314fd7274bf8fb70e55659c3be89cb32a25b3730
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* The maximum padding size for fused jcc. CMP like instruction can
691 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
692 prefixes. */
693 #define MAX_FUSED_JCC_PADDING_SIZE 20
694
695 /* The maximum number of prefixes added for an instruction. */
696 static unsigned int align_branch_prefix_size = 5;
697
698 /* Optimization:
699 1. Clear the REX_W bit with register operand if possible.
700 2. Above plus use 128bit vector instruction to clear the full vector
701 register.
702 */
703 static int optimize = 0;
704
705 /* Optimization:
706 1. Clear the REX_W bit with register operand if possible.
707 2. Above plus use 128bit vector instruction to clear the full vector
708 register.
709 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
710 "testb $imm7,%r8".
711 */
712 static int optimize_for_space = 0;
713
714 /* Register prefix used for error message. */
715 static const char *register_prefix = "%";
716
717 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
718 leave, push, and pop instructions so that gcc has the same stack
719 frame as in 32 bit mode. */
720 static char stackop_size = '\0';
721
722 /* Non-zero to optimize code alignment. */
723 int optimize_align_code = 1;
724
725 /* Non-zero to quieten some warnings. */
726 static int quiet_warnings = 0;
727
728 /* CPU name. */
729 static const char *cpu_arch_name = NULL;
730 static char *cpu_sub_arch_name = NULL;
731
732 /* CPU feature flags. */
733 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
734
735 /* If we have selected a cpu we are generating instructions for. */
736 static int cpu_arch_tune_set = 0;
737
738 /* Cpu we are generating instructions for. */
739 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
740
741 /* CPU feature flags of cpu we are generating instructions for. */
742 static i386_cpu_flags cpu_arch_tune_flags;
743
744 /* CPU instruction set architecture used. */
745 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
746
747 /* CPU feature flags of instruction set architecture used. */
748 i386_cpu_flags cpu_arch_isa_flags;
749
750 /* If set, conditional jumps are not automatically promoted to handle
751 larger than a byte offset. */
752 static unsigned int no_cond_jump_promotion = 0;
753
754 /* Encode SSE instructions with VEX prefix. */
755 static unsigned int sse2avx;
756
757 /* Encode scalar AVX instructions with specific vector length. */
758 static enum
759 {
760 vex128 = 0,
761 vex256
762 } avxscalar;
763
764 /* Encode VEX WIG instructions with specific vex.w. */
765 static enum
766 {
767 vexw0 = 0,
768 vexw1
769 } vexwig;
770
771 /* Encode scalar EVEX LIG instructions with specific vector length. */
772 static enum
773 {
774 evexl128 = 0,
775 evexl256,
776 evexl512
777 } evexlig;
778
779 /* Encode EVEX WIG instructions with specific evex.w. */
780 static enum
781 {
782 evexw0 = 0,
783 evexw1
784 } evexwig;
785
786 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
787 static enum rc_type evexrcig = rne;
788
789 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
790 static symbolS *GOT_symbol;
791
792 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
793 unsigned int x86_dwarf2_return_column;
794
795 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
796 int x86_cie_data_alignment;
797
798 /* Interface to relax_segment.
799 There are 3 major relax states for 386 jump insns because the
800 different types of jumps add different sizes to frags when we're
801 figuring out what sort of jump to choose to reach a given label.
802
803 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
804 branches which are handled by md_estimate_size_before_relax() and
805 i386_generic_table_relax_frag(). */
806
807 /* Types. */
808 #define UNCOND_JUMP 0
809 #define COND_JUMP 1
810 #define COND_JUMP86 2
811 #define BRANCH_PADDING 3
812 #define BRANCH_PREFIX 4
813 #define FUSED_JCC_PADDING 5
814
815 /* Sizes. */
816 #define CODE16 1
817 #define SMALL 0
818 #define SMALL16 (SMALL | CODE16)
819 #define BIG 2
820 #define BIG16 (BIG | CODE16)
821
822 #ifndef INLINE
823 #ifdef __GNUC__
824 #define INLINE __inline__
825 #else
826 #define INLINE
827 #endif
828 #endif
829
830 #define ENCODE_RELAX_STATE(type, size) \
831 ((relax_substateT) (((type) << 2) | (size)))
832 #define TYPE_FROM_RELAX_STATE(s) \
833 ((s) >> 2)
834 #define DISP_SIZE_FROM_RELAX_STATE(s) \
835 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
836
837 /* This table is used by relax_frag to promote short jumps to long
838 ones where necessary. SMALL (short) jumps may be promoted to BIG
839 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
840 don't allow a short jump in a 32 bit code segment to be promoted to
841 a 16 bit offset jump because it's slower (requires data size
842 prefix), and doesn't work, unless the destination is in the bottom
843 64k of the code segment (The top 16 bits of eip are zeroed). */
844
845 const relax_typeS md_relax_table[] =
846 {
847 /* The fields are:
848 1) most positive reach of this state,
849 2) most negative reach of this state,
850 3) how many bytes this mode will have in the variable part of the frag
851 4) which index into the table to try if we can't fit into this one. */
852
853 /* UNCOND_JUMP states. */
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
856 /* dword jmp adds 4 bytes to frag:
857 0 extra opcode bytes, 4 displacement bytes. */
858 {0, 0, 4, 0},
859 /* word jmp adds 2 byte2 to frag:
860 0 extra opcode bytes, 2 displacement bytes. */
861 {0, 0, 2, 0},
862
863 /* COND_JUMP states. */
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
866 /* dword conditionals adds 5 bytes to frag:
867 1 extra opcode byte, 4 displacement bytes. */
868 {0, 0, 5, 0},
869 /* word conditionals add 3 bytes to frag:
870 1 extra opcode byte, 2 displacement bytes. */
871 {0, 0, 3, 0},
872
873 /* COND_JUMP86 states. */
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
876 /* dword conditionals adds 5 bytes to frag:
877 1 extra opcode byte, 4 displacement bytes. */
878 {0, 0, 5, 0},
879 /* word conditionals add 4 bytes to frag:
880 1 displacement byte and a 3 byte long branch insn. */
881 {0, 0, 4, 0}
882 };
883
884 static const arch_entry cpu_arch[] =
885 {
886 /* Do not replace the first two entries - i386_target_format()
887 relies on them being there in this order. */
888 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
889 CPU_GENERIC32_FLAGS, 0 },
890 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
891 CPU_GENERIC64_FLAGS, 0 },
892 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
893 CPU_NONE_FLAGS, 0 },
894 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
895 CPU_I186_FLAGS, 0 },
896 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
897 CPU_I286_FLAGS, 0 },
898 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
899 CPU_I386_FLAGS, 0 },
900 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
901 CPU_I486_FLAGS, 0 },
902 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
903 CPU_I586_FLAGS, 0 },
904 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
905 CPU_I686_FLAGS, 0 },
906 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
907 CPU_I586_FLAGS, 0 },
908 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
909 CPU_PENTIUMPRO_FLAGS, 0 },
910 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
911 CPU_P2_FLAGS, 0 },
912 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
913 CPU_P3_FLAGS, 0 },
914 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
915 CPU_P4_FLAGS, 0 },
916 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
917 CPU_CORE_FLAGS, 0 },
918 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
919 CPU_NOCONA_FLAGS, 0 },
920 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
921 CPU_CORE_FLAGS, 1 },
922 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
923 CPU_CORE_FLAGS, 0 },
924 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
925 CPU_CORE2_FLAGS, 1 },
926 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
927 CPU_CORE2_FLAGS, 0 },
928 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
929 CPU_COREI7_FLAGS, 0 },
930 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
931 CPU_L1OM_FLAGS, 0 },
932 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
933 CPU_K1OM_FLAGS, 0 },
934 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
935 CPU_IAMCU_FLAGS, 0 },
936 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
937 CPU_K6_FLAGS, 0 },
938 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
939 CPU_K6_2_FLAGS, 0 },
940 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
941 CPU_ATHLON_FLAGS, 0 },
942 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
943 CPU_K8_FLAGS, 1 },
944 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
945 CPU_K8_FLAGS, 0 },
946 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
947 CPU_K8_FLAGS, 0 },
948 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
949 CPU_AMDFAM10_FLAGS, 0 },
950 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
951 CPU_BDVER1_FLAGS, 0 },
952 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
953 CPU_BDVER2_FLAGS, 0 },
954 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
955 CPU_BDVER3_FLAGS, 0 },
956 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
957 CPU_BDVER4_FLAGS, 0 },
958 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
959 CPU_ZNVER1_FLAGS, 0 },
960 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
961 CPU_ZNVER2_FLAGS, 0 },
962 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
963 CPU_BTVER1_FLAGS, 0 },
964 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
965 CPU_BTVER2_FLAGS, 0 },
966 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
967 CPU_8087_FLAGS, 0 },
968 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
969 CPU_287_FLAGS, 0 },
970 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
971 CPU_387_FLAGS, 0 },
972 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
973 CPU_687_FLAGS, 0 },
974 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
975 CPU_CMOV_FLAGS, 0 },
976 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
977 CPU_FXSR_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
979 CPU_MMX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
981 CPU_SSE_FLAGS, 0 },
982 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
983 CPU_SSE2_FLAGS, 0 },
984 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
985 CPU_SSE3_FLAGS, 0 },
986 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
987 CPU_SSSE3_FLAGS, 0 },
988 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
989 CPU_SSE4_1_FLAGS, 0 },
990 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
991 CPU_SSE4_2_FLAGS, 0 },
992 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
993 CPU_SSE4_2_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
995 CPU_AVX_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
997 CPU_AVX2_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
999 CPU_AVX512F_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512CD_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512ER_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512PF_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512DQ_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512BW_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512VL_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1013 CPU_VMX_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1015 CPU_VMFUNC_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1017 CPU_SMX_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1019 CPU_XSAVE_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1021 CPU_XSAVEOPT_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1023 CPU_XSAVEC_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1025 CPU_XSAVES_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1027 CPU_AES_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1029 CPU_PCLMUL_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1031 CPU_PCLMUL_FLAGS, 1 },
1032 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1033 CPU_FSGSBASE_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1035 CPU_RDRND_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1037 CPU_F16C_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1039 CPU_BMI2_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1041 CPU_FMA_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1043 CPU_FMA4_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1045 CPU_XOP_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1047 CPU_LWP_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1049 CPU_MOVBE_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1051 CPU_CX16_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1053 CPU_EPT_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1055 CPU_LZCNT_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1057 CPU_HLE_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1059 CPU_RTM_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1061 CPU_INVPCID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1063 CPU_CLFLUSH_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1065 CPU_NOP_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1067 CPU_SYSCALL_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1069 CPU_RDTSCP_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1071 CPU_3DNOW_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1073 CPU_3DNOWA_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1075 CPU_PADLOCK_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1077 CPU_SVME_FLAGS, 1 },
1078 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1079 CPU_SVME_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1081 CPU_SSE4A_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1083 CPU_ABM_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1085 CPU_BMI_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1087 CPU_TBM_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1089 CPU_ADX_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1091 CPU_RDSEED_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1093 CPU_PRFCHW_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1095 CPU_SMAP_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1097 CPU_MPX_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1099 CPU_SHA_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1101 CPU_CLFLUSHOPT_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1103 CPU_PREFETCHWT1_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1105 CPU_SE1_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1107 CPU_CLWB_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1109 CPU_AVX512IFMA_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1111 CPU_AVX512VBMI_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1113 CPU_AVX512_4FMAPS_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1115 CPU_AVX512_4VNNIW_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1117 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1119 CPU_AVX512_VBMI2_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1121 CPU_AVX512_VNNI_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1123 CPU_AVX512_BITALG_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1125 CPU_CLZERO_FLAGS, 0 },
1126 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1127 CPU_MWAITX_FLAGS, 0 },
1128 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1129 CPU_OSPKE_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1131 CPU_RDPID_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1133 CPU_PTWRITE_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1135 CPU_IBT_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1137 CPU_SHSTK_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1139 CPU_GFNI_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1141 CPU_VAES_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1143 CPU_VPCLMULQDQ_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1145 CPU_WBNOINVD_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1147 CPU_PCONFIG_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1149 CPU_WAITPKG_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1151 CPU_CLDEMOTE_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1153 CPU_MOVDIRI_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1155 CPU_MOVDIR64B_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1157 CPU_AVX512_BF16_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1161 CPU_ENQCMD_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1163 CPU_RDPRU_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1165 CPU_MCOMMIT_FLAGS, 0 },
1166 };
1167
1168 static const noarch_entry cpu_noarch[] =
1169 {
1170 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1171 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1172 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1173 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1174 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1175 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1176 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1177 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1178 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1179 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1183 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1184 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1185 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1200 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1201 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1202 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1204 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1206 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1207 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1208 };
1209
1210 #ifdef I386COFF
1211 /* Like s_lcomm_internal in gas/read.c but the alignment string
1212 is allowed to be optional. */
1213
1214 static symbolS *
1215 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1216 {
1217 addressT align = 0;
1218
1219 SKIP_WHITESPACE ();
1220
1221 if (needs_align
1222 && *input_line_pointer == ',')
1223 {
1224 align = parse_align (needs_align - 1);
1225
1226 if (align == (addressT) -1)
1227 return NULL;
1228 }
1229 else
1230 {
1231 if (size >= 8)
1232 align = 3;
1233 else if (size >= 4)
1234 align = 2;
1235 else if (size >= 2)
1236 align = 1;
1237 else
1238 align = 0;
1239 }
1240
1241 bss_alloc (symbolP, size, align);
1242 return symbolP;
1243 }
1244
1245 static void
1246 pe_lcomm (int needs_align)
1247 {
1248 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1249 }
1250 #endif
1251
1252 const pseudo_typeS md_pseudo_table[] =
1253 {
1254 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1255 {"align", s_align_bytes, 0},
1256 #else
1257 {"align", s_align_ptwo, 0},
1258 #endif
1259 {"arch", set_cpu_arch, 0},
1260 #ifndef I386COFF
1261 {"bss", s_bss, 0},
1262 #else
1263 {"lcomm", pe_lcomm, 1},
1264 #endif
1265 {"ffloat", float_cons, 'f'},
1266 {"dfloat", float_cons, 'd'},
1267 {"tfloat", float_cons, 'x'},
1268 {"value", cons, 2},
1269 {"slong", signed_cons, 4},
1270 {"noopt", s_ignore, 0},
1271 {"optim", s_ignore, 0},
1272 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1273 {"code16", set_code_flag, CODE_16BIT},
1274 {"code32", set_code_flag, CODE_32BIT},
1275 #ifdef BFD64
1276 {"code64", set_code_flag, CODE_64BIT},
1277 #endif
1278 {"intel_syntax", set_intel_syntax, 1},
1279 {"att_syntax", set_intel_syntax, 0},
1280 {"intel_mnemonic", set_intel_mnemonic, 1},
1281 {"att_mnemonic", set_intel_mnemonic, 0},
1282 {"allow_index_reg", set_allow_index_reg, 1},
1283 {"disallow_index_reg", set_allow_index_reg, 0},
1284 {"sse_check", set_check, 0},
1285 {"operand_check", set_check, 1},
1286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1287 {"largecomm", handle_large_common, 0},
1288 #else
1289 {"file", dwarf2_directive_file, 0},
1290 {"loc", dwarf2_directive_loc, 0},
1291 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1292 #endif
1293 #ifdef TE_PE
1294 {"secrel32", pe_directive_secrel, 0},
1295 #endif
1296 {0, 0, 0}
1297 };
1298
1299 /* For interface with expression (). */
1300 extern char *input_line_pointer;
1301
1302 /* Hash table for instruction mnemonic lookup. */
1303 static struct hash_control *op_hash;
1304
1305 /* Hash table for register lookup. */
1306 static struct hash_control *reg_hash;
1307 \f
1308 /* Various efficient no-op patterns for aligning code labels.
1309 Note: Don't try to assemble the instructions in the comments.
1310 0L and 0w are not legal. */
1311 static const unsigned char f32_1[] =
1312 {0x90}; /* nop */
1313 static const unsigned char f32_2[] =
1314 {0x66,0x90}; /* xchg %ax,%ax */
1315 static const unsigned char f32_3[] =
1316 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1317 static const unsigned char f32_4[] =
1318 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1319 static const unsigned char f32_6[] =
1320 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1321 static const unsigned char f32_7[] =
1322 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1323 static const unsigned char f16_3[] =
1324 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1325 static const unsigned char f16_4[] =
1326 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1327 static const unsigned char jump_disp8[] =
1328 {0xeb}; /* jmp disp8 */
1329 static const unsigned char jump32_disp32[] =
1330 {0xe9}; /* jmp disp32 */
1331 static const unsigned char jump16_disp32[] =
1332 {0x66,0xe9}; /* jmp disp32 */
1333 /* 32-bit NOPs patterns. */
1334 static const unsigned char *const f32_patt[] = {
1335 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1336 };
1337 /* 16-bit NOPs patterns. */
1338 static const unsigned char *const f16_patt[] = {
1339 f32_1, f32_2, f16_3, f16_4
1340 };
1341 /* nopl (%[re]ax) */
1342 static const unsigned char alt_3[] =
1343 {0x0f,0x1f,0x00};
1344 /* nopl 0(%[re]ax) */
1345 static const unsigned char alt_4[] =
1346 {0x0f,0x1f,0x40,0x00};
1347 /* nopl 0(%[re]ax,%[re]ax,1) */
1348 static const unsigned char alt_5[] =
1349 {0x0f,0x1f,0x44,0x00,0x00};
1350 /* nopw 0(%[re]ax,%[re]ax,1) */
1351 static const unsigned char alt_6[] =
1352 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1353 /* nopl 0L(%[re]ax) */
1354 static const unsigned char alt_7[] =
1355 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1356 /* nopl 0L(%[re]ax,%[re]ax,1) */
1357 static const unsigned char alt_8[] =
1358 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1359 /* nopw 0L(%[re]ax,%[re]ax,1) */
1360 static const unsigned char alt_9[] =
1361 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1362 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1363 static const unsigned char alt_10[] =
1364 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1365 /* data16 nopw %cs:0L(%eax,%eax,1) */
1366 static const unsigned char alt_11[] =
1367 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1368 /* 32-bit and 64-bit NOPs patterns. */
1369 static const unsigned char *const alt_patt[] = {
1370 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1371 alt_9, alt_10, alt_11
1372 };
1373
1374 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1375 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1376
1377 static void
1378 i386_output_nops (char *where, const unsigned char *const *patt,
1379 int count, int max_single_nop_size)
1380
1381 {
1382 /* Place the longer NOP first. */
1383 int last;
1384 int offset;
1385 const unsigned char *nops;
1386
1387 if (max_single_nop_size < 1)
1388 {
1389 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1390 max_single_nop_size);
1391 return;
1392 }
1393
1394 nops = patt[max_single_nop_size - 1];
1395
1396 /* Use the smaller one if the requsted one isn't available. */
1397 if (nops == NULL)
1398 {
1399 max_single_nop_size--;
1400 nops = patt[max_single_nop_size - 1];
1401 }
1402
1403 last = count % max_single_nop_size;
1404
1405 count -= last;
1406 for (offset = 0; offset < count; offset += max_single_nop_size)
1407 memcpy (where + offset, nops, max_single_nop_size);
1408
1409 if (last)
1410 {
1411 nops = patt[last - 1];
1412 if (nops == NULL)
1413 {
1414 /* Use the smaller one plus one-byte NOP if the needed one
1415 isn't available. */
1416 last--;
1417 nops = patt[last - 1];
1418 memcpy (where + offset, nops, last);
1419 where[offset + last] = *patt[0];
1420 }
1421 else
1422 memcpy (where + offset, nops, last);
1423 }
1424 }
1425
1426 static INLINE int
1427 fits_in_imm7 (offsetT num)
1428 {
1429 return (num & 0x7f) == num;
1430 }
1431
1432 static INLINE int
1433 fits_in_imm31 (offsetT num)
1434 {
1435 return (num & 0x7fffffff) == num;
1436 }
1437
1438 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1439 single NOP instruction LIMIT. */
1440
1441 void
1442 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1443 {
1444 const unsigned char *const *patt = NULL;
1445 int max_single_nop_size;
1446 /* Maximum number of NOPs before switching to jump over NOPs. */
1447 int max_number_of_nops;
1448
1449 switch (fragP->fr_type)
1450 {
1451 case rs_fill_nop:
1452 case rs_align_code:
1453 break;
1454 case rs_machine_dependent:
1455 /* Allow NOP padding for jumps and calls. */
1456 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1457 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1458 break;
1459 /* Fall through. */
1460 default:
1461 return;
1462 }
1463
1464 /* We need to decide which NOP sequence to use for 32bit and
1465 64bit. When -mtune= is used:
1466
1467 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1468 PROCESSOR_GENERIC32, f32_patt will be used.
1469 2. For the rest, alt_patt will be used.
1470
1471 When -mtune= isn't used, alt_patt will be used if
1472 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1473 be used.
1474
1475 When -march= or .arch is used, we can't use anything beyond
1476 cpu_arch_isa_flags. */
1477
1478 if (flag_code == CODE_16BIT)
1479 {
1480 patt = f16_patt;
1481 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1482 /* Limit number of NOPs to 2 in 16-bit mode. */
1483 max_number_of_nops = 2;
1484 }
1485 else
1486 {
1487 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1488 {
1489 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1490 switch (cpu_arch_tune)
1491 {
1492 case PROCESSOR_UNKNOWN:
1493 /* We use cpu_arch_isa_flags to check if we SHOULD
1494 optimize with nops. */
1495 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1496 patt = alt_patt;
1497 else
1498 patt = f32_patt;
1499 break;
1500 case PROCESSOR_PENTIUM4:
1501 case PROCESSOR_NOCONA:
1502 case PROCESSOR_CORE:
1503 case PROCESSOR_CORE2:
1504 case PROCESSOR_COREI7:
1505 case PROCESSOR_L1OM:
1506 case PROCESSOR_K1OM:
1507 case PROCESSOR_GENERIC64:
1508 case PROCESSOR_K6:
1509 case PROCESSOR_ATHLON:
1510 case PROCESSOR_K8:
1511 case PROCESSOR_AMDFAM10:
1512 case PROCESSOR_BD:
1513 case PROCESSOR_ZNVER:
1514 case PROCESSOR_BT:
1515 patt = alt_patt;
1516 break;
1517 case PROCESSOR_I386:
1518 case PROCESSOR_I486:
1519 case PROCESSOR_PENTIUM:
1520 case PROCESSOR_PENTIUMPRO:
1521 case PROCESSOR_IAMCU:
1522 case PROCESSOR_GENERIC32:
1523 patt = f32_patt;
1524 break;
1525 }
1526 }
1527 else
1528 {
1529 switch (fragP->tc_frag_data.tune)
1530 {
1531 case PROCESSOR_UNKNOWN:
1532 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1533 PROCESSOR_UNKNOWN. */
1534 abort ();
1535 break;
1536
1537 case PROCESSOR_I386:
1538 case PROCESSOR_I486:
1539 case PROCESSOR_PENTIUM:
1540 case PROCESSOR_IAMCU:
1541 case PROCESSOR_K6:
1542 case PROCESSOR_ATHLON:
1543 case PROCESSOR_K8:
1544 case PROCESSOR_AMDFAM10:
1545 case PROCESSOR_BD:
1546 case PROCESSOR_ZNVER:
1547 case PROCESSOR_BT:
1548 case PROCESSOR_GENERIC32:
1549 /* We use cpu_arch_isa_flags to check if we CAN optimize
1550 with nops. */
1551 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1552 patt = alt_patt;
1553 else
1554 patt = f32_patt;
1555 break;
1556 case PROCESSOR_PENTIUMPRO:
1557 case PROCESSOR_PENTIUM4:
1558 case PROCESSOR_NOCONA:
1559 case PROCESSOR_CORE:
1560 case PROCESSOR_CORE2:
1561 case PROCESSOR_COREI7:
1562 case PROCESSOR_L1OM:
1563 case PROCESSOR_K1OM:
1564 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1565 patt = alt_patt;
1566 else
1567 patt = f32_patt;
1568 break;
1569 case PROCESSOR_GENERIC64:
1570 patt = alt_patt;
1571 break;
1572 }
1573 }
1574
1575 if (patt == f32_patt)
1576 {
1577 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1578 /* Limit number of NOPs to 2 for older processors. */
1579 max_number_of_nops = 2;
1580 }
1581 else
1582 {
1583 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1584 /* Limit number of NOPs to 7 for newer processors. */
1585 max_number_of_nops = 7;
1586 }
1587 }
1588
1589 if (limit == 0)
1590 limit = max_single_nop_size;
1591
1592 if (fragP->fr_type == rs_fill_nop)
1593 {
1594 /* Output NOPs for .nop directive. */
1595 if (limit > max_single_nop_size)
1596 {
1597 as_bad_where (fragP->fr_file, fragP->fr_line,
1598 _("invalid single nop size: %d "
1599 "(expect within [0, %d])"),
1600 limit, max_single_nop_size);
1601 return;
1602 }
1603 }
1604 else if (fragP->fr_type != rs_machine_dependent)
1605 fragP->fr_var = count;
1606
1607 if ((count / max_single_nop_size) > max_number_of_nops)
1608 {
1609 /* Generate jump over NOPs. */
1610 offsetT disp = count - 2;
1611 if (fits_in_imm7 (disp))
1612 {
1613 /* Use "jmp disp8" if possible. */
1614 count = disp;
1615 where[0] = jump_disp8[0];
1616 where[1] = count;
1617 where += 2;
1618 }
1619 else
1620 {
1621 unsigned int size_of_jump;
1622
1623 if (flag_code == CODE_16BIT)
1624 {
1625 where[0] = jump16_disp32[0];
1626 where[1] = jump16_disp32[1];
1627 size_of_jump = 2;
1628 }
1629 else
1630 {
1631 where[0] = jump32_disp32[0];
1632 size_of_jump = 1;
1633 }
1634
1635 count -= size_of_jump + 4;
1636 if (!fits_in_imm31 (count))
1637 {
1638 as_bad_where (fragP->fr_file, fragP->fr_line,
1639 _("jump over nop padding out of range"));
1640 return;
1641 }
1642
1643 md_number_to_chars (where + size_of_jump, count, 4);
1644 where += size_of_jump + 4;
1645 }
1646 }
1647
1648 /* Generate multiple NOPs. */
1649 i386_output_nops (where, patt, count, limit);
1650 }
1651
1652 static INLINE int
1653 operand_type_all_zero (const union i386_operand_type *x)
1654 {
1655 switch (ARRAY_SIZE(x->array))
1656 {
1657 case 3:
1658 if (x->array[2])
1659 return 0;
1660 /* Fall through. */
1661 case 2:
1662 if (x->array[1])
1663 return 0;
1664 /* Fall through. */
1665 case 1:
1666 return !x->array[0];
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 static INLINE void
1673 operand_type_set (union i386_operand_type *x, unsigned int v)
1674 {
1675 switch (ARRAY_SIZE(x->array))
1676 {
1677 case 3:
1678 x->array[2] = v;
1679 /* Fall through. */
1680 case 2:
1681 x->array[1] = v;
1682 /* Fall through. */
1683 case 1:
1684 x->array[0] = v;
1685 /* Fall through. */
1686 break;
1687 default:
1688 abort ();
1689 }
1690
1691 x->bitfield.class = ClassNone;
1692 x->bitfield.instance = InstanceNone;
1693 }
1694
1695 static INLINE int
1696 operand_type_equal (const union i386_operand_type *x,
1697 const union i386_operand_type *y)
1698 {
1699 switch (ARRAY_SIZE(x->array))
1700 {
1701 case 3:
1702 if (x->array[2] != y->array[2])
1703 return 0;
1704 /* Fall through. */
1705 case 2:
1706 if (x->array[1] != y->array[1])
1707 return 0;
1708 /* Fall through. */
1709 case 1:
1710 return x->array[0] == y->array[0];
1711 break;
1712 default:
1713 abort ();
1714 }
1715 }
1716
1717 static INLINE int
1718 cpu_flags_all_zero (const union i386_cpu_flags *x)
1719 {
1720 switch (ARRAY_SIZE(x->array))
1721 {
1722 case 4:
1723 if (x->array[3])
1724 return 0;
1725 /* Fall through. */
1726 case 3:
1727 if (x->array[2])
1728 return 0;
1729 /* Fall through. */
1730 case 2:
1731 if (x->array[1])
1732 return 0;
1733 /* Fall through. */
1734 case 1:
1735 return !x->array[0];
1736 default:
1737 abort ();
1738 }
1739 }
1740
1741 static INLINE int
1742 cpu_flags_equal (const union i386_cpu_flags *x,
1743 const union i386_cpu_flags *y)
1744 {
1745 switch (ARRAY_SIZE(x->array))
1746 {
1747 case 4:
1748 if (x->array[3] != y->array[3])
1749 return 0;
1750 /* Fall through. */
1751 case 3:
1752 if (x->array[2] != y->array[2])
1753 return 0;
1754 /* Fall through. */
1755 case 2:
1756 if (x->array[1] != y->array[1])
1757 return 0;
1758 /* Fall through. */
1759 case 1:
1760 return x->array[0] == y->array[0];
1761 break;
1762 default:
1763 abort ();
1764 }
1765 }
1766
1767 static INLINE int
1768 cpu_flags_check_cpu64 (i386_cpu_flags f)
1769 {
1770 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1771 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1772 }
1773
1774 static INLINE i386_cpu_flags
1775 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1776 {
1777 switch (ARRAY_SIZE (x.array))
1778 {
1779 case 4:
1780 x.array [3] &= y.array [3];
1781 /* Fall through. */
1782 case 3:
1783 x.array [2] &= y.array [2];
1784 /* Fall through. */
1785 case 2:
1786 x.array [1] &= y.array [1];
1787 /* Fall through. */
1788 case 1:
1789 x.array [0] &= y.array [0];
1790 break;
1791 default:
1792 abort ();
1793 }
1794 return x;
1795 }
1796
1797 static INLINE i386_cpu_flags
1798 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1799 {
1800 switch (ARRAY_SIZE (x.array))
1801 {
1802 case 4:
1803 x.array [3] |= y.array [3];
1804 /* Fall through. */
1805 case 3:
1806 x.array [2] |= y.array [2];
1807 /* Fall through. */
1808 case 2:
1809 x.array [1] |= y.array [1];
1810 /* Fall through. */
1811 case 1:
1812 x.array [0] |= y.array [0];
1813 break;
1814 default:
1815 abort ();
1816 }
1817 return x;
1818 }
1819
1820 static INLINE i386_cpu_flags
1821 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1822 {
1823 switch (ARRAY_SIZE (x.array))
1824 {
1825 case 4:
1826 x.array [3] &= ~y.array [3];
1827 /* Fall through. */
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841 }
1842
1843 #define CPU_FLAGS_ARCH_MATCH 0x1
1844 #define CPU_FLAGS_64BIT_MATCH 0x2
1845
1846 #define CPU_FLAGS_PERFECT_MATCH \
1847 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1848
1849 /* Return CPU flags match bits. */
1850
1851 static int
1852 cpu_flags_match (const insn_template *t)
1853 {
1854 i386_cpu_flags x = t->cpu_flags;
1855 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1856
1857 x.bitfield.cpu64 = 0;
1858 x.bitfield.cpuno64 = 0;
1859
1860 if (cpu_flags_all_zero (&x))
1861 {
1862 /* This instruction is available on all archs. */
1863 match |= CPU_FLAGS_ARCH_MATCH;
1864 }
1865 else
1866 {
1867 /* This instruction is available only on some archs. */
1868 i386_cpu_flags cpu = cpu_arch_flags;
1869
1870 /* AVX512VL is no standalone feature - match it and then strip it. */
1871 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1872 return match;
1873 x.bitfield.cpuavx512vl = 0;
1874
1875 cpu = cpu_flags_and (x, cpu);
1876 if (!cpu_flags_all_zero (&cpu))
1877 {
1878 if (x.bitfield.cpuavx)
1879 {
1880 /* We need to check a few extra flags with AVX. */
1881 if (cpu.bitfield.cpuavx
1882 && (!t->opcode_modifier.sse2avx || sse2avx)
1883 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1884 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1885 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1886 match |= CPU_FLAGS_ARCH_MATCH;
1887 }
1888 else if (x.bitfield.cpuavx512f)
1889 {
1890 /* We need to check a few extra flags with AVX512F. */
1891 if (cpu.bitfield.cpuavx512f
1892 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1893 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1894 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1895 match |= CPU_FLAGS_ARCH_MATCH;
1896 }
1897 else
1898 match |= CPU_FLAGS_ARCH_MATCH;
1899 }
1900 }
1901 return match;
1902 }
1903
1904 static INLINE i386_operand_type
1905 operand_type_and (i386_operand_type x, i386_operand_type y)
1906 {
1907 if (x.bitfield.class != y.bitfield.class)
1908 x.bitfield.class = ClassNone;
1909 if (x.bitfield.instance != y.bitfield.instance)
1910 x.bitfield.instance = InstanceNone;
1911
1912 switch (ARRAY_SIZE (x.array))
1913 {
1914 case 3:
1915 x.array [2] &= y.array [2];
1916 /* Fall through. */
1917 case 2:
1918 x.array [1] &= y.array [1];
1919 /* Fall through. */
1920 case 1:
1921 x.array [0] &= y.array [0];
1922 break;
1923 default:
1924 abort ();
1925 }
1926 return x;
1927 }
1928
1929 static INLINE i386_operand_type
1930 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1931 {
1932 gas_assert (y.bitfield.class == ClassNone);
1933 gas_assert (y.bitfield.instance == InstanceNone);
1934
1935 switch (ARRAY_SIZE (x.array))
1936 {
1937 case 3:
1938 x.array [2] &= ~y.array [2];
1939 /* Fall through. */
1940 case 2:
1941 x.array [1] &= ~y.array [1];
1942 /* Fall through. */
1943 case 1:
1944 x.array [0] &= ~y.array [0];
1945 break;
1946 default:
1947 abort ();
1948 }
1949 return x;
1950 }
1951
1952 static INLINE i386_operand_type
1953 operand_type_or (i386_operand_type x, i386_operand_type y)
1954 {
1955 gas_assert (x.bitfield.class == ClassNone ||
1956 y.bitfield.class == ClassNone ||
1957 x.bitfield.class == y.bitfield.class);
1958 gas_assert (x.bitfield.instance == InstanceNone ||
1959 y.bitfield.instance == InstanceNone ||
1960 x.bitfield.instance == y.bitfield.instance);
1961
1962 switch (ARRAY_SIZE (x.array))
1963 {
1964 case 3:
1965 x.array [2] |= y.array [2];
1966 /* Fall through. */
1967 case 2:
1968 x.array [1] |= y.array [1];
1969 /* Fall through. */
1970 case 1:
1971 x.array [0] |= y.array [0];
1972 break;
1973 default:
1974 abort ();
1975 }
1976 return x;
1977 }
1978
1979 static INLINE i386_operand_type
1980 operand_type_xor (i386_operand_type x, i386_operand_type y)
1981 {
1982 gas_assert (y.bitfield.class == ClassNone);
1983 gas_assert (y.bitfield.instance == InstanceNone);
1984
1985 switch (ARRAY_SIZE (x.array))
1986 {
1987 case 3:
1988 x.array [2] ^= y.array [2];
1989 /* Fall through. */
1990 case 2:
1991 x.array [1] ^= y.array [1];
1992 /* Fall through. */
1993 case 1:
1994 x.array [0] ^= y.array [0];
1995 break;
1996 default:
1997 abort ();
1998 }
1999 return x;
2000 }
2001
2002 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2003 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2004 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2005 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2006 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2007 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2008 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2009 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2010 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2011 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2012 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2013 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2014 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2015 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2016 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2017 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2018 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2019
2020 enum operand_type
2021 {
2022 reg,
2023 imm,
2024 disp,
2025 anymem
2026 };
2027
2028 static INLINE int
2029 operand_type_check (i386_operand_type t, enum operand_type c)
2030 {
2031 switch (c)
2032 {
2033 case reg:
2034 return t.bitfield.class == Reg;
2035
2036 case imm:
2037 return (t.bitfield.imm8
2038 || t.bitfield.imm8s
2039 || t.bitfield.imm16
2040 || t.bitfield.imm32
2041 || t.bitfield.imm32s
2042 || t.bitfield.imm64);
2043
2044 case disp:
2045 return (t.bitfield.disp8
2046 || t.bitfield.disp16
2047 || t.bitfield.disp32
2048 || t.bitfield.disp32s
2049 || t.bitfield.disp64);
2050
2051 case anymem:
2052 return (t.bitfield.disp8
2053 || t.bitfield.disp16
2054 || t.bitfield.disp32
2055 || t.bitfield.disp32s
2056 || t.bitfield.disp64
2057 || t.bitfield.baseindex);
2058
2059 default:
2060 abort ();
2061 }
2062
2063 return 0;
2064 }
2065
2066 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2067 between operand GIVEN and opeand WANTED for instruction template T. */
2068
2069 static INLINE int
2070 match_operand_size (const insn_template *t, unsigned int wanted,
2071 unsigned int given)
2072 {
2073 return !((i.types[given].bitfield.byte
2074 && !t->operand_types[wanted].bitfield.byte)
2075 || (i.types[given].bitfield.word
2076 && !t->operand_types[wanted].bitfield.word)
2077 || (i.types[given].bitfield.dword
2078 && !t->operand_types[wanted].bitfield.dword)
2079 || (i.types[given].bitfield.qword
2080 && !t->operand_types[wanted].bitfield.qword)
2081 || (i.types[given].bitfield.tbyte
2082 && !t->operand_types[wanted].bitfield.tbyte));
2083 }
2084
2085 /* Return 1 if there is no conflict in SIMD register between operand
2086 GIVEN and opeand WANTED for instruction template T. */
2087
2088 static INLINE int
2089 match_simd_size (const insn_template *t, unsigned int wanted,
2090 unsigned int given)
2091 {
2092 return !((i.types[given].bitfield.xmmword
2093 && !t->operand_types[wanted].bitfield.xmmword)
2094 || (i.types[given].bitfield.ymmword
2095 && !t->operand_types[wanted].bitfield.ymmword)
2096 || (i.types[given].bitfield.zmmword
2097 && !t->operand_types[wanted].bitfield.zmmword));
2098 }
2099
2100 /* Return 1 if there is no conflict in any size between operand GIVEN
2101 and opeand WANTED for instruction template T. */
2102
2103 static INLINE int
2104 match_mem_size (const insn_template *t, unsigned int wanted,
2105 unsigned int given)
2106 {
2107 return (match_operand_size (t, wanted, given)
2108 && !((i.types[given].bitfield.unspecified
2109 && !i.broadcast
2110 && !t->operand_types[wanted].bitfield.unspecified)
2111 || (i.types[given].bitfield.fword
2112 && !t->operand_types[wanted].bitfield.fword)
2113 /* For scalar opcode templates to allow register and memory
2114 operands at the same time, some special casing is needed
2115 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2116 down-conversion vpmov*. */
2117 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2118 && !t->opcode_modifier.broadcast
2119 && (t->operand_types[wanted].bitfield.byte
2120 || t->operand_types[wanted].bitfield.word
2121 || t->operand_types[wanted].bitfield.dword
2122 || t->operand_types[wanted].bitfield.qword))
2123 ? (i.types[given].bitfield.xmmword
2124 || i.types[given].bitfield.ymmword
2125 || i.types[given].bitfield.zmmword)
2126 : !match_simd_size(t, wanted, given))));
2127 }
2128
2129 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2130 operands for instruction template T, and it has MATCH_REVERSE set if there
2131 is no size conflict on any operands for the template with operands reversed
2132 (and the template allows for reversing in the first place). */
2133
2134 #define MATCH_STRAIGHT 1
2135 #define MATCH_REVERSE 2
2136
2137 static INLINE unsigned int
2138 operand_size_match (const insn_template *t)
2139 {
2140 unsigned int j, match = MATCH_STRAIGHT;
2141
2142 /* Don't check non-absolute jump instructions. */
2143 if (t->opcode_modifier.jump
2144 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2145 return match;
2146
2147 /* Check memory and accumulator operand size. */
2148 for (j = 0; j < i.operands; j++)
2149 {
2150 if (i.types[j].bitfield.class != Reg
2151 && i.types[j].bitfield.class != RegSIMD
2152 && t->opcode_modifier.anysize)
2153 continue;
2154
2155 if (t->operand_types[j].bitfield.class == Reg
2156 && !match_operand_size (t, j, j))
2157 {
2158 match = 0;
2159 break;
2160 }
2161
2162 if (t->operand_types[j].bitfield.class == RegSIMD
2163 && !match_simd_size (t, j, j))
2164 {
2165 match = 0;
2166 break;
2167 }
2168
2169 if (t->operand_types[j].bitfield.instance == Accum
2170 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2171 {
2172 match = 0;
2173 break;
2174 }
2175
2176 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2177 {
2178 match = 0;
2179 break;
2180 }
2181 }
2182
2183 if (!t->opcode_modifier.d)
2184 {
2185 mismatch:
2186 if (!match)
2187 i.error = operand_size_mismatch;
2188 return match;
2189 }
2190
2191 /* Check reverse. */
2192 gas_assert (i.operands >= 2 && i.operands <= 3);
2193
2194 for (j = 0; j < i.operands; j++)
2195 {
2196 unsigned int given = i.operands - j - 1;
2197
2198 if (t->operand_types[j].bitfield.class == Reg
2199 && !match_operand_size (t, j, given))
2200 goto mismatch;
2201
2202 if (t->operand_types[j].bitfield.class == RegSIMD
2203 && !match_simd_size (t, j, given))
2204 goto mismatch;
2205
2206 if (t->operand_types[j].bitfield.instance == Accum
2207 && (!match_operand_size (t, j, given)
2208 || !match_simd_size (t, j, given)))
2209 goto mismatch;
2210
2211 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2212 goto mismatch;
2213 }
2214
2215 return match | MATCH_REVERSE;
2216 }
2217
2218 static INLINE int
2219 operand_type_match (i386_operand_type overlap,
2220 i386_operand_type given)
2221 {
2222 i386_operand_type temp = overlap;
2223
2224 temp.bitfield.unspecified = 0;
2225 temp.bitfield.byte = 0;
2226 temp.bitfield.word = 0;
2227 temp.bitfield.dword = 0;
2228 temp.bitfield.fword = 0;
2229 temp.bitfield.qword = 0;
2230 temp.bitfield.tbyte = 0;
2231 temp.bitfield.xmmword = 0;
2232 temp.bitfield.ymmword = 0;
2233 temp.bitfield.zmmword = 0;
2234 if (operand_type_all_zero (&temp))
2235 goto mismatch;
2236
2237 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2238 return 1;
2239
2240 mismatch:
2241 i.error = operand_type_mismatch;
2242 return 0;
2243 }
2244
2245 /* If given types g0 and g1 are registers they must be of the same type
2246 unless the expected operand type register overlap is null.
2247 Some Intel syntax memory operand size checking also happens here. */
2248
2249 static INLINE int
2250 operand_type_register_match (i386_operand_type g0,
2251 i386_operand_type t0,
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254 {
2255 if (g0.bitfield.class != Reg
2256 && g0.bitfield.class != RegSIMD
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
2259 || (t0.bitfield.class != Reg
2260 && t0.bitfield.class != RegSIMD)))
2261 return 1;
2262
2263 if (g1.bitfield.class != Reg
2264 && g1.bitfield.class != RegSIMD
2265 && (!operand_type_check (g1, anymem)
2266 || g1.bitfield.unspecified
2267 || (t1.bitfield.class != Reg
2268 && t1.bitfield.class != RegSIMD)))
2269 return 1;
2270
2271 if (g0.bitfield.byte == g1.bitfield.byte
2272 && g0.bitfield.word == g1.bitfield.word
2273 && g0.bitfield.dword == g1.bitfield.dword
2274 && g0.bitfield.qword == g1.bitfield.qword
2275 && g0.bitfield.xmmword == g1.bitfield.xmmword
2276 && g0.bitfield.ymmword == g1.bitfield.ymmword
2277 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2278 return 1;
2279
2280 if (!(t0.bitfield.byte & t1.bitfield.byte)
2281 && !(t0.bitfield.word & t1.bitfield.word)
2282 && !(t0.bitfield.dword & t1.bitfield.dword)
2283 && !(t0.bitfield.qword & t1.bitfield.qword)
2284 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2285 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2286 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2287 return 1;
2288
2289 i.error = register_type_mismatch;
2290
2291 return 0;
2292 }
2293
2294 static INLINE unsigned int
2295 register_number (const reg_entry *r)
2296 {
2297 unsigned int nr = r->reg_num;
2298
2299 if (r->reg_flags & RegRex)
2300 nr += 8;
2301
2302 if (r->reg_flags & RegVRex)
2303 nr += 16;
2304
2305 return nr;
2306 }
2307
2308 static INLINE unsigned int
2309 mode_from_disp_size (i386_operand_type t)
2310 {
2311 if (t.bitfield.disp8)
2312 return 1;
2313 else if (t.bitfield.disp16
2314 || t.bitfield.disp32
2315 || t.bitfield.disp32s)
2316 return 2;
2317 else
2318 return 0;
2319 }
2320
2321 static INLINE int
2322 fits_in_signed_byte (addressT num)
2323 {
2324 return num + 0x80 <= 0xff;
2325 }
2326
2327 static INLINE int
2328 fits_in_unsigned_byte (addressT num)
2329 {
2330 return num <= 0xff;
2331 }
2332
2333 static INLINE int
2334 fits_in_unsigned_word (addressT num)
2335 {
2336 return num <= 0xffff;
2337 }
2338
2339 static INLINE int
2340 fits_in_signed_word (addressT num)
2341 {
2342 return num + 0x8000 <= 0xffff;
2343 }
2344
2345 static INLINE int
2346 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2347 {
2348 #ifndef BFD64
2349 return 1;
2350 #else
2351 return num + 0x80000000 <= 0xffffffff;
2352 #endif
2353 } /* fits_in_signed_long() */
2354
2355 static INLINE int
2356 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2357 {
2358 #ifndef BFD64
2359 return 1;
2360 #else
2361 return num <= 0xffffffff;
2362 #endif
2363 } /* fits_in_unsigned_long() */
2364
2365 static INLINE int
2366 fits_in_disp8 (offsetT num)
2367 {
2368 int shift = i.memshift;
2369 unsigned int mask;
2370
2371 if (shift == -1)
2372 abort ();
2373
2374 mask = (1 << shift) - 1;
2375
2376 /* Return 0 if NUM isn't properly aligned. */
2377 if ((num & mask))
2378 return 0;
2379
2380 /* Check if NUM will fit in 8bit after shift. */
2381 return fits_in_signed_byte (num >> shift);
2382 }
2383
2384 static INLINE int
2385 fits_in_imm4 (offsetT num)
2386 {
2387 return (num & 0xf) == num;
2388 }
2389
2390 static i386_operand_type
2391 smallest_imm_type (offsetT num)
2392 {
2393 i386_operand_type t;
2394
2395 operand_type_set (&t, 0);
2396 t.bitfield.imm64 = 1;
2397
2398 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2399 {
2400 /* This code is disabled on the 486 because all the Imm1 forms
2401 in the opcode table are slower on the i486. They're the
2402 versions with the implicitly specified single-position
2403 displacement, which has another syntax if you really want to
2404 use that form. */
2405 t.bitfield.imm1 = 1;
2406 t.bitfield.imm8 = 1;
2407 t.bitfield.imm8s = 1;
2408 t.bitfield.imm16 = 1;
2409 t.bitfield.imm32 = 1;
2410 t.bitfield.imm32s = 1;
2411 }
2412 else if (fits_in_signed_byte (num))
2413 {
2414 t.bitfield.imm8 = 1;
2415 t.bitfield.imm8s = 1;
2416 t.bitfield.imm16 = 1;
2417 t.bitfield.imm32 = 1;
2418 t.bitfield.imm32s = 1;
2419 }
2420 else if (fits_in_unsigned_byte (num))
2421 {
2422 t.bitfield.imm8 = 1;
2423 t.bitfield.imm16 = 1;
2424 t.bitfield.imm32 = 1;
2425 t.bitfield.imm32s = 1;
2426 }
2427 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2428 {
2429 t.bitfield.imm16 = 1;
2430 t.bitfield.imm32 = 1;
2431 t.bitfield.imm32s = 1;
2432 }
2433 else if (fits_in_signed_long (num))
2434 {
2435 t.bitfield.imm32 = 1;
2436 t.bitfield.imm32s = 1;
2437 }
2438 else if (fits_in_unsigned_long (num))
2439 t.bitfield.imm32 = 1;
2440
2441 return t;
2442 }
2443
2444 static offsetT
2445 offset_in_range (offsetT val, int size)
2446 {
2447 addressT mask;
2448
2449 switch (size)
2450 {
2451 case 1: mask = ((addressT) 1 << 8) - 1; break;
2452 case 2: mask = ((addressT) 1 << 16) - 1; break;
2453 case 4: mask = ((addressT) 2 << 31) - 1; break;
2454 #ifdef BFD64
2455 case 8: mask = ((addressT) 2 << 63) - 1; break;
2456 #endif
2457 default: abort ();
2458 }
2459
2460 #ifdef BFD64
2461 /* If BFD64, sign extend val for 32bit address mode. */
2462 if (flag_code != CODE_64BIT
2463 || i.prefix[ADDR_PREFIX])
2464 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2465 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2466 #endif
2467
2468 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2469 {
2470 char buf1[40], buf2[40];
2471
2472 sprint_value (buf1, val);
2473 sprint_value (buf2, val & mask);
2474 as_warn (_("%s shortened to %s"), buf1, buf2);
2475 }
2476 return val & mask;
2477 }
2478
2479 enum PREFIX_GROUP
2480 {
2481 PREFIX_EXIST = 0,
2482 PREFIX_LOCK,
2483 PREFIX_REP,
2484 PREFIX_DS,
2485 PREFIX_OTHER
2486 };
2487
2488 /* Returns
2489 a. PREFIX_EXIST if attempting to add a prefix where one from the
2490 same class already exists.
