120367d55d303c1c5096a6053ce73f2a08d167d0
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* RM and SIB are the modrm byte and the sib byte where the
372 addressing modes of this insn are encoded. */
373 modrm_byte rm;
374 rex_byte rex;
375 rex_byte vrex;
376 sib_byte sib;
377 vex_prefix vex;
378
379 /* Masking attributes. */
380 struct Mask_Operation *mask;
381
382 /* Rounding control and SAE attributes. */
383 struct RC_Operation *rounding;
384
385 /* Broadcasting attributes. */
386 struct Broadcast_Operation *broadcast;
387
388 /* Compressed disp8*N attribute. */
389 unsigned int memshift;
390
391 /* Prefer load or store in encoding. */
392 enum
393 {
394 dir_encoding_default = 0,
395 dir_encoding_load,
396 dir_encoding_store,
397 dir_encoding_swap
398 } dir_encoding;
399
400 /* Prefer 8bit or 32bit displacement in encoding. */
401 enum
402 {
403 disp_encoding_default = 0,
404 disp_encoding_8bit,
405 disp_encoding_32bit
406 } disp_encoding;
407
408 /* Prefer the REX byte in encoding. */
409 bfd_boolean rex_encoding;
410
411 /* Disable instruction size optimization. */
412 bfd_boolean no_optimize;
413
414 /* How to encode vector instructions. */
415 enum
416 {
417 vex_encoding_default = 0,
418 vex_encoding_vex2,
419 vex_encoding_vex3,
420 vex_encoding_evex
421 } vec_encoding;
422
423 /* REP prefix. */
424 const char *rep_prefix;
425
426 /* HLE prefix. */
427 const char *hle_prefix;
428
429 /* Have BND prefix. */
430 const char *bnd_prefix;
431
432 /* Have NOTRACK prefix. */
433 const char *notrack_prefix;
434
435 /* Error message. */
436 enum i386_error error;
437 };
438
439 typedef struct _i386_insn i386_insn;
440
441 /* Link RC type with corresponding string, that'll be looked for in
442 asm. */
443 struct RC_name
444 {
445 enum rc_type type;
446 const char *name;
447 unsigned int len;
448 };
449
450 static const struct RC_name RC_NamesTable[] =
451 {
452 { rne, STRING_COMMA_LEN ("rn-sae") },
453 { rd, STRING_COMMA_LEN ("rd-sae") },
454 { ru, STRING_COMMA_LEN ("ru-sae") },
455 { rz, STRING_COMMA_LEN ("rz-sae") },
456 { saeonly, STRING_COMMA_LEN ("sae") },
457 };
458
459 /* List of chars besides those in app.c:symbol_chars that can start an
460 operand. Used to prevent the scrubber eating vital white-space. */
461 const char extra_symbol_chars[] = "*%-([{}"
462 #ifdef LEX_AT
463 "@"
464 #endif
465 #ifdef LEX_QM
466 "?"
467 #endif
468 ;
469
470 #if (defined (TE_I386AIX) \
471 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
472 && !defined (TE_GNU) \
473 && !defined (TE_LINUX) \
474 && !defined (TE_NACL) \
475 && !defined (TE_FreeBSD) \
476 && !defined (TE_DragonFly) \
477 && !defined (TE_NetBSD)))
478 /* This array holds the chars that always start a comment. If the
479 pre-processor is disabled, these aren't very useful. The option
480 --divide will remove '/' from this list. */
481 const char *i386_comment_chars = "#/";
482 #define SVR4_COMMENT_CHARS 1
483 #define PREFIX_SEPARATOR '\\'
484
485 #else
486 const char *i386_comment_chars = "#";
487 #define PREFIX_SEPARATOR '/'
488 #endif
489
490 /* This array holds the chars that only start a comment at the beginning of
491 a line. If the line seems to have the form '# 123 filename'
492 .line and .file directives will appear in the pre-processed output.
493 Note that input_file.c hand checks for '#' at the beginning of the
494 first line of the input file. This is because the compiler outputs
495 #NO_APP at the beginning of its output.
496 Also note that comments started like this one will always work if
497 '/' isn't otherwise defined. */
498 const char line_comment_chars[] = "#/";
499
500 const char line_separator_chars[] = ";";
501
502 /* Chars that can be used to separate mant from exp in floating point
503 nums. */
504 const char EXP_CHARS[] = "eE";
505
506 /* Chars that mean this number is a floating point constant
507 As in 0f12.456
508 or 0d1.2345e12. */
509 const char FLT_CHARS[] = "fFdDxX";
510
511 /* Tables for lexical analysis. */
512 static char mnemonic_chars[256];
513 static char register_chars[256];
514 static char operand_chars[256];
515 static char identifier_chars[256];
516 static char digit_chars[256];
517
518 /* Lexical macros. */
519 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
520 #define is_operand_char(x) (operand_chars[(unsigned char) x])
521 #define is_register_char(x) (register_chars[(unsigned char) x])
522 #define is_space_char(x) ((x) == ' ')
523 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
524 #define is_digit_char(x) (digit_chars[(unsigned char) x])
525
526 /* All non-digit non-letter characters that may occur in an operand. */
527 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
528
529 /* md_assemble() always leaves the strings it's passed unaltered. To
530 effect this we maintain a stack of saved characters that we've smashed
531 with '\0's (indicating end of strings for various sub-fields of the
532 assembler instruction). */
533 static char save_stack[32];
534 static char *save_stack_p;
535 #define END_STRING_AND_SAVE(s) \
536 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
537 #define RESTORE_END_STRING(s) \
538 do { *(s) = *--save_stack_p; } while (0)
539
540 /* The instruction we're assembling. */
541 static i386_insn i;
542
543 /* Possible templates for current insn. */
544 static const templates *current_templates;
545
546 /* Per instruction expressionS buffers: max displacements & immediates. */
547 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
548 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
549
550 /* Current operand we are working on. */
551 static int this_operand = -1;
552
553 /* We support four different modes. FLAG_CODE variable is used to distinguish
554 these. */
555
556 enum flag_code {
557 CODE_32BIT,
558 CODE_16BIT,
559 CODE_64BIT };
560
561 static enum flag_code flag_code;
562 static unsigned int object_64bit;
563 static unsigned int disallow_64bit_reloc;
564 static int use_rela_relocations = 0;
565
566 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
567 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
568 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
569
570 /* The ELF ABI to use. */
571 enum x86_elf_abi
572 {
573 I386_ABI,
574 X86_64_ABI,
575 X86_64_X32_ABI
576 };
577
578 static enum x86_elf_abi x86_elf_abi = I386_ABI;
579 #endif
580
581 #if defined (TE_PE) || defined (TE_PEP)
582 /* Use big object file format. */
583 static int use_big_obj = 0;
584 #endif
585
586 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
587 /* 1 if generating code for a shared library. */
588 static int shared = 0;
589 #endif
590
591 /* 1 for intel syntax,
592 0 if att syntax. */
593 static int intel_syntax = 0;
594
595 /* 1 for Intel64 ISA,
596 0 if AMD64 ISA. */
597 static int intel64;
598
599 /* 1 for intel mnemonic,
600 0 if att mnemonic. */
601 static int intel_mnemonic = !SYSV386_COMPAT;
602
603 /* 1 if pseudo registers are permitted. */
604 static int allow_pseudo_reg = 0;
605
606 /* 1 if register prefix % not required. */
607 static int allow_naked_reg = 0;
608
609 /* 1 if the assembler should add BND prefix for all control-transferring
610 instructions supporting it, even if this prefix wasn't specified
611 explicitly. */
612 static int add_bnd_prefix = 0;
613
614 /* 1 if pseudo index register, eiz/riz, is allowed . */
615 static int allow_index_reg = 0;
616
617 /* 1 if the assembler should ignore LOCK prefix, even if it was
618 specified explicitly. */
619 static int omit_lock_prefix = 0;
620
621 /* 1 if the assembler should encode lfence, mfence, and sfence as
622 "lock addl $0, (%{re}sp)". */
623 static int avoid_fence = 0;
624
625 /* 1 if the assembler should generate relax relocations. */
626
627 static int generate_relax_relocations
628 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
629
630 static enum check_kind
631 {
632 check_none = 0,
633 check_warning,
634 check_error
635 }
636 sse_check, operand_check = check_warning;
637
638 /* Optimization:
639 1. Clear the REX_W bit with register operand if possible.
640 2. Above plus use 128bit vector instruction to clear the full vector
641 register.
642 */
643 static int optimize = 0;
644
645 /* Optimization:
646 1. Clear the REX_W bit with register operand if possible.
647 2. Above plus use 128bit vector instruction to clear the full vector
648 register.
649 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
650 "testb $imm7,%r8".
651 */
652 static int optimize_for_space = 0;
653
654 /* Register prefix used for error message. */
655 static const char *register_prefix = "%";
656
657 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
658 leave, push, and pop instructions so that gcc has the same stack
659 frame as in 32 bit mode. */
660 static char stackop_size = '\0';
661
662 /* Non-zero to optimize code alignment. */
663 int optimize_align_code = 1;
664
665 /* Non-zero to quieten some warnings. */
666 static int quiet_warnings = 0;
667
668 /* CPU name. */
669 static const char *cpu_arch_name = NULL;
670 static char *cpu_sub_arch_name = NULL;
671
672 /* CPU feature flags. */
673 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
674
675 /* If we have selected a cpu we are generating instructions for. */
676 static int cpu_arch_tune_set = 0;
677
678 /* Cpu we are generating instructions for. */
679 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of cpu we are generating instructions for. */
682 static i386_cpu_flags cpu_arch_tune_flags;
683
684 /* CPU instruction set architecture used. */
685 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
686
687 /* CPU feature flags of instruction set architecture used. */
688 i386_cpu_flags cpu_arch_isa_flags;
689
690 /* If set, conditional jumps are not automatically promoted to handle
691 larger than a byte offset. */
692 static unsigned int no_cond_jump_promotion = 0;
693
694 /* Encode SSE instructions with VEX prefix. */
695 static unsigned int sse2avx;
696
697 /* Encode scalar AVX instructions with specific vector length. */
698 static enum
699 {
700 vex128 = 0,
701 vex256
702 } avxscalar;
703
704 /* Encode VEX WIG instructions with specific vex.w. */
705 static enum
706 {
707 vexw0 = 0,
708 vexw1
709 } vexwig;
710
711 /* Encode scalar EVEX LIG instructions with specific vector length. */
712 static enum
713 {
714 evexl128 = 0,
715 evexl256,
716 evexl512
717 } evexlig;
718
719 /* Encode EVEX WIG instructions with specific evex.w. */
720 static enum
721 {
722 evexw0 = 0,
723 evexw1
724 } evexwig;
725
726 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
727 static enum rc_type evexrcig = rne;
728
729 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
730 static symbolS *GOT_symbol;
731
732 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
733 unsigned int x86_dwarf2_return_column;
734
735 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
736 int x86_cie_data_alignment;
737
738 /* Interface to relax_segment.
739 There are 3 major relax states for 386 jump insns because the
740 different types of jumps add different sizes to frags when we're
741 figuring out what sort of jump to choose to reach a given label. */
742
743 /* Types. */
744 #define UNCOND_JUMP 0
745 #define COND_JUMP 1
746 #define COND_JUMP86 2
747
748 /* Sizes. */
749 #define CODE16 1
750 #define SMALL 0
751 #define SMALL16 (SMALL | CODE16)
752 #define BIG 2
753 #define BIG16 (BIG | CODE16)
754
755 #ifndef INLINE
756 #ifdef __GNUC__
757 #define INLINE __inline__
758 #else
759 #define INLINE
760 #endif
761 #endif
762
763 #define ENCODE_RELAX_STATE(type, size) \
764 ((relax_substateT) (((type) << 2) | (size)))
765 #define TYPE_FROM_RELAX_STATE(s) \
766 ((s) >> 2)
767 #define DISP_SIZE_FROM_RELAX_STATE(s) \
768 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
769
770 /* This table is used by relax_frag to promote short jumps to long
771 ones where necessary. SMALL (short) jumps may be promoted to BIG
772 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
773 don't allow a short jump in a 32 bit code segment to be promoted to
774 a 16 bit offset jump because it's slower (requires data size
775 prefix), and doesn't work, unless the destination is in the bottom
776 64k of the code segment (The top 16 bits of eip are zeroed). */
777
778 const relax_typeS md_relax_table[] =
779 {
780 /* The fields are:
781 1) most positive reach of this state,
782 2) most negative reach of this state,
783 3) how many bytes this mode will have in the variable part of the frag
784 4) which index into the table to try if we can't fit into this one. */
785
786 /* UNCOND_JUMP states. */
787 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
788 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
789 /* dword jmp adds 4 bytes to frag:
790 0 extra opcode bytes, 4 displacement bytes. */
791 {0, 0, 4, 0},
792 /* word jmp adds 2 byte2 to frag:
793 0 extra opcode bytes, 2 displacement bytes. */
794 {0, 0, 2, 0},
795
796 /* COND_JUMP states. */
797 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
798 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
799 /* dword conditionals adds 5 bytes to frag:
800 1 extra opcode byte, 4 displacement bytes. */
801 {0, 0, 5, 0},
802 /* word conditionals add 3 bytes to frag:
803 1 extra opcode byte, 2 displacement bytes. */
804 {0, 0, 3, 0},
805
806 /* COND_JUMP86 states. */
807 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
808 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
809 /* dword conditionals adds 5 bytes to frag:
810 1 extra opcode byte, 4 displacement bytes. */
811 {0, 0, 5, 0},
812 /* word conditionals add 4 bytes to frag:
813 1 displacement byte and a 3 byte long branch insn. */
814 {0, 0, 4, 0}
815 };
816
817 static const arch_entry cpu_arch[] =
818 {
819 /* Do not replace the first two entries - i386_target_format()
820 relies on them being there in this order. */
821 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
822 CPU_GENERIC32_FLAGS, 0 },
823 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
824 CPU_GENERIC64_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
826 CPU_NONE_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
828 CPU_I186_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
830 CPU_I286_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
832 CPU_I386_FLAGS, 0 },
833 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
834 CPU_I486_FLAGS, 0 },
835 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
836 CPU_I586_FLAGS, 0 },
837 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
838 CPU_I686_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
840 CPU_I586_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
842 CPU_PENTIUMPRO_FLAGS, 0 },
843 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
844 CPU_P2_FLAGS, 0 },
845 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
846 CPU_P3_FLAGS, 0 },
847 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
848 CPU_P4_FLAGS, 0 },
849 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
852 CPU_NOCONA_FLAGS, 0 },
853 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
854 CPU_CORE_FLAGS, 1 },
855 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
856 CPU_CORE_FLAGS, 0 },
857 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
858 CPU_CORE2_FLAGS, 1 },
859 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
860 CPU_CORE2_FLAGS, 0 },
861 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
862 CPU_COREI7_FLAGS, 0 },
863 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
864 CPU_L1OM_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
866 CPU_K1OM_FLAGS, 0 },
867 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
868 CPU_IAMCU_FLAGS, 0 },
869 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
870 CPU_K6_FLAGS, 0 },
871 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
872 CPU_K6_2_FLAGS, 0 },
873 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
874 CPU_ATHLON_FLAGS, 0 },
875 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
876 CPU_K8_FLAGS, 1 },
877 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
878 CPU_K8_FLAGS, 0 },
879 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
880 CPU_K8_FLAGS, 0 },
881 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
882 CPU_AMDFAM10_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
884 CPU_BDVER1_FLAGS, 0 },
885 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
886 CPU_BDVER2_FLAGS, 0 },
887 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
888 CPU_BDVER3_FLAGS, 0 },
889 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
890 CPU_BDVER4_FLAGS, 0 },
891 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
892 CPU_ZNVER1_FLAGS, 0 },
893 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
894 CPU_ZNVER2_FLAGS, 0 },
895 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
896 CPU_BTVER1_FLAGS, 0 },
897 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
898 CPU_BTVER2_FLAGS, 0 },
899 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
900 CPU_8087_FLAGS, 0 },
901 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
902 CPU_287_FLAGS, 0 },
903 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
904 CPU_387_FLAGS, 0 },
905 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
906 CPU_687_FLAGS, 0 },
907 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
908 CPU_CMOV_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
910 CPU_FXSR_FLAGS, 0 },
911 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
912 CPU_MMX_FLAGS, 0 },
913 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
914 CPU_SSE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
916 CPU_SSE2_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
918 CPU_SSE3_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
920 CPU_SSSE3_FLAGS, 0 },
921 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
922 CPU_SSE4_1_FLAGS, 0 },
923 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
924 CPU_SSE4_2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
926 CPU_SSE4_2_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
928 CPU_AVX_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
930 CPU_AVX2_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
932 CPU_AVX512F_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
934 CPU_AVX512CD_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
936 CPU_AVX512ER_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
938 CPU_AVX512PF_FLAGS, 0 },
939 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
940 CPU_AVX512DQ_FLAGS, 0 },
941 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
942 CPU_AVX512BW_FLAGS, 0 },
943 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
944 CPU_AVX512VL_FLAGS, 0 },
945 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
946 CPU_VMX_FLAGS, 0 },
947 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
948 CPU_VMFUNC_FLAGS, 0 },
949 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
950 CPU_SMX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
952 CPU_XSAVE_FLAGS, 0 },
953 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
954 CPU_XSAVEOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
956 CPU_XSAVEC_FLAGS, 0 },
957 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
958 CPU_XSAVES_FLAGS, 0 },
959 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
960 CPU_AES_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
962 CPU_PCLMUL_FLAGS, 0 },
963 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
964 CPU_PCLMUL_FLAGS, 1 },
965 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
966 CPU_FSGSBASE_FLAGS, 0 },
967 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
968 CPU_RDRND_FLAGS, 0 },
969 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
970 CPU_F16C_FLAGS, 0 },
971 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
972 CPU_BMI2_FLAGS, 0 },
973 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
974 CPU_FMA_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
976 CPU_FMA4_FLAGS, 0 },
977 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
978 CPU_XOP_FLAGS, 0 },
979 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
980 CPU_LWP_FLAGS, 0 },
981 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
982 CPU_MOVBE_FLAGS, 0 },
983 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
984 CPU_CX16_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
986 CPU_EPT_FLAGS, 0 },
987 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
988 CPU_LZCNT_FLAGS, 0 },
989 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
990 CPU_HLE_FLAGS, 0 },
991 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
992 CPU_RTM_FLAGS, 0 },
993 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
994 CPU_INVPCID_FLAGS, 0 },
995 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
996 CPU_CLFLUSH_FLAGS, 0 },
997 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
998 CPU_NOP_FLAGS, 0 },
999 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1000 CPU_SYSCALL_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1002 CPU_RDTSCP_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1004 CPU_3DNOW_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1006 CPU_3DNOWA_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1008 CPU_PADLOCK_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1010 CPU_SVME_FLAGS, 1 },
1011 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1012 CPU_SVME_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1014 CPU_SSE4A_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1016 CPU_ABM_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1018 CPU_BMI_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1020 CPU_TBM_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1022 CPU_ADX_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1024 CPU_RDSEED_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1026 CPU_PRFCHW_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1028 CPU_SMAP_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1030 CPU_MPX_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1032 CPU_SHA_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1034 CPU_CLFLUSHOPT_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1036 CPU_PREFETCHWT1_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1038 CPU_SE1_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1040 CPU_CLWB_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512IFMA_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512VBMI_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_4FMAPS_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_4VNNIW_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX512_VBMI2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512_VNNI_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512_BITALG_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1058 CPU_CLZERO_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1060 CPU_MWAITX_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1062 CPU_OSPKE_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1064 CPU_RDPID_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1066 CPU_PTWRITE_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1068 CPU_IBT_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1070 CPU_SHSTK_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1072 CPU_GFNI_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1074 CPU_VAES_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1076 CPU_VPCLMULQDQ_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1078 CPU_WBNOINVD_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1080 CPU_PCONFIG_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1082 CPU_WAITPKG_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1084 CPU_CLDEMOTE_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1086 CPU_MOVDIRI_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1088 CPU_MOVDIR64B_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1090 CPU_AVX512_BF16_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1092 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1094 CPU_ENQCMD_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1096 CPU_RDPRU_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1098 CPU_MCOMMIT_FLAGS, 0 },
1099 };
1100
1101 static const noarch_entry cpu_noarch[] =
1102 {
1103 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1104 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1105 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1106 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1107 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1108 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1109 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1110 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1111 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1112 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1113 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1114 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1115 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1116 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1117 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1118 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1127 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1128 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1129 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1130 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1133 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1134 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1135 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1136 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1137 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1138 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1139 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1140 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1141 };
1142
1143 #ifdef I386COFF
1144 /* Like s_lcomm_internal in gas/read.c but the alignment string
1145 is allowed to be optional. */
1146
1147 static symbolS *
1148 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1149 {
1150 addressT align = 0;
1151
1152 SKIP_WHITESPACE ();
1153
1154 if (needs_align
1155 && *input_line_pointer == ',')
1156 {
1157 align = parse_align (needs_align - 1);
1158
1159 if (align == (addressT) -1)
1160 return NULL;
1161 }
1162 else
1163 {
1164 if (size >= 8)
1165 align = 3;
1166 else if (size >= 4)
1167 align = 2;
1168 else if (size >= 2)
1169 align = 1;
1170 else
1171 align = 0;
1172 }
1173
1174 bss_alloc (symbolP, size, align);
1175 return symbolP;
1176 }
1177
1178 static void
1179 pe_lcomm (int needs_align)
1180 {
1181 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1182 }
1183 #endif
1184
1185 const pseudo_typeS md_pseudo_table[] =
1186 {
1187 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1188 {"align", s_align_bytes, 0},
1189 #else
1190 {"align", s_align_ptwo, 0},
1191 #endif
1192 {"arch", set_cpu_arch, 0},
1193 #ifndef I386COFF
1194 {"bss", s_bss, 0},
1195 #else
1196 {"lcomm", pe_lcomm, 1},
1197 #endif
1198 {"ffloat", float_cons, 'f'},
1199 {"dfloat", float_cons, 'd'},
1200 {"tfloat", float_cons, 'x'},
1201 {"value", cons, 2},
1202 {"slong", signed_cons, 4},
1203 {"noopt", s_ignore, 0},
1204 {"optim", s_ignore, 0},
1205 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1206 {"code16", set_code_flag, CODE_16BIT},
1207 {"code32", set_code_flag, CODE_32BIT},
1208 #ifdef BFD64
1209 {"code64", set_code_flag, CODE_64BIT},
1210 #endif
1211 {"intel_syntax", set_intel_syntax, 1},
1212 {"att_syntax", set_intel_syntax, 0},
1213 {"intel_mnemonic", set_intel_mnemonic, 1},
1214 {"att_mnemonic", set_intel_mnemonic, 0},
1215 {"allow_index_reg", set_allow_index_reg, 1},
1216 {"disallow_index_reg", set_allow_index_reg, 0},
1217 {"sse_check", set_check, 0},
1218 {"operand_check", set_check, 1},
1219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1220 {"largecomm", handle_large_common, 0},
1221 #else
1222 {"file", dwarf2_directive_file, 0},
1223 {"loc", dwarf2_directive_loc, 0},
1224 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1225 #endif
1226 #ifdef TE_PE
1227 {"secrel32", pe_directive_secrel, 0},
1228 #endif
1229 {0, 0, 0}
1230 };
1231
1232 /* For interface with expression (). */
1233 extern char *input_line_pointer;
1234
1235 /* Hash table for instruction mnemonic lookup. */
1236 static struct hash_control *op_hash;
1237
1238 /* Hash table for register lookup. */
1239 static struct hash_control *reg_hash;
1240 \f
1241 /* Various efficient no-op patterns for aligning code labels.
1242 Note: Don't try to assemble the instructions in the comments.
1243 0L and 0w are not legal. */
1244 static const unsigned char f32_1[] =
1245 {0x90}; /* nop */
1246 static const unsigned char f32_2[] =
1247 {0x66,0x90}; /* xchg %ax,%ax */
1248 static const unsigned char f32_3[] =
1249 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1250 static const unsigned char f32_4[] =
1251 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1252 static const unsigned char f32_6[] =
1253 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1254 static const unsigned char f32_7[] =
1255 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1256 static const unsigned char f16_3[] =
1257 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1258 static const unsigned char f16_4[] =
1259 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1260 static const unsigned char jump_disp8[] =
1261 {0xeb}; /* jmp disp8 */
1262 static const unsigned char jump32_disp32[] =
1263 {0xe9}; /* jmp disp32 */
1264 static const unsigned char jump16_disp32[] =
1265 {0x66,0xe9}; /* jmp disp32 */
1266 /* 32-bit NOPs patterns. */
1267 static const unsigned char *const f32_patt[] = {
1268 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1269 };
1270 /* 16-bit NOPs patterns. */
1271 static const unsigned char *const f16_patt[] = {
1272 f32_1, f32_2, f16_3, f16_4
1273 };
1274 /* nopl (%[re]ax) */
1275 static const unsigned char alt_3[] =
1276 {0x0f,0x1f,0x00};
1277 /* nopl 0(%[re]ax) */
1278 static const unsigned char alt_4[] =
1279 {0x0f,0x1f,0x40,0x00};
1280 /* nopl 0(%[re]ax,%[re]ax,1) */
1281 static const unsigned char alt_5[] =
1282 {0x0f,0x1f,0x44,0x00,0x00};
1283 /* nopw 0(%[re]ax,%[re]ax,1) */
1284 static const unsigned char alt_6[] =
1285 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1286 /* nopl 0L(%[re]ax) */
1287 static const unsigned char alt_7[] =
1288 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1289 /* nopl 0L(%[re]ax,%[re]ax,1) */
1290 static const unsigned char alt_8[] =
1291 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292 /* nopw 0L(%[re]ax,%[re]ax,1) */
1293 static const unsigned char alt_9[] =
1294 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1295 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1296 static const unsigned char alt_10[] =
1297 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1298 /* data16 nopw %cs:0L(%eax,%eax,1) */
1299 static const unsigned char alt_11[] =
1300 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1301 /* 32-bit and 64-bit NOPs patterns. */
1302 static const unsigned char *const alt_patt[] = {
1303 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1304 alt_9, alt_10, alt_11
1305 };
1306
1307 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1308 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1309
1310 static void
1311 i386_output_nops (char *where, const unsigned char *const *patt,
1312 int count, int max_single_nop_size)
1313
1314 {
1315 /* Place the longer NOP first. */
1316 int last;
1317 int offset;
1318 const unsigned char *nops;
1319
1320 if (max_single_nop_size < 1)
1321 {
1322 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1323 max_single_nop_size);
1324 return;
1325 }
1326
1327 nops = patt[max_single_nop_size - 1];
1328
1329 /* Use the smaller one if the requsted one isn't available. */
1330 if (nops == NULL)
1331 {
1332 max_single_nop_size--;
1333 nops = patt[max_single_nop_size - 1];
1334 }
1335
1336 last = count % max_single_nop_size;
1337
1338 count -= last;
1339 for (offset = 0; offset < count; offset += max_single_nop_size)
1340 memcpy (where + offset, nops, max_single_nop_size);
1341
1342 if (last)
1343 {
1344 nops = patt[last - 1];
1345 if (nops == NULL)
1346 {
1347 /* Use the smaller one plus one-byte NOP if the needed one
1348 isn't available. */
1349 last--;
1350 nops = patt[last - 1];
1351 memcpy (where + offset, nops, last);
1352 where[offset + last] = *patt[0];
1353 }
1354 else
1355 memcpy (where + offset, nops, last);
1356 }
1357 }
1358
1359 static INLINE int
1360 fits_in_imm7 (offsetT num)
1361 {
1362 return (num & 0x7f) == num;
1363 }
1364
1365 static INLINE int
1366 fits_in_imm31 (offsetT num)
1367 {
1368 return (num & 0x7fffffff) == num;
1369 }
1370
1371 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1372 single NOP instruction LIMIT. */
1373
1374 void
1375 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1376 {
1377 const unsigned char *const *patt = NULL;
1378 int max_single_nop_size;
1379 /* Maximum number of NOPs before switching to jump over NOPs. */
1380 int max_number_of_nops;
1381
1382 switch (fragP->fr_type)
1383 {
1384 case rs_fill_nop:
1385 case rs_align_code:
1386 break;
1387 default:
1388 return;
1389 }
1390
1391 /* We need to decide which NOP sequence to use for 32bit and
1392 64bit. When -mtune= is used:
1393
1394 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1395 PROCESSOR_GENERIC32, f32_patt will be used.
1396 2. For the rest, alt_patt will be used.
1397
1398 When -mtune= isn't used, alt_patt will be used if
1399 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1400 be used.
1401
1402 When -march= or .arch is used, we can't use anything beyond
1403 cpu_arch_isa_flags. */
1404
1405 if (flag_code == CODE_16BIT)
1406 {
1407 patt = f16_patt;
1408 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1409 /* Limit number of NOPs to 2 in 16-bit mode. */
1410 max_number_of_nops = 2;
1411 }
1412 else
1413 {
1414 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1415 {
1416 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1417 switch (cpu_arch_tune)
1418 {
1419 case PROCESSOR_UNKNOWN:
1420 /* We use cpu_arch_isa_flags to check if we SHOULD
1421 optimize with nops. */
1422 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1423 patt = alt_patt;
1424 else
1425 patt = f32_patt;
1426 break;
1427 case PROCESSOR_PENTIUM4:
1428 case PROCESSOR_NOCONA:
1429 case PROCESSOR_CORE:
1430 case PROCESSOR_CORE2:
1431 case PROCESSOR_COREI7:
1432 case PROCESSOR_L1OM:
1433 case PROCESSOR_K1OM:
1434 case PROCESSOR_GENERIC64:
1435 case PROCESSOR_K6:
1436 case PROCESSOR_ATHLON:
1437 case PROCESSOR_K8:
1438 case PROCESSOR_AMDFAM10:
1439 case PROCESSOR_BD:
1440 case PROCESSOR_ZNVER:
1441 case PROCESSOR_BT:
1442 patt = alt_patt;
1443 break;
1444 case PROCESSOR_I386:
1445 case PROCESSOR_I486:
1446 case PROCESSOR_PENTIUM:
1447 case PROCESSOR_PENTIUMPRO:
1448 case PROCESSOR_IAMCU:
1449 case PROCESSOR_GENERIC32:
1450 patt = f32_patt;
1451 break;
1452 }
1453 }
1454 else
1455 {
1456 switch (fragP->tc_frag_data.tune)
1457 {
1458 case PROCESSOR_UNKNOWN:
1459 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1460 PROCESSOR_UNKNOWN. */
1461 abort ();
1462 break;
1463
1464 case PROCESSOR_I386:
1465 case PROCESSOR_I486:
1466 case PROCESSOR_PENTIUM:
1467 case PROCESSOR_IAMCU:
1468 case PROCESSOR_K6:
1469 case PROCESSOR_ATHLON:
1470 case PROCESSOR_K8:
1471 case PROCESSOR_AMDFAM10:
1472 case PROCESSOR_BD:
1473 case PROCESSOR_ZNVER:
1474 case PROCESSOR_BT:
1475 case PROCESSOR_GENERIC32:
1476 /* We use cpu_arch_isa_flags to check if we CAN optimize
1477 with nops. */
1478 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1479 patt = alt_patt;
1480 else
1481 patt = f32_patt;
1482 break;
1483 case PROCESSOR_PENTIUMPRO:
1484 case PROCESSOR_PENTIUM4:
1485 case PROCESSOR_NOCONA:
1486 case PROCESSOR_CORE:
1487 case PROCESSOR_CORE2:
1488 case PROCESSOR_COREI7:
1489 case PROCESSOR_L1OM:
1490 case PROCESSOR_K1OM:
1491 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1492 patt = alt_patt;
1493 else
1494 patt = f32_patt;
1495 break;
1496 case PROCESSOR_GENERIC64:
1497 patt = alt_patt;
1498 break;
1499 }
1500 }
1501
1502 if (patt == f32_patt)
1503 {
1504 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1505 /* Limit number of NOPs to 2 for older processors. */
1506 max_number_of_nops = 2;
1507 }
1508 else
1509 {
1510 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1511 /* Limit number of NOPs to 7 for newer processors. */
1512 max_number_of_nops = 7;
1513 }
1514 }
1515
1516 if (limit == 0)
1517 limit = max_single_nop_size;
1518
1519 if (fragP->fr_type == rs_fill_nop)
1520 {
1521 /* Output NOPs for .nop directive. */
1522 if (limit > max_single_nop_size)
1523 {
1524 as_bad_where (fragP->fr_file, fragP->fr_line,
1525 _("invalid single nop size: %d "
1526 "(expect within [0, %d])"),
1527 limit, max_single_nop_size);
1528 return;
1529 }
1530 }
1531 else
1532 fragP->fr_var = count;
1533
1534 if ((count / max_single_nop_size) > max_number_of_nops)
1535 {
1536 /* Generate jump over NOPs. */
1537 offsetT disp = count - 2;
1538 if (fits_in_imm7 (disp))
1539 {
1540 /* Use "jmp disp8" if possible. */
1541 count = disp;
1542 where[0] = jump_disp8[0];
1543 where[1] = count;
1544 where += 2;
1545 }
1546 else
1547 {
1548 unsigned int size_of_jump;
1549
1550 if (flag_code == CODE_16BIT)
1551 {
1552 where[0] = jump16_disp32[0];
1553 where[1] = jump16_disp32[1];
1554 size_of_jump = 2;
1555 }
1556 else
1557 {
1558 where[0] = jump32_disp32[0];
1559 size_of_jump = 1;
1560 }
1561
1562 count -= size_of_jump + 4;
1563 if (!fits_in_imm31 (count))
1564 {
1565 as_bad_where (fragP->fr_file, fragP->fr_line,
1566 _("jump over nop padding out of range"));
1567 return;
1568 }
1569
1570 md_number_to_chars (where + size_of_jump, count, 4);
1571 where += size_of_jump + 4;
1572 }
1573 }
1574
1575 /* Generate multiple NOPs. */
1576 i386_output_nops (where, patt, count, limit);
1577 }
1578
1579 static INLINE int
1580 operand_type_all_zero (const union i386_operand_type *x)
1581 {
1582 switch (ARRAY_SIZE(x->array))
1583 {
1584 case 3:
1585 if (x->array[2])
1586 return 0;
1587 /* Fall through. */
1588 case 2:
1589 if (x->array[1])
1590 return 0;
1591 /* Fall through. */
1592 case 1:
1593 return !x->array[0];
1594 default:
1595 abort ();
1596 }
1597 }
1598
1599 static INLINE void
1600 operand_type_set (union i386_operand_type *x, unsigned int v)
1601 {
1602 switch (ARRAY_SIZE(x->array))
1603 {
1604 case 3:
1605 x->array[2] = v;
1606 /* Fall through. */
1607 case 2:
1608 x->array[1] = v;
1609 /* Fall through. */
1610 case 1:
1611 x->array[0] = v;
1612 /* Fall through. */
1613 break;
1614 default:
1615 abort ();
1616 }
1617
1618 x->bitfield.class = ClassNone;
1619 x->bitfield.instance = InstanceNone;
1620 }
1621
1622 static INLINE int
1623 operand_type_equal (const union i386_operand_type *x,
1624 const union i386_operand_type *y)
1625 {
1626 switch (ARRAY_SIZE(x->array))
1627 {
1628 case 3:
1629 if (x->array[2] != y->array[2])
1630 return 0;
1631 /* Fall through. */
1632 case 2:
1633 if (x->array[1] != y->array[1])
1634 return 0;
1635 /* Fall through. */
1636 case 1:
1637 return x->array[0] == y->array[0];
1638 break;
1639 default:
1640 abort ();
1641 }
1642 }
1643
1644 static INLINE int
1645 cpu_flags_all_zero (const union i386_cpu_flags *x)
1646 {
1647 switch (ARRAY_SIZE(x->array))
1648 {
1649 case 4:
1650 if (x->array[3])
1651 return 0;
1652 /* Fall through. */
1653 case 3:
1654 if (x->array[2])
1655 return 0;
1656 /* Fall through. */
1657 case 2:
1658 if (x->array[1])
1659 return 0;
1660 /* Fall through. */
1661 case 1:
1662 return !x->array[0];
1663 default:
1664 abort ();
1665 }
1666 }
1667
1668 static INLINE int
1669 cpu_flags_equal (const union i386_cpu_flags *x,
1670 const union i386_cpu_flags *y)
1671 {
1672 switch (ARRAY_SIZE(x->array))
1673 {
1674 case 4:
1675 if (x->array[3] != y->array[3])
1676 return 0;
1677 /* Fall through. */
1678 case 3:
1679 if (x->array[2] != y->array[2])
1680 return 0;
1681 /* Fall through. */
1682 case 2:
1683 if (x->array[1] != y->array[1])
1684 return 0;
1685 /* Fall through. */
1686 case 1:
1687 return x->array[0] == y->array[0];
1688 break;
1689 default:
1690 abort ();
1691 }
1692 }
1693
1694 static INLINE int
1695 cpu_flags_check_cpu64 (i386_cpu_flags f)
1696 {
1697 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1698 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1699 }
1700
1701 static INLINE i386_cpu_flags
1702 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1703 {
1704 switch (ARRAY_SIZE (x.array))
1705 {
1706 case 4:
1707 x.array [3] &= y.array [3];
1708 /* Fall through. */
1709 case 3:
1710 x.array [2] &= y.array [2];
1711 /* Fall through. */
1712 case 2:
1713 x.array [1] &= y.array [1];
1714 /* Fall through. */
1715 case 1:
1716 x.array [0] &= y.array [0];
1717 break;
1718 default:
1719 abort ();
1720 }
1721 return x;
1722 }
1723
1724 static INLINE i386_cpu_flags
1725 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1726 {
1727 switch (ARRAY_SIZE (x.array))
1728 {
1729 case 4:
1730 x.array [3] |= y.array [3];
1731 /* Fall through. */
1732 case 3:
1733 x.array [2] |= y.array [2];
1734 /* Fall through. */
1735 case 2:
1736 x.array [1] |= y.array [1];
1737 /* Fall through. */
1738 case 1:
1739 x.array [0] |= y.array [0];
1740 break;
1741 default:
1742 abort ();
1743 }
1744 return x;
1745 }
1746
1747 static INLINE i386_cpu_flags
1748 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1749 {
1750 switch (ARRAY_SIZE (x.array))
1751 {
1752 case 4:
1753 x.array [3] &= ~y.array [3];
1754 /* Fall through. */
1755 case 3:
1756 x.array [2] &= ~y.array [2];
1757 /* Fall through. */
1758 case 2:
1759 x.array [1] &= ~y.array [1];
1760 /* Fall through. */
1761 case 1:
1762 x.array [0] &= ~y.array [0];
1763 break;
1764 default:
1765 abort ();
1766 }
1767 return x;
1768 }
1769
1770 #define CPU_FLAGS_ARCH_MATCH 0x1
1771 #define CPU_FLAGS_64BIT_MATCH 0x2
1772
1773 #define CPU_FLAGS_PERFECT_MATCH \
1774 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1775
1776 /* Return CPU flags match bits. */
1777
1778 static int
1779 cpu_flags_match (const insn_template *t)
1780 {
1781 i386_cpu_flags x = t->cpu_flags;
1782 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1783
1784 x.bitfield.cpu64 = 0;
1785 x.bitfield.cpuno64 = 0;
1786
1787 if (cpu_flags_all_zero (&x))
1788 {
1789 /* This instruction is available on all archs. */
1790 match |= CPU_FLAGS_ARCH_MATCH;
1791 }
1792 else
1793 {
1794 /* This instruction is available only on some archs. */
1795 i386_cpu_flags cpu = cpu_arch_flags;
1796
1797 /* AVX512VL is no standalone feature - match it and then strip it. */
1798 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1799 return match;
1800 x.bitfield.cpuavx512vl = 0;
1801
1802 cpu = cpu_flags_and (x, cpu);
1803 if (!cpu_flags_all_zero (&cpu))
1804 {
1805 if (x.bitfield.cpuavx)
1806 {
1807 /* We need to check a few extra flags with AVX. */
1808 if (cpu.bitfield.cpuavx
1809 && (!t->opcode_modifier.sse2avx || sse2avx)
1810 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1811 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1812 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1813 match |= CPU_FLAGS_ARCH_MATCH;
1814 }
1815 else if (x.bitfield.cpuavx512f)
1816 {
1817 /* We need to check a few extra flags with AVX512F. */
1818 if (cpu.bitfield.cpuavx512f
1819 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1820 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1821 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1822 match |= CPU_FLAGS_ARCH_MATCH;
1823 }
1824 else
1825 match |= CPU_FLAGS_ARCH_MATCH;
1826 }
1827 }
1828 return match;
1829 }
1830
1831 static INLINE i386_operand_type
1832 operand_type_and (i386_operand_type x, i386_operand_type y)
1833 {
1834 if (x.bitfield.class != y.bitfield.class)
1835 x.bitfield.class = ClassNone;
1836 if (x.bitfield.instance != y.bitfield.instance)
1837 x.bitfield.instance = InstanceNone;
1838
1839 switch (ARRAY_SIZE (x.array))
1840 {
1841 case 3:
1842 x.array [2] &= y.array [2];
1843 /* Fall through. */
1844 case 2:
1845 x.array [1] &= y.array [1];
1846 /* Fall through. */
1847 case 1:
1848 x.array [0] &= y.array [0];
1849 break;
1850 default:
1851 abort ();
1852 }
1853 return x;
1854 }
1855
1856 static INLINE i386_operand_type
1857 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1858 {
1859 gas_assert (y.bitfield.class == ClassNone);
1860 gas_assert (y.bitfield.instance == InstanceNone);
1861
1862 switch (ARRAY_SIZE (x.array))
1863 {
1864 case 3:
1865 x.array [2] &= ~y.array [2];
1866 /* Fall through. */
1867 case 2:
1868 x.array [1] &= ~y.array [1];
1869 /* Fall through. */
1870 case 1:
1871 x.array [0] &= ~y.array [0];
1872 break;
1873 default:
1874 abort ();
1875 }
1876 return x;
1877 }
1878
1879 static INLINE i386_operand_type
1880 operand_type_or (i386_operand_type x, i386_operand_type y)
1881 {
1882 gas_assert (x.bitfield.class == ClassNone ||
1883 y.bitfield.class == ClassNone ||
1884 x.bitfield.class == y.bitfield.class);
1885 gas_assert (x.bitfield.instance == InstanceNone ||
1886 y.bitfield.instance == InstanceNone ||
1887 x.bitfield.instance == y.bitfield.instance);
1888
1889 switch (ARRAY_SIZE (x.array))
1890 {
1891 case 3:
1892 x.array [2] |= y.array [2];
1893 /* Fall through. */
1894 case 2:
1895 x.array [1] |= y.array [1];
1896 /* Fall through. */
1897 case 1:
1898 x.array [0] |= y.array [0];
1899 break;
1900 default:
1901 abort ();
1902 }
1903 return x;
1904 }
1905
1906 static INLINE i386_operand_type
1907 operand_type_xor (i386_operand_type x, i386_operand_type y)
1908 {
1909 gas_assert (y.bitfield.class == ClassNone);
1910 gas_assert (y.bitfield.instance == InstanceNone);
1911
1912 switch (ARRAY_SIZE (x.array))
1913 {
1914 case 3:
1915 x.array [2] ^= y.array [2];
1916 /* Fall through. */
1917 case 2:
1918 x.array [1] ^= y.array [1];
1919 /* Fall through. */
1920 case 1:
1921 x.array [0] ^= y.array [0];
1922 break;
1923 default:
1924 abort ();
1925 }
1926 return x;
1927 }
1928
1929 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1930 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1931 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1932 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1933 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1934 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
1935 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1936 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1937 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1938 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1939 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1940 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1941 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1942 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1943 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1944 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1945 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1946
1947 enum operand_type
1948 {
1949 reg,
1950 imm,
1951 disp,
1952 anymem
1953 };
1954
1955 static INLINE int
1956 operand_type_check (i386_operand_type t, enum operand_type c)
1957 {
1958 switch (c)
1959 {
1960 case reg:
1961 return t.bitfield.class == Reg;
1962
1963 case imm:
1964 return (t.bitfield.imm8
1965 || t.bitfield.imm8s
1966 || t.bitfield.imm16
1967 || t.bitfield.imm32
1968 || t.bitfield.imm32s
1969 || t.bitfield.imm64);
1970
1971 case disp:
1972 return (t.bitfield.disp8
1973 || t.bitfield.disp16
1974 || t.bitfield.disp32
1975 || t.bitfield.disp32s
1976 || t.bitfield.disp64);
1977
1978 case anymem:
1979 return (t.bitfield.disp8
1980 || t.bitfield.disp16
1981 || t.bitfield.disp32
1982 || t.bitfield.disp32s
1983 || t.bitfield.disp64
1984 || t.bitfield.baseindex);
1985
1986 default:
1987 abort ();
1988 }
1989
1990 return 0;
1991 }
1992
1993 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1994 between operand GIVEN and opeand WANTED for instruction template T. */
1995
1996 static INLINE int
1997 match_operand_size (const insn_template *t, unsigned int wanted,
1998 unsigned int given)
1999 {
2000 return !((i.types[given].bitfield.byte
2001 && !t->operand_types[wanted].bitfield.byte)
2002 || (i.types[given].bitfield.word
2003 && !t->operand_types[wanted].bitfield.word)
2004 || (i.types[given].bitfield.dword
2005 && !t->operand_types[wanted].bitfield.dword)
2006 || (i.types[given].bitfield.qword
2007 && !t->operand_types[wanted].bitfield.qword)
2008 || (i.types[given].bitfield.tbyte
2009 && !t->operand_types[wanted].bitfield.tbyte));
2010 }
2011
2012 /* Return 1 if there is no conflict in SIMD register between operand
2013 GIVEN and opeand WANTED for instruction template T. */
2014
2015 static INLINE int
2016 match_simd_size (const insn_template *t, unsigned int wanted,
2017 unsigned int given)
2018 {
2019 return !((i.types[given].bitfield.xmmword
2020 && !t->operand_types[wanted].bitfield.xmmword)
2021 || (i.types[given].bitfield.ymmword
2022 && !t->operand_types[wanted].bitfield.ymmword)
2023 || (i.types[given].bitfield.zmmword
2024 && !t->operand_types[wanted].bitfield.zmmword));
2025 }
2026
2027 /* Return 1 if there is no conflict in any size between operand GIVEN
2028 and opeand WANTED for instruction template T. */
2029
2030 static INLINE int
2031 match_mem_size (const insn_template *t, unsigned int wanted,
2032 unsigned int given)
2033 {
2034 return (match_operand_size (t, wanted, given)
2035 && !((i.types[given].bitfield.unspecified
2036 && !i.broadcast
2037 && !t->operand_types[wanted].bitfield.unspecified)
2038 || (i.types[given].bitfield.fword
2039 && !t->operand_types[wanted].bitfield.fword)
2040 /* For scalar opcode templates to allow register and memory
2041 operands at the same time, some special casing is needed
2042 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2043 down-conversion vpmov*. */
2044 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2045 && !t->opcode_modifier.broadcast
2046 && (t->operand_types[wanted].bitfield.byte
2047 || t->operand_types[wanted].bitfield.word
2048 || t->operand_types[wanted].bitfield.dword
2049 || t->operand_types[wanted].bitfield.qword))
2050 ? (i.types[given].bitfield.xmmword
2051 || i.types[given].bitfield.ymmword
2052 || i.types[given].bitfield.zmmword)
2053 : !match_simd_size(t, wanted, given))));
2054 }
2055
2056 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2057 operands for instruction template T, and it has MATCH_REVERSE set if there
2058 is no size conflict on any operands for the template with operands reversed
2059 (and the template allows for reversing in the first place). */
2060
2061 #define MATCH_STRAIGHT 1
2062 #define MATCH_REVERSE 2
2063
2064 static INLINE unsigned int
2065 operand_size_match (const insn_template *t)
2066 {
2067 unsigned int j, match = MATCH_STRAIGHT;
2068
2069 /* Don't check non-absolute jump instructions. */
2070 if (t->opcode_modifier.jump
2071 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2072 return match;
2073
2074 /* Check memory and accumulator operand size. */
2075 for (j = 0; j < i.operands; j++)
2076 {
2077 if (i.types[j].bitfield.class != Reg
2078 && i.types[j].bitfield.class != RegSIMD
2079 && t->opcode_modifier.anysize)
2080 continue;
2081
2082 if (t->operand_types[j].bitfield.class == Reg
2083 && !match_operand_size (t, j, j))
2084 {
2085 match = 0;
2086 break;
2087 }
2088
2089 if (t->operand_types[j].bitfield.class == RegSIMD
2090 && !match_simd_size (t, j, j))
2091 {
2092 match = 0;
2093 break;
2094 }
2095
2096 if (t->operand_types[j].bitfield.instance == Accum
2097 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2098 {
2099 match = 0;
2100 break;
2101 }
2102
2103 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2104 {
2105 match = 0;
2106 break;
2107 }
2108 }
2109
2110 if (!t->opcode_modifier.d)
2111 {
2112 mismatch:
2113 if (!match)
2114 i.error = operand_size_mismatch;
2115 return match;
2116 }
2117
2118 /* Check reverse. */
2119 gas_assert (i.operands >= 2 && i.operands <= 3);
2120
2121 for (j = 0; j < i.operands; j++)
2122 {
2123 unsigned int given = i.operands - j - 1;
2124
2125 if (t->operand_types[j].bitfield.class == Reg
2126 && !match_operand_size (t, j, given))
2127 goto mismatch;
2128
2129 if (t->operand_types[j].bitfield.class == RegSIMD
2130 && !match_simd_size (t, j, given))
2131 goto mismatch;
2132
2133 if (t->operand_types[j].bitfield.instance == Accum
2134 && (!match_operand_size (t, j, given)
2135 || !match_simd_size (t, j, given)))
2136 goto mismatch;
2137
2138 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2139 goto mismatch;
2140 }
2141
2142 return match | MATCH_REVERSE;
2143 }
2144
2145 static INLINE int
2146 operand_type_match (i386_operand_type overlap,
2147 i386_operand_type given)
2148 {
2149 i386_operand_type temp = overlap;
2150
2151 temp.bitfield.unspecified = 0;
2152 temp.bitfield.byte = 0;
2153 temp.bitfield.word = 0;
2154 temp.bitfield.dword = 0;
2155 temp.bitfield.fword = 0;
2156 temp.bitfield.qword = 0;
2157 temp.bitfield.tbyte = 0;
2158 temp.bitfield.xmmword = 0;
2159 temp.bitfield.ymmword = 0;
2160 temp.bitfield.zmmword = 0;
2161 if (operand_type_all_zero (&temp))
2162 goto mismatch;
2163
2164 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2165 return 1;
2166
2167 mismatch:
2168 i.error = operand_type_mismatch;
2169 return 0;
2170 }
2171
2172 /* If given types g0 and g1 are registers they must be of the same type
2173 unless the expected operand type register overlap is null.
