},
250
251 /* Bcc [PC+] (1, 1). */
252 {BRANCH_WF, BRANCH_WB, 2, ENCODE_RELAX (1, 2)},
253
254 /* BEXT/BWF, BA, JUMP (external), JUMP (always), Bnot_cc, JUMP (default)
255 (1, 2). */
256 {0, 0, 10, 0},
257
258 /* Unused (1, 3). */
259 {1, 1, 0, 0},
260
261 /* BDAP o (2, 0). */
262 {BDAP_BF, BDAP_BB, 0, ENCODE_RELAX (2, 1)},
263
264 /* BDAP.[bw] [PC+] (2, 1). */
265 {BDAP_WF, BDAP_WB, 2, ENCODE_RELAX (2, 2)},
266
267 /* BDAP.d [PC+] (2, 2). */
268 {0, 0, 4, 0}
269 };
270
271 #undef BRANCH_BF
272 #undef BRANCH_BB
273 #undef BRANCH_WF
274 #undef BRANCH_WB
275 #undef BDAP_BF
276 #undef BDAP_BB
277 #undef BDAP_WF
278 #undef BDAP_WB
279
280 /* Target-specific multicharacter options, not const-declared at usage
281 in 2.9.1 and CVS of 2000-02-16. */
282 struct option md_longopts[] =
283 {
284 #define OPTION_NO_US (OPTION_MD_BASE + 0)
285 {"no-underscore", no_argument, NULL, OPTION_NO_US},
286 #define OPTION_US (OPTION_MD_BASE + 1)
287 {"underscore", no_argument, NULL, OPTION_US},
288 #define OPTION_PIC (OPTION_MD_BASE + 2)
289 {"pic", no_argument, NULL, OPTION_PIC},
290 {NULL, no_argument, NULL, 0}
291 };
292
293 /* Not const-declared at usage in 2.9.1. */
294 size_t md_longopts_size = sizeof (md_longopts);
295 const char *md_shortopts = "hHN";
296
297 /* At first glance, this may seems wrong and should be 4 (ba + nop); but
298 since a short_jump must skip a *number* of long jumps, it must also be
299 a long jump. Here, we hope to make it a "ba [16bit_offs]" and a "nop"
300 for the delay slot and hope that the jump table at most needs
301 32767/4=8191 long-jumps. A branch is better than a jump, since it is
302 relative; we will not have a reloc to fix up somewhere.
303
304 Note that we can't add relocs, because relaxation uses these fixed
305 numbers, and md_create_short_jump is called after relaxation. */
306
307 const int md_short_jump_size = 6;
308 const int md_long_jump_size = 6;
309
310 /* Report output format. Small changes in output format (like elf
311 variants below) can happen until all options are parsed, but after
312 that, the output format must remain fixed. */
313
314 const char *
315 cris_target_format ()
316 {
317 switch (OUTPUT_FLAVOR)
318 {
319 case bfd_target_aout_flavour:
320 return "a.out-cris";
321
322 case bfd_target_elf_flavour:
323 if (symbols_have_leading_underscore)
324 return "elf32-us-cris";
325 return "elf32-cris";
326
327 default:
328 abort ();
329 return NULL;
330 }
331 }
332
333 /* Prepare machine-dependent frags for relaxation.
334
335 Called just before relaxation starts. Any symbol that is now undefined
336 will not become defined.
337
338 Return the correct fr_subtype in the frag.
339
340 Return the initial "guess for fr_var" to caller. The guess for fr_var
341 is *actually* the growth beyond fr_fix. Whatever we do to grow fr_fix
342 or fr_var contributes to our returned value.
343
344 Although it may not be explicit in the frag, pretend
345 fr_var starts with a value. */
346
347 int
348 md_estimate_size_before_relax (fragP, segment_type)
349 fragS *fragP;
350 /* The segment is either N_DATA or N_TEXT. */
351 segT segment_type;
352 {
353 int old_fr_fix;
354
355 old_fr_fix = fragP->fr_fix;
356
357 switch (fragP->fr_subtype)
358 {
359 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
360 if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
361 /* The symbol lies in the same segment - a relaxable case. */
362 fragP->fr_subtype
363 = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
364 else
365 /* Unknown or not the same segment, so not relaxable. */
366 fragP->fr_subtype
367 = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD);
368 fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
369 break;
370
371 case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF):
372 /* Note that we can not do anything sane with relaxing
373 [rX + a_known_symbol_in_text], it will have to be a 32-bit
374 value.
375
376 We could play tricks with managing a constant pool and make
377 a_known_symbol_in_text a "bdap [pc + offset]" pointing there
378 (like the GOT for ELF shared libraries), but that's no use, it
379 would in general be no shorter or faster code, only more
380 complicated. */
381
382 if (S_GET_SEGMENT (fragP->fr_symbol) != absolute_section)
383 {
384 /* Go for dword if not absolute or same segment. */
385 fragP->fr_subtype
386 = ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD);
387 fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
388 }
389 else
390 {
391 /* Absolute expression. */
392 long int value;
393 value = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
394
395 if (value >= -128 && value <= 127)
396 {
397 /* Byte displacement. */
398 (fragP->fr_opcode)[0] = value;
399 }
400 else
401 {
402 /* Word or dword displacement. */
403 int pow2_of_size = 1;
404 char *writep;
405
406 if (value < -32768 || value > 32767)
407 {
408 /* Outside word range, make it a dword. */
409 pow2_of_size = 2;
410 }
411
412 /* Modify the byte-offset BDAP into a word or dword offset
413 BDAP. Or really, a BDAP rX,8bit into a
414 BDAP.[wd] rX,[PC+] followed by a word or dword. */
415 (fragP->fr_opcode)[0] = BDAP_PC_LOW + pow2_of_size * 16;
416
417 /* Keep the register number in the highest four bits. */
418 (fragP->fr_opcode)[1] &= 0xF0;
419 (fragP->fr_opcode)[1] |= BDAP_INCR_HIGH;
420
421 /* It grew by two or four bytes. */
422 fragP->fr_fix += 1 << pow2_of_size;
423 writep = fragP->fr_literal + old_fr_fix;
424 md_number_to_chars (writep, value, 1 << pow2_of_size);
425 }
426 frag_wane (fragP);
427 }
428 break;
429
430 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
431 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
432 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
433 case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
434 case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
435 case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
436 /* When relaxing a section for the second time, we don't need to
437 do anything except making sure that fr_var is set right. */
438 fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
439 break;
440
441 default:
442 BAD_CASE (fragP->fr_subtype);
443 }
444
445 return fragP->fr_var + (fragP->fr_fix - old_fr_fix);
446 }
447
448 /* Perform post-processing of machine-dependent frags after relaxation.
449 Called after relaxation is finished.
450 In: Address of frag.
451 fr_type == rs_machine_dependent.
452 fr_subtype is what the address relaxed to.
453
454 Out: Any fixS:s and constants are set up.
455
456 The caller will turn the frag into a ".space 0". */
457
458 void
459 md_convert_frag (abfd, sec, fragP)
460 bfd *abfd ATTRIBUTE_UNUSED;
461 segT sec ATTRIBUTE_UNUSED;
462 fragS *fragP;
463 {
464 /* Pointer to first byte in variable-sized part of the frag. */
465 char *var_partp;
466
467 /* Pointer to first opcode byte in frag. */
468 char *opcodep;
469
470 /* Used to check integrity of the relaxation.
471 One of 2 = long, 1 = word, or 0 = byte. */
472 int length_code;
473
474 /* Size in bytes of variable-sized part of frag. */
475 int var_part_size = 0;
476
477 /* This is part of *fragP. It contains all information about addresses
478 and offsets to varying parts. */
479 symbolS *symbolP;
480 unsigned long var_part_offset;
481
482 /* Where, in file space, is _var of *fragP? */
483 unsigned long address_of_var_part = 0;
484
485 /* Where, in file space, does addr point? */
486 unsigned long target_address;
487
488 know (fragP->fr_type == rs_machine_dependent);
489
490 length_code = fragP->fr_subtype & STATE_LENGTH_MASK;
491 know (length_code >= 0 && length_code < STATE_MAX_LENGTH);
492
493 var_part_offset = fragP->fr_fix;
494 var_partp = fragP->fr_literal + var_part_offset;
495 opcodep = fragP->fr_opcode;
496
497 symbolP = fragP->fr_symbol;
498 target_address = (symbolP ? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset;
499 address_of_var_part = fragP->fr_address + var_part_offset;
500
501 switch (fragP->fr_subtype)
502 {
503 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
504 opcodep[0] = branch_disp ((target_address - address_of_var_part));
505 var_part_size = 0;
506 break;
507
508 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
509 /* We had a quick immediate branch, now turn it into a word one i.e. a
510 PC autoincrement. */
511 opcodep[0] = BRANCH_PC_LOW;
512 opcodep[1] &= 0xF0;
513 opcodep[1] |= BRANCH_INCR_HIGH;
514 md_number_to_chars (var_partp,
515 (long) (target_address - (address_of_var_part + 2)),
516 2);
517 var_part_size = 2;
518 break;
519
520 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
521 gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP,
522 fragP->fr_symbol, (symbolS *) NULL,
523 fragP->fr_offset);
524 /* Ten bytes added: a branch, nop and a jump. */
525 var_part_size = 2 + 2 + 4 + 2;
526 break;
527
528 case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
529 var_partp[0] = target_address - (address_of_var_part + 1);
530 var_part_size = 0;
531 break;
532
533 case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
534 /* We had a BDAP 8-bit "quick immediate", now turn it into a 16-bit
535 one that uses PC autoincrement. */
536 opcodep[0] = BDAP_PC_LOW + (1 << 4);
537 opcodep[1] &= 0xF0;
538 opcodep[1] |= BDAP_INCR_HIGH;
539 md_number_to_chars (var_partp, (long) (target_address), 2);
540 var_part_size = 2;
541 break;
542
543 case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
544 /* We had a BDAP 16-bit "word", change the offset to a dword. */
545 opcodep[0] = BDAP_PC_LOW + (2 << 4);
546 opcodep[1] &= 0xF0;
547 opcodep[1] |= BDAP_INCR_HIGH;
548 if (fragP->fr_symbol == NULL)
549 md_number_to_chars (var_partp, fragP->fr_offset, 4);
550 else
551 fix_new (fragP, var_partp - fragP->fr_literal, 4, fragP->fr_symbol,
552 fragP->fr_offset, 0, BFD_RELOC_32);
553 var_part_size = 4;
554 break;
555
556 default:
557 BAD_CASE (fragP->fr_subtype);
558 break;
559 }
560
561 fragP->fr_fix += var_part_size;
562 }
563
564 /* Generate a short jump around a secondary jump table.
565 Used by md_create_long_jump.
566
567 This used to be md_create_short_jump, but is now called from
568 md_create_long_jump instead, when sufficient.
569 since the sizes of the jumps are the same. It used to be brittle,
570 making possibilities for creating bad code. */
571
572 static void
573 cris_create_short_jump (storep, from_addr, to_addr, fragP, to_symbol)
574 char *storep;
575 addressT from_addr;
576 addressT to_addr;
577 fragS *fragP ATTRIBUTE_UNUSED;
578 symbolS *to_symbol ATTRIBUTE_UNUSED;
579 {
580 long int distance;
581
582 distance = to_addr - from_addr;
583
584 if (-254 <= distance && distance <= 256)
585 {
586 /* Create a "short" short jump: "BA distance - 2". */
587 storep[0] = branch_disp (distance - 2);
588 storep[1] = BA_QUICK_HIGH;
589
590 /* A nop for the delay slot. */
591 md_number_to_chars (storep + 2, NOP_OPCODE, 2);
592
593 /* The extra word should be filled with something sane too. Make it
594 a nop to keep disassembly sane. */
595 md_number_to_chars (storep + 4, NOP_OPCODE, 2);
596 }
597 else
598 {
599 /* Make it a "long" short jump: "BA (PC+)". */
600 md_number_to_chars (storep, BA_PC_INCR_OPCODE, 2);
601
602 /* ".WORD distance - 4". */
603 md_number_to_chars (storep + 2, (long) (distance - 4), 2);
604
605 /* A nop for the delay slot. */
606 md_number_to_chars (storep + 4, NOP_OPCODE, 2);
607 }
608 }
609
610 /* Generate a long jump in a secondary jump table.
611
612 storep Where to store the jump instruction.
613 from_addr Address of the jump instruction.
614 to_addr Destination address of the jump.
615 fragP Which frag the destination address operand
616 lies in.
