543fe25b4d4939d78028da7041361d0e7c453657
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static enum flag_code i386_addressing_mode (void);
186 static void optimize_imm (void);
187 static void optimize_disp (void);
188 static const insn_template *match_template (char);
189 static int check_string (void);
190 static int process_suffix (void);
191 static int check_byte_reg (void);
192 static int check_long_reg (void);
193 static int check_qword_reg (void);
194 static int check_word_reg (void);
195 static int finalize_imm (void);
196 static int process_operands (void);
197 static const seg_entry *build_modrm_byte (void);
198 static void output_insn (void);
199 static void output_imm (fragS *, offsetT);
200 static void output_disp (fragS *, offsetT);
201 #ifndef I386COFF
202 static void s_bss (int);
203 #endif
204 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205 static void handle_large_common (int small ATTRIBUTE_UNUSED);
206
207 /* GNU_PROPERTY_X86_ISA_1_USED. */
208 static unsigned int x86_isa_1_used;
209 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
210 static unsigned int x86_feature_2_used;
211 /* Generate x86 used ISA and feature properties. */
212 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
213 #endif
214
215 static const char *default_arch = DEFAULT_ARCH;
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_vsib_address,
294 invalid_vector_register_set,
295 unsupported_vector_index_register,
296 unsupported_broadcast,
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
304 };
305
306 struct _i386_insn
307 {
308 /* TM holds the template for the insn were currently assembling. */
309 insn_template tm;
310
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
313 char suffix;
314
315 /* OPERANDS gives the number of given operands. */
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
320 operands. */
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
324 use OP[i] for the corresponding operand. */
325 i386_operand_type types[MAX_OPERANDS];
326
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
330
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333 #define Operand_PCrel 1
334 #define Operand_Mem 2
335
336 /* Relocation type for operand */
337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
338
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
346 explicit segment overrides are given. */
347 const seg_entry *seg[2];
348
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
375 /* RM and SIB are the modrm byte and the sib byte where the
376 addressing modes of this insn are encoded. */
377 modrm_byte rm;
378 rex_byte rex;
379 rex_byte vrex;
380 sib_byte sib;
381 vex_prefix vex;
382
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
400 dir_encoding_store,
401 dir_encoding_swap
402 } dir_encoding;
403
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
411
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
427 /* REP prefix. */
428 const char *rep_prefix;
429
430 /* HLE prefix. */
431 const char *hle_prefix;
432
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
439 /* Error message. */
440 enum i386_error error;
441 };
442
443 typedef struct _i386_insn i386_insn;
444
445 /* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447 struct RC_name
448 {
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452 };
453
454 static const struct RC_name RC_NamesTable[] =
455 {
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461 };
462
463 /* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
465 const char extra_symbol_chars[] = "*%-([{}"
466 #ifdef LEX_AT
467 "@"
468 #endif
469 #ifdef LEX_QM
470 "?"
471 #endif
472 ;
473
474 #if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
476 && !defined (TE_GNU) \
477 && !defined (TE_LINUX) \
478 && !defined (TE_NACL) \
479 && !defined (TE_FreeBSD) \
480 && !defined (TE_DragonFly) \
481 && !defined (TE_NetBSD)))
482 /* This array holds the chars that always start a comment. If the
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485 const char *i386_comment_chars = "#/";
486 #define SVR4_COMMENT_CHARS 1
487 #define PREFIX_SEPARATOR '\\'
488
489 #else
490 const char *i386_comment_chars = "#";
491 #define PREFIX_SEPARATOR '/'
492 #endif
493
494 /* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
498 first line of the input file. This is because the compiler outputs
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
501 '/' isn't otherwise defined. */
502 const char line_comment_chars[] = "#/";
503
504 const char line_separator_chars[] = ";";
505
506 /* Chars that can be used to separate mant from exp in floating point
507 nums. */
508 const char EXP_CHARS[] = "eE";
509
510 /* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
513 const char FLT_CHARS[] = "fFdDxX";
514
515 /* Tables for lexical analysis. */
516 static char mnemonic_chars[256];
517 static char register_chars[256];
518 static char operand_chars[256];
519 static char identifier_chars[256];
520 static char digit_chars[256];
521
522 /* Lexical macros. */
523 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524 #define is_operand_char(x) (operand_chars[(unsigned char) x])
525 #define is_register_char(x) (register_chars[(unsigned char) x])
526 #define is_space_char(x) ((x) == ' ')
527 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528 #define is_digit_char(x) (digit_chars[(unsigned char) x])
529
530 /* All non-digit non-letter characters that may occur in an operand. */
531 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533 /* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
536 assembler instruction). */
537 static char save_stack[32];
538 static char *save_stack_p;
539 #define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541 #define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
544 /* The instruction we're assembling. */
545 static i386_insn i;
546
547 /* Possible templates for current insn. */
548 static const templates *current_templates;
549
550 /* Per instruction expressionS buffers: max displacements & immediates. */
551 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
553
554 /* Current operand we are working on. */
555 static int this_operand = -1;
556
557 /* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560 enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565 static enum flag_code flag_code;
566 static unsigned int object_64bit;
567 static unsigned int disallow_64bit_reloc;
568 static int use_rela_relocations = 0;
569 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
570 static const char *tls_get_addr;
571
572 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
576 /* The ELF ABI to use. */
577 enum x86_elf_abi
578 {
579 I386_ABI,
580 X86_64_ABI,
581 X86_64_X32_ABI
582 };
583
584 static enum x86_elf_abi x86_elf_abi = I386_ABI;
585 #endif
586
587 #if defined (TE_PE) || defined (TE_PEP)
588 /* Use big object file format. */
589 static int use_big_obj = 0;
590 #endif
591
592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593 /* 1 if generating code for a shared library. */
594 static int shared = 0;
595 #endif
596
597 /* 1 for intel syntax,
598 0 if att syntax. */
599 static int intel_syntax = 0;
600
601 static enum x86_64_isa
602 {
603 amd64 = 1, /* AMD64 ISA. */
604 intel64 /* Intel64 ISA. */
605 } isa64;
606
607 /* 1 for intel mnemonic,
608 0 if att mnemonic. */
609 static int intel_mnemonic = !SYSV386_COMPAT;
610
611 /* 1 if pseudo registers are permitted. */
612 static int allow_pseudo_reg = 0;
613
614 /* 1 if register prefix % not required. */
615 static int allow_naked_reg = 0;
616
617 /* 1 if the assembler should add BND prefix for all control-transferring
618 instructions supporting it, even if this prefix wasn't specified
619 explicitly. */
620 static int add_bnd_prefix = 0;
621
622 /* 1 if pseudo index register, eiz/riz, is allowed . */
623 static int allow_index_reg = 0;
624
625 /* 1 if the assembler should ignore LOCK prefix, even if it was
626 specified explicitly. */
627 static int omit_lock_prefix = 0;
628
629 /* 1 if the assembler should encode lfence, mfence, and sfence as
630 "lock addl $0, (%{re}sp)". */
631 static int avoid_fence = 0;
632
633 /* Type of the previous instruction. */
634 static struct
635 {
636 segT seg;
637 const char *file;
638 const char *name;
639 unsigned int line;
640 enum last_insn_kind
641 {
642 last_insn_other = 0,
643 last_insn_directive,
644 last_insn_prefix
645 } kind;
646 } last_insn;
647
648 /* 1 if the assembler should generate relax relocations. */
649
650 static int generate_relax_relocations
651 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
652
653 static enum check_kind
654 {
655 check_none = 0,
656 check_warning,
657 check_error
658 }
659 sse_check, operand_check = check_warning;
660
661 /* Non-zero if branches should be aligned within power of 2 boundary. */
662 static int align_branch_power = 0;
663
664 /* Types of branches to align. */
665 enum align_branch_kind
666 {
667 align_branch_none = 0,
668 align_branch_jcc = 1,
669 align_branch_fused = 2,
670 align_branch_jmp = 3,
671 align_branch_call = 4,
672 align_branch_indirect = 5,
673 align_branch_ret = 6
674 };
675
676 /* Type bits of branches to align. */
677 enum align_branch_bit
678 {
679 align_branch_jcc_bit = 1 << align_branch_jcc,
680 align_branch_fused_bit = 1 << align_branch_fused,
681 align_branch_jmp_bit = 1 << align_branch_jmp,
682 align_branch_call_bit = 1 << align_branch_call,
683 align_branch_indirect_bit = 1 << align_branch_indirect,
684 align_branch_ret_bit = 1 << align_branch_ret
685 };
686
687 static unsigned int align_branch = (align_branch_jcc_bit
688 | align_branch_fused_bit
689 | align_branch_jmp_bit);
690
691 /* The maximum padding size for fused jcc. CMP like instruction can
692 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
693 prefixes. */
694 #define MAX_FUSED_JCC_PADDING_SIZE 20
695
696 /* The maximum number of prefixes added for an instruction. */
697 static unsigned int align_branch_prefix_size = 5;
698
699 /* Optimization:
700 1. Clear the REX_W bit with register operand if possible.
701 2. Above plus use 128bit vector instruction to clear the full vector
702 register.
703 */
704 static int optimize = 0;
705
706 /* Optimization:
707 1. Clear the REX_W bit with register operand if possible.
708 2. Above plus use 128bit vector instruction to clear the full vector
709 register.
710 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
711 "testb $imm7,%r8".
712 */
713 static int optimize_for_space = 0;
714
715 /* Register prefix used for error message. */
716 static const char *register_prefix = "%";
717
718 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
719 leave, push, and pop instructions so that gcc has the same stack
720 frame as in 32 bit mode. */
721 static char stackop_size = '\0';
722
723 /* Non-zero to optimize code alignment. */
724 int optimize_align_code = 1;
725
726 /* Non-zero to quieten some warnings. */
727 static int quiet_warnings = 0;
728
729 /* CPU name. */
730 static const char *cpu_arch_name = NULL;
731 static char *cpu_sub_arch_name = NULL;
732
733 /* CPU feature flags. */
734 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
735
736 /* If we have selected a cpu we are generating instructions for. */
737 static int cpu_arch_tune_set = 0;
738
739 /* Cpu we are generating instructions for. */
740 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
741
742 /* CPU feature flags of cpu we are generating instructions for. */
743 static i386_cpu_flags cpu_arch_tune_flags;
744
745 /* CPU instruction set architecture used. */
746 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
747
748 /* CPU feature flags of instruction set architecture used. */
749 i386_cpu_flags cpu_arch_isa_flags;
750
751 /* If set, conditional jumps are not automatically promoted to handle
752 larger than a byte offset. */
753 static unsigned int no_cond_jump_promotion = 0;
754
755 /* Encode SSE instructions with VEX prefix. */
756 static unsigned int sse2avx;
757
758 /* Encode scalar AVX instructions with specific vector length. */
759 static enum
760 {
761 vex128 = 0,
762 vex256
763 } avxscalar;
764
765 /* Encode VEX WIG instructions with specific vex.w. */
766 static enum
767 {
768 vexw0 = 0,
769 vexw1
770 } vexwig;
771
772 /* Encode scalar EVEX LIG instructions with specific vector length. */
773 static enum
774 {
775 evexl128 = 0,
776 evexl256,
777 evexl512
778 } evexlig;
779
780 /* Encode EVEX WIG instructions with specific evex.w. */
781 static enum
782 {
783 evexw0 = 0,
784 evexw1
785 } evexwig;
786
787 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
788 static enum rc_type evexrcig = rne;
789
790 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
791 static symbolS *GOT_symbol;
792
793 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
794 unsigned int x86_dwarf2_return_column;
795
796 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
797 int x86_cie_data_alignment;
798
799 /* Interface to relax_segment.
800 There are 3 major relax states for 386 jump insns because the
801 different types of jumps add different sizes to frags when we're
802 figuring out what sort of jump to choose to reach a given label.
803
804 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
805 branches which are handled by md_estimate_size_before_relax() and
806 i386_generic_table_relax_frag(). */
807
808 /* Types. */
809 #define UNCOND_JUMP 0
810 #define COND_JUMP 1
811 #define COND_JUMP86 2
812 #define BRANCH_PADDING 3
813 #define BRANCH_PREFIX 4
814 #define FUSED_JCC_PADDING 5
815
816 /* Sizes. */
817 #define CODE16 1
818 #define SMALL 0
819 #define SMALL16 (SMALL | CODE16)
820 #define BIG 2
821 #define BIG16 (BIG | CODE16)
822
823 #ifndef INLINE
824 #ifdef __GNUC__
825 #define INLINE __inline__
826 #else
827 #define INLINE
828 #endif
829 #endif
830
831 #define ENCODE_RELAX_STATE(type, size) \
832 ((relax_substateT) (((type) << 2) | (size)))
833 #define TYPE_FROM_RELAX_STATE(s) \
834 ((s) >> 2)
835 #define DISP_SIZE_FROM_RELAX_STATE(s) \
836 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
837
838 /* This table is used by relax_frag to promote short jumps to long
839 ones where necessary. SMALL (short) jumps may be promoted to BIG
840 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
841 don't allow a short jump in a 32 bit code segment to be promoted to
842 a 16 bit offset jump because it's slower (requires data size
843 prefix), and doesn't work, unless the destination is in the bottom
844 64k of the code segment (The top 16 bits of eip are zeroed). */
845
846 const relax_typeS md_relax_table[] =
847 {
848 /* The fields are:
849 1) most positive reach of this state,
850 2) most negative reach of this state,
851 3) how many bytes this mode will have in the variable part of the frag
852 4) which index into the table to try if we can't fit into this one. */
853
854 /* UNCOND_JUMP states. */
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
856 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
857 /* dword jmp adds 4 bytes to frag:
858 0 extra opcode bytes, 4 displacement bytes. */
859 {0, 0, 4, 0},
860 /* word jmp adds 2 byte2 to frag:
861 0 extra opcode bytes, 2 displacement bytes. */
862 {0, 0, 2, 0},
863
864 /* COND_JUMP states. */
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
866 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
867 /* dword conditionals adds 5 bytes to frag:
868 1 extra opcode byte, 4 displacement bytes. */
869 {0, 0, 5, 0},
870 /* word conditionals add 3 bytes to frag:
871 1 extra opcode byte, 2 displacement bytes. */
872 {0, 0, 3, 0},
873
874 /* COND_JUMP86 states. */
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
876 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
877 /* dword conditionals adds 5 bytes to frag:
878 1 extra opcode byte, 4 displacement bytes. */
879 {0, 0, 5, 0},
880 /* word conditionals add 4 bytes to frag:
881 1 displacement byte and a 3 byte long branch insn. */
882 {0, 0, 4, 0}
883 };
884
885 static const arch_entry cpu_arch[] =
886 {
887 /* Do not replace the first two entries - i386_target_format()
888 relies on them being there in this order. */
889 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
890 CPU_GENERIC32_FLAGS, 0 },
891 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
892 CPU_GENERIC64_FLAGS, 0 },
893 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
894 CPU_NONE_FLAGS, 0 },
895 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
896 CPU_I186_FLAGS, 0 },
897 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
898 CPU_I286_FLAGS, 0 },
899 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
900 CPU_I386_FLAGS, 0 },
901 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
902 CPU_I486_FLAGS, 0 },
903 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
904 CPU_I586_FLAGS, 0 },
905 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
906 CPU_I686_FLAGS, 0 },
907 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
908 CPU_I586_FLAGS, 0 },
909 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
910 CPU_PENTIUMPRO_FLAGS, 0 },
911 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
912 CPU_P2_FLAGS, 0 },
913 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
914 CPU_P3_FLAGS, 0 },
915 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
916 CPU_P4_FLAGS, 0 },
917 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
918 CPU_CORE_FLAGS, 0 },
919 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
920 CPU_NOCONA_FLAGS, 0 },
921 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
922 CPU_CORE_FLAGS, 1 },
923 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
924 CPU_CORE_FLAGS, 0 },
925 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
926 CPU_CORE2_FLAGS, 1 },
927 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
928 CPU_CORE2_FLAGS, 0 },
929 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
930 CPU_COREI7_FLAGS, 0 },
931 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
932 CPU_L1OM_FLAGS, 0 },
933 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
934 CPU_K1OM_FLAGS, 0 },
935 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
936 CPU_IAMCU_FLAGS, 0 },
937 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
938 CPU_K6_FLAGS, 0 },
939 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
940 CPU_K6_2_FLAGS, 0 },
941 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
942 CPU_ATHLON_FLAGS, 0 },
943 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
944 CPU_K8_FLAGS, 1 },
945 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
946 CPU_K8_FLAGS, 0 },
947 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
948 CPU_K8_FLAGS, 0 },
949 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
950 CPU_AMDFAM10_FLAGS, 0 },
951 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
952 CPU_BDVER1_FLAGS, 0 },
953 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
954 CPU_BDVER2_FLAGS, 0 },
955 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
956 CPU_BDVER3_FLAGS, 0 },
957 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
958 CPU_BDVER4_FLAGS, 0 },
959 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
960 CPU_ZNVER1_FLAGS, 0 },
961 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
962 CPU_ZNVER2_FLAGS, 0 },
963 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
964 CPU_BTVER1_FLAGS, 0 },
965 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
966 CPU_BTVER2_FLAGS, 0 },
967 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
968 CPU_8087_FLAGS, 0 },
969 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
970 CPU_287_FLAGS, 0 },
971 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
972 CPU_387_FLAGS, 0 },
973 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
974 CPU_687_FLAGS, 0 },
975 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
976 CPU_CMOV_FLAGS, 0 },
977 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
978 CPU_FXSR_FLAGS, 0 },
979 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
980 CPU_MMX_FLAGS, 0 },
981 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
982 CPU_SSE_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
984 CPU_SSE2_FLAGS, 0 },
985 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
986 CPU_SSE3_FLAGS, 0 },
987 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
988 CPU_SSSE3_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
990 CPU_SSE4_1_FLAGS, 0 },
991 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
992 CPU_SSE4_2_FLAGS, 0 },
993 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
994 CPU_SSE4_2_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
996 CPU_AVX_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
998 CPU_AVX2_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512F_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512CD_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512ER_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512PF_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512DQ_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1010 CPU_AVX512BW_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1012 CPU_AVX512VL_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1014 CPU_VMX_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1016 CPU_VMFUNC_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1018 CPU_SMX_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1020 CPU_XSAVE_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1022 CPU_XSAVEOPT_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1024 CPU_XSAVEC_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1026 CPU_XSAVES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1028 CPU_AES_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1030 CPU_PCLMUL_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1032 CPU_PCLMUL_FLAGS, 1 },
1033 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1034 CPU_FSGSBASE_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1036 CPU_RDRND_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1038 CPU_F16C_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1040 CPU_BMI2_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1042 CPU_FMA_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1044 CPU_FMA4_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1046 CPU_XOP_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1048 CPU_LWP_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1050 CPU_MOVBE_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1052 CPU_CX16_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1054 CPU_EPT_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1056 CPU_LZCNT_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1058 CPU_HLE_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1060 CPU_RTM_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1062 CPU_INVPCID_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1064 CPU_CLFLUSH_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1066 CPU_NOP_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1068 CPU_SYSCALL_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1070 CPU_RDTSCP_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1072 CPU_3DNOW_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1074 CPU_3DNOWA_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1076 CPU_PADLOCK_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1078 CPU_SVME_FLAGS, 1 },
1079 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1080 CPU_SVME_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1082 CPU_SSE4A_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1084 CPU_ABM_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1086 CPU_BMI_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1088 CPU_TBM_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1090 CPU_ADX_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1092 CPU_RDSEED_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1094 CPU_PRFCHW_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1096 CPU_SMAP_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1098 CPU_MPX_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1100 CPU_SHA_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1102 CPU_CLFLUSHOPT_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1104 CPU_PREFETCHWT1_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1106 CPU_SE1_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1108 CPU_CLWB_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1110 CPU_AVX512IFMA_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512VBMI_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4FMAPS_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_4VNNIW_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VBMI2_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_VNNI_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1124 CPU_AVX512_BITALG_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1126 CPU_CLZERO_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1128 CPU_MWAITX_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1130 CPU_OSPKE_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1132 CPU_RDPID_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1134 CPU_PTWRITE_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1136 CPU_IBT_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1138 CPU_SHSTK_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1140 CPU_GFNI_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1142 CPU_VAES_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1144 CPU_VPCLMULQDQ_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1146 CPU_WBNOINVD_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1148 CPU_PCONFIG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1150 CPU_WAITPKG_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1152 CPU_CLDEMOTE_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIRI_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1156 CPU_MOVDIR64B_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_BF16_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1160 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1162 CPU_ENQCMD_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1164 CPU_RDPRU_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1166 CPU_MCOMMIT_FLAGS, 0 },
1167 };
1168
1169 static const noarch_entry cpu_noarch[] =
1170 {
1171 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1172 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1173 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1174 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1175 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1176 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1177 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1178 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1179 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1180 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1181 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1183 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1184 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1185 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1186 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1200 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1201 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1202 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1203 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1204 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1205 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1206 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1207 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1208 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1209 };
1210
1211 #ifdef I386COFF
1212 /* Like s_lcomm_internal in gas/read.c but the alignment string
1213 is allowed to be optional. */
1214
1215 static symbolS *
1216 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1217 {
1218 addressT align = 0;
1219
1220 SKIP_WHITESPACE ();
1221
1222 if (needs_align
1223 && *input_line_pointer == ',')
1224 {
1225 align = parse_align (needs_align - 1);
1226
1227 if (align == (addressT) -1)
1228 return NULL;
1229 }
1230 else
1231 {
1232 if (size >= 8)
1233 align = 3;
1234 else if (size >= 4)
1235 align = 2;
1236 else if (size >= 2)
1237 align = 1;
1238 else
1239 align = 0;
1240 }
1241
1242 bss_alloc (symbolP, size, align);
1243 return symbolP;
1244 }
1245
1246 static void
1247 pe_lcomm (int needs_align)
1248 {
1249 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1250 }
1251 #endif
1252
1253 const pseudo_typeS md_pseudo_table[] =
1254 {
1255 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1256 {"align", s_align_bytes, 0},
1257 #else
1258 {"align", s_align_ptwo, 0},
1259 #endif
1260 {"arch", set_cpu_arch, 0},
1261 #ifndef I386COFF
1262 {"bss", s_bss, 0},
1263 #else
1264 {"lcomm", pe_lcomm, 1},
1265 #endif
1266 {"ffloat", float_cons, 'f'},
1267 {"dfloat", float_cons, 'd'},
1268 {"tfloat", float_cons, 'x'},
1269 {"value", cons, 2},
1270 {"slong", signed_cons, 4},
1271 {"noopt", s_ignore, 0},
1272 {"optim", s_ignore, 0},
1273 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1274 {"code16", set_code_flag, CODE_16BIT},
1275 {"code32", set_code_flag, CODE_32BIT},
1276 #ifdef BFD64
1277 {"code64", set_code_flag, CODE_64BIT},
1278 #endif
1279 {"intel_syntax", set_intel_syntax, 1},
1280 {"att_syntax", set_intel_syntax, 0},
1281 {"intel_mnemonic", set_intel_mnemonic, 1},
1282 {"att_mnemonic", set_intel_mnemonic, 0},
1283 {"allow_index_reg", set_allow_index_reg, 1},
1284 {"disallow_index_reg", set_allow_index_reg, 0},
1285 {"sse_check", set_check, 0},
1286 {"operand_check", set_check, 1},
1287 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1288 {"largecomm", handle_large_common, 0},
1289 #else
1290 {"file", dwarf2_directive_file, 0},
1291 {"loc", dwarf2_directive_loc, 0},
1292 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1293 #endif
1294 #ifdef TE_PE
1295 {"secrel32", pe_directive_secrel, 0},
1296 #endif
1297 {0, 0, 0}
1298 };
1299
1300 /* For interface with expression (). */
1301 extern char *input_line_pointer;
1302
1303 /* Hash table for instruction mnemonic lookup. */
1304 static struct hash_control *op_hash;
1305
1306 /* Hash table for register lookup. */
1307 static struct hash_control *reg_hash;
1308 \f
1309 /* Various efficient no-op patterns for aligning code labels.