2174 Memory operand size of certain SIMD instructions is also being checked
2175 here. */
2176
2177 static INLINE int
2178 operand_type_register_match (i386_operand_type g0,
2179 i386_operand_type t0,
2180 i386_operand_type g1,
2181 i386_operand_type t1)
2182 {
2183 if (g0.bitfield.class != Reg
2184 && g0.bitfield.class != RegSIMD
2185 && (!operand_type_check (g0, anymem)
2186 || g0.bitfield.unspecified
2187 || t0.bitfield.class != RegSIMD))
2188 return 1;
2189
2190 if (g1.bitfield.class != Reg
2191 && g1.bitfield.class != RegSIMD
2192 && (!operand_type_check (g1, anymem)
2193 || g1.bitfield.unspecified
2194 || t1.bitfield.class != RegSIMD))
2195 return 1;
2196
2197 if (g0.bitfield.byte == g1.bitfield.byte
2198 && g0.bitfield.word == g1.bitfield.word
2199 && g0.bitfield.dword == g1.bitfield.dword
2200 && g0.bitfield.qword == g1.bitfield.qword
2201 && g0.bitfield.xmmword == g1.bitfield.xmmword
2202 && g0.bitfield.ymmword == g1.bitfield.ymmword
2203 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2204 return 1;
2205
2206 if (!(t0.bitfield.byte & t1.bitfield.byte)
2207 && !(t0.bitfield.word & t1.bitfield.word)
2208 && !(t0.bitfield.dword & t1.bitfield.dword)
2209 && !(t0.bitfield.qword & t1.bitfield.qword)
2210 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2211 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2212 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2213 return 1;
2214
2215 i.error = register_type_mismatch;
2216
2217 return 0;
2218 }
2219
2220 static INLINE unsigned int
2221 register_number (const reg_entry *r)
2222 {
2223 unsigned int nr = r->reg_num;
2224
2225 if (r->reg_flags & RegRex)
2226 nr += 8;
2227
2228 if (r->reg_flags & RegVRex)
2229 nr += 16;
2230
2231 return nr;
2232 }
2233
2234 static INLINE unsigned int
2235 mode_from_disp_size (i386_operand_type t)
2236 {
2237 if (t.bitfield.disp8)
2238 return 1;
2239 else if (t.bitfield.disp16
2240 || t.bitfield.disp32
2241 || t.bitfield.disp32s)
2242 return 2;
2243 else
2244 return 0;
2245 }
2246
2247 static INLINE int
2248 fits_in_signed_byte (addressT num)
2249 {
2250 return num + 0x80 <= 0xff;
2251 }
2252
2253 static INLINE int
2254 fits_in_unsigned_byte (addressT num)
2255 {
2256 return num <= 0xff;
2257 }
2258
2259 static INLINE int
2260 fits_in_unsigned_word (addressT num)
2261 {
2262 return num <= 0xffff;
2263 }
2264
2265 static INLINE int
2266 fits_in_signed_word (addressT num)
2267 {
2268 return num + 0x8000 <= 0xffff;
2269 }
2270
2271 static INLINE int
2272 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2273 {
2274 #ifndef BFD64
2275 return 1;
2276 #else
2277 return num + 0x80000000 <= 0xffffffff;
2278 #endif
2279 } /* fits_in_signed_long() */
2280
2281 static INLINE int
2282 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2283 {
2284 #ifndef BFD64
2285 return 1;
2286 #else
2287 return num <= 0xffffffff;
2288 #endif
2289 } /* fits_in_unsigned_long() */
2290
2291 static INLINE int
2292 fits_in_disp8 (offsetT num)
2293 {
2294 int shift = i.memshift;
2295 unsigned int mask;
2296
2297 if (shift == -1)
2298 abort ();
2299
2300 mask = (1 << shift) - 1;
2301
2302 /* Return 0 if NUM isn't properly aligned. */
2303 if ((num & mask))
2304 return 0;
2305
2306 /* Check if NUM will fit in 8bit after shift. */
2307 return fits_in_signed_byte (num >> shift);
2308 }
2309
2310 static INLINE int
2311 fits_in_imm4 (offsetT num)
2312 {
2313 return (num & 0xf) == num;
2314 }
2315
2316 static i386_operand_type
2317 smallest_imm_type (offsetT num)
2318 {
2319 i386_operand_type t;
2320
2321 operand_type_set (&t, 0);
2322 t.bitfield.imm64 = 1;
2323
2324 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2325 {
2326 /* This code is disabled on the 486 because all the Imm1 forms
2327 in the opcode table are slower on the i486. They're the
2328 versions with the implicitly specified single-position
2329 displacement, which has another syntax if you really want to
2330 use that form. */
2331 t.bitfield.imm1 = 1;
2332 t.bitfield.imm8 = 1;
2333 t.bitfield.imm8s = 1;
2334 t.bitfield.imm16 = 1;
2335 t.bitfield.imm32 = 1;
2336 t.bitfield.imm32s = 1;
2337 }
2338 else if (fits_in_signed_byte (num))
2339 {
2340 t.bitfield.imm8 = 1;
2341 t.bitfield.imm8s = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_unsigned_byte (num))
2347 {
2348 t.bitfield.imm8 = 1;
2349 t.bitfield.imm16 = 1;
2350 t.bitfield.imm32 = 1;
2351 t.bitfield.imm32s = 1;
2352 }
2353 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2354 {
2355 t.bitfield.imm16 = 1;
2356 t.bitfield.imm32 = 1;
2357 t.bitfield.imm32s = 1;
2358 }
2359 else if (fits_in_signed_long (num))
2360 {
2361 t.bitfield.imm32 = 1;
2362 t.bitfield.imm32s = 1;
2363 }
2364 else if (fits_in_unsigned_long (num))
2365 t.bitfield.imm32 = 1;
2366
2367 return t;
2368 }
2369
2370 static offsetT
2371 offset_in_range (offsetT val, int size)
2372 {
2373 addressT mask;
2374
2375 switch (size)
2376 {
2377 case 1: mask = ((addressT) 1 << 8) - 1; break;
2378 case 2: mask = ((addressT) 1 << 16) - 1; break;
2379 case 4: mask = ((addressT) 2 << 31) - 1; break;
2380 #ifdef BFD64
2381 case 8: mask = ((addressT) 2 << 63) - 1; break;
2382 #endif
2383 default: abort ();
2384 }
2385
2386 #ifdef BFD64
2387 /* If BFD64, sign extend val for 32bit address mode. */
2388 if (flag_code != CODE_64BIT
2389 || i.prefix[ADDR_PREFIX])
2390 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2391 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2392 #endif
2393
2394 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2395 {
2396 char buf1[40], buf2[40];
2397
2398 sprint_value (buf1, val);
2399 sprint_value (buf2, val & mask);
2400 as_warn (_("%s shortened to %s"), buf1, buf2);
2401 }
2402 return val & mask;
2403 }
2404
2405 enum PREFIX_GROUP
2406 {
2407 PREFIX_EXIST = 0,
2408 PREFIX_LOCK,
2409 PREFIX_REP,
2410 PREFIX_DS,
2411 PREFIX_OTHER
2412 };
2413
2414 /* Returns
2415 a. PREFIX_EXIST if attempting to add a prefix where one from the
2416 same class already exists.
2417 b. PREFIX_LOCK if lock prefix is added.
2418 c. PREFIX_REP if rep/repne prefix is added.
2419 d. PREFIX_DS if ds prefix is added.
2420 e. PREFIX_OTHER if other prefix is added.
2421 */
2422
2423 static enum PREFIX_GROUP
2424 add_prefix (unsigned int prefix)
2425 {
2426 enum PREFIX_GROUP ret = PREFIX_OTHER;
2427 unsigned int q;
2428
2429 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2430 && flag_code == CODE_64BIT)
2431 {
2432 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2433 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2434 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2435 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2436 ret = PREFIX_EXIST;
2437 q = REX_PREFIX;
2438 }
2439 else
2440 {
2441 switch (prefix)
2442 {
2443 default:
2444 abort ();
2445
2446 case DS_PREFIX_OPCODE:
2447 ret = PREFIX_DS;
2448 /* Fall through. */
2449 case CS_PREFIX_OPCODE:
2450 case ES_PREFIX_OPCODE:
2451 case FS_PREFIX_OPCODE:
2452 case GS_PREFIX_OPCODE:
2453 case SS_PREFIX_OPCODE:
2454 q = SEG_PREFIX;
2455 break;
2456
2457 case REPNE_PREFIX_OPCODE:
2458 case REPE_PREFIX_OPCODE:
2459 q = REP_PREFIX;
2460 ret = PREFIX_REP;
2461 break;
2462
2463 case LOCK_PREFIX_OPCODE:
2464 q = LOCK_PREFIX;
2465 ret = PREFIX_LOCK;
2466 break;
2467
2468 case FWAIT_OPCODE:
2469 q = WAIT_PREFIX;
2470 break;
2471
2472 case ADDR_PREFIX_OPCODE:
2473 q = ADDR_PREFIX;
2474 break;
2475
2476 case DATA_PREFIX_OPCODE:
2477 q = DATA_PREFIX;
2478 break;
2479 }
2480 if (i.prefix[q] != 0)
2481 ret = PREFIX_EXIST;
2482 }
2483
2484 if (ret)
2485 {
2486 if (!i.prefix[q])
2487 ++i.prefixes;
2488 i.prefix[q] |= prefix;
2489 }
2490 else
2491 as_bad (_("same type of prefix used twice"));
2492
2493 return ret;
2494 }
2495
2496 static void
2497 update_code_flag (int value, int check)
2498 {
2499 PRINTF_LIKE ((*as_error));
2500
2501 flag_code = (enum flag_code) value;
2502 if (flag_code == CODE_64BIT)
2503 {
2504 cpu_arch_flags.bitfield.cpu64 = 1;
2505 cpu_arch_flags.bitfield.cpuno64 = 0;
2506 }
2507 else
2508 {
2509 cpu_arch_flags.bitfield.cpu64 = 0;
2510 cpu_arch_flags.bitfield.cpuno64 = 1;
2511 }
2512 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2513 {
2514 if (check)
2515 as_error = as_fatal;
2516 else
2517 as_error = as_bad;
2518 (*as_error) (_("64bit mode not supported on `%s'."),
2519 cpu_arch_name ? cpu_arch_name : default_arch);
2520 }
2521 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2522 {
2523 if (check)
2524 as_error = as_fatal;
2525 else
2526 as_error = as_bad;
2527 (*as_error) (_("32bit mode not supported on `%s'."),
2528 cpu_arch_name ? cpu_arch_name : default_arch);
2529 }
2530 stackop_size = '\0';
2531 }
2532
2533 static void
2534 set_code_flag (int value)
2535 {
2536 update_code_flag (value, 0);
2537 }
2538
2539 static void
2540 set_16bit_gcc_code_flag (int new_code_flag)
2541 {
2542 flag_code = (enum flag_code) new_code_flag;
2543 if (flag_code != CODE_16BIT)
2544 abort ();
2545 cpu_arch_flags.bitfield.cpu64 = 0;
2546 cpu_arch_flags.bitfield.cpuno64 = 1;
2547 stackop_size = LONG_MNEM_SUFFIX;
2548 }
2549
2550 static void
2551 set_intel_syntax (int syntax_flag)
2552 {
2553 /* Find out if register prefixing is specified. */
2554 int ask_naked_reg = 0;
2555
2556 SKIP_WHITESPACE ();
2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2558 {
2559 char *string;
2560 int e = get_symbol_name (&string);
2561
2562 if (strcmp (string, "prefix") == 0)
2563 ask_naked_reg = 1;
2564 else if (strcmp (string, "noprefix") == 0)
2565 ask_naked_reg = -1;
2566 else
2567 as_bad (_("bad argument to syntax directive."));
2568 (void) restore_line_pointer (e);
2569 }
2570 demand_empty_rest_of_line ();
2571
2572 intel_syntax = syntax_flag;
2573
2574 if (ask_naked_reg == 0)
2575 allow_naked_reg = (intel_syntax
2576 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2577 else
2578 allow_naked_reg = (ask_naked_reg < 0);
2579
2580 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2581
2582 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2583 identifier_chars['$'] = intel_syntax ? '$' : 0;
2584 register_prefix = allow_naked_reg ? "" : "%";
2585 }
2586
2587 static void
2588 set_intel_mnemonic (int mnemonic_flag)
2589 {
2590 intel_mnemonic = mnemonic_flag;
2591 }
2592
2593 static void
2594 set_allow_index_reg (int flag)
2595 {
2596 allow_index_reg = flag;
2597 }
2598
2599 static void
2600 set_check (int what)
2601 {
2602 enum check_kind *kind;
2603 const char *str;
2604
2605 if (what)
2606 {
2607 kind = &operand_check;
2608 str = "operand";
2609 }
2610 else
2611 {
2612 kind = &sse_check;
2613 str = "sse";
2614 }
2615
2616 SKIP_WHITESPACE ();
2617
2618 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2619 {
2620 char *string;
2621 int e = get_symbol_name (&string);
2622
2623 if (strcmp (string, "none") == 0)
2624 *kind = check_none;
2625 else if (strcmp (string, "warning") == 0)
2626 *kind = check_warning;
2627 else if (strcmp (string, "error") == 0)
2628 *kind = check_error;
2629 else
2630 as_bad (_("bad argument to %s_check directive."), str);
2631 (void) restore_line_pointer (e);
2632 }
2633 else
2634 as_bad (_("missing argument for %s_check directive"), str);
2635
2636 demand_empty_rest_of_line ();
2637 }
2638
2639 static void
2640 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2641 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2642 {
2643 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2644 static const char *arch;
2645
2646 /* Intel LIOM is only supported on ELF. */
2647 if (!IS_ELF)
2648 return;
2649
2650 if (!arch)
2651 {
2652 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2653 use default_arch. */
2654 arch = cpu_arch_name;
2655 if (!arch)
2656 arch = default_arch;
2657 }
2658
2659 /* If we are targeting Intel MCU, we must enable it. */
2660 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2661 || new_flag.bitfield.cpuiamcu)
2662 return;
2663
2664 /* If we are targeting Intel L1OM, we must enable it. */
2665 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2666 || new_flag.bitfield.cpul1om)
2667 return;
2668
2669 /* If we are targeting Intel K1OM, we must enable it. */
2670 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2671 || new_flag.bitfield.cpuk1om)
2672 return;
2673
2674 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2675 #endif
2676 }
2677
2678 static void
2679 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2680 {
2681 SKIP_WHITESPACE ();
2682
2683 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2684 {
2685 char *string;
2686 int e = get_symbol_name (&string);
2687 unsigned int j;
2688 i386_cpu_flags flags;
2689
2690 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2691 {
2692 if (strcmp (string, cpu_arch[j].name) == 0)
2693 {
2694 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2695
2696 if (*string != '.')
2697 {
2698 cpu_arch_name = cpu_arch[j].name;
2699 cpu_sub_arch_name = NULL;
2700 cpu_arch_flags = cpu_arch[j].flags;
2701 if (flag_code == CODE_64BIT)
2702 {
2703 cpu_arch_flags.bitfield.cpu64 = 1;
2704 cpu_arch_flags.bitfield.cpuno64 = 0;
2705 }
2706 else
2707 {
2708 cpu_arch_flags.bitfield.cpu64 = 0;
2709 cpu_arch_flags.bitfield.cpuno64 = 1;
2710 }
2711 cpu_arch_isa = cpu_arch[j].type;
2712 cpu_arch_isa_flags = cpu_arch[j].flags;
2713 if (!cpu_arch_tune_set)
2714 {
2715 cpu_arch_tune = cpu_arch_isa;
2716 cpu_arch_tune_flags = cpu_arch_isa_flags;
2717 }
2718 break;
2719 }
2720
2721 flags = cpu_flags_or (cpu_arch_flags,
2722 cpu_arch[j].flags);
2723
2724 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2725 {
2726 if (cpu_sub_arch_name)
2727 {
2728 char *name = cpu_sub_arch_name;
2729 cpu_sub_arch_name = concat (name,
2730 cpu_arch[j].name,
2731 (const char *) NULL);
2732 free (name);
2733 }
2734 else
2735 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2736 cpu_arch_flags = flags;
2737 cpu_arch_isa_flags = flags;
2738 }
2739 else
2740 cpu_arch_isa_flags
2741 = cpu_flags_or (cpu_arch_isa_flags,
2742 cpu_arch[j].flags);
2743 (void) restore_line_pointer (e);
2744 demand_empty_rest_of_line ();
2745 return;
2746 }
2747 }
2748
2749 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2750 {
2751 /* Disable an ISA extension. */
2752 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2753 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2754 {
2755 flags = cpu_flags_and_not (cpu_arch_flags,
2756 cpu_noarch[j].flags);
2757 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2758 {
2759 if (cpu_sub_arch_name)
2760 {
2761 char *name = cpu_sub_arch_name;
2762 cpu_sub_arch_name = concat (name, string,
2763 (const char *) NULL);
2764 free (name);
2765 }
2766 else
2767 cpu_sub_arch_name = xstrdup (string);
2768 cpu_arch_flags = flags;
2769 cpu_arch_isa_flags = flags;
2770 }
2771 (void) restore_line_pointer (e);
2772 demand_empty_rest_of_line ();
2773 return;
2774 }
2775
2776 j = ARRAY_SIZE (cpu_arch);
2777 }
2778
2779 if (j >= ARRAY_SIZE (cpu_arch))
2780 as_bad (_("no such architecture: `%s'"), string);
2781
2782 *input_line_pointer = e;
2783 }
2784 else
2785 as_bad (_("missing cpu architecture"));
2786
2787 no_cond_jump_promotion = 0;
2788 if (*input_line_pointer == ','
2789 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2790 {
2791 char *string;
2792 char e;
2793
2794 ++input_line_pointer;
2795 e = get_symbol_name (&string);
2796
2797 if (strcmp (string, "nojumps") == 0)
2798 no_cond_jump_promotion = 1;
2799 else if (strcmp (string, "jumps") == 0)
2800 ;
2801 else
2802 as_bad (_("no such architecture modifier: `%s'"), string);
2803
2804 (void) restore_line_pointer (e);
2805 }
2806
2807 demand_empty_rest_of_line ();
2808 }
2809
2810 enum bfd_architecture
2811 i386_arch (void)
2812 {
2813 if (cpu_arch_isa == PROCESSOR_L1OM)
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel L1OM is 64bit ELF only"));
2818 return bfd_arch_l1om;
2819 }
2820 else if (cpu_arch_isa == PROCESSOR_K1OM)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code != CODE_64BIT)
2824 as_fatal (_("Intel K1OM is 64bit ELF only"));
2825 return bfd_arch_k1om;
2826 }
2827 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2828 {
2829 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2830 || flag_code == CODE_64BIT)
2831 as_fatal (_("Intel MCU is 32bit ELF only"));
2832 return bfd_arch_iamcu;
2833 }
2834 else
2835 return bfd_arch_i386;
2836 }
2837
2838 unsigned long
2839 i386_mach (void)
2840 {
2841 if (!strncmp (default_arch, "x86_64", 6))
2842 {
2843 if (cpu_arch_isa == PROCESSOR_L1OM)
2844 {
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
2847 as_fatal (_("Intel L1OM is 64bit ELF only"));
2848 return bfd_mach_l1om;
2849 }
2850 else if (cpu_arch_isa == PROCESSOR_K1OM)
2851 {
2852 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2853 || default_arch[6] != '\0')
2854 as_fatal (_("Intel K1OM is 64bit ELF only"));
2855 return bfd_mach_k1om;
2856 }
2857 else if (default_arch[6] == '\0')
2858 return bfd_mach_x86_64;
2859 else
2860 return bfd_mach_x64_32;
2861 }
2862 else if (!strcmp (default_arch, "i386")
2863 || !strcmp (default_arch, "iamcu"))
2864 {
2865 if (cpu_arch_isa == PROCESSOR_IAMCU)
2866 {
2867 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2868 as_fatal (_("Intel MCU is 32bit ELF only"));
2869 return bfd_mach_i386_iamcu;
2870 }
2871 else
2872 return bfd_mach_i386_i386;
2873 }
2874 else
2875 as_fatal (_("unknown architecture"));
2876 }
2877 \f
2878 void
2879 md_begin (void)
2880 {
2881 const char *hash_err;
2882
2883 /* Support pseudo prefixes like {disp32}. */
2884 lex_type ['{'] = LEX_BEGIN_NAME;
2885
2886 /* Initialize op_hash hash table. */
2887 op_hash = hash_new ();
2888
2889 {
2890 const insn_template *optab;
2891 templates *core_optab;
2892
2893 /* Setup for loop. */
2894 optab = i386_optab;
2895 core_optab = XNEW (templates);
2896 core_optab->start = optab;
2897
2898 while (1)
2899 {
2900 ++optab;
2901 if (optab->name == NULL
2902 || strcmp (optab->name, (optab - 1)->name) != 0)
2903 {
2904 /* different name --> ship out current template list;
2905 add to hash table; & begin anew. */
2906 core_optab->end = optab;
2907 hash_err = hash_insert (op_hash,
2908 (optab - 1)->name,
2909 (void *) core_optab);
2910 if (hash_err)
2911 {
2912 as_fatal (_("can't hash %s: %s"),
2913 (optab - 1)->name,
2914 hash_err);
2915 }
2916 if (optab->name == NULL)
2917 break;
2918 core_optab = XNEW (templates);
2919 core_optab->start = optab;
2920 }
2921 }
2922 }
2923
2924 /* Initialize reg_hash hash table. */
2925 reg_hash = hash_new ();
2926 {
2927 const reg_entry *regtab;
2928 unsigned int regtab_size = i386_regtab_size;
2929
2930 for (regtab = i386_regtab; regtab_size--; regtab++)
2931 {
2932 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2933 if (hash_err)
2934 as_fatal (_("can't hash %s: %s"),
2935 regtab->reg_name,
2936 hash_err);
2937 }
2938 }
2939
2940 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2941 {
2942 int c;
2943 char *p;
2944
2945 for (c = 0; c < 256; c++)
2946 {
2947 if (ISDIGIT (c))
2948 {
2949 digit_chars[c] = c;
2950 mnemonic_chars[c] = c;
2951 register_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 else if (ISLOWER (c))
2955 {
2956 mnemonic_chars[c] = c;
2957 register_chars[c] = c;
2958 operand_chars[c] = c;
2959 }
2960 else if (ISUPPER (c))
2961 {
2962 mnemonic_chars[c] = TOLOWER (c);
2963 register_chars[c] = mnemonic_chars[c];
2964 operand_chars[c] = c;
2965 }
2966 else if (c == '{' || c == '}')
2967 {
2968 mnemonic_chars[c] = c;
2969 operand_chars[c] = c;
2970 }
2971
2972 if (ISALPHA (c) || ISDIGIT (c))
2973 identifier_chars[c] = c;
2974 else if (c >= 128)
2975 {
2976 identifier_chars[c] = c;
2977 operand_chars[c] = c;
2978 }
2979 }
2980
2981 #ifdef LEX_AT
2982 identifier_chars['@'] = '@';
2983 #endif
2984 #ifdef LEX_QM
2985 identifier_chars['?'] = '?';
2986 operand_chars['?'] = '?';
2987 #endif
2988 digit_chars['-'] = '-';
2989 mnemonic_chars['_'] = '_';
2990 mnemonic_chars['-'] = '-';
2991 mnemonic_chars['.'] = '.';
2992 identifier_chars['_'] = '_';
2993 identifier_chars['.'] = '.';
2994
2995 for (p = operand_special_chars; *p != '\0'; p++)
2996 operand_chars[(unsigned char) *p] = *p;
2997 }
2998
2999 if (flag_code == CODE_64BIT)
3000 {
3001 #if defined (OBJ_COFF) && defined (TE_PE)
3002 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3003 ? 32 : 16);
3004 #else
3005 x86_dwarf2_return_column = 16;
3006 #endif
3007 x86_cie_data_alignment = -8;
3008 }
3009 else
3010 {
3011 x86_dwarf2_return_column = 8;
3012 x86_cie_data_alignment = -4;
3013 }
3014 }
3015
3016 void
3017 i386_print_statistics (FILE *file)
3018 {
3019 hash_print_statistics (file, "i386 opcode", op_hash);
3020 hash_print_statistics (file, "i386 register", reg_hash);
3021 }
3022 \f
3023 #ifdef DEBUG386
3024
3025 /* Debugging routines for md_assemble. */
3026 static void pte (insn_template *);
3027 static void pt (i386_operand_type);
3028 static void pe (expressionS *);
3029 static void ps (symbolS *);
3030
3031 static void
3032 pi (const char *line, i386_insn *x)
3033 {
3034 unsigned int j;
3035
3036 fprintf (stdout, "%s: template ", line);
3037 pte (&x->tm);
3038 fprintf (stdout, " address: base %s index %s scale %x\n",
3039 x->base_reg ? x->base_reg->reg_name : "none",
3040 x->index_reg ? x->index_reg->reg_name : "none",
3041 x->log2_scale_factor);
3042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3043 x->rm.mode, x->rm.reg, x->rm.regmem);
3044 fprintf (stdout, " sib: base %x index %x scale %x\n",
3045 x->sib.base, x->sib.index, x->sib.scale);
3046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3047 (x->rex & REX_W) != 0,
3048 (x->rex & REX_R) != 0,
3049 (x->rex & REX_X) != 0,
3050 (x->rex & REX_B) != 0);
3051 for (j = 0; j < x->operands; j++)
3052 {
3053 fprintf (stdout, " #%d: ", j + 1);
3054 pt (x->types[j]);
3055 fprintf (stdout, "\n");
3056 if (x->types[j].bitfield.class == Reg
3057 || x->types[j].bitfield.class == RegMMX
3058 || x->types[j].bitfield.class == RegSIMD
3059 || x->types[j].bitfield.class == SReg
3060 || x->types[j].bitfield.class == RegCR
3061 || x->types[j].bitfield.class == RegDR
3062 || x->types[j].bitfield.class == RegTR)
3063 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3064 if (operand_type_check (x->types[j], imm))
3065 pe (x->op[j].imms);
3066 if (operand_type_check (x->types[j], disp))
3067 pe (x->op[j].disps);
3068 }
3069 }
3070
3071 static void
3072 pte (insn_template *t)
3073 {
3074 unsigned int j;
3075 fprintf (stdout, " %d operands ", t->operands);
3076 fprintf (stdout, "opcode %x ", t->base_opcode);
3077 if (t->extension_opcode != None)
3078 fprintf (stdout, "ext %x ", t->extension_opcode);
3079 if (t->opcode_modifier.d)
3080 fprintf (stdout, "D");
3081 if (t->opcode_modifier.w)
3082 fprintf (stdout, "W");
3083 fprintf (stdout, "\n");
3084 for (j = 0; j < t->operands; j++)
3085 {
3086 fprintf (stdout, " #%d type ", j + 1);
3087 pt (t->operand_types[j]);
3088 fprintf (stdout, "\n");
3089 }
3090 }
3091
3092 static void
3093 pe (expressionS *e)
3094 {
3095 fprintf (stdout, " operation %d\n", e->X_op);
3096 fprintf (stdout, " add_number %ld (%lx)\n",
3097 (long) e->X_add_number, (long) e->X_add_number);
3098 if (e->X_add_symbol)
3099 {
3100 fprintf (stdout, " add_symbol ");
3101 ps (e->X_add_symbol);
3102 fprintf (stdout, "\n");
3103 }
3104 if (e->X_op_symbol)
3105 {
3106 fprintf (stdout, " op_symbol ");
3107 ps (e->X_op_symbol);
3108 fprintf (stdout, "\n");
3109 }
3110 }
3111
3112 static void
3113 ps (symbolS *s)
3114 {
3115 fprintf (stdout, "%s type %s%s",
3116 S_GET_NAME (s),
3117 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3118 segment_name (S_GET_SEGMENT (s)));
3119 }
3120
3121 static struct type_name
3122 {
3123 i386_operand_type mask;
3124 const char *name;
3125 }
3126 const type_names[] =
3127 {
3128 { OPERAND_TYPE_REG8, "r8" },
3129 { OPERAND_TYPE_REG16, "r16" },
3130 { OPERAND_TYPE_REG32, "r32" },
3131 { OPERAND_TYPE_REG64, "r64" },
3132 { OPERAND_TYPE_ACC8, "acc8" },
3133 { OPERAND_TYPE_ACC16, "acc16" },
3134 { OPERAND_TYPE_ACC32, "acc32" },
3135 { OPERAND_TYPE_ACC64, "acc64" },
3136 { OPERAND_TYPE_IMM8, "i8" },
3137 { OPERAND_TYPE_IMM8, "i8s" },
3138 { OPERAND_TYPE_IMM16, "i16" },
3139 { OPERAND_TYPE_IMM32, "i32" },
3140 { OPERAND_TYPE_IMM32S, "i32s" },
3141 { OPERAND_TYPE_IMM64, "i64" },
3142 { OPERAND_TYPE_IMM1, "i1" },
3143 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3144 { OPERAND_TYPE_DISP8, "d8" },
3145 { OPERAND_TYPE_DISP16, "d16" },
3146 { OPERAND_TYPE_DISP32, "d32" },
3147 { OPERAND_TYPE_DISP32S, "d32s" },
3148 { OPERAND_TYPE_DISP64, "d64" },
3149 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3150 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3151 { OPERAND_TYPE_CONTROL, "control reg" },
3152 { OPERAND_TYPE_TEST, "test reg" },
3153 { OPERAND_TYPE_DEBUG, "debug reg" },
3154 { OPERAND_TYPE_FLOATREG, "FReg" },
3155 { OPERAND_TYPE_FLOATACC, "FAcc" },
3156 { OPERAND_TYPE_SREG, "SReg" },
3157 { OPERAND_TYPE_REGMMX, "rMMX" },
3158 { OPERAND_TYPE_REGXMM, "rXMM" },
3159 { OPERAND_TYPE_REGYMM, "rYMM" },
3160 { OPERAND_TYPE_REGZMM, "rZMM" },
3161 { OPERAND_TYPE_REGMASK, "Mask reg" },
3162 };
3163
3164 static void
3165 pt (i386_operand_type t)
3166 {
3167 unsigned int j;
3168 i386_operand_type a;
3169
3170 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3171 {
3172 a = operand_type_and (t, type_names[j].mask);
3173 if (operand_type_equal (&a, &type_names[j].mask))
3174 fprintf (stdout, "%s, ", type_names[j].name);
3175 }
3176 fflush (stdout);
3177 }
3178
3179 #endif /* DEBUG386 */
3180 \f
3181 static bfd_reloc_code_real_type
3182 reloc (unsigned int size,
3183 int pcrel,
3184 int sign,
3185 bfd_reloc_code_real_type other)
3186 {
3187 if (other != NO_RELOC)
3188 {
3189 reloc_howto_type *rel;
3190
3191 if (size == 8)
3192 switch (other)
3193 {
3194 case BFD_RELOC_X86_64_GOT32:
3195 return BFD_RELOC_X86_64_GOT64;
3196 break;
3197 case BFD_RELOC_X86_64_GOTPLT64:
3198 return BFD_RELOC_X86_64_GOTPLT64;
3199 break;
3200 case BFD_RELOC_X86_64_PLTOFF64:
3201 return BFD_RELOC_X86_64_PLTOFF64;
3202 break;
3203 case BFD_RELOC_X86_64_GOTPC32:
3204 other = BFD_RELOC_X86_64_GOTPC64;
3205 break;
3206 case BFD_RELOC_X86_64_GOTPCREL:
3207 other = BFD_RELOC_X86_64_GOTPCREL64;
3208 break;
3209 case BFD_RELOC_X86_64_TPOFF32:
3210 other = BFD_RELOC_X86_64_TPOFF64;
3211 break;
3212 case BFD_RELOC_X86_64_DTPOFF32:
3213 other = BFD_RELOC_X86_64_DTPOFF64;
3214 break;
3215 default:
3216 break;
3217 }
3218
3219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3220 if (other == BFD_RELOC_SIZE32)
3221 {
3222 if (size == 8)
3223 other = BFD_RELOC_SIZE64;
3224 if (pcrel)
3225 {
3226 as_bad (_("there are no pc-relative size relocations"));
3227 return NO_RELOC;
3228 }
3229 }
3230 #endif
3231
3232 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3233 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3234 sign = -1;
3235
3236 rel = bfd_reloc_type_lookup (stdoutput, other);
3237 if (!rel)
3238 as_bad (_("unknown relocation (%u)"), other);
3239 else if (size != bfd_get_reloc_size (rel))
3240 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3241 bfd_get_reloc_size (rel),
3242 size);
3243 else if (pcrel && !rel->pc_relative)
3244 as_bad (_("non-pc-relative relocation for pc-relative field"));
3245 else if ((rel->complain_on_overflow == complain_overflow_signed
3246 && !sign)
3247 || (rel->complain_on_overflow == complain_overflow_unsigned
3248 && sign > 0))
3249 as_bad (_("relocated field and relocation type differ in signedness"));
3250 else
3251 return other;
3252 return NO_RELOC;
3253 }
3254
3255 if (pcrel)
3256 {
3257 if (!sign)
3258 as_bad (_("there are no unsigned pc-relative relocations"));
3259 switch (size)
3260 {
3261 case 1: return BFD_RELOC_8_PCREL;
3262 case 2: return BFD_RELOC_16_PCREL;
3263 case 4: return BFD_RELOC_32_PCREL;
3264 case 8: return BFD_RELOC_64_PCREL;
3265 }
3266 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3267 }
3268 else
3269 {
3270 if (sign > 0)
3271 switch (size)
3272 {
3273 case 4: return BFD_RELOC_X86_64_32S;
3274 }
3275 else
3276 switch (size)
3277 {
3278 case 1: return BFD_RELOC_8;
3279 case 2: return BFD_RELOC_16;
3280 case 4: return BFD_RELOC_32;
3281 case 8: return BFD_RELOC_64;
3282 }
3283 as_bad (_("cannot do %s %u byte relocation"),
3284 sign > 0 ? "signed" : "unsigned", size);
3285 }
3286
3287 return NO_RELOC;
3288 }
3289
3290 /* Here we decide which fixups can be adjusted to make them relative to
3291 the beginning of the section instead of the symbol. Basically we need
3292 to make sure that the dynamic relocations are done correctly, so in
3293 some cases we force the original symbol to be used. */
3294
3295 int
3296 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3297 {
3298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3299 if (!IS_ELF)
3300 return 1;
3301
3302 /* Don't adjust pc-relative references to merge sections in 64-bit
3303 mode. */
3304 if (use_rela_relocations
3305 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3306 && fixP->fx_pcrel)
3307 return 0;
3308
3309 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3310 and changed later by validate_fix. */
3311 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3312 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3313 return 0;
3314
3315 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3316 for size relocations. */
3317 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3318 || fixP->fx_r_type == BFD_RELOC_SIZE64
3319 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3320 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3321 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3322 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3328 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3329 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3330 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3331 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3332 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3335 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3336 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3341 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3343 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3344 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3345 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3346 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3347 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3348 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3349 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3350 return 0;
3351 #endif
3352 return 1;
3353 }
3354
3355 static int
3356 intel_float_operand (const char *mnemonic)
3357 {
3358 /* Note that the value returned is meaningful only for opcodes with (memory)
3359 operands, hence the code here is free to improperly handle opcodes that
3360 have no operands (for better performance and smaller code). */
3361
3362 if (mnemonic[0] != 'f')
3363 return 0; /* non-math */
3364
3365 switch (mnemonic[1])
3366 {
3367 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3368 the fs segment override prefix not currently handled because no
3369 call path can make opcodes without operands get here */
3370 case 'i':
3371 return 2 /* integer op */;
3372 case 'l':
3373 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3374 return 3; /* fldcw/fldenv */
3375 break;
3376 case 'n':
3377 if (mnemonic[2] != 'o' /* fnop */)
3378 return 3; /* non-waiting control op */
3379 break;
3380 case 'r':
3381 if (mnemonic[2] == 's')
3382 return 3; /* frstor/frstpm */
3383 break;
3384 case 's':
3385 if (mnemonic[2] == 'a')
3386 return 3; /* fsave */
3387 if (mnemonic[2] == 't')
3388 {
3389 switch (mnemonic[3])
3390 {
3391 case 'c': /* fstcw */
3392 case 'd': /* fstdw */
3393 case 'e': /* fstenv */
3394 case 's': /* fsts[gw] */
3395 return 3;
3396 }
3397 }
3398 break;
3399 case 'x':
3400 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3401 return 0; /* fxsave/fxrstor are not really math ops */
3402 break;
3403 }
3404
3405 return 1;
3406 }
3407
3408 /* Build the VEX prefix. */
3409
3410 static void
3411 build_vex_prefix (const insn_template *t)
3412 {
3413 unsigned int register_specifier;
3414 unsigned int implied_prefix;
3415 unsigned int vector_length;
3416 unsigned int w;
3417
3418 /* Check register specifier. */
3419 if (i.vex.register_specifier)
3420 {
3421 register_specifier =
3422 ~register_number (i.vex.register_specifier) & 0xf;
3423 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3424 }
3425 else
3426 register_specifier = 0xf;
3427
3428 /* Use 2-byte VEX prefix by swapping destination and source operand
3429 if there are more than 1 register operand. */
3430 if (i.reg_operands > 1
3431 && i.vec_encoding != vex_encoding_vex3
3432 && i.dir_encoding == dir_encoding_default
3433 && i.operands == i.reg_operands
3434 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3435 && i.tm.opcode_modifier.vexopcode == VEX0F
3436 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3437 && i.rex == REX_B)
3438 {
3439 unsigned int xchg = i.operands - 1;
3440 union i386_op temp_op;
3441 i386_operand_type temp_type;
3442
3443 temp_type = i.types[xchg];
3444 i.types[xchg] = i.types[0];
3445 i.types[0] = temp_type;
3446 temp_op = i.op[xchg];
3447 i.op[xchg] = i.op[0];
3448 i.op[0] = temp_op;
3449
3450 gas_assert (i.rm.mode == 3);
3451
3452 i.rex = REX_R;
3453 xchg = i.rm.regmem;
3454 i.rm.regmem = i.rm.reg;
3455 i.rm.reg = xchg;
3456
3457 if (i.tm.opcode_modifier.d)
3458 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3459 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3460 else /* Use the next insn. */
3461 i.tm = t[1];
3462 }
3463
3464 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3465 are no memory operands and at least 3 register ones. */
3466 if (i.reg_operands >= 3
3467 && i.vec_encoding != vex_encoding_vex3
3468 && i.reg_operands == i.operands - i.imm_operands
3469 && i.tm.opcode_modifier.vex
3470 && i.tm.opcode_modifier.commutative
3471 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3472 && i.rex == REX_B
3473 && i.vex.register_specifier
3474 && !(i.vex.register_specifier->reg_flags & RegRex))
3475 {
3476 unsigned int xchg = i.operands - i.reg_operands;
3477 union i386_op temp_op;
3478 i386_operand_type temp_type;
3479
3480 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3481 gas_assert (!i.tm.opcode_modifier.sae);
3482 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3483 &i.types[i.operands - 3]));
3484 gas_assert (i.rm.mode == 3);
3485
3486 temp_type = i.types[xchg];
3487 i.types[xchg] = i.types[xchg + 1];
3488 i.types[xchg + 1] = temp_type;
3489 temp_op = i.op[xchg];
3490 i.op[xchg] = i.op[xchg + 1];
3491 i.op[xchg + 1] = temp_op;
3492
3493 i.rex = 0;
3494 xchg = i.rm.regmem | 8;
3495 i.rm.regmem = ~register_specifier & 0xf;
3496 gas_assert (!(i.rm.regmem & 8));
3497 i.vex.register_specifier += xchg - i.rm.regmem;
3498 register_specifier = ~xchg & 0xf;
3499 }
3500
3501 if (i.tm.opcode_modifier.vex == VEXScalar)
3502 vector_length = avxscalar;
3503 else if (i.tm.opcode_modifier.vex == VEX256)
3504 vector_length = 1;
3505 else
3506 {
3507 unsigned int op;
3508
3509 /* Determine vector length from the last multi-length vector
3510 operand. */
3511 vector_length = 0;
3512 for (op = t->operands; op--;)
3513 if (t->operand_types[op].bitfield.xmmword
3514 && t->operand_types[op].bitfield.ymmword
3515 && i.types[op].bitfield.ymmword)
3516 {
3517 vector_length = 1;
3518 break;
3519 }
3520 }
3521
3522 switch ((i.tm.base_opcode >> 8) & 0xff)
3523 {
3524 case 0:
3525 implied_prefix = 0;
3526 break;
3527 case DATA_PREFIX_OPCODE:
3528 implied_prefix = 1;
3529 break;
3530 case REPE_PREFIX_OPCODE:
3531 implied_prefix = 2;
3532 break;
3533 case REPNE_PREFIX_OPCODE:
3534 implied_prefix = 3;
3535 break;
3536 default:
3537 abort ();
3538 }
3539
3540 /* Check the REX.W bit and VEXW. */
3541 if (i.tm.opcode_modifier.vexw == VEXWIG)
3542 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3543 else if (i.tm.opcode_modifier.vexw)
3544 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3545 else
3546 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3547
3548 /* Use 2-byte VEX prefix if possible. */
3549 if (w == 0
3550 && i.vec_encoding != vex_encoding_vex3
3551 && i.tm.opcode_modifier.vexopcode == VEX0F
3552 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3553 {
3554 /* 2-byte VEX prefix. */
3555 unsigned int r;
3556
3557 i.vex.length = 2;
3558 i.vex.bytes[0] = 0xc5;
3559
3560 /* Check the REX.R bit. */
3561 r = (i.rex & REX_R) ? 0 : 1;
3562 i.vex.bytes[1] = (r << 7
3563 | register_specifier << 3
3564 | vector_length << 2
3565 | implied_prefix);
3566 }
3567 else
3568 {
3569 /* 3-byte VEX prefix. */
3570 unsigned int m;
3571
3572 i.vex.length = 3;
3573
3574 switch (i.tm.opcode_modifier.vexopcode)
3575 {
3576 case VEX0F:
3577 m = 0x1;
3578 i.vex.bytes[0] = 0xc4;
3579 break;
3580 case VEX0F38:
3581 m = 0x2;
3582 i.vex.bytes[0] = 0xc4;
3583 break;
3584 case VEX0F3A:
3585 m = 0x3;
3586 i.vex.bytes[0] = 0xc4;
3587 break;
3588 case XOP08:
3589 m = 0x8;
3590 i.vex.bytes[0] = 0x8f;
3591 break;
3592 case XOP09:
3593 m = 0x9;
3594 i.vex.bytes[0] = 0x8f;
3595 break;
3596 case XOP0A:
3597 m = 0xa;
3598 i.vex.bytes[0] = 0x8f;
3599 break;
3600 default:
3601 abort ();
3602 }
3603
3604 /* The high 3 bits of the second VEX byte are 1's compliment
3605 of RXB bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
3608 i.vex.bytes[2] = (w << 7
3609 | register_specifier << 3
3610 | vector_length << 2
3611 | implied_prefix);
3612 }
3613 }
3614
3615 static INLINE bfd_boolean
3616 is_evex_encoding (const insn_template *t)
3617 {
3618 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3619 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3620 || t->opcode_modifier.sae;
3621 }
3622
3623 static INLINE bfd_boolean
3624 is_any_vex_encoding (const insn_template *t)
3625 {
3626 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3627 || is_evex_encoding (t);
3628 }
3629
3630 /* Build the EVEX prefix. */
3631
3632 static void
3633 build_evex_prefix (void)
3634 {
3635 unsigned int register_specifier;
3636 unsigned int implied_prefix;
3637 unsigned int m, w;
3638 rex_byte vrex_used = 0;
3639
3640 /* Check register specifier. */
3641 if (i.vex.register_specifier)
3642 {
3643 gas_assert ((i.vrex & REX_X) == 0);
3644
3645 register_specifier = i.vex.register_specifier->reg_num;
3646 if ((i.vex.register_specifier->reg_flags & RegRex))
3647 register_specifier += 8;
3648 /* The upper 16 registers are encoded in the fourth byte of the
3649 EVEX prefix. */
3650 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3651 i.vex.bytes[3] = 0x8;
3652 register_specifier = ~register_specifier & 0xf;
3653 }
3654 else
3655 {
3656 register_specifier = 0xf;
3657
3658 /* Encode upper 16 vector index register in the fourth byte of
3659 the EVEX prefix. */
3660 if (!(i.vrex & REX_X))
3661 i.vex.bytes[3] = 0x8;
3662 else
3663 vrex_used |= REX_X;
3664 }
3665
3666 switch ((i.tm.base_opcode >> 8) & 0xff)
3667 {
3668 case 0:
3669 implied_prefix = 0;
3670 break;
3671 case DATA_PREFIX_OPCODE:
3672 implied_prefix = 1;
3673 break;
3674 case REPE_PREFIX_OPCODE:
3675 implied_prefix = 2;
3676 break;
3677 case REPNE_PREFIX_OPCODE:
3678 implied_prefix = 3;
3679 break;
3680 default:
3681 abort ();
3682 }
3683
3684 /* 4 byte EVEX prefix. */
3685 i.vex.length = 4;
3686 i.vex.bytes[0] = 0x62;
3687
3688 /* mmmm bits. */
3689 switch (i.tm.opcode_modifier.vexopcode)
3690 {
3691 case VEX0F:
3692 m = 1;
3693 break;
3694 case VEX0F38:
3695 m = 2;
3696 break;
3697 case VEX0F3A:
3698 m = 3;
3699 break;
3700 default:
3701 abort ();
3702 break;
3703 }
3704
3705 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3706 bits from REX. */
3707 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3708
3709 /* The fifth bit of the second EVEX byte is 1's compliment of the
3710 REX_R bit in VREX. */
3711 if (!(i.vrex & REX_R))
3712 i.vex.bytes[1] |= 0x10;
3713 else
3714 vrex_used |= REX_R;
3715
3716 if ((i.reg_operands + i.imm_operands) == i.operands)
3717 {
3718 /* When all operands are registers, the REX_X bit in REX is not
3719 used. We reuse it to encode the upper 16 registers, which is
3720 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3721 as 1's compliment. */
3722 if ((i.vrex & REX_B))
3723 {
3724 vrex_used |= REX_B;
3725 i.vex.bytes[1] &= ~0x40;
3726 }
3727 }
3728
3729 /* EVEX instructions shouldn't need the REX prefix. */
3730 i.vrex &= ~vrex_used;
3731 gas_assert (i.vrex == 0);
3732
3733 /* Check the REX.W bit and VEXW. */
3734 if (i.tm.opcode_modifier.vexw == VEXWIG)
3735 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3736 else if (i.tm.opcode_modifier.vexw)
3737 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3738 else
3739 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3740
3741 /* Encode the U bit. */
3742 implied_prefix |= 0x4;
3743
3744 /* The third byte of the EVEX prefix. */
3745 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3746
3747 /* The fourth byte of the EVEX prefix. */
3748 /* The zeroing-masking bit. */
3749 if (i.mask && i.mask->zeroing)
3750 i.vex.bytes[3] |= 0x80;
3751
3752 /* Don't always set the broadcast bit if there is no RC. */
3753 if (!i.rounding)
3754 {
3755 /* Encode the vector length. */
3756 unsigned int vec_length;
3757
3758 if (!i.tm.opcode_modifier.evex
3759 || i.tm.opcode_modifier.evex == EVEXDYN)
3760 {
3761 unsigned int op;
3762
3763 /* Determine vector length from the last multi-length vector
3764 operand. */
3765 vec_length = 0;
3766 for (op = i.operands; op--;)
3767 if (i.tm.operand_types[op].bitfield.xmmword
3768 + i.tm.operand_types[op].bitfield.ymmword
3769 + i.tm.operand_types[op].bitfield.zmmword > 1)
3770 {
3771 if (i.types[op].bitfield.zmmword)
3772 {
3773 i.tm.opcode_modifier.evex = EVEX512;
3774 break;
3775 }
3776 else if (i.types[op].bitfield.ymmword)
3777 {
3778 i.tm.opcode_modifier.evex = EVEX256;
3779 break;
3780 }
3781 else if (i.types[op].bitfield.xmmword)
3782 {
3783 i.tm.opcode_modifier.evex = EVEX128;
3784 break;
3785 }
3786 else if (i.broadcast && (int) op == i.broadcast->operand)
3787 {
3788 switch (i.broadcast->bytes)
3789 {
3790 case 64:
3791 i.tm.opcode_modifier.evex = EVEX512;
3792 break;
3793 case 32:
3794 i.tm.opcode_modifier.evex = EVEX256;
3795 break;
3796 case 16:
3797 i.tm.opcode_modifier.evex = EVEX128;
3798 break;
3799 default:
3800 abort ();
3801 }
3802 break;
3803 }
3804 }
3805
3806 if (op >= MAX_OPERANDS)
3807 abort ();
3808 }
3809
3810 switch (i.tm.opcode_modifier.evex)
3811 {
3812 case EVEXLIG: /* LL' is ignored */
3813 vec_length = evexlig << 5;
3814 break;
3815 case EVEX128:
3816 vec_length = 0 << 5;
3817 break;
3818 case EVEX256:
3819 vec_length = 1 << 5;
3820 break;
3821 case EVEX512:
3822 vec_length = 2 << 5;
3823 break;
3824 default:
3825 abort ();
3826 break;
3827 }
3828 i.vex.bytes[3] |= vec_length;
3829 /* Encode the broadcast bit. */
3830 if (i.broadcast)
3831 i.vex.bytes[3] |= 0x10;
3832 }
3833 else
3834 {
3835 if (i.rounding->type != saeonly)
3836 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3837 else
3838 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3839 }
3840
3841 if (i.mask && i.mask->mask)
3842 i.vex.bytes[3] |= i.mask->mask->reg_num;
3843 }
3844
3845 static void
3846 process_immext (void)
3847 {
3848 expressionS *exp;
3849
3850 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3851 which is coded in the same place as an 8-bit immediate field
3852 would be. Here we fake an 8-bit immediate operand from the
3853 opcode suffix stored in tm.extension_opcode.