2491 b. PREFIX_LOCK if lock prefix is added.
2492 c. PREFIX_REP if rep/repne prefix is added.
2493 d. PREFIX_DS if ds prefix is added.
2494 e. PREFIX_OTHER if other prefix is added.
2495 */
2496
2497 static enum PREFIX_GROUP
2498 add_prefix (unsigned int prefix)
2499 {
2500 enum PREFIX_GROUP ret = PREFIX_OTHER;
2501 unsigned int q;
2502
2503 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2504 && flag_code == CODE_64BIT)
2505 {
2506 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2508 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2509 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2510 ret = PREFIX_EXIST;
2511 q = REX_PREFIX;
2512 }
2513 else
2514 {
2515 switch (prefix)
2516 {
2517 default:
2518 abort ();
2519
2520 case DS_PREFIX_OPCODE:
2521 ret = PREFIX_DS;
2522 /* Fall through. */
2523 case CS_PREFIX_OPCODE:
2524 case ES_PREFIX_OPCODE:
2525 case FS_PREFIX_OPCODE:
2526 case GS_PREFIX_OPCODE:
2527 case SS_PREFIX_OPCODE:
2528 q = SEG_PREFIX;
2529 break;
2530
2531 case REPNE_PREFIX_OPCODE:
2532 case REPE_PREFIX_OPCODE:
2533 q = REP_PREFIX;
2534 ret = PREFIX_REP;
2535 break;
2536
2537 case LOCK_PREFIX_OPCODE:
2538 q = LOCK_PREFIX;
2539 ret = PREFIX_LOCK;
2540 break;
2541
2542 case FWAIT_OPCODE:
2543 q = WAIT_PREFIX;
2544 break;
2545
2546 case ADDR_PREFIX_OPCODE:
2547 q = ADDR_PREFIX;
2548 break;
2549
2550 case DATA_PREFIX_OPCODE:
2551 q = DATA_PREFIX;
2552 break;
2553 }
2554 if (i.prefix[q] != 0)
2555 ret = PREFIX_EXIST;
2556 }
2557
2558 if (ret)
2559 {
2560 if (!i.prefix[q])
2561 ++i.prefixes;
2562 i.prefix[q] |= prefix;
2563 }
2564 else
2565 as_bad (_("same type of prefix used twice"));
2566
2567 return ret;
2568 }
2569
2570 static void
2571 update_code_flag (int value, int check)
2572 {
2573 PRINTF_LIKE ((*as_error));
2574
2575 flag_code = (enum flag_code) value;
2576 if (flag_code == CODE_64BIT)
2577 {
2578 cpu_arch_flags.bitfield.cpu64 = 1;
2579 cpu_arch_flags.bitfield.cpuno64 = 0;
2580 }
2581 else
2582 {
2583 cpu_arch_flags.bitfield.cpu64 = 0;
2584 cpu_arch_flags.bitfield.cpuno64 = 1;
2585 }
2586 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2587 {
2588 if (check)
2589 as_error = as_fatal;
2590 else
2591 as_error = as_bad;
2592 (*as_error) (_("64bit mode not supported on `%s'."),
2593 cpu_arch_name ? cpu_arch_name : default_arch);
2594 }
2595 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2596 {
2597 if (check)
2598 as_error = as_fatal;
2599 else
2600 as_error = as_bad;
2601 (*as_error) (_("32bit mode not supported on `%s'."),
2602 cpu_arch_name ? cpu_arch_name : default_arch);
2603 }
2604 stackop_size = '\0';
2605 }
2606
2607 static void
2608 set_code_flag (int value)
2609 {
2610 update_code_flag (value, 0);
2611 }
2612
2613 static void
2614 set_16bit_gcc_code_flag (int new_code_flag)
2615 {
2616 flag_code = (enum flag_code) new_code_flag;
2617 if (flag_code != CODE_16BIT)
2618 abort ();
2619 cpu_arch_flags.bitfield.cpu64 = 0;
2620 cpu_arch_flags.bitfield.cpuno64 = 1;
2621 stackop_size = LONG_MNEM_SUFFIX;
2622 }
2623
2624 static void
2625 set_intel_syntax (int syntax_flag)
2626 {
2627 /* Find out if register prefixing is specified. */
2628 int ask_naked_reg = 0;
2629
2630 SKIP_WHITESPACE ();
2631 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2632 {
2633 char *string;
2634 int e = get_symbol_name (&string);
2635
2636 if (strcmp (string, "prefix") == 0)
2637 ask_naked_reg = 1;
2638 else if (strcmp (string, "noprefix") == 0)
2639 ask_naked_reg = -1;
2640 else
2641 as_bad (_("bad argument to syntax directive."));
2642 (void) restore_line_pointer (e);
2643 }
2644 demand_empty_rest_of_line ();
2645
2646 intel_syntax = syntax_flag;
2647
2648 if (ask_naked_reg == 0)
2649 allow_naked_reg = (intel_syntax
2650 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2651 else
2652 allow_naked_reg = (ask_naked_reg < 0);
2653
2654 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2655
2656 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2657 identifier_chars['$'] = intel_syntax ? '$' : 0;
2658 register_prefix = allow_naked_reg ? "" : "%";
2659 }
2660
2661 static void
2662 set_intel_mnemonic (int mnemonic_flag)
2663 {
2664 intel_mnemonic = mnemonic_flag;
2665 }
2666
2667 static void
2668 set_allow_index_reg (int flag)
2669 {
2670 allow_index_reg = flag;
2671 }
2672
2673 static void
2674 set_check (int what)
2675 {
2676 enum check_kind *kind;
2677 const char *str;
2678
2679 if (what)
2680 {
2681 kind = &operand_check;
2682 str = "operand";
2683 }
2684 else
2685 {
2686 kind = &sse_check;
2687 str = "sse";
2688 }
2689
2690 SKIP_WHITESPACE ();
2691
2692 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2693 {
2694 char *string;
2695 int e = get_symbol_name (&string);
2696
2697 if (strcmp (string, "none") == 0)
2698 *kind = check_none;
2699 else if (strcmp (string, "warning") == 0)
2700 *kind = check_warning;
2701 else if (strcmp (string, "error") == 0)
2702 *kind = check_error;
2703 else
2704 as_bad (_("bad argument to %s_check directive."), str);
2705 (void) restore_line_pointer (e);
2706 }
2707 else
2708 as_bad (_("missing argument for %s_check directive"), str);
2709
2710 demand_empty_rest_of_line ();
2711 }
2712
2713 static void
2714 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2715 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2716 {
2717 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2718 static const char *arch;
2719
2720 /* Intel LIOM is only supported on ELF. */
2721 if (!IS_ELF)
2722 return;
2723
2724 if (!arch)
2725 {
2726 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2727 use default_arch. */
2728 arch = cpu_arch_name;
2729 if (!arch)
2730 arch = default_arch;
2731 }
2732
2733 /* If we are targeting Intel MCU, we must enable it. */
2734 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2735 || new_flag.bitfield.cpuiamcu)
2736 return;
2737
2738 /* If we are targeting Intel L1OM, we must enable it. */
2739 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2740 || new_flag.bitfield.cpul1om)
2741 return;
2742
2743 /* If we are targeting Intel K1OM, we must enable it. */
2744 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2745 || new_flag.bitfield.cpuk1om)
2746 return;
2747
2748 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2749 #endif
2750 }
2751
2752 static void
2753 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2754 {
2755 SKIP_WHITESPACE ();
2756
2757 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2758 {
2759 char *string;
2760 int e = get_symbol_name (&string);
2761 unsigned int j;
2762 i386_cpu_flags flags;
2763
2764 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2765 {
2766 if (strcmp (string, cpu_arch[j].name) == 0)
2767 {
2768 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2769
2770 if (*string != '.')
2771 {
2772 cpu_arch_name = cpu_arch[j].name;
2773 cpu_sub_arch_name = NULL;
2774 cpu_arch_flags = cpu_arch[j].flags;
2775 if (flag_code == CODE_64BIT)
2776 {
2777 cpu_arch_flags.bitfield.cpu64 = 1;
2778 cpu_arch_flags.bitfield.cpuno64 = 0;
2779 }
2780 else
2781 {
2782 cpu_arch_flags.bitfield.cpu64 = 0;
2783 cpu_arch_flags.bitfield.cpuno64 = 1;
2784 }
2785 cpu_arch_isa = cpu_arch[j].type;
2786 cpu_arch_isa_flags = cpu_arch[j].flags;
2787 if (!cpu_arch_tune_set)
2788 {
2789 cpu_arch_tune = cpu_arch_isa;
2790 cpu_arch_tune_flags = cpu_arch_isa_flags;
2791 }
2792 break;
2793 }
2794
2795 flags = cpu_flags_or (cpu_arch_flags,
2796 cpu_arch[j].flags);
2797
2798 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2799 {
2800 if (cpu_sub_arch_name)
2801 {
2802 char *name = cpu_sub_arch_name;
2803 cpu_sub_arch_name = concat (name,
2804 cpu_arch[j].name,
2805 (const char *) NULL);
2806 free (name);
2807 }
2808 else
2809 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2810 cpu_arch_flags = flags;
2811 cpu_arch_isa_flags = flags;
2812 }
2813 else
2814 cpu_arch_isa_flags
2815 = cpu_flags_or (cpu_arch_isa_flags,
2816 cpu_arch[j].flags);
2817 (void) restore_line_pointer (e);
2818 demand_empty_rest_of_line ();
2819 return;
2820 }
2821 }
2822
2823 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2824 {
2825 /* Disable an ISA extension. */
2826 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2827 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2828 {
2829 flags = cpu_flags_and_not (cpu_arch_flags,
2830 cpu_noarch[j].flags);
2831 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2832 {
2833 if (cpu_sub_arch_name)
2834 {
2835 char *name = cpu_sub_arch_name;
2836 cpu_sub_arch_name = concat (name, string,
2837 (const char *) NULL);
2838 free (name);
2839 }
2840 else
2841 cpu_sub_arch_name = xstrdup (string);
2842 cpu_arch_flags = flags;
2843 cpu_arch_isa_flags = flags;
2844 }
2845 (void) restore_line_pointer (e);
2846 demand_empty_rest_of_line ();
2847 return;
2848 }
2849
2850 j = ARRAY_SIZE (cpu_arch);
2851 }
2852
2853 if (j >= ARRAY_SIZE (cpu_arch))
2854 as_bad (_("no such architecture: `%s'"), string);
2855
2856 *input_line_pointer = e;
2857 }
2858 else
2859 as_bad (_("missing cpu architecture"));
2860
2861 no_cond_jump_promotion = 0;
2862 if (*input_line_pointer == ','
2863 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2864 {
2865 char *string;
2866 char e;
2867
2868 ++input_line_pointer;
2869 e = get_symbol_name (&string);
2870
2871 if (strcmp (string, "nojumps") == 0)
2872 no_cond_jump_promotion = 1;
2873 else if (strcmp (string, "jumps") == 0)
2874 ;
2875 else
2876 as_bad (_("no such architecture modifier: `%s'"), string);
2877
2878 (void) restore_line_pointer (e);
2879 }
2880
2881 demand_empty_rest_of_line ();
2882 }
2883
2884 enum bfd_architecture
2885 i386_arch (void)
2886 {
2887 if (cpu_arch_isa == PROCESSOR_L1OM)
2888 {
2889 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2890 || flag_code != CODE_64BIT)
2891 as_fatal (_("Intel L1OM is 64bit ELF only"));
2892 return bfd_arch_l1om;
2893 }
2894 else if (cpu_arch_isa == PROCESSOR_K1OM)
2895 {
2896 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2897 || flag_code != CODE_64BIT)
2898 as_fatal (_("Intel K1OM is 64bit ELF only"));
2899 return bfd_arch_k1om;
2900 }
2901 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2902 {
2903 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2904 || flag_code == CODE_64BIT)
2905 as_fatal (_("Intel MCU is 32bit ELF only"));
2906 return bfd_arch_iamcu;
2907 }
2908 else
2909 return bfd_arch_i386;
2910 }
2911
2912 unsigned long
2913 i386_mach (void)
2914 {
2915 if (!strncmp (default_arch, "x86_64", 6))
2916 {
2917 if (cpu_arch_isa == PROCESSOR_L1OM)
2918 {
2919 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2920 || default_arch[6] != '\0')
2921 as_fatal (_("Intel L1OM is 64bit ELF only"));
2922 return bfd_mach_l1om;
2923 }
2924 else if (cpu_arch_isa == PROCESSOR_K1OM)
2925 {
2926 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2927 || default_arch[6] != '\0')
2928 as_fatal (_("Intel K1OM is 64bit ELF only"));
2929 return bfd_mach_k1om;
2930 }
2931 else if (default_arch[6] == '\0')
2932 return bfd_mach_x86_64;
2933 else
2934 return bfd_mach_x64_32;
2935 }
2936 else if (!strcmp (default_arch, "i386")
2937 || !strcmp (default_arch, "iamcu"))
2938 {
2939 if (cpu_arch_isa == PROCESSOR_IAMCU)
2940 {
2941 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2942 as_fatal (_("Intel MCU is 32bit ELF only"));
2943 return bfd_mach_i386_iamcu;
2944 }
2945 else
2946 return bfd_mach_i386_i386;
2947 }
2948 else
2949 as_fatal (_("unknown architecture"));
2950 }
2951 \f
2952 void
2953 md_begin (void)
2954 {
2955 const char *hash_err;
2956
2957 /* Support pseudo prefixes like {disp32}. */
2958 lex_type ['{'] = LEX_BEGIN_NAME;
2959
2960 /* Initialize op_hash hash table. */
2961 op_hash = hash_new ();
2962
2963 {
2964 const insn_template *optab;
2965 templates *core_optab;
2966
2967 /* Setup for loop. */
2968 optab = i386_optab;
2969 core_optab = XNEW (templates);
2970 core_optab->start = optab;
2971
2972 while (1)
2973 {
2974 ++optab;
2975 if (optab->name == NULL
2976 || strcmp (optab->name, (optab - 1)->name) != 0)
2977 {
2978 /* different name --> ship out current template list;
2979 add to hash table; & begin anew. */
2980 core_optab->end = optab;
2981 hash_err = hash_insert (op_hash,
2982 (optab - 1)->name,
2983 (void *) core_optab);
2984 if (hash_err)
2985 {
2986 as_fatal (_("can't hash %s: %s"),
2987 (optab - 1)->name,
2988 hash_err);
2989 }
2990 if (optab->name == NULL)
2991 break;
2992 core_optab = XNEW (templates);
2993 core_optab->start = optab;
2994 }
2995 }
2996 }
2997
2998 /* Initialize reg_hash hash table. */
2999 reg_hash = hash_new ();
3000 {
3001 const reg_entry *regtab;
3002 unsigned int regtab_size = i386_regtab_size;
3003
3004 for (regtab = i386_regtab; regtab_size--; regtab++)
3005 {
3006 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3007 if (hash_err)
3008 as_fatal (_("can't hash %s: %s"),
3009 regtab->reg_name,
3010 hash_err);
3011 }
3012 }
3013
3014 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3015 {
3016 int c;
3017 char *p;
3018
3019 for (c = 0; c < 256; c++)
3020 {
3021 if (ISDIGIT (c))
3022 {
3023 digit_chars[c] = c;
3024 mnemonic_chars[c] = c;
3025 register_chars[c] = c;
3026 operand_chars[c] = c;
3027 }
3028 else if (ISLOWER (c))
3029 {
3030 mnemonic_chars[c] = c;
3031 register_chars[c] = c;
3032 operand_chars[c] = c;
3033 }
3034 else if (ISUPPER (c))
3035 {
3036 mnemonic_chars[c] = TOLOWER (c);
3037 register_chars[c] = mnemonic_chars[c];
3038 operand_chars[c] = c;
3039 }
3040 else if (c == '{' || c == '}')
3041 {
3042 mnemonic_chars[c] = c;
3043 operand_chars[c] = c;
3044 }
3045
3046 if (ISALPHA (c) || ISDIGIT (c))
3047 identifier_chars[c] = c;
3048 else if (c >= 128)
3049 {
3050 identifier_chars[c] = c;
3051 operand_chars[c] = c;
3052 }
3053 }
3054
3055 #ifdef LEX_AT
3056 identifier_chars['@'] = '@';
3057 #endif
3058 #ifdef LEX_QM
3059 identifier_chars['?'] = '?';
3060 operand_chars['?'] = '?';
3061 #endif
3062 digit_chars['-'] = '-';
3063 mnemonic_chars['_'] = '_';
3064 mnemonic_chars['-'] = '-';
3065 mnemonic_chars['.'] = '.';
3066 identifier_chars['_'] = '_';
3067 identifier_chars['.'] = '.';
3068
3069 for (p = operand_special_chars; *p != '\0'; p++)
3070 operand_chars[(unsigned char) *p] = *p;
3071 }
3072
3073 if (flag_code == CODE_64BIT)
3074 {
3075 #if defined (OBJ_COFF) && defined (TE_PE)
3076 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3077 ? 32 : 16);
3078 #else
3079 x86_dwarf2_return_column = 16;
3080 #endif
3081 x86_cie_data_alignment = -8;
3082 }
3083 else
3084 {
3085 x86_dwarf2_return_column = 8;
3086 x86_cie_data_alignment = -4;
3087 }
3088
3089 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3090 can be turned into BRANCH_PREFIX frag. */
3091 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3092 abort ();
3093 }
3094
3095 void
3096 i386_print_statistics (FILE *file)
3097 {
3098 hash_print_statistics (file, "i386 opcode", op_hash);
3099 hash_print_statistics (file, "i386 register", reg_hash);
3100 }
3101 \f
3102 #ifdef DEBUG386
3103
3104 /* Debugging routines for md_assemble. */
3105 static void pte (insn_template *);
3106 static void pt (i386_operand_type);
3107 static void pe (expressionS *);
3108 static void ps (symbolS *);
3109
3110 static void
3111 pi (const char *line, i386_insn *x)
3112 {
3113 unsigned int j;
3114
3115 fprintf (stdout, "%s: template ", line);
3116 pte (&x->tm);
3117 fprintf (stdout, " address: base %s index %s scale %x\n",
3118 x->base_reg ? x->base_reg->reg_name : "none",
3119 x->index_reg ? x->index_reg->reg_name : "none",
3120 x->log2_scale_factor);
3121 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3122 x->rm.mode, x->rm.reg, x->rm.regmem);
3123 fprintf (stdout, " sib: base %x index %x scale %x\n",
3124 x->sib.base, x->sib.index, x->sib.scale);
3125 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3126 (x->rex & REX_W) != 0,
3127 (x->rex & REX_R) != 0,
3128 (x->rex & REX_X) != 0,
3129 (x->rex & REX_B) != 0);
3130 for (j = 0; j < x->operands; j++)
3131 {
3132 fprintf (stdout, " #%d: ", j + 1);
3133 pt (x->types[j]);
3134 fprintf (stdout, "\n");
3135 if (x->types[j].bitfield.class == Reg
3136 || x->types[j].bitfield.class == RegMMX
3137 || x->types[j].bitfield.class == RegSIMD
3138 || x->types[j].bitfield.class == SReg
3139 || x->types[j].bitfield.class == RegCR
3140 || x->types[j].bitfield.class == RegDR
3141 || x->types[j].bitfield.class == RegTR)
3142 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3143 if (operand_type_check (x->types[j], imm))
3144 pe (x->op[j].imms);
3145 if (operand_type_check (x->types[j], disp))
3146 pe (x->op[j].disps);
3147 }
3148 }
3149
3150 static void
3151 pte (insn_template *t)
3152 {
3153 unsigned int j;
3154 fprintf (stdout, " %d operands ", t->operands);
3155 fprintf (stdout, "opcode %x ", t->base_opcode);
3156 if (t->extension_opcode != None)
3157 fprintf (stdout, "ext %x ", t->extension_opcode);
3158 if (t->opcode_modifier.d)
3159 fprintf (stdout, "D");
3160 if (t->opcode_modifier.w)
3161 fprintf (stdout, "W");
3162 fprintf (stdout, "\n");
3163 for (j = 0; j < t->operands; j++)
3164 {
3165 fprintf (stdout, " #%d type ", j + 1);
3166 pt (t->operand_types[j]);
3167 fprintf (stdout, "\n");
3168 }
3169 }
3170
3171 static void
3172 pe (expressionS *e)
3173 {
3174 fprintf (stdout, " operation %d\n", e->X_op);
3175 fprintf (stdout, " add_number %ld (%lx)\n",
3176 (long) e->X_add_number, (long) e->X_add_number);
3177 if (e->X_add_symbol)
3178 {
3179 fprintf (stdout, " add_symbol ");
3180 ps (e->X_add_symbol);
3181 fprintf (stdout, "\n");
3182 }
3183 if (e->X_op_symbol)
3184 {
3185 fprintf (stdout, " op_symbol ");
3186 ps (e->X_op_symbol);
3187 fprintf (stdout, "\n");
3188 }
3189 }
3190
3191 static void
3192 ps (symbolS *s)
3193 {
3194 fprintf (stdout, "%s type %s%s",
3195 S_GET_NAME (s),
3196 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3197 segment_name (S_GET_SEGMENT (s)));
3198 }
3199
3200 static struct type_name
3201 {
3202 i386_operand_type mask;
3203 const char *name;
3204 }
3205 const type_names[] =
3206 {
3207 { OPERAND_TYPE_REG8, "r8" },
3208 { OPERAND_TYPE_REG16, "r16" },
3209 { OPERAND_TYPE_REG32, "r32" },
3210 { OPERAND_TYPE_REG64, "r64" },
3211 { OPERAND_TYPE_ACC8, "acc8" },
3212 { OPERAND_TYPE_ACC16, "acc16" },
3213 { OPERAND_TYPE_ACC32, "acc32" },
3214 { OPERAND_TYPE_ACC64, "acc64" },
3215 { OPERAND_TYPE_IMM8, "i8" },
3216 { OPERAND_TYPE_IMM8, "i8s" },
3217 { OPERAND_TYPE_IMM16, "i16" },
3218 { OPERAND_TYPE_IMM32, "i32" },
3219 { OPERAND_TYPE_IMM32S, "i32s" },
3220 { OPERAND_TYPE_IMM64, "i64" },
3221 { OPERAND_TYPE_IMM1, "i1" },
3222 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3223 { OPERAND_TYPE_DISP8, "d8" },
3224 { OPERAND_TYPE_DISP16, "d16" },
3225 { OPERAND_TYPE_DISP32, "d32" },
3226 { OPERAND_TYPE_DISP32S, "d32s" },
3227 { OPERAND_TYPE_DISP64, "d64" },
3228 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3229 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3230 { OPERAND_TYPE_CONTROL, "control reg" },
3231 { OPERAND_TYPE_TEST, "test reg" },
3232 { OPERAND_TYPE_DEBUG, "debug reg" },
3233 { OPERAND_TYPE_FLOATREG, "FReg" },
3234 { OPERAND_TYPE_FLOATACC, "FAcc" },
3235 { OPERAND_TYPE_SREG, "SReg" },
3236 { OPERAND_TYPE_REGMMX, "rMMX" },
3237 { OPERAND_TYPE_REGXMM, "rXMM" },
3238 { OPERAND_TYPE_REGYMM, "rYMM" },
3239 { OPERAND_TYPE_REGZMM, "rZMM" },
3240 { OPERAND_TYPE_REGMASK, "Mask reg" },
3241 };
3242
3243 static void
3244 pt (i386_operand_type t)
3245 {
3246 unsigned int j;
3247 i386_operand_type a;
3248
3249 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3250 {
3251 a = operand_type_and (t, type_names[j].mask);
3252 if (operand_type_equal (&a, &type_names[j].mask))
3253 fprintf (stdout, "%s, ", type_names[j].name);
3254 }
3255 fflush (stdout);
3256 }
3257
3258 #endif /* DEBUG386 */
3259 \f
3260 static bfd_reloc_code_real_type
3261 reloc (unsigned int size,
3262 int pcrel,
3263 int sign,
3264 bfd_reloc_code_real_type other)
3265 {
3266 if (other != NO_RELOC)
3267 {
3268 reloc_howto_type *rel;
3269
3270 if (size == 8)
3271 switch (other)
3272 {
3273 case BFD_RELOC_X86_64_GOT32:
3274 return BFD_RELOC_X86_64_GOT64;
3275 break;
3276 case BFD_RELOC_X86_64_GOTPLT64:
3277 return BFD_RELOC_X86_64_GOTPLT64;
3278 break;
3279 case BFD_RELOC_X86_64_PLTOFF64:
3280 return BFD_RELOC_X86_64_PLTOFF64;
3281 break;
3282 case BFD_RELOC_X86_64_GOTPC32:
3283 other = BFD_RELOC_X86_64_GOTPC64;
3284 break;
3285 case BFD_RELOC_X86_64_GOTPCREL:
3286 other = BFD_RELOC_X86_64_GOTPCREL64;
3287 break;
3288 case BFD_RELOC_X86_64_TPOFF32:
3289 other = BFD_RELOC_X86_64_TPOFF64;
3290 break;
3291 case BFD_RELOC_X86_64_DTPOFF32:
3292 other = BFD_RELOC_X86_64_DTPOFF64;
3293 break;
3294 default:
3295 break;
3296 }
3297
3298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3299 if (other == BFD_RELOC_SIZE32)
3300 {
3301 if (size == 8)
3302 other = BFD_RELOC_SIZE64;
3303 if (pcrel)
3304 {
3305 as_bad (_("there are no pc-relative size relocations"));
3306 return NO_RELOC;
3307 }
3308 }
3309 #endif
3310
3311 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3312 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3313 sign = -1;
3314
3315 rel = bfd_reloc_type_lookup (stdoutput, other);
3316 if (!rel)
3317 as_bad (_("unknown relocation (%u)"), other);
3318 else if (size != bfd_get_reloc_size (rel))
3319 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3320 bfd_get_reloc_size (rel),
3321 size);
3322 else if (pcrel && !rel->pc_relative)
3323 as_bad (_("non-pc-relative relocation for pc-relative field"));
3324 else if ((rel->complain_on_overflow == complain_overflow_signed
3325 && !sign)
3326 || (rel->complain_on_overflow == complain_overflow_unsigned
3327 && sign > 0))
3328 as_bad (_("relocated field and relocation type differ in signedness"));
3329 else
3330 return other;
3331 return NO_RELOC;
3332 }
3333
3334 if (pcrel)
3335 {
3336 if (!sign)
3337 as_bad (_("there are no unsigned pc-relative relocations"));
3338 switch (size)
3339 {
3340 case 1: return BFD_RELOC_8_PCREL;
3341 case 2: return BFD_RELOC_16_PCREL;
3342 case 4: return BFD_RELOC_32_PCREL;
3343 case 8: return BFD_RELOC_64_PCREL;
3344 }
3345 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3346 }
3347 else
3348 {
3349 if (sign > 0)
3350 switch (size)
3351 {
3352 case 4: return BFD_RELOC_X86_64_32S;
3353 }
3354 else
3355 switch (size)
3356 {
3357 case 1: return BFD_RELOC_8;
3358 case 2: return BFD_RELOC_16;
3359 case 4: return BFD_RELOC_32;
3360 case 8: return BFD_RELOC_64;
3361 }
3362 as_bad (_("cannot do %s %u byte relocation"),
3363 sign > 0 ? "signed" : "unsigned", size);
3364 }
3365
3366 return NO_RELOC;
3367 }
3368
3369 /* Here we decide which fixups can be adjusted to make them relative to
3370 the beginning of the section instead of the symbol. Basically we need
3371 to make sure that the dynamic relocations are done correctly, so in
3372 some cases we force the original symbol to be used. */
3373
3374 int
3375 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3376 {
3377 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3378 if (!IS_ELF)
3379 return 1;
3380
3381 /* Don't adjust pc-relative references to merge sections in 64-bit
3382 mode. */
3383 if (use_rela_relocations
3384 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3385 && fixP->fx_pcrel)
3386 return 0;
3387
3388 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3389 and changed later by validate_fix. */
3390 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3391 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3392 return 0;
3393
3394 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3395 for size relocations. */
3396 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3397 || fixP->fx_r_type == BFD_RELOC_SIZE64
3398 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3399 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3400 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3401 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3412 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3427 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3428 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3429 return 0;
3430 #endif
3431 return 1;
3432 }
3433
3434 static int
3435 intel_float_operand (const char *mnemonic)
3436 {
3437 /* Note that the value returned is meaningful only for opcodes with (memory)
3438 operands, hence the code here is free to improperly handle opcodes that
3439 have no operands (for better performance and smaller code). */
3440
3441 if (mnemonic[0] != 'f')
3442 return 0; /* non-math */
3443
3444 switch (mnemonic[1])
3445 {
3446 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3447 the fs segment override prefix not currently handled because no
3448 call path can make opcodes without operands get here */
3449 case 'i':
3450 return 2 /* integer op */;
3451 case 'l':
3452 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3453 return 3; /* fldcw/fldenv */
3454 break;
3455 case 'n':
3456 if (mnemonic[2] != 'o' /* fnop */)
3457 return 3; /* non-waiting control op */
3458 break;
3459 case 'r':
3460 if (mnemonic[2] == 's')
3461 return 3; /* frstor/frstpm */
3462 break;
3463 case 's':
3464 if (mnemonic[2] == 'a')
3465 return 3; /* fsave */
3466 if (mnemonic[2] == 't')
3467 {
3468 switch (mnemonic[3])
3469 {
3470 case 'c': /* fstcw */
3471 case 'd': /* fstdw */
3472 case 'e': /* fstenv */
3473 case 's': /* fsts[gw] */
3474 return 3;
3475 }
3476 }
3477 break;
3478 case 'x':
3479 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3480 return 0; /* fxsave/fxrstor are not really math ops */
3481 break;
3482 }
3483
3484 return 1;
3485 }
3486
3487 /* Build the VEX prefix. */
3488
3489 static void
3490 build_vex_prefix (const insn_template *t)
3491 {
3492 unsigned int register_specifier;
3493 unsigned int implied_prefix;
3494 unsigned int vector_length;
3495 unsigned int w;
3496
3497 /* Check register specifier. */
3498 if (i.vex.register_specifier)
3499 {
3500 register_specifier =
3501 ~register_number (i.vex.register_specifier) & 0xf;
3502 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3503 }
3504 else
3505 register_specifier = 0xf;
3506
3507 /* Use 2-byte VEX prefix by swapping destination and source operand
3508 if there are more than 1 register operand. */
3509 if (i.reg_operands > 1
3510 && i.vec_encoding != vex_encoding_vex3
3511 && i.dir_encoding == dir_encoding_default
3512 && i.operands == i.reg_operands
3513 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3514 && i.tm.opcode_modifier.vexopcode == VEX0F
3515 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3516 && i.rex == REX_B)
3517 {
3518 unsigned int xchg = i.operands - 1;
3519 union i386_op temp_op;
3520 i386_operand_type temp_type;
3521
3522 temp_type = i.types[xchg];
3523 i.types[xchg] = i.types[0];
3524 i.types[0] = temp_type;
3525 temp_op = i.op[xchg];
3526 i.op[xchg] = i.op[0];
3527 i.op[0] = temp_op;
3528
3529 gas_assert (i.rm.mode == 3);
3530
3531 i.rex = REX_R;
3532 xchg = i.rm.regmem;
3533 i.rm.regmem = i.rm.reg;
3534 i.rm.reg = xchg;
3535
3536 if (i.tm.opcode_modifier.d)
3537 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3539 else /* Use the next insn. */
3540 i.tm = t[1];
3541 }
3542
3543 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3544 are no memory operands and at least 3 register ones. */
3545 if (i.reg_operands >= 3
3546 && i.vec_encoding != vex_encoding_vex3
3547 && i.reg_operands == i.operands - i.imm_operands
3548 && i.tm.opcode_modifier.vex
3549 && i.tm.opcode_modifier.commutative
3550 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3551 && i.rex == REX_B
3552 && i.vex.register_specifier
3553 && !(i.vex.register_specifier->reg_flags & RegRex))
3554 {
3555 unsigned int xchg = i.operands - i.reg_operands;
3556 union i386_op temp_op;
3557 i386_operand_type temp_type;
3558
3559 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3560 gas_assert (!i.tm.opcode_modifier.sae);
3561 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3562 &i.types[i.operands - 3]));
3563 gas_assert (i.rm.mode == 3);
3564
3565 temp_type = i.types[xchg];
3566 i.types[xchg] = i.types[xchg + 1];
3567 i.types[xchg + 1] = temp_type;
3568 temp_op = i.op[xchg];
3569 i.op[xchg] = i.op[xchg + 1];
3570 i.op[xchg + 1] = temp_op;
3571
3572 i.rex = 0;
3573 xchg = i.rm.regmem | 8;
3574 i.rm.regmem = ~register_specifier & 0xf;
3575 gas_assert (!(i.rm.regmem & 8));
3576 i.vex.register_specifier += xchg - i.rm.regmem;
3577 register_specifier = ~xchg & 0xf;
3578 }
3579
3580 if (i.tm.opcode_modifier.vex == VEXScalar)
3581 vector_length = avxscalar;
3582 else if (i.tm.opcode_modifier.vex == VEX256)
3583 vector_length = 1;
3584 else
3585 {
3586 unsigned int op;
3587
3588 /* Determine vector length from the last multi-length vector
3589 operand. */
3590 vector_length = 0;
3591 for (op = t->operands; op--;)
3592 if (t->operand_types[op].bitfield.xmmword
3593 && t->operand_types[op].bitfield.ymmword
3594 && i.types[op].bitfield.ymmword)
3595 {
3596 vector_length = 1;
3597 break;
3598 }
3599 }
3600
3601 switch ((i.tm.base_opcode >> 8) & 0xff)
3602 {
3603 case 0:
3604 implied_prefix = 0;
3605 break;
3606 case DATA_PREFIX_OPCODE:
3607 implied_prefix = 1;
3608 break;
3609 case REPE_PREFIX_OPCODE:
3610 implied_prefix = 2;
3611 break;
3612 case REPNE_PREFIX_OPCODE:
3613 implied_prefix = 3;
3614 break;
3615 default:
3616 abort ();
3617 }
3618
3619 /* Check the REX.W bit and VEXW. */
3620 if (i.tm.opcode_modifier.vexw == VEXWIG)
3621 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3622 else if (i.tm.opcode_modifier.vexw)
3623 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3624 else
3625 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3626
3627 /* Use 2-byte VEX prefix if possible. */
3628 if (w == 0
3629 && i.vec_encoding != vex_encoding_vex3
3630 && i.tm.opcode_modifier.vexopcode == VEX0F
3631 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3632 {
3633 /* 2-byte VEX prefix. */
3634 unsigned int r;
3635
3636 i.vex.length = 2;
3637 i.vex.bytes[0] = 0xc5;
3638
3639 /* Check the REX.R bit. */
3640 r = (i.rex & REX_R) ? 0 : 1;
3641 i.vex.bytes[1] = (r << 7
3642 | register_specifier << 3
3643 | vector_length << 2
3644 | implied_prefix);
3645 }
3646 else
3647 {
3648 /* 3-byte VEX prefix. */
3649 unsigned int m;
3650
3651 i.vex.length = 3;
3652
3653 switch (i.tm.opcode_modifier.vexopcode)
3654 {
3655 case VEX0F:
3656 m = 0x1;
3657 i.vex.bytes[0] = 0xc4;
3658 break;
3659 case VEX0F38:
3660 m = 0x2;
3661 i.vex.bytes[0] = 0xc4;
3662 break;
3663 case VEX0F3A:
3664 m = 0x3;
3665 i.vex.bytes[0] = 0xc4;
3666 break;
3667 case XOP08:
3668 m = 0x8;
3669 i.vex.bytes[0] = 0x8f;
3670 break;
3671 case XOP09:
3672 m = 0x9;
3673 i.vex.bytes[0] = 0x8f;
3674 break;
3675 case XOP0A:
3676 m = 0xa;
3677 i.vex.bytes[0] = 0x8f;
3678 break;
3679 default:
3680 abort ();
3681 }
3682
3683 /* The high 3 bits of the second VEX byte are 1's compliment
3684 of RXB bits from REX. */
3685 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3686
3687 i.vex.bytes[2] = (w << 7
3688 | register_specifier << 3
3689 | vector_length << 2
3690 | implied_prefix);
3691 }
3692 }
3693
3694 static INLINE bfd_boolean
3695 is_evex_encoding (const insn_template *t)
3696 {
3697 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3698 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3699 || t->opcode_modifier.sae;
3700 }
3701
3702 static INLINE bfd_boolean
3703 is_any_vex_encoding (const insn_template *t)
3704 {
3705 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3706 || is_evex_encoding (t);
3707 }
3708
3709 /* Build the EVEX prefix. */
3710
3711 static void
3712 build_evex_prefix (void)
3713 {
3714 unsigned int register_specifier;
3715 unsigned int implied_prefix;
3716 unsigned int m, w;
3717 rex_byte vrex_used = 0;
3718
3719 /* Check register specifier. */
3720 if (i.vex.register_specifier)
3721 {
3722 gas_assert ((i.vrex & REX_X) == 0);
3723
3724 register_specifier = i.vex.register_specifier->reg_num;
3725 if ((i.vex.register_specifier->reg_flags & RegRex))
3726 register_specifier += 8;
3727 /* The upper 16 registers are encoded in the fourth byte of the
3728 EVEX prefix. */
3729 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3730 i.vex.bytes[3] = 0x8;
3731 register_specifier = ~register_specifier & 0xf;
3732 }
3733 else
3734 {
3735 register_specifier = 0xf;
3736
3737 /* Encode upper 16 vector index register in the fourth byte of
3738 the EVEX prefix. */
3739 if (!(i.vrex & REX_X))
3740 i.vex.bytes[3] = 0x8;
3741 else
3742 vrex_used |= REX_X;
3743 }
3744
3745 switch ((i.tm.base_opcode >> 8) & 0xff)
3746 {
3747 case 0:
3748 implied_prefix = 0;
3749 break;
3750 case DATA_PREFIX_OPCODE:
3751 implied_prefix = 1;
3752 break;
3753 case REPE_PREFIX_OPCODE:
3754 implied_prefix = 2;
3755 break;
3756 case REPNE_PREFIX_OPCODE:
3757 implied_prefix = 3;
3758 break;
3759 default:
3760 abort ();
3761 }
3762
3763 /* 4 byte EVEX prefix. */
3764 i.vex.length = 4;
3765 i.vex.bytes[0] = 0x62;
3766
3767 /* mmmm bits. */
3768 switch (i.tm.opcode_modifier.vexopcode)
3769 {
3770 case VEX0F:
3771 m = 1;
3772 break;
3773 case VEX0F38:
3774 m = 2;
3775 break;
3776 case VEX0F3A:
3777 m = 3;
3778 break;
3779 default:
3780 abort ();
3781 break;
3782 }
3783
3784 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3785 bits from REX. */
3786 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3787
3788 /* The fifth bit of the second EVEX byte is 1's compliment of the
3789 REX_R bit in VREX. */
3790 if (!(i.vrex & REX_R))
3791 i.vex.bytes[1] |= 0x10;
3792 else
3793 vrex_used |= REX_R;
3794
3795 if ((i.reg_operands + i.imm_operands) == i.operands)
3796 {
3797 /* When all operands are registers, the REX_X bit in REX is not
3798 used. We reuse it to encode the upper 16 registers, which is
3799 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3800 as 1's compliment. */
3801 if ((i.vrex & REX_B))
3802 {
3803 vrex_used |= REX_B;
3804 i.vex.bytes[1] &= ~0x40;
3805 }
3806 }
3807
3808 /* EVEX instructions shouldn't need the REX prefix. */
3809 i.vrex &= ~vrex_used;
3810 gas_assert (i.vrex == 0);
3811
3812 /* Check the REX.W bit and VEXW. */
3813 if (i.tm.opcode_modifier.vexw == VEXWIG)
3814 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3815 else if (i.tm.opcode_modifier.vexw)
3816 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3817 else
3818 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3819
3820 /* Encode the U bit. */
3821 implied_prefix |= 0x4;
3822
3823 /* The third byte of the EVEX prefix. */
3824 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3825
3826 /* The fourth byte of the EVEX prefix. */
3827 /* The zeroing-masking bit. */
3828 if (i.mask && i.mask->zeroing)
3829 i.vex.bytes[3] |= 0x80;
3830
3831 /* Don't always set the broadcast bit if there is no RC. */
3832 if (!i.rounding)
3833 {
3834 /* Encode the vector length. */
3835 unsigned int vec_length;
3836
3837 if (!i.tm.opcode_modifier.evex
3838 || i.tm.opcode_modifier.evex == EVEXDYN)
3839 {
3840 unsigned int op;
3841
3842 /* Determine vector length from the last multi-length vector
3843 operand. */
3844 vec_length = 0;
3845 for (op = i.operands; op--;)
3846 if (i.tm.operand_types[op].bitfield.xmmword
3847 + i.tm.operand_types[op].bitfield.ymmword
3848 + i.tm.operand_types[op].bitfield.zmmword > 1)
3849 {
3850 if (i.types[op].bitfield.zmmword)
3851 {
3852 i.tm.opcode_modifier.evex = EVEX512;
3853 break;
3854 }
3855 else if (i.types[op].bitfield.ymmword)
3856 {
3857 i.tm.opcode_modifier.evex = EVEX256;
3858 break;
3859 }
3860 else if (i.types[op].bitfield.xmmword)
3861 {
3862 i.tm.opcode_modifier.evex = EVEX128;
3863 break;
3864 }
3865 else if (i.broadcast && (int) op == i.broadcast->operand)
3866 {
3867 switch (i.broadcast->bytes)
3868 {
3869 case 64:
3870 i.tm.opcode_modifier.evex = EVEX512;
3871 break;
3872 case 32:
3873 i.tm.opcode_modifier.evex = EVEX256;
3874 break;
3875 case 16:
3876 i.tm.opcode_modifier.evex = EVEX128;
3877 break;
3878 default:
3879 abort ();
3880 }
3881 break;
3882 }
3883 }
3884
3885 if (op >= MAX_OPERANDS)
3886 abort ();
3887 }
3888
3889 switch (i.tm.opcode_modifier.evex)
3890 {
3891 case EVEXLIG: /* LL' is ignored */
3892 vec_length = evexlig << 5;
3893 break;
3894 case EVEX128:
3895 vec_length = 0 << 5;
3896 break;
3897 case EVEX256:
3898 vec_length = 1 << 5;
3899 break;
3900 case EVEX512:
3901 vec_length = 2 << 5;
3902 break;
3903 default:
3904 abort ();
3905 break;
3906 }
3907 i.vex.bytes[3] |= vec_length;
3908 /* Encode the broadcast bit. */
3909 if (i.broadcast)
3910 i.vex.bytes[3] |= 0x10;
3911 }
3912 else
3913 {
3914 if (i.rounding->type != saeonly)
3915 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3916 else
3917 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3918 }
3919
3920 if (i.mask && i.mask->mask)
3921 i.vex.bytes[3] |= i.mask->mask->reg_num;
3922 }
3923
3924 static void
3925 process_immext (void)
3926 {
3927 expressionS *exp;
3928
3929 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3930 which is coded in the same place as an 8-bit immediate field
3931 would be. Here we fake an 8-bit immediate operand from the
3932 opcode suffix stored in tm.extension_opcode.