617 to_symbol Destination symbol. */
618
619 void
620 md_create_long_jump (storep, from_addr, to_addr, fragP, to_symbol)
621 char *storep;
622 addressT from_addr;
623 addressT to_addr;
624 fragS *fragP;
625 symbolS *to_symbol;
626 {
627 long int distance;
628
629 distance = to_addr - from_addr;
630
631 if (-32763 <= distance && distance <= 32772)
632 {
633 /* Then make it a "short" long jump. */
634 cris_create_short_jump (storep, from_addr, to_addr, fragP,
635 to_symbol);
636 }
637 else
638 {
639 /* We have a "long" long jump: "JUMP [PC+]".
640 Make it an "ADD [PC+],PC" if we're supposed to emit PIC code. */
641 md_number_to_chars (storep,
642 pic ? ADD_PC_INCR_OPCODE : JUMP_PC_INCR_OPCODE, 2);
643
644 /* Follow with a ".DWORD to_addr", PC-relative for PIC. */
645 fix_new (fragP, storep + 2 - fragP->fr_literal, 4, to_symbol,
646 0, pic ? 1 : 0, pic ? BFD_RELOC_32_PCREL : BFD_RELOC_32);
647 }
648 }
649
650 /* Allocate space for the first piece of an insn, and mark it as the
651 start of the insn for debug-format use. */
652
653 static char *
654 cris_insn_first_word_frag ()
655 {
656 char *insnp = frag_more (2);
657
658 /* We need to mark the start of the insn by passing dwarf2_emit_insn
659 the offset from the current fragment position. This must be done
660 after the first fragment is created but before any other fragments
661 (fixed or varying) are created. Note that the offset only
662 corresponds to the "size" of the insn for a fixed-size,
663 non-expanded insn. */
664 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
665 dwarf2_emit_insn (2);
666
667 return insnp;
668 }
669
670 /* Port-specific assembler initialization. */
671
672 void
673 md_begin ()
674 {
675 const char *hashret = NULL;
676 int i = 0;
677
678 /* Set up a hash table for the instructions. */
679 op_hash = hash_new ();
680 if (op_hash == NULL)
681 as_fatal (_("Virtual memory exhausted"));
682
683 while (cris_opcodes[i].name != NULL)
684 {
685 const char *name = cris_opcodes[i].name;
686 hashret = hash_insert (op_hash, name, (PTR) &cris_opcodes[i]);
687
688 if (hashret != NULL && *hashret != '\0')
689 as_fatal (_("Can't hash `%s': %s\n"), cris_opcodes[i].name,
690 *hashret == 0 ? _("(unknown reason)") : hashret);
691 do
692 {
693 if (cris_opcodes[i].match & cris_opcodes[i].lose)
694 as_fatal (_("Buggy opcode: `%s' \"%s\"\n"), cris_opcodes[i].name,
695 cris_opcodes[i].args);
696
697 ++i;
698 }
699 while (cris_opcodes[i].name != NULL
700 && strcmp (cris_opcodes[i].name, name) == 0);
701 }
702 }
703
704 /* Assemble a source line. */
705
706 void
707 md_assemble (str)
708 char *str;
709 {
710 struct cris_instruction output_instruction;
711 struct cris_prefix prefix;
712 char *opcodep;
713 char *p;
714
715 know (str);
716
717 /* Do the low-level grunt - assemble to bits and split up into a prefix
718 and ordinary insn. */
719 cris_process_instruction (str, &output_instruction, &prefix);
720
721 /* Handle any prefixes to the instruction. */
722 switch (prefix.kind)
723 {
724 case PREFIX_NONE:
725 break;
726
727 /* When the expression is unknown for a BDAP, it can need 0, 2 or 4
728 extra bytes, so we handle it separately. */
729 case PREFIX_BDAP_IMM:
730 /* We only do it if the relocation is unspecified, i.e. not a PIC
731 relocation. */
732 if (prefix.reloc == BFD_RELOC_NONE)
733 {
734 gen_bdap (prefix.base_reg_number, &prefix.expr);
735 break;
736 }
737 /* Fall through. */
738 case PREFIX_BDAP:
739 case PREFIX_BIAP:
740 case PREFIX_DIP:
741 opcodep = cris_insn_first_word_frag ();
742
743 /* Output the prefix opcode. */
744 md_number_to_chars (opcodep, (long) prefix.opcode, 2);
745
746 /* Having a specified reloc only happens for DIP and for BDAP with
747 PIC operands, but it is ok to drop through here for the other
748 prefixes as they can have no relocs specified. */
749 if (prefix.reloc != BFD_RELOC_NONE)
750 {
751 unsigned int relocsize
752 = (prefix.kind == PREFIX_DIP
753 ? 4 : cris_get_pic_reloc_size (prefix.reloc));
754
755 p = frag_more (relocsize);
756 fix_new_exp (frag_now, (p - frag_now->fr_literal), relocsize,
757 &prefix.expr, 0, prefix.reloc);
758 }
759 break;
760
761 case PREFIX_PUSH:
762 opcodep = cris_insn_first_word_frag ();
763
764 /* Output the prefix opcode. Being a "push", we add the negative
765 size of the register to "sp". */
766 if (output_instruction.spec_reg != NULL)
767 {
768 /* Special register. */
769 opcodep[0] = -output_instruction.spec_reg->reg_size;
770 }
771 else
772 {
773 /* General register. */
774 opcodep[0] = -4;
775 }
776 opcodep[1] = (REG_SP << 4) + (BDAP_QUICK_OPCODE >> 8);
777 break;
778
779 default:
780 BAD_CASE (prefix.kind);
781 }
782
783 /* If we only had a prefix insn, we're done. */
784 if (output_instruction.insn_type == CRIS_INSN_NONE)
785 return;
786
787 /* Done with the prefix. Continue with the main instruction. */
788 if (prefix.kind == PREFIX_NONE)
789 opcodep = cris_insn_first_word_frag ();
790 else
791 opcodep = frag_more (2);
792
793 /* Output the instruction opcode. */
794 md_number_to_chars (opcodep, (long) (output_instruction.opcode), 2);
795
796 /* Output the symbol-dependent instruction stuff. */
797 if (output_instruction.insn_type == CRIS_INSN_BRANCH)
798 {
799 segT to_seg = absolute_section;
800 int is_undefined = 0;
801 int length_code;
802
803 if (output_instruction.expr.X_op != O_constant)
804 {
805 to_seg = S_GET_SEGMENT (output_instruction.expr.X_add_symbol);
806
807 if (to_seg == undefined_section)
808 is_undefined = 1;
809 }
810
811 if (output_instruction.expr.X_op == O_constant
812 || to_seg == now_seg || is_undefined)
813 {
814 /* Handle complex expressions. */
815 valueT addvalue
816 = (output_instruction.expr.X_op_symbol != NULL
817 ? 0 : output_instruction.expr.X_add_number);
818 symbolS *sym
819 = (output_instruction.expr.X_op_symbol != NULL
820 ? make_expr_symbol (&output_instruction.expr)
821 : output_instruction.expr.X_add_symbol);
822
823 /* If is_undefined, then the expression may BECOME now_seg. */
824 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
825
826 /* Make room for max ten bytes of variable length. */
827 frag_var (rs_machine_dependent, 10, 0,
828 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
829 sym, addvalue, opcodep);
830 }
831 else
832 {
833 /* We have: to_seg != now_seg && to_seg != undefined_section.
834 This means it is a branch to a known symbol in another
835 section. Code in data? Weird but valid. Emit a 32-bit
836 branch. */
837 char *cond_jump = frag_more (10);
838
839 gen_cond_branch_32 (opcodep, cond_jump, frag_now,
840 output_instruction.expr.X_add_symbol,
841 (symbolS *) NULL,
842 output_instruction.expr.X_add_number);
843 }
844 }
845 else
846 {
847 if (output_instruction.imm_oprnd_size > 0)
848 {
849 /* The intruction has an immediate operand. */
850 enum bfd_reloc_code_real reloc = BFD_RELOC_NONE;
851
852 switch (output_instruction.imm_oprnd_size)
853 {
854 /* Any byte-size immediate constants are treated as
855 word-size. FIXME: Thus overflow check does not work
856 correctly. */
857
858 case 2:
859 /* Note that size-check for the explicit reloc has already
860 been done when we get here. */
861 if (output_instruction.reloc != BFD_RELOC_NONE)
862 reloc = output_instruction.reloc;
863 else
864 reloc = BFD_RELOC_16;
865 break;
866
867 case 4:
868 /* Allow a relocation specified in the operand. */
869 if (output_instruction.reloc != BFD_RELOC_NONE)
870 reloc = output_instruction.reloc;
871 else
872 reloc = BFD_RELOC_32;
873 break;
874
875 default:
876 BAD_CASE (output_instruction.imm_oprnd_size);
877 }
878
879 p = frag_more (output_instruction.imm_oprnd_size);
880 fix_new_exp (frag_now, (p - frag_now->fr_literal),
881 output_instruction.imm_oprnd_size,
882 &output_instruction.expr, 0, reloc);
883 }
884 else if (output_instruction.reloc != BFD_RELOC_NONE)
885 {
886 /* An immediate operand that has a relocation and needs to be
887 processed further. */
888
889 /* It is important to use fix_new_exp here and everywhere else
890 (and not fix_new), as fix_new_exp can handle "difference
891 expressions" - where the expression contains a difference of
892 two symbols in the same segment. */
893 fix_new_exp (frag_now, (opcodep - frag_now->fr_literal), 2,
894 &output_instruction.expr, 0,
895 output_instruction.reloc);
896 }
897 }
898 }
899
900 /* Low level text-to-bits assembly. */
901
902 static void
903 cris_process_instruction (insn_text, out_insnp, prefixp)
904 char *insn_text;
905 struct cris_instruction *out_insnp;
906 struct cris_prefix *prefixp;
907 {
908 char *s;
909 char modified_char = 0;
910 const char *args;
911 struct cris_opcode *instruction;
912 char *operands;
913 int match = 0;
914 int mode;
915 int regno;
916 int size_bits;
917
918 /* Reset these fields to a harmless state in case we need to return in
919 error. */
920 prefixp->kind = PREFIX_NONE;
921 prefixp->reloc = BFD_RELOC_NONE;
922 out_insnp->insn_type = CRIS_INSN_NORMAL;
923 out_insnp->imm_oprnd_size = 0;
924
925 /* Find the end of the opcode mnemonic. We assume (true in 2.9.1)
926 that the caller has translated the opcode to lower-case, up to the
927 first non-letter. */
928 for (operands = insn_text; ISLOWER (*operands); ++operands)
929 ;
930
931 /* Terminate the opcode after letters, but save the character there if
932 it was of significance. */
933 switch (*operands)
934 {
935 case '\0':
936 break;
937
938 case '.':
939 /* Put back the modified character later. */
940 modified_char = *operands;
941 /* Fall through. */
942
943 case ' ':
944 /* Consume the character after the mnemonic
945 and replace it with '\0'. */
946 *operands++ = '\0';
947 break;
948
949 default:
950 as_bad (_("Unknown opcode: `%s'"), insn_text);
951 return;
952 }
953
954 /* Find the instruction. */
955 instruction = (struct cris_opcode *) hash_find (op_hash, insn_text);
956 if (instruction == NULL)
957 {
958 as_bad (_("Unknown opcode: `%s'"), insn_text);
959 return;
960 }
961
962 /* Put back the modified character. */
963 switch (modified_char)
964 {
965 case 0:
966 break;
967
968 default:
969 *--operands = modified_char;
970 }
971
972 /* Try to match an opcode table slot. */
973 for (s = operands;;)
974 {
975 int imm_expr_found;
976
977 /* Initialize *prefixp, perhaps after being modified for a
978 "near match". */
979 prefixp->kind = PREFIX_NONE;
980 prefixp->reloc = BFD_RELOC_NONE;
981
982 /* Initialize *out_insnp. */
983 memset (out_insnp, 0, sizeof (*out_insnp));
984 out_insnp->opcode = instruction->match;
985 out_insnp->reloc = BFD_RELOC_NONE;
986 out_insnp->insn_type = CRIS_INSN_NORMAL;
987 out_insnp->imm_oprnd_size = 0;
988
989 imm_expr_found = 0;
990
991 /* Build the opcode, checking as we go to make sure that the
992 operands match. */
993 for (args = instruction->args;; ++args)
994 {
995 switch (*args)
996 {
997 case '\0':
998 /* If we've come to the end of arguments, we're done. */
999 if (*s == '\0')
1000 match = 1;
1001 break;
1002
1003 case '!':
1004 /* Non-matcher character for disassembly.
