x86: improve handling of insns with ambiguous operand sizes
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static enum flag_code i386_addressing_mode (void);
186 static void optimize_imm (void);
187 static void optimize_disp (void);
188 static const insn_template *match_template (char);
189 static int check_string (void);
190 static int process_suffix (void);
191 static int check_byte_reg (void);
192 static int check_long_reg (void);
193 static int check_qword_reg (void);
194 static int check_word_reg (void);
195 static int finalize_imm (void);
196 static int process_operands (void);
197 static const seg_entry *build_modrm_byte (void);
198 static void output_insn (void);
199 static void output_imm (fragS *, offsetT);
200 static void output_disp (fragS *, offsetT);
201 #ifndef I386COFF
202 static void s_bss (int);
203 #endif
204 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205 static void handle_large_common (int small ATTRIBUTE_UNUSED);
206
207 /* GNU_PROPERTY_X86_ISA_1_USED. */
208 static unsigned int x86_isa_1_used;
209 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
210 static unsigned int x86_feature_2_used;
211 /* Generate x86 used ISA and feature properties. */
212 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
213 #endif
214
215 static const char *default_arch = DEFAULT_ARCH;
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_vsib_address,
294 invalid_vector_register_set,
295 unsupported_vector_index_register,
296 unsupported_broadcast,
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
304 };
305
306 struct _i386_insn
307 {
308 /* TM holds the template for the insn were currently assembling. */
309 insn_template tm;
310
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
313 char suffix;
314
315 /* OPERANDS gives the number of given operands. */
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
320 operands. */
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
324 use OP[i] for the corresponding operand. */
325 i386_operand_type types[MAX_OPERANDS];
326
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
330
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333 #define Operand_PCrel 1
334 #define Operand_Mem 2
335
336 /* Relocation type for operand */
337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
338
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
346 explicit segment overrides are given. */
347 const seg_entry *seg[2];
348
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
375 /* RM and SIB are the modrm byte and the sib byte where the
376 addressing modes of this insn are encoded. */
377 modrm_byte rm;
378 rex_byte rex;
379 rex_byte vrex;
380 sib_byte sib;
381 vex_prefix vex;
382
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
400 dir_encoding_store,
401 dir_encoding_swap
402 } dir_encoding;
403
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
411
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
427 /* REP prefix. */
428 const char *rep_prefix;
429
430 /* HLE prefix. */
431 const char *hle_prefix;
432
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
439 /* Error message. */
440 enum i386_error error;
441 };
442
443 typedef struct _i386_insn i386_insn;
444
445 /* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447 struct RC_name
448 {
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452 };
453
454 static const struct RC_name RC_NamesTable[] =
455 {
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461 };
462
463 /* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
465 const char extra_symbol_chars[] = "*%-([{}"
466 #ifdef LEX_AT
467 "@"
468 #endif
469 #ifdef LEX_QM
470 "?"
471 #endif
472 ;
473
474 #if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
476 && !defined (TE_GNU) \
477 && !defined (TE_LINUX) \
478 && !defined (TE_NACL) \
479 && !defined (TE_FreeBSD) \
480 && !defined (TE_DragonFly) \
481 && !defined (TE_NetBSD)))
482 /* This array holds the chars that always start a comment. If the
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485 const char *i386_comment_chars = "#/";
486 #define SVR4_COMMENT_CHARS 1
487 #define PREFIX_SEPARATOR '\\'
488
489 #else
490 const char *i386_comment_chars = "#";
491 #define PREFIX_SEPARATOR '/'
492 #endif
493
494 /* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
498 first line of the input file. This is because the compiler outputs
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
501 '/' isn't otherwise defined. */
502 const char line_comment_chars[] = "#/";
503
504 const char line_separator_chars[] = ";";
505
506 /* Chars that can be used to separate mant from exp in floating point
507 nums. */
508 const char EXP_CHARS[] = "eE";
509
510 /* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
513 const char FLT_CHARS[] = "fFdDxX";
514
515 /* Tables for lexical analysis. */
516 static char mnemonic_chars[256];
517 static char register_chars[256];
518 static char operand_chars[256];
519 static char identifier_chars[256];
520 static char digit_chars[256];
521
522 /* Lexical macros. */
523 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524 #define is_operand_char(x) (operand_chars[(unsigned char) x])
525 #define is_register_char(x) (register_chars[(unsigned char) x])
526 #define is_space_char(x) ((x) == ' ')
527 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528 #define is_digit_char(x) (digit_chars[(unsigned char) x])
529
530 /* All non-digit non-letter characters that may occur in an operand. */
531 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533 /* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
536 assembler instruction). */
537 static char save_stack[32];
538 static char *save_stack_p;
539 #define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541 #define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
544 /* The instruction we're assembling. */
545 static i386_insn i;
546
547 /* Possible templates for current insn. */
548 static const templates *current_templates;
549
550 /* Per instruction expressionS buffers: max displacements & immediates. */
551 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
553
554 /* Current operand we are working on. */
555 static int this_operand = -1;
556
557 /* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560 enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565 static enum flag_code flag_code;
566 static unsigned int object_64bit;
567 static unsigned int disallow_64bit_reloc;
568 static int use_rela_relocations = 0;
569 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
570 static const char *tls_get_addr;
571
572 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
576 /* The ELF ABI to use. */
577 enum x86_elf_abi
578 {
579 I386_ABI,
580 X86_64_ABI,
581 X86_64_X32_ABI
582 };
583
584 static enum x86_elf_abi x86_elf_abi = I386_ABI;
585 #endif
586
587 #if defined (TE_PE) || defined (TE_PEP)
588 /* Use big object file format. */
589 static int use_big_obj = 0;
590 #endif
591
592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593 /* 1 if generating code for a shared library. */
594 static int shared = 0;
595 #endif
596
597 /* 1 for intel syntax,
598 0 if att syntax. */
599 static int intel_syntax = 0;
600
601 /* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603 static int intel64;
604
605 /* 1 for intel mnemonic,
606 0 if att mnemonic. */
607 static int intel_mnemonic = !SYSV386_COMPAT;
608
609 /* 1 if pseudo registers are permitted. */
610 static int allow_pseudo_reg = 0;
611
612 /* 1 if register prefix % not required. */
613 static int allow_naked_reg = 0;
614
615 /* 1 if the assembler should add BND prefix for all control-transferring
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618 static int add_bnd_prefix = 0;
619
620 /* 1 if pseudo index register, eiz/riz, is allowed . */
621 static int allow_index_reg = 0;
622
623 /* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625 static int omit_lock_prefix = 0;
626
627 /* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629 static int avoid_fence = 0;
630
631 /* Type of the previous instruction. */
632 static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
646 /* 1 if the assembler should generate relax relocations. */
647
648 static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
651 static enum check_kind
652 {
653 check_none = 0,
654 check_warning,
655 check_error
656 }
657 sse_check, operand_check = check_warning;
658
659 /* Non-zero if branches should be aligned within power of 2 boundary. */
660 static int align_branch_power = 0;
661
662 /* Types of branches to align. */
663 enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674 /* Type bits of branches to align. */
675 enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685 static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689 /* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692 #define MAX_FUSED_JCC_PADDING_SIZE 20
693
694 /* The maximum number of prefixes added for an instruction. */
695 static unsigned int align_branch_prefix_size = 5;
696
697 /* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702 static int optimize = 0;
703
704 /* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711 static int optimize_for_space = 0;
712
713 /* Register prefix used for error message. */
714 static const char *register_prefix = "%";
715
716 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719 static char stackop_size = '\0';
720
721 /* Non-zero to optimize code alignment. */
722 int optimize_align_code = 1;
723
724 /* Non-zero to quieten some warnings. */
725 static int quiet_warnings = 0;
726
727 /* CPU name. */
728 static const char *cpu_arch_name = NULL;
729 static char *cpu_sub_arch_name = NULL;
730
731 /* CPU feature flags. */
732 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
734 /* If we have selected a cpu we are generating instructions for. */
735 static int cpu_arch_tune_set = 0;
736
737 /* Cpu we are generating instructions for. */
738 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
739
740 /* CPU feature flags of cpu we are generating instructions for. */
741 static i386_cpu_flags cpu_arch_tune_flags;
742
743 /* CPU instruction set architecture used. */
744 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
745
746 /* CPU feature flags of instruction set architecture used. */
747 i386_cpu_flags cpu_arch_isa_flags;
748
749 /* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751 static unsigned int no_cond_jump_promotion = 0;
752
753 /* Encode SSE instructions with VEX prefix. */
754 static unsigned int sse2avx;
755
756 /* Encode scalar AVX instructions with specific vector length. */
757 static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
763 /* Encode VEX WIG instructions with specific vex.w. */
764 static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
770 /* Encode scalar EVEX LIG instructions with specific vector length. */
771 static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778 /* Encode EVEX WIG instructions with specific evex.w. */
779 static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
785 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
786 static enum rc_type evexrcig = rne;
787
788 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
789 static symbolS *GOT_symbol;
790
791 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
792 unsigned int x86_dwarf2_return_column;
793
794 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795 int x86_cie_data_alignment;
796
797 /* Interface to relax_segment.
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
805
806 /* Types. */
807 #define UNCOND_JUMP 0
808 #define COND_JUMP 1
809 #define COND_JUMP86 2
810 #define BRANCH_PADDING 3
811 #define BRANCH_PREFIX 4
812 #define FUSED_JCC_PADDING 5
813
814 /* Sizes. */
815 #define CODE16 1
816 #define SMALL 0
817 #define SMALL16 (SMALL | CODE16)
818 #define BIG 2
819 #define BIG16 (BIG | CODE16)
820
821 #ifndef INLINE
822 #ifdef __GNUC__
823 #define INLINE __inline__
824 #else
825 #define INLINE
826 #endif
827 #endif
828
829 #define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831 #define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833 #define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
835
836 /* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844 const relax_typeS md_relax_table[] =
845 {
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
849 3) how many bytes this mode will have in the variable part of the frag
850 4) which index into the table to try if we can't fit into this one. */
851
852 /* UNCOND_JUMP states. */
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
857 {0, 0, 4, 0},
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
860 {0, 0, 2, 0},
861
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
868 /* word conditionals add 3 bytes to frag:
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
881 };
882
883 static const arch_entry cpu_arch[] =
884 {
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
888 CPU_GENERIC32_FLAGS, 0 },
889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
890 CPU_GENERIC64_FLAGS, 0 },
891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
892 CPU_NONE_FLAGS, 0 },
893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
894 CPU_I186_FLAGS, 0 },
895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
896 CPU_I286_FLAGS, 0 },
897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
898 CPU_I386_FLAGS, 0 },
899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
900 CPU_I486_FLAGS, 0 },
901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
902 CPU_I586_FLAGS, 0 },
903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
904 CPU_I686_FLAGS, 0 },
905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
906 CPU_I586_FLAGS, 0 },
907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
908 CPU_PENTIUMPRO_FLAGS, 0 },
909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
910 CPU_P2_FLAGS, 0 },
911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
912 CPU_P3_FLAGS, 0 },
913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
914 CPU_P4_FLAGS, 0 },
915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
916 CPU_CORE_FLAGS, 0 },
917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
918 CPU_NOCONA_FLAGS, 0 },
919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
920 CPU_CORE_FLAGS, 1 },
921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
922 CPU_CORE_FLAGS, 0 },
923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
924 CPU_CORE2_FLAGS, 1 },
925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
926 CPU_CORE2_FLAGS, 0 },
927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
928 CPU_COREI7_FLAGS, 0 },
929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
930 CPU_L1OM_FLAGS, 0 },
931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
932 CPU_K1OM_FLAGS, 0 },
933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
934 CPU_IAMCU_FLAGS, 0 },
935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
936 CPU_K6_FLAGS, 0 },
937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
938 CPU_K6_2_FLAGS, 0 },
939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
940 CPU_ATHLON_FLAGS, 0 },
941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
942 CPU_K8_FLAGS, 1 },
943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
944 CPU_K8_FLAGS, 0 },
945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
946 CPU_K8_FLAGS, 0 },
947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
948 CPU_AMDFAM10_FLAGS, 0 },
949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
950 CPU_BDVER1_FLAGS, 0 },
951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
952 CPU_BDVER2_FLAGS, 0 },
953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
954 CPU_BDVER3_FLAGS, 0 },
955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
956 CPU_BDVER4_FLAGS, 0 },
957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
958 CPU_ZNVER1_FLAGS, 0 },
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
962 CPU_BTVER1_FLAGS, 0 },
963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
964 CPU_BTVER2_FLAGS, 0 },
965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
966 CPU_8087_FLAGS, 0 },
967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
968 CPU_287_FLAGS, 0 },
969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
970 CPU_387_FLAGS, 0 },
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
978 CPU_MMX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
980 CPU_SSE_FLAGS, 0 },
981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
982 CPU_SSE2_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
984 CPU_SSE3_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
986 CPU_SSSE3_FLAGS, 0 },
987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
988 CPU_SSE4_1_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
990 CPU_SSE4_2_FLAGS, 0 },
991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
992 CPU_SSE4_2_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
994 CPU_AVX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
996 CPU_AVX2_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
998 CPU_AVX512F_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512CD_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512ER_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512PF_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512DQ_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512BW_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1010 CPU_AVX512VL_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1012 CPU_VMX_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1014 CPU_VMFUNC_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1016 CPU_SMX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1018 CPU_XSAVE_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1020 CPU_XSAVEOPT_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1022 CPU_XSAVEC_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1024 CPU_XSAVES_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1026 CPU_AES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1028 CPU_PCLMUL_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1030 CPU_PCLMUL_FLAGS, 1 },
1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1032 CPU_FSGSBASE_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1034 CPU_RDRND_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1036 CPU_F16C_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1038 CPU_BMI2_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1040 CPU_FMA_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1042 CPU_FMA4_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1044 CPU_XOP_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1046 CPU_LWP_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1048 CPU_MOVBE_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1050 CPU_CX16_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1052 CPU_EPT_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1054 CPU_LZCNT_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1056 CPU_HLE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1058 CPU_RTM_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1060 CPU_INVPCID_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1062 CPU_CLFLUSH_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1064 CPU_NOP_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1066 CPU_SYSCALL_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1068 CPU_RDTSCP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1070 CPU_3DNOW_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1072 CPU_3DNOWA_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1074 CPU_PADLOCK_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1076 CPU_SVME_FLAGS, 1 },
1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1078 CPU_SVME_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1080 CPU_SSE4A_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1082 CPU_ABM_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1084 CPU_BMI_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1086 CPU_TBM_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1088 CPU_ADX_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1090 CPU_RDSEED_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1092 CPU_PRFCHW_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1094 CPU_SMAP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1096 CPU_MPX_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1098 CPU_SHA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1100 CPU_CLFLUSHOPT_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1102 CPU_PREFETCHWT1_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1104 CPU_SE1_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1106 CPU_CLWB_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1108 CPU_AVX512IFMA_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1110 CPU_AVX512VBMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1124 CPU_CLZERO_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1126 CPU_MWAITX_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1128 CPU_OSPKE_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1130 CPU_RDPID_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
1165 };
1166
1167 static const noarch_entry cpu_noarch[] =
1168 {
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1207 };
1208
1209 #ifdef I386COFF
1210 /* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213 static symbolS *
1214 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215 {
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
1220 if (needs_align
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
1224
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242 }
1243
1244 static void
1245 pe_lcomm (int needs_align)
1246 {
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248 }
1249 #endif
1250
1251 const pseudo_typeS md_pseudo_table[] =
1252 {
1253 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255 #else
1256 {"align", s_align_ptwo, 0},
1257 #endif
1258 {"arch", set_cpu_arch, 0},
1259 #ifndef I386COFF
1260 {"bss", s_bss, 0},
1261 #else
1262 {"lcomm", pe_lcomm, 1},
1263 #endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
1268 {"slong", signed_cons, 4},
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
1274 #ifdef BFD64
1275 {"code64", set_code_flag, CODE_64BIT},
1276 #endif
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
1285 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
1287 #else
1288 {"file", dwarf2_directive_file, 0},
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1291 #endif
1292 #ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294 #endif
1295 {0, 0, 0}
1296 };
1297
1298 /* For interface with expression (). */
1299 extern char *input_line_pointer;
1300
1301 /* Hash table for instruction mnemonic lookup. */
1302 static struct hash_control *op_hash;
1303
1304 /* Hash table for register lookup. */
1305 static struct hash_control *reg_hash;
1306 \f
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
1310 static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312 static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314 static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316 static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1318 static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320 static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1322 static const unsigned char f16_3[] =
1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1324 static const unsigned char f16_4[] =
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326 static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328 static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330 static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
1332 /* 32-bit NOPs patterns. */
1333 static const unsigned char *const f32_patt[] = {
1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1335 };
1336 /* 16-bit NOPs patterns. */
1337 static const unsigned char *const f16_patt[] = {
1338 f32_1, f32_2, f16_3, f16_4
1339 };
1340 /* nopl (%[re]ax) */
1341 static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343 /* nopl 0(%[re]ax) */
1344 static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346 /* nopl 0(%[re]ax,%[re]ax,1) */
1347 static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349 /* nopw 0(%[re]ax,%[re]ax,1) */
1350 static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352 /* nopl 0L(%[re]ax) */
1353 static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355 /* nopl 0L(%[re]ax,%[re]ax,1) */
1356 static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358 /* nopw 0L(%[re]ax,%[re]ax,1) */
1359 static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362 static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1364 /* data16 nopw %cs:0L(%eax,%eax,1) */
1365 static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1367 /* 32-bit and 64-bit NOPs patterns. */
1368 static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1370 alt_9, alt_10, alt_11
1371 };
1372
1373 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376 static void
1377 i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380 {
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
1397 {
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
1400 }
1401
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
1423 }
1424
1425 static INLINE int
1426 fits_in_imm7 (offsetT num)
1427 {
1428 return (num & 0x7f) == num;
1429 }
1430
1431 static INLINE int
1432 fits_in_imm31 (offsetT num)
1433 {
1434 return (num & 0x7fffffff) == num;
1435 }
1436
1437 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440 void
1441 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1442 {
1443 const unsigned char *const *patt = NULL;
1444 int max_single_nop_size;
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
1447
1448 switch (fragP->fr_type)
1449 {
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
1459 default:
1460 return;
1461 }
1462
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
1465
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1472 be used.
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
1483 }
1484 else
1485 {
1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1495 patt = alt_patt;
1496 else
1497 patt = f32_patt;
1498 break;
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
1501 case PROCESSOR_CORE:
1502 case PROCESSOR_CORE2:
1503 case PROCESSOR_COREI7:
1504 case PROCESSOR_L1OM:
1505 case PROCESSOR_K1OM:
1506 case PROCESSOR_GENERIC64:
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
1510 case PROCESSOR_AMDFAM10:
1511 case PROCESSOR_BD:
1512 case PROCESSOR_ZNVER:
1513 case PROCESSOR_BT:
1514 patt = alt_patt;
1515 break;
1516 case PROCESSOR_I386:
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
1519 case PROCESSOR_PENTIUMPRO:
1520 case PROCESSOR_IAMCU:
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
1524 }
1525 }
1526 else
1527 {
1528 switch (fragP->tc_frag_data.tune)
1529 {
1530 case PROCESSOR_UNKNOWN:
1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
1536 case PROCESSOR_I386:
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
1539 case PROCESSOR_IAMCU:
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
1543 case PROCESSOR_AMDFAM10:
1544 case PROCESSOR_BD:
1545 case PROCESSOR_ZNVER:
1546 case PROCESSOR_BT:
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1551 patt = alt_patt;
1552 else
1553 patt = f32_patt;
1554 break;
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
1559 case PROCESSOR_CORE2:
1560 case PROCESSOR_COREI7:
1561 case PROCESSOR_L1OM:
1562 case PROCESSOR_K1OM:
1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1564 patt = alt_patt;
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
1569 patt = alt_patt;
1570 break;
1571 }
1572 }
1573
1574 if (patt == f32_patt)
1575 {
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
1579 }
1580 else
1581 {
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
1603 else if (fragP->fr_type != rs_machine_dependent)
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
1644 }
1645 }
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
1649 }
1650
1651 static INLINE int
1652 operand_type_all_zero (const union i386_operand_type *x)
1653 {
1654 switch (ARRAY_SIZE(x->array))
1655 {
1656 case 3:
1657 if (x->array[2])
1658 return 0;
1659 /* Fall through. */
1660 case 2:
1661 if (x->array[1])
1662 return 0;
1663 /* Fall through. */
1664 case 1:
1665 return !x->array[0];
1666 default:
1667 abort ();
1668 }
1669 }
1670
1671 static INLINE void
1672 operand_type_set (union i386_operand_type *x, unsigned int v)
1673 {
1674 switch (ARRAY_SIZE(x->array))
1675 {
1676 case 3:
1677 x->array[2] = v;
1678 /* Fall through. */
1679 case 2:
1680 x->array[1] = v;
1681 /* Fall through. */
1682 case 1:
1683 x->array[0] = v;
1684 /* Fall through. */
1685 break;
1686 default:
1687 abort ();
1688 }
1689
1690 x->bitfield.class = ClassNone;
1691 x->bitfield.instance = InstanceNone;
1692 }
1693
1694 static INLINE int
1695 operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
1697 {
1698 switch (ARRAY_SIZE(x->array))
1699 {
1700 case 3:
1701 if (x->array[2] != y->array[2])
1702 return 0;
1703 /* Fall through. */
1704 case 2:
1705 if (x->array[1] != y->array[1])
1706 return 0;
1707 /* Fall through. */
1708 case 1:
1709 return x->array[0] == y->array[0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 }
1715
1716 static INLINE int
1717 cpu_flags_all_zero (const union i386_cpu_flags *x)
1718 {
1719 switch (ARRAY_SIZE(x->array))
1720 {
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1728 /* Fall through. */
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1732 /* Fall through. */
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738 }
1739
1740 static INLINE int
1741 cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743 {
1744 switch (ARRAY_SIZE(x->array))
1745 {
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1753 /* Fall through. */
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1757 /* Fall through. */
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764 }
1765
1766 static INLINE int
1767 cpu_flags_check_cpu64 (i386_cpu_flags f)
1768 {
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1771 }
1772
1773 static INLINE i386_cpu_flags
1774 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
1781 case 3:
1782 x.array [2] &= y.array [2];
1783 /* Fall through. */
1784 case 2:
1785 x.array [1] &= y.array [1];
1786 /* Fall through. */
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794 }
1795
1796 static INLINE i386_cpu_flags
1797 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1798 {
1799 switch (ARRAY_SIZE (x.array))
1800 {
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
1804 case 3:
1805 x.array [2] |= y.array [2];
1806 /* Fall through. */
1807 case 2:
1808 x.array [1] |= y.array [1];
1809 /* Fall through. */
1810 case 1:
1811 x.array [0] |= y.array [0];
1812 break;
1813 default:
1814 abort ();
1815 }
1816 return x;
1817 }
1818
1819 static INLINE i386_cpu_flags
1820 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821 {
1822 switch (ARRAY_SIZE (x.array))
1823 {
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 #define CPU_FLAGS_ARCH_MATCH 0x1
1843 #define CPU_FLAGS_64BIT_MATCH 0x2
1844
1845 #define CPU_FLAGS_PERFECT_MATCH \
1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1847
1848 /* Return CPU flags match bits. */
1849
1850 static int
1851 cpu_flags_match (const insn_template *t)
1852 {
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
1859 if (cpu_flags_all_zero (&x))
1860 {
1861 /* This instruction is available on all archs. */
1862 match |= CPU_FLAGS_ARCH_MATCH;
1863 }
1864 else
1865 {
1866 /* This instruction is available only on some archs. */
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
1874 cpu = cpu_flags_and (x, cpu);
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
1877 if (x.bitfield.cpuavx)
1878 {
1879 /* We need to check a few extra flags with AVX. */
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
1886 }
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
1896 else
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 }
1900 return match;
1901 }
1902
1903 static INLINE i386_operand_type
1904 operand_type_and (i386_operand_type x, i386_operand_type y)
1905 {
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
1910
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1915 /* Fall through. */
1916 case 2:
1917 x.array [1] &= y.array [1];
1918 /* Fall through. */
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
1926 }
1927
1928 static INLINE i386_operand_type
1929 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930 {
1931 gas_assert (y.bitfield.class == ClassNone);
1932 gas_assert (y.bitfield.instance == InstanceNone);
1933
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949 }
1950
1951 static INLINE i386_operand_type
1952 operand_type_or (i386_operand_type x, i386_operand_type y)
1953 {
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
1960
1961 switch (ARRAY_SIZE (x.array))
1962 {
1963 case 3:
1964 x.array [2] |= y.array [2];
1965 /* Fall through. */
1966 case 2:
1967 x.array [1] |= y.array [1];
1968 /* Fall through. */
1969 case 1:
1970 x.array [0] |= y.array [0];
1971 break;
1972 default:
1973 abort ();
1974 }
1975 return x;
1976 }
1977
1978 static INLINE i386_operand_type
1979 operand_type_xor (i386_operand_type x, i386_operand_type y)
1980 {
1981 gas_assert (y.bitfield.class == ClassNone);
1982 gas_assert (y.bitfield.instance == InstanceNone);
1983
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1988 /* Fall through. */
1989 case 2:
1990 x.array [1] ^= y.array [1];
1991 /* Fall through. */
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
1998 return x;
1999 }
2000
2001 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2005 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2007 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2008 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2009 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019 enum operand_type
2020 {
2021 reg,
2022 imm,
2023 disp,
2024 anymem
2025 };
2026
2027 static INLINE int
2028 operand_type_check (i386_operand_type t, enum operand_type c)
2029 {
2030 switch (c)
2031 {
2032 case reg:
2033 return t.bitfield.class == Reg;
2034
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
2067
2068 static INLINE int
2069 match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
2071 {
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
2082 }
2083
2084 /* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
2086
2087 static INLINE int
2088 match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
2090 {
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
2097 }
2098
2099 /* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
2101
2102 static INLINE int
2103 match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
2105 {
2106 return (match_operand_size (t, wanted, given)
2107 && !((i.types[given].bitfield.unspecified
2108 && !i.broadcast
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2117 && !t->opcode_modifier.broadcast
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
2126 }
2127
2128 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
2132
2133 #define MATCH_STRAIGHT 1
2134 #define MATCH_REVERSE 2
2135
2136 static INLINE unsigned int
2137 operand_size_match (const insn_template *t)
2138 {
2139 unsigned int j, match = MATCH_STRAIGHT;
2140
2141 /* Don't check non-absolute jump instructions. */
2142 if (t->opcode_modifier.jump
2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
2151 && t->opcode_modifier.anysize)
2152 continue;
2153
2154 if (t->operand_types[j].bitfield.class == Reg
2155 && !match_operand_size (t, j, j))
2156 {
2157 match = 0;
2158 break;
2159 }
2160
2161 if (t->operand_types[j].bitfield.class == RegSIMD
2162 && !match_simd_size (t, j, j))
2163 {
2164 match = 0;
2165 break;
2166 }
2167
2168 if (t->operand_types[j].bitfield.instance == Accum
2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2170 {
2171 match = 0;
2172 break;
2173 }
2174
2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
2182 if (!t->opcode_modifier.d)
2183 {
2184 mismatch:
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
2188 }
2189
2190 /* Check reverse. */
2191 gas_assert (i.operands >= 2 && i.operands <= 3);
2192
2193 for (j = 0; j < i.operands; j++)
2194 {
2195 unsigned int given = i.operands - j - 1;
2196
2197 if (t->operand_types[j].bitfield.class == Reg
2198 && !match_operand_size (t, j, given))
2199 goto mismatch;
2200
2201 if (t->operand_types[j].bitfield.class == RegSIMD
2202 && !match_simd_size (t, j, given))
2203 goto mismatch;
2204
2205 if (t->operand_types[j].bitfield.instance == Accum
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
2208 goto mismatch;
2209
2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2211 goto mismatch;
2212 }
2213
2214 return match | MATCH_REVERSE;
2215 }
2216
2217 static INLINE int
2218 operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220 {
2221 i386_operand_type temp = overlap;
2222
2223 temp.bitfield.unspecified = 0;
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
2231 temp.bitfield.ymmword = 0;
2232 temp.bitfield.zmmword = 0;
2233 if (operand_type_all_zero (&temp))
2234 goto mismatch;
2235
2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2237 return 1;
2238
2239 mismatch:
2240 i.error = operand_type_mismatch;
2241 return 0;
2242 }
2243
2244 /* If given types g0 and g1 are registers they must be of the same type
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
2248
2249 static INLINE int
2250 operand_type_register_match (i386_operand_type g0,
2251 i386_operand_type t0,
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254 {
2255 if (g0.bitfield.class != Reg
2256 && g0.bitfield.class != RegSIMD
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
2259 || t0.bitfield.class != RegSIMD))
2260 return 1;
2261
2262 if (g1.bitfield.class != Reg
2263 && g1.bitfield.class != RegSIMD
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
2266 || t1.bitfield.class != RegSIMD))
2267 return 1;
2268
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2276 return 1;
2277
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2285 return 1;
2286
2287 i.error = register_type_mismatch;
2288
2289 return 0;
2290 }
2291
2292 static INLINE unsigned int
2293 register_number (const reg_entry *r)
2294 {
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
2303 return nr;
2304 }
2305
2306 static INLINE unsigned int
2307 mode_from_disp_size (i386_operand_type t)
2308 {
2309 if (t.bitfield.disp8)
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
2317 }
2318
2319 static INLINE int
2320 fits_in_signed_byte (addressT num)
2321 {
2322 return num + 0x80 <= 0xff;
2323 }
2324
2325 static INLINE int
2326 fits_in_unsigned_byte (addressT num)
2327 {
2328 return num <= 0xff;
2329 }
2330
2331 static INLINE int
2332 fits_in_unsigned_word (addressT num)
2333 {
2334 return num <= 0xffff;
2335 }
2336
2337 static INLINE int
2338 fits_in_signed_word (addressT num)
2339 {
2340 return num + 0x8000 <= 0xffff;
2341 }
2342
2343 static INLINE int
2344 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2345 {
2346 #ifndef BFD64
2347 return 1;
2348 #else
2349 return num + 0x80000000 <= 0xffffffff;
2350 #endif
2351 } /* fits_in_signed_long() */
2352
2353 static INLINE int
2354 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2355 {
2356 #ifndef BFD64
2357 return 1;
2358 #else
2359 return num <= 0xffffffff;
2360 #endif
2361 } /* fits_in_unsigned_long() */
2362
2363 static INLINE int
2364 fits_in_disp8 (offsetT num)
2365 {
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380 }
2381
2382 static INLINE int
2383 fits_in_imm4 (offsetT num)
2384 {
2385 return (num & 0xf) == num;
2386 }
2387
2388 static i386_operand_type
2389 smallest_imm_type (offsetT num)
2390 {
2391 i386_operand_type t;
2392
2393 operand_type_set (&t, 0);
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
2440 }
2441
2442 static offsetT
2443 offset_in_range (offsetT val, int size)
2444 {
2445 addressT mask;
2446
2447 switch (size)
2448 {
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
2452 #ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454 #endif
2455 default: abort ();
2456 }
2457
2458 #ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2464 #endif
2465
2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475 }
2476
2477 enum PREFIX_GROUP
2478 {
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
2482 PREFIX_DS,
2483 PREFIX_OTHER
2484 };
2485
2486 /* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
2493 */
2494
2495 static enum PREFIX_GROUP
2496 add_prefix (unsigned int prefix)
2497 {
2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
2499 unsigned int q;
2500
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
2503 {
2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2508 ret = PREFIX_EXIST;
2509 q = REX_PREFIX;
2510 }
2511 else
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
2518 case DS_PREFIX_OPCODE:
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
2535 case LOCK_PREFIX_OPCODE:
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
2553 ret = PREFIX_EXIST;
2554 }
2555
2556 if (ret)
2557 {
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
2561 }
2562 else
2563 as_bad (_("same type of prefix used twice"));
2564
2565 return ret;
2566 }
2567
2568 static void
2569 update_code_flag (int value, int check)
2570 {
2571 PRINTF_LIKE ((*as_error));
2572
2573 flag_code = (enum flag_code) value;
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2585 {
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
2592 }
2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2594 {
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
2601 }
2602 stackop_size = '\0';
2603 }
2604
2605 static void
2606 set_code_flag (int value)
2607 {
2608 update_code_flag (value, 0);
2609 }
2610
2611 static void
2612 set_16bit_gcc_code_flag (int new_code_flag)
2613 {
2614 flag_code = (enum flag_code) new_code_flag;
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
2619 stackop_size = LONG_MNEM_SUFFIX;
2620 }
2621
2622 static void
2623 set_intel_syntax (int syntax_flag)
2624 {
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2630 {
2631 char *string;
2632 int e = get_symbol_name (&string);
2633
2634 if (strcmp (string, "prefix") == 0)
2635 ask_naked_reg = 1;
2636 else if (strcmp (string, "noprefix") == 0)
2637 ask_naked_reg = -1;
2638 else
2639 as_bad (_("bad argument to syntax directive."));
2640 (void) restore_line_pointer (e);
2641 }
2642 demand_empty_rest_of_line ();
2643
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
2651
2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2653
2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
2656 register_prefix = allow_naked_reg ? "" : "%";
2657 }
2658
2659 static void
2660 set_intel_mnemonic (int mnemonic_flag)
2661 {
2662 intel_mnemonic = mnemonic_flag;
2663 }
2664
2665 static void
2666 set_allow_index_reg (int flag)
2667 {
2668 allow_index_reg = flag;
2669 }
2670
2671 static void
2672 set_check (int what)
2673 {
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
2692 char *string;
2693 int e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "none") == 0)
2696 *kind = check_none;
2697 else if (strcmp (string, "warning") == 0)
2698 *kind = check_warning;
2699 else if (strcmp (string, "error") == 0)
2700 *kind = check_error;
2701 else
2702 as_bad (_("bad argument to %s_check directive."), str);
2703 (void) restore_line_pointer (e);
2704 }
2705 else
2706 as_bad (_("missing argument for %s_check directive"), str);
2707
2708 demand_empty_rest_of_line ();
2709 }
2710
2711 static void
2712 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2714 {
2715 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
2736 /* If we are targeting Intel L1OM, we must enable it. */
2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2738 || new_flag.bitfield.cpul1om)
2739 return;
2740
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747 #endif
2748 }
2749
2750 static void
2751 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2752 {
2753 SKIP_WHITESPACE ();
2754
2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2756 {
2757 char *string;
2758 int e = get_symbol_name (&string);
2759 unsigned int j;
2760 i386_cpu_flags flags;
2761
2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2763 {
2764 if (strcmp (string, cpu_arch[j].name) == 0)
2765 {
2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2767
2768 if (*string != '.')