1310 Note: Don't try to assemble the instructions in the comments.
1311 0L and 0w are not legal. */
1312 static const unsigned char f32_1[] =
1313 {0x90}; /* nop */
1314 static const unsigned char f32_2[] =
1315 {0x66,0x90}; /* xchg %ax,%ax */
1316 static const unsigned char f32_3[] =
1317 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1318 static const unsigned char f32_4[] =
1319 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1320 static const unsigned char f32_6[] =
1321 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1322 static const unsigned char f32_7[] =
1323 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1324 static const unsigned char f16_3[] =
1325 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1326 static const unsigned char f16_4[] =
1327 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1328 static const unsigned char jump_disp8[] =
1329 {0xeb}; /* jmp disp8 */
1330 static const unsigned char jump32_disp32[] =
1331 {0xe9}; /* jmp disp32 */
1332 static const unsigned char jump16_disp32[] =
1333 {0x66,0xe9}; /* jmp disp32 */
1334 /* 32-bit NOPs patterns. */
1335 static const unsigned char *const f32_patt[] = {
1336 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1337 };
1338 /* 16-bit NOPs patterns. */
1339 static const unsigned char *const f16_patt[] = {
1340 f32_1, f32_2, f16_3, f16_4
1341 };
1342 /* nopl (%[re]ax) */
1343 static const unsigned char alt_3[] =
1344 {0x0f,0x1f,0x00};
1345 /* nopl 0(%[re]ax) */
1346 static const unsigned char alt_4[] =
1347 {0x0f,0x1f,0x40,0x00};
1348 /* nopl 0(%[re]ax,%[re]ax,1) */
1349 static const unsigned char alt_5[] =
1350 {0x0f,0x1f,0x44,0x00,0x00};
1351 /* nopw 0(%[re]ax,%[re]ax,1) */
1352 static const unsigned char alt_6[] =
1353 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1354 /* nopl 0L(%[re]ax) */
1355 static const unsigned char alt_7[] =
1356 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1357 /* nopl 0L(%[re]ax,%[re]ax,1) */
1358 static const unsigned char alt_8[] =
1359 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1360 /* nopw 0L(%[re]ax,%[re]ax,1) */
1361 static const unsigned char alt_9[] =
1362 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1363 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1364 static const unsigned char alt_10[] =
1365 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1366 /* data16 nopw %cs:0L(%eax,%eax,1) */
1367 static const unsigned char alt_11[] =
1368 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1369 /* 32-bit and 64-bit NOPs patterns. */
1370 static const unsigned char *const alt_patt[] = {
1371 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1372 alt_9, alt_10, alt_11
1373 };
1374
1375 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1376 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1377
1378 static void
1379 i386_output_nops (char *where, const unsigned char *const *patt,
1380 int count, int max_single_nop_size)
1381
1382 {
1383 /* Place the longer NOP first. */
1384 int last;
1385 int offset;
1386 const unsigned char *nops;
1387
1388 if (max_single_nop_size < 1)
1389 {
1390 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1391 max_single_nop_size);
1392 return;
1393 }
1394
1395 nops = patt[max_single_nop_size - 1];
1396
1397 /* Use the smaller one if the requsted one isn't available. */
1398 if (nops == NULL)
1399 {
1400 max_single_nop_size--;
1401 nops = patt[max_single_nop_size - 1];
1402 }
1403
1404 last = count % max_single_nop_size;
1405
1406 count -= last;
1407 for (offset = 0; offset < count; offset += max_single_nop_size)
1408 memcpy (where + offset, nops, max_single_nop_size);
1409
1410 if (last)
1411 {
1412 nops = patt[last - 1];
1413 if (nops == NULL)
1414 {
1415 /* Use the smaller one plus one-byte NOP if the needed one
1416 isn't available. */
1417 last--;
1418 nops = patt[last - 1];
1419 memcpy (where + offset, nops, last);
1420 where[offset + last] = *patt[0];
1421 }
1422 else
1423 memcpy (where + offset, nops, last);
1424 }
1425 }
1426
1427 static INLINE int
1428 fits_in_imm7 (offsetT num)
1429 {
1430 return (num & 0x7f) == num;
1431 }
1432
1433 static INLINE int
1434 fits_in_imm31 (offsetT num)
1435 {
1436 return (num & 0x7fffffff) == num;
1437 }
1438
1439 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1440 single NOP instruction LIMIT. */
1441
1442 void
1443 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1444 {
1445 const unsigned char *const *patt = NULL;
1446 int max_single_nop_size;
1447 /* Maximum number of NOPs before switching to jump over NOPs. */
1448 int max_number_of_nops;
1449
1450 switch (fragP->fr_type)
1451 {
1452 case rs_fill_nop:
1453 case rs_align_code:
1454 break;
1455 case rs_machine_dependent:
1456 /* Allow NOP padding for jumps and calls. */
1457 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1458 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1459 break;
1460 /* Fall through. */
1461 default:
1462 return;
1463 }
1464
1465 /* We need to decide which NOP sequence to use for 32bit and
1466 64bit. When -mtune= is used:
1467
1468 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1469 PROCESSOR_GENERIC32, f32_patt will be used.
1470 2. For the rest, alt_patt will be used.
1471
1472 When -mtune= isn't used, alt_patt will be used if
1473 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1474 be used.
1475
1476 When -march= or .arch is used, we can't use anything beyond
1477 cpu_arch_isa_flags. */
1478
1479 if (flag_code == CODE_16BIT)
1480 {
1481 patt = f16_patt;
1482 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1483 /* Limit number of NOPs to 2 in 16-bit mode. */
1484 max_number_of_nops = 2;
1485 }
1486 else
1487 {
1488 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1489 {
1490 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1491 switch (cpu_arch_tune)
1492 {
1493 case PROCESSOR_UNKNOWN:
1494 /* We use cpu_arch_isa_flags to check if we SHOULD
1495 optimize with nops. */
1496 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1497 patt = alt_patt;
1498 else
1499 patt = f32_patt;
1500 break;
1501 case PROCESSOR_PENTIUM4:
1502 case PROCESSOR_NOCONA:
1503 case PROCESSOR_CORE:
1504 case PROCESSOR_CORE2:
1505 case PROCESSOR_COREI7:
1506 case PROCESSOR_L1OM:
1507 case PROCESSOR_K1OM:
1508 case PROCESSOR_GENERIC64:
1509 case PROCESSOR_K6:
1510 case PROCESSOR_ATHLON:
1511 case PROCESSOR_K8:
1512 case PROCESSOR_AMDFAM10:
1513 case PROCESSOR_BD:
1514 case PROCESSOR_ZNVER:
1515 case PROCESSOR_BT:
1516 patt = alt_patt;
1517 break;
1518 case PROCESSOR_I386:
1519 case PROCESSOR_I486:
1520 case PROCESSOR_PENTIUM:
1521 case PROCESSOR_PENTIUMPRO:
1522 case PROCESSOR_IAMCU:
1523 case PROCESSOR_GENERIC32:
1524 patt = f32_patt;
1525 break;
1526 }
1527 }
1528 else
1529 {
1530 switch (fragP->tc_frag_data.tune)
1531 {
1532 case PROCESSOR_UNKNOWN:
1533 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1534 PROCESSOR_UNKNOWN. */
1535 abort ();
1536 break;
1537
1538 case PROCESSOR_I386:
1539 case PROCESSOR_I486:
1540 case PROCESSOR_PENTIUM:
1541 case PROCESSOR_IAMCU:
1542 case PROCESSOR_K6:
1543 case PROCESSOR_ATHLON:
1544 case PROCESSOR_K8:
1545 case PROCESSOR_AMDFAM10:
1546 case PROCESSOR_BD:
1547 case PROCESSOR_ZNVER:
1548 case PROCESSOR_BT:
1549 case PROCESSOR_GENERIC32:
1550 /* We use cpu_arch_isa_flags to check if we CAN optimize
1551 with nops. */
1552 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1553 patt = alt_patt;
1554 else
1555 patt = f32_patt;
1556 break;
1557 case PROCESSOR_PENTIUMPRO:
1558 case PROCESSOR_PENTIUM4:
1559 case PROCESSOR_NOCONA:
1560 case PROCESSOR_CORE:
1561 case PROCESSOR_CORE2:
1562 case PROCESSOR_COREI7:
1563 case PROCESSOR_L1OM:
1564 case PROCESSOR_K1OM:
1565 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1566 patt = alt_patt;
1567 else
1568 patt = f32_patt;
1569 break;
1570 case PROCESSOR_GENERIC64:
1571 patt = alt_patt;
1572 break;
1573 }
1574 }
1575
1576 if (patt == f32_patt)
1577 {
1578 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1579 /* Limit number of NOPs to 2 for older processors. */
1580 max_number_of_nops = 2;
1581 }
1582 else
1583 {
1584 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1585 /* Limit number of NOPs to 7 for newer processors. */
1586 max_number_of_nops = 7;
1587 }
1588 }
1589
1590 if (limit == 0)
1591 limit = max_single_nop_size;
1592
1593 if (fragP->fr_type == rs_fill_nop)
1594 {
1595 /* Output NOPs for .nop directive. */
1596 if (limit > max_single_nop_size)
1597 {
1598 as_bad_where (fragP->fr_file, fragP->fr_line,
1599 _("invalid single nop size: %d "
1600 "(expect within [0, %d])"),
1601 limit, max_single_nop_size);
1602 return;
1603 }
1604 }
1605 else if (fragP->fr_type != rs_machine_dependent)
1606 fragP->fr_var = count;
1607
1608 if ((count / max_single_nop_size) > max_number_of_nops)
1609 {
1610 /* Generate jump over NOPs. */
1611 offsetT disp = count - 2;
1612 if (fits_in_imm7 (disp))
1613 {
1614 /* Use "jmp disp8" if possible. */
1615 count = disp;
1616 where[0] = jump_disp8[0];
1617 where[1] = count;
1618 where += 2;
1619 }
1620 else
1621 {
1622 unsigned int size_of_jump;
1623
1624 if (flag_code == CODE_16BIT)
1625 {
1626 where[0] = jump16_disp32[0];
1627 where[1] = jump16_disp32[1];
1628 size_of_jump = 2;
1629 }
1630 else
1631 {
1632 where[0] = jump32_disp32[0];
1633 size_of_jump = 1;
1634 }
1635
1636 count -= size_of_jump + 4;
1637 if (!fits_in_imm31 (count))
1638 {
1639 as_bad_where (fragP->fr_file, fragP->fr_line,
1640 _("jump over nop padding out of range"));
1641 return;
1642 }
1643
1644 md_number_to_chars (where + size_of_jump, count, 4);
1645 where += size_of_jump + 4;
1646 }
1647 }
1648
1649 /* Generate multiple NOPs. */
1650 i386_output_nops (where, patt, count, limit);
1651 }
1652
1653 static INLINE int
1654 operand_type_all_zero (const union i386_operand_type *x)
1655 {
1656 switch (ARRAY_SIZE(x->array))
1657 {
1658 case 3:
1659 if (x->array[2])
1660 return 0;
1661 /* Fall through. */
1662 case 2:
1663 if (x->array[1])
1664 return 0;
1665 /* Fall through. */
1666 case 1:
1667 return !x->array[0];
1668 default:
1669 abort ();
1670 }
1671 }
1672
1673 static INLINE void
1674 operand_type_set (union i386_operand_type *x, unsigned int v)
1675 {
1676 switch (ARRAY_SIZE(x->array))
1677 {
1678 case 3:
1679 x->array[2] = v;
1680 /* Fall through. */
1681 case 2:
1682 x->array[1] = v;
1683 /* Fall through. */
1684 case 1:
1685 x->array[0] = v;
1686 /* Fall through. */
1687 break;
1688 default:
1689 abort ();
1690 }
1691
1692 x->bitfield.class = ClassNone;
1693 x->bitfield.instance = InstanceNone;
1694 }
1695
1696 static INLINE int
1697 operand_type_equal (const union i386_operand_type *x,
1698 const union i386_operand_type *y)
1699 {
1700 switch (ARRAY_SIZE(x->array))
1701 {
1702 case 3:
1703 if (x->array[2] != y->array[2])
1704 return 0;
1705 /* Fall through. */
1706 case 2:
1707 if (x->array[1] != y->array[1])
1708 return 0;
1709 /* Fall through. */
1710 case 1:
1711 return x->array[0] == y->array[0];
1712 break;
1713 default:
1714 abort ();
1715 }
1716 }
1717
1718 static INLINE int
1719 cpu_flags_all_zero (const union i386_cpu_flags *x)
1720 {
1721 switch (ARRAY_SIZE(x->array))
1722 {
1723 case 4:
1724 if (x->array[3])
1725 return 0;
1726 /* Fall through. */
1727 case 3:
1728 if (x->array[2])
1729 return 0;
1730 /* Fall through. */
1731 case 2:
1732 if (x->array[1])
1733 return 0;
1734 /* Fall through. */
1735 case 1:
1736 return !x->array[0];
1737 default:
1738 abort ();
1739 }
1740 }
1741
1742 static INLINE int
1743 cpu_flags_equal (const union i386_cpu_flags *x,
1744 const union i386_cpu_flags *y)
1745 {
1746 switch (ARRAY_SIZE(x->array))
1747 {
1748 case 4:
1749 if (x->array[3] != y->array[3])
1750 return 0;
1751 /* Fall through. */
1752 case 3:
1753 if (x->array[2] != y->array[2])
1754 return 0;
1755 /* Fall through. */
1756 case 2:
1757 if (x->array[1] != y->array[1])
1758 return 0;
1759 /* Fall through. */
1760 case 1:
1761 return x->array[0] == y->array[0];
1762 break;
1763 default:
1764 abort ();
1765 }
1766 }
1767
1768 static INLINE int
1769 cpu_flags_check_cpu64 (i386_cpu_flags f)
1770 {
1771 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1772 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1773 }
1774
1775 static INLINE i386_cpu_flags
1776 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1777 {
1778 switch (ARRAY_SIZE (x.array))
1779 {
1780 case 4:
1781 x.array [3] &= y.array [3];
1782 /* Fall through. */
1783 case 3:
1784 x.array [2] &= y.array [2];
1785 /* Fall through. */
1786 case 2:
1787 x.array [1] &= y.array [1];
1788 /* Fall through. */
1789 case 1:
1790 x.array [0] &= y.array [0];
1791 break;
1792 default:
1793 abort ();
1794 }
1795 return x;
1796 }
1797
1798 static INLINE i386_cpu_flags
1799 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1800 {
1801 switch (ARRAY_SIZE (x.array))
1802 {
1803 case 4:
1804 x.array [3] |= y.array [3];
1805 /* Fall through. */
1806 case 3:
1807 x.array [2] |= y.array [2];
1808 /* Fall through. */
1809 case 2:
1810 x.array [1] |= y.array [1];
1811 /* Fall through. */
1812 case 1:
1813 x.array [0] |= y.array [0];
1814 break;
1815 default:
1816 abort ();
1817 }
1818 return x;
1819 }
1820
1821 static INLINE i386_cpu_flags
1822 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1823 {
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 4:
1827 x.array [3] &= ~y.array [3];
1828 /* Fall through. */
1829 case 3:
1830 x.array [2] &= ~y.array [2];
1831 /* Fall through. */
1832 case 2:
1833 x.array [1] &= ~y.array [1];
1834 /* Fall through. */
1835 case 1:
1836 x.array [0] &= ~y.array [0];
1837 break;
1838 default:
1839 abort ();
1840 }
1841 return x;
1842 }
1843
1844 #define CPU_FLAGS_ARCH_MATCH 0x1
1845 #define CPU_FLAGS_64BIT_MATCH 0x2
1846
1847 #define CPU_FLAGS_PERFECT_MATCH \
1848 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1849
1850 /* Return CPU flags match bits. */
1851
1852 static int
1853 cpu_flags_match (const insn_template *t)
1854 {
1855 i386_cpu_flags x = t->cpu_flags;
1856 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1857
1858 x.bitfield.cpu64 = 0;
1859 x.bitfield.cpuno64 = 0;
1860
1861 if (cpu_flags_all_zero (&x))
1862 {
1863 /* This instruction is available on all archs. */
1864 match |= CPU_FLAGS_ARCH_MATCH;
1865 }
1866 else
1867 {
1868 /* This instruction is available only on some archs. */
1869 i386_cpu_flags cpu = cpu_arch_flags;
1870
1871 /* AVX512VL is no standalone feature - match it and then strip it. */
1872 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1873 return match;
1874 x.bitfield.cpuavx512vl = 0;
1875
1876 cpu = cpu_flags_and (x, cpu);
1877 if (!cpu_flags_all_zero (&cpu))
1878 {
1879 if (x.bitfield.cpuavx)
1880 {
1881 /* We need to check a few extra flags with AVX. */
1882 if (cpu.bitfield.cpuavx
1883 && (!t->opcode_modifier.sse2avx || sse2avx)
1884 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1885 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1886 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1887 match |= CPU_FLAGS_ARCH_MATCH;
1888 }
1889 else if (x.bitfield.cpuavx512f)
1890 {
1891 /* We need to check a few extra flags with AVX512F. */
1892 if (cpu.bitfield.cpuavx512f
1893 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1894 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1895 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1896 match |= CPU_FLAGS_ARCH_MATCH;
1897 }
1898 else
1899 match |= CPU_FLAGS_ARCH_MATCH;
1900 }
1901 }
1902 return match;
1903 }
1904
1905 static INLINE i386_operand_type
1906 operand_type_and (i386_operand_type x, i386_operand_type y)
1907 {
1908 if (x.bitfield.class != y.bitfield.class)
1909 x.bitfield.class = ClassNone;
1910 if (x.bitfield.instance != y.bitfield.instance)
1911 x.bitfield.instance = InstanceNone;
1912
1913 switch (ARRAY_SIZE (x.array))
1914 {
1915 case 3:
1916 x.array [2] &= y.array [2];
1917 /* Fall through. */
1918 case 2:
1919 x.array [1] &= y.array [1];
1920 /* Fall through. */
1921 case 1:
1922 x.array [0] &= y.array [0];
1923 break;
1924 default:
1925 abort ();
1926 }
1927 return x;
1928 }
1929
1930 static INLINE i386_operand_type
1931 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1932 {
1933 gas_assert (y.bitfield.class == ClassNone);
1934 gas_assert (y.bitfield.instance == InstanceNone);
1935
1936 switch (ARRAY_SIZE (x.array))
1937 {
1938 case 3:
1939 x.array [2] &= ~y.array [2];
1940 /* Fall through. */
1941 case 2:
1942 x.array [1] &= ~y.array [1];
1943 /* Fall through. */
1944 case 1:
1945 x.array [0] &= ~y.array [0];
1946 break;
1947 default:
1948 abort ();
1949 }
1950 return x;
1951 }
1952
1953 static INLINE i386_operand_type
1954 operand_type_or (i386_operand_type x, i386_operand_type y)
1955 {
1956 gas_assert (x.bitfield.class == ClassNone ||
1957 y.bitfield.class == ClassNone ||
1958 x.bitfield.class == y.bitfield.class);
1959 gas_assert (x.bitfield.instance == InstanceNone ||
1960 y.bitfield.instance == InstanceNone ||
1961 x.bitfield.instance == y.bitfield.instance);
1962
1963 switch (ARRAY_SIZE (x.array))
1964 {
1965 case 3:
1966 x.array [2] |= y.array [2];
1967 /* Fall through. */
1968 case 2:
1969 x.array [1] |= y.array [1];
1970 /* Fall through. */
1971 case 1:
1972 x.array [0] |= y.array [0];
1973 break;
1974 default:
1975 abort ();
1976 }
1977 return x;
1978 }
1979
1980 static INLINE i386_operand_type
1981 operand_type_xor (i386_operand_type x, i386_operand_type y)
1982 {
1983 gas_assert (y.bitfield.class == ClassNone);
1984 gas_assert (y.bitfield.instance == InstanceNone);
1985
1986 switch (ARRAY_SIZE (x.array))
1987 {
1988 case 3:
1989 x.array [2] ^= y.array [2];
1990 /* Fall through. */
1991 case 2:
1992 x.array [1] ^= y.array [1];
1993 /* Fall through. */
1994 case 1:
1995 x.array [0] ^= y.array [0];
1996 break;
1997 default:
1998 abort ();
1999 }
2000 return x;
2001 }
2002
2003 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2004 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2005 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2006 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2007 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2008 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2009 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2010 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2011 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2012 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2013 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2014 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2015 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2016 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2017 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2018 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2019 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2020
2021 enum operand_type
2022 {
2023 reg,
2024 imm,
2025 disp,
2026 anymem
2027 };
2028
2029 static INLINE int
2030 operand_type_check (i386_operand_type t, enum operand_type c)
2031 {
2032 switch (c)
2033 {
2034 case reg:
2035 return t.bitfield.class == Reg;
2036
2037 case imm:
2038 return (t.bitfield.imm8
2039 || t.bitfield.imm8s
2040 || t.bitfield.imm16
2041 || t.bitfield.imm32
2042 || t.bitfield.imm32s
2043 || t.bitfield.imm64);
2044
2045 case disp:
2046 return (t.bitfield.disp8
2047 || t.bitfield.disp16
2048 || t.bitfield.disp32
2049 || t.bitfield.disp32s
2050 || t.bitfield.disp64);
2051
2052 case anymem:
2053 return (t.bitfield.disp8
2054 || t.bitfield.disp16
2055 || t.bitfield.disp32
2056 || t.bitfield.disp32s
2057 || t.bitfield.disp64
2058 || t.bitfield.baseindex);
2059
2060 default:
2061 abort ();
2062 }
2063
2064 return 0;
2065 }
2066
2067 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2068 between operand GIVEN and opeand WANTED for instruction template T. */
2069
2070 static INLINE int
2071 match_operand_size (const insn_template *t, unsigned int wanted,
2072 unsigned int given)
2073 {
2074 return !((i.types[given].bitfield.byte
2075 && !t->operand_types[wanted].bitfield.byte)
2076 || (i.types[given].bitfield.word
2077 && !t->operand_types[wanted].bitfield.word)
2078 || (i.types[given].bitfield.dword
2079 && !t->operand_types[wanted].bitfield.dword)
2080 || (i.types[given].bitfield.qword
2081 && !t->operand_types[wanted].bitfield.qword)
2082 || (i.types[given].bitfield.tbyte
2083 && !t->operand_types[wanted].bitfield.tbyte));
2084 }
2085
2086 /* Return 1 if there is no conflict in SIMD register between operand
2087 GIVEN and opeand WANTED for instruction template T. */
2088
2089 static INLINE int
2090 match_simd_size (const insn_template *t, unsigned int wanted,
2091 unsigned int given)
2092 {
2093 return !((i.types[given].bitfield.xmmword
2094 && !t->operand_types[wanted].bitfield.xmmword)
2095 || (i.types[given].bitfield.ymmword
2096 && !t->operand_types[wanted].bitfield.ymmword)
2097 || (i.types[given].bitfield.zmmword
2098 && !t->operand_types[wanted].bitfield.zmmword));
2099 }
2100
2101 /* Return 1 if there is no conflict in any size between operand GIVEN
2102 and opeand WANTED for instruction template T. */
2103
2104 static INLINE int
2105 match_mem_size (const insn_template *t, unsigned int wanted,
2106 unsigned int given)
2107 {
2108 return (match_operand_size (t, wanted, given)
2109 && !((i.types[given].bitfield.unspecified
2110 && !i.broadcast
2111 && !t->operand_types[wanted].bitfield.unspecified)
2112 || (i.types[given].bitfield.fword
2113 && !t->operand_types[wanted].bitfield.fword)
2114 /* For scalar opcode templates to allow register and memory
2115 operands at the same time, some special casing is needed
2116 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2117 down-conversion vpmov*. */
2118 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2119 && !t->opcode_modifier.broadcast
2120 && (t->operand_types[wanted].bitfield.byte
2121 || t->operand_types[wanted].bitfield.word
2122 || t->operand_types[wanted].bitfield.dword
2123 || t->operand_types[wanted].bitfield.qword))
2124 ? (i.types[given].bitfield.xmmword
2125 || i.types[given].bitfield.ymmword
2126 || i.types[given].bitfield.zmmword)
2127 : !match_simd_size(t, wanted, given))));
2128 }
2129
2130 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2131 operands for instruction template T, and it has MATCH_REVERSE set if there
2132 is no size conflict on any operands for the template with operands reversed
2133 (and the template allows for reversing in the first place). */
2134
2135 #define MATCH_STRAIGHT 1
2136 #define MATCH_REVERSE 2
2137
2138 static INLINE unsigned int
2139 operand_size_match (const insn_template *t)
2140 {
2141 unsigned int j, match = MATCH_STRAIGHT;
2142
2143 /* Don't check non-absolute jump instructions. */
2144 if (t->opcode_modifier.jump
2145 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2146 return match;
2147
2148 /* Check memory and accumulator operand size. */
2149 for (j = 0; j < i.operands; j++)
2150 {
2151 if (i.types[j].bitfield.class != Reg
2152 && i.types[j].bitfield.class != RegSIMD
2153 && t->opcode_modifier.anysize)
2154 continue;
2155
2156 if (t->operand_types[j].bitfield.class == Reg
2157 && !match_operand_size (t, j, j))
2158 {
2159 match = 0;
2160 break;
2161 }
2162
2163 if (t->operand_types[j].bitfield.class == RegSIMD
2164 && !match_simd_size (t, j, j))
2165 {
2166 match = 0;
2167 break;
2168 }
2169
2170 if (t->operand_types[j].bitfield.instance == Accum
2171 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2172 {
2173 match = 0;
2174 break;
2175 }
2176
2177 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2178 {
2179 match = 0;
2180 break;
2181 }
2182 }
2183
2184 if (!t->opcode_modifier.d)
2185 {
2186 mismatch:
2187 if (!match)
2188 i.error = operand_size_mismatch;
2189 return match;
2190 }
2191
2192 /* Check reverse. */
2193 gas_assert (i.operands >= 2 && i.operands <= 3);
2194
2195 for (j = 0; j < i.operands; j++)
2196 {
2197 unsigned int given = i.operands - j - 1;
2198
2199 if (t->operand_types[j].bitfield.class == Reg
2200 && !match_operand_size (t, j, given))
2201 goto mismatch;
2202
2203 if (t->operand_types[j].bitfield.class == RegSIMD
2204 && !match_simd_size (t, j, given))
2205 goto mismatch;
2206
2207 if (t->operand_types[j].bitfield.instance == Accum
2208 && (!match_operand_size (t, j, given)
2209 || !match_simd_size (t, j, given)))
2210 goto mismatch;
2211
2212 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2213 goto mismatch;
2214 }
2215
2216 return match | MATCH_REVERSE;
2217 }
2218
2219 static INLINE int
2220 operand_type_match (i386_operand_type overlap,
2221 i386_operand_type given)
2222 {
2223 i386_operand_type temp = overlap;
2224
2225 temp.bitfield.unspecified = 0;
2226 temp.bitfield.byte = 0;
2227 temp.bitfield.word = 0;
2228 temp.bitfield.dword = 0;
2229 temp.bitfield.fword = 0;
2230 temp.bitfield.qword = 0;
2231 temp.bitfield.tbyte = 0;
2232 temp.bitfield.xmmword = 0;
2233 temp.bitfield.ymmword = 0;
2234 temp.bitfield.zmmword = 0;
2235 if (operand_type_all_zero (&temp))
2236 goto mismatch;
2237
2238 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2239 return 1;
2240
2241 mismatch:
2242 i.error = operand_type_mismatch;
2243 return 0;
2244 }
2245
2246 /* If given types g0 and g1 are registers they must be of the same type
2247 unless the expected operand type register overlap is null.