1005 Ignore it here. */
1006 continue;
1007
1008 case ',':
1009 case ' ':
1010 /* These must match exactly. */
1011 if (*s++ == *args)
1012 continue;
1013 break;
1014
1015 case 'B':
1016 /* This is not really an operand, but causes a "BDAP
1017 -size,SP" prefix to be output, for PUSH instructions. */
1018 prefixp->kind = PREFIX_PUSH;
1019 continue;
1020
1021 case 'b':
1022 /* This letter marks an operand that should not be matched
1023 in the assembler. It is a branch with 16-bit
1024 displacement. The assembler will create them from the
1025 8-bit flavor when necessary. The assembler does not
1026 support the [rN+] operand, as the [r15+] that is
1027 generated for 16-bit displacements. */
1028 break;
1029
1030 case 'c':
1031 /* A 5-bit unsigned immediate in bits <4:0>. */
1032 if (! cris_get_expression (&s, &out_insnp->expr))
1033 break;
1034 else
1035 {
1036 if (out_insnp->expr.X_op == O_constant
1037 && (out_insnp->expr.X_add_number < 0
1038 || out_insnp->expr.X_add_number > 31))
1039 as_bad (_("Immediate value not in 5 bit unsigned range: %ld"),
1040 out_insnp->expr.X_add_number);
1041
1042 out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_5;
1043 continue;
1044 }
1045
1046 case 'C':
1047 /* A 4-bit unsigned immediate in bits <3:0>. */
1048 if (! cris_get_expression (&s, &out_insnp->expr))
1049 break;
1050 else
1051 {
1052 if (out_insnp->expr.X_op == O_constant
1053 && (out_insnp->expr.X_add_number < 0
1054 || out_insnp->expr.X_add_number > 15))
1055 as_bad (_("Immediate value not in 4 bit unsigned range: %ld"),
1056 out_insnp->expr.X_add_number);
1057
1058 out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_4;
1059 continue;
1060 }
1061
1062 case 'D':
1063 /* General register in bits <15:12> and <3:0>. */
1064 if (! get_gen_reg (&s, &regno))
1065 break;
1066 else
1067 {
1068 out_insnp->opcode |= regno /* << 0 */;
1069 out_insnp->opcode |= regno << 12;
1070 continue;
1071 }
1072
1073 case 'f':
1074 /* Flags from the condition code register. */
1075 {
1076 int flags = 0;
1077
1078 if (! get_flags (&s, &flags))
1079 break;
1080
1081 out_insnp->opcode |= ((flags & 0xf0) << 8) | (flags & 0xf);
1082 continue;
1083 }
1084
1085 case 'i':
1086 /* A 6-bit signed immediate in bits <5:0>. */
1087 if (! cris_get_expression (&s, &out_insnp->expr))
1088 break;
1089 else
1090 {
1091 if (out_insnp->expr.X_op == O_constant
1092 && (out_insnp->expr.X_add_number < -32
1093 || out_insnp->expr.X_add_number > 31))
1094 as_bad (_("Immediate value not in 6 bit range: %ld"),
1095 out_insnp->expr.X_add_number);
1096 out_insnp->reloc = BFD_RELOC_CRIS_SIGNED_6;
1097 continue;
1098 }
1099
1100 case 'I':
1101 /* A 6-bit unsigned immediate in bits <5:0>. */
1102 if (! cris_get_expression (&s, &out_insnp->expr))
1103 break;
1104 else
1105 {
1106 if (out_insnp->expr.X_op == O_constant
1107 && (out_insnp->expr.X_add_number < 0
1108 || out_insnp->expr.X_add_number > 63))
1109 as_bad (_("Immediate value not in 6 bit unsigned range: %ld"),
1110 out_insnp->expr.X_add_number);
1111 out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_6;
1112 continue;
1113 }
1114
1115 case 'M':
1116 /* A size modifier, B, W or D, to be put in a bit position
1117 suitable for CLEAR instructions (i.e. reflecting a zero
1118 register). */
1119 if (! get_bwd_size_modifier (&s, &size_bits))
1120 break;
1121 else
1122 {
1123 switch (size_bits)
1124 {
1125 case 0:
1126 out_insnp->opcode |= 0 << 12;
1127 break;
1128
1129 case 1:
1130 out_insnp->opcode |= 4 << 12;
1131 break;
1132
1133 case 2:
1134 out_insnp->opcode |= 8 << 12;
1135 break;
1136 }
1137 continue;
1138 }
1139
1140 case 'm':
1141 /* A size modifier, B, W or D, to be put in bits <5:4>. */
1142 if (! get_bwd_size_modifier (&s, &size_bits))
1143 break;
1144 else
1145 {
1146 out_insnp->opcode |= size_bits << 4;
1147 continue;
1148 }
1149
1150 case 'o':
1151 /* A branch expression. */
1152 if (! cris_get_expression (&s, &out_insnp->expr))
1153 break;
1154 else
1155 {
1156 out_insnp->insn_type = CRIS_INSN_BRANCH;
1157 continue;
1158 }
1159
1160 case 'O':
1161 /* A BDAP expression for any size, "expr,r". */
1162 if (! cris_get_expression (&s, &prefixp->expr))
1163 break;
1164 else
1165 {
1166 if (*s != ',')
1167 break;
1168
1169 s++;
1170
1171 if (!get_gen_reg (&s, &prefixp->base_reg_number))
1172 break;
1173
1174 /* Since 'O' is used with an explicit bdap, we have no
1175 "real" instruction. */
1176 prefixp->kind = PREFIX_BDAP_IMM;
1177 prefixp->opcode
1178 = BDAP_QUICK_OPCODE | (prefixp->base_reg_number << 12);
1179
1180 out_insnp->insn_type = CRIS_INSN_NONE;
1181 continue;
1182 }
1183
1184 case 'P':
1185 /* Special register in bits <15:12>. */
1186 if (! get_spec_reg (&s, &out_insnp->spec_reg))
1187 break;
1188 else
1189 {
1190 /* Use of some special register names come with a
1191 specific warning. Note that we have no ".cpu type"
1192 pseudo yet, so some of this is just unused
1193 framework. */
1194 if (out_insnp->spec_reg->warning)
1195 as_warn (out_insnp->spec_reg->warning);
1196 else if (out_insnp->spec_reg->applicable_version
1197 == cris_ver_warning)
1198 /* Others have a generic warning. */
1199 as_warn (_("Unimplemented register `%s' specified"),
1200 out_insnp->spec_reg->name);
1201
1202 out_insnp->opcode
1203 |= out_insnp->spec_reg->number << 12;
1204 continue;
1205 }
1206
1207 case 'p':
1208 /* This character is used in the disassembler to
1209 recognize a prefix instruction to fold into the
1210 addressing mode for the next instruction. It is
1211 ignored here. */
1212 continue;
1213
1214 case 'R':
1215 /* General register in bits <15:12>. */
1216 if (! get_gen_reg (&s, &regno))
1217 break;
1218 else
1219 {
1220 out_insnp->opcode |= regno << 12;
1221 continue;
1222 }
1223
1224 case 'r':
1225 /* General register in bits <3:0>. */
1226 if (! get_gen_reg (&s, &regno))
1227 break;
1228 else
1229 {
1230 out_insnp->opcode |= regno /* << 0 */;
1231 continue;
1232 }
1233
1234 case 'S':
1235 /* Source operand in bit <10> and a prefix; a 3-operand
1236 prefix. */
1237 if (! get_3op_or_dip_prefix_op (&s, prefixp))
1238 break;
1239 else
1240 continue;
1241
1242 case 's':
1243 /* Source operand in bits <10>, <3:0> and optionally a
1244 prefix; i.e. an indirect operand or an side-effect
1245 prefix. */
1246 if (! get_autoinc_prefix_or_indir_op (&s, prefixp, &mode,
1247 &regno,
1248 &imm_expr_found,
1249 &out_insnp->expr))
1250 break;
1251 else
1252 {
1253 if (prefixp->kind != PREFIX_NONE)
1254 {
1255 /* A prefix, so it has the autoincrement bit
1256 set. */
1257 out_insnp->opcode |= (AUTOINCR_BIT << 8);
1258 }
1259 else
1260 {
1261 /* No prefix. The "mode" variable contains bits like
1262 whether or not this is autoincrement mode. */
1263 out_insnp->opcode |= (mode << 10);
1264
1265 /* If there was a PIC reloc specifier, then it was
1266 attached to the prefix. Note that we can't check
1267 that the reloc size matches, since we don't have
1268 all the operands yet in all cases. */
1269 if (prefixp->reloc != BFD_RELOC_NONE)
1270 out_insnp->reloc = prefixp->reloc;
1271 }
1272
1273 out_insnp->opcode |= regno /* << 0 */ ;
1274 continue;
1275 }
1276
1277 case 'x':
1278 /* Rs.m in bits <15:12> and <5:4>. */
1279 if (! get_gen_reg (&s, &regno)
1280 || ! get_bwd_size_modifier (&s, &size_bits))
1281 break;
1282 else
1283 {
1284 out_insnp->opcode |= (regno << 12) | (size_bits << 4);
1285 continue;
1286 }
1287
1288 case 'y':
1289 /* Source operand in bits <10>, <3:0> and optionally a
1290 prefix; i.e. an indirect operand or an side-effect
1291 prefix.
1292
1293 The difference to 's' is that this does not allow an
1294 "immediate" expression. */
1295 if (! get_autoinc_prefix_or_indir_op (&s, prefixp,
1296 &mode, &regno,
1297 &imm_expr_found,
1298 &out_insnp->expr)
1299 || imm_expr_found)
1300 break;
1301 else
1302 {
1303 if (prefixp->kind != PREFIX_NONE)
1304 {
1305 /* A prefix, and those matched here always have
1306 side-effects (see 's' case). */
1307 out_insnp->opcode |= (AUTOINCR_BIT << 8);
1308 }
1309 else
1310 {
1311 /* No prefix. The "mode" variable contains bits
1312 like whether or not this is autoincrement
1313 mode. */
1314 out_insnp->opcode |= (mode << 10);
1315 }
1316
1317 out_insnp->opcode |= regno /* << 0 */;
1318 continue;
1319 }
1320
1321 case 'z':
1322 /* Size modifier (B or W) in bit <4>. */
1323 if (! get_bw_size_modifier (&s, &size_bits))
1324 break;
1325 else
1326 {
1327 out_insnp->opcode |= size_bits << 4;
1328 continue;
1329 }
1330
1331 default:
1332 BAD_CASE (*args);
1333 }
1334
1335 /* We get here when we fail a match above or we found a
1336 complete match. Break out of this loop. */
1337 break;
1338 }
1339
1340 /* Was it a match or a miss? */
1341 if (match == 0)
1342 {
1343 /* If it's just that the args don't match, maybe the next
1344 item in the table is the same opcode but with
1345 matching operands. */
1346 if (instruction[1].name != NULL
1347 && ! strcmp (instruction->name, instruction[1].name))
1348 {
1349 /* Yep. Restart and try that one instead. */
1350 ++instruction;
1351 s = operands;
1352 continue;
1353 }
1354 else
1355 {
1356 /* We've come to the end of instructions with this
1357 opcode, so it must be an error. */
1358 as_bad (_("Illegal operands"));
1359 return;
1360 }
1361 }
1362 else
1363 {
1364 /* We have a match. Check if there's anything more to do. */
1365 if (imm_expr_found)
1366 {
1367 /* There was an immediate mode operand, so we must check
1368 that it has an appropriate size. */
1369 switch (instruction->imm_oprnd_size)
1370 {
1371 default:
1372 case SIZE_NONE:
1373 /* Shouldn't happen; this one does not have immediate
1374 operands with different sizes. */
1375 BAD_CASE (instruction->imm_oprnd_size);
1376 break;
1377
1378 case SIZE_FIX_32:
1379 out_insnp->imm_oprnd_size = 4;
1380 break;
1381
1382 case SIZE_SPEC_REG:
1383 switch (out_insnp->spec_reg->reg_size)
1384 {
1385 case 1:
1386 if (out_insnp->expr.X_op == O_constant
1387 && (out_insnp->expr.X_add_number < -128
1388 || out_insnp->expr.X_add_number > 255))
1389 as_bad (_("Immediate value not in 8 bit range: %ld"),
1390 out_insnp->expr.X_add_number);
1391 /* Fall through. */
1392 case 2:
1393 /* FIXME: We need an indicator in the instruction
1394 table to pass on, to indicate if we need to check
1395 overflow for a signed or unsigned number. */
1396 if (out_insnp->expr.X_op == O_constant
1397 && (out_insnp->expr.X_add_number < -32768
1398 || out_insnp->expr.X_add_number > 65535))
1399 as_bad (_("Immediate value not in 16 bit range: %ld"),
1400 out_insnp->expr.X_add_number);
1401 out_insnp->imm_oprnd_size = 2;
1402 break;
1403
1404 case 4:
1405 out_insnp->imm_oprnd_size = 4;
1406 break;
1407
1408 default:
1409 BAD_CASE (out_insnp->spec_reg->reg_size);
1410 }
1411 break;
1412
1413 case SIZE_FIELD:
1414 switch (size_bits)
1415 {
1416 case 0:
1417 if (out_insnp->expr.X_op == O_constant
1418 && (out_insnp->expr.X_add_number < -128
1419 || out_insnp->expr.X_add_number > 255))
1420 as_bad (_("Immediate value not in 8 bit range: %ld"),
1421 out_insnp->expr.X_add_number);
1422 /* Fall through. */
1423 case 1:
1424 if (out_insnp->expr.X_op == O_constant
1425 && (out_insnp->expr.X_add_number < -32768
1426 || out_insnp->expr.X_add_number > 65535))
1427 as_bad (_("Immediate value not in 16 bit range: %ld"),
1428 out_insnp->expr.X_add_number);
1429 out_insnp->imm_oprnd_size = 2;
1430 break;
1431
1432 case 2:
1433 out_insnp->imm_oprnd_size = 4;
1434 break;
1435
1436 default:
1437 BAD_CASE (out_insnp->spec_reg->reg_size);
1438 }
1439 }
1440
1441 /* If there was a relocation specified for the immediate
1442 expression (i.e. it had a PIC modifier) check that the
1443 size of the PIC relocation matches the size specified by
1444 the opcode. */
1445 if (out_insnp->reloc != BFD_RELOC_NONE
1446 && (cris_get_pic_reloc_size (out_insnp->reloc)
1447 != (unsigned int) out_insnp->imm_oprnd_size))
1448 as_bad (_("PIC relocation size does not match operand size"));
1449 }
1450 }
1451 break;
1452 }
1453 }
1454
1455 /* Get a B, W, or D size modifier from the string pointed out by *cPP,
1456 which must point to a '.' in front of the modifier. On successful
1457 return, *cPP is advanced to the character following the size
1458 modifier, and is undefined otherwise.