2769 {
2770 cpu_arch_name = cpu_arch[j].name;
2771 cpu_sub_arch_name = NULL;
2772 cpu_arch_flags = cpu_arch[j].flags;
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
2790 break;
2791 }
2792
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
2795
2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2797 {
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
2802 cpu_arch[j].name,
2803 (const char *) NULL);
2804 free (name);
2805 }
2806 else
2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2808 cpu_arch_flags = flags;
2809 cpu_arch_isa_flags = flags;
2810 }
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
2815 (void) restore_line_pointer (e);
2816 demand_empty_rest_of_line ();
2817 return;
2818 }
2819 }
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
2823 /* Disable an ISA extension. */
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
2851 if (j >= ARRAY_SIZE (cpu_arch))
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2862 {
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
2876 (void) restore_line_pointer (e);
2877 }
2878
2879 demand_empty_rest_of_line ();
2880 }
2881
2882 enum bfd_architecture
2883 i386_arch (void)
2884 {
2885 if (cpu_arch_isa == PROCESSOR_L1OM)
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
2906 else
2907 return bfd_arch_i386;
2908 }
2909
2910 unsigned long
2911 i386_mach (void)
2912 {
2913 if (!strncmp (default_arch, "x86_64", 6))
2914 {
2915 if (cpu_arch_isa == PROCESSOR_L1OM)
2916 {
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
2929 else if (default_arch[6] == '\0')
2930 return bfd_mach_x86_64;
2931 else
2932 return bfd_mach_x64_32;
2933 }
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
2946 else
2947 as_fatal (_("unknown architecture"));
2948 }
2949 \f
2950 void
2951 md_begin (void)
2952 {
2953 const char *hash_err;
2954
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
2958 /* Initialize op_hash hash table. */
2959 op_hash = hash_new ();
2960
2961 {
2962 const insn_template *optab;
2963 templates *core_optab;
2964
2965 /* Setup for loop. */
2966 optab = i386_optab;
2967 core_optab = XNEW (templates);
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
2977 add to hash table; & begin anew. */
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
2981 (void *) core_optab);
2982 if (hash_err)
2983 {
2984 as_fatal (_("can't hash %s: %s"),
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
2990 core_optab = XNEW (templates);
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
2996 /* Initialize reg_hash hash table. */
2997 reg_hash = hash_new ();
2998 {
2999 const reg_entry *regtab;
3000 unsigned int regtab_size = i386_regtab_size;
3001
3002 for (regtab = i386_regtab; regtab_size--; regtab++)
3003 {
3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3005 if (hash_err)
3006 as_fatal (_("can't hash %s: %s"),
3007 regtab->reg_name,
3008 hash_err);
3009 }
3010 }
3011
3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3013 {
3014 int c;
3015 char *p;
3016
3017 for (c = 0; c < 256; c++)
3018 {
3019 if (ISDIGIT (c))
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3026 else if (ISLOWER (c))
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3032 else if (ISUPPER (c))
3033 {
3034 mnemonic_chars[c] = TOLOWER (c);
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
3038 else if (c == '{' || c == '}')
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
3043
3044 if (ISALPHA (c) || ISDIGIT (c))
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053 #ifdef LEX_AT
3054 identifier_chars['@'] = '@';
3055 #endif
3056 #ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
3059 #endif
3060 digit_chars['-'] = '-';
3061 mnemonic_chars['_'] = '_';
3062 mnemonic_chars['-'] = '-';
3063 mnemonic_chars['.'] = '.';
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
3071 if (flag_code == CODE_64BIT)
3072 {
3073 #if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076 #else
3077 x86_dwarf2_return_column = 16;
3078 #endif
3079 x86_cie_data_alignment = -8;
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
3091 }
3092
3093 void
3094 i386_print_statistics (FILE *file)
3095 {
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098 }
3099 \f
3100 #ifdef DEBUG386
3101
3102 /* Debugging routines for md_assemble. */
3103 static void pte (insn_template *);
3104 static void pt (i386_operand_type);
3105 static void pe (expressionS *);
3106 static void ps (symbolS *);
3107
3108 static void
3109 pi (const char *line, i386_insn *x)
3110 {
3111 unsigned int j;
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3120 x->rm.mode, x->rm.reg, x->rm.regmem);
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
3128 for (j = 0; j < x->operands; j++)
3129 {
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
3132 fprintf (stdout, "\n");
3133 if (x->types[j].bitfield.class == Reg
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
3136 || x->types[j].bitfield.class == SReg
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
3145 }
3146 }
3147
3148 static void
3149 pte (insn_template *t)
3150 {
3151 unsigned int j;
3152 fprintf (stdout, " %d operands ", t->operands);
3153 fprintf (stdout, "opcode %x ", t->base_opcode);
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
3156 if (t->opcode_modifier.d)
3157 fprintf (stdout, "D");
3158 if (t->opcode_modifier.w)
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
3161 for (j = 0; j < t->operands; j++)
3162 {
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
3165 fprintf (stdout, "\n");
3166 }
3167 }
3168
3169 static void
3170 pe (expressionS *e)
3171 {
3172 fprintf (stdout, " operation %d\n", e->X_op);
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187 }
3188
3189 static void
3190 ps (symbolS *s)
3191 {
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196 }
3197
3198 static struct type_name
3199 {
3200 i386_operand_type mask;
3201 const char *name;
3202 }
3203 const type_names[] =
3204 {
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
3233 { OPERAND_TYPE_SREG, "SReg" },
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
3236 { OPERAND_TYPE_REGYMM, "rYMM" },
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
3239 };
3240
3241 static void
3242 pt (i386_operand_type t)
3243 {
3244 unsigned int j;
3245 i386_operand_type a;
3246
3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
3250 if (operand_type_equal (&a, &type_names[j].mask))
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
3253 fflush (stdout);
3254 }
3255
3256 #endif /* DEBUG386 */
3257 \f
3258 static bfd_reloc_code_real_type
3259 reloc (unsigned int size,
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
3263 {
3264 if (other != NO_RELOC)
3265 {
3266 reloc_howto_type *rel;
3267
3268 if (size == 8)
3269 switch (other)
3270 {
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3294 }
3295
3296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
3300 other = BFD_RELOC_SIZE64;
3301 if (pcrel)
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
3306 }
3307 #endif
3308
3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3311 sign = -1;
3312
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3315 as_bad (_("unknown relocation (%u)"), other);
3316 else if (size != bfd_get_reloc_size (rel))
3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3318 bfd_get_reloc_size (rel),
3319 size);
3320 else if (pcrel && !rel->pc_relative)
3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3323 && !sign)
3324 || (rel->complain_on_overflow == complain_overflow_unsigned
3325 && sign > 0))
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
3331
3332 if (pcrel)
3333 {
3334 if (!sign)
3335 as_bad (_("there are no unsigned pc-relative relocations"));
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
3340 case 4: return BFD_RELOC_32_PCREL;
3341 case 8: return BFD_RELOC_64_PCREL;
3342 }
3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3344 }
3345 else
3346 {
3347 if (sign > 0)
3348 switch (size)
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
3362 }
3363
3364 return NO_RELOC;
3365 }
3366
3367 /* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
3372 int
3373 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3374 {
3375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3376 if (!IS_ELF)
3377 return 1;
3378
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
3384 return 0;
3385
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
3428 #endif
3429 return 1;
3430 }
3431
3432 static int
3433 intel_float_operand (const char *mnemonic)
3434 {
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
3481
3482 return 1;
3483 }
3484
3485 /* Build the VEX prefix. */
3486
3487 static void
3488 build_vex_prefix (const insn_template *t)
3489 {
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
3493 unsigned int w;
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
3502 else
3503 register_specifier = 0xf;
3504
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
3509 && i.dir_encoding == dir_encoding_default
3510 && i.operands == i.reg_operands
3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3512 && i.tm.opcode_modifier.vexopcode == VEX0F
3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
3527 gas_assert (i.rm.mode == 3);
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
3539 }
3540
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
3582 else
3583 {
3584 unsigned int op;
3585
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
3588 vector_length = 0;
3589 for (op = t->operands; op--;)
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3624
3625 /* Use 2-byte VEX prefix if possible. */
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
3628 && i.tm.opcode_modifier.vexopcode == VEX0F
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
3647 unsigned int m;
3648
3649 i.vex.length = 3;
3650
3651 switch (i.tm.opcode_modifier.vexopcode)
3652 {
3653 case VEX0F:
3654 m = 0x1;
3655 i.vex.bytes[0] = 0xc4;
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
3659 i.vex.bytes[0] = 0xc4;
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
3663 i.vex.bytes[0] = 0xc4;
3664 break;
3665 case XOP08:
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
3668 break;
3669 case XOP09:
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
3672 break;
3673 case XOP0A:
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
3676 break;
3677 default:
3678 abort ();
3679 }
3680
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690 }
3691
3692 static INLINE bfd_boolean
3693 is_evex_encoding (const insn_template *t)
3694 {
3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3697 || t->opcode_modifier.sae;
3698 }
3699
3700 static INLINE bfd_boolean
3701 is_any_vex_encoding (const insn_template *t)
3702 {
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705 }
3706
3707 /* Build the EVEX prefix. */
3708
3709 static void
3710 build_evex_prefix (void)
3711 {
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
3838 unsigned int op;
3839
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
3842 vec_length = 0;
3843 for (op = i.operands; op--;)
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
3853 else if (i.types[op].bitfield.ymmword)
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
3858 else if (i.types[op].bitfield.xmmword)
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
3865 switch (i.broadcast->bytes)
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
3877 abort ();
3878 }
3879 break;
3880 }
3881 }
3882
3883 if (op >= MAX_OPERANDS)
3884 abort ();
3885 }
3886
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920 }
3921
3922 static void
3923 process_immext (void)
3924 {
3925 expressionS *exp;
3926
3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
3932 AVX instructions also use this encoding, for some of
3933 3 argument instructions. */
3934
3935 gas_assert (i.imm_operands <= 1
3936 && (i.operands <= 2
3937 || (is_any_vex_encoding (&i.tm)
3938 && i.operands <= 4)));
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947 }
3948
3949
3950 static int
3951 check_hle (void)
3952 {
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
3957 case HLEPrefixNone:
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
3960 return 0;
3961 case HLEPrefixLock:
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3965 return 0;
3966 case HLEPrefixAny:
3967 return 1;
3968 case HLEPrefixRelease:
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983 }
3984
3985 /* Try the shortest encoding by shortening operand size. */
3986
3987 static void
3988 optimize_encoding (void)
3989 {
3990 unsigned int j;
3991
3992 if (optimize_for_space
3993 && !is_any_vex_encoding (&i.tm)
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
3999 && (i.tm.base_opcode == 0xa8
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
4025 && !is_any_vex_encoding (&i.tm)
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
4030 && ((i.tm.base_opcode == 0xb8
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
4039 || (i.tm.base_opcode | 1) == 0xc7)
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
4049 || (i.reg_operands == 1
4050 && i.operands == 1
4051 && i.tm.base_opcode == 0x30)))))
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
4055 andq $imm7, %r64 -> andl $imm7, %r32
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
4077 if ((i.tm.base_opcode | 1) == 0xc7)
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
4082 i.tm.base_opcode = 0xb8;
4083 i.tm.extension_opcode = None;
4084 i.tm.opcode_modifier.w = 0;
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
4090 else if (optimize > 1
4091 && !optimize_for_space
4092 && !is_any_vex_encoding (&i.tm)
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
4114 else if (i.reg_operands == 3
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
4118 || ((!i.mask || i.mask->zeroing)
4119 && !i.rounding
4120 && is_evex_encoding (&i.tm)
4121 && (i.vec_encoding != vex_encoding_evex
4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
4124 || (i.tm.operand_types[2].bitfield.zmmword
4125 && i.types[2].bitfield.ymmword))))
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
4140 && i.tm.extension_opcode == None))
4141 {
4142 /* Optimize: -O1:
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
4176 */
4177 if (is_evex_encoding (&i.tm))
4178 {
4179 if (i.vec_encoding != vex_encoding_evex)
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
4185 else if (optimize > 1)
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
4189 }
4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
4205 else if (i.vec_encoding != vex_encoding_evex
4206 && !i.types[0].bitfield.zmmword
4207 && !i.types[1].bitfield.zmmword
4208 && !i.mask
4209 && !i.broadcast
4210 && is_evex_encoding (&i.tm)
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4242 */
4243 for (j = 0; j < i.operands; j++)
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
4276 i.tm.opcode_modifier.broadcast = 0;
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
4282 }
4283 }
4284
4285 /* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289 void
4290 md_assemble (char *line)
4291 {
4292 unsigned int j;
4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4294 const insn_template *t;
4295
4296 /* Initialize globals. */
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
4299 i.reloc[j] = NO_RELOC;
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
4302 save_stack_p = save_stack;
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
4306 start of a (possibly prefixed) mnemonic. */
4307
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
4311 mnem_suffix = i.suffix;
4312
4313 line = parse_operands (line, mnemonic);
4314 this_operand = -1;
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
4317 if (line == NULL)
4318 return;
4319
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
4326 precedes the offset, as it does when in AT&T mode. */
4327 if (intel_syntax
4328 && i.operands > 1
4329 && (strcmp (mnemonic, "bound") != 0)
4330 && (strcmp (mnemonic, "invlpga") != 0)
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
4333 swap_operands ();
4334
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
4348 && i.disp_encoding != disp_encoding_32bit
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
4356
4357 if (!(t = match_template (mnem_suffix)))
4358 return;
4359
4360 if (sse_check != check_none
4361 && !i.tm.opcode_modifier.noavx
4362 && !i.tm.cpu_flags.bitfield.cpuavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
4369 || i.tm.cpu_flags.bitfield.cpusse4_2
4370 || i.tm.cpu_flags.bitfield.cpusse4a
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
4373 || i.tm.cpu_flags.bitfield.cpusha
4374 || i.tm.cpu_flags.bitfield.cpugfni))
4375 {
4376 (sse_check == check_warning
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4386 {
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
4391 && intel_syntax)
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
4395 }
4396
4397 if (i.tm.opcode_modifier.fwait)
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
4400
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
4428 /* Check if HLE prefix is OK. */
4429 if (i.hle_prefix && !check_hle ())
4430 return;
4431
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
4436 /* Check NOTRACK prefix. */
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
4439
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
4449
4450 /* Insert BND prefix. */
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
4461
4462 /* Check string instruction segment overrides. */
4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4464 {
4465 gas_assert (i.mem_operands);
4466 if (!check_string ())
4467 return;
4468 i.disp_operands = 0;
4469 }
4470
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
4474 if (!process_suffix ())
4475 return;
4476
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
4485
4486 if (i.types[0].bitfield.imm1)
4487 i.imm_operands = 0; /* kludge for shift insns. */
4488
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
4495 i.reg_operands--;
4496
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
4500 process_immext ();
4501
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
4513
4514 if (is_any_vex_encoding (&i.tm))
4515 {
4516 if (!cpu_arch_flags.bitfield.cpui286)
4517 {
4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4519 i.tm.name);
4520 return;
4521 }
4522
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
4528
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
4539
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
4551
4552 if (i.tm.opcode_modifier.rex64)
4553 i.rex |= REX_W;
4554
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
4558
4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4565 && i.rex != 0))
4566 {
4567 int x;
4568
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4575 {
4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
4579 as_bad (_("can't encode register '%s%s' in an "
4580 "instruction requiring REX prefix."),
4581 register_prefix, i.op[x].regs->reg_name);
4582
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
4588 }
4589 }
4590 }
4591
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4595 that uses legacy register. If it is "hi" register, don't add
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
4599 if (i.types[x].bitfield.class == Reg
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
4613 if (i.rex != 0)
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
4629 }
4630
4631 static char *
4632 parse_insn (char *line, char *mnemonic)
4633 {
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
4637 int supported;
4638 const insn_template *t;
4639 char *dot_p = NULL;
4640
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4650 {
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
4674
4675 /* Look up instruction (or prefix) via hash table. */
4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4677
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
4681 && current_templates->start->opcode_modifier.isprefix)
4682 {
4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
4695 && flag_code != CODE_64BIT
4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
4702 }
4703 if (current_templates->start->opcode_length == 0)
4704 {
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4751 switch (add_prefix (current_templates->start->base_opcode))
4752 {
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
4769 }
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
4777
4778 if (!current_templates)
4779 {
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
4782 encoding. */
4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4784 i.dir_encoding = dir_encoding_swap;
4785 else if (mnem_p - 3 == dot_p
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
4789 else if (mnem_p - 4 == dot_p
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
4793 i.disp_encoding = disp_encoding_32bit;
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4799 }
4800
4801 if (!current_templates)
4802 {
4803 check_suffix:
4804 if (mnem_p > mnemonic)
4805 {
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
4808 {
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
4817 mnem_p[-1] = '\0';
4818 current_templates = (const templates *) hash_find (op_hash,
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
4845 }
4846 }
4847
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
4854
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
4887
4888 /* Check if instruction is supported on specified architecture. */
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
4897
4898 return l;
4899 }
4900 }
4901
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4912
4913 return NULL;
4914 }
4915
4916 static char *
4917 parse_operands (char *l, const char *mnemonic)
4918 {
4919 char *token_start;
4920
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
4923
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
4939 token_start = l; /* After white space. */
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
4991 i.types[this_operand].bitfield.unspecified = 1;
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
5007 operand_ok = i386_att_operand (token_start);
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
5027
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040 }
5041
5042 static void
5043 swap_2_operands (int xchg1, int xchg2)
5044 {
5045 union i386_op temp_op;
5046 i386_operand_type temp_type;
5047 unsigned int temp_flags;
5048 enum bfd_reloc_code_real temp_reloc;
5049
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
5061
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
5087 }
5088
5089 static void
5090 swap_operands (void)
5091 {
5092 switch (i.operands)
5093 {
5094 case 5:
5095 case 4:
5096 swap_2_operands (1, i.operands - 2);
5097 /* Fall through. */
5098 case 3:
5099 case 2:
5100 swap_2_operands (0, i.operands - 1);
5101 break;
5102 default:
5103 abort ();
5104 }
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113 }
5114
5115 /* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117 static void
5118 optimize_imm (void)
5119 {
5120 char guess_suffix = 0;
5121 int op;
5122
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
5131 for (op = i.operands; --op >= 0;)
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
5135 {
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
5139 else if (i.types[op].bitfield.word)
5140 {
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
5144 else if (i.types[op].bitfield.dword)
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
5149 else if (i.types[op].bitfield.qword)
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
5152 break;
5153 }
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
5159 if (operand_type_check (i.types[op], imm))
5160 {
5161 switch (i.op[op].imms->X_op)
5162 {
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
5166 {
5167 case LONG_MNEM_SUFFIX:
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
5170 break;
5171 case WORD_MNEM_SUFFIX:
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
5176 break;
5177 case BYTE_MNEM_SUFFIX:
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
5184 break;
5185 }
5186
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
5192 if ((i.types[op].bitfield.imm16)
5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5194 {
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
5198 #ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5200 if ((i.types[op].bitfield.imm32)
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
5208 #endif
5209 i.types[op]
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
5212
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
5216 i.types[op].bitfield.imm32 = 0;
5217 break;
5218
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
5229 i386_operand_type mask, allowed;
5230 const insn_template *t;
5231
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
5234
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
5247 break;
5248 case LONG_MNEM_SUFFIX:
5249 mask.bitfield.imm32 = 1;
5250 break;
5251 case WORD_MNEM_SUFFIX:
5252 mask.bitfield.imm16 = 1;
5253 break;
5254 case BYTE_MNEM_SUFFIX:
5255 mask.bitfield.imm8 = 1;
5256 break;
5257 default:
5258 break;
5259 }
5260 allowed = operand_type_and (mask, allowed);
5261 if (!operand_type_all_zero (&allowed))
5262 i.types[op] = operand_type_and (i.types[op], mask);
5263 }
5264 break;
5265 }
5266 }
5267 }
5268
5269 /* Try to use the smallest displacement type too. */
5270 static void
5271 optimize_disp (void)
5272 {
5273 int op;
5274
5275 for (op = i.operands; --op >= 0;)
5276 if (operand_type_check (i.types[op], disp))
5277 {
5278 if (i.op[op].disps->X_op == O_constant)
5279 {
5280 offsetT op_disp = i.op[op].disps->X_add_number;
5281
5282 if (i.types[op].bitfield.disp16
5283 && (op_disp & ~(offsetT) 0xffff) == 0)
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5289 i.types[op].bitfield.disp64 = 0;
5290 }
5291 #ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5293 if (i.types[op].bitfield.disp32
5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5301 i.types[op].bitfield.disp64 = 0;
5302 }
5303 #endif
5304 if (!op_disp && i.types[op].bitfield.baseindex)
5305 {
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
5316 if (fits_in_signed_long (op_disp))
5317 {
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
5320 }
5321 if (i.prefix[ADDR_PREFIX]
5322 && fits_in_unsigned_long (op_disp))
5323 i.types[op].bitfield.disp32 = 1;
5324 }
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
5328 && fits_in_disp8 (op_disp))
5329 i.types[op].bitfield.disp8 = 1;
5330 }
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
5341 }
5342 else
5343 /* We only support 64bit displacement on constants. */
5344 i.types[op].bitfield.disp64 = 0;
5345 }
5346 }
5347
5348 /* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351 static INLINE int
5352 match_broadcast_size (const insn_template *t, unsigned int given)
5353 {
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362 }
5363
5364 /* Check if operands are valid for the instruction. */
5365
5366 static int
5367 check_VecOperands (const insn_template *t)
5368 {
5369 unsigned int op;
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
5394
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
5419 || !((t->opcode_modifier.vecsib == VecSIB128
5420 && i.index_reg->reg_type.bitfield.xmmword)
5421 || (t->opcode_modifier.vecsib == VecSIB256
5422 && i.index_reg->reg_type.bitfield.ymmword)
5423 || (t->opcode_modifier.vecsib == VecSIB512
5424 && i.index_reg->reg_type.bitfield.zmmword)))
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
5457 if (i.types[1].bitfield.class == RegSIMD
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
5473 }
5474
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
5479 i386_operand_type type, overlap;
5480
5481 /* Check if specified broadcast is supported in this instruction,
5482 and its broadcast bytes match the memory operand. */
5483 op = i.broadcast->operand;
5484 if (!t->opcode_modifier.broadcast
5485 || !(i.flags[op] & Operand_Mem)
5486 || (!i.types[op].bitfield.unspecified
5487 && !match_broadcast_size (t, op)))
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
5493
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
5496 operand_type_set (&type, 0);
5497 switch (i.broadcast->bytes)
5498 {
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
5529 type.bitfield.baseindex = 1;
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
5551 if (match_broadcast_size (t, op))
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5559
5560 /* Check if requested masking is supported. */
5561 if (i.mask)
5562 {
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
5581 if (i.flags[op] & Operand_Mem)
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
5617 {
5618 i.error = rc_sae_operand_not_last_imm;
5619 return 1;
5620 }
5621 }
5622
5623 /* Check vector Disp8 operand. */
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
5626 {
5627 if (i.broadcast)
5628 i.memshift = t->opcode_modifier.broadcast - 1;
5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5630 i.memshift = t->opcode_modifier.disp8memshift;
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
5637 if (i.flags[op] & Operand_Mem)
5638 {
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
5648 else if (i.types[op].bitfield.class == RegSIMD
5649 && t->opcode_modifier.evex != EVEXLIG)
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5679 {
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
5682 }
5683 i.types[op].bitfield.disp8 = 0;
5684 }
5685 }
5686
5687 i.memshift = 0;
5688
5689 return 0;
5690 }
5691
5692 /* Check if operands are valid for the instruction. Update VEX
5693 operand types. */
5694
5695 static int
5696 VEX_check_operands (const insn_template *t)
5697 {
5698 if (i.vec_encoding == vex_encoding_evex)
5699 {
5700 /* This instruction must be encoded with EVEX prefix. */
5701 if (!is_evex_encoding (t))
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 if (!t->opcode_modifier.vex)
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
5719
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5725 {
5726 i.error = bad_imm4;
5727 return 1;
5728 }
5729
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
5732 }
5733
5734 return 0;
5735 }
5736
5737 static const insn_template *
5738 match_template (char mnem_suffix)
5739 {
5740 /* Points to template once we've found it. */
5741 const insn_template *t;
5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5743 i386_operand_type overlap4;
5744 unsigned int found_reverse_match;
5745 i386_opcode_modifier suffix_check;
5746 i386_operand_type operand_types [MAX_OPERANDS];
5747 int addr_prefix_disp;
5748 unsigned int j, size_match, check_register;
5749 enum i386_error specific_error = 0;
5750
5751 #if MAX_OPERANDS != 5
5752 # error "MAX_OPERANDS must be 5."
5753 #endif
5754
5755 found_reverse_match = 0;
5756 addr_prefix_disp = -1;
5757
5758 /* Prepare for mnemonic suffix check. */
5759 memset (&suffix_check, 0, sizeof (suffix_check));
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
5785 }
5786
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
5790 for (t = current_templates->start; t < current_templates->end; t++)
5791 {
5792 addr_prefix_disp = -1;
5793 found_reverse_match = 0;
5794
5795 if (i.operands != t->operands)
5796 continue;
5797
5798 /* Check processor support. */
5799 i.error = unsupported;
5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5801 continue;
5802
5803 /* Check AT&T mnemonic. */
5804 i.error = unsupported_with_intel_mnemonic;
5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5806 continue;
5807
5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5809 i.error = unsupported_syntax;
5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
5814 continue;
5815
5816 /* Check the suffix. */
5817 i.error = invalid_instruction_suffix;
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5824 continue;
5825
5826 size_match = operand_size_match (t);
5827 if (!size_match)
5828 continue;
5829
5830 /* This is intentionally not
5831
5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
5849 ? (!t->opcode_modifier.ignoresize
5850 && !t->opcode_modifier.broadcast
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
5873 continue;
5874
5875 /* Do not verify operands when there are none. */
5876 else
5877 {
5878 if (!t->operands)
5879 /* We've found a match; break out of loop. */
5880 break;
5881 }
5882
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
5889 break;
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
5899 {
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
5906 {
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
5909 }
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
5917 {
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
5921 }
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
5924 }
5925 }
5926 }
5927
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
5932 /* We check register size if needed. */
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5943 switch (t->operands)
5944 {
5945 case 1:
5946 if (!operand_type_match (overlap0, i.types[0]))
5947 continue;
5948 break;
5949 case 2:
5950 /* xchg %eax, %eax is a special case. It is an alias for nop
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
5960 continue;
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
5966 && i.types[0].bitfield.instance == Accum
5967 && (i.flags[1] & Operand_Mem))
5968 continue;
5969 /* Fall through. */
5970
5971 case 3:
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
5986 || t->opcode_modifier.regmem)
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5992 && !t->opcode_modifier.regmem)
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
6002 /* If we want store form, we skip the current load. */
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