3854
3855 AVX instructions also use this encoding, for some of
3856 3 argument instructions. */
3857
3858 gas_assert (i.imm_operands <= 1
3859 && (i.operands <= 2
3860 || (is_any_vex_encoding (&i.tm)
3861 && i.operands <= 4)));
3862
3863 exp = &im_expressions[i.imm_operands++];
3864 i.op[i.operands].imms = exp;
3865 i.types[i.operands] = imm8;
3866 i.operands++;
3867 exp->X_op = O_constant;
3868 exp->X_add_number = i.tm.extension_opcode;
3869 i.tm.extension_opcode = None;
3870 }
3871
3872
3873 static int
3874 check_hle (void)
3875 {
3876 switch (i.tm.opcode_modifier.hleprefixok)
3877 {
3878 default:
3879 abort ();
3880 case HLEPrefixNone:
3881 as_bad (_("invalid instruction `%s' after `%s'"),
3882 i.tm.name, i.hle_prefix);
3883 return 0;
3884 case HLEPrefixLock:
3885 if (i.prefix[LOCK_PREFIX])
3886 return 1;
3887 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3888 return 0;
3889 case HLEPrefixAny:
3890 return 1;
3891 case HLEPrefixRelease:
3892 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3893 {
3894 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3895 i.tm.name);
3896 return 0;
3897 }
3898 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3899 {
3900 as_bad (_("memory destination needed for instruction `%s'"
3901 " after `xrelease'"), i.tm.name);
3902 return 0;
3903 }
3904 return 1;
3905 }
3906 }
3907
3908 /* Try the shortest encoding by shortening operand size. */
3909
3910 static void
3911 optimize_encoding (void)
3912 {
3913 unsigned int j;
3914
3915 if (optimize_for_space
3916 && i.reg_operands == 1
3917 && i.imm_operands == 1
3918 && !i.types[1].bitfield.byte
3919 && i.op[0].imms->X_op == O_constant
3920 && fits_in_imm7 (i.op[0].imms->X_add_number)
3921 && ((i.tm.base_opcode == 0xa8
3922 && i.tm.extension_opcode == None)
3923 || (i.tm.base_opcode == 0xf6
3924 && i.tm.extension_opcode == 0x0)))
3925 {
3926 /* Optimize: -Os:
3927 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3928 */
3929 unsigned int base_regnum = i.op[1].regs->reg_num;
3930 if (flag_code == CODE_64BIT || base_regnum < 4)
3931 {
3932 i.types[1].bitfield.byte = 1;
3933 /* Ignore the suffix. */
3934 i.suffix = 0;
3935 if (base_regnum >= 4
3936 && !(i.op[1].regs->reg_flags & RegRex))
3937 {
3938 /* Handle SP, BP, SI and DI registers. */
3939 if (i.types[1].bitfield.word)
3940 j = 16;
3941 else if (i.types[1].bitfield.dword)
3942 j = 32;
3943 else
3944 j = 48;
3945 i.op[1].regs -= j;
3946 }
3947 }
3948 }
3949 else if (flag_code == CODE_64BIT
3950 && ((i.types[1].bitfield.qword
3951 && i.reg_operands == 1
3952 && i.imm_operands == 1
3953 && i.op[0].imms->X_op == O_constant
3954 && ((i.tm.base_opcode == 0xb8
3955 && i.tm.extension_opcode == None
3956 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3957 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3958 && (((i.tm.base_opcode == 0x24
3959 || i.tm.base_opcode == 0xa8)
3960 && i.tm.extension_opcode == None)
3961 || (i.tm.base_opcode == 0x80
3962 && i.tm.extension_opcode == 0x4)
3963 || ((i.tm.base_opcode == 0xf6
3964 || (i.tm.base_opcode | 1) == 0xc7)
3965 && i.tm.extension_opcode == 0x0)))
3966 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3967 && i.tm.base_opcode == 0x83
3968 && i.tm.extension_opcode == 0x4)))
3969 || (i.types[0].bitfield.qword
3970 && ((i.reg_operands == 2
3971 && i.op[0].regs == i.op[1].regs
3972 && ((i.tm.base_opcode == 0x30
3973 || i.tm.base_opcode == 0x28)
3974 && i.tm.extension_opcode == None))
3975 || (i.reg_operands == 1
3976 && i.operands == 1
3977 && i.tm.base_opcode == 0x30
3978 && i.tm.extension_opcode == None)))))
3979 {
3980 /* Optimize: -O:
3981 andq $imm31, %r64 -> andl $imm31, %r32
3982 andq $imm7, %r64 -> andl $imm7, %r32
3983 testq $imm31, %r64 -> testl $imm31, %r32
3984 xorq %r64, %r64 -> xorl %r32, %r32
3985 subq %r64, %r64 -> subl %r32, %r32
3986 movq $imm31, %r64 -> movl $imm31, %r32
3987 movq $imm32, %r64 -> movl $imm32, %r32
3988 */
3989 i.tm.opcode_modifier.norex64 = 1;
3990 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 movq $imm32, %r64 -> movl $imm32, %r32
3995 */
3996 i.tm.operand_types[0].bitfield.imm32 = 1;
3997 i.tm.operand_types[0].bitfield.imm32s = 0;
3998 i.tm.operand_types[0].bitfield.imm64 = 0;
3999 i.types[0].bitfield.imm32 = 1;
4000 i.types[0].bitfield.imm32s = 0;
4001 i.types[0].bitfield.imm64 = 0;
4002 i.types[1].bitfield.dword = 1;
4003 i.types[1].bitfield.qword = 0;
4004 if ((i.tm.base_opcode | 1) == 0xc7)
4005 {
4006 /* Handle
4007 movq $imm31, %r64 -> movl $imm31, %r32
4008 */
4009 i.tm.base_opcode = 0xb8;
4010 i.tm.extension_opcode = None;
4011 i.tm.opcode_modifier.w = 0;
4012 i.tm.opcode_modifier.shortform = 1;
4013 i.tm.opcode_modifier.modrm = 0;
4014 }
4015 }
4016 }
4017 else if (optimize > 1
4018 && !optimize_for_space
4019 && i.reg_operands == 2
4020 && i.op[0].regs == i.op[1].regs
4021 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4022 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4023 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4024 {
4025 /* Optimize: -O2:
4026 andb %rN, %rN -> testb %rN, %rN
4027 andw %rN, %rN -> testw %rN, %rN
4028 andq %rN, %rN -> testq %rN, %rN
4029 orb %rN, %rN -> testb %rN, %rN
4030 orw %rN, %rN -> testw %rN, %rN
4031 orq %rN, %rN -> testq %rN, %rN
4032
4033 and outside of 64-bit mode
4034
4035 andl %rN, %rN -> testl %rN, %rN
4036 orl %rN, %rN -> testl %rN, %rN
4037 */
4038 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4039 }
4040 else if (i.reg_operands == 3
4041 && i.op[0].regs == i.op[1].regs
4042 && !i.types[2].bitfield.xmmword
4043 && (i.tm.opcode_modifier.vex
4044 || ((!i.mask || i.mask->zeroing)
4045 && !i.rounding
4046 && is_evex_encoding (&i.tm)
4047 && (i.vec_encoding != vex_encoding_evex
4048 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4049 || i.tm.cpu_flags.bitfield.cpuavx512vl
4050 || (i.tm.operand_types[2].bitfield.zmmword
4051 && i.types[2].bitfield.ymmword))))
4052 && ((i.tm.base_opcode == 0x55
4053 || i.tm.base_opcode == 0x6655
4054 || i.tm.base_opcode == 0x66df
4055 || i.tm.base_opcode == 0x57
4056 || i.tm.base_opcode == 0x6657
4057 || i.tm.base_opcode == 0x66ef
4058 || i.tm.base_opcode == 0x66f8
4059 || i.tm.base_opcode == 0x66f9
4060 || i.tm.base_opcode == 0x66fa
4061 || i.tm.base_opcode == 0x66fb
4062 || i.tm.base_opcode == 0x42
4063 || i.tm.base_opcode == 0x6642
4064 || i.tm.base_opcode == 0x47
4065 || i.tm.base_opcode == 0x6647)
4066 && i.tm.extension_opcode == None))
4067 {
4068 /* Optimize: -O1:
4069 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4070 vpsubq and vpsubw:
4071 EVEX VOP %zmmM, %zmmM, %zmmN
4072 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4073 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4074 EVEX VOP %ymmM, %ymmM, %ymmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4077 VEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN
4079 VOP, one of vpandn and vpxor:
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandnd and vpandnq:
4083 EVEX VOP %zmmM, %zmmM, %zmmN
4084 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4085 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4086 EVEX VOP %ymmM, %ymmM, %ymmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4089 VOP, one of vpxord and vpxorq:
4090 EVEX VOP %zmmM, %zmmM, %zmmN
4091 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4092 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4093 EVEX VOP %ymmM, %ymmM, %ymmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4096 VOP, one of kxord and kxorq:
4097 VEX VOP %kM, %kM, %kN
4098 -> VEX kxorw %kM, %kM, %kN
4099 VOP, one of kandnd and kandnq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kandnw %kM, %kM, %kN
4102 */
4103 if (is_evex_encoding (&i.tm))
4104 {
4105 if (i.vec_encoding != vex_encoding_evex)
4106 {
4107 i.tm.opcode_modifier.vex = VEX128;
4108 i.tm.opcode_modifier.vexw = VEXW0;
4109 i.tm.opcode_modifier.evex = 0;
4110 }
4111 else if (optimize > 1)
4112 i.tm.opcode_modifier.evex = EVEX128;
4113 else
4114 return;
4115 }
4116 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4117 {
4118 i.tm.base_opcode &= 0xff;
4119 i.tm.opcode_modifier.vexw = VEXW0;
4120 }
4121 else
4122 i.tm.opcode_modifier.vex = VEX128;
4123
4124 if (i.tm.opcode_modifier.vex)
4125 for (j = 0; j < 3; j++)
4126 {
4127 i.types[j].bitfield.xmmword = 1;
4128 i.types[j].bitfield.ymmword = 0;
4129 }
4130 }
4131 else if (i.vec_encoding != vex_encoding_evex
4132 && !i.types[0].bitfield.zmmword
4133 && !i.types[1].bitfield.zmmword
4134 && !i.mask
4135 && !i.broadcast
4136 && is_evex_encoding (&i.tm)
4137 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4138 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4139 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4140 || (i.tm.base_opcode & ~4) == 0x66db
4141 || (i.tm.base_opcode & ~4) == 0x66eb)
4142 && i.tm.extension_opcode == None)
4143 {
4144 /* Optimize: -O1:
4145 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4146 vmovdqu32 and vmovdqu64:
4147 EVEX VOP %xmmM, %xmmN
4148 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4149 EVEX VOP %ymmM, %ymmN
4150 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4151 EVEX VOP %xmmM, mem
4152 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4153 EVEX VOP %ymmM, mem
4154 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4155 EVEX VOP mem, %xmmN
4156 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4157 EVEX VOP mem, %ymmN
4158 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4159 VOP, one of vpand, vpandn, vpor, vpxor:
4160 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4161 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4162 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4163 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4164 EVEX VOP{d,q} mem, %xmmM, %xmmN
4165 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4166 EVEX VOP{d,q} mem, %ymmM, %ymmN
4167 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4168 */
4169 for (j = 0; j < i.operands; j++)
4170 if (operand_type_check (i.types[j], disp)
4171 && i.op[j].disps->X_op == O_constant)
4172 {
4173 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4174 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4175 bytes, we choose EVEX Disp8 over VEX Disp32. */
4176 int evex_disp8, vex_disp8;
4177 unsigned int memshift = i.memshift;
4178 offsetT n = i.op[j].disps->X_add_number;
4179
4180 evex_disp8 = fits_in_disp8 (n);
4181 i.memshift = 0;
4182 vex_disp8 = fits_in_disp8 (n);
4183 if (evex_disp8 != vex_disp8)
4184 {
4185 i.memshift = memshift;
4186 return;
4187 }
4188
4189 i.types[j].bitfield.disp8 = vex_disp8;
4190 break;
4191 }
4192 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4193 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4194 i.tm.opcode_modifier.vex
4195 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4196 i.tm.opcode_modifier.vexw = VEXW0;
4197 /* VPAND, VPOR, and VPXOR are commutative. */
4198 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4199 i.tm.opcode_modifier.commutative = 1;
4200 i.tm.opcode_modifier.evex = 0;
4201 i.tm.opcode_modifier.masking = 0;
4202 i.tm.opcode_modifier.broadcast = 0;
4203 i.tm.opcode_modifier.disp8memshift = 0;
4204 i.memshift = 0;
4205 if (j < i.operands)
4206 i.types[j].bitfield.disp8
4207 = fits_in_disp8 (i.op[j].disps->X_add_number);
4208 }
4209 }
4210
4211 /* This is the guts of the machine-dependent assembler. LINE points to a
4212 machine dependent instruction. This function is supposed to emit
4213 the frags/bytes it assembles to. */
4214
4215 void
4216 md_assemble (char *line)
4217 {
4218 unsigned int j;
4219 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4220 const insn_template *t;
4221
4222 /* Initialize globals. */
4223 memset (&i, '\0', sizeof (i));
4224 for (j = 0; j < MAX_OPERANDS; j++)
4225 i.reloc[j] = NO_RELOC;
4226 memset (disp_expressions, '\0', sizeof (disp_expressions));
4227 memset (im_expressions, '\0', sizeof (im_expressions));
4228 save_stack_p = save_stack;
4229
4230 /* First parse an instruction mnemonic & call i386_operand for the operands.
4231 We assume that the scrubber has arranged it so that line[0] is the valid
4232 start of a (possibly prefixed) mnemonic. */
4233
4234 line = parse_insn (line, mnemonic);
4235 if (line == NULL)
4236 return;
4237 mnem_suffix = i.suffix;
4238
4239 line = parse_operands (line, mnemonic);
4240 this_operand = -1;
4241 xfree (i.memop1_string);
4242 i.memop1_string = NULL;
4243 if (line == NULL)
4244 return;
4245
4246 /* Now we've parsed the mnemonic into a set of templates, and have the
4247 operands at hand. */
4248
4249 /* All intel opcodes have reversed operands except for "bound" and
4250 "enter". We also don't reverse intersegment "jmp" and "call"
4251 instructions with 2 immediate operands so that the immediate segment
4252 precedes the offset, as it does when in AT&T mode. */
4253 if (intel_syntax
4254 && i.operands > 1
4255 && (strcmp (mnemonic, "bound") != 0)
4256 && (strcmp (mnemonic, "invlpga") != 0)
4257 && !(operand_type_check (i.types[0], imm)
4258 && operand_type_check (i.types[1], imm)))
4259 swap_operands ();
4260
4261 /* The order of the immediates should be reversed
4262 for 2 immediates extrq and insertq instructions */
4263 if (i.imm_operands == 2
4264 && (strcmp (mnemonic, "extrq") == 0
4265 || strcmp (mnemonic, "insertq") == 0))
4266 swap_2_operands (0, 1);
4267
4268 if (i.imm_operands)
4269 optimize_imm ();
4270
4271 /* Don't optimize displacement for movabs since it only takes 64bit
4272 displacement. */
4273 if (i.disp_operands
4274 && i.disp_encoding != disp_encoding_32bit
4275 && (flag_code != CODE_64BIT
4276 || strcmp (mnemonic, "movabs") != 0))
4277 optimize_disp ();
4278
4279 /* Next, we find a template that matches the given insn,
4280 making sure the overlap of the given operands types is consistent
4281 with the template operand types. */
4282
4283 if (!(t = match_template (mnem_suffix)))
4284 return;
4285
4286 if (sse_check != check_none
4287 && !i.tm.opcode_modifier.noavx
4288 && !i.tm.cpu_flags.bitfield.cpuavx
4289 && (i.tm.cpu_flags.bitfield.cpusse
4290 || i.tm.cpu_flags.bitfield.cpusse2
4291 || i.tm.cpu_flags.bitfield.cpusse3
4292 || i.tm.cpu_flags.bitfield.cpussse3
4293 || i.tm.cpu_flags.bitfield.cpusse4_1
4294 || i.tm.cpu_flags.bitfield.cpusse4_2
4295 || i.tm.cpu_flags.bitfield.cpupclmul
4296 || i.tm.cpu_flags.bitfield.cpuaes
4297 || i.tm.cpu_flags.bitfield.cpugfni))
4298 {
4299 (sse_check == check_warning
4300 ? as_warn
4301 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4302 }
4303
4304 /* Zap movzx and movsx suffix. The suffix has been set from
4305 "word ptr" or "byte ptr" on the source operand in Intel syntax
4306 or extracted from mnemonic in AT&T syntax. But we'll use
4307 the destination register to choose the suffix for encoding. */
4308 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4309 {
4310 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4311 there is no suffix, the default will be byte extension. */
4312 if (i.reg_operands != 2
4313 && !i.suffix
4314 && intel_syntax)
4315 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4316
4317 i.suffix = 0;
4318 }
4319
4320 if (i.tm.opcode_modifier.fwait)
4321 if (!add_prefix (FWAIT_OPCODE))
4322 return;
4323
4324 /* Check if REP prefix is OK. */
4325 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4326 {
4327 as_bad (_("invalid instruction `%s' after `%s'"),
4328 i.tm.name, i.rep_prefix);
4329 return;
4330 }
4331
4332 /* Check for lock without a lockable instruction. Destination operand
4333 must be memory unless it is xchg (0x86). */
4334 if (i.prefix[LOCK_PREFIX]
4335 && (!i.tm.opcode_modifier.islockable
4336 || i.mem_operands == 0
4337 || (i.tm.base_opcode != 0x86
4338 && !(i.flags[i.operands - 1] & Operand_Mem))))
4339 {
4340 as_bad (_("expecting lockable instruction after `lock'"));
4341 return;
4342 }
4343
4344 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4345 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4346 {
4347 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4348 return;
4349 }
4350
4351 /* Check if HLE prefix is OK. */
4352 if (i.hle_prefix && !check_hle ())
4353 return;
4354
4355 /* Check BND prefix. */
4356 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4357 as_bad (_("expecting valid branch instruction after `bnd'"));
4358
4359 /* Check NOTRACK prefix. */
4360 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4361 as_bad (_("expecting indirect branch instruction after `notrack'"));
4362
4363 if (i.tm.cpu_flags.bitfield.cpumpx)
4364 {
4365 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4366 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4367 else if (flag_code != CODE_16BIT
4368 ? i.prefix[ADDR_PREFIX]
4369 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4370 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4371 }
4372
4373 /* Insert BND prefix. */
4374 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4375 {
4376 if (!i.prefix[BND_PREFIX])
4377 add_prefix (BND_PREFIX_OPCODE);
4378 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4379 {
4380 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4381 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4382 }
4383 }
4384
4385 /* Check string instruction segment overrides. */
4386 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4387 {
4388 gas_assert (i.mem_operands);
4389 if (!check_string ())
4390 return;
4391 i.disp_operands = 0;
4392 }
4393
4394 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4395 optimize_encoding ();
4396
4397 if (!process_suffix ())
4398 return;
4399
4400 /* Update operand types. */
4401 for (j = 0; j < i.operands; j++)
4402 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4403
4404 /* Make still unresolved immediate matches conform to size of immediate
4405 given in i.suffix. */
4406 if (!finalize_imm ())
4407 return;
4408
4409 if (i.types[0].bitfield.imm1)
4410 i.imm_operands = 0; /* kludge for shift insns. */
4411
4412 /* We only need to check those implicit registers for instructions
4413 with 3 operands or less. */
4414 if (i.operands <= 3)
4415 for (j = 0; j < i.operands; j++)
4416 if (i.types[j].bitfield.instance != InstanceNone
4417 && !i.types[j].bitfield.xmmword)
4418 i.reg_operands--;
4419
4420 /* ImmExt should be processed after SSE2AVX. */
4421 if (!i.tm.opcode_modifier.sse2avx
4422 && i.tm.opcode_modifier.immext)
4423 process_immext ();
4424
4425 /* For insns with operands there are more diddles to do to the opcode. */
4426 if (i.operands)
4427 {
4428 if (!process_operands ())
4429 return;
4430 }
4431 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4432 {
4433 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4434 as_warn (_("translating to `%sp'"), i.tm.name);
4435 }
4436
4437 if (is_any_vex_encoding (&i.tm))
4438 {
4439 if (!cpu_arch_flags.bitfield.cpui286)
4440 {
4441 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4442 i.tm.name);
4443 return;
4444 }
4445
4446 if (i.tm.opcode_modifier.vex)
4447 build_vex_prefix (t);
4448 else
4449 build_evex_prefix ();
4450 }
4451
4452 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4453 instructions may define INT_OPCODE as well, so avoid this corner
4454 case for those instructions that use MODRM. */
4455 if (i.tm.base_opcode == INT_OPCODE
4456 && !i.tm.opcode_modifier.modrm
4457 && i.op[0].imms->X_add_number == 3)
4458 {
4459 i.tm.base_opcode = INT3_OPCODE;
4460 i.imm_operands = 0;
4461 }
4462
4463 if ((i.tm.opcode_modifier.jump == JUMP
4464 || i.tm.opcode_modifier.jump == JUMP_BYTE
4465 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4466 && i.op[0].disps->X_op == O_constant)
4467 {
4468 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4469 the absolute address given by the constant. Since ix86 jumps and
4470 calls are pc relative, we need to generate a reloc. */
4471 i.op[0].disps->X_add_symbol = &abs_symbol;
4472 i.op[0].disps->X_op = O_symbol;
4473 }
4474
4475 if (i.tm.opcode_modifier.rex64)
4476 i.rex |= REX_W;
4477
4478 /* For 8 bit registers we need an empty rex prefix. Also if the
4479 instruction already has a prefix, we need to convert old
4480 registers to new ones. */
4481
4482 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4483 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4484 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4485 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4486 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4487 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4488 && i.rex != 0))
4489 {
4490 int x;
4491
4492 i.rex |= REX_OPCODE;
4493 for (x = 0; x < 2; x++)
4494 {
4495 /* Look for 8 bit operand that uses old registers. */
4496 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4497 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4498 {
4499 /* In case it is "hi" register, give up. */
4500 if (i.op[x].regs->reg_num > 3)
4501 as_bad (_("can't encode register '%s%s' in an "
4502 "instruction requiring REX prefix."),
4503 register_prefix, i.op[x].regs->reg_name);
4504
4505 /* Otherwise it is equivalent to the extended register.
4506 Since the encoding doesn't change this is merely
4507 cosmetic cleanup for debug output. */
4508
4509 i.op[x].regs = i.op[x].regs + 8;
4510 }
4511 }
4512 }
4513
4514 if (i.rex == 0 && i.rex_encoding)
4515 {
4516 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4517 that uses legacy register. If it is "hi" register, don't add
4518 the REX_OPCODE byte. */
4519 int x;
4520 for (x = 0; x < 2; x++)
4521 if (i.types[x].bitfield.class == Reg
4522 && i.types[x].bitfield.byte
4523 && (i.op[x].regs->reg_flags & RegRex64) == 0
4524 && i.op[x].regs->reg_num > 3)
4525 {
4526 i.rex_encoding = FALSE;
4527 break;
4528 }
4529
4530 if (i.rex_encoding)
4531 i.rex = REX_OPCODE;
4532 }
4533
4534 if (i.rex != 0)
4535 add_prefix (REX_OPCODE | i.rex);
4536
4537 /* We are ready to output the insn. */
4538 output_insn ();
4539 }
4540
4541 static char *
4542 parse_insn (char *line, char *mnemonic)
4543 {
4544 char *l = line;
4545 char *token_start = l;
4546 char *mnem_p;
4547 int supported;
4548 const insn_template *t;
4549 char *dot_p = NULL;
4550
4551 while (1)
4552 {
4553 mnem_p = mnemonic;
4554 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4555 {
4556 if (*mnem_p == '.')
4557 dot_p = mnem_p;
4558 mnem_p++;
4559 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4560 {
4561 as_bad (_("no such instruction: `%s'"), token_start);
4562 return NULL;
4563 }
4564 l++;
4565 }
4566 if (!is_space_char (*l)
4567 && *l != END_OF_INSN
4568 && (intel_syntax
4569 || (*l != PREFIX_SEPARATOR
4570 && *l != ',')))
4571 {
4572 as_bad (_("invalid character %s in mnemonic"),
4573 output_invalid (*l));
4574 return NULL;
4575 }
4576 if (token_start == l)
4577 {
4578 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4579 as_bad (_("expecting prefix; got nothing"));
4580 else
4581 as_bad (_("expecting mnemonic; got nothing"));
4582 return NULL;
4583 }
4584
4585 /* Look up instruction (or prefix) via hash table. */
4586 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4587
4588 if (*l != END_OF_INSN
4589 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4590 && current_templates
4591 && current_templates->start->opcode_modifier.isprefix)
4592 {
4593 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4594 {
4595 as_bad ((flag_code != CODE_64BIT
4596 ? _("`%s' is only supported in 64-bit mode")
4597 : _("`%s' is not supported in 64-bit mode")),
4598 current_templates->start->name);
4599 return NULL;
4600 }
4601 /* If we are in 16-bit mode, do not allow addr16 or data16.
4602 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4603 if ((current_templates->start->opcode_modifier.size == SIZE16
4604 || current_templates->start->opcode_modifier.size == SIZE32)
4605 && flag_code != CODE_64BIT
4606 && ((current_templates->start->opcode_modifier.size == SIZE32)
4607 ^ (flag_code == CODE_16BIT)))
4608 {
4609 as_bad (_("redundant %s prefix"),
4610 current_templates->start->name);
4611 return NULL;
4612 }
4613 if (current_templates->start->opcode_length == 0)
4614 {
4615 /* Handle pseudo prefixes. */
4616 switch (current_templates->start->base_opcode)
4617 {
4618 case 0x0:
4619 /* {disp8} */
4620 i.disp_encoding = disp_encoding_8bit;
4621 break;
4622 case 0x1:
4623 /* {disp32} */
4624 i.disp_encoding = disp_encoding_32bit;
4625 break;
4626 case 0x2:
4627 /* {load} */
4628 i.dir_encoding = dir_encoding_load;
4629 break;
4630 case 0x3:
4631 /* {store} */
4632 i.dir_encoding = dir_encoding_store;
4633 break;
4634 case 0x4:
4635 /* {vex2} */
4636 i.vec_encoding = vex_encoding_vex2;
4637 break;
4638 case 0x5:
4639 /* {vex3} */
4640 i.vec_encoding = vex_encoding_vex3;
4641 break;
4642 case 0x6:
4643 /* {evex} */
4644 i.vec_encoding = vex_encoding_evex;
4645 break;
4646 case 0x7:
4647 /* {rex} */
4648 i.rex_encoding = TRUE;
4649 break;
4650 case 0x8:
4651 /* {nooptimize} */
4652 i.no_optimize = TRUE;
4653 break;
4654 default:
4655 abort ();
4656 }
4657 }
4658 else
4659 {
4660 /* Add prefix, checking for repeated prefixes. */
4661 switch (add_prefix (current_templates->start->base_opcode))
4662 {
4663 case PREFIX_EXIST:
4664 return NULL;
4665 case PREFIX_DS:
4666 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4667 i.notrack_prefix = current_templates->start->name;
4668 break;
4669 case PREFIX_REP:
4670 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4671 i.hle_prefix = current_templates->start->name;
4672 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4673 i.bnd_prefix = current_templates->start->name;
4674 else
4675 i.rep_prefix = current_templates->start->name;
4676 break;
4677 default:
4678 break;
4679 }
4680 }
4681 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4682 token_start = ++l;
4683 }
4684 else
4685 break;
4686 }
4687
4688 if (!current_templates)
4689 {
4690 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4691 Check if we should swap operand or force 32bit displacement in
4692 encoding. */
4693 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4694 i.dir_encoding = dir_encoding_swap;
4695 else if (mnem_p - 3 == dot_p
4696 && dot_p[1] == 'd'
4697 && dot_p[2] == '8')
4698 i.disp_encoding = disp_encoding_8bit;
4699 else if (mnem_p - 4 == dot_p
4700 && dot_p[1] == 'd'
4701 && dot_p[2] == '3'
4702 && dot_p[3] == '2')
4703 i.disp_encoding = disp_encoding_32bit;
4704 else
4705 goto check_suffix;
4706 mnem_p = dot_p;
4707 *dot_p = '\0';
4708 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4709 }
4710
4711 if (!current_templates)
4712 {
4713 check_suffix:
4714 if (mnem_p > mnemonic)
4715 {
4716 /* See if we can get a match by trimming off a suffix. */
4717 switch (mnem_p[-1])
4718 {
4719 case WORD_MNEM_SUFFIX:
4720 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4721 i.suffix = SHORT_MNEM_SUFFIX;
4722 else
4723 /* Fall through. */
4724 case BYTE_MNEM_SUFFIX:
4725 case QWORD_MNEM_SUFFIX:
4726 i.suffix = mnem_p[-1];
4727 mnem_p[-1] = '\0';
4728 current_templates = (const templates *) hash_find (op_hash,
4729 mnemonic);
4730 break;
4731 case SHORT_MNEM_SUFFIX:
4732 case LONG_MNEM_SUFFIX:
4733 if (!intel_syntax)
4734 {
4735 i.suffix = mnem_p[-1];
4736 mnem_p[-1] = '\0';
4737 current_templates = (const templates *) hash_find (op_hash,
4738 mnemonic);
4739 }
4740 break;
4741
4742 /* Intel Syntax. */
4743 case 'd':
4744 if (intel_syntax)
4745 {
4746 if (intel_float_operand (mnemonic) == 1)
4747 i.suffix = SHORT_MNEM_SUFFIX;
4748 else
4749 i.suffix = LONG_MNEM_SUFFIX;
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 }
4754 break;
4755 }
4756 }
4757
4758 if (!current_templates)
4759 {
4760 as_bad (_("no such instruction: `%s'"), token_start);
4761 return NULL;
4762 }
4763 }
4764
4765 if (current_templates->start->opcode_modifier.jump == JUMP
4766 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4767 {
4768 /* Check for a branch hint. We allow ",pt" and ",pn" for
4769 predict taken and predict not taken respectively.
4770 I'm not sure that branch hints actually do anything on loop
4771 and jcxz insns (JumpByte) for current Pentium4 chips. They
4772 may work in the future and it doesn't hurt to accept them
4773 now. */
4774 if (l[0] == ',' && l[1] == 'p')
4775 {
4776 if (l[2] == 't')
4777 {
4778 if (!add_prefix (DS_PREFIX_OPCODE))
4779 return NULL;
4780 l += 3;
4781 }
4782 else if (l[2] == 'n')
4783 {
4784 if (!add_prefix (CS_PREFIX_OPCODE))
4785 return NULL;
4786 l += 3;
4787 }
4788 }
4789 }
4790 /* Any other comma loses. */
4791 if (*l == ',')
4792 {
4793 as_bad (_("invalid character %s in mnemonic"),
4794 output_invalid (*l));
4795 return NULL;
4796 }
4797
4798 /* Check if instruction is supported on specified architecture. */
4799 supported = 0;
4800 for (t = current_templates->start; t < current_templates->end; ++t)
4801 {
4802 supported |= cpu_flags_match (t);
4803 if (supported == CPU_FLAGS_PERFECT_MATCH)
4804 {
4805 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4806 as_warn (_("use .code16 to ensure correct addressing mode"));
4807
4808 return l;
4809 }
4810 }
4811
4812 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4813 as_bad (flag_code == CODE_64BIT
4814 ? _("`%s' is not supported in 64-bit mode")
4815 : _("`%s' is only supported in 64-bit mode"),
4816 current_templates->start->name);
4817 else
4818 as_bad (_("`%s' is not supported on `%s%s'"),
4819 current_templates->start->name,
4820 cpu_arch_name ? cpu_arch_name : default_arch,
4821 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4822
4823 return NULL;
4824 }
4825
4826 static char *
4827 parse_operands (char *l, const char *mnemonic)
4828 {
4829 char *token_start;
4830
4831 /* 1 if operand is pending after ','. */
4832 unsigned int expecting_operand = 0;
4833
4834 /* Non-zero if operand parens not balanced. */
4835 unsigned int paren_not_balanced;
4836
4837 while (*l != END_OF_INSN)
4838 {
4839 /* Skip optional white space before operand. */
4840 if (is_space_char (*l))
4841 ++l;
4842 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4843 {
4844 as_bad (_("invalid character %s before operand %d"),
4845 output_invalid (*l),
4846 i.operands + 1);
4847 return NULL;
4848 }
4849 token_start = l; /* After white space. */
4850 paren_not_balanced = 0;
4851 while (paren_not_balanced || *l != ',')
4852 {
4853 if (*l == END_OF_INSN)
4854 {
4855 if (paren_not_balanced)
4856 {
4857 if (!intel_syntax)
4858 as_bad (_("unbalanced parenthesis in operand %d."),
4859 i.operands + 1);
4860 else
4861 as_bad (_("unbalanced brackets in operand %d."),
4862 i.operands + 1);
4863 return NULL;
4864 }
4865 else
4866 break; /* we are done */
4867 }
4868 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4869 {
4870 as_bad (_("invalid character %s in operand %d"),
4871 output_invalid (*l),
4872 i.operands + 1);
4873 return NULL;
4874 }
4875 if (!intel_syntax)
4876 {
4877 if (*l == '(')
4878 ++paren_not_balanced;
4879 if (*l == ')')
4880 --paren_not_balanced;
4881 }
4882 else
4883 {
4884 if (*l == '[')
4885 ++paren_not_balanced;
4886 if (*l == ']')
4887 --paren_not_balanced;
4888 }
4889 l++;
4890 }
4891 if (l != token_start)
4892 { /* Yes, we've read in another operand. */
4893 unsigned int operand_ok;
4894 this_operand = i.operands++;
4895 if (i.operands > MAX_OPERANDS)
4896 {
4897 as_bad (_("spurious operands; (%d operands/instruction max)"),
4898 MAX_OPERANDS);
4899 return NULL;
4900 }
4901 i.types[this_operand].bitfield.unspecified = 1;
4902 /* Now parse operand adding info to 'i' as we go along. */
4903 END_STRING_AND_SAVE (l);
4904
4905 if (i.mem_operands > 1)
4906 {
4907 as_bad (_("too many memory references for `%s'"),
4908 mnemonic);
4909 return 0;
4910 }
4911
4912 if (intel_syntax)
4913 operand_ok =
4914 i386_intel_operand (token_start,
4915 intel_float_operand (mnemonic));
4916 else
4917 operand_ok = i386_att_operand (token_start);
4918
4919 RESTORE_END_STRING (l);
4920 if (!operand_ok)
4921 return NULL;
4922 }
4923 else
4924 {
4925 if (expecting_operand)
4926 {
4927 expecting_operand_after_comma:
4928 as_bad (_("expecting operand after ','; got nothing"));
4929 return NULL;
4930 }
4931 if (*l == ',')
4932 {
4933 as_bad (_("expecting operand before ','; got nothing"));
4934 return NULL;
4935 }
4936 }
4937
4938 /* Now *l must be either ',' or END_OF_INSN. */
4939 if (*l == ',')
4940 {
4941 if (*++l == END_OF_INSN)
4942 {
4943 /* Just skip it, if it's \n complain. */
4944 goto expecting_operand_after_comma;
4945 }
4946 expecting_operand = 1;
4947 }
4948 }
4949 return l;
4950 }
4951
4952 static void
4953 swap_2_operands (int xchg1, int xchg2)
4954 {
4955 union i386_op temp_op;
4956 i386_operand_type temp_type;
4957 unsigned int temp_flags;
4958 enum bfd_reloc_code_real temp_reloc;
4959
4960 temp_type = i.types[xchg2];
4961 i.types[xchg2] = i.types[xchg1];
4962 i.types[xchg1] = temp_type;
4963
4964 temp_flags = i.flags[xchg2];
4965 i.flags[xchg2] = i.flags[xchg1];
4966 i.flags[xchg1] = temp_flags;
4967
4968 temp_op = i.op[xchg2];
4969 i.op[xchg2] = i.op[xchg1];
4970 i.op[xchg1] = temp_op;
4971
4972 temp_reloc = i.reloc[xchg2];
4973 i.reloc[xchg2] = i.reloc[xchg1];
4974 i.reloc[xchg1] = temp_reloc;
4975
4976 if (i.mask)
4977 {
4978 if (i.mask->operand == xchg1)
4979 i.mask->operand = xchg2;
4980 else if (i.mask->operand == xchg2)
4981 i.mask->operand = xchg1;
4982 }
4983 if (i.broadcast)
4984 {
4985 if (i.broadcast->operand == xchg1)
4986 i.broadcast->operand = xchg2;
4987 else if (i.broadcast->operand == xchg2)
4988 i.broadcast->operand = xchg1;
4989 }
4990 if (i.rounding)
4991 {
4992 if (i.rounding->operand == xchg1)
4993 i.rounding->operand = xchg2;
4994 else if (i.rounding->operand == xchg2)
4995 i.rounding->operand = xchg1;
4996 }
4997 }
4998
4999 static void
5000 swap_operands (void)
5001 {
5002 switch (i.operands)
5003 {
5004 case 5:
5005 case 4:
5006 swap_2_operands (1, i.operands - 2);
5007 /* Fall through. */
5008 case 3:
5009 case 2:
5010 swap_2_operands (0, i.operands - 1);
5011 break;
5012 default:
5013 abort ();
5014 }
5015
5016 if (i.mem_operands == 2)
5017 {
5018 const seg_entry *temp_seg;
5019 temp_seg = i.seg[0];
5020 i.seg[0] = i.seg[1];
5021 i.seg[1] = temp_seg;
5022 }
5023 }
5024
5025 /* Try to ensure constant immediates are represented in the smallest
5026 opcode possible. */
5027 static void
5028 optimize_imm (void)
5029 {
5030 char guess_suffix = 0;
5031 int op;
5032
5033 if (i.suffix)
5034 guess_suffix = i.suffix;
5035 else if (i.reg_operands)
5036 {
5037 /* Figure out a suffix from the last register operand specified.