2248 Memory operand size of certain SIMD instructions is also being checked
2249 here. */
2250
2251 static INLINE int
2252 operand_type_register_match (i386_operand_type g0,
2253 i386_operand_type t0,
2254 i386_operand_type g1,
2255 i386_operand_type t1)
2256 {
2257 if (g0.bitfield.class != Reg
2258 && g0.bitfield.class != RegSIMD
2259 && (!operand_type_check (g0, anymem)
2260 || g0.bitfield.unspecified
2261 || t0.bitfield.class != RegSIMD))
2262 return 1;
2263
2264 if (g1.bitfield.class != Reg
2265 && g1.bitfield.class != RegSIMD
2266 && (!operand_type_check (g1, anymem)
2267 || g1.bitfield.unspecified
2268 || t1.bitfield.class != RegSIMD))
2269 return 1;
2270
2271 if (g0.bitfield.byte == g1.bitfield.byte
2272 && g0.bitfield.word == g1.bitfield.word
2273 && g0.bitfield.dword == g1.bitfield.dword
2274 && g0.bitfield.qword == g1.bitfield.qword
2275 && g0.bitfield.xmmword == g1.bitfield.xmmword
2276 && g0.bitfield.ymmword == g1.bitfield.ymmword
2277 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2278 return 1;
2279
2280 if (!(t0.bitfield.byte & t1.bitfield.byte)
2281 && !(t0.bitfield.word & t1.bitfield.word)
2282 && !(t0.bitfield.dword & t1.bitfield.dword)
2283 && !(t0.bitfield.qword & t1.bitfield.qword)
2284 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2285 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2286 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2287 return 1;
2288
2289 i.error = register_type_mismatch;
2290
2291 return 0;
2292 }
2293
2294 static INLINE unsigned int
2295 register_number (const reg_entry *r)
2296 {
2297 unsigned int nr = r->reg_num;
2298
2299 if (r->reg_flags & RegRex)
2300 nr += 8;
2301
2302 if (r->reg_flags & RegVRex)
2303 nr += 16;
2304
2305 return nr;
2306 }
2307
2308 static INLINE unsigned int
2309 mode_from_disp_size (i386_operand_type t)
2310 {
2311 if (t.bitfield.disp8)
2312 return 1;
2313 else if (t.bitfield.disp16
2314 || t.bitfield.disp32
2315 || t.bitfield.disp32s)
2316 return 2;
2317 else
2318 return 0;
2319 }
2320
2321 static INLINE int
2322 fits_in_signed_byte (addressT num)
2323 {
2324 return num + 0x80 <= 0xff;
2325 }
2326
2327 static INLINE int
2328 fits_in_unsigned_byte (addressT num)
2329 {
2330 return num <= 0xff;
2331 }
2332
2333 static INLINE int
2334 fits_in_unsigned_word (addressT num)
2335 {
2336 return num <= 0xffff;
2337 }
2338
2339 static INLINE int
2340 fits_in_signed_word (addressT num)
2341 {
2342 return num + 0x8000 <= 0xffff;
2343 }
2344
2345 static INLINE int
2346 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2347 {
2348 #ifndef BFD64
2349 return 1;
2350 #else
2351 return num + 0x80000000 <= 0xffffffff;
2352 #endif
2353 } /* fits_in_signed_long() */
2354
2355 static INLINE int
2356 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2357 {
2358 #ifndef BFD64
2359 return 1;
2360 #else
2361 return num <= 0xffffffff;
2362 #endif
2363 } /* fits_in_unsigned_long() */
2364
2365 static INLINE int
2366 fits_in_disp8 (offsetT num)
2367 {
2368 int shift = i.memshift;
2369 unsigned int mask;
2370
2371 if (shift == -1)
2372 abort ();
2373
2374 mask = (1 << shift) - 1;
2375
2376 /* Return 0 if NUM isn't properly aligned. */
2377 if ((num & mask))
2378 return 0;
2379
2380 /* Check if NUM will fit in 8bit after shift. */
2381 return fits_in_signed_byte (num >> shift);
2382 }
2383
2384 static INLINE int
2385 fits_in_imm4 (offsetT num)
2386 {
2387 return (num & 0xf) == num;
2388 }
2389
2390 static i386_operand_type
2391 smallest_imm_type (offsetT num)
2392 {
2393 i386_operand_type t;
2394
2395 operand_type_set (&t, 0);
2396 t.bitfield.imm64 = 1;
2397
2398 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2399 {
2400 /* This code is disabled on the 486 because all the Imm1 forms
2401 in the opcode table are slower on the i486. They're the
2402 versions with the implicitly specified single-position
2403 displacement, which has another syntax if you really want to
2404 use that form. */
2405 t.bitfield.imm1 = 1;
2406 t.bitfield.imm8 = 1;
2407 t.bitfield.imm8s = 1;
2408 t.bitfield.imm16 = 1;
2409 t.bitfield.imm32 = 1;
2410 t.bitfield.imm32s = 1;
2411 }
2412 else if (fits_in_signed_byte (num))
2413 {
2414 t.bitfield.imm8 = 1;
2415 t.bitfield.imm8s = 1;
2416 t.bitfield.imm16 = 1;
2417 t.bitfield.imm32 = 1;
2418 t.bitfield.imm32s = 1;
2419 }
2420 else if (fits_in_unsigned_byte (num))
2421 {
2422 t.bitfield.imm8 = 1;
2423 t.bitfield.imm16 = 1;
2424 t.bitfield.imm32 = 1;
2425 t.bitfield.imm32s = 1;
2426 }
2427 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2428 {
2429 t.bitfield.imm16 = 1;
2430 t.bitfield.imm32 = 1;
2431 t.bitfield.imm32s = 1;
2432 }
2433 else if (fits_in_signed_long (num))
2434 {
2435 t.bitfield.imm32 = 1;
2436 t.bitfield.imm32s = 1;
2437 }
2438 else if (fits_in_unsigned_long (num))
2439 t.bitfield.imm32 = 1;
2440
2441 return t;
2442 }
2443
2444 static offsetT
2445 offset_in_range (offsetT val, int size)
2446 {
2447 addressT mask;
2448
2449 switch (size)
2450 {
2451 case 1: mask = ((addressT) 1 << 8) - 1; break;
2452 case 2: mask = ((addressT) 1 << 16) - 1; break;
2453 case 4: mask = ((addressT) 2 << 31) - 1; break;
2454 #ifdef BFD64
2455 case 8: mask = ((addressT) 2 << 63) - 1; break;
2456 #endif
2457 default: abort ();
2458 }
2459
2460 #ifdef BFD64
2461 /* If BFD64, sign extend val for 32bit address mode. */
2462 if (flag_code != CODE_64BIT
2463 || i.prefix[ADDR_PREFIX])
2464 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2465 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2466 #endif
2467
2468 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2469 {
2470 char buf1[40], buf2[40];
2471
2472 sprint_value (buf1, val);
2473 sprint_value (buf2, val & mask);
2474 as_warn (_("%s shortened to %s"), buf1, buf2);
2475 }
2476 return val & mask;
2477 }
2478
2479 enum PREFIX_GROUP
2480 {
2481 PREFIX_EXIST = 0,
2482 PREFIX_LOCK,
2483 PREFIX_REP,
2484 PREFIX_DS,
2485 PREFIX_OTHER
2486 };
2487
2488 /* Returns
2489 a. PREFIX_EXIST if attempting to add a prefix where one from the
2490 same class already exists.
2491 b. PREFIX_LOCK if lock prefix is added.
2492 c. PREFIX_REP if rep/repne prefix is added.
2493 d. PREFIX_DS if ds prefix is added.
2494 e. PREFIX_OTHER if other prefix is added.
2495 */
2496
2497 static enum PREFIX_GROUP
2498 add_prefix (unsigned int prefix)
2499 {
2500 enum PREFIX_GROUP ret = PREFIX_OTHER;
2501 unsigned int q;
2502
2503 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2504 && flag_code == CODE_64BIT)
2505 {
2506 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2508 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2509 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2510 ret = PREFIX_EXIST;
2511 q = REX_PREFIX;
2512 }
2513 else
2514 {
2515 switch (prefix)
2516 {
2517 default:
2518 abort ();
2519
2520 case DS_PREFIX_OPCODE:
2521 ret = PREFIX_DS;
2522 /* Fall through. */
2523 case CS_PREFIX_OPCODE:
2524 case ES_PREFIX_OPCODE:
2525 case FS_PREFIX_OPCODE:
2526 case GS_PREFIX_OPCODE:
2527 case SS_PREFIX_OPCODE:
2528 q = SEG_PREFIX;
2529 break;
2530
2531 case REPNE_PREFIX_OPCODE:
2532 case REPE_PREFIX_OPCODE:
2533 q = REP_PREFIX;
2534 ret = PREFIX_REP;
2535 break;
2536
2537 case LOCK_PREFIX_OPCODE:
2538 q = LOCK_PREFIX;
2539 ret = PREFIX_LOCK;
2540 break;
2541
2542 case FWAIT_OPCODE:
2543 q = WAIT_PREFIX;
2544 break;
2545
2546 case ADDR_PREFIX_OPCODE:
2547 q = ADDR_PREFIX;
2548 break;
2549
2550 case DATA_PREFIX_OPCODE:
2551 q = DATA_PREFIX;
2552 break;
2553 }
2554 if (i.prefix[q] != 0)
2555 ret = PREFIX_EXIST;
2556 }
2557
2558 if (ret)
2559 {
2560 if (!i.prefix[q])
2561 ++i.prefixes;
2562 i.prefix[q] |= prefix;
2563 }
2564 else
2565 as_bad (_("same type of prefix used twice"));
2566
2567 return ret;
2568 }
2569
2570 static void
2571 update_code_flag (int value, int check)
2572 {
2573 PRINTF_LIKE ((*as_error));
2574
2575 flag_code = (enum flag_code) value;
2576 if (flag_code == CODE_64BIT)
2577 {
2578 cpu_arch_flags.bitfield.cpu64 = 1;
2579 cpu_arch_flags.bitfield.cpuno64 = 0;
2580 }
2581 else
2582 {
2583 cpu_arch_flags.bitfield.cpu64 = 0;
2584 cpu_arch_flags.bitfield.cpuno64 = 1;
2585 }
2586 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2587 {
2588 if (check)
2589 as_error = as_fatal;
2590 else
2591 as_error = as_bad;
2592 (*as_error) (_("64bit mode not supported on `%s'."),
2593 cpu_arch_name ? cpu_arch_name : default_arch);
2594 }
2595 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2596 {
2597 if (check)
2598 as_error = as_fatal;
2599 else
2600 as_error = as_bad;
2601 (*as_error) (_("32bit mode not supported on `%s'."),
2602 cpu_arch_name ? cpu_arch_name : default_arch);
2603 }
2604 stackop_size = '\0';
2605 }
2606
2607 static void
2608 set_code_flag (int value)
2609 {
2610 update_code_flag (value, 0);
2611 }
2612
2613 static void
2614 set_16bit_gcc_code_flag (int new_code_flag)
2615 {
2616 flag_code = (enum flag_code) new_code_flag;
2617 if (flag_code != CODE_16BIT)
2618 abort ();
2619 cpu_arch_flags.bitfield.cpu64 = 0;
2620 cpu_arch_flags.bitfield.cpuno64 = 1;
2621 stackop_size = LONG_MNEM_SUFFIX;
2622 }
2623
2624 static void
2625 set_intel_syntax (int syntax_flag)
2626 {
2627 /* Find out if register prefixing is specified. */
2628 int ask_naked_reg = 0;
2629
2630 SKIP_WHITESPACE ();
2631 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2632 {
2633 char *string;
2634 int e = get_symbol_name (&string);
2635
2636 if (strcmp (string, "prefix") == 0)
2637 ask_naked_reg = 1;
2638 else if (strcmp (string, "noprefix") == 0)
2639 ask_naked_reg = -1;
2640 else
2641 as_bad (_("bad argument to syntax directive."));
2642 (void) restore_line_pointer (e);
2643 }
2644 demand_empty_rest_of_line ();
2645
2646 intel_syntax = syntax_flag;
2647
2648 if (ask_naked_reg == 0)
2649 allow_naked_reg = (intel_syntax
2650 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2651 else
2652 allow_naked_reg = (ask_naked_reg < 0);
2653
2654 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2655
2656 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2657 identifier_chars['$'] = intel_syntax ? '$' : 0;
2658 register_prefix = allow_naked_reg ? "" : "%";
2659 }
2660
2661 static void
2662 set_intel_mnemonic (int mnemonic_flag)
2663 {
2664 intel_mnemonic = mnemonic_flag;
2665 }
2666
2667 static void
2668 set_allow_index_reg (int flag)
2669 {
2670 allow_index_reg = flag;
2671 }
2672
2673 static void
2674 set_check (int what)
2675 {
2676 enum check_kind *kind;
2677 const char *str;
2678
2679 if (what)
2680 {
2681 kind = &operand_check;
2682 str = "operand";
2683 }
2684 else
2685 {
2686 kind = &sse_check;
2687 str = "sse";
2688 }
2689
2690 SKIP_WHITESPACE ();
2691
2692 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2693 {
2694 char *string;
2695 int e = get_symbol_name (&string);
2696
2697 if (strcmp (string, "none") == 0)
2698 *kind = check_none;
2699 else if (strcmp (string, "warning") == 0)
2700 *kind = check_warning;
2701 else if (strcmp (string, "error") == 0)
2702 *kind = check_error;
2703 else
2704 as_bad (_("bad argument to %s_check directive."), str);
2705 (void) restore_line_pointer (e);
2706 }
2707 else
2708 as_bad (_("missing argument for %s_check directive"), str);
2709
2710 demand_empty_rest_of_line ();
2711 }
2712
2713 static void
2714 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2715 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2716 {
2717 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2718 static const char *arch;
2719
2720 /* Intel LIOM is only supported on ELF. */
2721 if (!IS_ELF)
2722 return;
2723
2724 if (!arch)
2725 {
2726 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2727 use default_arch. */
2728 arch = cpu_arch_name;
2729 if (!arch)
2730 arch = default_arch;
2731 }
2732
2733 /* If we are targeting Intel MCU, we must enable it. */
2734 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2735 || new_flag.bitfield.cpuiamcu)
2736 return;
2737
2738 /* If we are targeting Intel L1OM, we must enable it. */
2739 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2740 || new_flag.bitfield.cpul1om)
2741 return;
2742
2743 /* If we are targeting Intel K1OM, we must enable it. */
2744 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2745 || new_flag.bitfield.cpuk1om)
2746 return;
2747
2748 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2749 #endif
2750 }
2751
2752 static void
2753 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2754 {
2755 SKIP_WHITESPACE ();
2756
2757 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2758 {
2759 char *string;
2760 int e = get_symbol_name (&string);
2761 unsigned int j;
2762 i386_cpu_flags flags;
2763
2764 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2765 {
2766 if (strcmp (string, cpu_arch[j].name) == 0)
2767 {
2768 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2769
2770 if (*string != '.')