6007 continue;
6008 /* Fall through. */
6009 case 4:
6010 case 5:
6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
6014 || ((check_register & 3) == 3
6015 && !operand_type_register_match (i.types[0],
6016 operand_types[0],
6017 i.types[1],
6018 operand_types[1])))
6019 {
6020 /* Check if other direction is valid ... */
6021 if (!t->opcode_modifier.d)
6022 continue;
6023
6024 check_reverse:
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
6027 /* Try reversing direction of operands. */
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
6032 || (check_register
6033 && !operand_type_register_match (i.types[0],
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
6036 operand_types[0])))
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
6041 /* found_reverse_match holds which of D or FloatR
6042 we've found. */
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
6046 found_reverse_match = Opcode_FloatD;
6047 else if (operand_types[0].bitfield.xmmword
6048 || operand_types[i.operands - 1].bitfield.xmmword
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6054 else
6055 found_reverse_match = Opcode_D;
6056 if (t->opcode_modifier.floatr)
6057 found_reverse_match |= Opcode_FloatR;
6058 }
6059 else
6060 {
6061 /* Found a forward 2 operand match here. */
6062 switch (t->operands)
6063 {
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
6067 /* Fall through. */
6068 case 4:
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
6071 /* Fall through. */
6072 case 3:
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
6075 break;
6076 }
6077
6078 switch (t->operands)
6079 {
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
6082 || !operand_type_register_match (i.types[3],
6083 operand_types[3],
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
6087 /* Fall through. */
6088 case 4:
6089 if (!operand_type_match (overlap3, i.types[3])
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
6092 operand_types[1],
6093 i.types[3],
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
6100 continue;
6101 /* Fall through. */
6102 case 3:
6103 /* Here we make use of the fact that there are no
6104 reverse match 3 operand instructions. */
6105 if (!operand_type_match (overlap2, i.types[2])
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
6108 operand_types[0],
6109 i.types[2],
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
6116 continue;
6117 break;
6118 }
6119 }
6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
6121 slip through to break. */
6122 }
6123
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
6130
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
6138 const char *err_msg;
6139 switch (specific_error ? specific_error : i.error)
6140 {
6141 default:
6142 abort ();
6143 case operand_size_mismatch:
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
6159 err_msg = _("constant doesn't fit in 4 bits");
6160 break;
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
6168 as_bad (_("unsupported instruction `%s'"),
6169 current_templates->start->name);
6170 return NULL;
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
6209 current_templates->start->name);
6210 return NULL;
6211 }
6212
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6217 as_warn (_("indirect %s without `*'"), t->name);
6218
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
6235 if (found_reverse_match)
6236 {
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
6253 }
6254
6255 return t;
6256 }
6257
6258 static int
6259 check_string (void)
6260 {
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6263
6264 if (i.seg[op] != NULL && i.seg[op] != &es)
6265 {
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
6271 }
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
6279 return 1;
6280 }
6281
6282 static int
6283 process_suffix (void)
6284 {
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
6287 if (i.tm.opcode_modifier.size == SIZE16)
6288 i.suffix = WORD_MNEM_SUFFIX;
6289 else if (i.tm.opcode_modifier.size == SIZE32)
6290 i.suffix = LONG_MNEM_SUFFIX;
6291 else if (i.tm.opcode_modifier.size == SIZE64)
6292 i.suffix = QWORD_MNEM_SUFFIX;
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
6297 based on GPR operands. */
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
6304 if (i.tm.base_opcode == 0xf20f38f0
6305 && i.types[0].bitfield.class == Reg)
6306 {
6307 if (i.types[0].bitfield.byte)
6308 i.suffix = BYTE_MNEM_SUFFIX;
6309 else if (i.types[0].bitfield.word)
6310 i.suffix = WORD_MNEM_SUFFIX;
6311 else if (i.types[0].bitfield.dword)
6312 i.suffix = LONG_MNEM_SUFFIX;
6313 else if (i.types[0].bitfield.qword)
6314 i.suffix = QWORD_MNEM_SUFFIX;
6315 }
6316
6317 if (!i.suffix)
6318 {
6319 int op;
6320
6321 if (i.tm.base_opcode == 0xf20f38f0)
6322 {
6323 /* We have to know the operand size for crc32. */
6324 as_bad (_("ambiguous memory operand size for `%s`"),
6325 i.tm.name);
6326 return 0;
6327 }
6328
6329 for (op = i.operands; --op >= 0;)
6330 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6331 || i.tm.operand_types[op].bitfield.instance == Accum)
6332 {
6333 if (i.types[op].bitfield.class != Reg)
6334 continue;
6335 if (i.types[op].bitfield.byte)
6336 i.suffix = BYTE_MNEM_SUFFIX;
6337 else if (i.types[op].bitfield.word)
6338 i.suffix = WORD_MNEM_SUFFIX;
6339 else if (i.types[op].bitfield.dword)
6340 i.suffix = LONG_MNEM_SUFFIX;
6341 else if (i.types[op].bitfield.qword)
6342 i.suffix = QWORD_MNEM_SUFFIX;
6343 else
6344 continue;
6345 break;
6346 }
6347 }
6348 }
6349 else if (i.suffix == BYTE_MNEM_SUFFIX)
6350 {
6351 if (intel_syntax
6352 && i.tm.opcode_modifier.ignoresize
6353 && i.tm.opcode_modifier.no_bsuf)
6354 i.suffix = 0;
6355 else if (!check_byte_reg ())
6356 return 0;
6357 }
6358 else if (i.suffix == LONG_MNEM_SUFFIX)
6359 {
6360 if (intel_syntax
6361 && i.tm.opcode_modifier.ignoresize
6362 && i.tm.opcode_modifier.no_lsuf
6363 && !i.tm.opcode_modifier.todword
6364 && !i.tm.opcode_modifier.toqword)
6365 i.suffix = 0;
6366 else if (!check_long_reg ())
6367 return 0;
6368 }
6369 else if (i.suffix == QWORD_MNEM_SUFFIX)
6370 {
6371 if (intel_syntax
6372 && i.tm.opcode_modifier.ignoresize
6373 && i.tm.opcode_modifier.no_qsuf
6374 && !i.tm.opcode_modifier.todword
6375 && !i.tm.opcode_modifier.toqword)
6376 i.suffix = 0;
6377 else if (!check_qword_reg ())
6378 return 0;
6379 }
6380 else if (i.suffix == WORD_MNEM_SUFFIX)
6381 {
6382 if (intel_syntax
6383 && i.tm.opcode_modifier.ignoresize
6384 && i.tm.opcode_modifier.no_wsuf)
6385 i.suffix = 0;
6386 else if (!check_word_reg ())
6387 return 0;
6388 }
6389 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6390 /* Do nothing if the instruction is going to ignore the prefix. */
6391 ;
6392 else
6393 abort ();
6394 }
6395 else if (i.tm.opcode_modifier.defaultsize
6396 && !i.suffix
6397 /* exclude fldenv/frstor/fsave/fstenv */
6398 && i.tm.opcode_modifier.no_ssuf)
6399 {
6400 i.suffix = stackop_size;
6401 if (stackop_size == LONG_MNEM_SUFFIX)
6402 {
6403 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6404 .code16gcc directive to support 16-bit mode with
6405 32-bit address. For IRET without a suffix, generate
6406 16-bit IRET (opcode 0xcf) to return from an interrupt
6407 handler. */
6408 if (i.tm.base_opcode == 0xcf)
6409 {
6410 i.suffix = WORD_MNEM_SUFFIX;
6411 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6412 }
6413 /* Warn about changed behavior for segment register push/pop. */
6414 else if ((i.tm.base_opcode | 1) == 0x07)
6415 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6416 i.tm.name);
6417 }
6418 }
6419 else if (!i.suffix
6420 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6421 || i.tm.opcode_modifier.jump == JUMP_BYTE
6422 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6423 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6424 && i.tm.extension_opcode <= 3)))
6425 {
6426 switch (flag_code)
6427 {
6428 case CODE_64BIT:
6429 if (!i.tm.opcode_modifier.no_qsuf)
6430 {
6431 i.suffix = QWORD_MNEM_SUFFIX;
6432 break;
6433 }
6434 /* Fall through. */
6435 case CODE_32BIT:
6436 if (!i.tm.opcode_modifier.no_lsuf)
6437 i.suffix = LONG_MNEM_SUFFIX;
6438 break;
6439 case CODE_16BIT:
6440 if (!i.tm.opcode_modifier.no_wsuf)
6441 i.suffix = WORD_MNEM_SUFFIX;
6442 break;
6443 }
6444 }
6445
6446 if (!i.suffix
6447 && !i.tm.opcode_modifier.defaultsize
6448 && !i.tm.opcode_modifier.ignoresize)
6449 {
6450 unsigned int suffixes;
6451
6452 suffixes = !i.tm.opcode_modifier.no_bsuf;
6453 if (!i.tm.opcode_modifier.no_wsuf)
6454 suffixes |= 1 << 1;
6455 if (!i.tm.opcode_modifier.no_lsuf)
6456 suffixes |= 1 << 2;
6457 if (!i.tm.opcode_modifier.no_ldsuf)
6458 suffixes |= 1 << 3;
6459 if (!i.tm.opcode_modifier.no_ssuf)
6460 suffixes |= 1 << 4;
6461 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6462 suffixes |= 1 << 5;
6463
6464 /* Are multiple suffixes allowed? */
6465 if (suffixes & (suffixes - 1))
6466 {
6467 if (intel_syntax)
6468 {
6469 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6470 return 0;
6471 }
6472 if (operand_check == check_error)
6473 {
6474 as_bad (_("no instruction mnemonic suffix given and "
6475 "no register operands; can't size `%s'"), i.tm.name);
6476 return 0;
6477 }
6478 if (operand_check == check_warning)
6479 as_warn (_("no instruction mnemonic suffix given and "
6480 "no register operands; using default for `%s'"),
6481 i.tm.name);
6482
6483 if (i.tm.opcode_modifier.floatmf)
6484 i.suffix = SHORT_MNEM_SUFFIX;
6485 else if (flag_code == CODE_16BIT)
6486 i.suffix = WORD_MNEM_SUFFIX;
6487 else
6488 i.suffix = LONG_MNEM_SUFFIX;
6489 }
6490 }
6491
6492 /* Change the opcode based on the operand size given by i.suffix. */
6493 switch (i.suffix)
6494 {
6495 /* Size floating point instruction. */
6496 case LONG_MNEM_SUFFIX:
6497 if (i.tm.opcode_modifier.floatmf)
6498 {
6499 i.tm.base_opcode ^= 4;
6500 break;
6501 }
6502 /* fall through */
6503 case WORD_MNEM_SUFFIX:
6504 case QWORD_MNEM_SUFFIX:
6505 /* It's not a byte, select word/dword operation. */
6506 if (i.tm.opcode_modifier.w)
6507 {
6508 if (i.tm.opcode_modifier.shortform)
6509 i.tm.base_opcode |= 8;
6510 else
6511 i.tm.base_opcode |= 1;
6512 }
6513 /* fall through */
6514 case SHORT_MNEM_SUFFIX:
6515 /* Now select between word & dword operations via the operand
6516 size prefix, except for instructions that will ignore this
6517 prefix anyway. */
6518 if (i.reg_operands > 0
6519 && i.types[0].bitfield.class == Reg
6520 && i.tm.opcode_modifier.addrprefixopreg
6521 && (i.tm.operand_types[0].bitfield.instance == Accum
6522 || i.operands == 1))
6523 {
6524 /* The address size override prefix changes the size of the
6525 first operand. */
6526 if ((flag_code == CODE_32BIT
6527 && i.op[0].regs->reg_type.bitfield.word)
6528 || (flag_code != CODE_32BIT
6529 && i.op[0].regs->reg_type.bitfield.dword))
6530 if (!add_prefix (ADDR_PREFIX_OPCODE))
6531 return 0;
6532 }
6533 else if (i.suffix != QWORD_MNEM_SUFFIX
6534 && !i.tm.opcode_modifier.ignoresize
6535 && !i.tm.opcode_modifier.floatmf
6536 && !is_any_vex_encoding (&i.tm)
6537 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6538 || (flag_code == CODE_64BIT
6539 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6540 {
6541 unsigned int prefix = DATA_PREFIX_OPCODE;
6542
6543 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6544 prefix = ADDR_PREFIX_OPCODE;
6545
6546 if (!add_prefix (prefix))
6547 return 0;
6548 }
6549
6550 /* Set mode64 for an operand. */
6551 if (i.suffix == QWORD_MNEM_SUFFIX
6552 && flag_code == CODE_64BIT
6553 && !i.tm.opcode_modifier.norex64
6554 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6555 need rex64. */
6556 && ! (i.operands == 2
6557 && i.tm.base_opcode == 0x90
6558 && i.tm.extension_opcode == None
6559 && i.types[0].bitfield.instance == Accum
6560 && i.types[0].bitfield.qword
6561 && i.types[1].bitfield.instance == Accum
6562 && i.types[1].bitfield.qword))
6563 i.rex |= REX_W;
6564
6565 break;
6566 }
6567
6568 if (i.reg_operands != 0
6569 && i.operands > 1
6570 && i.tm.opcode_modifier.addrprefixopreg
6571 && i.tm.operand_types[0].bitfield.instance != Accum)
6572 {
6573 /* Check invalid register operand when the address size override
6574 prefix changes the size of register operands. */
6575 unsigned int op;
6576 enum { need_word, need_dword, need_qword } need;
6577
6578 if (flag_code == CODE_32BIT)
6579 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6580 else
6581 {
6582 if (i.prefix[ADDR_PREFIX])
6583 need = need_dword;
6584 else
6585 need = flag_code == CODE_64BIT ? need_qword : need_word;
6586 }
6587
6588 for (op = 0; op < i.operands; op++)
6589 if (i.types[op].bitfield.class == Reg
6590 && ((need == need_word
6591 && !i.op[op].regs->reg_type.bitfield.word)
6592 || (need == need_dword
6593 && !i.op[op].regs->reg_type.bitfield.dword)
6594 || (need == need_qword
6595 && !i.op[op].regs->reg_type.bitfield.qword)))
6596 {
6597 as_bad (_("invalid register operand size for `%s'"),
6598 i.tm.name);
6599 return 0;
6600 }
6601 }
6602
6603 return 1;
6604 }
6605
6606 static int
6607 check_byte_reg (void)
6608 {
6609 int op;
6610
6611 for (op = i.operands; --op >= 0;)
6612 {
6613 /* Skip non-register operands. */
6614 if (i.types[op].bitfield.class != Reg)
6615 continue;
6616
6617 /* If this is an eight bit register, it's OK. If it's the 16 or
6618 32 bit version of an eight bit register, we will just use the
6619 low portion, and that's OK too. */
6620 if (i.types[op].bitfield.byte)
6621 continue;
6622
6623 /* I/O port address operands are OK too. */
6624 if (i.tm.operand_types[op].bitfield.instance == RegD
6625 && i.tm.operand_types[op].bitfield.word)
6626 continue;
6627
6628 /* crc32 doesn't generate this warning. */
6629 if (i.tm.base_opcode == 0xf20f38f0)
6630 continue;
6631
6632 if ((i.types[op].bitfield.word
6633 || i.types[op].bitfield.dword
6634 || i.types[op].bitfield.qword)
6635 && i.op[op].regs->reg_num < 4
6636 /* Prohibit these changes in 64bit mode, since the lowering
6637 would be more complicated. */
6638 && flag_code != CODE_64BIT)
6639 {
6640 #if REGISTER_WARNINGS
6641 if (!quiet_warnings)
6642 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6643 register_prefix,
6644 (i.op[op].regs + (i.types[op].bitfield.word
6645 ? REGNAM_AL - REGNAM_AX
6646 : REGNAM_AL - REGNAM_EAX))->reg_name,
6647 register_prefix,
6648 i.op[op].regs->reg_name,
6649 i.suffix);
6650 #endif
6651 continue;
6652 }
6653 /* Any other register is bad. */
6654 if (i.types[op].bitfield.class == Reg
6655 || i.types[op].bitfield.class == RegMMX
6656 || i.types[op].bitfield.class == RegSIMD
6657 || i.types[op].bitfield.class == SReg
6658 || i.types[op].bitfield.class == RegCR
6659 || i.types[op].bitfield.class == RegDR
6660 || i.types[op].bitfield.class == RegTR)
6661 {
6662 as_bad (_("`%s%s' not allowed with `%s%c'"),
6663 register_prefix,
6664 i.op[op].regs->reg_name,
6665 i.tm.name,
6666 i.suffix);
6667 return 0;
6668 }
6669 }
6670 return 1;
6671 }
6672
6673 static int
6674 check_long_reg (void)
6675 {
6676 int op;
6677
6678 for (op = i.operands; --op >= 0;)
6679 /* Skip non-register operands. */
6680 if (i.types[op].bitfield.class != Reg)
6681 continue;
6682 /* Reject eight bit registers, except where the template requires
6683 them. (eg. movzb) */
6684 else if (i.types[op].bitfield.byte
6685 && (i.tm.operand_types[op].bitfield.class == Reg
6686 || i.tm.operand_types[op].bitfield.instance == Accum)
6687 && (i.tm.operand_types[op].bitfield.word
6688 || i.tm.operand_types[op].bitfield.dword))
6689 {
6690 as_bad (_("`%s%s' not allowed with `%s%c'"),
6691 register_prefix,
6692 i.op[op].regs->reg_name,
6693 i.tm.name,
6694 i.suffix);
6695 return 0;
6696 }
6697 /* Warn if the e prefix on a general reg is missing. */
6698 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6699 && i.types[op].bitfield.word
6700 && (i.tm.operand_types[op].bitfield.class == Reg
6701 || i.tm.operand_types[op].bitfield.instance == Accum)
6702 && i.tm.operand_types[op].bitfield.dword)
6703 {
6704 /* Prohibit these changes in the 64bit mode, since the
6705 lowering is more complicated. */
6706 if (flag_code == CODE_64BIT)
6707 {
6708 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6709 register_prefix, i.op[op].regs->reg_name,
6710 i.suffix);
6711 return 0;
6712 }
6713 #if REGISTER_WARNINGS
6714 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6715 register_prefix,
6716 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6717 register_prefix, i.op[op].regs->reg_name, i.suffix);
6718 #endif
6719 }
6720 /* Warn if the r prefix on a general reg is present. */
6721 else if (i.types[op].bitfield.qword
6722 && (i.tm.operand_types[op].bitfield.class == Reg
6723 || i.tm.operand_types[op].bitfield.instance == Accum)
6724 && i.tm.operand_types[op].bitfield.dword)
6725 {
6726 if (intel_syntax
6727 && i.tm.opcode_modifier.toqword
6728 && i.types[0].bitfield.class != RegSIMD)
6729 {
6730 /* Convert to QWORD. We want REX byte. */
6731 i.suffix = QWORD_MNEM_SUFFIX;
6732 }
6733 else
6734 {
6735 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6736 register_prefix, i.op[op].regs->reg_name,
6737 i.suffix);
6738 return 0;
6739 }
6740 }
6741 return 1;
6742 }
6743
6744 static int
6745 check_qword_reg (void)
6746 {
6747 int op;
6748
6749 for (op = i.operands; --op >= 0; )
6750 /* Skip non-register operands. */
6751 if (i.types[op].bitfield.class != Reg)
6752 continue;
6753 /* Reject eight bit registers, except where the template requires
6754 them. (eg. movzb) */
6755 else if (i.types[op].bitfield.byte
6756 && (i.tm.operand_types[op].bitfield.class == Reg
6757 || i.tm.operand_types[op].bitfield.instance == Accum)
6758 && (i.tm.operand_types[op].bitfield.word
6759 || i.tm.operand_types[op].bitfield.dword))
6760 {
6761 as_bad (_("`%s%s' not allowed with `%s%c'"),
6762 register_prefix,
6763 i.op[op].regs->reg_name,
6764 i.tm.name,
6765 i.suffix);
6766 return 0;
6767 }
6768 /* Warn if the r prefix on a general reg is missing. */
6769 else if ((i.types[op].bitfield.word
6770 || i.types[op].bitfield.dword)
6771 && (i.tm.operand_types[op].bitfield.class == Reg
6772 || i.tm.operand_types[op].bitfield.instance == Accum)
6773 && i.tm.operand_types[op].bitfield.qword)
6774 {
6775 /* Prohibit these changes in the 64bit mode, since the
6776 lowering is more complicated. */
6777 if (intel_syntax
6778 && i.tm.opcode_modifier.todword
6779 && i.types[0].bitfield.class != RegSIMD)
6780 {
6781 /* Convert to DWORD. We don't want REX byte. */
6782 i.suffix = LONG_MNEM_SUFFIX;
6783 }
6784 else
6785 {
6786 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6787 register_prefix, i.op[op].regs->reg_name,
6788 i.suffix);
6789 return 0;
6790 }
6791 }
6792 return 1;
6793 }
6794
6795 static int
6796 check_word_reg (void)
6797 {
6798 int op;
6799 for (op = i.operands; --op >= 0;)
6800 /* Skip non-register operands. */
6801 if (i.types[op].bitfield.class != Reg)
6802 continue;
6803 /* Reject eight bit registers, except where the template requires
6804 them. (eg. movzb) */
6805 else if (i.types[op].bitfield.byte
6806 && (i.tm.operand_types[op].bitfield.class == Reg
6807 || i.tm.operand_types[op].bitfield.instance == Accum)
6808 && (i.tm.operand_types[op].bitfield.word
6809 || i.tm.operand_types[op].bitfield.dword))
6810 {
6811 as_bad (_("`%s%s' not allowed with `%s%c'"),
6812 register_prefix,
6813 i.op[op].regs->reg_name,
6814 i.tm.name,
6815 i.suffix);
6816 return 0;
6817 }
6818 /* Warn if the e or r prefix on a general reg is present. */
6819 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6820 && (i.types[op].bitfield.dword
6821 || i.types[op].bitfield.qword)
6822 && (i.tm.operand_types[op].bitfield.class == Reg
6823 || i.tm.operand_types[op].bitfield.instance == Accum)
6824 && i.tm.operand_types[op].bitfield.word)
6825 {
6826 /* Prohibit these changes in the 64bit mode, since the
6827 lowering is more complicated. */
6828 if (flag_code == CODE_64BIT)
6829 {
6830 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6831 register_prefix, i.op[op].regs->reg_name,
6832 i.suffix);
6833 return 0;
6834 }
6835 #if REGISTER_WARNINGS
6836 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6837 register_prefix,
6838 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6839 register_prefix, i.op[op].regs->reg_name, i.suffix);
6840 #endif
6841 }
6842 return 1;
6843 }
6844
6845 static int
6846 update_imm (unsigned int j)
6847 {
6848 i386_operand_type overlap = i.types[j];
6849 if ((overlap.bitfield.imm8
6850 || overlap.bitfield.imm8s
6851 || overlap.bitfield.imm16
6852 || overlap.bitfield.imm32
6853 || overlap.bitfield.imm32s
6854 || overlap.bitfield.imm64)
6855 && !operand_type_equal (&overlap, &imm8)
6856 && !operand_type_equal (&overlap, &imm8s)
6857 && !operand_type_equal (&overlap, &imm16)
6858 && !operand_type_equal (&overlap, &imm32)
6859 && !operand_type_equal (&overlap, &imm32s)
6860 && !operand_type_equal (&overlap, &imm64))
6861 {
6862 if (i.suffix)
6863 {
6864 i386_operand_type temp;
6865
6866 operand_type_set (&temp, 0);
6867 if (i.suffix == BYTE_MNEM_SUFFIX)
6868 {
6869 temp.bitfield.imm8 = overlap.bitfield.imm8;
6870 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6871 }
6872 else if (i.suffix == WORD_MNEM_SUFFIX)
6873 temp.bitfield.imm16 = overlap.bitfield.imm16;
6874 else if (i.suffix == QWORD_MNEM_SUFFIX)
6875 {
6876 temp.bitfield.imm64 = overlap.bitfield.imm64;
6877 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6878 }
6879 else
6880 temp.bitfield.imm32 = overlap.bitfield.imm32;
6881 overlap = temp;
6882 }
6883 else if (operand_type_equal (&overlap, &imm16_32_32s)
6884 || operand_type_equal (&overlap, &imm16_32)
6885 || operand_type_equal (&overlap, &imm16_32s))
6886 {
6887 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6888 overlap = imm16;
6889 else
6890 overlap = imm32s;
6891 }
6892 if (!operand_type_equal (&overlap, &imm8)
6893 && !operand_type_equal (&overlap, &imm8s)
6894 && !operand_type_equal (&overlap, &imm16)
6895 && !operand_type_equal (&overlap, &imm32)
6896 && !operand_type_equal (&overlap, &imm32s)
6897 && !operand_type_equal (&overlap, &imm64))
6898 {
6899 as_bad (_("no instruction mnemonic suffix given; "
6900 "can't determine immediate size"));
6901 return 0;
6902 }
6903 }
6904 i.types[j] = overlap;
6905
6906 return 1;
6907 }
6908
6909 static int
6910 finalize_imm (void)
6911 {
6912 unsigned int j, n;
6913
6914 /* Update the first 2 immediate operands. */
6915 n = i.operands > 2 ? 2 : i.operands;
6916 if (n)
6917 {
6918 for (j = 0; j < n; j++)
6919 if (update_imm (j) == 0)
6920 return 0;
6921
6922 /* The 3rd operand can't be immediate operand. */
6923 gas_assert (operand_type_check (i.types[2], imm) == 0);
6924 }
6925
6926 return 1;
6927 }
6928
6929 static int
6930 process_operands (void)
6931 {
6932 /* Default segment register this instruction will use for memory
6933 accesses. 0 means unknown. This is only for optimizing out
6934 unnecessary segment overrides. */
6935 const seg_entry *default_seg = 0;
6936
6937 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6938 {
6939 unsigned int dupl = i.operands;
6940 unsigned int dest = dupl - 1;
6941 unsigned int j;
6942
6943 /* The destination must be an xmm register. */
6944 gas_assert (i.reg_operands
6945 && MAX_OPERANDS > dupl
6946 && operand_type_equal (&i.types[dest], &regxmm));
6947
6948 if (i.tm.operand_types[0].bitfield.instance == Accum
6949 && i.tm.operand_types[0].bitfield.xmmword)
6950 {
6951 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6952 {
6953 /* Keep xmm0 for instructions with VEX prefix and 3
6954 sources. */
6955 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6956 i.tm.operand_types[0].bitfield.class = RegSIMD;
6957 goto duplicate;
6958 }
6959 else
6960 {
6961 /* We remove the first xmm0 and keep the number of
6962 operands unchanged, which in fact duplicates the
6963 destination. */
6964 for (j = 1; j < i.operands; j++)
6965 {
6966 i.op[j - 1] = i.op[j];
6967 i.types[j - 1] = i.types[j];
6968 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6969 i.flags[j - 1] = i.flags[j];
6970 }
6971 }
6972 }
6973 else if (i.tm.opcode_modifier.implicit1stxmm0)
6974 {
6975 gas_assert ((MAX_OPERANDS - 1) > dupl
6976 && (i.tm.opcode_modifier.vexsources
6977 == VEX3SOURCES));
6978
6979 /* Add the implicit xmm0 for instructions with VEX prefix
6980 and 3 sources. */
6981 for (j = i.operands; j > 0; j--)
6982 {
6983 i.op[j] = i.op[j - 1];
6984 i.types[j] = i.types[j - 1];
6985 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6986 i.flags[j] = i.flags[j - 1];
6987 }
6988 i.op[0].regs
6989 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6990 i.types[0] = regxmm;
6991 i.tm.operand_types[0] = regxmm;
6992
6993 i.operands += 2;
6994 i.reg_operands += 2;
6995 i.tm.operands += 2;
6996
6997 dupl++;
6998 dest++;
6999 i.op[dupl] = i.op[dest];
7000 i.types[dupl] = i.types[dest];
7001 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7002 i.flags[dupl] = i.flags[dest];
7003 }
7004 else
7005 {
7006 duplicate:
7007 i.operands++;
7008 i.reg_operands++;
7009 i.tm.operands++;
7010
7011 i.op[dupl] = i.op[dest];
7012 i.types[dupl] = i.types[dest];
7013 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7014 i.flags[dupl] = i.flags[dest];
7015 }
7016
7017 if (i.tm.opcode_modifier.immext)
7018 process_immext ();
7019 }
7020 else if (i.tm.operand_types[0].bitfield.instance == Accum
7021 && i.tm.operand_types[0].bitfield.xmmword)
7022 {
7023 unsigned int j;
7024
7025 for (j = 1; j < i.operands; j++)
7026 {
7027 i.op[j - 1] = i.op[j];
7028 i.types[j - 1] = i.types[j];
7029
7030 /* We need to adjust fields in i.tm since they are used by
7031 build_modrm_byte. */
7032 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7033
7034 i.flags[j - 1] = i.flags[j];
7035 }
7036
7037 i.operands--;
7038 i.reg_operands--;
7039 i.tm.operands--;
7040 }
7041 else if (i.tm.opcode_modifier.implicitquadgroup)
7042 {
7043 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7044
7045 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7046 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7047 regnum = register_number (i.op[1].regs);
7048 first_reg_in_group = regnum & ~3;
7049 last_reg_in_group = first_reg_in_group + 3;
7050 if (regnum != first_reg_in_group)
7051 as_warn (_("source register `%s%s' implicitly denotes"
7052 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7053 register_prefix, i.op[1].regs->reg_name,
7054 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7055 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7056 i.tm.name);
7057 }
7058 else if (i.tm.opcode_modifier.regkludge)
7059 {
7060 /* The imul $imm, %reg instruction is converted into
7061 imul $imm, %reg, %reg, and the clr %reg instruction
7062 is converted into xor %reg, %reg. */
7063
7064 unsigned int first_reg_op;
7065
7066 if (operand_type_check (i.types[0], reg))
7067 first_reg_op = 0;
7068 else
7069 first_reg_op = 1;
7070 /* Pretend we saw the extra register operand. */
7071 gas_assert (i.reg_operands == 1
7072 && i.op[first_reg_op + 1].regs == 0);
7073 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7074 i.types[first_reg_op + 1] = i.types[first_reg_op];
7075 i.operands++;
7076 i.reg_operands++;
7077 }
7078
7079 if (i.tm.opcode_modifier.modrm)
7080 {
7081 /* The opcode is completed (modulo i.tm.extension_opcode which
7082 must be put into the modrm byte). Now, we make the modrm and
7083 index base bytes based on all the info we've collected. */
7084
7085 default_seg = build_modrm_byte ();
7086 }
7087 else if (i.types[0].bitfield.class == SReg)
7088 {
7089 if (flag_code != CODE_64BIT
7090 ? i.tm.base_opcode == POP_SEG_SHORT
7091 && i.op[0].regs->reg_num == 1
7092 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7093 && i.op[0].regs->reg_num < 4)
7094 {
7095 as_bad (_("you can't `%s %s%s'"),
7096 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7097 return 0;
7098 }
7099 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7100 {
7101 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7102 i.tm.opcode_length = 2;
7103 }
7104 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7105 }
7106 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7107 {
7108 default_seg = &ds;
7109 }
7110 else if (i.tm.opcode_modifier.isstring)
7111 {
7112 /* For the string instructions that allow a segment override
7113 on one of their operands, the default segment is ds. */
7114 default_seg = &ds;
7115 }
7116 else if (i.tm.opcode_modifier.shortform)
7117 {
7118 /* The register or float register operand is in operand
7119 0 or 1. */
7120 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7121
7122 /* Register goes in low 3 bits of opcode. */
7123 i.tm.base_opcode |= i.op[op].regs->reg_num;
7124 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7125 i.rex |= REX_B;
7126 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7127 {
7128 /* Warn about some common errors, but press on regardless.
7129 The first case can be generated by gcc (<= 2.8.1). */
7130 if (i.operands == 2)
7131 {
7132 /* Reversed arguments on faddp, fsubp, etc. */
7133 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7134 register_prefix, i.op[!intel_syntax].regs->reg_name,
7135 register_prefix, i.op[intel_syntax].regs->reg_name);
7136 }
7137 else
7138 {
7139 /* Extraneous `l' suffix on fp insn. */
7140 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7141 register_prefix, i.op[0].regs->reg_name);
7142 }
7143 }
7144 }
7145
7146 if (i.tm.base_opcode == 0x8d /* lea */
7147 && i.seg[0]
7148 && !quiet_warnings)
7149 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7150
7151 /* If a segment was explicitly specified, and the specified segment
7152 is not the default, use an opcode prefix to select it. If we
7153 never figured out what the default segment is, then default_seg
7154 will be zero at this point, and the specified segment prefix will
7155 always be used. */
7156 if ((i.seg[0]) && (i.seg[0] != default_seg))
7157 {
7158 if (!add_prefix (i.seg[0]->seg_prefix))
7159 return 0;
7160 }
7161 return 1;
7162 }
7163
7164 static const seg_entry *
7165 build_modrm_byte (void)
7166 {
7167 const seg_entry *default_seg = 0;
7168 unsigned int source, dest;
7169 int vex_3_sources;
7170
7171 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7172 if (vex_3_sources)
7173 {
7174 unsigned int nds, reg_slot;
7175 expressionS *exp;
7176
7177 dest = i.operands - 1;
7178 nds = dest - 1;
7179
7180 /* There are 2 kinds of instructions:
7181 1. 5 operands: 4 register operands or 3 register operands
7182 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7183 VexW0 or VexW1. The destination must be either XMM, YMM or
7184 ZMM register.
7185 2. 4 operands: 4 register operands or 3 register operands
7186 plus 1 memory operand, with VexXDS. */
7187 gas_assert ((i.reg_operands == 4
7188 || (i.reg_operands == 3 && i.mem_operands == 1))
7189 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7190 && i.tm.opcode_modifier.vexw
7191 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7192
7193 /* If VexW1 is set, the first non-immediate operand is the source and
7194 the second non-immediate one is encoded in the immediate operand. */
7195 if (i.tm.opcode_modifier.vexw == VEXW1)
7196 {
7197 source = i.imm_operands;
7198 reg_slot = i.imm_operands + 1;
7199 }
7200 else
7201 {
7202 source = i.imm_operands + 1;
7203 reg_slot = i.imm_operands;
7204 }
7205
7206 if (i.imm_operands == 0)
7207 {
7208 /* When there is no immediate operand, generate an 8bit
7209 immediate operand to encode the first operand. */
7210 exp = &im_expressions[i.imm_operands++];
7211 i.op[i.operands].imms = exp;
7212 i.types[i.operands] = imm8;
7213 i.operands++;
7214
7215 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7216 exp->X_op = O_constant;
7217 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7218 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7219 }
7220 else
7221 {
7222 gas_assert (i.imm_operands == 1);
7223 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7224 gas_assert (!i.tm.opcode_modifier.immext);
7225
7226 /* Turn on Imm8 again so that output_imm will generate it. */
7227 i.types[0].bitfield.imm8 = 1;
7228
7229 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7230 i.op[0].imms->X_add_number
7231 |= register_number (i.op[reg_slot].regs) << 4;
7232 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7233 }
7234
7235 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7236 i.vex.register_specifier = i.op[nds].regs;
7237 }
7238 else
7239 source = dest = 0;
7240
7241 /* i.reg_operands MUST be the number of real register operands;
7242 implicit registers do not count. If there are 3 register
7243 operands, it must be a instruction with VexNDS. For a
7244 instruction with VexNDD, the destination register is encoded
7245 in VEX prefix. If there are 4 register operands, it must be
7246 a instruction with VEX prefix and 3 sources. */
7247 if (i.mem_operands == 0
7248 && ((i.reg_operands == 2
7249 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7250 || (i.reg_operands == 3
7251 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7252 || (i.reg_operands == 4 && vex_3_sources)))
7253 {
7254 switch (i.operands)
7255 {
7256 case 2:
7257 source = 0;
7258 break;
7259 case 3:
7260 /* When there are 3 operands, one of them may be immediate,
7261 which may be the first or the last operand. Otherwise,
7262 the first operand must be shift count register (cl) or it
7263 is an instruction with VexNDS. */
7264 gas_assert (i.imm_operands == 1
7265 || (i.imm_operands == 0
7266 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7267 || (i.types[0].bitfield.instance == RegC
7268 && i.types[0].bitfield.byte))));
7269 if (operand_type_check (i.types[0], imm)
7270 || (i.types[0].bitfield.instance == RegC
7271 && i.types[0].bitfield.byte))
7272 source = 1;
7273 else
7274 source = 0;
7275 break;
7276 case 4:
7277 /* When there are 4 operands, the first two must be 8bit
7278 immediate operands. The source operand will be the 3rd
7279 one.