5038 We can't do this properly yet, i.e. excluding special register
5039 instances, but the following works for instructions with
5040 immediates. In any case, we can't set i.suffix yet. */
5041 for (op = i.operands; --op >= 0;)
5042 if (i.types[op].bitfield.class != Reg)
5043 continue;
5044 else if (i.types[op].bitfield.byte)
5045 {
5046 guess_suffix = BYTE_MNEM_SUFFIX;
5047 break;
5048 }
5049 else if (i.types[op].bitfield.word)
5050 {
5051 guess_suffix = WORD_MNEM_SUFFIX;
5052 break;
5053 }
5054 else if (i.types[op].bitfield.dword)
5055 {
5056 guess_suffix = LONG_MNEM_SUFFIX;
5057 break;
5058 }
5059 else if (i.types[op].bitfield.qword)
5060 {
5061 guess_suffix = QWORD_MNEM_SUFFIX;
5062 break;
5063 }
5064 }
5065 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5066 guess_suffix = WORD_MNEM_SUFFIX;
5067
5068 for (op = i.operands; --op >= 0;)
5069 if (operand_type_check (i.types[op], imm))
5070 {
5071 switch (i.op[op].imms->X_op)
5072 {
5073 case O_constant:
5074 /* If a suffix is given, this operand may be shortened. */
5075 switch (guess_suffix)
5076 {
5077 case LONG_MNEM_SUFFIX:
5078 i.types[op].bitfield.imm32 = 1;
5079 i.types[op].bitfield.imm64 = 1;
5080 break;
5081 case WORD_MNEM_SUFFIX:
5082 i.types[op].bitfield.imm16 = 1;
5083 i.types[op].bitfield.imm32 = 1;
5084 i.types[op].bitfield.imm32s = 1;
5085 i.types[op].bitfield.imm64 = 1;
5086 break;
5087 case BYTE_MNEM_SUFFIX:
5088 i.types[op].bitfield.imm8 = 1;
5089 i.types[op].bitfield.imm8s = 1;
5090 i.types[op].bitfield.imm16 = 1;
5091 i.types[op].bitfield.imm32 = 1;
5092 i.types[op].bitfield.imm32s = 1;
5093 i.types[op].bitfield.imm64 = 1;
5094 break;
5095 }
5096
5097 /* If this operand is at most 16 bits, convert it
5098 to a signed 16 bit number before trying to see
5099 whether it will fit in an even smaller size.
5100 This allows a 16-bit operand such as $0xffe0 to
5101 be recognised as within Imm8S range. */
5102 if ((i.types[op].bitfield.imm16)
5103 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5104 {
5105 i.op[op].imms->X_add_number =
5106 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5107 }
5108 #ifdef BFD64
5109 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5110 if ((i.types[op].bitfield.imm32)
5111 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5112 == 0))
5113 {
5114 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5115 ^ ((offsetT) 1 << 31))
5116 - ((offsetT) 1 << 31));
5117 }
5118 #endif
5119 i.types[op]
5120 = operand_type_or (i.types[op],
5121 smallest_imm_type (i.op[op].imms->X_add_number));
5122
5123 /* We must avoid matching of Imm32 templates when 64bit
5124 only immediate is available. */
5125 if (guess_suffix == QWORD_MNEM_SUFFIX)
5126 i.types[op].bitfield.imm32 = 0;
5127 break;
5128
5129 case O_absent:
5130 case O_register:
5131 abort ();
5132
5133 /* Symbols and expressions. */
5134 default:
5135 /* Convert symbolic operand to proper sizes for matching, but don't
5136 prevent matching a set of insns that only supports sizes other
5137 than those matching the insn suffix. */
5138 {
5139 i386_operand_type mask, allowed;
5140 const insn_template *t;
5141
5142 operand_type_set (&mask, 0);
5143 operand_type_set (&allowed, 0);
5144
5145 for (t = current_templates->start;
5146 t < current_templates->end;
5147 ++t)
5148 {
5149 allowed = operand_type_or (allowed, t->operand_types[op]);
5150 allowed = operand_type_and (allowed, anyimm);
5151 }
5152 switch (guess_suffix)
5153 {
5154 case QWORD_MNEM_SUFFIX:
5155 mask.bitfield.imm64 = 1;
5156 mask.bitfield.imm32s = 1;
5157 break;
5158 case LONG_MNEM_SUFFIX:
5159 mask.bitfield.imm32 = 1;
5160 break;
5161 case WORD_MNEM_SUFFIX:
5162 mask.bitfield.imm16 = 1;
5163 break;
5164 case BYTE_MNEM_SUFFIX:
5165 mask.bitfield.imm8 = 1;
5166 break;
5167 default:
5168 break;
5169 }
5170 allowed = operand_type_and (mask, allowed);
5171 if (!operand_type_all_zero (&allowed))
5172 i.types[op] = operand_type_and (i.types[op], mask);
5173 }
5174 break;
5175 }
5176 }
5177 }
5178
5179 /* Try to use the smallest displacement type too. */
5180 static void
5181 optimize_disp (void)
5182 {
5183 int op;
5184
5185 for (op = i.operands; --op >= 0;)
5186 if (operand_type_check (i.types[op], disp))
5187 {
5188 if (i.op[op].disps->X_op == O_constant)
5189 {
5190 offsetT op_disp = i.op[op].disps->X_add_number;
5191
5192 if (i.types[op].bitfield.disp16
5193 && (op_disp & ~(offsetT) 0xffff) == 0)
5194 {
5195 /* If this operand is at most 16 bits, convert
5196 to a signed 16 bit number and don't use 64bit
5197 displacement. */
5198 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5199 i.types[op].bitfield.disp64 = 0;
5200 }
5201 #ifdef BFD64
5202 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5203 if (i.types[op].bitfield.disp32
5204 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5205 {
5206 /* If this operand is at most 32 bits, convert
5207 to a signed 32 bit number and don't use 64bit
5208 displacement. */
5209 op_disp &= (((offsetT) 2 << 31) - 1);
5210 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5211 i.types[op].bitfield.disp64 = 0;
5212 }
5213 #endif
5214 if (!op_disp && i.types[op].bitfield.baseindex)
5215 {
5216 i.types[op].bitfield.disp8 = 0;
5217 i.types[op].bitfield.disp16 = 0;
5218 i.types[op].bitfield.disp32 = 0;
5219 i.types[op].bitfield.disp32s = 0;
5220 i.types[op].bitfield.disp64 = 0;
5221 i.op[op].disps = 0;
5222 i.disp_operands--;
5223 }
5224 else if (flag_code == CODE_64BIT)
5225 {
5226 if (fits_in_signed_long (op_disp))
5227 {
5228 i.types[op].bitfield.disp64 = 0;
5229 i.types[op].bitfield.disp32s = 1;
5230 }
5231 if (i.prefix[ADDR_PREFIX]
5232 && fits_in_unsigned_long (op_disp))
5233 i.types[op].bitfield.disp32 = 1;
5234 }
5235 if ((i.types[op].bitfield.disp32
5236 || i.types[op].bitfield.disp32s
5237 || i.types[op].bitfield.disp16)
5238 && fits_in_disp8 (op_disp))
5239 i.types[op].bitfield.disp8 = 1;
5240 }
5241 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5242 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5243 {
5244 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5245 i.op[op].disps, 0, i.reloc[op]);
5246 i.types[op].bitfield.disp8 = 0;
5247 i.types[op].bitfield.disp16 = 0;
5248 i.types[op].bitfield.disp32 = 0;
5249 i.types[op].bitfield.disp32s = 0;
5250 i.types[op].bitfield.disp64 = 0;
5251 }
5252 else
5253 /* We only support 64bit displacement on constants. */
5254 i.types[op].bitfield.disp64 = 0;
5255 }
5256 }
5257
5258 /* Return 1 if there is a match in broadcast bytes between operand
5259 GIVEN and instruction template T. */
5260
5261 static INLINE int
5262 match_broadcast_size (const insn_template *t, unsigned int given)
5263 {
5264 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5265 && i.types[given].bitfield.byte)
5266 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5267 && i.types[given].bitfield.word)
5268 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5269 && i.types[given].bitfield.dword)
5270 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5271 && i.types[given].bitfield.qword));
5272 }
5273
5274 /* Check if operands are valid for the instruction. */
5275
5276 static int
5277 check_VecOperands (const insn_template *t)
5278 {
5279 unsigned int op;
5280 i386_cpu_flags cpu;
5281 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5282
5283 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5284 any one operand are implicity requiring AVX512VL support if the actual
5285 operand size is YMMword or XMMword. Since this function runs after
5286 template matching, there's no need to check for YMMword/XMMword in
5287 the template. */
5288 cpu = cpu_flags_and (t->cpu_flags, avx512);
5289 if (!cpu_flags_all_zero (&cpu)
5290 && !t->cpu_flags.bitfield.cpuavx512vl
5291 && !cpu_arch_flags.bitfield.cpuavx512vl)
5292 {
5293 for (op = 0; op < t->operands; ++op)
5294 {
5295 if (t->operand_types[op].bitfield.zmmword
5296 && (i.types[op].bitfield.ymmword
5297 || i.types[op].bitfield.xmmword))
5298 {
5299 i.error = unsupported;
5300 return 1;
5301 }
5302 }
5303 }
5304
5305 /* Without VSIB byte, we can't have a vector register for index. */
5306 if (!t->opcode_modifier.vecsib
5307 && i.index_reg
5308 && (i.index_reg->reg_type.bitfield.xmmword
5309 || i.index_reg->reg_type.bitfield.ymmword
5310 || i.index_reg->reg_type.bitfield.zmmword))
5311 {
5312 i.error = unsupported_vector_index_register;
5313 return 1;
5314 }
5315
5316 /* Check if default mask is allowed. */
5317 if (t->opcode_modifier.nodefmask
5318 && (!i.mask || i.mask->mask->reg_num == 0))
5319 {
5320 i.error = no_default_mask;
5321 return 1;
5322 }
5323
5324 /* For VSIB byte, we need a vector register for index, and all vector
5325 registers must be distinct. */
5326 if (t->opcode_modifier.vecsib)
5327 {
5328 if (!i.index_reg
5329 || !((t->opcode_modifier.vecsib == VecSIB128
5330 && i.index_reg->reg_type.bitfield.xmmword)
5331 || (t->opcode_modifier.vecsib == VecSIB256
5332 && i.index_reg->reg_type.bitfield.ymmword)
5333 || (t->opcode_modifier.vecsib == VecSIB512
5334 && i.index_reg->reg_type.bitfield.zmmword)))
5335 {
5336 i.error = invalid_vsib_address;
5337 return 1;
5338 }
5339
5340 gas_assert (i.reg_operands == 2 || i.mask);
5341 if (i.reg_operands == 2 && !i.mask)
5342 {
5343 gas_assert (i.types[0].bitfield.class == RegSIMD);
5344 gas_assert (i.types[0].bitfield.xmmword
5345 || i.types[0].bitfield.ymmword);
5346 gas_assert (i.types[2].bitfield.class == RegSIMD);
5347 gas_assert (i.types[2].bitfield.xmmword
5348 || i.types[2].bitfield.ymmword);
5349 if (operand_check == check_none)
5350 return 0;
5351 if (register_number (i.op[0].regs)
5352 != register_number (i.index_reg)
5353 && register_number (i.op[2].regs)
5354 != register_number (i.index_reg)
5355 && register_number (i.op[0].regs)
5356 != register_number (i.op[2].regs))
5357 return 0;
5358 if (operand_check == check_error)
5359 {
5360 i.error = invalid_vector_register_set;
5361 return 1;
5362 }
5363 as_warn (_("mask, index, and destination registers should be distinct"));
5364 }
5365 else if (i.reg_operands == 1 && i.mask)
5366 {
5367 if (i.types[1].bitfield.class == RegSIMD
5368 && (i.types[1].bitfield.xmmword
5369 || i.types[1].bitfield.ymmword
5370 || i.types[1].bitfield.zmmword)
5371 && (register_number (i.op[1].regs)
5372 == register_number (i.index_reg)))
5373 {
5374 if (operand_check == check_error)
5375 {
5376 i.error = invalid_vector_register_set;
5377 return 1;
5378 }
5379 if (operand_check != check_none)
5380 as_warn (_("index and destination registers should be distinct"));
5381 }
5382 }
5383 }
5384
5385 /* Check if broadcast is supported by the instruction and is applied
5386 to the memory operand. */
5387 if (i.broadcast)
5388 {
5389 i386_operand_type type, overlap;
5390
5391 /* Check if specified broadcast is supported in this instruction,
5392 and its broadcast bytes match the memory operand. */
5393 op = i.broadcast->operand;
5394 if (!t->opcode_modifier.broadcast
5395 || !(i.flags[op] & Operand_Mem)
5396 || (!i.types[op].bitfield.unspecified
5397 && !match_broadcast_size (t, op)))
5398 {
5399 bad_broadcast:
5400 i.error = unsupported_broadcast;
5401 return 1;
5402 }
5403
5404 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5405 * i.broadcast->type);
5406 operand_type_set (&type, 0);
5407 switch (i.broadcast->bytes)
5408 {
5409 case 2:
5410 type.bitfield.word = 1;
5411 break;
5412 case 4:
5413 type.bitfield.dword = 1;
5414 break;
5415 case 8:
5416 type.bitfield.qword = 1;
5417 break;
5418 case 16:
5419 type.bitfield.xmmword = 1;
5420 break;
5421 case 32:
5422 type.bitfield.ymmword = 1;
5423 break;
5424 case 64:
5425 type.bitfield.zmmword = 1;
5426 break;
5427 default:
5428 goto bad_broadcast;
5429 }
5430
5431 overlap = operand_type_and (type, t->operand_types[op]);
5432 if (operand_type_all_zero (&overlap))
5433 goto bad_broadcast;
5434
5435 if (t->opcode_modifier.checkregsize)
5436 {
5437 unsigned int j;
5438
5439 type.bitfield.baseindex = 1;
5440 for (j = 0; j < i.operands; ++j)
5441 {
5442 if (j != op
5443 && !operand_type_register_match(i.types[j],
5444 t->operand_types[j],
5445 type,
5446 t->operand_types[op]))
5447 goto bad_broadcast;
5448 }
5449 }
5450 }
5451 /* If broadcast is supported in this instruction, we need to check if
5452 operand of one-element size isn't specified without broadcast. */
5453 else if (t->opcode_modifier.broadcast && i.mem_operands)
5454 {
5455 /* Find memory operand. */
5456 for (op = 0; op < i.operands; op++)
5457 if (i.flags[op] & Operand_Mem)
5458 break;
5459 gas_assert (op < i.operands);
5460 /* Check size of the memory operand. */
5461 if (match_broadcast_size (t, op))
5462 {
5463 i.error = broadcast_needed;
5464 return 1;
5465 }
5466 }
5467 else
5468 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5469
5470 /* Check if requested masking is supported. */
5471 if (i.mask)
5472 {
5473 switch (t->opcode_modifier.masking)
5474 {
5475 case BOTH_MASKING:
5476 break;
5477 case MERGING_MASKING:
5478 if (i.mask->zeroing)
5479 {
5480 case 0:
5481 i.error = unsupported_masking;
5482 return 1;
5483 }
5484 break;
5485 case DYNAMIC_MASKING:
5486 /* Memory destinations allow only merging masking. */
5487 if (i.mask->zeroing && i.mem_operands)
5488 {
5489 /* Find memory operand. */
5490 for (op = 0; op < i.operands; op++)
5491 if (i.flags[op] & Operand_Mem)
5492 break;
5493 gas_assert (op < i.operands);
5494 if (op == i.operands - 1)
5495 {
5496 i.error = unsupported_masking;
5497 return 1;
5498 }
5499 }
5500 break;
5501 default:
5502 abort ();
5503 }
5504 }
5505
5506 /* Check if masking is applied to dest operand. */
5507 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5508 {
5509 i.error = mask_not_on_destination;
5510 return 1;
5511 }
5512
5513 /* Check RC/SAE. */
5514 if (i.rounding)
5515 {
5516 if (!t->opcode_modifier.sae
5517 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5518 {
5519 i.error = unsupported_rc_sae;
5520 return 1;
5521 }
5522 /* If the instruction has several immediate operands and one of
5523 them is rounding, the rounding operand should be the last
5524 immediate operand. */
5525 if (i.imm_operands > 1
5526 && i.rounding->operand != (int) (i.imm_operands - 1))
5527 {
5528 i.error = rc_sae_operand_not_last_imm;
5529 return 1;
5530 }
5531 }
5532
5533 /* Check vector Disp8 operand. */
5534 if (t->opcode_modifier.disp8memshift
5535 && i.disp_encoding != disp_encoding_32bit)
5536 {
5537 if (i.broadcast)
5538 i.memshift = t->opcode_modifier.broadcast - 1;
5539 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5540 i.memshift = t->opcode_modifier.disp8memshift;
5541 else
5542 {
5543 const i386_operand_type *type = NULL;
5544
5545 i.memshift = 0;
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 {
5549 if (t->opcode_modifier.evex == EVEXLIG)
5550 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5551 else if (t->operand_types[op].bitfield.xmmword
5552 + t->operand_types[op].bitfield.ymmword
5553 + t->operand_types[op].bitfield.zmmword <= 1)
5554 type = &t->operand_types[op];
5555 else if (!i.types[op].bitfield.unspecified)
5556 type = &i.types[op];
5557 }
5558 else if (i.types[op].bitfield.class == RegSIMD
5559 && t->opcode_modifier.evex != EVEXLIG)
5560 {
5561 if (i.types[op].bitfield.zmmword)
5562 i.memshift = 6;
5563 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5564 i.memshift = 5;
5565 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5566 i.memshift = 4;
5567 }
5568
5569 if (type)
5570 {
5571 if (type->bitfield.zmmword)
5572 i.memshift = 6;
5573 else if (type->bitfield.ymmword)
5574 i.memshift = 5;
5575 else if (type->bitfield.xmmword)
5576 i.memshift = 4;
5577 }
5578
5579 /* For the check in fits_in_disp8(). */
5580 if (i.memshift == 0)
5581 i.memshift = -1;
5582 }
5583
5584 for (op = 0; op < i.operands; op++)
5585 if (operand_type_check (i.types[op], disp)
5586 && i.op[op].disps->X_op == O_constant)
5587 {
5588 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5589 {
5590 i.types[op].bitfield.disp8 = 1;
5591 return 0;
5592 }
5593 i.types[op].bitfield.disp8 = 0;
5594 }
5595 }
5596
5597 i.memshift = 0;
5598
5599 return 0;
5600 }
5601
5602 /* Check if operands are valid for the instruction. Update VEX
5603 operand types. */
5604
5605 static int
5606 VEX_check_operands (const insn_template *t)
5607 {
5608 if (i.vec_encoding == vex_encoding_evex)
5609 {
5610 /* This instruction must be encoded with EVEX prefix. */
5611 if (!is_evex_encoding (t))
5612 {
5613 i.error = unsupported;
5614 return 1;
5615 }
5616 return 0;
5617 }
5618
5619 if (!t->opcode_modifier.vex)
5620 {
5621 /* This instruction template doesn't have VEX prefix. */
5622 if (i.vec_encoding != vex_encoding_default)
5623 {
5624 i.error = unsupported;
5625 return 1;
5626 }
5627 return 0;
5628 }
5629
5630 /* Check the special Imm4 cases; must be the first operand. */
5631 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5632 {
5633 if (i.op[0].imms->X_op != O_constant
5634 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5635 {
5636 i.error = bad_imm4;
5637 return 1;
5638 }
5639
5640 /* Turn off Imm<N> so that update_imm won't complain. */
5641 operand_type_set (&i.types[0], 0);
5642 }
5643
5644 return 0;
5645 }
5646
5647 static const insn_template *
5648 match_template (char mnem_suffix)
5649 {
5650 /* Points to template once we've found it. */
5651 const insn_template *t;
5652 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5653 i386_operand_type overlap4;
5654 unsigned int found_reverse_match;
5655 i386_opcode_modifier suffix_check;
5656 i386_operand_type operand_types [MAX_OPERANDS];
5657 int addr_prefix_disp;
5658 unsigned int j;
5659 unsigned int found_cpu_match, size_match;
5660 unsigned int check_register;
5661 enum i386_error specific_error = 0;
5662
5663 #if MAX_OPERANDS != 5
5664 # error "MAX_OPERANDS must be 5."
5665 #endif
5666
5667 found_reverse_match = 0;
5668 addr_prefix_disp = -1;
5669
5670 /* Prepare for mnemonic suffix check. */
5671 memset (&suffix_check, 0, sizeof (suffix_check));
5672 switch (mnem_suffix)
5673 {
5674 case BYTE_MNEM_SUFFIX:
5675 suffix_check.no_bsuf = 1;
5676 break;
5677 case WORD_MNEM_SUFFIX:
5678 suffix_check.no_wsuf = 1;
5679 break;
5680 case SHORT_MNEM_SUFFIX:
5681 suffix_check.no_ssuf = 1;
5682 break;
5683 case LONG_MNEM_SUFFIX:
5684 suffix_check.no_lsuf = 1;
5685 break;
5686 case QWORD_MNEM_SUFFIX:
5687 suffix_check.no_qsuf = 1;
5688 break;
5689 default:
5690 /* NB: In Intel syntax, normally we can check for memory operand
5691 size when there is no mnemonic suffix. But jmp and call have
5692 2 different encodings with Dword memory operand size, one with
5693 No_ldSuf and the other without. i.suffix is set to
5694 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5695 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5696 suffix_check.no_ldsuf = 1;
5697 }
5698
5699 /* Must have right number of operands. */
5700 i.error = number_of_operands_mismatch;
5701
5702 for (t = current_templates->start; t < current_templates->end; t++)
5703 {
5704 addr_prefix_disp = -1;
5705 found_reverse_match = 0;
5706
5707 if (i.operands != t->operands)
5708 continue;
5709
5710 /* Check processor support. */
5711 i.error = unsupported;
5712 found_cpu_match = (cpu_flags_match (t)
5713 == CPU_FLAGS_PERFECT_MATCH);
5714 if (!found_cpu_match)
5715 continue;
5716
5717 /* Check AT&T mnemonic. */
5718 i.error = unsupported_with_intel_mnemonic;
5719 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5720 continue;
5721
5722 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5723 i.error = unsupported_syntax;
5724 if ((intel_syntax && t->opcode_modifier.attsyntax)
5725 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5726 || (intel64 && t->opcode_modifier.amd64)
5727 || (!intel64 && t->opcode_modifier.intel64))
5728 continue;
5729
5730 /* Check the suffix. */
5731 i.error = invalid_instruction_suffix;
5732 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5733 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5734 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5735 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5736 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5737 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5738 continue;
5739
5740 size_match = operand_size_match (t);
5741 if (!size_match)
5742 continue;
5743
5744 /* This is intentionally not
5745
5746 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5747
5748 as the case of a missing * on the operand is accepted (perhaps with
5749 a warning, issued further down). */
5750 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5751 {
5752 i.error = operand_type_mismatch;
5753 continue;
5754 }
5755
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 operand_types[j] = t->operand_types[j];
5758
5759 /* In general, don't allow 64-bit operands in 32-bit mode. */
5760 if (i.suffix == QWORD_MNEM_SUFFIX
5761 && flag_code != CODE_64BIT
5762 && (intel_syntax
5763 ? (!t->opcode_modifier.ignoresize
5764 && !t->opcode_modifier.broadcast
5765 && !intel_float_operand (t->name))
5766 : intel_float_operand (t->name) != 2)
5767 && ((operand_types[0].bitfield.class != RegMMX
5768 && operand_types[0].bitfield.class != RegSIMD)
5769 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5770 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5771 && (t->base_opcode != 0x0fc7
5772 || t->extension_opcode != 1 /* cmpxchg8b */))
5773 continue;
5774
5775 /* In general, don't allow 32-bit operands on pre-386. */
5776 else if (i.suffix == LONG_MNEM_SUFFIX
5777 && !cpu_arch_flags.bitfield.cpui386
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !intel_float_operand (t->name))
5781 : intel_float_operand (t->name) != 2)
5782 && ((operand_types[0].bitfield.class != RegMMX
5783 && operand_types[0].bitfield.class != RegSIMD)
5784 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5785 && operand_types[t->operands > 1].bitfield.class
5786 != RegSIMD)))
5787 continue;
5788
5789 /* Do not verify operands when there are none. */
5790 else
5791 {
5792 if (!t->operands)
5793 /* We've found a match; break out of loop. */
5794 break;
5795 }
5796
5797 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5798 into Disp32/Disp16/Disp32 operand. */
5799 if (i.prefix[ADDR_PREFIX] != 0)
5800 {
5801 /* There should be only one Disp operand. */
5802 switch (flag_code)
5803 {
5804 case CODE_16BIT:
5805 for (j = 0; j < MAX_OPERANDS; j++)
5806 {
5807 if (operand_types[j].bitfield.disp16)
5808 {
5809 addr_prefix_disp = j;
5810 operand_types[j].bitfield.disp32 = 1;
5811 operand_types[j].bitfield.disp16 = 0;
5812 break;
5813 }
5814 }
5815 break;
5816 case CODE_32BIT:
5817 for (j = 0; j < MAX_OPERANDS; j++)
5818 {
5819 if (operand_types[j].bitfield.disp32)
5820 {
5821 addr_prefix_disp = j;
5822 operand_types[j].bitfield.disp32 = 0;
5823 operand_types[j].bitfield.disp16 = 1;
5824 break;
5825 }
5826 }
5827 break;
5828 case CODE_64BIT:
5829 for (j = 0; j < MAX_OPERANDS; j++)
5830 {
5831 if (operand_types[j].bitfield.disp64)
5832 {
5833 addr_prefix_disp = j;
5834 operand_types[j].bitfield.disp64 = 0;
5835 operand_types[j].bitfield.disp32 = 1;
5836 break;
5837 }
5838 }
5839 break;
5840 }
5841 }
5842
5843 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5844 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5845 continue;
5846
5847 /* We check register size if needed. */
5848 if (t->opcode_modifier.checkregsize)
5849 {
5850 check_register = (1 << t->operands) - 1;
5851 if (i.broadcast)
5852 check_register &= ~(1 << i.broadcast->operand);
5853 }
5854 else
5855 check_register = 0;
5856
5857 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5858 switch (t->operands)
5859 {
5860 case 1:
5861 if (!operand_type_match (overlap0, i.types[0]))
5862 continue;
5863 break;
5864 case 2:
5865 /* xchg %eax, %eax is a special case. It is an alias for nop
5866 only in 32bit mode and we can use opcode 0x90. In 64bit
5867 mode, we can't use 0x90 for xchg %eax, %eax since it should
5868 zero-extend %eax to %rax. */
5869 if (flag_code == CODE_64BIT
5870 && t->base_opcode == 0x90
5871 && i.types[0].bitfield.instance == Accum
5872 && i.types[0].bitfield.dword
5873 && i.types[1].bitfield.instance == Accum
5874 && i.types[1].bitfield.dword)
5875 continue;
5876 /* xrelease mov %eax, <disp> is another special case. It must not
5877 match the accumulator-only encoding of mov. */
5878 if (flag_code != CODE_64BIT
5879 && i.hle_prefix
5880 && t->base_opcode == 0xa0
5881 && i.types[0].bitfield.instance == Accum
5882 && (i.flags[1] & Operand_Mem))
5883 continue;
5884 /* Fall through. */
5885
5886 case 3:
5887 if (!(size_match & MATCH_STRAIGHT))
5888 goto check_reverse;
5889 /* Reverse direction of operands if swapping is possible in the first
5890 place (operands need to be symmetric) and
5891 - the load form is requested, and the template is a store form,
5892 - the store form is requested, and the template is a load form,
5893 - the non-default (swapped) form is requested. */
5894 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5895 if (t->opcode_modifier.d && i.reg_operands == i.operands
5896 && !operand_type_all_zero (&overlap1))
5897 switch (i.dir_encoding)
5898 {
5899 case dir_encoding_load:
5900 if (operand_type_check (operand_types[i.operands - 1], anymem)
5901 || t->opcode_modifier.regmem)
5902 goto check_reverse;
5903 break;
5904
5905 case dir_encoding_store:
5906 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5907 && !t->opcode_modifier.regmem)
5908 goto check_reverse;
5909 break;
5910
5911 case dir_encoding_swap:
5912 goto check_reverse;
5913
5914 case dir_encoding_default:
5915 break;
5916 }
5917 /* If we want store form, we skip the current load. */
5918 if ((i.dir_encoding == dir_encoding_store
5919 || i.dir_encoding == dir_encoding_swap)
5920 && i.mem_operands == 0
5921 && t->opcode_modifier.load)
5922 continue;
5923 /* Fall through. */
5924 case 4:
5925 case 5:
5926 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5927 if (!operand_type_match (overlap0, i.types[0])
5928 || !operand_type_match (overlap1, i.types[1])
5929 || ((check_register & 3) == 3
5930 && !operand_type_register_match (i.types[0],
5931 operand_types[0],
5932 i.types[1],
5933 operand_types[1])))
5934 {
5935 /* Check if other direction is valid ... */
5936 if (!t->opcode_modifier.d)
5937 continue;
5938
5939 check_reverse:
5940 if (!(size_match & MATCH_REVERSE))
5941 continue;
5942 /* Try reversing direction of operands. */
5943 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5944 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5945 if (!operand_type_match (overlap0, i.types[0])
5946 || !operand_type_match (overlap1, i.types[i.operands - 1])
5947 || (check_register
5948 && !operand_type_register_match (i.types[0],
5949 operand_types[i.operands - 1],
5950 i.types[i.operands - 1],
5951 operand_types[0])))
5952 {
5953 /* Does not match either direction. */
5954 continue;
5955 }
5956 /* found_reverse_match holds which of D or FloatR
5957 we've found. */
5958 if (!t->opcode_modifier.d)
5959 found_reverse_match = 0;
5960 else if (operand_types[0].bitfield.tbyte)
5961 found_reverse_match = Opcode_FloatD;
5962 else if (operand_types[0].bitfield.xmmword
5963 || operand_types[i.operands - 1].bitfield.xmmword
5964 || operand_types[0].bitfield.class == RegMMX
5965 || operand_types[i.operands - 1].bitfield.class == RegMMX
5966 || is_any_vex_encoding(t))
5967 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5968 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5969 else
5970 found_reverse_match = Opcode_D;
5971 if (t->opcode_modifier.floatr)
5972 found_reverse_match |= Opcode_FloatR;
5973 }
5974 else
5975 {
5976 /* Found a forward 2 operand match here. */
5977 switch (t->operands)
5978 {
5979 case 5:
5980 overlap4 = operand_type_and (i.types[4],
5981 operand_types[4]);
5982 /* Fall through. */
5983 case 4:
5984 overlap3 = operand_type_and (i.types[3],
5985 operand_types[3]);
5986 /* Fall through. */
5987 case 3:
5988 overlap2 = operand_type_and (i.types[2],
5989 operand_types[2]);
5990 break;
5991 }
5992
5993 switch (t->operands)
5994 {
5995 case 5:
5996 if (!operand_type_match (overlap4, i.types[4])
5997 || !operand_type_register_match (i.types[3],
5998 operand_types[3],
5999 i.types[4],
6000 operand_types[4]))
6001 continue;
6002 /* Fall through. */
6003 case 4:
6004 if (!operand_type_match (overlap3, i.types[3])
6005 || ((check_register & 0xa) == 0xa
6006 && !operand_type_register_match (i.types[1],
6007 operand_types[1],
6008 i.types[3],
6009 operand_types[3]))
6010 || ((check_register & 0xc) == 0xc
6011 && !operand_type_register_match (i.types[2],
6012 operand_types[2],
6013 i.types[3],
6014 operand_types[3])))
6015 continue;
6016 /* Fall through. */
6017 case 3:
6018 /* Here we make use of the fact that there are no
6019 reverse match 3 operand instructions. */
6020 if (!operand_type_match (overlap2, i.types[2])
6021 || ((check_register & 5) == 5
6022 && !operand_type_register_match (i.types[0],
6023 operand_types[0],
6024 i.types[2],
6025 operand_types[2]))
6026 || ((check_register & 6) == 6
6027 && !operand_type_register_match (i.types[1],
6028 operand_types[1],
6029 i.types[2],
6030 operand_types[2])))
6031 continue;
6032 break;
6033 }
6034 }
6035 /* Found either forward/reverse 2, 3 or 4 operand match here:
6036 slip through to break. */
6037 }
6038 if (!found_cpu_match)
6039 continue;
6040
6041 /* Check if vector and VEX operands are valid. */
6042 if (check_VecOperands (t) || VEX_check_operands (t))
6043 {
6044 specific_error = i.error;
6045 continue;
6046 }
6047
6048 /* We've found a match; break out of loop. */
6049 break;
6050 }
6051
6052 if (t == current_templates->end)
6053 {
6054 /* We found no match. */
6055 const char *err_msg;
6056 switch (specific_error ? specific_error : i.error)
6057 {
6058 default:
6059 abort ();
6060 case operand_size_mismatch:
6061 err_msg = _("operand size mismatch");
6062 break;
6063 case operand_type_mismatch:
6064 err_msg = _("operand type mismatch");
6065 break;
6066 case register_type_mismatch:
6067 err_msg = _("register type mismatch");
6068 break;
6069 case number_of_operands_mismatch:
6070 err_msg = _("number of operands mismatch");
6071 break;
6072 case invalid_instruction_suffix:
6073 err_msg = _("invalid instruction suffix");
6074 break;
6075 case bad_imm4:
6076 err_msg = _("constant doesn't fit in 4 bits");
6077 break;
6078 case unsupported_with_intel_mnemonic:
6079 err_msg = _("unsupported with Intel mnemonic");
6080 break;
6081 case unsupported_syntax:
6082 err_msg = _("unsupported syntax");
6083 break;
6084 case unsupported:
6085 as_bad (_("unsupported instruction `%s'"),
6086 current_templates->start->name);
6087 return NULL;
6088 case invalid_vsib_address:
6089 err_msg = _("invalid VSIB address");
6090 break;
6091 case invalid_vector_register_set:
6092 err_msg = _("mask, index, and destination registers must be distinct");
6093 break;
6094 case unsupported_vector_index_register:
6095 err_msg = _("unsupported vector index register");
6096 break;
6097 case unsupported_broadcast:
6098 err_msg = _("unsupported broadcast");
6099 break;
6100 case broadcast_needed:
6101 err_msg = _("broadcast is needed for operand of such type");
6102 break;
6103 case unsupported_masking:
6104 err_msg = _("unsupported masking");
6105 break;
6106 case mask_not_on_destination:
6107 err_msg = _("mask not on destination operand");
6108 break;
6109 case no_default_mask:
6110 err_msg = _("default mask isn't allowed");
6111 break;
6112 case unsupported_rc_sae:
6113 err_msg = _("unsupported static rounding/sae");
6114 break;
6115 case rc_sae_operand_not_last_imm:
6116 if (intel_syntax)
6117 err_msg = _("RC/SAE operand must precede immediate operands");
6118 else
6119 err_msg = _("RC/SAE operand must follow immediate operands");
6120 break;
6121 case invalid_register_operand:
6122 err_msg = _("invalid register operand");
6123 break;
6124 }
6125 as_bad (_("%s for `%s'"), err_msg,
6126 current_templates->start->name);
6127 return NULL;
6128 }
6129
6130 if (!quiet_warnings)
6131 {
6132 if (!intel_syntax
6133 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6134 as_warn (_("indirect %s without `*'"), t->name);
6135
6136 if (t->opcode_modifier.isprefix
6137 && t->opcode_modifier.ignoresize)
6138 {
6139 /* Warn them that a data or address size prefix doesn't
6140 affect assembly of the next line of code. */
6141 as_warn (_("stand-alone `%s' prefix"), t->name);
6142 }
6143 }
6144
6145 /* Copy the template we found. */
6146 i.tm = *t;
6147
6148 if (addr_prefix_disp != -1)
6149 i.tm.operand_types[addr_prefix_disp]
6150 = operand_types[addr_prefix_disp];
6151
6152 if (found_reverse_match)
6153 {
6154 /* If we found a reverse match we must alter the opcode direction
6155 bit and clear/flip the regmem modifier one. found_reverse_match
6156 holds bits to change (different for int & float insns). */
6157
6158 i.tm.base_opcode ^= found_reverse_match;
6159
6160 i.tm.operand_types[0] = operand_types[i.operands - 1];
6161 i.tm.operand_types[i.operands - 1] = operand_types[0];
6162
6163 /* Certain SIMD insns have their load forms specified in the opcode
6164 table, and hence we need to _set_ RegMem instead of clearing it.
6165 We need to avoid setting the bit though on insns like KMOVW. */
6166 i.tm.opcode_modifier.regmem
6167 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6168 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6169 && !i.tm.opcode_modifier.regmem;
6170 }
6171
6172 return t;
6173 }
6174
6175 static int
6176 check_string (void)
6177 {
6178 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6179 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6180
6181 if (i.seg[op] != NULL && i.seg[op] != &es)
6182 {
6183 as_bad (_("`%s' operand %u must use `%ses' segment"),
6184 i.tm.name,
6185 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6186 register_prefix);
6187 return 0;
6188 }
6189
6190 /* There's only ever one segment override allowed per instruction.