2771 {
2772 cpu_arch_name = cpu_arch[j].name;
2773 cpu_sub_arch_name = NULL;
2774 cpu_arch_flags = cpu_arch[j].flags;
2775 if (flag_code == CODE_64BIT)
2776 {
2777 cpu_arch_flags.bitfield.cpu64 = 1;
2778 cpu_arch_flags.bitfield.cpuno64 = 0;
2779 }
2780 else
2781 {
2782 cpu_arch_flags.bitfield.cpu64 = 0;
2783 cpu_arch_flags.bitfield.cpuno64 = 1;
2784 }
2785 cpu_arch_isa = cpu_arch[j].type;
2786 cpu_arch_isa_flags = cpu_arch[j].flags;
2787 if (!cpu_arch_tune_set)
2788 {
2789 cpu_arch_tune = cpu_arch_isa;
2790 cpu_arch_tune_flags = cpu_arch_isa_flags;
2791 }
2792 break;
2793 }
2794
2795 flags = cpu_flags_or (cpu_arch_flags,
2796 cpu_arch[j].flags);
2797
2798 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2799 {
2800 if (cpu_sub_arch_name)
2801 {
2802 char *name = cpu_sub_arch_name;
2803 cpu_sub_arch_name = concat (name,
2804 cpu_arch[j].name,
2805 (const char *) NULL);
2806 free (name);
2807 }
2808 else
2809 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2810 cpu_arch_flags = flags;
2811 cpu_arch_isa_flags = flags;
2812 }
2813 else
2814 cpu_arch_isa_flags
2815 = cpu_flags_or (cpu_arch_isa_flags,
2816 cpu_arch[j].flags);
2817 (void) restore_line_pointer (e);
2818 demand_empty_rest_of_line ();
2819 return;
2820 }
2821 }
2822
2823 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2824 {
2825 /* Disable an ISA extension. */
2826 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2827 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2828 {
2829 flags = cpu_flags_and_not (cpu_arch_flags,
2830 cpu_noarch[j].flags);
2831 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2832 {
2833 if (cpu_sub_arch_name)
2834 {
2835 char *name = cpu_sub_arch_name;
2836 cpu_sub_arch_name = concat (name, string,
2837 (const char *) NULL);
2838 free (name);
2839 }
2840 else
2841 cpu_sub_arch_name = xstrdup (string);
2842 cpu_arch_flags = flags;
2843 cpu_arch_isa_flags = flags;
2844 }
2845 (void) restore_line_pointer (e);
2846 demand_empty_rest_of_line ();
2847 return;
2848 }
2849
2850 j = ARRAY_SIZE (cpu_arch);
2851 }
2852
2853 if (j >= ARRAY_SIZE (cpu_arch))
2854 as_bad (_("no such architecture: `%s'"), string);
2855
2856 *input_line_pointer = e;
2857 }
2858 else
2859 as_bad (_("missing cpu architecture"));
2860
2861 no_cond_jump_promotion = 0;
2862 if (*input_line_pointer == ','
2863 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2864 {
2865 char *string;
2866 char e;
2867
2868 ++input_line_pointer;
2869 e = get_symbol_name (&string);
2870
2871 if (strcmp (string, "nojumps") == 0)
2872 no_cond_jump_promotion = 1;
2873 else if (strcmp (string, "jumps") == 0)
2874 ;
2875 else
2876 as_bad (_("no such architecture modifier: `%s'"), string);
2877
2878 (void) restore_line_pointer (e);
2879 }
2880
2881 demand_empty_rest_of_line ();
2882 }
2883
2884 enum bfd_architecture
2885 i386_arch (void)
2886 {
2887 if (cpu_arch_isa == PROCESSOR_L1OM)
2888 {
2889 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2890 || flag_code != CODE_64BIT)
2891 as_fatal (_("Intel L1OM is 64bit ELF only"));
2892 return bfd_arch_l1om;
2893 }
2894 else if (cpu_arch_isa == PROCESSOR_K1OM)
2895 {
2896 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2897 || flag_code != CODE_64BIT)
2898 as_fatal (_("Intel K1OM is 64bit ELF only"));
2899 return bfd_arch_k1om;
2900 }
2901 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2902 {
2903 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2904 || flag_code == CODE_64BIT)
2905 as_fatal (_("Intel MCU is 32bit ELF only"));
2906 return bfd_arch_iamcu;
2907 }
2908 else
2909 return bfd_arch_i386;
2910 }
2911
2912 unsigned long
2913 i386_mach (void)
2914 {
2915 if (!strncmp (default_arch, "x86_64", 6))
2916 {
2917 if (cpu_arch_isa == PROCESSOR_L1OM)
2918 {
2919 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2920 || default_arch[6] != '\0')
2921 as_fatal (_("Intel L1OM is 64bit ELF only"));
2922 return bfd_mach_l1om;
2923 }
2924 else if (cpu_arch_isa == PROCESSOR_K1OM)
2925 {
2926 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2927 || default_arch[6] != '\0')
2928 as_fatal (_("Intel K1OM is 64bit ELF only"));
2929 return bfd_mach_k1om;
2930 }
2931 else if (default_arch[6] == '\0')
2932 return bfd_mach_x86_64;
2933 else
2934 return bfd_mach_x64_32;
2935 }
2936 else if (!strcmp (default_arch, "i386")
2937 || !strcmp (default_arch, "iamcu"))
2938 {
2939 if (cpu_arch_isa == PROCESSOR_IAMCU)
2940 {
2941 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2942 as_fatal (_("Intel MCU is 32bit ELF only"));
2943 return bfd_mach_i386_iamcu;
2944 }
2945 else
2946 return bfd_mach_i386_i386;
2947 }
2948 else
2949 as_fatal (_("unknown architecture"));
2950 }
2951 \f
2952 void
2953 md_begin (void)
2954 {
2955 const char *hash_err;
2956
2957 /* Support pseudo prefixes like {disp32}. */
2958 lex_type ['{'] = LEX_BEGIN_NAME;
2959
2960 /* Initialize op_hash hash table. */
2961 op_hash = hash_new ();
2962
2963 {
2964 const insn_template *optab;
2965 templates *core_optab;
2966
2967 /* Setup for loop. */
2968 optab = i386_optab;
2969 core_optab = XNEW (templates);
2970 core_optab->start = optab;
2971
2972 while (1)
2973 {
2974 ++optab;
2975 if (optab->name == NULL
2976 || strcmp (optab->name, (optab - 1)->name) != 0)
2977 {
2978 /* different name --> ship out current template list;
2979 add to hash table; & begin anew. */
2980 core_optab->end = optab;
2981 hash_err = hash_insert (op_hash,
2982 (optab - 1)->name,
2983 (void *) core_optab);
2984 if (hash_err)
2985 {
2986 as_fatal (_("can't hash %s: %s"),
2987 (optab - 1)->name,
2988 hash_err);
2989 }
2990 if (optab->name == NULL)
2991 break;
2992 core_optab = XNEW (templates);
2993 core_optab->start = optab;
2994 }
2995 }
2996 }
2997
2998 /* Initialize reg_hash hash table. */
2999 reg_hash = hash_new ();
3000 {
3001 const reg_entry *regtab;
3002 unsigned int regtab_size = i386_regtab_size;
3003
3004 for (regtab = i386_regtab; regtab_size--; regtab++)
3005 {
3006 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3007 if (hash_err)
3008 as_fatal (_("can't hash %s: %s"),
3009 regtab->reg_name,
3010 hash_err);
3011 }
3012 }
3013
3014 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3015 {
3016 int c;
3017 char *p;
3018
3019 for (c = 0; c < 256; c++)
3020 {
3021 if (ISDIGIT (c))
3022 {
3023 digit_chars[c] = c;
3024 mnemonic_chars[c] = c;
3025 register_chars[c] = c;
3026 operand_chars[c] = c;
3027 }
3028 else if (ISLOWER (c))
3029 {
3030 mnemonic_chars[c] = c;
3031 register_chars[c] = c;
3032 operand_chars[c] = c;
3033 }
3034 else if (ISUPPER (c))
3035 {
3036 mnemonic_chars[c] = TOLOWER (c);
3037 register_chars[c] = mnemonic_chars[c];
3038 operand_chars[c] = c;
3039 }
3040 else if (c == '{' || c == '}')
3041 {
3042 mnemonic_chars[c] = c;
3043 operand_chars[c] = c;
3044 }
3045
3046 if (ISALPHA (c) || ISDIGIT (c))
3047 identifier_chars[c] = c;
3048 else if (c >= 128)
3049 {
3050 identifier_chars[c] = c;
3051 operand_chars[c] = c;
3052 }
3053 }
3054
3055 #ifdef LEX_AT
3056 identifier_chars['@'] = '@';
3057 #endif
3058 #ifdef LEX_QM
3059 identifier_chars['?'] = '?';
3060 operand_chars['?'] = '?';
3061 #endif
3062 digit_chars['-'] = '-';
3063 mnemonic_chars['_'] = '_';
3064 mnemonic_chars['-'] = '-';
3065 mnemonic_chars['.'] = '.';
3066 identifier_chars['_'] = '_';
3067 identifier_chars['.'] = '.';
3068
3069 for (p = operand_special_chars; *p != '\0'; p++)
3070 operand_chars[(unsigned char) *p] = *p;
3071 }
3072
3073 if (flag_code == CODE_64BIT)
3074 {
3075 #if defined (OBJ_COFF) && defined (TE_PE)
3076 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3077 ? 32 : 16);
3078 #else
3079 x86_dwarf2_return_column = 16;
3080 #endif
3081 x86_cie_data_alignment = -8;
3082 }
3083 else
3084 {
3085 x86_dwarf2_return_column = 8;
3086 x86_cie_data_alignment = -4;
3087 }
3088
3089 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3090 can be turned into BRANCH_PREFIX frag. */
3091 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3092 abort ();
3093 }
3094
3095 void
3096 i386_print_statistics (FILE *file)
3097 {
3098 hash_print_statistics (file, "i386 opcode", op_hash);
3099 hash_print_statistics (file, "i386 register", reg_hash);
3100 }
3101 \f
3102 #ifdef DEBUG386
3103
3104 /* Debugging routines for md_assemble. */
3105 static void pte (insn_template *);
3106 static void pt (i386_operand_type);
3107 static void pe (expressionS *);
3108 static void ps (symbolS *);
3109
3110 static void
3111 pi (const char *line, i386_insn *x)
3112 {
3113 unsigned int j;
3114
3115 fprintf (stdout, "%s: template ", line);
3116 pte (&x->tm);
3117 fprintf (stdout, " address: base %s index %s scale %x\n",
3118 x->base_reg ? x->base_reg->reg_name : "none",
3119 x->index_reg ? x->index_reg->reg_name : "none",
3120 x->log2_scale_factor);
3121 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3122 x->rm.mode, x->rm.reg, x->rm.regmem);
3123 fprintf (stdout, " sib: base %x index %x scale %x\n",
3124 x->sib.base, x->sib.index, x->sib.scale);
3125 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3126 (x->rex & REX_W) != 0,
3127 (x->rex & REX_R) != 0,
3128 (x->rex & REX_X) != 0,
3129 (x->rex & REX_B) != 0);
3130 for (j = 0; j < x->operands; j++)
3131 {
3132 fprintf (stdout, " #%d: ", j + 1);
3133 pt (x->types[j]);
3134 fprintf (stdout, "\n");
3135 if (x->types[j].bitfield.class == Reg
3136 || x->types[j].bitfield.class == RegMMX
3137 || x->types[j].bitfield.class == RegSIMD
3138 || x->types[j].bitfield.class == SReg
3139 || x->types[j].bitfield.class == RegCR
3140 || x->types[j].bitfield.class == RegDR
3141 || x->types[j].bitfield.class == RegTR)
3142 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3143 if (operand_type_check (x->types[j], imm))
3144 pe (x->op[j].imms);
3145 if (operand_type_check (x->types[j], disp))
3146 pe (x->op[j].disps);
3147 }
3148 }
3149
3150 static void
3151 pte (insn_template *t)
3152 {
3153 unsigned int j;
3154 fprintf (stdout, " %d operands ", t->operands);
3155 fprintf (stdout, "opcode %x ", t->base_opcode);
3156 if (t->extension_opcode != None)
3157 fprintf (stdout, "ext %x ", t->extension_opcode);
3158 if (t->opcode_modifier.d)
3159 fprintf (stdout, "D");
3160 if (t->opcode_modifier.w)
3161 fprintf (stdout, "W");
3162 fprintf (stdout, "\n");
3163 for (j = 0; j < t->operands; j++)
3164 {
3165 fprintf (stdout, " #%d type ", j + 1);
3166 pt (t->operand_types[j]);
3167 fprintf (stdout, "\n");
3168 }
3169 }
3170
3171 static void
3172 pe (expressionS *e)
3173 {
3174 fprintf (stdout, " operation %d\n", e->X_op);
3175 fprintf (stdout, " add_number %ld (%lx)\n",
3176 (long) e->X_add_number, (long) e->X_add_number);
3177 if (e->X_add_symbol)
3178 {
3179 fprintf (stdout, " add_symbol ");
3180 ps (e->X_add_symbol);
3181 fprintf (stdout, "\n");
3182 }
3183 if (e->X_op_symbol)
3184 {
3185 fprintf (stdout, " op_symbol ");
3186 ps (e->X_op_symbol);
3187 fprintf (stdout, "\n");
3188 }
3189 }
3190
3191 static void
3192 ps (symbolS *s)
3193 {
3194 fprintf (stdout, "%s type %s%s",
3195 S_GET_NAME (s),
3196 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3197 segment_name (S_GET_SEGMENT (s)));
3198 }
3199
3200 static struct type_name
3201 {
3202 i386_operand_type mask;
3203 const char *name;
3204 }
3205 const type_names[] =
3206 {
3207 { OPERAND_TYPE_REG8, "r8" },
3208 { OPERAND_TYPE_REG16, "r16" },
3209 { OPERAND_TYPE_REG32, "r32" },
3210 { OPERAND_TYPE_REG64, "r64" },
3211 { OPERAND_TYPE_ACC8, "acc8" },
3212 { OPERAND_TYPE_ACC16, "acc16" },
3213 { OPERAND_TYPE_ACC32, "acc32" },
3214 { OPERAND_TYPE_ACC64, "acc64" },
3215 { OPERAND_TYPE_IMM8, "i8" },
3216 { OPERAND_TYPE_IMM8, "i8s" },
3217 { OPERAND_TYPE_IMM16, "i16" },
3218 { OPERAND_TYPE_IMM32, "i32" },
3219 { OPERAND_TYPE_IMM32S, "i32s" },
3220 { OPERAND_TYPE_IMM64, "i64" },
3221 { OPERAND_TYPE_IMM1, "i1" },
3222 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3223 { OPERAND_TYPE_DISP8, "d8" },
3224 { OPERAND_TYPE_DISP16, "d16" },
3225 { OPERAND_TYPE_DISP32, "d32" },
3226 { OPERAND_TYPE_DISP32S, "d32s" },
3227 { OPERAND_TYPE_DISP64, "d64" },
3228 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3229 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3230 { OPERAND_TYPE_CONTROL, "control reg" },
3231 { OPERAND_TYPE_TEST, "test reg" },
3232 { OPERAND_TYPE_DEBUG, "debug reg" },
3233 { OPERAND_TYPE_FLOATREG, "FReg" },
3234 { OPERAND_TYPE_FLOATACC, "FAcc" },
3235 { OPERAND_TYPE_SREG, "SReg" },
3236 { OPERAND_TYPE_REGMMX, "rMMX" },
3237 { OPERAND_TYPE_REGXMM, "rXMM" },
3238 { OPERAND_TYPE_REGYMM, "rYMM" },
3239 { OPERAND_TYPE_REGZMM, "rZMM" },
3240 { OPERAND_TYPE_REGMASK, "Mask reg" },
3241 };
3242
3243 static void
3244 pt (i386_operand_type t)
3245 {
3246 unsigned int j;
3247 i386_operand_type a;
3248
3249 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3250 {
3251 a = operand_type_and (t, type_names[j].mask);
3252 if (operand_type_equal (&a, &type_names[j].mask))
3253 fprintf (stdout, "%s, ", type_names[j].name);
3254 }
3255 fflush (stdout);
3256 }
3257
3258 #endif /* DEBUG386 */
3259 \f
3260 static bfd_reloc_code_real_type
3261 reloc (unsigned int size,
3262 int pcrel,
3263 int sign,
3264 bfd_reloc_code_real_type other)
3265 {
3266 if (other != NO_RELOC)
3267 {
3268 reloc_howto_type *rel;
3269
3270 if (size == 8)
3271 switch (other)
3272 {
3273 case BFD_RELOC_X86_64_GOT32:
3274 return BFD_RELOC_X86_64_GOT64;
3275 break;
3276 case BFD_RELOC_X86_64_GOTPLT64:
3277 return BFD_RELOC_X86_64_GOTPLT64;
3278 break;
3279 case BFD_RELOC_X86_64_PLTOFF64:
3280 return BFD_RELOC_X86_64_PLTOFF64;
3281 break;
3282 case BFD_RELOC_X86_64_GOTPC32:
3283 other = BFD_RELOC_X86_64_GOTPC64;
3284 break;
3285 case BFD_RELOC_X86_64_GOTPCREL:
3286 other = BFD_RELOC_X86_64_GOTPCREL64;
3287 break;
3288 case BFD_RELOC_X86_64_TPOFF32:
3289 other = BFD_RELOC_X86_64_TPOFF64;
3290 break;
3291 case BFD_RELOC_X86_64_DTPOFF32:
3292 other = BFD_RELOC_X86_64_DTPOFF64;
3293 break;
3294 default:
3295 break;
3296 }
3297
3298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3299 if (other == BFD_RELOC_SIZE32)
3300 {
3301 if (size == 8)
3302 other = BFD_RELOC_SIZE64;
3303 if (pcrel)
3304 {
3305 as_bad (_("there are no pc-relative size relocations"));
3306 return NO_RELOC;
3307 }
3308 }
3309 #endif
3310
3311 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3312 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3313 sign = -1;
3314
3315 rel = bfd_reloc_type_lookup (stdoutput, other);
3316 if (!rel)
3317 as_bad (_("unknown relocation (%u)"), other);
3318 else if (size != bfd_get_reloc_size (rel))
3319 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3320 bfd_get_reloc_size (rel),
3321 size);
3322 else if (pcrel && !rel->pc_relative)
3323 as_bad (_("non-pc-relative relocation for pc-relative field"));
3324 else if ((rel->complain_on_overflow == complain_overflow_signed
3325 && !sign)
3326 || (rel->complain_on_overflow == complain_overflow_unsigned
3327 && sign > 0))
3328 as_bad (_("relocated field and relocation type differ in signedness"));
3329 else
3330 return other;
3331 return NO_RELOC;
3332 }
3333
3334 if (pcrel)
3335 {
3336 if (!sign)
3337 as_bad (_("there are no unsigned pc-relative relocations"));
3338 switch (size)
3339 {
3340 case 1: return BFD_RELOC_8_PCREL;
3341 case 2: return BFD_RELOC_16_PCREL;
3342 case 4: return BFD_RELOC_32_PCREL;
3343 case 8: return BFD_RELOC_64_PCREL;
3344 }
3345 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3346 }
3347 else
3348 {
3349 if (sign > 0)
3350 switch (size)
3351 {
3352 case 4: return BFD_RELOC_X86_64_32S;
3353 }
3354 else
3355 switch (size)
3356 {
3357 case 1: return BFD_RELOC_8;
3358 case 2: return BFD_RELOC_16;
3359 case 4: return BFD_RELOC_32;
3360 case 8: return BFD_RELOC_64;
3361 }
3362 as_bad (_("cannot do %s %u byte relocation"),
3363 sign > 0 ? "signed" : "unsigned", size);
3364 }
3365
3366 return NO_RELOC;
3367 }
3368
3369 /* Here we decide which fixups can be adjusted to make them relative to
3370 the beginning of the section instead of the symbol. Basically we need
3371 to make sure that the dynamic relocations are done correctly, so in
3372 some cases we force the original symbol to be used. */
3373
3374 int
3375 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3376 {
3377 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3378 if (!IS_ELF)
3379 return 1;
3380
3381 /* Don't adjust pc-relative references to merge sections in 64-bit
3382 mode. */
3383 if (use_rela_relocations
3384 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3385 && fixP->fx_pcrel)
3386 return 0;
3387
3388 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3389 and changed later by validate_fix. */
3390 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3391 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3392 return 0;
3393
3394 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3395 for size relocations. */
3396 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3397 || fixP->fx_r_type == BFD_RELOC_SIZE64
3398 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3399 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3400 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3401 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3412 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3427 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3428 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3429 return 0;
3430 #endif
3431 return 1;
3432 }
3433
3434 static int
3435 intel_float_operand (const char *mnemonic)
3436 {
3437 /* Note that the value returned is meaningful only for opcodes with (memory)
3438 operands, hence the code here is free to improperly handle opcodes that
3439 have no operands (for better performance and smaller code). */
3440
3441 if (mnemonic[0] != 'f')
3442 return 0; /* non-math */
3443
3444 switch (mnemonic[1])
3445 {
3446 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3447 the fs segment override prefix not currently handled because no
3448 call path can make opcodes without operands get here */
3449 case 'i':
3450 return 2 /* integer op */;
3451 case 'l':
3452 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3453 return 3; /* fldcw/fldenv */
3454 break;
3455 case 'n':
3456 if (mnemonic[2] != 'o' /* fnop */)
3457 return 3; /* non-waiting control op */
3458 break;
3459 case 'r':
3460 if (mnemonic[2] == 's')
3461 return 3; /* frstor/frstpm */
3462 break;
3463 case 's':
3464 if (mnemonic[2] == 'a')
3465 return 3; /* fsave */
3466 if (mnemonic[2] == 't')
3467 {
3468 switch (mnemonic[3])
3469 {
3470 case 'c': /* fstcw */
3471 case 'd': /* fstdw */
3472 case 'e': /* fstenv */
3473 case 's': /* fsts[gw] */
3474 return 3;
3475 }
3476 }
3477 break;
3478 case 'x':
3479 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3480 return 0; /* fxsave/fxrstor are not really math ops */
3481 break;
3482 }
3483
3484 return 1;
3485 }
3486
3487 /* Build the VEX prefix. */
3488
3489 static void
3490 build_vex_prefix (const insn_template *t)
3491 {
3492 unsigned int register_specifier;
3493 unsigned int implied_prefix;
3494 unsigned int vector_length;
3495 unsigned int w;
3496
3497 /* Check register specifier. */
3498 if (i.vex.register_specifier)
3499 {
3500 register_specifier =
3501 ~register_number (i.vex.register_specifier) & 0xf;
3502 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3503 }
3504 else
3505 register_specifier = 0xf;
3506
3507 /* Use 2-byte VEX prefix by swapping destination and source operand
3508 if there are more than 1 register operand. */
3509 if (i.reg_operands > 1
3510 && i.vec_encoding != vex_encoding_vex3
3511 && i.dir_encoding == dir_encoding_default
3512 && i.operands == i.reg_operands
3513 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3514 && i.tm.opcode_modifier.vexopcode == VEX0F
3515 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3516 && i.rex == REX_B)
3517 {
3518 unsigned int xchg = i.operands - 1;
3519 union i386_op temp_op;
3520 i386_operand_type temp_type;
3521
3522 temp_type = i.types[xchg];
3523 i.types[xchg] = i.types[0];
3524 i.types[0] = temp_type;
3525 temp_op = i.op[xchg];
3526 i.op[xchg] = i.op[0];
3527 i.op[0] = temp_op;
3528
3529 gas_assert (i.rm.mode == 3);
3530
3531 i.rex = REX_R;
3532 xchg = i.rm.regmem;
3533 i.rm.regmem = i.rm.reg;
3534 i.rm.reg = xchg;
3535
3536 if (i.tm.opcode_modifier.d)
3537 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3539 else /* Use the next insn. */
3540 i.tm = t[1];
3541 }
3542
3543 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3544 are no memory operands and at least 3 register ones. */
3545 if (i.reg_operands >= 3
3546 && i.vec_encoding != vex_encoding_vex3
3547 && i.reg_operands == i.operands - i.imm_operands
3548 && i.tm.opcode_modifier.vex
3549 && i.tm.opcode_modifier.commutative
3550 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3551 && i.rex == REX_B
3552 && i.vex.register_specifier
3553 && !(i.vex.register_specifier->reg_flags & RegRex))
3554 {
3555 unsigned int xchg = i.operands - i.reg_operands;
3556 union i386_op temp_op;
3557 i386_operand_type temp_type;
3558
3559 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3560 gas_assert (!i.tm.opcode_modifier.sae);
3561 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3562 &i.types[i.operands - 3]));
3563 gas_assert (i.rm.mode == 3);
3564
3565 temp_type = i.types[xchg];
3566 i.types[xchg] = i.types[xchg + 1];
3567 i.types[xchg + 1] = temp_type;
3568 temp_op = i.op[xchg];
3569 i.op[xchg] = i.op[xchg + 1];
3570 i.op[xchg + 1] = temp_op;
3571
3572 i.rex = 0;
3573 xchg = i.rm.regmem | 8;
3574 i.rm.regmem = ~register_specifier & 0xf;
3575 gas_assert (!(i.rm.regmem & 8));
3576 i.vex.register_specifier += xchg - i.rm.regmem;
3577 register_specifier = ~xchg & 0xf;
3578 }
3579
3580 if (i.tm.opcode_modifier.vex == VEXScalar)
3581 vector_length = avxscalar;
3582 else if (i.tm.opcode_modifier.vex == VEX256)
3583 vector_length = 1;
3584 else
3585 {
3586 unsigned int op;
3587
3588 /* Determine vector length from the last multi-length vector
3589 operand. */
3590 vector_length = 0;
3591 for (op = t->operands; op--;)
3592 if (t->operand_types[op].bitfield.xmmword
3593 && t->operand_types[op].bitfield.ymmword
3594 && i.types[op].bitfield.ymmword)
3595 {
3596 vector_length = 1;
3597 break;
3598 }
3599 }
3600
3601 switch ((i.tm.base_opcode >> 8) & 0xff)
3602 {
3603 case 0:
3604 implied_prefix = 0;
3605 break;
3606 case DATA_PREFIX_OPCODE:
3607 implied_prefix = 1;
3608 break;
3609 case REPE_PREFIX_OPCODE:
3610 implied_prefix = 2;
3611 break;
3612 case REPNE_PREFIX_OPCODE:
3613 implied_prefix = 3;
3614 break;
3615 default:
3616 abort ();
3617 }
3618
3619 /* Check the REX.W bit and VEXW. */
3620 if (i.tm.opcode_modifier.vexw == VEXWIG)
3621 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3622 else if (i.tm.opcode_modifier.vexw)
3623 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3624 else
3625 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3626
3627 /* Use 2-byte VEX prefix if possible. */
3628 if (w == 0
3629 && i.vec_encoding != vex_encoding_vex3
3630 && i.tm.opcode_modifier.vexopcode == VEX0F
3631 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3632 {
3633 /* 2-byte VEX prefix. */
3634 unsigned int r;
3635
3636 i.vex.length = 2;
3637 i.vex.bytes[0] = 0xc5;
3638
3639 /* Check the REX.R bit. */
3640 r = (i.rex & REX_R) ? 0 : 1;
3641 i.vex.bytes[1] = (r << 7
3642 | register_specifier << 3
3643 | vector_length << 2
3644 | implied_prefix);
3645 }
3646 else
3647 {
3648 /* 3-byte VEX prefix. */
3649 unsigned int m;
3650
3651 i.vex.length = 3;
3652
3653 switch (i.tm.opcode_modifier.vexopcode)
3654 {
3655 case VEX0F:
3656 m = 0x1;
3657 i.vex.bytes[0] = 0xc4;
3658 break;
3659 case VEX0F38:
3660 m = 0x2;
3661 i.vex.bytes[0] = 0xc4;
3662 break;
3663 case VEX0F3A:
3664 m = 0x3;
3665 i.vex.bytes[0] = 0xc4;
3666 break;
3667 case XOP08:
3668 m = 0x8;
3669 i.vex.bytes[0] = 0x8f;
3670 break;
3671 case XOP09:
3672 m = 0x9;
3673 i.vex.bytes[0] = 0x8f;
3674 break;
3675 case XOP0A:
3676 m = 0xa;
3677 i.vex.bytes[0] = 0x8f;
3678 break;
3679 default:
3680 abort ();
3681 }
3682
3683 /* The high 3 bits of the second VEX byte are 1's compliment
3684 of RXB bits from REX. */
3685 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3686
3687 i.vex.bytes[2] = (w << 7
3688 | register_specifier << 3
3689 | vector_length << 2
3690 | implied_prefix);
3691 }
3692 }
3693
3694 static INLINE bfd_boolean
3695 is_evex_encoding (const insn_template *t)
3696 {
3697 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3698 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3699 || t->opcode_modifier.sae;
3700 }
3701
3702 static INLINE bfd_boolean
3703 is_any_vex_encoding (const insn_template *t)
3704 {
3705 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3706 || is_evex_encoding (t);
3707 }
3708
3709 /* Build the EVEX prefix. */
3710
3711 static void
3712 build_evex_prefix (void)
3713 {
3714 unsigned int register_specifier;
3715 unsigned int implied_prefix;
3716 unsigned int m, w;
3717 rex_byte vrex_used = 0;
3718
3719 /* Check register specifier. */
3720 if (i.vex.register_specifier)
3721 {
3722 gas_assert ((i.vrex & REX_X) == 0);
3723
3724 register_specifier = i.vex.register_specifier->reg_num;
3725 if ((i.vex.register_specifier->reg_flags & RegRex))
3726 register_specifier += 8;
3727 /* The upper 16 registers are encoded in the fourth byte of the
3728 EVEX prefix. */
3729 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3730 i.vex.bytes[3] = 0x8;
3731 register_specifier = ~register_specifier & 0xf;
3732 }
3733 else
3734 {
3735 register_specifier = 0xf;
3736
3737 /* Encode upper 16 vector index register in the fourth byte of
3738 the EVEX prefix. */
3739 if (!(i.vrex & REX_X))
3740 i.vex.bytes[3] = 0x8;
3741 else
3742 vrex_used |= REX_X;
3743 }
3744
3745 switch ((i.tm.base_opcode >> 8) & 0xff)
3746 {
3747 case 0:
3748 implied_prefix = 0;
3749 break;
3750 case DATA_PREFIX_OPCODE:
3751 implied_prefix = 1;
3752 break;
3753 case REPE_PREFIX_OPCODE:
3754 implied_prefix = 2;
3755 break;
3756 case REPNE_PREFIX_OPCODE:
3757 implied_prefix = 3;
3758 break;
3759 default:
3760 abort ();
3761 }
3762
3763 /* 4 byte EVEX prefix. */
3764 i.vex.length = 4;
3765 i.vex.bytes[0] = 0x62;
3766
3767 /* mmmm bits. */
3768 switch (i.tm.opcode_modifier.vexopcode)
3769 {
3770 case VEX0F:
3771 m = 1;
3772 break;
3773 case VEX0F38:
3774 m = 2;
3775 break;
3776 case VEX0F3A:
3777 m = 3;
3778 break;
3779 default:
3780 abort ();
3781 break;
3782 }
3783
3784 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3785 bits from REX. */
3786 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3787
3788 /* The fifth bit of the second EVEX byte is 1's compliment of the
3789 REX_R bit in VREX. */
3790 if (!(i.vrex & REX_R))
3791 i.vex.bytes[1] |= 0x10;
3792 else
3793 vrex_used |= REX_R;
3794
3795 if ((i.reg_operands + i.imm_operands) == i.operands)
3796 {
3797 /* When all operands are registers, the REX_X bit in REX is not
3798 used. We reuse it to encode the upper 16 registers, which is
3799 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3800 as 1's compliment. */
3801 if ((i.vrex & REX_B))
3802 {
3803 vrex_used |= REX_B;
3804 i.vex.bytes[1] &= ~0x40;
3805 }
3806 }
3807
3808 /* EVEX instructions shouldn't need the REX prefix. */
3809 i.vrex &= ~vrex_used;
3810 gas_assert (i.vrex == 0);
3811
3812 /* Check the REX.W bit and VEXW. */
3813 if (i.tm.opcode_modifier.vexw == VEXWIG)
3814 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3815 else if (i.tm.opcode_modifier.vexw)
3816 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3817 else
3818 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3819
3820 /* Encode the U bit. */
3821 implied_prefix |= 0x4;
3822
3823 /* The third byte of the EVEX prefix. */
3824 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3825
3826 /* The fourth byte of the EVEX prefix. */
3827 /* The zeroing-masking bit. */
3828 if (i.mask && i.mask->zeroing)
3829 i.vex.bytes[3] |= 0x80;
3830
3831 /* Don't always set the broadcast bit if there is no RC. */
3832 if (!i.rounding)
3833 {
3834 /* Encode the vector length. */
3835 unsigned int vec_length;
3836
3837 if (!i.tm.opcode_modifier.evex
3838 || i.tm.opcode_modifier.evex == EVEXDYN)
3839 {
3840 unsigned int op;
3841
3842 /* Determine vector length from the last multi-length vector
3843 operand. */
3844 vec_length = 0;
3845 for (op = i.operands; op--;)
3846 if (i.tm.operand_types[op].bitfield.xmmword
3847 + i.tm.operand_types[op].bitfield.ymmword
3848 + i.tm.operand_types[op].bitfield.zmmword > 1)
3849 {
3850 if (i.types[op].bitfield.zmmword)
3851 {
3852 i.tm.opcode_modifier.evex = EVEX512;
3853 break;
3854 }
3855 else if (i.types[op].bitfield.ymmword)
3856 {
3857 i.tm.opcode_modifier.evex = EVEX256;
3858 break;
3859 }
3860 else if (i.types[op].bitfield.xmmword)
3861 {
3862 i.tm.opcode_modifier.evex = EVEX128;
3863 break;
3864 }
3865 else if (i.broadcast && (int) op == i.broadcast->operand)
3866 {
3867 switch (i.broadcast->bytes)
3868 {
3869 case 64:
3870 i.tm.opcode_modifier.evex = EVEX512;
3871 break;
3872 case 32:
3873 i.tm.opcode_modifier.evex = EVEX256;
3874 break;
3875 case 16:
3876 i.tm.opcode_modifier.evex = EVEX128;
3877 break;
3878 default:
3879 abort ();
3880 }
3881 break;
3882 }
3883 }
3884
3885 if (op >= MAX_OPERANDS)
3886 abort ();
3887 }
3888
3889 switch (i.tm.opcode_modifier.evex)
3890 {
3891 case EVEXLIG: /* LL' is ignored */
3892 vec_length = evexlig << 5;
3893 break;
3894 case EVEX128:
3895 vec_length = 0 << 5;
3896 break;
3897 case EVEX256:
3898 vec_length = 1 << 5;
3899 break;
3900 case EVEX512:
3901 vec_length = 2 << 5;
3902 break;
3903 default:
3904 abort ();
3905 break;
3906 }
3907 i.vex.bytes[3] |= vec_length;
3908 /* Encode the broadcast bit. */
3909 if (i.broadcast)
3910 i.vex.bytes[3] |= 0x10;
3911 }
3912 else
3913 {
3914 if (i.rounding->type != saeonly)
3915 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3916 else
3917 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3918 }
3919
3920 if (i.mask && i.mask->mask)
3921 i.vex.bytes[3] |= i.mask->mask->reg_num;
3922 }
3923
3924 static void
3925 process_immext (void)
3926 {
3927 expressionS *exp;
3928
3929 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3930 which is coded in the same place as an 8-bit immediate field
3931 would be. Here we fake an 8-bit immediate operand from the
3932 opcode suffix stored in tm.extension_opcode.