1459
1460 cPP Pointer to pointer to string starting
1461 with the size modifier.
1462
1463 size_bitsp Pointer to variable to contain the size bits on
1464 successful return.
1465
1466 Return 1 iff a correct size modifier is found, else 0. */
1467
1468 static int
1469 get_bwd_size_modifier (cPP, size_bitsp)
1470 char **cPP;
1471 int *size_bitsp;
1472 {
1473 if (**cPP != '.')
1474 return 0;
1475 else
1476 {
1477 /* Consume the '.'. */
1478 (*cPP)++;
1479
1480 switch (**cPP)
1481 {
1482 case 'B':
1483 case 'b':
1484 *size_bitsp = 0;
1485 break;
1486
1487 case 'W':
1488 case 'w':
1489 *size_bitsp = 1;
1490 break;
1491
1492 case 'D':
1493 case 'd':
1494 *size_bitsp = 2;
1495 break;
1496
1497 default:
1498 return 0;
1499 }
1500
1501 /* Consume the size letter. */
1502 (*cPP)++;
1503 return 1;
1504 }
1505 }
1506
1507 /* Get a B or W size modifier from the string pointed out by *cPP,
1508 which must point to a '.' in front of the modifier. On successful
1509 return, *cPP is advanced to the character following the size
1510 modifier, and is undefined otherwise.
1511
1512 cPP Pointer to pointer to string starting
1513 with the size modifier.
1514
1515 size_bitsp Pointer to variable to contain the size bits on
1516 successful return.
1517
1518 Return 1 iff a correct size modifier is found, else 0. */
1519
1520 static int
1521 get_bw_size_modifier (cPP, size_bitsp)
1522 char **cPP;
1523 int *size_bitsp;
1524 {
1525 if (**cPP != '.')
1526 return 0;
1527 else
1528 {
1529 /* Consume the '.'. */
1530 (*cPP)++;
1531
1532 switch (**cPP)
1533 {
1534 case 'B':
1535 case 'b':
1536 *size_bitsp = 0;
1537 break;
1538
1539 case 'W':
1540 case 'w':
1541 *size_bitsp = 1;
1542 break;
1543
1544 default:
1545 return 0;
1546 }
1547
1548 /* Consume the size letter. */
1549 (*cPP)++;
1550 return 1;
1551 }
1552 }
1553
1554 /* Get a general register from the string pointed out by *cPP. The
1555 variable *cPP is advanced to the character following the general
1556 register name on a successful return, and has its initial position
1557 otherwise.
1558
1559 cPP Pointer to pointer to string, beginning with a general
1560 register name.
1561
1562 regnop Pointer to int containing the register number.
1563
1564 Return 1 iff a correct general register designator is found,
1565 else 0. */
1566
1567 static int
1568 get_gen_reg (cPP, regnop)
1569 char **cPP;
1570 int *regnop;
1571 {
1572 char *oldp;
1573 oldp = *cPP;
1574
1575 /* Handle a sometimes-mandatory dollar sign as register prefix. */
1576 if (**cPP == REGISTER_PREFIX_CHAR)
1577 (*cPP)++;
1578 else if (demand_register_prefix)
1579 return 0;
1580
1581 switch (**cPP)
1582 {
1583 case 'P':
1584 case 'p':
1585 /* "P" as in "PC"? Consume the "P". */
1586 (*cPP)++;
1587
1588 if ((**cPP == 'C' || **cPP == 'c')
1589 && ! ISALNUM ((*cPP)[1]))
1590 {
1591 /* It's "PC": consume the "c" and we're done. */
1592 (*cPP)++;
1593 *regnop = REG_PC;
1594 return 1;
1595 }
1596 break;
1597
1598 case 'R':
1599 case 'r':
1600 /* Hopefully r[0-9] or r1[0-5]. Consume 'R' or 'r'. */
1601 (*cPP)++;
1602
1603 if (ISDIGIT (**cPP))
1604 {
1605 /* It's r[0-9]. Consume and check the next digit. */
1606 *regnop = **cPP - '0';
1607 (*cPP)++;
1608
1609 if (! ISALNUM (**cPP))
1610 {
1611 /* No more digits, we're done. */
1612 return 1;
1613 }
1614 else
1615 {
1616 /* One more digit. Consume and add. */
1617 *regnop = *regnop * 10 + (**cPP - '0');
1618
1619 /* We need to check for a valid register number; Rn,
1620 0 <= n <= MAX_REG. */
1621 if (*regnop <= MAX_REG)
1622 {
1623 /* Consume second digit. */
1624 (*cPP)++;
1625 return 1;
1626 }
1627 }
1628 }
1629 break;
1630
1631 case 'S':
1632 case 's':
1633 /* "S" as in "SP"? Consume the "S". */
1634 (*cPP)++;
1635 if (**cPP == 'P' || **cPP == 'p')
1636 {
1637 /* It's "SP": consume the "p" and we're done. */
1638 (*cPP)++;
1639 *regnop = REG_SP;
1640 return 1;
1641 }
1642 break;
1643
1644 default:
1645 /* Just here to silence compilation warnings. */
1646 ;
1647 }
1648
1649 /* We get here if we fail. Restore the pointer. */
1650 *cPP = oldp;
1651 return 0;
1652 }
1653
1654 /* Get a special register from the string pointed out by *cPP. The
1655 variable *cPP is advanced to the character following the special
1656 register name if one is found, and retains its original position
1657 otherwise.
1658
1659 cPP Pointer to pointer to string starting with a special register
1660 name.
1661
1662 sregpp Pointer to Pointer to struct spec_reg, where a pointer to the
1663 register description will be stored.
1664
1665 Return 1 iff a correct special register name is found. */
1666
1667 static int
1668 get_spec_reg (cPP, sregpp)
1669 char **cPP;
1670 const struct cris_spec_reg **sregpp;
1671 {
1672 char *s1;
1673 const char *s2;
1674 char *name_begin = *cPP;
1675
1676 const struct cris_spec_reg *sregp;
1677
1678 /* Handle a sometimes-mandatory dollar sign as register prefix. */
1679 if (*name_begin == REGISTER_PREFIX_CHAR)
1680 name_begin++;
1681 else if (demand_register_prefix)
1682 return 0;
1683
1684 /* Loop over all special registers. */
1685 for (sregp = cris_spec_regs; sregp->name != NULL; sregp++)
1686 {
1687 /* Start over from beginning of the supposed name. */
1688 s1 = name_begin;
1689 s2 = sregp->name;
1690
1691 while (*s2 != '\0' && TOLOWER (*s1) == *s2)
1692 {
1693 s1++;
1694 s2++;
1695 }
1696
1697 /* For a match, we must have consumed the name in the table, and we
1698 must be outside what could be part of a name. Assume here that a
1699 test for alphanumerics is sufficient for a name test. */
1700 if (*s2 == 0 && ! ISALNUM (*s1))
1701 {
1702 /* We have a match. Update the pointer and be done. */
1703 *cPP = s1;
1704 *sregpp = sregp;
1705 return 1;
1706 }
1707 }
1708
1709 /* If we got here, we did not find any name. */
1710 return 0;
1711 }
1712
1713 /* Get an unprefixed or side-effect-prefix operand from the string pointed
1714 out by *cPP. The pointer *cPP is advanced to the character following
1715 the indirect operand if we have success, else it contains an undefined
1716 value.
1717
1718 cPP Pointer to pointer to string beginning with the first
1719 character of the supposed operand.
1720
1721 prefixp Pointer to structure containing an optional instruction
1722 prefix.
1723
1724 is_autoincp Pointer to int indicating the indirect or autoincrement
1725 bits.
1726
1727 src_regnop Pointer to int containing the source register number in
1728 the instruction.
1729
1730 imm_foundp Pointer to an int indicating if an immediate expression
1731 is found.
1732
1733 imm_exprP Pointer to a structure containing an immediate
1734 expression, if success and if *imm_foundp is nonzero.
1735
1736 Return 1 iff a correct indirect operand is found. */
1737
1738 static int
1739 get_autoinc_prefix_or_indir_op (cPP, prefixp, is_autoincp, src_regnop,
1740 imm_foundp, imm_exprP)
1741 char **cPP;
1742 struct cris_prefix *prefixp;
1743 int *is_autoincp;
1744 int *src_regnop;
1745 int *imm_foundp;
1746 expressionS *imm_exprP;
1747 {
1748 /* Assume there was no immediate mode expression. */
1749 *imm_foundp = 0;
1750
1751 if (**cPP == '[')
1752 {
1753 /* So this operand is one of:
1754 Indirect: [rN]
1755 Autoincrement: [rN+]
1756 Indexed with assign: [rN=rM+rO.S]
1757 Offset with assign: [rN=rM+I], [rN=rM+[rO].s], [rN=rM+[rO+].s]
1758
1759 Either way, consume the '['. */
1760 (*cPP)++;
1761
1762 /* Get the rN register. */
1763 if (! get_gen_reg (cPP, src_regnop))
1764 /* If there was no register, then this cannot match. */
1765 return 0;
1766 else
1767 {
1768 /* We got the register, now check the next character. */
1769 switch (**cPP)
1770 {
1771 case ']':
1772 /* Indirect mode. We're done here. */
1773 prefixp->kind = PREFIX_NONE;
1774 *is_autoincp = 0;
1775 break;
1776
1777 case '+':
1778 /* This must be an auto-increment mode, if there's a
1779 match. */
1780 prefixp->kind = PREFIX_NONE;
1781 *is_autoincp = 1;
1782
1783 /* We consume this character and break out to check the
1784 closing ']'. */
1785 (*cPP)++;
1786 break;
1787
1788 case '=':
1789 /* This must be indexed with assign, or offset with assign
1790 to match. */
1791 (*cPP)++;
1792
1793 /* Either way, the next thing must be a register. */
1794 if (! get_gen_reg (cPP, &prefixp->base_reg_number))
1795 /* No register, no match. */
1796 return 0;
1797 else
1798 {
1799 /* We've consumed "[rN=rM", so we must be looking at
1800 "+rO.s]" or "+I]", or "-I]", or "+[rO].s]" or
1801 "+[rO+].s]". */
1802 if (**cPP == '+')
1803 {
1804 int index_reg_number;
1805 (*cPP)++;
1806
1807 if (**cPP == '[')
1808 {
1809 int size_bits;
1810 /* This must be [rx=ry+[rz].s] or
1811 [rx=ry+[rz+].s] or no match. We must be
1812 looking at rz after consuming the '['. */
1813 (*cPP)++;
1814
1815 if (!get_gen_reg (cPP, &index_reg_number))
1816 return 0;
1817
1818 prefixp->kind = PREFIX_BDAP;
1819 prefixp->opcode
1820 = (BDAP_INDIR_OPCODE
1821 + (prefixp->base_reg_number << 12)
1822 + index_reg_number);
1823
1824 if (**cPP == '+')
1825 {
1826 /* We've seen "[rx=ry+[rz+" here, so now we
1827 know that there must be "].s]" left to
1828 check. */
1829 (*cPP)++;
1830 prefixp->opcode |= AUTOINCR_BIT << 8;
1831 }
1832
1833 /* If it wasn't autoincrement, we don't need to
1834 add anything. */
1835
1836 /* Check the next-to-last ']'. */
1837 if (**cPP != ']')
1838 return 0;
1839
1840 (*cPP)++;
1841
1842 /* Check the ".s" modifier. */
1843 if (! get_bwd_size_modifier (cPP, &size_bits))
1844 return 0;
1845
1846 prefixp->opcode |= size_bits << 4;
1847
1848 /* Now we got [rx=ry+[rz+].s or [rx=ry+[rz].s.