6191 This instruction possibly has a legal segment override on the
6192 second operand, so copy the segment to where non-string
6193 instructions store it, allowing common code. */
6194 i.seg[op] = i.seg[1];
6195
6196 return 1;
6197 }
6198
6199 static int
6200 process_suffix (void)
6201 {
6202 /* If matched instruction specifies an explicit instruction mnemonic
6203 suffix, use it. */
6204 if (i.tm.opcode_modifier.size == SIZE16)
6205 i.suffix = WORD_MNEM_SUFFIX;
6206 else if (i.tm.opcode_modifier.size == SIZE32)
6207 i.suffix = LONG_MNEM_SUFFIX;
6208 else if (i.tm.opcode_modifier.size == SIZE64)
6209 i.suffix = QWORD_MNEM_SUFFIX;
6210 else if (i.reg_operands)
6211 {
6212 /* If there's no instruction mnemonic suffix we try to invent one
6213 based on register operands. */
6214 if (!i.suffix)
6215 {
6216 /* We take i.suffix from the last register operand specified,
6217 Destination register type is more significant than source
6218 register type. crc32 in SSE4.2 prefers source register
6219 type. */
6220 if (i.tm.base_opcode == 0xf20f38f0
6221 && i.types[0].bitfield.class == Reg)
6222 {
6223 if (i.types[0].bitfield.byte)
6224 i.suffix = BYTE_MNEM_SUFFIX;
6225 else if (i.types[0].bitfield.word)
6226 i.suffix = WORD_MNEM_SUFFIX;
6227 else if (i.types[0].bitfield.dword)
6228 i.suffix = LONG_MNEM_SUFFIX;
6229 else if (i.types[0].bitfield.qword)
6230 i.suffix = QWORD_MNEM_SUFFIX;
6231 }
6232
6233 if (!i.suffix)
6234 {
6235 int op;
6236
6237 if (i.tm.base_opcode == 0xf20f38f0)
6238 {
6239 /* We have to know the operand size for crc32. */
6240 as_bad (_("ambiguous memory operand size for `%s`"),
6241 i.tm.name);
6242 return 0;
6243 }
6244
6245 for (op = i.operands; --op >= 0;)
6246 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6247 || i.tm.operand_types[op].bitfield.instance == Accum)
6248 {
6249 if (i.types[op].bitfield.class != Reg)
6250 continue;
6251 if (i.types[op].bitfield.byte)
6252 i.suffix = BYTE_MNEM_SUFFIX;
6253 else if (i.types[op].bitfield.word)
6254 i.suffix = WORD_MNEM_SUFFIX;
6255 else if (i.types[op].bitfield.dword)
6256 i.suffix = LONG_MNEM_SUFFIX;
6257 else if (i.types[op].bitfield.qword)
6258 i.suffix = QWORD_MNEM_SUFFIX;
6259 else
6260 continue;
6261 break;
6262 }
6263 }
6264 }
6265 else if (i.suffix == BYTE_MNEM_SUFFIX)
6266 {
6267 if (intel_syntax
6268 && i.tm.opcode_modifier.ignoresize
6269 && i.tm.opcode_modifier.no_bsuf)
6270 i.suffix = 0;
6271 else if (!check_byte_reg ())
6272 return 0;
6273 }
6274 else if (i.suffix == LONG_MNEM_SUFFIX)
6275 {
6276 if (intel_syntax
6277 && i.tm.opcode_modifier.ignoresize
6278 && i.tm.opcode_modifier.no_lsuf
6279 && !i.tm.opcode_modifier.todword
6280 && !i.tm.opcode_modifier.toqword)
6281 i.suffix = 0;
6282 else if (!check_long_reg ())
6283 return 0;
6284 }
6285 else if (i.suffix == QWORD_MNEM_SUFFIX)
6286 {
6287 if (intel_syntax
6288 && i.tm.opcode_modifier.ignoresize
6289 && i.tm.opcode_modifier.no_qsuf
6290 && !i.tm.opcode_modifier.todword
6291 && !i.tm.opcode_modifier.toqword)
6292 i.suffix = 0;
6293 else if (!check_qword_reg ())
6294 return 0;
6295 }
6296 else if (i.suffix == WORD_MNEM_SUFFIX)
6297 {
6298 if (intel_syntax
6299 && i.tm.opcode_modifier.ignoresize
6300 && i.tm.opcode_modifier.no_wsuf)
6301 i.suffix = 0;
6302 else if (!check_word_reg ())
6303 return 0;
6304 }
6305 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6306 /* Do nothing if the instruction is going to ignore the prefix. */
6307 ;
6308 else
6309 abort ();
6310 }
6311 else if (i.tm.opcode_modifier.defaultsize
6312 && !i.suffix
6313 /* exclude fldenv/frstor/fsave/fstenv */
6314 && i.tm.opcode_modifier.no_ssuf)
6315 {
6316 if (stackop_size == LONG_MNEM_SUFFIX
6317 && i.tm.base_opcode == 0xcf)
6318 {
6319 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6320 .code16gcc directive to support 16-bit mode with
6321 32-bit address. For IRET without a suffix, generate
6322 16-bit IRET (opcode 0xcf) to return from an interrupt
6323 handler. */
6324 i.suffix = WORD_MNEM_SUFFIX;
6325 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6326 }
6327 else
6328 i.suffix = stackop_size;
6329 }
6330 else if (intel_syntax
6331 && !i.suffix
6332 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6333 || i.tm.opcode_modifier.jump == JUMP_BYTE
6334 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6335 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6336 && i.tm.extension_opcode <= 3)))
6337 {
6338 switch (flag_code)
6339 {
6340 case CODE_64BIT:
6341 if (!i.tm.opcode_modifier.no_qsuf)
6342 {
6343 i.suffix = QWORD_MNEM_SUFFIX;
6344 break;
6345 }
6346 /* Fall through. */
6347 case CODE_32BIT:
6348 if (!i.tm.opcode_modifier.no_lsuf)
6349 i.suffix = LONG_MNEM_SUFFIX;
6350 break;
6351 case CODE_16BIT:
6352 if (!i.tm.opcode_modifier.no_wsuf)
6353 i.suffix = WORD_MNEM_SUFFIX;
6354 break;
6355 }
6356 }
6357
6358 if (!i.suffix)
6359 {
6360 if (!intel_syntax)
6361 {
6362 if (i.tm.opcode_modifier.w)
6363 {
6364 as_bad (_("no instruction mnemonic suffix given and "
6365 "no register operands; can't size instruction"));
6366 return 0;
6367 }
6368 }
6369 else
6370 {
6371 unsigned int suffixes;
6372
6373 suffixes = !i.tm.opcode_modifier.no_bsuf;
6374 if (!i.tm.opcode_modifier.no_wsuf)
6375 suffixes |= 1 << 1;
6376 if (!i.tm.opcode_modifier.no_lsuf)
6377 suffixes |= 1 << 2;
6378 if (!i.tm.opcode_modifier.no_ldsuf)
6379 suffixes |= 1 << 3;
6380 if (!i.tm.opcode_modifier.no_ssuf)
6381 suffixes |= 1 << 4;
6382 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6383 suffixes |= 1 << 5;
6384
6385 /* There are more than suffix matches. */
6386 if (i.tm.opcode_modifier.w
6387 || ((suffixes & (suffixes - 1))
6388 && !i.tm.opcode_modifier.defaultsize
6389 && !i.tm.opcode_modifier.ignoresize))
6390 {
6391 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6392 return 0;
6393 }
6394 }
6395 }
6396
6397 /* Change the opcode based on the operand size given by i.suffix. */
6398 switch (i.suffix)
6399 {
6400 /* Size floating point instruction. */
6401 case LONG_MNEM_SUFFIX:
6402 if (i.tm.opcode_modifier.floatmf)
6403 {
6404 i.tm.base_opcode ^= 4;
6405 break;
6406 }
6407 /* fall through */
6408 case WORD_MNEM_SUFFIX:
6409 case QWORD_MNEM_SUFFIX:
6410 /* It's not a byte, select word/dword operation. */
6411 if (i.tm.opcode_modifier.w)
6412 {
6413 if (i.tm.opcode_modifier.shortform)
6414 i.tm.base_opcode |= 8;
6415 else
6416 i.tm.base_opcode |= 1;
6417 }
6418 /* fall through */
6419 case SHORT_MNEM_SUFFIX:
6420 /* Now select between word & dword operations via the operand
6421 size prefix, except for instructions that will ignore this
6422 prefix anyway. */
6423 if (i.reg_operands > 0
6424 && i.types[0].bitfield.class == Reg
6425 && i.tm.opcode_modifier.addrprefixopreg
6426 && (i.tm.operand_types[0].bitfield.instance == Accum
6427 || i.operands == 1))
6428 {
6429 /* The address size override prefix changes the size of the
6430 first operand. */
6431 if ((flag_code == CODE_32BIT
6432 && i.op[0].regs->reg_type.bitfield.word)
6433 || (flag_code != CODE_32BIT
6434 && i.op[0].regs->reg_type.bitfield.dword))
6435 if (!add_prefix (ADDR_PREFIX_OPCODE))
6436 return 0;
6437 }
6438 else if (i.suffix != QWORD_MNEM_SUFFIX
6439 && !i.tm.opcode_modifier.ignoresize
6440 && !i.tm.opcode_modifier.floatmf
6441 && !is_any_vex_encoding (&i.tm)
6442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6443 || (flag_code == CODE_64BIT
6444 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6445 {
6446 unsigned int prefix = DATA_PREFIX_OPCODE;
6447
6448 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6449 prefix = ADDR_PREFIX_OPCODE;
6450
6451 if (!add_prefix (prefix))
6452 return 0;
6453 }
6454
6455 /* Set mode64 for an operand. */
6456 if (i.suffix == QWORD_MNEM_SUFFIX
6457 && flag_code == CODE_64BIT
6458 && !i.tm.opcode_modifier.norex64
6459 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6460 need rex64. */
6461 && ! (i.operands == 2
6462 && i.tm.base_opcode == 0x90
6463 && i.tm.extension_opcode == None
6464 && i.types[0].bitfield.instance == Accum
6465 && i.types[0].bitfield.qword
6466 && i.types[1].bitfield.instance == Accum
6467 && i.types[1].bitfield.qword))
6468 i.rex |= REX_W;
6469
6470 break;
6471 }
6472
6473 if (i.reg_operands != 0
6474 && i.operands > 1
6475 && i.tm.opcode_modifier.addrprefixopreg
6476 && i.tm.operand_types[0].bitfield.instance != Accum)
6477 {
6478 /* Check invalid register operand when the address size override
6479 prefix changes the size of register operands. */
6480 unsigned int op;
6481 enum { need_word, need_dword, need_qword } need;
6482
6483 if (flag_code == CODE_32BIT)
6484 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6485 else
6486 {
6487 if (i.prefix[ADDR_PREFIX])
6488 need = need_dword;
6489 else
6490 need = flag_code == CODE_64BIT ? need_qword : need_word;
6491 }
6492
6493 for (op = 0; op < i.operands; op++)
6494 if (i.types[op].bitfield.class == Reg
6495 && ((need == need_word
6496 && !i.op[op].regs->reg_type.bitfield.word)
6497 || (need == need_dword
6498 && !i.op[op].regs->reg_type.bitfield.dword)
6499 || (need == need_qword
6500 && !i.op[op].regs->reg_type.bitfield.qword)))
6501 {
6502 as_bad (_("invalid register operand size for `%s'"),
6503 i.tm.name);
6504 return 0;
6505 }
6506 }
6507
6508 return 1;
6509 }
6510
6511 static int
6512 check_byte_reg (void)
6513 {
6514 int op;
6515
6516 for (op = i.operands; --op >= 0;)
6517 {
6518 /* Skip non-register operands. */
6519 if (i.types[op].bitfield.class != Reg)
6520 continue;
6521
6522 /* If this is an eight bit register, it's OK. If it's the 16 or
6523 32 bit version of an eight bit register, we will just use the
6524 low portion, and that's OK too. */
6525 if (i.types[op].bitfield.byte)
6526 continue;
6527
6528 /* I/O port address operands are OK too. */
6529 if (i.tm.operand_types[op].bitfield.instance == RegD
6530 && i.tm.operand_types[op].bitfield.word)
6531 continue;
6532
6533 /* crc32 doesn't generate this warning. */
6534 if (i.tm.base_opcode == 0xf20f38f0)
6535 continue;
6536
6537 if ((i.types[op].bitfield.word
6538 || i.types[op].bitfield.dword
6539 || i.types[op].bitfield.qword)
6540 && i.op[op].regs->reg_num < 4
6541 /* Prohibit these changes in 64bit mode, since the lowering
6542 would be more complicated. */
6543 && flag_code != CODE_64BIT)
6544 {
6545 #if REGISTER_WARNINGS
6546 if (!quiet_warnings)
6547 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6548 register_prefix,
6549 (i.op[op].regs + (i.types[op].bitfield.word
6550 ? REGNAM_AL - REGNAM_AX
6551 : REGNAM_AL - REGNAM_EAX))->reg_name,
6552 register_prefix,
6553 i.op[op].regs->reg_name,
6554 i.suffix);
6555 #endif
6556 continue;
6557 }
6558 /* Any other register is bad. */
6559 if (i.types[op].bitfield.class == Reg
6560 || i.types[op].bitfield.class == RegMMX
6561 || i.types[op].bitfield.class == RegSIMD
6562 || i.types[op].bitfield.class == SReg
6563 || i.types[op].bitfield.class == RegCR
6564 || i.types[op].bitfield.class == RegDR
6565 || i.types[op].bitfield.class == RegTR)
6566 {
6567 as_bad (_("`%s%s' not allowed with `%s%c'"),
6568 register_prefix,
6569 i.op[op].regs->reg_name,
6570 i.tm.name,
6571 i.suffix);
6572 return 0;
6573 }
6574 }
6575 return 1;
6576 }
6577
6578 static int
6579 check_long_reg (void)
6580 {
6581 int op;
6582
6583 for (op = i.operands; --op >= 0;)
6584 /* Skip non-register operands. */
6585 if (i.types[op].bitfield.class != Reg)
6586 continue;
6587 /* Reject eight bit registers, except where the template requires
6588 them. (eg. movzb) */
6589 else if (i.types[op].bitfield.byte
6590 && (i.tm.operand_types[op].bitfield.class == Reg
6591 || i.tm.operand_types[op].bitfield.instance == Accum)
6592 && (i.tm.operand_types[op].bitfield.word
6593 || i.tm.operand_types[op].bitfield.dword))
6594 {
6595 as_bad (_("`%s%s' not allowed with `%s%c'"),
6596 register_prefix,
6597 i.op[op].regs->reg_name,
6598 i.tm.name,
6599 i.suffix);
6600 return 0;
6601 }
6602 /* Warn if the e prefix on a general reg is missing. */
6603 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6604 && i.types[op].bitfield.word
6605 && (i.tm.operand_types[op].bitfield.class == Reg
6606 || i.tm.operand_types[op].bitfield.instance == Accum)
6607 && i.tm.operand_types[op].bitfield.dword)
6608 {
6609 /* Prohibit these changes in the 64bit mode, since the
6610 lowering is more complicated. */
6611 if (flag_code == CODE_64BIT)
6612 {
6613 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6614 register_prefix, i.op[op].regs->reg_name,
6615 i.suffix);
6616 return 0;
6617 }
6618 #if REGISTER_WARNINGS
6619 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6620 register_prefix,
6621 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6622 register_prefix, i.op[op].regs->reg_name, i.suffix);
6623 #endif
6624 }
6625 /* Warn if the r prefix on a general reg is present. */
6626 else if (i.types[op].bitfield.qword
6627 && (i.tm.operand_types[op].bitfield.class == Reg
6628 || i.tm.operand_types[op].bitfield.instance == Accum)
6629 && i.tm.operand_types[op].bitfield.dword)
6630 {
6631 if (intel_syntax
6632 && i.tm.opcode_modifier.toqword
6633 && i.types[0].bitfield.class != RegSIMD)
6634 {
6635 /* Convert to QWORD. We want REX byte. */
6636 i.suffix = QWORD_MNEM_SUFFIX;
6637 }
6638 else
6639 {
6640 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6641 register_prefix, i.op[op].regs->reg_name,
6642 i.suffix);
6643 return 0;
6644 }
6645 }
6646 return 1;
6647 }
6648
6649 static int
6650 check_qword_reg (void)
6651 {
6652 int op;
6653
6654 for (op = i.operands; --op >= 0; )
6655 /* Skip non-register operands. */
6656 if (i.types[op].bitfield.class != Reg)
6657 continue;
6658 /* Reject eight bit registers, except where the template requires
6659 them. (eg. movzb) */
6660 else if (i.types[op].bitfield.byte
6661 && (i.tm.operand_types[op].bitfield.class == Reg
6662 || i.tm.operand_types[op].bitfield.instance == Accum)
6663 && (i.tm.operand_types[op].bitfield.word
6664 || i.tm.operand_types[op].bitfield.dword))
6665 {
6666 as_bad (_("`%s%s' not allowed with `%s%c'"),
6667 register_prefix,
6668 i.op[op].regs->reg_name,
6669 i.tm.name,
6670 i.suffix);
6671 return 0;
6672 }
6673 /* Warn if the r prefix on a general reg is missing. */
6674 else if ((i.types[op].bitfield.word
6675 || i.types[op].bitfield.dword)
6676 && (i.tm.operand_types[op].bitfield.class == Reg
6677 || i.tm.operand_types[op].bitfield.instance == Accum)
6678 && i.tm.operand_types[op].bitfield.qword)
6679 {
6680 /* Prohibit these changes in the 64bit mode, since the
6681 lowering is more complicated. */
6682 if (intel_syntax
6683 && i.tm.opcode_modifier.todword
6684 && i.types[0].bitfield.class != RegSIMD)
6685 {
6686 /* Convert to DWORD. We don't want REX byte. */
6687 i.suffix = LONG_MNEM_SUFFIX;
6688 }
6689 else
6690 {
6691 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6692 register_prefix, i.op[op].regs->reg_name,
6693 i.suffix);
6694 return 0;
6695 }
6696 }
6697 return 1;
6698 }
6699
6700 static int
6701 check_word_reg (void)
6702 {
6703 int op;
6704 for (op = i.operands; --op >= 0;)
6705 /* Skip non-register operands. */
6706 if (i.types[op].bitfield.class != Reg)
6707 continue;
6708 /* Reject eight bit registers, except where the template requires
6709 them. (eg. movzb) */
6710 else if (i.types[op].bitfield.byte
6711 && (i.tm.operand_types[op].bitfield.class == Reg
6712 || i.tm.operand_types[op].bitfield.instance == Accum)
6713 && (i.tm.operand_types[op].bitfield.word
6714 || i.tm.operand_types[op].bitfield.dword))
6715 {
6716 as_bad (_("`%s%s' not allowed with `%s%c'"),
6717 register_prefix,
6718 i.op[op].regs->reg_name,
6719 i.tm.name,
6720 i.suffix);
6721 return 0;
6722 }
6723 /* Warn if the e or r prefix on a general reg is present. */
6724 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6725 && (i.types[op].bitfield.dword
6726 || i.types[op].bitfield.qword)
6727 && (i.tm.operand_types[op].bitfield.class == Reg
6728 || i.tm.operand_types[op].bitfield.instance == Accum)
6729 && i.tm.operand_types[op].bitfield.word)
6730 {
6731 /* Prohibit these changes in the 64bit mode, since the
6732 lowering is more complicated. */
6733 if (flag_code == CODE_64BIT)
6734 {
6735 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6736 register_prefix, i.op[op].regs->reg_name,
6737 i.suffix);
6738 return 0;
6739 }
6740 #if REGISTER_WARNINGS
6741 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6742 register_prefix,
6743 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6744 register_prefix, i.op[op].regs->reg_name, i.suffix);
6745 #endif
6746 }
6747 return 1;
6748 }
6749
6750 static int
6751 update_imm (unsigned int j)
6752 {
6753 i386_operand_type overlap = i.types[j];
6754 if ((overlap.bitfield.imm8
6755 || overlap.bitfield.imm8s
6756 || overlap.bitfield.imm16
6757 || overlap.bitfield.imm32
6758 || overlap.bitfield.imm32s
6759 || overlap.bitfield.imm64)
6760 && !operand_type_equal (&overlap, &imm8)
6761 && !operand_type_equal (&overlap, &imm8s)
6762 && !operand_type_equal (&overlap, &imm16)
6763 && !operand_type_equal (&overlap, &imm32)
6764 && !operand_type_equal (&overlap, &imm32s)
6765 && !operand_type_equal (&overlap, &imm64))
6766 {
6767 if (i.suffix)
6768 {
6769 i386_operand_type temp;
6770
6771 operand_type_set (&temp, 0);
6772 if (i.suffix == BYTE_MNEM_SUFFIX)
6773 {
6774 temp.bitfield.imm8 = overlap.bitfield.imm8;
6775 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6776 }
6777 else if (i.suffix == WORD_MNEM_SUFFIX)
6778 temp.bitfield.imm16 = overlap.bitfield.imm16;
6779 else if (i.suffix == QWORD_MNEM_SUFFIX)
6780 {
6781 temp.bitfield.imm64 = overlap.bitfield.imm64;
6782 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6783 }
6784 else
6785 temp.bitfield.imm32 = overlap.bitfield.imm32;
6786 overlap = temp;
6787 }
6788 else if (operand_type_equal (&overlap, &imm16_32_32s)
6789 || operand_type_equal (&overlap, &imm16_32)
6790 || operand_type_equal (&overlap, &imm16_32s))
6791 {
6792 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6793 overlap = imm16;
6794 else
6795 overlap = imm32s;
6796 }
6797 if (!operand_type_equal (&overlap, &imm8)
6798 && !operand_type_equal (&overlap, &imm8s)
6799 && !operand_type_equal (&overlap, &imm16)
6800 && !operand_type_equal (&overlap, &imm32)
6801 && !operand_type_equal (&overlap, &imm32s)
6802 && !operand_type_equal (&overlap, &imm64))
6803 {
6804 as_bad (_("no instruction mnemonic suffix given; "
6805 "can't determine immediate size"));
6806 return 0;
6807 }
6808 }
6809 i.types[j] = overlap;
6810
6811 return 1;
6812 }
6813
6814 static int
6815 finalize_imm (void)
6816 {
6817 unsigned int j, n;
6818
6819 /* Update the first 2 immediate operands. */
6820 n = i.operands > 2 ? 2 : i.operands;
6821 if (n)
6822 {
6823 for (j = 0; j < n; j++)
6824 if (update_imm (j) == 0)
6825 return 0;
6826
6827 /* The 3rd operand can't be immediate operand. */
6828 gas_assert (operand_type_check (i.types[2], imm) == 0);
6829 }
6830
6831 return 1;
6832 }
6833
6834 static int
6835 process_operands (void)
6836 {
6837 /* Default segment register this instruction will use for memory
6838 accesses. 0 means unknown. This is only for optimizing out
6839 unnecessary segment overrides. */
6840 const seg_entry *default_seg = 0;
6841
6842 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6843 {
6844 unsigned int dupl = i.operands;
6845 unsigned int dest = dupl - 1;
6846 unsigned int j;
6847
6848 /* The destination must be an xmm register. */
6849 gas_assert (i.reg_operands
6850 && MAX_OPERANDS > dupl
6851 && operand_type_equal (&i.types[dest], &regxmm));
6852
6853 if (i.tm.operand_types[0].bitfield.instance == Accum
6854 && i.tm.operand_types[0].bitfield.xmmword)
6855 {
6856 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6857 {
6858 /* Keep xmm0 for instructions with VEX prefix and 3
6859 sources. */
6860 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6861 i.tm.operand_types[0].bitfield.class = RegSIMD;
6862 goto duplicate;
6863 }
6864 else
6865 {
6866 /* We remove the first xmm0 and keep the number of
6867 operands unchanged, which in fact duplicates the
6868 destination. */
6869 for (j = 1; j < i.operands; j++)
6870 {
6871 i.op[j - 1] = i.op[j];
6872 i.types[j - 1] = i.types[j];
6873 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6874 i.flags[j - 1] = i.flags[j];
6875 }
6876 }
6877 }
6878 else if (i.tm.opcode_modifier.implicit1stxmm0)
6879 {
6880 gas_assert ((MAX_OPERANDS - 1) > dupl
6881 && (i.tm.opcode_modifier.vexsources
6882 == VEX3SOURCES));
6883
6884 /* Add the implicit xmm0 for instructions with VEX prefix
6885 and 3 sources. */
6886 for (j = i.operands; j > 0; j--)
6887 {
6888 i.op[j] = i.op[j - 1];
6889 i.types[j] = i.types[j - 1];
6890 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6891 i.flags[j] = i.flags[j - 1];
6892 }
6893 i.op[0].regs
6894 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6895 i.types[0] = regxmm;
6896 i.tm.operand_types[0] = regxmm;
6897
6898 i.operands += 2;
6899 i.reg_operands += 2;
6900 i.tm.operands += 2;
6901
6902 dupl++;
6903 dest++;
6904 i.op[dupl] = i.op[dest];
6905 i.types[dupl] = i.types[dest];
6906 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6907 i.flags[dupl] = i.flags[dest];
6908 }
6909 else
6910 {
6911 duplicate:
6912 i.operands++;
6913 i.reg_operands++;
6914 i.tm.operands++;
6915
6916 i.op[dupl] = i.op[dest];
6917 i.types[dupl] = i.types[dest];
6918 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6919 i.flags[dupl] = i.flags[dest];
6920 }
6921
6922 if (i.tm.opcode_modifier.immext)
6923 process_immext ();
6924 }
6925 else if (i.tm.operand_types[0].bitfield.instance == Accum
6926 && i.tm.operand_types[0].bitfield.xmmword)
6927 {
6928 unsigned int j;
6929
6930 for (j = 1; j < i.operands; j++)
6931 {
6932 i.op[j - 1] = i.op[j];
6933 i.types[j - 1] = i.types[j];
6934
6935 /* We need to adjust fields in i.tm since they are used by
6936 build_modrm_byte. */
6937 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6938
6939 i.flags[j - 1] = i.flags[j];
6940 }
6941
6942 i.operands--;
6943 i.reg_operands--;
6944 i.tm.operands--;
6945 }
6946 else if (i.tm.opcode_modifier.implicitquadgroup)
6947 {
6948 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6949
6950 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6951 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
6952 regnum = register_number (i.op[1].regs);
6953 first_reg_in_group = regnum & ~3;
6954 last_reg_in_group = first_reg_in_group + 3;
6955 if (regnum != first_reg_in_group)
6956 as_warn (_("source register `%s%s' implicitly denotes"
6957 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6958 register_prefix, i.op[1].regs->reg_name,
6959 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6960 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6961 i.tm.name);
6962 }
6963 else if (i.tm.opcode_modifier.regkludge)
6964 {
6965 /* The imul $imm, %reg instruction is converted into
6966 imul $imm, %reg, %reg, and the clr %reg instruction
6967 is converted into xor %reg, %reg. */
6968
6969 unsigned int first_reg_op;
6970
6971 if (operand_type_check (i.types[0], reg))
6972 first_reg_op = 0;
6973 else
6974 first_reg_op = 1;
6975 /* Pretend we saw the extra register operand. */
6976 gas_assert (i.reg_operands == 1
6977 && i.op[first_reg_op + 1].regs == 0);
6978 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6979 i.types[first_reg_op + 1] = i.types[first_reg_op];
6980 i.operands++;
6981 i.reg_operands++;
6982 }
6983
6984 if (i.tm.opcode_modifier.modrm)
6985 {
6986 /* The opcode is completed (modulo i.tm.extension_opcode which
6987 must be put into the modrm byte). Now, we make the modrm and
6988 index base bytes based on all the info we've collected. */
6989
6990 default_seg = build_modrm_byte ();
6991 }
6992 else if (i.types[0].bitfield.class == SReg)
6993 {
6994 if (flag_code != CODE_64BIT
6995 ? i.tm.base_opcode == POP_SEG_SHORT
6996 && i.op[0].regs->reg_num == 1
6997 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
6998 && i.op[0].regs->reg_num < 4)
6999 {
7000 as_bad (_("you can't `%s %s%s'"),
7001 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7002 return 0;
7003 }
7004 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7005 {
7006 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7007 i.tm.opcode_length = 2;
7008 }
7009 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7010 }
7011 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7012 {
7013 default_seg = &ds;
7014 }
7015 else if (i.tm.opcode_modifier.isstring)
7016 {
7017 /* For the string instructions that allow a segment override
7018 on one of their operands, the default segment is ds. */
7019 default_seg = &ds;
7020 }
7021 else if (i.tm.opcode_modifier.shortform)
7022 {
7023 /* The register or float register operand is in operand
7024 0 or 1. */
7025 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7026
7027 /* Register goes in low 3 bits of opcode. */
7028 i.tm.base_opcode |= i.op[op].regs->reg_num;
7029 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7030 i.rex |= REX_B;
7031 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7032 {
7033 /* Warn about some common errors, but press on regardless.
7034 The first case can be generated by gcc (<= 2.8.1). */
7035 if (i.operands == 2)
7036 {
7037 /* Reversed arguments on faddp, fsubp, etc. */
7038 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7039 register_prefix, i.op[!intel_syntax].regs->reg_name,
7040 register_prefix, i.op[intel_syntax].regs->reg_name);
7041 }
7042 else
7043 {
7044 /* Extraneous `l' suffix on fp insn. */
7045 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7046 register_prefix, i.op[0].regs->reg_name);
7047 }
7048 }
7049 }
7050
7051 if (i.tm.base_opcode == 0x8d /* lea */
7052 && i.seg[0]
7053 && !quiet_warnings)
7054 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7055
7056 /* If a segment was explicitly specified, and the specified segment
7057 is not the default, use an opcode prefix to select it. If we
7058 never figured out what the default segment is, then default_seg
7059 will be zero at this point, and the specified segment prefix will
7060 always be used. */
7061 if ((i.seg[0]) && (i.seg[0] != default_seg))
7062 {
7063 if (!add_prefix (i.seg[0]->seg_prefix))
7064 return 0;
7065 }
7066 return 1;
7067 }
7068
7069 static const seg_entry *
7070 build_modrm_byte (void)
7071 {
7072 const seg_entry *default_seg = 0;
7073 unsigned int source, dest;
7074 int vex_3_sources;
7075
7076 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7077 if (vex_3_sources)
7078 {
7079 unsigned int nds, reg_slot;
7080 expressionS *exp;
7081
7082 dest = i.operands - 1;
7083 nds = dest - 1;
7084
7085 /* There are 2 kinds of instructions:
7086 1. 5 operands: 4 register operands or 3 register operands
7087 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7088 VexW0 or VexW1. The destination must be either XMM, YMM or
7089 ZMM register.
7090 2. 4 operands: 4 register operands or 3 register operands
7091 plus 1 memory operand, with VexXDS. */
7092 gas_assert ((i.reg_operands == 4
7093 || (i.reg_operands == 3 && i.mem_operands == 1))
7094 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7095 && i.tm.opcode_modifier.vexw
7096 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7097
7098 /* If VexW1 is set, the first non-immediate operand is the source and
7099 the second non-immediate one is encoded in the immediate operand. */
7100 if (i.tm.opcode_modifier.vexw == VEXW1)
7101 {
7102 source = i.imm_operands;
7103 reg_slot = i.imm_operands + 1;
7104 }
7105 else
7106 {
7107 source = i.imm_operands + 1;
7108 reg_slot = i.imm_operands;
7109 }
7110
7111 if (i.imm_operands == 0)
7112 {
7113 /* When there is no immediate operand, generate an 8bit
7114 immediate operand to encode the first operand. */
7115 exp = &im_expressions[i.imm_operands++];
7116 i.op[i.operands].imms = exp;
7117 i.types[i.operands] = imm8;
7118 i.operands++;
7119
7120 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7121 exp->X_op = O_constant;
7122 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7123 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7124 }
7125 else
7126 {
7127 gas_assert (i.imm_operands == 1);
7128 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7129 gas_assert (!i.tm.opcode_modifier.immext);
7130
7131 /* Turn on Imm8 again so that output_imm will generate it. */
7132 i.types[0].bitfield.imm8 = 1;
7133
7134 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7135 i.op[0].imms->X_add_number
7136 |= register_number (i.op[reg_slot].regs) << 4;
7137 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7138 }
7139
7140 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7141 i.vex.register_specifier = i.op[nds].regs;
7142 }
7143 else
7144 source = dest = 0;
7145
7146 /* i.reg_operands MUST be the number of real register operands;
7147 implicit registers do not count. If there are 3 register
7148 operands, it must be a instruction with VexNDS. For a
7149 instruction with VexNDD, the destination register is encoded
7150 in VEX prefix. If there are 4 register operands, it must be
7151 a instruction with VEX prefix and 3 sources. */
7152 if (i.mem_operands == 0
7153 && ((i.reg_operands == 2
7154 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7155 || (i.reg_operands == 3
7156 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7157 || (i.reg_operands == 4 && vex_3_sources)))
7158 {
7159 switch (i.operands)
7160 {
7161 case 2:
7162 source = 0;
7163 break;
7164 case 3:
7165 /* When there are 3 operands, one of them may be immediate,
7166 which may be the first or the last operand. Otherwise,
7167 the first operand must be shift count register (cl) or it
7168 is an instruction with VexNDS. */
7169 gas_assert (i.imm_operands == 1
7170 || (i.imm_operands == 0
7171 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7172 || (i.types[0].bitfield.instance == RegC
7173 && i.types[0].bitfield.byte))));
7174 if (operand_type_check (i.types[0], imm)
7175 || (i.types[0].bitfield.instance == RegC
7176 && i.types[0].bitfield.byte))
7177 source = 1;
7178 else
7179 source = 0;
7180 break;
7181 case 4:
7182 /* When there are 4 operands, the first two must be 8bit
7183 immediate operands. The source operand will be the 3rd
7184 one.
7185
7186 For instructions with VexNDS, if the first operand
7187 an imm8, the source operand is the 2nd one. If the last
7188 operand is imm8, the source operand is the first one. */
7189 gas_assert ((i.imm_operands == 2
7190 && i.types[0].bitfield.imm8
7191 && i.types[1].bitfield.imm8)
7192 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7193 && i.imm_operands == 1
7194 && (i.types[0].bitfield.imm8
7195 || i.types[i.operands - 1].bitfield.imm8
7196 || i.rounding)));
7197 if (i.imm_operands == 2)
7198 source = 2;
7199 else
7200 {
7201 if (i.types[0].bitfield.imm8)
7202 source = 1;
7203 else
7204 source = 0;
7205 }
7206 break;
7207 case 5:
7208 if (is_evex_encoding (&i.tm))
7209 {
7210 /* For EVEX instructions, when there are 5 operands, the
7211 first one must be immediate operand. If the second one
7212 is immediate operand, the source operand is the 3th
7213 one. If the last one is immediate operand, the source
7214 operand is the 2nd one. */
7215 gas_assert (i.imm_operands == 2
7216 && i.tm.opcode_modifier.sae
7217 && operand_type_check (i.types[0], imm));
7218 if (operand_type_check (i.types[1], imm))
7219 source = 2;
7220 else if (operand_type_check (i.types[4], imm))
7221 source = 1;
7222 else
7223 abort ();
7224 }
7225 break;
7226 default:
7227 abort ();
7228 }
7229
7230 if (!vex_3_sources)
7231 {
7232 dest = source + 1;
7233
7234 /* RC/SAE operand could be between DEST and SRC. That happens
7235 when one operand is GPR and the other one is XMM/YMM/ZMM
7236 register. */
7237 if (i.rounding && i.rounding->operand == (int) dest)
7238 dest++;
7239
7240 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7241 {
7242 /* For instructions with VexNDS, the register-only source
7243 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7244 register. It is encoded in VEX prefix. */
7245
7246 i386_operand_type op;
7247 unsigned int vvvv;
7248
7249 /* Check register-only source operand when two source
7250 operands are swapped. */
7251 if (!i.tm.operand_types[source].bitfield.baseindex
7252 && i.tm.operand_types[dest].bitfield.baseindex)
7253 {
7254 vvvv = source;
7255 source = dest;
7256 }
7257 else
7258 vvvv = dest;
7259
7260 op = i.tm.operand_types[vvvv];
7261 if ((dest + 1) >= i.operands
7262 || ((op.bitfield.class != Reg
7263 || (!op.bitfield.dword && !op.bitfield.qword))
7264 && op.bitfield.class != RegSIMD
7265 && !operand_type_equal (&op, &regmask)))
7266 abort ();
7267 i.vex.register_specifier = i.op[vvvv].regs;
7268 dest++;
7269 }
7270 }
7271
7272 i.rm.mode = 3;
7273 /* One of the register operands will be encoded in the i.rm.reg
7274 field, the other in the combined i.rm.mode and i.rm.regmem
7275 fields. If no form of this instruction supports a memory
7276 destination operand, then we assume the source operand may
7277 sometimes be a memory operand and so we need to store the
7278 destination in the i.rm.reg field. */
7279 if (!i.tm.opcode_modifier.regmem
7280 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7281 {
7282 i.rm.reg = i.op[dest].regs->reg_num;
7283 i.rm.regmem = i.op[source].regs->reg_num;
7284 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7285 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7286 i.has_regmmx = TRUE;
7287 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7288 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7289 {
7290 if (i.types[dest].bitfield.zmmword
7291 || i.types[source].bitfield.zmmword)
7292 i.has_regzmm = TRUE;
7293 else if (i.types[dest].bitfield.ymmword
7294 || i.types[source].bitfield.ymmword)
7295 i.has_regymm = TRUE;
7296 else
7297 i.has_regxmm = TRUE;
7298 }
7299 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7300 i.rex |= REX_R;
7301 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7302 i.vrex |= REX_R;
7303 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7304 i.rex |= REX_B;
7305 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7306 i.vrex |= REX_B;
7307 }
7308 else
7309 {
7310 i.rm.reg = i.op[source].regs->reg_num;
7311 i.rm.regmem = i.op[dest].regs->reg_num;
7312 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7313 i.rex |= REX_B;
7314 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7315 i.vrex |= REX_B;
7316 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7317 i.rex |= REX_R;
7318 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7319 i.vrex |= REX_R;
7320 }
7321 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7322 {
7323 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7324 abort ();
7325 i.rex &= ~REX_R;
7326 add_prefix (LOCK_PREFIX_OPCODE);
7327 }
7328 }
7329 else
7330 { /* If it's not 2 reg operands... */
7331 unsigned int mem;
7332
7333 if (i.mem_operands)
7334 {
7335 unsigned int fake_zero_displacement = 0;
7336 unsigned int op;
7337
7338 for (op = 0; op < i.operands; op++)
7339 if (i.flags[op] & Operand_Mem)
7340 break;
7341 gas_assert (op < i.operands);
7342
7343 if (i.tm.opcode_modifier.vecsib)
7344 {
7345 if (i.index_reg->reg_num == RegIZ)
7346 abort ();
7347
7348 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7349 if (!i.base_reg)
7350 {
7351 i.sib.base = NO_BASE_REGISTER;
7352 i.sib.scale = i.log2_scale_factor;
7353 i.types[op].bitfield.disp8 = 0;
7354 i.types[op].bitfield.disp16 = 0;
7355 i.types[op].bitfield.disp64 = 0;
7356 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7357 {
7358 /* Must be 32 bit */
7359 i.types[op].bitfield.disp32 = 1;
7360 i.types[op].bitfield.disp32s = 0;
7361 }
7362 else
7363 {
7364 i.types[op].bitfield.disp32 = 0;
7365 i.types[op].bitfield.disp32s = 1;
7366 }
7367 }
7368 i.sib.index = i.index_reg->reg_num;
7369 if ((i.index_reg->reg_flags & RegRex) != 0)
7370 i.rex |= REX_X;
7371 if ((i.index_reg->reg_flags & RegVRex) != 0)
7372 i.vrex |= REX_X;
7373 }
7374
7375 default_seg = &ds;
7376
7377 if (i.base_reg == 0)
7378 {
7379 i.rm.mode = 0;
7380 if (!i.disp_operands)
7381 fake_zero_displacement = 1;
7382 if (i.index_reg == 0)
7383 {
7384 i386_operand_type newdisp;
7385
7386 gas_assert (!i.tm.opcode_modifier.vecsib);
7387 /* Operand is just <disp> */
7388 if (flag_code == CODE_64BIT)
7389 {
7390 /* 64bit mode overwrites the 32bit absolute
7391 addressing by RIP relative addressing and
7392 absolute addressing is encoded by one of the
7393 redundant SIB forms. */
7394 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7395 i.sib.base = NO_BASE_REGISTER;
7396 i.sib.index = NO_INDEX_REGISTER;
7397 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7398 }
7399 else if ((flag_code == CODE_16BIT)
7400 ^ (i.prefix[ADDR_PREFIX] != 0))
7401 {
7402 i.rm.regmem = NO_BASE_REGISTER_16;
7403 newdisp = disp16;
7404 }
7405 else
7406 {
7407 i.rm.regmem = NO_BASE_REGISTER;
7408 newdisp = disp32;
7409 }
7410 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7411 i.types[op] = operand_type_or (i.types[op], newdisp);
7412 }
7413 else if (!i.tm.opcode_modifier.vecsib)
7414 {
7415 /* !i.base_reg && i.index_reg */
7416 if (i.index_reg->reg_num == RegIZ)
7417 i.sib.index = NO_INDEX_REGISTER;
7418 else
7419 i.sib.index = i.index_reg->reg_num;
7420 i.sib.base = NO_BASE_REGISTER;
7421 i.sib.scale = i.log2_scale_factor;
7422 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7423 i.types[op].bitfield.disp8 = 0;
7424 i.types[op].bitfield.disp16 = 0;
7425 i.types[op].bitfield.disp64 = 0;
7426 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7427 {
7428 /* Must be 32 bit */
7429 i.types[op].bitfield.disp32 = 1;
7430 i.types[op].bitfield.disp32s = 0;
7431 }
7432 else
7433 {
7434 i.types[op].bitfield.disp32 = 0;
7435 i.types[op].bitfield.disp32s = 1;
7436 }
7437 if ((i.index_reg->reg_flags & RegRex) != 0)
7438 i.rex |= REX_X;
7439 }
7440 }
7441 /* RIP addressing for 64bit mode. */
7442 else if (i.base_reg->reg_num == RegIP)
7443 {
7444 gas_assert (!i.tm.opcode_modifier.vecsib);
7445 i.rm.regmem = NO_BASE_REGISTER;
7446 i.types[op].bitfield.disp8 = 0;
7447 i.types[op].bitfield.disp16 = 0;
7448 i.types[op].bitfield.disp32 = 0;
7449 i.types[op].bitfield.disp32s = 1;
7450 i.types[op].bitfield.disp64 = 0;
7451 i.flags[op] |= Operand_PCrel;
7452 if (! i.disp_operands)
7453 fake_zero_displacement = 1;
7454 }
7455 else if (i.base_reg->reg_type.bitfield.word)
7456 {
7457 gas_assert (!i.tm.opcode_modifier.vecsib);
7458 switch (i.base_reg->reg_num)
7459 {
7460 case 3: /* (%bx) */
7461 if (i.index_reg == 0)
7462 i.rm.regmem = 7;
7463 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7464 i.rm.regmem = i.index_reg->reg_num - 6;
7465 break;
7466 case 5: /* (%bp) */
7467 default_seg = &ss;
7468 if (i.index_reg == 0)
7469 {
7470 i.rm.regmem = 6;
7471 if (operand_type_check (i.types[op], disp) == 0)
7472 {
7473 /* fake (%bp) into 0(%bp) */
7474 i.types[op].bitfield.disp8 = 1;
7475 fake_zero_displacement = 1;
7476 }
7477 }
7478 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7479 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7480 break;
7481 default: /* (%si) -> 4 or (%di) -> 5 */
7482 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7483 }
7484 i.rm.mode = mode_from_disp_size (i.types[op]);
7485 }
7486 else /* i.base_reg and 32/64 bit mode */
7487 {
7488 if (flag_code == CODE_64BIT
7489 && operand_type_check (i.types[op], disp))
7490 {
7491 i.types[op].bitfield.disp16 = 0;
7492 i.types[op].bitfield.disp64 = 0;
7493 if (i.prefix[ADDR_PREFIX] == 0)
7494 {
7495 i.types[op].bitfield.disp32 = 0;
7496 i.types[op].bitfield.disp32s = 1;
7497 }
7498 else
7499 {
7500 i.types[op].bitfield.disp32 = 1;
7501 i.types[op].bitfield.disp32s = 0;
7502 }
7503 }
7504
7505 if (!i.tm.opcode_modifier.vecsib)
7506 i.rm.regmem = i.base_reg->reg_num;
7507 if ((i.base_reg->reg_flags & RegRex) != 0)
7508 i.rex |= REX_B;
7509 i.sib.base = i.base_reg->reg_num;
7510 /* x86-64 ignores REX prefix bit here to avoid decoder
7511 complications. */
7512 if (!(i.base_reg->reg_flags & RegRex)
7513 && (i.base_reg->reg_num == EBP_REG_NUM
7514 || i.base_reg->reg_num == ESP_REG_NUM))
7515 default_seg = &ss;
7516 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7517 {
7518 fake_zero_displacement = 1;
7519 i.types[op].bitfield.disp8 = 1;
7520 }
7521 i.sib.scale = i.log2_scale_factor;
7522 if (i.index_reg == 0)
7523 {
7524 gas_assert (!i.tm.opcode_modifier.vecsib);
7525 /* <disp>(%esp) becomes two byte modrm with no index
7526 register. We've already stored the code for esp
7527 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7528 Any base register besides %esp will not use the
7529 extra modrm byte. */
7530 i.sib.index = NO_INDEX_REGISTER;
7531 }
7532 else if (!i.tm.opcode_modifier.vecsib)
7533 {
7534 if (i.index_reg->reg_num == RegIZ)
7535 i.sib.index = NO_INDEX_REGISTER;
7536 else
7537 i.sib.index = i.index_reg->reg_num;
7538 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7539 if ((i.index_reg->reg_flags & RegRex) != 0)
7540 i.rex |= REX_X;
7541 }
7542
7543 if (i.disp_operands
7544 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7545 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7546 i.rm.mode = 0;
7547 else
7548 {
7549 if (!fake_zero_displacement
7550 && !i.disp_operands
7551 && i.disp_encoding)
7552 {
7553 fake_zero_displacement = 1;
7554 if (i.disp_encoding == disp_encoding_8bit)
7555 i.types[op].bitfield.disp8 = 1;
7556 else
7557 i.types[op].bitfield.disp32 = 1;
7558 }
7559 i.rm.mode = mode_from_disp_size (i.types[op]);
7560 }
7561 }
7562
7563 if (fake_zero_displacement)
7564 {
7565 /* Fakes a zero displacement assuming that i.types[op]
7566 holds the correct displacement size. */
7567 expressionS *exp;
7568
7569 gas_assert (i.op[op].disps == 0);
7570 exp = &disp_expressions[i.disp_operands++];
7571 i.op[op].disps = exp;
7572 exp->X_op = O_constant;
7573 exp->X_add_number = 0;
7574 exp->X_add_symbol = (symbolS *) 0;
7575 exp->X_op_symbol = (symbolS *) 0;
7576 }
7577
7578 mem = op;
7579 }
7580 else
7581 mem = ~0;
7582
7583 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7584 {
7585 if (operand_type_check (i.types[0], imm))
7586 i.vex.register_specifier = NULL;
7587 else
7588 {
7589 /* VEX.vvvv encodes one of the sources when the first
7590 operand is not an immediate. */
7591 if (i.tm.opcode_modifier.vexw == VEXW0)
7592 i.vex.register_specifier = i.op[0].regs;
7593 else
7594 i.vex.register_specifier = i.op[1].regs;
7595 }
7596
7597 /* Destination is a XMM register encoded in the ModRM.reg
7598 and VEX.R bit. */
7599 i.rm.reg = i.op[2].regs->reg_num;
7600 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7601 i.rex |= REX_R;
7602
7603 /* ModRM.rm and VEX.B encodes the other source. */
7604 if (!i.mem_operands)
7605 {
7606 i.rm.mode = 3;
7607
7608 if (i.tm.opcode_modifier.vexw == VEXW0)
7609 i.rm.regmem = i.op[1].regs->reg_num;
7610 else
7611 i.rm.regmem = i.op[0].regs->reg_num;
7612
7613 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7614 i.rex |= REX_B;
7615 }
7616 }
7617 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7618 {
7619 i.vex.register_specifier = i.op[2].regs;
7620 if (!i.mem_operands)
7621 {
7622 i.rm.mode = 3;
7623 i.rm.regmem = i.op[1].regs->reg_num;
7624 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7625 i.rex |= REX_B;
7626 }
7627 }
7628 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7629 (if any) based on i.tm.extension_opcode. Again, we must be
7630 careful to make sure that segment/control/debug/test/MMX
7631 registers are coded into the i.rm.reg field. */
7632 else if (i.reg_operands)
7633 {
7634 unsigned int op;
7635 unsigned int vex_reg = ~0;
7636
7637 for (op = 0; op < i.operands; op++)
7638 {
7639 if (i.types[op].bitfield.class == Reg
7640 || i.types[op].bitfield.class == RegBND
7641 || i.types[op].bitfield.class == RegMask
7642 || i.types[op].bitfield.class == SReg
7643 || i.types[op].bitfield.class == RegCR
7644 || i.types[op].bitfield.class == RegDR
7645 || i.types[op].bitfield.class == RegTR)
7646 break;
7647 if (i.types[op].bitfield.class == RegSIMD)
7648 {
7649 if (i.types[op].bitfield.zmmword)
7650 i.has_regzmm = TRUE;
7651 else if (i.types[op].bitfield.ymmword)
7652 i.has_regymm = TRUE;
7653 else
7654 i.has_regxmm = TRUE;
7655 break;
7656 }
7657 if (i.types[op].bitfield.class == RegMMX)
7658 {
7659 i.has_regmmx = TRUE;
7660 break;
7661 }
7662 }
7663
7664 if (vex_3_sources)
7665 op = dest;
7666 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7667 {
7668 /* For instructions with VexNDS, the register-only
7669 source operand is encoded in VEX prefix. */
7670 gas_assert (mem != (unsigned int) ~0);
7671
7672 if (op > mem)
7673 {
7674 vex_reg = op++;
7675 gas_assert (op < i.operands);
7676 }
7677 else
7678 {
7679 /* Check register-only source operand when two source
7680 operands are swapped. */
7681 if (!i.tm.operand_types[op].bitfield.baseindex
7682 && i.tm.operand_types[op + 1].bitfield.baseindex)
7683 {
7684 vex_reg = op;
7685 op += 2;
7686 gas_assert (mem == (vex_reg + 1)
7687 && op < i.operands);
7688 }
7689 else
7690 {
7691 vex_reg = op + 1;
7692 gas_assert (vex_reg < i.operands);
7693 }
7694 }
7695 }
7696 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7697 {
7698 /* For instructions with VexNDD, the register destination
7699 is encoded in VEX prefix. */
7700 if (i.mem_operands == 0)
7701 {
7702 /* There is no memory operand. */
7703 gas_assert ((op + 2) == i.operands);
7704 vex_reg = op + 1;
7705 }
7706 else
7707 {
7708 /* There are only 2 non-immediate operands. */
7709 gas_assert (op < i.imm_operands + 2
7710 && i.operands == i.imm_operands + 2);
7711 vex_reg = i.imm_operands + 1;
7712 }
7713 }
7714 else
7715 gas_assert (op < i.operands);
7716
7717 if (vex_reg != (unsigned int) ~0)
7718 {
7719 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7720
7721 if ((type->bitfield.class != Reg
7722 || (!type->bitfield.dword && !type->bitfield.qword))
7723 && type->bitfield.class != RegSIMD
7724 && !operand_type_equal (type, &regmask))
7725 abort ();
7726
7727 i.vex.register_specifier = i.op[vex_reg].regs;
7728 }
7729
7730 /* Don't set OP operand twice. */
7731 if (vex_reg != op)
7732 {
7733 /* If there is an extension opcode to put here, the
7734 register number must be put into the regmem field. */
7735 if (i.tm.extension_opcode != None)
7736 {
7737 i.rm.regmem = i.op[op].regs->reg_num;
7738 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7739 i.rex |= REX_B;
7740 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7741 i.vrex |= REX_B;
7742 }
7743 else
7744 {
7745 i.rm.reg = i.op[op].regs->reg_num;
7746 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7747 i.rex |= REX_R;
7748 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7749 i.vrex |= REX_R;
7750 }
7751 }
7752
7753 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7754 must set it to 3 to indicate this is a register operand
7755 in the regmem field. */
7756 if (!i.mem_operands)
7757 i.rm.mode = 3;
7758 }
7759
7760 /* Fill in i.rm.reg field with extension opcode (if any). */
7761 if (i.tm.extension_opcode != None)
7762 i.rm.reg = i.tm.extension_opcode;
7763 }
7764 return default_seg;
7765 }
7766
7767 static void
7768 output_branch (void)
7769 {
7770 char *p;
7771 int size;
7772 int code16;
7773 int prefix;
7774 relax_substateT subtype;
7775 symbolS *sym;
7776 offsetT off;
7777
7778 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7779 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7780
7781 prefix = 0;
7782 if (i.prefix[DATA_PREFIX] != 0)
7783 {
7784 prefix = 1;
7785 i.prefixes -= 1;
7786 code16 ^= CODE16;
7787 }
7788 /* Pentium4 branch hints. */
7789 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7790 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7791 {
7792 prefix++;
7793 i.prefixes--;
7794 }
7795 if (i.prefix[REX_PREFIX] != 0)
7796 {
7797 prefix++;
7798 i.prefixes--;
7799 }
7800
7801 /* BND prefixed jump. */
7802 if (i.prefix[BND_PREFIX] != 0)
7803 {
7804 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7805 i.prefixes -= 1;
7806 }
7807
7808 if (i.prefixes != 0 && !intel_syntax)
7809 as_warn (_("skipping prefixes on this instruction"));
7810
7811 /* It's always a symbol; End frag & setup for relax.