3933
3934 AVX instructions also use this encoding, for some of
3935 3 argument instructions. */
3936
3937 gas_assert (i.imm_operands <= 1
3938 && (i.operands <= 2
3939 || (is_any_vex_encoding (&i.tm)
3940 && i.operands <= 4)));
3941
3942 exp = &im_expressions[i.imm_operands++];
3943 i.op[i.operands].imms = exp;
3944 i.types[i.operands] = imm8;
3945 i.operands++;
3946 exp->X_op = O_constant;
3947 exp->X_add_number = i.tm.extension_opcode;
3948 i.tm.extension_opcode = None;
3949 }
3950
3951
3952 static int
3953 check_hle (void)
3954 {
3955 switch (i.tm.opcode_modifier.hleprefixok)
3956 {
3957 default:
3958 abort ();
3959 case HLEPrefixNone:
3960 as_bad (_("invalid instruction `%s' after `%s'"),
3961 i.tm.name, i.hle_prefix);
3962 return 0;
3963 case HLEPrefixLock:
3964 if (i.prefix[LOCK_PREFIX])
3965 return 1;
3966 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3967 return 0;
3968 case HLEPrefixAny:
3969 return 1;
3970 case HLEPrefixRelease:
3971 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3972 {
3973 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3974 i.tm.name);
3975 return 0;
3976 }
3977 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3978 {
3979 as_bad (_("memory destination needed for instruction `%s'"
3980 " after `xrelease'"), i.tm.name);
3981 return 0;
3982 }
3983 return 1;
3984 }
3985 }
3986
3987 /* Try the shortest encoding by shortening operand size. */
3988
3989 static void
3990 optimize_encoding (void)
3991 {
3992 unsigned int j;
3993
3994 if (optimize_for_space
3995 && !is_any_vex_encoding (&i.tm)
3996 && i.reg_operands == 1
3997 && i.imm_operands == 1
3998 && !i.types[1].bitfield.byte
3999 && i.op[0].imms->X_op == O_constant
4000 && fits_in_imm7 (i.op[0].imms->X_add_number)
4001 && (i.tm.base_opcode == 0xa8
4002 || (i.tm.base_opcode == 0xf6
4003 && i.tm.extension_opcode == 0x0)))
4004 {
4005 /* Optimize: -Os:
4006 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4007 */
4008 unsigned int base_regnum = i.op[1].regs->reg_num;
4009 if (flag_code == CODE_64BIT || base_regnum < 4)
4010 {
4011 i.types[1].bitfield.byte = 1;
4012 /* Ignore the suffix. */
4013 i.suffix = 0;
4014 /* Convert to byte registers. */
4015 if (i.types[1].bitfield.word)
4016 j = 16;
4017 else if (i.types[1].bitfield.dword)
4018 j = 32;
4019 else
4020 j = 48;
4021 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4022 j += 8;
4023 i.op[1].regs -= j;
4024 }
4025 }
4026 else if (flag_code == CODE_64BIT
4027 && !is_any_vex_encoding (&i.tm)
4028 && ((i.types[1].bitfield.qword
4029 && i.reg_operands == 1
4030 && i.imm_operands == 1
4031 && i.op[0].imms->X_op == O_constant
4032 && ((i.tm.base_opcode == 0xb8
4033 && i.tm.extension_opcode == None
4034 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4035 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4036 && ((i.tm.base_opcode == 0x24
4037 || i.tm.base_opcode == 0xa8)
4038 || (i.tm.base_opcode == 0x80
4039 && i.tm.extension_opcode == 0x4)
4040 || ((i.tm.base_opcode == 0xf6
4041 || (i.tm.base_opcode | 1) == 0xc7)
4042 && i.tm.extension_opcode == 0x0)))
4043 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4044 && i.tm.base_opcode == 0x83
4045 && i.tm.extension_opcode == 0x4)))
4046 || (i.types[0].bitfield.qword
4047 && ((i.reg_operands == 2
4048 && i.op[0].regs == i.op[1].regs
4049 && (i.tm.base_opcode == 0x30
4050 || i.tm.base_opcode == 0x28))
4051 || (i.reg_operands == 1
4052 && i.operands == 1
4053 && i.tm.base_opcode == 0x30)))))
4054 {
4055 /* Optimize: -O:
4056 andq $imm31, %r64 -> andl $imm31, %r32
4057 andq $imm7, %r64 -> andl $imm7, %r32
4058 testq $imm31, %r64 -> testl $imm31, %r32
4059 xorq %r64, %r64 -> xorl %r32, %r32
4060 subq %r64, %r64 -> subl %r32, %r32
4061 movq $imm31, %r64 -> movl $imm31, %r32
4062 movq $imm32, %r64 -> movl $imm32, %r32
4063 */
4064 i.tm.opcode_modifier.norex64 = 1;
4065 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4066 {
4067 /* Handle
4068 movq $imm31, %r64 -> movl $imm31, %r32
4069 movq $imm32, %r64 -> movl $imm32, %r32
4070 */
4071 i.tm.operand_types[0].bitfield.imm32 = 1;
4072 i.tm.operand_types[0].bitfield.imm32s = 0;
4073 i.tm.operand_types[0].bitfield.imm64 = 0;
4074 i.types[0].bitfield.imm32 = 1;
4075 i.types[0].bitfield.imm32s = 0;
4076 i.types[0].bitfield.imm64 = 0;
4077 i.types[1].bitfield.dword = 1;
4078 i.types[1].bitfield.qword = 0;
4079 if ((i.tm.base_opcode | 1) == 0xc7)
4080 {
4081 /* Handle
4082 movq $imm31, %r64 -> movl $imm31, %r32
4083 */
4084 i.tm.base_opcode = 0xb8;
4085 i.tm.extension_opcode = None;
4086 i.tm.opcode_modifier.w = 0;
4087 i.tm.opcode_modifier.modrm = 0;
4088 }
4089 }
4090 }
4091 else if (optimize > 1
4092 && !optimize_for_space
4093 && !is_any_vex_encoding (&i.tm)
4094 && i.reg_operands == 2
4095 && i.op[0].regs == i.op[1].regs
4096 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4097 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4098 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4099 {
4100 /* Optimize: -O2:
4101 andb %rN, %rN -> testb %rN, %rN
4102 andw %rN, %rN -> testw %rN, %rN
4103 andq %rN, %rN -> testq %rN, %rN
4104 orb %rN, %rN -> testb %rN, %rN
4105 orw %rN, %rN -> testw %rN, %rN
4106 orq %rN, %rN -> testq %rN, %rN
4107
4108 and outside of 64-bit mode
4109
4110 andl %rN, %rN -> testl %rN, %rN
4111 orl %rN, %rN -> testl %rN, %rN
4112 */
4113 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4114 }
4115 else if (i.reg_operands == 3
4116 && i.op[0].regs == i.op[1].regs
4117 && !i.types[2].bitfield.xmmword
4118 && (i.tm.opcode_modifier.vex
4119 || ((!i.mask || i.mask->zeroing)
4120 && !i.rounding
4121 && is_evex_encoding (&i.tm)
4122 && (i.vec_encoding != vex_encoding_evex
4123 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4124 || i.tm.cpu_flags.bitfield.cpuavx512vl
4125 || (i.tm.operand_types[2].bitfield.zmmword
4126 && i.types[2].bitfield.ymmword))))
4127 && ((i.tm.base_opcode == 0x55
4128 || i.tm.base_opcode == 0x6655
4129 || i.tm.base_opcode == 0x66df
4130 || i.tm.base_opcode == 0x57
4131 || i.tm.base_opcode == 0x6657
4132 || i.tm.base_opcode == 0x66ef
4133 || i.tm.base_opcode == 0x66f8
4134 || i.tm.base_opcode == 0x66f9
4135 || i.tm.base_opcode == 0x66fa
4136 || i.tm.base_opcode == 0x66fb
4137 || i.tm.base_opcode == 0x42
4138 || i.tm.base_opcode == 0x6642
4139 || i.tm.base_opcode == 0x47
4140 || i.tm.base_opcode == 0x6647)
4141 && i.tm.extension_opcode == None))
4142 {
4143 /* Optimize: -O1:
4144 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4145 vpsubq and vpsubw:
4146 EVEX VOP %zmmM, %zmmM, %zmmN
4147 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4148 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4149 EVEX VOP %ymmM, %ymmM, %ymmN
4150 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4151 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4152 VEX VOP %ymmM, %ymmM, %ymmN
4153 -> VEX VOP %xmmM, %xmmM, %xmmN
4154 VOP, one of vpandn and vpxor:
4155 VEX VOP %ymmM, %ymmM, %ymmN
4156 -> VEX VOP %xmmM, %xmmM, %xmmN
4157 VOP, one of vpandnd and vpandnq:
4158 EVEX VOP %zmmM, %zmmM, %zmmN
4159 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4160 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4161 EVEX VOP %ymmM, %ymmM, %ymmN
4162 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4163 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4164 VOP, one of vpxord and vpxorq:
4165 EVEX VOP %zmmM, %zmmM, %zmmN
4166 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4167 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4168 EVEX VOP %ymmM, %ymmM, %ymmN
4169 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4170 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4171 VOP, one of kxord and kxorq:
4172 VEX VOP %kM, %kM, %kN
4173 -> VEX kxorw %kM, %kM, %kN
4174 VOP, one of kandnd and kandnq:
4175 VEX VOP %kM, %kM, %kN
4176 -> VEX kandnw %kM, %kM, %kN
4177 */
4178 if (is_evex_encoding (&i.tm))
4179 {
4180 if (i.vec_encoding != vex_encoding_evex)
4181 {
4182 i.tm.opcode_modifier.vex = VEX128;
4183 i.tm.opcode_modifier.vexw = VEXW0;
4184 i.tm.opcode_modifier.evex = 0;
4185 }
4186 else if (optimize > 1)
4187 i.tm.opcode_modifier.evex = EVEX128;
4188 else
4189 return;
4190 }
4191 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4192 {
4193 i.tm.base_opcode &= 0xff;
4194 i.tm.opcode_modifier.vexw = VEXW0;
4195 }
4196 else
4197 i.tm.opcode_modifier.vex = VEX128;
4198
4199 if (i.tm.opcode_modifier.vex)
4200 for (j = 0; j < 3; j++)
4201 {
4202 i.types[j].bitfield.xmmword = 1;
4203 i.types[j].bitfield.ymmword = 0;
4204 }
4205 }
4206 else if (i.vec_encoding != vex_encoding_evex
4207 && !i.types[0].bitfield.zmmword
4208 && !i.types[1].bitfield.zmmword
4209 && !i.mask
4210 && !i.broadcast
4211 && is_evex_encoding (&i.tm)
4212 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4214 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4215 || (i.tm.base_opcode & ~4) == 0x66db
4216 || (i.tm.base_opcode & ~4) == 0x66eb)
4217 && i.tm.extension_opcode == None)
4218 {
4219 /* Optimize: -O1:
4220 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4221 vmovdqu32 and vmovdqu64:
4222 EVEX VOP %xmmM, %xmmN
4223 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4224 EVEX VOP %ymmM, %ymmN
4225 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4226 EVEX VOP %xmmM, mem
4227 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4228 EVEX VOP %ymmM, mem
4229 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4230 EVEX VOP mem, %xmmN
4231 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4232 EVEX VOP mem, %ymmN
4233 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4234 VOP, one of vpand, vpandn, vpor, vpxor:
4235 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4236 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4237 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4238 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4239 EVEX VOP{d,q} mem, %xmmM, %xmmN
4240 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4241 EVEX VOP{d,q} mem, %ymmM, %ymmN
4242 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4243 */
4244 for (j = 0; j < i.operands; j++)
4245 if (operand_type_check (i.types[j], disp)
4246 && i.op[j].disps->X_op == O_constant)
4247 {
4248 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4249 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4250 bytes, we choose EVEX Disp8 over VEX Disp32. */
4251 int evex_disp8, vex_disp8;
4252 unsigned int memshift = i.memshift;
4253 offsetT n = i.op[j].disps->X_add_number;
4254
4255 evex_disp8 = fits_in_disp8 (n);
4256 i.memshift = 0;
4257 vex_disp8 = fits_in_disp8 (n);
4258 if (evex_disp8 != vex_disp8)
4259 {
4260 i.memshift = memshift;
4261 return;
4262 }
4263
4264 i.types[j].bitfield.disp8 = vex_disp8;
4265 break;
4266 }
4267 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4268 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4269 i.tm.opcode_modifier.vex
4270 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4271 i.tm.opcode_modifier.vexw = VEXW0;
4272 /* VPAND, VPOR, and VPXOR are commutative. */
4273 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4274 i.tm.opcode_modifier.commutative = 1;
4275 i.tm.opcode_modifier.evex = 0;
4276 i.tm.opcode_modifier.masking = 0;
4277 i.tm.opcode_modifier.broadcast = 0;
4278 i.tm.opcode_modifier.disp8memshift = 0;
4279 i.memshift = 0;
4280 if (j < i.operands)
4281 i.types[j].bitfield.disp8
4282 = fits_in_disp8 (i.op[j].disps->X_add_number);
4283 }
4284 }
4285
4286 /* This is the guts of the machine-dependent assembler. LINE points to a
4287 machine dependent instruction. This function is supposed to emit
4288 the frags/bytes it assembles to. */
4289
4290 void
4291 md_assemble (char *line)
4292 {
4293 unsigned int j;
4294 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4295 const insn_template *t;
4296
4297 /* Initialize globals. */
4298 memset (&i, '\0', sizeof (i));
4299 for (j = 0; j < MAX_OPERANDS; j++)
4300 i.reloc[j] = NO_RELOC;
4301 memset (disp_expressions, '\0', sizeof (disp_expressions));
4302 memset (im_expressions, '\0', sizeof (im_expressions));
4303 save_stack_p = save_stack;
4304
4305 /* First parse an instruction mnemonic & call i386_operand for the operands.
4306 We assume that the scrubber has arranged it so that line[0] is the valid
4307 start of a (possibly prefixed) mnemonic. */
4308
4309 line = parse_insn (line, mnemonic);
4310 if (line == NULL)
4311 return;
4312 mnem_suffix = i.suffix;
4313
4314 line = parse_operands (line, mnemonic);
4315 this_operand = -1;
4316 xfree (i.memop1_string);
4317 i.memop1_string = NULL;
4318 if (line == NULL)
4319 return;
4320
4321 /* Now we've parsed the mnemonic into a set of templates, and have the
4322 operands at hand. */
4323
4324 /* All intel opcodes have reversed operands except for "bound" and
4325 "enter". We also don't reverse intersegment "jmp" and "call"
4326 instructions with 2 immediate operands so that the immediate segment
4327 precedes the offset, as it does when in AT&T mode. */
4328 if (intel_syntax
4329 && i.operands > 1
4330 && (strcmp (mnemonic, "bound") != 0)
4331 && (strcmp (mnemonic, "invlpga") != 0)
4332 && !(operand_type_check (i.types[0], imm)
4333 && operand_type_check (i.types[1], imm)))
4334 swap_operands ();
4335
4336 /* The order of the immediates should be reversed
4337 for 2 immediates extrq and insertq instructions */
4338 if (i.imm_operands == 2
4339 && (strcmp (mnemonic, "extrq") == 0
4340 || strcmp (mnemonic, "insertq") == 0))
4341 swap_2_operands (0, 1);
4342
4343 if (i.imm_operands)
4344 optimize_imm ();
4345
4346 /* Don't optimize displacement for movabs since it only takes 64bit
4347 displacement. */
4348 if (i.disp_operands
4349 && i.disp_encoding != disp_encoding_32bit
4350 && (flag_code != CODE_64BIT
4351 || strcmp (mnemonic, "movabs") != 0))
4352 optimize_disp ();
4353
4354 /* Next, we find a template that matches the given insn,
4355 making sure the overlap of the given operands types is consistent
4356 with the template operand types. */
4357
4358 if (!(t = match_template (mnem_suffix)))
4359 return;
4360
4361 if (sse_check != check_none
4362 && !i.tm.opcode_modifier.noavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx
4364 && !i.tm.cpu_flags.bitfield.cpuavx512f
4365 && (i.tm.cpu_flags.bitfield.cpusse
4366 || i.tm.cpu_flags.bitfield.cpusse2
4367 || i.tm.cpu_flags.bitfield.cpusse3
4368 || i.tm.cpu_flags.bitfield.cpussse3
4369 || i.tm.cpu_flags.bitfield.cpusse4_1
4370 || i.tm.cpu_flags.bitfield.cpusse4_2
4371 || i.tm.cpu_flags.bitfield.cpusse4a
4372 || i.tm.cpu_flags.bitfield.cpupclmul
4373 || i.tm.cpu_flags.bitfield.cpuaes
4374 || i.tm.cpu_flags.bitfield.cpusha
4375 || i.tm.cpu_flags.bitfield.cpugfni))
4376 {
4377 (sse_check == check_warning
4378 ? as_warn
4379 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4380 }
4381
4382 /* Zap movzx and movsx suffix. The suffix has been set from
4383 "word ptr" or "byte ptr" on the source operand in Intel syntax
4384 or extracted from mnemonic in AT&T syntax. But we'll use
4385 the destination register to choose the suffix for encoding. */
4386 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4387 {
4388 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4389 there is no suffix, the default will be byte extension. */
4390 if (i.reg_operands != 2
4391 && !i.suffix
4392 && intel_syntax)
4393 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4394
4395 i.suffix = 0;
4396 }
4397
4398 if (i.tm.opcode_modifier.fwait)
4399 if (!add_prefix (FWAIT_OPCODE))
4400 return;
4401
4402 /* Check if REP prefix is OK. */
4403 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4404 {
4405 as_bad (_("invalid instruction `%s' after `%s'"),
4406 i.tm.name, i.rep_prefix);
4407 return;
4408 }
4409
4410 /* Check for lock without a lockable instruction. Destination operand
4411 must be memory unless it is xchg (0x86). */
4412 if (i.prefix[LOCK_PREFIX]
4413 && (!i.tm.opcode_modifier.islockable
4414 || i.mem_operands == 0
4415 || (i.tm.base_opcode != 0x86
4416 && !(i.flags[i.operands - 1] & Operand_Mem))))
4417 {
4418 as_bad (_("expecting lockable instruction after `lock'"));
4419 return;
4420 }
4421
4422 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4423 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4424 {
4425 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4426 return;
4427 }
4428
4429 /* Check if HLE prefix is OK. */
4430 if (i.hle_prefix && !check_hle ())
4431 return;
4432
4433 /* Check BND prefix. */
4434 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4435 as_bad (_("expecting valid branch instruction after `bnd'"));
4436
4437 /* Check NOTRACK prefix. */
4438 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4439 as_bad (_("expecting indirect branch instruction after `notrack'"));
4440
4441 if (i.tm.cpu_flags.bitfield.cpumpx)
4442 {
4443 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4444 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4445 else if (flag_code != CODE_16BIT
4446 ? i.prefix[ADDR_PREFIX]
4447 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4448 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4449 }
4450
4451 /* Insert BND prefix. */
4452 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4453 {
4454 if (!i.prefix[BND_PREFIX])
4455 add_prefix (BND_PREFIX_OPCODE);
4456 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4457 {
4458 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4459 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4460 }
4461 }
4462
4463 /* Check string instruction segment overrides. */
4464 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4465 {
4466 gas_assert (i.mem_operands);
4467 if (!check_string ())
4468 return;
4469 i.disp_operands = 0;
4470 }
4471
4472 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4473 optimize_encoding ();
4474
4475 if (!process_suffix ())
4476 return;
4477
4478 /* Update operand types. */
4479 for (j = 0; j < i.operands; j++)
4480 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4481
4482 /* Make still unresolved immediate matches conform to size of immediate
4483 given in i.suffix. */
4484 if (!finalize_imm ())
4485 return;
4486
4487 if (i.types[0].bitfield.imm1)
4488 i.imm_operands = 0; /* kludge for shift insns. */
4489
4490 /* We only need to check those implicit registers for instructions
4491 with 3 operands or less. */
4492 if (i.operands <= 3)
4493 for (j = 0; j < i.operands; j++)
4494 if (i.types[j].bitfield.instance != InstanceNone
4495 && !i.types[j].bitfield.xmmword)
4496 i.reg_operands--;
4497
4498 /* ImmExt should be processed after SSE2AVX. */
4499 if (!i.tm.opcode_modifier.sse2avx
4500 && i.tm.opcode_modifier.immext)
4501 process_immext ();
4502
4503 /* For insns with operands there are more diddles to do to the opcode. */
4504 if (i.operands)
4505 {
4506 if (!process_operands ())
4507 return;
4508 }
4509 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4510 {
4511 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4512 as_warn (_("translating to `%sp'"), i.tm.name);
4513 }
4514
4515 if (is_any_vex_encoding (&i.tm))
4516 {
4517 if (!cpu_arch_flags.bitfield.cpui286)
4518 {
4519 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4520 i.tm.name);
4521 return;
4522 }
4523
4524 if (i.tm.opcode_modifier.vex)
4525 build_vex_prefix (t);
4526 else
4527 build_evex_prefix ();
4528 }
4529
4530 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4531 instructions may define INT_OPCODE as well, so avoid this corner
4532 case for those instructions that use MODRM. */
4533 if (i.tm.base_opcode == INT_OPCODE
4534 && !i.tm.opcode_modifier.modrm
4535 && i.op[0].imms->X_add_number == 3)
4536 {
4537 i.tm.base_opcode = INT3_OPCODE;
4538 i.imm_operands = 0;
4539 }
4540
4541 if ((i.tm.opcode_modifier.jump == JUMP
4542 || i.tm.opcode_modifier.jump == JUMP_BYTE
4543 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4544 && i.op[0].disps->X_op == O_constant)
4545 {
4546 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4547 the absolute address given by the constant. Since ix86 jumps and
4548 calls are pc relative, we need to generate a reloc. */
4549 i.op[0].disps->X_add_symbol = &abs_symbol;
4550 i.op[0].disps->X_op = O_symbol;
4551 }
4552
4553 if (i.tm.opcode_modifier.rex64)
4554 i.rex |= REX_W;
4555
4556 /* For 8 bit registers we need an empty rex prefix. Also if the
4557 instruction already has a prefix, we need to convert old
4558 registers to new ones. */
4559
4560 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4561 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4562 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4563 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4564 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4565 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4566 && i.rex != 0))
4567 {
4568 int x;
4569
4570 i.rex |= REX_OPCODE;
4571 for (x = 0; x < 2; x++)
4572 {
4573 /* Look for 8 bit operand that uses old registers. */
4574 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4575 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4576 {
4577 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4578 /* In case it is "hi" register, give up. */
4579 if (i.op[x].regs->reg_num > 3)
4580 as_bad (_("can't encode register '%s%s' in an "
4581 "instruction requiring REX prefix."),
4582 register_prefix, i.op[x].regs->reg_name);
4583
4584 /* Otherwise it is equivalent to the extended register.
4585 Since the encoding doesn't change this is merely
4586 cosmetic cleanup for debug output. */
4587
4588 i.op[x].regs = i.op[x].regs + 8;
4589 }
4590 }
4591 }
4592
4593 if (i.rex == 0 && i.rex_encoding)
4594 {
4595 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4596 that uses legacy register. If it is "hi" register, don't add
4597 the REX_OPCODE byte. */
4598 int x;
4599 for (x = 0; x < 2; x++)
4600 if (i.types[x].bitfield.class == Reg
4601 && i.types[x].bitfield.byte
4602 && (i.op[x].regs->reg_flags & RegRex64) == 0
4603 && i.op[x].regs->reg_num > 3)
4604 {
4605 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4606 i.rex_encoding = FALSE;
4607 break;
4608 }
4609
4610 if (i.rex_encoding)
4611 i.rex = REX_OPCODE;
4612 }
4613
4614 if (i.rex != 0)
4615 add_prefix (REX_OPCODE | i.rex);
4616
4617 /* We are ready to output the insn. */
4618 output_insn ();
4619
4620 last_insn.seg = now_seg;
4621
4622 if (i.tm.opcode_modifier.isprefix)
4623 {
4624 last_insn.kind = last_insn_prefix;
4625 last_insn.name = i.tm.name;
4626 last_insn.file = as_where (&last_insn.line);
4627 }
4628 else
4629 last_insn.kind = last_insn_other;
4630 }
4631
4632 static char *
4633 parse_insn (char *line, char *mnemonic)
4634 {
4635 char *l = line;
4636 char *token_start = l;
4637 char *mnem_p;
4638 int supported;
4639 const insn_template *t;
4640 char *dot_p = NULL;
4641
4642 while (1)
4643 {
4644 mnem_p = mnemonic;
4645 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4646 {
4647 if (*mnem_p == '.')
4648 dot_p = mnem_p;
4649 mnem_p++;
4650 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4651 {
4652 as_bad (_("no such instruction: `%s'"), token_start);
4653 return NULL;
4654 }
4655 l++;
4656 }
4657 if (!is_space_char (*l)
4658 && *l != END_OF_INSN
4659 && (intel_syntax
4660 || (*l != PREFIX_SEPARATOR
4661 && *l != ',')))
4662 {
4663 as_bad (_("invalid character %s in mnemonic"),
4664 output_invalid (*l));
4665 return NULL;
4666 }
4667 if (token_start == l)
4668 {
4669 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4670 as_bad (_("expecting prefix; got nothing"));
4671 else
4672 as_bad (_("expecting mnemonic; got nothing"));
4673 return NULL;
4674 }
4675
4676 /* Look up instruction (or prefix) via hash table. */
4677 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4678
4679 if (*l != END_OF_INSN
4680 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4681 && current_templates
4682 && current_templates->start->opcode_modifier.isprefix)
4683 {
4684 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4685 {
4686 as_bad ((flag_code != CODE_64BIT
4687 ? _("`%s' is only supported in 64-bit mode")
4688 : _("`%s' is not supported in 64-bit mode")),
4689 current_templates->start->name);
4690 return NULL;
4691 }
4692 /* If we are in 16-bit mode, do not allow addr16 or data16.
4693 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4694 if ((current_templates->start->opcode_modifier.size == SIZE16
4695 || current_templates->start->opcode_modifier.size == SIZE32)
4696 && flag_code != CODE_64BIT
4697 && ((current_templates->start->opcode_modifier.size == SIZE32)
4698 ^ (flag_code == CODE_16BIT)))
4699 {
4700 as_bad (_("redundant %s prefix"),
4701 current_templates->start->name);
4702 return NULL;
4703 }
4704 if (current_templates->start->opcode_length == 0)
4705 {
4706 /* Handle pseudo prefixes. */
4707 switch (current_templates->start->base_opcode)
4708 {
4709 case 0x0:
4710 /* {disp8} */
4711 i.disp_encoding = disp_encoding_8bit;
4712 break;
4713 case 0x1:
4714 /* {disp32} */
4715 i.disp_encoding = disp_encoding_32bit;
4716 break;
4717 case 0x2:
4718 /* {load} */
4719 i.dir_encoding = dir_encoding_load;
4720 break;
4721 case 0x3:
4722 /* {store} */
4723 i.dir_encoding = dir_encoding_store;
4724 break;
4725 case 0x4:
4726 /* {vex} */
4727 i.vec_encoding = vex_encoding_vex;
4728 break;
4729 case 0x5:
4730 /* {vex3} */
4731 i.vec_encoding = vex_encoding_vex3;
4732 break;
4733 case 0x6:
4734 /* {evex} */
4735 i.vec_encoding = vex_encoding_evex;
4736 break;
4737 case 0x7:
4738 /* {rex} */
4739 i.rex_encoding = TRUE;
4740 break;
4741 case 0x8:
4742 /* {nooptimize} */
4743 i.no_optimize = TRUE;
4744 break;
4745 default:
4746 abort ();
4747 }
4748 }
4749 else
4750 {
4751 /* Add prefix, checking for repeated prefixes. */
4752 switch (add_prefix (current_templates->start->base_opcode))
4753 {
4754 case PREFIX_EXIST:
4755 return NULL;
4756 case PREFIX_DS:
4757 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4758 i.notrack_prefix = current_templates->start->name;
4759 break;
4760 case PREFIX_REP:
4761 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4762 i.hle_prefix = current_templates->start->name;
4763 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4764 i.bnd_prefix = current_templates->start->name;
4765 else
4766 i.rep_prefix = current_templates->start->name;
4767 break;
4768 default:
4769 break;
4770 }
4771 }
4772 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4773 token_start = ++l;
4774 }
4775 else
4776 break;
4777 }
4778
4779 if (!current_templates)
4780 {
4781 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4782 Check if we should swap operand or force 32bit displacement in
4783 encoding. */
4784 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4785 i.dir_encoding = dir_encoding_swap;
4786 else if (mnem_p - 3 == dot_p
4787 && dot_p[1] == 'd'
4788 && dot_p[2] == '8')
4789 i.disp_encoding = disp_encoding_8bit;
4790 else if (mnem_p - 4 == dot_p
4791 && dot_p[1] == 'd'
4792 && dot_p[2] == '3'
4793 && dot_p[3] == '2')
4794 i.disp_encoding = disp_encoding_32bit;
4795 else
4796 goto check_suffix;
4797 mnem_p = dot_p;
4798 *dot_p = '\0';
4799 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4800 }
4801
4802 if (!current_templates)
4803 {
4804 check_suffix:
4805 if (mnem_p > mnemonic)
4806 {
4807 /* See if we can get a match by trimming off a suffix. */
4808 switch (mnem_p[-1])
4809 {
4810 case WORD_MNEM_SUFFIX:
4811 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4812 i.suffix = SHORT_MNEM_SUFFIX;
4813 else
4814 /* Fall through. */
4815 case BYTE_MNEM_SUFFIX:
4816 case QWORD_MNEM_SUFFIX:
4817 i.suffix = mnem_p[-1];
4818 mnem_p[-1] = '\0';
4819 current_templates = (const templates *) hash_find (op_hash,
4820 mnemonic);
4821 break;
4822 case SHORT_MNEM_SUFFIX:
4823 case LONG_MNEM_SUFFIX:
4824 if (!intel_syntax)
4825 {
4826 i.suffix = mnem_p[-1];
4827 mnem_p[-1] = '\0';
4828 current_templates = (const templates *) hash_find (op_hash,
4829 mnemonic);
4830 }
4831 break;
4832
4833 /* Intel Syntax. */
4834 case 'd':
4835 if (intel_syntax)
4836 {
4837 if (intel_float_operand (mnemonic) == 1)
4838 i.suffix = SHORT_MNEM_SUFFIX;
4839 else
4840 i.suffix = LONG_MNEM_SUFFIX;
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846 }
4847 }
4848
4849 if (!current_templates)
4850 {
4851 as_bad (_("no such instruction: `%s'"), token_start);
4852 return NULL;
4853 }
4854 }
4855
4856 if (current_templates->start->opcode_modifier.jump == JUMP
4857 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4858 {
4859 /* Check for a branch hint. We allow ",pt" and ",pn" for
4860 predict taken and predict not taken respectively.
4861 I'm not sure that branch hints actually do anything on loop
4862 and jcxz insns (JumpByte) for current Pentium4 chips. They
4863 may work in the future and it doesn't hurt to accept them
4864 now. */
4865 if (l[0] == ',' && l[1] == 'p')
4866 {
4867 if (l[2] == 't')
4868 {
4869 if (!add_prefix (DS_PREFIX_OPCODE))
4870 return NULL;
4871 l += 3;
4872 }
4873 else if (l[2] == 'n')
4874 {
4875 if (!add_prefix (CS_PREFIX_OPCODE))
4876 return NULL;
4877 l += 3;
4878 }
4879 }
4880 }
4881 /* Any other comma loses. */
4882 if (*l == ',')
4883 {
4884 as_bad (_("invalid character %s in mnemonic"),
4885 output_invalid (*l));
4886 return NULL;
4887 }
4888
4889 /* Check if instruction is supported on specified architecture. */
4890 supported = 0;
4891 for (t = current_templates->start; t < current_templates->end; ++t)
4892 {
4893 supported |= cpu_flags_match (t);
4894 if (supported == CPU_FLAGS_PERFECT_MATCH)
4895 {
4896 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4897 as_warn (_("use .code16 to ensure correct addressing mode"));
4898
4899 return l;
4900 }
4901 }
4902
4903 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4904 as_bad (flag_code == CODE_64BIT
4905 ? _("`%s' is not supported in 64-bit mode")
4906 : _("`%s' is only supported in 64-bit mode"),
4907 current_templates->start->name);
4908 else
4909 as_bad (_("`%s' is not supported on `%s%s'"),
4910 current_templates->start->name,
4911 cpu_arch_name ? cpu_arch_name : default_arch,
4912 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4913
4914 return NULL;
4915 }
4916
4917 static char *
4918 parse_operands (char *l, const char *mnemonic)
4919 {
4920 char *token_start;
4921
4922 /* 1 if operand is pending after ','. */
4923 unsigned int expecting_operand = 0;
4924
4925 /* Non-zero if operand parens not balanced. */
4926 unsigned int paren_not_balanced;
4927
4928 while (*l != END_OF_INSN)
4929 {
4930 /* Skip optional white space before operand. */
4931 if (is_space_char (*l))
4932 ++l;
4933 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4934 {
4935 as_bad (_("invalid character %s before operand %d"),
4936 output_invalid (*l),
4937 i.operands + 1);
4938 return NULL;
4939 }
4940 token_start = l; /* After white space. */
4941 paren_not_balanced = 0;
4942 while (paren_not_balanced || *l != ',')
4943 {
4944 if (*l == END_OF_INSN)
4945 {
4946 if (paren_not_balanced)
4947 {
4948 if (!intel_syntax)
4949 as_bad (_("unbalanced parenthesis in operand %d."),
4950 i.operands + 1);
4951 else
4952 as_bad (_("unbalanced brackets in operand %d."),
4953 i.operands + 1);
4954 return NULL;
4955 }
4956 else
4957 break; /* we are done */
4958 }
4959 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4960 {
4961 as_bad (_("invalid character %s in operand %d"),
4962 output_invalid (*l),
4963 i.operands + 1);
4964 return NULL;
4965 }
4966 if (!intel_syntax)
4967 {
4968 if (*l == '(')
4969 ++paren_not_balanced;
4970 if (*l == ')')
4971 --paren_not_balanced;
4972 }
4973 else
4974 {
4975 if (*l == '[')
4976 ++paren_not_balanced;
4977 if (*l == ']')
4978 --paren_not_balanced;
4979 }
4980 l++;
4981 }
4982 if (l != token_start)
4983 { /* Yes, we've read in another operand. */
4984 unsigned int operand_ok;
4985 this_operand = i.operands++;
4986 if (i.operands > MAX_OPERANDS)
4987 {
4988 as_bad (_("spurious operands; (%d operands/instruction max)"),
4989 MAX_OPERANDS);
4990 return NULL;
4991 }
4992 i.types[this_operand].bitfield.unspecified = 1;
4993 /* Now parse operand adding info to 'i' as we go along. */
4994 END_STRING_AND_SAVE (l);
4995
4996 if (i.mem_operands > 1)
4997 {
4998 as_bad (_("too many memory references for `%s'"),
4999 mnemonic);
5000 return 0;
5001 }
5002
5003 if (intel_syntax)
5004 operand_ok =
5005 i386_intel_operand (token_start,
5006 intel_float_operand (mnemonic));
5007 else
5008 operand_ok = i386_att_operand (token_start);
5009
5010 RESTORE_END_STRING (l);
5011 if (!operand_ok)
5012 return NULL;
5013 }
5014 else
5015 {
5016 if (expecting_operand)
5017 {
5018 expecting_operand_after_comma:
5019 as_bad (_("expecting operand after ','; got nothing"));
5020 return NULL;
5021 }
5022 if (*l == ',')
5023 {
5024 as_bad (_("expecting operand before ','; got nothing"));
5025 return NULL;
5026 }
5027 }
5028
5029 /* Now *l must be either ',' or END_OF_INSN. */
5030 if (*l == ',')
5031 {
5032 if (*++l == END_OF_INSN)
5033 {
5034 /* Just skip it, if it's \n complain. */
5035 goto expecting_operand_after_comma;
5036 }
5037 expecting_operand = 1;
5038 }
5039 }
5040 return l;
5041 }
5042
5043 static void
5044 swap_2_operands (int xchg1, int xchg2)
5045 {
5046 union i386_op temp_op;
5047 i386_operand_type temp_type;
5048 unsigned int temp_flags;
5049 enum bfd_reloc_code_real temp_reloc;
5050
5051 temp_type = i.types[xchg2];
5052 i.types[xchg2] = i.types[xchg1];
5053 i.types[xchg1] = temp_type;
5054
5055 temp_flags = i.flags[xchg2];
5056 i.flags[xchg2] = i.flags[xchg1];
5057 i.flags[xchg1] = temp_flags;
5058
5059 temp_op = i.op[xchg2];
5060 i.op[xchg2] = i.op[xchg1];
5061 i.op[xchg1] = temp_op;
5062
5063 temp_reloc = i.reloc[xchg2];
5064 i.reloc[xchg2] = i.reloc[xchg1];
5065 i.reloc[xchg1] = temp_reloc;
5066
5067 if (i.mask)
5068 {
5069 if (i.mask->operand == xchg1)
5070 i.mask->operand = xchg2;
5071 else if (i.mask->operand == xchg2)
5072 i.mask->operand = xchg1;
5073 }
5074 if (i.broadcast)
5075 {
5076 if (i.broadcast->operand == xchg1)
5077 i.broadcast->operand = xchg2;
5078 else if (i.broadcast->operand == xchg2)
5079 i.broadcast->operand = xchg1;
5080 }
5081 if (i.rounding)
5082 {
5083 if (i.rounding->operand == xchg1)
5084 i.rounding->operand = xchg2;
5085 else if (i.rounding->operand == xchg2)
5086 i.rounding->operand = xchg1;
5087 }
5088 }
5089
5090 static void
5091 swap_operands (void)
5092 {
5093 switch (i.operands)
5094 {
5095 case 5:
5096 case 4:
5097 swap_2_operands (1, i.operands - 2);
5098 /* Fall through. */
5099 case 3:
5100 case 2:
5101 swap_2_operands (0, i.operands - 1);
5102 break;
5103 default:
5104 abort ();
5105 }
5106
5107 if (i.mem_operands == 2)
5108 {
5109 const seg_entry *temp_seg;
5110 temp_seg = i.seg[0];
5111 i.seg[0] = i.seg[1];
5112 i.seg[1] = temp_seg;
5113 }
5114 }
5115
5116 /* Try to ensure constant immediates are represented in the smallest
5117 opcode possible. */
5118 static void
5119 optimize_imm (void)
5120 {
5121 char guess_suffix = 0;
5122 int op;
5123
5124 if (i.suffix)
5125 guess_suffix = i.suffix;
5126 else if (i.reg_operands)
5127 {
5128 /* Figure out a suffix from the last register operand specified.
5129 We can't do this properly yet, i.e. excluding special register
5130 instances, but the following works for instructions with
5131 immediates. In any case, we can't set i.suffix yet. */
5132 for (op = i.operands; --op >= 0;)
5133 if (i.types[op].bitfield.class != Reg)
5134 continue;
5135 else if (i.types[op].bitfield.byte)
5136 {
5137 guess_suffix = BYTE_MNEM_SUFFIX;
5138 break;
5139 }
5140 else if (i.types[op].bitfield.word)
5141 {
5142 guess_suffix = WORD_MNEM_SUFFIX;
5143 break;
5144 }
5145 else if (i.types[op].bitfield.dword)
5146 {
5147 guess_suffix = LONG_MNEM_SUFFIX;
5148 break;
5149 }
5150 else if (i.types[op].bitfield.qword)
5151 {
5152 guess_suffix = QWORD_MNEM_SUFFIX;
5153 break;
5154 }
5155 }
5156 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5157 guess_suffix = WORD_MNEM_SUFFIX;
5158
5159 for (op = i.operands; --op >= 0;)
5160 if (operand_type_check (i.types[op], imm))
5161 {
5162 switch (i.op[op].imms->X_op)
5163 {
5164 case O_constant:
5165 /* If a suffix is given, this operand may be shortened. */
5166 switch (guess_suffix)
5167 {
5168 case LONG_MNEM_SUFFIX:
5169 i.types[op].bitfield.imm32 = 1;
5170 i.types[op].bitfield.imm64 = 1;
5171 break;
5172 case WORD_MNEM_SUFFIX:
5173 i.types[op].bitfield.imm16 = 1;
5174 i.types[op].bitfield.imm32 = 1;
5175 i.types[op].bitfield.imm32s = 1;
5176 i.types[op].bitfield.imm64 = 1;
5177 break;
5178 case BYTE_MNEM_SUFFIX:
5179 i.types[op].bitfield.imm8 = 1;
5180 i.types[op].bitfield.imm8s = 1;
5181 i.types[op].bitfield.imm16 = 1;
5182 i.types[op].bitfield.imm32 = 1;
5183 i.types[op].bitfield.imm32s = 1;
5184 i.types[op].bitfield.imm64 = 1;
5185 break;
5186 }
5187
5188 /* If this operand is at most 16 bits, convert it
5189 to a signed 16 bit number before trying to see
5190 whether it will fit in an even smaller size.
5191 This allows a 16-bit operand such as $0xffe0 to
5192 be recognised as within Imm8S range. */
5193 if ((i.types[op].bitfield.imm16)
5194 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5195 {
5196 i.op[op].imms->X_add_number =
5197 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5198 }
5199 #ifdef BFD64
5200 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5201 if ((i.types[op].bitfield.imm32)
5202 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5203 == 0))
5204 {
5205 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5206 ^ ((offsetT) 1 << 31))
5207 - ((offsetT) 1 << 31));
5208 }
5209 #endif
5210 i.types[op]
5211 = operand_type_or (i.types[op],
5212 smallest_imm_type (i.op[op].imms->X_add_number));
5213
5214 /* We must avoid matching of Imm32 templates when 64bit
5215 only immediate is available. */
5216 if (guess_suffix == QWORD_MNEM_SUFFIX)
5217 i.types[op].bitfield.imm32 = 0;
5218 break;
5219
5220 case O_absent:
5221 case O_register:
5222 abort ();
5223
5224 /* Symbols and expressions. */
5225 default:
5226 /* Convert symbolic operand to proper sizes for matching, but don't
5227 prevent matching a set of insns that only supports sizes other
5228 than those matching the insn suffix. */
5229 {
5230 i386_operand_type mask, allowed;
5231 const insn_template *t;
5232
5233 operand_type_set (&mask, 0);
5234 operand_type_set (&allowed, 0);
5235
5236 for (t = current_templates->start;
5237 t < current_templates->end;
5238 ++t)
5239 {
5240 allowed = operand_type_or (allowed, t->operand_types[op]);
5241 allowed = operand_type_and (allowed, anyimm);
5242 }
5243 switch (guess_suffix)
5244 {
5245 case QWORD_MNEM_SUFFIX:
5246 mask.bitfield.imm64 = 1;
5247 mask.bitfield.imm32s = 1;
5248 break;
5249 case LONG_MNEM_SUFFIX:
5250 mask.bitfield.imm32 = 1;
5251 break;
5252 case WORD_MNEM_SUFFIX:
5253 mask.bitfield.imm16 = 1;
5254 break;
5255 case BYTE_MNEM_SUFFIX:
5256 mask.bitfield.imm8 = 1;
5257 break;
5258 default:
5259 break;
5260 }
5261 allowed = operand_type_and (mask, allowed);
5262 if (!operand_type_all_zero (&allowed))
5263 i.types[op] = operand_type_and (i.types[op], mask);
5264 }
5265 break;
5266 }
5267 }
5268 }
5269
5270 /* Try to use the smallest displacement type too. */
5271 static void
5272 optimize_disp (void)
5273 {
5274 int op;
5275
5276 for (op = i.operands; --op >= 0;)
5277 if (operand_type_check (i.types[op], disp))
5278 {
5279 if (i.op[op].disps->X_op == O_constant)
5280 {
5281 offsetT op_disp = i.op[op].disps->X_add_number;
5282
5283 if (i.types[op].bitfield.disp16
5284 && (op_disp & ~(offsetT) 0xffff) == 0)
5285 {
5286 /* If this operand is at most 16 bits, convert
5287 to a signed 16 bit number and don't use 64bit
5288 displacement. */
5289 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5290 i.types[op].bitfield.disp64 = 0;
5291 }
5292 #ifdef BFD64
5293 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5294 if (i.types[op].bitfield.disp32
5295 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5296 {
5297 /* If this operand is at most 32 bits, convert
5298 to a signed 32 bit number and don't use 64bit
5299 displacement. */
5300 op_disp &= (((offsetT) 2 << 31) - 1);
5301 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5302 i.types[op].bitfield.disp64 = 0;
5303 }
5304 #endif
5305 if (!op_disp && i.types[op].bitfield.baseindex)
5306 {
5307 i.types[op].bitfield.disp8 = 0;
5308 i.types[op].bitfield.disp16 = 0;
5309 i.types[op].bitfield.disp32 = 0;
5310 i.types[op].bitfield.disp32s = 0;
5311 i.types[op].bitfield.disp64 = 0;
5312 i.op[op].disps = 0;
5313 i.disp_operands--;
5314 }
5315 else if (flag_code == CODE_64BIT)
5316 {
5317 if (fits_in_signed_long (op_disp))
5318 {
5319 i.types[op].bitfield.disp64 = 0;
5320 i.types[op].bitfield.disp32s = 1;
5321 }
5322 if (i.prefix[ADDR_PREFIX]
5323 && fits_in_unsigned_long (op_disp))
5324 i.types[op].bitfield.disp32 = 1;
5325 }
5326 if ((i.types[op].bitfield.disp32
5327 || i.types[op].bitfield.disp32s
5328 || i.types[op].bitfield.disp16)
5329 && fits_in_disp8 (op_disp))
5330 i.types[op].bitfield.disp8 = 1;
5331 }
5332 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5333 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5334 {
5335 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5336 i.op[op].disps, 0, i.reloc[op]);
5337 i.types[op].bitfield.disp8 = 0;
5338 i.types[op].bitfield.disp16 = 0;
5339 i.types[op].bitfield.disp32 = 0;
5340 i.types[op].bitfield.disp32s = 0;
5341 i.types[op].bitfield.disp64 = 0;
5342 }
5343 else
5344 /* We only support 64bit displacement on constants. */
5345 i.types[op].bitfield.disp64 = 0;
5346 }
5347 }
5348
5349 /* Return 1 if there is a match in broadcast bytes between operand
5350 GIVEN and instruction template T. */
5351
5352 static INLINE int
5353 match_broadcast_size (const insn_template *t, unsigned int given)
5354 {
5355 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5356 && i.types[given].bitfield.byte)
5357 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5358 && i.types[given].bitfield.word)
5359 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5360 && i.types[given].bitfield.dword)
5361 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5362 && i.types[given].bitfield.qword));
5363 }
5364
5365 /* Check if operands are valid for the instruction. */
5366
5367 static int
5368 check_VecOperands (const insn_template *t)
5369 {
5370 unsigned int op;
5371 i386_cpu_flags cpu;
5372 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5373
5374 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5375 any one operand are implicity requiring AVX512VL support if the actual
5376 operand size is YMMword or XMMword. Since this function runs after
5377 template matching, there's no need to check for YMMword/XMMword in
5378 the template. */
5379 cpu = cpu_flags_and (t->cpu_flags, avx512);
5380 if (!cpu_flags_all_zero (&cpu)
5381 && !t->cpu_flags.bitfield.cpuavx512vl
5382 && !cpu_arch_flags.bitfield.cpuavx512vl)
5383 {
5384 for (op = 0; op < t->operands; ++op)
5385 {
5386 if (t->operand_types[op].bitfield.zmmword
5387 && (i.types[op].bitfield.ymmword
5388 || i.types[op].bitfield.xmmword))
5389 {
5390 i.error = unsupported;
5391 return 1;
5392 }
5393 }
5394 }
5395
5396 /* Without VSIB byte, we can't have a vector register for index. */
5397 if (!t->opcode_modifier.vecsib
5398 && i.index_reg
5399 && (i.index_reg->reg_type.bitfield.xmmword
5400 || i.index_reg->reg_type.bitfield.ymmword
5401 || i.index_reg->reg_type.bitfield.zmmword))
5402 {
5403 i.error = unsupported_vector_index_register;
5404 return 1;
5405 }
5406
5407 /* Check if default mask is allowed. */
5408 if (t->opcode_modifier.nodefmask
5409 && (!i.mask || i.mask->mask->reg_num == 0))
5410 {
5411 i.error = no_default_mask;
5412 return 1;
5413 }
5414
5415 /* For VSIB byte, we need a vector register for index, and all vector
5416 registers must be distinct. */
5417 if (t->opcode_modifier.vecsib)
5418 {
5419 if (!i.index_reg
5420 || !((t->opcode_modifier.vecsib == VecSIB128
5421 && i.index_reg->reg_type.bitfield.xmmword)
5422 || (t->opcode_modifier.vecsib == VecSIB256
5423 && i.index_reg->reg_type.bitfield.ymmword)
5424 || (t->opcode_modifier.vecsib == VecSIB512
5425 && i.index_reg->reg_type.bitfield.zmmword)))
5426 {
5427 i.error = invalid_vsib_address;
5428 return 1;
5429 }
5430
5431 gas_assert (i.reg_operands == 2 || i.mask);
5432 if (i.reg_operands == 2 && !i.mask)
5433 {
5434 gas_assert (i.types[0].bitfield.class == RegSIMD);
5435 gas_assert (i.types[0].bitfield.xmmword
5436 || i.types[0].bitfield.ymmword);
5437 gas_assert (i.types[2].bitfield.class == RegSIMD);
5438 gas_assert (i.types[2].bitfield.xmmword
5439 || i.types[2].bitfield.ymmword);
5440 if (operand_check == check_none)
5441 return 0;
5442 if (register_number (i.op[0].regs)
5443 != register_number (i.index_reg)
5444 && register_number (i.op[2].regs)
5445 != register_number (i.index_reg)
5446 && register_number (i.op[0].regs)
5447 != register_number (i.op[2].regs))
5448 return 0;
5449 if (operand_check == check_error)
5450 {
5451 i.error = invalid_vector_register_set;
5452 return 1;
5453 }
5454 as_warn (_("mask, index, and destination registers should be distinct"));
5455 }
5456 else if (i.reg_operands == 1 && i.mask)
5457 {
5458 if (i.types[1].bitfield.class == RegSIMD
5459 && (i.types[1].bitfield.xmmword
5460 || i.types[1].bitfield.ymmword
5461 || i.types[1].bitfield.zmmword)
5462 && (register_number (i.op[1].regs)
5463 == register_number (i.index_reg)))
5464 {
5465 if (operand_check == check_error)
5466 {
5467 i.error = invalid_vector_register_set;
5468 return 1;
5469 }
5470 if (operand_check != check_none)
5471 as_warn (_("index and destination registers should be distinct"));
5472 }
5473 }
5474 }
5475
5476 /* Check if broadcast is supported by the instruction and is applied
5477 to the memory operand. */
5478 if (i.broadcast)
5479 {
5480 i386_operand_type type, overlap;
5481
5482 /* Check if specified broadcast is supported in this instruction,
5483 and its broadcast bytes match the memory operand. */
5484 op = i.broadcast->operand;
5485 if (!t->opcode_modifier.broadcast
5486 || !(i.flags[op] & Operand_Mem)
5487 || (!i.types[op].bitfield.unspecified
5488 && !match_broadcast_size (t, op)))
5489 {
5490 bad_broadcast:
5491 i.error = unsupported_broadcast;
5492 return 1;
5493 }
5494
5495 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5496 * i.broadcast->type);
5497 operand_type_set (&type, 0);
5498 switch (i.broadcast->bytes)
5499 {
5500 case 2:
5501 type.bitfield.word = 1;
5502 break;
5503 case 4:
5504 type.bitfield.dword = 1;
5505 break;
5506 case 8:
5507 type.bitfield.qword = 1;
5508 break;
5509 case 16:
5510 type.bitfield.xmmword = 1;
5511 break;
5512 case 32:
5513 type.bitfield.ymmword = 1;
5514 break;
5515 case 64:
5516 type.bitfield.zmmword = 1;
5517 break;
5518 default:
5519 goto bad_broadcast;
5520 }
5521
5522 overlap = operand_type_and (type, t->operand_types[op]);
5523 if (operand_type_all_zero (&overlap))
5524 goto bad_broadcast;
5525
5526 if (t->opcode_modifier.checkregsize)
5527 {
5528 unsigned int j;
5529
5530 type.bitfield.baseindex = 1;
5531 for (j = 0; j < i.operands; ++j)
5532 {
5533 if (j != op
5534 && !operand_type_register_match(i.types[j],
5535 t->operand_types[j],
5536 type,
5537 t->operand_types[op]))
5538 goto bad_broadcast;
5539 }
5540 }
5541 }
5542 /* If broadcast is supported in this instruction, we need to check if
5543 operand of one-element size isn't specified without broadcast. */
5544 else if (t->opcode_modifier.broadcast && i.mem_operands)
5545 {
5546 /* Find memory operand. */
5547 for (op = 0; op < i.operands; op++)
5548 if (i.flags[op] & Operand_Mem)
5549 break;
5550 gas_assert (op < i.operands);
5551 /* Check size of the memory operand. */
5552 if (match_broadcast_size (t, op))
5553 {
5554 i.error = broadcast_needed;
5555 return 1;
5556 }
5557 }
5558 else
5559 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5560
5561 /* Check if requested masking is supported. */
5562 if (i.mask)
5563 {
5564 switch (t->opcode_modifier.masking)
5565 {
5566 case BOTH_MASKING:
5567 break;
5568 case MERGING_MASKING:
5569 if (i.mask->zeroing)
5570 {
5571 case 0:
5572 i.error = unsupported_masking;
5573 return 1;
5574 }
5575 break;
5576 case DYNAMIC_MASKING:
5577 /* Memory destinations allow only merging masking. */
5578 if (i.mask->zeroing && i.mem_operands)
5579 {
5580 /* Find memory operand. */
5581 for (op = 0; op < i.operands; op++)
5582 if (i.flags[op] & Operand_Mem)
5583 break;
5584 gas_assert (op < i.operands);
5585 if (op == i.operands - 1)
5586 {
5587 i.error = unsupported_masking;
5588 return 1;
5589 }
5590 }
5591 break;
5592 default:
5593 abort ();
5594 }
5595 }
5596
5597 /* Check if masking is applied to dest operand. */
5598 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5599 {
5600 i.error = mask_not_on_destination;
5601 return 1;
5602 }
5603
5604 /* Check RC/SAE. */
5605 if (i.rounding)
5606 {
5607 if (!t->opcode_modifier.sae
5608 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5609 {
5610 i.error = unsupported_rc_sae;
5611 return 1;
5612 }
5613 /* If the instruction has several immediate operands and one of
5614 them is rounding, the rounding operand should be the last
5615 immediate operand. */
5616 if (i.imm_operands > 1
5617 && i.rounding->operand != (int) (i.imm_operands - 1))
5618 {
5619 i.error = rc_sae_operand_not_last_imm;
5620 return 1;
5621 }
5622 }
5623
5624 /* Check vector Disp8 operand. */
5625 if (t->opcode_modifier.disp8memshift
5626 && i.disp_encoding != disp_encoding_32bit)
5627 {
5628 if (i.broadcast)
5629 i.memshift = t->opcode_modifier.broadcast - 1;
5630 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5631 i.memshift = t->opcode_modifier.disp8memshift;
5632 else
5633 {
5634 const i386_operand_type *type = NULL;
5635
5636 i.memshift = 0;
5637 for (op = 0; op < i.operands; op++)
5638 if (i.flags[op] & Operand_Mem)
5639 {
5640 if (t->opcode_modifier.evex == EVEXLIG)
5641 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5642 else if (t->operand_types[op].bitfield.xmmword
5643 + t->operand_types[op].bitfield.ymmword
5644 + t->operand_types[op].bitfield.zmmword <= 1)
5645 type = &t->operand_types[op];
5646 else if (!i.types[op].bitfield.unspecified)
5647 type = &i.types[op];
5648 }
5649 else if (i.types[op].bitfield.class == RegSIMD
5650 && t->opcode_modifier.evex != EVEXLIG)
5651 {
5652 if (i.types[op].bitfield.zmmword)
5653 i.memshift = 6;
5654 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5655 i.memshift = 5;
5656 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5657 i.memshift = 4;
5658 }
5659
5660 if (type)
5661 {
5662 if (type->bitfield.zmmword)
5663 i.memshift = 6;
5664 else if (type->bitfield.ymmword)
5665 i.memshift = 5;
5666 else if (type->bitfield.xmmword)
5667 i.memshift = 4;
5668 }
5669
5670 /* For the check in fits_in_disp8(). */
5671 if (i.memshift == 0)
5672 i.memshift = -1;
5673 }
5674
5675 for (op = 0; op < i.operands; op++)
5676 if (operand_type_check (i.types[op], disp)
5677 && i.op[op].disps->X_op == O_constant)
5678 {
5679 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5680 {
5681 i.types[op].bitfield.disp8 = 1;
5682 return 0;
5683 }
5684 i.types[op].bitfield.disp8 = 0;
5685 }
5686 }
5687
5688 i.memshift = 0;
5689
5690 return 0;
5691 }
5692
5693 /* Check if operands are valid for the instruction. Update VEX
5694 operand types. */
5695
5696 static int
5697 VEX_check_operands (const insn_template *t)
5698 {
5699 if (i.vec_encoding == vex_encoding_evex)
5700 {
5701 /* This instruction must be encoded with EVEX prefix. */
5702 if (!is_evex_encoding (t))
5703 {
5704 i.error = unsupported;
5705 return 1;
5706 }
5707 return 0;
5708 }
5709
5710 if (!t->opcode_modifier.vex)
5711 {
5712 /* This instruction template doesn't have VEX prefix. */
5713 if (i.vec_encoding != vex_encoding_default)
5714 {
5715 i.error = unsupported;
5716 return 1;
5717 }
5718 return 0;
5719 }
5720
5721 /* Check the special Imm4 cases; must be the first operand. */
5722 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5723 {
5724 if (i.op[0].imms->X_op != O_constant
5725 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5726 {
5727 i.error = bad_imm4;
5728 return 1;
5729 }
5730
5731 /* Turn off Imm<N> so that update_imm won't complain. */
5732 operand_type_set (&i.types[0], 0);
5733 }
5734
5735 return 0;
5736 }
5737
5738 static const insn_template *
5739 match_template (char mnem_suffix)
5740 {
5741 /* Points to template once we've found it. */
5742 const insn_template *t;
5743 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5744 i386_operand_type overlap4;
5745 unsigned int found_reverse_match;
5746 i386_opcode_modifier suffix_check;
5747 i386_operand_type operand_types [MAX_OPERANDS];
5748 int addr_prefix_disp;
5749 unsigned int j, size_match, check_register;
5750 enum i386_error specific_error = 0;
5751
5752 #if MAX_OPERANDS != 5
5753 # error "MAX_OPERANDS must be 5."