1849 We break out to check the final ']'. */
1850 break;
1851 }
1852 /* It wasn't an indirection. Check if it's a
1853 register. */
1854 else if (get_gen_reg (cPP, &index_reg_number))
1855 {
1856 int size_bits;
1857
1858 /* Indexed with assign mode: "[rN+rM.S]". */
1859 prefixp->kind = PREFIX_BIAP;
1860 prefixp->opcode
1861 = (BIAP_OPCODE + (index_reg_number << 12)
1862 + prefixp->base_reg_number /* << 0 */);
1863
1864 if (! get_bwd_size_modifier (cPP, &size_bits))
1865 /* Size missing, this isn't a match. */
1866 return 0;
1867 else
1868 {
1869 /* Size found, break out to check the
1870 final ']'. */
1871 prefixp->opcode |= size_bits << 4;
1872 break;
1873 }
1874 }
1875 /* Not a register. Then this must be "[rN+I]". */
1876 else if (cris_get_expression (cPP, &prefixp->expr))
1877 {
1878 /* We've got offset with assign mode. Fill
1879 in the blanks and break out to match the
1880 final ']'. */
1881 prefixp->kind = PREFIX_BDAP_IMM;
1882
1883 /* We tentatively put an opcode corresponding to
1884 a 32-bit operand here, although it may be
1885 relaxed when there's no PIC specifier for the
1886 operand. */
1887 prefixp->opcode
1888 = (BDAP_INDIR_OPCODE
1889 | (prefixp->base_reg_number << 12)
1890 | (AUTOINCR_BIT << 8)
1891 | (2 << 4)
1892 | REG_PC /* << 0 */);
1893
1894 /* This can have a PIC suffix, specifying reloc
1895 type to use. */
1896 if (pic && **cPP == PIC_SUFFIX_CHAR)
1897 {
1898 unsigned int relocsize;
1899
1900 cris_get_pic_suffix (cPP, &prefixp->reloc,
1901 &prefixp->expr);
1902
1903 /* Tweak the size of the immediate operand
1904 in the prefix opcode if it isn't what we
1905 set. */
1906 relocsize
1907 = cris_get_pic_reloc_size (prefixp->reloc);
1908 if (relocsize != 4)
1909 prefixp->opcode
1910 = ((prefixp->opcode & ~(3 << 4))
1911 | ((relocsize >> 1) << 4));
1912 }
1913 break;
1914 }
1915 else
1916 /* Neither register nor expression found, so
1917 this can't be a match. */
1918 return 0;
1919 }
1920 /* Not "[rN+" but perhaps "[rN-"? */
1921 else if (**cPP == '-')
1922 {
1923 /* We must have an offset with assign mode. */
1924 if (! cris_get_expression (cPP, &prefixp->expr))
1925 /* No expression, no match. */
1926 return 0;
1927 else
1928 {
1929 /* We've got offset with assign mode. Fill
1930 in the blanks and break out to match the
1931 final ']'.
1932
1933 Note that we don't allow a PIC suffix for an
1934 operand with a minus sign. */
1935 prefixp->kind = PREFIX_BDAP_IMM;
1936 break;
1937 }
1938 }
1939 else
1940 /* Neither '+' nor '-' after "[rN=rM". Lose. */
1941 return 0;
1942 }
1943 default:
1944 /* Neither ']' nor '+' nor '=' after "[rN". Lose. */
1945 return 0;
1946 }
1947 }
1948
1949 /* When we get here, we have a match and will just check the closing
1950 ']'. We can still fail though. */
1951 if (**cPP != ']')
1952 return 0;
1953 else
1954 {
1955 /* Don't forget to consume the final ']'.
1956 Then return in glory. */
1957 (*cPP)++;
1958 return 1;
1959 }
1960 }
1961 /* No indirection. Perhaps a constant? */
1962 else if (cris_get_expression (cPP, imm_exprP))
1963 {
1964 /* Expression found, this is immediate mode. */
1965 prefixp->kind = PREFIX_NONE;
1966 *is_autoincp = 1;
1967 *src_regnop = REG_PC;
1968 *imm_foundp = 1;
1969
1970 /* This can have a PIC suffix, specifying reloc type to use. The
1971 caller must check that the reloc size matches the operand size. */
1972 if (pic && **cPP == PIC_SUFFIX_CHAR)
1973 cris_get_pic_suffix (cPP, &prefixp->reloc, imm_exprP);
1974
1975 return 1;
1976 }
1977
1978 /* No luck today. */
1979 return 0;
1980 }
1981
1982 /* This function gets an indirect operand in a three-address operand
1983 combination from the string pointed out by *cPP. The pointer *cPP is
1984 advanced to the character following the indirect operand on success, or
1985 has an unspecified value on failure.
1986
1987 cPP Pointer to pointer to string begining
1988 with the operand
1989
1990 prefixp Pointer to structure containing an
1991 instruction prefix
1992
1993 Returns 1 iff a correct indirect operand is found. */
1994
1995 static int
1996 get_3op_or_dip_prefix_op (cPP, prefixp)
1997 char **cPP;
1998 struct cris_prefix *prefixp;
1999 {
2000 int reg_number;
2001
2002 if (**cPP != '[')
2003 /* We must have a '[' or it's a clean failure. */
2004 return 0;
2005
2006 /* Eat the first '['. */
2007 (*cPP)++;
2008
2009 if (**cPP == '[')
2010 {
2011 /* A second '[', so this must be double-indirect mode. */
2012 (*cPP)++;
2013 prefixp->kind = PREFIX_DIP;
2014 prefixp->opcode = DIP_OPCODE;
2015
2016 /* Get the register or fail entirely. */
2017 if (! get_gen_reg (cPP, &reg_number))
2018 return 0;
2019 else
2020 {
2021 prefixp->opcode |= reg_number /* << 0 */ ;
2022 if (**cPP == '+')
2023 {
2024 /* Since we found a '+', this must be double-indirect
2025 autoincrement mode. */
2026 (*cPP)++;
2027 prefixp->opcode |= AUTOINCR_BIT << 8;
2028 }
2029
2030 /* There's nothing particular to do, if this was a
2031 double-indirect *without* autoincrement. */
2032 }
2033
2034 /* Check the first ']'. The second one is checked at the end. */
2035 if (**cPP != ']')
2036 return 0;
2037
2038 /* Eat the first ']', so we'll be looking at a second ']'. */
2039 (*cPP)++;
2040 }
2041 /* No second '['. Then we should have a register here, making
2042 it "[rN". */
2043 else if (get_gen_reg (cPP, &prefixp->base_reg_number))
2044 {
2045 /* This must be indexed or offset mode: "[rN+I]" or
2046 "[rN+rM.S]" or "[rN+[rM].S]" or "[rN+[rM+].S]". */
2047 if (**cPP == '+')
2048 {
2049 int index_reg_number;
2050
2051 (*cPP)++;
2052
2053 if (**cPP == '[')
2054 {
2055 /* This is "[rx+["... Expect a register next. */
2056 int size_bits;
2057 (*cPP)++;
2058
2059 if (!get_gen_reg (cPP, &index_reg_number))
2060 return 0;
2061
2062 prefixp->kind = PREFIX_BDAP;
2063 prefixp->opcode
2064 = (BDAP_INDIR_OPCODE
2065 + (prefixp->base_reg_number << 12)
2066 + index_reg_number);
2067
2068 /* We've seen "[rx+[ry", so check if this is
2069 autoincrement. */
2070 if (**cPP == '+')
2071 {
2072 /* Yep, now at "[rx+[ry+". */
2073 (*cPP)++;
2074 prefixp->opcode |= AUTOINCR_BIT << 8;
2075 }
2076 /* If it wasn't autoincrement, we don't need to
2077 add anything. */
2078
2079 /* Check a first closing ']': "[rx+[ry]" or
2080 "[rx+[ry+]". */
2081 if (**cPP != ']')
2082 return 0;
2083 (*cPP)++;
2084
2085 /* Now expect a size modifier ".S". */
2086 if (! get_bwd_size_modifier (cPP, &size_bits))
2087 return 0;
2088
2089 prefixp->opcode |= size_bits << 4;
2090
2091 /* Ok, all interesting stuff has been seen:
2092 "[rx+[ry+].S" or "[rx+[ry].S". We only need to
2093 expect a final ']', which we'll do in a common
2094 closing session. */
2095 }
2096 /* Seen "[rN+", but not a '[', so check if we have a
2097 register. */
2098 else if (get_gen_reg (cPP, &index_reg_number))
2099 {
2100 /* This is indexed mode: "[rN+rM.S]" or
2101 "[rN+rM.S+]". */
2102 int size_bits;
2103 prefixp->kind = PREFIX_BIAP;
2104 prefixp->opcode
2105 = (BIAP_OPCODE
2106 | prefixp->base_reg_number /* << 0 */
2107 | (index_reg_number << 12));
2108
2109 /* Consume the ".S". */
2110 if (! get_bwd_size_modifier (cPP, &size_bits))
2111 /* Missing size, so fail. */
2112 return 0;
2113 else
2114 /* Size found. Add that piece and drop down to
2115 the common checking of the closing ']'. */
2116 prefixp->opcode |= size_bits << 4;
2117 }
2118 /* Seen "[rN+", but not a '[' or a register, so then
2119 it must be a constant "I". */
2120 else if (cris_get_expression (cPP, &prefixp->expr))
2121 {
2122 /* Expression found, so fill in the bits of offset
2123 mode and drop down to check the closing ']'. */
2124 prefixp->kind = PREFIX_BDAP_IMM;
2125
2126 /* We tentatively put an opcode corresponding to a 32-bit
2127 operand here, although it may be relaxed when there's no
2128 PIC specifier for the operand. */
2129 prefixp->opcode
2130 = (BDAP_INDIR_OPCODE
2131 | (prefixp->base_reg_number << 12)
2132 | (AUTOINCR_BIT << 8)
2133 | (2 << 4)
2134 | REG_PC /* << 0 */);
2135
2136 /* This can have a PIC suffix, specifying reloc type to use. */
2137 if (pic && **cPP == PIC_SUFFIX_CHAR)
2138 {
2139 unsigned int relocsize;
2140
2141 cris_get_pic_suffix (cPP, &prefixp->reloc, &prefixp->expr);
2142
2143 /* Tweak the size of the immediate operand in the prefix
2144 opcode if it isn't what we set. */
2145 relocsize = cris_get_pic_reloc_size (prefixp->reloc);
2146 if (relocsize != 4)
2147 prefixp->opcode
2148 = ((prefixp->opcode & ~(3 << 4))
2149 | ((relocsize >> 1) << 4));
2150 }
2151 }
2152 else
2153 /* Nothing valid here: lose. */
2154 return 0;
2155 }
2156 /* Seen "[rN" but no '+', so check if it's a '-'. */
2157 else if (**cPP == '-')
2158 {
2159 /* Yep, we must have offset mode. */
2160 if (! cris_get_expression (cPP, &prefixp->expr))
2161 /* No expression, so we lose. */
2162 return 0;
2163 else
2164 {
2165 /* Expression found to make this offset mode, so
2166 fill those bits and drop down to check the
2167 closing ']'.