7280
7281 For instructions with VexNDS, if the first operand
7282 an imm8, the source operand is the 2nd one. If the last
7283 operand is imm8, the source operand is the first one. */
7284 gas_assert ((i.imm_operands == 2
7285 && i.types[0].bitfield.imm8
7286 && i.types[1].bitfield.imm8)
7287 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7288 && i.imm_operands == 1
7289 && (i.types[0].bitfield.imm8
7290 || i.types[i.operands - 1].bitfield.imm8
7291 || i.rounding)));
7292 if (i.imm_operands == 2)
7293 source = 2;
7294 else
7295 {
7296 if (i.types[0].bitfield.imm8)
7297 source = 1;
7298 else
7299 source = 0;
7300 }
7301 break;
7302 case 5:
7303 if (is_evex_encoding (&i.tm))
7304 {
7305 /* For EVEX instructions, when there are 5 operands, the
7306 first one must be immediate operand. If the second one
7307 is immediate operand, the source operand is the 3th
7308 one. If the last one is immediate operand, the source
7309 operand is the 2nd one. */
7310 gas_assert (i.imm_operands == 2
7311 && i.tm.opcode_modifier.sae
7312 && operand_type_check (i.types[0], imm));
7313 if (operand_type_check (i.types[1], imm))
7314 source = 2;
7315 else if (operand_type_check (i.types[4], imm))
7316 source = 1;
7317 else
7318 abort ();
7319 }
7320 break;
7321 default:
7322 abort ();
7323 }
7324
7325 if (!vex_3_sources)
7326 {
7327 dest = source + 1;
7328
7329 /* RC/SAE operand could be between DEST and SRC. That happens
7330 when one operand is GPR and the other one is XMM/YMM/ZMM
7331 register. */
7332 if (i.rounding && i.rounding->operand == (int) dest)
7333 dest++;
7334
7335 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7336 {
7337 /* For instructions with VexNDS, the register-only source
7338 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7339 register. It is encoded in VEX prefix. */
7340
7341 i386_operand_type op;
7342 unsigned int vvvv;
7343
7344 /* Check register-only source operand when two source
7345 operands are swapped. */
7346 if (!i.tm.operand_types[source].bitfield.baseindex
7347 && i.tm.operand_types[dest].bitfield.baseindex)
7348 {
7349 vvvv = source;
7350 source = dest;
7351 }
7352 else
7353 vvvv = dest;
7354
7355 op = i.tm.operand_types[vvvv];
7356 if ((dest + 1) >= i.operands
7357 || ((op.bitfield.class != Reg
7358 || (!op.bitfield.dword && !op.bitfield.qword))
7359 && op.bitfield.class != RegSIMD
7360 && !operand_type_equal (&op, &regmask)))
7361 abort ();
7362 i.vex.register_specifier = i.op[vvvv].regs;
7363 dest++;
7364 }
7365 }
7366
7367 i.rm.mode = 3;
7368 /* One of the register operands will be encoded in the i.rm.reg
7369 field, the other in the combined i.rm.mode and i.rm.regmem
7370 fields. If no form of this instruction supports a memory
7371 destination operand, then we assume the source operand may
7372 sometimes be a memory operand and so we need to store the
7373 destination in the i.rm.reg field. */
7374 if (!i.tm.opcode_modifier.regmem
7375 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7376 {
7377 i.rm.reg = i.op[dest].regs->reg_num;
7378 i.rm.regmem = i.op[source].regs->reg_num;
7379 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7380 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7381 i.has_regmmx = TRUE;
7382 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7383 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7384 {
7385 if (i.types[dest].bitfield.zmmword
7386 || i.types[source].bitfield.zmmword)
7387 i.has_regzmm = TRUE;
7388 else if (i.types[dest].bitfield.ymmword
7389 || i.types[source].bitfield.ymmword)
7390 i.has_regymm = TRUE;
7391 else
7392 i.has_regxmm = TRUE;
7393 }
7394 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7395 i.rex |= REX_R;
7396 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7397 i.vrex |= REX_R;
7398 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7399 i.rex |= REX_B;
7400 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7401 i.vrex |= REX_B;
7402 }
7403 else
7404 {
7405 i.rm.reg = i.op[source].regs->reg_num;
7406 i.rm.regmem = i.op[dest].regs->reg_num;
7407 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7408 i.rex |= REX_B;
7409 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7410 i.vrex |= REX_B;
7411 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7412 i.rex |= REX_R;
7413 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7414 i.vrex |= REX_R;
7415 }
7416 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7417 {
7418 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7419 abort ();
7420 i.rex &= ~REX_R;
7421 add_prefix (LOCK_PREFIX_OPCODE);
7422 }
7423 }
7424 else
7425 { /* If it's not 2 reg operands... */
7426 unsigned int mem;
7427
7428 if (i.mem_operands)
7429 {
7430 unsigned int fake_zero_displacement = 0;
7431 unsigned int op;
7432
7433 for (op = 0; op < i.operands; op++)
7434 if (i.flags[op] & Operand_Mem)
7435 break;
7436 gas_assert (op < i.operands);
7437
7438 if (i.tm.opcode_modifier.vecsib)
7439 {
7440 if (i.index_reg->reg_num == RegIZ)
7441 abort ();
7442
7443 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7444 if (!i.base_reg)
7445 {
7446 i.sib.base = NO_BASE_REGISTER;
7447 i.sib.scale = i.log2_scale_factor;
7448 i.types[op].bitfield.disp8 = 0;
7449 i.types[op].bitfield.disp16 = 0;
7450 i.types[op].bitfield.disp64 = 0;
7451 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7452 {
7453 /* Must be 32 bit */
7454 i.types[op].bitfield.disp32 = 1;
7455 i.types[op].bitfield.disp32s = 0;
7456 }
7457 else
7458 {
7459 i.types[op].bitfield.disp32 = 0;
7460 i.types[op].bitfield.disp32s = 1;
7461 }
7462 }
7463 i.sib.index = i.index_reg->reg_num;
7464 if ((i.index_reg->reg_flags & RegRex) != 0)
7465 i.rex |= REX_X;
7466 if ((i.index_reg->reg_flags & RegVRex) != 0)
7467 i.vrex |= REX_X;
7468 }
7469
7470 default_seg = &ds;
7471
7472 if (i.base_reg == 0)
7473 {
7474 i.rm.mode = 0;
7475 if (!i.disp_operands)
7476 fake_zero_displacement = 1;
7477 if (i.index_reg == 0)
7478 {
7479 i386_operand_type newdisp;
7480
7481 gas_assert (!i.tm.opcode_modifier.vecsib);
7482 /* Operand is just <disp> */
7483 if (flag_code == CODE_64BIT)
7484 {
7485 /* 64bit mode overwrites the 32bit absolute
7486 addressing by RIP relative addressing and
7487 absolute addressing is encoded by one of the
7488 redundant SIB forms. */
7489 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7490 i.sib.base = NO_BASE_REGISTER;
7491 i.sib.index = NO_INDEX_REGISTER;
7492 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7493 }
7494 else if ((flag_code == CODE_16BIT)
7495 ^ (i.prefix[ADDR_PREFIX] != 0))
7496 {
7497 i.rm.regmem = NO_BASE_REGISTER_16;
7498 newdisp = disp16;
7499 }
7500 else
7501 {
7502 i.rm.regmem = NO_BASE_REGISTER;
7503 newdisp = disp32;
7504 }
7505 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7506 i.types[op] = operand_type_or (i.types[op], newdisp);
7507 }
7508 else if (!i.tm.opcode_modifier.vecsib)
7509 {
7510 /* !i.base_reg && i.index_reg */
7511 if (i.index_reg->reg_num == RegIZ)
7512 i.sib.index = NO_INDEX_REGISTER;
7513 else
7514 i.sib.index = i.index_reg->reg_num;
7515 i.sib.base = NO_BASE_REGISTER;
7516 i.sib.scale = i.log2_scale_factor;
7517 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7518 i.types[op].bitfield.disp8 = 0;
7519 i.types[op].bitfield.disp16 = 0;
7520 i.types[op].bitfield.disp64 = 0;
7521 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7522 {
7523 /* Must be 32 bit */
7524 i.types[op].bitfield.disp32 = 1;
7525 i.types[op].bitfield.disp32s = 0;
7526 }
7527 else
7528 {
7529 i.types[op].bitfield.disp32 = 0;
7530 i.types[op].bitfield.disp32s = 1;
7531 }
7532 if ((i.index_reg->reg_flags & RegRex) != 0)
7533 i.rex |= REX_X;
7534 }
7535 }
7536 /* RIP addressing for 64bit mode. */
7537 else if (i.base_reg->reg_num == RegIP)
7538 {
7539 gas_assert (!i.tm.opcode_modifier.vecsib);
7540 i.rm.regmem = NO_BASE_REGISTER;
7541 i.types[op].bitfield.disp8 = 0;
7542 i.types[op].bitfield.disp16 = 0;
7543 i.types[op].bitfield.disp32 = 0;
7544 i.types[op].bitfield.disp32s = 1;
7545 i.types[op].bitfield.disp64 = 0;
7546 i.flags[op] |= Operand_PCrel;
7547 if (! i.disp_operands)
7548 fake_zero_displacement = 1;
7549 }
7550 else if (i.base_reg->reg_type.bitfield.word)
7551 {
7552 gas_assert (!i.tm.opcode_modifier.vecsib);
7553 switch (i.base_reg->reg_num)
7554 {
7555 case 3: /* (%bx) */
7556 if (i.index_reg == 0)
7557 i.rm.regmem = 7;
7558 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7559 i.rm.regmem = i.index_reg->reg_num - 6;
7560 break;
7561 case 5: /* (%bp) */
7562 default_seg = &ss;
7563 if (i.index_reg == 0)
7564 {
7565 i.rm.regmem = 6;
7566 if (operand_type_check (i.types[op], disp) == 0)
7567 {
7568 /* fake (%bp) into 0(%bp) */
7569 i.types[op].bitfield.disp8 = 1;
7570 fake_zero_displacement = 1;
7571 }
7572 }
7573 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7574 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7575 break;
7576 default: /* (%si) -> 4 or (%di) -> 5 */
7577 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7578 }
7579 i.rm.mode = mode_from_disp_size (i.types[op]);
7580 }
7581 else /* i.base_reg and 32/64 bit mode */
7582 {
7583 if (flag_code == CODE_64BIT
7584 && operand_type_check (i.types[op], disp))
7585 {
7586 i.types[op].bitfield.disp16 = 0;
7587 i.types[op].bitfield.disp64 = 0;
7588 if (i.prefix[ADDR_PREFIX] == 0)
7589 {
7590 i.types[op].bitfield.disp32 = 0;
7591 i.types[op].bitfield.disp32s = 1;
7592 }
7593 else
7594 {
7595 i.types[op].bitfield.disp32 = 1;
7596 i.types[op].bitfield.disp32s = 0;
7597 }
7598 }
7599
7600 if (!i.tm.opcode_modifier.vecsib)
7601 i.rm.regmem = i.base_reg->reg_num;
7602 if ((i.base_reg->reg_flags & RegRex) != 0)
7603 i.rex |= REX_B;
7604 i.sib.base = i.base_reg->reg_num;
7605 /* x86-64 ignores REX prefix bit here to avoid decoder
7606 complications. */
7607 if (!(i.base_reg->reg_flags & RegRex)
7608 && (i.base_reg->reg_num == EBP_REG_NUM
7609 || i.base_reg->reg_num == ESP_REG_NUM))
7610 default_seg = &ss;
7611 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7612 {
7613 fake_zero_displacement = 1;
7614 i.types[op].bitfield.disp8 = 1;
7615 }
7616 i.sib.scale = i.log2_scale_factor;
7617 if (i.index_reg == 0)
7618 {
7619 gas_assert (!i.tm.opcode_modifier.vecsib);
7620 /* <disp>(%esp) becomes two byte modrm with no index
7621 register. We've already stored the code for esp
7622 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7623 Any base register besides %esp will not use the
7624 extra modrm byte. */
7625 i.sib.index = NO_INDEX_REGISTER;
7626 }
7627 else if (!i.tm.opcode_modifier.vecsib)
7628 {
7629 if (i.index_reg->reg_num == RegIZ)
7630 i.sib.index = NO_INDEX_REGISTER;
7631 else
7632 i.sib.index = i.index_reg->reg_num;
7633 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7634 if ((i.index_reg->reg_flags & RegRex) != 0)
7635 i.rex |= REX_X;
7636 }
7637
7638 if (i.disp_operands
7639 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7640 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7641 i.rm.mode = 0;
7642 else
7643 {
7644 if (!fake_zero_displacement
7645 && !i.disp_operands
7646 && i.disp_encoding)
7647 {
7648 fake_zero_displacement = 1;
7649 if (i.disp_encoding == disp_encoding_8bit)
7650 i.types[op].bitfield.disp8 = 1;
7651 else
7652 i.types[op].bitfield.disp32 = 1;
7653 }
7654 i.rm.mode = mode_from_disp_size (i.types[op]);
7655 }
7656 }
7657
7658 if (fake_zero_displacement)
7659 {
7660 /* Fakes a zero displacement assuming that i.types[op]
7661 holds the correct displacement size. */
7662 expressionS *exp;
7663
7664 gas_assert (i.op[op].disps == 0);
7665 exp = &disp_expressions[i.disp_operands++];
7666 i.op[op].disps = exp;
7667 exp->X_op = O_constant;
7668 exp->X_add_number = 0;
7669 exp->X_add_symbol = (symbolS *) 0;
7670 exp->X_op_symbol = (symbolS *) 0;
7671 }
7672
7673 mem = op;
7674 }
7675 else
7676 mem = ~0;
7677
7678 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7679 {
7680 if (operand_type_check (i.types[0], imm))
7681 i.vex.register_specifier = NULL;
7682 else
7683 {
7684 /* VEX.vvvv encodes one of the sources when the first
7685 operand is not an immediate. */
7686 if (i.tm.opcode_modifier.vexw == VEXW0)
7687 i.vex.register_specifier = i.op[0].regs;
7688 else
7689 i.vex.register_specifier = i.op[1].regs;
7690 }
7691
7692 /* Destination is a XMM register encoded in the ModRM.reg
7693 and VEX.R bit. */
7694 i.rm.reg = i.op[2].regs->reg_num;
7695 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7696 i.rex |= REX_R;
7697
7698 /* ModRM.rm and VEX.B encodes the other source. */
7699 if (!i.mem_operands)
7700 {
7701 i.rm.mode = 3;
7702
7703 if (i.tm.opcode_modifier.vexw == VEXW0)
7704 i.rm.regmem = i.op[1].regs->reg_num;
7705 else
7706 i.rm.regmem = i.op[0].regs->reg_num;
7707
7708 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7709 i.rex |= REX_B;
7710 }
7711 }
7712 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7713 {
7714 i.vex.register_specifier = i.op[2].regs;
7715 if (!i.mem_operands)
7716 {
7717 i.rm.mode = 3;
7718 i.rm.regmem = i.op[1].regs->reg_num;
7719 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7720 i.rex |= REX_B;
7721 }
7722 }
7723 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7724 (if any) based on i.tm.extension_opcode. Again, we must be
7725 careful to make sure that segment/control/debug/test/MMX
7726 registers are coded into the i.rm.reg field. */
7727 else if (i.reg_operands)
7728 {
7729 unsigned int op;
7730 unsigned int vex_reg = ~0;
7731
7732 for (op = 0; op < i.operands; op++)
7733 {
7734 if (i.types[op].bitfield.class == Reg
7735 || i.types[op].bitfield.class == RegBND
7736 || i.types[op].bitfield.class == RegMask
7737 || i.types[op].bitfield.class == SReg
7738 || i.types[op].bitfield.class == RegCR
7739 || i.types[op].bitfield.class == RegDR
7740 || i.types[op].bitfield.class == RegTR)
7741 break;
7742 if (i.types[op].bitfield.class == RegSIMD)
7743 {
7744 if (i.types[op].bitfield.zmmword)
7745 i.has_regzmm = TRUE;
7746 else if (i.types[op].bitfield.ymmword)
7747 i.has_regymm = TRUE;
7748 else
7749 i.has_regxmm = TRUE;
7750 break;
7751 }
7752 if (i.types[op].bitfield.class == RegMMX)
7753 {
7754 i.has_regmmx = TRUE;
7755 break;
7756 }
7757 }
7758
7759 if (vex_3_sources)
7760 op = dest;
7761 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7762 {
7763 /* For instructions with VexNDS, the register-only
7764 source operand is encoded in VEX prefix. */
7765 gas_assert (mem != (unsigned int) ~0);
7766
7767 if (op > mem)
7768 {
7769 vex_reg = op++;
7770 gas_assert (op < i.operands);
7771 }
7772 else
7773 {
7774 /* Check register-only source operand when two source
7775 operands are swapped. */
7776 if (!i.tm.operand_types[op].bitfield.baseindex
7777 && i.tm.operand_types[op + 1].bitfield.baseindex)
7778 {
7779 vex_reg = op;
7780 op += 2;
7781 gas_assert (mem == (vex_reg + 1)
7782 && op < i.operands);
7783 }
7784 else
7785 {
7786 vex_reg = op + 1;
7787 gas_assert (vex_reg < i.operands);
7788 }
7789 }
7790 }
7791 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7792 {
7793 /* For instructions with VexNDD, the register destination
7794 is encoded in VEX prefix. */
7795 if (i.mem_operands == 0)
7796 {
7797 /* There is no memory operand. */
7798 gas_assert ((op + 2) == i.operands);
7799 vex_reg = op + 1;
7800 }
7801 else
7802 {
7803 /* There are only 2 non-immediate operands. */
7804 gas_assert (op < i.imm_operands + 2
7805 && i.operands == i.imm_operands + 2);
7806 vex_reg = i.imm_operands + 1;
7807 }
7808 }
7809 else
7810 gas_assert (op < i.operands);
7811
7812 if (vex_reg != (unsigned int) ~0)
7813 {
7814 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7815
7816 if ((type->bitfield.class != Reg
7817 || (!type->bitfield.dword && !type->bitfield.qword))
7818 && type->bitfield.class != RegSIMD
7819 && !operand_type_equal (type, &regmask))
7820 abort ();
7821
7822 i.vex.register_specifier = i.op[vex_reg].regs;
7823 }
7824
7825 /* Don't set OP operand twice. */
7826 if (vex_reg != op)
7827 {
7828 /* If there is an extension opcode to put here, the
7829 register number must be put into the regmem field. */
7830 if (i.tm.extension_opcode != None)
7831 {
7832 i.rm.regmem = i.op[op].regs->reg_num;
7833 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7834 i.rex |= REX_B;
7835 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7836 i.vrex |= REX_B;
7837 }
7838 else
7839 {
7840 i.rm.reg = i.op[op].regs->reg_num;
7841 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7842 i.rex |= REX_R;
7843 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7844 i.vrex |= REX_R;
7845 }
7846 }
7847
7848 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7849 must set it to 3 to indicate this is a register operand
7850 in the regmem field. */
7851 if (!i.mem_operands)
7852 i.rm.mode = 3;
7853 }
7854
7855 /* Fill in i.rm.reg field with extension opcode (if any). */
7856 if (i.tm.extension_opcode != None)
7857 i.rm.reg = i.tm.extension_opcode;
7858 }
7859 return default_seg;
7860 }
7861
7862 static unsigned int
7863 flip_code16 (unsigned int code16)
7864 {
7865 gas_assert (i.tm.operands == 1);
7866
7867 return !(i.prefix[REX_PREFIX] & REX_W)
7868 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7869 || i.tm.operand_types[0].bitfield.disp32s
7870 : i.tm.operand_types[0].bitfield.disp16)
7871 ? CODE16 : 0;
7872 }
7873
7874 static void
7875 output_branch (void)
7876 {
7877 char *p;
7878 int size;
7879 int code16;
7880 int prefix;
7881 relax_substateT subtype;
7882 symbolS *sym;
7883 offsetT off;
7884
7885 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7886 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7887
7888 prefix = 0;
7889 if (i.prefix[DATA_PREFIX] != 0)
7890 {
7891 prefix = 1;
7892 i.prefixes -= 1;
7893 code16 ^= flip_code16(code16);
7894 }
7895 /* Pentium4 branch hints. */
7896 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7897 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7898 {
7899 prefix++;
7900 i.prefixes--;
7901 }
7902 if (i.prefix[REX_PREFIX] != 0)
7903 {
7904 prefix++;
7905 i.prefixes--;
7906 }
7907
7908 /* BND prefixed jump. */
7909 if (i.prefix[BND_PREFIX] != 0)
7910 {
7911 prefix++;
7912 i.prefixes--;
7913 }
7914
7915 if (i.prefixes != 0)
7916 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7917
7918 /* It's always a symbol; End frag & setup for relax.
7919 Make sure there is enough room in this frag for the largest
7920 instruction we may generate in md_convert_frag. This is 2
7921 bytes for the opcode and room for the prefix and largest
7922 displacement. */
7923 frag_grow (prefix + 2 + 4);
7924 /* Prefix and 1 opcode byte go in fr_fix. */
7925 p = frag_more (prefix + 1);
7926 if (i.prefix[DATA_PREFIX] != 0)
7927 *p++ = DATA_PREFIX_OPCODE;
7928 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7929 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7930 *p++ = i.prefix[SEG_PREFIX];
7931 if (i.prefix[BND_PREFIX] != 0)
7932 *p++ = BND_PREFIX_OPCODE;
7933 if (i.prefix[REX_PREFIX] != 0)
7934 *p++ = i.prefix[REX_PREFIX];
7935 *p = i.tm.base_opcode;
7936
7937 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7938 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7939 else if (cpu_arch_flags.bitfield.cpui386)
7940 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7941 else
7942 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7943 subtype |= code16;
7944
7945 sym = i.op[0].disps->X_add_symbol;
7946 off = i.op[0].disps->X_add_number;
7947
7948 if (i.op[0].disps->X_op != O_constant
7949 && i.op[0].disps->X_op != O_symbol)
7950 {
7951 /* Handle complex expressions. */
7952 sym = make_expr_symbol (i.op[0].disps);
7953 off = 0;
7954 }
7955
7956 /* 1 possible extra opcode + 4 byte displacement go in var part.
7957 Pass reloc in fr_var. */
7958 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7959 }
7960
7961 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7962 /* Return TRUE iff PLT32 relocation should be used for branching to
7963 symbol S. */
7964
7965 static bfd_boolean
7966 need_plt32_p (symbolS *s)
7967 {
7968 /* PLT32 relocation is ELF only. */
7969 if (!IS_ELF)
7970 return FALSE;
7971
7972 #ifdef TE_SOLARIS
7973 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7974 krtld support it. */
7975 return FALSE;
7976 #endif
7977
7978 /* Since there is no need to prepare for PLT branch on x86-64, we
7979 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7980 be used as a marker for 32-bit PC-relative branches. */
7981 if (!object_64bit)
7982 return FALSE;
7983
7984 /* Weak or undefined symbol need PLT32 relocation. */
7985 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7986 return TRUE;
7987
7988 /* Non-global symbol doesn't need PLT32 relocation. */
7989 if (! S_IS_EXTERNAL (s))
7990 return FALSE;
7991
7992 /* Other global symbols need PLT32 relocation. NB: Symbol with
7993 non-default visibilities are treated as normal global symbol
7994 so that PLT32 relocation can be used as a marker for 32-bit
7995 PC-relative branches. It is useful for linker relaxation. */
7996 return TRUE;
7997 }
7998 #endif
7999
8000 static void
8001 output_jump (void)
8002 {
8003 char *p;
8004 int size;
8005 fixS *fixP;
8006 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8007
8008 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8009 {
8010 /* This is a loop or jecxz type instruction. */
8011 size = 1;
8012 if (i.prefix[ADDR_PREFIX] != 0)
8013 {
8014 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8015 i.prefixes -= 1;
8016 }
8017 /* Pentium4 branch hints. */
8018 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8019 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8020 {
8021 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8022 i.prefixes--;
8023 }
8024 }
8025 else
8026 {
8027 int code16;
8028
8029 code16 = 0;
8030 if (flag_code == CODE_16BIT)
8031 code16 = CODE16;
8032
8033 if (i.prefix[DATA_PREFIX] != 0)
8034 {
8035 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8036 i.prefixes -= 1;
8037 code16 ^= flip_code16(code16);
8038 }
8039
8040 size = 4;
8041 if (code16)
8042 size = 2;
8043 }
8044
8045 /* BND prefixed jump. */
8046 if (i.prefix[BND_PREFIX] != 0)
8047 {
8048 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8049 i.prefixes -= 1;
8050 }
8051
8052 if (i.prefix[REX_PREFIX] != 0)
8053 {
8054 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8055 i.prefixes -= 1;
8056 }
8057
8058 if (i.prefixes != 0)
8059 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8060
8061 p = frag_more (i.tm.opcode_length + size);
8062 switch (i.tm.opcode_length)
8063 {
8064 case 2:
8065 *p++ = i.tm.base_opcode >> 8;
8066 /* Fall through. */
8067 case 1:
8068 *p++ = i.tm.base_opcode;
8069 break;
8070 default:
8071 abort ();
8072 }
8073
8074 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8075 if (size == 4
8076 && jump_reloc == NO_RELOC
8077 && need_plt32_p (i.op[0].disps->X_add_symbol))
8078 jump_reloc = BFD_RELOC_X86_64_PLT32;
8079 #endif
8080
8081 jump_reloc = reloc (size, 1, 1, jump_reloc);
8082
8083 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8084 i.op[0].disps, 1, jump_reloc);
8085
8086 /* All jumps handled here are signed, but don't use a signed limit
8087 check for 32 and 16 bit jumps as we want to allow wrap around at
8088 4G and 64k respectively. */
8089 if (size == 1)
8090 fixP->fx_signed = 1;
8091 }
8092
8093 static void
8094 output_interseg_jump (void)
8095 {
8096 char *p;
8097 int size;
8098 int prefix;
8099 int code16;
8100
8101 code16 = 0;
8102 if (flag_code == CODE_16BIT)
8103 code16 = CODE16;
8104
8105 prefix = 0;
8106 if (i.prefix[DATA_PREFIX] != 0)
8107 {
8108 prefix = 1;
8109 i.prefixes -= 1;
8110 code16 ^= CODE16;
8111 }
8112
8113 gas_assert (!i.prefix[REX_PREFIX]);
8114
8115 size = 4;
8116 if (code16)
8117 size = 2;
8118
8119 if (i.prefixes != 0)
8120 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8121
8122 /* 1 opcode; 2 segment; offset */
8123 p = frag_more (prefix + 1 + 2 + size);
8124
8125 if (i.prefix[DATA_PREFIX] != 0)
8126 *p++ = DATA_PREFIX_OPCODE;
8127
8128 if (i.prefix[REX_PREFIX] != 0)
8129 *p++ = i.prefix[REX_PREFIX];
8130
8131 *p++ = i.tm.base_opcode;
8132 if (i.op[1].imms->X_op == O_constant)
8133 {
8134 offsetT n = i.op[1].imms->X_add_number;
8135
8136 if (size == 2
8137 && !fits_in_unsigned_word (n)
8138 && !fits_in_signed_word (n))
8139 {
8140 as_bad (_("16-bit jump out of range"));
8141 return;
8142 }
8143 md_number_to_chars (p, n, size);
8144 }
8145 else
8146 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8147 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8148 if (i.op[0].imms->X_op != O_constant)
8149 as_bad (_("can't handle non absolute segment in `%s'"),
8150 i.tm.name);
8151 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8152 }
8153
8154 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8155 void
8156 x86_cleanup (void)
8157 {
8158 char *p;
8159 asection *seg = now_seg;
8160 subsegT subseg = now_subseg;
8161 asection *sec;
8162 unsigned int alignment, align_size_1;
8163 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8164 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8165 unsigned int padding;
8166
8167 if (!IS_ELF || !x86_used_note)
8168 return;
8169
8170 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8171
8172 /* The .note.gnu.property section layout:
8173
8174 Field Length Contents
8175 ---- ---- ----
8176 n_namsz 4 4
8177 n_descsz 4 The note descriptor size
8178 n_type 4 NT_GNU_PROPERTY_TYPE_0
8179 n_name 4 "GNU"
8180 n_desc n_descsz The program property array
8181 .... .... ....
8182 */
8183
8184 /* Create the .note.gnu.property section. */
8185 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8186 bfd_set_section_flags (sec,
8187 (SEC_ALLOC
8188 | SEC_LOAD
8189 | SEC_DATA
8190 | SEC_HAS_CONTENTS
8191 | SEC_READONLY));
8192
8193 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8194 {
8195 align_size_1 = 7;
8196 alignment = 3;
8197 }
8198 else
8199 {
8200 align_size_1 = 3;
8201 alignment = 2;
8202 }
8203
8204 bfd_set_section_alignment (sec, alignment);
8205 elf_section_type (sec) = SHT_NOTE;
8206
8207 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8208 + 4-byte data */
8209 isa_1_descsz_raw = 4 + 4 + 4;
8210 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8211 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8212
8213 feature_2_descsz_raw = isa_1_descsz;
8214 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8215 + 4-byte data */
8216 feature_2_descsz_raw += 4 + 4 + 4;
8217 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8218 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8219 & ~align_size_1);
8220
8221 descsz = feature_2_descsz;
8222 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8223 p = frag_more (4 + 4 + 4 + 4 + descsz);
8224
8225 /* Write n_namsz. */
8226 md_number_to_chars (p, (valueT) 4, 4);
8227
8228 /* Write n_descsz. */
8229 md_number_to_chars (p + 4, (valueT) descsz, 4);
8230
8231 /* Write n_type. */
8232 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8233
8234 /* Write n_name. */
8235 memcpy (p + 4 * 3, "GNU", 4);
8236
8237 /* Write 4-byte type. */
8238 md_number_to_chars (p + 4 * 4,
8239 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8240
8241 /* Write 4-byte data size. */
8242 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8243
8244 /* Write 4-byte data. */
8245 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8246
8247 /* Zero out paddings. */
8248 padding = isa_1_descsz - isa_1_descsz_raw;
8249 if (padding)
8250 memset (p + 4 * 7, 0, padding);
8251
8252 /* Write 4-byte type. */
8253 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8254 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8255
8256 /* Write 4-byte data size. */
8257 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8258
8259 /* Write 4-byte data. */
8260 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8261 (valueT) x86_feature_2_used, 4);
8262
8263 /* Zero out paddings. */
8264 padding = feature_2_descsz - feature_2_descsz_raw;
8265 if (padding)
8266 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8267
8268 /* We probably can't restore the current segment, for there likely
8269 isn't one yet... */
8270 if (seg && subseg)
8271 subseg_set (seg, subseg);
8272 }
8273 #endif
8274
8275 static unsigned int
8276 encoding_length (const fragS *start_frag, offsetT start_off,
8277 const char *frag_now_ptr)
8278 {
8279 unsigned int len = 0;
8280
8281 if (start_frag != frag_now)
8282 {
8283 const fragS *fr = start_frag;
8284
8285 do {
8286 len += fr->fr_fix;
8287 fr = fr->fr_next;
8288 } while (fr && fr != frag_now);
8289 }
8290
8291 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8292 }
8293
8294 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8295 be macro-fused with conditional jumps. */
8296
8297 static int
8298 maybe_fused_with_jcc_p (void)
8299 {
8300 /* No RIP address. */
8301 if (i.base_reg && i.base_reg->reg_num == RegIP)
8302 return 0;
8303
8304 /* No VEX/EVEX encoding. */
8305 if (is_any_vex_encoding (&i.tm))
8306 return 0;
8307
8308 /* and, add, sub with destination register. */
8309 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8310 || i.tm.base_opcode <= 5
8311 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8312 || ((i.tm.base_opcode | 3) == 0x83
8313 && ((i.tm.extension_opcode | 1) == 0x5
8314 || i.tm.extension_opcode == 0x0)))
8315 return (i.types[1].bitfield.class == Reg
8316 || i.types[1].bitfield.instance == Accum);
8317
8318 /* test, cmp with any register. */
8319 if ((i.tm.base_opcode | 1) == 0x85
8320 || (i.tm.base_opcode | 1) == 0xa9
8321 || ((i.tm.base_opcode | 1) == 0xf7
8322 && i.tm.extension_opcode == 0)
8323 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8324 || ((i.tm.base_opcode | 3) == 0x83
8325 && (i.tm.extension_opcode == 0x7)))
8326 return (i.types[0].bitfield.class == Reg
8327 || i.types[0].bitfield.instance == Accum
8328 || i.types[1].bitfield.class == Reg
8329 || i.types[1].bitfield.instance == Accum);
8330
8331 /* inc, dec with any register. */
8332 if ((i.tm.cpu_flags.bitfield.cpuno64
8333 && (i.tm.base_opcode | 0xf) == 0x4f)
8334 || ((i.tm.base_opcode | 1) == 0xff
8335 && i.tm.extension_opcode <= 0x1))
8336 return (i.types[0].bitfield.class == Reg
8337 || i.types[0].bitfield.instance == Accum);
8338
8339 return 0;
8340 }
8341
8342 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8343
8344 static int
8345 add_fused_jcc_padding_frag_p (void)
8346 {
8347 /* NB: Don't work with COND_JUMP86 without i386. */
8348 if (!align_branch_power
8349 || now_seg == absolute_section
8350 || !cpu_arch_flags.bitfield.cpui386
8351 || !(align_branch & align_branch_fused_bit))
8352 return 0;
8353
8354 if (maybe_fused_with_jcc_p ())
8355 {
8356 if (last_insn.kind == last_insn_other
8357 || last_insn.seg != now_seg)
8358 return 1;
8359 if (flag_debug)
8360 as_warn_where (last_insn.file, last_insn.line,
8361 _("`%s` skips -malign-branch-boundary on `%s`"),
8362 last_insn.name, i.tm.name);
8363 }
8364
8365 return 0;
8366 }
8367
8368 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8369
8370 static int
8371 add_branch_prefix_frag_p (void)
8372 {
8373 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8374 to PadLock instructions since they include prefixes in opcode. */
8375 if (!align_branch_power
8376 || !align_branch_prefix_size
8377 || now_seg == absolute_section
8378 || i.tm.cpu_flags.bitfield.cpupadlock
8379 || !cpu_arch_flags.bitfield.cpui386)
8380 return 0;
8381
8382 /* Don't add prefix if it is a prefix or there is no operand in case
8383 that segment prefix is special. */
8384 if (!i.operands || i.tm.opcode_modifier.isprefix)
8385 return 0;
8386
8387 if (last_insn.kind == last_insn_other
8388 || last_insn.seg != now_seg)
8389 return 1;
8390
8391 if (flag_debug)
8392 as_warn_where (last_insn.file, last_insn.line,
8393 _("`%s` skips -malign-branch-boundary on `%s`"),
8394 last_insn.name, i.tm.name);
8395
8396 return 0;
8397 }
8398
8399 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8400
8401 static int
8402 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8403 {
8404 int add_padding;
8405
8406 /* NB: Don't work with COND_JUMP86 without i386. */
8407 if (!align_branch_power
8408 || now_seg == absolute_section
8409 || !cpu_arch_flags.bitfield.cpui386)
8410 return 0;
8411
8412 add_padding = 0;
8413
8414 /* Check for jcc and direct jmp. */
8415 if (i.tm.opcode_modifier.jump == JUMP)
8416 {
8417 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8418 {
8419 *branch_p = align_branch_jmp;
8420 add_padding = align_branch & align_branch_jmp_bit;
8421 }
8422 else
8423 {
8424 *branch_p = align_branch_jcc;
8425 if ((align_branch & align_branch_jcc_bit))
8426 add_padding = 1;
8427 }
8428 }
8429 else if (is_any_vex_encoding (&i.tm))
8430 return 0;
8431 else if ((i.tm.base_opcode | 1) == 0xc3)
8432 {
8433 /* Near ret. */
8434 *branch_p = align_branch_ret;
8435 if ((align_branch & align_branch_ret_bit))
8436 add_padding = 1;
8437 }
8438 else
8439 {
8440 /* Check for indirect jmp, direct and indirect calls. */
8441 if (i.tm.base_opcode == 0xe8)
8442 {
8443 /* Direct call. */
8444 *branch_p = align_branch_call;
8445 if ((align_branch & align_branch_call_bit))
8446 add_padding = 1;
8447 }
8448 else if (i.tm.base_opcode == 0xff
8449 && (i.tm.extension_opcode == 2
8450 || i.tm.extension_opcode == 4))
8451 {
8452 /* Indirect call and jmp. */
8453 *branch_p = align_branch_indirect;
8454 if ((align_branch & align_branch_indirect_bit))
8455 add_padding = 1;
8456 }
8457
8458 if (add_padding
8459 && i.disp_operands
8460 && tls_get_addr
8461 && (i.op[0].disps->X_op == O_symbol
8462 || (i.op[0].disps->X_op == O_subtract
8463 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8464 {
8465 symbolS *s = i.op[0].disps->X_add_symbol;
8466 /* No padding to call to global or undefined tls_get_addr. */
8467 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8468 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8469 return 0;
8470 }
8471 }
8472
8473 if (add_padding
8474 && last_insn.kind != last_insn_other
8475 && last_insn.seg == now_seg)
8476 {
8477 if (flag_debug)
8478 as_warn_where (last_insn.file, last_insn.line,
8479 _("`%s` skips -malign-branch-boundary on `%s`"),
8480 last_insn.name, i.tm.name);
8481 return 0;
8482 }
8483
8484 return add_padding;
8485 }
8486
8487 static void
8488 output_insn (void)
8489 {
8490 fragS *insn_start_frag;
8491 offsetT insn_start_off;
8492 fragS *fragP = NULL;
8493 enum align_branch_kind branch = align_branch_none;
8494
8495 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8496 if (IS_ELF && x86_used_note)
8497 {
8498 if (i.tm.cpu_flags.bitfield.cpucmov)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8500 if (i.tm.cpu_flags.bitfield.cpusse)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8502 if (i.tm.cpu_flags.bitfield.cpusse2)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8504 if (i.tm.cpu_flags.bitfield.cpusse3)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8506 if (i.tm.cpu_flags.bitfield.cpussse3)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8508 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8510 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8512 if (i.tm.cpu_flags.bitfield.cpuavx)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8514 if (i.tm.cpu_flags.bitfield.cpuavx2)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8516 if (i.tm.cpu_flags.bitfield.cpufma)
8517 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8518 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8519 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8520 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8522 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8524 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8525 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8526 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8527 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8528 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8529 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8530 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8531 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8532 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8533 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8534 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8535 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8536 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8537 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8538 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8539 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8540 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8541 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8542 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8543 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8544 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8545 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8546 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8547 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8548
8549 if (i.tm.cpu_flags.bitfield.cpu8087
8550 || i.tm.cpu_flags.bitfield.cpu287
8551 || i.tm.cpu_flags.bitfield.cpu387
8552 || i.tm.cpu_flags.bitfield.cpu687
8553 || i.tm.cpu_flags.bitfield.cpufisttp)
8554 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8555 if (i.has_regmmx
8556 || i.tm.base_opcode == 0xf77 /* emms */
8557 || i.tm.base_opcode == 0xf0e /* femms */)
8558 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8559 if (i.has_regxmm)
8560 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8561 if (i.has_regymm)
8562 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8563 if (i.has_regzmm)
8564 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8565 if (i.tm.cpu_flags.bitfield.cpufxsr)
8566 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8567 if (i.tm.cpu_flags.bitfield.cpuxsave)
8568 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8569 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8570 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8571 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8572 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8573 }
8574 #endif
8575
8576 /* Tie dwarf2 debug info to the address at the start of the insn.
8577 We can't do this after the insn has been output as the current
8578 frag may have been closed off. eg. by frag_var. */
8579 dwarf2_emit_insn (0);
8580
8581 insn_start_frag = frag_now;
8582 insn_start_off = frag_now_fix ();
8583
8584 if (add_branch_padding_frag_p (&branch))
8585 {
8586 char *p;
8587 /* Branch can be 8 bytes. Leave some room for prefixes. */
8588 unsigned int max_branch_padding_size = 14;
8589
8590 /* Align section to boundary. */
8591 record_alignment (now_seg, align_branch_power);
8592
8593 /* Make room for padding. */
8594 frag_grow (max_branch_padding_size);
8595
8596 /* Start of the padding. */
8597 p = frag_more (0);
8598
8599 fragP = frag_now;
8600
8601 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8602 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8603 NULL, 0, p);
8604
8605 fragP->tc_frag_data.branch_type = branch;
8606 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8607 }
8608
8609 /* Output jumps. */
8610 if (i.tm.opcode_modifier.jump == JUMP)
8611 output_branch ();
8612 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8613 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8614 output_jump ();
8615 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8616 output_interseg_jump ();
8617 else
8618 {
8619 /* Output normal instructions here. */
8620 char *p;
8621 unsigned char *q;
8622 unsigned int j;
8623 unsigned int prefix;
8624
8625 if (avoid_fence
8626 && (i.tm.base_opcode == 0xfaee8
8627 || i.tm.base_opcode == 0xfaef0
8628 || i.tm.base_opcode == 0xfaef8))
8629 {
8630 /* Encode lfence, mfence, and sfence as
8631 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8632 offsetT val = 0x240483f0ULL;
8633 p = frag_more (5);
8634 md_number_to_chars (p, val, 5);
8635 return;
8636 }
8637
8638 /* Some processors fail on LOCK prefix. This options makes
8639 assembler ignore LOCK prefix and serves as a workaround. */
8640 if (omit_lock_prefix)
8641 {
8642 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8643 return;
8644 i.prefix[LOCK_PREFIX] = 0;
8645 }
8646
8647 if (branch)
8648 /* Skip if this is a branch. */
8649 ;
8650 else if (add_fused_jcc_padding_frag_p ())
8651 {
8652 /* Make room for padding. */
8653 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8654 p = frag_more (0);
8655
8656 fragP = frag_now;
8657
8658 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8659 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8660 NULL, 0, p);
8661
8662 fragP->tc_frag_data.branch_type = align_branch_fused;
8663 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8664 }
8665 else if (add_branch_prefix_frag_p ())
8666 {
8667 unsigned int max_prefix_size = align_branch_prefix_size;
8668
8669 /* Make room for padding. */
8670 frag_grow (max_prefix_size);
8671 p = frag_more (0);
8672
8673 fragP = frag_now;
8674
8675 frag_var (rs_machine_dependent, max_prefix_size, 0,
8676 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8677 NULL, 0, p);
8678
8679 fragP->tc_frag_data.max_bytes = max_prefix_size;
8680 }
8681
8682 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8683 don't need the explicit prefix. */
8684 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8685 {
8686 switch (i.tm.opcode_length)
8687 {
8688 case 3:
8689 if (i.tm.base_opcode & 0xff000000)
8690 {
8691 prefix = (i.tm.base_opcode >> 24) & 0xff;
8692 if (!i.tm.cpu_flags.bitfield.cpupadlock
8693 || prefix != REPE_PREFIX_OPCODE
8694 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8695 add_prefix (prefix);
8696 }
8697 break;
8698 case 2:
8699 if ((i.tm.base_opcode & 0xff0000) != 0)
8700 {
8701 prefix = (i.tm.base_opcode >> 16) & 0xff;
8702 add_prefix (prefix);
8703 }
8704 break;
8705 case 1:
8706 break;
8707 case 0:
8708 /* Check for pseudo prefixes. */
8709 as_bad_where (insn_start_frag->fr_file,
8710 insn_start_frag->fr_line,
8711 _("pseudo prefix without instruction"));
8712 return;
8713 default:
8714 abort ();
8715 }
8716
8717 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8718 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8719 R_X86_64_GOTTPOFF relocation so that linker can safely
8720 perform IE->LE optimization. A dummy REX_OPCODE prefix
8721 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8722 relocation for GDesc -> IE/LE optimization. */
8723 if (x86_elf_abi == X86_64_X32_ABI
8724 && i.operands == 2
8725 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8726 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8727 && i.prefix[REX_PREFIX] == 0)
8728 add_prefix (REX_OPCODE);
8729 #endif
8730
8731 /* The prefix bytes. */
8732 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8733 if (*q)
8734 FRAG_APPEND_1_CHAR (*q);
8735 }
8736 else
8737 {
8738 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8739 if (*q)
8740 switch (j)
8741 {
8742 case REX_PREFIX:
8743 /* REX byte is encoded in VEX prefix. */
8744 break;
8745 case SEG_PREFIX:
8746 case ADDR_PREFIX:
8747 FRAG_APPEND_1_CHAR (*q);
8748 break;
8749 default:
8750 /* There should be no other prefixes for instructions
8751 with VEX prefix. */
8752 abort ();
8753 }
8754
8755 /* For EVEX instructions i.vrex should become 0 after
8756 build_evex_prefix. For VEX instructions upper 16 registers
8757 aren't available, so VREX should be 0. */
8758 if (i.vrex)
8759 abort ();
8760 /* Now the VEX prefix. */
8761 p = frag_more (i.vex.length);
8762 for (j = 0; j < i.vex.length; j++)
8763 p[j] = i.vex.bytes[j];
8764 }
8765
8766 /* Now the opcode; be careful about word order here! */
8767 if (i.tm.opcode_length == 1)
8768 {
8769 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8770 }
8771 else
8772 {
8773 switch (i.tm.opcode_length)
8774 {
8775 case 4:
8776 p = frag_more (4);
8777 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8778 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8779 break;
8780 case 3:
8781 p = frag_more (3);
8782 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8783 break;
8784 case 2:
8785 p = frag_more (2);
8786 break;
8787 default:
8788 abort ();
8789 break;
8790 }
8791
8792 /* Put out high byte first: can't use md_number_to_chars! */
8793 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8794 *p = i.tm.base_opcode & 0xff;
8795 }
8796
8797 /* Now the modrm byte and sib byte (if present). */
8798 if (i.tm.opcode_modifier.modrm)
8799 {
8800 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8801 | i.rm.reg << 3
8802 | i.rm.mode << 6));
8803 /* If i.rm.regmem == ESP (4)
8804 && i.rm.mode != (Register mode)
8805 && not 16 bit
8806 ==> need second modrm byte. */
8807 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8808 && i.rm.mode != 3
8809 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8810 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8811 | i.sib.index << 3
8812 | i.sib.scale << 6));
8813 }
8814
8815 if (i.disp_operands)
8816 output_disp (insn_start_frag, insn_start_off);
8817
8818 if (i.imm_operands)
8819 output_imm (insn_start_frag, insn_start_off);
8820
8821 /*
8822 * frag_now_fix () returning plain abs_section_offset when we're in the
8823 * absolute section, and abs_section_offset not getting updated as data
8824 * gets added to the frag breaks the logic below.