7812 Make sure there is enough room in this frag for the largest
7813 instruction we may generate in md_convert_frag. This is 2
7814 bytes for the opcode and room for the prefix and largest
7815 displacement. */
7816 frag_grow (prefix + 2 + 4);
7817 /* Prefix and 1 opcode byte go in fr_fix. */
7818 p = frag_more (prefix + 1);
7819 if (i.prefix[DATA_PREFIX] != 0)
7820 *p++ = DATA_PREFIX_OPCODE;
7821 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7822 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7823 *p++ = i.prefix[SEG_PREFIX];
7824 if (i.prefix[REX_PREFIX] != 0)
7825 *p++ = i.prefix[REX_PREFIX];
7826 *p = i.tm.base_opcode;
7827
7828 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7829 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7830 else if (cpu_arch_flags.bitfield.cpui386)
7831 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7832 else
7833 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7834 subtype |= code16;
7835
7836 sym = i.op[0].disps->X_add_symbol;
7837 off = i.op[0].disps->X_add_number;
7838
7839 if (i.op[0].disps->X_op != O_constant
7840 && i.op[0].disps->X_op != O_symbol)
7841 {
7842 /* Handle complex expressions. */
7843 sym = make_expr_symbol (i.op[0].disps);
7844 off = 0;
7845 }
7846
7847 /* 1 possible extra opcode + 4 byte displacement go in var part.
7848 Pass reloc in fr_var. */
7849 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7850 }
7851
7852 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7853 /* Return TRUE iff PLT32 relocation should be used for branching to
7854 symbol S. */
7855
7856 static bfd_boolean
7857 need_plt32_p (symbolS *s)
7858 {
7859 /* PLT32 relocation is ELF only. */
7860 if (!IS_ELF)
7861 return FALSE;
7862
7863 #ifdef TE_SOLARIS
7864 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7865 krtld support it. */
7866 return FALSE;
7867 #endif
7868
7869 /* Since there is no need to prepare for PLT branch on x86-64, we
7870 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7871 be used as a marker for 32-bit PC-relative branches. */
7872 if (!object_64bit)
7873 return FALSE;
7874
7875 /* Weak or undefined symbol need PLT32 relocation. */
7876 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7877 return TRUE;
7878
7879 /* Non-global symbol doesn't need PLT32 relocation. */
7880 if (! S_IS_EXTERNAL (s))
7881 return FALSE;
7882
7883 /* Other global symbols need PLT32 relocation. NB: Symbol with
7884 non-default visibilities are treated as normal global symbol
7885 so that PLT32 relocation can be used as a marker for 32-bit
7886 PC-relative branches. It is useful for linker relaxation. */
7887 return TRUE;
7888 }
7889 #endif
7890
7891 static void
7892 output_jump (void)
7893 {
7894 char *p;
7895 int size;
7896 fixS *fixP;
7897 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7898
7899 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7900 {
7901 /* This is a loop or jecxz type instruction. */
7902 size = 1;
7903 if (i.prefix[ADDR_PREFIX] != 0)
7904 {
7905 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7906 i.prefixes -= 1;
7907 }
7908 /* Pentium4 branch hints. */
7909 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7910 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7911 {
7912 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7913 i.prefixes--;
7914 }
7915 }
7916 else
7917 {
7918 int code16;
7919
7920 code16 = 0;
7921 if (flag_code == CODE_16BIT)
7922 code16 = CODE16;
7923
7924 if (i.prefix[DATA_PREFIX] != 0)
7925 {
7926 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7927 i.prefixes -= 1;
7928 code16 ^= CODE16;
7929 }
7930
7931 size = 4;
7932 if (code16)
7933 size = 2;
7934 }
7935
7936 if (i.prefix[REX_PREFIX] != 0)
7937 {
7938 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7939 i.prefixes -= 1;
7940 }
7941
7942 /* BND prefixed jump. */
7943 if (i.prefix[BND_PREFIX] != 0)
7944 {
7945 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7946 i.prefixes -= 1;
7947 }
7948
7949 if (i.prefixes != 0 && !intel_syntax)
7950 as_warn (_("skipping prefixes on this instruction"));
7951
7952 p = frag_more (i.tm.opcode_length + size);
7953 switch (i.tm.opcode_length)
7954 {
7955 case 2:
7956 *p++ = i.tm.base_opcode >> 8;
7957 /* Fall through. */
7958 case 1:
7959 *p++ = i.tm.base_opcode;
7960 break;
7961 default:
7962 abort ();
7963 }
7964
7965 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7966 if (size == 4
7967 && jump_reloc == NO_RELOC
7968 && need_plt32_p (i.op[0].disps->X_add_symbol))
7969 jump_reloc = BFD_RELOC_X86_64_PLT32;
7970 #endif
7971
7972 jump_reloc = reloc (size, 1, 1, jump_reloc);
7973
7974 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7975 i.op[0].disps, 1, jump_reloc);
7976
7977 /* All jumps handled here are signed, but don't use a signed limit
7978 check for 32 and 16 bit jumps as we want to allow wrap around at
7979 4G and 64k respectively. */
7980 if (size == 1)
7981 fixP->fx_signed = 1;
7982 }
7983
7984 static void
7985 output_interseg_jump (void)
7986 {
7987 char *p;
7988 int size;
7989 int prefix;
7990 int code16;
7991
7992 code16 = 0;
7993 if (flag_code == CODE_16BIT)
7994 code16 = CODE16;
7995
7996 prefix = 0;
7997 if (i.prefix[DATA_PREFIX] != 0)
7998 {
7999 prefix = 1;
8000 i.prefixes -= 1;
8001 code16 ^= CODE16;
8002 }
8003 if (i.prefix[REX_PREFIX] != 0)
8004 {
8005 prefix++;
8006 i.prefixes -= 1;
8007 }
8008
8009 size = 4;
8010 if (code16)
8011 size = 2;
8012
8013 if (i.prefixes != 0 && !intel_syntax)
8014 as_warn (_("skipping prefixes on this instruction"));
8015
8016 /* 1 opcode; 2 segment; offset */
8017 p = frag_more (prefix + 1 + 2 + size);
8018
8019 if (i.prefix[DATA_PREFIX] != 0)
8020 *p++ = DATA_PREFIX_OPCODE;
8021
8022 if (i.prefix[REX_PREFIX] != 0)
8023 *p++ = i.prefix[REX_PREFIX];
8024
8025 *p++ = i.tm.base_opcode;
8026 if (i.op[1].imms->X_op == O_constant)
8027 {
8028 offsetT n = i.op[1].imms->X_add_number;
8029
8030 if (size == 2
8031 && !fits_in_unsigned_word (n)
8032 && !fits_in_signed_word (n))
8033 {
8034 as_bad (_("16-bit jump out of range"));
8035 return;
8036 }
8037 md_number_to_chars (p, n, size);
8038 }
8039 else
8040 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8041 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8042 if (i.op[0].imms->X_op != O_constant)
8043 as_bad (_("can't handle non absolute segment in `%s'"),
8044 i.tm.name);
8045 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8046 }
8047
8048 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8049 void
8050 x86_cleanup (void)
8051 {
8052 char *p;
8053 asection *seg = now_seg;
8054 subsegT subseg = now_subseg;
8055 asection *sec;
8056 unsigned int alignment, align_size_1;
8057 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8058 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8059 unsigned int padding;
8060
8061 if (!IS_ELF || !x86_used_note)
8062 return;
8063
8064 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8065
8066 /* The .note.gnu.property section layout:
8067
8068 Field Length Contents
8069 ---- ---- ----
8070 n_namsz 4 4
8071 n_descsz 4 The note descriptor size
8072 n_type 4 NT_GNU_PROPERTY_TYPE_0
8073 n_name 4 "GNU"
8074 n_desc n_descsz The program property array
8075 .... .... ....
8076 */
8077
8078 /* Create the .note.gnu.property section. */
8079 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8080 bfd_set_section_flags (sec,
8081 (SEC_ALLOC
8082 | SEC_LOAD
8083 | SEC_DATA
8084 | SEC_HAS_CONTENTS
8085 | SEC_READONLY));
8086
8087 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8088 {
8089 align_size_1 = 7;
8090 alignment = 3;
8091 }
8092 else
8093 {
8094 align_size_1 = 3;
8095 alignment = 2;
8096 }
8097
8098 bfd_set_section_alignment (sec, alignment);
8099 elf_section_type (sec) = SHT_NOTE;
8100
8101 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8102 + 4-byte data */
8103 isa_1_descsz_raw = 4 + 4 + 4;
8104 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8105 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8106
8107 feature_2_descsz_raw = isa_1_descsz;
8108 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8109 + 4-byte data */
8110 feature_2_descsz_raw += 4 + 4 + 4;
8111 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8112 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8113 & ~align_size_1);
8114
8115 descsz = feature_2_descsz;
8116 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8117 p = frag_more (4 + 4 + 4 + 4 + descsz);
8118
8119 /* Write n_namsz. */
8120 md_number_to_chars (p, (valueT) 4, 4);
8121
8122 /* Write n_descsz. */
8123 md_number_to_chars (p + 4, (valueT) descsz, 4);
8124
8125 /* Write n_type. */
8126 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8127
8128 /* Write n_name. */
8129 memcpy (p + 4 * 3, "GNU", 4);
8130
8131 /* Write 4-byte type. */
8132 md_number_to_chars (p + 4 * 4,
8133 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8134
8135 /* Write 4-byte data size. */
8136 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8137
8138 /* Write 4-byte data. */
8139 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8140
8141 /* Zero out paddings. */
8142 padding = isa_1_descsz - isa_1_descsz_raw;
8143 if (padding)
8144 memset (p + 4 * 7, 0, padding);
8145
8146 /* Write 4-byte type. */
8147 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8148 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8149
8150 /* Write 4-byte data size. */
8151 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8152
8153 /* Write 4-byte data. */
8154 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8155 (valueT) x86_feature_2_used, 4);
8156
8157 /* Zero out paddings. */
8158 padding = feature_2_descsz - feature_2_descsz_raw;
8159 if (padding)
8160 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8161
8162 /* We probably can't restore the current segment, for there likely
8163 isn't one yet... */
8164 if (seg && subseg)
8165 subseg_set (seg, subseg);
8166 }
8167 #endif
8168
8169 static unsigned int
8170 encoding_length (const fragS *start_frag, offsetT start_off,
8171 const char *frag_now_ptr)
8172 {
8173 unsigned int len = 0;
8174
8175 if (start_frag != frag_now)
8176 {
8177 const fragS *fr = start_frag;
8178
8179 do {
8180 len += fr->fr_fix;
8181 fr = fr->fr_next;
8182 } while (fr && fr != frag_now);
8183 }
8184
8185 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8186 }
8187
8188 static void
8189 output_insn (void)
8190 {
8191 fragS *insn_start_frag;
8192 offsetT insn_start_off;
8193
8194 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8195 if (IS_ELF && x86_used_note)
8196 {
8197 if (i.tm.cpu_flags.bitfield.cpucmov)
8198 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8199 if (i.tm.cpu_flags.bitfield.cpusse)
8200 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8201 if (i.tm.cpu_flags.bitfield.cpusse2)
8202 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8203 if (i.tm.cpu_flags.bitfield.cpusse3)
8204 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8205 if (i.tm.cpu_flags.bitfield.cpussse3)
8206 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8207 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8208 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8209 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8210 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8211 if (i.tm.cpu_flags.bitfield.cpuavx)
8212 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8213 if (i.tm.cpu_flags.bitfield.cpuavx2)
8214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8215 if (i.tm.cpu_flags.bitfield.cpufma)
8216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8217 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8218 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8219 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8221 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8223 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8225 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8227 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8229 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8231 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8233 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8235 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8237 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8247
8248 if (i.tm.cpu_flags.bitfield.cpu8087
8249 || i.tm.cpu_flags.bitfield.cpu287
8250 || i.tm.cpu_flags.bitfield.cpu387
8251 || i.tm.cpu_flags.bitfield.cpu687
8252 || i.tm.cpu_flags.bitfield.cpufisttp)
8253 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8254 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8255 Xfence instructions. */
8256 if (i.tm.base_opcode != 0xf18
8257 && i.tm.base_opcode != 0xf0d
8258 && i.tm.base_opcode != 0xfaef8
8259 && (i.has_regmmx
8260 || i.tm.cpu_flags.bitfield.cpummx
8261 || i.tm.cpu_flags.bitfield.cpua3dnow
8262 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8263 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8264 if (i.has_regxmm)
8265 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8266 if (i.has_regymm)
8267 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8268 if (i.has_regzmm)
8269 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8270 if (i.tm.cpu_flags.bitfield.cpufxsr)
8271 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8272 if (i.tm.cpu_flags.bitfield.cpuxsave)
8273 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8274 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8275 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8276 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8278 }
8279 #endif
8280
8281 /* Tie dwarf2 debug info to the address at the start of the insn.
8282 We can't do this after the insn has been output as the current
8283 frag may have been closed off. eg. by frag_var. */
8284 dwarf2_emit_insn (0);
8285
8286 insn_start_frag = frag_now;
8287 insn_start_off = frag_now_fix ();
8288
8289 /* Output jumps. */
8290 if (i.tm.opcode_modifier.jump == JUMP)
8291 output_branch ();
8292 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8293 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8294 output_jump ();
8295 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8296 output_interseg_jump ();
8297 else
8298 {
8299 /* Output normal instructions here. */
8300 char *p;
8301 unsigned char *q;
8302 unsigned int j;
8303 unsigned int prefix;
8304
8305 if (avoid_fence
8306 && (i.tm.base_opcode == 0xfaee8
8307 || i.tm.base_opcode == 0xfaef0
8308 || i.tm.base_opcode == 0xfaef8))
8309 {
8310 /* Encode lfence, mfence, and sfence as
8311 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8312 offsetT val = 0x240483f0ULL;
8313 p = frag_more (5);
8314 md_number_to_chars (p, val, 5);
8315 return;
8316 }
8317
8318 /* Some processors fail on LOCK prefix. This options makes
8319 assembler ignore LOCK prefix and serves as a workaround. */
8320 if (omit_lock_prefix)
8321 {
8322 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8323 return;
8324 i.prefix[LOCK_PREFIX] = 0;
8325 }
8326
8327 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8328 don't need the explicit prefix. */
8329 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8330 {
8331 switch (i.tm.opcode_length)
8332 {
8333 case 3:
8334 if (i.tm.base_opcode & 0xff000000)
8335 {
8336 prefix = (i.tm.base_opcode >> 24) & 0xff;
8337 if (!i.tm.cpu_flags.bitfield.cpupadlock
8338 || prefix != REPE_PREFIX_OPCODE
8339 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8340 add_prefix (prefix);
8341 }
8342 break;
8343 case 2:
8344 if ((i.tm.base_opcode & 0xff0000) != 0)
8345 {
8346 prefix = (i.tm.base_opcode >> 16) & 0xff;
8347 add_prefix (prefix);
8348 }
8349 break;
8350 case 1:
8351 break;
8352 case 0:
8353 /* Check for pseudo prefixes. */
8354 as_bad_where (insn_start_frag->fr_file,
8355 insn_start_frag->fr_line,
8356 _("pseudo prefix without instruction"));
8357 return;
8358 default:
8359 abort ();
8360 }
8361
8362 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8363 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8364 R_X86_64_GOTTPOFF relocation so that linker can safely
8365 perform IE->LE optimization. */
8366 if (x86_elf_abi == X86_64_X32_ABI
8367 && i.operands == 2
8368 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8369 && i.prefix[REX_PREFIX] == 0)
8370 add_prefix (REX_OPCODE);
8371 #endif
8372
8373 /* The prefix bytes. */
8374 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8375 if (*q)
8376 FRAG_APPEND_1_CHAR (*q);
8377 }
8378 else
8379 {
8380 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8381 if (*q)
8382 switch (j)
8383 {
8384 case REX_PREFIX:
8385 /* REX byte is encoded in VEX prefix. */
8386 break;
8387 case SEG_PREFIX:
8388 case ADDR_PREFIX:
8389 FRAG_APPEND_1_CHAR (*q);
8390 break;
8391 default:
8392 /* There should be no other prefixes for instructions
8393 with VEX prefix. */
8394 abort ();
8395 }
8396
8397 /* For EVEX instructions i.vrex should become 0 after
8398 build_evex_prefix. For VEX instructions upper 16 registers
8399 aren't available, so VREX should be 0. */
8400 if (i.vrex)
8401 abort ();
8402 /* Now the VEX prefix. */
8403 p = frag_more (i.vex.length);
8404 for (j = 0; j < i.vex.length; j++)
8405 p[j] = i.vex.bytes[j];
8406 }
8407
8408 /* Now the opcode; be careful about word order here! */
8409 if (i.tm.opcode_length == 1)
8410 {
8411 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8412 }
8413 else
8414 {
8415 switch (i.tm.opcode_length)
8416 {
8417 case 4:
8418 p = frag_more (4);
8419 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8420 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8421 break;
8422 case 3:
8423 p = frag_more (3);
8424 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8425 break;
8426 case 2:
8427 p = frag_more (2);
8428 break;
8429 default:
8430 abort ();
8431 break;
8432 }
8433
8434 /* Put out high byte first: can't use md_number_to_chars! */
8435 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8436 *p = i.tm.base_opcode & 0xff;
8437 }
8438
8439 /* Now the modrm byte and sib byte (if present). */
8440 if (i.tm.opcode_modifier.modrm)
8441 {
8442 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8443 | i.rm.reg << 3
8444 | i.rm.mode << 6));
8445 /* If i.rm.regmem == ESP (4)
8446 && i.rm.mode != (Register mode)
8447 && not 16 bit
8448 ==> need second modrm byte. */
8449 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8450 && i.rm.mode != 3
8451 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8452 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8453 | i.sib.index << 3
8454 | i.sib.scale << 6));
8455 }
8456
8457 if (i.disp_operands)
8458 output_disp (insn_start_frag, insn_start_off);
8459
8460 if (i.imm_operands)
8461 output_imm (insn_start_frag, insn_start_off);
8462
8463 /*
8464 * frag_now_fix () returning plain abs_section_offset when we're in the
8465 * absolute section, and abs_section_offset not getting updated as data
8466 * gets added to the frag breaks the logic below.
8467 */
8468 if (now_seg != absolute_section)
8469 {
8470 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8471 if (j > 15)
8472 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8473 j);
8474 }
8475 }
8476
8477 #ifdef DEBUG386
8478 if (flag_debug)
8479 {
8480 pi ("" /*line*/, &i);
8481 }
8482 #endif /* DEBUG386 */
8483 }
8484
8485 /* Return the size of the displacement operand N. */
8486
8487 static int
8488 disp_size (unsigned int n)
8489 {
8490 int size = 4;
8491
8492 if (i.types[n].bitfield.disp64)
8493 size = 8;
8494 else if (i.types[n].bitfield.disp8)
8495 size = 1;
8496 else if (i.types[n].bitfield.disp16)
8497 size = 2;
8498 return size;
8499 }
8500
8501 /* Return the size of the immediate operand N. */
8502
8503 static int
8504 imm_size (unsigned int n)
8505 {
8506 int size = 4;
8507 if (i.types[n].bitfield.imm64)
8508 size = 8;
8509 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8510 size = 1;
8511 else if (i.types[n].bitfield.imm16)
8512 size = 2;
8513 return size;
8514 }
8515
8516 static void
8517 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8518 {
8519 char *p;
8520 unsigned int n;
8521
8522 for (n = 0; n < i.operands; n++)
8523 {
8524 if (operand_type_check (i.types[n], disp))
8525 {
8526 if (i.op[n].disps->X_op == O_constant)
8527 {
8528 int size = disp_size (n);
8529 offsetT val = i.op[n].disps->X_add_number;
8530
8531 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8532 size);
8533 p = frag_more (size);
8534 md_number_to_chars (p, val, size);
8535 }
8536 else
8537 {
8538 enum bfd_reloc_code_real reloc_type;
8539 int size = disp_size (n);
8540 int sign = i.types[n].bitfield.disp32s;
8541 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8542 fixS *fixP;
8543
8544 /* We can't have 8 bit displacement here. */
8545 gas_assert (!i.types[n].bitfield.disp8);
8546
8547 /* The PC relative address is computed relative
8548 to the instruction boundary, so in case immediate
8549 fields follows, we need to adjust the value. */
8550 if (pcrel && i.imm_operands)
8551 {
8552 unsigned int n1;
8553 int sz = 0;
8554
8555 for (n1 = 0; n1 < i.operands; n1++)
8556 if (operand_type_check (i.types[n1], imm))
8557 {
8558 /* Only one immediate is allowed for PC
8559 relative address. */
8560 gas_assert (sz == 0);
8561 sz = imm_size (n1);
8562 i.op[n].disps->X_add_number -= sz;
8563 }
8564 /* We should find the immediate. */
8565 gas_assert (sz != 0);
8566 }
8567
8568 p = frag_more (size);
8569 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8570 if (GOT_symbol
8571 && GOT_symbol == i.op[n].disps->X_add_symbol
8572 && (((reloc_type == BFD_RELOC_32
8573 || reloc_type == BFD_RELOC_X86_64_32S
8574 || (reloc_type == BFD_RELOC_64
8575 && object_64bit))
8576 && (i.op[n].disps->X_op == O_symbol
8577 || (i.op[n].disps->X_op == O_add
8578 && ((symbol_get_value_expression
8579 (i.op[n].disps->X_op_symbol)->X_op)
8580 == O_subtract))))
8581 || reloc_type == BFD_RELOC_32_PCREL))
8582 {
8583 if (!object_64bit)
8584 {
8585 reloc_type = BFD_RELOC_386_GOTPC;
8586 i.op[n].imms->X_add_number +=
8587 encoding_length (insn_start_frag, insn_start_off, p);
8588 }
8589 else if (reloc_type == BFD_RELOC_64)
8590 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8591 else
8592 /* Don't do the adjustment for x86-64, as there
8593 the pcrel addressing is relative to the _next_
8594 insn, and that is taken care of in other code. */
8595 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8596 }
8597 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8598 size, i.op[n].disps, pcrel,
8599 reloc_type);
8600 /* Check for "call/jmp *mem", "mov mem, %reg",
8601 "test %reg, mem" and "binop mem, %reg" where binop
8602 is one of adc, add, and, cmp, or, sbb, sub, xor
8603 instructions without data prefix. Always generate
8604 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8605 if (i.prefix[DATA_PREFIX] == 0
8606 && (generate_relax_relocations
8607 || (!object_64bit
8608 && i.rm.mode == 0
8609 && i.rm.regmem == 5))
8610 && (i.rm.mode == 2
8611 || (i.rm.mode == 0 && i.rm.regmem == 5))
8612 && ((i.operands == 1
8613 && i.tm.base_opcode == 0xff
8614 && (i.rm.reg == 2 || i.rm.reg == 4))
8615 || (i.operands == 2
8616 && (i.tm.base_opcode == 0x8b
8617 || i.tm.base_opcode == 0x85
8618 || (i.tm.base_opcode & 0xc7) == 0x03))))
8619 {
8620 if (object_64bit)
8621 {
8622 fixP->fx_tcbit = i.rex != 0;
8623 if (i.base_reg
8624 && (i.base_reg->reg_num == RegIP))
8625 fixP->fx_tcbit2 = 1;
8626 }
8627 else
8628 fixP->fx_tcbit2 = 1;
8629 }
8630 }
8631 }
8632 }
8633 }
8634
8635 static void
8636 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8637 {
8638 char *p;
8639 unsigned int n;
8640
8641 for (n = 0; n < i.operands; n++)
8642 {
8643 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8644 if (i.rounding && (int) n == i.rounding->operand)
8645 continue;
8646
8647 if (operand_type_check (i.types[n], imm))
8648 {
8649 if (i.op[n].imms->X_op == O_constant)
8650 {
8651 int size = imm_size (n);
8652 offsetT val;
8653
8654 val = offset_in_range (i.op[n].imms->X_add_number,
8655 size);
8656 p = frag_more (size);
8657 md_number_to_chars (p, val, size);
8658 }
8659 else
8660 {
8661 /* Not absolute_section.
8662 Need a 32-bit fixup (don't support 8bit
8663 non-absolute imms). Try to support other
8664 sizes ... */
8665 enum bfd_reloc_code_real reloc_type;
8666 int size = imm_size (n);
8667 int sign;
8668
8669 if (i.types[n].bitfield.imm32s
8670 && (i.suffix == QWORD_MNEM_SUFFIX
8671 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8672 sign = 1;
8673 else
8674 sign = 0;
8675
8676 p = frag_more (size);
8677 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8678
8679 /* This is tough to explain. We end up with this one if we
8680 * have operands that look like
8681 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8682 * obtain the absolute address of the GOT, and it is strongly
8683 * preferable from a performance point of view to avoid using
8684 * a runtime relocation for this. The actual sequence of
8685 * instructions often look something like:
8686 *
8687 * call .L66
8688 * .L66:
8689 * popl %ebx
8690 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8691 *
8692 * The call and pop essentially return the absolute address
8693 * of the label .L66 and store it in %ebx. The linker itself
8694 * will ultimately change the first operand of the addl so
8695 * that %ebx points to the GOT, but to keep things simple, the
8696 * .o file must have this operand set so that it generates not
8697 * the absolute address of .L66, but the absolute address of
8698 * itself. This allows the linker itself simply treat a GOTPC
8699 * relocation as asking for a pcrel offset to the GOT to be
8700 * added in, and the addend of the relocation is stored in the
8701 * operand field for the instruction itself.
8702 *
8703 * Our job here is to fix the operand so that it would add
8704 * the correct offset so that %ebx would point to itself. The
8705 * thing that is tricky is that .-.L66 will point to the
8706 * beginning of the instruction, so we need to further modify
8707 * the operand so that it will point to itself. There are
8708 * other cases where you have something like:
8709 *
8710 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8711 *
8712 * and here no correction would be required. Internally in
8713 * the assembler we treat operands of this form as not being
8714 * pcrel since the '.' is explicitly mentioned, and I wonder
8715 * whether it would simplify matters to do it this way. Who
8716 * knows. In earlier versions of the PIC patches, the
8717 * pcrel_adjust field was used to store the correction, but
8718 * since the expression is not pcrel, I felt it would be
8719 * confusing to do it this way. */
8720
8721 if ((reloc_type == BFD_RELOC_32
8722 || reloc_type == BFD_RELOC_X86_64_32S
8723 || reloc_type == BFD_RELOC_64)
8724 && GOT_symbol
8725 && GOT_symbol == i.op[n].imms->X_add_symbol
8726 && (i.op[n].imms->X_op == O_symbol
8727 || (i.op[n].imms->X_op == O_add
8728 && ((symbol_get_value_expression
8729 (i.op[n].imms->X_op_symbol)->X_op)
8730 == O_subtract))))
8731 {
8732 if (!object_64bit)
8733 reloc_type = BFD_RELOC_386_GOTPC;
8734 else if (size == 4)
8735 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8736 else if (size == 8)
8737 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8738 i.op[n].imms->X_add_number +=
8739 encoding_length (insn_start_frag, insn_start_off, p);
8740 }
8741 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8742 i.op[n].imms, 0, reloc_type);
8743 }
8744 }
8745 }
8746 }
8747 \f
8748 /* x86_cons_fix_new is called via the expression parsing code when a
8749 reloc is needed. We use this hook to get the correct .got reloc. */
8750 static int cons_sign = -1;
8751
8752 void
8753 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8754 expressionS *exp, bfd_reloc_code_real_type r)
8755 {
8756 r = reloc (len, 0, cons_sign, r);
8757
8758 #ifdef TE_PE
8759 if (exp->X_op == O_secrel)
8760 {
8761 exp->X_op = O_symbol;
8762 r = BFD_RELOC_32_SECREL;
8763 }
8764 #endif
8765
8766 fix_new_exp (frag, off, len, exp, 0, r);
8767 }
8768
8769 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8770 purpose of the `.dc.a' internal pseudo-op. */
8771
8772 int
8773 x86_address_bytes (void)
8774 {
8775 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8776 return 4;
8777 return stdoutput->arch_info->bits_per_address / 8;
8778 }
8779
8780 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8781 || defined (LEX_AT)
8782 # define lex_got(reloc, adjust, types) NULL
8783 #else
8784 /* Parse operands of the form
8785 <symbol>@GOTOFF+<nnn>
8786 and similar .plt or .got references.
8787
8788 If we find one, set up the correct relocation in RELOC and copy the
8789 input string, minus the `@GOTOFF' into a malloc'd buffer for
8790 parsing by the calling routine. Return this buffer, and if ADJUST
8791 is non-null set it to the length of the string we removed from the
8792 input line. Otherwise return NULL. */
8793 static char *
8794 lex_got (enum bfd_reloc_code_real *rel,
8795 int *adjust,
8796 i386_operand_type *types)
8797 {
8798 /* Some of the relocations depend on the size of what field is to
8799 be relocated. But in our callers i386_immediate and i386_displacement
8800 we don't yet know the operand size (this will be set by insn
8801 matching). Hence we record the word32 relocation here,
8802 and adjust the reloc according to the real size in reloc(). */
8803 static const struct {
8804 const char *str;
8805 int len;
8806 const enum bfd_reloc_code_real rel[2];
8807 const i386_operand_type types64;
8808 } gotrel[] = {
8809 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8810 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8811 BFD_RELOC_SIZE32 },
8812 OPERAND_TYPE_IMM32_64 },
8813 #endif
8814 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8815 BFD_RELOC_X86_64_PLTOFF64 },
8816 OPERAND_TYPE_IMM64 },
8817 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8818 BFD_RELOC_X86_64_PLT32 },
8819 OPERAND_TYPE_IMM32_32S_DISP32 },
8820 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8821 BFD_RELOC_X86_64_GOTPLT64 },
8822 OPERAND_TYPE_IMM64_DISP64 },
8823 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8824 BFD_RELOC_X86_64_GOTOFF64 },
8825 OPERAND_TYPE_IMM64_DISP64 },
8826 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8827 BFD_RELOC_X86_64_GOTPCREL },
8828 OPERAND_TYPE_IMM32_32S_DISP32 },
8829 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8830 BFD_RELOC_X86_64_TLSGD },
8831 OPERAND_TYPE_IMM32_32S_DISP32 },
8832 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8833 _dummy_first_bfd_reloc_code_real },
8834 OPERAND_TYPE_NONE },
8835 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8836 BFD_RELOC_X86_64_TLSLD },
8837 OPERAND_TYPE_IMM32_32S_DISP32 },
8838 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8839 BFD_RELOC_X86_64_GOTTPOFF },
8840 OPERAND_TYPE_IMM32_32S_DISP32 },
8841 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8842 BFD_RELOC_X86_64_TPOFF32 },
8843 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8844 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8845 _dummy_first_bfd_reloc_code_real },
8846 OPERAND_TYPE_NONE },
8847 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8848 BFD_RELOC_X86_64_DTPOFF32 },
8849 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8850 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8851 _dummy_first_bfd_reloc_code_real },
8852 OPERAND_TYPE_NONE },
8853 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8854 _dummy_first_bfd_reloc_code_real },
8855 OPERAND_TYPE_NONE },
8856 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8857 BFD_RELOC_X86_64_GOT32 },
8858 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8859 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8860 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8861 OPERAND_TYPE_IMM32_32S_DISP32 },
8862 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8863 BFD_RELOC_X86_64_TLSDESC_CALL },
8864 OPERAND_TYPE_IMM32_32S_DISP32 },
8865 };
8866 char *cp;
8867 unsigned int j;
8868
8869 #if defined (OBJ_MAYBE_ELF)
8870 if (!IS_ELF)
8871 return NULL;
8872 #endif
8873
8874 for (cp = input_line_pointer; *cp != '@'; cp++)
8875 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8876 return NULL;
8877
8878 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8879 {
8880 int len = gotrel[j].len;
8881 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8882 {
8883 if (gotrel[j].rel[object_64bit] != 0)
8884 {
8885 int first, second;
8886 char *tmpbuf, *past_reloc;
8887
8888 *rel = gotrel[j].rel[object_64bit];
8889
8890 if (types)
8891 {
8892 if (flag_code != CODE_64BIT)
8893 {
8894 types->bitfield.imm32 = 1;
8895 types->bitfield.disp32 = 1;
8896 }
8897 else
8898 *types = gotrel[j].types64;
8899 }
8900
8901 if (j != 0 && GOT_symbol == NULL)
8902 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8903
8904 /* The length of the first part of our input line. */
8905 first = cp - input_line_pointer;
8906
8907 /* The second part goes from after the reloc token until
8908 (and including) an end_of_line char or comma. */
8909 past_reloc = cp + 1 + len;
8910 cp = past_reloc;
8911 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8912 ++cp;
8913 second = cp + 1 - past_reloc;
8914
8915 /* Allocate and copy string. The trailing NUL shouldn't
8916 be necessary, but be safe. */
8917 tmpbuf = XNEWVEC (char, first + second + 2);
8918 memcpy (tmpbuf, input_line_pointer, first);
8919 if (second != 0 && *past_reloc != ' ')
8920 /* Replace the relocation token with ' ', so that
8921 errors like foo@GOTOFF1 will be detected. */
8922 tmpbuf[first++] = ' ';
8923 else
8924 /* Increment length by 1 if the relocation token is
8925 removed. */
8926 len++;
8927 if (adjust)
8928 *adjust = len;
8929 memcpy (tmpbuf + first, past_reloc, second);
8930 tmpbuf[first + second] = '\0';
8931 return tmpbuf;
8932 }
8933
8934 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8935 gotrel[j].str, 1 << (5 + object_64bit));
8936 return NULL;
8937 }
8938 }
8939
8940 /* Might be a symbol version string. Don't as_bad here. */
8941 return NULL;
8942 }
8943 #endif
8944
8945 #ifdef TE_PE
8946 #ifdef lex_got
8947 #undef lex_got
8948 #endif
8949 /* Parse operands of the form
8950 <symbol>@SECREL32+<nnn>
8951
8952 If we find one, set up the correct relocation in RELOC and copy the
8953 input string, minus the `@SECREL32' into a malloc'd buffer for
8954 parsing by the calling routine. Return this buffer, and if ADJUST
8955 is non-null set it to the length of the string we removed from the
8956 input line. Otherwise return NULL.
8957
8958 This function is copied from the ELF version above adjusted for PE targets. */
8959
8960 static char *
8961 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8962 int *adjust ATTRIBUTE_UNUSED,
8963 i386_operand_type *types)
8964 {
8965 static const struct
8966 {
8967 const char *str;
8968 int len;
8969 const enum bfd_reloc_code_real rel[2];
8970 const i386_operand_type types64;
8971 }
8972 gotrel[] =
8973 {
8974 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8975 BFD_RELOC_32_SECREL },
8976 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8977 };
8978
8979 char *cp;
8980 unsigned j;
8981
8982 for (cp = input_line_pointer; *cp != '@'; cp++)
8983 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8984 return NULL;
8985
8986 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8987 {
8988 int len = gotrel[j].len;
8989
8990 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8991 {
8992 if (gotrel[j].rel[object_64bit] != 0)
8993 {
8994 int first, second;
8995 char *tmpbuf, *past_reloc;
8996
8997 *rel = gotrel[j].rel[object_64bit];
8998 if (adjust)
8999 *adjust = len;
9000
9001 if (types)
9002 {
9003 if (flag_code != CODE_64BIT)
9004 {
9005 types->bitfield.imm32 = 1;
9006 types->bitfield.disp32 = 1;
9007 }
9008 else
9009 *types = gotrel[j].types64;
9010 }
9011
9012 /* The length of the first part of our input line. */
9013 first = cp - input_line_pointer;
9014
9015 /* The second part goes from after the reloc token until
9016 (and including) an end_of_line char or comma. */
9017 past_reloc = cp + 1 + len;
9018 cp = past_reloc;
9019 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9020 ++cp;
9021 second = cp + 1 - past_reloc;
9022
9023 /* Allocate and copy string. The trailing NUL shouldn't
9024 be necessary, but be safe. */
9025 tmpbuf = XNEWVEC (char, first + second + 2);
9026 memcpy (tmpbuf, input_line_pointer, first);
9027 if (second != 0 && *past_reloc != ' ')
9028 /* Replace the relocation token with ' ', so that
9029 errors like foo@SECLREL321 will be detected. */
9030 tmpbuf[first++] = ' ';
9031 memcpy (tmpbuf + first, past_reloc, second);
9032 tmpbuf[first + second] = '\0';
9033 return tmpbuf;
9034 }
9035
9036 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9037 gotrel[j].str, 1 << (5 + object_64bit));
9038 return NULL;
9039 }
9040 }
9041
9042 /* Might be a symbol version string. Don't as_bad here. */
9043 return NULL;
9044 }
9045
9046 #endif /* TE_PE */
9047
9048 bfd_reloc_code_real_type
9049 x86_cons (expressionS *exp, int size)
9050 {
9051 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9052
9053 intel_syntax = -intel_syntax;
9054
9055 exp->X_md = 0;
9056 if (size == 4 || (object_64bit && size == 8))
9057 {
9058 /* Handle @GOTOFF and the like in an expression. */
9059 char *save;
9060 char *gotfree_input_line;
9061 int adjust = 0;
9062
9063 save = input_line_pointer;
9064 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9065 if (gotfree_input_line)
9066 input_line_pointer = gotfree_input_line;
9067
9068 expression (exp);
9069
9070 if (gotfree_input_line)
9071 {
9072 /* expression () has merrily parsed up to the end of line,
9073 or a comma - in the wrong buffer. Transfer how far
9074 input_line_pointer has moved to the right buffer. */
9075 input_line_pointer = (save
9076 + (input_line_pointer - gotfree_input_line)
9077 + adjust);
9078 free (gotfree_input_line);
9079 if (exp->X_op == O_constant
9080 || exp->X_op == O_absent
9081 || exp->X_op == O_illegal
9082 || exp->X_op == O_register
9083 || exp->X_op == O_big)
9084 {
9085 char c = *input_line_pointer;
9086 *input_line_pointer = 0;
9087 as_bad (_("missing or invalid expression `%s'"), save);
9088 *input_line_pointer = c;
9089 }
9090 else if ((got_reloc == BFD_RELOC_386_PLT32
9091 || got_reloc == BFD_RELOC_X86_64_PLT32)
9092 && exp->X_op != O_symbol)
9093 {
9094 char c = *input_line_pointer;
9095 *input_line_pointer = 0;
9096 as_bad (_("invalid PLT expression `%s'"), save);
9097 *input_line_pointer = c;
9098 }
9099 }
9100 }
9101 else
9102 expression (exp);
9103
9104 intel_syntax = -intel_syntax;
9105
9106 if (intel_syntax)
9107 i386_intel_simplify (exp);
9108
9109 return got_reloc;
9110 }
9111
9112 static void
9113 signed_cons (int size)
9114 {
9115 if (flag_code == CODE_64BIT)
9116 cons_sign = 1;
9117 cons (size);
9118 cons_sign = -1;
9119 }
9120
9121 #ifdef TE_PE
9122 static void
9123 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9124 {
9125 expressionS exp;
9126
9127 do
9128 {
9129 expression (&exp);
9130 if (exp.X_op == O_symbol)
9131 exp.X_op = O_secrel;
9132
9133 emit_expr (&exp, 4);
9134 }
9135 while (*input_line_pointer++ == ',');
9136
9137 input_line_pointer--;
9138 demand_empty_rest_of_line ();
9139 }
9140 #endif
9141
9142 /* Handle Vector operations. */
9143
9144 static char *
9145 check_VecOperations (char *op_string, char *op_end)
9146 {
9147 const reg_entry *mask;
9148 const char *saved;
9149 char *end_op;
9150
9151 while (*op_string
9152 && (op_end == NULL || op_string < op_end))
9153 {
9154 saved = op_string;
9155 if (*op_string == '{')
9156 {
9157 op_string++;
9158
9159 /* Check broadcasts. */
9160 if (strncmp (op_string, "1to", 3) == 0)
9161 {
9162 int bcst_type;
9163
9164 if (i.broadcast)
9165 goto duplicated_vec_op;
9166
9167 op_string += 3;
9168 if (*op_string == '8')
9169 bcst_type = 8;
9170 else if (*op_string == '4')
9171 bcst_type = 4;
9172 else if (*op_string == '2')
9173 bcst_type = 2;
9174 else if (*op_string == '1'
9175 && *(op_string+1) == '6')
9176 {
9177 bcst_type = 16;
9178 op_string++;
9179 }
9180 else
9181 {
9182 as_bad (_("Unsupported broadcast: `%s'"), saved);
9183 return NULL;
9184 }
9185 op_string++;
9186
9187 broadcast_op.type = bcst_type;
9188 broadcast_op.operand = this_operand;
9189 broadcast_op.bytes = 0;
9190 i.broadcast = &broadcast_op;
9191 }
9192 /* Check masking operation. */
9193 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9194 {
9195 /* k0 can't be used for write mask. */
9196 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9197 {
9198 as_bad (_("`%s%s' can't be used for write mask"),
9199 register_prefix, mask->reg_name);
9200 return NULL;
9201 }
9202
9203 if (!i.mask)
9204 {
9205 mask_op.mask = mask;
9206 mask_op.zeroing = 0;
9207 mask_op.operand = this_operand;
9208 i.mask = &mask_op;
9209 }
9210 else
9211 {
9212 if (i.mask->mask)
9213 goto duplicated_vec_op;
9214
9215 i.mask->mask = mask;
9216
9217 /* Only "{z}" is allowed here. No need to check
9218 zeroing mask explicitly. */
9219 if (i.mask->operand != this_operand)
9220 {
9221 as_bad (_("invalid write mask `%s'"), saved);
9222 return NULL;
9223 }
9224 }
9225
9226 op_string = end_op;
9227 }
9228 /* Check zeroing-flag for masking operation. */
9229 else if (*op_string == 'z')
9230 {
9231 if (!i.mask)
9232 {
9233 mask_op.mask = NULL;
9234 mask_op.zeroing = 1;
9235 mask_op.operand = this_operand;
9236 i.mask = &mask_op;
9237 }
9238 else
9239 {
9240 if (i.mask->zeroing)
9241 {
9242 duplicated_vec_op:
9243 as_bad (_("duplicated `%s'"), saved);
9244 return NULL;
9245 }
9246
9247 i.mask->zeroing = 1;
9248
9249 /* Only "{%k}" is allowed here. No need to check mask
9250 register explicitly. */
9251 if (i.mask->operand != this_operand)
9252 {
9253 as_bad (_("invalid zeroing-masking `%s'"),
9254 saved);
9255 return NULL;
9256 }
9257 }
9258
9259 op_string++;
9260 }
9261 else
9262 goto unknown_vec_op;
9263
9264 if (*op_string != '}')
9265 {
9266 as_bad (_("missing `}' in `%s'"), saved);
9267 return NULL;
9268 }
9269 op_string++;
9270
9271 /* Strip whitespace since the addition of pseudo prefixes
9272 changed how the scrubber treats '{'. */
9273 if (is_space_char (*op_string))
9274 ++op_string;
9275
9276 continue;
9277 }
9278 unknown_vec_op:
9279 /* We don't know this one. */
9280 as_bad (_("unknown vector operation: `%s'"), saved);
9281 return NULL;
9282 }
9283
9284 if (i.mask && i.mask->zeroing && !i.mask->mask)
9285 {
9286 as_bad (_("zeroing-masking only allowed with write mask"));
9287 return NULL;
9288 }
9289
9290 return op_string;
9291 }
9292
9293 static int
9294 i386_immediate (char *imm_start)
9295 {
9296 char *save_input_line_pointer;
9297 char *gotfree_input_line;
9298 segT exp_seg = 0;
9299 expressionS *exp;
9300 i386_operand_type types;
9301
9302 operand_type_set (&types, ~0);
9303
9304 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9305 {
9306 as_bad (_("at most %d immediate operands are allowed"),
9307 MAX_IMMEDIATE_OPERANDS);
9308 return 0;
9309 }
9310
9311 exp = &im_expressions[i.imm_operands++];
9312 i.op[this_operand].imms = exp;
9313
9314 if (is_space_char (*imm_start))
9315 ++imm_start;
9316
9317 save_input_line_pointer = input_line_pointer;
9318 input_line_pointer = imm_start;
9319
9320 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9321 if (gotfree_input_line)
9322 input_line_pointer = gotfree_input_line;
9323
9324 exp_seg = expression (exp);
9325
9326 SKIP_WHITESPACE ();
9327
9328 /* Handle vector operations. */
9329 if (*input_line_pointer == '{')
9330 {
9331 input_line_pointer = check_VecOperations (input_line_pointer,
9332 NULL);
9333 if (input_line_pointer == NULL)
9334 return 0;
9335 }
9336
9337 if (*input_line_pointer)
9338 as_bad (_("junk `%s' after expression"), input_line_pointer);
9339
9340 input_line_pointer = save_input_line_pointer;
9341 if (gotfree_input_line)
9342 {
9343 free (gotfree_input_line);
9344
9345 if (exp->X_op == O_constant || exp->X_op == O_register)
9346 exp->X_op = O_illegal;
9347 }
9348
9349 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9350 }
9351
9352 static int
9353 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9354 i386_operand_type types, const char *imm_start)
9355 {
9356 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9357 {
9358 if (imm_start)
9359 as_bad (_("missing or invalid immediate expression `%s'"),
9360 imm_start);
9361 return 0;
9362 }
9363 else if (exp->X_op == O_constant)
9364 {
9365 /* Size it properly later. */
9366 i.types[this_operand].bitfield.imm64 = 1;
9367 /* If not 64bit, sign extend val. */
9368 if (flag_code != CODE_64BIT
9369 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9370 exp->X_add_number
9371 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9372 }
9373 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9374 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9375 && exp_seg != absolute_section
9376 && exp_seg != text_section
9377 && exp_seg != data_section
9378 && exp_seg != bss_section
9379 && exp_seg != undefined_section
9380 && !bfd_is_com_section (exp_seg))
9381 {
9382 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9383 return 0;
9384 }
9385 #endif
9386 else if (!intel_syntax && exp_seg == reg_section)
9387 {
9388 if (imm_start)
9389 as_bad (_("illegal immediate register operand %s"), imm_start);
9390 return 0;
9391 }
9392 else
9393 {
9394 /* This is an address. The size of the address will be
9395 determined later, depending on destination register,
9396 suffix, or the default for the section. */
9397 i.types[this_operand].bitfield.imm8 = 1;
9398 i.types[this_operand].bitfield.imm16 = 1;
9399 i.types[this_operand].bitfield.imm32 = 1;
9400 i.types[this_operand].bitfield.imm32s = 1;
9401 i.types[this_operand].bitfield.imm64 = 1;
9402 i.types[this_operand] = operand_type_and (i.types[this_operand],
9403 types);
9404 }
9405
9406 return 1;
9407 }
9408
9409 static char *
9410 i386_scale (char *scale)
9411 {
9412 offsetT val;
9413 char *save = input_line_pointer;
9414
9415 input_line_pointer = scale;
9416 val = get_absolute_expression ();
9417
9418 switch (val)
9419 {
9420 case 1:
9421 i.log2_scale_factor = 0;
9422 break;
9423 case 2:
9424 i.log2_scale_factor = 1;
9425 break;
9426 case 4:
9427 i.log2_scale_factor = 2;
9428 break;
9429 case 8:
9430 i.log2_scale_factor = 3;
9431 break;
9432 default:
9433 {
9434 char sep = *input_line_pointer;
9435
9436 *input_line_pointer = '\0';
9437 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9438 scale);
9439 *input_line_pointer = sep;
9440 input_line_pointer = save;
9441 return NULL;
9442 }
9443 }
9444 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9445 {
9446 as_warn (_("scale factor of %d without an index register"),
9447 1 << i.log2_scale_factor);
9448 i.log2_scale_factor = 0;
9449 }
9450 scale = input_line_pointer;
9451 input_line_pointer = save;
9452 return scale;
9453 }
9454
9455 static int
9456 i386_displacement (char *disp_start, char *disp_end)
9457 {
9458 expressionS *exp;
9459 segT exp_seg = 0;
9460 char *save_input_line_pointer;
9461 char *gotfree_input_line;
9462 int override;
9463 i386_operand_type bigdisp, types = anydisp;
9464 int ret;
9465
9466 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9467 {
9468 as_bad (_("at most %d displacement operands are allowed"),
9469 MAX_MEMORY_OPERANDS);
9470 return 0;
9471 }
9472
9473 operand_type_set (&bigdisp, 0);
9474 if (i.jumpabsolute
9475 || (current_templates->start->opcode_modifier.jump != JUMP
9476 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9477 {
9478 bigdisp.bitfield.disp32 = 1;
9479 override = (i.prefix[ADDR_PREFIX] != 0);
9480 if (flag_code == CODE_64BIT)
9481 {
9482 if (!override)
9483 {
9484 bigdisp.bitfield.disp32s = 1;
9485 bigdisp.bitfield.disp64 = 1;
9486 }
9487 }
9488 else if ((flag_code == CODE_16BIT) ^ override)
9489 {
9490 bigdisp.bitfield.disp32 = 0;
9491 bigdisp.bitfield.disp16 = 1;
9492 }
9493 }
9494 else
9495 {
9496 /* For PC-relative branches, the width of the displacement
9497 is dependent upon data size, not address size. */
9498 override = (i.prefix[DATA_PREFIX] != 0);
9499 if (flag_code == CODE_64BIT)
9500 {
9501 if (override || i.suffix == WORD_MNEM_SUFFIX)
9502 bigdisp.bitfield.disp16 = 1;
9503 else
9504 {
9505 bigdisp.bitfield.disp32 = 1;
9506 bigdisp.bitfield.disp32s = 1;
9507 }
9508 }
9509 else
9510 {
9511 if (!override)
9512 override = (i.suffix == (flag_code != CODE_16BIT
9513 ? WORD_MNEM_SUFFIX
9514 : LONG_MNEM_SUFFIX));
9515 bigdisp.bitfield.disp32 = 1;
9516 if ((flag_code == CODE_16BIT) ^ override)
9517 {
9518 bigdisp.bitfield.disp32 = 0;
9519 bigdisp.bitfield.disp16 = 1;
9520 }
9521 }
9522 }
9523 i.types[this_operand] = operand_type_or (i.types[this_operand],
9524 bigdisp);
9525
9526 exp = &disp_expressions[i.disp_operands];
9527 i.op[this_operand].disps = exp;
9528 i.disp_operands++;
9529 save_input_line_pointer = input_line_pointer;
9530 input_line_pointer = disp_start;
9531 END_STRING_AND_SAVE (disp_end);
9532
9533 #ifndef GCC_ASM_O_HACK
9534 #define GCC_ASM_O_HACK 0
9535 #endif
9536 #if GCC_ASM_O_HACK
9537 END_STRING_AND_SAVE (disp_end + 1);
9538 if (i.types[this_operand].bitfield.baseIndex
9539 && displacement_string_end[-1] == '+')
9540 {
9541 /* This hack is to avoid a warning when using the "o"
9542 constraint within gcc asm statements.