2168
2169 Note that we don't allow a PIC suffix for
2170 an operand with a minus sign like this. */
2171 prefixp->kind = PREFIX_BDAP_IMM;
2172 }
2173 }
2174 else
2175 {
2176 /* We've seen "[rN", but not '+' or '-'; rather a ']'.
2177 Hmm. Normally this is a simple indirect mode that we
2178 shouldn't match, but if we expect ']', then we have a
2179 zero offset, so it can be a three-address-operand,
2180 like "[rN],rO,rP", thus offset mode.
2181
2182 Don't eat the ']', that will be done in the closing
2183 ceremony. */
2184 prefixp->expr.X_op = O_constant;
2185 prefixp->expr.X_add_number = 0;
2186 prefixp->expr.X_add_symbol = NULL;
2187 prefixp->expr.X_op_symbol = NULL;
2188 prefixp->kind = PREFIX_BDAP_IMM;
2189 }
2190 }
2191 /* A '[', but no second '[', and no register. Check if we
2192 have an expression, making this "[I]" for a double-indirect
2193 prefix. */
2194 else if (cris_get_expression (cPP, &prefixp->expr))
2195 {
2196 /* Expression found, the so called absolute mode for a
2197 double-indirect prefix on PC. */
2198 prefixp->kind = PREFIX_DIP;
2199 prefixp->opcode = DIP_OPCODE | (AUTOINCR_BIT << 8) | REG_PC;
2200 prefixp->reloc = BFD_RELOC_32;
2201 }
2202 else
2203 /* Neither '[' nor register nor expression. We lose. */
2204 return 0;
2205
2206 /* We get here as a closing ceremony to a successful match. We just
2207 need to check the closing ']'. */
2208 if (**cPP != ']')
2209 /* Oops. Close but no air-polluter. */
2210 return 0;
2211
2212 /* Don't forget to consume that ']', before returning in glory. */
2213 (*cPP)++;
2214 return 1;
2215 }
2216
2217 /* Get an expression from the string pointed out by *cPP.
2218 The pointer *cPP is advanced to the character following the expression
2219 on a success, or retains its original value otherwise.
2220
2221 cPP Pointer to pointer to string beginning with the expression.
2222
2223 exprP Pointer to structure containing the expression.
2224
2225 Return 1 iff a correct expression is found. */
2226
2227 static int
2228 cris_get_expression (cPP, exprP)
2229 char **cPP;
2230 expressionS *exprP;
2231 {
2232 char *saved_input_line_pointer;
2233 segT exp;
2234
2235 /* The "expression" function expects to find an expression at the
2236 global variable input_line_pointer, so we have to save it to give
2237 the impression that we don't fiddle with global variables. */
2238 saved_input_line_pointer = input_line_pointer;
2239 input_line_pointer = *cPP;
2240
2241 exp = expression (exprP);
2242 if (exprP->X_op == O_illegal || exprP->X_op == O_absent)
2243 {
2244 input_line_pointer = saved_input_line_pointer;
2245 return 0;
2246 }
2247
2248 /* Everything seems to be fine, just restore the global
2249 input_line_pointer and say we're successful. */
2250 *cPP = input_line_pointer;
2251 input_line_pointer = saved_input_line_pointer;
2252 return 1;
2253 }
2254
2255 /* Get a sequence of flag characters from *spp. The pointer *cPP is
2256 advanced to the character following the expression. The flag
2257 characters are consecutive, no commas or spaces.
2258
2259 cPP Pointer to pointer to string beginning with the expression.
2260
2261 flagp Pointer to int to return the flags expression.
2262
2263 Return 1 iff a correct flags expression is found. */
2264
2265 static int
2266 get_flags (cPP, flagsp)
2267 char **cPP;
2268 int *flagsp;
2269 {
2270 for (;;)
2271 {
2272 switch (**cPP)
2273 {
2274 case 'd':
2275 case 'D':
2276 case 'm':
2277 case 'M':
2278 *flagsp |= 0x80;
2279 break;
2280
2281 case 'e':
2282 case 'E':
2283 case 'b':
2284 case 'B':
2285 *flagsp |= 0x40;
2286 break;
2287
2288 case 'i':
2289 case 'I':
2290 *flagsp |= 0x20;
2291 break;
2292
2293 case 'x':
2294 case 'X':
2295 *flagsp |= 0x10;
2296 break;
2297
2298 case 'n':
2299 case 'N':
2300 *flagsp |= 0x8;
2301 break;
2302
2303 case 'z':
2304 case 'Z':
2305 *flagsp |= 0x4;
2306 break;
2307
2308 case 'v':
2309 case 'V':
2310 *flagsp |= 0x2;
2311 break;
2312
2313 case 'c':
2314 case 'C':
2315 *flagsp |= 1;
2316 break;
2317
2318 default:
2319 /* We consider this successful if we stop at a comma or
2320 whitespace. Anything else, and we consider it a failure. */
2321 if (**cPP != ','
2322 && **cPP != 0
2323 && ! ISSPACE (**cPP))
2324 return 0;
2325 else
2326 return 1;
2327 }
2328
2329 /* Don't forget to consume each flag character. */
2330 (*cPP)++;
2331 }
2332 }
2333
2334 /* Generate code and fixes for a BDAP prefix.
2335
2336 base_regno Int containing the base register number.
2337
2338 exprP Pointer to structure containing the offset expression. */
2339
2340 static void
2341 gen_bdap (base_regno, exprP)
2342 int base_regno;
2343 expressionS *exprP;
2344 {
2345 unsigned int opcode;
2346 char *opcodep;
2347
2348 /* Put out the prefix opcode; assume quick immediate mode at first. */
2349 opcode = BDAP_QUICK_OPCODE | (base_regno << 12);
2350 opcodep = cris_insn_first_word_frag ();
2351 md_number_to_chars (opcodep, opcode, 2);
2352
2353 if (exprP->X_op == O_constant)
2354 {
2355 /* We have an absolute expression that we know the size of right
2356 now. */
2357 long int value;
2358 int size;
2359
2360 value = exprP->X_add_number;
2361 if (value < -32768 || value > 32767)
2362 /* Outside range for a "word", make it a dword. */
2363 size = 2;
2364 else
2365 /* Assume "word" size. */
2366 size = 1;
2367
2368 /* If this is a signed-byte value, we can fit it into the prefix
2369 insn itself. */
2370 if (value >= -128 && value <= 127)
2371 opcodep[0] = value;
2372 else
2373 {
2374 /* This is a word or dword displacement, which will be put in a
2375 word or dword after the prefix. */
2376 char *p;
2377
2378 opcodep[0] = BDAP_PC_LOW + (size << 4);
2379 opcodep[1] &= 0xF0;
2380 opcodep[1] |= BDAP_INCR_HIGH;
2381 p = frag_more (1 << size);
2382 md_number_to_chars (p, value, 1 << size);
2383 }
2384 }
2385 else
2386 {
2387 /* Handle complex expressions. */
2388 valueT addvalue
2389 = exprP->X_op_symbol != NULL ? 0 : exprP->X_add_number;
2390 symbolS *sym
2391 = (exprP->X_op_symbol != NULL
2392 ? make_expr_symbol (exprP) : exprP->X_add_symbol);
2393
2394 /* The expression is not defined yet but may become absolute. We
2395 make it a relocation to be relaxed. */
2396 frag_var (rs_machine_dependent, 4, 0,
2397 ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF),
2398 sym, addvalue, opcodep);
2399 }
2400 }
2401
2402 /* Encode a branch displacement in the range -256..254 into the form used
2403 by CRIS conditional branch instructions.
2404
2405 offset The displacement value in bytes. */
2406
2407 static int
2408 branch_disp (offset)
2409 int offset;
2410 {
2411 int disp;
2412
2413 disp = offset & 0xFE;
2414
2415 if (offset < 0)
2416 disp |= 1;
2417
2418 return disp;
2419 }
2420
2421 /* Generate code and fixes for a 32-bit conditional branch instruction
2422 created by "extending" an existing 8-bit branch instruction.
2423
2424 opcodep Pointer to the word containing the original 8-bit branch
2425 instruction.
2426
2427 writep Pointer to "extension area" following the first instruction
2428 word.
2429
2430 fragP Pointer to the frag containing the instruction.
2431
2432 add_symP, Parts of the destination address expression.
2433 sub_symP,
2434 add_num. */
2435
2436 static void
2437 gen_cond_branch_32 (opcodep, writep, fragP, add_symP, sub_symP, add_num)
2438 char *opcodep;
2439 char *writep;
2440 fragS *fragP;
2441 symbolS *add_symP;
2442 symbolS *sub_symP;
2443 long int add_num;
2444 {
2445 if (warn_for_branch_expansion)
2446 as_warn_where (fragP->fr_file, fragP->fr_line,
2447 _("32-bit conditional branch generated"));
2448
2449 /* Here, writep points to what will be opcodep + 2. First, we change
2450 the actual branch in opcodep[0] and opcodep[1], so that in the
2451 final insn, it will look like:
2452 opcodep+10: Bcc .-6
2453
2454 This means we don't have to worry about changing the opcode or
2455 messing with the delay-slot instruction. So, we move it to last in
2456 the "extended" branch, and just change the displacement. Admittedly,
2457 it's not the optimal extended construct, but we should get this
2458 rarely enough that it shouldn't matter. */
2459
2460 writep[8] = branch_disp (-2 - 6);
2461 writep[9] = opcodep[1];
2462
2463 /* Then, we change the branch to an unconditional branch over the
2464 extended part, to the new location of the Bcc:
2465 opcodep: BA .+10
2466 opcodep+2: NOP
2467
2468 Note that these two writes are to currently different locations,
2469 merged later. */
2470
2471 md_number_to_chars (opcodep, BA_QUICK_OPCODE + 8, 2);
2472 md_number_to_chars (writep, NOP_OPCODE, 2);
2473
2474 /* Then the extended thing, the 32-bit jump insn.
2475 opcodep+4: JUMP [PC+]
2476 or, in the PIC case,
2477 opcodep+4: ADD [PC+],PC. */
2478
2479 md_number_to_chars (writep + 2,
2480 pic ? ADD_PC_INCR_OPCODE : JUMP_PC_INCR_OPCODE, 2);
2481
2482 /* We have to fill in the actual value too.
2483 opcodep+6: .DWORD
2484 This is most probably an expression, but we can cope with an absolute
2485 value too. FIXME: Testcase needed with and without pic. */
2486
2487 if (add_symP == NULL && sub_symP == NULL)
2488 {
2489 /* An absolute address. */
2490 if (pic)
2491 fix_new (fragP, writep + 4 - fragP->fr_literal, 4,
2492 section_symbol (absolute_section),
2493 add_num, 1, BFD_RELOC_32_PCREL);
2494 else
2495 md_number_to_chars (writep + 4, add_num, 4);
2496 }
2497 else
2498 {
2499 if (sub_symP != NULL)
2500 as_bad_where (fragP->fr_file, fragP->fr_line,
2501 _("Complex expression not supported"));
2502
2503 /* Not absolute, we have to make it a frag for later evaluation. */
2504 fix_new (fragP, writep + 4 - fragP->fr_literal, 4, add_symP,
2505 add_num, pic ? 1 : 0, pic ? BFD_RELOC_32_PCREL : BFD_RELOC_32);
2506 }
2507 }
2508
2509 /* Get the size of an immediate-reloc in bytes. Only valid for PIC
2510 relocs. */
2511
2512 static unsigned int
2513 cris_get_pic_reloc_size (reloc)
2514 bfd_reloc_code_real_type reloc;
2515 {
2516 return reloc == BFD_RELOC_CRIS_16_GOTPLT || reloc == BFD_RELOC_CRIS_16_GOT
2517 ? 2 : 4;
2518 }
2519
2520 /* Store a reloc type at *RELOCP corresponding to the PIC suffix at *CPP.