5754 #endif
5755
5756 found_reverse_match = 0;
5757 addr_prefix_disp = -1;
5758
5759 /* Prepare for mnemonic suffix check. */
5760 memset (&suffix_check, 0, sizeof (suffix_check));
5761 switch (mnem_suffix)
5762 {
5763 case BYTE_MNEM_SUFFIX:
5764 suffix_check.no_bsuf = 1;
5765 break;
5766 case WORD_MNEM_SUFFIX:
5767 suffix_check.no_wsuf = 1;
5768 break;
5769 case SHORT_MNEM_SUFFIX:
5770 suffix_check.no_ssuf = 1;
5771 break;
5772 case LONG_MNEM_SUFFIX:
5773 suffix_check.no_lsuf = 1;
5774 break;
5775 case QWORD_MNEM_SUFFIX:
5776 suffix_check.no_qsuf = 1;
5777 break;
5778 default:
5779 /* NB: In Intel syntax, normally we can check for memory operand
5780 size when there is no mnemonic suffix. But jmp and call have
5781 2 different encodings with Dword memory operand size, one with
5782 No_ldSuf and the other without. i.suffix is set to
5783 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5784 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5785 suffix_check.no_ldsuf = 1;
5786 }
5787
5788 /* Must have right number of operands. */
5789 i.error = number_of_operands_mismatch;
5790
5791 for (t = current_templates->start; t < current_templates->end; t++)
5792 {
5793 addr_prefix_disp = -1;
5794 found_reverse_match = 0;
5795
5796 if (i.operands != t->operands)
5797 continue;
5798
5799 /* Check processor support. */
5800 i.error = unsupported;
5801 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5802 continue;
5803
5804 /* Check AT&T mnemonic. */
5805 i.error = unsupported_with_intel_mnemonic;
5806 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5807 continue;
5808
5809 /* Check AT&T/Intel syntax. */
5810 i.error = unsupported_syntax;
5811 if ((intel_syntax && t->opcode_modifier.attsyntax)
5812 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5813 continue;
5814
5815 /* Check Intel64/AMD64 ISA. */
5816 switch (isa64)
5817 {
5818 default:
5819 /* Default: Don't accept Intel64. */
5820 if (t->opcode_modifier.isa64 == INTEL64)
5821 continue;
5822 break;
5823 case amd64:
5824 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5825 if (t->opcode_modifier.isa64 >= INTEL64)
5826 continue;
5827 break;
5828 case intel64:
5829 /* -mintel64: Don't accept AMD64. */
5830 if (t->opcode_modifier.isa64 == AMD64)
5831 continue;
5832 break;
5833 }
5834
5835 /* Check the suffix. */
5836 i.error = invalid_instruction_suffix;
5837 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5838 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5839 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5840 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5841 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5842 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5843 continue;
5844
5845 size_match = operand_size_match (t);
5846 if (!size_match)
5847 continue;
5848
5849 /* This is intentionally not
5850
5851 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5852
5853 as the case of a missing * on the operand is accepted (perhaps with
5854 a warning, issued further down). */
5855 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5856 {
5857 i.error = operand_type_mismatch;
5858 continue;
5859 }
5860
5861 for (j = 0; j < MAX_OPERANDS; j++)
5862 operand_types[j] = t->operand_types[j];
5863
5864 /* In general, don't allow 64-bit operands in 32-bit mode. */
5865 if (i.suffix == QWORD_MNEM_SUFFIX
5866 && flag_code != CODE_64BIT
5867 && (intel_syntax
5868 ? (!t->opcode_modifier.ignoresize
5869 && !t->opcode_modifier.broadcast
5870 && !intel_float_operand (t->name))
5871 : intel_float_operand (t->name) != 2)
5872 && ((operand_types[0].bitfield.class != RegMMX
5873 && operand_types[0].bitfield.class != RegSIMD)
5874 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5875 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5876 && (t->base_opcode != 0x0fc7
5877 || t->extension_opcode != 1 /* cmpxchg8b */))
5878 continue;
5879
5880 /* In general, don't allow 32-bit operands on pre-386. */
5881 else if (i.suffix == LONG_MNEM_SUFFIX
5882 && !cpu_arch_flags.bitfield.cpui386
5883 && (intel_syntax
5884 ? (!t->opcode_modifier.ignoresize
5885 && !intel_float_operand (t->name))
5886 : intel_float_operand (t->name) != 2)
5887 && ((operand_types[0].bitfield.class != RegMMX
5888 && operand_types[0].bitfield.class != RegSIMD)
5889 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5890 && operand_types[t->operands > 1].bitfield.class
5891 != RegSIMD)))
5892 continue;
5893
5894 /* Do not verify operands when there are none. */
5895 else
5896 {
5897 if (!t->operands)
5898 /* We've found a match; break out of loop. */
5899 break;
5900 }
5901
5902 if (!t->opcode_modifier.jump
5903 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5904 {
5905 /* There should be only one Disp operand. */
5906 for (j = 0; j < MAX_OPERANDS; j++)
5907 if (operand_type_check (operand_types[j], disp))
5908 break;
5909 if (j < MAX_OPERANDS)
5910 {
5911 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5912
5913 addr_prefix_disp = j;
5914
5915 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5916 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5917 switch (flag_code)
5918 {
5919 case CODE_16BIT:
5920 override = !override;
5921 /* Fall through. */
5922 case CODE_32BIT:
5923 if (operand_types[j].bitfield.disp32
5924 && operand_types[j].bitfield.disp16)
5925 {
5926 operand_types[j].bitfield.disp16 = override;
5927 operand_types[j].bitfield.disp32 = !override;
5928 }
5929 operand_types[j].bitfield.disp32s = 0;
5930 operand_types[j].bitfield.disp64 = 0;
5931 break;
5932
5933 case CODE_64BIT:
5934 if (operand_types[j].bitfield.disp32s
5935 || operand_types[j].bitfield.disp64)
5936 {
5937 operand_types[j].bitfield.disp64 &= !override;
5938 operand_types[j].bitfield.disp32s &= !override;
5939 operand_types[j].bitfield.disp32 = override;
5940 }
5941 operand_types[j].bitfield.disp16 = 0;
5942 break;
5943 }
5944 }
5945 }
5946
5947 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5948 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5949 continue;
5950
5951 /* We check register size if needed. */
5952 if (t->opcode_modifier.checkregsize)
5953 {
5954 check_register = (1 << t->operands) - 1;
5955 if (i.broadcast)
5956 check_register &= ~(1 << i.broadcast->operand);
5957 }
5958 else
5959 check_register = 0;
5960
5961 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5962 switch (t->operands)
5963 {
5964 case 1:
5965 if (!operand_type_match (overlap0, i.types[0]))
5966 continue;
5967 break;
5968 case 2:
5969 /* xchg %eax, %eax is a special case. It is an alias for nop
5970 only in 32bit mode and we can use opcode 0x90. In 64bit
5971 mode, we can't use 0x90 for xchg %eax, %eax since it should
5972 zero-extend %eax to %rax. */
5973 if (flag_code == CODE_64BIT
5974 && t->base_opcode == 0x90
5975 && i.types[0].bitfield.instance == Accum
5976 && i.types[0].bitfield.dword
5977 && i.types[1].bitfield.instance == Accum
5978 && i.types[1].bitfield.dword)
5979 continue;
5980 /* xrelease mov %eax, <disp> is another special case. It must not
5981 match the accumulator-only encoding of mov. */
5982 if (flag_code != CODE_64BIT
5983 && i.hle_prefix
5984 && t->base_opcode == 0xa0
5985 && i.types[0].bitfield.instance == Accum
5986 && (i.flags[1] & Operand_Mem))
5987 continue;
5988 /* Fall through. */
5989
5990 case 3:
5991 if (!(size_match & MATCH_STRAIGHT))
5992 goto check_reverse;
5993 /* Reverse direction of operands if swapping is possible in the first
5994 place (operands need to be symmetric) and
5995 - the load form is requested, and the template is a store form,
5996 - the store form is requested, and the template is a load form,
5997 - the non-default (swapped) form is requested. */
5998 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5999 if (t->opcode_modifier.d && i.reg_operands == i.operands
6000 && !operand_type_all_zero (&overlap1))
6001 switch (i.dir_encoding)
6002 {
6003 case dir_encoding_load:
6004 if (operand_type_check (operand_types[i.operands - 1], anymem)
6005 || t->opcode_modifier.regmem)
6006 goto check_reverse;
6007 break;
6008
6009 case dir_encoding_store:
6010 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6011 && !t->opcode_modifier.regmem)
6012 goto check_reverse;
6013 break;
6014
6015 case dir_encoding_swap:
6016 goto check_reverse;
6017
6018 case dir_encoding_default:
6019 break;
6020 }
6021 /* If we want store form, we skip the current load. */
6022 if ((i.dir_encoding == dir_encoding_store
6023 || i.dir_encoding == dir_encoding_swap)
6024 && i.mem_operands == 0
6025 && t->opcode_modifier.load)
6026 continue;
6027 /* Fall through. */
6028 case 4:
6029 case 5:
6030 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6031 if (!operand_type_match (overlap0, i.types[0])
6032 || !operand_type_match (overlap1, i.types[1])
6033 || ((check_register & 3) == 3
6034 && !operand_type_register_match (i.types[0],
6035 operand_types[0],
6036 i.types[1],
6037 operand_types[1])))
6038 {
6039 /* Check if other direction is valid ... */
6040 if (!t->opcode_modifier.d)
6041 continue;
6042
6043 check_reverse:
6044 if (!(size_match & MATCH_REVERSE))
6045 continue;
6046 /* Try reversing direction of operands. */
6047 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6048 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6049 if (!operand_type_match (overlap0, i.types[0])
6050 || !operand_type_match (overlap1, i.types[i.operands - 1])
6051 || (check_register
6052 && !operand_type_register_match (i.types[0],
6053 operand_types[i.operands - 1],
6054 i.types[i.operands - 1],
6055 operand_types[0])))
6056 {
6057 /* Does not match either direction. */
6058 continue;
6059 }
6060 /* found_reverse_match holds which of D or FloatR
6061 we've found. */
6062 if (!t->opcode_modifier.d)
6063 found_reverse_match = 0;
6064 else if (operand_types[0].bitfield.tbyte)
6065 found_reverse_match = Opcode_FloatD;
6066 else if (operand_types[0].bitfield.xmmword
6067 || operand_types[i.operands - 1].bitfield.xmmword
6068 || operand_types[0].bitfield.class == RegMMX
6069 || operand_types[i.operands - 1].bitfield.class == RegMMX
6070 || is_any_vex_encoding(t))
6071 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6072 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6073 else
6074 found_reverse_match = Opcode_D;
6075 if (t->opcode_modifier.floatr)
6076 found_reverse_match |= Opcode_FloatR;
6077 }
6078 else
6079 {
6080 /* Found a forward 2 operand match here. */
6081 switch (t->operands)
6082 {
6083 case 5:
6084 overlap4 = operand_type_and (i.types[4],
6085 operand_types[4]);
6086 /* Fall through. */
6087 case 4:
6088 overlap3 = operand_type_and (i.types[3],
6089 operand_types[3]);
6090 /* Fall through. */
6091 case 3:
6092 overlap2 = operand_type_and (i.types[2],
6093 operand_types[2]);
6094 break;
6095 }
6096
6097 switch (t->operands)
6098 {
6099 case 5:
6100 if (!operand_type_match (overlap4, i.types[4])
6101 || !operand_type_register_match (i.types[3],
6102 operand_types[3],
6103 i.types[4],
6104 operand_types[4]))
6105 continue;
6106 /* Fall through. */
6107 case 4:
6108 if (!operand_type_match (overlap3, i.types[3])
6109 || ((check_register & 0xa) == 0xa
6110 && !operand_type_register_match (i.types[1],
6111 operand_types[1],
6112 i.types[3],
6113 operand_types[3]))
6114 || ((check_register & 0xc) == 0xc
6115 && !operand_type_register_match (i.types[2],
6116 operand_types[2],
6117 i.types[3],
6118 operand_types[3])))
6119 continue;
6120 /* Fall through. */
6121 case 3:
6122 /* Here we make use of the fact that there are no
6123 reverse match 3 operand instructions. */
6124 if (!operand_type_match (overlap2, i.types[2])
6125 || ((check_register & 5) == 5
6126 && !operand_type_register_match (i.types[0],
6127 operand_types[0],
6128 i.types[2],
6129 operand_types[2]))
6130 || ((check_register & 6) == 6
6131 && !operand_type_register_match (i.types[1],
6132 operand_types[1],
6133 i.types[2],
6134 operand_types[2])))
6135 continue;
6136 break;
6137 }
6138 }
6139 /* Found either forward/reverse 2, 3 or 4 operand match here:
6140 slip through to break. */
6141 }
6142
6143 /* Check if vector and VEX operands are valid. */
6144 if (check_VecOperands (t) || VEX_check_operands (t))
6145 {
6146 specific_error = i.error;
6147 continue;
6148 }
6149
6150 /* We've found a match; break out of loop. */
6151 break;
6152 }
6153
6154 if (t == current_templates->end)
6155 {
6156 /* We found no match. */
6157 const char *err_msg;
6158 switch (specific_error ? specific_error : i.error)
6159 {
6160 default:
6161 abort ();
6162 case operand_size_mismatch:
6163 err_msg = _("operand size mismatch");
6164 break;
6165 case operand_type_mismatch:
6166 err_msg = _("operand type mismatch");
6167 break;
6168 case register_type_mismatch:
6169 err_msg = _("register type mismatch");
6170 break;
6171 case number_of_operands_mismatch:
6172 err_msg = _("number of operands mismatch");
6173 break;
6174 case invalid_instruction_suffix:
6175 err_msg = _("invalid instruction suffix");
6176 break;
6177 case bad_imm4:
6178 err_msg = _("constant doesn't fit in 4 bits");
6179 break;
6180 case unsupported_with_intel_mnemonic:
6181 err_msg = _("unsupported with Intel mnemonic");
6182 break;
6183 case unsupported_syntax:
6184 err_msg = _("unsupported syntax");
6185 break;
6186 case unsupported:
6187 as_bad (_("unsupported instruction `%s'"),
6188 current_templates->start->name);
6189 return NULL;
6190 case invalid_vsib_address:
6191 err_msg = _("invalid VSIB address");
6192 break;
6193 case invalid_vector_register_set:
6194 err_msg = _("mask, index, and destination registers must be distinct");
6195 break;
6196 case unsupported_vector_index_register:
6197 err_msg = _("unsupported vector index register");
6198 break;
6199 case unsupported_broadcast:
6200 err_msg = _("unsupported broadcast");
6201 break;
6202 case broadcast_needed:
6203 err_msg = _("broadcast is needed for operand of such type");
6204 break;
6205 case unsupported_masking:
6206 err_msg = _("unsupported masking");
6207 break;
6208 case mask_not_on_destination:
6209 err_msg = _("mask not on destination operand");
6210 break;
6211 case no_default_mask:
6212 err_msg = _("default mask isn't allowed");
6213 break;
6214 case unsupported_rc_sae:
6215 err_msg = _("unsupported static rounding/sae");
6216 break;
6217 case rc_sae_operand_not_last_imm:
6218 if (intel_syntax)
6219 err_msg = _("RC/SAE operand must precede immediate operands");
6220 else
6221 err_msg = _("RC/SAE operand must follow immediate operands");
6222 break;
6223 case invalid_register_operand:
6224 err_msg = _("invalid register operand");
6225 break;
6226 }
6227 as_bad (_("%s for `%s'"), err_msg,
6228 current_templates->start->name);
6229 return NULL;
6230 }
6231
6232 if (!quiet_warnings)
6233 {
6234 if (!intel_syntax
6235 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6236 as_warn (_("indirect %s without `*'"), t->name);
6237
6238 if (t->opcode_modifier.isprefix
6239 && t->opcode_modifier.ignoresize)
6240 {
6241 /* Warn them that a data or address size prefix doesn't
6242 affect assembly of the next line of code. */
6243 as_warn (_("stand-alone `%s' prefix"), t->name);
6244 }
6245 }
6246
6247 /* Copy the template we found. */
6248 i.tm = *t;
6249
6250 if (addr_prefix_disp != -1)
6251 i.tm.operand_types[addr_prefix_disp]
6252 = operand_types[addr_prefix_disp];
6253
6254 if (found_reverse_match)
6255 {
6256 /* If we found a reverse match we must alter the opcode direction
6257 bit and clear/flip the regmem modifier one. found_reverse_match
6258 holds bits to change (different for int & float insns). */
6259
6260 i.tm.base_opcode ^= found_reverse_match;
6261
6262 i.tm.operand_types[0] = operand_types[i.operands - 1];
6263 i.tm.operand_types[i.operands - 1] = operand_types[0];
6264
6265 /* Certain SIMD insns have their load forms specified in the opcode
6266 table, and hence we need to _set_ RegMem instead of clearing it.
6267 We need to avoid setting the bit though on insns like KMOVW. */
6268 i.tm.opcode_modifier.regmem
6269 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6270 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6271 && !i.tm.opcode_modifier.regmem;
6272 }
6273
6274 return t;
6275 }
6276
6277 static int
6278 check_string (void)
6279 {
6280 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6281 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6282
6283 if (i.seg[op] != NULL && i.seg[op] != &es)
6284 {
6285 as_bad (_("`%s' operand %u must use `%ses' segment"),
6286 i.tm.name,
6287 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6288 register_prefix);
6289 return 0;
6290 }
6291
6292 /* There's only ever one segment override allowed per instruction.
6293 This instruction possibly has a legal segment override on the
6294 second operand, so copy the segment to where non-string
6295 instructions store it, allowing common code. */
6296 i.seg[op] = i.seg[1];
6297
6298 return 1;
6299 }
6300
6301 static int
6302 process_suffix (void)
6303 {
6304 /* If matched instruction specifies an explicit instruction mnemonic
6305 suffix, use it. */
6306 if (i.tm.opcode_modifier.size == SIZE16)
6307 i.suffix = WORD_MNEM_SUFFIX;
6308 else if (i.tm.opcode_modifier.size == SIZE32)
6309 i.suffix = LONG_MNEM_SUFFIX;
6310 else if (i.tm.opcode_modifier.size == SIZE64)
6311 i.suffix = QWORD_MNEM_SUFFIX;
6312 else if (i.reg_operands
6313 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6314 {
6315 /* If there's no instruction mnemonic suffix we try to invent one
6316 based on GPR operands. */
6317 if (!i.suffix)
6318 {
6319 /* We take i.suffix from the last register operand specified,
6320 Destination register type is more significant than source
6321 register type. crc32 in SSE4.2 prefers source register
6322 type. */
6323 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6324
6325 while (op--)
6326 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6327 || i.tm.operand_types[op].bitfield.instance == Accum)
6328 {
6329 if (i.types[op].bitfield.class != Reg)
6330 continue;
6331 if (i.types[op].bitfield.byte)
6332 i.suffix = BYTE_MNEM_SUFFIX;
6333 else if (i.types[op].bitfield.word)
6334 i.suffix = WORD_MNEM_SUFFIX;
6335 else if (i.types[op].bitfield.dword)
6336 i.suffix = LONG_MNEM_SUFFIX;
6337 else if (i.types[op].bitfield.qword)
6338 i.suffix = QWORD_MNEM_SUFFIX;
6339 else
6340 continue;
6341 break;
6342 }
6343 }
6344 else if (i.suffix == BYTE_MNEM_SUFFIX)
6345 {
6346 if (intel_syntax
6347 && i.tm.opcode_modifier.ignoresize
6348 && i.tm.opcode_modifier.no_bsuf)
6349 i.suffix = 0;
6350 else if (!check_byte_reg ())
6351 return 0;
6352 }
6353 else if (i.suffix == LONG_MNEM_SUFFIX)
6354 {
6355 if (intel_syntax
6356 && i.tm.opcode_modifier.ignoresize
6357 && i.tm.opcode_modifier.no_lsuf
6358 && !i.tm.opcode_modifier.todword
6359 && !i.tm.opcode_modifier.toqword)
6360 i.suffix = 0;
6361 else if (!check_long_reg ())
6362 return 0;
6363 }
6364 else if (i.suffix == QWORD_MNEM_SUFFIX)
6365 {
6366 if (intel_syntax
6367 && i.tm.opcode_modifier.ignoresize
6368 && i.tm.opcode_modifier.no_qsuf
6369 && !i.tm.opcode_modifier.todword
6370 && !i.tm.opcode_modifier.toqword)
6371 i.suffix = 0;
6372 else if (!check_qword_reg ())
6373 return 0;
6374 }
6375 else if (i.suffix == WORD_MNEM_SUFFIX)
6376 {
6377 if (intel_syntax
6378 && i.tm.opcode_modifier.ignoresize
6379 && i.tm.opcode_modifier.no_wsuf)
6380 i.suffix = 0;
6381 else if (!check_word_reg ())
6382 return 0;
6383 }
6384 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6385 /* Do nothing if the instruction is going to ignore the prefix. */
6386 ;
6387 else
6388 abort ();
6389 }
6390 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6391 {
6392 i.suffix = stackop_size;
6393 if (stackop_size == LONG_MNEM_SUFFIX)
6394 {
6395 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6396 .code16gcc directive to support 16-bit mode with
6397 32-bit address. For IRET without a suffix, generate
6398 16-bit IRET (opcode 0xcf) to return from an interrupt
6399 handler. */
6400 if (i.tm.base_opcode == 0xcf)
6401 {
6402 i.suffix = WORD_MNEM_SUFFIX;
6403 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6404 }
6405 /* Warn about changed behavior for segment register push/pop. */
6406 else if ((i.tm.base_opcode | 1) == 0x07)
6407 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6408 i.tm.name);
6409 }
6410 }
6411 else if (!i.suffix
6412 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6413 || i.tm.opcode_modifier.jump == JUMP_BYTE
6414 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6415 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6416 && i.tm.extension_opcode <= 3)))
6417 {
6418 switch (flag_code)
6419 {
6420 case CODE_64BIT:
6421 if (!i.tm.opcode_modifier.no_qsuf)
6422 {
6423 i.suffix = QWORD_MNEM_SUFFIX;
6424 break;
6425 }
6426 /* Fall through. */
6427 case CODE_32BIT:
6428 if (!i.tm.opcode_modifier.no_lsuf)
6429 i.suffix = LONG_MNEM_SUFFIX;
6430 break;
6431 case CODE_16BIT:
6432 if (!i.tm.opcode_modifier.no_wsuf)
6433 i.suffix = WORD_MNEM_SUFFIX;
6434 break;
6435 }
6436 }
6437
6438 if (!i.suffix
6439 && (!i.tm.opcode_modifier.defaultsize
6440 /* Also cover lret/retf/iret in 64-bit mode. */
6441 || (flag_code == CODE_64BIT
6442 && !i.tm.opcode_modifier.no_lsuf
6443 && !i.tm.opcode_modifier.no_qsuf))
6444 && !i.tm.opcode_modifier.ignoresize
6445 /* Accept FLDENV et al without suffix. */
6446 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6447 {
6448 unsigned int suffixes;
6449
6450 suffixes = !i.tm.opcode_modifier.no_bsuf;
6451 if (!i.tm.opcode_modifier.no_wsuf)
6452 suffixes |= 1 << 1;
6453 if (!i.tm.opcode_modifier.no_lsuf)
6454 suffixes |= 1 << 2;
6455 if (!i.tm.opcode_modifier.no_ldsuf)
6456 suffixes |= 1 << 3;
6457 if (!i.tm.opcode_modifier.no_ssuf)
6458 suffixes |= 1 << 4;
6459 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6460 suffixes |= 1 << 5;
6461
6462 /* Are multiple suffixes allowed? */
6463 if (suffixes & (suffixes - 1))
6464 {
6465 if (intel_syntax
6466 && (!i.tm.opcode_modifier.defaultsize
6467 || operand_check == check_error))
6468 {
6469 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6470 return 0;
6471 }
6472 if (operand_check == check_error)
6473 {
6474 as_bad (_("no instruction mnemonic suffix given and "
6475 "no register operands; can't size `%s'"), i.tm.name);
6476 return 0;
6477 }
6478 if (operand_check == check_warning)
6479 as_warn (_("%s; using default for `%s'"),
6480 intel_syntax
6481 ? _("ambiguous operand size")
6482 : _("no instruction mnemonic suffix given and "
6483 "no register operands"),
6484 i.tm.name);
6485
6486 if (i.tm.opcode_modifier.floatmf)
6487 i.suffix = SHORT_MNEM_SUFFIX;
6488 else if (flag_code == CODE_16BIT)
6489 i.suffix = WORD_MNEM_SUFFIX;
6490 else if (!i.tm.opcode_modifier.no_lsuf)
6491 i.suffix = LONG_MNEM_SUFFIX;
6492 else
6493 i.suffix = QWORD_MNEM_SUFFIX;
6494 }
6495 }
6496
6497 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6498 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6499 != (i.tm.operand_types[1].bitfield.class == Reg);
6500
6501 /* Change the opcode based on the operand size given by i.suffix. */
6502 switch (i.suffix)
6503 {
6504 /* Size floating point instruction. */
6505 case LONG_MNEM_SUFFIX:
6506 if (i.tm.opcode_modifier.floatmf)
6507 {
6508 i.tm.base_opcode ^= 4;
6509 break;
6510 }
6511 /* fall through */
6512 case WORD_MNEM_SUFFIX:
6513 case QWORD_MNEM_SUFFIX:
6514 /* It's not a byte, select word/dword operation. */
6515 if (i.tm.opcode_modifier.w)
6516 {
6517 if (i.short_form)
6518 i.tm.base_opcode |= 8;
6519 else
6520 i.tm.base_opcode |= 1;
6521 }
6522 /* fall through */
6523 case SHORT_MNEM_SUFFIX:
6524 /* Now select between word & dword operations via the operand
6525 size prefix, except for instructions that will ignore this
6526 prefix anyway. */
6527 if (i.reg_operands > 0
6528 && i.types[0].bitfield.class == Reg
6529 && i.tm.opcode_modifier.addrprefixopreg
6530 && (i.tm.operand_types[0].bitfield.instance == Accum
6531 || i.operands == 1))
6532 {
6533 /* The address size override prefix changes the size of the
6534 first operand. */
6535 if ((flag_code == CODE_32BIT
6536 && i.op[0].regs->reg_type.bitfield.word)
6537 || (flag_code != CODE_32BIT
6538 && i.op[0].regs->reg_type.bitfield.dword))
6539 if (!add_prefix (ADDR_PREFIX_OPCODE))
6540 return 0;
6541 }
6542 else if (i.suffix != QWORD_MNEM_SUFFIX
6543 && !i.tm.opcode_modifier.ignoresize
6544 && !i.tm.opcode_modifier.floatmf
6545 && !is_any_vex_encoding (&i.tm)
6546 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6547 || (flag_code == CODE_64BIT
6548 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6549 {
6550 unsigned int prefix = DATA_PREFIX_OPCODE;
6551
6552 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6553 prefix = ADDR_PREFIX_OPCODE;
6554
6555 if (!add_prefix (prefix))
6556 return 0;
6557 }
6558
6559 /* Set mode64 for an operand. */
6560 if (i.suffix == QWORD_MNEM_SUFFIX
6561 && flag_code == CODE_64BIT
6562 && !i.tm.opcode_modifier.norex64
6563 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6564 need rex64. */
6565 && ! (i.operands == 2
6566 && i.tm.base_opcode == 0x90
6567 && i.tm.extension_opcode == None
6568 && i.types[0].bitfield.instance == Accum
6569 && i.types[0].bitfield.qword
6570 && i.types[1].bitfield.instance == Accum
6571 && i.types[1].bitfield.qword))
6572 i.rex |= REX_W;
6573
6574 break;
6575 }
6576
6577 if (i.reg_operands != 0
6578 && i.operands > 1
6579 && i.tm.opcode_modifier.addrprefixopreg
6580 && i.tm.operand_types[0].bitfield.instance != Accum)
6581 {
6582 /* Check invalid register operand when the address size override
6583 prefix changes the size of register operands. */
6584 unsigned int op;
6585 enum { need_word, need_dword, need_qword } need;
6586
6587 if (flag_code == CODE_32BIT)
6588 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6589 else
6590 {
6591 if (i.prefix[ADDR_PREFIX])
6592 need = need_dword;
6593 else
6594 need = flag_code == CODE_64BIT ? need_qword : need_word;
6595 }
6596
6597 for (op = 0; op < i.operands; op++)
6598 if (i.types[op].bitfield.class == Reg
6599 && ((need == need_word
6600 && !i.op[op].regs->reg_type.bitfield.word)
6601 || (need == need_dword
6602 && !i.op[op].regs->reg_type.bitfield.dword)
6603 || (need == need_qword
6604 && !i.op[op].regs->reg_type.bitfield.qword)))
6605 {
6606 as_bad (_("invalid register operand size for `%s'"),
6607 i.tm.name);
6608 return 0;
6609 }
6610 }
6611
6612 return 1;
6613 }
6614
6615 static int
6616 check_byte_reg (void)
6617 {
6618 int op;
6619
6620 for (op = i.operands; --op >= 0;)
6621 {
6622 /* Skip non-register operands. */
6623 if (i.types[op].bitfield.class != Reg)
6624 continue;
6625
6626 /* If this is an eight bit register, it's OK. If it's the 16 or
6627 32 bit version of an eight bit register, we will just use the
6628 low portion, and that's OK too. */
6629 if (i.types[op].bitfield.byte)
6630 continue;
6631
6632 /* I/O port address operands are OK too. */
6633 if (i.tm.operand_types[op].bitfield.instance == RegD
6634 && i.tm.operand_types[op].bitfield.word)
6635 continue;
6636
6637 /* crc32 only wants its source operand checked here. */
6638 if (i.tm.base_opcode == 0xf20f38f0 && op)
6639 continue;
6640
6641 /* Any other register is bad. */
6642 if (i.types[op].bitfield.class == Reg
6643 || i.types[op].bitfield.class == RegMMX
6644 || i.types[op].bitfield.class == RegSIMD
6645 || i.types[op].bitfield.class == SReg
6646 || i.types[op].bitfield.class == RegCR
6647 || i.types[op].bitfield.class == RegDR
6648 || i.types[op].bitfield.class == RegTR)
6649 {
6650 as_bad (_("`%s%s' not allowed with `%s%c'"),
6651 register_prefix,
6652 i.op[op].regs->reg_name,
6653 i.tm.name,
6654 i.suffix);
6655 return 0;
6656 }
6657 }
6658 return 1;
6659 }
6660
6661 static int
6662 check_long_reg (void)
6663 {
6664 int op;
6665
6666 for (op = i.operands; --op >= 0;)
6667 /* Skip non-register operands. */
6668 if (i.types[op].bitfield.class != Reg)
6669 continue;
6670 /* Reject eight bit registers, except where the template requires
6671 them. (eg. movzb) */
6672 else if (i.types[op].bitfield.byte
6673 && (i.tm.operand_types[op].bitfield.class == Reg
6674 || i.tm.operand_types[op].bitfield.instance == Accum)
6675 && (i.tm.operand_types[op].bitfield.word
6676 || i.tm.operand_types[op].bitfield.dword))
6677 {
6678 as_bad (_("`%s%s' not allowed with `%s%c'"),
6679 register_prefix,
6680 i.op[op].regs->reg_name,
6681 i.tm.name,
6682 i.suffix);
6683 return 0;
6684 }
6685 /* Error if the e prefix on a general reg is missing. */
6686 else if (i.types[op].bitfield.word
6687 && (i.tm.operand_types[op].bitfield.class == Reg
6688 || i.tm.operand_types[op].bitfield.instance == Accum)
6689 && i.tm.operand_types[op].bitfield.dword)
6690 {
6691 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6692 register_prefix, i.op[op].regs->reg_name,
6693 i.suffix);
6694 return 0;
6695 }
6696 /* Warn if the r prefix on a general reg is present. */
6697 else if (i.types[op].bitfield.qword
6698 && (i.tm.operand_types[op].bitfield.class == Reg
6699 || i.tm.operand_types[op].bitfield.instance == Accum)
6700 && i.tm.operand_types[op].bitfield.dword)
6701 {
6702 if (intel_syntax
6703 && (i.tm.opcode_modifier.toqword
6704 /* Also convert to QWORD for MOVSXD. */
6705 || i.tm.base_opcode == 0x63)
6706 && i.types[0].bitfield.class != RegSIMD)
6707 {
6708 /* Convert to QWORD. We want REX byte. */
6709 i.suffix = QWORD_MNEM_SUFFIX;
6710 }
6711 else
6712 {
6713 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6714 register_prefix, i.op[op].regs->reg_name,
6715 i.suffix);
6716 return 0;
6717 }
6718 }
6719 return 1;
6720 }
6721
6722 static int
6723 check_qword_reg (void)
6724 {
6725 int op;
6726
6727 for (op = i.operands; --op >= 0; )
6728 /* Skip non-register operands. */
6729 if (i.types[op].bitfield.class != Reg)
6730 continue;
6731 /* Reject eight bit registers, except where the template requires
6732 them. (eg. movzb) */
6733 else if (i.types[op].bitfield.byte
6734 && (i.tm.operand_types[op].bitfield.class == Reg
6735 || i.tm.operand_types[op].bitfield.instance == Accum)
6736 && (i.tm.operand_types[op].bitfield.word
6737 || i.tm.operand_types[op].bitfield.dword))
6738 {
6739 as_bad (_("`%s%s' not allowed with `%s%c'"),
6740 register_prefix,
6741 i.op[op].regs->reg_name,
6742 i.tm.name,
6743 i.suffix);
6744 return 0;
6745 }
6746 /* Warn if the r prefix on a general reg is missing. */
6747 else if ((i.types[op].bitfield.word
6748 || i.types[op].bitfield.dword)
6749 && (i.tm.operand_types[op].bitfield.class == Reg
6750 || i.tm.operand_types[op].bitfield.instance == Accum)
6751 && i.tm.operand_types[op].bitfield.qword)
6752 {
6753 /* Prohibit these changes in the 64bit mode, since the
6754 lowering is more complicated. */
6755 if (intel_syntax
6756 && i.tm.opcode_modifier.todword
6757 && i.types[0].bitfield.class != RegSIMD)
6758 {
6759 /* Convert to DWORD. We don't want REX byte. */
6760 i.suffix = LONG_MNEM_SUFFIX;
6761 }
6762 else
6763 {
6764 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6765 register_prefix, i.op[op].regs->reg_name,
6766 i.suffix);
6767 return 0;
6768 }
6769 }
6770 return 1;
6771 }
6772
6773 static int
6774 check_word_reg (void)
6775 {
6776 int op;
6777 for (op = i.operands; --op >= 0;)
6778 /* Skip non-register operands. */
6779 if (i.types[op].bitfield.class != Reg)
6780 continue;
6781 /* Reject eight bit registers, except where the template requires
6782 them. (eg. movzb) */
6783 else if (i.types[op].bitfield.byte
6784 && (i.tm.operand_types[op].bitfield.class == Reg
6785 || i.tm.operand_types[op].bitfield.instance == Accum)
6786 && (i.tm.operand_types[op].bitfield.word
6787 || i.tm.operand_types[op].bitfield.dword))
6788 {
6789 as_bad (_("`%s%s' not allowed with `%s%c'"),
6790 register_prefix,
6791 i.op[op].regs->reg_name,
6792 i.tm.name,
6793 i.suffix);
6794 return 0;
6795 }
6796 /* Error if the e or r prefix on a general reg is present. */
6797 else if ((i.types[op].bitfield.dword
6798 || i.types[op].bitfield.qword)
6799 && (i.tm.operand_types[op].bitfield.class == Reg
6800 || i.tm.operand_types[op].bitfield.instance == Accum)
6801 && i.tm.operand_types[op].bitfield.word)
6802 {
6803 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6804 register_prefix, i.op[op].regs->reg_name,
6805 i.suffix);
6806 return 0;
6807 }
6808 return 1;
6809 }
6810
6811 static int
6812 update_imm (unsigned int j)
6813 {
6814 i386_operand_type overlap = i.types[j];
6815 if ((overlap.bitfield.imm8
6816 || overlap.bitfield.imm8s
6817 || overlap.bitfield.imm16
6818 || overlap.bitfield.imm32
6819 || overlap.bitfield.imm32s
6820 || overlap.bitfield.imm64)
6821 && !operand_type_equal (&overlap, &imm8)
6822 && !operand_type_equal (&overlap, &imm8s)
6823 && !operand_type_equal (&overlap, &imm16)
6824 && !operand_type_equal (&overlap, &imm32)
6825 && !operand_type_equal (&overlap, &imm32s)
6826 && !operand_type_equal (&overlap, &imm64))
6827 {
6828 if (i.suffix)
6829 {
6830 i386_operand_type temp;
6831
6832 operand_type_set (&temp, 0);
6833 if (i.suffix == BYTE_MNEM_SUFFIX)
6834 {
6835 temp.bitfield.imm8 = overlap.bitfield.imm8;
6836 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6837 }
6838 else if (i.suffix == WORD_MNEM_SUFFIX)
6839 temp.bitfield.imm16 = overlap.bitfield.imm16;
6840 else if (i.suffix == QWORD_MNEM_SUFFIX)
6841 {
6842 temp.bitfield.imm64 = overlap.bitfield.imm64;
6843 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6844 }
6845 else
6846 temp.bitfield.imm32 = overlap.bitfield.imm32;
6847 overlap = temp;
6848 }
6849 else if (operand_type_equal (&overlap, &imm16_32_32s)
6850 || operand_type_equal (&overlap, &imm16_32)
6851 || operand_type_equal (&overlap, &imm16_32s))
6852 {
6853 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6854 overlap = imm16;
6855 else
6856 overlap = imm32s;
6857 }
6858 if (!operand_type_equal (&overlap, &imm8)
6859 && !operand_type_equal (&overlap, &imm8s)
6860 && !operand_type_equal (&overlap, &imm16)
6861 && !operand_type_equal (&overlap, &imm32)
6862 && !operand_type_equal (&overlap, &imm32s)
6863 && !operand_type_equal (&overlap, &imm64))
6864 {
6865 as_bad (_("no instruction mnemonic suffix given; "
6866 "can't determine immediate size"));
6867 return 0;
6868 }
6869 }
6870 i.types[j] = overlap;
6871
6872 return 1;
6873 }
6874
6875 static int
6876 finalize_imm (void)
6877 {
6878 unsigned int j, n;
6879
6880 /* Update the first 2 immediate operands. */
6881 n = i.operands > 2 ? 2 : i.operands;
6882 if (n)
6883 {
6884 for (j = 0; j < n; j++)
6885 if (update_imm (j) == 0)
6886 return 0;
6887
6888 /* The 3rd operand can't be immediate operand. */
6889 gas_assert (operand_type_check (i.types[2], imm) == 0);
6890 }
6891
6892 return 1;
6893 }
6894
6895 static int
6896 process_operands (void)
6897 {
6898 /* Default segment register this instruction will use for memory
6899 accesses. 0 means unknown. This is only for optimizing out
6900 unnecessary segment overrides. */
6901 const seg_entry *default_seg = 0;
6902
6903 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6904 {
6905 unsigned int dupl = i.operands;
6906 unsigned int dest = dupl - 1;
6907 unsigned int j;
6908
6909 /* The destination must be an xmm register. */
6910 gas_assert (i.reg_operands
6911 && MAX_OPERANDS > dupl
6912 && operand_type_equal (&i.types[dest], &regxmm));
6913
6914 if (i.tm.operand_types[0].bitfield.instance == Accum
6915 && i.tm.operand_types[0].bitfield.xmmword)
6916 {
6917 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6918 {
6919 /* Keep xmm0 for instructions with VEX prefix and 3
6920 sources. */
6921 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6922 i.tm.operand_types[0].bitfield.class = RegSIMD;
6923 goto duplicate;
6924 }
6925 else
6926 {
6927 /* We remove the first xmm0 and keep the number of
6928 operands unchanged, which in fact duplicates the
6929 destination. */
6930 for (j = 1; j < i.operands; j++)
6931 {
6932 i.op[j - 1] = i.op[j];
6933 i.types[j - 1] = i.types[j];
6934 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6935 i.flags[j - 1] = i.flags[j];
6936 }
6937 }
6938 }
6939 else if (i.tm.opcode_modifier.implicit1stxmm0)
6940 {
6941 gas_assert ((MAX_OPERANDS - 1) > dupl
6942 && (i.tm.opcode_modifier.vexsources
6943 == VEX3SOURCES));
6944
6945 /* Add the implicit xmm0 for instructions with VEX prefix
6946 and 3 sources. */
6947 for (j = i.operands; j > 0; j--)
6948 {
6949 i.op[j] = i.op[j - 1];
6950 i.types[j] = i.types[j - 1];
6951 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6952 i.flags[j] = i.flags[j - 1];
6953 }
6954 i.op[0].regs
6955 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6956 i.types[0] = regxmm;
6957 i.tm.operand_types[0] = regxmm;
6958
6959 i.operands += 2;
6960 i.reg_operands += 2;
6961 i.tm.operands += 2;
6962
6963 dupl++;
6964 dest++;
6965 i.op[dupl] = i.op[dest];
6966 i.types[dupl] = i.types[dest];
6967 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6968 i.flags[dupl] = i.flags[dest];
6969 }
6970 else
6971 {
6972 duplicate:
6973 i.operands++;
6974 i.reg_operands++;
6975 i.tm.operands++;
6976
6977 i.op[dupl] = i.op[dest];
6978 i.types[dupl] = i.types[dest];
6979 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6980 i.flags[dupl] = i.flags[dest];
6981 }
6982
6983 if (i.tm.opcode_modifier.immext)
6984 process_immext ();
6985 }
6986 else if (i.tm.operand_types[0].bitfield.instance == Accum
6987 && i.tm.operand_types[0].bitfield.xmmword)
6988 {
6989 unsigned int j;
6990
6991 for (j = 1; j < i.operands; j++)
6992 {
6993 i.op[j - 1] = i.op[j];
6994 i.types[j - 1] = i.types[j];
6995
6996 /* We need to adjust fields in i.tm since they are used by
6997 build_modrm_byte. */
6998 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6999
7000 i.flags[j - 1] = i.flags[j];
7001 }
7002
7003 i.operands--;
7004 i.reg_operands--;
7005 i.tm.operands--;
7006 }
7007 else if (i.tm.opcode_modifier.implicitquadgroup)
7008 {
7009 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7010
7011 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7012 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7013 regnum = register_number (i.op[1].regs);
7014 first_reg_in_group = regnum & ~3;
7015 last_reg_in_group = first_reg_in_group + 3;
7016 if (regnum != first_reg_in_group)
7017 as_warn (_("source register `%s%s' implicitly denotes"
7018 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7019 register_prefix, i.op[1].regs->reg_name,
7020 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7021 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7022 i.tm.name);
7023 }
7024 else if (i.tm.opcode_modifier.regkludge)
7025 {
7026 /* The imul $imm, %reg instruction is converted into
7027 imul $imm, %reg, %reg, and the clr %reg instruction
7028 is converted into xor %reg, %reg. */
7029
7030 unsigned int first_reg_op;
7031
7032 if (operand_type_check (i.types[0], reg))
7033 first_reg_op = 0;
7034 else
7035 first_reg_op = 1;
7036 /* Pretend we saw the extra register operand. */
7037 gas_assert (i.reg_operands == 1
7038 && i.op[first_reg_op + 1].regs == 0);
7039 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7040 i.types[first_reg_op + 1] = i.types[first_reg_op];
7041 i.operands++;
7042 i.reg_operands++;
7043 }
7044
7045 if (i.tm.opcode_modifier.modrm)
7046 {
7047 /* The opcode is completed (modulo i.tm.extension_opcode which
7048 must be put into the modrm byte). Now, we make the modrm and
7049 index base bytes based on all the info we've collected. */
7050
7051 default_seg = build_modrm_byte ();
7052 }
7053 else if (i.types[0].bitfield.class == SReg)
7054 {
7055 if (flag_code != CODE_64BIT
7056 ? i.tm.base_opcode == POP_SEG_SHORT
7057 && i.op[0].regs->reg_num == 1
7058 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7059 && i.op[0].regs->reg_num < 4)
7060 {
7061 as_bad (_("you can't `%s %s%s'"),
7062 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7063 return 0;
7064 }
7065 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7066 {
7067 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7068 i.tm.opcode_length = 2;
7069 }
7070 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7071 }
7072 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7073 {
7074 default_seg = &ds;
7075 }
7076 else if (i.tm.opcode_modifier.isstring)
7077 {
7078 /* For the string instructions that allow a segment override
7079 on one of their operands, the default segment is ds. */
7080 default_seg = &ds;
7081 }
7082 else if (i.short_form)
7083 {
7084 /* The register or float register operand is in operand
7085 0 or 1. */
7086 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7087
7088 /* Register goes in low 3 bits of opcode. */
7089 i.tm.base_opcode |= i.op[op].regs->reg_num;
7090 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7091 i.rex |= REX_B;
7092 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7093 {
7094 /* Warn about some common errors, but press on regardless.