9543 For instance:
9544
9545 #define _set_tssldt_desc(n,addr,limit,type) \
9546 __asm__ __volatile__ ( \
9547 "movw %w2,%0\n\t" \
9548 "movw %w1,2+%0\n\t" \
9549 "rorl $16,%1\n\t" \
9550 "movb %b1,4+%0\n\t" \
9551 "movb %4,5+%0\n\t" \
9552 "movb $0,6+%0\n\t" \
9553 "movb %h1,7+%0\n\t" \
9554 "rorl $16,%1" \
9555 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9556
9557 This works great except that the output assembler ends
9558 up looking a bit weird if it turns out that there is
9559 no offset. You end up producing code that looks like:
9560
9561 #APP
9562 movw $235,(%eax)
9563 movw %dx,2+(%eax)
9564 rorl $16,%edx
9565 movb %dl,4+(%eax)
9566 movb $137,5+(%eax)
9567 movb $0,6+(%eax)
9568 movb %dh,7+(%eax)
9569 rorl $16,%edx
9570 #NO_APP
9571
9572 So here we provide the missing zero. */
9573
9574 *displacement_string_end = '0';
9575 }
9576 #endif
9577 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9578 if (gotfree_input_line)
9579 input_line_pointer = gotfree_input_line;
9580
9581 exp_seg = expression (exp);
9582
9583 SKIP_WHITESPACE ();
9584 if (*input_line_pointer)
9585 as_bad (_("junk `%s' after expression"), input_line_pointer);
9586 #if GCC_ASM_O_HACK
9587 RESTORE_END_STRING (disp_end + 1);
9588 #endif
9589 input_line_pointer = save_input_line_pointer;
9590 if (gotfree_input_line)
9591 {
9592 free (gotfree_input_line);
9593
9594 if (exp->X_op == O_constant || exp->X_op == O_register)
9595 exp->X_op = O_illegal;
9596 }
9597
9598 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9599
9600 RESTORE_END_STRING (disp_end);
9601
9602 return ret;
9603 }
9604
9605 static int
9606 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9607 i386_operand_type types, const char *disp_start)
9608 {
9609 i386_operand_type bigdisp;
9610 int ret = 1;
9611
9612 /* We do this to make sure that the section symbol is in
9613 the symbol table. We will ultimately change the relocation
9614 to be relative to the beginning of the section. */
9615 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9616 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9617 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9618 {
9619 if (exp->X_op != O_symbol)
9620 goto inv_disp;
9621
9622 if (S_IS_LOCAL (exp->X_add_symbol)
9623 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9624 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9625 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9626 exp->X_op = O_subtract;
9627 exp->X_op_symbol = GOT_symbol;
9628 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9629 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9630 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9631 i.reloc[this_operand] = BFD_RELOC_64;
9632 else
9633 i.reloc[this_operand] = BFD_RELOC_32;
9634 }
9635
9636 else if (exp->X_op == O_absent
9637 || exp->X_op == O_illegal
9638 || exp->X_op == O_big)
9639 {
9640 inv_disp:
9641 as_bad (_("missing or invalid displacement expression `%s'"),
9642 disp_start);
9643 ret = 0;
9644 }
9645
9646 else if (flag_code == CODE_64BIT
9647 && !i.prefix[ADDR_PREFIX]
9648 && exp->X_op == O_constant)
9649 {
9650 /* Since displacement is signed extended to 64bit, don't allow
9651 disp32 and turn off disp32s if they are out of range. */
9652 i.types[this_operand].bitfield.disp32 = 0;
9653 if (!fits_in_signed_long (exp->X_add_number))
9654 {
9655 i.types[this_operand].bitfield.disp32s = 0;
9656 if (i.types[this_operand].bitfield.baseindex)
9657 {
9658 as_bad (_("0x%lx out range of signed 32bit displacement"),
9659 (long) exp->X_add_number);
9660 ret = 0;
9661 }
9662 }
9663 }
9664
9665 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9666 else if (exp->X_op != O_constant
9667 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9668 && exp_seg != absolute_section
9669 && exp_seg != text_section
9670 && exp_seg != data_section
9671 && exp_seg != bss_section
9672 && exp_seg != undefined_section
9673 && !bfd_is_com_section (exp_seg))
9674 {
9675 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9676 ret = 0;
9677 }
9678 #endif
9679
9680 /* Check if this is a displacement only operand. */
9681 bigdisp = i.types[this_operand];
9682 bigdisp.bitfield.disp8 = 0;
9683 bigdisp.bitfield.disp16 = 0;
9684 bigdisp.bitfield.disp32 = 0;
9685 bigdisp.bitfield.disp32s = 0;
9686 bigdisp.bitfield.disp64 = 0;
9687 if (operand_type_all_zero (&bigdisp))
9688 i.types[this_operand] = operand_type_and (i.types[this_operand],
9689 types);
9690
9691 return ret;
9692 }
9693
9694 /* Return the active addressing mode, taking address override and
9695 registers forming the address into consideration. Update the
9696 address override prefix if necessary. */
9697
9698 static enum flag_code
9699 i386_addressing_mode (void)
9700 {
9701 enum flag_code addr_mode;
9702
9703 if (i.prefix[ADDR_PREFIX])
9704 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9705 else
9706 {
9707 addr_mode = flag_code;
9708
9709 #if INFER_ADDR_PREFIX
9710 if (i.mem_operands == 0)
9711 {
9712 /* Infer address prefix from the first memory operand. */
9713 const reg_entry *addr_reg = i.base_reg;
9714
9715 if (addr_reg == NULL)
9716 addr_reg = i.index_reg;
9717
9718 if (addr_reg)
9719 {
9720 if (addr_reg->reg_type.bitfield.dword)
9721 addr_mode = CODE_32BIT;
9722 else if (flag_code != CODE_64BIT
9723 && addr_reg->reg_type.bitfield.word)
9724 addr_mode = CODE_16BIT;
9725
9726 if (addr_mode != flag_code)
9727 {
9728 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9729 i.prefixes += 1;
9730 /* Change the size of any displacement too. At most one
9731 of Disp16 or Disp32 is set.
9732 FIXME. There doesn't seem to be any real need for
9733 separate Disp16 and Disp32 flags. The same goes for
9734 Imm16 and Imm32. Removing them would probably clean
9735 up the code quite a lot. */
9736 if (flag_code != CODE_64BIT
9737 && (i.types[this_operand].bitfield.disp16
9738 || i.types[this_operand].bitfield.disp32))
9739 i.types[this_operand]
9740 = operand_type_xor (i.types[this_operand], disp16_32);
9741 }
9742 }
9743 }
9744 #endif
9745 }
9746
9747 return addr_mode;
9748 }
9749
9750 /* Make sure the memory operand we've been dealt is valid.
9751 Return 1 on success, 0 on a failure. */
9752
9753 static int
9754 i386_index_check (const char *operand_string)
9755 {
9756 const char *kind = "base/index";
9757 enum flag_code addr_mode = i386_addressing_mode ();
9758
9759 if (current_templates->start->opcode_modifier.isstring
9760 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9761 && (current_templates->end[-1].opcode_modifier.isstring
9762 || i.mem_operands))
9763 {
9764 /* Memory operands of string insns are special in that they only allow
9765 a single register (rDI, rSI, or rBX) as their memory address. */
9766 const reg_entry *expected_reg;
9767 static const char *di_si[][2] =
9768 {
9769 { "esi", "edi" },
9770 { "si", "di" },
9771 { "rsi", "rdi" }
9772 };
9773 static const char *bx[] = { "ebx", "bx", "rbx" };
9774
9775 kind = "string address";
9776
9777 if (current_templates->start->opcode_modifier.repprefixok)
9778 {
9779 int es_op = current_templates->end[-1].opcode_modifier.isstring
9780 - IS_STRING_ES_OP0;
9781 int op = 0;
9782
9783 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
9784 || ((!i.mem_operands != !intel_syntax)
9785 && current_templates->end[-1].operand_types[1]
9786 .bitfield.baseindex))
9787 op = 1;
9788 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
9789 }
9790 else
9791 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9792
9793 if (i.base_reg != expected_reg
9794 || i.index_reg
9795 || operand_type_check (i.types[this_operand], disp))
9796 {
9797 /* The second memory operand must have the same size as
9798 the first one. */
9799 if (i.mem_operands
9800 && i.base_reg
9801 && !((addr_mode == CODE_64BIT
9802 && i.base_reg->reg_type.bitfield.qword)
9803 || (addr_mode == CODE_32BIT
9804 ? i.base_reg->reg_type.bitfield.dword
9805 : i.base_reg->reg_type.bitfield.word)))
9806 goto bad_address;
9807
9808 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9809 operand_string,
9810 intel_syntax ? '[' : '(',
9811 register_prefix,
9812 expected_reg->reg_name,
9813 intel_syntax ? ']' : ')');
9814 return 1;
9815 }
9816 else
9817 return 1;
9818
9819 bad_address:
9820 as_bad (_("`%s' is not a valid %s expression"),
9821 operand_string, kind);
9822 return 0;
9823 }
9824 else
9825 {
9826 if (addr_mode != CODE_16BIT)
9827 {
9828 /* 32-bit/64-bit checks. */
9829 if ((i.base_reg
9830 && ((addr_mode == CODE_64BIT
9831 ? !i.base_reg->reg_type.bitfield.qword
9832 : !i.base_reg->reg_type.bitfield.dword)
9833 || (i.index_reg && i.base_reg->reg_num == RegIP)
9834 || i.base_reg->reg_num == RegIZ))
9835 || (i.index_reg
9836 && !i.index_reg->reg_type.bitfield.xmmword
9837 && !i.index_reg->reg_type.bitfield.ymmword
9838 && !i.index_reg->reg_type.bitfield.zmmword
9839 && ((addr_mode == CODE_64BIT
9840 ? !i.index_reg->reg_type.bitfield.qword
9841 : !i.index_reg->reg_type.bitfield.dword)
9842 || !i.index_reg->reg_type.bitfield.baseindex)))
9843 goto bad_address;
9844
9845 /* bndmk, bndldx, and bndstx have special restrictions. */
9846 if (current_templates->start->base_opcode == 0xf30f1b
9847 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9848 {
9849 /* They cannot use RIP-relative addressing. */
9850 if (i.base_reg && i.base_reg->reg_num == RegIP)
9851 {
9852 as_bad (_("`%s' cannot be used here"), operand_string);
9853 return 0;
9854 }
9855
9856 /* bndldx and bndstx ignore their scale factor. */
9857 if (current_templates->start->base_opcode != 0xf30f1b
9858 && i.log2_scale_factor)
9859 as_warn (_("register scaling is being ignored here"));
9860 }
9861 }
9862 else
9863 {
9864 /* 16-bit checks. */
9865 if ((i.base_reg
9866 && (!i.base_reg->reg_type.bitfield.word
9867 || !i.base_reg->reg_type.bitfield.baseindex))
9868 || (i.index_reg
9869 && (!i.index_reg->reg_type.bitfield.word
9870 || !i.index_reg->reg_type.bitfield.baseindex
9871 || !(i.base_reg
9872 && i.base_reg->reg_num < 6
9873 && i.index_reg->reg_num >= 6
9874 && i.log2_scale_factor == 0))))
9875 goto bad_address;
9876 }
9877 }
9878 return 1;
9879 }
9880
9881 /* Handle vector immediates. */
9882
9883 static int
9884 RC_SAE_immediate (const char *imm_start)
9885 {
9886 unsigned int match_found, j;
9887 const char *pstr = imm_start;
9888 expressionS *exp;
9889
9890 if (*pstr != '{')
9891 return 0;
9892
9893 pstr++;
9894 match_found = 0;
9895 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9896 {
9897 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9898 {
9899 if (!i.rounding)
9900 {
9901 rc_op.type = RC_NamesTable[j].type;
9902 rc_op.operand = this_operand;
9903 i.rounding = &rc_op;
9904 }
9905 else
9906 {
9907 as_bad (_("duplicated `%s'"), imm_start);
9908 return 0;
9909 }
9910 pstr += RC_NamesTable[j].len;
9911 match_found = 1;
9912 break;
9913 }
9914 }
9915 if (!match_found)
9916 return 0;
9917
9918 if (*pstr++ != '}')
9919 {
9920 as_bad (_("Missing '}': '%s'"), imm_start);
9921 return 0;
9922 }
9923 /* RC/SAE immediate string should contain nothing more. */;
9924 if (*pstr != 0)
9925 {
9926 as_bad (_("Junk after '}': '%s'"), imm_start);
9927 return 0;
9928 }
9929
9930 exp = &im_expressions[i.imm_operands++];
9931 i.op[this_operand].imms = exp;
9932
9933 exp->X_op = O_constant;
9934 exp->X_add_number = 0;
9935 exp->X_add_symbol = (symbolS *) 0;
9936 exp->X_op_symbol = (symbolS *) 0;
9937
9938 i.types[this_operand].bitfield.imm8 = 1;
9939 return 1;
9940 }
9941
9942 /* Only string instructions can have a second memory operand, so
9943 reduce current_templates to just those if it contains any. */
9944 static int
9945 maybe_adjust_templates (void)
9946 {
9947 const insn_template *t;
9948
9949 gas_assert (i.mem_operands == 1);
9950
9951 for (t = current_templates->start; t < current_templates->end; ++t)
9952 if (t->opcode_modifier.isstring)
9953 break;
9954
9955 if (t < current_templates->end)
9956 {
9957 static templates aux_templates;
9958 bfd_boolean recheck;
9959
9960 aux_templates.start = t;
9961 for (; t < current_templates->end; ++t)
9962 if (!t->opcode_modifier.isstring)
9963 break;
9964 aux_templates.end = t;
9965
9966 /* Determine whether to re-check the first memory operand. */
9967 recheck = (aux_templates.start != current_templates->start
9968 || t != current_templates->end);
9969
9970 current_templates = &aux_templates;
9971
9972 if (recheck)
9973 {
9974 i.mem_operands = 0;
9975 if (i.memop1_string != NULL
9976 && i386_index_check (i.memop1_string) == 0)
9977 return 0;
9978 i.mem_operands = 1;
9979 }
9980 }
9981
9982 return 1;
9983 }
9984
9985 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9986 on error. */
9987
9988 static int
9989 i386_att_operand (char *operand_string)
9990 {
9991 const reg_entry *r;
9992 char *end_op;
9993 char *op_string = operand_string;
9994
9995 if (is_space_char (*op_string))
9996 ++op_string;
9997
9998 /* We check for an absolute prefix (differentiating,
9999 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10000 if (*op_string == ABSOLUTE_PREFIX)
10001 {
10002 ++op_string;
10003 if (is_space_char (*op_string))
10004 ++op_string;
10005 i.jumpabsolute = TRUE;
10006 }
10007
10008 /* Check if operand is a register. */
10009 if ((r = parse_register (op_string, &end_op)) != NULL)
10010 {
10011 i386_operand_type temp;
10012
10013 /* Check for a segment override by searching for ':' after a
10014 segment register. */
10015 op_string = end_op;
10016 if (is_space_char (*op_string))
10017 ++op_string;
10018 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10019 {
10020 switch (r->reg_num)
10021 {
10022 case 0:
10023 i.seg[i.mem_operands] = &es;
10024 break;
10025 case 1:
10026 i.seg[i.mem_operands] = &cs;
10027 break;
10028 case 2:
10029 i.seg[i.mem_operands] = &ss;
10030 break;
10031 case 3:
10032 i.seg[i.mem_operands] = &ds;
10033 break;
10034 case 4:
10035 i.seg[i.mem_operands] = &fs;
10036 break;
10037 case 5:
10038 i.seg[i.mem_operands] = &gs;
10039 break;
10040 }
10041
10042 /* Skip the ':' and whitespace. */
10043 ++op_string;
10044 if (is_space_char (*op_string))
10045 ++op_string;
10046
10047 if (!is_digit_char (*op_string)
10048 && !is_identifier_char (*op_string)
10049 && *op_string != '('
10050 && *op_string != ABSOLUTE_PREFIX)
10051 {
10052 as_bad (_("bad memory operand `%s'"), op_string);
10053 return 0;
10054 }
10055 /* Handle case of %es:*foo. */
10056 if (*op_string == ABSOLUTE_PREFIX)
10057 {
10058 ++op_string;
10059 if (is_space_char (*op_string))
10060 ++op_string;
10061 i.jumpabsolute = TRUE;
10062 }
10063 goto do_memory_reference;
10064 }
10065
10066 /* Handle vector operations. */
10067 if (*op_string == '{')
10068 {
10069 op_string = check_VecOperations (op_string, NULL);
10070 if (op_string == NULL)
10071 return 0;
10072 }
10073
10074 if (*op_string)
10075 {
10076 as_bad (_("junk `%s' after register"), op_string);
10077 return 0;
10078 }
10079 temp = r->reg_type;
10080 temp.bitfield.baseindex = 0;
10081 i.types[this_operand] = operand_type_or (i.types[this_operand],
10082 temp);
10083 i.types[this_operand].bitfield.unspecified = 0;
10084 i.op[this_operand].regs = r;
10085 i.reg_operands++;
10086 }
10087 else if (*op_string == REGISTER_PREFIX)
10088 {
10089 as_bad (_("bad register name `%s'"), op_string);
10090 return 0;
10091 }
10092 else if (*op_string == IMMEDIATE_PREFIX)
10093 {
10094 ++op_string;
10095 if (i.jumpabsolute)
10096 {
10097 as_bad (_("immediate operand illegal with absolute jump"));
10098 return 0;
10099 }
10100 if (!i386_immediate (op_string))
10101 return 0;
10102 }
10103 else if (RC_SAE_immediate (operand_string))
10104 {
10105 /* If it is a RC or SAE immediate, do nothing. */
10106 ;
10107 }
10108 else if (is_digit_char (*op_string)
10109 || is_identifier_char (*op_string)
10110 || *op_string == '"'
10111 || *op_string == '(')
10112 {
10113 /* This is a memory reference of some sort. */
10114 char *base_string;
10115
10116 /* Start and end of displacement string expression (if found). */
10117 char *displacement_string_start;
10118 char *displacement_string_end;
10119 char *vop_start;
10120
10121 do_memory_reference:
10122 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10123 return 0;
10124 if ((i.mem_operands == 1
10125 && !current_templates->start->opcode_modifier.isstring)
10126 || i.mem_operands == 2)
10127 {
10128 as_bad (_("too many memory references for `%s'"),
10129 current_templates->start->name);
10130 return 0;
10131 }
10132
10133 /* Check for base index form. We detect the base index form by
10134 looking for an ')' at the end of the operand, searching
10135 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10136 after the '('. */
10137 base_string = op_string + strlen (op_string);
10138
10139 /* Handle vector operations. */
10140 vop_start = strchr (op_string, '{');
10141 if (vop_start && vop_start < base_string)
10142 {
10143 if (check_VecOperations (vop_start, base_string) == NULL)
10144 return 0;
10145 base_string = vop_start;
10146 }
10147
10148 --base_string;
10149 if (is_space_char (*base_string))
10150 --base_string;
10151
10152 /* If we only have a displacement, set-up for it to be parsed later. */
10153 displacement_string_start = op_string;
10154 displacement_string_end = base_string + 1;
10155
10156 if (*base_string == ')')
10157 {
10158 char *temp_string;
10159 unsigned int parens_balanced = 1;
10160 /* We've already checked that the number of left & right ()'s are
10161 equal, so this loop will not be infinite. */
10162 do
10163 {
10164 base_string--;
10165 if (*base_string == ')')
10166 parens_balanced++;
10167 if (*base_string == '(')
10168 parens_balanced--;
10169 }
10170 while (parens_balanced);
10171
10172 temp_string = base_string;
10173
10174 /* Skip past '(' and whitespace. */
10175 ++base_string;
10176 if (is_space_char (*base_string))
10177 ++base_string;
10178
10179 if (*base_string == ','
10180 || ((i.base_reg = parse_register (base_string, &end_op))
10181 != NULL))
10182 {
10183 displacement_string_end = temp_string;
10184
10185 i.types[this_operand].bitfield.baseindex = 1;
10186
10187 if (i.base_reg)
10188 {
10189 base_string = end_op;
10190 if (is_space_char (*base_string))
10191 ++base_string;
10192 }
10193
10194 /* There may be an index reg or scale factor here. */
10195 if (*base_string == ',')
10196 {
10197 ++base_string;
10198 if (is_space_char (*base_string))
10199 ++base_string;
10200
10201 if ((i.index_reg = parse_register (base_string, &end_op))
10202 != NULL)
10203 {
10204 base_string = end_op;
10205 if (is_space_char (*base_string))
10206 ++base_string;
10207 if (*base_string == ',')
10208 {
10209 ++base_string;
10210 if (is_space_char (*base_string))
10211 ++base_string;
10212 }
10213 else if (*base_string != ')')
10214 {
10215 as_bad (_("expecting `,' or `)' "
10216 "after index register in `%s'"),
10217 operand_string);
10218 return 0;
10219 }
10220 }
10221 else if (*base_string == REGISTER_PREFIX)
10222 {
10223 end_op = strchr (base_string, ',');
10224 if (end_op)
10225 *end_op = '\0';
10226 as_bad (_("bad register name `%s'"), base_string);
10227 return 0;
10228 }
10229
10230 /* Check for scale factor. */
10231 if (*base_string != ')')
10232 {
10233 char *end_scale = i386_scale (base_string);
10234
10235 if (!end_scale)
10236 return 0;
10237
10238 base_string = end_scale;
10239 if (is_space_char (*base_string))
10240 ++base_string;
10241 if (*base_string != ')')
10242 {
10243 as_bad (_("expecting `)' "
10244 "after scale factor in `%s'"),
10245 operand_string);
10246 return 0;
10247 }
10248 }
10249 else if (!i.index_reg)
10250 {
10251 as_bad (_("expecting index register or scale factor "
10252 "after `,'; got '%c'"),
10253 *base_string);
10254 return 0;
10255 }
10256 }
10257 else if (*base_string != ')')
10258 {
10259 as_bad (_("expecting `,' or `)' "
10260 "after base register in `%s'"),
10261 operand_string);
10262 return 0;
10263 }
10264 }
10265 else if (*base_string == REGISTER_PREFIX)
10266 {
10267 end_op = strchr (base_string, ',');
10268 if (end_op)
10269 *end_op = '\0';
10270 as_bad (_("bad register name `%s'"), base_string);
10271 return 0;
10272 }
10273 }
10274
10275 /* If there's an expression beginning the operand, parse it,
10276 assuming displacement_string_start and
10277 displacement_string_end are meaningful. */
10278 if (displacement_string_start != displacement_string_end)
10279 {
10280 if (!i386_displacement (displacement_string_start,
10281 displacement_string_end))
10282 return 0;
10283 }
10284
10285 /* Special case for (%dx) while doing input/output op. */
10286 if (i.base_reg
10287 && i.base_reg->reg_type.bitfield.instance == RegD
10288 && i.base_reg->reg_type.bitfield.word
10289 && i.index_reg == 0
10290 && i.log2_scale_factor == 0
10291 && i.seg[i.mem_operands] == 0
10292 && !operand_type_check (i.types[this_operand], disp))
10293 {
10294 i.types[this_operand] = i.base_reg->reg_type;
10295 return 1;
10296 }
10297
10298 if (i386_index_check (operand_string) == 0)
10299 return 0;
10300 i.flags[this_operand] |= Operand_Mem;
10301 if (i.mem_operands == 0)
10302 i.memop1_string = xstrdup (operand_string);
10303 i.mem_operands++;
10304 }
10305 else
10306 {
10307 /* It's not a memory operand; argh! */
10308 as_bad (_("invalid char %s beginning operand %d `%s'"),
10309 output_invalid (*op_string),
10310 this_operand + 1,
10311 op_string);
10312 return 0;
10313 }
10314 return 1; /* Normal return. */
10315 }
10316 \f
10317 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10318 that an rs_machine_dependent frag may reach. */
10319
10320 unsigned int
10321 i386_frag_max_var (fragS *frag)
10322 {
10323 /* The only relaxable frags are for jumps.
10324 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10325 gas_assert (frag->fr_type == rs_machine_dependent);
10326 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10327 }
10328
10329 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10330 static int
10331 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10332 {
10333 /* STT_GNU_IFUNC symbol must go through PLT. */
10334 if ((symbol_get_bfdsym (fr_symbol)->flags
10335 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10336 return 0;
10337
10338 if (!S_IS_EXTERNAL (fr_symbol))
10339 /* Symbol may be weak or local. */
10340 return !S_IS_WEAK (fr_symbol);
10341
10342 /* Global symbols with non-default visibility can't be preempted. */
10343 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10344 return 1;
10345
10346 if (fr_var != NO_RELOC)
10347 switch ((enum bfd_reloc_code_real) fr_var)
10348 {
10349 case BFD_RELOC_386_PLT32:
10350 case BFD_RELOC_X86_64_PLT32:
10351 /* Symbol with PLT relocation may be preempted. */
10352 return 0;
10353 default:
10354 abort ();
10355 }
10356
10357 /* Global symbols with default visibility in a shared library may be
10358 preempted by another definition. */
10359 return !shared;
10360 }
10361 #endif
10362
10363 /* md_estimate_size_before_relax()
10364
10365 Called just before relax() for rs_machine_dependent frags. The x86
10366 assembler uses these frags to handle variable size jump
10367 instructions.
10368
10369 Any symbol that is now undefined will not become defined.
10370 Return the correct fr_subtype in the frag.
10371 Return the initial "guess for variable size of frag" to caller.
10372 The guess is actually the growth beyond the fixed part. Whatever
10373 we do to grow the fixed or variable part contributes to our
10374 returned value. */
10375
10376 int
10377 md_estimate_size_before_relax (fragS *fragP, segT segment)
10378 {
10379 /* We've already got fragP->fr_subtype right; all we have to do is
10380 check for un-relaxable symbols. On an ELF system, we can't relax
10381 an externally visible symbol, because it may be overridden by a
10382 shared library. */
10383 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10384 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10385 || (IS_ELF
10386 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10387 fragP->fr_var))
10388 #endif
10389 #if defined (OBJ_COFF) && defined (TE_PE)
10390 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10391 && S_IS_WEAK (fragP->fr_symbol))
10392 #endif
10393 )
10394 {
10395 /* Symbol is undefined in this segment, or we need to keep a
10396 reloc so that weak symbols can be overridden. */
10397 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10398 enum bfd_reloc_code_real reloc_type;
10399 unsigned char *opcode;
10400 int old_fr_fix;
10401
10402 if (fragP->fr_var != NO_RELOC)
10403 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10404 else if (size == 2)
10405 reloc_type = BFD_RELOC_16_PCREL;
10406 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10407 else if (need_plt32_p (fragP->fr_symbol))
10408 reloc_type = BFD_RELOC_X86_64_PLT32;
10409 #endif
10410 else
10411 reloc_type = BFD_RELOC_32_PCREL;
10412
10413 old_fr_fix = fragP->fr_fix;
10414 opcode = (unsigned char *) fragP->fr_opcode;
10415
10416 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10417 {
10418 case UNCOND_JUMP:
10419 /* Make jmp (0xeb) a (d)word displacement jump. */
10420 opcode[0] = 0xe9;
10421 fragP->fr_fix += size;
10422 fix_new (fragP, old_fr_fix, size,
10423 fragP->fr_symbol,
10424 fragP->fr_offset, 1,
10425 reloc_type);
10426 break;
10427
10428 case COND_JUMP86:
10429 if (size == 2
10430 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10431 {
10432 /* Negate the condition, and branch past an
10433 unconditional jump. */
10434 opcode[0] ^= 1;
10435 opcode[1] = 3;
10436 /* Insert an unconditional jump. */
10437 opcode[2] = 0xe9;
10438 /* We added two extra opcode bytes, and have a two byte
10439 offset. */
10440 fragP->fr_fix += 2 + 2;
10441 fix_new (fragP, old_fr_fix + 2, 2,
10442 fragP->fr_symbol,
10443 fragP->fr_offset, 1,
10444 reloc_type);
10445 break;
10446 }
10447 /* Fall through. */
10448
10449 case COND_JUMP:
10450 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10451 {
10452 fixS *fixP;
10453
10454 fragP->fr_fix += 1;
10455 fixP = fix_new (fragP, old_fr_fix, 1,
10456 fragP->fr_symbol,
10457 fragP->fr_offset, 1,
10458 BFD_RELOC_8_PCREL);
10459 fixP->fx_signed = 1;
10460 break;
10461 }
10462
10463 /* This changes the byte-displacement jump 0x7N
10464 to the (d)word-displacement jump 0x0f,0x8N. */
10465 opcode[1] = opcode[0] + 0x10;
10466 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10467 /* We've added an opcode byte. */
10468 fragP->fr_fix += 1 + size;
10469 fix_new (fragP, old_fr_fix + 1, size,
10470 fragP->fr_symbol,
10471 fragP->fr_offset, 1,
10472 reloc_type);
10473 break;
10474
10475 default:
10476 BAD_CASE (fragP->fr_subtype);
10477 break;
10478 }
10479 frag_wane (fragP);
10480 return fragP->fr_fix - old_fr_fix;
10481 }
10482
10483 /* Guess size depending on current relax state. Initially the relax
10484 state will correspond to a short jump and we return 1, because
10485 the variable part of the frag (the branch offset) is one byte
10486 long. However, we can relax a section more than once and in that
10487 case we must either set fr_subtype back to the unrelaxed state,
10488 or return the value for the appropriate branch. */
10489 return md_relax_table[fragP->fr_subtype].rlx_length;
10490 }
10491
10492 /* Called after relax() is finished.
10493
10494 In: Address of frag.
10495 fr_type == rs_machine_dependent.
10496 fr_subtype is what the address relaxed to.
10497
10498 Out: Any fixSs and constants are set up.
10499 Caller will turn frag into a ".space 0". */
10500
10501 void
10502 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10503 fragS *fragP)
10504 {
10505 unsigned char *opcode;
10506 unsigned char *where_to_put_displacement = NULL;
10507 offsetT target_address;
10508 offsetT opcode_address;
10509 unsigned int extension = 0;
10510 offsetT displacement_from_opcode_start;
10511
10512 opcode = (unsigned char *) fragP->fr_opcode;
10513
10514 /* Address we want to reach in file space. */
10515 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10516
10517 /* Address opcode resides at in file space. */
10518 opcode_address = fragP->fr_address + fragP->fr_fix;
10519
10520 /* Displacement from opcode start to fill into instruction. */
10521 displacement_from_opcode_start = target_address - opcode_address;
10522
10523 if ((fragP->fr_subtype & BIG) == 0)
10524 {
10525 /* Don't have to change opcode. */
10526 extension = 1; /* 1 opcode + 1 displacement */
10527 where_to_put_displacement = &opcode[1];
10528 }
10529 else
10530 {
10531 if (no_cond_jump_promotion
10532 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10533 as_warn_where (fragP->fr_file, fragP->fr_line,
10534 _("long jump required"));
10535
10536 switch (fragP->fr_subtype)
10537 {
10538 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10539 extension = 4; /* 1 opcode + 4 displacement */
10540 opcode[0] = 0xe9;
10541 where_to_put_displacement = &opcode[1];
10542 break;
10543
10544 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10545 extension = 2; /* 1 opcode + 2 displacement */
10546 opcode[0] = 0xe9;
10547 where_to_put_displacement = &opcode[1];
10548 break;
10549
10550 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10551 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10552 extension = 5; /* 2 opcode + 4 displacement */
10553 opcode[1] = opcode[0] + 0x10;
10554 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10555 where_to_put_displacement = &opcode[2];
10556 break;
10557
10558 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10559 extension = 3; /* 2 opcode + 2 displacement */
10560 opcode[1] = opcode[0] + 0x10;
10561 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10562 where_to_put_displacement = &opcode[2];
10563 break;
10564
10565 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10566 extension = 4;
10567 opcode[0] ^= 1;
10568 opcode[1] = 3;
10569 opcode[2] = 0xe9;
10570 where_to_put_displacement = &opcode[3];
10571 break;
10572
10573 default:
10574 BAD_CASE (fragP->fr_subtype);
10575 break;
10576 }
10577 }
10578
10579 /* If size if less then four we are sure that the operand fits,
10580 but if it's 4, then it could be that the displacement is larger
10581 then -/+ 2GB. */
10582 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10583 && object_64bit
10584 && ((addressT) (displacement_from_opcode_start - extension
10585 + ((addressT) 1 << 31))
10586 > (((addressT) 2 << 31) - 1)))
10587 {
10588 as_bad_where (fragP->fr_file, fragP->fr_line,
10589 _("jump target out of range"));
10590 /* Make us emit 0. */
10591 displacement_from_opcode_start = extension;
10592 }
10593 /* Now put displacement after opcode. */
10594 md_number_to_chars ((char *) where_to_put_displacement,
10595 (valueT) (displacement_from_opcode_start - extension),
10596 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10597 fragP->fr_fix += extension;
10598 }
10599 \f
10600 /* Apply a fixup (fixP) to segment data, once it has been determined
10601 by our caller that we have all the info we need to fix it up.
10602
10603 Parameter valP is the pointer to the value of the bits.
10604
10605 On the 386, immediates, displacements, and data pointers are all in
10606 the same (little-endian) format, so we don't need to care about which
10607 we are handling. */
10608
10609 void
10610 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10611 {
10612 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10613 valueT value = *valP;
10614
10615 #if !defined (TE_Mach)
10616 if (fixP->fx_pcrel)
10617 {
10618 switch (fixP->fx_r_type)
10619 {
10620 default:
10621 break;
10622
10623 case BFD_RELOC_64:
10624 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10625 break;
10626 case BFD_RELOC_32:
10627 case BFD_RELOC_X86_64_32S:
10628 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10629 break;
10630 case BFD_RELOC_16:
10631 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10632 break;
10633 case BFD_RELOC_8:
10634 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10635 break;
10636 }
10637 }
10638
10639 if (fixP->fx_addsy != NULL
10640 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10641 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10642 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10643 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10644 && !use_rela_relocations)
10645 {
10646 /* This is a hack. There should be a better way to handle this.
10647 This covers for the fact that bfd_install_relocation will
10648 subtract the current location (for partial_inplace, PC relative
10649 relocations); see more below. */
10650 #ifndef OBJ_AOUT
10651 if (IS_ELF
10652 #ifdef TE_PE
10653 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10654 #endif
10655 )
10656 value += fixP->fx_where + fixP->fx_frag->fr_address;
10657 #endif
10658 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10659 if (IS_ELF)
10660 {
10661 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10662
10663 if ((sym_seg == seg
10664 || (symbol_section_p (fixP->fx_addsy)
10665 && sym_seg != absolute_section))
10666 && !generic_force_reloc (fixP))
10667 {
10668 /* Yes, we add the values in twice. This is because
10669 bfd_install_relocation subtracts them out again. I think
10670 bfd_install_relocation is broken, but I don't dare change
10671 it. FIXME. */
10672 value += fixP->fx_where + fixP->fx_frag->fr_address;
10673 }
10674 }
10675 #endif
10676 #if defined (OBJ_COFF) && defined (TE_PE)
10677 /* For some reason, the PE format does not store a
10678 section address offset for a PC relative symbol. */
10679 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10680 || S_IS_WEAK (fixP->fx_addsy))
10681 value += md_pcrel_from (fixP);
10682 #endif
10683 }
10684 #if defined (OBJ_COFF) && defined (TE_PE)
10685 if (fixP->fx_addsy != NULL
10686 && S_IS_WEAK (fixP->fx_addsy)
10687 /* PR 16858: Do not modify weak function references. */
10688 && ! fixP->fx_pcrel)
10689 {
10690 #if !defined (TE_PEP)
10691 /* For x86 PE weak function symbols are neither PC-relative
10692 nor do they set S_IS_FUNCTION. So the only reliable way
10693 to detect them is to check the flags of their containing
10694 section. */
10695 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10696 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10697 ;
10698 else
10699 #endif
10700 value -= S_GET_VALUE (fixP->fx_addsy);
10701 }
10702 #endif
10703
10704 /* Fix a few things - the dynamic linker expects certain values here,
10705 and we must not disappoint it. */
10706 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10707 if (IS_ELF && fixP->fx_addsy)
10708 switch (fixP->fx_r_type)
10709 {
10710 case BFD_RELOC_386_PLT32:
10711 case BFD_RELOC_X86_64_PLT32:
10712 /* Make the jump instruction point to the address of the operand.
10713 At runtime we merely add the offset to the actual PLT entry.
10714 NB: Subtract the offset size only for jump instructions. */
10715 if (fixP->fx_pcrel)
10716 value = -4;
10717 break;
10718
10719 case BFD_RELOC_386_TLS_GD:
10720 case BFD_RELOC_386_TLS_LDM:
10721 case BFD_RELOC_386_TLS_IE_32:
10722 case BFD_RELOC_386_TLS_IE:
10723 case BFD_RELOC_386_TLS_GOTIE:
10724 case BFD_RELOC_386_TLS_GOTDESC:
10725 case BFD_RELOC_X86_64_TLSGD:
10726 case BFD_RELOC_X86_64_TLSLD:
10727 case BFD_RELOC_X86_64_GOTTPOFF:
10728 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10729 value = 0; /* Fully resolved at runtime. No addend. */
10730 /* Fallthrough */
10731 case BFD_RELOC_386_TLS_LE:
10732 case BFD_RELOC_386_TLS_LDO_32:
10733 case BFD_RELOC_386_TLS_LE_32:
10734 case BFD_RELOC_X86_64_DTPOFF32:
10735 case BFD_RELOC_X86_64_DTPOFF64:
10736 case BFD_RELOC_X86_64_TPOFF32:
10737 case BFD_RELOC_X86_64_TPOFF64:
10738 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10739 break;
10740
10741 case BFD_RELOC_386_TLS_DESC_CALL:
10742 case BFD_RELOC_X86_64_TLSDESC_CALL:
10743 value = 0; /* Fully resolved at runtime. No addend. */
10744 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10745 fixP->fx_done = 0;
10746 return;
10747
10748 case BFD_RELOC_VTABLE_INHERIT:
10749 case BFD_RELOC_VTABLE_ENTRY:
10750 fixP->fx_done = 0;
10751 return;
10752
10753 default:
10754 break;
10755 }
10756 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10757 *valP = value;
10758 #endif /* !defined (TE_Mach) */
10759
10760 /* Are we finished with this relocation now? */
10761 if (fixP->fx_addsy == NULL)
10762 fixP->fx_done = 1;
10763 #if defined (OBJ_COFF) && defined (TE_PE)
10764 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10765 {
10766 fixP->fx_done = 0;
10767 /* Remember value for tc_gen_reloc. */
10768 fixP->fx_addnumber = value;
10769 /* Clear out the frag for now. */
10770 value = 0;
10771 }
10772 #endif
10773 else if (use_rela_relocations)
10774 {
10775 fixP->fx_no_overflow = 1;
10776 /* Remember value for tc_gen_reloc. */
10777 fixP->fx_addnumber = value;
10778 value = 0;
10779 }
10780
10781 md_number_to_chars (p, value, fixP->fx_size);
10782 }
10783 \f
10784 const char *
10785 md_atof (int type, char *litP, int *sizeP)
10786 {
10787 /* This outputs the LITTLENUMs in REVERSE order;
10788 in accord with the bigendian 386. */
10789 return ieee_md_atof (type, litP, sizeP, FALSE);
10790 }
10791 \f
10792 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10793
10794 static char *
10795 output_invalid (int c)
10796 {
10797 if (ISPRINT (c))
10798 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10799 "'%c'", c);
10800 else
10801 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10802 "(0x%x)", (unsigned char) c);
10803 return output_invalid_buf;
10804 }
10805
10806 /* REG_STRING starts *before* REGISTER_PREFIX. */
10807
10808 static const reg_entry *
10809 parse_real_register (char *reg_string, char **end_op)
10810 {
10811 char *s = reg_string;
10812 char *p;
10813 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10814 const reg_entry *r;
10815
10816 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10817 if (*s == REGISTER_PREFIX)
10818 ++s;
10819
10820 if (is_space_char (*s))
10821 ++s;
10822
10823 p = reg_name_given;
10824 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10825 {
10826 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10827 return (const reg_entry *) NULL;
10828 s++;
10829 }
10830
10831 /* For naked regs, make sure that we are not dealing with an identifier.