8825 */
8826 if (now_seg != absolute_section)
8827 {
8828 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8829 if (j > 15)
8830 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8831 j);
8832 else if (fragP)
8833 {
8834 /* NB: Don't add prefix with GOTPC relocation since
8835 output_disp() above depends on the fixed encoding
8836 length. Can't add prefix with TLS relocation since
8837 it breaks TLS linker optimization. */
8838 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8839 /* Prefix count on the current instruction. */
8840 unsigned int count = i.vex.length;
8841 unsigned int k;
8842 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8843 /* REX byte is encoded in VEX/EVEX prefix. */
8844 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8845 count++;
8846
8847 /* Count prefixes for extended opcode maps. */
8848 if (!i.vex.length)
8849 switch (i.tm.opcode_length)
8850 {
8851 case 3:
8852 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8853 {
8854 count++;
8855 switch ((i.tm.base_opcode >> 8) & 0xff)
8856 {
8857 case 0x38:
8858 case 0x3a:
8859 count++;
8860 break;
8861 default:
8862 break;
8863 }
8864 }
8865 break;
8866 case 2:
8867 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8868 count++;
8869 break;
8870 case 1:
8871 break;
8872 default:
8873 abort ();
8874 }
8875
8876 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8877 == BRANCH_PREFIX)
8878 {
8879 /* Set the maximum prefix size in BRANCH_PREFIX
8880 frag. */
8881 if (fragP->tc_frag_data.max_bytes > max)
8882 fragP->tc_frag_data.max_bytes = max;
8883 if (fragP->tc_frag_data.max_bytes > count)
8884 fragP->tc_frag_data.max_bytes -= count;
8885 else
8886 fragP->tc_frag_data.max_bytes = 0;
8887 }
8888 else
8889 {
8890 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8891 frag. */
8892 unsigned int max_prefix_size;
8893 if (align_branch_prefix_size > max)
8894 max_prefix_size = max;
8895 else
8896 max_prefix_size = align_branch_prefix_size;
8897 if (max_prefix_size > count)
8898 fragP->tc_frag_data.max_prefix_length
8899 = max_prefix_size - count;
8900 }
8901
8902 /* Use existing segment prefix if possible. Use CS
8903 segment prefix in 64-bit mode. In 32-bit mode, use SS
8904 segment prefix with ESP/EBP base register and use DS
8905 segment prefix without ESP/EBP base register. */
8906 if (i.prefix[SEG_PREFIX])
8907 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8908 else if (flag_code == CODE_64BIT)
8909 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8910 else if (i.base_reg
8911 && (i.base_reg->reg_num == 4
8912 || i.base_reg->reg_num == 5))
8913 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8914 else
8915 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8916 }
8917 }
8918 }
8919
8920 /* NB: Don't work with COND_JUMP86 without i386. */
8921 if (align_branch_power
8922 && now_seg != absolute_section
8923 && cpu_arch_flags.bitfield.cpui386)
8924 {
8925 /* Terminate each frag so that we can add prefix and check for
8926 fused jcc. */
8927 frag_wane (frag_now);
8928 frag_new (0);
8929 }
8930
8931 #ifdef DEBUG386
8932 if (flag_debug)
8933 {
8934 pi ("" /*line*/, &i);
8935 }
8936 #endif /* DEBUG386 */
8937 }
8938
8939 /* Return the size of the displacement operand N. */
8940
8941 static int
8942 disp_size (unsigned int n)
8943 {
8944 int size = 4;
8945
8946 if (i.types[n].bitfield.disp64)
8947 size = 8;
8948 else if (i.types[n].bitfield.disp8)
8949 size = 1;
8950 else if (i.types[n].bitfield.disp16)
8951 size = 2;
8952 return size;
8953 }
8954
8955 /* Return the size of the immediate operand N. */
8956
8957 static int
8958 imm_size (unsigned int n)
8959 {
8960 int size = 4;
8961 if (i.types[n].bitfield.imm64)
8962 size = 8;
8963 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8964 size = 1;
8965 else if (i.types[n].bitfield.imm16)
8966 size = 2;
8967 return size;
8968 }
8969
8970 static void
8971 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8972 {
8973 char *p;
8974 unsigned int n;
8975
8976 for (n = 0; n < i.operands; n++)
8977 {
8978 if (operand_type_check (i.types[n], disp))
8979 {
8980 if (i.op[n].disps->X_op == O_constant)
8981 {
8982 int size = disp_size (n);
8983 offsetT val = i.op[n].disps->X_add_number;
8984
8985 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8986 size);
8987 p = frag_more (size);
8988 md_number_to_chars (p, val, size);
8989 }
8990 else
8991 {
8992 enum bfd_reloc_code_real reloc_type;
8993 int size = disp_size (n);
8994 int sign = i.types[n].bitfield.disp32s;
8995 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8996 fixS *fixP;
8997
8998 /* We can't have 8 bit displacement here. */
8999 gas_assert (!i.types[n].bitfield.disp8);
9000
9001 /* The PC relative address is computed relative
9002 to the instruction boundary, so in case immediate
9003 fields follows, we need to adjust the value. */
9004 if (pcrel && i.imm_operands)
9005 {
9006 unsigned int n1;
9007 int sz = 0;
9008
9009 for (n1 = 0; n1 < i.operands; n1++)
9010 if (operand_type_check (i.types[n1], imm))
9011 {
9012 /* Only one immediate is allowed for PC
9013 relative address. */
9014 gas_assert (sz == 0);
9015 sz = imm_size (n1);
9016 i.op[n].disps->X_add_number -= sz;
9017 }
9018 /* We should find the immediate. */
9019 gas_assert (sz != 0);
9020 }
9021
9022 p = frag_more (size);
9023 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9024 if (GOT_symbol
9025 && GOT_symbol == i.op[n].disps->X_add_symbol
9026 && (((reloc_type == BFD_RELOC_32
9027 || reloc_type == BFD_RELOC_X86_64_32S
9028 || (reloc_type == BFD_RELOC_64
9029 && object_64bit))
9030 && (i.op[n].disps->X_op == O_symbol
9031 || (i.op[n].disps->X_op == O_add
9032 && ((symbol_get_value_expression
9033 (i.op[n].disps->X_op_symbol)->X_op)
9034 == O_subtract))))
9035 || reloc_type == BFD_RELOC_32_PCREL))
9036 {
9037 if (!object_64bit)
9038 {
9039 reloc_type = BFD_RELOC_386_GOTPC;
9040 i.has_gotpc_tls_reloc = TRUE;
9041 i.op[n].imms->X_add_number +=
9042 encoding_length (insn_start_frag, insn_start_off, p);
9043 }
9044 else if (reloc_type == BFD_RELOC_64)
9045 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9046 else
9047 /* Don't do the adjustment for x86-64, as there
9048 the pcrel addressing is relative to the _next_
9049 insn, and that is taken care of in other code. */
9050 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9051 }
9052 else if (align_branch_power)
9053 {
9054 switch (reloc_type)
9055 {
9056 case BFD_RELOC_386_TLS_GD:
9057 case BFD_RELOC_386_TLS_LDM:
9058 case BFD_RELOC_386_TLS_IE:
9059 case BFD_RELOC_386_TLS_IE_32:
9060 case BFD_RELOC_386_TLS_GOTIE:
9061 case BFD_RELOC_386_TLS_GOTDESC:
9062 case BFD_RELOC_386_TLS_DESC_CALL:
9063 case BFD_RELOC_X86_64_TLSGD:
9064 case BFD_RELOC_X86_64_TLSLD:
9065 case BFD_RELOC_X86_64_GOTTPOFF:
9066 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9067 case BFD_RELOC_X86_64_TLSDESC_CALL:
9068 i.has_gotpc_tls_reloc = TRUE;
9069 default:
9070 break;
9071 }
9072 }
9073 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9074 size, i.op[n].disps, pcrel,
9075 reloc_type);
9076 /* Check for "call/jmp *mem", "mov mem, %reg",
9077 "test %reg, mem" and "binop mem, %reg" where binop
9078 is one of adc, add, and, cmp, or, sbb, sub, xor
9079 instructions without data prefix. Always generate
9080 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9081 if (i.prefix[DATA_PREFIX] == 0
9082 && (generate_relax_relocations
9083 || (!object_64bit
9084 && i.rm.mode == 0
9085 && i.rm.regmem == 5))
9086 && (i.rm.mode == 2
9087 || (i.rm.mode == 0 && i.rm.regmem == 5))
9088 && ((i.operands == 1
9089 && i.tm.base_opcode == 0xff
9090 && (i.rm.reg == 2 || i.rm.reg == 4))
9091 || (i.operands == 2
9092 && (i.tm.base_opcode == 0x8b
9093 || i.tm.base_opcode == 0x85
9094 || (i.tm.base_opcode & 0xc7) == 0x03))))
9095 {
9096 if (object_64bit)
9097 {
9098 fixP->fx_tcbit = i.rex != 0;
9099 if (i.base_reg
9100 && (i.base_reg->reg_num == RegIP))
9101 fixP->fx_tcbit2 = 1;
9102 }
9103 else
9104 fixP->fx_tcbit2 = 1;
9105 }
9106 }
9107 }
9108 }
9109 }
9110
9111 static void
9112 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9113 {
9114 char *p;
9115 unsigned int n;
9116
9117 for (n = 0; n < i.operands; n++)
9118 {
9119 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9120 if (i.rounding && (int) n == i.rounding->operand)
9121 continue;
9122
9123 if (operand_type_check (i.types[n], imm))
9124 {
9125 if (i.op[n].imms->X_op == O_constant)
9126 {
9127 int size = imm_size (n);
9128 offsetT val;
9129
9130 val = offset_in_range (i.op[n].imms->X_add_number,
9131 size);
9132 p = frag_more (size);
9133 md_number_to_chars (p, val, size);
9134 }
9135 else
9136 {
9137 /* Not absolute_section.
9138 Need a 32-bit fixup (don't support 8bit
9139 non-absolute imms). Try to support other
9140 sizes ... */
9141 enum bfd_reloc_code_real reloc_type;
9142 int size = imm_size (n);
9143 int sign;
9144
9145 if (i.types[n].bitfield.imm32s
9146 && (i.suffix == QWORD_MNEM_SUFFIX
9147 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9148 sign = 1;
9149 else
9150 sign = 0;
9151
9152 p = frag_more (size);
9153 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9154
9155 /* This is tough to explain. We end up with this one if we
9156 * have operands that look like
9157 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9158 * obtain the absolute address of the GOT, and it is strongly
9159 * preferable from a performance point of view to avoid using
9160 * a runtime relocation for this. The actual sequence of
9161 * instructions often look something like:
9162 *
9163 * call .L66
9164 * .L66:
9165 * popl %ebx
9166 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9167 *
9168 * The call and pop essentially return the absolute address
9169 * of the label .L66 and store it in %ebx. The linker itself
9170 * will ultimately change the first operand of the addl so
9171 * that %ebx points to the GOT, but to keep things simple, the
9172 * .o file must have this operand set so that it generates not
9173 * the absolute address of .L66, but the absolute address of
9174 * itself. This allows the linker itself simply treat a GOTPC
9175 * relocation as asking for a pcrel offset to the GOT to be
9176 * added in, and the addend of the relocation is stored in the
9177 * operand field for the instruction itself.
9178 *
9179 * Our job here is to fix the operand so that it would add
9180 * the correct offset so that %ebx would point to itself. The
9181 * thing that is tricky is that .-.L66 will point to the
9182 * beginning of the instruction, so we need to further modify
9183 * the operand so that it will point to itself. There are
9184 * other cases where you have something like:
9185 *
9186 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9187 *
9188 * and here no correction would be required. Internally in
9189 * the assembler we treat operands of this form as not being
9190 * pcrel since the '.' is explicitly mentioned, and I wonder
9191 * whether it would simplify matters to do it this way. Who
9192 * knows. In earlier versions of the PIC patches, the
9193 * pcrel_adjust field was used to store the correction, but
9194 * since the expression is not pcrel, I felt it would be
9195 * confusing to do it this way. */
9196
9197 if ((reloc_type == BFD_RELOC_32
9198 || reloc_type == BFD_RELOC_X86_64_32S
9199 || reloc_type == BFD_RELOC_64)
9200 && GOT_symbol
9201 && GOT_symbol == i.op[n].imms->X_add_symbol
9202 && (i.op[n].imms->X_op == O_symbol
9203 || (i.op[n].imms->X_op == O_add
9204 && ((symbol_get_value_expression
9205 (i.op[n].imms->X_op_symbol)->X_op)
9206 == O_subtract))))
9207 {
9208 if (!object_64bit)
9209 reloc_type = BFD_RELOC_386_GOTPC;
9210 else if (size == 4)
9211 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9212 else if (size == 8)
9213 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9214 i.has_gotpc_tls_reloc = TRUE;
9215 i.op[n].imms->X_add_number +=
9216 encoding_length (insn_start_frag, insn_start_off, p);
9217 }
9218 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9219 i.op[n].imms, 0, reloc_type);
9220 }
9221 }
9222 }
9223 }
9224 \f
9225 /* x86_cons_fix_new is called via the expression parsing code when a
9226 reloc is needed. We use this hook to get the correct .got reloc. */
9227 static int cons_sign = -1;
9228
9229 void
9230 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9231 expressionS *exp, bfd_reloc_code_real_type r)
9232 {
9233 r = reloc (len, 0, cons_sign, r);
9234
9235 #ifdef TE_PE
9236 if (exp->X_op == O_secrel)
9237 {
9238 exp->X_op = O_symbol;
9239 r = BFD_RELOC_32_SECREL;
9240 }
9241 #endif
9242
9243 fix_new_exp (frag, off, len, exp, 0, r);
9244 }
9245
9246 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9247 purpose of the `.dc.a' internal pseudo-op. */
9248
9249 int
9250 x86_address_bytes (void)
9251 {
9252 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9253 return 4;
9254 return stdoutput->arch_info->bits_per_address / 8;
9255 }
9256
9257 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9258 || defined (LEX_AT)
9259 # define lex_got(reloc, adjust, types) NULL
9260 #else
9261 /* Parse operands of the form
9262 <symbol>@GOTOFF+<nnn>
9263 and similar .plt or .got references.
9264
9265 If we find one, set up the correct relocation in RELOC and copy the
9266 input string, minus the `@GOTOFF' into a malloc'd buffer for
9267 parsing by the calling routine. Return this buffer, and if ADJUST
9268 is non-null set it to the length of the string we removed from the
9269 input line. Otherwise return NULL. */
9270 static char *
9271 lex_got (enum bfd_reloc_code_real *rel,
9272 int *adjust,
9273 i386_operand_type *types)
9274 {
9275 /* Some of the relocations depend on the size of what field is to
9276 be relocated. But in our callers i386_immediate and i386_displacement
9277 we don't yet know the operand size (this will be set by insn
9278 matching). Hence we record the word32 relocation here,
9279 and adjust the reloc according to the real size in reloc(). */
9280 static const struct {
9281 const char *str;
9282 int len;
9283 const enum bfd_reloc_code_real rel[2];
9284 const i386_operand_type types64;
9285 } gotrel[] = {
9286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9287 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9288 BFD_RELOC_SIZE32 },
9289 OPERAND_TYPE_IMM32_64 },
9290 #endif
9291 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9292 BFD_RELOC_X86_64_PLTOFF64 },
9293 OPERAND_TYPE_IMM64 },
9294 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9295 BFD_RELOC_X86_64_PLT32 },
9296 OPERAND_TYPE_IMM32_32S_DISP32 },
9297 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9298 BFD_RELOC_X86_64_GOTPLT64 },
9299 OPERAND_TYPE_IMM64_DISP64 },
9300 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9301 BFD_RELOC_X86_64_GOTOFF64 },
9302 OPERAND_TYPE_IMM64_DISP64 },
9303 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9304 BFD_RELOC_X86_64_GOTPCREL },
9305 OPERAND_TYPE_IMM32_32S_DISP32 },
9306 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9307 BFD_RELOC_X86_64_TLSGD },
9308 OPERAND_TYPE_IMM32_32S_DISP32 },
9309 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9310 _dummy_first_bfd_reloc_code_real },
9311 OPERAND_TYPE_NONE },
9312 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9313 BFD_RELOC_X86_64_TLSLD },
9314 OPERAND_TYPE_IMM32_32S_DISP32 },
9315 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9316 BFD_RELOC_X86_64_GOTTPOFF },
9317 OPERAND_TYPE_IMM32_32S_DISP32 },
9318 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9319 BFD_RELOC_X86_64_TPOFF32 },
9320 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9321 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9322 _dummy_first_bfd_reloc_code_real },
9323 OPERAND_TYPE_NONE },
9324 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9325 BFD_RELOC_X86_64_DTPOFF32 },
9326 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9327 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9328 _dummy_first_bfd_reloc_code_real },
9329 OPERAND_TYPE_NONE },
9330 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9331 _dummy_first_bfd_reloc_code_real },
9332 OPERAND_TYPE_NONE },
9333 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9334 BFD_RELOC_X86_64_GOT32 },
9335 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9336 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9337 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9338 OPERAND_TYPE_IMM32_32S_DISP32 },
9339 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9340 BFD_RELOC_X86_64_TLSDESC_CALL },
9341 OPERAND_TYPE_IMM32_32S_DISP32 },
9342 };
9343 char *cp;
9344 unsigned int j;
9345
9346 #if defined (OBJ_MAYBE_ELF)
9347 if (!IS_ELF)
9348 return NULL;
9349 #endif
9350
9351 for (cp = input_line_pointer; *cp != '@'; cp++)
9352 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9353 return NULL;
9354
9355 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9356 {
9357 int len = gotrel[j].len;
9358 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9359 {
9360 if (gotrel[j].rel[object_64bit] != 0)
9361 {
9362 int first, second;
9363 char *tmpbuf, *past_reloc;
9364
9365 *rel = gotrel[j].rel[object_64bit];
9366
9367 if (types)
9368 {
9369 if (flag_code != CODE_64BIT)
9370 {
9371 types->bitfield.imm32 = 1;
9372 types->bitfield.disp32 = 1;
9373 }
9374 else
9375 *types = gotrel[j].types64;
9376 }
9377
9378 if (j != 0 && GOT_symbol == NULL)
9379 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9380
9381 /* The length of the first part of our input line. */
9382 first = cp - input_line_pointer;
9383
9384 /* The second part goes from after the reloc token until
9385 (and including) an end_of_line char or comma. */
9386 past_reloc = cp + 1 + len;
9387 cp = past_reloc;
9388 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9389 ++cp;
9390 second = cp + 1 - past_reloc;
9391
9392 /* Allocate and copy string. The trailing NUL shouldn't
9393 be necessary, but be safe. */
9394 tmpbuf = XNEWVEC (char, first + second + 2);
9395 memcpy (tmpbuf, input_line_pointer, first);
9396 if (second != 0 && *past_reloc != ' ')
9397 /* Replace the relocation token with ' ', so that
9398 errors like foo@GOTOFF1 will be detected. */
9399 tmpbuf[first++] = ' ';
9400 else
9401 /* Increment length by 1 if the relocation token is
9402 removed. */
9403 len++;
9404 if (adjust)
9405 *adjust = len;
9406 memcpy (tmpbuf + first, past_reloc, second);
9407 tmpbuf[first + second] = '\0';
9408 return tmpbuf;
9409 }
9410
9411 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9412 gotrel[j].str, 1 << (5 + object_64bit));
9413 return NULL;
9414 }
9415 }
9416
9417 /* Might be a symbol version string. Don't as_bad here. */
9418 return NULL;
9419 }
9420 #endif
9421
9422 #ifdef TE_PE
9423 #ifdef lex_got
9424 #undef lex_got
9425 #endif
9426 /* Parse operands of the form
9427 <symbol>@SECREL32+<nnn>
9428
9429 If we find one, set up the correct relocation in RELOC and copy the
9430 input string, minus the `@SECREL32' into a malloc'd buffer for
9431 parsing by the calling routine. Return this buffer, and if ADJUST
9432 is non-null set it to the length of the string we removed from the
9433 input line. Otherwise return NULL.
9434
9435 This function is copied from the ELF version above adjusted for PE targets. */
9436
9437 static char *
9438 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9439 int *adjust ATTRIBUTE_UNUSED,
9440 i386_operand_type *types)
9441 {
9442 static const struct
9443 {
9444 const char *str;
9445 int len;
9446 const enum bfd_reloc_code_real rel[2];
9447 const i386_operand_type types64;
9448 }
9449 gotrel[] =
9450 {
9451 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9452 BFD_RELOC_32_SECREL },
9453 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9454 };
9455
9456 char *cp;
9457 unsigned j;
9458
9459 for (cp = input_line_pointer; *cp != '@'; cp++)
9460 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9461 return NULL;
9462
9463 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9464 {
9465 int len = gotrel[j].len;
9466
9467 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9468 {
9469 if (gotrel[j].rel[object_64bit] != 0)
9470 {
9471 int first, second;
9472 char *tmpbuf, *past_reloc;
9473
9474 *rel = gotrel[j].rel[object_64bit];
9475 if (adjust)
9476 *adjust = len;
9477
9478 if (types)
9479 {
9480 if (flag_code != CODE_64BIT)
9481 {
9482 types->bitfield.imm32 = 1;
9483 types->bitfield.disp32 = 1;
9484 }
9485 else
9486 *types = gotrel[j].types64;
9487 }
9488
9489 /* The length of the first part of our input line. */
9490 first = cp - input_line_pointer;
9491
9492 /* The second part goes from after the reloc token until
9493 (and including) an end_of_line char or comma. */
9494 past_reloc = cp + 1 + len;
9495 cp = past_reloc;
9496 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9497 ++cp;
9498 second = cp + 1 - past_reloc;
9499
9500 /* Allocate and copy string. The trailing NUL shouldn't
9501 be necessary, but be safe. */
9502 tmpbuf = XNEWVEC (char, first + second + 2);
9503 memcpy (tmpbuf, input_line_pointer, first);
9504 if (second != 0 && *past_reloc != ' ')
9505 /* Replace the relocation token with ' ', so that
9506 errors like foo@SECLREL321 will be detected. */
9507 tmpbuf[first++] = ' ';
9508 memcpy (tmpbuf + first, past_reloc, second);
9509 tmpbuf[first + second] = '\0';
9510 return tmpbuf;
9511 }
9512
9513 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9514 gotrel[j].str, 1 << (5 + object_64bit));
9515 return NULL;
9516 }
9517 }
9518
9519 /* Might be a symbol version string. Don't as_bad here. */
9520 return NULL;
9521 }
9522
9523 #endif /* TE_PE */
9524
9525 bfd_reloc_code_real_type
9526 x86_cons (expressionS *exp, int size)
9527 {
9528 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9529
9530 intel_syntax = -intel_syntax;
9531
9532 exp->X_md = 0;
9533 if (size == 4 || (object_64bit && size == 8))
9534 {
9535 /* Handle @GOTOFF and the like in an expression. */
9536 char *save;
9537 char *gotfree_input_line;
9538 int adjust = 0;
9539
9540 save = input_line_pointer;
9541 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9542 if (gotfree_input_line)
9543 input_line_pointer = gotfree_input_line;
9544
9545 expression (exp);
9546
9547 if (gotfree_input_line)
9548 {
9549 /* expression () has merrily parsed up to the end of line,
9550 or a comma - in the wrong buffer. Transfer how far
9551 input_line_pointer has moved to the right buffer. */
9552 input_line_pointer = (save
9553 + (input_line_pointer - gotfree_input_line)
9554 + adjust);
9555 free (gotfree_input_line);
9556 if (exp->X_op == O_constant
9557 || exp->X_op == O_absent
9558 || exp->X_op == O_illegal
9559 || exp->X_op == O_register
9560 || exp->X_op == O_big)
9561 {
9562 char c = *input_line_pointer;
9563 *input_line_pointer = 0;
9564 as_bad (_("missing or invalid expression `%s'"), save);
9565 *input_line_pointer = c;
9566 }
9567 else if ((got_reloc == BFD_RELOC_386_PLT32
9568 || got_reloc == BFD_RELOC_X86_64_PLT32)
9569 && exp->X_op != O_symbol)
9570 {
9571 char c = *input_line_pointer;
9572 *input_line_pointer = 0;
9573 as_bad (_("invalid PLT expression `%s'"), save);
9574 *input_line_pointer = c;
9575 }
9576 }
9577 }
9578 else
9579 expression (exp);
9580
9581 intel_syntax = -intel_syntax;
9582
9583 if (intel_syntax)
9584 i386_intel_simplify (exp);
9585
9586 return got_reloc;
9587 }
9588
9589 static void
9590 signed_cons (int size)
9591 {
9592 if (flag_code == CODE_64BIT)
9593 cons_sign = 1;
9594 cons (size);
9595 cons_sign = -1;
9596 }
9597
9598 #ifdef TE_PE
9599 static void
9600 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9601 {
9602 expressionS exp;
9603
9604 do
9605 {
9606 expression (&exp);
9607 if (exp.X_op == O_symbol)
9608 exp.X_op = O_secrel;
9609
9610 emit_expr (&exp, 4);
9611 }
9612 while (*input_line_pointer++ == ',');
9613
9614 input_line_pointer--;
9615 demand_empty_rest_of_line ();
9616 }
9617 #endif
9618
9619 /* Handle Vector operations. */
9620
9621 static char *
9622 check_VecOperations (char *op_string, char *op_end)
9623 {
9624 const reg_entry *mask;
9625 const char *saved;
9626 char *end_op;
9627
9628 while (*op_string
9629 && (op_end == NULL || op_string < op_end))
9630 {
9631 saved = op_string;
9632 if (*op_string == '{')
9633 {
9634 op_string++;
9635
9636 /* Check broadcasts. */
9637 if (strncmp (op_string, "1to", 3) == 0)
9638 {
9639 int bcst_type;
9640
9641 if (i.broadcast)
9642 goto duplicated_vec_op;
9643
9644 op_string += 3;
9645 if (*op_string == '8')
9646 bcst_type = 8;
9647 else if (*op_string == '4')
9648 bcst_type = 4;
9649 else if (*op_string == '2')
9650 bcst_type = 2;
9651 else if (*op_string == '1'
9652 && *(op_string+1) == '6')
9653 {
9654 bcst_type = 16;
9655 op_string++;
9656 }
9657 else
9658 {
9659 as_bad (_("Unsupported broadcast: `%s'"), saved);
9660 return NULL;
9661 }
9662 op_string++;
9663
9664 broadcast_op.type = bcst_type;
9665 broadcast_op.operand = this_operand;
9666 broadcast_op.bytes = 0;
9667 i.broadcast = &broadcast_op;
9668 }
9669 /* Check masking operation. */
9670 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9671 {
9672 /* k0 can't be used for write mask. */
9673 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9674 {
9675 as_bad (_("`%s%s' can't be used for write mask"),
9676 register_prefix, mask->reg_name);
9677 return NULL;
9678 }
9679
9680 if (!i.mask)
9681 {
9682 mask_op.mask = mask;
9683 mask_op.zeroing = 0;
9684 mask_op.operand = this_operand;
9685 i.mask = &mask_op;
9686 }
9687 else
9688 {
9689 if (i.mask->mask)
9690 goto duplicated_vec_op;
9691
9692 i.mask->mask = mask;
9693
9694 /* Only "{z}" is allowed here. No need to check
9695 zeroing mask explicitly. */
9696 if (i.mask->operand != this_operand)
9697 {
9698 as_bad (_("invalid write mask `%s'"), saved);
9699 return NULL;
9700 }
9701 }
9702
9703 op_string = end_op;
9704 }
9705 /* Check zeroing-flag for masking operation. */
9706 else if (*op_string == 'z')
9707 {
9708 if (!i.mask)
9709 {
9710 mask_op.mask = NULL;
9711 mask_op.zeroing = 1;
9712 mask_op.operand = this_operand;
9713 i.mask = &mask_op;
9714 }
9715 else
9716 {
9717 if (i.mask->zeroing)
9718 {
9719 duplicated_vec_op:
9720 as_bad (_("duplicated `%s'"), saved);
9721 return NULL;
9722 }
9723
9724 i.mask->zeroing = 1;
9725
9726 /* Only "{%k}" is allowed here. No need to check mask
9727 register explicitly. */
9728 if (i.mask->operand != this_operand)
9729 {
9730 as_bad (_("invalid zeroing-masking `%s'"),
9731 saved);
9732 return NULL;
9733 }
9734 }
9735
9736 op_string++;
9737 }
9738 else
9739 goto unknown_vec_op;
9740
9741 if (*op_string != '}')
9742 {
9743 as_bad (_("missing `}' in `%s'"), saved);
9744 return NULL;
9745 }
9746 op_string++;
9747
9748 /* Strip whitespace since the addition of pseudo prefixes
9749 changed how the scrubber treats '{'. */
9750 if (is_space_char (*op_string))
9751 ++op_string;
9752
9753 continue;
9754 }
9755 unknown_vec_op:
9756 /* We don't know this one. */
9757 as_bad (_("unknown vector operation: `%s'"), saved);
9758 return NULL;
9759 }
9760
9761 if (i.mask && i.mask->zeroing && !i.mask->mask)
9762 {
9763 as_bad (_("zeroing-masking only allowed with write mask"));
9764 return NULL;
9765 }
9766
9767 return op_string;
9768 }
9769
9770 static int
9771 i386_immediate (char *imm_start)
9772 {
9773 char *save_input_line_pointer;
9774 char *gotfree_input_line;
9775 segT exp_seg = 0;
9776 expressionS *exp;
9777 i386_operand_type types;
9778
9779 operand_type_set (&types, ~0);
9780
9781 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9782 {
9783 as_bad (_("at most %d immediate operands are allowed"),
9784 MAX_IMMEDIATE_OPERANDS);
9785 return 0;
9786 }
9787
9788 exp = &im_expressions[i.imm_operands++];
9789 i.op[this_operand].imms = exp;
9790
9791 if (is_space_char (*imm_start))
9792 ++imm_start;
9793
9794 save_input_line_pointer = input_line_pointer;
9795 input_line_pointer = imm_start;
9796
9797 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9798 if (gotfree_input_line)
9799 input_line_pointer = gotfree_input_line;
9800
9801 exp_seg = expression (exp);
9802
9803 SKIP_WHITESPACE ();
9804
9805 /* Handle vector operations. */
9806 if (*input_line_pointer == '{')
9807 {
9808 input_line_pointer = check_VecOperations (input_line_pointer,
9809 NULL);
9810 if (input_line_pointer == NULL)
9811 return 0;
9812 }
9813
9814 if (*input_line_pointer)
9815 as_bad (_("junk `%s' after expression"), input_line_pointer);
9816
9817 input_line_pointer = save_input_line_pointer;
9818 if (gotfree_input_line)
9819 {
9820 free (gotfree_input_line);
9821
9822 if (exp->X_op == O_constant || exp->X_op == O_register)
9823 exp->X_op = O_illegal;
9824 }
9825
9826 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9827 }
9828
9829 static int
9830 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9831 i386_operand_type types, const char *imm_start)
9832 {
9833 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9834 {
9835 if (imm_start)
9836 as_bad (_("missing or invalid immediate expression `%s'"),
9837 imm_start);
9838 return 0;
9839 }
9840 else if (exp->X_op == O_constant)
9841 {
9842 /* Size it properly later. */
9843 i.types[this_operand].bitfield.imm64 = 1;
9844 /* If not 64bit, sign extend val. */
9845 if (flag_code != CODE_64BIT
9846 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9847 exp->X_add_number
9848 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9849 }
9850 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9851 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9852 && exp_seg != absolute_section
9853 && exp_seg != text_section
9854 && exp_seg != data_section
9855 && exp_seg != bss_section
9856 && exp_seg != undefined_section
9857 && !bfd_is_com_section (exp_seg))
9858 {
9859 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9860 return 0;
9861 }
9862 #endif
9863 else if (!intel_syntax && exp_seg == reg_section)
9864 {
9865 if (imm_start)
9866 as_bad (_("illegal immediate register operand %s"), imm_start);
9867 return 0;
9868 }
9869 else
9870 {
9871 /* This is an address. The size of the address will be
9872 determined later, depending on destination register,
9873 suffix, or the default for the section. */
9874 i.types[this_operand].bitfield.imm8 = 1;
9875 i.types[this_operand].bitfield.imm16 = 1;
9876 i.types[this_operand].bitfield.imm32 = 1;
9877 i.types[this_operand].bitfield.imm32s = 1;
9878 i.types[this_operand].bitfield.imm64 = 1;
9879 i.types[this_operand] = operand_type_and (i.types[this_operand],
9880 types);
9881 }
9882
9883 return 1;
9884 }
9885
9886 static char *
9887 i386_scale (char *scale)
9888 {
9889 offsetT val;
9890 char *save = input_line_pointer;
9891
9892 input_line_pointer = scale;
9893 val = get_absolute_expression ();
9894
9895 switch (val)
9896 {
9897 case 1:
9898 i.log2_scale_factor = 0;
9899 break;
9900 case 2:
9901 i.log2_scale_factor = 1;
9902 break;
9903 case 4:
9904 i.log2_scale_factor = 2;
9905 break;
9906 case 8:
9907 i.log2_scale_factor = 3;
9908 break;
9909 default:
9910 {
9911 char sep = *input_line_pointer;
9912
9913 *input_line_pointer = '\0';
9914 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9915 scale);
9916 *input_line_pointer = sep;
9917 input_line_pointer = save;
9918 return NULL;
9919 }
9920 }
9921 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9922 {
9923 as_warn (_("scale factor of %d without an index register"),
9924 1 << i.log2_scale_factor);
9925 i.log2_scale_factor = 0;
9926 }
9927 scale = input_line_pointer;
9928 input_line_pointer = save;
9929 return scale;
9930 }
9931
9932 static int
9933 i386_displacement (char *disp_start, char *disp_end)
9934 {
9935 expressionS *exp;
9936 segT exp_seg = 0;
9937 char *save_input_line_pointer;
9938 char *gotfree_input_line;
9939 int override;
9940 i386_operand_type bigdisp, types = anydisp;
9941 int ret;
9942
9943 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9944 {
9945 as_bad (_("at most %d displacement operands are allowed"),
9946 MAX_MEMORY_OPERANDS);
9947 return 0;
9948 }
9949
9950 operand_type_set (&bigdisp, 0);
9951 if (i.jumpabsolute
9952 || i.types[this_operand].bitfield.baseindex
9953 || (current_templates->start->opcode_modifier.jump != JUMP
9954 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9955 {
9956 i386_addressing_mode ();
9957 override = (i.prefix[ADDR_PREFIX] != 0);
9958 if (flag_code == CODE_64BIT)
9959 {
9960 if (!override)
9961 {
9962 bigdisp.bitfield.disp32s = 1;
9963 bigdisp.bitfield.disp64 = 1;
9964 }
9965 else
9966 bigdisp.bitfield.disp32 = 1;
9967 }
9968 else if ((flag_code == CODE_16BIT) ^ override)
9969 bigdisp.bitfield.disp16 = 1;
9970 else
9971 bigdisp.bitfield.disp32 = 1;
9972 }
9973 else
9974 {
9975 /* For PC-relative branches, the width of the displacement may be
9976 dependent upon data size, but is never dependent upon address size.