3933
3934 AVX instructions also use this encoding, for some of
3935 3 argument instructions. */
3936
3937 gas_assert (i.imm_operands <= 1
3938 && (i.operands <= 2
3939 || (is_any_vex_encoding (&i.tm)
3940 && i.operands <= 4)));
3941
3942 exp = &im_expressions[i.imm_operands++];
3943 i.op[i.operands].imms = exp;
3944 i.types[i.operands] = imm8;
3945 i.operands++;
3946 exp->X_op = O_constant;
3947 exp->X_add_number = i.tm.extension_opcode;
3948 i.tm.extension_opcode = None;
3949 }
3950
3951
3952 static int
3953 check_hle (void)
3954 {
3955 switch (i.tm.opcode_modifier.hleprefixok)
3956 {
3957 default:
3958 abort ();
3959 case HLEPrefixNone:
3960 as_bad (_("invalid instruction `%s' after `%s'"),
3961 i.tm.name, i.hle_prefix);
3962 return 0;
3963 case HLEPrefixLock:
3964 if (i.prefix[LOCK_PREFIX])
3965 return 1;
3966 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3967 return 0;
3968 case HLEPrefixAny:
3969 return 1;
3970 case HLEPrefixRelease:
3971 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3972 {
3973 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3974 i.tm.name);
3975 return 0;
3976 }
3977 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3978 {
3979 as_bad (_("memory destination needed for instruction `%s'"
3980 " after `xrelease'"), i.tm.name);
3981 return 0;
3982 }
3983 return 1;
3984 }
3985 }
3986
3987 /* Try the shortest encoding by shortening operand size. */
3988
3989 static void
3990 optimize_encoding (void)
3991 {
3992 unsigned int j;
3993
3994 if (optimize_for_space
3995 && !is_any_vex_encoding (&i.tm)
3996 && i.reg_operands == 1
3997 && i.imm_operands == 1
3998 && !i.types[1].bitfield.byte
3999 && i.op[0].imms->X_op == O_constant
4000 && fits_in_imm7 (i.op[0].imms->X_add_number)
4001 && (i.tm.base_opcode == 0xa8
4002 || (i.tm.base_opcode == 0xf6
4003 && i.tm.extension_opcode == 0x0)))
4004 {
4005 /* Optimize: -Os:
4006 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4007 */
4008 unsigned int base_regnum = i.op[1].regs->reg_num;
4009 if (flag_code == CODE_64BIT || base_regnum < 4)
4010 {
4011 i.types[1].bitfield.byte = 1;
4012 /* Ignore the suffix. */
4013 i.suffix = 0;
4014 /* Convert to byte registers. */
4015 if (i.types[1].bitfield.word)
4016 j = 16;
4017 else if (i.types[1].bitfield.dword)
4018 j = 32;
4019 else
4020 j = 48;
4021 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4022 j += 8;
4023 i.op[1].regs -= j;
4024 }
4025 }
4026 else if (flag_code == CODE_64BIT
4027 && !is_any_vex_encoding (&i.tm)
4028 && ((i.types[1].bitfield.qword
4029 && i.reg_operands == 1
4030 && i.imm_operands == 1
4031 && i.op[0].imms->X_op == O_constant
4032 && ((i.tm.base_opcode == 0xb8
4033 && i.tm.extension_opcode == None
4034 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4035 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4036 && ((i.tm.base_opcode == 0x24
4037 || i.tm.base_opcode == 0xa8)
4038 || (i.tm.base_opcode == 0x80
4039 && i.tm.extension_opcode == 0x4)
4040 || ((i.tm.base_opcode == 0xf6
4041 || (i.tm.base_opcode | 1) == 0xc7)
4042 && i.tm.extension_opcode == 0x0)))
4043 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4044 && i.tm.base_opcode == 0x83
4045 && i.tm.extension_opcode == 0x4)))
4046 || (i.types[0].bitfield.qword
4047 && ((i.reg_operands == 2
4048 && i.op[0].regs == i.op[1].regs
4049 && (i.tm.base_opcode == 0x30
4050 || i.tm.base_opcode == 0x28))
4051 || (i.reg_operands == 1
4052 && i.operands == 1
4053 && i.tm.base_opcode == 0x30)))))
4054 {
4055 /* Optimize: -O:
4056 andq $imm31, %r64 -> andl $imm31, %r32
4057 andq $imm7, %r64 -> andl $imm7, %r32
4058 testq $imm31, %r64 -> testl $imm31, %r32
4059 xorq %r64, %r64 -> xorl %r32, %r32
4060 subq %r64, %r64 -> subl %r32, %r32
4061 movq $imm31, %r64 -> movl $imm31, %r32
4062 movq $imm32, %r64 -> movl $imm32, %r32
4063 */
4064 i.tm.opcode_modifier.norex64 = 1;
4065 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4066 {
4067 /* Handle
4068 movq $imm31, %r64 -> movl $imm31, %r32
4069 movq $imm32, %r64 -> movl $imm32, %r32
4070 */
4071 i.tm.operand_types[0].bitfield.imm32 = 1;
4072 i.tm.operand_types[0].bitfield.imm32s = 0;
4073 i.tm.operand_types[0].bitfield.imm64 = 0;
4074 i.types[0].bitfield.imm32 = 1;
4075 i.types[0].bitfield.imm32s = 0;
4076 i.types[0].bitfield.imm64 = 0;
4077 i.types[1].bitfield.dword = 1;
4078 i.types[1].bitfield.qword = 0;
4079 if ((i.tm.base_opcode | 1) == 0xc7)
4080 {
4081 /* Handle
4082 movq $imm31, %r64 -> movl $imm31, %r32
4083 */
4084 i.tm.base_opcode = 0xb8;
4085 i.tm.extension_opcode = None;
4086 i.tm.opcode_modifier.w = 0;
4087 i.tm.opcode_modifier.shortform = 1;
4088 i.tm.opcode_modifier.modrm = 0;
4089 }
4090 }
4091 }
4092 else if (optimize > 1
4093 && !optimize_for_space
4094 && !is_any_vex_encoding (&i.tm)
4095 && i.reg_operands == 2
4096 && i.op[0].regs == i.op[1].regs
4097 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4098 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4099 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4100 {
4101 /* Optimize: -O2:
4102 andb %rN, %rN -> testb %rN, %rN
4103 andw %rN, %rN -> testw %rN, %rN
4104 andq %rN, %rN -> testq %rN, %rN
4105 orb %rN, %rN -> testb %rN, %rN
4106 orw %rN, %rN -> testw %rN, %rN
4107 orq %rN, %rN -> testq %rN, %rN
4108
4109 and outside of 64-bit mode
4110
4111 andl %rN, %rN -> testl %rN, %rN
4112 orl %rN, %rN -> testl %rN, %rN
4113 */
4114 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4115 }
4116 else if (i.reg_operands == 3
4117 && i.op[0].regs == i.op[1].regs
4118 && !i.types[2].bitfield.xmmword
4119 && (i.tm.opcode_modifier.vex
4120 || ((!i.mask || i.mask->zeroing)
4121 && !i.rounding
4122 && is_evex_encoding (&i.tm)
4123 && (i.vec_encoding != vex_encoding_evex
4124 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4125 || i.tm.cpu_flags.bitfield.cpuavx512vl
4126 || (i.tm.operand_types[2].bitfield.zmmword
4127 && i.types[2].bitfield.ymmword))))
4128 && ((i.tm.base_opcode == 0x55
4129 || i.tm.base_opcode == 0x6655
4130 || i.tm.base_opcode == 0x66df
4131 || i.tm.base_opcode == 0x57
4132 || i.tm.base_opcode == 0x6657
4133 || i.tm.base_opcode == 0x66ef
4134 || i.tm.base_opcode == 0x66f8
4135 || i.tm.base_opcode == 0x66f9
4136 || i.tm.base_opcode == 0x66fa
4137 || i.tm.base_opcode == 0x66fb
4138 || i.tm.base_opcode == 0x42
4139 || i.tm.base_opcode == 0x6642
4140 || i.tm.base_opcode == 0x47
4141 || i.tm.base_opcode == 0x6647)
4142 && i.tm.extension_opcode == None))
4143 {
4144 /* Optimize: -O1:
4145 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4146 vpsubq and vpsubw:
4147 EVEX VOP %zmmM, %zmmM, %zmmN
4148 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4149 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4150 EVEX VOP %ymmM, %ymmM, %ymmN
4151 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4152 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4153 VEX VOP %ymmM, %ymmM, %ymmN
4154 -> VEX VOP %xmmM, %xmmM, %xmmN
4155 VOP, one of vpandn and vpxor:
4156 VEX VOP %ymmM, %ymmM, %ymmN
4157 -> VEX VOP %xmmM, %xmmM, %xmmN
4158 VOP, one of vpandnd and vpandnq:
4159 EVEX VOP %zmmM, %zmmM, %zmmN
4160 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4161 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4162 EVEX VOP %ymmM, %ymmM, %ymmN
4163 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4164 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4165 VOP, one of vpxord and vpxorq:
4166 EVEX VOP %zmmM, %zmmM, %zmmN
4167 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4168 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4169 EVEX VOP %ymmM, %ymmM, %ymmN
4170 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4171 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4172 VOP, one of kxord and kxorq:
4173 VEX VOP %kM, %kM, %kN
4174 -> VEX kxorw %kM, %kM, %kN
4175 VOP, one of kandnd and kandnq:
4176 VEX VOP %kM, %kM, %kN
4177 -> VEX kandnw %kM, %kM, %kN
4178 */
4179 if (is_evex_encoding (&i.tm))
4180 {
4181 if (i.vec_encoding != vex_encoding_evex)
4182 {
4183 i.tm.opcode_modifier.vex = VEX128;
4184 i.tm.opcode_modifier.vexw = VEXW0;
4185 i.tm.opcode_modifier.evex = 0;
4186 }
4187 else if (optimize > 1)
4188 i.tm.opcode_modifier.evex = EVEX128;
4189 else
4190 return;
4191 }
4192 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4193 {
4194 i.tm.base_opcode &= 0xff;
4195 i.tm.opcode_modifier.vexw = VEXW0;
4196 }
4197 else
4198 i.tm.opcode_modifier.vex = VEX128;
4199
4200 if (i.tm.opcode_modifier.vex)
4201 for (j = 0; j < 3; j++)
4202 {
4203 i.types[j].bitfield.xmmword = 1;
4204 i.types[j].bitfield.ymmword = 0;
4205 }
4206 }
4207 else if (i.vec_encoding != vex_encoding_evex
4208 && !i.types[0].bitfield.zmmword
4209 && !i.types[1].bitfield.zmmword
4210 && !i.mask
4211 && !i.broadcast
4212 && is_evex_encoding (&i.tm)
4213 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4214 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4215 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4216 || (i.tm.base_opcode & ~4) == 0x66db
4217 || (i.tm.base_opcode & ~4) == 0x66eb)
4218 && i.tm.extension_opcode == None)
4219 {
4220 /* Optimize: -O1:
4221 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4222 vmovdqu32 and vmovdqu64:
4223 EVEX VOP %xmmM, %xmmN
4224 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4225 EVEX VOP %ymmM, %ymmN
4226 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4227 EVEX VOP %xmmM, mem
4228 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4229 EVEX VOP %ymmM, mem
4230 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4231 EVEX VOP mem, %xmmN
4232 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4233 EVEX VOP mem, %ymmN
4234 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4235 VOP, one of vpand, vpandn, vpor, vpxor:
4236 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4237 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4238 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4239 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4240 EVEX VOP{d,q} mem, %xmmM, %xmmN
4241 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4242 EVEX VOP{d,q} mem, %ymmM, %ymmN
4243 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4244 */
4245 for (j = 0; j < i.operands; j++)
4246 if (operand_type_check (i.types[j], disp)
4247 && i.op[j].disps->X_op == O_constant)
4248 {
4249 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4250 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4251 bytes, we choose EVEX Disp8 over VEX Disp32. */
4252 int evex_disp8, vex_disp8;
4253 unsigned int memshift = i.memshift;
4254 offsetT n = i.op[j].disps->X_add_number;
4255
4256 evex_disp8 = fits_in_disp8 (n);
4257 i.memshift = 0;
4258 vex_disp8 = fits_in_disp8 (n);
4259 if (evex_disp8 != vex_disp8)
4260 {
4261 i.memshift = memshift;
4262 return;
4263 }
4264
4265 i.types[j].bitfield.disp8 = vex_disp8;
4266 break;
4267 }
4268 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4269 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4270 i.tm.opcode_modifier.vex
4271 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4272 i.tm.opcode_modifier.vexw = VEXW0;
4273 /* VPAND, VPOR, and VPXOR are commutative. */
4274 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4275 i.tm.opcode_modifier.commutative = 1;
4276 i.tm.opcode_modifier.evex = 0;
4277 i.tm.opcode_modifier.masking = 0;
4278 i.tm.opcode_modifier.broadcast = 0;
4279 i.tm.opcode_modifier.disp8memshift = 0;
4280 i.memshift = 0;
4281 if (j < i.operands)
4282 i.types[j].bitfield.disp8
4283 = fits_in_disp8 (i.op[j].disps->X_add_number);
4284 }
4285 }
4286
4287 /* This is the guts of the machine-dependent assembler. LINE points to a
4288 machine dependent instruction. This function is supposed to emit
4289 the frags/bytes it assembles to. */
4290
4291 void
4292 md_assemble (char *line)
4293 {
4294 unsigned int j;
4295 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4296 const insn_template *t;
4297
4298 /* Initialize globals. */
4299 memset (&i, '\0', sizeof (i));
4300 for (j = 0; j < MAX_OPERANDS; j++)
4301 i.reloc[j] = NO_RELOC;
4302 memset (disp_expressions, '\0', sizeof (disp_expressions));
4303 memset (im_expressions, '\0', sizeof (im_expressions));
4304 save_stack_p = save_stack;
4305
4306 /* First parse an instruction mnemonic & call i386_operand for the operands.