2521 Adjust *EXPRP with any addend found after the PIC suffix. */
2522
2523 static void
2524 cris_get_pic_suffix (cPP, relocp, exprP)
2525 char **cPP;
2526 bfd_reloc_code_real_type *relocp;
2527 expressionS *exprP;
2528 {
2529 char *s = *cPP;
2530 unsigned int i;
2531 expressionS const_expr;
2532
2533 const struct pic_suffixes_struct
2534 {
2535 const char *const suffix;
2536 unsigned int len;
2537 bfd_reloc_code_real_type reloc;
2538 } pic_suffixes[] =
2539 {
2540 #undef PICMAP
2541 #define PICMAP(s, r) {s, sizeof (s) - 1, r}
2542 /* Keep this in order with longest unambiguous prefix first. */
2543 PICMAP ("GOTPLT16", BFD_RELOC_CRIS_16_GOTPLT),
2544 PICMAP ("GOTPLT", BFD_RELOC_CRIS_32_GOTPLT),
2545 PICMAP ("PLTG", BFD_RELOC_CRIS_32_PLT_GOTREL),
2546 PICMAP ("PLT", BFD_RELOC_CRIS_32_PLT_PCREL),
2547 PICMAP ("GOTOFF", BFD_RELOC_CRIS_32_GOTREL),
2548 PICMAP ("GOT16", BFD_RELOC_CRIS_16_GOT),
2549 PICMAP ("GOT", BFD_RELOC_CRIS_32_GOT)
2550 };
2551
2552 /* We've already seen the ':', so consume it. */
2553 s++;
2554
2555 for (i = 0; i < sizeof (pic_suffixes)/sizeof (pic_suffixes[0]); i++)
2556 {
2557 if (strncmp (s, pic_suffixes[i].suffix, pic_suffixes[i].len) == 0
2558 && ! is_part_of_name (s[pic_suffixes[i].len]))
2559 {
2560 /* We have a match. Consume the suffix and set the relocation
2561 type. */
2562 s += pic_suffixes[i].len;
2563
2564 /* There can be a constant term appended. If so, we will add it
2565 to *EXPRP. */
2566 if (*s == '+' || *s == '-')
2567 {
2568 if (! cris_get_expression (&s, &const_expr))
2569 /* There was some kind of syntax error. Bail out. */
2570 break;
2571
2572 /* Allow complex expressions as the constant part. It still
2573 has to be a assembly-time constant or there will be an
2574 error emitting the reloc. This makes the PIC qualifiers
2575 idempotent; foo:GOTOFF+32 == foo+32:GOTOFF. The former we
2576 recognize here; the latter is parsed in the incoming
2577 expression. */
2578 exprP->X_add_symbol = make_expr_symbol (exprP);
2579 exprP->X_op = O_add;
2580 exprP->X_add_number = 0;
2581 exprP->X_op_symbol = make_expr_symbol (&const_expr);
2582 }
2583
2584 *relocp = pic_suffixes[i].reloc;
2585 *cPP = s;
2586 return;
2587 }
2588 }
2589
2590 /* No match. Don't consume anything; fall back and there will be a
2591 syntax error. */
2592 }
2593
2594 /* This *could* be:
2595
2596 Turn a string in input_line_pointer into a floating point constant
2597 of type TYPE, and store the appropriate bytes in *LITP. The number
2598 of LITTLENUMS emitted is stored in *SIZEP.
2599
2600 type A character from FLTCHARS that describes what kind of
2601 floating-point number is wanted.
2602
2603 litp A pointer to an array that the result should be stored in.
2604
2605 sizep A pointer to an integer where the size of the result is stored.
2606
2607 But we don't support floating point constants in assembly code *at all*,
2608 since it's suboptimal and just opens up bug opportunities. GCC emits
2609 the bit patterns as hex. All we could do here is to emit what GCC
2610 would have done in the first place. *Nobody* writes floating-point
2611 code as assembly code, but if they do, they should be able enough to
2612 find out the correct bit patterns and use them. */
2613
2614 char *
2615 md_atof (type, litp, sizep)
2616 char type ATTRIBUTE_UNUSED;
2617 char *litp ATTRIBUTE_UNUSED;
2618 int *sizep ATTRIBUTE_UNUSED;
2619 {
2620 /* FIXME: Is this function mentioned in the internals.texi manual? If
2621 not, add it. */
2622 return _("Bad call to md_atof () - floating point formats are not supported");
2623 }
2624
2625 /* Turn a number as a fixS * into a series of bytes that represents the
2626 number on the target machine. The purpose of this procedure is the
2627 same as that of md_number_to_chars but this procedure is supposed to
2628 handle general bit field fixes and machine-dependent fixups.
2629
2630 bufp Pointer to an array where the result should be stored.
2631
2632 val The value to store.
2633
2634 n The number of bytes in "val" that should be stored.
2635
2636 fixP The fix to be applied to the bit field starting at bufp.
2637
2638 seg The segment containing this number. */
2639
2640 static void
2641 cris_number_to_imm (bufp, val, n, fixP, seg)
2642 char *bufp;
2643 long val;
2644 int n;
2645 fixS *fixP;
2646 segT seg;
2647 {
2648 segT sym_seg;
2649
2650 know (n <= 4);
2651 know (fixP);
2652
2653 /* We put the relative "vma" for the other segment for inter-segment
2654 relocations in the object data to stay binary "compatible" (with an
2655 uninteresting old version) for the relocation.
2656 Maybe delete some day. */
2657 if (fixP->fx_addsy
2658 && (sym_seg = S_GET_SEGMENT (fixP->fx_addsy)) != seg)
2659 val += sym_seg->vma;
2660
2661 if (fixP->fx_addsy != NULL || fixP->fx_pcrel)
2662 switch (fixP->fx_r_type)
2663 {
2664 /* These must be fully resolved when getting here. */
2665 case BFD_RELOC_32_PCREL:
2666 case BFD_RELOC_16_PCREL:
2667 case BFD_RELOC_8_PCREL:
2668 as_bad_where (fixP->fx_frag->fr_file, fixP->fx_frag->fr_line,
2669 _("PC-relative relocation must be trivially resolved"));
2670 default:
2671 ;
2672 }
2673
2674 switch (fixP->fx_r_type)
2675 {
2676 /* Ditto here, we put the addend into the object code as
2677 well as the reloc addend. Keep it that way for now, to simplify
2678 regression tests on the object file contents. FIXME: Seems
2679 uninteresting now that we have a test suite. */
2680
2681 case BFD_RELOC_CRIS_16_GOT:
2682 case BFD_RELOC_CRIS_32_GOT:
2683 case BFD_RELOC_CRIS_32_GOTREL:
2684 case BFD_RELOC_CRIS_16_GOTPLT:
2685 case BFD_RELOC_CRIS_32_GOTPLT:
2686 case BFD_RELOC_CRIS_32_PLT_GOTREL:
2687 case BFD_RELOC_CRIS_32_PLT_PCREL:
2688 /* We don't want to put in any kind of non-zero bits in the data
2689 being relocated for these. */
2690 break;
2691
2692 case BFD_RELOC_32:
2693 case BFD_RELOC_32_PCREL:
2694 /* No use having warnings here, since most hosts have a 32-bit type
2695 for "long" (which will probably change soon, now that I wrote
2696 this). */
2697 bufp[3] = (val >> 24) & 0xFF;
2698 bufp[2] = (val >> 16) & 0xFF;
2699 bufp[1] = (val >> 8) & 0xFF;
2700 bufp[0] = val & 0xFF;
2701 break;
2702
2703 /* FIXME: The 16 and 8-bit cases should have a way to check
2704 whether a signed or unsigned (or any signedness) number is
2705 accepted.
2706 FIXME: Does the as_bad calls find the line number by themselves,
2707 or should we change them into as_bad_where? */
2708
2709 case BFD_RELOC_16:
2710 case BFD_RELOC_16_PCREL:
2711 if (val > 0xffff || val < -32768)
2712 as_bad (_("Value not in 16 bit range: %ld"), val);
2713 if (! fixP->fx_addsy)
2714 {
2715 bufp[1] = (val >> 8) & 0xFF;
2716 bufp[0] = val & 0xFF;
2717 }
2718 break;
2719
2720 case BFD_RELOC_8:
2721 case BFD_RELOC_8_PCREL:
2722 if (val > 255 || val < -128)
2723 as_bad (_("Value not in 8 bit range: %ld"), val);
2724 if (! fixP->fx_addsy)
2725 bufp[0] = val & 0xFF;
2726 break;
2727
2728 case BFD_RELOC_CRIS_UNSIGNED_4:
2729 if (val > 15 || val < 0)
2730 as_bad (_("Value not in 4 bit unsigned range: %ld"), val);
2731 if (! fixP->fx_addsy)
2732 bufp[0] |= val & 0x0F;
2733 break;
2734
2735 case BFD_RELOC_CRIS_UNSIGNED_5:
2736 if (val > 31 || val < 0)
2737 as_bad (_("Value not in 5 bit unsigned range: %ld"), val);
2738 if (! fixP->fx_addsy)
2739 bufp[0] |= val & 0x1F;
2740 break;
2741
2742 case BFD_RELOC_CRIS_SIGNED_6:
2743 if (val > 31 || val < -32)
2744 as_bad (_("Value not in 6 bit range: %ld"), val);
2745 if (! fixP->fx_addsy)
2746 bufp[0] |= val & 0x3F;
2747 break;
2748
2749 case BFD_RELOC_CRIS_UNSIGNED_6:
2750 if (val > 63 || val < 0)
2751 as_bad (_("Value not in 6 bit unsigned range: %ld"), val);
2752 if (! fixP->fx_addsy)
2753 bufp[0] |= val & 0x3F;
2754 break;
2755
2756 case BFD_RELOC_CRIS_BDISP8:
2757 if (! fixP->fx_addsy)
2758 bufp[0] = branch_disp (val);
2759 break;
2760
2761 case BFD_RELOC_NONE:
2762 /* May actually happen automatically. For example at broken
2763 words, if the word turns out not to be broken.
2764 FIXME: When? Which testcase? */
2765 if (! fixP->fx_addsy)
2766 md_number_to_chars (bufp, val, n);
2767 break;
2768
2769 case BFD_RELOC_VTABLE_INHERIT:
2770 /* This borrowed from tc-ppc.c on a whim. */
2771 if (fixP->fx_addsy
2772 && !S_IS_DEFINED (fixP->fx_addsy)
2773 && !S_IS_WEAK (fixP->fx_addsy))
2774 S_SET_WEAK (fixP->fx_addsy);
2775 /* Fall through. */
2776
2777 case BFD_RELOC_VTABLE_ENTRY:
2778 fixP->fx_done = 0;
2779 break;
2780
2781 default:
2782 BAD_CASE (fixP->fx_r_type);
2783 }
2784 }
2785
2786 /* Processes machine-dependent command line options. Called once for
2787 each option on the command line that the machine-independent part of
2788 GAS does not understand. */
2789
2790 int
2791 md_parse_option (arg, argp)
2792 int arg;
2793 char *argp ATTRIBUTE_UNUSED;
2794 {
2795 switch (arg)
2796 {
2797 case 'H':
2798 case 'h':
2799 printf (_("Please use --help to see usage and options for this assembler.\n"));
2800 md_show_usage (stdout);
2801 exit (EXIT_SUCCESS);
2802
2803 case 'N':
2804 warn_for_branch_expansion = 1;
2805 return 1;
2806
2807 case OPTION_NO_US:
2808 demand_register_prefix = true;
2809
2810 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
2811 as_bad (_("--no-underscore is invalid with a.out format"));
2812 else
2813 symbols_have_leading_underscore = false;
2814 return 1;
2815
2816 case OPTION_US:
2817 demand_register_prefix = false;
2818 symbols_have_leading_underscore = true;
2819 return 1;
2820
2821 case OPTION_PIC:
2822 pic = true;
2823 return 1;
2824
2825 default:
2826 return 0;
2827 }
2828 }
2829
2830 /* Round up a section size to the appropriate boundary. */
2831 valueT
2832 md_section_align (segment, size)
2833 segT segment;
2834 valueT size;
2835 {
2836 /* Round all sects to multiple of 4, except the bss section, which
2837 we'll round to word-size.