7095 The first case can be generated by gcc (<= 2.8.1). */
7096 if (i.operands == 2)
7097 {
7098 /* Reversed arguments on faddp, fsubp, etc. */
7099 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7100 register_prefix, i.op[!intel_syntax].regs->reg_name,
7101 register_prefix, i.op[intel_syntax].regs->reg_name);
7102 }
7103 else
7104 {
7105 /* Extraneous `l' suffix on fp insn. */
7106 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7107 register_prefix, i.op[0].regs->reg_name);
7108 }
7109 }
7110 }
7111
7112 if (i.tm.base_opcode == 0x8d /* lea */
7113 && i.seg[0]
7114 && !quiet_warnings)
7115 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7116
7117 /* If a segment was explicitly specified, and the specified segment
7118 is not the default, use an opcode prefix to select it. If we
7119 never figured out what the default segment is, then default_seg
7120 will be zero at this point, and the specified segment prefix will
7121 always be used. */
7122 if ((i.seg[0]) && (i.seg[0] != default_seg))
7123 {
7124 if (!add_prefix (i.seg[0]->seg_prefix))
7125 return 0;
7126 }
7127 return 1;
7128 }
7129
7130 static const seg_entry *
7131 build_modrm_byte (void)
7132 {
7133 const seg_entry *default_seg = 0;
7134 unsigned int source, dest;
7135 int vex_3_sources;
7136
7137 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7138 if (vex_3_sources)
7139 {
7140 unsigned int nds, reg_slot;
7141 expressionS *exp;
7142
7143 dest = i.operands - 1;
7144 nds = dest - 1;
7145
7146 /* There are 2 kinds of instructions:
7147 1. 5 operands: 4 register operands or 3 register operands
7148 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7149 VexW0 or VexW1. The destination must be either XMM, YMM or
7150 ZMM register.
7151 2. 4 operands: 4 register operands or 3 register operands
7152 plus 1 memory operand, with VexXDS. */
7153 gas_assert ((i.reg_operands == 4
7154 || (i.reg_operands == 3 && i.mem_operands == 1))
7155 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7156 && i.tm.opcode_modifier.vexw
7157 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7158
7159 /* If VexW1 is set, the first non-immediate operand is the source and
7160 the second non-immediate one is encoded in the immediate operand. */
7161 if (i.tm.opcode_modifier.vexw == VEXW1)
7162 {
7163 source = i.imm_operands;
7164 reg_slot = i.imm_operands + 1;
7165 }
7166 else
7167 {
7168 source = i.imm_operands + 1;
7169 reg_slot = i.imm_operands;
7170 }
7171
7172 if (i.imm_operands == 0)
7173 {
7174 /* When there is no immediate operand, generate an 8bit
7175 immediate operand to encode the first operand. */
7176 exp = &im_expressions[i.imm_operands++];
7177 i.op[i.operands].imms = exp;
7178 i.types[i.operands] = imm8;
7179 i.operands++;
7180
7181 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7182 exp->X_op = O_constant;
7183 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7184 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7185 }
7186 else
7187 {
7188 gas_assert (i.imm_operands == 1);
7189 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7190 gas_assert (!i.tm.opcode_modifier.immext);
7191
7192 /* Turn on Imm8 again so that output_imm will generate it. */
7193 i.types[0].bitfield.imm8 = 1;
7194
7195 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7196 i.op[0].imms->X_add_number
7197 |= register_number (i.op[reg_slot].regs) << 4;
7198 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7199 }
7200
7201 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7202 i.vex.register_specifier = i.op[nds].regs;
7203 }
7204 else
7205 source = dest = 0;
7206
7207 /* i.reg_operands MUST be the number of real register operands;
7208 implicit registers do not count. If there are 3 register
7209 operands, it must be a instruction with VexNDS. For a
7210 instruction with VexNDD, the destination register is encoded
7211 in VEX prefix. If there are 4 register operands, it must be
7212 a instruction with VEX prefix and 3 sources. */
7213 if (i.mem_operands == 0
7214 && ((i.reg_operands == 2
7215 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7216 || (i.reg_operands == 3
7217 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7218 || (i.reg_operands == 4 && vex_3_sources)))
7219 {
7220 switch (i.operands)
7221 {
7222 case 2:
7223 source = 0;
7224 break;
7225 case 3:
7226 /* When there are 3 operands, one of them may be immediate,
7227 which may be the first or the last operand. Otherwise,
7228 the first operand must be shift count register (cl) or it
7229 is an instruction with VexNDS. */
7230 gas_assert (i.imm_operands == 1
7231 || (i.imm_operands == 0
7232 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7233 || (i.types[0].bitfield.instance == RegC
7234 && i.types[0].bitfield.byte))));
7235 if (operand_type_check (i.types[0], imm)
7236 || (i.types[0].bitfield.instance == RegC
7237 && i.types[0].bitfield.byte))
7238 source = 1;
7239 else
7240 source = 0;
7241 break;
7242 case 4:
7243 /* When there are 4 operands, the first two must be 8bit
7244 immediate operands. The source operand will be the 3rd
7245 one.
7246
7247 For instructions with VexNDS, if the first operand
7248 an imm8, the source operand is the 2nd one. If the last
7249 operand is imm8, the source operand is the first one. */
7250 gas_assert ((i.imm_operands == 2
7251 && i.types[0].bitfield.imm8
7252 && i.types[1].bitfield.imm8)
7253 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7254 && i.imm_operands == 1
7255 && (i.types[0].bitfield.imm8
7256 || i.types[i.operands - 1].bitfield.imm8
7257 || i.rounding)));
7258 if (i.imm_operands == 2)
7259 source = 2;
7260 else
7261 {
7262 if (i.types[0].bitfield.imm8)
7263 source = 1;
7264 else
7265 source = 0;
7266 }
7267 break;
7268 case 5:
7269 if (is_evex_encoding (&i.tm))
7270 {
7271 /* For EVEX instructions, when there are 5 operands, the
7272 first one must be immediate operand. If the second one
7273 is immediate operand, the source operand is the 3th
7274 one. If the last one is immediate operand, the source
7275 operand is the 2nd one. */
7276 gas_assert (i.imm_operands == 2
7277 && i.tm.opcode_modifier.sae
7278 && operand_type_check (i.types[0], imm));
7279 if (operand_type_check (i.types[1], imm))
7280 source = 2;
7281 else if (operand_type_check (i.types[4], imm))
7282 source = 1;
7283 else
7284 abort ();
7285 }
7286 break;
7287 default:
7288 abort ();
7289 }
7290
7291 if (!vex_3_sources)
7292 {
7293 dest = source + 1;
7294
7295 /* RC/SAE operand could be between DEST and SRC. That happens
7296 when one operand is GPR and the other one is XMM/YMM/ZMM
7297 register. */
7298 if (i.rounding && i.rounding->operand == (int) dest)
7299 dest++;
7300
7301 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7302 {
7303 /* For instructions with VexNDS, the register-only source
7304 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7305 register. It is encoded in VEX prefix. */
7306
7307 i386_operand_type op;
7308 unsigned int vvvv;
7309
7310 /* Check register-only source operand when two source
7311 operands are swapped. */
7312 if (!i.tm.operand_types[source].bitfield.baseindex
7313 && i.tm.operand_types[dest].bitfield.baseindex)
7314 {
7315 vvvv = source;
7316 source = dest;
7317 }
7318 else
7319 vvvv = dest;
7320
7321 op = i.tm.operand_types[vvvv];
7322 if ((dest + 1) >= i.operands
7323 || ((op.bitfield.class != Reg
7324 || (!op.bitfield.dword && !op.bitfield.qword))
7325 && op.bitfield.class != RegSIMD
7326 && !operand_type_equal (&op, &regmask)))
7327 abort ();
7328 i.vex.register_specifier = i.op[vvvv].regs;
7329 dest++;
7330 }
7331 }
7332
7333 i.rm.mode = 3;
7334 /* One of the register operands will be encoded in the i.rm.reg
7335 field, the other in the combined i.rm.mode and i.rm.regmem
7336 fields. If no form of this instruction supports a memory
7337 destination operand, then we assume the source operand may
7338 sometimes be a memory operand and so we need to store the
7339 destination in the i.rm.reg field. */
7340 if (!i.tm.opcode_modifier.regmem
7341 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7342 {
7343 i.rm.reg = i.op[dest].regs->reg_num;
7344 i.rm.regmem = i.op[source].regs->reg_num;
7345 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7346 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7347 i.has_regmmx = TRUE;
7348 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7349 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7350 {
7351 if (i.types[dest].bitfield.zmmword
7352 || i.types[source].bitfield.zmmword)
7353 i.has_regzmm = TRUE;
7354 else if (i.types[dest].bitfield.ymmword
7355 || i.types[source].bitfield.ymmword)
7356 i.has_regymm = TRUE;
7357 else
7358 i.has_regxmm = TRUE;
7359 }
7360 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7361 i.rex |= REX_R;
7362 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7363 i.vrex |= REX_R;
7364 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7365 i.rex |= REX_B;
7366 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7367 i.vrex |= REX_B;
7368 }
7369 else
7370 {
7371 i.rm.reg = i.op[source].regs->reg_num;
7372 i.rm.regmem = i.op[dest].regs->reg_num;
7373 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7374 i.rex |= REX_B;
7375 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7376 i.vrex |= REX_B;
7377 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7378 i.rex |= REX_R;
7379 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7380 i.vrex |= REX_R;
7381 }
7382 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7383 {
7384 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7385 abort ();
7386 i.rex &= ~REX_R;
7387 add_prefix (LOCK_PREFIX_OPCODE);
7388 }
7389 }
7390 else
7391 { /* If it's not 2 reg operands... */
7392 unsigned int mem;
7393
7394 if (i.mem_operands)
7395 {
7396 unsigned int fake_zero_displacement = 0;
7397 unsigned int op;
7398
7399 for (op = 0; op < i.operands; op++)
7400 if (i.flags[op] & Operand_Mem)
7401 break;
7402 gas_assert (op < i.operands);
7403
7404 if (i.tm.opcode_modifier.vecsib)
7405 {
7406 if (i.index_reg->reg_num == RegIZ)
7407 abort ();
7408
7409 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7410 if (!i.base_reg)
7411 {
7412 i.sib.base = NO_BASE_REGISTER;
7413 i.sib.scale = i.log2_scale_factor;
7414 i.types[op].bitfield.disp8 = 0;
7415 i.types[op].bitfield.disp16 = 0;
7416 i.types[op].bitfield.disp64 = 0;
7417 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7418 {
7419 /* Must be 32 bit */
7420 i.types[op].bitfield.disp32 = 1;
7421 i.types[op].bitfield.disp32s = 0;
7422 }
7423 else
7424 {
7425 i.types[op].bitfield.disp32 = 0;
7426 i.types[op].bitfield.disp32s = 1;
7427 }
7428 }
7429 i.sib.index = i.index_reg->reg_num;
7430 if ((i.index_reg->reg_flags & RegRex) != 0)
7431 i.rex |= REX_X;
7432 if ((i.index_reg->reg_flags & RegVRex) != 0)
7433 i.vrex |= REX_X;
7434 }
7435
7436 default_seg = &ds;
7437
7438 if (i.base_reg == 0)
7439 {
7440 i.rm.mode = 0;
7441 if (!i.disp_operands)
7442 fake_zero_displacement = 1;
7443 if (i.index_reg == 0)
7444 {
7445 i386_operand_type newdisp;
7446
7447 gas_assert (!i.tm.opcode_modifier.vecsib);
7448 /* Operand is just <disp> */
7449 if (flag_code == CODE_64BIT)
7450 {
7451 /* 64bit mode overwrites the 32bit absolute
7452 addressing by RIP relative addressing and
7453 absolute addressing is encoded by one of the
7454 redundant SIB forms. */
7455 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7456 i.sib.base = NO_BASE_REGISTER;
7457 i.sib.index = NO_INDEX_REGISTER;
7458 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7459 }
7460 else if ((flag_code == CODE_16BIT)
7461 ^ (i.prefix[ADDR_PREFIX] != 0))
7462 {
7463 i.rm.regmem = NO_BASE_REGISTER_16;
7464 newdisp = disp16;
7465 }
7466 else
7467 {
7468 i.rm.regmem = NO_BASE_REGISTER;
7469 newdisp = disp32;
7470 }
7471 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7472 i.types[op] = operand_type_or (i.types[op], newdisp);
7473 }
7474 else if (!i.tm.opcode_modifier.vecsib)
7475 {
7476 /* !i.base_reg && i.index_reg */
7477 if (i.index_reg->reg_num == RegIZ)
7478 i.sib.index = NO_INDEX_REGISTER;
7479 else
7480 i.sib.index = i.index_reg->reg_num;
7481 i.sib.base = NO_BASE_REGISTER;
7482 i.sib.scale = i.log2_scale_factor;
7483 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7484 i.types[op].bitfield.disp8 = 0;
7485 i.types[op].bitfield.disp16 = 0;
7486 i.types[op].bitfield.disp64 = 0;
7487 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7488 {
7489 /* Must be 32 bit */
7490 i.types[op].bitfield.disp32 = 1;
7491 i.types[op].bitfield.disp32s = 0;
7492 }
7493 else
7494 {
7495 i.types[op].bitfield.disp32 = 0;
7496 i.types[op].bitfield.disp32s = 1;
7497 }
7498 if ((i.index_reg->reg_flags & RegRex) != 0)
7499 i.rex |= REX_X;
7500 }
7501 }
7502 /* RIP addressing for 64bit mode. */
7503 else if (i.base_reg->reg_num == RegIP)
7504 {
7505 gas_assert (!i.tm.opcode_modifier.vecsib);
7506 i.rm.regmem = NO_BASE_REGISTER;
7507 i.types[op].bitfield.disp8 = 0;
7508 i.types[op].bitfield.disp16 = 0;
7509 i.types[op].bitfield.disp32 = 0;
7510 i.types[op].bitfield.disp32s = 1;
7511 i.types[op].bitfield.disp64 = 0;
7512 i.flags[op] |= Operand_PCrel;
7513 if (! i.disp_operands)
7514 fake_zero_displacement = 1;
7515 }
7516 else if (i.base_reg->reg_type.bitfield.word)
7517 {
7518 gas_assert (!i.tm.opcode_modifier.vecsib);
7519 switch (i.base_reg->reg_num)
7520 {
7521 case 3: /* (%bx) */
7522 if (i.index_reg == 0)
7523 i.rm.regmem = 7;
7524 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7525 i.rm.regmem = i.index_reg->reg_num - 6;
7526 break;
7527 case 5: /* (%bp) */
7528 default_seg = &ss;
7529 if (i.index_reg == 0)
7530 {
7531 i.rm.regmem = 6;
7532 if (operand_type_check (i.types[op], disp) == 0)
7533 {
7534 /* fake (%bp) into 0(%bp) */
7535 i.types[op].bitfield.disp8 = 1;
7536 fake_zero_displacement = 1;
7537 }
7538 }
7539 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7540 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7541 break;
7542 default: /* (%si) -> 4 or (%di) -> 5 */
7543 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7544 }
7545 i.rm.mode = mode_from_disp_size (i.types[op]);
7546 }
7547 else /* i.base_reg and 32/64 bit mode */
7548 {
7549 if (flag_code == CODE_64BIT
7550 && operand_type_check (i.types[op], disp))
7551 {
7552 i.types[op].bitfield.disp16 = 0;
7553 i.types[op].bitfield.disp64 = 0;
7554 if (i.prefix[ADDR_PREFIX] == 0)
7555 {
7556 i.types[op].bitfield.disp32 = 0;
7557 i.types[op].bitfield.disp32s = 1;
7558 }
7559 else
7560 {
7561 i.types[op].bitfield.disp32 = 1;
7562 i.types[op].bitfield.disp32s = 0;
7563 }
7564 }
7565
7566 if (!i.tm.opcode_modifier.vecsib)
7567 i.rm.regmem = i.base_reg->reg_num;
7568 if ((i.base_reg->reg_flags & RegRex) != 0)
7569 i.rex |= REX_B;
7570 i.sib.base = i.base_reg->reg_num;
7571 /* x86-64 ignores REX prefix bit here to avoid decoder
7572 complications. */
7573 if (!(i.base_reg->reg_flags & RegRex)
7574 && (i.base_reg->reg_num == EBP_REG_NUM
7575 || i.base_reg->reg_num == ESP_REG_NUM))
7576 default_seg = &ss;
7577 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7578 {
7579 fake_zero_displacement = 1;
7580 i.types[op].bitfield.disp8 = 1;
7581 }
7582 i.sib.scale = i.log2_scale_factor;
7583 if (i.index_reg == 0)
7584 {
7585 gas_assert (!i.tm.opcode_modifier.vecsib);
7586 /* <disp>(%esp) becomes two byte modrm with no index
7587 register. We've already stored the code for esp
7588 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7589 Any base register besides %esp will not use the
7590 extra modrm byte. */
7591 i.sib.index = NO_INDEX_REGISTER;
7592 }
7593 else if (!i.tm.opcode_modifier.vecsib)
7594 {
7595 if (i.index_reg->reg_num == RegIZ)
7596 i.sib.index = NO_INDEX_REGISTER;
7597 else
7598 i.sib.index = i.index_reg->reg_num;
7599 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7600 if ((i.index_reg->reg_flags & RegRex) != 0)
7601 i.rex |= REX_X;
7602 }
7603
7604 if (i.disp_operands
7605 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7606 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7607 i.rm.mode = 0;
7608 else
7609 {
7610 if (!fake_zero_displacement
7611 && !i.disp_operands
7612 && i.disp_encoding)
7613 {
7614 fake_zero_displacement = 1;
7615 if (i.disp_encoding == disp_encoding_8bit)
7616 i.types[op].bitfield.disp8 = 1;
7617 else
7618 i.types[op].bitfield.disp32 = 1;
7619 }
7620 i.rm.mode = mode_from_disp_size (i.types[op]);
7621 }
7622 }
7623
7624 if (fake_zero_displacement)
7625 {
7626 /* Fakes a zero displacement assuming that i.types[op]
7627 holds the correct displacement size. */
7628 expressionS *exp;
7629
7630 gas_assert (i.op[op].disps == 0);
7631 exp = &disp_expressions[i.disp_operands++];
7632 i.op[op].disps = exp;
7633 exp->X_op = O_constant;
7634 exp->X_add_number = 0;
7635 exp->X_add_symbol = (symbolS *) 0;
7636 exp->X_op_symbol = (symbolS *) 0;
7637 }
7638
7639 mem = op;
7640 }
7641 else
7642 mem = ~0;
7643
7644 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7645 {
7646 if (operand_type_check (i.types[0], imm))
7647 i.vex.register_specifier = NULL;
7648 else
7649 {
7650 /* VEX.vvvv encodes one of the sources when the first
7651 operand is not an immediate. */
7652 if (i.tm.opcode_modifier.vexw == VEXW0)
7653 i.vex.register_specifier = i.op[0].regs;
7654 else
7655 i.vex.register_specifier = i.op[1].regs;
7656 }
7657
7658 /* Destination is a XMM register encoded in the ModRM.reg
7659 and VEX.R bit. */
7660 i.rm.reg = i.op[2].regs->reg_num;
7661 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7662 i.rex |= REX_R;
7663
7664 /* ModRM.rm and VEX.B encodes the other source. */
7665 if (!i.mem_operands)
7666 {
7667 i.rm.mode = 3;
7668
7669 if (i.tm.opcode_modifier.vexw == VEXW0)
7670 i.rm.regmem = i.op[1].regs->reg_num;
7671 else
7672 i.rm.regmem = i.op[0].regs->reg_num;
7673
7674 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7675 i.rex |= REX_B;
7676 }
7677 }
7678 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7679 {
7680 i.vex.register_specifier = i.op[2].regs;
7681 if (!i.mem_operands)
7682 {
7683 i.rm.mode = 3;
7684 i.rm.regmem = i.op[1].regs->reg_num;
7685 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7686 i.rex |= REX_B;
7687 }
7688 }
7689 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7690 (if any) based on i.tm.extension_opcode. Again, we must be
7691 careful to make sure that segment/control/debug/test/MMX
7692 registers are coded into the i.rm.reg field. */
7693 else if (i.reg_operands)
7694 {
7695 unsigned int op;
7696 unsigned int vex_reg = ~0;
7697
7698 for (op = 0; op < i.operands; op++)
7699 {
7700 if (i.types[op].bitfield.class == Reg
7701 || i.types[op].bitfield.class == RegBND
7702 || i.types[op].bitfield.class == RegMask
7703 || i.types[op].bitfield.class == SReg
7704 || i.types[op].bitfield.class == RegCR
7705 || i.types[op].bitfield.class == RegDR
7706 || i.types[op].bitfield.class == RegTR)
7707 break;
7708 if (i.types[op].bitfield.class == RegSIMD)
7709 {
7710 if (i.types[op].bitfield.zmmword)
7711 i.has_regzmm = TRUE;
7712 else if (i.types[op].bitfield.ymmword)
7713 i.has_regymm = TRUE;
7714 else
7715 i.has_regxmm = TRUE;
7716 break;
7717 }
7718 if (i.types[op].bitfield.class == RegMMX)
7719 {
7720 i.has_regmmx = TRUE;
7721 break;
7722 }
7723 }
7724
7725 if (vex_3_sources)
7726 op = dest;
7727 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7728 {
7729 /* For instructions with VexNDS, the register-only
7730 source operand is encoded in VEX prefix. */
7731 gas_assert (mem != (unsigned int) ~0);
7732
7733 if (op > mem)
7734 {
7735 vex_reg = op++;
7736 gas_assert (op < i.operands);
7737 }
7738 else
7739 {
7740 /* Check register-only source operand when two source
7741 operands are swapped. */
7742 if (!i.tm.operand_types[op].bitfield.baseindex
7743 && i.tm.operand_types[op + 1].bitfield.baseindex)
7744 {
7745 vex_reg = op;
7746 op += 2;
7747 gas_assert (mem == (vex_reg + 1)
7748 && op < i.operands);
7749 }
7750 else
7751 {
7752 vex_reg = op + 1;
7753 gas_assert (vex_reg < i.operands);
7754 }
7755 }
7756 }
7757 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7758 {
7759 /* For instructions with VexNDD, the register destination
7760 is encoded in VEX prefix. */
7761 if (i.mem_operands == 0)
7762 {
7763 /* There is no memory operand. */
7764 gas_assert ((op + 2) == i.operands);
7765 vex_reg = op + 1;
7766 }
7767 else
7768 {
7769 /* There are only 2 non-immediate operands. */
7770 gas_assert (op < i.imm_operands + 2
7771 && i.operands == i.imm_operands + 2);
7772 vex_reg = i.imm_operands + 1;
7773 }
7774 }
7775 else
7776 gas_assert (op < i.operands);
7777
7778 if (vex_reg != (unsigned int) ~0)
7779 {
7780 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7781
7782 if ((type->bitfield.class != Reg
7783 || (!type->bitfield.dword && !type->bitfield.qword))
7784 && type->bitfield.class != RegSIMD
7785 && !operand_type_equal (type, &regmask))
7786 abort ();
7787
7788 i.vex.register_specifier = i.op[vex_reg].regs;
7789 }
7790
7791 /* Don't set OP operand twice. */
7792 if (vex_reg != op)
7793 {
7794 /* If there is an extension opcode to put here, the
7795 register number must be put into the regmem field. */
7796 if (i.tm.extension_opcode != None)
7797 {
7798 i.rm.regmem = i.op[op].regs->reg_num;
7799 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7800 i.rex |= REX_B;
7801 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7802 i.vrex |= REX_B;
7803 }
7804 else
7805 {
7806 i.rm.reg = i.op[op].regs->reg_num;
7807 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7808 i.rex |= REX_R;
7809 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7810 i.vrex |= REX_R;
7811 }
7812 }
7813
7814 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7815 must set it to 3 to indicate this is a register operand
7816 in the regmem field. */
7817 if (!i.mem_operands)
7818 i.rm.mode = 3;
7819 }
7820
7821 /* Fill in i.rm.reg field with extension opcode (if any). */
7822 if (i.tm.extension_opcode != None)
7823 i.rm.reg = i.tm.extension_opcode;
7824 }
7825 return default_seg;
7826 }
7827
7828 static unsigned int
7829 flip_code16 (unsigned int code16)
7830 {
7831 gas_assert (i.tm.operands == 1);
7832
7833 return !(i.prefix[REX_PREFIX] & REX_W)
7834 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7835 || i.tm.operand_types[0].bitfield.disp32s
7836 : i.tm.operand_types[0].bitfield.disp16)
7837 ? CODE16 : 0;
7838 }
7839
7840 static void
7841 output_branch (void)
7842 {
7843 char *p;
7844 int size;
7845 int code16;
7846 int prefix;
7847 relax_substateT subtype;
7848 symbolS *sym;
7849 offsetT off;
7850
7851 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7852 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7853
7854 prefix = 0;
7855 if (i.prefix[DATA_PREFIX] != 0)
7856 {
7857 prefix = 1;
7858 i.prefixes -= 1;
7859 code16 ^= flip_code16(code16);
7860 }
7861 /* Pentium4 branch hints. */
7862 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7863 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7864 {
7865 prefix++;
7866 i.prefixes--;
7867 }
7868 if (i.prefix[REX_PREFIX] != 0)
7869 {
7870 prefix++;
7871 i.prefixes--;
7872 }
7873
7874 /* BND prefixed jump. */
7875 if (i.prefix[BND_PREFIX] != 0)
7876 {
7877 prefix++;
7878 i.prefixes--;
7879 }
7880
7881 if (i.prefixes != 0)
7882 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7883
7884 /* It's always a symbol; End frag & setup for relax.
7885 Make sure there is enough room in this frag for the largest
7886 instruction we may generate in md_convert_frag. This is 2
7887 bytes for the opcode and room for the prefix and largest
7888 displacement. */
7889 frag_grow (prefix + 2 + 4);
7890 /* Prefix and 1 opcode byte go in fr_fix. */
7891 p = frag_more (prefix + 1);
7892 if (i.prefix[DATA_PREFIX] != 0)
7893 *p++ = DATA_PREFIX_OPCODE;
7894 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7895 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7896 *p++ = i.prefix[SEG_PREFIX];
7897 if (i.prefix[BND_PREFIX] != 0)
7898 *p++ = BND_PREFIX_OPCODE;
7899 if (i.prefix[REX_PREFIX] != 0)
7900 *p++ = i.prefix[REX_PREFIX];
7901 *p = i.tm.base_opcode;
7902
7903 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7904 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7905 else if (cpu_arch_flags.bitfield.cpui386)
7906 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7907 else
7908 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7909 subtype |= code16;
7910
7911 sym = i.op[0].disps->X_add_symbol;
7912 off = i.op[0].disps->X_add_number;
7913
7914 if (i.op[0].disps->X_op != O_constant
7915 && i.op[0].disps->X_op != O_symbol)
7916 {
7917 /* Handle complex expressions. */
7918 sym = make_expr_symbol (i.op[0].disps);
7919 off = 0;
7920 }
7921
7922 /* 1 possible extra opcode + 4 byte displacement go in var part.
7923 Pass reloc in fr_var. */
7924 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7925 }
7926
7927 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7928 /* Return TRUE iff PLT32 relocation should be used for branching to
7929 symbol S. */
7930
7931 static bfd_boolean
7932 need_plt32_p (symbolS *s)
7933 {
7934 /* PLT32 relocation is ELF only. */
7935 if (!IS_ELF)
7936 return FALSE;
7937
7938 #ifdef TE_SOLARIS
7939 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7940 krtld support it. */
7941 return FALSE;
7942 #endif
7943
7944 /* Since there is no need to prepare for PLT branch on x86-64, we
7945 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7946 be used as a marker for 32-bit PC-relative branches. */
7947 if (!object_64bit)
7948 return FALSE;
7949
7950 /* Weak or undefined symbol need PLT32 relocation. */
7951 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7952 return TRUE;
7953
7954 /* Non-global symbol doesn't need PLT32 relocation. */
7955 if (! S_IS_EXTERNAL (s))
7956 return FALSE;
7957
7958 /* Other global symbols need PLT32 relocation. NB: Symbol with
7959 non-default visibilities are treated as normal global symbol
7960 so that PLT32 relocation can be used as a marker for 32-bit
7961 PC-relative branches. It is useful for linker relaxation. */
7962 return TRUE;
7963 }
7964 #endif
7965
7966 static void
7967 output_jump (void)
7968 {
7969 char *p;
7970 int size;
7971 fixS *fixP;
7972 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7973
7974 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7975 {
7976 /* This is a loop or jecxz type instruction. */
7977 size = 1;
7978 if (i.prefix[ADDR_PREFIX] != 0)
7979 {
7980 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7981 i.prefixes -= 1;
7982 }
7983 /* Pentium4 branch hints. */
7984 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7985 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7986 {
7987 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7988 i.prefixes--;
7989 }
7990 }
7991 else
7992 {
7993 int code16;
7994
7995 code16 = 0;
7996 if (flag_code == CODE_16BIT)
7997 code16 = CODE16;
7998
7999 if (i.prefix[DATA_PREFIX] != 0)
8000 {
8001 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8002 i.prefixes -= 1;
8003 code16 ^= flip_code16(code16);
8004 }
8005
8006 size = 4;
8007 if (code16)
8008 size = 2;
8009 }
8010
8011 /* BND prefixed jump. */
8012 if (i.prefix[BND_PREFIX] != 0)
8013 {
8014 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8015 i.prefixes -= 1;
8016 }
8017
8018 if (i.prefix[REX_PREFIX] != 0)
8019 {
8020 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8021 i.prefixes -= 1;
8022 }
8023
8024 if (i.prefixes != 0)
8025 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8026
8027 p = frag_more (i.tm.opcode_length + size);
8028 switch (i.tm.opcode_length)
8029 {
8030 case 2:
8031 *p++ = i.tm.base_opcode >> 8;
8032 /* Fall through. */
8033 case 1:
8034 *p++ = i.tm.base_opcode;
8035 break;
8036 default:
8037 abort ();
8038 }
8039
8040 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8041 if (size == 4
8042 && jump_reloc == NO_RELOC
8043 && need_plt32_p (i.op[0].disps->X_add_symbol))
8044 jump_reloc = BFD_RELOC_X86_64_PLT32;
8045 #endif
8046
8047 jump_reloc = reloc (size, 1, 1, jump_reloc);
8048
8049 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8050 i.op[0].disps, 1, jump_reloc);
8051
8052 /* All jumps handled here are signed, but don't use a signed limit
8053 check for 32 and 16 bit jumps as we want to allow wrap around at
8054 4G and 64k respectively. */
8055 if (size == 1)
8056 fixP->fx_signed = 1;
8057 }
8058
8059 static void
8060 output_interseg_jump (void)
8061 {
8062 char *p;
8063 int size;
8064 int prefix;
8065 int code16;
8066
8067 code16 = 0;
8068 if (flag_code == CODE_16BIT)
8069 code16 = CODE16;
8070
8071 prefix = 0;
8072 if (i.prefix[DATA_PREFIX] != 0)
8073 {
8074 prefix = 1;
8075 i.prefixes -= 1;
8076 code16 ^= CODE16;
8077 }
8078
8079 gas_assert (!i.prefix[REX_PREFIX]);
8080
8081 size = 4;
8082 if (code16)
8083 size = 2;
8084
8085 if (i.prefixes != 0)
8086 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8087
8088 /* 1 opcode; 2 segment; offset */
8089 p = frag_more (prefix + 1 + 2 + size);
8090
8091 if (i.prefix[DATA_PREFIX] != 0)
8092 *p++ = DATA_PREFIX_OPCODE;
8093
8094 if (i.prefix[REX_PREFIX] != 0)
8095 *p++ = i.prefix[REX_PREFIX];
8096
8097 *p++ = i.tm.base_opcode;
8098 if (i.op[1].imms->X_op == O_constant)
8099 {
8100 offsetT n = i.op[1].imms->X_add_number;
8101
8102 if (size == 2
8103 && !fits_in_unsigned_word (n)
8104 && !fits_in_signed_word (n))
8105 {
8106 as_bad (_("16-bit jump out of range"));
8107 return;
8108 }
8109 md_number_to_chars (p, n, size);
8110 }
8111 else
8112 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8113 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8114 if (i.op[0].imms->X_op != O_constant)
8115 as_bad (_("can't handle non absolute segment in `%s'"),
8116 i.tm.name);
8117 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8118 }
8119
8120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8121 void
8122 x86_cleanup (void)
8123 {
8124 char *p;
8125 asection *seg = now_seg;
8126 subsegT subseg = now_subseg;
8127 asection *sec;
8128 unsigned int alignment, align_size_1;
8129 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8130 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8131 unsigned int padding;
8132
8133 if (!IS_ELF || !x86_used_note)
8134 return;
8135
8136 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8137
8138 /* The .note.gnu.property section layout:
8139
8140 Field Length Contents
8141 ---- ---- ----
8142 n_namsz 4 4
8143 n_descsz 4 The note descriptor size
8144 n_type 4 NT_GNU_PROPERTY_TYPE_0
8145 n_name 4 "GNU"
8146 n_desc n_descsz The program property array
8147 .... .... ....
8148 */
8149
8150 /* Create the .note.gnu.property section. */
8151 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8152 bfd_set_section_flags (sec,
8153 (SEC_ALLOC
8154 | SEC_LOAD
8155 | SEC_DATA
8156 | SEC_HAS_CONTENTS
8157 | SEC_READONLY));
8158
8159 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8160 {
8161 align_size_1 = 7;
8162 alignment = 3;
8163 }
8164 else
8165 {
8166 align_size_1 = 3;
8167 alignment = 2;
8168 }
8169
8170 bfd_set_section_alignment (sec, alignment);
8171 elf_section_type (sec) = SHT_NOTE;
8172
8173 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8174 + 4-byte data */
8175 isa_1_descsz_raw = 4 + 4 + 4;
8176 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8177 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8178
8179 feature_2_descsz_raw = isa_1_descsz;
8180 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8181 + 4-byte data */
8182 feature_2_descsz_raw += 4 + 4 + 4;
8183 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8184 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8185 & ~align_size_1);
8186
8187 descsz = feature_2_descsz;
8188 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8189 p = frag_more (4 + 4 + 4 + 4 + descsz);
8190
8191 /* Write n_namsz. */
8192 md_number_to_chars (p, (valueT) 4, 4);
8193
8194 /* Write n_descsz. */
8195 md_number_to_chars (p + 4, (valueT) descsz, 4);
8196
8197 /* Write n_type. */
8198 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8199
8200 /* Write n_name. */
8201 memcpy (p + 4 * 3, "GNU", 4);
8202
8203 /* Write 4-byte type. */
8204 md_number_to_chars (p + 4 * 4,
8205 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8206
8207 /* Write 4-byte data size. */
8208 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8209
8210 /* Write 4-byte data. */
8211 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8212
8213 /* Zero out paddings. */
8214 padding = isa_1_descsz - isa_1_descsz_raw;
8215 if (padding)
8216 memset (p + 4 * 7, 0, padding);
8217
8218 /* Write 4-byte type. */
8219 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8220 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8221
8222 /* Write 4-byte data size. */
8223 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8224
8225 /* Write 4-byte data. */
8226 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8227 (valueT) x86_feature_2_used, 4);
8228
8229 /* Zero out paddings. */
8230 padding = feature_2_descsz - feature_2_descsz_raw;
8231 if (padding)
8232 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8233
8234 /* We probably can't restore the current segment, for there likely
8235 isn't one yet... */
8236 if (seg && subseg)
8237 subseg_set (seg, subseg);
8238 }
8239 #endif
8240
8241 static unsigned int
8242 encoding_length (const fragS *start_frag, offsetT start_off,
8243 const char *frag_now_ptr)
8244 {
8245 unsigned int len = 0;
8246
8247 if (start_frag != frag_now)
8248 {
8249 const fragS *fr = start_frag;
8250
8251 do {
8252 len += fr->fr_fix;
8253 fr = fr->fr_next;
8254 } while (fr && fr != frag_now);
8255 }
8256
8257 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8258 }
8259
8260 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8261 be macro-fused with conditional jumps. */
8262
8263 static int
8264 maybe_fused_with_jcc_p (void)
8265 {
8266 /* No RIP address. */
8267 if (i.base_reg && i.base_reg->reg_num == RegIP)
8268 return 0;
8269
8270 /* No VEX/EVEX encoding. */
8271 if (is_any_vex_encoding (&i.tm))
8272 return 0;
8273
8274 /* and, add, sub with destination register. */
8275 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8276 || i.tm.base_opcode <= 5
8277 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8278 || ((i.tm.base_opcode | 3) == 0x83
8279 && ((i.tm.extension_opcode | 1) == 0x5
8280 || i.tm.extension_opcode == 0x0)))
8281 return (i.types[1].bitfield.class == Reg
8282 || i.types[1].bitfield.instance == Accum);
8283
8284 /* test, cmp with any register. */
8285 if ((i.tm.base_opcode | 1) == 0x85
8286 || (i.tm.base_opcode | 1) == 0xa9
8287 || ((i.tm.base_opcode | 1) == 0xf7
8288 && i.tm.extension_opcode == 0)
8289 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8290 || ((i.tm.base_opcode | 3) == 0x83
8291 && (i.tm.extension_opcode == 0x7)))
8292 return (i.types[0].bitfield.class == Reg
8293 || i.types[0].bitfield.instance == Accum
8294 || i.types[1].bitfield.class == Reg
8295 || i.types[1].bitfield.instance == Accum);
8296
8297 /* inc, dec with any register. */
8298 if ((i.tm.cpu_flags.bitfield.cpuno64
8299 && (i.tm.base_opcode | 0xf) == 0x4f)
8300 || ((i.tm.base_opcode | 1) == 0xff
8301 && i.tm.extension_opcode <= 0x1))
8302 return (i.types[0].bitfield.class == Reg
8303 || i.types[0].bitfield.instance == Accum);
8304
8305 return 0;
8306 }
8307
8308 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8309
8310 static int
8311 add_fused_jcc_padding_frag_p (void)
8312 {
8313 /* NB: Don't work with COND_JUMP86 without i386. */
8314 if (!align_branch_power
8315 || now_seg == absolute_section
8316 || !cpu_arch_flags.bitfield.cpui386
8317 || !(align_branch & align_branch_fused_bit))
8318 return 0;
8319
8320 if (maybe_fused_with_jcc_p ())
8321 {
8322 if (last_insn.kind == last_insn_other
8323 || last_insn.seg != now_seg)
8324 return 1;
8325 if (flag_debug)
8326 as_warn_where (last_insn.file, last_insn.line,
8327 _("`%s` skips -malign-branch-boundary on `%s`"),
8328 last_insn.name, i.tm.name);
8329 }
8330
8331 return 0;
8332 }
8333
8334 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8335
8336 static int
8337 add_branch_prefix_frag_p (void)
8338 {
8339 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8340 to PadLock instructions since they include prefixes in opcode. */
8341 if (!align_branch_power
8342 || !align_branch_prefix_size
8343 || now_seg == absolute_section
8344 || i.tm.cpu_flags.bitfield.cpupadlock
8345 || !cpu_arch_flags.bitfield.cpui386)
8346 return 0;
8347
8348 /* Don't add prefix if it is a prefix or there is no operand in case
8349 that segment prefix is special. */
8350 if (!i.operands || i.tm.opcode_modifier.isprefix)
8351 return 0;
8352
8353 if (last_insn.kind == last_insn_other
8354 || last_insn.seg != now_seg)
8355 return 1;
8356
8357 if (flag_debug)
8358 as_warn_where (last_insn.file, last_insn.line,
8359 _("`%s` skips -malign-branch-boundary on `%s`"),
8360 last_insn.name, i.tm.name);
8361
8362 return 0;
8363 }
8364
8365 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8366
8367 static int
8368 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8369 {
8370 int add_padding;
8371
8372 /* NB: Don't work with COND_JUMP86 without i386. */
8373 if (!align_branch_power
8374 || now_seg == absolute_section
8375 || !cpu_arch_flags.bitfield.cpui386)
8376 return 0;
8377
8378 add_padding = 0;
8379
8380 /* Check for jcc and direct jmp. */
8381 if (i.tm.opcode_modifier.jump == JUMP)
8382 {
8383 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8384 {
8385 *branch_p = align_branch_jmp;
8386 add_padding = align_branch & align_branch_jmp_bit;
8387 }
8388 else
8389 {
8390 *branch_p = align_branch_jcc;
8391 if ((align_branch & align_branch_jcc_bit))
8392 add_padding = 1;
8393 }
8394 }
8395 else if (is_any_vex_encoding (&i.tm))
8396 return 0;
8397 else if ((i.tm.base_opcode | 1) == 0xc3)
8398 {
8399 /* Near ret. */
8400 *branch_p = align_branch_ret;
8401 if ((align_branch & align_branch_ret_bit))
8402 add_padding = 1;
8403 }
8404 else
8405 {
8406 /* Check for indirect jmp, direct and indirect calls. */
8407 if (i.tm.base_opcode == 0xe8)
8408 {
8409 /* Direct call. */
8410 *branch_p = align_branch_call;
8411 if ((align_branch & align_branch_call_bit))
8412 add_padding = 1;
8413 }
8414 else if (i.tm.base_opcode == 0xff
8415 && (i.tm.extension_opcode == 2
8416 || i.tm.extension_opcode == 4))
8417 {
8418 /* Indirect call and jmp. */
8419 *branch_p = align_branch_indirect;
8420 if ((align_branch & align_branch_indirect_bit))
8421 add_padding = 1;
8422 }
8423
8424 if (add_padding
8425 && i.disp_operands
8426 && tls_get_addr
8427 && (i.op[0].disps->X_op == O_symbol
8428 || (i.op[0].disps->X_op == O_subtract
8429 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8430 {
8431 symbolS *s = i.op[0].disps->X_add_symbol;
8432 /* No padding to call to global or undefined tls_get_addr. */
8433 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8434 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8435 return 0;
8436 }
8437 }
8438
8439 if (add_padding
8440 && last_insn.kind != last_insn_other
8441 && last_insn.seg == now_seg)
8442 {
8443 if (flag_debug)
8444 as_warn_where (last_insn.file, last_insn.line,
8445 _("`%s` skips -malign-branch-boundary on `%s`"),
8446 last_insn.name, i.tm.name);
8447 return 0;
8448 }
8449
8450 return add_padding;
8451 }
8452
8453 static void
8454 output_insn (void)
8455 {
8456 fragS *insn_start_frag;
8457 offsetT insn_start_off;
8458 fragS *fragP = NULL;
8459 enum align_branch_kind branch = align_branch_none;
8460
8461 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8462 if (IS_ELF && x86_used_note)
8463 {
8464 if (i.tm.cpu_flags.bitfield.cpucmov)
8465 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8466 if (i.tm.cpu_flags.bitfield.cpusse)
8467 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8468 if (i.tm.cpu_flags.bitfield.cpusse2)
8469 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8470 if (i.tm.cpu_flags.bitfield.cpusse3)
8471 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8472 if (i.tm.cpu_flags.bitfield.cpussse3)
8473 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8474 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8475 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8476 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8477 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8478 if (i.tm.cpu_flags.bitfield.cpuavx)
8479 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8480 if (i.tm.cpu_flags.bitfield.cpuavx2)
8481 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8482 if (i.tm.cpu_flags.bitfield.cpufma)
8483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8484 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8485 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8486 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8487 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8488 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8489 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8490 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8491 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8492 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8493 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8494 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8496 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8498 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8500 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8502 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8504 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8506 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8508 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8510 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8512 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8514
8515 if (i.tm.cpu_flags.bitfield.cpu8087
8516 || i.tm.cpu_flags.bitfield.cpu287
8517 || i.tm.cpu_flags.bitfield.cpu387
8518 || i.tm.cpu_flags.bitfield.cpu687
8519 || i.tm.cpu_flags.bitfield.cpufisttp)
8520 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8521 if (i.has_regmmx
8522 || i.tm.base_opcode == 0xf77 /* emms */
8523 || i.tm.base_opcode == 0xf0e /* femms */)
8524 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8525 if (i.has_regxmm)
8526 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8527 if (i.has_regymm)
8528 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8529 if (i.has_regzmm)
8530 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8531 if (i.tm.cpu_flags.bitfield.cpufxsr)
8532 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8533 if (i.tm.cpu_flags.bitfield.cpuxsave)
8534 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8535 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8536 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8537 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8539 }
8540 #endif
8541
8542 /* Tie dwarf2 debug info to the address at the start of the insn.