9977 Also make sure to not unintentionally match against a non-PC-relative
9978 branch template. */
9979 static templates aux_templates;
9980 const insn_template *t = current_templates->start;
9981 bfd_boolean has_intel64 = FALSE;
9982
9983 aux_templates.start = t;
9984 while (++t < current_templates->end)
9985 {
9986 if (t->opcode_modifier.jump
9987 != current_templates->start->opcode_modifier.jump)
9988 break;
9989 if (t->opcode_modifier.intel64)
9990 has_intel64 = TRUE;
9991 }
9992 if (t < current_templates->end)
9993 {
9994 aux_templates.end = t;
9995 current_templates = &aux_templates;
9996 }
9997
9998 override = (i.prefix[DATA_PREFIX] != 0);
9999 if (flag_code == CODE_64BIT)
10000 {
10001 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10002 && (!intel64 || !has_intel64))
10003 bigdisp.bitfield.disp16 = 1;
10004 else
10005 bigdisp.bitfield.disp32s = 1;
10006 }
10007 else
10008 {
10009 if (!override)
10010 override = (i.suffix == (flag_code != CODE_16BIT
10011 ? WORD_MNEM_SUFFIX
10012 : LONG_MNEM_SUFFIX));
10013 bigdisp.bitfield.disp32 = 1;
10014 if ((flag_code == CODE_16BIT) ^ override)
10015 {
10016 bigdisp.bitfield.disp32 = 0;
10017 bigdisp.bitfield.disp16 = 1;
10018 }
10019 }
10020 }
10021 i.types[this_operand] = operand_type_or (i.types[this_operand],
10022 bigdisp);
10023
10024 exp = &disp_expressions[i.disp_operands];
10025 i.op[this_operand].disps = exp;
10026 i.disp_operands++;
10027 save_input_line_pointer = input_line_pointer;
10028 input_line_pointer = disp_start;
10029 END_STRING_AND_SAVE (disp_end);
10030
10031 #ifndef GCC_ASM_O_HACK
10032 #define GCC_ASM_O_HACK 0
10033 #endif
10034 #if GCC_ASM_O_HACK
10035 END_STRING_AND_SAVE (disp_end + 1);
10036 if (i.types[this_operand].bitfield.baseIndex
10037 && displacement_string_end[-1] == '+')
10038 {
10039 /* This hack is to avoid a warning when using the "o"
10040 constraint within gcc asm statements.
10041 For instance:
10042
10043 #define _set_tssldt_desc(n,addr,limit,type) \
10044 __asm__ __volatile__ ( \
10045 "movw %w2,%0\n\t" \
10046 "movw %w1,2+%0\n\t" \
10047 "rorl $16,%1\n\t" \
10048 "movb %b1,4+%0\n\t" \
10049 "movb %4,5+%0\n\t" \
10050 "movb $0,6+%0\n\t" \
10051 "movb %h1,7+%0\n\t" \
10052 "rorl $16,%1" \
10053 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10054
10055 This works great except that the output assembler ends
10056 up looking a bit weird if it turns out that there is
10057 no offset. You end up producing code that looks like:
10058
10059 #APP
10060 movw $235,(%eax)
10061 movw %dx,2+(%eax)
10062 rorl $16,%edx
10063 movb %dl,4+(%eax)
10064 movb $137,5+(%eax)
10065 movb $0,6+(%eax)
10066 movb %dh,7+(%eax)
10067 rorl $16,%edx
10068 #NO_APP
10069
10070 So here we provide the missing zero. */
10071
10072 *displacement_string_end = '0';
10073 }
10074 #endif
10075 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10076 if (gotfree_input_line)
10077 input_line_pointer = gotfree_input_line;
10078
10079 exp_seg = expression (exp);
10080
10081 SKIP_WHITESPACE ();
10082 if (*input_line_pointer)
10083 as_bad (_("junk `%s' after expression"), input_line_pointer);
10084 #if GCC_ASM_O_HACK
10085 RESTORE_END_STRING (disp_end + 1);
10086 #endif
10087 input_line_pointer = save_input_line_pointer;
10088 if (gotfree_input_line)
10089 {
10090 free (gotfree_input_line);
10091
10092 if (exp->X_op == O_constant || exp->X_op == O_register)
10093 exp->X_op = O_illegal;
10094 }
10095
10096 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10097
10098 RESTORE_END_STRING (disp_end);
10099
10100 return ret;
10101 }
10102
10103 static int
10104 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10105 i386_operand_type types, const char *disp_start)
10106 {
10107 i386_operand_type bigdisp;
10108 int ret = 1;
10109
10110 /* We do this to make sure that the section symbol is in
10111 the symbol table. We will ultimately change the relocation
10112 to be relative to the beginning of the section. */
10113 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10114 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10115 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10116 {
10117 if (exp->X_op != O_symbol)
10118 goto inv_disp;
10119
10120 if (S_IS_LOCAL (exp->X_add_symbol)
10121 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10122 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10123 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10124 exp->X_op = O_subtract;
10125 exp->X_op_symbol = GOT_symbol;
10126 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10127 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10128 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10129 i.reloc[this_operand] = BFD_RELOC_64;
10130 else
10131 i.reloc[this_operand] = BFD_RELOC_32;
10132 }
10133
10134 else if (exp->X_op == O_absent
10135 || exp->X_op == O_illegal
10136 || exp->X_op == O_big)
10137 {
10138 inv_disp:
10139 as_bad (_("missing or invalid displacement expression `%s'"),
10140 disp_start);
10141 ret = 0;
10142 }
10143
10144 else if (flag_code == CODE_64BIT
10145 && !i.prefix[ADDR_PREFIX]
10146 && exp->X_op == O_constant)
10147 {
10148 /* Since displacement is signed extended to 64bit, don't allow
10149 disp32 and turn off disp32s if they are out of range. */
10150 i.types[this_operand].bitfield.disp32 = 0;
10151 if (!fits_in_signed_long (exp->X_add_number))
10152 {
10153 i.types[this_operand].bitfield.disp32s = 0;
10154 if (i.types[this_operand].bitfield.baseindex)
10155 {
10156 as_bad (_("0x%lx out range of signed 32bit displacement"),
10157 (long) exp->X_add_number);
10158 ret = 0;
10159 }
10160 }
10161 }
10162
10163 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10164 else if (exp->X_op != O_constant
10165 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10166 && exp_seg != absolute_section
10167 && exp_seg != text_section
10168 && exp_seg != data_section
10169 && exp_seg != bss_section
10170 && exp_seg != undefined_section
10171 && !bfd_is_com_section (exp_seg))
10172 {
10173 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10174 ret = 0;
10175 }
10176 #endif
10177
10178 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10179 /* Constants get taken care of by optimize_disp(). */
10180 && exp->X_op != O_constant)
10181 i.types[this_operand].bitfield.disp8 = 1;
10182
10183 /* Check if this is a displacement only operand. */
10184 bigdisp = i.types[this_operand];
10185 bigdisp.bitfield.disp8 = 0;
10186 bigdisp.bitfield.disp16 = 0;
10187 bigdisp.bitfield.disp32 = 0;
10188 bigdisp.bitfield.disp32s = 0;
10189 bigdisp.bitfield.disp64 = 0;
10190 if (operand_type_all_zero (&bigdisp))
10191 i.types[this_operand] = operand_type_and (i.types[this_operand],
10192 types);
10193
10194 return ret;
10195 }
10196
10197 /* Return the active addressing mode, taking address override and
10198 registers forming the address into consideration. Update the
10199 address override prefix if necessary. */
10200
10201 static enum flag_code
10202 i386_addressing_mode (void)
10203 {
10204 enum flag_code addr_mode;
10205
10206 if (i.prefix[ADDR_PREFIX])
10207 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10208 else
10209 {
10210 addr_mode = flag_code;
10211
10212 #if INFER_ADDR_PREFIX
10213 if (i.mem_operands == 0)
10214 {
10215 /* Infer address prefix from the first memory operand. */
10216 const reg_entry *addr_reg = i.base_reg;
10217
10218 if (addr_reg == NULL)
10219 addr_reg = i.index_reg;
10220
10221 if (addr_reg)
10222 {
10223 if (addr_reg->reg_type.bitfield.dword)
10224 addr_mode = CODE_32BIT;
10225 else if (flag_code != CODE_64BIT
10226 && addr_reg->reg_type.bitfield.word)
10227 addr_mode = CODE_16BIT;
10228
10229 if (addr_mode != flag_code)
10230 {
10231 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10232 i.prefixes += 1;
10233 /* Change the size of any displacement too. At most one
10234 of Disp16 or Disp32 is set.
10235 FIXME. There doesn't seem to be any real need for
10236 separate Disp16 and Disp32 flags. The same goes for
10237 Imm16 and Imm32. Removing them would probably clean
10238 up the code quite a lot. */
10239 if (flag_code != CODE_64BIT
10240 && (i.types[this_operand].bitfield.disp16
10241 || i.types[this_operand].bitfield.disp32))
10242 i.types[this_operand]
10243 = operand_type_xor (i.types[this_operand], disp16_32);
10244 }
10245 }
10246 }
10247 #endif
10248 }
10249
10250 return addr_mode;
10251 }
10252
10253 /* Make sure the memory operand we've been dealt is valid.
10254 Return 1 on success, 0 on a failure. */
10255
10256 static int
10257 i386_index_check (const char *operand_string)
10258 {
10259 const char *kind = "base/index";
10260 enum flag_code addr_mode = i386_addressing_mode ();
10261
10262 if (current_templates->start->opcode_modifier.isstring
10263 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10264 && (current_templates->end[-1].opcode_modifier.isstring
10265 || i.mem_operands))
10266 {
10267 /* Memory operands of string insns are special in that they only allow
10268 a single register (rDI, rSI, or rBX) as their memory address. */
10269 const reg_entry *expected_reg;
10270 static const char *di_si[][2] =
10271 {
10272 { "esi", "edi" },
10273 { "si", "di" },
10274 { "rsi", "rdi" }
10275 };
10276 static const char *bx[] = { "ebx", "bx", "rbx" };
10277
10278 kind = "string address";
10279
10280 if (current_templates->start->opcode_modifier.repprefixok)
10281 {
10282 int es_op = current_templates->end[-1].opcode_modifier.isstring
10283 - IS_STRING_ES_OP0;
10284 int op = 0;
10285
10286 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10287 || ((!i.mem_operands != !intel_syntax)
10288 && current_templates->end[-1].operand_types[1]
10289 .bitfield.baseindex))
10290 op = 1;
10291 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10292 }
10293 else
10294 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10295
10296 if (i.base_reg != expected_reg
10297 || i.index_reg
10298 || operand_type_check (i.types[this_operand], disp))
10299 {
10300 /* The second memory operand must have the same size as
10301 the first one. */
10302 if (i.mem_operands
10303 && i.base_reg
10304 && !((addr_mode == CODE_64BIT
10305 && i.base_reg->reg_type.bitfield.qword)
10306 || (addr_mode == CODE_32BIT
10307 ? i.base_reg->reg_type.bitfield.dword
10308 : i.base_reg->reg_type.bitfield.word)))
10309 goto bad_address;
10310
10311 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10312 operand_string,
10313 intel_syntax ? '[' : '(',
10314 register_prefix,
10315 expected_reg->reg_name,
10316 intel_syntax ? ']' : ')');
10317 return 1;
10318 }
10319 else
10320 return 1;
10321
10322 bad_address:
10323 as_bad (_("`%s' is not a valid %s expression"),
10324 operand_string, kind);
10325 return 0;
10326 }
10327 else
10328 {
10329 if (addr_mode != CODE_16BIT)
10330 {
10331 /* 32-bit/64-bit checks. */
10332 if ((i.base_reg
10333 && ((addr_mode == CODE_64BIT
10334 ? !i.base_reg->reg_type.bitfield.qword
10335 : !i.base_reg->reg_type.bitfield.dword)
10336 || (i.index_reg && i.base_reg->reg_num == RegIP)
10337 || i.base_reg->reg_num == RegIZ))
10338 || (i.index_reg
10339 && !i.index_reg->reg_type.bitfield.xmmword
10340 && !i.index_reg->reg_type.bitfield.ymmword
10341 && !i.index_reg->reg_type.bitfield.zmmword
10342 && ((addr_mode == CODE_64BIT
10343 ? !i.index_reg->reg_type.bitfield.qword
10344 : !i.index_reg->reg_type.bitfield.dword)
10345 || !i.index_reg->reg_type.bitfield.baseindex)))
10346 goto bad_address;
10347
10348 /* bndmk, bndldx, and bndstx have special restrictions. */
10349 if (current_templates->start->base_opcode == 0xf30f1b
10350 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10351 {
10352 /* They cannot use RIP-relative addressing. */
10353 if (i.base_reg && i.base_reg->reg_num == RegIP)
10354 {
10355 as_bad (_("`%s' cannot be used here"), operand_string);
10356 return 0;
10357 }
10358
10359 /* bndldx and bndstx ignore their scale factor. */
10360 if (current_templates->start->base_opcode != 0xf30f1b
10361 && i.log2_scale_factor)
10362 as_warn (_("register scaling is being ignored here"));
10363 }
10364 }
10365 else
10366 {
10367 /* 16-bit checks. */
10368 if ((i.base_reg
10369 && (!i.base_reg->reg_type.bitfield.word
10370 || !i.base_reg->reg_type.bitfield.baseindex))
10371 || (i.index_reg
10372 && (!i.index_reg->reg_type.bitfield.word
10373 || !i.index_reg->reg_type.bitfield.baseindex
10374 || !(i.base_reg
10375 && i.base_reg->reg_num < 6
10376 && i.index_reg->reg_num >= 6
10377 && i.log2_scale_factor == 0))))
10378 goto bad_address;
10379 }
10380 }
10381 return 1;
10382 }
10383
10384 /* Handle vector immediates. */
10385
10386 static int
10387 RC_SAE_immediate (const char *imm_start)
10388 {
10389 unsigned int match_found, j;
10390 const char *pstr = imm_start;
10391 expressionS *exp;
10392
10393 if (*pstr != '{')
10394 return 0;
10395
10396 pstr++;
10397 match_found = 0;
10398 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10399 {
10400 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10401 {
10402 if (!i.rounding)
10403 {
10404 rc_op.type = RC_NamesTable[j].type;
10405 rc_op.operand = this_operand;
10406 i.rounding = &rc_op;
10407 }
10408 else
10409 {
10410 as_bad (_("duplicated `%s'"), imm_start);
10411 return 0;
10412 }
10413 pstr += RC_NamesTable[j].len;
10414 match_found = 1;
10415 break;
10416 }
10417 }
10418 if (!match_found)
10419 return 0;
10420
10421 if (*pstr++ != '}')
10422 {
10423 as_bad (_("Missing '}': '%s'"), imm_start);
10424 return 0;
10425 }
10426 /* RC/SAE immediate string should contain nothing more. */;
10427 if (*pstr != 0)
10428 {
10429 as_bad (_("Junk after '}': '%s'"), imm_start);
10430 return 0;
10431 }
10432
10433 exp = &im_expressions[i.imm_operands++];
10434 i.op[this_operand].imms = exp;
10435
10436 exp->X_op = O_constant;
10437 exp->X_add_number = 0;
10438 exp->X_add_symbol = (symbolS *) 0;
10439 exp->X_op_symbol = (symbolS *) 0;
10440
10441 i.types[this_operand].bitfield.imm8 = 1;
10442 return 1;
10443 }
10444
10445 /* Only string instructions can have a second memory operand, so
10446 reduce current_templates to just those if it contains any. */
10447 static int
10448 maybe_adjust_templates (void)
10449 {
10450 const insn_template *t;
10451
10452 gas_assert (i.mem_operands == 1);
10453
10454 for (t = current_templates->start; t < current_templates->end; ++t)
10455 if (t->opcode_modifier.isstring)
10456 break;
10457
10458 if (t < current_templates->end)
10459 {
10460 static templates aux_templates;
10461 bfd_boolean recheck;
10462
10463 aux_templates.start = t;
10464 for (; t < current_templates->end; ++t)
10465 if (!t->opcode_modifier.isstring)
10466 break;
10467 aux_templates.end = t;
10468
10469 /* Determine whether to re-check the first memory operand. */
10470 recheck = (aux_templates.start != current_templates->start
10471 || t != current_templates->end);
10472
10473 current_templates = &aux_templates;
10474
10475 if (recheck)
10476 {
10477 i.mem_operands = 0;
10478 if (i.memop1_string != NULL
10479 && i386_index_check (i.memop1_string) == 0)
10480 return 0;
10481 i.mem_operands = 1;
10482 }
10483 }
10484
10485 return 1;
10486 }
10487
10488 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10489 on error. */
10490
10491 static int
10492 i386_att_operand (char *operand_string)
10493 {
10494 const reg_entry *r;
10495 char *end_op;
10496 char *op_string = operand_string;
10497
10498 if (is_space_char (*op_string))
10499 ++op_string;
10500
10501 /* We check for an absolute prefix (differentiating,
10502 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10503 if (*op_string == ABSOLUTE_PREFIX)
10504 {
10505 ++op_string;
10506 if (is_space_char (*op_string))
10507 ++op_string;
10508 i.jumpabsolute = TRUE;
10509 }
10510
10511 /* Check if operand is a register. */
10512 if ((r = parse_register (op_string, &end_op)) != NULL)
10513 {
10514 i386_operand_type temp;
10515
10516 /* Check for a segment override by searching for ':' after a
10517 segment register. */
10518 op_string = end_op;
10519 if (is_space_char (*op_string))
10520 ++op_string;
10521 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10522 {
10523 switch (r->reg_num)
10524 {
10525 case 0:
10526 i.seg[i.mem_operands] = &es;
10527 break;
10528 case 1:
10529 i.seg[i.mem_operands] = &cs;
10530 break;
10531 case 2:
10532 i.seg[i.mem_operands] = &ss;
10533 break;
10534 case 3:
10535 i.seg[i.mem_operands] = &ds;
10536 break;
10537 case 4:
10538 i.seg[i.mem_operands] = &fs;
10539 break;
10540 case 5:
10541 i.seg[i.mem_operands] = &gs;
10542 break;
10543 }
10544
10545 /* Skip the ':' and whitespace. */
10546 ++op_string;
10547 if (is_space_char (*op_string))
10548 ++op_string;
10549
10550 if (!is_digit_char (*op_string)
10551 && !is_identifier_char (*op_string)
10552 && *op_string != '('
10553 && *op_string != ABSOLUTE_PREFIX)
10554 {
10555 as_bad (_("bad memory operand `%s'"), op_string);
10556 return 0;
10557 }
10558 /* Handle case of %es:*foo. */
10559 if (*op_string == ABSOLUTE_PREFIX)
10560 {
10561 ++op_string;
10562 if (is_space_char (*op_string))
10563 ++op_string;
10564 i.jumpabsolute = TRUE;
10565 }
10566 goto do_memory_reference;
10567 }
10568
10569 /* Handle vector operations. */
10570 if (*op_string == '{')
10571 {
10572 op_string = check_VecOperations (op_string, NULL);
10573 if (op_string == NULL)
10574 return 0;
10575 }
10576
10577 if (*op_string)
10578 {
10579 as_bad (_("junk `%s' after register"), op_string);
10580 return 0;
10581 }
10582 temp = r->reg_type;
10583 temp.bitfield.baseindex = 0;
10584 i.types[this_operand] = operand_type_or (i.types[this_operand],
10585 temp);
10586 i.types[this_operand].bitfield.unspecified = 0;
10587 i.op[this_operand].regs = r;
10588 i.reg_operands++;
10589 }
10590 else if (*op_string == REGISTER_PREFIX)
10591 {
10592 as_bad (_("bad register name `%s'"), op_string);
10593 return 0;
10594 }
10595 else if (*op_string == IMMEDIATE_PREFIX)
10596 {
10597 ++op_string;
10598 if (i.jumpabsolute)
10599 {
10600 as_bad (_("immediate operand illegal with absolute jump"));
10601 return 0;
10602 }
10603 if (!i386_immediate (op_string))
10604 return 0;
10605 }
10606 else if (RC_SAE_immediate (operand_string))
10607 {
10608 /* If it is a RC or SAE immediate, do nothing. */
10609 ;
10610 }
10611 else if (is_digit_char (*op_string)
10612 || is_identifier_char (*op_string)
10613 || *op_string == '"'
10614 || *op_string == '(')
10615 {
10616 /* This is a memory reference of some sort. */
10617 char *base_string;
10618
10619 /* Start and end of displacement string expression (if found). */
10620 char *displacement_string_start;
10621 char *displacement_string_end;
10622 char *vop_start;
10623
10624 do_memory_reference:
10625 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10626 return 0;
10627 if ((i.mem_operands == 1
10628 && !current_templates->start->opcode_modifier.isstring)
10629 || i.mem_operands == 2)
10630 {
10631 as_bad (_("too many memory references for `%s'"),
10632 current_templates->start->name);
10633 return 0;
10634 }
10635
10636 /* Check for base index form. We detect the base index form by
10637 looking for an ')' at the end of the operand, searching
10638 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10639 after the '('. */
10640 base_string = op_string + strlen (op_string);
10641
10642 /* Handle vector operations. */
10643 vop_start = strchr (op_string, '{');
10644 if (vop_start && vop_start < base_string)
10645 {
10646 if (check_VecOperations (vop_start, base_string) == NULL)
10647 return 0;
10648 base_string = vop_start;
10649 }
10650
10651 --base_string;
10652 if (is_space_char (*base_string))
10653 --base_string;
10654
10655 /* If we only have a displacement, set-up for it to be parsed later. */
10656 displacement_string_start = op_string;
10657 displacement_string_end = base_string + 1;
10658
10659 if (*base_string == ')')
10660 {
10661 char *temp_string;
10662 unsigned int parens_balanced = 1;
10663 /* We've already checked that the number of left & right ()'s are
10664 equal, so this loop will not be infinite. */
10665 do
10666 {
10667 base_string--;
10668 if (*base_string == ')')
10669 parens_balanced++;
10670 if (*base_string == '(')
10671 parens_balanced--;
10672 }
10673 while (parens_balanced);
10674
10675 temp_string = base_string;
10676
10677 /* Skip past '(' and whitespace. */
10678 ++base_string;
10679 if (is_space_char (*base_string))
10680 ++base_string;
10681
10682 if (*base_string == ','
10683 || ((i.base_reg = parse_register (base_string, &end_op))
10684 != NULL))
10685 {
10686 displacement_string_end = temp_string;
10687
10688 i.types[this_operand].bitfield.baseindex = 1;
10689
10690 if (i.base_reg)
10691 {
10692 base_string = end_op;
10693 if (is_space_char (*base_string))
10694 ++base_string;
10695 }
10696
10697 /* There may be an index reg or scale factor here. */
10698 if (*base_string == ',')
10699 {
10700 ++base_string;
10701 if (is_space_char (*base_string))
10702 ++base_string;
10703
10704 if ((i.index_reg = parse_register (base_string, &end_op))
10705 != NULL)
10706 {
10707 base_string = end_op;
10708 if (is_space_char (*base_string))
10709 ++base_string;
10710 if (*base_string == ',')
10711 {
10712 ++base_string;
10713 if (is_space_char (*base_string))
10714 ++base_string;
10715 }
10716 else if (*base_string != ')')
10717 {
10718 as_bad (_("expecting `,' or `)' "
10719 "after index register in `%s'"),
10720 operand_string);
10721 return 0;
10722 }
10723 }
10724 else if (*base_string == REGISTER_PREFIX)
10725 {
10726 end_op = strchr (base_string, ',');
10727 if (end_op)
10728 *end_op = '\0';
10729 as_bad (_("bad register name `%s'"), base_string);
10730 return 0;
10731 }
10732
10733 /* Check for scale factor. */
10734 if (*base_string != ')')
10735 {
10736 char *end_scale = i386_scale (base_string);
10737
10738 if (!end_scale)
10739 return 0;
10740
10741 base_string = end_scale;
10742 if (is_space_char (*base_string))
10743 ++base_string;
10744 if (*base_string != ')')
10745 {
10746 as_bad (_("expecting `)' "
10747 "after scale factor in `%s'"),
10748 operand_string);
10749 return 0;
10750 }
10751 }
10752 else if (!i.index_reg)
10753 {
10754 as_bad (_("expecting index register or scale factor "
10755 "after `,'; got '%c'"),
10756 *base_string);
10757 return 0;
10758 }
10759 }
10760 else if (*base_string != ')')
10761 {
10762 as_bad (_("expecting `,' or `)' "
10763 "after base register in `%s'"),
10764 operand_string);
10765 return 0;
10766 }
10767 }
10768 else if (*base_string == REGISTER_PREFIX)
10769 {
10770 end_op = strchr (base_string, ',');
10771 if (end_op)
10772 *end_op = '\0';
10773 as_bad (_("bad register name `%s'"), base_string);
10774 return 0;
10775 }
10776 }
10777
10778 /* If there's an expression beginning the operand, parse it,
10779 assuming displacement_string_start and
10780 displacement_string_end are meaningful. */
10781 if (displacement_string_start != displacement_string_end)
10782 {
10783 if (!i386_displacement (displacement_string_start,
10784 displacement_string_end))
10785 return 0;
10786 }
10787
10788 /* Special case for (%dx) while doing input/output op. */
10789 if (i.base_reg
10790 && i.base_reg->reg_type.bitfield.instance == RegD
10791 && i.base_reg->reg_type.bitfield.word
10792 && i.index_reg == 0
10793 && i.log2_scale_factor == 0
10794 && i.seg[i.mem_operands] == 0
10795 && !operand_type_check (i.types[this_operand], disp))
10796 {
10797 i.types[this_operand] = i.base_reg->reg_type;
10798 return 1;
10799 }
10800
10801 if (i386_index_check (operand_string) == 0)
10802 return 0;
10803 i.flags[this_operand] |= Operand_Mem;
10804 if (i.mem_operands == 0)
10805 i.memop1_string = xstrdup (operand_string);
10806 i.mem_operands++;
10807 }
10808 else
10809 {
10810 /* It's not a memory operand; argh! */
10811 as_bad (_("invalid char %s beginning operand %d `%s'"),
10812 output_invalid (*op_string),
10813 this_operand + 1,
10814 op_string);
10815 return 0;
10816 }
10817 return 1; /* Normal return. */
10818 }
10819 \f
10820 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10821 that an rs_machine_dependent frag may reach. */
10822
10823 unsigned int
10824 i386_frag_max_var (fragS *frag)
10825 {
10826 /* The only relaxable frags are for jumps.
10827 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10828 gas_assert (frag->fr_type == rs_machine_dependent);
10829 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10830 }
10831
10832 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10833 static int
10834 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10835 {
10836 /* STT_GNU_IFUNC symbol must go through PLT. */
10837 if ((symbol_get_bfdsym (fr_symbol)->flags
10838 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10839 return 0;
10840
10841 if (!S_IS_EXTERNAL (fr_symbol))
10842 /* Symbol may be weak or local. */
10843 return !S_IS_WEAK (fr_symbol);
10844
10845 /* Global symbols with non-default visibility can't be preempted. */
10846 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10847 return 1;
10848
10849 if (fr_var != NO_RELOC)
10850 switch ((enum bfd_reloc_code_real) fr_var)
10851 {
10852 case BFD_RELOC_386_PLT32:
10853 case BFD_RELOC_X86_64_PLT32:
10854 /* Symbol with PLT relocation may be preempted. */
10855 return 0;
10856 default:
10857 abort ();
10858 }
10859
10860 /* Global symbols with default visibility in a shared library may be
10861 preempted by another definition. */
10862 return !shared;
10863 }
10864 #endif
10865
10866 /* Return the next non-empty frag. */
10867
10868 static fragS *
10869 i386_next_non_empty_frag (fragS *fragP)
10870 {
10871 /* There may be a frag with a ".fill 0" when there is no room in
10872 the current frag for frag_grow in output_insn. */
10873 for (fragP = fragP->fr_next;
10874 (fragP != NULL
10875 && fragP->fr_type == rs_fill
10876 && fragP->fr_fix == 0);
10877 fragP = fragP->fr_next)
10878 ;
10879 return fragP;
10880 }
10881
10882 /* Return the next jcc frag after BRANCH_PADDING. */
10883
10884 static fragS *
10885 i386_next_jcc_frag (fragS *fragP)
10886 {
10887 if (!fragP)
10888 return NULL;
10889
10890 if (fragP->fr_type == rs_machine_dependent
10891 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10892 == BRANCH_PADDING))
10893 {
10894 fragP = i386_next_non_empty_frag (fragP);
10895 if (fragP->fr_type != rs_machine_dependent)
10896 return NULL;
10897 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10898 return fragP;
10899 }
10900
10901 return NULL;
10902 }
10903
10904 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10905
10906 static void
10907 i386_classify_machine_dependent_frag (fragS *fragP)
10908 {
10909 fragS *cmp_fragP;
10910 fragS *pad_fragP;
10911 fragS *branch_fragP;
10912 fragS *next_fragP;
10913 unsigned int max_prefix_length;
10914
10915 if (fragP->tc_frag_data.classified)
10916 return;
10917
10918 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10919 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10920 for (next_fragP = fragP;
10921 next_fragP != NULL;
10922 next_fragP = next_fragP->fr_next)
10923 {
10924 next_fragP->tc_frag_data.classified = 1;
10925 if (next_fragP->fr_type == rs_machine_dependent)
10926 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10927 {
10928 case BRANCH_PADDING:
10929 /* The BRANCH_PADDING frag must be followed by a branch
10930 frag. */
10931 branch_fragP = i386_next_non_empty_frag (next_fragP);
10932 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10933 break;
10934 case FUSED_JCC_PADDING:
10935 /* Check if this is a fused jcc:
10936 FUSED_JCC_PADDING
10937 CMP like instruction
10938 BRANCH_PADDING
10939 COND_JUMP
10940 */
10941 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10942 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10943 branch_fragP = i386_next_jcc_frag (pad_fragP);
10944 if (branch_fragP)
10945 {
10946 /* The BRANCH_PADDING frag is merged with the
10947 FUSED_JCC_PADDING frag. */
10948 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10949 /* CMP like instruction size. */
10950 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10951 frag_wane (pad_fragP);
10952 /* Skip to branch_fragP. */
10953 next_fragP = branch_fragP;
10954 }
10955 else if (next_fragP->tc_frag_data.max_prefix_length)
10956 {
10957 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10958 a fused jcc. */
10959 next_fragP->fr_subtype
10960 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10961 next_fragP->tc_frag_data.max_bytes
10962 = next_fragP->tc_frag_data.max_prefix_length;
10963 /* This will be updated in the BRANCH_PREFIX scan. */
10964 next_fragP->tc_frag_data.max_prefix_length = 0;
10965 }
10966 else
10967 frag_wane (next_fragP);
10968 break;
10969 }
10970 }
10971
10972 /* Stop if there is no BRANCH_PREFIX. */
10973 if (!align_branch_prefix_size)
10974 return;
10975
10976 /* Scan for BRANCH_PREFIX. */
10977 for (; fragP != NULL; fragP = fragP->fr_next)
10978 {
10979 if (fragP->fr_type != rs_machine_dependent
10980 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10981 != BRANCH_PREFIX))
10982 continue;
10983
10984 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10985 COND_JUMP_PREFIX. */
10986 max_prefix_length = 0;
10987 for (next_fragP = fragP;
10988 next_fragP != NULL;
10989 next_fragP = next_fragP->fr_next)
10990 {
10991 if (next_fragP->fr_type == rs_fill)
10992 /* Skip rs_fill frags. */
10993 continue;
10994 else if (next_fragP->fr_type != rs_machine_dependent)
10995 /* Stop for all other frags. */
10996 break;
10997
10998 /* rs_machine_dependent frags. */
10999 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11000 == BRANCH_PREFIX)
11001 {
11002 /* Count BRANCH_PREFIX frags. */
11003 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11004 {
11005 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11006 frag_wane (next_fragP);
11007 }
11008 else
11009 max_prefix_length
11010 += next_fragP->tc_frag_data.max_bytes;
11011 }
11012 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11013 == BRANCH_PADDING)
11014 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11015 == FUSED_JCC_PADDING))
11016 {
11017 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11018 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11019 break;
11020 }
11021 else
11022 /* Stop for other rs_machine_dependent frags. */
11023 break;
11024 }
11025
11026 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11027
11028 /* Skip to the next frag. */
11029 fragP = next_fragP;
11030 }
11031 }
11032
11033 /* Compute padding size for
11034
11035 FUSED_JCC_PADDING
11036 CMP like instruction
11037 BRANCH_PADDING
11038 COND_JUMP/UNCOND_JUMP
11039
11040 or
11041
11042 BRANCH_PADDING
11043 COND_JUMP/UNCOND_JUMP
11044 */
11045
11046 static int
11047 i386_branch_padding_size (fragS *fragP, offsetT address)
11048 {
11049 unsigned int offset, size, padding_size;
11050 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11051
11052 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11053 if (!address)
11054 address = fragP->fr_address;
11055 address += fragP->fr_fix;
11056
11057 /* CMP like instrunction size. */
11058 size = fragP->tc_frag_data.cmp_size;
11059
11060 /* The base size of the branch frag. */
11061 size += branch_fragP->fr_fix;
11062
11063 /* Add opcode and displacement bytes for the rs_machine_dependent
11064 branch frag. */
11065 if (branch_fragP->fr_type == rs_machine_dependent)
11066 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11067
11068 /* Check if branch is within boundary and doesn't end at the last
11069 byte. */
11070 offset = address & ((1U << align_branch_power) - 1);
11071 if ((offset + size) >= (1U << align_branch_power))
11072 /* Padding needed to avoid crossing boundary. */
11073 padding_size = (1U << align_branch_power) - offset;
11074 else
11075 /* No padding needed. */
11076 padding_size = 0;
11077
11078 /* The return value may be saved in tc_frag_data.length which is
11079 unsigned byte. */
11080 if (!fits_in_unsigned_byte (padding_size))
11081 abort ();
11082
11083 return padding_size;
11084 }
11085
11086 /* i386_generic_table_relax_frag()
11087
11088 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11089 grow/shrink padding to align branch frags. Hand others to
11090 relax_frag(). */
11091
11092 long
11093 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11094 {
11095 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11096 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11097 {
11098 long padding_size = i386_branch_padding_size (fragP, 0);
11099 long grow = padding_size - fragP->tc_frag_data.length;
11100
11101 /* When the BRANCH_PREFIX frag is used, the computed address
11102 must match the actual address and there should be no padding. */
11103 if (fragP->tc_frag_data.padding_address
11104 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11105 || padding_size))
11106 abort ();
11107
11108 /* Update the padding size. */
11109 if (grow)
11110 fragP->tc_frag_data.length = padding_size;
11111
11112 return grow;
11113 }
11114 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11115 {
11116 fragS *padding_fragP, *next_fragP;
11117 long padding_size, left_size, last_size;
11118
11119 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11120 if (!padding_fragP)
11121 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11122 return (fragP->tc_frag_data.length
11123 - fragP->tc_frag_data.last_length);
11124
11125 /* Compute the relative address of the padding frag in the very
11126 first time where the BRANCH_PREFIX frag sizes are zero. */
11127 if (!fragP->tc_frag_data.padding_address)
11128 fragP->tc_frag_data.padding_address
11129 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11130
11131 /* First update the last length from the previous interation. */
11132 left_size = fragP->tc_frag_data.prefix_length;
11133 for (next_fragP = fragP;
11134 next_fragP != padding_fragP;
11135 next_fragP = next_fragP->fr_next)
11136 if (next_fragP->fr_type == rs_machine_dependent
11137 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11138 == BRANCH_PREFIX))
11139 {
11140 if (left_size)
11141 {
11142 int max = next_fragP->tc_frag_data.max_bytes;
11143 if (max)
11144 {
11145 int size;
11146 if (max > left_size)
11147 size = left_size;
11148 else
11149 size = max;
11150 left_size -= size;
11151 next_fragP->tc_frag_data.last_length = size;
11152 }
11153 }
11154 else
11155 next_fragP->tc_frag_data.last_length = 0;
11156 }
11157
11158 /* Check the padding size for the padding frag. */
11159 padding_size = i386_branch_padding_size
11160 (padding_fragP, (fragP->fr_address
11161 + fragP->tc_frag_data.padding_address));
11162
11163 last_size = fragP->tc_frag_data.prefix_length;
11164 /* Check if there is change from the last interation. */
11165 if (padding_size == last_size)
11166 {
11167 /* Update the expected address of the padding frag. */
11168 padding_fragP->tc_frag_data.padding_address
11169 = (fragP->fr_address + padding_size
11170 + fragP->tc_frag_data.padding_address);
11171 return 0;
11172 }
11173
11174 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11175 {
11176 /* No padding if there is no sufficient room. Clear the
11177 expected address of the padding frag. */
11178 padding_fragP->tc_frag_data.padding_address = 0;
11179 padding_size = 0;
11180 }
11181 else
11182 /* Store the expected address of the padding frag. */
11183 padding_fragP->tc_frag_data.padding_address
11184 = (fragP->fr_address + padding_size
11185 + fragP->tc_frag_data.padding_address);
11186
11187 fragP->tc_frag_data.prefix_length = padding_size;
11188
11189 /* Update the length for the current interation. */
11190 left_size = padding_size;
11191 for (next_fragP = fragP;
11192 next_fragP != padding_fragP;
11193 next_fragP = next_fragP->fr_next)
11194 if (next_fragP->fr_type == rs_machine_dependent
11195 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11196 == BRANCH_PREFIX))
11197 {
11198 if (left_size)
11199 {
11200 int max = next_fragP->tc_frag_data.max_bytes;
11201 if (max)
11202 {
11203 int size;
11204 if (max > left_size)
11205 size = left_size;
11206 else
11207 size = max;
11208 left_size -= size;
11209 next_fragP->tc_frag_data.length = size;
11210 }
11211 }
11212 else
11213 next_fragP->tc_frag_data.length = 0;
11214 }
11215
11216 return (fragP->tc_frag_data.length
11217 - fragP->tc_frag_data.last_length);
11218 }
11219 return relax_frag (segment, fragP, stretch);
11220 }
11221
11222 /* md_estimate_size_before_relax()
11223
11224 Called just before relax() for rs_machine_dependent frags. The x86
11225 assembler uses these frags to handle variable size jump
11226 instructions.