2838
2839 FIXME: Check if this really matters. All sections should be
2840 rounded up, and all sections should (optionally) be assumed to be
2841 dword-aligned, it's just that there is actual usage of linking to a
2842 multiple of two. */
2843 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
2844 {
2845 if (segment == bss_section)
2846 return (size + 1) & ~1;
2847 return (size + 3) & ~3;
2848 }
2849 else
2850 {
2851 /* FIXME: Is this wanted? It matches the testsuite, but that's not
2852 really a valid reason. */
2853 if (segment == text_section)
2854 return (size + 3) & ~3;
2855 }
2856
2857 return size;
2858 }
2859
2860 /* Generate a machine-dependent relocation. */
2861 arelent *
2862 tc_gen_reloc (section, fixP)
2863 asection *section ATTRIBUTE_UNUSED;
2864 fixS *fixP;
2865 {
2866 arelent *relP;
2867 bfd_reloc_code_real_type code;
2868
2869 switch (fixP->fx_r_type)
2870 {
2871 case BFD_RELOC_CRIS_16_GOT:
2872 case BFD_RELOC_CRIS_32_GOT:
2873 case BFD_RELOC_CRIS_16_GOTPLT:
2874 case BFD_RELOC_CRIS_32_GOTPLT:
2875 case BFD_RELOC_CRIS_32_GOTREL:
2876 case BFD_RELOC_CRIS_32_PLT_GOTREL:
2877 case BFD_RELOC_CRIS_32_PLT_PCREL:
2878 case BFD_RELOC_32:
2879 case BFD_RELOC_16:
2880 case BFD_RELOC_8:
2881 case BFD_RELOC_VTABLE_INHERIT:
2882 case BFD_RELOC_VTABLE_ENTRY:
2883 code = fixP->fx_r_type;
2884 break;
2885 default:
2886 as_bad_where (fixP->fx_file, fixP->fx_line,
2887 _("Semantics error. This type of operand can not be relocated, it must be an assembly-time constant"));
2888 return 0;
2889 }
2890
2891 relP = (arelent *) xmalloc (sizeof (arelent));
2892 assert (relP != 0);
2893 relP->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2894 *relP->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
2895 relP->address = fixP->fx_frag->fr_address + fixP->fx_where;
2896
2897 if (fixP->fx_pcrel)
2898 /* FIXME: Is this correct? */
2899 relP->addend = fixP->fx_addnumber;
2900 else
2901 /* At least *this one* is correct. */
2902 relP->addend = fixP->fx_offset;
2903
2904 /* This is the standard place for KLUDGEs to work around bugs in
2905 bfd_install_relocation (first such note in the documentation
2906 appears with binutils-2.8).
2907
2908 That function bfd_install_relocation does the wrong thing with
2909 putting stuff into the addend of a reloc (it should stay out) for a
2910 weak symbol. The really bad thing is that it adds the
2911 "segment-relative offset" of the symbol into the reloc. In this
2912 case, the reloc should instead be relative to the symbol with no
2913 other offset than the assembly code shows; and since the symbol is
2914 weak, any local definition should be ignored until link time (or
2915 thereafter).
2916 To wit: weaksym+42 should be weaksym+42 in the reloc,
2917 not weaksym+(offset_from_segment_of_local_weaksym_definition)
2918
2919 To "work around" this, we subtract the segment-relative offset of
2920 "known" weak symbols. This evens out the extra offset.
2921
2922 That happens for a.out but not for ELF, since for ELF,
2923 bfd_install_relocation uses the "special function" field of the
2924 howto, and does not execute the code that needs to be undone. */
2925
2926 if (OUTPUT_FLAVOR == bfd_target_aout_flavour
2927 && fixP->fx_addsy && S_IS_WEAK (fixP->fx_addsy)
2928 && ! bfd_is_und_section (S_GET_SEGMENT (fixP->fx_addsy)))
2929 {
2930 relP->addend -= S_GET_VALUE (fixP->fx_addsy);
2931 }
2932
2933 relP->howto = bfd_reloc_type_lookup (stdoutput, code);
2934 if (! relP->howto)
2935 {
2936 const char *name;
2937
2938 name = S_GET_NAME (fixP->fx_addsy);
2939 if (name == NULL)
2940 name = _("<unknown>");
2941 as_fatal (_("Cannot generate relocation type for symbol %s, code %s"),
2942 name, bfd_get_reloc_code_name (code));
2943 }
2944
2945 return relP;
2946 }
2947
2948 /* Machine-dependent usage-output. */
2949
2950 void
2951 md_show_usage (stream)
2952 FILE *stream;
2953 {
2954 /* The messages are formatted to line up with the generic options. */
2955 fprintf (stream, _("CRIS-specific options:\n"));
2956 fprintf (stream, "%s",
2957 _(" -h, -H Don't execute, print this help text. Deprecated.\n"));
2958 fprintf (stream, "%s",
2959 _(" -N Warn when branches are expanded to jumps.\n"));
2960 fprintf (stream, "%s",
2961 _(" --underscore User symbols are normally prepended with underscore.\n"));
2962 fprintf (stream, "%s",
2963 _(" Registers will not need any prefix.\n"));
2964 fprintf (stream, "%s",
2965 _(" --no-underscore User symbols do not have any prefix.\n"));
2966 fprintf (stream, "%s",
2967 _(" Registers will require a `$'-prefix.\n"));
2968 fprintf (stream, "%s",
2969 _(" --pic Enable generation of position-independent code.\n"));
2970 }
2971
2972 /* Apply a fixS (fixup of an instruction or data that we didn't have
2973 enough info to complete immediately) to the data in a frag. */
2974
2975 int
2976 md_apply_fix3 (fixP, valP, seg)
2977 fixS *fixP;
2978 valueT *valP;
2979 segT seg;
2980 {
2981 long val = *valP;
2982
2983 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2984
2985 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
2986 fixP->fx_done = 1;
2987
2988 if (fixP->fx_bit_fixP || fixP->fx_im_disp != 0)
2989 {
2990 as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid relocation"));
2991 fixP->fx_done = 1;
2992 }
2993 else
2994 {
2995 /* I took this from tc-arc.c, since we used to not support
2996 fx_subsy != NULL. I'm not totally sure it's TRT. */
2997 if (fixP->fx_subsy != (symbolS *) NULL)
2998 {
2999 if (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section)
3000 val -= S_GET_VALUE (fixP->fx_subsy);
3001 else
3002 {
3003 /* We can't actually support subtracting a symbol. */
3004 as_bad_where (fixP->fx_file, fixP->fx_line,
3005 _("expression too complex"));
3006 }
3007 }
3008
3009 cris_number_to_imm (buf, val, fixP->fx_size, fixP, seg);
3010 }
3011
3012 return 1;
3013 }
3014
3015 /* All relocations are relative to the location just after the fixup;
3016 the address of the fixup plus its size. */
3017
3018 long
3019 md_pcrel_from (fixP)
3020 fixS *fixP;
3021 {
3022 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
3023
3024 /* FIXME: We get here only at the end of assembly, when X in ".-X" is
3025 still unknown. Since we don't have pc-relative relocations in a.out,
3026 this is invalid. What to do if anything for a.out, is to add
3027 pc-relative relocations everywhere including the elinux program
3028 loader. For ELF, allow straight-forward PC-relative relocations,
3029 which are always relative to the location after the relocation. */
3030 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3031 || (fixP->fx_r_type != BFD_RELOC_8_PCREL
3032 && fixP->fx_r_type != BFD_RELOC_16_PCREL
3033 && fixP->fx_r_type != BFD_RELOC_32_PCREL))
3034 as_bad_where (fixP->fx_file, fixP->fx_line,
3035 _("Invalid pc-relative relocation"));
3036 return fixP->fx_size + addr;
3037 }
3038
3039 /* We have no need to give defaults for symbol-values. */
3040 symbolS *
3041 md_undefined_symbol (name)
3042 char *name ATTRIBUTE_UNUSED;
3043 {
3044 return 0;
3045 }
3046
3047 /* Definition of TC_FORCE_RELOCATION.
3048 FIXME: Unsure of this. Can we omit it? Just copied from tc-i386.c
3049 when doing multi-object format with ELF, since it's the only other
3050 multi-object-format target with a.out and ELF. */
3051 int
3052 md_cris_force_relocation (fixp)
3053 struct fix *fixp;
3054 {
3055 switch (fixp->fx_r_type)
3056 {
3057 case BFD_RELOC_VTABLE_INHERIT:
3058 case BFD_RELOC_VTABLE_ENTRY:
3059 case BFD_RELOC_CRIS_16_GOT:
3060 case BFD_RELOC_CRIS_32_GOT:
3061 case BFD_RELOC_CRIS_16_GOTPLT:
3062 case BFD_RELOC_CRIS_32_GOTPLT:
3063 case BFD_RELOC_CRIS_32_GOTREL:
3064 case BFD_RELOC_CRIS_32_PLT_GOTREL:
3065 case BFD_RELOC_CRIS_32_PLT_PCREL:
3066 return 1;
3067 default:
3068 ;
3069 }
3070
3071 return 0;
3072 }
3073
3074 /* Check and emit error if broken-word handling has failed to fix up a
3075 case-table. This is called from write.c, after doing everything it
3076 knows about how to handle broken words. */
3077
3078 void
3079 tc_cris_check_adjusted_broken_word (new_offset, brokwP)
3080 offsetT new_offset;
3081 struct broken_word *brokwP;
3082 {
3083 if (new_offset > 32767 || new_offset < -32768)
3084 /* We really want a genuine error, not a warning, so make it one. */
3085 as_bad_where (brokwP->frag->fr_file, brokwP->frag->fr_line,
3086 _("Adjusted signed .word (%ld) overflows: `switch'-statement too large."),
3087 (long) new_offset);
3088 }
3089
3090 /* Make a leading REGISTER_PREFIX_CHAR mandatory for all registers. */
3091
3092 static void cris_force_reg_prefix ()
3093 {
3094 demand_register_prefix = true;
3095 }
3096
3097 /* Do not demand a leading REGISTER_PREFIX_CHAR for all registers. */
3098
3099 static void cris_relax_reg_prefix ()
3100 {
3101 demand_register_prefix = false;
3102 }
3103
3104 /* Adjust for having a leading '_' on all user symbols. */
3105
3106 static void cris_sym_leading_underscore ()
3107 {
3108 /* We can't really do anything more than assert that what the program
3109 thinks symbol starts with agrees with the command-line options, since
3110 the bfd is already created. */
3111
3112 if (symbols_have_leading_underscore == false)
3113 as_bad (_(".syntax %s requires command-line option `--underscore'"),
3114 SYNTAX_USER_SYM_LEADING_UNDERSCORE);
3115 }
3116
3117 /* Adjust for not having any particular prefix on user symbols. */
3118
3119 static void cris_sym_no_leading_underscore ()
3120 {
3121 if (symbols_have_leading_underscore == true)
3122 as_bad (_(".syntax %s requires command-line option `--no-underscore'"),
3123 SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE);
3124 }
3125
3126 /* Handle the .syntax pseudo, which takes an argument that decides what
3127 syntax the assembly code has. */
3128
3129 static void
3130 s_syntax (ignore)
3131 int ignore ATTRIBUTE_UNUSED;
3132 {
3133 static const struct syntaxes
3134 {
3135 const char *operand;
3136 void (*fn) PARAMS ((void));
3137 } syntax_table[] =
3138 {{SYNTAX_ENFORCE_REG_PREFIX, cris_force_reg_prefix},
3139 {SYNTAX_RELAX_REG_PREFIX, cris_relax_reg_prefix},
3140 {SYNTAX_USER_SYM_LEADING_UNDERSCORE, cris_sym_leading_underscore},
3141 {SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE, cris_sym_no_leading_underscore}};
3142
3143 const struct syntaxes *sp;
3144
3145 for (sp = syntax_table;
3146 sp < syntax_table + sizeof (syntax_table) / sizeof (syntax_table[0]);
3147 sp++)
3148 {
3149 if (strncmp (input_line_pointer, sp->operand,
3150 strlen (sp->operand)) == 0)
3151 {
3152 (sp->fn) ();
3153
3154 input_line_pointer += strlen (sp->operand);
3155 demand_empty_rest_of_line ();
3156 return;
3157 }
3158 }
3159
3160 as_bad (_("Unknown .syntax operand"));
3161 }
3162
3163 /* Wrapper for dwarf2_directive_file to emit error if this is seen when
3164 not emitting ELF. */
3165
3166 static void
3167 s_cris_file (dummy)
3168 int dummy;
3169 {
3170 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3171 as_bad (_("Pseudodirective .file is only valid when generating ELF"));
3172 else
3173 dwarf2_directive_file (dummy);
3174 }
3175
3176 /* Wrapper for dwarf2_directive_loc to emit error if this is seen when not
3177 emitting ELF. */
3178
3179 static void
3180 s_cris_loc (dummy)
3181 int dummy;
3182 {
3183 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3184 as_bad (_("Pseudodirective .loc is only valid when generating ELF"));
3185 else
3186 dwarf2_directive_loc (dummy);
3187 }
3188
3189 /*
3190 * Local variables:
3191 * eval: (c-set-style "gnu")
3192 * indent-tabs-mode: t
3193 * End:
3194 */
This page took 0.136261 seconds and 4 git commands to generate.