4307 We assume that the scrubber has arranged it so that line[0] is the valid
4308 start of a (possibly prefixed) mnemonic. */
4309
4310 line = parse_insn (line, mnemonic);
4311 if (line == NULL)
4312 return;
4313 mnem_suffix = i.suffix;
4314
4315 line = parse_operands (line, mnemonic);
4316 this_operand = -1;
4317 xfree (i.memop1_string);
4318 i.memop1_string = NULL;
4319 if (line == NULL)
4320 return;
4321
4322 /* Now we've parsed the mnemonic into a set of templates, and have the
4323 operands at hand. */
4324
4325 /* All intel opcodes have reversed operands except for "bound" and
4326 "enter". We also don't reverse intersegment "jmp" and "call"
4327 instructions with 2 immediate operands so that the immediate segment
4328 precedes the offset, as it does when in AT&T mode. */
4329 if (intel_syntax
4330 && i.operands > 1
4331 && (strcmp (mnemonic, "bound") != 0)
4332 && (strcmp (mnemonic, "invlpga") != 0)
4333 && !(operand_type_check (i.types[0], imm)
4334 && operand_type_check (i.types[1], imm)))
4335 swap_operands ();
4336
4337 /* The order of the immediates should be reversed
4338 for 2 immediates extrq and insertq instructions */
4339 if (i.imm_operands == 2
4340 && (strcmp (mnemonic, "extrq") == 0
4341 || strcmp (mnemonic, "insertq") == 0))
4342 swap_2_operands (0, 1);
4343
4344 if (i.imm_operands)
4345 optimize_imm ();
4346
4347 /* Don't optimize displacement for movabs since it only takes 64bit
4348 displacement. */
4349 if (i.disp_operands
4350 && i.disp_encoding != disp_encoding_32bit
4351 && (flag_code != CODE_64BIT
4352 || strcmp (mnemonic, "movabs") != 0))
4353 optimize_disp ();
4354
4355 /* Next, we find a template that matches the given insn,
4356 making sure the overlap of the given operands types is consistent
4357 with the template operand types. */
4358
4359 if (!(t = match_template (mnem_suffix)))
4360 return;
4361
4362 if (sse_check != check_none
4363 && !i.tm.opcode_modifier.noavx
4364 && !i.tm.cpu_flags.bitfield.cpuavx
4365 && !i.tm.cpu_flags.bitfield.cpuavx512f
4366 && (i.tm.cpu_flags.bitfield.cpusse
4367 || i.tm.cpu_flags.bitfield.cpusse2
4368 || i.tm.cpu_flags.bitfield.cpusse3
4369 || i.tm.cpu_flags.bitfield.cpussse3
4370 || i.tm.cpu_flags.bitfield.cpusse4_1
4371 || i.tm.cpu_flags.bitfield.cpusse4_2
4372 || i.tm.cpu_flags.bitfield.cpusse4a
4373 || i.tm.cpu_flags.bitfield.cpupclmul
4374 || i.tm.cpu_flags.bitfield.cpuaes
4375 || i.tm.cpu_flags.bitfield.cpusha
4376 || i.tm.cpu_flags.bitfield.cpugfni))
4377 {
4378 (sse_check == check_warning
4379 ? as_warn
4380 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4381 }
4382
4383 /* Zap movzx and movsx suffix. The suffix has been set from
4384 "word ptr" or "byte ptr" on the source operand in Intel syntax
4385 or extracted from mnemonic in AT&T syntax. But we'll use
4386 the destination register to choose the suffix for encoding. */
4387 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4388 {
4389 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4390 there is no suffix, the default will be byte extension. */
4391 if (i.reg_operands != 2
4392 && !i.suffix
4393 && intel_syntax)
4394 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4395
4396 i.suffix = 0;
4397 }
4398
4399 if (i.tm.opcode_modifier.fwait)
4400 if (!add_prefix (FWAIT_OPCODE))
4401 return;
4402
4403 /* Check if REP prefix is OK. */
4404 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4405 {
4406 as_bad (_("invalid instruction `%s' after `%s'"),
4407 i.tm.name, i.rep_prefix);
4408 return;
4409 }
4410
4411 /* Check for lock without a lockable instruction. Destination operand
4412 must be memory unless it is xchg (0x86). */
4413 if (i.prefix[LOCK_PREFIX]
4414 && (!i.tm.opcode_modifier.islockable
4415 || i.mem_operands == 0
4416 || (i.tm.base_opcode != 0x86
4417 && !(i.flags[i.operands - 1] & Operand_Mem))))
4418 {
4419 as_bad (_("expecting lockable instruction after `lock'"));
4420 return;
4421 }
4422
4423 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4424 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4425 {
4426 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4427 return;
4428 }
4429
4430 /* Check if HLE prefix is OK. */
4431 if (i.hle_prefix && !check_hle ())
4432 return;
4433
4434 /* Check BND prefix. */
4435 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4436 as_bad (_("expecting valid branch instruction after `bnd'"));
4437
4438 /* Check NOTRACK prefix. */
4439 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4440 as_bad (_("expecting indirect branch instruction after `notrack'"));
4441
4442 if (i.tm.cpu_flags.bitfield.cpumpx)
4443 {
4444 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4445 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4446 else if (flag_code != CODE_16BIT
4447 ? i.prefix[ADDR_PREFIX]
4448 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4449 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4450 }
4451
4452 /* Insert BND prefix. */
4453 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4454 {
4455 if (!i.prefix[BND_PREFIX])
4456 add_prefix (BND_PREFIX_OPCODE);
4457 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4458 {
4459 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4460 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4461 }
4462 }
4463
4464 /* Check string instruction segment overrides. */
4465 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4466 {
4467 gas_assert (i.mem_operands);
4468 if (!check_string ())
4469 return;
4470 i.disp_operands = 0;
4471 }
4472
4473 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4474 optimize_encoding ();
4475
4476 if (!process_suffix ())
4477 return;
4478
4479 /* Update operand types. */
4480 for (j = 0; j < i.operands; j++)
4481 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4482
4483 /* Make still unresolved immediate matches conform to size of immediate
4484 given in i.suffix. */
4485 if (!finalize_imm ())
4486 return;
4487
4488 if (i.types[0].bitfield.imm1)
4489 i.imm_operands = 0; /* kludge for shift insns. */
4490
4491 /* We only need to check those implicit registers for instructions
4492 with 3 operands or less. */
4493 if (i.operands <= 3)
4494 for (j = 0; j < i.operands; j++)
4495 if (i.types[j].bitfield.instance != InstanceNone
4496 && !i.types[j].bitfield.xmmword)
4497 i.reg_operands--;
4498
4499 /* ImmExt should be processed after SSE2AVX. */
4500 if (!i.tm.opcode_modifier.sse2avx
4501 && i.tm.opcode_modifier.immext)
4502 process_immext ();
4503
4504 /* For insns with operands there are more diddles to do to the opcode. */
4505 if (i.operands)
4506 {
4507 if (!process_operands ())
4508 return;
4509 }
4510 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4511 {
4512 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4513 as_warn (_("translating to `%sp'"), i.tm.name);
4514 }
4515
4516 if (is_any_vex_encoding (&i.tm))
4517 {
4518 if (!cpu_arch_flags.bitfield.cpui286)
4519 {
4520 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4521 i.tm.name);
4522 return;
4523 }
4524
4525 if (i.tm.opcode_modifier.vex)
4526 build_vex_prefix (t);
4527 else
4528 build_evex_prefix ();
4529 }
4530
4531 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4532 instructions may define INT_OPCODE as well, so avoid this corner
4533 case for those instructions that use MODRM. */
4534 if (i.tm.base_opcode == INT_OPCODE
4535 && !i.tm.opcode_modifier.modrm
4536 && i.op[0].imms->X_add_number == 3)
4537 {
4538 i.tm.base_opcode = INT3_OPCODE;
4539 i.imm_operands = 0;
4540 }
4541
4542 if ((i.tm.opcode_modifier.jump == JUMP
4543 || i.tm.opcode_modifier.jump == JUMP_BYTE
4544 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4545 && i.op[0].disps->X_op == O_constant)
4546 {
4547 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4548 the absolute address given by the constant. Since ix86 jumps and
4549 calls are pc relative, we need to generate a reloc. */
4550 i.op[0].disps->X_add_symbol = &abs_symbol;
4551 i.op[0].disps->X_op = O_symbol;
4552 }
4553
4554 if (i.tm.opcode_modifier.rex64)
4555 i.rex |= REX_W;
4556
4557 /* For 8 bit registers we need an empty rex prefix. Also if the
4558 instruction already has a prefix, we need to convert old
4559 registers to new ones. */
4560
4561 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4562 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4563 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4564 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4565 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4566 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4567 && i.rex != 0))
4568 {
4569 int x;
4570
4571 i.rex |= REX_OPCODE;
4572 for (x = 0; x < 2; x++)
4573 {
4574 /* Look for 8 bit operand that uses old registers. */
4575 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4576 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4577 {
4578 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4579 /* In case it is "hi" register, give up. */
4580 if (i.op[x].regs->reg_num > 3)
4581 as_bad (_("can't encode register '%s%s' in an "
4582 "instruction requiring REX prefix."),
4583 register_prefix, i.op[x].regs->reg_name);
4584
4585 /* Otherwise it is equivalent to the extended register.
4586 Since the encoding doesn't change this is merely
4587 cosmetic cleanup for debug output. */
4588
4589 i.op[x].regs = i.op[x].regs + 8;
4590 }
4591 }
4592 }
4593
4594 if (i.rex == 0 && i.rex_encoding)
4595 {
4596 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4597 that uses legacy register. If it is "hi" register, don't add
4598 the REX_OPCODE byte. */
4599 int x;
4600 for (x = 0; x < 2; x++)
4601 if (i.types[x].bitfield.class == Reg
4602 && i.types[x].bitfield.byte
4603 && (i.op[x].regs->reg_flags & RegRex64) == 0
4604 && i.op[x].regs->reg_num > 3)
4605 {
4606 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4607 i.rex_encoding = FALSE;
4608 break;
4609 }
4610
4611 if (i.rex_encoding)
4612 i.rex = REX_OPCODE;
4613 }
4614
4615 if (i.rex != 0)
4616 add_prefix (REX_OPCODE | i.rex);
4617
4618 /* We are ready to output the insn. */
4619 output_insn ();
4620
4621 last_insn.seg = now_seg;
4622
4623 if (i.tm.opcode_modifier.isprefix)
4624 {
4625 last_insn.kind = last_insn_prefix;
4626 last_insn.name = i.tm.name;
4627 last_insn.file = as_where (&last_insn.line);
4628 }
4629 else
4630 last_insn.kind = last_insn_other;
4631 }
4632
4633 static char *
4634 parse_insn (char *line, char *mnemonic)
4635 {
4636 char *l = line;
4637 char *token_start = l;
4638 char *mnem_p;
4639 int supported;
4640 const insn_template *t;
4641 char *dot_p = NULL;
4642
4643 while (1)
4644 {
4645 mnem_p = mnemonic;
4646 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4647 {
4648 if (*mnem_p == '.')
4649 dot_p = mnem_p;
4650 mnem_p++;
4651 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4652 {
4653 as_bad (_("no such instruction: `%s'"), token_start);
4654 return NULL;
4655 }
4656 l++;
4657 }
4658 if (!is_space_char (*l)
4659 && *l != END_OF_INSN
4660 && (intel_syntax
4661 || (*l != PREFIX_SEPARATOR
4662 && *l != ',')))
4663 {
4664 as_bad (_("invalid character %s in mnemonic"),
4665 output_invalid (*l));
4666 return NULL;
4667 }
4668 if (token_start == l)
4669 {
4670 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4671 as_bad (_("expecting prefix; got nothing"));
4672 else
4673 as_bad (_("expecting mnemonic; got nothing"));
4674 return NULL;
4675 }
4676
4677 /* Look up instruction (or prefix) via hash table. */
4678 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4679
4680 if (*l != END_OF_INSN
4681 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4682 && current_templates
4683 && current_templates->start->opcode_modifier.isprefix)
4684 {
4685 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4686 {
4687 as_bad ((flag_code != CODE_64BIT
4688 ? _("`%s' is only supported in 64-bit mode")
4689 : _("`%s' is not supported in 64-bit mode")),
4690 current_templates->start->name);
4691 return NULL;
4692 }
4693 /* If we are in 16-bit mode, do not allow addr16 or data16.
4694 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4695 if ((current_templates->start->opcode_modifier.size == SIZE16
4696 || current_templates->start->opcode_modifier.size == SIZE32)
4697 && flag_code != CODE_64BIT
4698 && ((current_templates->start->opcode_modifier.size == SIZE32)
4699 ^ (flag_code == CODE_16BIT)))
4700 {
4701 as_bad (_("redundant %s prefix"),
4702 current_templates->start->name);
4703 return NULL;
4704 }
4705 if (current_templates->start->opcode_length == 0)
4706 {
4707 /* Handle pseudo prefixes. */
4708 switch (current_templates->start->base_opcode)
4709 {
4710 case 0x0:
4711 /* {disp8} */
4712 i.disp_encoding = disp_encoding_8bit;
4713 break;
4714 case 0x1:
4715 /* {disp32} */
4716 i.disp_encoding = disp_encoding_32bit;
4717 break;
4718 case 0x2:
4719 /* {load} */
4720 i.dir_encoding = dir_encoding_load;
4721 break;
4722 case 0x3:
4723 /* {store} */
4724 i.dir_encoding = dir_encoding_store;
4725 break;
4726 case 0x4:
4727 /* {vex} */
4728 i.vec_encoding = vex_encoding_vex;
4729 break;
4730 case 0x5:
4731 /* {vex3} */
4732 i.vec_encoding = vex_encoding_vex3;
4733 break;
4734 case 0x6:
4735 /* {evex} */
4736 i.vec_encoding = vex_encoding_evex;
4737 break;
4738 case 0x7:
4739 /* {rex} */
4740 i.rex_encoding = TRUE;
4741 break;
4742 case 0x8:
4743 /* {nooptimize} */
4744 i.no_optimize = TRUE;
4745 break;
4746 default:
4747 abort ();
4748 }
4749 }
4750 else
4751 {
4752 /* Add prefix, checking for repeated prefixes. */
4753 switch (add_prefix (current_templates->start->base_opcode))
4754 {
4755 case PREFIX_EXIST:
4756 return NULL;
4757 case PREFIX_DS:
4758 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4759 i.notrack_prefix = current_templates->start->name;
4760 break;
4761 case PREFIX_REP:
4762 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4763 i.hle_prefix = current_templates->start->name;
4764 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4765 i.bnd_prefix = current_templates->start->name;
4766 else
4767 i.rep_prefix = current_templates->start->name;
4768 break;
4769 default:
4770 break;
4771 }
4772 }
4773 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4774 token_start = ++l;
4775 }
4776 else
4777 break;
4778 }
4779
4780 if (!current_templates)
4781 {
4782 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4783 Check if we should swap operand or force 32bit displacement in
4784 encoding. */
4785 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4786 i.dir_encoding = dir_encoding_swap;
4787 else if (mnem_p - 3 == dot_p
4788 && dot_p[1] == 'd'
4789 && dot_p[2] == '8')
4790 i.disp_encoding = disp_encoding_8bit;
4791 else if (mnem_p - 4 == dot_p
4792 && dot_p[1] == 'd'
4793 && dot_p[2] == '3'
4794 && dot_p[3] == '2')
4795 i.disp_encoding = disp_encoding_32bit;
4796 else
4797 goto check_suffix;
4798 mnem_p = dot_p;
4799 *dot_p = '\0';
4800 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4801 }
4802
4803 if (!current_templates)
4804 {
4805 check_suffix:
4806 if (mnem_p > mnemonic)
4807 {
4808 /* See if we can get a match by trimming off a suffix. */
4809 switch (mnem_p[-1])
4810 {
4811 case WORD_MNEM_SUFFIX:
4812 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4813 i.suffix = SHORT_MNEM_SUFFIX;
4814 else
4815 /* Fall through. */
4816 case BYTE_MNEM_SUFFIX:
4817 case QWORD_MNEM_SUFFIX:
4818 i.suffix = mnem_p[-1];
4819 mnem_p[-1] = '\0';
4820 current_templates = (const templates *) hash_find (op_hash,
4821 mnemonic);
4822 break;
4823 case SHORT_MNEM_SUFFIX:
4824 case LONG_MNEM_SUFFIX:
4825 if (!intel_syntax)
4826 {
4827 i.suffix = mnem_p[-1];
4828 mnem_p[-1] = '\0';
4829 current_templates = (const templates *) hash_find (op_hash,
4830 mnemonic);
4831 }
4832 break;
4833
4834 /* Intel Syntax. */
4835 case 'd':
4836 if (intel_syntax)
4837 {
4838 if (intel_float_operand (mnemonic) == 1)
4839 i.suffix = SHORT_MNEM_SUFFIX;
4840 else
4841 i.suffix = LONG_MNEM_SUFFIX;
4842 mnem_p[-1] = '\0';
4843 current_templates = (const templates *) hash_find (op_hash,
4844 mnemonic);
4845 }
4846 break;
4847 }
4848 }
4849
4850 if (!current_templates)
4851 {
4852 as_bad (_("no such instruction: `%s'"), token_start);
4853 return NULL;
4854 }
4855 }
4856
4857 if (current_templates->start->opcode_modifier.jump == JUMP
4858 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4859 {
4860 /* Check for a branch hint. We allow ",pt" and ",pn" for
4861 predict taken and predict not taken respectively.
4862 I'm not sure that branch hints actually do anything on loop
4863 and jcxz insns (JumpByte) for current Pentium4 chips. They
4864 may work in the future and it doesn't hurt to accept them
4865 now. */
4866 if (l[0] == ',' && l[1] == 'p')
4867 {
4868 if (l[2] == 't')
4869 {
4870 if (!add_prefix (DS_PREFIX_OPCODE))
4871 return NULL;
4872 l += 3;
4873 }
4874 else if (l[2] == 'n')
4875 {
4876 if (!add_prefix (CS_PREFIX_OPCODE))
4877 return NULL;
4878 l += 3;
4879 }
4880 }
4881 }
4882 /* Any other comma loses. */
4883 if (*l == ',')
4884 {
4885 as_bad (_("invalid character %s in mnemonic"),
4886 output_invalid (*l));
4887 return NULL;
4888 }
4889
4890 /* Check if instruction is supported on specified architecture. */
4891 supported = 0;
4892 for (t = current_templates->start; t < current_templates->end; ++t)
4893 {
4894 supported |= cpu_flags_match (t);
4895 if (supported == CPU_FLAGS_PERFECT_MATCH)
4896 {
4897 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4898 as_warn (_("use .code16 to ensure correct addressing mode"));
4899
4900 return l;
4901 }
4902 }
4903
4904 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4905 as_bad (flag_code == CODE_64BIT
4906 ? _("`%s' is not supported in 64-bit mode")
4907 : _("`%s' is only supported in 64-bit mode"),
4908 current_templates->start->name);
4909 else
4910 as_bad (_("`%s' is not supported on `%s%s'"),
4911 current_templates->start->name,
4912 cpu_arch_name ? cpu_arch_name : default_arch,
4913 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4914
4915 return NULL;
4916 }
4917
4918 static char *
4919 parse_operands (char *l, const char *mnemonic)
4920 {
4921 char *token_start;
4922
4923 /* 1 if operand is pending after ','. */
4924 unsigned int expecting_operand = 0;
4925
4926 /* Non-zero if operand parens not balanced. */
4927 unsigned int paren_not_balanced;
4928
4929 while (*l != END_OF_INSN)
4930 {
4931 /* Skip optional white space before operand. */
4932 if (is_space_char (*l))
4933 ++l;
4934 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4935 {
4936 as_bad (_("invalid character %s before operand %d"),
4937 output_invalid (*l),
4938 i.operands + 1);
4939 return NULL;
4940 }
4941 token_start = l; /* After white space. */
4942 paren_not_balanced = 0;
4943 while (paren_not_balanced || *l != ',')
4944 {
4945 if (*l == END_OF_INSN)
4946 {
4947 if (paren_not_balanced)
4948 {
4949 if (!intel_syntax)
4950 as_bad (_("unbalanced parenthesis in operand %d."),
4951 i.operands + 1);
4952 else
4953 as_bad (_("unbalanced brackets in operand %d."),
4954 i.operands + 1);
4955 return NULL;
4956 }
4957 else
4958 break; /* we are done */
4959 }
4960 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4961 {
4962 as_bad (_("invalid character %s in operand %d"),
4963 output_invalid (*l),
4964 i.operands + 1);
4965 return NULL;
4966 }
4967 if (!intel_syntax)
4968 {
4969 if (*l == '(')
4970 ++paren_not_balanced;
4971 if (*l == ')')
4972 --paren_not_balanced;
4973 }
4974 else
4975 {
4976 if (*l == '[')
4977 ++paren_not_balanced;
4978 if (*l == ']')
4979 --paren_not_balanced;
4980 }
4981 l++;
4982 }
4983 if (l != token_start)
4984 { /* Yes, we've read in another operand. */
4985 unsigned int operand_ok;
4986 this_operand = i.operands++;
4987 if (i.operands > MAX_OPERANDS)
4988 {
4989 as_bad (_("spurious operands; (%d operands/instruction max)"),
4990 MAX_OPERANDS);
4991 return NULL;
4992 }
4993 i.types[this_operand].bitfield.unspecified = 1;
4994 /* Now parse operand adding info to 'i' as we go along. */
4995 END_STRING_AND_SAVE (l);
4996
4997 if (i.mem_operands > 1)
4998 {
4999 as_bad (_("too many memory references for `%s'"),
5000 mnemonic);
5001 return 0;
5002 }
5003
5004 if (intel_syntax)
5005 operand_ok =
5006 i386_intel_operand (token_start,
5007 intel_float_operand (mnemonic));
5008 else
5009 operand_ok = i386_att_operand (token_start);
5010
5011 RESTORE_END_STRING (l);
5012 if (!operand_ok)
5013 return NULL;
5014 }
5015 else
5016 {
5017 if (expecting_operand)
5018 {
5019 expecting_operand_after_comma:
5020 as_bad (_("expecting operand after ','; got nothing"));
5021 return NULL;
5022 }
5023 if (*l == ',')
5024 {
5025 as_bad (_("expecting operand before ','; got nothing"));
5026 return NULL;
5027 }
5028 }
5029
5030 /* Now *l must be either ',' or END_OF_INSN. */
5031 if (*l == ',')
5032 {
5033 if (*++l == END_OF_INSN)
5034 {
5035 /* Just skip it, if it's \n complain. */
5036 goto expecting_operand_after_comma;
5037 }
5038 expecting_operand = 1;
5039 }
5040 }
5041 return l;
5042 }
5043
5044 static void
5045 swap_2_operands (int xchg1, int xchg2)
5046 {
5047 union i386_op temp_op;
5048 i386_operand_type temp_type;
5049 unsigned int temp_flags;
5050 enum bfd_reloc_code_real temp_reloc;
5051
5052 temp_type = i.types[xchg2];
5053 i.types[xchg2] = i.types[xchg1];
5054 i.types[xchg1] = temp_type;
5055
5056 temp_flags = i.flags[xchg2];
5057 i.flags[xchg2] = i.flags[xchg1];
5058 i.flags[xchg1] = temp_flags;
5059
5060 temp_op = i.op[xchg2];
5061 i.op[xchg2] = i.op[xchg1];
5062 i.op[xchg1] = temp_op;
5063
5064 temp_reloc = i.reloc[xchg2];
5065 i.reloc[xchg2] = i.reloc[xchg1];
5066 i.reloc[xchg1] = temp_reloc;
5067
5068 if (i.mask)
5069 {
5070 if (i.mask->operand == xchg1)
5071 i.mask->operand = xchg2;
5072 else if (i.mask->operand == xchg2)
5073 i.mask->operand = xchg1;
5074 }
5075 if (i.broadcast)
5076 {
5077 if (i.broadcast->operand == xchg1)
5078 i.broadcast->operand = xchg2;
5079 else if (i.broadcast->operand == xchg2)
5080 i.broadcast->operand = xchg1;
5081 }
5082 if (i.rounding)
5083 {
5084 if (i.rounding->operand == xchg1)
5085 i.rounding->operand = xchg2;
5086 else if (i.rounding->operand == xchg2)
5087 i.rounding->operand = xchg1;
5088 }
5089 }
5090
5091 static void
5092 swap_operands (void)
5093 {
5094 switch (i.operands)
5095 {
5096 case 5:
5097 case 4:
5098 swap_2_operands (1, i.operands - 2);
5099 /* Fall through. */
5100 case 3:
5101 case 2:
5102 swap_2_operands (0, i.operands - 1);
5103 break;
5104 default:
5105 abort ();
5106 }
5107
5108 if (i.mem_operands == 2)
5109 {
5110 const seg_entry *temp_seg;
5111 temp_seg = i.seg[0];
5112 i.seg[0] = i.seg[1];
5113 i.seg[1] = temp_seg;
5114 }
5115 }
5116
5117 /* Try to ensure constant immediates are represented in the smallest
5118 opcode possible. */
5119 static void
5120 optimize_imm (void)
5121 {
5122 char guess_suffix = 0;
5123 int op;
5124
5125 if (i.suffix)
5126 guess_suffix = i.suffix;
5127 else if (i.reg_operands)
5128 {
5129 /* Figure out a suffix from the last register operand specified.
5130 We can't do this properly yet, i.e. excluding special register
5131 instances, but the following works for instructions with
5132 immediates. In any case, we can't set i.suffix yet. */
5133 for (op = i.operands; --op >= 0;)
5134 if (i.types[op].bitfield.class != Reg)
5135 continue;
5136 else if (i.types[op].bitfield.byte)
5137 {
5138 guess_suffix = BYTE_MNEM_SUFFIX;
5139 break;
5140 }
5141 else if (i.types[op].bitfield.word)
5142 {
5143 guess_suffix = WORD_MNEM_SUFFIX;
5144 break;
5145 }
5146 else if (i.types[op].bitfield.dword)
5147 {
5148 guess_suffix = LONG_MNEM_SUFFIX;
5149 break;
5150 }
5151 else if (i.types[op].bitfield.qword)
5152 {
5153 guess_suffix = QWORD_MNEM_SUFFIX;
5154 break;
5155 }
5156 }
5157 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5158 guess_suffix = WORD_MNEM_SUFFIX;
5159
5160 for (op = i.operands; --op >= 0;)
5161 if (operand_type_check (i.types[op], imm))
5162 {
5163 switch (i.op[op].imms->X_op)
5164 {
5165 case O_constant:
5166 /* If a suffix is given, this operand may be shortened. */
5167 switch (guess_suffix)
5168 {
5169 case LONG_MNEM_SUFFIX:
5170 i.types[op].bitfield.imm32 = 1;
5171 i.types[op].bitfield.imm64 = 1;
5172 break;
5173 case WORD_MNEM_SUFFIX:
5174 i.types[op].bitfield.imm16 = 1;
5175 i.types[op].bitfield.imm32 = 1;
5176 i.types[op].bitfield.imm32s = 1;
5177 i.types[op].bitfield.imm64 = 1;
5178 break;
5179 case BYTE_MNEM_SUFFIX:
5180 i.types[op].bitfield.imm8 = 1;
5181 i.types[op].bitfield.imm8s = 1;
5182 i.types[op].bitfield.imm16 = 1;
5183 i.types[op].bitfield.imm32 = 1;
5184 i.types[op].bitfield.imm32s = 1;
5185 i.types[op].bitfield.imm64 = 1;
5186 break;
5187 }
5188
5189 /* If this operand is at most 16 bits, convert it
5190 to a signed 16 bit number before trying to see
5191 whether it will fit in an even smaller size.