11227
11228 Any symbol that is now undefined will not become defined.
11229 Return the correct fr_subtype in the frag.
11230 Return the initial "guess for variable size of frag" to caller.
11231 The guess is actually the growth beyond the fixed part. Whatever
11232 we do to grow the fixed or variable part contributes to our
11233 returned value. */
11234
11235 int
11236 md_estimate_size_before_relax (fragS *fragP, segT segment)
11237 {
11238 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11239 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11240 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11241 {
11242 i386_classify_machine_dependent_frag (fragP);
11243 return fragP->tc_frag_data.length;
11244 }
11245
11246 /* We've already got fragP->fr_subtype right; all we have to do is
11247 check for un-relaxable symbols. On an ELF system, we can't relax
11248 an externally visible symbol, because it may be overridden by a
11249 shared library. */
11250 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11251 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11252 || (IS_ELF
11253 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11254 fragP->fr_var))
11255 #endif
11256 #if defined (OBJ_COFF) && defined (TE_PE)
11257 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11258 && S_IS_WEAK (fragP->fr_symbol))
11259 #endif
11260 )
11261 {
11262 /* Symbol is undefined in this segment, or we need to keep a
11263 reloc so that weak symbols can be overridden. */
11264 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11265 enum bfd_reloc_code_real reloc_type;
11266 unsigned char *opcode;
11267 int old_fr_fix;
11268
11269 if (fragP->fr_var != NO_RELOC)
11270 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11271 else if (size == 2)
11272 reloc_type = BFD_RELOC_16_PCREL;
11273 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11274 else if (need_plt32_p (fragP->fr_symbol))
11275 reloc_type = BFD_RELOC_X86_64_PLT32;
11276 #endif
11277 else
11278 reloc_type = BFD_RELOC_32_PCREL;
11279
11280 old_fr_fix = fragP->fr_fix;
11281 opcode = (unsigned char *) fragP->fr_opcode;
11282
11283 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11284 {
11285 case UNCOND_JUMP:
11286 /* Make jmp (0xeb) a (d)word displacement jump. */
11287 opcode[0] = 0xe9;
11288 fragP->fr_fix += size;
11289 fix_new (fragP, old_fr_fix, size,
11290 fragP->fr_symbol,
11291 fragP->fr_offset, 1,
11292 reloc_type);
11293 break;
11294
11295 case COND_JUMP86:
11296 if (size == 2
11297 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11298 {
11299 /* Negate the condition, and branch past an
11300 unconditional jump. */
11301 opcode[0] ^= 1;
11302 opcode[1] = 3;
11303 /* Insert an unconditional jump. */
11304 opcode[2] = 0xe9;
11305 /* We added two extra opcode bytes, and have a two byte
11306 offset. */
11307 fragP->fr_fix += 2 + 2;
11308 fix_new (fragP, old_fr_fix + 2, 2,
11309 fragP->fr_symbol,
11310 fragP->fr_offset, 1,
11311 reloc_type);
11312 break;
11313 }
11314 /* Fall through. */
11315
11316 case COND_JUMP:
11317 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11318 {
11319 fixS *fixP;
11320
11321 fragP->fr_fix += 1;
11322 fixP = fix_new (fragP, old_fr_fix, 1,
11323 fragP->fr_symbol,
11324 fragP->fr_offset, 1,
11325 BFD_RELOC_8_PCREL);
11326 fixP->fx_signed = 1;
11327 break;
11328 }
11329
11330 /* This changes the byte-displacement jump 0x7N
11331 to the (d)word-displacement jump 0x0f,0x8N. */
11332 opcode[1] = opcode[0] + 0x10;
11333 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11334 /* We've added an opcode byte. */
11335 fragP->fr_fix += 1 + size;
11336 fix_new (fragP, old_fr_fix + 1, size,
11337 fragP->fr_symbol,
11338 fragP->fr_offset, 1,
11339 reloc_type);
11340 break;
11341
11342 default:
11343 BAD_CASE (fragP->fr_subtype);
11344 break;
11345 }
11346 frag_wane (fragP);
11347 return fragP->fr_fix - old_fr_fix;
11348 }
11349
11350 /* Guess size depending on current relax state. Initially the relax
11351 state will correspond to a short jump and we return 1, because
11352 the variable part of the frag (the branch offset) is one byte
11353 long. However, we can relax a section more than once and in that
11354 case we must either set fr_subtype back to the unrelaxed state,
11355 or return the value for the appropriate branch. */
11356 return md_relax_table[fragP->fr_subtype].rlx_length;
11357 }
11358
11359 /* Called after relax() is finished.
11360
11361 In: Address of frag.
11362 fr_type == rs_machine_dependent.
11363 fr_subtype is what the address relaxed to.
11364
11365 Out: Any fixSs and constants are set up.
11366 Caller will turn frag into a ".space 0". */
11367
11368 void
11369 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11370 fragS *fragP)
11371 {
11372 unsigned char *opcode;
11373 unsigned char *where_to_put_displacement = NULL;
11374 offsetT target_address;
11375 offsetT opcode_address;
11376 unsigned int extension = 0;
11377 offsetT displacement_from_opcode_start;
11378
11379 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11380 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11381 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11382 {
11383 /* Generate nop padding. */
11384 unsigned int size = fragP->tc_frag_data.length;
11385 if (size)
11386 {
11387 if (size > fragP->tc_frag_data.max_bytes)
11388 abort ();
11389
11390 if (flag_debug)
11391 {
11392 const char *msg;
11393 const char *branch = "branch";
11394 const char *prefix = "";
11395 fragS *padding_fragP;
11396 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11397 == BRANCH_PREFIX)
11398 {
11399 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11400 switch (fragP->tc_frag_data.default_prefix)
11401 {
11402 default:
11403 abort ();
11404 break;
11405 case CS_PREFIX_OPCODE:
11406 prefix = " cs";
11407 break;
11408 case DS_PREFIX_OPCODE:
11409 prefix = " ds";
11410 break;
11411 case ES_PREFIX_OPCODE:
11412 prefix = " es";
11413 break;
11414 case FS_PREFIX_OPCODE:
11415 prefix = " fs";
11416 break;
11417 case GS_PREFIX_OPCODE:
11418 prefix = " gs";
11419 break;
11420 case SS_PREFIX_OPCODE:
11421 prefix = " ss";
11422 break;
11423 }
11424 if (padding_fragP)
11425 msg = _("%s:%u: add %d%s at 0x%llx to align "
11426 "%s within %d-byte boundary\n");
11427 else
11428 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11429 "align %s within %d-byte boundary\n");
11430 }
11431 else
11432 {
11433 padding_fragP = fragP;
11434 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11435 "%s within %d-byte boundary\n");
11436 }
11437
11438 if (padding_fragP)
11439 switch (padding_fragP->tc_frag_data.branch_type)
11440 {
11441 case align_branch_jcc:
11442 branch = "jcc";
11443 break;
11444 case align_branch_fused:
11445 branch = "fused jcc";
11446 break;
11447 case align_branch_jmp:
11448 branch = "jmp";
11449 break;
11450 case align_branch_call:
11451 branch = "call";
11452 break;
11453 case align_branch_indirect:
11454 branch = "indiret branch";
11455 break;
11456 case align_branch_ret:
11457 branch = "ret";
11458 break;
11459 default:
11460 break;
11461 }
11462
11463 fprintf (stdout, msg,
11464 fragP->fr_file, fragP->fr_line, size, prefix,
11465 (long long) fragP->fr_address, branch,
11466 1 << align_branch_power);
11467 }
11468 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11469 memset (fragP->fr_opcode,
11470 fragP->tc_frag_data.default_prefix, size);
11471 else
11472 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11473 size, 0);
11474 fragP->fr_fix += size;
11475 }
11476 return;
11477 }
11478
11479 opcode = (unsigned char *) fragP->fr_opcode;
11480
11481 /* Address we want to reach in file space. */
11482 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11483
11484 /* Address opcode resides at in file space. */
11485 opcode_address = fragP->fr_address + fragP->fr_fix;
11486
11487 /* Displacement from opcode start to fill into instruction. */
11488 displacement_from_opcode_start = target_address - opcode_address;
11489
11490 if ((fragP->fr_subtype & BIG) == 0)
11491 {
11492 /* Don't have to change opcode. */
11493 extension = 1; /* 1 opcode + 1 displacement */
11494 where_to_put_displacement = &opcode[1];
11495 }
11496 else
11497 {
11498 if (no_cond_jump_promotion
11499 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11500 as_warn_where (fragP->fr_file, fragP->fr_line,
11501 _("long jump required"));
11502
11503 switch (fragP->fr_subtype)
11504 {
11505 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11506 extension = 4; /* 1 opcode + 4 displacement */
11507 opcode[0] = 0xe9;
11508 where_to_put_displacement = &opcode[1];
11509 break;
11510
11511 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11512 extension = 2; /* 1 opcode + 2 displacement */
11513 opcode[0] = 0xe9;
11514 where_to_put_displacement = &opcode[1];
11515 break;
11516
11517 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11518 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11519 extension = 5; /* 2 opcode + 4 displacement */
11520 opcode[1] = opcode[0] + 0x10;
11521 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11522 where_to_put_displacement = &opcode[2];
11523 break;
11524
11525 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11526 extension = 3; /* 2 opcode + 2 displacement */
11527 opcode[1] = opcode[0] + 0x10;
11528 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11529 where_to_put_displacement = &opcode[2];
11530 break;
11531
11532 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11533 extension = 4;
11534 opcode[0] ^= 1;
11535 opcode[1] = 3;
11536 opcode[2] = 0xe9;
11537 where_to_put_displacement = &opcode[3];
11538 break;
11539
11540 default:
11541 BAD_CASE (fragP->fr_subtype);
11542 break;
11543 }
11544 }
11545
11546 /* If size if less then four we are sure that the operand fits,
11547 but if it's 4, then it could be that the displacement is larger
11548 then -/+ 2GB. */
11549 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11550 && object_64bit
11551 && ((addressT) (displacement_from_opcode_start - extension
11552 + ((addressT) 1 << 31))
11553 > (((addressT) 2 << 31) - 1)))
11554 {
11555 as_bad_where (fragP->fr_file, fragP->fr_line,
11556 _("jump target out of range"));
11557 /* Make us emit 0. */
11558 displacement_from_opcode_start = extension;
11559 }
11560 /* Now put displacement after opcode. */
11561 md_number_to_chars ((char *) where_to_put_displacement,
11562 (valueT) (displacement_from_opcode_start - extension),
11563 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11564 fragP->fr_fix += extension;
11565 }
11566 \f
11567 /* Apply a fixup (fixP) to segment data, once it has been determined
11568 by our caller that we have all the info we need to fix it up.
11569
11570 Parameter valP is the pointer to the value of the bits.
11571
11572 On the 386, immediates, displacements, and data pointers are all in
11573 the same (little-endian) format, so we don't need to care about which
11574 we are handling. */
11575
11576 void
11577 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11578 {
11579 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11580 valueT value = *valP;
11581
11582 #if !defined (TE_Mach)
11583 if (fixP->fx_pcrel)
11584 {
11585 switch (fixP->fx_r_type)
11586 {
11587 default:
11588 break;
11589
11590 case BFD_RELOC_64:
11591 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11592 break;
11593 case BFD_RELOC_32:
11594 case BFD_RELOC_X86_64_32S:
11595 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11596 break;
11597 case BFD_RELOC_16:
11598 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11599 break;
11600 case BFD_RELOC_8:
11601 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11602 break;
11603 }
11604 }
11605
11606 if (fixP->fx_addsy != NULL
11607 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11608 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11609 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11610 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11611 && !use_rela_relocations)
11612 {
11613 /* This is a hack. There should be a better way to handle this.
11614 This covers for the fact that bfd_install_relocation will
11615 subtract the current location (for partial_inplace, PC relative
11616 relocations); see more below. */
11617 #ifndef OBJ_AOUT
11618 if (IS_ELF
11619 #ifdef TE_PE
11620 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11621 #endif
11622 )
11623 value += fixP->fx_where + fixP->fx_frag->fr_address;
11624 #endif
11625 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11626 if (IS_ELF)
11627 {
11628 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11629
11630 if ((sym_seg == seg
11631 || (symbol_section_p (fixP->fx_addsy)
11632 && sym_seg != absolute_section))
11633 && !generic_force_reloc (fixP))
11634 {
11635 /* Yes, we add the values in twice. This is because
11636 bfd_install_relocation subtracts them out again. I think
11637 bfd_install_relocation is broken, but I don't dare change
11638 it. FIXME. */
11639 value += fixP->fx_where + fixP->fx_frag->fr_address;
11640 }
11641 }
11642 #endif
11643 #if defined (OBJ_COFF) && defined (TE_PE)
11644 /* For some reason, the PE format does not store a
11645 section address offset for a PC relative symbol. */
11646 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11647 || S_IS_WEAK (fixP->fx_addsy))
11648 value += md_pcrel_from (fixP);
11649 #endif
11650 }
11651 #if defined (OBJ_COFF) && defined (TE_PE)
11652 if (fixP->fx_addsy != NULL
11653 && S_IS_WEAK (fixP->fx_addsy)
11654 /* PR 16858: Do not modify weak function references. */
11655 && ! fixP->fx_pcrel)
11656 {
11657 #if !defined (TE_PEP)
11658 /* For x86 PE weak function symbols are neither PC-relative
11659 nor do they set S_IS_FUNCTION. So the only reliable way
11660 to detect them is to check the flags of their containing
11661 section. */
11662 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11663 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11664 ;
11665 else
11666 #endif
11667 value -= S_GET_VALUE (fixP->fx_addsy);
11668 }
11669 #endif
11670
11671 /* Fix a few things - the dynamic linker expects certain values here,
11672 and we must not disappoint it. */
11673 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11674 if (IS_ELF && fixP->fx_addsy)
11675 switch (fixP->fx_r_type)
11676 {
11677 case BFD_RELOC_386_PLT32:
11678 case BFD_RELOC_X86_64_PLT32:
11679 /* Make the jump instruction point to the address of the operand.
11680 At runtime we merely add the offset to the actual PLT entry.
11681 NB: Subtract the offset size only for jump instructions. */
11682 if (fixP->fx_pcrel)
11683 value = -4;
11684 break;
11685
11686 case BFD_RELOC_386_TLS_GD:
11687 case BFD_RELOC_386_TLS_LDM:
11688 case BFD_RELOC_386_TLS_IE_32:
11689 case BFD_RELOC_386_TLS_IE:
11690 case BFD_RELOC_386_TLS_GOTIE:
11691 case BFD_RELOC_386_TLS_GOTDESC:
11692 case BFD_RELOC_X86_64_TLSGD:
11693 case BFD_RELOC_X86_64_TLSLD:
11694 case BFD_RELOC_X86_64_GOTTPOFF:
11695 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11696 value = 0; /* Fully resolved at runtime. No addend. */
11697 /* Fallthrough */
11698 case BFD_RELOC_386_TLS_LE:
11699 case BFD_RELOC_386_TLS_LDO_32:
11700 case BFD_RELOC_386_TLS_LE_32:
11701 case BFD_RELOC_X86_64_DTPOFF32:
11702 case BFD_RELOC_X86_64_DTPOFF64:
11703 case BFD_RELOC_X86_64_TPOFF32:
11704 case BFD_RELOC_X86_64_TPOFF64:
11705 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11706 break;
11707
11708 case BFD_RELOC_386_TLS_DESC_CALL:
11709 case BFD_RELOC_X86_64_TLSDESC_CALL:
11710 value = 0; /* Fully resolved at runtime. No addend. */
11711 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11712 fixP->fx_done = 0;
11713 return;
11714
11715 case BFD_RELOC_VTABLE_INHERIT:
11716 case BFD_RELOC_VTABLE_ENTRY:
11717 fixP->fx_done = 0;
11718 return;
11719
11720 default:
11721 break;
11722 }
11723 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11724 *valP = value;
11725 #endif /* !defined (TE_Mach) */
11726
11727 /* Are we finished with this relocation now? */
11728 if (fixP->fx_addsy == NULL)
11729 fixP->fx_done = 1;
11730 #if defined (OBJ_COFF) && defined (TE_PE)
11731 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11732 {
11733 fixP->fx_done = 0;
11734 /* Remember value for tc_gen_reloc. */
11735 fixP->fx_addnumber = value;
11736 /* Clear out the frag for now. */
11737 value = 0;
11738 }
11739 #endif
11740 else if (use_rela_relocations)
11741 {
11742 fixP->fx_no_overflow = 1;
11743 /* Remember value for tc_gen_reloc. */
11744 fixP->fx_addnumber = value;
11745 value = 0;
11746 }
11747
11748 md_number_to_chars (p, value, fixP->fx_size);
11749 }
11750 \f
11751 const char *
11752 md_atof (int type, char *litP, int *sizeP)
11753 {
11754 /* This outputs the LITTLENUMs in REVERSE order;
11755 in accord with the bigendian 386. */
11756 return ieee_md_atof (type, litP, sizeP, FALSE);
11757 }
11758 \f
11759 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11760
11761 static char *
11762 output_invalid (int c)
11763 {
11764 if (ISPRINT (c))
11765 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11766 "'%c'", c);
11767 else
11768 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11769 "(0x%x)", (unsigned char) c);
11770 return output_invalid_buf;
11771 }
11772
11773 /* REG_STRING starts *before* REGISTER_PREFIX. */
11774
11775 static const reg_entry *
11776 parse_real_register (char *reg_string, char **end_op)
11777 {
11778 char *s = reg_string;
11779 char *p;
11780 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11781 const reg_entry *r;
11782
11783 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11784 if (*s == REGISTER_PREFIX)
11785 ++s;
11786
11787 if (is_space_char (*s))
11788 ++s;
11789
11790 p = reg_name_given;
11791 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11792 {
11793 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11794 return (const reg_entry *) NULL;
11795 s++;
11796 }
11797
11798 /* For naked regs, make sure that we are not dealing with an identifier.
11799 This prevents confusing an identifier like `eax_var' with register
11800 `eax'. */
11801 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11802 return (const reg_entry *) NULL;
11803
11804 *end_op = s;
11805
11806 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11807
11808 /* Handle floating point regs, allowing spaces in the (i) part. */
11809 if (r == i386_regtab /* %st is first entry of table */)
11810 {
11811 if (!cpu_arch_flags.bitfield.cpu8087
11812 && !cpu_arch_flags.bitfield.cpu287
11813 && !cpu_arch_flags.bitfield.cpu387)
11814 return (const reg_entry *) NULL;
11815
11816 if (is_space_char (*s))
11817 ++s;
11818 if (*s == '(')
11819 {
11820 ++s;
11821 if (is_space_char (*s))
11822 ++s;
11823 if (*s >= '0' && *s <= '7')
11824 {
11825 int fpr = *s - '0';
11826 ++s;
11827 if (is_space_char (*s))
11828 ++s;
11829 if (*s == ')')
11830 {
11831 *end_op = s + 1;
11832 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11833 know (r);
11834 return r + fpr;
11835 }
11836 }
11837 /* We have "%st(" then garbage. */
11838 return (const reg_entry *) NULL;
11839 }
11840 }
11841
11842 if (r == NULL || allow_pseudo_reg)
11843 return r;
11844
11845 if (operand_type_all_zero (&r->reg_type))
11846 return (const reg_entry *) NULL;
11847
11848 if ((r->reg_type.bitfield.dword
11849 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11850 || r->reg_type.bitfield.class == RegCR
11851 || r->reg_type.bitfield.class == RegDR
11852 || r->reg_type.bitfield.class == RegTR)
11853 && !cpu_arch_flags.bitfield.cpui386)
11854 return (const reg_entry *) NULL;
11855
11856 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11857 return (const reg_entry *) NULL;
11858
11859 if (!cpu_arch_flags.bitfield.cpuavx512f)
11860 {
11861 if (r->reg_type.bitfield.zmmword
11862 || r->reg_type.bitfield.class == RegMask)
11863 return (const reg_entry *) NULL;
11864
11865 if (!cpu_arch_flags.bitfield.cpuavx)
11866 {
11867 if (r->reg_type.bitfield.ymmword)
11868 return (const reg_entry *) NULL;
11869
11870 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11871 return (const reg_entry *) NULL;
11872 }
11873 }
11874
11875 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11876 return (const reg_entry *) NULL;
11877
11878 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11879 if (!allow_index_reg && r->reg_num == RegIZ)
11880 return (const reg_entry *) NULL;
11881
11882 /* Upper 16 vector registers are only available with VREX in 64bit
11883 mode, and require EVEX encoding. */
11884 if (r->reg_flags & RegVRex)
11885 {
11886 if (!cpu_arch_flags.bitfield.cpuavx512f
11887 || flag_code != CODE_64BIT)
11888 return (const reg_entry *) NULL;
11889
11890 i.vec_encoding = vex_encoding_evex;
11891 }
11892
11893 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11894 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11895 && flag_code != CODE_64BIT)
11896 return (const reg_entry *) NULL;
11897
11898 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11899 && !intel_syntax)
11900 return (const reg_entry *) NULL;
11901
11902 return r;
11903 }
11904
11905 /* REG_STRING starts *before* REGISTER_PREFIX. */
11906
11907 static const reg_entry *
11908 parse_register (char *reg_string, char **end_op)
11909 {
11910 const reg_entry *r;
11911
11912 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11913 r = parse_real_register (reg_string, end_op);
11914 else
11915 r = NULL;
11916 if (!r)
11917 {
11918 char *save = input_line_pointer;
11919 char c;
11920 symbolS *symbolP;
11921
11922 input_line_pointer = reg_string;
11923 c = get_symbol_name (&reg_string);
11924 symbolP = symbol_find (reg_string);
11925 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11926 {
11927 const expressionS *e = symbol_get_value_expression (symbolP);
11928
11929 know (e->X_op == O_register);
11930 know (e->X_add_number >= 0
11931 && (valueT) e->X_add_number < i386_regtab_size);
11932 r = i386_regtab + e->X_add_number;
11933 if ((r->reg_flags & RegVRex))
11934 i.vec_encoding = vex_encoding_evex;
11935 *end_op = input_line_pointer;
11936 }
11937 *input_line_pointer = c;
11938 input_line_pointer = save;
11939 }
11940 return r;
11941 }
11942
11943 int
11944 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11945 {
11946 const reg_entry *r;
11947 char *end = input_line_pointer;
11948
11949 *end = *nextcharP;
11950 r = parse_register (name, &input_line_pointer);
11951 if (r && end <= input_line_pointer)
11952 {
11953 *nextcharP = *input_line_pointer;
11954 *input_line_pointer = 0;
11955 e->X_op = O_register;
11956 e->X_add_number = r - i386_regtab;
11957 return 1;
11958 }
11959 input_line_pointer = end;
11960 *end = 0;
11961 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11962 }
11963
11964 void
11965 md_operand (expressionS *e)
11966 {
11967 char *end;
11968 const reg_entry *r;
11969
11970 switch (*input_line_pointer)
11971 {
11972 case REGISTER_PREFIX:
11973 r = parse_real_register (input_line_pointer, &end);
11974 if (r)
11975 {
11976 e->X_op = O_register;
11977 e->X_add_number = r - i386_regtab;
11978 input_line_pointer = end;
11979 }
11980 break;
11981
11982 case '[':
11983 gas_assert (intel_syntax);
11984 end = input_line_pointer++;
11985 expression (e);
11986 if (*input_line_pointer == ']')
11987 {
11988 ++input_line_pointer;
11989 e->X_op_symbol = make_expr_symbol (e);
11990 e->X_add_symbol = NULL;
11991 e->X_add_number = 0;
11992 e->X_op = O_index;
11993 }
11994 else
11995 {
11996 e->X_op = O_absent;
11997 input_line_pointer = end;
11998 }
11999 break;
12000 }
12001 }
12002
12003 \f
12004 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12005 const char *md_shortopts = "kVQ:sqnO::";
12006 #else
12007 const char *md_shortopts = "qnO::";
12008 #endif
12009
12010 #define OPTION_32 (OPTION_MD_BASE + 0)
12011 #define OPTION_64 (OPTION_MD_BASE + 1)
12012 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12013 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12014 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12015 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12016 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12017 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12018 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12019 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12020 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12021 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12022 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12023 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12024 #define OPTION_X32 (OPTION_MD_BASE + 14)
12025 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12026 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12027 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12028 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12029 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12030 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12031 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12032 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12033 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12034 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12035 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12036 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12037 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12038 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12039 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12040 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12041
12042 struct option md_longopts[] =
12043 {
12044 {"32", no_argument, NULL, OPTION_32},
12045 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12046 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12047 {"64", no_argument, NULL, OPTION_64},
12048 #endif
12049 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12050 {"x32", no_argument, NULL, OPTION_X32},
12051 {"mshared", no_argument, NULL, OPTION_MSHARED},
12052 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12053 #endif
12054 {"divide", no_argument, NULL, OPTION_DIVIDE},
12055 {"march", required_argument, NULL, OPTION_MARCH},
12056 {"mtune", required_argument, NULL, OPTION_MTUNE},
12057 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12058 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12059 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12060 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12061 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12062 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12063 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12064 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12065 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12066 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12067 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12068 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12069 # if defined (TE_PE) || defined (TE_PEP)
12070 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12071 #endif
12072 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12073 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12074 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12075 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12076 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12077 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12078 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12079 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12080 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12081 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12082 {NULL, no_argument, NULL, 0}
12083 };
12084 size_t md_longopts_size = sizeof (md_longopts);
12085
12086 int
12087 md_parse_option (int c, const char *arg)
12088 {
12089 unsigned int j;
12090 char *arch, *next, *saved, *type;
12091
12092 switch (c)
12093 {
12094 case 'n':
12095 optimize_align_code = 0;
12096 break;
12097
12098 case 'q':
12099 quiet_warnings = 1;
12100 break;
12101
12102 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12103 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12104 should be emitted or not. FIXME: Not implemented. */
12105 case 'Q':
12106 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12107 return 0;
12108 break;
12109
12110 /* -V: SVR4 argument to print version ID. */
12111 case 'V':
12112 print_version_id ();
12113 break;
12114
12115 /* -k: Ignore for FreeBSD compatibility. */
12116 case 'k':
12117 break;
12118
12119 case 's':
12120 /* -s: On i386 Solaris, this tells the native assembler to use
12121 .stab instead of .stab.excl. We always use .stab anyhow. */
12122 break;
12123
12124 case OPTION_MSHARED:
12125 shared = 1;
12126 break;
12127
12128 case OPTION_X86_USED_NOTE:
12129 if (strcasecmp (arg, "yes") == 0)
12130 x86_used_note = 1;
12131 else if (strcasecmp (arg, "no") == 0)
12132 x86_used_note = 0;
12133 else
12134 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12135 break;
12136
12137
12138 #endif
12139 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12140 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12141 case OPTION_64:
12142 {
12143 const char **list, **l;
12144
12145 list = bfd_target_list ();
12146 for (l = list; *l != NULL; l++)
12147 if (CONST_STRNEQ (*l, "elf64-x86-64")
12148 || strcmp (*l, "coff-x86-64") == 0
12149 || strcmp (*l, "pe-x86-64") == 0
12150 || strcmp (*l, "pei-x86-64") == 0
12151 || strcmp (*l, "mach-o-x86-64") == 0)
12152 {
12153 default_arch = "x86_64";
12154 break;
12155 }
12156 if (*l == NULL)
12157 as_fatal (_("no compiled in support for x86_64"));
12158 free (list);
12159 }
12160 break;
12161 #endif
12162
12163 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12164 case OPTION_X32:
12165 if (IS_ELF)
12166 {
12167 const char **list, **l;
12168
12169 list = bfd_target_list ();
12170 for (l = list; *l != NULL; l++)
12171 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12172 {
12173 default_arch = "x86_64:32";
12174 break;
12175 }
12176 if (*l == NULL)
12177 as_fatal (_("no compiled in support for 32bit x86_64"));
12178 free (list);
12179 }
12180 else
12181 as_fatal (_("32bit x86_64 is only supported for ELF"));
12182 break;
12183 #endif
12184
12185 case OPTION_32:
12186 default_arch = "i386";
12187 break;
12188
12189 case OPTION_DIVIDE:
12190 #ifdef SVR4_COMMENT_CHARS
12191 {
12192 char *n, *t;
12193 const char *s;
12194
12195 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12196 t = n;
12197 for (s = i386_comment_chars; *s != '\0'; s++)
12198 if (*s != '/')
12199 *t++ = *s;
12200 *t = '\0';
12201 i386_comment_chars = n;
12202 }
12203 #endif
12204 break;
12205
12206 case OPTION_MARCH:
12207 saved = xstrdup (arg);
12208 arch = saved;
12209 /* Allow -march=+nosse. */
12210 if (*arch == '+')
12211 arch++;
12212 do
12213 {
12214 if (*arch == '.')
12215 as_fatal (_("invalid -march= option: `%s'"), arg);
12216 next = strchr (arch, '+');
12217 if (next)
12218 *next++ = '\0';
12219 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12220 {
12221 if (strcmp (arch, cpu_arch [j].name) == 0)
12222 {
12223 /* Processor. */
12224 if (! cpu_arch[j].flags.bitfield.cpui386)
12225 continue;
12226
12227 cpu_arch_name = cpu_arch[j].name;
12228 cpu_sub_arch_name = NULL;
12229 cpu_arch_flags = cpu_arch[j].flags;
12230 cpu_arch_isa = cpu_arch[j].type;
12231 cpu_arch_isa_flags = cpu_arch[j].flags;
12232 if (!cpu_arch_tune_set)
12233 {
12234 cpu_arch_tune = cpu_arch_isa;
12235 cpu_arch_tune_flags = cpu_arch_isa_flags;
12236 }
12237 break;
12238 }
12239 else if (*cpu_arch [j].name == '.'
12240 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12241 {
12242 /* ISA extension. */
12243 i386_cpu_flags flags;
12244
12245 flags = cpu_flags_or (cpu_arch_flags,
12246 cpu_arch[j].flags);
12247
12248 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12249 {
12250 if (cpu_sub_arch_name)
12251 {
12252 char *name = cpu_sub_arch_name;
12253 cpu_sub_arch_name = concat (name,
12254 cpu_arch[j].name,
12255 (const char *) NULL);
12256 free (name);
12257 }
12258 else
12259 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12260 cpu_arch_flags = flags;
12261 cpu_arch_isa_flags = flags;
12262 }
12263 else
12264 cpu_arch_isa_flags
12265 = cpu_flags_or (cpu_arch_isa_flags,
12266 cpu_arch[j].flags);
12267 break;
12268 }
12269 }
12270
12271 if (j >= ARRAY_SIZE (cpu_arch))
12272 {
12273 /* Disable an ISA extension. */
12274 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12275 if (strcmp (arch, cpu_noarch [j].name) == 0)
12276 {
12277 i386_cpu_flags flags;
12278
12279 flags = cpu_flags_and_not (cpu_arch_flags,
12280 cpu_noarch[j].flags);
12281 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12282 {
12283 if (cpu_sub_arch_name)
12284 {
12285 char *name = cpu_sub_arch_name;
12286 cpu_sub_arch_name = concat (arch,
12287 (const char *) NULL);
12288 free (name);
12289 }
12290 else
12291 cpu_sub_arch_name = xstrdup (arch);
12292 cpu_arch_flags = flags;
12293 cpu_arch_isa_flags = flags;
12294 }
12295 break;
12296 }
12297
12298 if (j >= ARRAY_SIZE (cpu_noarch))
12299 j = ARRAY_SIZE (cpu_arch);
12300 }
12301
12302 if (j >= ARRAY_SIZE (cpu_arch))
12303 as_fatal (_("invalid -march= option: `%s'"), arg);
12304
12305 arch = next;
12306 }
12307 while (next != NULL);
12308 free (saved);
12309 break;
12310
12311 case OPTION_MTUNE:
12312 if (*arg == '.')