8543 We can't do this after the insn has been output as the current
8544 frag may have been closed off. eg. by frag_var. */
8545 dwarf2_emit_insn (0);
8546
8547 insn_start_frag = frag_now;
8548 insn_start_off = frag_now_fix ();
8549
8550 if (add_branch_padding_frag_p (&branch))
8551 {
8552 char *p;
8553 /* Branch can be 8 bytes. Leave some room for prefixes. */
8554 unsigned int max_branch_padding_size = 14;
8555
8556 /* Align section to boundary. */
8557 record_alignment (now_seg, align_branch_power);
8558
8559 /* Make room for padding. */
8560 frag_grow (max_branch_padding_size);
8561
8562 /* Start of the padding. */
8563 p = frag_more (0);
8564
8565 fragP = frag_now;
8566
8567 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8568 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8569 NULL, 0, p);
8570
8571 fragP->tc_frag_data.branch_type = branch;
8572 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8573 }
8574
8575 /* Output jumps. */
8576 if (i.tm.opcode_modifier.jump == JUMP)
8577 output_branch ();
8578 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8579 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8580 output_jump ();
8581 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8582 output_interseg_jump ();
8583 else
8584 {
8585 /* Output normal instructions here. */
8586 char *p;
8587 unsigned char *q;
8588 unsigned int j;
8589 unsigned int prefix;
8590
8591 if (avoid_fence
8592 && (i.tm.base_opcode == 0xfaee8
8593 || i.tm.base_opcode == 0xfaef0
8594 || i.tm.base_opcode == 0xfaef8))
8595 {
8596 /* Encode lfence, mfence, and sfence as
8597 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8598 offsetT val = 0x240483f0ULL;
8599 p = frag_more (5);
8600 md_number_to_chars (p, val, 5);
8601 return;
8602 }
8603
8604 /* Some processors fail on LOCK prefix. This options makes
8605 assembler ignore LOCK prefix and serves as a workaround. */
8606 if (omit_lock_prefix)
8607 {
8608 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8609 return;
8610 i.prefix[LOCK_PREFIX] = 0;
8611 }
8612
8613 if (branch)
8614 /* Skip if this is a branch. */
8615 ;
8616 else if (add_fused_jcc_padding_frag_p ())
8617 {
8618 /* Make room for padding. */
8619 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8620 p = frag_more (0);
8621
8622 fragP = frag_now;
8623
8624 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8625 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8626 NULL, 0, p);
8627
8628 fragP->tc_frag_data.branch_type = align_branch_fused;
8629 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8630 }
8631 else if (add_branch_prefix_frag_p ())
8632 {
8633 unsigned int max_prefix_size = align_branch_prefix_size;
8634
8635 /* Make room for padding. */
8636 frag_grow (max_prefix_size);
8637 p = frag_more (0);
8638
8639 fragP = frag_now;
8640
8641 frag_var (rs_machine_dependent, max_prefix_size, 0,
8642 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8643 NULL, 0, p);
8644
8645 fragP->tc_frag_data.max_bytes = max_prefix_size;
8646 }
8647
8648 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8649 don't need the explicit prefix. */
8650 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8651 {
8652 switch (i.tm.opcode_length)
8653 {
8654 case 3:
8655 if (i.tm.base_opcode & 0xff000000)
8656 {
8657 prefix = (i.tm.base_opcode >> 24) & 0xff;
8658 if (!i.tm.cpu_flags.bitfield.cpupadlock
8659 || prefix != REPE_PREFIX_OPCODE
8660 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8661 add_prefix (prefix);
8662 }
8663 break;
8664 case 2:
8665 if ((i.tm.base_opcode & 0xff0000) != 0)
8666 {
8667 prefix = (i.tm.base_opcode >> 16) & 0xff;
8668 add_prefix (prefix);
8669 }
8670 break;
8671 case 1:
8672 break;
8673 case 0:
8674 /* Check for pseudo prefixes. */
8675 as_bad_where (insn_start_frag->fr_file,
8676 insn_start_frag->fr_line,
8677 _("pseudo prefix without instruction"));
8678 return;
8679 default:
8680 abort ();
8681 }
8682
8683 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8684 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8685 R_X86_64_GOTTPOFF relocation so that linker can safely
8686 perform IE->LE optimization. A dummy REX_OPCODE prefix
8687 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8688 relocation for GDesc -> IE/LE optimization. */
8689 if (x86_elf_abi == X86_64_X32_ABI
8690 && i.operands == 2
8691 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8692 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8693 && i.prefix[REX_PREFIX] == 0)
8694 add_prefix (REX_OPCODE);
8695 #endif
8696
8697 /* The prefix bytes. */
8698 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8699 if (*q)
8700 FRAG_APPEND_1_CHAR (*q);
8701 }
8702 else
8703 {
8704 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8705 if (*q)
8706 switch (j)
8707 {
8708 case REX_PREFIX:
8709 /* REX byte is encoded in VEX prefix. */
8710 break;
8711 case SEG_PREFIX:
8712 case ADDR_PREFIX:
8713 FRAG_APPEND_1_CHAR (*q);
8714 break;
8715 default:
8716 /* There should be no other prefixes for instructions
8717 with VEX prefix. */
8718 abort ();
8719 }
8720
8721 /* For EVEX instructions i.vrex should become 0 after
8722 build_evex_prefix. For VEX instructions upper 16 registers
8723 aren't available, so VREX should be 0. */
8724 if (i.vrex)
8725 abort ();
8726 /* Now the VEX prefix. */
8727 p = frag_more (i.vex.length);
8728 for (j = 0; j < i.vex.length; j++)
8729 p[j] = i.vex.bytes[j];
8730 }
8731
8732 /* Now the opcode; be careful about word order here! */
8733 if (i.tm.opcode_length == 1)
8734 {
8735 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8736 }
8737 else
8738 {
8739 switch (i.tm.opcode_length)
8740 {
8741 case 4:
8742 p = frag_more (4);
8743 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8744 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8745 break;
8746 case 3:
8747 p = frag_more (3);
8748 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8749 break;
8750 case 2:
8751 p = frag_more (2);
8752 break;
8753 default:
8754 abort ();
8755 break;
8756 }
8757
8758 /* Put out high byte first: can't use md_number_to_chars! */
8759 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8760 *p = i.tm.base_opcode & 0xff;
8761 }
8762
8763 /* Now the modrm byte and sib byte (if present). */
8764 if (i.tm.opcode_modifier.modrm)
8765 {
8766 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8767 | i.rm.reg << 3
8768 | i.rm.mode << 6));
8769 /* If i.rm.regmem == ESP (4)
8770 && i.rm.mode != (Register mode)
8771 && not 16 bit
8772 ==> need second modrm byte. */
8773 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8774 && i.rm.mode != 3
8775 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8776 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8777 | i.sib.index << 3
8778 | i.sib.scale << 6));
8779 }
8780
8781 if (i.disp_operands)
8782 output_disp (insn_start_frag, insn_start_off);
8783
8784 if (i.imm_operands)
8785 output_imm (insn_start_frag, insn_start_off);
8786
8787 /*
8788 * frag_now_fix () returning plain abs_section_offset when we're in the
8789 * absolute section, and abs_section_offset not getting updated as data
8790 * gets added to the frag breaks the logic below.
8791 */
8792 if (now_seg != absolute_section)
8793 {
8794 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8795 if (j > 15)
8796 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8797 j);
8798 else if (fragP)
8799 {
8800 /* NB: Don't add prefix with GOTPC relocation since
8801 output_disp() above depends on the fixed encoding
8802 length. Can't add prefix with TLS relocation since
8803 it breaks TLS linker optimization. */
8804 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8805 /* Prefix count on the current instruction. */
8806 unsigned int count = i.vex.length;
8807 unsigned int k;
8808 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8809 /* REX byte is encoded in VEX/EVEX prefix. */
8810 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8811 count++;
8812
8813 /* Count prefixes for extended opcode maps. */
8814 if (!i.vex.length)
8815 switch (i.tm.opcode_length)
8816 {
8817 case 3:
8818 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8819 {
8820 count++;
8821 switch ((i.tm.base_opcode >> 8) & 0xff)
8822 {
8823 case 0x38:
8824 case 0x3a:
8825 count++;
8826 break;
8827 default:
8828 break;
8829 }
8830 }
8831 break;
8832 case 2:
8833 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8834 count++;
8835 break;
8836 case 1:
8837 break;
8838 default:
8839 abort ();
8840 }
8841
8842 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8843 == BRANCH_PREFIX)
8844 {
8845 /* Set the maximum prefix size in BRANCH_PREFIX
8846 frag. */
8847 if (fragP->tc_frag_data.max_bytes > max)
8848 fragP->tc_frag_data.max_bytes = max;
8849 if (fragP->tc_frag_data.max_bytes > count)
8850 fragP->tc_frag_data.max_bytes -= count;
8851 else
8852 fragP->tc_frag_data.max_bytes = 0;
8853 }
8854 else
8855 {
8856 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8857 frag. */
8858 unsigned int max_prefix_size;
8859 if (align_branch_prefix_size > max)
8860 max_prefix_size = max;
8861 else
8862 max_prefix_size = align_branch_prefix_size;
8863 if (max_prefix_size > count)
8864 fragP->tc_frag_data.max_prefix_length
8865 = max_prefix_size - count;
8866 }
8867
8868 /* Use existing segment prefix if possible. Use CS
8869 segment prefix in 64-bit mode. In 32-bit mode, use SS
8870 segment prefix with ESP/EBP base register and use DS
8871 segment prefix without ESP/EBP base register. */
8872 if (i.prefix[SEG_PREFIX])
8873 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8874 else if (flag_code == CODE_64BIT)
8875 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8876 else if (i.base_reg
8877 && (i.base_reg->reg_num == 4
8878 || i.base_reg->reg_num == 5))
8879 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8880 else
8881 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8882 }
8883 }
8884 }
8885
8886 /* NB: Don't work with COND_JUMP86 without i386. */
8887 if (align_branch_power
8888 && now_seg != absolute_section
8889 && cpu_arch_flags.bitfield.cpui386)
8890 {
8891 /* Terminate each frag so that we can add prefix and check for
8892 fused jcc. */
8893 frag_wane (frag_now);
8894 frag_new (0);
8895 }
8896
8897 #ifdef DEBUG386
8898 if (flag_debug)
8899 {
8900 pi ("" /*line*/, &i);
8901 }
8902 #endif /* DEBUG386 */
8903 }
8904
8905 /* Return the size of the displacement operand N. */
8906
8907 static int
8908 disp_size (unsigned int n)
8909 {
8910 int size = 4;
8911
8912 if (i.types[n].bitfield.disp64)
8913 size = 8;
8914 else if (i.types[n].bitfield.disp8)
8915 size = 1;
8916 else if (i.types[n].bitfield.disp16)
8917 size = 2;
8918 return size;
8919 }
8920
8921 /* Return the size of the immediate operand N. */
8922
8923 static int
8924 imm_size (unsigned int n)
8925 {
8926 int size = 4;
8927 if (i.types[n].bitfield.imm64)
8928 size = 8;
8929 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8930 size = 1;
8931 else if (i.types[n].bitfield.imm16)
8932 size = 2;
8933 return size;
8934 }
8935
8936 static void
8937 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8938 {
8939 char *p;
8940 unsigned int n;
8941
8942 for (n = 0; n < i.operands; n++)
8943 {
8944 if (operand_type_check (i.types[n], disp))
8945 {
8946 if (i.op[n].disps->X_op == O_constant)
8947 {
8948 int size = disp_size (n);
8949 offsetT val = i.op[n].disps->X_add_number;
8950
8951 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8952 size);
8953 p = frag_more (size);
8954 md_number_to_chars (p, val, size);
8955 }
8956 else
8957 {
8958 enum bfd_reloc_code_real reloc_type;
8959 int size = disp_size (n);
8960 int sign = i.types[n].bitfield.disp32s;
8961 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8962 fixS *fixP;
8963
8964 /* We can't have 8 bit displacement here. */
8965 gas_assert (!i.types[n].bitfield.disp8);
8966
8967 /* The PC relative address is computed relative
8968 to the instruction boundary, so in case immediate
8969 fields follows, we need to adjust the value. */
8970 if (pcrel && i.imm_operands)
8971 {
8972 unsigned int n1;
8973 int sz = 0;
8974
8975 for (n1 = 0; n1 < i.operands; n1++)
8976 if (operand_type_check (i.types[n1], imm))
8977 {
8978 /* Only one immediate is allowed for PC
8979 relative address. */
8980 gas_assert (sz == 0);
8981 sz = imm_size (n1);
8982 i.op[n].disps->X_add_number -= sz;
8983 }
8984 /* We should find the immediate. */
8985 gas_assert (sz != 0);
8986 }
8987
8988 p = frag_more (size);
8989 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8990 if (GOT_symbol
8991 && GOT_symbol == i.op[n].disps->X_add_symbol
8992 && (((reloc_type == BFD_RELOC_32
8993 || reloc_type == BFD_RELOC_X86_64_32S
8994 || (reloc_type == BFD_RELOC_64
8995 && object_64bit))
8996 && (i.op[n].disps->X_op == O_symbol
8997 || (i.op[n].disps->X_op == O_add
8998 && ((symbol_get_value_expression
8999 (i.op[n].disps->X_op_symbol)->X_op)
9000 == O_subtract))))
9001 || reloc_type == BFD_RELOC_32_PCREL))
9002 {
9003 if (!object_64bit)
9004 {
9005 reloc_type = BFD_RELOC_386_GOTPC;
9006 i.has_gotpc_tls_reloc = TRUE;
9007 i.op[n].imms->X_add_number +=
9008 encoding_length (insn_start_frag, insn_start_off, p);
9009 }
9010 else if (reloc_type == BFD_RELOC_64)
9011 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9012 else
9013 /* Don't do the adjustment for x86-64, as there
9014 the pcrel addressing is relative to the _next_
9015 insn, and that is taken care of in other code. */
9016 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9017 }
9018 else if (align_branch_power)
9019 {
9020 switch (reloc_type)
9021 {
9022 case BFD_RELOC_386_TLS_GD:
9023 case BFD_RELOC_386_TLS_LDM:
9024 case BFD_RELOC_386_TLS_IE:
9025 case BFD_RELOC_386_TLS_IE_32:
9026 case BFD_RELOC_386_TLS_GOTIE:
9027 case BFD_RELOC_386_TLS_GOTDESC:
9028 case BFD_RELOC_386_TLS_DESC_CALL:
9029 case BFD_RELOC_X86_64_TLSGD:
9030 case BFD_RELOC_X86_64_TLSLD:
9031 case BFD_RELOC_X86_64_GOTTPOFF:
9032 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9033 case BFD_RELOC_X86_64_TLSDESC_CALL:
9034 i.has_gotpc_tls_reloc = TRUE;
9035 default:
9036 break;
9037 }
9038 }
9039 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9040 size, i.op[n].disps, pcrel,
9041 reloc_type);
9042 /* Check for "call/jmp *mem", "mov mem, %reg",
9043 "test %reg, mem" and "binop mem, %reg" where binop
9044 is one of adc, add, and, cmp, or, sbb, sub, xor
9045 instructions without data prefix. Always generate
9046 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9047 if (i.prefix[DATA_PREFIX] == 0
9048 && (generate_relax_relocations
9049 || (!object_64bit
9050 && i.rm.mode == 0
9051 && i.rm.regmem == 5))
9052 && (i.rm.mode == 2
9053 || (i.rm.mode == 0 && i.rm.regmem == 5))
9054 && !is_any_vex_encoding(&i.tm)
9055 && ((i.operands == 1
9056 && i.tm.base_opcode == 0xff
9057 && (i.rm.reg == 2 || i.rm.reg == 4))
9058 || (i.operands == 2
9059 && (i.tm.base_opcode == 0x8b
9060 || i.tm.base_opcode == 0x85
9061 || (i.tm.base_opcode & ~0x38) == 0x03))))
9062 {
9063 if (object_64bit)
9064 {
9065 fixP->fx_tcbit = i.rex != 0;
9066 if (i.base_reg
9067 && (i.base_reg->reg_num == RegIP))
9068 fixP->fx_tcbit2 = 1;
9069 }
9070 else
9071 fixP->fx_tcbit2 = 1;
9072 }
9073 }
9074 }
9075 }
9076 }
9077
9078 static void
9079 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9080 {
9081 char *p;
9082 unsigned int n;
9083
9084 for (n = 0; n < i.operands; n++)
9085 {
9086 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9087 if (i.rounding && (int) n == i.rounding->operand)
9088 continue;
9089
9090 if (operand_type_check (i.types[n], imm))
9091 {
9092 if (i.op[n].imms->X_op == O_constant)
9093 {
9094 int size = imm_size (n);
9095 offsetT val;
9096
9097 val = offset_in_range (i.op[n].imms->X_add_number,
9098 size);
9099 p = frag_more (size);
9100 md_number_to_chars (p, val, size);
9101 }
9102 else
9103 {
9104 /* Not absolute_section.
9105 Need a 32-bit fixup (don't support 8bit
9106 non-absolute imms). Try to support other
9107 sizes ... */
9108 enum bfd_reloc_code_real reloc_type;
9109 int size = imm_size (n);
9110 int sign;
9111
9112 if (i.types[n].bitfield.imm32s
9113 && (i.suffix == QWORD_MNEM_SUFFIX
9114 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9115 sign = 1;
9116 else
9117 sign = 0;
9118
9119 p = frag_more (size);
9120 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9121
9122 /* This is tough to explain. We end up with this one if we
9123 * have operands that look like
9124 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9125 * obtain the absolute address of the GOT, and it is strongly
9126 * preferable from a performance point of view to avoid using
9127 * a runtime relocation for this. The actual sequence of
9128 * instructions often look something like:
9129 *
9130 * call .L66
9131 * .L66:
9132 * popl %ebx
9133 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9134 *
9135 * The call and pop essentially return the absolute address
9136 * of the label .L66 and store it in %ebx. The linker itself
9137 * will ultimately change the first operand of the addl so
9138 * that %ebx points to the GOT, but to keep things simple, the
9139 * .o file must have this operand set so that it generates not
9140 * the absolute address of .L66, but the absolute address of
9141 * itself. This allows the linker itself simply treat a GOTPC
9142 * relocation as asking for a pcrel offset to the GOT to be
9143 * added in, and the addend of the relocation is stored in the
9144 * operand field for the instruction itself.
9145 *
9146 * Our job here is to fix the operand so that it would add
9147 * the correct offset so that %ebx would point to itself. The
9148 * thing that is tricky is that .-.L66 will point to the
9149 * beginning of the instruction, so we need to further modify
9150 * the operand so that it will point to itself. There are
9151 * other cases where you have something like:
9152 *
9153 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9154 *
9155 * and here no correction would be required. Internally in
9156 * the assembler we treat operands of this form as not being
9157 * pcrel since the '.' is explicitly mentioned, and I wonder
9158 * whether it would simplify matters to do it this way. Who
9159 * knows. In earlier versions of the PIC patches, the
9160 * pcrel_adjust field was used to store the correction, but
9161 * since the expression is not pcrel, I felt it would be
9162 * confusing to do it this way. */
9163
9164 if ((reloc_type == BFD_RELOC_32
9165 || reloc_type == BFD_RELOC_X86_64_32S
9166 || reloc_type == BFD_RELOC_64)
9167 && GOT_symbol
9168 && GOT_symbol == i.op[n].imms->X_add_symbol
9169 && (i.op[n].imms->X_op == O_symbol
9170 || (i.op[n].imms->X_op == O_add
9171 && ((symbol_get_value_expression
9172 (i.op[n].imms->X_op_symbol)->X_op)
9173 == O_subtract))))
9174 {
9175 if (!object_64bit)
9176 reloc_type = BFD_RELOC_386_GOTPC;
9177 else if (size == 4)
9178 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9179 else if (size == 8)
9180 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9181 i.has_gotpc_tls_reloc = TRUE;
9182 i.op[n].imms->X_add_number +=
9183 encoding_length (insn_start_frag, insn_start_off, p);
9184 }
9185 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9186 i.op[n].imms, 0, reloc_type);
9187 }
9188 }
9189 }
9190 }
9191 \f
9192 /* x86_cons_fix_new is called via the expression parsing code when a
9193 reloc is needed. We use this hook to get the correct .got reloc. */
9194 static int cons_sign = -1;
9195
9196 void
9197 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9198 expressionS *exp, bfd_reloc_code_real_type r)
9199 {
9200 r = reloc (len, 0, cons_sign, r);
9201
9202 #ifdef TE_PE
9203 if (exp->X_op == O_secrel)
9204 {
9205 exp->X_op = O_symbol;
9206 r = BFD_RELOC_32_SECREL;
9207 }
9208 #endif
9209
9210 fix_new_exp (frag, off, len, exp, 0, r);
9211 }
9212
9213 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9214 purpose of the `.dc.a' internal pseudo-op. */
9215
9216 int
9217 x86_address_bytes (void)
9218 {
9219 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9220 return 4;
9221 return stdoutput->arch_info->bits_per_address / 8;
9222 }
9223
9224 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9225 || defined (LEX_AT)
9226 # define lex_got(reloc, adjust, types) NULL
9227 #else
9228 /* Parse operands of the form
9229 <symbol>@GOTOFF+<nnn>
9230 and similar .plt or .got references.
9231
9232 If we find one, set up the correct relocation in RELOC and copy the
9233 input string, minus the `@GOTOFF' into a malloc'd buffer for
9234 parsing by the calling routine. Return this buffer, and if ADJUST
9235 is non-null set it to the length of the string we removed from the
9236 input line. Otherwise return NULL. */
9237 static char *
9238 lex_got (enum bfd_reloc_code_real *rel,
9239 int *adjust,
9240 i386_operand_type *types)
9241 {
9242 /* Some of the relocations depend on the size of what field is to
9243 be relocated. But in our callers i386_immediate and i386_displacement
9244 we don't yet know the operand size (this will be set by insn
9245 matching). Hence we record the word32 relocation here,
9246 and adjust the reloc according to the real size in reloc(). */
9247 static const struct {
9248 const char *str;
9249 int len;
9250 const enum bfd_reloc_code_real rel[2];
9251 const i386_operand_type types64;
9252 } gotrel[] = {
9253 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9254 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9255 BFD_RELOC_SIZE32 },
9256 OPERAND_TYPE_IMM32_64 },
9257 #endif
9258 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9259 BFD_RELOC_X86_64_PLTOFF64 },
9260 OPERAND_TYPE_IMM64 },
9261 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9262 BFD_RELOC_X86_64_PLT32 },
9263 OPERAND_TYPE_IMM32_32S_DISP32 },
9264 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9265 BFD_RELOC_X86_64_GOTPLT64 },
9266 OPERAND_TYPE_IMM64_DISP64 },
9267 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9268 BFD_RELOC_X86_64_GOTOFF64 },
9269 OPERAND_TYPE_IMM64_DISP64 },
9270 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9271 BFD_RELOC_X86_64_GOTPCREL },
9272 OPERAND_TYPE_IMM32_32S_DISP32 },
9273 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9274 BFD_RELOC_X86_64_TLSGD },
9275 OPERAND_TYPE_IMM32_32S_DISP32 },
9276 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9277 _dummy_first_bfd_reloc_code_real },
9278 OPERAND_TYPE_NONE },
9279 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9280 BFD_RELOC_X86_64_TLSLD },
9281 OPERAND_TYPE_IMM32_32S_DISP32 },
9282 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9283 BFD_RELOC_X86_64_GOTTPOFF },
9284 OPERAND_TYPE_IMM32_32S_DISP32 },
9285 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9286 BFD_RELOC_X86_64_TPOFF32 },
9287 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9288 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9289 _dummy_first_bfd_reloc_code_real },
9290 OPERAND_TYPE_NONE },
9291 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9292 BFD_RELOC_X86_64_DTPOFF32 },
9293 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9294 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9295 _dummy_first_bfd_reloc_code_real },
9296 OPERAND_TYPE_NONE },
9297 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9298 _dummy_first_bfd_reloc_code_real },
9299 OPERAND_TYPE_NONE },
9300 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9301 BFD_RELOC_X86_64_GOT32 },
9302 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9303 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9304 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9305 OPERAND_TYPE_IMM32_32S_DISP32 },
9306 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9307 BFD_RELOC_X86_64_TLSDESC_CALL },
9308 OPERAND_TYPE_IMM32_32S_DISP32 },
9309 };
9310 char *cp;
9311 unsigned int j;
9312
9313 #if defined (OBJ_MAYBE_ELF)
9314 if (!IS_ELF)
9315 return NULL;
9316 #endif
9317
9318 for (cp = input_line_pointer; *cp != '@'; cp++)
9319 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9320 return NULL;
9321
9322 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9323 {
9324 int len = gotrel[j].len;
9325 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9326 {
9327 if (gotrel[j].rel[object_64bit] != 0)
9328 {
9329 int first, second;
9330 char *tmpbuf, *past_reloc;
9331
9332 *rel = gotrel[j].rel[object_64bit];
9333
9334 if (types)
9335 {
9336 if (flag_code != CODE_64BIT)
9337 {
9338 types->bitfield.imm32 = 1;
9339 types->bitfield.disp32 = 1;
9340 }
9341 else
9342 *types = gotrel[j].types64;
9343 }
9344
9345 if (j != 0 && GOT_symbol == NULL)
9346 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9347
9348 /* The length of the first part of our input line. */
9349 first = cp - input_line_pointer;
9350
9351 /* The second part goes from after the reloc token until
9352 (and including) an end_of_line char or comma. */
9353 past_reloc = cp + 1 + len;
9354 cp = past_reloc;
9355 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9356 ++cp;
9357 second = cp + 1 - past_reloc;
9358
9359 /* Allocate and copy string. The trailing NUL shouldn't
9360 be necessary, but be safe. */
9361 tmpbuf = XNEWVEC (char, first + second + 2);
9362 memcpy (tmpbuf, input_line_pointer, first);
9363 if (second != 0 && *past_reloc != ' ')
9364 /* Replace the relocation token with ' ', so that
9365 errors like foo@GOTOFF1 will be detected. */
9366 tmpbuf[first++] = ' ';
9367 else
9368 /* Increment length by 1 if the relocation token is
9369 removed. */
9370 len++;
9371 if (adjust)
9372 *adjust = len;
9373 memcpy (tmpbuf + first, past_reloc, second);
9374 tmpbuf[first + second] = '\0';
9375 return tmpbuf;
9376 }
9377
9378 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9379 gotrel[j].str, 1 << (5 + object_64bit));
9380 return NULL;
9381 }
9382 }
9383
9384 /* Might be a symbol version string. Don't as_bad here. */
9385 return NULL;
9386 }
9387 #endif
9388
9389 #ifdef TE_PE
9390 #ifdef lex_got
9391 #undef lex_got
9392 #endif
9393 /* Parse operands of the form
9394 <symbol>@SECREL32+<nnn>
9395
9396 If we find one, set up the correct relocation in RELOC and copy the
9397 input string, minus the `@SECREL32' into a malloc'd buffer for
9398 parsing by the calling routine. Return this buffer, and if ADJUST
9399 is non-null set it to the length of the string we removed from the
9400 input line. Otherwise return NULL.
9401
9402 This function is copied from the ELF version above adjusted for PE targets. */
9403
9404 static char *
9405 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9406 int *adjust ATTRIBUTE_UNUSED,
9407 i386_operand_type *types)
9408 {
9409 static const struct
9410 {
9411 const char *str;
9412 int len;
9413 const enum bfd_reloc_code_real rel[2];
9414 const i386_operand_type types64;
9415 }
9416 gotrel[] =
9417 {
9418 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9419 BFD_RELOC_32_SECREL },
9420 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9421 };
9422
9423 char *cp;
9424 unsigned j;
9425
9426 for (cp = input_line_pointer; *cp != '@'; cp++)
9427 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9428 return NULL;
9429
9430 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9431 {
9432 int len = gotrel[j].len;
9433
9434 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9435 {
9436 if (gotrel[j].rel[object_64bit] != 0)
9437 {
9438 int first, second;
9439 char *tmpbuf, *past_reloc;
9440
9441 *rel = gotrel[j].rel[object_64bit];
9442 if (adjust)
9443 *adjust = len;
9444
9445 if (types)
9446 {
9447 if (flag_code != CODE_64BIT)
9448 {
9449 types->bitfield.imm32 = 1;
9450 types->bitfield.disp32 = 1;
9451 }
9452 else
9453 *types = gotrel[j].types64;
9454 }
9455
9456 /* The length of the first part of our input line. */
9457 first = cp - input_line_pointer;
9458
9459 /* The second part goes from after the reloc token until
9460 (and including) an end_of_line char or comma. */
9461 past_reloc = cp + 1 + len;
9462 cp = past_reloc;
9463 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9464 ++cp;
9465 second = cp + 1 - past_reloc;
9466
9467 /* Allocate and copy string. The trailing NUL shouldn't
9468 be necessary, but be safe. */
9469 tmpbuf = XNEWVEC (char, first + second + 2);
9470 memcpy (tmpbuf, input_line_pointer, first);
9471 if (second != 0 && *past_reloc != ' ')
9472 /* Replace the relocation token with ' ', so that
9473 errors like foo@SECLREL321 will be detected. */
9474 tmpbuf[first++] = ' ';
9475 memcpy (tmpbuf + first, past_reloc, second);
9476 tmpbuf[first + second] = '\0';
9477 return tmpbuf;
9478 }
9479
9480 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9481 gotrel[j].str, 1 << (5 + object_64bit));
9482 return NULL;
9483 }
9484 }
9485
9486 /* Might be a symbol version string. Don't as_bad here. */
9487 return NULL;
9488 }
9489
9490 #endif /* TE_PE */
9491
9492 bfd_reloc_code_real_type
9493 x86_cons (expressionS *exp, int size)
9494 {
9495 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9496
9497 intel_syntax = -intel_syntax;
9498
9499 exp->X_md = 0;
9500 if (size == 4 || (object_64bit && size == 8))
9501 {
9502 /* Handle @GOTOFF and the like in an expression. */
9503 char *save;
9504 char *gotfree_input_line;
9505 int adjust = 0;
9506
9507 save = input_line_pointer;
9508 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9509 if (gotfree_input_line)
9510 input_line_pointer = gotfree_input_line;
9511
9512 expression (exp);
9513
9514 if (gotfree_input_line)
9515 {
9516 /* expression () has merrily parsed up to the end of line,
9517 or a comma - in the wrong buffer. Transfer how far
9518 input_line_pointer has moved to the right buffer. */
9519 input_line_pointer = (save
9520 + (input_line_pointer - gotfree_input_line)
9521 + adjust);
9522 free (gotfree_input_line);
9523 if (exp->X_op == O_constant
9524 || exp->X_op == O_absent
9525 || exp->X_op == O_illegal
9526 || exp->X_op == O_register
9527 || exp->X_op == O_big)
9528 {
9529 char c = *input_line_pointer;
9530 *input_line_pointer = 0;
9531 as_bad (_("missing or invalid expression `%s'"), save);
9532 *input_line_pointer = c;
9533 }
9534 else if ((got_reloc == BFD_RELOC_386_PLT32
9535 || got_reloc == BFD_RELOC_X86_64_PLT32)
9536 && exp->X_op != O_symbol)
9537 {
9538 char c = *input_line_pointer;
9539 *input_line_pointer = 0;
9540 as_bad (_("invalid PLT expression `%s'"), save);
9541 *input_line_pointer = c;
9542 }
9543 }
9544 }
9545 else
9546 expression (exp);
9547
9548 intel_syntax = -intel_syntax;
9549
9550 if (intel_syntax)
9551 i386_intel_simplify (exp);
9552
9553 return got_reloc;
9554 }
9555
9556 static void
9557 signed_cons (int size)
9558 {
9559 if (flag_code == CODE_64BIT)
9560 cons_sign = 1;
9561 cons (size);
9562 cons_sign = -1;
9563 }
9564
9565 #ifdef TE_PE
9566 static void
9567 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9568 {
9569 expressionS exp;
9570
9571 do
9572 {
9573 expression (&exp);
9574 if (exp.X_op == O_symbol)
9575 exp.X_op = O_secrel;
9576
9577 emit_expr (&exp, 4);
9578 }
9579 while (*input_line_pointer++ == ',');
9580
9581 input_line_pointer--;
9582 demand_empty_rest_of_line ();
9583 }
9584 #endif
9585
9586 /* Handle Vector operations. */
9587
9588 static char *
9589 check_VecOperations (char *op_string, char *op_end)
9590 {
9591 const reg_entry *mask;
9592 const char *saved;
9593 char *end_op;
9594
9595 while (*op_string
9596 && (op_end == NULL || op_string < op_end))
9597 {
9598 saved = op_string;
9599 if (*op_string == '{')
9600 {
9601 op_string++;
9602
9603 /* Check broadcasts. */
9604 if (strncmp (op_string, "1to", 3) == 0)
9605 {
9606 int bcst_type;
9607
9608 if (i.broadcast)
9609 goto duplicated_vec_op;
9610
9611 op_string += 3;
9612 if (*op_string == '8')
9613 bcst_type = 8;
9614 else if (*op_string == '4')
9615 bcst_type = 4;
9616 else if (*op_string == '2')
9617 bcst_type = 2;
9618 else if (*op_string == '1'
9619 && *(op_string+1) == '6')
9620 {
9621 bcst_type = 16;
9622 op_string++;
9623 }
9624 else
9625 {
9626 as_bad (_("Unsupported broadcast: `%s'"), saved);
9627 return NULL;
9628 }
9629 op_string++;
9630
9631 broadcast_op.type = bcst_type;
9632 broadcast_op.operand = this_operand;
9633 broadcast_op.bytes = 0;
9634 i.broadcast = &broadcast_op;
9635 }
9636 /* Check masking operation. */
9637 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9638 {
9639 /* k0 can't be used for write mask. */
9640 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9641 {
9642 as_bad (_("`%s%s' can't be used for write mask"),
9643 register_prefix, mask->reg_name);
9644 return NULL;
9645 }
9646
9647 if (!i.mask)
9648 {
9649 mask_op.mask = mask;
9650 mask_op.zeroing = 0;
9651 mask_op.operand = this_operand;
9652 i.mask = &mask_op;
9653 }
9654 else
9655 {
9656 if (i.mask->mask)
9657 goto duplicated_vec_op;
9658
9659 i.mask->mask = mask;
9660
9661 /* Only "{z}" is allowed here. No need to check
9662 zeroing mask explicitly. */
9663 if (i.mask->operand != this_operand)
9664 {
9665 as_bad (_("invalid write mask `%s'"), saved);
9666 return NULL;
9667 }
9668 }
9669
9670 op_string = end_op;
9671 }
9672 /* Check zeroing-flag for masking operation. */
9673 else if (*op_string == 'z')
9674 {
9675 if (!i.mask)
9676 {
9677 mask_op.mask = NULL;
9678 mask_op.zeroing = 1;
9679 mask_op.operand = this_operand;
9680 i.mask = &mask_op;
9681 }
9682 else
9683 {
9684 if (i.mask->zeroing)
9685 {
9686 duplicated_vec_op:
9687 as_bad (_("duplicated `%s'"), saved);
9688 return NULL;
9689 }
9690
9691 i.mask->zeroing = 1;
9692
9693 /* Only "{%k}" is allowed here. No need to check mask
9694 register explicitly. */
9695 if (i.mask->operand != this_operand)
9696 {
9697 as_bad (_("invalid zeroing-masking `%s'"),
9698 saved);
9699 return NULL;
9700 }
9701 }
9702
9703 op_string++;
9704 }
9705 else
9706 goto unknown_vec_op;
9707
9708 if (*op_string != '}')
9709 {
9710 as_bad (_("missing `}' in `%s'"), saved);
9711 return NULL;
9712 }
9713 op_string++;
9714
9715 /* Strip whitespace since the addition of pseudo prefixes
9716 changed how the scrubber treats '{'. */
9717 if (is_space_char (*op_string))
9718 ++op_string;
9719
9720 continue;
9721 }
9722 unknown_vec_op:
9723 /* We don't know this one. */
9724 as_bad (_("unknown vector operation: `%s'"), saved);
9725 return NULL;
9726 }
9727
9728 if (i.mask && i.mask->zeroing && !i.mask->mask)
9729 {
9730 as_bad (_("zeroing-masking only allowed with write mask"));
9731 return NULL;
9732 }
9733
9734 return op_string;
9735 }
9736
9737 static int
9738 i386_immediate (char *imm_start)
9739 {
9740 char *save_input_line_pointer;
9741 char *gotfree_input_line;
9742 segT exp_seg = 0;
9743 expressionS *exp;
9744 i386_operand_type types;
9745
9746 operand_type_set (&types, ~0);
9747
9748 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9749 {
9750 as_bad (_("at most %d immediate operands are allowed"),
9751 MAX_IMMEDIATE_OPERANDS);
9752 return 0;
9753 }
9754
9755 exp = &im_expressions[i.imm_operands++];
9756 i.op[this_operand].imms = exp;
9757
9758 if (is_space_char (*imm_start))
9759 ++imm_start;
9760
9761 save_input_line_pointer = input_line_pointer;
9762 input_line_pointer = imm_start;
9763
9764 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9765 if (gotfree_input_line)
9766 input_line_pointer = gotfree_input_line;
9767
9768 exp_seg = expression (exp);
9769
9770 SKIP_WHITESPACE ();
9771
9772 /* Handle vector operations. */
9773 if (*input_line_pointer == '{')
9774 {
9775 input_line_pointer = check_VecOperations (input_line_pointer,
9776 NULL);
9777 if (input_line_pointer == NULL)
9778 return 0;
9779 }
9780
9781 if (*input_line_pointer)
9782 as_bad (_("junk `%s' after expression"), input_line_pointer);
9783
9784 input_line_pointer = save_input_line_pointer;
9785 if (gotfree_input_line)
9786 {
9787 free (gotfree_input_line);
9788
9789 if (exp->X_op == O_constant || exp->X_op == O_register)
9790 exp->X_op = O_illegal;
9791 }
9792
9793 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9794 }
9795
9796 static int
9797 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9798 i386_operand_type types, const char *imm_start)
9799 {
9800 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9801 {
9802 if (imm_start)
9803 as_bad (_("missing or invalid immediate expression `%s'"),
9804 imm_start);
9805 return 0;
9806 }
9807 else if (exp->X_op == O_constant)
9808 {
9809 /* Size it properly later. */
9810 i.types[this_operand].bitfield.imm64 = 1;
9811 /* If not 64bit, sign extend val. */
9812 if (flag_code != CODE_64BIT
9813 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9814 exp->X_add_number
9815 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9816 }
9817 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9818 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9819 && exp_seg != absolute_section
9820 && exp_seg != text_section
9821 && exp_seg != data_section
9822 && exp_seg != bss_section
9823 && exp_seg != undefined_section
9824 && !bfd_is_com_section (exp_seg))
9825 {
9826 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9827 return 0;
9828 }
9829 #endif
9830 else if (!intel_syntax && exp_seg == reg_section)
9831 {
9832 if (imm_start)
9833 as_bad (_("illegal immediate register operand %s"), imm_start);
9834 return 0;
9835 }
9836 else
9837 {
9838 /* This is an address. The size of the address will be
9839 determined later, depending on destination register,
9840 suffix, or the default for the section. */
9841 i.types[this_operand].bitfield.imm8 = 1;
9842 i.types[this_operand].bitfield.imm16 = 1;
9843 i.types[this_operand].bitfield.imm32 = 1;
9844 i.types[this_operand].bitfield.imm32s = 1;
9845 i.types[this_operand].bitfield.imm64 = 1;
9846 i.types[this_operand] = operand_type_and (i.types[this_operand],
9847 types);
9848 }
9849
9850 return 1;
9851 }
9852
9853 static char *
9854 i386_scale (char *scale)
9855 {
9856 offsetT val;
9857 char *save = input_line_pointer;
9858
9859 input_line_pointer = scale;
9860 val = get_absolute_expression ();
9861
9862 switch (val)
9863 {
9864 case 1:
9865 i.log2_scale_factor = 0;
9866 break;
9867 case 2:
9868 i.log2_scale_factor = 1;
9869 break;
9870 case 4:
9871 i.log2_scale_factor = 2;
9872 break;
9873 case 8:
9874 i.log2_scale_factor = 3;
9875 break;
9876 default:
9877 {
9878 char sep = *input_line_pointer;
9879
9880 *input_line_pointer = '\0';
9881 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9882 scale);
9883 *input_line_pointer = sep;
9884 input_line_pointer = save;
9885 return NULL;
9886 }
9887 }
9888 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9889 {
9890 as_warn (_("scale factor of %d without an index register"),
9891 1 << i.log2_scale_factor);
9892 i.log2_scale_factor = 0;
9893 }
9894 scale = input_line_pointer;
9895 input_line_pointer = save;
9896 return scale;
9897 }
9898
9899 static int
9900 i386_displacement (char *disp_start, char *disp_end)
9901 {
9902 expressionS *exp;
9903 segT exp_seg = 0;
9904 char *save_input_line_pointer;
9905 char *gotfree_input_line;
9906 int override;
9907 i386_operand_type bigdisp, types = anydisp;
9908 int ret;
9909
9910 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9911 {
9912 as_bad (_("at most %d displacement operands are allowed"),
9913 MAX_MEMORY_OPERANDS);
9914 return 0;
9915 }
9916
9917 operand_type_set (&bigdisp, 0);
9918 if (i.jumpabsolute
9919 || i.types[this_operand].bitfield.baseindex
9920 || (current_templates->start->opcode_modifier.jump != JUMP
9921 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9922 {
9923 i386_addressing_mode ();
9924 override = (i.prefix[ADDR_PREFIX] != 0);
9925 if (flag_code == CODE_64BIT)
9926 {
9927 if (!override)
9928 {
9929 bigdisp.bitfield.disp32s = 1;
9930 bigdisp.bitfield.disp64 = 1;
9931 }
9932 else
9933 bigdisp.bitfield.disp32 = 1;
9934 }
9935 else if ((flag_code == CODE_16BIT) ^ override)
9936 bigdisp.bitfield.disp16 = 1;
9937 else
9938 bigdisp.bitfield.disp32 = 1;
9939 }
9940 else
9941 {
9942 /* For PC-relative branches, the width of the displacement may be
9943 dependent upon data size, but is never dependent upon address size.
9944 Also make sure to not unintentionally match against a non-PC-relative
9945 branch template. */
9946 static templates aux_templates;
9947 const insn_template *t = current_templates->start;
9948 bfd_boolean has_intel64 = FALSE;
9949
9950 aux_templates.start = t;
9951 while (++t < current_templates->end)
9952 {
9953 if (t->opcode_modifier.jump
9954 != current_templates->start->opcode_modifier.jump)
9955 break;
9956 if ((t->opcode_modifier.isa64 >= INTEL64))
9957 has_intel64 = TRUE;
9958 }
9959 if (t < current_templates->end)
9960 {
9961 aux_templates.end = t;
9962 current_templates = &aux_templates;
9963 }
9964
9965 override = (i.prefix[DATA_PREFIX] != 0);
9966 if (flag_code == CODE_64BIT)
9967 {
9968 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9969 && (!intel64 || !has_intel64))
9970 bigdisp.bitfield.disp16 = 1;
9971 else
9972 bigdisp.bitfield.disp32s = 1;
9973 }
9974 else
9975 {
9976 if (!override)
9977 override = (i.suffix == (flag_code != CODE_16BIT
9978 ? WORD_MNEM_SUFFIX
9979 : LONG_MNEM_SUFFIX));
9980 bigdisp.bitfield.disp32 = 1;
9981 if ((flag_code == CODE_16BIT) ^ override)
9982 {
9983 bigdisp.bitfield.disp32 = 0;
9984 bigdisp.bitfield.disp16 = 1;
9985 }
9986 }
9987 }
9988 i.types[this_operand] = operand_type_or (i.types[this_operand],
9989 bigdisp);
9990
9991 exp = &disp_expressions[i.disp_operands];
9992 i.op[this_operand].disps = exp;
9993 i.disp_operands++;
9994 save_input_line_pointer = input_line_pointer;
9995 input_line_pointer = disp_start;
9996 END_STRING_AND_SAVE (disp_end);
9997
9998 #ifndef GCC_ASM_O_HACK
9999 #define GCC_ASM_O_HACK 0
10000 #endif
10001 #if GCC_ASM_O_HACK
10002 END_STRING_AND_SAVE (disp_end + 1);
10003 if (i.types[this_operand].bitfield.baseIndex
10004 && displacement_string_end[-1] == '+')
10005 {
10006 /* This hack is to avoid a warning when using the "o"
10007 constraint within gcc asm statements.
10008 For instance:
10009
10010 #define _set_tssldt_desc(n,addr,limit,type) \
10011 __asm__ __volatile__ ( \
10012 "movw %w2,%0\n\t" \
10013 "movw %w1,2+%0\n\t" \
10014 "rorl $16,%1\n\t" \
10015 "movb %b1,4+%0\n\t" \
10016 "movb %4,5+%0\n\t" \
10017 "movb $0,6+%0\n\t" \
10018 "movb %h1,7+%0\n\t" \
10019 "rorl $16,%1" \
10020 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10021
10022 This works great except that the output assembler ends
10023 up looking a bit weird if it turns out that there is
10024 no offset. You end up producing code that looks like:
10025
10026 #APP
10027 movw $235,(%eax)
10028 movw %dx,2+(%eax)
10029 rorl $16,%edx
10030 movb %dl,4+(%eax)
10031 movb $137,5+(%eax)
10032 movb $0,6+(%eax)
10033 movb %dh,7+(%eax)
10034 rorl $16,%edx
10035 #NO_APP
10036
10037 So here we provide the missing zero. */
10038
10039 *displacement_string_end = '0';
10040 }
10041 #endif
10042 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10043 if (gotfree_input_line)
10044 input_line_pointer = gotfree_input_line;
10045
10046 exp_seg = expression (exp);
10047
10048 SKIP_WHITESPACE ();
10049 if (*input_line_pointer)
10050 as_bad (_("junk `%s' after expression"), input_line_pointer);
10051 #if GCC_ASM_O_HACK
10052 RESTORE_END_STRING (disp_end + 1);
10053 #endif
10054 input_line_pointer = save_input_line_pointer;
10055 if (gotfree_input_line)
10056 {
10057 free (gotfree_input_line);
10058
10059 if (exp->X_op == O_constant || exp->X_op == O_register)
10060 exp->X_op = O_illegal;
10061 }
10062
10063 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10064
10065 RESTORE_END_STRING (disp_end);
10066
10067 return ret;
10068 }
10069
10070 static int
10071 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10072 i386_operand_type types, const char *disp_start)
10073 {
10074 i386_operand_type bigdisp;
10075 int ret = 1;
10076
10077 /* We do this to make sure that the section symbol is in
10078 the symbol table. We will ultimately change the relocation
10079 to be relative to the beginning of the section. */
10080 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10081 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10082 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10083 {
10084 if (exp->X_op != O_symbol)
10085 goto inv_disp;
10086
10087 if (S_IS_LOCAL (exp->X_add_symbol)
10088 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10089 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10090 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10091 exp->X_op = O_subtract;
10092 exp->X_op_symbol = GOT_symbol;
10093 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10094 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10095 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10096 i.reloc[this_operand] = BFD_RELOC_64;
10097 else
10098 i.reloc[this_operand] = BFD_RELOC_32;
10099 }
10100
10101 else if (exp->X_op == O_absent
10102 || exp->X_op == O_illegal
10103 || exp->X_op == O_big)
10104 {
10105 inv_disp:
10106 as_bad (_("missing or invalid displacement expression `%s'"),
10107 disp_start);
10108 ret = 0;
10109 }
10110
10111 else if (flag_code == CODE_64BIT
10112 && !i.prefix[ADDR_PREFIX]
10113 && exp->X_op == O_constant)
10114 {
10115 /* Since displacement is signed extended to 64bit, don't allow
10116 disp32 and turn off disp32s if they are out of range. */
10117 i.types[this_operand].bitfield.disp32 = 0;
10118 if (!fits_in_signed_long (exp->X_add_number))
10119 {
10120 i.types[this_operand].bitfield.disp32s = 0;
10121 if (i.types[this_operand].bitfield.baseindex)
10122 {
10123 as_bad (_("0x%lx out range of signed 32bit displacement"),
10124 (long) exp->X_add_number);
10125 ret = 0;
10126 }
10127 }
10128 }
10129
10130 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10131 else if (exp->X_op != O_constant
10132 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10133 && exp_seg != absolute_section
10134 && exp_seg != text_section
10135 && exp_seg != data_section
10136 && exp_seg != bss_section
10137 && exp_seg != undefined_section
10138 && !bfd_is_com_section (exp_seg))
10139 {
10140 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10141 ret = 0;
10142 }
10143 #endif
10144
10145 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10146 /* Constants get taken care of by optimize_disp(). */
10147 && exp->X_op != O_constant)
10148 i.types[this_operand].bitfield.disp8 = 1;
10149
10150 /* Check if this is a displacement only operand. */
10151 bigdisp = i.types[this_operand];
10152 bigdisp.bitfield.disp8 = 0;
10153 bigdisp.bitfield.disp16 = 0;
10154 bigdisp.bitfield.disp32 = 0;
10155 bigdisp.bitfield.disp32s = 0;
10156 bigdisp.bitfield.disp64 = 0;
10157 if (operand_type_all_zero (&bigdisp))
10158 i.types[this_operand] = operand_type_and (i.types[this_operand],
10159 types);
10160
10161 return ret;
10162 }
10163
10164 /* Return the active addressing mode, taking address override and
10165 registers forming the address into consideration. Update the
10166 address override prefix if necessary. */
10167
10168 static enum flag_code
10169 i386_addressing_mode (void)
10170 {
10171 enum flag_code addr_mode;
10172
10173 if (i.prefix[ADDR_PREFIX])
10174 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10175 else
10176 {
10177 addr_mode = flag_code;
10178
10179 #if INFER_ADDR_PREFIX
10180 if (i.mem_operands == 0)
10181 {
10182 /* Infer address prefix from the first memory operand. */
10183 const reg_entry *addr_reg = i.base_reg;
10184
10185 if (addr_reg == NULL)
10186 addr_reg = i.index_reg;
10187
10188 if (addr_reg)
10189 {
10190 if (addr_reg->reg_type.bitfield.dword)
10191 addr_mode = CODE_32BIT;
10192 else if (flag_code != CODE_64BIT
10193 && addr_reg->reg_type.bitfield.word)
10194 addr_mode = CODE_16BIT;
10195
10196 if (addr_mode != flag_code)
10197 {
10198 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10199 i.prefixes += 1;
10200 /* Change the size of any displacement too. At most one
10201 of Disp16 or Disp32 is set.
10202 FIXME. There doesn't seem to be any real need for
10203 separate Disp16 and Disp32 flags. The same goes for
10204 Imm16 and Imm32. Removing them would probably clean
10205 up the code quite a lot. */
10206 if (flag_code != CODE_64BIT
10207 && (i.types[this_operand].bitfield.disp16
10208 || i.types[this_operand].bitfield.disp32))
10209 i.types[this_operand]
10210 = operand_type_xor (i.types[this_operand], disp16_32);
10211 }
10212 }
10213 }
10214 #endif
10215 }
10216
10217 return addr_mode;
10218 }
10219
10220 /* Make sure the memory operand we've been dealt is valid.