5192 This allows a 16-bit operand such as $0xffe0 to
5193 be recognised as within Imm8S range. */
5194 if ((i.types[op].bitfield.imm16)
5195 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5196 {
5197 i.op[op].imms->X_add_number =
5198 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5199 }
5200 #ifdef BFD64
5201 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5202 if ((i.types[op].bitfield.imm32)
5203 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5204 == 0))
5205 {
5206 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5207 ^ ((offsetT) 1 << 31))
5208 - ((offsetT) 1 << 31));
5209 }
5210 #endif
5211 i.types[op]
5212 = operand_type_or (i.types[op],
5213 smallest_imm_type (i.op[op].imms->X_add_number));
5214
5215 /* We must avoid matching of Imm32 templates when 64bit
5216 only immediate is available. */
5217 if (guess_suffix == QWORD_MNEM_SUFFIX)
5218 i.types[op].bitfield.imm32 = 0;
5219 break;
5220
5221 case O_absent:
5222 case O_register:
5223 abort ();
5224
5225 /* Symbols and expressions. */
5226 default:
5227 /* Convert symbolic operand to proper sizes for matching, but don't
5228 prevent matching a set of insns that only supports sizes other
5229 than those matching the insn suffix. */
5230 {
5231 i386_operand_type mask, allowed;
5232 const insn_template *t;
5233
5234 operand_type_set (&mask, 0);
5235 operand_type_set (&allowed, 0);
5236
5237 for (t = current_templates->start;
5238 t < current_templates->end;
5239 ++t)
5240 {
5241 allowed = operand_type_or (allowed, t->operand_types[op]);
5242 allowed = operand_type_and (allowed, anyimm);
5243 }
5244 switch (guess_suffix)
5245 {
5246 case QWORD_MNEM_SUFFIX:
5247 mask.bitfield.imm64 = 1;
5248 mask.bitfield.imm32s = 1;
5249 break;
5250 case LONG_MNEM_SUFFIX:
5251 mask.bitfield.imm32 = 1;
5252 break;
5253 case WORD_MNEM_SUFFIX:
5254 mask.bitfield.imm16 = 1;
5255 break;
5256 case BYTE_MNEM_SUFFIX:
5257 mask.bitfield.imm8 = 1;
5258 break;
5259 default:
5260 break;
5261 }
5262 allowed = operand_type_and (mask, allowed);
5263 if (!operand_type_all_zero (&allowed))
5264 i.types[op] = operand_type_and (i.types[op], mask);
5265 }
5266 break;
5267 }
5268 }
5269 }
5270
5271 /* Try to use the smallest displacement type too. */
5272 static void
5273 optimize_disp (void)
5274 {
5275 int op;
5276
5277 for (op = i.operands; --op >= 0;)
5278 if (operand_type_check (i.types[op], disp))
5279 {
5280 if (i.op[op].disps->X_op == O_constant)
5281 {
5282 offsetT op_disp = i.op[op].disps->X_add_number;
5283
5284 if (i.types[op].bitfield.disp16
5285 && (op_disp & ~(offsetT) 0xffff) == 0)
5286 {
5287 /* If this operand is at most 16 bits, convert
5288 to a signed 16 bit number and don't use 64bit
5289 displacement. */
5290 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5291 i.types[op].bitfield.disp64 = 0;
5292 }
5293 #ifdef BFD64
5294 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5295 if (i.types[op].bitfield.disp32
5296 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5297 {
5298 /* If this operand is at most 32 bits, convert
5299 to a signed 32 bit number and don't use 64bit
5300 displacement. */
5301 op_disp &= (((offsetT) 2 << 31) - 1);
5302 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5303 i.types[op].bitfield.disp64 = 0;
5304 }
5305 #endif
5306 if (!op_disp && i.types[op].bitfield.baseindex)
5307 {
5308 i.types[op].bitfield.disp8 = 0;
5309 i.types[op].bitfield.disp16 = 0;
5310 i.types[op].bitfield.disp32 = 0;
5311 i.types[op].bitfield.disp32s = 0;
5312 i.types[op].bitfield.disp64 = 0;
5313 i.op[op].disps = 0;
5314 i.disp_operands--;
5315 }
5316 else if (flag_code == CODE_64BIT)
5317 {
5318 if (fits_in_signed_long (op_disp))
5319 {
5320 i.types[op].bitfield.disp64 = 0;
5321 i.types[op].bitfield.disp32s = 1;
5322 }
5323 if (i.prefix[ADDR_PREFIX]
5324 && fits_in_unsigned_long (op_disp))
5325 i.types[op].bitfield.disp32 = 1;
5326 }
5327 if ((i.types[op].bitfield.disp32
5328 || i.types[op].bitfield.disp32s
5329 || i.types[op].bitfield.disp16)
5330 && fits_in_disp8 (op_disp))
5331 i.types[op].bitfield.disp8 = 1;
5332 }
5333 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5334 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5335 {
5336 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5337 i.op[op].disps, 0, i.reloc[op]);
5338 i.types[op].bitfield.disp8 = 0;
5339 i.types[op].bitfield.disp16 = 0;
5340 i.types[op].bitfield.disp32 = 0;
5341 i.types[op].bitfield.disp32s = 0;
5342 i.types[op].bitfield.disp64 = 0;
5343 }
5344 else
5345 /* We only support 64bit displacement on constants. */
5346 i.types[op].bitfield.disp64 = 0;
5347 }
5348 }
5349
5350 /* Return 1 if there is a match in broadcast bytes between operand
5351 GIVEN and instruction template T. */
5352
5353 static INLINE int
5354 match_broadcast_size (const insn_template *t, unsigned int given)
5355 {
5356 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5357 && i.types[given].bitfield.byte)
5358 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5359 && i.types[given].bitfield.word)
5360 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5361 && i.types[given].bitfield.dword)
5362 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5363 && i.types[given].bitfield.qword));
5364 }
5365
5366 /* Check if operands are valid for the instruction. */
5367
5368 static int
5369 check_VecOperands (const insn_template *t)
5370 {
5371 unsigned int op;
5372 i386_cpu_flags cpu;
5373 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5374
5375 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5376 any one operand are implicity requiring AVX512VL support if the actual
5377 operand size is YMMword or XMMword. Since this function runs after
5378 template matching, there's no need to check for YMMword/XMMword in
5379 the template. */
5380 cpu = cpu_flags_and (t->cpu_flags, avx512);
5381 if (!cpu_flags_all_zero (&cpu)
5382 && !t->cpu_flags.bitfield.cpuavx512vl
5383 && !cpu_arch_flags.bitfield.cpuavx512vl)
5384 {
5385 for (op = 0; op < t->operands; ++op)
5386 {
5387 if (t->operand_types[op].bitfield.zmmword
5388 && (i.types[op].bitfield.ymmword
5389 || i.types[op].bitfield.xmmword))
5390 {
5391 i.error = unsupported;
5392 return 1;
5393 }
5394 }
5395 }
5396
5397 /* Without VSIB byte, we can't have a vector register for index. */
5398 if (!t->opcode_modifier.vecsib
5399 && i.index_reg
5400 && (i.index_reg->reg_type.bitfield.xmmword
5401 || i.index_reg->reg_type.bitfield.ymmword
5402 || i.index_reg->reg_type.bitfield.zmmword))
5403 {
5404 i.error = unsupported_vector_index_register;
5405 return 1;
5406 }
5407
5408 /* Check if default mask is allowed. */
5409 if (t->opcode_modifier.nodefmask
5410 && (!i.mask || i.mask->mask->reg_num == 0))
5411 {
5412 i.error = no_default_mask;
5413 return 1;
5414 }
5415
5416 /* For VSIB byte, we need a vector register for index, and all vector
5417 registers must be distinct. */
5418 if (t->opcode_modifier.vecsib)
5419 {
5420 if (!i.index_reg
5421 || !((t->opcode_modifier.vecsib == VecSIB128
5422 && i.index_reg->reg_type.bitfield.xmmword)
5423 || (t->opcode_modifier.vecsib == VecSIB256
5424 && i.index_reg->reg_type.bitfield.ymmword)
5425 || (t->opcode_modifier.vecsib == VecSIB512
5426 && i.index_reg->reg_type.bitfield.zmmword)))
5427 {
5428 i.error = invalid_vsib_address;
5429 return 1;
5430 }
5431
5432 gas_assert (i.reg_operands == 2 || i.mask);
5433 if (i.reg_operands == 2 && !i.mask)
5434 {
5435 gas_assert (i.types[0].bitfield.class == RegSIMD);
5436 gas_assert (i.types[0].bitfield.xmmword
5437 || i.types[0].bitfield.ymmword);
5438 gas_assert (i.types[2].bitfield.class == RegSIMD);
5439 gas_assert (i.types[2].bitfield.xmmword
5440 || i.types[2].bitfield.ymmword);
5441 if (operand_check == check_none)
5442 return 0;
5443 if (register_number (i.op[0].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[2].regs)
5446 != register_number (i.index_reg)
5447 && register_number (i.op[0].regs)
5448 != register_number (i.op[2].regs))
5449 return 0;
5450 if (operand_check == check_error)
5451 {
5452 i.error = invalid_vector_register_set;
5453 return 1;
5454 }
5455 as_warn (_("mask, index, and destination registers should be distinct"));
5456 }
5457 else if (i.reg_operands == 1 && i.mask)
5458 {
5459 if (i.types[1].bitfield.class == RegSIMD
5460 && (i.types[1].bitfield.xmmword
5461 || i.types[1].bitfield.ymmword
5462 || i.types[1].bitfield.zmmword)
5463 && (register_number (i.op[1].regs)
5464 == register_number (i.index_reg)))
5465 {
5466 if (operand_check == check_error)
5467 {
5468 i.error = invalid_vector_register_set;
5469 return 1;
5470 }
5471 if (operand_check != check_none)
5472 as_warn (_("index and destination registers should be distinct"));
5473 }
5474 }
5475 }
5476
5477 /* Check if broadcast is supported by the instruction and is applied
5478 to the memory operand. */
5479 if (i.broadcast)
5480 {
5481 i386_operand_type type, overlap;
5482
5483 /* Check if specified broadcast is supported in this instruction,
5484 and its broadcast bytes match the memory operand. */
5485 op = i.broadcast->operand;
5486 if (!t->opcode_modifier.broadcast
5487 || !(i.flags[op] & Operand_Mem)
5488 || (!i.types[op].bitfield.unspecified
5489 && !match_broadcast_size (t, op)))
5490 {
5491 bad_broadcast:
5492 i.error = unsupported_broadcast;
5493 return 1;
5494 }
5495
5496 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5497 * i.broadcast->type);
5498 operand_type_set (&type, 0);
5499 switch (i.broadcast->bytes)
5500 {
5501 case 2:
5502 type.bitfield.word = 1;
5503 break;
5504 case 4:
5505 type.bitfield.dword = 1;
5506 break;
5507 case 8:
5508 type.bitfield.qword = 1;
5509 break;
5510 case 16:
5511 type.bitfield.xmmword = 1;
5512 break;
5513 case 32:
5514 type.bitfield.ymmword = 1;
5515 break;
5516 case 64:
5517 type.bitfield.zmmword = 1;
5518 break;
5519 default:
5520 goto bad_broadcast;
5521 }
5522
5523 overlap = operand_type_and (type, t->operand_types[op]);
5524 if (operand_type_all_zero (&overlap))
5525 goto bad_broadcast;
5526
5527 if (t->opcode_modifier.checkregsize)
5528 {
5529 unsigned int j;
5530
5531 type.bitfield.baseindex = 1;
5532 for (j = 0; j < i.operands; ++j)
5533 {
5534 if (j != op
5535 && !operand_type_register_match(i.types[j],
5536 t->operand_types[j],
5537 type,
5538 t->operand_types[op]))
5539 goto bad_broadcast;
5540 }
5541 }
5542 }
5543 /* If broadcast is supported in this instruction, we need to check if
5544 operand of one-element size isn't specified without broadcast. */
5545 else if (t->opcode_modifier.broadcast && i.mem_operands)
5546 {
5547 /* Find memory operand. */
5548 for (op = 0; op < i.operands; op++)
5549 if (i.flags[op] & Operand_Mem)
5550 break;
5551 gas_assert (op < i.operands);
5552 /* Check size of the memory operand. */
5553 if (match_broadcast_size (t, op))
5554 {
5555 i.error = broadcast_needed;
5556 return 1;
5557 }
5558 }
5559 else
5560 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5561
5562 /* Check if requested masking is supported. */
5563 if (i.mask)
5564 {
5565 switch (t->opcode_modifier.masking)
5566 {
5567 case BOTH_MASKING:
5568 break;
5569 case MERGING_MASKING:
5570 if (i.mask->zeroing)
5571 {
5572 case 0:
5573 i.error = unsupported_masking;
5574 return 1;
5575 }
5576 break;
5577 case DYNAMIC_MASKING:
5578 /* Memory destinations allow only merging masking. */
5579 if (i.mask->zeroing && i.mem_operands)
5580 {
5581 /* Find memory operand. */
5582 for (op = 0; op < i.operands; op++)
5583 if (i.flags[op] & Operand_Mem)
5584 break;
5585 gas_assert (op < i.operands);
5586 if (op == i.operands - 1)
5587 {
5588 i.error = unsupported_masking;
5589 return 1;
5590 }
5591 }
5592 break;
5593 default:
5594 abort ();
5595 }
5596 }
5597
5598 /* Check if masking is applied to dest operand. */
5599 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5600 {
5601 i.error = mask_not_on_destination;
5602 return 1;
5603 }
5604
5605 /* Check RC/SAE. */
5606 if (i.rounding)
5607 {
5608 if (!t->opcode_modifier.sae
5609 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5610 {
5611 i.error = unsupported_rc_sae;
5612 return 1;
5613 }
5614 /* If the instruction has several immediate operands and one of
5615 them is rounding, the rounding operand should be the last
5616 immediate operand. */
5617 if (i.imm_operands > 1
5618 && i.rounding->operand != (int) (i.imm_operands - 1))
5619 {
5620 i.error = rc_sae_operand_not_last_imm;
5621 return 1;
5622 }
5623 }
5624
5625 /* Check vector Disp8 operand. */
5626 if (t->opcode_modifier.disp8memshift
5627 && i.disp_encoding != disp_encoding_32bit)
5628 {
5629 if (i.broadcast)
5630 i.memshift = t->opcode_modifier.broadcast - 1;
5631 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5632 i.memshift = t->opcode_modifier.disp8memshift;
5633 else
5634 {
5635 const i386_operand_type *type = NULL;
5636
5637 i.memshift = 0;
5638 for (op = 0; op < i.operands; op++)
5639 if (i.flags[op] & Operand_Mem)
5640 {
5641 if (t->opcode_modifier.evex == EVEXLIG)
5642 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5643 else if (t->operand_types[op].bitfield.xmmword
5644 + t->operand_types[op].bitfield.ymmword
5645 + t->operand_types[op].bitfield.zmmword <= 1)
5646 type = &t->operand_types[op];
5647 else if (!i.types[op].bitfield.unspecified)
5648 type = &i.types[op];
5649 }
5650 else if (i.types[op].bitfield.class == RegSIMD
5651 && t->opcode_modifier.evex != EVEXLIG)
5652 {
5653 if (i.types[op].bitfield.zmmword)
5654 i.memshift = 6;
5655 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5656 i.memshift = 5;
5657 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5658 i.memshift = 4;
5659 }
5660
5661 if (type)
5662 {
5663 if (type->bitfield.zmmword)
5664 i.memshift = 6;
5665 else if (type->bitfield.ymmword)
5666 i.memshift = 5;
5667 else if (type->bitfield.xmmword)
5668 i.memshift = 4;
5669 }
5670
5671 /* For the check in fits_in_disp8(). */
5672 if (i.memshift == 0)
5673 i.memshift = -1;
5674 }
5675
5676 for (op = 0; op < i.operands; op++)
5677 if (operand_type_check (i.types[op], disp)
5678 && i.op[op].disps->X_op == O_constant)
5679 {
5680 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5681 {
5682 i.types[op].bitfield.disp8 = 1;
5683 return 0;
5684 }
5685 i.types[op].bitfield.disp8 = 0;
5686 }
5687 }
5688
5689 i.memshift = 0;
5690
5691 return 0;
5692 }
5693
5694 /* Check if operands are valid for the instruction. Update VEX
5695 operand types. */
5696
5697 static int
5698 VEX_check_operands (const insn_template *t)
5699 {
5700 if (i.vec_encoding == vex_encoding_evex)
5701 {
5702 /* This instruction must be encoded with EVEX prefix. */
5703 if (!is_evex_encoding (t))
5704 {
5705 i.error = unsupported;
5706 return 1;
5707 }
5708 return 0;
5709 }
5710
5711 if (!t->opcode_modifier.vex)
5712 {
5713 /* This instruction template doesn't have VEX prefix. */
5714 if (i.vec_encoding != vex_encoding_default)
5715 {
5716 i.error = unsupported;
5717 return 1;
5718 }
5719 return 0;
5720 }
5721
5722 /* Check the special Imm4 cases; must be the first operand. */
5723 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5724 {
5725 if (i.op[0].imms->X_op != O_constant
5726 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5727 {
5728 i.error = bad_imm4;
5729 return 1;
5730 }
5731
5732 /* Turn off Imm<N> so that update_imm won't complain. */
5733 operand_type_set (&i.types[0], 0);
5734 }
5735
5736 return 0;
5737 }
5738
5739 static const insn_template *
5740 match_template (char mnem_suffix)
5741 {
5742 /* Points to template once we've found it. */
5743 const insn_template *t;
5744 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5745 i386_operand_type overlap4;
5746 unsigned int found_reverse_match;
5747 i386_opcode_modifier suffix_check;
5748 i386_operand_type operand_types [MAX_OPERANDS];
5749 int addr_prefix_disp;
5750 unsigned int j, size_match, check_register;
5751 enum i386_error specific_error = 0;
5752
5753 #if MAX_OPERANDS != 5
5754 # error "MAX_OPERANDS must be 5."