12313 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12314 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12315 {
12316 if (strcmp (arg, cpu_arch [j].name) == 0)
12317 {
12318 cpu_arch_tune_set = 1;
12319 cpu_arch_tune = cpu_arch [j].type;
12320 cpu_arch_tune_flags = cpu_arch[j].flags;
12321 break;
12322 }
12323 }
12324 if (j >= ARRAY_SIZE (cpu_arch))
12325 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12326 break;
12327
12328 case OPTION_MMNEMONIC:
12329 if (strcasecmp (arg, "att") == 0)
12330 intel_mnemonic = 0;
12331 else if (strcasecmp (arg, "intel") == 0)
12332 intel_mnemonic = 1;
12333 else
12334 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12335 break;
12336
12337 case OPTION_MSYNTAX:
12338 if (strcasecmp (arg, "att") == 0)
12339 intel_syntax = 0;
12340 else if (strcasecmp (arg, "intel") == 0)
12341 intel_syntax = 1;
12342 else
12343 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12344 break;
12345
12346 case OPTION_MINDEX_REG:
12347 allow_index_reg = 1;
12348 break;
12349
12350 case OPTION_MNAKED_REG:
12351 allow_naked_reg = 1;
12352 break;
12353
12354 case OPTION_MSSE2AVX:
12355 sse2avx = 1;
12356 break;
12357
12358 case OPTION_MSSE_CHECK:
12359 if (strcasecmp (arg, "error") == 0)
12360 sse_check = check_error;
12361 else if (strcasecmp (arg, "warning") == 0)
12362 sse_check = check_warning;
12363 else if (strcasecmp (arg, "none") == 0)
12364 sse_check = check_none;
12365 else
12366 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12367 break;
12368
12369 case OPTION_MOPERAND_CHECK:
12370 if (strcasecmp (arg, "error") == 0)
12371 operand_check = check_error;
12372 else if (strcasecmp (arg, "warning") == 0)
12373 operand_check = check_warning;
12374 else if (strcasecmp (arg, "none") == 0)
12375 operand_check = check_none;
12376 else
12377 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12378 break;
12379
12380 case OPTION_MAVXSCALAR:
12381 if (strcasecmp (arg, "128") == 0)
12382 avxscalar = vex128;
12383 else if (strcasecmp (arg, "256") == 0)
12384 avxscalar = vex256;
12385 else
12386 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12387 break;
12388
12389 case OPTION_MVEXWIG:
12390 if (strcmp (arg, "0") == 0)
12391 vexwig = vexw0;
12392 else if (strcmp (arg, "1") == 0)
12393 vexwig = vexw1;
12394 else
12395 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12396 break;
12397
12398 case OPTION_MADD_BND_PREFIX:
12399 add_bnd_prefix = 1;
12400 break;
12401
12402 case OPTION_MEVEXLIG:
12403 if (strcmp (arg, "128") == 0)
12404 evexlig = evexl128;
12405 else if (strcmp (arg, "256") == 0)
12406 evexlig = evexl256;
12407 else if (strcmp (arg, "512") == 0)
12408 evexlig = evexl512;
12409 else
12410 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12411 break;
12412
12413 case OPTION_MEVEXRCIG:
12414 if (strcmp (arg, "rne") == 0)
12415 evexrcig = rne;
12416 else if (strcmp (arg, "rd") == 0)
12417 evexrcig = rd;
12418 else if (strcmp (arg, "ru") == 0)
12419 evexrcig = ru;
12420 else if (strcmp (arg, "rz") == 0)
12421 evexrcig = rz;
12422 else
12423 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12424 break;
12425
12426 case OPTION_MEVEXWIG:
12427 if (strcmp (arg, "0") == 0)
12428 evexwig = evexw0;
12429 else if (strcmp (arg, "1") == 0)
12430 evexwig = evexw1;
12431 else
12432 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12433 break;
12434
12435 # if defined (TE_PE) || defined (TE_PEP)
12436 case OPTION_MBIG_OBJ:
12437 use_big_obj = 1;
12438 break;
12439 #endif
12440
12441 case OPTION_MOMIT_LOCK_PREFIX:
12442 if (strcasecmp (arg, "yes") == 0)
12443 omit_lock_prefix = 1;
12444 else if (strcasecmp (arg, "no") == 0)
12445 omit_lock_prefix = 0;
12446 else
12447 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12448 break;
12449
12450 case OPTION_MFENCE_AS_LOCK_ADD:
12451 if (strcasecmp (arg, "yes") == 0)
12452 avoid_fence = 1;
12453 else if (strcasecmp (arg, "no") == 0)
12454 avoid_fence = 0;
12455 else
12456 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12457 break;
12458
12459 case OPTION_MRELAX_RELOCATIONS:
12460 if (strcasecmp (arg, "yes") == 0)
12461 generate_relax_relocations = 1;
12462 else if (strcasecmp (arg, "no") == 0)
12463 generate_relax_relocations = 0;
12464 else
12465 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12466 break;
12467
12468 case OPTION_MALIGN_BRANCH_BOUNDARY:
12469 {
12470 char *end;
12471 long int align = strtoul (arg, &end, 0);
12472 if (*end == '\0')
12473 {
12474 if (align == 0)
12475 {
12476 align_branch_power = 0;
12477 break;
12478 }
12479 else if (align >= 16)
12480 {
12481 int align_power;
12482 for (align_power = 0;
12483 (align & 1) == 0;
12484 align >>= 1, align_power++)
12485 continue;
12486 /* Limit alignment power to 31. */
12487 if (align == 1 && align_power < 32)
12488 {
12489 align_branch_power = align_power;
12490 break;
12491 }
12492 }
12493 }
12494 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12495 }
12496 break;
12497
12498 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12499 {
12500 char *end;
12501 int align = strtoul (arg, &end, 0);
12502 /* Some processors only support 5 prefixes. */
12503 if (*end == '\0' && align >= 0 && align < 6)
12504 {
12505 align_branch_prefix_size = align;
12506 break;
12507 }
12508 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12509 arg);
12510 }
12511 break;
12512
12513 case OPTION_MALIGN_BRANCH:
12514 align_branch = 0;
12515 saved = xstrdup (arg);
12516 type = saved;
12517 do
12518 {
12519 next = strchr (type, '+');
12520 if (next)
12521 *next++ = '\0';
12522 if (strcasecmp (type, "jcc") == 0)
12523 align_branch |= align_branch_jcc_bit;
12524 else if (strcasecmp (type, "fused") == 0)
12525 align_branch |= align_branch_fused_bit;
12526 else if (strcasecmp (type, "jmp") == 0)
12527 align_branch |= align_branch_jmp_bit;
12528 else if (strcasecmp (type, "call") == 0)
12529 align_branch |= align_branch_call_bit;
12530 else if (strcasecmp (type, "ret") == 0)
12531 align_branch |= align_branch_ret_bit;
12532 else if (strcasecmp (type, "indirect") == 0)
12533 align_branch |= align_branch_indirect_bit;
12534 else
12535 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12536 type = next;
12537 }
12538 while (next != NULL);
12539 free (saved);
12540 break;
12541
12542 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12543 align_branch_power = 5;
12544 align_branch_prefix_size = 5;
12545 align_branch = (align_branch_jcc_bit
12546 | align_branch_fused_bit
12547 | align_branch_jmp_bit);
12548 break;
12549
12550 case OPTION_MAMD64:
12551 intel64 = 0;
12552 break;
12553
12554 case OPTION_MINTEL64:
12555 intel64 = 1;
12556 break;
12557
12558 case 'O':
12559 if (arg == NULL)
12560 {
12561 optimize = 1;
12562 /* Turn off -Os. */
12563 optimize_for_space = 0;
12564 }
12565 else if (*arg == 's')
12566 {
12567 optimize_for_space = 1;
12568 /* Turn on all encoding optimizations. */
12569 optimize = INT_MAX;
12570 }
12571 else
12572 {
12573 optimize = atoi (arg);
12574 /* Turn off -Os. */
12575 optimize_for_space = 0;
12576 }
12577 break;
12578
12579 default:
12580 return 0;
12581 }
12582 return 1;
12583 }
12584
12585 #define MESSAGE_TEMPLATE \
12586 " "
12587
12588 static char *
12589 output_message (FILE *stream, char *p, char *message, char *start,
12590 int *left_p, const char *name, int len)
12591 {
12592 int size = sizeof (MESSAGE_TEMPLATE);
12593 int left = *left_p;
12594
12595 /* Reserve 2 spaces for ", " or ",\0" */
12596 left -= len + 2;
12597
12598 /* Check if there is any room. */
12599 if (left >= 0)
12600 {
12601 if (p != start)
12602 {
12603 *p++ = ',';
12604 *p++ = ' ';
12605 }
12606 p = mempcpy (p, name, len);
12607 }
12608 else
12609 {
12610 /* Output the current message now and start a new one. */
12611 *p++ = ',';
12612 *p = '\0';
12613 fprintf (stream, "%s\n", message);
12614 p = start;
12615 left = size - (start - message) - len - 2;
12616
12617 gas_assert (left >= 0);
12618
12619 p = mempcpy (p, name, len);
12620 }
12621
12622 *left_p = left;
12623 return p;
12624 }
12625
12626 static void
12627 show_arch (FILE *stream, int ext, int check)
12628 {
12629 static char message[] = MESSAGE_TEMPLATE;
12630 char *start = message + 27;
12631 char *p;
12632 int size = sizeof (MESSAGE_TEMPLATE);
12633 int left;
12634 const char *name;
12635 int len;
12636 unsigned int j;
12637
12638 p = start;
12639 left = size - (start - message);
12640 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12641 {
12642 /* Should it be skipped? */
12643 if (cpu_arch [j].skip)
12644 continue;
12645
12646 name = cpu_arch [j].name;
12647 len = cpu_arch [j].len;
12648 if (*name == '.')
12649 {
12650 /* It is an extension. Skip if we aren't asked to show it. */
12651 if (ext)
12652 {
12653 name++;
12654 len--;
12655 }
12656 else
12657 continue;
12658 }
12659 else if (ext)
12660 {
12661 /* It is an processor. Skip if we show only extension. */
12662 continue;
12663 }
12664 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12665 {
12666 /* It is an impossible processor - skip. */
12667 continue;
12668 }
12669
12670 p = output_message (stream, p, message, start, &left, name, len);
12671 }
12672
12673 /* Display disabled extensions. */
12674 if (ext)
12675 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12676 {
12677 name = cpu_noarch [j].name;
12678 len = cpu_noarch [j].len;
12679 p = output_message (stream, p, message, start, &left, name,
12680 len);
12681 }
12682
12683 *p = '\0';
12684 fprintf (stream, "%s\n", message);
12685 }
12686
12687 void
12688 md_show_usage (FILE *stream)
12689 {
12690 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12691 fprintf (stream, _("\
12692 -Qy, -Qn ignored\n\
12693 -V print assembler version number\n\
12694 -k ignored\n"));
12695 #endif
12696 fprintf (stream, _("\
12697 -n Do not optimize code alignment\n\
12698 -q quieten some warnings\n"));
12699 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12700 fprintf (stream, _("\
12701 -s ignored\n"));
12702 #endif
12703 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12704 || defined (TE_PE) || defined (TE_PEP))
12705 fprintf (stream, _("\
12706 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12707 #endif
12708 #ifdef SVR4_COMMENT_CHARS
12709 fprintf (stream, _("\
12710 --divide do not treat `/' as a comment character\n"));
12711 #else
12712 fprintf (stream, _("\
12713 --divide ignored\n"));
12714 #endif
12715 fprintf (stream, _("\
12716 -march=CPU[,+EXTENSION...]\n\
12717 generate code for CPU and EXTENSION, CPU is one of:\n"));
12718 show_arch (stream, 0, 1);
12719 fprintf (stream, _("\
12720 EXTENSION is combination of:\n"));
12721 show_arch (stream, 1, 0);
12722 fprintf (stream, _("\
12723 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12724 show_arch (stream, 0, 0);
12725 fprintf (stream, _("\
12726 -msse2avx encode SSE instructions with VEX prefix\n"));
12727 fprintf (stream, _("\
12728 -msse-check=[none|error|warning] (default: warning)\n\
12729 check SSE instructions\n"));
12730 fprintf (stream, _("\
12731 -moperand-check=[none|error|warning] (default: warning)\n\
12732 check operand combinations for validity\n"));
12733 fprintf (stream, _("\
12734 -mavxscalar=[128|256] (default: 128)\n\
12735 encode scalar AVX instructions with specific vector\n\
12736 length\n"));
12737 fprintf (stream, _("\
12738 -mvexwig=[0|1] (default: 0)\n\
12739 encode VEX instructions with specific VEX.W value\n\
12740 for VEX.W bit ignored instructions\n"));
12741 fprintf (stream, _("\
12742 -mevexlig=[128|256|512] (default: 128)\n\
12743 encode scalar EVEX instructions with specific vector\n\
12744 length\n"));
12745 fprintf (stream, _("\
12746 -mevexwig=[0|1] (default: 0)\n\
12747 encode EVEX instructions with specific EVEX.W value\n\
12748 for EVEX.W bit ignored instructions\n"));
12749 fprintf (stream, _("\
12750 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12751 encode EVEX instructions with specific EVEX.RC value\n\
12752 for SAE-only ignored instructions\n"));
12753 fprintf (stream, _("\
12754 -mmnemonic=[att|intel] "));
12755 if (SYSV386_COMPAT)
12756 fprintf (stream, _("(default: att)\n"));
12757 else
12758 fprintf (stream, _("(default: intel)\n"));
12759 fprintf (stream, _("\
12760 use AT&T/Intel mnemonic\n"));
12761 fprintf (stream, _("\
12762 -msyntax=[att|intel] (default: att)\n\
12763 use AT&T/Intel syntax\n"));
12764 fprintf (stream, _("\
12765 -mindex-reg support pseudo index registers\n"));
12766 fprintf (stream, _("\
12767 -mnaked-reg don't require `%%' prefix for registers\n"));
12768 fprintf (stream, _("\
12769 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12770 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12771 fprintf (stream, _("\
12772 -mshared disable branch optimization for shared code\n"));
12773 fprintf (stream, _("\
12774 -mx86-used-note=[no|yes] "));
12775 if (DEFAULT_X86_USED_NOTE)
12776 fprintf (stream, _("(default: yes)\n"));
12777 else
12778 fprintf (stream, _("(default: no)\n"));
12779 fprintf (stream, _("\
12780 generate x86 used ISA and feature properties\n"));
12781 #endif
12782 #if defined (TE_PE) || defined (TE_PEP)
12783 fprintf (stream, _("\
12784 -mbig-obj generate big object files\n"));
12785 #endif
12786 fprintf (stream, _("\
12787 -momit-lock-prefix=[no|yes] (default: no)\n\
12788 strip all lock prefixes\n"));
12789 fprintf (stream, _("\
12790 -mfence-as-lock-add=[no|yes] (default: no)\n\
12791 encode lfence, mfence and sfence as\n\
12792 lock addl $0x0, (%%{re}sp)\n"));
12793 fprintf (stream, _("\
12794 -mrelax-relocations=[no|yes] "));
12795 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12796 fprintf (stream, _("(default: yes)\n"));
12797 else
12798 fprintf (stream, _("(default: no)\n"));
12799 fprintf (stream, _("\
12800 generate relax relocations\n"));
12801 fprintf (stream, _("\
12802 -malign-branch-boundary=NUM (default: 0)\n\
12803 align branches within NUM byte boundary\n"));
12804 fprintf (stream, _("\
12805 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12806 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12807 indirect\n\
12808 specify types of branches to align\n"));
12809 fprintf (stream, _("\
12810 -malign-branch-prefix-size=NUM (default: 5)\n\
12811 align branches with NUM prefixes per instruction\n"));
12812 fprintf (stream, _("\
12813 -mbranches-within-32B-boundaries\n\
12814 align branches within 32 byte boundary\n"));
12815 fprintf (stream, _("\
12816 -mamd64 accept only AMD64 ISA [default]\n"));
12817 fprintf (stream, _("\
12818 -mintel64 accept only Intel64 ISA\n"));
12819 }
12820
12821 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12822 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12823 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12824
12825 /* Pick the target format to use. */
12826
12827 const char *
12828 i386_target_format (void)
12829 {
12830 if (!strncmp (default_arch, "x86_64", 6))
12831 {
12832 update_code_flag (CODE_64BIT, 1);
12833 if (default_arch[6] == '\0')
12834 x86_elf_abi = X86_64_ABI;
12835 else
12836 x86_elf_abi = X86_64_X32_ABI;
12837 }
12838 else if (!strcmp (default_arch, "i386"))
12839 update_code_flag (CODE_32BIT, 1);
12840 else if (!strcmp (default_arch, "iamcu"))
12841 {
12842 update_code_flag (CODE_32BIT, 1);
12843 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12844 {
12845 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12846 cpu_arch_name = "iamcu";
12847 cpu_sub_arch_name = NULL;
12848 cpu_arch_flags = iamcu_flags;
12849 cpu_arch_isa = PROCESSOR_IAMCU;
12850 cpu_arch_isa_flags = iamcu_flags;
12851 if (!cpu_arch_tune_set)
12852 {
12853 cpu_arch_tune = cpu_arch_isa;
12854 cpu_arch_tune_flags = cpu_arch_isa_flags;
12855 }
12856 }
12857 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12858 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12859 cpu_arch_name);
12860 }
12861 else
12862 as_fatal (_("unknown architecture"));
12863
12864 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12865 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12866 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12867 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12868
12869 switch (OUTPUT_FLAVOR)
12870 {
12871 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12872 case bfd_target_aout_flavour:
12873 return AOUT_TARGET_FORMAT;
12874 #endif
12875 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12876 # if defined (TE_PE) || defined (TE_PEP)
12877 case bfd_target_coff_flavour:
12878 if (flag_code == CODE_64BIT)
12879 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12880 else
12881 return "pe-i386";
12882 # elif defined (TE_GO32)
12883 case bfd_target_coff_flavour:
12884 return "coff-go32";
12885 # else
12886 case bfd_target_coff_flavour:
12887 return "coff-i386";
12888 # endif
12889 #endif
12890 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12891 case bfd_target_elf_flavour:
12892 {
12893 const char *format;
12894
12895 switch (x86_elf_abi)
12896 {
12897 default:
12898 format = ELF_TARGET_FORMAT;
12899 #ifndef TE_SOLARIS
12900 tls_get_addr = "___tls_get_addr";
12901 #endif
12902 break;
12903 case X86_64_ABI:
12904 use_rela_relocations = 1;
12905 object_64bit = 1;
12906 #ifndef TE_SOLARIS
12907 tls_get_addr = "__tls_get_addr";
12908 #endif
12909 format = ELF_TARGET_FORMAT64;
12910 break;
12911 case X86_64_X32_ABI:
12912 use_rela_relocations = 1;
12913 object_64bit = 1;
12914 #ifndef TE_SOLARIS
12915 tls_get_addr = "__tls_get_addr";
12916 #endif
12917 disallow_64bit_reloc = 1;
12918 format = ELF_TARGET_FORMAT32;
12919 break;
12920 }
12921 if (cpu_arch_isa == PROCESSOR_L1OM)
12922 {
12923 if (x86_elf_abi != X86_64_ABI)
12924 as_fatal (_("Intel L1OM is 64bit only"));
12925 return ELF_TARGET_L1OM_FORMAT;
12926 }
12927 else if (cpu_arch_isa == PROCESSOR_K1OM)
12928 {
12929 if (x86_elf_abi != X86_64_ABI)
12930 as_fatal (_("Intel K1OM is 64bit only"));
12931 return ELF_TARGET_K1OM_FORMAT;
12932 }
12933 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12934 {
12935 if (x86_elf_abi != I386_ABI)
12936 as_fatal (_("Intel MCU is 32bit only"));
12937 return ELF_TARGET_IAMCU_FORMAT;
12938 }
12939 else
12940 return format;
12941 }
12942 #endif
12943 #if defined (OBJ_MACH_O)
12944 case bfd_target_mach_o_flavour:
12945 if (flag_code == CODE_64BIT)
12946 {
12947 use_rela_relocations = 1;
12948 object_64bit = 1;
12949 return "mach-o-x86-64";
12950 }
12951 else
12952 return "mach-o-i386";
12953 #endif
12954 default:
12955 abort ();
12956 return NULL;
12957 }
12958 }
12959
12960 #endif /* OBJ_MAYBE_ more than one */
12961 \f
12962 symbolS *
12963 md_undefined_symbol (char *name)
12964 {
12965 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12966 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12967 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12968 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12969 {
12970 if (!GOT_symbol)
12971 {
12972 if (symbol_find (name))
12973 as_bad (_("GOT already in symbol table"));
12974 GOT_symbol = symbol_new (name, undefined_section,
12975 (valueT) 0, &zero_address_frag);
12976 };
12977 return GOT_symbol;
12978 }
12979 return 0;
12980 }
12981
12982 /* Round up a section size to the appropriate boundary. */
12983
12984 valueT
12985 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
12986 {
12987 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12988 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12989 {
12990 /* For a.out, force the section size to be aligned. If we don't do
12991 this, BFD will align it for us, but it will not write out the
12992 final bytes of the section. This may be a bug in BFD, but it is
12993 easier to fix it here since that is how the other a.out targets
12994 work. */
12995 int align;
12996
12997 align = bfd_section_alignment (segment);
12998 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
12999 }
13000 #endif
13001
13002 return size;
13003 }
13004
13005 /* On the i386, PC-relative offsets are relative to the start of the
13006 next instruction. That is, the address of the offset, plus its
13007 size, since the offset is always the last part of the insn. */
13008
13009 long
13010 md_pcrel_from (fixS *fixP)
13011 {
13012 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13013 }
13014
13015 #ifndef I386COFF
13016
13017 static void
13018 s_bss (int ignore ATTRIBUTE_UNUSED)
13019 {
13020 int temp;
13021
13022 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13023 if (IS_ELF)
13024 obj_elf_section_change_hook ();
13025 #endif
13026 temp = get_absolute_expression ();
13027 subseg_set (bss_section, (subsegT) temp);
13028 demand_empty_rest_of_line ();
13029 }
13030
13031 #endif
13032
13033 /* Remember constant directive. */
13034
13035 void
13036 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13037 {
13038 if (last_insn.kind != last_insn_directive
13039 && (bfd_section_flags (now_seg) & SEC_CODE))
13040 {
13041 last_insn.seg = now_seg;
13042 last_insn.kind = last_insn_directive;
13043 last_insn.name = "constant directive";
13044 last_insn.file = as_where (&last_insn.line);
13045 }
13046 }
13047
13048 void
13049 i386_validate_fix (fixS *fixp)
13050 {
13051 if (fixp->fx_subsy)
13052 {
13053 if (fixp->fx_subsy == GOT_symbol)
13054 {
13055 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13056 {
13057 if (!object_64bit)
13058 abort ();
13059 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13060 if (fixp->fx_tcbit2)
13061 fixp->fx_r_type = (fixp->fx_tcbit
13062 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13063 : BFD_RELOC_X86_64_GOTPCRELX);
13064 else
13065 #endif
13066 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13067 }
13068 else
13069 {
13070 if (!object_64bit)
13071 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13072 else
13073 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13074 }
13075 fixp->fx_subsy = 0;
13076 }
13077 }
13078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13079 else if (!object_64bit)
13080 {
13081 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13082 && fixp->fx_tcbit2)
13083 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13084 }
13085 #endif
13086 }
13087
13088 arelent *
13089 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13090 {
13091 arelent *rel;
13092 bfd_reloc_code_real_type code;
13093
13094 switch (fixp->fx_r_type)
13095 {
13096 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13097 case BFD_RELOC_SIZE32:
13098 case BFD_RELOC_SIZE64:
13099 if (S_IS_DEFINED (fixp->fx_addsy)
13100 && !S_IS_EXTERNAL (fixp->fx_addsy))
13101 {
13102 /* Resolve size relocation against local symbol to size of
13103 the symbol plus addend. */
13104 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13105 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13106 && !fits_in_unsigned_long (value))
13107 as_bad_where (fixp->fx_file, fixp->fx_line,
13108 _("symbol size computation overflow"));
13109 fixp->fx_addsy = NULL;
13110 fixp->fx_subsy = NULL;
13111 md_apply_fix (fixp, (valueT *) &value, NULL);
13112 return NULL;
13113 }
13114 #endif
13115 /* Fall through. */
13116
13117 case BFD_RELOC_X86_64_PLT32:
13118 case BFD_RELOC_X86_64_GOT32:
13119 case BFD_RELOC_X86_64_GOTPCREL:
13120 case BFD_RELOC_X86_64_GOTPCRELX:
13121 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13122 case BFD_RELOC_386_PLT32:
13123 case BFD_RELOC_386_GOT32:
13124 case BFD_RELOC_386_GOT32X:
13125 case BFD_RELOC_386_GOTOFF:
13126 case BFD_RELOC_386_GOTPC:
13127 case BFD_RELOC_386_TLS_GD:
13128 case BFD_RELOC_386_TLS_LDM:
13129 case BFD_RELOC_386_TLS_LDO_32:
13130 case BFD_RELOC_386_TLS_IE_32:
13131 case BFD_RELOC_386_TLS_IE:
13132 case BFD_RELOC_386_TLS_GOTIE:
13133 case BFD_RELOC_386_TLS_LE_32:
13134 case BFD_RELOC_386_TLS_LE:
13135 case BFD_RELOC_386_TLS_GOTDESC:
13136 case BFD_RELOC_386_TLS_DESC_CALL:
13137 case BFD_RELOC_X86_64_TLSGD:
13138 case BFD_RELOC_X86_64_TLSLD:
13139 case BFD_RELOC_X86_64_DTPOFF32:
13140 case BFD_RELOC_X86_64_DTPOFF64:
13141 case BFD_RELOC_X86_64_GOTTPOFF:
13142 case BFD_RELOC_X86_64_TPOFF32:
13143 case BFD_RELOC_X86_64_TPOFF64:
13144 case BFD_RELOC_X86_64_GOTOFF64:
13145 case BFD_RELOC_X86_64_GOTPC32:
13146 case BFD_RELOC_X86_64_GOT64:
13147 case BFD_RELOC_X86_64_GOTPCREL64:
13148 case BFD_RELOC_X86_64_GOTPC64:
13149 case BFD_RELOC_X86_64_GOTPLT64:
13150 case BFD_RELOC_X86_64_PLTOFF64:
13151 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13152 case BFD_RELOC_X86_64_TLSDESC_CALL:
13153 case BFD_RELOC_RVA:
13154 case BFD_RELOC_VTABLE_ENTRY:
13155 case BFD_RELOC_VTABLE_INHERIT:
13156 #ifdef TE_PE
13157 case BFD_RELOC_32_SECREL:
13158 #endif
13159 code = fixp->fx_r_type;
13160 break;
13161 case BFD_RELOC_X86_64_32S:
13162 if (!fixp->fx_pcrel)
13163 {
13164 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13165 code = fixp->fx_r_type;
13166 break;
13167 }
13168 /* Fall through. */
13169 default:
13170 if (fixp->fx_pcrel)
13171 {
13172 switch (fixp->fx_size)
13173 {
13174 default:
13175 as_bad_where (fixp->fx_file, fixp->fx_line,
13176 _("can not do %d byte pc-relative relocation"),
13177 fixp->fx_size);
13178 code = BFD_RELOC_32_PCREL;
13179 break;
13180 case 1: code = BFD_RELOC_8_PCREL; break;
13181 case 2: code = BFD_RELOC_16_PCREL; break;
13182 case 4: code = BFD_RELOC_32_PCREL; break;
13183 #ifdef BFD64
13184 case 8: code = BFD_RELOC_64_PCREL; break;
13185 #endif
13186 }
13187 }
13188 else
13189 {
13190 switch (fixp->fx_size)
13191 {
13192 default:
13193 as_bad_where (fixp->fx_file, fixp->fx_line,
13194 _("can not do %d byte relocation"),
13195 fixp->fx_size);
13196 code = BFD_RELOC_32;
13197 break;
13198 case 1: code = BFD_RELOC_8; break;
13199 case 2: code = BFD_RELOC_16; break;
13200 case 4: code = BFD_RELOC_32; break;
13201 #ifdef BFD64
13202 case 8: code = BFD_RELOC_64; break;
13203 #endif
13204 }
13205 }
13206 break;
13207 }
13208
13209 if ((code == BFD_RELOC_32
13210 || code == BFD_RELOC_32_PCREL
13211 || code == BFD_RELOC_X86_64_32S)
13212 && GOT_symbol
13213 && fixp->fx_addsy == GOT_symbol)
13214 {
13215 if (!object_64bit)
13216 code = BFD_RELOC_386_GOTPC;
13217 else
13218 code = BFD_RELOC_X86_64_GOTPC32;
13219 }
13220 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13221 && GOT_symbol
13222 && fixp->fx_addsy == GOT_symbol)
13223 {
13224 code = BFD_RELOC_X86_64_GOTPC64;
13225 }
13226
13227 rel = XNEW (arelent);
13228 rel->sym_ptr_ptr = XNEW (asymbol *);
13229 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13230
13231 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13232
13233 if (!use_rela_relocations)
13234 {
13235 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13236 vtable entry to be used in the relocation's section offset. */
13237 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13238 rel->address = fixp->fx_offset;
13239 #if defined (OBJ_COFF) && defined (TE_PE)
13240 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13241 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13242 else
13243 #endif
13244 rel->addend = 0;
13245 }
13246 /* Use the rela in 64bit mode. */
13247 else
13248 {
13249 if (disallow_64bit_reloc)
13250 switch (code)
13251 {
13252 case BFD_RELOC_X86_64_DTPOFF64:
13253 case BFD_RELOC_X86_64_TPOFF64:
13254 case BFD_RELOC_64_PCREL:
13255 case BFD_RELOC_X86_64_GOTOFF64:
13256 case BFD_RELOC_X86_64_GOT64:
13257 case BFD_RELOC_X86_64_GOTPCREL64:
13258 case BFD_RELOC_X86_64_GOTPC64:
13259 case BFD_RELOC_X86_64_GOTPLT64:
13260 case BFD_RELOC_X86_64_PLTOFF64:
13261 as_bad_where (fixp->fx_file, fixp->fx_line,
13262 _("cannot represent relocation type %s in x32 mode"),
13263 bfd_get_reloc_code_name (code));
13264 break;
13265 default:
13266 break;
13267 }
13268
13269 if (!fixp->fx_pcrel)
13270 rel->addend = fixp->fx_offset;
13271 else
13272 switch (code)
13273 {
13274 case BFD_RELOC_X86_64_PLT32:
13275 case BFD_RELOC_X86_64_GOT32:
13276 case BFD_RELOC_X86_64_GOTPCREL:
13277 case BFD_RELOC_X86_64_GOTPCRELX:
13278 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13279 case BFD_RELOC_X86_64_TLSGD:
13280 case BFD_RELOC_X86_64_TLSLD:
13281 case BFD_RELOC_X86_64_GOTTPOFF:
13282 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13283 case BFD_RELOC_X86_64_TLSDESC_CALL:
13284 rel->addend = fixp->fx_offset - fixp->fx_size;
13285 break;
13286 default:
13287 rel->addend = (section->vma
13288 - fixp->fx_size
13289 + fixp->fx_addnumber
13290 + md_pcrel_from (fixp));
13291 break;
13292 }
13293 }
13294
13295 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13296 if (rel->howto == NULL)
13297 {
13298 as_bad_where (fixp->fx_file, fixp->fx_line,
13299 _("cannot represent relocation type %s"),
13300 bfd_get_reloc_code_name (code));
13301 /* Set howto to a garbage value so that we can keep going. */
13302 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13303 gas_assert (rel->howto != NULL);
13304 }
13305
13306 return rel;
13307 }
13308
13309 #include "tc-i386-intel.c"
13310
13311 void
13312 tc_x86_parse_to_dw2regnum (expressionS *exp)
13313 {
13314 int saved_naked_reg;
13315 char saved_register_dot;
13316
13317 saved_naked_reg = allow_naked_reg;
13318 allow_naked_reg = 1;
13319 saved_register_dot = register_chars['.'];
13320 register_chars['.'] = '.';
13321 allow_pseudo_reg = 1;
13322 expression_and_evaluate (exp);
13323 allow_pseudo_reg = 0;
13324 register_chars['.'] = saved_register_dot;
13325 allow_naked_reg = saved_naked_reg;
13326
13327 if (exp->X_op == O_register && exp->X_add_number >= 0)
13328 {
13329 if ((addressT) exp->X_add_number < i386_regtab_size)
13330 {
13331 exp->X_op = O_constant;
13332 exp->X_add_number = i386_regtab[exp->X_add_number]
13333 .dw2_regnum[flag_code >> 1];
13334 }
13335 else
13336 exp->X_op = O_illegal;
13337 }
13338 }
13339
13340 void
13341 tc_x86_frame_initial_instructions (void)
13342 {
13343 static unsigned int sp_regno[2];
13344
13345 if (!sp_regno[flag_code >> 1])
13346 {
13347 char *saved_input = input_line_pointer;
13348 char sp[][4] = {"esp", "rsp"};
13349 expressionS exp;
13350
13351 input_line_pointer = sp[flag_code >> 1];
13352 tc_x86_parse_to_dw2regnum (&exp);
13353 gas_assert (exp.X_op == O_constant);
13354 sp_regno[flag_code >> 1] = exp.X_add_number;
13355 input_line_pointer = saved_input;
13356 }
13357
13358 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13359 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13360 }
13361
13362 int
13363 x86_dwarf2_addr_size (void)
13364 {
13365 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13366 if (x86_elf_abi == X86_64_X32_ABI)
13367 return 4;
13368 #endif
13369 return bfd_arch_bits_per_address (stdoutput) / 8;
13370 }
13371
13372 int
13373 i386_elf_section_type (const char *str, size_t len)
13374 {
13375 if (flag_code == CODE_64BIT
13376 && len == sizeof ("unwind") - 1
13377 && strncmp (str, "unwind", 6) == 0)
13378 return SHT_X86_64_UNWIND;
13379
13380 return -1;
13381 }
13382
13383 #ifdef TE_SOLARIS
13384 void
13385 i386_solaris_fix_up_eh_frame (segT sec)
13386 {
13387 if (flag_code == CODE_64BIT)
13388 elf_section_type (sec) = SHT_X86_64_UNWIND;
13389 }
13390 #endif
13391
13392 #ifdef TE_PE
13393 void
13394 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13395 {
13396 expressionS exp;
13397
13398 exp.X_op = O_secrel;
13399 exp.X_add_symbol = symbol;
13400 exp.X_add_number = 0;
13401 emit_expr (&exp, size);
13402 }
13403 #endif
13404
13405 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13406 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13407
13408 bfd_vma
13409 x86_64_section_letter (int letter, const char **ptr_msg)
13410 {
13411 if (flag_code == CODE_64BIT)
13412 {
13413 if (letter == 'l')
13414 return SHF_X86_64_LARGE;
13415
13416 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13417 }
13418 else
13419 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13420 return -1;
13421 }
13422
13423 bfd_vma
13424 x86_64_section_word (char *str, size_t len)
13425 {
13426 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13427 return SHF_X86_64_LARGE;
13428
13429 return -1;
13430 }
13431
13432 static void
13433 handle_large_common (int small ATTRIBUTE_UNUSED)
13434 {
13435 if (flag_code != CODE_64BIT)
13436 {
13437 s_comm_internal (0, elf_common_parse);
13438 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13439 }
13440 else
13441 {
13442 static segT lbss_section;
13443 asection *saved_com_section_ptr = elf_com_section_ptr;
13444 asection *saved_bss_section = bss_section;
13445
13446 if (lbss_section == NULL)
13447 {
13448 flagword applicable;
13449 segT seg = now_seg;
13450 subsegT subseg = now_subseg;
13451
13452 /* The .lbss section is for local .largecomm symbols. */
13453 lbss_section = subseg_new (".lbss", 0);
13454 applicable = bfd_applicable_section_flags (stdoutput);
13455 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13456 seg_info (lbss_section)->bss = 1;
13457
13458 subseg_set (seg, subseg);
13459 }
13460
13461 elf_com_section_ptr = &_bfd_elf_large_com_section;
13462 bss_section = lbss_section;
13463
13464 s_comm_internal (0, elf_common_parse);
13465
13466 elf_com_section_ptr = saved_com_section_ptr;
13467 bss_section = saved_bss_section;
13468 }
13469 }
13470 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.341609 seconds and 4 git commands to generate.