10221 Return 1 on success, 0 on a failure. */
10222
10223 static int
10224 i386_index_check (const char *operand_string)
10225 {
10226 const char *kind = "base/index";
10227 enum flag_code addr_mode = i386_addressing_mode ();
10228
10229 if (current_templates->start->opcode_modifier.isstring
10230 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10231 && (current_templates->end[-1].opcode_modifier.isstring
10232 || i.mem_operands))
10233 {
10234 /* Memory operands of string insns are special in that they only allow
10235 a single register (rDI, rSI, or rBX) as their memory address. */
10236 const reg_entry *expected_reg;
10237 static const char *di_si[][2] =
10238 {
10239 { "esi", "edi" },
10240 { "si", "di" },
10241 { "rsi", "rdi" }
10242 };
10243 static const char *bx[] = { "ebx", "bx", "rbx" };
10244
10245 kind = "string address";
10246
10247 if (current_templates->start->opcode_modifier.repprefixok)
10248 {
10249 int es_op = current_templates->end[-1].opcode_modifier.isstring
10250 - IS_STRING_ES_OP0;
10251 int op = 0;
10252
10253 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10254 || ((!i.mem_operands != !intel_syntax)
10255 && current_templates->end[-1].operand_types[1]
10256 .bitfield.baseindex))
10257 op = 1;
10258 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10259 }
10260 else
10261 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10262
10263 if (i.base_reg != expected_reg
10264 || i.index_reg
10265 || operand_type_check (i.types[this_operand], disp))
10266 {
10267 /* The second memory operand must have the same size as
10268 the first one. */
10269 if (i.mem_operands
10270 && i.base_reg
10271 && !((addr_mode == CODE_64BIT
10272 && i.base_reg->reg_type.bitfield.qword)
10273 || (addr_mode == CODE_32BIT
10274 ? i.base_reg->reg_type.bitfield.dword
10275 : i.base_reg->reg_type.bitfield.word)))
10276 goto bad_address;
10277
10278 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10279 operand_string,
10280 intel_syntax ? '[' : '(',
10281 register_prefix,
10282 expected_reg->reg_name,
10283 intel_syntax ? ']' : ')');
10284 return 1;
10285 }
10286 else
10287 return 1;
10288
10289 bad_address:
10290 as_bad (_("`%s' is not a valid %s expression"),
10291 operand_string, kind);
10292 return 0;
10293 }
10294 else
10295 {
10296 if (addr_mode != CODE_16BIT)
10297 {
10298 /* 32-bit/64-bit checks. */
10299 if ((i.base_reg
10300 && ((addr_mode == CODE_64BIT
10301 ? !i.base_reg->reg_type.bitfield.qword
10302 : !i.base_reg->reg_type.bitfield.dword)
10303 || (i.index_reg && i.base_reg->reg_num == RegIP)
10304 || i.base_reg->reg_num == RegIZ))
10305 || (i.index_reg
10306 && !i.index_reg->reg_type.bitfield.xmmword
10307 && !i.index_reg->reg_type.bitfield.ymmword
10308 && !i.index_reg->reg_type.bitfield.zmmword
10309 && ((addr_mode == CODE_64BIT
10310 ? !i.index_reg->reg_type.bitfield.qword
10311 : !i.index_reg->reg_type.bitfield.dword)
10312 || !i.index_reg->reg_type.bitfield.baseindex)))
10313 goto bad_address;
10314
10315 /* bndmk, bndldx, and bndstx have special restrictions. */
10316 if (current_templates->start->base_opcode == 0xf30f1b
10317 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10318 {
10319 /* They cannot use RIP-relative addressing. */
10320 if (i.base_reg && i.base_reg->reg_num == RegIP)
10321 {
10322 as_bad (_("`%s' cannot be used here"), operand_string);
10323 return 0;
10324 }
10325
10326 /* bndldx and bndstx ignore their scale factor. */
10327 if (current_templates->start->base_opcode != 0xf30f1b
10328 && i.log2_scale_factor)
10329 as_warn (_("register scaling is being ignored here"));
10330 }
10331 }
10332 else
10333 {
10334 /* 16-bit checks. */
10335 if ((i.base_reg
10336 && (!i.base_reg->reg_type.bitfield.word
10337 || !i.base_reg->reg_type.bitfield.baseindex))
10338 || (i.index_reg
10339 && (!i.index_reg->reg_type.bitfield.word
10340 || !i.index_reg->reg_type.bitfield.baseindex
10341 || !(i.base_reg
10342 && i.base_reg->reg_num < 6
10343 && i.index_reg->reg_num >= 6
10344 && i.log2_scale_factor == 0))))
10345 goto bad_address;
10346 }
10347 }
10348 return 1;
10349 }
10350
10351 /* Handle vector immediates. */
10352
10353 static int
10354 RC_SAE_immediate (const char *imm_start)
10355 {
10356 unsigned int match_found, j;
10357 const char *pstr = imm_start;
10358 expressionS *exp;
10359
10360 if (*pstr != '{')
10361 return 0;
10362
10363 pstr++;
10364 match_found = 0;
10365 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10366 {
10367 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10368 {
10369 if (!i.rounding)
10370 {
10371 rc_op.type = RC_NamesTable[j].type;
10372 rc_op.operand = this_operand;
10373 i.rounding = &rc_op;
10374 }
10375 else
10376 {
10377 as_bad (_("duplicated `%s'"), imm_start);
10378 return 0;
10379 }
10380 pstr += RC_NamesTable[j].len;
10381 match_found = 1;
10382 break;
10383 }
10384 }
10385 if (!match_found)
10386 return 0;
10387
10388 if (*pstr++ != '}')
10389 {
10390 as_bad (_("Missing '}': '%s'"), imm_start);
10391 return 0;
10392 }
10393 /* RC/SAE immediate string should contain nothing more. */;
10394 if (*pstr != 0)
10395 {
10396 as_bad (_("Junk after '}': '%s'"), imm_start);
10397 return 0;
10398 }
10399
10400 exp = &im_expressions[i.imm_operands++];
10401 i.op[this_operand].imms = exp;
10402
10403 exp->X_op = O_constant;
10404 exp->X_add_number = 0;
10405 exp->X_add_symbol = (symbolS *) 0;
10406 exp->X_op_symbol = (symbolS *) 0;
10407
10408 i.types[this_operand].bitfield.imm8 = 1;
10409 return 1;
10410 }
10411
10412 /* Only string instructions can have a second memory operand, so
10413 reduce current_templates to just those if it contains any. */
10414 static int
10415 maybe_adjust_templates (void)
10416 {
10417 const insn_template *t;
10418
10419 gas_assert (i.mem_operands == 1);
10420
10421 for (t = current_templates->start; t < current_templates->end; ++t)
10422 if (t->opcode_modifier.isstring)
10423 break;
10424
10425 if (t < current_templates->end)
10426 {
10427 static templates aux_templates;
10428 bfd_boolean recheck;
10429
10430 aux_templates.start = t;
10431 for (; t < current_templates->end; ++t)
10432 if (!t->opcode_modifier.isstring)
10433 break;
10434 aux_templates.end = t;
10435
10436 /* Determine whether to re-check the first memory operand. */
10437 recheck = (aux_templates.start != current_templates->start
10438 || t != current_templates->end);
10439
10440 current_templates = &aux_templates;
10441
10442 if (recheck)
10443 {
10444 i.mem_operands = 0;
10445 if (i.memop1_string != NULL
10446 && i386_index_check (i.memop1_string) == 0)
10447 return 0;
10448 i.mem_operands = 1;
10449 }
10450 }
10451
10452 return 1;
10453 }
10454
10455 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10456 on error. */
10457
10458 static int
10459 i386_att_operand (char *operand_string)
10460 {
10461 const reg_entry *r;
10462 char *end_op;
10463 char *op_string = operand_string;
10464
10465 if (is_space_char (*op_string))
10466 ++op_string;
10467
10468 /* We check for an absolute prefix (differentiating,
10469 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10470 if (*op_string == ABSOLUTE_PREFIX)
10471 {
10472 ++op_string;
10473 if (is_space_char (*op_string))
10474 ++op_string;
10475 i.jumpabsolute = TRUE;
10476 }
10477
10478 /* Check if operand is a register. */
10479 if ((r = parse_register (op_string, &end_op)) != NULL)
10480 {
10481 i386_operand_type temp;
10482
10483 /* Check for a segment override by searching for ':' after a
10484 segment register. */
10485 op_string = end_op;
10486 if (is_space_char (*op_string))
10487 ++op_string;
10488 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10489 {
10490 switch (r->reg_num)
10491 {
10492 case 0:
10493 i.seg[i.mem_operands] = &es;
10494 break;
10495 case 1:
10496 i.seg[i.mem_operands] = &cs;
10497 break;
10498 case 2:
10499 i.seg[i.mem_operands] = &ss;
10500 break;
10501 case 3:
10502 i.seg[i.mem_operands] = &ds;
10503 break;
10504 case 4:
10505 i.seg[i.mem_operands] = &fs;
10506 break;
10507 case 5:
10508 i.seg[i.mem_operands] = &gs;
10509 break;
10510 }
10511
10512 /* Skip the ':' and whitespace. */
10513 ++op_string;
10514 if (is_space_char (*op_string))
10515 ++op_string;
10516
10517 if (!is_digit_char (*op_string)
10518 && !is_identifier_char (*op_string)
10519 && *op_string != '('
10520 && *op_string != ABSOLUTE_PREFIX)
10521 {
10522 as_bad (_("bad memory operand `%s'"), op_string);
10523 return 0;
10524 }
10525 /* Handle case of %es:*foo. */
10526 if (*op_string == ABSOLUTE_PREFIX)
10527 {
10528 ++op_string;
10529 if (is_space_char (*op_string))
10530 ++op_string;
10531 i.jumpabsolute = TRUE;
10532 }
10533 goto do_memory_reference;
10534 }
10535
10536 /* Handle vector operations. */
10537 if (*op_string == '{')
10538 {
10539 op_string = check_VecOperations (op_string, NULL);
10540 if (op_string == NULL)
10541 return 0;
10542 }
10543
10544 if (*op_string)
10545 {
10546 as_bad (_("junk `%s' after register"), op_string);
10547 return 0;
10548 }
10549 temp = r->reg_type;
10550 temp.bitfield.baseindex = 0;
10551 i.types[this_operand] = operand_type_or (i.types[this_operand],
10552 temp);
10553 i.types[this_operand].bitfield.unspecified = 0;
10554 i.op[this_operand].regs = r;
10555 i.reg_operands++;
10556 }
10557 else if (*op_string == REGISTER_PREFIX)
10558 {
10559 as_bad (_("bad register name `%s'"), op_string);
10560 return 0;
10561 }
10562 else if (*op_string == IMMEDIATE_PREFIX)
10563 {
10564 ++op_string;
10565 if (i.jumpabsolute)
10566 {
10567 as_bad (_("immediate operand illegal with absolute jump"));
10568 return 0;
10569 }
10570 if (!i386_immediate (op_string))
10571 return 0;
10572 }
10573 else if (RC_SAE_immediate (operand_string))
10574 {
10575 /* If it is a RC or SAE immediate, do nothing. */
10576 ;
10577 }
10578 else if (is_digit_char (*op_string)
10579 || is_identifier_char (*op_string)
10580 || *op_string == '"'
10581 || *op_string == '(')
10582 {
10583 /* This is a memory reference of some sort. */
10584 char *base_string;
10585
10586 /* Start and end of displacement string expression (if found). */
10587 char *displacement_string_start;
10588 char *displacement_string_end;
10589 char *vop_start;
10590
10591 do_memory_reference:
10592 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10593 return 0;
10594 if ((i.mem_operands == 1
10595 && !current_templates->start->opcode_modifier.isstring)
10596 || i.mem_operands == 2)
10597 {
10598 as_bad (_("too many memory references for `%s'"),
10599 current_templates->start->name);
10600 return 0;
10601 }
10602
10603 /* Check for base index form. We detect the base index form by
10604 looking for an ')' at the end of the operand, searching
10605 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10606 after the '('. */
10607 base_string = op_string + strlen (op_string);
10608
10609 /* Handle vector operations. */
10610 vop_start = strchr (op_string, '{');
10611 if (vop_start && vop_start < base_string)
10612 {
10613 if (check_VecOperations (vop_start, base_string) == NULL)
10614 return 0;
10615 base_string = vop_start;
10616 }
10617
10618 --base_string;
10619 if (is_space_char (*base_string))
10620 --base_string;
10621
10622 /* If we only have a displacement, set-up for it to be parsed later. */
10623 displacement_string_start = op_string;
10624 displacement_string_end = base_string + 1;
10625
10626 if (*base_string == ')')
10627 {
10628 char *temp_string;
10629 unsigned int parens_balanced = 1;
10630 /* We've already checked that the number of left & right ()'s are
10631 equal, so this loop will not be infinite. */
10632 do
10633 {
10634 base_string--;
10635 if (*base_string == ')')
10636 parens_balanced++;
10637 if (*base_string == '(')
10638 parens_balanced--;
10639 }
10640 while (parens_balanced);
10641
10642 temp_string = base_string;
10643
10644 /* Skip past '(' and whitespace. */
10645 ++base_string;
10646 if (is_space_char (*base_string))
10647 ++base_string;
10648
10649 if (*base_string == ','
10650 || ((i.base_reg = parse_register (base_string, &end_op))
10651 != NULL))
10652 {
10653 displacement_string_end = temp_string;
10654
10655 i.types[this_operand].bitfield.baseindex = 1;
10656
10657 if (i.base_reg)
10658 {
10659 base_string = end_op;
10660 if (is_space_char (*base_string))
10661 ++base_string;
10662 }
10663
10664 /* There may be an index reg or scale factor here. */
10665 if (*base_string == ',')
10666 {
10667 ++base_string;
10668 if (is_space_char (*base_string))
10669 ++base_string;
10670
10671 if ((i.index_reg = parse_register (base_string, &end_op))
10672 != NULL)
10673 {
10674 base_string = end_op;
10675 if (is_space_char (*base_string))
10676 ++base_string;
10677 if (*base_string == ',')
10678 {
10679 ++base_string;
10680 if (is_space_char (*base_string))
10681 ++base_string;
10682 }
10683 else if (*base_string != ')')
10684 {
10685 as_bad (_("expecting `,' or `)' "
10686 "after index register in `%s'"),
10687 operand_string);
10688 return 0;
10689 }
10690 }
10691 else if (*base_string == REGISTER_PREFIX)
10692 {
10693 end_op = strchr (base_string, ',');
10694 if (end_op)
10695 *end_op = '\0';
10696 as_bad (_("bad register name `%s'"), base_string);
10697 return 0;
10698 }
10699
10700 /* Check for scale factor. */
10701 if (*base_string != ')')
10702 {
10703 char *end_scale = i386_scale (base_string);
10704
10705 if (!end_scale)
10706 return 0;
10707
10708 base_string = end_scale;
10709 if (is_space_char (*base_string))
10710 ++base_string;
10711 if (*base_string != ')')
10712 {
10713 as_bad (_("expecting `)' "
10714 "after scale factor in `%s'"),
10715 operand_string);
10716 return 0;
10717 }
10718 }
10719 else if (!i.index_reg)
10720 {
10721 as_bad (_("expecting index register or scale factor "
10722 "after `,'; got '%c'"),
10723 *base_string);
10724 return 0;
10725 }
10726 }
10727 else if (*base_string != ')')
10728 {
10729 as_bad (_("expecting `,' or `)' "
10730 "after base register in `%s'"),
10731 operand_string);
10732 return 0;
10733 }
10734 }
10735 else if (*base_string == REGISTER_PREFIX)
10736 {
10737 end_op = strchr (base_string, ',');
10738 if (end_op)
10739 *end_op = '\0';
10740 as_bad (_("bad register name `%s'"), base_string);
10741 return 0;
10742 }
10743 }
10744
10745 /* If there's an expression beginning the operand, parse it,
10746 assuming displacement_string_start and
10747 displacement_string_end are meaningful. */
10748 if (displacement_string_start != displacement_string_end)
10749 {
10750 if (!i386_displacement (displacement_string_start,
10751 displacement_string_end))
10752 return 0;
10753 }
10754
10755 /* Special case for (%dx) while doing input/output op. */
10756 if (i.base_reg
10757 && i.base_reg->reg_type.bitfield.instance == RegD
10758 && i.base_reg->reg_type.bitfield.word
10759 && i.index_reg == 0
10760 && i.log2_scale_factor == 0
10761 && i.seg[i.mem_operands] == 0
10762 && !operand_type_check (i.types[this_operand], disp))
10763 {
10764 i.types[this_operand] = i.base_reg->reg_type;
10765 return 1;
10766 }
10767
10768 if (i386_index_check (operand_string) == 0)
10769 return 0;
10770 i.flags[this_operand] |= Operand_Mem;
10771 if (i.mem_operands == 0)
10772 i.memop1_string = xstrdup (operand_string);
10773 i.mem_operands++;
10774 }
10775 else
10776 {
10777 /* It's not a memory operand; argh! */
10778 as_bad (_("invalid char %s beginning operand %d `%s'"),
10779 output_invalid (*op_string),
10780 this_operand + 1,
10781 op_string);
10782 return 0;
10783 }
10784 return 1; /* Normal return. */
10785 }
10786 \f
10787 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10788 that an rs_machine_dependent frag may reach. */
10789
10790 unsigned int
10791 i386_frag_max_var (fragS *frag)
10792 {
10793 /* The only relaxable frags are for jumps.
10794 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10795 gas_assert (frag->fr_type == rs_machine_dependent);
10796 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10797 }
10798
10799 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10800 static int
10801 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10802 {
10803 /* STT_GNU_IFUNC symbol must go through PLT. */
10804 if ((symbol_get_bfdsym (fr_symbol)->flags
10805 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10806 return 0;
10807
10808 if (!S_IS_EXTERNAL (fr_symbol))
10809 /* Symbol may be weak or local. */
10810 return !S_IS_WEAK (fr_symbol);
10811
10812 /* Global symbols with non-default visibility can't be preempted. */
10813 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10814 return 1;
10815
10816 if (fr_var != NO_RELOC)
10817 switch ((enum bfd_reloc_code_real) fr_var)
10818 {
10819 case BFD_RELOC_386_PLT32:
10820 case BFD_RELOC_X86_64_PLT32:
10821 /* Symbol with PLT relocation may be preempted. */
10822 return 0;
10823 default:
10824 abort ();
10825 }
10826
10827 /* Global symbols with default visibility in a shared library may be
10828 preempted by another definition. */
10829 return !shared;
10830 }
10831 #endif
10832
10833 /* Return the next non-empty frag. */
10834
10835 static fragS *
10836 i386_next_non_empty_frag (fragS *fragP)
10837 {
10838 /* There may be a frag with a ".fill 0" when there is no room in
10839 the current frag for frag_grow in output_insn. */
10840 for (fragP = fragP->fr_next;
10841 (fragP != NULL
10842 && fragP->fr_type == rs_fill
10843 && fragP->fr_fix == 0);
10844 fragP = fragP->fr_next)
10845 ;
10846 return fragP;
10847 }
10848
10849 /* Return the next jcc frag after BRANCH_PADDING. */
10850
10851 static fragS *
10852 i386_next_jcc_frag (fragS *fragP)
10853 {
10854 if (!fragP)
10855 return NULL;
10856
10857 if (fragP->fr_type == rs_machine_dependent
10858 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10859 == BRANCH_PADDING))
10860 {
10861 fragP = i386_next_non_empty_frag (fragP);
10862 if (fragP->fr_type != rs_machine_dependent)
10863 return NULL;
10864 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10865 return fragP;
10866 }
10867
10868 return NULL;
10869 }
10870
10871 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10872
10873 static void
10874 i386_classify_machine_dependent_frag (fragS *fragP)
10875 {
10876 fragS *cmp_fragP;
10877 fragS *pad_fragP;
10878 fragS *branch_fragP;
10879 fragS *next_fragP;
10880 unsigned int max_prefix_length;
10881
10882 if (fragP->tc_frag_data.classified)
10883 return;
10884
10885 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10886 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10887 for (next_fragP = fragP;
10888 next_fragP != NULL;
10889 next_fragP = next_fragP->fr_next)
10890 {
10891 next_fragP->tc_frag_data.classified = 1;
10892 if (next_fragP->fr_type == rs_machine_dependent)
10893 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10894 {
10895 case BRANCH_PADDING:
10896 /* The BRANCH_PADDING frag must be followed by a branch
10897 frag. */
10898 branch_fragP = i386_next_non_empty_frag (next_fragP);
10899 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10900 break;
10901 case FUSED_JCC_PADDING:
10902 /* Check if this is a fused jcc:
10903 FUSED_JCC_PADDING
10904 CMP like instruction
10905 BRANCH_PADDING
10906 COND_JUMP
10907 */
10908 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10909 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10910 branch_fragP = i386_next_jcc_frag (pad_fragP);
10911 if (branch_fragP)
10912 {
10913 /* The BRANCH_PADDING frag is merged with the
10914 FUSED_JCC_PADDING frag. */
10915 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10916 /* CMP like instruction size. */
10917 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10918 frag_wane (pad_fragP);
10919 /* Skip to branch_fragP. */
10920 next_fragP = branch_fragP;
10921 }
10922 else if (next_fragP->tc_frag_data.max_prefix_length)
10923 {
10924 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10925 a fused jcc. */
10926 next_fragP->fr_subtype
10927 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10928 next_fragP->tc_frag_data.max_bytes
10929 = next_fragP->tc_frag_data.max_prefix_length;
10930 /* This will be updated in the BRANCH_PREFIX scan. */
10931 next_fragP->tc_frag_data.max_prefix_length = 0;
10932 }
10933 else
10934 frag_wane (next_fragP);
10935 break;
10936 }
10937 }
10938
10939 /* Stop if there is no BRANCH_PREFIX. */
10940 if (!align_branch_prefix_size)
10941 return;
10942
10943 /* Scan for BRANCH_PREFIX. */
10944 for (; fragP != NULL; fragP = fragP->fr_next)
10945 {
10946 if (fragP->fr_type != rs_machine_dependent
10947 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10948 != BRANCH_PREFIX))
10949 continue;
10950
10951 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10952 COND_JUMP_PREFIX. */
10953 max_prefix_length = 0;
10954 for (next_fragP = fragP;
10955 next_fragP != NULL;
10956 next_fragP = next_fragP->fr_next)
10957 {
10958 if (next_fragP->fr_type == rs_fill)
10959 /* Skip rs_fill frags. */
10960 continue;
10961 else if (next_fragP->fr_type != rs_machine_dependent)
10962 /* Stop for all other frags. */
10963 break;
10964
10965 /* rs_machine_dependent frags. */
10966 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10967 == BRANCH_PREFIX)
10968 {
10969 /* Count BRANCH_PREFIX frags. */
10970 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10971 {
10972 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10973 frag_wane (next_fragP);
10974 }
10975 else
10976 max_prefix_length
10977 += next_fragP->tc_frag_data.max_bytes;
10978 }
10979 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10980 == BRANCH_PADDING)
10981 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10982 == FUSED_JCC_PADDING))
10983 {
10984 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10985 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10986 break;
10987 }
10988 else
10989 /* Stop for other rs_machine_dependent frags. */
10990 break;
10991 }
10992
10993 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
10994
10995 /* Skip to the next frag. */
10996 fragP = next_fragP;
10997 }
10998 }
10999
11000 /* Compute padding size for
11001
11002 FUSED_JCC_PADDING
11003 CMP like instruction
11004 BRANCH_PADDING
11005 COND_JUMP/UNCOND_JUMP
11006
11007 or
11008
11009 BRANCH_PADDING
11010 COND_JUMP/UNCOND_JUMP
11011 */
11012
11013 static int
11014 i386_branch_padding_size (fragS *fragP, offsetT address)
11015 {
11016 unsigned int offset, size, padding_size;
11017 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11018
11019 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11020 if (!address)
11021 address = fragP->fr_address;
11022 address += fragP->fr_fix;
11023
11024 /* CMP like instrunction size. */
11025 size = fragP->tc_frag_data.cmp_size;
11026
11027 /* The base size of the branch frag. */
11028 size += branch_fragP->fr_fix;
11029
11030 /* Add opcode and displacement bytes for the rs_machine_dependent
11031 branch frag. */
11032 if (branch_fragP->fr_type == rs_machine_dependent)
11033 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11034
11035 /* Check if branch is within boundary and doesn't end at the last
11036 byte. */
11037 offset = address & ((1U << align_branch_power) - 1);
11038 if ((offset + size) >= (1U << align_branch_power))
11039 /* Padding needed to avoid crossing boundary. */
11040 padding_size = (1U << align_branch_power) - offset;
11041 else
11042 /* No padding needed. */
11043 padding_size = 0;
11044
11045 /* The return value may be saved in tc_frag_data.length which is
11046 unsigned byte. */
11047 if (!fits_in_unsigned_byte (padding_size))
11048 abort ();
11049
11050 return padding_size;
11051 }
11052
11053 /* i386_generic_table_relax_frag()
11054
11055 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11056 grow/shrink padding to align branch frags. Hand others to
11057 relax_frag(). */
11058
11059 long
11060 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11061 {
11062 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11063 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11064 {
11065 long padding_size = i386_branch_padding_size (fragP, 0);
11066 long grow = padding_size - fragP->tc_frag_data.length;
11067
11068 /* When the BRANCH_PREFIX frag is used, the computed address
11069 must match the actual address and there should be no padding. */
11070 if (fragP->tc_frag_data.padding_address
11071 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11072 || padding_size))
11073 abort ();
11074
11075 /* Update the padding size. */
11076 if (grow)
11077 fragP->tc_frag_data.length = padding_size;
11078
11079 return grow;
11080 }
11081 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11082 {
11083 fragS *padding_fragP, *next_fragP;
11084 long padding_size, left_size, last_size;
11085
11086 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11087 if (!padding_fragP)
11088 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11089 return (fragP->tc_frag_data.length
11090 - fragP->tc_frag_data.last_length);
11091
11092 /* Compute the relative address of the padding frag in the very
11093 first time where the BRANCH_PREFIX frag sizes are zero. */
11094 if (!fragP->tc_frag_data.padding_address)
11095 fragP->tc_frag_data.padding_address
11096 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11097
11098 /* First update the last length from the previous interation. */
11099 left_size = fragP->tc_frag_data.prefix_length;
11100 for (next_fragP = fragP;
11101 next_fragP != padding_fragP;
11102 next_fragP = next_fragP->fr_next)
11103 if (next_fragP->fr_type == rs_machine_dependent
11104 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11105 == BRANCH_PREFIX))
11106 {
11107 if (left_size)
11108 {
11109 int max = next_fragP->tc_frag_data.max_bytes;
11110 if (max)
11111 {
11112 int size;
11113 if (max > left_size)
11114 size = left_size;
11115 else
11116 size = max;
11117 left_size -= size;
11118 next_fragP->tc_frag_data.last_length = size;
11119 }
11120 }
11121 else
11122 next_fragP->tc_frag_data.last_length = 0;
11123 }
11124
11125 /* Check the padding size for the padding frag. */
11126 padding_size = i386_branch_padding_size
11127 (padding_fragP, (fragP->fr_address
11128 + fragP->tc_frag_data.padding_address));
11129
11130 last_size = fragP->tc_frag_data.prefix_length;
11131 /* Check if there is change from the last interation. */
11132 if (padding_size == last_size)
11133 {
11134 /* Update the expected address of the padding frag. */
11135 padding_fragP->tc_frag_data.padding_address
11136 = (fragP->fr_address + padding_size
11137 + fragP->tc_frag_data.padding_address);
11138 return 0;
11139 }
11140
11141 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11142 {
11143 /* No padding if there is no sufficient room. Clear the
11144 expected address of the padding frag. */
11145 padding_fragP->tc_frag_data.padding_address = 0;
11146 padding_size = 0;
11147 }
11148 else
11149 /* Store the expected address of the padding frag. */
11150 padding_fragP->tc_frag_data.padding_address
11151 = (fragP->fr_address + padding_size
11152 + fragP->tc_frag_data.padding_address);
11153
11154 fragP->tc_frag_data.prefix_length = padding_size;
11155
11156 /* Update the length for the current interation. */
11157 left_size = padding_size;
11158 for (next_fragP = fragP;
11159 next_fragP != padding_fragP;
11160 next_fragP = next_fragP->fr_next)
11161 if (next_fragP->fr_type == rs_machine_dependent
11162 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11163 == BRANCH_PREFIX))
11164 {
11165 if (left_size)
11166 {
11167 int max = next_fragP->tc_frag_data.max_bytes;
11168 if (max)
11169 {
11170 int size;
11171 if (max > left_size)
11172 size = left_size;
11173 else
11174 size = max;
11175 left_size -= size;
11176 next_fragP->tc_frag_data.length = size;
11177 }
11178 }
11179 else
11180 next_fragP->tc_frag_data.length = 0;
11181 }
11182
11183 return (fragP->tc_frag_data.length
11184 - fragP->tc_frag_data.last_length);
11185 }
11186 return relax_frag (segment, fragP, stretch);
11187 }
11188
11189 /* md_estimate_size_before_relax()
11190
11191 Called just before relax() for rs_machine_dependent frags. The x86
11192 assembler uses these frags to handle variable size jump
11193 instructions.
11194
11195 Any symbol that is now undefined will not become defined.
11196 Return the correct fr_subtype in the frag.
11197 Return the initial "guess for variable size of frag" to caller.
11198 The guess is actually the growth beyond the fixed part. Whatever
11199 we do to grow the fixed or variable part contributes to our
11200 returned value. */
11201
11202 int
11203 md_estimate_size_before_relax (fragS *fragP, segT segment)
11204 {
11205 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11206 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11207 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11208 {
11209 i386_classify_machine_dependent_frag (fragP);
11210 return fragP->tc_frag_data.length;
11211 }
11212
11213 /* We've already got fragP->fr_subtype right; all we have to do is
11214 check for un-relaxable symbols. On an ELF system, we can't relax
11215 an externally visible symbol, because it may be overridden by a
11216 shared library. */
11217 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11218 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11219 || (IS_ELF
11220 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11221 fragP->fr_var))
11222 #endif
11223 #if defined (OBJ_COFF) && defined (TE_PE)
11224 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11225 && S_IS_WEAK (fragP->fr_symbol))
11226 #endif
11227 )
11228 {
11229 /* Symbol is undefined in this segment, or we need to keep a
11230 reloc so that weak symbols can be overridden. */
11231 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11232 enum bfd_reloc_code_real reloc_type;
11233 unsigned char *opcode;
11234 int old_fr_fix;
11235
11236 if (fragP->fr_var != NO_RELOC)
11237 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11238 else if (size == 2)
11239 reloc_type = BFD_RELOC_16_PCREL;
11240 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11241 else if (need_plt32_p (fragP->fr_symbol))
11242 reloc_type = BFD_RELOC_X86_64_PLT32;
11243 #endif
11244 else
11245 reloc_type = BFD_RELOC_32_PCREL;
11246
11247 old_fr_fix = fragP->fr_fix;
11248 opcode = (unsigned char *) fragP->fr_opcode;
11249
11250 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11251 {
11252 case UNCOND_JUMP:
11253 /* Make jmp (0xeb) a (d)word displacement jump. */
11254 opcode[0] = 0xe9;
11255 fragP->fr_fix += size;
11256 fix_new (fragP, old_fr_fix, size,
11257 fragP->fr_symbol,
11258 fragP->fr_offset, 1,
11259 reloc_type);
11260 break;
11261
11262 case COND_JUMP86:
11263 if (size == 2
11264 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11265 {
11266 /* Negate the condition, and branch past an
11267 unconditional jump. */
11268 opcode[0] ^= 1;
11269 opcode[1] = 3;
11270 /* Insert an unconditional jump. */
11271 opcode[2] = 0xe9;
11272 /* We added two extra opcode bytes, and have a two byte
11273 offset. */
11274 fragP->fr_fix += 2 + 2;
11275 fix_new (fragP, old_fr_fix + 2, 2,
11276 fragP->fr_symbol,
11277 fragP->fr_offset, 1,
11278 reloc_type);
11279 break;
11280 }
11281 /* Fall through. */
11282
11283 case COND_JUMP:
11284 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11285 {
11286 fixS *fixP;
11287
11288 fragP->fr_fix += 1;
11289 fixP = fix_new (fragP, old_fr_fix, 1,
11290 fragP->fr_symbol,
11291 fragP->fr_offset, 1,
11292 BFD_RELOC_8_PCREL);
11293 fixP->fx_signed = 1;
11294 break;
11295 }
11296
11297 /* This changes the byte-displacement jump 0x7N
11298 to the (d)word-displacement jump 0x0f,0x8N. */
11299 opcode[1] = opcode[0] + 0x10;
11300 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11301 /* We've added an opcode byte. */
11302 fragP->fr_fix += 1 + size;
11303 fix_new (fragP, old_fr_fix + 1, size,
11304 fragP->fr_symbol,
11305 fragP->fr_offset, 1,
11306 reloc_type);
11307 break;
11308
11309 default:
11310 BAD_CASE (fragP->fr_subtype);
11311 break;
11312 }
11313 frag_wane (fragP);
11314 return fragP->fr_fix - old_fr_fix;
11315 }
11316
11317 /* Guess size depending on current relax state. Initially the relax
11318 state will correspond to a short jump and we return 1, because
11319 the variable part of the frag (the branch offset) is one byte
11320 long. However, we can relax a section more than once and in that
11321 case we must either set fr_subtype back to the unrelaxed state,
11322 or return the value for the appropriate branch. */
11323 return md_relax_table[fragP->fr_subtype].rlx_length;
11324 }
11325
11326 /* Called after relax() is finished.
11327
11328 In: Address of frag.
11329 fr_type == rs_machine_dependent.
11330 fr_subtype is what the address relaxed to.
11331
11332 Out: Any fixSs and constants are set up.
11333 Caller will turn frag into a ".space 0". */
11334
11335 void
11336 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11337 fragS *fragP)
11338 {
11339 unsigned char *opcode;
11340 unsigned char *where_to_put_displacement = NULL;
11341 offsetT target_address;
11342 offsetT opcode_address;
11343 unsigned int extension = 0;
11344 offsetT displacement_from_opcode_start;
11345
11346 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11347 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11348 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11349 {
11350 /* Generate nop padding. */
11351 unsigned int size = fragP->tc_frag_data.length;
11352 if (size)
11353 {
11354 if (size > fragP->tc_frag_data.max_bytes)
11355 abort ();
11356
11357 if (flag_debug)
11358 {
11359 const char *msg;
11360 const char *branch = "branch";
11361 const char *prefix = "";
11362 fragS *padding_fragP;
11363 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11364 == BRANCH_PREFIX)
11365 {
11366 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11367 switch (fragP->tc_frag_data.default_prefix)
11368 {
11369 default:
11370 abort ();
11371 break;
11372 case CS_PREFIX_OPCODE:
11373 prefix = " cs";
11374 break;
11375 case DS_PREFIX_OPCODE:
11376 prefix = " ds";
11377 break;
11378 case ES_PREFIX_OPCODE:
11379 prefix = " es";
11380 break;
11381 case FS_PREFIX_OPCODE:
11382 prefix = " fs";
11383 break;
11384 case GS_PREFIX_OPCODE:
11385 prefix = " gs";
11386 break;
11387 case SS_PREFIX_OPCODE:
11388 prefix = " ss";
11389 break;
11390 }
11391 if (padding_fragP)
11392 msg = _("%s:%u: add %d%s at 0x%llx to align "
11393 "%s within %d-byte boundary\n");
11394 else
11395 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11396 "align %s within %d-byte boundary\n");
11397 }
11398 else
11399 {
11400 padding_fragP = fragP;
11401 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11402 "%s within %d-byte boundary\n");
11403 }
11404
11405 if (padding_fragP)
11406 switch (padding_fragP->tc_frag_data.branch_type)
11407 {
11408 case align_branch_jcc:
11409 branch = "jcc";
11410 break;
11411 case align_branch_fused:
11412 branch = "fused jcc";
11413 break;
11414 case align_branch_jmp:
11415 branch = "jmp";
11416 break;
11417 case align_branch_call:
11418 branch = "call";
11419 break;
11420 case align_branch_indirect:
11421 branch = "indiret branch";
11422 break;
11423 case align_branch_ret:
11424 branch = "ret";
11425 break;
11426 default:
11427 break;
11428 }
11429
11430 fprintf (stdout, msg,
11431 fragP->fr_file, fragP->fr_line, size, prefix,
11432 (long long) fragP->fr_address, branch,
11433 1 << align_branch_power);
11434 }
11435 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11436 memset (fragP->fr_opcode,
11437 fragP->tc_frag_data.default_prefix, size);
11438 else
11439 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11440 size, 0);
11441 fragP->fr_fix += size;
11442 }
11443 return;
11444 }
11445
11446 opcode = (unsigned char *) fragP->fr_opcode;
11447
11448 /* Address we want to reach in file space. */
11449 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11450
11451 /* Address opcode resides at in file space. */
11452 opcode_address = fragP->fr_address + fragP->fr_fix;
11453
11454 /* Displacement from opcode start to fill into instruction. */
11455 displacement_from_opcode_start = target_address - opcode_address;
11456
11457 if ((fragP->fr_subtype & BIG) == 0)
11458 {
11459 /* Don't have to change opcode. */
11460 extension = 1; /* 1 opcode + 1 displacement */
11461 where_to_put_displacement = &opcode[1];
11462 }
11463 else
11464 {
11465 if (no_cond_jump_promotion
11466 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11467 as_warn_where (fragP->fr_file, fragP->fr_line,
11468 _("long jump required"));
11469
11470 switch (fragP->fr_subtype)
11471 {
11472 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11473 extension = 4; /* 1 opcode + 4 displacement */
11474 opcode[0] = 0xe9;
11475 where_to_put_displacement = &opcode[1];
11476 break;
11477
11478 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11479 extension = 2; /* 1 opcode + 2 displacement */
11480 opcode[0] = 0xe9;
11481 where_to_put_displacement = &opcode[1];
11482 break;
11483
11484 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11485 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11486 extension = 5; /* 2 opcode + 4 displacement */
11487 opcode[1] = opcode[0] + 0x10;
11488 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11489 where_to_put_displacement = &opcode[2];
11490 break;
11491
11492 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11493 extension = 3; /* 2 opcode + 2 displacement */
11494 opcode[1] = opcode[0] + 0x10;
11495 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11496 where_to_put_displacement = &opcode[2];
11497 break;
11498
11499 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11500 extension = 4;
11501 opcode[0] ^= 1;
11502 opcode[1] = 3;
11503 opcode[2] = 0xe9;
11504 where_to_put_displacement = &opcode[3];
11505 break;
11506
11507 default:
11508 BAD_CASE (fragP->fr_subtype);
11509 break;
11510 }
11511 }
11512
11513 /* If size if less then four we are sure that the operand fits,
11514 but if it's 4, then it could be that the displacement is larger
11515 then -/+ 2GB. */
11516 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11517 && object_64bit
11518 && ((addressT) (displacement_from_opcode_start - extension
11519 + ((addressT) 1 << 31))
11520 > (((addressT) 2 << 31) - 1)))
11521 {
11522 as_bad_where (fragP->fr_file, fragP->fr_line,
11523 _("jump target out of range"));
11524 /* Make us emit 0. */
11525 displacement_from_opcode_start = extension;
11526 }
11527 /* Now put displacement after opcode. */
11528 md_number_to_chars ((char *) where_to_put_displacement,
11529 (valueT) (displacement_from_opcode_start - extension),
11530 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11531 fragP->fr_fix += extension;
11532 }
11533 \f
11534 /* Apply a fixup (fixP) to segment data, once it has been determined
11535 by our caller that we have all the info we need to fix it up.
11536
11537 Parameter valP is the pointer to the value of the bits.
11538
11539 On the 386, immediates, displacements, and data pointers are all in
11540 the same (little-endian) format, so we don't need to care about which
11541 we are handling. */
11542
11543 void
11544 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11545 {
11546 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11547 valueT value = *valP;
11548
11549 #if !defined (TE_Mach)
11550 if (fixP->fx_pcrel)
11551 {
11552 switch (fixP->fx_r_type)
11553 {
11554 default:
11555 break;
11556
11557 case BFD_RELOC_64:
11558 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11559 break;
11560 case BFD_RELOC_32:
11561 case BFD_RELOC_X86_64_32S:
11562 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11563 break;
11564 case BFD_RELOC_16:
11565 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11566 break;
11567 case BFD_RELOC_8:
11568 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11569 break;
11570 }
11571 }
11572
11573 if (fixP->fx_addsy != NULL
11574 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11575 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11576 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11577 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11578 && !use_rela_relocations)
11579 {
11580 /* This is a hack. There should be a better way to handle this.
11581 This covers for the fact that bfd_install_relocation will
11582 subtract the current location (for partial_inplace, PC relative
11583 relocations); see more below. */
11584 #ifndef OBJ_AOUT
11585 if (IS_ELF
11586 #ifdef TE_PE
11587 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11588 #endif
11589 )
11590 value += fixP->fx_where + fixP->fx_frag->fr_address;
11591 #endif
11592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11593 if (IS_ELF)
11594 {
11595 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11596
11597 if ((sym_seg == seg
11598 || (symbol_section_p (fixP->fx_addsy)
11599 && sym_seg != absolute_section))
11600 && !generic_force_reloc (fixP))
11601 {
11602 /* Yes, we add the values in twice. This is because
11603 bfd_install_relocation subtracts them out again. I think
11604 bfd_install_relocation is broken, but I don't dare change
11605 it. FIXME. */
11606 value += fixP->fx_where + fixP->fx_frag->fr_address;
11607 }
11608 }
11609 #endif
11610 #if defined (OBJ_COFF) && defined (TE_PE)
11611 /* For some reason, the PE format does not store a
11612 section address offset for a PC relative symbol. */
11613 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11614 || S_IS_WEAK (fixP->fx_addsy))
11615 value += md_pcrel_from (fixP);
11616 #endif
11617 }
11618 #if defined (OBJ_COFF) && defined (TE_PE)
11619 if (fixP->fx_addsy != NULL
11620 && S_IS_WEAK (fixP->fx_addsy)
11621 /* PR 16858: Do not modify weak function references. */
11622 && ! fixP->fx_pcrel)
11623 {
11624 #if !defined (TE_PEP)
11625 /* For x86 PE weak function symbols are neither PC-relative
11626 nor do they set S_IS_FUNCTION. So the only reliable way
11627 to detect them is to check the flags of their containing
11628 section. */
11629 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11630 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11631 ;
11632 else
11633 #endif
11634 value -= S_GET_VALUE (fixP->fx_addsy);
11635 }
11636 #endif
11637
11638 /* Fix a few things - the dynamic linker expects certain values here,
11639 and we must not disappoint it. */
11640 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11641 if (IS_ELF && fixP->fx_addsy)
11642 switch (fixP->fx_r_type)
11643 {
11644 case BFD_RELOC_386_PLT32:
11645 case BFD_RELOC_X86_64_PLT32:
11646 /* Make the jump instruction point to the address of the operand.
11647 At runtime we merely add the offset to the actual PLT entry.
11648 NB: Subtract the offset size only for jump instructions. */
11649 if (fixP->fx_pcrel)
11650 value = -4;
11651 break;
11652
11653 case BFD_RELOC_386_TLS_GD:
11654 case BFD_RELOC_386_TLS_LDM:
11655 case BFD_RELOC_386_TLS_IE_32:
11656 case BFD_RELOC_386_TLS_IE:
11657 case BFD_RELOC_386_TLS_GOTIE:
11658 case BFD_RELOC_386_TLS_GOTDESC:
11659 case BFD_RELOC_X86_64_TLSGD:
11660 case BFD_RELOC_X86_64_TLSLD:
11661 case BFD_RELOC_X86_64_GOTTPOFF:
11662 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11663 value = 0; /* Fully resolved at runtime. No addend. */
11664 /* Fallthrough */
11665 case BFD_RELOC_386_TLS_LE:
11666 case BFD_RELOC_386_TLS_LDO_32:
11667 case BFD_RELOC_386_TLS_LE_32:
11668 case BFD_RELOC_X86_64_DTPOFF32:
11669 case BFD_RELOC_X86_64_DTPOFF64:
11670 case BFD_RELOC_X86_64_TPOFF32:
11671 case BFD_RELOC_X86_64_TPOFF64:
11672 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11673 break;
11674
11675 case BFD_RELOC_386_TLS_DESC_CALL:
11676 case BFD_RELOC_X86_64_TLSDESC_CALL:
11677 value = 0; /* Fully resolved at runtime. No addend. */
11678 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11679 fixP->fx_done = 0;
11680 return;
11681
11682 case BFD_RELOC_VTABLE_INHERIT:
11683 case BFD_RELOC_VTABLE_ENTRY:
11684 fixP->fx_done = 0;
11685 return;
11686
11687 default:
11688 break;
11689 }
11690 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11691 *valP = value;
11692 #endif /* !defined (TE_Mach) */
11693
11694 /* Are we finished with this relocation now? */
11695 if (fixP->fx_addsy == NULL)
11696 fixP->fx_done = 1;
11697 #if defined (OBJ_COFF) && defined (TE_PE)
11698 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11699 {
11700 fixP->fx_done = 0;
11701 /* Remember value for tc_gen_reloc. */
11702 fixP->fx_addnumber = value;
11703 /* Clear out the frag for now. */
11704 value = 0;
11705 }
11706 #endif
11707 else if (use_rela_relocations)
11708 {
11709 fixP->fx_no_overflow = 1;
11710 /* Remember value for tc_gen_reloc. */
11711 fixP->fx_addnumber = value;
11712 value = 0;
11713 }
11714
11715 md_number_to_chars (p, value, fixP->fx_size);
11716 }
11717 \f
11718 const char *
11719 md_atof (int type, char *litP, int *sizeP)
11720 {
11721 /* This outputs the LITTLENUMs in REVERSE order;
11722 in accord with the bigendian 386. */
11723 return ieee_md_atof (type, litP, sizeP, FALSE);
11724 }
11725 \f
11726 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11727
11728 static char *
11729 output_invalid (int c)
11730 {
11731 if (ISPRINT (c))
11732 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11733 "'%c'", c);
11734 else
11735 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11736 "(0x%x)", (unsigned char) c);
11737 return output_invalid_buf;
11738 }
11739
11740 /* REG_STRING starts *before* REGISTER_PREFIX. */
11741
11742 static const reg_entry *
11743 parse_real_register (char *reg_string, char **end_op)
11744 {
11745 char *s = reg_string;
11746 char *p;
11747 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11748 const reg_entry *r;
11749
11750 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11751 if (*s == REGISTER_PREFIX)
11752 ++s;
11753
11754 if (is_space_char (*s))
11755 ++s;
11756
11757 p = reg_name_given;
11758 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11759 {
11760 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11761 return (const reg_entry *) NULL;
11762 s++;
11763 }
11764
11765 /* For naked regs, make sure that we are not dealing with an identifier.