10832 This prevents confusing an identifier like `eax_var' with register
10833 `eax'. */
10834 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10835 return (const reg_entry *) NULL;
10836
10837 *end_op = s;
10838
10839 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10840
10841 /* Handle floating point regs, allowing spaces in the (i) part. */
10842 if (r == i386_regtab /* %st is first entry of table */)
10843 {
10844 if (!cpu_arch_flags.bitfield.cpu8087
10845 && !cpu_arch_flags.bitfield.cpu287
10846 && !cpu_arch_flags.bitfield.cpu387)
10847 return (const reg_entry *) NULL;
10848
10849 if (is_space_char (*s))
10850 ++s;
10851 if (*s == '(')
10852 {
10853 ++s;
10854 if (is_space_char (*s))
10855 ++s;
10856 if (*s >= '0' && *s <= '7')
10857 {
10858 int fpr = *s - '0';
10859 ++s;
10860 if (is_space_char (*s))
10861 ++s;
10862 if (*s == ')')
10863 {
10864 *end_op = s + 1;
10865 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10866 know (r);
10867 return r + fpr;
10868 }
10869 }
10870 /* We have "%st(" then garbage. */
10871 return (const reg_entry *) NULL;
10872 }
10873 }
10874
10875 if (r == NULL || allow_pseudo_reg)
10876 return r;
10877
10878 if (operand_type_all_zero (&r->reg_type))
10879 return (const reg_entry *) NULL;
10880
10881 if ((r->reg_type.bitfield.dword
10882 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
10883 || r->reg_type.bitfield.class == RegCR
10884 || r->reg_type.bitfield.class == RegDR
10885 || r->reg_type.bitfield.class == RegTR)
10886 && !cpu_arch_flags.bitfield.cpui386)
10887 return (const reg_entry *) NULL;
10888
10889 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
10890 return (const reg_entry *) NULL;
10891
10892 if (!cpu_arch_flags.bitfield.cpuavx512f)
10893 {
10894 if (r->reg_type.bitfield.zmmword
10895 || r->reg_type.bitfield.class == RegMask)
10896 return (const reg_entry *) NULL;
10897
10898 if (!cpu_arch_flags.bitfield.cpuavx)
10899 {
10900 if (r->reg_type.bitfield.ymmword)
10901 return (const reg_entry *) NULL;
10902
10903 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10904 return (const reg_entry *) NULL;
10905 }
10906 }
10907
10908 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
10909 return (const reg_entry *) NULL;
10910
10911 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10912 if (!allow_index_reg && r->reg_num == RegIZ)
10913 return (const reg_entry *) NULL;
10914
10915 /* Upper 16 vector registers are only available with VREX in 64bit
10916 mode, and require EVEX encoding. */
10917 if (r->reg_flags & RegVRex)
10918 {
10919 if (!cpu_arch_flags.bitfield.cpuavx512f
10920 || flag_code != CODE_64BIT)
10921 return (const reg_entry *) NULL;
10922
10923 i.vec_encoding = vex_encoding_evex;
10924 }
10925
10926 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10927 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
10928 && flag_code != CODE_64BIT)
10929 return (const reg_entry *) NULL;
10930
10931 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10932 && !intel_syntax)
10933 return (const reg_entry *) NULL;
10934
10935 return r;
10936 }
10937
10938 /* REG_STRING starts *before* REGISTER_PREFIX. */
10939
10940 static const reg_entry *
10941 parse_register (char *reg_string, char **end_op)
10942 {
10943 const reg_entry *r;
10944
10945 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10946 r = parse_real_register (reg_string, end_op);
10947 else
10948 r = NULL;
10949 if (!r)
10950 {
10951 char *save = input_line_pointer;
10952 char c;
10953 symbolS *symbolP;
10954
10955 input_line_pointer = reg_string;
10956 c = get_symbol_name (&reg_string);
10957 symbolP = symbol_find (reg_string);
10958 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10959 {
10960 const expressionS *e = symbol_get_value_expression (symbolP);
10961
10962 know (e->X_op == O_register);
10963 know (e->X_add_number >= 0
10964 && (valueT) e->X_add_number < i386_regtab_size);
10965 r = i386_regtab + e->X_add_number;
10966 if ((r->reg_flags & RegVRex))
10967 i.vec_encoding = vex_encoding_evex;
10968 *end_op = input_line_pointer;
10969 }
10970 *input_line_pointer = c;
10971 input_line_pointer = save;
10972 }
10973 return r;
10974 }
10975
10976 int
10977 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10978 {
10979 const reg_entry *r;
10980 char *end = input_line_pointer;
10981
10982 *end = *nextcharP;
10983 r = parse_register (name, &input_line_pointer);
10984 if (r && end <= input_line_pointer)
10985 {
10986 *nextcharP = *input_line_pointer;
10987 *input_line_pointer = 0;
10988 e->X_op = O_register;
10989 e->X_add_number = r - i386_regtab;
10990 return 1;
10991 }
10992 input_line_pointer = end;
10993 *end = 0;
10994 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10995 }
10996
10997 void
10998 md_operand (expressionS *e)
10999 {
11000 char *end;
11001 const reg_entry *r;
11002
11003 switch (*input_line_pointer)
11004 {
11005 case REGISTER_PREFIX:
11006 r = parse_real_register (input_line_pointer, &end);
11007 if (r)
11008 {
11009 e->X_op = O_register;
11010 e->X_add_number = r - i386_regtab;
11011 input_line_pointer = end;
11012 }
11013 break;
11014
11015 case '[':
11016 gas_assert (intel_syntax);
11017 end = input_line_pointer++;
11018 expression (e);
11019 if (*input_line_pointer == ']')
11020 {
11021 ++input_line_pointer;
11022 e->X_op_symbol = make_expr_symbol (e);
11023 e->X_add_symbol = NULL;
11024 e->X_add_number = 0;
11025 e->X_op = O_index;
11026 }
11027 else
11028 {
11029 e->X_op = O_absent;
11030 input_line_pointer = end;
11031 }
11032 break;
11033 }
11034 }
11035
11036 \f
11037 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11038 const char *md_shortopts = "kVQ:sqnO::";
11039 #else
11040 const char *md_shortopts = "qnO::";
11041 #endif
11042
11043 #define OPTION_32 (OPTION_MD_BASE + 0)
11044 #define OPTION_64 (OPTION_MD_BASE + 1)
11045 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11046 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11047 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11048 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11049 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11050 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11051 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11052 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11053 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11054 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11055 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11056 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11057 #define OPTION_X32 (OPTION_MD_BASE + 14)
11058 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11059 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11060 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11061 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11062 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11063 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11064 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11065 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11066 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11067 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11068 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11069 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11070
11071 struct option md_longopts[] =
11072 {
11073 {"32", no_argument, NULL, OPTION_32},
11074 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11075 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11076 {"64", no_argument, NULL, OPTION_64},
11077 #endif
11078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11079 {"x32", no_argument, NULL, OPTION_X32},
11080 {"mshared", no_argument, NULL, OPTION_MSHARED},
11081 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11082 #endif
11083 {"divide", no_argument, NULL, OPTION_DIVIDE},
11084 {"march", required_argument, NULL, OPTION_MARCH},
11085 {"mtune", required_argument, NULL, OPTION_MTUNE},
11086 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11087 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11088 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11089 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11090 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11091 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11092 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11093 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11094 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11095 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11096 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11097 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11098 # if defined (TE_PE) || defined (TE_PEP)
11099 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11100 #endif
11101 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11102 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11103 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11104 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11105 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11106 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11107 {NULL, no_argument, NULL, 0}
11108 };
11109 size_t md_longopts_size = sizeof (md_longopts);
11110
11111 int
11112 md_parse_option (int c, const char *arg)
11113 {
11114 unsigned int j;
11115 char *arch, *next, *saved;
11116
11117 switch (c)
11118 {
11119 case 'n':
11120 optimize_align_code = 0;
11121 break;
11122
11123 case 'q':
11124 quiet_warnings = 1;
11125 break;
11126
11127 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11128 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11129 should be emitted or not. FIXME: Not implemented. */
11130 case 'Q':
11131 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11132 return 0;
11133 break;
11134
11135 /* -V: SVR4 argument to print version ID. */
11136 case 'V':
11137 print_version_id ();
11138 break;
11139
11140 /* -k: Ignore for FreeBSD compatibility. */
11141 case 'k':
11142 break;
11143
11144 case 's':
11145 /* -s: On i386 Solaris, this tells the native assembler to use
11146 .stab instead of .stab.excl. We always use .stab anyhow. */
11147 break;
11148
11149 case OPTION_MSHARED:
11150 shared = 1;
11151 break;
11152
11153 case OPTION_X86_USED_NOTE:
11154 if (strcasecmp (arg, "yes") == 0)
11155 x86_used_note = 1;
11156 else if (strcasecmp (arg, "no") == 0)
11157 x86_used_note = 0;
11158 else
11159 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11160 break;
11161
11162
11163 #endif
11164 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11165 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11166 case OPTION_64:
11167 {
11168 const char **list, **l;
11169
11170 list = bfd_target_list ();
11171 for (l = list; *l != NULL; l++)
11172 if (CONST_STRNEQ (*l, "elf64-x86-64")
11173 || strcmp (*l, "coff-x86-64") == 0
11174 || strcmp (*l, "pe-x86-64") == 0
11175 || strcmp (*l, "pei-x86-64") == 0
11176 || strcmp (*l, "mach-o-x86-64") == 0)
11177 {
11178 default_arch = "x86_64";
11179 break;
11180 }
11181 if (*l == NULL)
11182 as_fatal (_("no compiled in support for x86_64"));
11183 free (list);
11184 }
11185 break;
11186 #endif
11187
11188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11189 case OPTION_X32:
11190 if (IS_ELF)
11191 {
11192 const char **list, **l;
11193
11194 list = bfd_target_list ();
11195 for (l = list; *l != NULL; l++)
11196 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11197 {
11198 default_arch = "x86_64:32";
11199 break;
11200 }
11201 if (*l == NULL)
11202 as_fatal (_("no compiled in support for 32bit x86_64"));
11203 free (list);
11204 }
11205 else
11206 as_fatal (_("32bit x86_64 is only supported for ELF"));
11207 break;
11208 #endif
11209
11210 case OPTION_32:
11211 default_arch = "i386";
11212 break;
11213
11214 case OPTION_DIVIDE:
11215 #ifdef SVR4_COMMENT_CHARS
11216 {
11217 char *n, *t;
11218 const char *s;
11219
11220 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11221 t = n;
11222 for (s = i386_comment_chars; *s != '\0'; s++)
11223 if (*s != '/')
11224 *t++ = *s;
11225 *t = '\0';
11226 i386_comment_chars = n;
11227 }
11228 #endif
11229 break;
11230
11231 case OPTION_MARCH:
11232 saved = xstrdup (arg);
11233 arch = saved;
11234 /* Allow -march=+nosse. */
11235 if (*arch == '+')
11236 arch++;
11237 do
11238 {
11239 if (*arch == '.')
11240 as_fatal (_("invalid -march= option: `%s'"), arg);
11241 next = strchr (arch, '+');
11242 if (next)
11243 *next++ = '\0';
11244 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11245 {
11246 if (strcmp (arch, cpu_arch [j].name) == 0)
11247 {
11248 /* Processor. */
11249 if (! cpu_arch[j].flags.bitfield.cpui386)
11250 continue;
11251
11252 cpu_arch_name = cpu_arch[j].name;
11253 cpu_sub_arch_name = NULL;
11254 cpu_arch_flags = cpu_arch[j].flags;
11255 cpu_arch_isa = cpu_arch[j].type;
11256 cpu_arch_isa_flags = cpu_arch[j].flags;
11257 if (!cpu_arch_tune_set)
11258 {
11259 cpu_arch_tune = cpu_arch_isa;
11260 cpu_arch_tune_flags = cpu_arch_isa_flags;
11261 }
11262 break;
11263 }
11264 else if (*cpu_arch [j].name == '.'
11265 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11266 {
11267 /* ISA extension. */
11268 i386_cpu_flags flags;
11269
11270 flags = cpu_flags_or (cpu_arch_flags,
11271 cpu_arch[j].flags);
11272
11273 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11274 {
11275 if (cpu_sub_arch_name)
11276 {
11277 char *name = cpu_sub_arch_name;
11278 cpu_sub_arch_name = concat (name,
11279 cpu_arch[j].name,
11280 (const char *) NULL);
11281 free (name);
11282 }
11283 else
11284 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11285 cpu_arch_flags = flags;
11286 cpu_arch_isa_flags = flags;
11287 }
11288 else
11289 cpu_arch_isa_flags
11290 = cpu_flags_or (cpu_arch_isa_flags,
11291 cpu_arch[j].flags);
11292 break;
11293 }
11294 }
11295
11296 if (j >= ARRAY_SIZE (cpu_arch))
11297 {
11298 /* Disable an ISA extension. */
11299 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11300 if (strcmp (arch, cpu_noarch [j].name) == 0)
11301 {
11302 i386_cpu_flags flags;
11303
11304 flags = cpu_flags_and_not (cpu_arch_flags,
11305 cpu_noarch[j].flags);
11306 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11307 {
11308 if (cpu_sub_arch_name)
11309 {
11310 char *name = cpu_sub_arch_name;
11311 cpu_sub_arch_name = concat (arch,
11312 (const char *) NULL);
11313 free (name);
11314 }
11315 else
11316 cpu_sub_arch_name = xstrdup (arch);
11317 cpu_arch_flags = flags;
11318 cpu_arch_isa_flags = flags;
11319 }
11320 break;
11321 }
11322
11323 if (j >= ARRAY_SIZE (cpu_noarch))
11324 j = ARRAY_SIZE (cpu_arch);
11325 }
11326
11327 if (j >= ARRAY_SIZE (cpu_arch))
11328 as_fatal (_("invalid -march= option: `%s'"), arg);
11329
11330 arch = next;
11331 }
11332 while (next != NULL);
11333 free (saved);
11334 break;
11335
11336 case OPTION_MTUNE:
11337 if (*arg == '.')
11338 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11339 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11340 {
11341 if (strcmp (arg, cpu_arch [j].name) == 0)
11342 {
11343 cpu_arch_tune_set = 1;
11344 cpu_arch_tune = cpu_arch [j].type;
11345 cpu_arch_tune_flags = cpu_arch[j].flags;
11346 break;
11347 }
11348 }
11349 if (j >= ARRAY_SIZE (cpu_arch))
11350 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11351 break;
11352
11353 case OPTION_MMNEMONIC:
11354 if (strcasecmp (arg, "att") == 0)
11355 intel_mnemonic = 0;
11356 else if (strcasecmp (arg, "intel") == 0)
11357 intel_mnemonic = 1;
11358 else
11359 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11360 break;
11361
11362 case OPTION_MSYNTAX:
11363 if (strcasecmp (arg, "att") == 0)
11364 intel_syntax = 0;
11365 else if (strcasecmp (arg, "intel") == 0)
11366 intel_syntax = 1;
11367 else
11368 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11369 break;
11370
11371 case OPTION_MINDEX_REG:
11372 allow_index_reg = 1;
11373 break;
11374
11375 case OPTION_MNAKED_REG:
11376 allow_naked_reg = 1;
11377 break;
11378
11379 case OPTION_MSSE2AVX:
11380 sse2avx = 1;
11381 break;
11382
11383 case OPTION_MSSE_CHECK:
11384 if (strcasecmp (arg, "error") == 0)
11385 sse_check = check_error;
11386 else if (strcasecmp (arg, "warning") == 0)
11387 sse_check = check_warning;
11388 else if (strcasecmp (arg, "none") == 0)
11389 sse_check = check_none;
11390 else
11391 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11392 break;
11393
11394 case OPTION_MOPERAND_CHECK:
11395 if (strcasecmp (arg, "error") == 0)
11396 operand_check = check_error;
11397 else if (strcasecmp (arg, "warning") == 0)
11398 operand_check = check_warning;
11399 else if (strcasecmp (arg, "none") == 0)
11400 operand_check = check_none;
11401 else
11402 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11403 break;
11404
11405 case OPTION_MAVXSCALAR:
11406 if (strcasecmp (arg, "128") == 0)
11407 avxscalar = vex128;
11408 else if (strcasecmp (arg, "256") == 0)
11409 avxscalar = vex256;
11410 else
11411 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11412 break;
11413
11414 case OPTION_MVEXWIG:
11415 if (strcmp (arg, "0") == 0)
11416 vexwig = vexw0;
11417 else if (strcmp (arg, "1") == 0)
11418 vexwig = vexw1;
11419 else
11420 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11421 break;
11422
11423 case OPTION_MADD_BND_PREFIX:
11424 add_bnd_prefix = 1;
11425 break;
11426
11427 case OPTION_MEVEXLIG:
11428 if (strcmp (arg, "128") == 0)
11429 evexlig = evexl128;
11430 else if (strcmp (arg, "256") == 0)
11431 evexlig = evexl256;
11432 else if (strcmp (arg, "512") == 0)
11433 evexlig = evexl512;
11434 else
11435 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11436 break;
11437
11438 case OPTION_MEVEXRCIG:
11439 if (strcmp (arg, "rne") == 0)
11440 evexrcig = rne;
11441 else if (strcmp (arg, "rd") == 0)
11442 evexrcig = rd;
11443 else if (strcmp (arg, "ru") == 0)
11444 evexrcig = ru;
11445 else if (strcmp (arg, "rz") == 0)
11446 evexrcig = rz;
11447 else
11448 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11449 break;
11450
11451 case OPTION_MEVEXWIG:
11452 if (strcmp (arg, "0") == 0)
11453 evexwig = evexw0;
11454 else if (strcmp (arg, "1") == 0)
11455 evexwig = evexw1;
11456 else
11457 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11458 break;
11459
11460 # if defined (TE_PE) || defined (TE_PEP)
11461 case OPTION_MBIG_OBJ:
11462 use_big_obj = 1;
11463 break;
11464 #endif
11465
11466 case OPTION_MOMIT_LOCK_PREFIX:
11467 if (strcasecmp (arg, "yes") == 0)
11468 omit_lock_prefix = 1;
11469 else if (strcasecmp (arg, "no") == 0)
11470 omit_lock_prefix = 0;
11471 else
11472 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11473 break;
11474
11475 case OPTION_MFENCE_AS_LOCK_ADD:
11476 if (strcasecmp (arg, "yes") == 0)
11477 avoid_fence = 1;
11478 else if (strcasecmp (arg, "no") == 0)
11479 avoid_fence = 0;
11480 else
11481 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11482 break;
11483
11484 case OPTION_MRELAX_RELOCATIONS:
11485 if (strcasecmp (arg, "yes") == 0)
11486 generate_relax_relocations = 1;
11487 else if (strcasecmp (arg, "no") == 0)
11488 generate_relax_relocations = 0;
11489 else
11490 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11491 break;
11492
11493 case OPTION_MAMD64:
11494 intel64 = 0;
11495 break;
11496
11497 case OPTION_MINTEL64:
11498 intel64 = 1;
11499 break;
11500
11501 case 'O':
11502 if (arg == NULL)
11503 {
11504 optimize = 1;
11505 /* Turn off -Os. */
11506 optimize_for_space = 0;
11507 }
11508 else if (*arg == 's')
11509 {
11510 optimize_for_space = 1;
11511 /* Turn on all encoding optimizations. */
11512 optimize = INT_MAX;
11513 }
11514 else
11515 {
11516 optimize = atoi (arg);
11517 /* Turn off -Os. */
11518 optimize_for_space = 0;
11519 }
11520 break;
11521
11522 default:
11523 return 0;
11524 }
11525 return 1;
11526 }
11527
11528 #define MESSAGE_TEMPLATE \
11529 " "
11530
11531 static char *
11532 output_message (FILE *stream, char *p, char *message, char *start,
11533 int *left_p, const char *name, int len)
11534 {
11535 int size = sizeof (MESSAGE_TEMPLATE);
11536 int left = *left_p;
11537
11538 /* Reserve 2 spaces for ", " or ",\0" */
11539 left -= len + 2;
11540
11541 /* Check if there is any room. */
11542 if (left >= 0)
11543 {
11544 if (p != start)
11545 {
11546 *p++ = ',';
11547 *p++ = ' ';
11548 }
11549 p = mempcpy (p, name, len);
11550 }
11551 else
11552 {
11553 /* Output the current message now and start a new one. */
11554 *p++ = ',';
11555 *p = '\0';
11556 fprintf (stream, "%s\n", message);
11557 p = start;
11558 left = size - (start - message) - len - 2;
11559
11560 gas_assert (left >= 0);
11561
11562 p = mempcpy (p, name, len);
11563 }
11564
11565 *left_p = left;
11566 return p;
11567 }
11568
11569 static void
11570 show_arch (FILE *stream, int ext, int check)
11571 {
11572 static char message[] = MESSAGE_TEMPLATE;
11573 char *start = message + 27;
11574 char *p;
11575 int size = sizeof (MESSAGE_TEMPLATE);
11576 int left;
11577 const char *name;
11578 int len;
11579 unsigned int j;
11580
11581 p = start;
11582 left = size - (start - message);
11583 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11584 {
11585 /* Should it be skipped? */
11586 if (cpu_arch [j].skip)
11587 continue;
11588
11589 name = cpu_arch [j].name;
11590 len = cpu_arch [j].len;
11591 if (*name == '.')
11592 {
11593 /* It is an extension. Skip if we aren't asked to show it. */
11594 if (ext)
11595 {
11596 name++;
11597 len--;
11598 }
11599 else
11600 continue;
11601 }
11602 else if (ext)
11603 {
11604 /* It is an processor. Skip if we show only extension. */
11605 continue;
11606 }
11607 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11608 {
11609 /* It is an impossible processor - skip. */
11610 continue;
11611 }
11612
11613 p = output_message (stream, p, message, start, &left, name, len);
11614 }
11615
11616 /* Display disabled extensions. */
11617 if (ext)
11618 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11619 {
11620 name = cpu_noarch [j].name;
11621 len = cpu_noarch [j].len;
11622 p = output_message (stream, p, message, start, &left, name,
11623 len);
11624 }
11625
11626 *p = '\0';
11627 fprintf (stream, "%s\n", message);
11628 }
11629
11630 void
11631 md_show_usage (FILE *stream)
11632 {
11633 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11634 fprintf (stream, _("\
11635 -Qy, -Qn ignored\n\
11636 -V print assembler version number\n\
11637 -k ignored\n"));
11638 #endif
11639 fprintf (stream, _("\
11640 -n Do not optimize code alignment\n\
11641 -q quieten some warnings\n"));
11642 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11643 fprintf (stream, _("\
11644 -s ignored\n"));
11645 #endif
11646 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11647 || defined (TE_PE) || defined (TE_PEP))
11648 fprintf (stream, _("\
11649 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11650 #endif
11651 #ifdef SVR4_COMMENT_CHARS
11652 fprintf (stream, _("\
11653 --divide do not treat `/' as a comment character\n"));
11654 #else
11655 fprintf (stream, _("\
11656 --divide ignored\n"));
11657 #endif
11658 fprintf (stream, _("\
11659 -march=CPU[,+EXTENSION...]\n\
11660 generate code for CPU and EXTENSION, CPU is one of:\n"));
11661 show_arch (stream, 0, 1);
11662 fprintf (stream, _("\
11663 EXTENSION is combination of:\n"));
11664 show_arch (stream, 1, 0);
11665 fprintf (stream, _("\
11666 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11667 show_arch (stream, 0, 0);
11668 fprintf (stream, _("\
11669 -msse2avx encode SSE instructions with VEX prefix\n"));
11670 fprintf (stream, _("\
11671 -msse-check=[none|error|warning] (default: warning)\n\
11672 check SSE instructions\n"));
11673 fprintf (stream, _("\
11674 -moperand-check=[none|error|warning] (default: warning)\n\
11675 check operand combinations for validity\n"));
11676 fprintf (stream, _("\
11677 -mavxscalar=[128|256] (default: 128)\n\
11678 encode scalar AVX instructions with specific vector\n\
11679 length\n"));
11680 fprintf (stream, _("\
11681 -mvexwig=[0|1] (default: 0)\n\
11682 encode VEX instructions with specific VEX.W value\n\
11683 for VEX.W bit ignored instructions\n"));
11684 fprintf (stream, _("\
11685 -mevexlig=[128|256|512] (default: 128)\n\
11686 encode scalar EVEX instructions with specific vector\n\
11687 length\n"));
11688 fprintf (stream, _("\
11689 -mevexwig=[0|1] (default: 0)\n\
11690 encode EVEX instructions with specific EVEX.W value\n\
11691 for EVEX.W bit ignored instructions\n"));
11692 fprintf (stream, _("\
11693 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11694 encode EVEX instructions with specific EVEX.RC value\n\
11695 for SAE-only ignored instructions\n"));
11696 fprintf (stream, _("\
11697 -mmnemonic=[att|intel] "));
11698 if (SYSV386_COMPAT)
11699 fprintf (stream, _("(default: att)\n"));
11700 else
11701 fprintf (stream, _("(default: intel)\n"));
11702 fprintf (stream, _("\
11703 use AT&T/Intel mnemonic\n"));
11704 fprintf (stream, _("\
11705 -msyntax=[att|intel] (default: att)\n\
11706 use AT&T/Intel syntax\n"));
11707 fprintf (stream, _("\
11708 -mindex-reg support pseudo index registers\n"));
11709 fprintf (stream, _("\
11710 -mnaked-reg don't require `%%' prefix for registers\n"));
11711 fprintf (stream, _("\
11712 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11713 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11714 fprintf (stream, _("\
11715 -mshared disable branch optimization for shared code\n"));
11716 fprintf (stream, _("\
11717 -mx86-used-note=[no|yes] "));
11718 if (DEFAULT_X86_USED_NOTE)
11719 fprintf (stream, _("(default: yes)\n"));
11720 else
11721 fprintf (stream, _("(default: no)\n"));
11722 fprintf (stream, _("\
11723 generate x86 used ISA and feature properties\n"));
11724 #endif
11725 #if defined (TE_PE) || defined (TE_PEP)
11726 fprintf (stream, _("\
11727 -mbig-obj generate big object files\n"));
11728 #endif
11729 fprintf (stream, _("\
11730 -momit-lock-prefix=[no|yes] (default: no)\n\
11731 strip all lock prefixes\n"));
11732 fprintf (stream, _("\
11733 -mfence-as-lock-add=[no|yes] (default: no)\n\
11734 encode lfence, mfence and sfence as\n\
11735 lock addl $0x0, (%%{re}sp)\n"));
11736 fprintf (stream, _("\
11737 -mrelax-relocations=[no|yes] "));
11738 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11739 fprintf (stream, _("(default: yes)\n"));
11740 else
11741 fprintf (stream, _("(default: no)\n"));
11742 fprintf (stream, _("\
11743 generate relax relocations\n"));
11744 fprintf (stream, _("\
11745 -mamd64 accept only AMD64 ISA [default]\n"));
11746 fprintf (stream, _("\
11747 -mintel64 accept only Intel64 ISA\n"));
11748 }
11749
11750 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11751 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11752 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11753
11754 /* Pick the target format to use. */
11755
11756 const char *
11757 i386_target_format (void)
11758 {
11759 if (!strncmp (default_arch, "x86_64", 6))
11760 {
11761 update_code_flag (CODE_64BIT, 1);
11762 if (default_arch[6] == '\0')
11763 x86_elf_abi = X86_64_ABI;
11764 else
11765 x86_elf_abi = X86_64_X32_ABI;
11766 }
11767 else if (!strcmp (default_arch, "i386"))
11768 update_code_flag (CODE_32BIT, 1);
11769 else if (!strcmp (default_arch, "iamcu"))
11770 {
11771 update_code_flag (CODE_32BIT, 1);
11772 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11773 {
11774 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11775 cpu_arch_name = "iamcu";
11776 cpu_sub_arch_name = NULL;
11777 cpu_arch_flags = iamcu_flags;
11778 cpu_arch_isa = PROCESSOR_IAMCU;
11779 cpu_arch_isa_flags = iamcu_flags;
11780 if (!cpu_arch_tune_set)
11781 {
11782 cpu_arch_tune = cpu_arch_isa;
11783 cpu_arch_tune_flags = cpu_arch_isa_flags;
11784 }
11785 }
11786 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11787 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11788 cpu_arch_name);
11789 }
11790 else
11791 as_fatal (_("unknown architecture"));
11792
11793 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11794 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11795 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11796 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11797
11798 switch (OUTPUT_FLAVOR)
11799 {
11800 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11801 case bfd_target_aout_flavour:
11802 return AOUT_TARGET_FORMAT;
11803 #endif
11804 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11805 # if defined (TE_PE) || defined (TE_PEP)
11806 case bfd_target_coff_flavour:
11807 if (flag_code == CODE_64BIT)
11808 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11809 else
11810 return "pe-i386";
11811 # elif defined (TE_GO32)
11812 case bfd_target_coff_flavour:
11813 return "coff-go32";
11814 # else
11815 case bfd_target_coff_flavour:
11816 return "coff-i386";
11817 # endif
11818 #endif
11819 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11820 case bfd_target_elf_flavour:
11821 {
11822 const char *format;
11823
11824 switch (x86_elf_abi)
11825 {
11826 default:
11827 format = ELF_TARGET_FORMAT;
11828 break;
11829 case X86_64_ABI:
11830 use_rela_relocations = 1;
11831 object_64bit = 1;
11832 format = ELF_TARGET_FORMAT64;
11833 break;
11834 case X86_64_X32_ABI:
11835 use_rela_relocations = 1;
11836 object_64bit = 1;
11837 disallow_64bit_reloc = 1;
11838 format = ELF_TARGET_FORMAT32;
11839 break;
11840 }
11841 if (cpu_arch_isa == PROCESSOR_L1OM)
11842 {
11843 if (x86_elf_abi != X86_64_ABI)
11844 as_fatal (_("Intel L1OM is 64bit only"));
11845 return ELF_TARGET_L1OM_FORMAT;
11846 }
11847 else if (cpu_arch_isa == PROCESSOR_K1OM)
11848 {
11849 if (x86_elf_abi != X86_64_ABI)
11850 as_fatal (_("Intel K1OM is 64bit only"));
11851 return ELF_TARGET_K1OM_FORMAT;
11852 }
11853 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11854 {
11855 if (x86_elf_abi != I386_ABI)
11856 as_fatal (_("Intel MCU is 32bit only"));
11857 return ELF_TARGET_IAMCU_FORMAT;
11858 }
11859 else
11860 return format;
11861 }
11862 #endif
11863 #if defined (OBJ_MACH_O)
11864 case bfd_target_mach_o_flavour:
11865 if (flag_code == CODE_64BIT)
11866 {
11867 use_rela_relocations = 1;
11868 object_64bit = 1;
11869 return "mach-o-x86-64";
11870 }
11871 else
11872 return "mach-o-i386";
11873 #endif
11874 default:
11875 abort ();
11876 return NULL;
11877 }
11878 }
11879
11880 #endif /* OBJ_MAYBE_ more than one */
11881 \f
11882 symbolS *
11883 md_undefined_symbol (char *name)
11884 {
11885 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11886 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11887 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11888 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11889 {
11890 if (!GOT_symbol)
11891 {
11892 if (symbol_find (name))
11893 as_bad (_("GOT already in symbol table"));
11894 GOT_symbol = symbol_new (name, undefined_section,
11895 (valueT) 0, &zero_address_frag);
11896 };
11897 return GOT_symbol;
11898 }
11899 return 0;
11900 }
11901
11902 /* Round up a section size to the appropriate boundary. */
11903
11904 valueT
11905 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11906 {
11907 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11908 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11909 {
11910 /* For a.out, force the section size to be aligned. If we don't do
11911 this, BFD will align it for us, but it will not write out the
11912 final bytes of the section. This may be a bug in BFD, but it is
11913 easier to fix it here since that is how the other a.out targets
11914 work. */
11915 int align;
11916
11917 align = bfd_section_alignment (segment);
11918 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11919 }
11920 #endif
11921
11922 return size;
11923 }
11924
11925 /* On the i386, PC-relative offsets are relative to the start of the
11926 next instruction. That is, the address of the offset, plus its
11927 size, since the offset is always the last part of the insn. */
11928
11929 long
11930 md_pcrel_from (fixS *fixP)
11931 {
11932 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11933 }
11934
11935 #ifndef I386COFF
11936
11937 static void
11938 s_bss (int ignore ATTRIBUTE_UNUSED)
11939 {
11940 int temp;
11941
11942 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11943 if (IS_ELF)
11944 obj_elf_section_change_hook ();
11945 #endif
11946 temp = get_absolute_expression ();
11947 subseg_set (bss_section, (subsegT) temp);
11948 demand_empty_rest_of_line ();
11949 }
11950
11951 #endif
11952
11953 void
11954 i386_validate_fix (fixS *fixp)
11955 {
11956 if (fixp->fx_subsy)
11957 {
11958 if (fixp->fx_subsy == GOT_symbol)
11959 {
11960 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11961 {
11962 if (!object_64bit)
11963 abort ();
11964 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11965 if (fixp->fx_tcbit2)
11966 fixp->fx_r_type = (fixp->fx_tcbit
11967 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11968 : BFD_RELOC_X86_64_GOTPCRELX);
11969 else
11970 #endif
11971 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11972 }
11973 else
11974 {
11975 if (!object_64bit)
11976 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11977 else
11978 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11979 }
11980 fixp->fx_subsy = 0;
11981 }
11982 }
11983 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11984 else if (!object_64bit)
11985 {
11986 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11987 && fixp->fx_tcbit2)
11988 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11989 }
11990 #endif
11991 }
11992
11993 arelent *
11994 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11995 {
11996 arelent *rel;
11997 bfd_reloc_code_real_type code;
11998
11999 switch (fixp->fx_r_type)
12000 {
12001 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12002 case BFD_RELOC_SIZE32:
12003 case BFD_RELOC_SIZE64:
12004 if (S_IS_DEFINED (fixp->fx_addsy)
12005 && !S_IS_EXTERNAL (fixp->fx_addsy))
12006 {
12007 /* Resolve size relocation against local symbol to size of
12008 the symbol plus addend. */
12009 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12010 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12011 && !fits_in_unsigned_long (value))
12012 as_bad_where (fixp->fx_file, fixp->fx_line,
12013 _("symbol size computation overflow"));
12014 fixp->fx_addsy = NULL;
12015 fixp->fx_subsy = NULL;
12016 md_apply_fix (fixp, (valueT *) &value, NULL);
12017 return NULL;
12018 }
12019 #endif
12020 /* Fall through. */
12021
12022 case BFD_RELOC_X86_64_PLT32:
12023 case BFD_RELOC_X86_64_GOT32:
12024 case BFD_RELOC_X86_64_GOTPCREL:
12025 case BFD_RELOC_X86_64_GOTPCRELX:
12026 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12027 case BFD_RELOC_386_PLT32:
12028 case BFD_RELOC_386_GOT32:
12029 case BFD_RELOC_386_GOT32X:
12030 case BFD_RELOC_386_GOTOFF:
12031 case BFD_RELOC_386_GOTPC:
12032 case BFD_RELOC_386_TLS_GD:
12033 case BFD_RELOC_386_TLS_LDM:
12034 case BFD_RELOC_386_TLS_LDO_32:
12035 case BFD_RELOC_386_TLS_IE_32:
12036 case BFD_RELOC_386_TLS_IE:
12037 case BFD_RELOC_386_TLS_GOTIE:
12038 case BFD_RELOC_386_TLS_LE_32:
12039 case BFD_RELOC_386_TLS_LE:
12040 case BFD_RELOC_386_TLS_GOTDESC:
12041 case BFD_RELOC_386_TLS_DESC_CALL:
12042 case BFD_RELOC_X86_64_TLSGD:
12043 case BFD_RELOC_X86_64_TLSLD:
12044 case BFD_RELOC_X86_64_DTPOFF32:
12045 case BFD_RELOC_X86_64_DTPOFF64:
12046 case BFD_RELOC_X86_64_GOTTPOFF:
12047 case BFD_RELOC_X86_64_TPOFF32:
12048 case BFD_RELOC_X86_64_TPOFF64:
12049 case BFD_RELOC_X86_64_GOTOFF64:
12050 case BFD_RELOC_X86_64_GOTPC32:
12051 case BFD_RELOC_X86_64_GOT64:
12052 case BFD_RELOC_X86_64_GOTPCREL64:
12053 case BFD_RELOC_X86_64_GOTPC64:
12054 case BFD_RELOC_X86_64_GOTPLT64:
12055 case BFD_RELOC_X86_64_PLTOFF64:
12056 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12057 case BFD_RELOC_X86_64_TLSDESC_CALL:
12058 case BFD_RELOC_RVA:
12059 case BFD_RELOC_VTABLE_ENTRY:
12060 case BFD_RELOC_VTABLE_INHERIT:
12061 #ifdef TE_PE
12062 case BFD_RELOC_32_SECREL:
12063 #endif
12064 code = fixp->fx_r_type;
12065 break;
12066 case BFD_RELOC_X86_64_32S:
12067 if (!fixp->fx_pcrel)
12068 {
12069 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12070 code = fixp->fx_r_type;
12071 break;
12072 }
12073 /* Fall through. */
12074 default:
12075 if (fixp->fx_pcrel)
12076 {
12077 switch (fixp->fx_size)
12078 {
12079 default:
12080 as_bad_where (fixp->fx_file, fixp->fx_line,
12081 _("can not do %d byte pc-relative relocation"),
12082 fixp->fx_size);
12083 code = BFD_RELOC_32_PCREL;
12084 break;
12085 case 1: code = BFD_RELOC_8_PCREL; break;
12086 case 2: code = BFD_RELOC_16_PCREL; break;
12087 case 4: code = BFD_RELOC_32_PCREL; break;
12088 #ifdef BFD64
12089 case 8: code = BFD_RELOC_64_PCREL; break;
12090 #endif
12091 }
12092 }
12093 else
12094 {
12095 switch (fixp->fx_size)
12096 {
12097 default:
12098 as_bad_where (fixp->fx_file, fixp->fx_line,
12099 _("can not do %d byte relocation"),
12100 fixp->fx_size);
12101 code = BFD_RELOC_32;
12102 break;
12103 case 1: code = BFD_RELOC_8; break;
12104 case 2: code = BFD_RELOC_16; break;
12105 case 4: code = BFD_RELOC_32; break;
12106 #ifdef BFD64
12107 case 8: code = BFD_RELOC_64; break;
12108 #endif
12109 }
12110 }
12111 break;
12112 }
12113
12114 if ((code == BFD_RELOC_32
12115 || code == BFD_RELOC_32_PCREL
12116 || code == BFD_RELOC_X86_64_32S)
12117 && GOT_symbol
12118 && fixp->fx_addsy == GOT_symbol)
12119 {
12120 if (!object_64bit)
12121 code = BFD_RELOC_386_GOTPC;
12122 else
12123 code = BFD_RELOC_X86_64_GOTPC32;
12124 }
12125 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12126 && GOT_symbol
12127 && fixp->fx_addsy == GOT_symbol)
12128 {
12129 code = BFD_RELOC_X86_64_GOTPC64;
12130 }
12131
12132 rel = XNEW (arelent);
12133 rel->sym_ptr_ptr = XNEW (asymbol *);
12134 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12135
12136 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12137
12138 if (!use_rela_relocations)
12139 {
12140 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12141 vtable entry to be used in the relocation's section offset. */
12142 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12143 rel->address = fixp->fx_offset;
12144 #if defined (OBJ_COFF) && defined (TE_PE)
12145 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12146 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12147 else
12148 #endif
12149 rel->addend = 0;
12150 }
12151 /* Use the rela in 64bit mode. */
12152 else
12153 {
12154 if (disallow_64bit_reloc)
12155 switch (code)
12156 {
12157 case BFD_RELOC_X86_64_DTPOFF64:
12158 case BFD_RELOC_X86_64_TPOFF64:
12159 case BFD_RELOC_64_PCREL:
12160 case BFD_RELOC_X86_64_GOTOFF64:
12161 case BFD_RELOC_X86_64_GOT64:
12162 case BFD_RELOC_X86_64_GOTPCREL64:
12163 case BFD_RELOC_X86_64_GOTPC64:
12164 case BFD_RELOC_X86_64_GOTPLT64:
12165 case BFD_RELOC_X86_64_PLTOFF64:
12166 as_bad_where (fixp->fx_file, fixp->fx_line,
12167 _("cannot represent relocation type %s in x32 mode"),
12168 bfd_get_reloc_code_name (code));
12169 break;
12170 default:
12171 break;
12172 }
12173
12174 if (!fixp->fx_pcrel)
12175 rel->addend = fixp->fx_offset;
12176 else
12177 switch (code)
12178 {
12179 case BFD_RELOC_X86_64_PLT32:
12180 case BFD_RELOC_X86_64_GOT32:
12181 case BFD_RELOC_X86_64_GOTPCREL:
12182 case BFD_RELOC_X86_64_GOTPCRELX:
12183 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12184 case BFD_RELOC_X86_64_TLSGD:
12185 case BFD_RELOC_X86_64_TLSLD:
12186 case BFD_RELOC_X86_64_GOTTPOFF:
12187 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12188 case BFD_RELOC_X86_64_TLSDESC_CALL:
12189 rel->addend = fixp->fx_offset - fixp->fx_size;
12190 break;
12191 default:
12192 rel->addend = (section->vma
12193 - fixp->fx_size
12194 + fixp->fx_addnumber
12195 + md_pcrel_from (fixp));
12196 break;
12197 }
12198 }
12199
12200 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12201 if (rel->howto == NULL)
12202 {
12203 as_bad_where (fixp->fx_file, fixp->fx_line,
12204 _("cannot represent relocation type %s"),
12205 bfd_get_reloc_code_name (code));
12206 /* Set howto to a garbage value so that we can keep going. */
12207 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12208 gas_assert (rel->howto != NULL);
12209 }
12210
12211 return rel;
12212 }
12213
12214 #include "tc-i386-intel.c"
12215
12216 void
12217 tc_x86_parse_to_dw2regnum (expressionS *exp)
12218 {
12219 int saved_naked_reg;
12220 char saved_register_dot;
12221
12222 saved_naked_reg = allow_naked_reg;
12223 allow_naked_reg = 1;
12224 saved_register_dot = register_chars['.'];
12225 register_chars['.'] = '.';
12226 allow_pseudo_reg = 1;
12227 expression_and_evaluate (exp);
12228 allow_pseudo_reg = 0;
12229 register_chars['.'] = saved_register_dot;
12230 allow_naked_reg = saved_naked_reg;
12231
12232 if (exp->X_op == O_register && exp->X_add_number >= 0)
12233 {
12234 if ((addressT) exp->X_add_number < i386_regtab_size)
12235 {
12236 exp->X_op = O_constant;
12237 exp->X_add_number = i386_regtab[exp->X_add_number]
12238 .dw2_regnum[flag_code >> 1];
12239 }
12240 else
12241 exp->X_op = O_illegal;
12242 }
12243 }
12244
12245 void
12246 tc_x86_frame_initial_instructions (void)
12247 {
12248 static unsigned int sp_regno[2];
12249
12250 if (!sp_regno[flag_code >> 1])
12251 {
12252 char *saved_input = input_line_pointer;
12253 char sp[][4] = {"esp", "rsp"};
12254 expressionS exp;
12255
12256 input_line_pointer = sp[flag_code >> 1];
12257 tc_x86_parse_to_dw2regnum (&exp);
12258 gas_assert (exp.X_op == O_constant);
12259 sp_regno[flag_code >> 1] = exp.X_add_number;
12260 input_line_pointer = saved_input;
12261 }
12262
12263 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12264 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12265 }
12266
12267 int
12268 x86_dwarf2_addr_size (void)
12269 {
12270 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12271 if (x86_elf_abi == X86_64_X32_ABI)
12272 return 4;
12273 #endif
12274 return bfd_arch_bits_per_address (stdoutput) / 8;
12275 }
12276
12277 int
12278 i386_elf_section_type (const char *str, size_t len)
12279 {
12280 if (flag_code == CODE_64BIT
12281 && len == sizeof ("unwind") - 1
12282 && strncmp (str, "unwind", 6) == 0)
12283 return SHT_X86_64_UNWIND;
12284
12285 return -1;
12286 }
12287
12288 #ifdef TE_SOLARIS
12289 void
12290 i386_solaris_fix_up_eh_frame (segT sec)
12291 {
12292 if (flag_code == CODE_64BIT)
12293 elf_section_type (sec) = SHT_X86_64_UNWIND;
12294 }
12295 #endif
12296
12297 #ifdef TE_PE
12298 void
12299 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12300 {
12301 expressionS exp;
12302
12303 exp.X_op = O_secrel;
12304 exp.X_add_symbol = symbol;
12305 exp.X_add_number = 0;
12306 emit_expr (&exp, size);
12307 }
12308 #endif
12309
12310 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12311 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12312
12313 bfd_vma
12314 x86_64_section_letter (int letter, const char **ptr_msg)
12315 {
12316 if (flag_code == CODE_64BIT)
12317 {
12318 if (letter == 'l')
12319 return SHF_X86_64_LARGE;
12320
12321 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12322 }
12323 else
12324 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12325 return -1;
12326 }
12327
12328 bfd_vma
12329 x86_64_section_word (char *str, size_t len)
12330 {
12331 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12332 return SHF_X86_64_LARGE;
12333
12334 return -1;
12335 }
12336
12337 static void
12338 handle_large_common (int small ATTRIBUTE_UNUSED)
12339 {
12340 if (flag_code != CODE_64BIT)
12341 {
12342 s_comm_internal (0, elf_common_parse);
12343 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12344 }
12345 else
12346 {
12347 static segT lbss_section;
12348 asection *saved_com_section_ptr = elf_com_section_ptr;
12349 asection *saved_bss_section = bss_section;
12350
12351 if (lbss_section == NULL)
12352 {
12353 flagword applicable;
12354 segT seg = now_seg;
12355 subsegT subseg = now_subseg;
12356
12357 /* The .lbss section is for local .largecomm symbols. */
12358 lbss_section = subseg_new (".lbss", 0);
12359 applicable = bfd_applicable_section_flags (stdoutput);
12360 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
12361 seg_info (lbss_section)->bss = 1;
12362
12363 subseg_set (seg, subseg);
12364 }
12365
12366 elf_com_section_ptr = &_bfd_elf_large_com_section;
12367 bss_section = lbss_section;
12368
12369 s_comm_internal (0, elf_common_parse);
12370
12371 elf_com_section_ptr = saved_com_section_ptr;
12372 bss_section = saved_bss_section;
12373 }
12374 }
12375 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.335054 seconds and 3 git commands to generate.