11766 This prevents confusing an identifier like `eax_var' with register
11767 `eax'. */
11768 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11769 return (const reg_entry *) NULL;
11770
11771 *end_op = s;
11772
11773 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11774
11775 /* Handle floating point regs, allowing spaces in the (i) part. */
11776 if (r == i386_regtab /* %st is first entry of table */)
11777 {
11778 if (!cpu_arch_flags.bitfield.cpu8087
11779 && !cpu_arch_flags.bitfield.cpu287
11780 && !cpu_arch_flags.bitfield.cpu387)
11781 return (const reg_entry *) NULL;
11782
11783 if (is_space_char (*s))
11784 ++s;
11785 if (*s == '(')
11786 {
11787 ++s;
11788 if (is_space_char (*s))
11789 ++s;
11790 if (*s >= '0' && *s <= '7')
11791 {
11792 int fpr = *s - '0';
11793 ++s;
11794 if (is_space_char (*s))
11795 ++s;
11796 if (*s == ')')
11797 {
11798 *end_op = s + 1;
11799 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11800 know (r);
11801 return r + fpr;
11802 }
11803 }
11804 /* We have "%st(" then garbage. */
11805 return (const reg_entry *) NULL;
11806 }
11807 }
11808
11809 if (r == NULL || allow_pseudo_reg)
11810 return r;
11811
11812 if (operand_type_all_zero (&r->reg_type))
11813 return (const reg_entry *) NULL;
11814
11815 if ((r->reg_type.bitfield.dword
11816 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11817 || r->reg_type.bitfield.class == RegCR
11818 || r->reg_type.bitfield.class == RegDR
11819 || r->reg_type.bitfield.class == RegTR)
11820 && !cpu_arch_flags.bitfield.cpui386)
11821 return (const reg_entry *) NULL;
11822
11823 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11824 return (const reg_entry *) NULL;
11825
11826 if (!cpu_arch_flags.bitfield.cpuavx512f)
11827 {
11828 if (r->reg_type.bitfield.zmmword
11829 || r->reg_type.bitfield.class == RegMask)
11830 return (const reg_entry *) NULL;
11831
11832 if (!cpu_arch_flags.bitfield.cpuavx)
11833 {
11834 if (r->reg_type.bitfield.ymmword)
11835 return (const reg_entry *) NULL;
11836
11837 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11838 return (const reg_entry *) NULL;
11839 }
11840 }
11841
11842 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11843 return (const reg_entry *) NULL;
11844
11845 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11846 if (!allow_index_reg && r->reg_num == RegIZ)
11847 return (const reg_entry *) NULL;
11848
11849 /* Upper 16 vector registers are only available with VREX in 64bit
11850 mode, and require EVEX encoding. */
11851 if (r->reg_flags & RegVRex)
11852 {
11853 if (!cpu_arch_flags.bitfield.cpuavx512f
11854 || flag_code != CODE_64BIT)
11855 return (const reg_entry *) NULL;
11856
11857 i.vec_encoding = vex_encoding_evex;
11858 }
11859
11860 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11861 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11862 && flag_code != CODE_64BIT)
11863 return (const reg_entry *) NULL;
11864
11865 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11866 && !intel_syntax)
11867 return (const reg_entry *) NULL;
11868
11869 return r;
11870 }
11871
11872 /* REG_STRING starts *before* REGISTER_PREFIX. */
11873
11874 static const reg_entry *
11875 parse_register (char *reg_string, char **end_op)
11876 {
11877 const reg_entry *r;
11878
11879 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11880 r = parse_real_register (reg_string, end_op);
11881 else
11882 r = NULL;
11883 if (!r)
11884 {
11885 char *save = input_line_pointer;
11886 char c;
11887 symbolS *symbolP;
11888
11889 input_line_pointer = reg_string;
11890 c = get_symbol_name (&reg_string);
11891 symbolP = symbol_find (reg_string);
11892 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11893 {
11894 const expressionS *e = symbol_get_value_expression (symbolP);
11895
11896 know (e->X_op == O_register);
11897 know (e->X_add_number >= 0
11898 && (valueT) e->X_add_number < i386_regtab_size);
11899 r = i386_regtab + e->X_add_number;
11900 if ((r->reg_flags & RegVRex))
11901 i.vec_encoding = vex_encoding_evex;
11902 *end_op = input_line_pointer;
11903 }
11904 *input_line_pointer = c;
11905 input_line_pointer = save;
11906 }
11907 return r;
11908 }
11909
11910 int
11911 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11912 {
11913 const reg_entry *r;
11914 char *end = input_line_pointer;
11915
11916 *end = *nextcharP;
11917 r = parse_register (name, &input_line_pointer);
11918 if (r && end <= input_line_pointer)
11919 {
11920 *nextcharP = *input_line_pointer;
11921 *input_line_pointer = 0;
11922 e->X_op = O_register;
11923 e->X_add_number = r - i386_regtab;
11924 return 1;
11925 }
11926 input_line_pointer = end;
11927 *end = 0;
11928 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11929 }
11930
11931 void
11932 md_operand (expressionS *e)
11933 {
11934 char *end;
11935 const reg_entry *r;
11936
11937 switch (*input_line_pointer)
11938 {
11939 case REGISTER_PREFIX:
11940 r = parse_real_register (input_line_pointer, &end);
11941 if (r)
11942 {
11943 e->X_op = O_register;
11944 e->X_add_number = r - i386_regtab;
11945 input_line_pointer = end;
11946 }
11947 break;
11948
11949 case '[':
11950 gas_assert (intel_syntax);
11951 end = input_line_pointer++;
11952 expression (e);
11953 if (*input_line_pointer == ']')
11954 {
11955 ++input_line_pointer;
11956 e->X_op_symbol = make_expr_symbol (e);
11957 e->X_add_symbol = NULL;
11958 e->X_add_number = 0;
11959 e->X_op = O_index;
11960 }
11961 else
11962 {
11963 e->X_op = O_absent;
11964 input_line_pointer = end;
11965 }
11966 break;
11967 }
11968 }
11969
11970 \f
11971 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11972 const char *md_shortopts = "kVQ:sqnO::";
11973 #else
11974 const char *md_shortopts = "qnO::";
11975 #endif
11976
11977 #define OPTION_32 (OPTION_MD_BASE + 0)
11978 #define OPTION_64 (OPTION_MD_BASE + 1)
11979 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11980 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11981 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11982 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11983 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11984 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11985 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11986 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11987 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11988 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11989 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11990 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11991 #define OPTION_X32 (OPTION_MD_BASE + 14)
11992 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11993 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11994 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11995 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11996 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11997 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11998 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11999 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12000 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12001 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12002 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12003 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12004 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12005 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12006 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12007 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12008
12009 struct option md_longopts[] =
12010 {
12011 {"32", no_argument, NULL, OPTION_32},
12012 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12013 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12014 {"64", no_argument, NULL, OPTION_64},
12015 #endif
12016 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12017 {"x32", no_argument, NULL, OPTION_X32},
12018 {"mshared", no_argument, NULL, OPTION_MSHARED},
12019 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12020 #endif
12021 {"divide", no_argument, NULL, OPTION_DIVIDE},
12022 {"march", required_argument, NULL, OPTION_MARCH},
12023 {"mtune", required_argument, NULL, OPTION_MTUNE},
12024 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12025 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12026 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12027 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12028 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12029 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12030 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12031 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12032 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12033 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12034 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12035 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12036 # if defined (TE_PE) || defined (TE_PEP)
12037 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12038 #endif
12039 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12040 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12041 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12042 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12043 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12044 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12045 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12046 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12047 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12048 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12049 {NULL, no_argument, NULL, 0}
12050 };
12051 size_t md_longopts_size = sizeof (md_longopts);
12052
12053 int
12054 md_parse_option (int c, const char *arg)
12055 {
12056 unsigned int j;
12057 char *arch, *next, *saved, *type;
12058
12059 switch (c)
12060 {
12061 case 'n':
12062 optimize_align_code = 0;
12063 break;
12064
12065 case 'q':
12066 quiet_warnings = 1;
12067 break;
12068
12069 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12070 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12071 should be emitted or not. FIXME: Not implemented. */
12072 case 'Q':
12073 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12074 return 0;
12075 break;
12076
12077 /* -V: SVR4 argument to print version ID. */
12078 case 'V':
12079 print_version_id ();
12080 break;
12081
12082 /* -k: Ignore for FreeBSD compatibility. */
12083 case 'k':
12084 break;
12085
12086 case 's':
12087 /* -s: On i386 Solaris, this tells the native assembler to use
12088 .stab instead of .stab.excl. We always use .stab anyhow. */
12089 break;
12090
12091 case OPTION_MSHARED:
12092 shared = 1;
12093 break;
12094
12095 case OPTION_X86_USED_NOTE:
12096 if (strcasecmp (arg, "yes") == 0)
12097 x86_used_note = 1;
12098 else if (strcasecmp (arg, "no") == 0)
12099 x86_used_note = 0;
12100 else
12101 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12102 break;
12103
12104
12105 #endif
12106 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12107 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12108 case OPTION_64:
12109 {
12110 const char **list, **l;
12111
12112 list = bfd_target_list ();
12113 for (l = list; *l != NULL; l++)
12114 if (CONST_STRNEQ (*l, "elf64-x86-64")
12115 || strcmp (*l, "coff-x86-64") == 0
12116 || strcmp (*l, "pe-x86-64") == 0
12117 || strcmp (*l, "pei-x86-64") == 0
12118 || strcmp (*l, "mach-o-x86-64") == 0)
12119 {
12120 default_arch = "x86_64";
12121 break;
12122 }
12123 if (*l == NULL)
12124 as_fatal (_("no compiled in support for x86_64"));
12125 free (list);
12126 }
12127 break;
12128 #endif
12129
12130 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12131 case OPTION_X32:
12132 if (IS_ELF)
12133 {
12134 const char **list, **l;
12135
12136 list = bfd_target_list ();
12137 for (l = list; *l != NULL; l++)
12138 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12139 {
12140 default_arch = "x86_64:32";
12141 break;
12142 }
12143 if (*l == NULL)
12144 as_fatal (_("no compiled in support for 32bit x86_64"));
12145 free (list);
12146 }
12147 else
12148 as_fatal (_("32bit x86_64 is only supported for ELF"));
12149 break;
12150 #endif
12151
12152 case OPTION_32:
12153 default_arch = "i386";
12154 break;
12155
12156 case OPTION_DIVIDE:
12157 #ifdef SVR4_COMMENT_CHARS
12158 {
12159 char *n, *t;
12160 const char *s;
12161
12162 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12163 t = n;
12164 for (s = i386_comment_chars; *s != '\0'; s++)
12165 if (*s != '/')
12166 *t++ = *s;
12167 *t = '\0';
12168 i386_comment_chars = n;
12169 }
12170 #endif
12171 break;
12172
12173 case OPTION_MARCH:
12174 saved = xstrdup (arg);
12175 arch = saved;
12176 /* Allow -march=+nosse. */
12177 if (*arch == '+')
12178 arch++;
12179 do
12180 {
12181 if (*arch == '.')
12182 as_fatal (_("invalid -march= option: `%s'"), arg);
12183 next = strchr (arch, '+');
12184 if (next)
12185 *next++ = '\0';
12186 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12187 {
12188 if (strcmp (arch, cpu_arch [j].name) == 0)
12189 {
12190 /* Processor. */
12191 if (! cpu_arch[j].flags.bitfield.cpui386)
12192 continue;
12193
12194 cpu_arch_name = cpu_arch[j].name;
12195 cpu_sub_arch_name = NULL;
12196 cpu_arch_flags = cpu_arch[j].flags;
12197 cpu_arch_isa = cpu_arch[j].type;
12198 cpu_arch_isa_flags = cpu_arch[j].flags;
12199 if (!cpu_arch_tune_set)
12200 {
12201 cpu_arch_tune = cpu_arch_isa;
12202 cpu_arch_tune_flags = cpu_arch_isa_flags;
12203 }
12204 break;
12205 }
12206 else if (*cpu_arch [j].name == '.'
12207 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12208 {
12209 /* ISA extension. */
12210 i386_cpu_flags flags;
12211
12212 flags = cpu_flags_or (cpu_arch_flags,
12213 cpu_arch[j].flags);
12214
12215 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12216 {
12217 if (cpu_sub_arch_name)
12218 {
12219 char *name = cpu_sub_arch_name;
12220 cpu_sub_arch_name = concat (name,
12221 cpu_arch[j].name,
12222 (const char *) NULL);
12223 free (name);
12224 }
12225 else
12226 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12227 cpu_arch_flags = flags;
12228 cpu_arch_isa_flags = flags;
12229 }
12230 else
12231 cpu_arch_isa_flags
12232 = cpu_flags_or (cpu_arch_isa_flags,
12233 cpu_arch[j].flags);
12234 break;
12235 }
12236 }
12237
12238 if (j >= ARRAY_SIZE (cpu_arch))
12239 {
12240 /* Disable an ISA extension. */
12241 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12242 if (strcmp (arch, cpu_noarch [j].name) == 0)
12243 {
12244 i386_cpu_flags flags;
12245
12246 flags = cpu_flags_and_not (cpu_arch_flags,
12247 cpu_noarch[j].flags);
12248 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12249 {
12250 if (cpu_sub_arch_name)
12251 {
12252 char *name = cpu_sub_arch_name;
12253 cpu_sub_arch_name = concat (arch,
12254 (const char *) NULL);
12255 free (name);
12256 }
12257 else
12258 cpu_sub_arch_name = xstrdup (arch);
12259 cpu_arch_flags = flags;
12260 cpu_arch_isa_flags = flags;
12261 }
12262 break;
12263 }
12264
12265 if (j >= ARRAY_SIZE (cpu_noarch))
12266 j = ARRAY_SIZE (cpu_arch);
12267 }
12268
12269 if (j >= ARRAY_SIZE (cpu_arch))
12270 as_fatal (_("invalid -march= option: `%s'"), arg);
12271
12272 arch = next;
12273 }
12274 while (next != NULL);
12275 free (saved);
12276 break;
12277
12278 case OPTION_MTUNE:
12279 if (*arg == '.')
12280 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12281 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12282 {
12283 if (strcmp (arg, cpu_arch [j].name) == 0)
12284 {
12285 cpu_arch_tune_set = 1;
12286 cpu_arch_tune = cpu_arch [j].type;
12287 cpu_arch_tune_flags = cpu_arch[j].flags;
12288 break;
12289 }
12290 }
12291 if (j >= ARRAY_SIZE (cpu_arch))
12292 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12293 break;
12294
12295 case OPTION_MMNEMONIC:
12296 if (strcasecmp (arg, "att") == 0)
12297 intel_mnemonic = 0;
12298 else if (strcasecmp (arg, "intel") == 0)
12299 intel_mnemonic = 1;
12300 else
12301 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12302 break;
12303
12304 case OPTION_MSYNTAX:
12305 if (strcasecmp (arg, "att") == 0)
12306 intel_syntax = 0;
12307 else if (strcasecmp (arg, "intel") == 0)
12308 intel_syntax = 1;
12309 else
12310 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12311 break;
12312
12313 case OPTION_MINDEX_REG:
12314 allow_index_reg = 1;
12315 break;
12316
12317 case OPTION_MNAKED_REG:
12318 allow_naked_reg = 1;
12319 break;
12320
12321 case OPTION_MSSE2AVX:
12322 sse2avx = 1;
12323 break;
12324
12325 case OPTION_MSSE_CHECK:
12326 if (strcasecmp (arg, "error") == 0)
12327 sse_check = check_error;
12328 else if (strcasecmp (arg, "warning") == 0)
12329 sse_check = check_warning;
12330 else if (strcasecmp (arg, "none") == 0)
12331 sse_check = check_none;
12332 else
12333 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12334 break;
12335
12336 case OPTION_MOPERAND_CHECK:
12337 if (strcasecmp (arg, "error") == 0)
12338 operand_check = check_error;
12339 else if (strcasecmp (arg, "warning") == 0)
12340 operand_check = check_warning;
12341 else if (strcasecmp (arg, "none") == 0)
12342 operand_check = check_none;
12343 else
12344 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12345 break;
12346
12347 case OPTION_MAVXSCALAR:
12348 if (strcasecmp (arg, "128") == 0)
12349 avxscalar = vex128;
12350 else if (strcasecmp (arg, "256") == 0)
12351 avxscalar = vex256;
12352 else
12353 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12354 break;
12355
12356 case OPTION_MVEXWIG:
12357 if (strcmp (arg, "0") == 0)
12358 vexwig = vexw0;
12359 else if (strcmp (arg, "1") == 0)
12360 vexwig = vexw1;
12361 else
12362 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12363 break;
12364
12365 case OPTION_MADD_BND_PREFIX:
12366 add_bnd_prefix = 1;
12367 break;
12368
12369 case OPTION_MEVEXLIG:
12370 if (strcmp (arg, "128") == 0)
12371 evexlig = evexl128;
12372 else if (strcmp (arg, "256") == 0)
12373 evexlig = evexl256;
12374 else if (strcmp (arg, "512") == 0)
12375 evexlig = evexl512;
12376 else
12377 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12378 break;
12379
12380 case OPTION_MEVEXRCIG:
12381 if (strcmp (arg, "rne") == 0)
12382 evexrcig = rne;
12383 else if (strcmp (arg, "rd") == 0)
12384 evexrcig = rd;
12385 else if (strcmp (arg, "ru") == 0)
12386 evexrcig = ru;
12387 else if (strcmp (arg, "rz") == 0)
12388 evexrcig = rz;
12389 else
12390 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12391 break;
12392
12393 case OPTION_MEVEXWIG:
12394 if (strcmp (arg, "0") == 0)
12395 evexwig = evexw0;
12396 else if (strcmp (arg, "1") == 0)
12397 evexwig = evexw1;
12398 else
12399 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12400 break;
12401
12402 # if defined (TE_PE) || defined (TE_PEP)
12403 case OPTION_MBIG_OBJ:
12404 use_big_obj = 1;
12405 break;
12406 #endif
12407
12408 case OPTION_MOMIT_LOCK_PREFIX:
12409 if (strcasecmp (arg, "yes") == 0)
12410 omit_lock_prefix = 1;
12411 else if (strcasecmp (arg, "no") == 0)
12412 omit_lock_prefix = 0;
12413 else
12414 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12415 break;
12416
12417 case OPTION_MFENCE_AS_LOCK_ADD:
12418 if (strcasecmp (arg, "yes") == 0)
12419 avoid_fence = 1;
12420 else if (strcasecmp (arg, "no") == 0)
12421 avoid_fence = 0;
12422 else
12423 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12424 break;
12425
12426 case OPTION_MRELAX_RELOCATIONS:
12427 if (strcasecmp (arg, "yes") == 0)
12428 generate_relax_relocations = 1;
12429 else if (strcasecmp (arg, "no") == 0)
12430 generate_relax_relocations = 0;
12431 else
12432 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12433 break;
12434
12435 case OPTION_MALIGN_BRANCH_BOUNDARY:
12436 {
12437 char *end;
12438 long int align = strtoul (arg, &end, 0);
12439 if (*end == '\0')
12440 {
12441 if (align == 0)
12442 {
12443 align_branch_power = 0;
12444 break;
12445 }
12446 else if (align >= 16)
12447 {
12448 int align_power;
12449 for (align_power = 0;
12450 (align & 1) == 0;
12451 align >>= 1, align_power++)
12452 continue;
12453 /* Limit alignment power to 31. */
12454 if (align == 1 && align_power < 32)
12455 {
12456 align_branch_power = align_power;
12457 break;
12458 }
12459 }
12460 }
12461 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12462 }
12463 break;
12464
12465 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12466 {
12467 char *end;
12468 int align = strtoul (arg, &end, 0);
12469 /* Some processors only support 5 prefixes. */
12470 if (*end == '\0' && align >= 0 && align < 6)
12471 {
12472 align_branch_prefix_size = align;
12473 break;
12474 }
12475 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12476 arg);
12477 }
12478 break;
12479
12480 case OPTION_MALIGN_BRANCH:
12481 align_branch = 0;
12482 saved = xstrdup (arg);
12483 type = saved;
12484 do
12485 {
12486 next = strchr (type, '+');
12487 if (next)
12488 *next++ = '\0';
12489 if (strcasecmp (type, "jcc") == 0)
12490 align_branch |= align_branch_jcc_bit;
12491 else if (strcasecmp (type, "fused") == 0)
12492 align_branch |= align_branch_fused_bit;
12493 else if (strcasecmp (type, "jmp") == 0)
12494 align_branch |= align_branch_jmp_bit;
12495 else if (strcasecmp (type, "call") == 0)
12496 align_branch |= align_branch_call_bit;
12497 else if (strcasecmp (type, "ret") == 0)
12498 align_branch |= align_branch_ret_bit;
12499 else if (strcasecmp (type, "indirect") == 0)
12500 align_branch |= align_branch_indirect_bit;
12501 else
12502 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12503 type = next;
12504 }
12505 while (next != NULL);
12506 free (saved);
12507 break;
12508
12509 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12510 align_branch_power = 5;
12511 align_branch_prefix_size = 5;
12512 align_branch = (align_branch_jcc_bit
12513 | align_branch_fused_bit
12514 | align_branch_jmp_bit);
12515 break;
12516
12517 case OPTION_MAMD64:
12518 isa64 = amd64;
12519 break;
12520
12521 case OPTION_MINTEL64:
12522 isa64 = intel64;
12523 break;
12524
12525 case 'O':
12526 if (arg == NULL)
12527 {
12528 optimize = 1;
12529 /* Turn off -Os. */
12530 optimize_for_space = 0;
12531 }
12532 else if (*arg == 's')
12533 {
12534 optimize_for_space = 1;
12535 /* Turn on all encoding optimizations. */
12536 optimize = INT_MAX;
12537 }
12538 else
12539 {
12540 optimize = atoi (arg);
12541 /* Turn off -Os. */
12542 optimize_for_space = 0;
12543 }
12544 break;
12545
12546 default:
12547 return 0;
12548 }
12549 return 1;
12550 }
12551
12552 #define MESSAGE_TEMPLATE \
12553 " "
12554
12555 static char *
12556 output_message (FILE *stream, char *p, char *message, char *start,
12557 int *left_p, const char *name, int len)
12558 {
12559 int size = sizeof (MESSAGE_TEMPLATE);
12560 int left = *left_p;
12561
12562 /* Reserve 2 spaces for ", " or ",\0" */
12563 left -= len + 2;
12564
12565 /* Check if there is any room. */
12566 if (left >= 0)
12567 {
12568 if (p != start)
12569 {
12570 *p++ = ',';
12571 *p++ = ' ';
12572 }
12573 p = mempcpy (p, name, len);
12574 }
12575 else
12576 {
12577 /* Output the current message now and start a new one. */
12578 *p++ = ',';
12579 *p = '\0';
12580 fprintf (stream, "%s\n", message);
12581 p = start;
12582 left = size - (start - message) - len - 2;
12583
12584 gas_assert (left >= 0);
12585
12586 p = mempcpy (p, name, len);
12587 }
12588
12589 *left_p = left;
12590 return p;
12591 }
12592
12593 static void
12594 show_arch (FILE *stream, int ext, int check)
12595 {
12596 static char message[] = MESSAGE_TEMPLATE;
12597 char *start = message + 27;
12598 char *p;
12599 int size = sizeof (MESSAGE_TEMPLATE);
12600 int left;
12601 const char *name;
12602 int len;
12603 unsigned int j;
12604
12605 p = start;
12606 left = size - (start - message);
12607 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12608 {
12609 /* Should it be skipped? */
12610 if (cpu_arch [j].skip)
12611 continue;
12612
12613 name = cpu_arch [j].name;
12614 len = cpu_arch [j].len;
12615 if (*name == '.')
12616 {
12617 /* It is an extension. Skip if we aren't asked to show it. */
12618 if (ext)
12619 {
12620 name++;
12621 len--;
12622 }
12623 else
12624 continue;
12625 }
12626 else if (ext)
12627 {
12628 /* It is an processor. Skip if we show only extension. */
12629 continue;
12630 }
12631 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12632 {
12633 /* It is an impossible processor - skip. */
12634 continue;
12635 }
12636
12637 p = output_message (stream, p, message, start, &left, name, len);
12638 }
12639
12640 /* Display disabled extensions. */
12641 if (ext)
12642 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12643 {
12644 name = cpu_noarch [j].name;
12645 len = cpu_noarch [j].len;
12646 p = output_message (stream, p, message, start, &left, name,
12647 len);
12648 }
12649
12650 *p = '\0';
12651 fprintf (stream, "%s\n", message);
12652 }
12653
12654 void
12655 md_show_usage (FILE *stream)
12656 {
12657 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12658 fprintf (stream, _("\
12659 -Qy, -Qn ignored\n\
12660 -V print assembler version number\n\
12661 -k ignored\n"));
12662 #endif
12663 fprintf (stream, _("\
12664 -n Do not optimize code alignment\n\
12665 -q quieten some warnings\n"));
12666 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12667 fprintf (stream, _("\
12668 -s ignored\n"));
12669 #endif
12670 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12671 || defined (TE_PE) || defined (TE_PEP))
12672 fprintf (stream, _("\
12673 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12674 #endif
12675 #ifdef SVR4_COMMENT_CHARS
12676 fprintf (stream, _("\
12677 --divide do not treat `/' as a comment character\n"));
12678 #else
12679 fprintf (stream, _("\
12680 --divide ignored\n"));
12681 #endif
12682 fprintf (stream, _("\
12683 -march=CPU[,+EXTENSION...]\n\
12684 generate code for CPU and EXTENSION, CPU is one of:\n"));
12685 show_arch (stream, 0, 1);
12686 fprintf (stream, _("\
12687 EXTENSION is combination of:\n"));
12688 show_arch (stream, 1, 0);
12689 fprintf (stream, _("\
12690 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12691 show_arch (stream, 0, 0);
12692 fprintf (stream, _("\
12693 -msse2avx encode SSE instructions with VEX prefix\n"));
12694 fprintf (stream, _("\
12695 -msse-check=[none|error|warning] (default: warning)\n\
12696 check SSE instructions\n"));
12697 fprintf (stream, _("\
12698 -moperand-check=[none|error|warning] (default: warning)\n\
12699 check operand combinations for validity\n"));
12700 fprintf (stream, _("\
12701 -mavxscalar=[128|256] (default: 128)\n\
12702 encode scalar AVX instructions with specific vector\n\
12703 length\n"));
12704 fprintf (stream, _("\
12705 -mvexwig=[0|1] (default: 0)\n\
12706 encode VEX instructions with specific VEX.W value\n\
12707 for VEX.W bit ignored instructions\n"));
12708 fprintf (stream, _("\
12709 -mevexlig=[128|256|512] (default: 128)\n\
12710 encode scalar EVEX instructions with specific vector\n\
12711 length\n"));
12712 fprintf (stream, _("\
12713 -mevexwig=[0|1] (default: 0)\n\
12714 encode EVEX instructions with specific EVEX.W value\n\
12715 for EVEX.W bit ignored instructions\n"));
12716 fprintf (stream, _("\
12717 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12718 encode EVEX instructions with specific EVEX.RC value\n\
12719 for SAE-only ignored instructions\n"));
12720 fprintf (stream, _("\
12721 -mmnemonic=[att|intel] "));
12722 if (SYSV386_COMPAT)
12723 fprintf (stream, _("(default: att)\n"));
12724 else
12725 fprintf (stream, _("(default: intel)\n"));
12726 fprintf (stream, _("\
12727 use AT&T/Intel mnemonic\n"));
12728 fprintf (stream, _("\
12729 -msyntax=[att|intel] (default: att)\n\
12730 use AT&T/Intel syntax\n"));
12731 fprintf (stream, _("\
12732 -mindex-reg support pseudo index registers\n"));
12733 fprintf (stream, _("\
12734 -mnaked-reg don't require `%%' prefix for registers\n"));
12735 fprintf (stream, _("\
12736 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12737 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12738 fprintf (stream, _("\
12739 -mshared disable branch optimization for shared code\n"));
12740 fprintf (stream, _("\
12741 -mx86-used-note=[no|yes] "));
12742 if (DEFAULT_X86_USED_NOTE)
12743 fprintf (stream, _("(default: yes)\n"));
12744 else
12745 fprintf (stream, _("(default: no)\n"));
12746 fprintf (stream, _("\
12747 generate x86 used ISA and feature properties\n"));
12748 #endif
12749 #if defined (TE_PE) || defined (TE_PEP)
12750 fprintf (stream, _("\
12751 -mbig-obj generate big object files\n"));
12752 #endif
12753 fprintf (stream, _("\
12754 -momit-lock-prefix=[no|yes] (default: no)\n\
12755 strip all lock prefixes\n"));
12756 fprintf (stream, _("\
12757 -mfence-as-lock-add=[no|yes] (default: no)\n\
12758 encode lfence, mfence and sfence as\n\
12759 lock addl $0x0, (%%{re}sp)\n"));
12760 fprintf (stream, _("\
12761 -mrelax-relocations=[no|yes] "));
12762 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12763 fprintf (stream, _("(default: yes)\n"));
12764 else
12765 fprintf (stream, _("(default: no)\n"));
12766 fprintf (stream, _("\
12767 generate relax relocations\n"));
12768 fprintf (stream, _("\
12769 -malign-branch-boundary=NUM (default: 0)\n\
12770 align branches within NUM byte boundary\n"));
12771 fprintf (stream, _("\
12772 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12773 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12774 indirect\n\
12775 specify types of branches to align\n"));
12776 fprintf (stream, _("\
12777 -malign-branch-prefix-size=NUM (default: 5)\n\
12778 align branches with NUM prefixes per instruction\n"));
12779 fprintf (stream, _("\
12780 -mbranches-within-32B-boundaries\n\
12781 align branches within 32 byte boundary\n"));
12782 fprintf (stream, _("\
12783 -mamd64 accept only AMD64 ISA [default]\n"));
12784 fprintf (stream, _("\
12785 -mintel64 accept only Intel64 ISA\n"));
12786 }
12787
12788 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12789 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12790 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12791
12792 /* Pick the target format to use. */
12793
12794 const char *
12795 i386_target_format (void)
12796 {
12797 if (!strncmp (default_arch, "x86_64", 6))
12798 {
12799 update_code_flag (CODE_64BIT, 1);
12800 if (default_arch[6] == '\0')
12801 x86_elf_abi = X86_64_ABI;
12802 else
12803 x86_elf_abi = X86_64_X32_ABI;
12804 }
12805 else if (!strcmp (default_arch, "i386"))
12806 update_code_flag (CODE_32BIT, 1);
12807 else if (!strcmp (default_arch, "iamcu"))
12808 {
12809 update_code_flag (CODE_32BIT, 1);
12810 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12811 {
12812 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12813 cpu_arch_name = "iamcu";
12814 cpu_sub_arch_name = NULL;
12815 cpu_arch_flags = iamcu_flags;
12816 cpu_arch_isa = PROCESSOR_IAMCU;
12817 cpu_arch_isa_flags = iamcu_flags;
12818 if (!cpu_arch_tune_set)
12819 {
12820 cpu_arch_tune = cpu_arch_isa;
12821 cpu_arch_tune_flags = cpu_arch_isa_flags;
12822 }
12823 }
12824 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12825 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12826 cpu_arch_name);
12827 }
12828 else
12829 as_fatal (_("unknown architecture"));
12830
12831 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12832 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12833 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12834 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12835
12836 switch (OUTPUT_FLAVOR)
12837 {
12838 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12839 case bfd_target_aout_flavour:
12840 return AOUT_TARGET_FORMAT;
12841 #endif
12842 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12843 # if defined (TE_PE) || defined (TE_PEP)
12844 case bfd_target_coff_flavour:
12845 if (flag_code == CODE_64BIT)
12846 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12847 else
12848 return "pe-i386";
12849 # elif defined (TE_GO32)
12850 case bfd_target_coff_flavour:
12851 return "coff-go32";
12852 # else
12853 case bfd_target_coff_flavour:
12854 return "coff-i386";
12855 # endif
12856 #endif
12857 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12858 case bfd_target_elf_flavour:
12859 {
12860 const char *format;
12861
12862 switch (x86_elf_abi)
12863 {
12864 default:
12865 format = ELF_TARGET_FORMAT;
12866 #ifndef TE_SOLARIS
12867 tls_get_addr = "___tls_get_addr";
12868 #endif
12869 break;
12870 case X86_64_ABI:
12871 use_rela_relocations = 1;
12872 object_64bit = 1;
12873 #ifndef TE_SOLARIS
12874 tls_get_addr = "__tls_get_addr";
12875 #endif
12876 format = ELF_TARGET_FORMAT64;
12877 break;
12878 case X86_64_X32_ABI:
12879 use_rela_relocations = 1;
12880 object_64bit = 1;
12881 #ifndef TE_SOLARIS
12882 tls_get_addr = "__tls_get_addr";
12883 #endif
12884 disallow_64bit_reloc = 1;
12885 format = ELF_TARGET_FORMAT32;
12886 break;
12887 }
12888 if (cpu_arch_isa == PROCESSOR_L1OM)
12889 {
12890 if (x86_elf_abi != X86_64_ABI)
12891 as_fatal (_("Intel L1OM is 64bit only"));
12892 return ELF_TARGET_L1OM_FORMAT;
12893 }
12894 else if (cpu_arch_isa == PROCESSOR_K1OM)
12895 {
12896 if (x86_elf_abi != X86_64_ABI)
12897 as_fatal (_("Intel K1OM is 64bit only"));
12898 return ELF_TARGET_K1OM_FORMAT;
12899 }
12900 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12901 {
12902 if (x86_elf_abi != I386_ABI)
12903 as_fatal (_("Intel MCU is 32bit only"));
12904 return ELF_TARGET_IAMCU_FORMAT;
12905 }
12906 else
12907 return format;
12908 }
12909 #endif
12910 #if defined (OBJ_MACH_O)
12911 case bfd_target_mach_o_flavour:
12912 if (flag_code == CODE_64BIT)
12913 {
12914 use_rela_relocations = 1;
12915 object_64bit = 1;
12916 return "mach-o-x86-64";
12917 }
12918 else
12919 return "mach-o-i386";
12920 #endif
12921 default:
12922 abort ();
12923 return NULL;
12924 }
12925 }
12926
12927 #endif /* OBJ_MAYBE_ more than one */
12928 \f
12929 symbolS *
12930 md_undefined_symbol (char *name)
12931 {
12932 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12933 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12934 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12935 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12936 {
12937 if (!GOT_symbol)
12938 {
12939 if (symbol_find (name))
12940 as_bad (_("GOT already in symbol table"));
12941 GOT_symbol = symbol_new (name, undefined_section,
12942 (valueT) 0, &zero_address_frag);
12943 };
12944 return GOT_symbol;
12945 }
12946 return 0;
12947 }
12948
12949 /* Round up a section size to the appropriate boundary. */
12950
12951 valueT
12952 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
12953 {
12954 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12955 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12956 {
12957 /* For a.out, force the section size to be aligned. If we don't do
12958 this, BFD will align it for us, but it will not write out the
12959 final bytes of the section. This may be a bug in BFD, but it is
12960 easier to fix it here since that is how the other a.out targets
12961 work. */
12962 int align;
12963
12964 align = bfd_section_alignment (segment);
12965 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
12966 }
12967 #endif
12968
12969 return size;
12970 }
12971
12972 /* On the i386, PC-relative offsets are relative to the start of the
12973 next instruction. That is, the address of the offset, plus its
12974 size, since the offset is always the last part of the insn. */
12975
12976 long
12977 md_pcrel_from (fixS *fixP)
12978 {
12979 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12980 }
12981
12982 #ifndef I386COFF
12983
12984 static void
12985 s_bss (int ignore ATTRIBUTE_UNUSED)
12986 {
12987 int temp;
12988
12989 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12990 if (IS_ELF)
12991 obj_elf_section_change_hook ();
12992 #endif
12993 temp = get_absolute_expression ();
12994 subseg_set (bss_section, (subsegT) temp);
12995 demand_empty_rest_of_line ();
12996 }
12997
12998 #endif
12999
13000 /* Remember constant directive. */
13001
13002 void
13003 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13004 {
13005 if (last_insn.kind != last_insn_directive
13006 && (bfd_section_flags (now_seg) & SEC_CODE))
13007 {
13008 last_insn.seg = now_seg;
13009 last_insn.kind = last_insn_directive;
13010 last_insn.name = "constant directive";
13011 last_insn.file = as_where (&last_insn.line);
13012 }
13013 }
13014
13015 void
13016 i386_validate_fix (fixS *fixp)
13017 {
13018 if (fixp->fx_subsy)
13019 {
13020 if (fixp->fx_subsy == GOT_symbol)
13021 {
13022 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13023 {
13024 if (!object_64bit)
13025 abort ();
13026 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13027 if (fixp->fx_tcbit2)
13028 fixp->fx_r_type = (fixp->fx_tcbit
13029 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13030 : BFD_RELOC_X86_64_GOTPCRELX);
13031 else
13032 #endif
13033 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13034 }
13035 else
13036 {
13037 if (!object_64bit)
13038 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13039 else
13040 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13041 }
13042 fixp->fx_subsy = 0;
13043 }
13044 }
13045 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13046 else if (!object_64bit)
13047 {
13048 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13049 && fixp->fx_tcbit2)
13050 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13051 }
13052 #endif
13053 }
13054
13055 arelent *
13056 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13057 {
13058 arelent *rel;
13059 bfd_reloc_code_real_type code;
13060
13061 switch (fixp->fx_r_type)
13062 {
13063 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13064 case BFD_RELOC_SIZE32:
13065 case BFD_RELOC_SIZE64:
13066 if (S_IS_DEFINED (fixp->fx_addsy)
13067 && !S_IS_EXTERNAL (fixp->fx_addsy))
13068 {
13069 /* Resolve size relocation against local symbol to size of
13070 the symbol plus addend. */
13071 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13072 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13073 && !fits_in_unsigned_long (value))
13074 as_bad_where (fixp->fx_file, fixp->fx_line,
13075 _("symbol size computation overflow"));
13076 fixp->fx_addsy = NULL;
13077 fixp->fx_subsy = NULL;
13078 md_apply_fix (fixp, (valueT *) &value, NULL);
13079 return NULL;
13080 }
13081 #endif
13082 /* Fall through. */
13083
13084 case BFD_RELOC_X86_64_PLT32:
13085 case BFD_RELOC_X86_64_GOT32:
13086 case BFD_RELOC_X86_64_GOTPCREL:
13087 case BFD_RELOC_X86_64_GOTPCRELX:
13088 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13089 case BFD_RELOC_386_PLT32:
13090 case BFD_RELOC_386_GOT32:
13091 case BFD_RELOC_386_GOT32X:
13092 case BFD_RELOC_386_GOTOFF:
13093 case BFD_RELOC_386_GOTPC:
13094 case BFD_RELOC_386_TLS_GD:
13095 case BFD_RELOC_386_TLS_LDM:
13096 case BFD_RELOC_386_TLS_LDO_32:
13097 case BFD_RELOC_386_TLS_IE_32:
13098 case BFD_RELOC_386_TLS_IE:
13099 case BFD_RELOC_386_TLS_GOTIE:
13100 case BFD_RELOC_386_TLS_LE_32:
13101 case BFD_RELOC_386_TLS_LE:
13102 case BFD_RELOC_386_TLS_GOTDESC:
13103 case BFD_RELOC_386_TLS_DESC_CALL:
13104 case BFD_RELOC_X86_64_TLSGD:
13105 case BFD_RELOC_X86_64_TLSLD:
13106 case BFD_RELOC_X86_64_DTPOFF32:
13107 case BFD_RELOC_X86_64_DTPOFF64:
13108 case BFD_RELOC_X86_64_GOTTPOFF:
13109 case BFD_RELOC_X86_64_TPOFF32:
13110 case BFD_RELOC_X86_64_TPOFF64:
13111 case BFD_RELOC_X86_64_GOTOFF64:
13112 case BFD_RELOC_X86_64_GOTPC32:
13113 case BFD_RELOC_X86_64_GOT64:
13114 case BFD_RELOC_X86_64_GOTPCREL64:
13115 case BFD_RELOC_X86_64_GOTPC64:
13116 case BFD_RELOC_X86_64_GOTPLT64:
13117 case BFD_RELOC_X86_64_PLTOFF64:
13118 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13119 case BFD_RELOC_X86_64_TLSDESC_CALL:
13120 case BFD_RELOC_RVA:
13121 case BFD_RELOC_VTABLE_ENTRY:
13122 case BFD_RELOC_VTABLE_INHERIT:
13123 #ifdef TE_PE
13124 case BFD_RELOC_32_SECREL:
13125 #endif
13126 code = fixp->fx_r_type;
13127 break;
13128 case BFD_RELOC_X86_64_32S:
13129 if (!fixp->fx_pcrel)
13130 {
13131 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13132 code = fixp->fx_r_type;
13133 break;
13134 }
13135 /* Fall through. */
13136 default:
13137 if (fixp->fx_pcrel)
13138 {
13139 switch (fixp->fx_size)
13140 {
13141 default:
13142 as_bad_where (fixp->fx_file, fixp->fx_line,
13143 _("can not do %d byte pc-relative relocation"),
13144 fixp->fx_size);
13145 code = BFD_RELOC_32_PCREL;
13146 break;
13147 case 1: code = BFD_RELOC_8_PCREL; break;
13148 case 2: code = BFD_RELOC_16_PCREL; break;
13149 case 4: code = BFD_RELOC_32_PCREL; break;
13150 #ifdef BFD64
13151 case 8: code = BFD_RELOC_64_PCREL; break;
13152 #endif
13153 }
13154 }
13155 else
13156 {
13157 switch (fixp->fx_size)
13158 {
13159 default:
13160 as_bad_where (fixp->fx_file, fixp->fx_line,
13161 _("can not do %d byte relocation"),
13162 fixp->fx_size);
13163 code = BFD_RELOC_32;
13164 break;
13165 case 1: code = BFD_RELOC_8; break;
13166 case 2: code = BFD_RELOC_16; break;
13167 case 4: code = BFD_RELOC_32; break;
13168 #ifdef BFD64
13169 case 8: code = BFD_RELOC_64; break;
13170 #endif
13171 }
13172 }
13173 break;
13174 }
13175
13176 if ((code == BFD_RELOC_32
13177 || code == BFD_RELOC_32_PCREL
13178 || code == BFD_RELOC_X86_64_32S)
13179 && GOT_symbol
13180 && fixp->fx_addsy == GOT_symbol)
13181 {
13182 if (!object_64bit)
13183 code = BFD_RELOC_386_GOTPC;
13184 else
13185 code = BFD_RELOC_X86_64_GOTPC32;
13186 }
13187 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13188 && GOT_symbol
13189 && fixp->fx_addsy == GOT_symbol)
13190 {
13191 code = BFD_RELOC_X86_64_GOTPC64;
13192 }
13193
13194 rel = XNEW (arelent);
13195 rel->sym_ptr_ptr = XNEW (asymbol *);
13196 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13197
13198 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13199
13200 if (!use_rela_relocations)
13201 {
13202 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13203 vtable entry to be used in the relocation's section offset. */
13204 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13205 rel->address = fixp->fx_offset;
13206 #if defined (OBJ_COFF) && defined (TE_PE)
13207 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13208 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13209 else
13210 #endif
13211 rel->addend = 0;
13212 }
13213 /* Use the rela in 64bit mode. */
13214 else
13215 {
13216 if (disallow_64bit_reloc)
13217 switch (code)
13218 {
13219 case BFD_RELOC_X86_64_DTPOFF64:
13220 case BFD_RELOC_X86_64_TPOFF64:
13221 case BFD_RELOC_64_PCREL:
13222 case BFD_RELOC_X86_64_GOTOFF64:
13223 case BFD_RELOC_X86_64_GOT64:
13224 case BFD_RELOC_X86_64_GOTPCREL64:
13225 case BFD_RELOC_X86_64_GOTPC64:
13226 case BFD_RELOC_X86_64_GOTPLT64:
13227 case BFD_RELOC_X86_64_PLTOFF64:
13228 as_bad_where (fixp->fx_file, fixp->fx_line,
13229 _("cannot represent relocation type %s in x32 mode"),
13230 bfd_get_reloc_code_name (code));
13231 break;
13232 default:
13233 break;
13234 }
13235
13236 if (!fixp->fx_pcrel)
13237 rel->addend = fixp->fx_offset;
13238 else
13239 switch (code)
13240 {
13241 case BFD_RELOC_X86_64_PLT32:
13242 case BFD_RELOC_X86_64_GOT32:
13243 case BFD_RELOC_X86_64_GOTPCREL:
13244 case BFD_RELOC_X86_64_GOTPCRELX:
13245 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13246 case BFD_RELOC_X86_64_TLSGD:
13247 case BFD_RELOC_X86_64_TLSLD:
13248 case BFD_RELOC_X86_64_GOTTPOFF:
13249 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13250 case BFD_RELOC_X86_64_TLSDESC_CALL:
13251 rel->addend = fixp->fx_offset - fixp->fx_size;
13252 break;
13253 default:
13254 rel->addend = (section->vma
13255 - fixp->fx_size
13256 + fixp->fx_addnumber
13257 + md_pcrel_from (fixp));
13258 break;
13259 }
13260 }
13261
13262 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13263 if (rel->howto == NULL)
13264 {
13265 as_bad_where (fixp->fx_file, fixp->fx_line,
13266 _("cannot represent relocation type %s"),
13267 bfd_get_reloc_code_name (code));
13268 /* Set howto to a garbage value so that we can keep going. */
13269 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13270 gas_assert (rel->howto != NULL);
13271 }
13272
13273 return rel;
13274 }
13275
13276 #include "tc-i386-intel.c"
13277
13278 void
13279 tc_x86_parse_to_dw2regnum (expressionS *exp)
13280 {
13281 int saved_naked_reg;
13282 char saved_register_dot;
13283
13284 saved_naked_reg = allow_naked_reg;
13285 allow_naked_reg = 1;
13286 saved_register_dot = register_chars['.'];
13287 register_chars['.'] = '.';
13288 allow_pseudo_reg = 1;
13289 expression_and_evaluate (exp);
13290 allow_pseudo_reg = 0;
13291 register_chars['.'] = saved_register_dot;
13292 allow_naked_reg = saved_naked_reg;
13293
13294 if (exp->X_op == O_register && exp->X_add_number >= 0)
13295 {
13296 if ((addressT) exp->X_add_number < i386_regtab_size)
13297 {
13298 exp->X_op = O_constant;
13299 exp->X_add_number = i386_regtab[exp->X_add_number]
13300 .dw2_regnum[flag_code >> 1];
13301 }
13302 else
13303 exp->X_op = O_illegal;
13304 }
13305 }
13306
13307 void
13308 tc_x86_frame_initial_instructions (void)
13309 {
13310 static unsigned int sp_regno[2];
13311
13312 if (!sp_regno[flag_code >> 1])
13313 {
13314 char *saved_input = input_line_pointer;
13315 char sp[][4] = {"esp", "rsp"};
13316 expressionS exp;
13317
13318 input_line_pointer = sp[flag_code >> 1];
13319 tc_x86_parse_to_dw2regnum (&exp);
13320 gas_assert (exp.X_op == O_constant);
13321 sp_regno[flag_code >> 1] = exp.X_add_number;
13322 input_line_pointer = saved_input;
13323 }
13324
13325 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13326 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13327 }
13328
13329 int
13330 x86_dwarf2_addr_size (void)
13331 {
13332 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13333 if (x86_elf_abi == X86_64_X32_ABI)
13334 return 4;
13335 #endif
13336 return bfd_arch_bits_per_address (stdoutput) / 8;
13337 }
13338
13339 int
13340 i386_elf_section_type (const char *str, size_t len)
13341 {
13342 if (flag_code == CODE_64BIT
13343 && len == sizeof ("unwind") - 1
13344 && strncmp (str, "unwind", 6) == 0)
13345 return SHT_X86_64_UNWIND;
13346
13347 return -1;
13348 }
13349
13350 #ifdef TE_SOLARIS
13351 void
13352 i386_solaris_fix_up_eh_frame (segT sec)
13353 {
13354 if (flag_code == CODE_64BIT)
13355 elf_section_type (sec) = SHT_X86_64_UNWIND;
13356 }
13357 #endif
13358
13359 #ifdef TE_PE
13360 void
13361 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13362 {
13363 expressionS exp;
13364
13365 exp.X_op = O_secrel;
13366 exp.X_add_symbol = symbol;
13367 exp.X_add_number = 0;
13368 emit_expr (&exp, size);
13369 }
13370 #endif
13371
13372 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13373 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13374
13375 bfd_vma
13376 x86_64_section_letter (int letter, const char **ptr_msg)
13377 {
13378 if (flag_code == CODE_64BIT)
13379 {
13380 if (letter == 'l')
13381 return SHF_X86_64_LARGE;
13382
13383 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13384 }
13385 else
13386 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13387 return -1;
13388 }
13389
13390 bfd_vma
13391 x86_64_section_word (char *str, size_t len)
13392 {
13393 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13394 return SHF_X86_64_LARGE;
13395
13396 return -1;
13397 }
13398
13399 static void
13400 handle_large_common (int small ATTRIBUTE_UNUSED)
13401 {
13402 if (flag_code != CODE_64BIT)
13403 {
13404 s_comm_internal (0, elf_common_parse);
13405 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13406 }
13407 else
13408 {
13409 static segT lbss_section;
13410 asection *saved_com_section_ptr = elf_com_section_ptr;
13411 asection *saved_bss_section = bss_section;
13412
13413 if (lbss_section == NULL)
13414 {
13415 flagword applicable;
13416 segT seg = now_seg;
13417 subsegT subseg = now_subseg;
13418
13419 /* The .lbss section is for local .largecomm symbols. */
13420 lbss_section = subseg_new (".lbss", 0);
13421 applicable = bfd_applicable_section_flags (stdoutput);
13422 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13423 seg_info (lbss_section)->bss = 1;
13424
13425 subseg_set (seg, subseg);
13426 }
13427
13428 elf_com_section_ptr = &_bfd_elf_large_com_section;
13429 bss_section = lbss_section;
13430
13431 s_comm_internal (0, elf_common_parse);
13432
13433 elf_com_section_ptr = saved_com_section_ptr;
13434 bss_section = saved_bss_section;
13435 }
13436 }
13437 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.319525 seconds and 3 git commands to generate.