5755 #endif
5756
5757 found_reverse_match = 0;
5758 addr_prefix_disp = -1;
5759
5760 /* Prepare for mnemonic suffix check. */
5761 memset (&suffix_check, 0, sizeof (suffix_check));
5762 switch (mnem_suffix)
5763 {
5764 case BYTE_MNEM_SUFFIX:
5765 suffix_check.no_bsuf = 1;
5766 break;
5767 case WORD_MNEM_SUFFIX:
5768 suffix_check.no_wsuf = 1;
5769 break;
5770 case SHORT_MNEM_SUFFIX:
5771 suffix_check.no_ssuf = 1;
5772 break;
5773 case LONG_MNEM_SUFFIX:
5774 suffix_check.no_lsuf = 1;
5775 break;
5776 case QWORD_MNEM_SUFFIX:
5777 suffix_check.no_qsuf = 1;
5778 break;
5779 default:
5780 /* NB: In Intel syntax, normally we can check for memory operand
5781 size when there is no mnemonic suffix. But jmp and call have
5782 2 different encodings with Dword memory operand size, one with
5783 No_ldSuf and the other without. i.suffix is set to
5784 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5785 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5786 suffix_check.no_ldsuf = 1;
5787 }
5788
5789 /* Must have right number of operands. */
5790 i.error = number_of_operands_mismatch;
5791
5792 for (t = current_templates->start; t < current_templates->end; t++)
5793 {
5794 addr_prefix_disp = -1;
5795 found_reverse_match = 0;
5796
5797 if (i.operands != t->operands)
5798 continue;
5799
5800 /* Check processor support. */
5801 i.error = unsupported;
5802 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5803 continue;
5804
5805 /* Check AT&T mnemonic. */
5806 i.error = unsupported_with_intel_mnemonic;
5807 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5808 continue;
5809
5810 /* Check AT&T/Intel syntax. */
5811 i.error = unsupported_syntax;
5812 if ((intel_syntax && t->opcode_modifier.attsyntax)
5813 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5814 continue;
5815
5816 /* Check Intel64/AMD64 ISA. */
5817 switch (isa64)
5818 {
5819 default:
5820 /* Default: Don't accept Intel64. */
5821 if (t->opcode_modifier.isa64 == INTEL64)
5822 continue;
5823 break;
5824 case amd64:
5825 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5826 if (t->opcode_modifier.isa64 >= INTEL64)
5827 continue;
5828 break;
5829 case intel64:
5830 /* -mintel64: Don't accept AMD64. */
5831 if (t->opcode_modifier.isa64 == AMD64)
5832 continue;
5833 break;
5834 }
5835
5836 /* Check the suffix. */
5837 i.error = invalid_instruction_suffix;
5838 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5839 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5840 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5841 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5842 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5843 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5844 continue;
5845
5846 size_match = operand_size_match (t);
5847 if (!size_match)
5848 continue;
5849
5850 /* This is intentionally not
5851
5852 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5853
5854 as the case of a missing * on the operand is accepted (perhaps with
5855 a warning, issued further down). */
5856 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5857 {
5858 i.error = operand_type_mismatch;
5859 continue;
5860 }
5861
5862 for (j = 0; j < MAX_OPERANDS; j++)
5863 operand_types[j] = t->operand_types[j];
5864
5865 /* In general, don't allow 64-bit operands in 32-bit mode. */
5866 if (i.suffix == QWORD_MNEM_SUFFIX
5867 && flag_code != CODE_64BIT
5868 && (intel_syntax
5869 ? (!t->opcode_modifier.ignoresize
5870 && !t->opcode_modifier.broadcast
5871 && !intel_float_operand (t->name))
5872 : intel_float_operand (t->name) != 2)
5873 && ((operand_types[0].bitfield.class != RegMMX
5874 && operand_types[0].bitfield.class != RegSIMD)
5875 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5876 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5877 && (t->base_opcode != 0x0fc7
5878 || t->extension_opcode != 1 /* cmpxchg8b */))
5879 continue;
5880
5881 /* In general, don't allow 32-bit operands on pre-386. */
5882 else if (i.suffix == LONG_MNEM_SUFFIX
5883 && !cpu_arch_flags.bitfield.cpui386
5884 && (intel_syntax
5885 ? (!t->opcode_modifier.ignoresize
5886 && !intel_float_operand (t->name))
5887 : intel_float_operand (t->name) != 2)
5888 && ((operand_types[0].bitfield.class != RegMMX
5889 && operand_types[0].bitfield.class != RegSIMD)
5890 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5891 && operand_types[t->operands > 1].bitfield.class
5892 != RegSIMD)))
5893 continue;
5894
5895 /* Do not verify operands when there are none. */
5896 else
5897 {
5898 if (!t->operands)
5899 /* We've found a match; break out of loop. */
5900 break;
5901 }
5902
5903 if (!t->opcode_modifier.jump
5904 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5905 {
5906 /* There should be only one Disp operand. */
5907 for (j = 0; j < MAX_OPERANDS; j++)
5908 if (operand_type_check (operand_types[j], disp))
5909 break;
5910 if (j < MAX_OPERANDS)
5911 {
5912 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5913
5914 addr_prefix_disp = j;
5915
5916 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5917 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5918 switch (flag_code)
5919 {
5920 case CODE_16BIT:
5921 override = !override;
5922 /* Fall through. */
5923 case CODE_32BIT:
5924 if (operand_types[j].bitfield.disp32
5925 && operand_types[j].bitfield.disp16)
5926 {
5927 operand_types[j].bitfield.disp16 = override;
5928 operand_types[j].bitfield.disp32 = !override;
5929 }
5930 operand_types[j].bitfield.disp32s = 0;
5931 operand_types[j].bitfield.disp64 = 0;
5932 break;
5933
5934 case CODE_64BIT:
5935 if (operand_types[j].bitfield.disp32s
5936 || operand_types[j].bitfield.disp64)
5937 {
5938 operand_types[j].bitfield.disp64 &= !override;
5939 operand_types[j].bitfield.disp32s &= !override;
5940 operand_types[j].bitfield.disp32 = override;
5941 }
5942 operand_types[j].bitfield.disp16 = 0;
5943 break;
5944 }
5945 }
5946 }
5947
5948 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5949 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5950 continue;
5951
5952 /* We check register size if needed. */
5953 if (t->opcode_modifier.checkregsize)
5954 {
5955 check_register = (1 << t->operands) - 1;
5956 if (i.broadcast)
5957 check_register &= ~(1 << i.broadcast->operand);
5958 }
5959 else
5960 check_register = 0;
5961
5962 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5963 switch (t->operands)
5964 {
5965 case 1:
5966 if (!operand_type_match (overlap0, i.types[0]))
5967 continue;
5968 break;
5969 case 2:
5970 /* xchg %eax, %eax is a special case. It is an alias for nop
5971 only in 32bit mode and we can use opcode 0x90. In 64bit
5972 mode, we can't use 0x90 for xchg %eax, %eax since it should
5973 zero-extend %eax to %rax. */
5974 if (flag_code == CODE_64BIT
5975 && t->base_opcode == 0x90
5976 && i.types[0].bitfield.instance == Accum
5977 && i.types[0].bitfield.dword
5978 && i.types[1].bitfield.instance == Accum
5979 && i.types[1].bitfield.dword)
5980 continue;
5981 /* xrelease mov %eax, <disp> is another special case. It must not
5982 match the accumulator-only encoding of mov. */
5983 if (flag_code != CODE_64BIT
5984 && i.hle_prefix
5985 && t->base_opcode == 0xa0
5986 && i.types[0].bitfield.instance == Accum
5987 && (i.flags[1] & Operand_Mem))
5988 continue;
5989 /* Fall through. */
5990
5991 case 3:
5992 if (!(size_match & MATCH_STRAIGHT))
5993 goto check_reverse;
5994 /* Reverse direction of operands if swapping is possible in the first
5995 place (operands need to be symmetric) and
5996 - the load form is requested, and the template is a store form,
5997 - the store form is requested, and the template is a load form,
5998 - the non-default (swapped) form is requested. */
5999 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6000 if (t->opcode_modifier.d && i.reg_operands == i.operands
6001 && !operand_type_all_zero (&overlap1))
6002 switch (i.dir_encoding)
6003 {
6004 case dir_encoding_load:
6005 if (operand_type_check (operand_types[i.operands - 1], anymem)
6006 || t->opcode_modifier.regmem)
6007 goto check_reverse;
6008 break;
6009
6010 case dir_encoding_store:
6011 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6012 && !t->opcode_modifier.regmem)
6013 goto check_reverse;
6014 break;
6015
6016 case dir_encoding_swap:
6017 goto check_reverse;
6018
6019 case dir_encoding_default:
6020 break;
6021 }
6022 /* If we want store form, we skip the current load. */
6023 if ((i.dir_encoding == dir_encoding_store
6024 || i.dir_encoding == dir_encoding_swap)
6025 && i.mem_operands == 0
6026 && t->opcode_modifier.load)
6027 continue;
6028 /* Fall through. */
6029 case 4:
6030 case 5:
6031 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6032 if (!operand_type_match (overlap0, i.types[0])
6033 || !operand_type_match (overlap1, i.types[1])
6034 || ((check_register & 3) == 3
6035 && !operand_type_register_match (i.types[0],
6036 operand_types[0],
6037 i.types[1],
6038 operand_types[1])))
6039 {
6040 /* Check if other direction is valid ... */
6041 if (!t->opcode_modifier.d)
6042 continue;
6043
6044 check_reverse:
6045 if (!(size_match & MATCH_REVERSE))
6046 continue;
6047 /* Try reversing direction of operands. */
6048 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6049 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6050 if (!operand_type_match (overlap0, i.types[0])
6051 || !operand_type_match (overlap1, i.types[i.operands - 1])
6052 || (check_register
6053 && !operand_type_register_match (i.types[0],
6054 operand_types[i.operands - 1],
6055 i.types[i.operands - 1],
6056 operand_types[0])))
6057 {
6058 /* Does not match either direction. */
6059 continue;
6060 }
6061 /* found_reverse_match holds which of D or FloatR
6062 we've found. */
6063 if (!t->opcode_modifier.d)
6064 found_reverse_match = 0;
6065 else if (operand_types[0].bitfield.tbyte)
6066 found_reverse_match = Opcode_FloatD;
6067 else if (operand_types[0].bitfield.xmmword
6068 || operand_types[i.operands - 1].bitfield.xmmword
6069 || operand_types[0].bitfield.class == RegMMX
6070 || operand_types[i.operands - 1].bitfield.class == RegMMX
6071 || is_any_vex_encoding(t))
6072 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6073 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6074 else
6075 found_reverse_match = Opcode_D;
6076 if (t->opcode_modifier.floatr)
6077 found_reverse_match |= Opcode_FloatR;
6078 }
6079 else
6080 {
6081 /* Found a forward 2 operand match here. */
6082 switch (t->operands)
6083 {
6084 case 5:
6085 overlap4 = operand_type_and (i.types[4],
6086 operand_types[4]);
6087 /* Fall through. */
6088 case 4:
6089 overlap3 = operand_type_and (i.types[3],
6090 operand_types[3]);
6091 /* Fall through. */
6092 case 3:
6093 overlap2 = operand_type_and (i.types[2],
6094 operand_types[2]);
6095 break;
6096 }
6097
6098 switch (t->operands)
6099 {
6100 case 5:
6101 if (!operand_type_match (overlap4, i.types[4])
6102 || !operand_type_register_match (i.types[3],
6103 operand_types[3],
6104 i.types[4],
6105 operand_types[4]))
6106 continue;
6107 /* Fall through. */
6108 case 4:
6109 if (!operand_type_match (overlap3, i.types[3])
6110 || ((check_register & 0xa) == 0xa
6111 && !operand_type_register_match (i.types[1],
6112 operand_types[1],
6113 i.types[3],
6114 operand_types[3]))
6115 || ((check_register & 0xc) == 0xc
6116 && !operand_type_register_match (i.types[2],
6117 operand_types[2],
6118 i.types[3],
6119 operand_types[3])))
6120 continue;
6121 /* Fall through. */
6122 case 3:
6123 /* Here we make use of the fact that there are no
6124 reverse match 3 operand instructions. */
6125 if (!operand_type_match (overlap2, i.types[2])
6126 || ((check_register & 5) == 5
6127 && !operand_type_register_match (i.types[0],
6128 operand_types[0],
6129 i.types[2],
6130 operand_types[2]))
6131 || ((check_register & 6) == 6
6132 && !operand_type_register_match (i.types[1],
6133 operand_types[1],
6134 i.types[2],
6135 operand_types[2])))
6136 continue;
6137 break;
6138 }
6139 }
6140 /* Found either forward/reverse 2, 3 or 4 operand match here:
6141 slip through to break. */
6142 }
6143
6144 /* Check if vector and VEX operands are valid. */
6145 if (check_VecOperands (t) || VEX_check_operands (t))
6146 {
6147 specific_error = i.error;
6148 continue;
6149 }
6150
6151 /* We've found a match; break out of loop. */
6152 break;
6153 }
6154
6155 if (t == current_templates->end)
6156 {
6157 /* We found no match. */
6158 const char *err_msg;
6159 switch (specific_error ? specific_error : i.error)
6160 {
6161 default:
6162 abort ();
6163 case operand_size_mismatch:
6164 err_msg = _("operand size mismatch");
6165 break;
6166 case operand_type_mismatch:
6167 err_msg = _("operand type mismatch");
6168 break;
6169 case register_type_mismatch:
6170 err_msg = _("register type mismatch");
6171 break;
6172 case number_of_operands_mismatch:
6173 err_msg = _("number of operands mismatch");
6174 break;
6175 case invalid_instruction_suffix:
6176 err_msg = _("invalid instruction suffix");
6177 break;
6178 case bad_imm4:
6179 err_msg = _("constant doesn't fit in 4 bits");
6180 break;
6181 case unsupported_with_intel_mnemonic:
6182 err_msg = _("unsupported with Intel mnemonic");
6183 break;
6184 case unsupported_syntax:
6185 err_msg = _("unsupported syntax");
6186 break;
6187 case unsupported:
6188 as_bad (_("unsupported instruction `%s'"),
6189 current_templates->start->name);
6190 return NULL;
6191 case invalid_vsib_address:
6192 err_msg = _("invalid VSIB address");
6193 break;
6194 case invalid_vector_register_set:
6195 err_msg = _("mask, index, and destination registers must be distinct");
6196 break;
6197 case unsupported_vector_index_register:
6198 err_msg = _("unsupported vector index register");
6199 break;
6200 case unsupported_broadcast:
6201 err_msg = _("unsupported broadcast");
6202 break;
6203 case broadcast_needed:
6204 err_msg = _("broadcast is needed for operand of such type");
6205 break;
6206 case unsupported_masking:
6207 err_msg = _("unsupported masking");
6208 break;
6209 case mask_not_on_destination:
6210 err_msg = _("mask not on destination operand");
6211 break;
6212 case no_default_mask:
6213 err_msg = _("default mask isn't allowed");
6214 break;
6215 case unsupported_rc_sae:
6216 err_msg = _("unsupported static rounding/sae");
6217 break;
6218 case rc_sae_operand_not_last_imm:
6219 if (intel_syntax)
6220 err_msg = _("RC/SAE operand must precede immediate operands");
6221 else
6222 err_msg = _("RC/SAE operand must follow immediate operands");
6223 break;
6224 case invalid_register_operand:
6225 err_msg = _("invalid register operand");
6226 break;
6227 }
6228 as_bad (_("%s for `%s'"), err_msg,
6229 current_templates->start->name);
6230 return NULL;
6231 }
6232
6233 if (!quiet_warnings)
6234 {
6235 if (!intel_syntax
6236 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6237 as_warn (_("indirect %s without `*'"), t->name);
6238
6239 if (t->opcode_modifier.isprefix
6240 && t->opcode_modifier.ignoresize)
6241 {
6242 /* Warn them that a data or address size prefix doesn't
6243 affect assembly of the next line of code. */
6244 as_warn (_("stand-alone `%s' prefix"), t->name);
6245 }
6246 }
6247
6248 /* Copy the template we found. */
6249 i.tm = *t;
6250
6251 if (addr_prefix_disp != -1)
6252 i.tm.operand_types[addr_prefix_disp]
6253 = operand_types[addr_prefix_disp];
6254
6255 if (found_reverse_match)
6256 {
6257 /* If we found a reverse match we must alter the opcode direction
6258 bit and clear/flip the regmem modifier one. found_reverse_match
6259 holds bits to change (different for int & float insns). */
6260
6261 i.tm.base_opcode ^= found_reverse_match;
6262
6263 i.tm.operand_types[0] = operand_types[i.operands - 1];
6264 i.tm.operand_types[i.operands - 1] = operand_types[0];
6265
6266 /* Certain SIMD insns have their load forms specified in the opcode
6267 table, and hence we need to _set_ RegMem instead of clearing it.
6268 We need to avoid setting the bit though on insns like KMOVW. */
6269 i.tm.opcode_modifier.regmem
6270 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6271 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6272 && !i.tm.opcode_modifier.regmem;
6273 }
6274
6275 return t;
6276 }
6277
6278 static int
6279 check_string (void)
6280 {
6281 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6282 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6283
6284 if (i.seg[op] != NULL && i.seg[op] != &es)
6285 {
6286 as_bad (_("`%s' operand %u must use `%ses' segment"),
6287 i.tm.name,
6288 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6289 register_prefix);
6290 return 0;
6291 }
6292
6293 /* There's only ever one segment override allowed per instruction.
6294 This instruction possibly has a legal segment override on the
6295 second operand, so copy the segment to where non-string
6296 instructions store it, allowing common code. */
6297 i.seg[op] = i.seg[1];
6298
6299 return 1;
6300 }
6301
6302 static int
6303 process_suffix (void)
6304 {
6305 /* If matched instruction specifies an explicit instruction mnemonic
6306 suffix, use it. */
6307 if (i.tm.opcode_modifier.size == SIZE16)
6308 i.suffix = WORD_MNEM_SUFFIX;
6309 else if (i.tm.opcode_modifier.size == SIZE32)
6310 i.suffix = LONG_MNEM_SUFFIX;
6311 else if (i.tm.opcode_modifier.size == SIZE64)
6312 i.suffix = QWORD_MNEM_SUFFIX;
6313 else if (i.reg_operands
6314 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6315 {
6316 /* If there's no instruction mnemonic suffix we try to invent one
6317 based on GPR operands. */
6318 if (!i.suffix)
6319 {
6320 /* We take i.suffix from the last register operand specified,
6321 Destination register type is more significant than source
6322 register type. crc32 in SSE4.2 prefers source register
6323 type. */
6324 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6325
6326 while (op--)
6327 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6328 || i.tm.operand_types[op].bitfield.instance == Accum)
6329 {
6330 if (i.types[op].bitfield.class != Reg)
6331 continue;
6332 if (i.types[op].bitfield.byte)
6333 i.suffix = BYTE_MNEM_SUFFIX;
6334 else if (i.types[op].bitfield.word)
6335 i.suffix = WORD_MNEM_SUFFIX;
6336 else if (i.types[op].bitfield.dword)
6337 i.suffix = LONG_MNEM_SUFFIX;
6338 else if (i.types[op].bitfield.qword)
6339 i.suffix = QWORD_MNEM_SUFFIX;
6340 else
6341 continue;
6342 break;
6343 }
6344 }
6345 else if (i.suffix == BYTE_MNEM_SUFFIX)
6346 {
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
6349 && i.tm.opcode_modifier.no_bsuf)
6350 i.suffix = 0;
6351 else if (!check_byte_reg ())
6352 return 0;
6353 }
6354 else if (i.suffix == LONG_MNEM_SUFFIX)
6355 {
6356 if (intel_syntax
6357 && i.tm.opcode_modifier.ignoresize
6358 && i.tm.opcode_modifier.no_lsuf
6359 && !i.tm.opcode_modifier.todword
6360 && !i.tm.opcode_modifier.toqword)
6361 i.suffix = 0;
6362 else if (!check_long_reg ())
6363 return 0;
6364 }
6365 else if (i.suffix == QWORD_MNEM_SUFFIX)
6366 {
6367 if (intel_syntax
6368 && i.tm.opcode_modifier.ignoresize
6369 && i.tm.opcode_modifier.no_qsuf
6370 && !i.tm.opcode_modifier.todword
6371 && !i.tm.opcode_modifier.toqword)
6372 i.suffix = 0;
6373 else if (!check_qword_reg ())
6374 return 0;
6375 }
6376 else if (i.suffix == WORD_MNEM_SUFFIX)
6377 {
6378 if (intel_syntax
6379 && i.tm.opcode_modifier.ignoresize
6380 && i.tm.opcode_modifier.no_wsuf)
6381 i.suffix = 0;
6382 else if (!check_word_reg ())
6383 return 0;
6384 }
6385 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6386 /* Do nothing if the instruction is going to ignore the prefix. */
6387 ;
6388 else
6389 abort ();
6390 }
6391 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6392 {
6393 i.suffix = stackop_size;
6394 if (stackop_size == LONG_MNEM_SUFFIX)
6395 {
6396 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6397 .code16gcc directive to support 16-bit mode with
6398 32-bit address. For IRET without a suffix, generate
6399 16-bit IRET (opcode 0xcf) to return from an interrupt
6400 handler. */
6401 if (i.tm.base_opcode == 0xcf)
6402 {
6403 i.suffix = WORD_MNEM_SUFFIX;
6404 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6405 }
6406 /* Warn about changed behavior for segment register push/pop. */
6407 else if ((i.tm.base_opcode | 1) == 0x07)
6408 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6409 i.tm.name);
6410 }
6411 }
6412 else if (!i.suffix
6413 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6414 || i.tm.opcode_modifier.jump == JUMP_BYTE
6415 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6416 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6417 && i.tm.extension_opcode <= 3)))
6418 {
6419 switch (flag_code)
6420 {
6421 case CODE_64BIT:
6422 if (!i.tm.opcode_modifier.no_qsuf)
6423 {
6424 i.suffix = QWORD_MNEM_SUFFIX;
6425 break;
6426 }
6427 /* Fall through. */
6428 case CODE_32BIT:
6429 if (!i.tm.opcode_modifier.no_lsuf)
6430 i.suffix = LONG_MNEM_SUFFIX;
6431 break;
6432 case CODE_16BIT:
6433 if (!i.tm.opcode_modifier.no_wsuf)
6434 i.suffix = WORD_MNEM_SUFFIX;
6435 break;
6436 }
6437 }
6438
6439 if (!i.suffix
6440 && (!i.tm.opcode_modifier.defaultsize
6441 /* Also cover lret/retf/iret in 64-bit mode. */
6442 || (flag_code == CODE_64BIT
6443 && !i.tm.opcode_modifier.no_lsuf
6444 && !i.tm.opcode_modifier.no_qsuf))
6445 && !i.tm.opcode_modifier.ignoresize
6446 /* Accept FLDENV et al without suffix. */
6447 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6448 {
6449 unsigned int suffixes;
6450
6451 suffixes = !i.tm.opcode_modifier.no_bsuf;
6452 if (!i.tm.opcode_modifier.no_wsuf)
6453 suffixes |= 1 << 1;
6454 if (!i.tm.opcode_modifier.no_lsuf)
6455 suffixes |= 1 << 2;
6456 if (!i.tm.opcode_modifier.no_ldsuf)
6457 suffixes |= 1 << 3;
6458 if (!i.tm.opcode_modifier.no_ssuf)
6459 suffixes |= 1 << 4;
6460 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6461 suffixes |= 1 << 5;
6462
6463 /* Are multiple suffixes allowed? */
6464 if (suffixes & (suffixes - 1))
6465 {
6466 if (intel_syntax
6467 && (!i.tm.opcode_modifier.defaultsize
6468 || operand_check == check_error))
6469 {
6470 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6471 return 0;
6472 }
6473 if (operand_check == check_error)
6474 {
6475 as_bad (_("no instruction mnemonic suffix given and "
6476 "no register operands; can't size `%s'"), i.tm.name);
6477 return 0;
6478 }
6479 if (operand_check == check_warning)
6480 as_warn (_("%s; using default for `%s'"),
6481 intel_syntax
6482 ? _("ambiguous operand size")
6483 : _("no instruction mnemonic suffix given and "
6484 "no register operands"),
6485 i.tm.name);
6486
6487 if (i.tm.opcode_modifier.floatmf)
6488 i.suffix = SHORT_MNEM_SUFFIX;
6489 else if (flag_code == CODE_16BIT)
6490 i.suffix = WORD_MNEM_SUFFIX;
6491 else if (!i.tm.opcode_modifier.no_lsuf)
6492 i.suffix = LONG_MNEM_SUFFIX;
6493 else
6494 i.suffix = QWORD_MNEM_SUFFIX;
6495 }
6496 }
6497
6498 /* Change the opcode based on the operand size given by i.suffix. */
6499 switch (i.suffix)
6500 {
6501 /* Size floating point instruction. */
6502 case LONG_MNEM_SUFFIX:
6503 if (i.tm.opcode_modifier.floatmf)
6504 {
6505 i.tm.base_opcode ^= 4;
6506 break;
6507 }
6508 /* fall through */
6509 case WORD_MNEM_SUFFIX:
6510 case QWORD_MNEM_SUFFIX:
6511 /* It's not a byte, select word/dword operation. */
6512 if (i.tm.opcode_modifier.w)
6513 {
6514 if (i.tm.opcode_modifier.shortform)
6515 i.tm.base_opcode |= 8;
6516 else
6517 i.tm.base_opcode |= 1;
6518 }
6519 /* fall through */
6520 case SHORT_MNEM_SUFFIX:
6521 /* Now select between word & dword operations via the operand
6522 size prefix, except for instructions that will ignore this
6523 prefix anyway. */
6524 if (i.reg_operands > 0
6525 && i.types[0].bitfield.class == Reg
6526 && i.tm.opcode_modifier.addrprefixopreg
6527 && (i.tm.operand_types[0].bitfield.instance == Accum
6528 || i.operands == 1))
6529 {
6530 /* The address size override prefix changes the size of the
6531 first operand. */
6532 if ((flag_code == CODE_32BIT
6533 && i.op[0].regs->reg_type.bitfield.word)
6534 || (flag_code != CODE_32BIT
6535 && i.op[0].regs->reg_type.bitfield.dword))
6536 if (!add_prefix (ADDR_PREFIX_OPCODE))
6537 return 0;
6538 }
6539 else if (i.suffix != QWORD_MNEM_SUFFIX
6540 && !i.tm.opcode_modifier.ignoresize
6541 && !i.tm.opcode_modifier.floatmf
6542 && !is_any_vex_encoding (&i.tm)
6543 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6544 || (flag_code == CODE_64BIT
6545 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6546 {
6547 unsigned int prefix = DATA_PREFIX_OPCODE;
6548
6549 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6550 prefix = ADDR_PREFIX_OPCODE;
6551
6552 if (!add_prefix (prefix))
6553 return 0;
6554 }
6555
6556 /* Set mode64 for an operand. */
6557 if (i.suffix == QWORD_MNEM_SUFFIX
6558 && flag_code == CODE_64BIT
6559 && !i.tm.opcode_modifier.norex64
6560 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6561 need rex64. */
6562 && ! (i.operands == 2
6563 && i.tm.base_opcode == 0x90
6564 && i.tm.extension_opcode == None
6565 && i.types[0].bitfield.instance == Accum
6566 && i.types[0].bitfield.qword
6567 && i.types[1].bitfield.instance == Accum
6568 && i.types[1].bitfield.qword))
6569 i.rex |= REX_W;
6570
6571 break;
6572 }
6573
6574 if (i.reg_operands != 0
6575 && i.operands > 1
6576 && i.tm.opcode_modifier.addrprefixopreg
6577 && i.tm.operand_types[0].bitfield.instance != Accum)
6578 {
6579 /* Check invalid register operand when the address size override
6580 prefix changes the size of register operands. */
6581 unsigned int op;
6582 enum { need_word, need_dword, need_qword } need;
6583
6584 if (flag_code == CODE_32BIT)
6585 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6586 else
6587 {
6588 if (i.prefix[ADDR_PREFIX])
6589 need = need_dword;
6590 else
6591 need = flag_code == CODE_64BIT ? need_qword : need_word;
6592 }
6593
6594 for (op = 0; op < i.operands; op++)
6595 if (i.types[op].bitfield.class == Reg
6596 && ((need == need_word
6597 && !i.op[op].regs->reg_type.bitfield.word)
6598 || (need == need_dword
6599 && !i.op[op].regs->reg_type.bitfield.dword)
6600 || (need == need_qword
6601 && !i.op[op].regs->reg_type.bitfield.qword)))
6602 {
6603 as_bad (_("invalid register operand size for `%s'"),
6604 i.tm.name);
6605 return 0;
6606 }
6607 }
6608
6609 return 1;
6610 }
6611
6612 static int
6613 check_byte_reg (void)
6614 {
6615 int op;
6616
6617 for (op = i.operands; --op >= 0;)
6618 {
6619 /* Skip non-register operands. */
6620 if (i.types[op].bitfield.class != Reg)
6621 continue;
6622
6623 /* If this is an eight bit register, it's OK. If it's the 16 or
6624 32 bit version of an eight bit register, we will just use the
6625 low portion, and that's OK too. */
6626 if (i.types[op].bitfield.byte)
6627 continue;
6628
6629 /* I/O port address operands are OK too. */
6630 if (i.tm.operand_types[op].bitfield.instance == RegD
6631 && i.tm.operand_types[op].bitfield.word)
6632 continue;
6633
6634 /* crc32 doesn't generate this warning. */
6635 if (i.tm.base_opcode == 0xf20f38f0)
6636 continue;
6637
6638 if ((i.types[op].bitfield.word
6639 || i.types[op].bitfield.dword
6640 || i.types[op].bitfield.qword)
6641 && i.op[op].regs->reg_num < 4
6642 /* Prohibit these changes in 64bit mode, since the lowering
6643 would be more complicated. */
6644 && flag_code != CODE_64BIT)
6645 {
6646 #if REGISTER_WARNINGS
6647 if (!quiet_warnings)
6648 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6649 register_prefix,
6650 (i.op[op].regs + (i.types[op].bitfield.word
6651 ? REGNAM_AL - REGNAM_AX
6652 : REGNAM_AL - REGNAM_EAX))->reg_name,
6653 register_prefix,
6654 i.op[op].regs->reg_name,
6655 i.suffix);
6656 #endif
6657 continue;
6658 }
6659 /* Any other register is bad. */
6660 if (i.types[op].bitfield.class == Reg
6661 || i.types[op].bitfield.class == RegMMX
6662 || i.types[op].bitfield.class == RegSIMD
6663 || i.types[op].bitfield.class == SReg
6664 || i.types[op].bitfield.class == RegCR
6665 || i.types[op].bitfield.class == RegDR
6666 || i.types[op].bitfield.class == RegTR)
6667 {
6668 as_bad (_("`%s%s' not allowed with `%s%c'"),
6669 register_prefix,
6670 i.op[op].regs->reg_name,
6671 i.tm.name,
6672 i.suffix);
6673 return 0;
6674 }
6675 }
6676 return 1;
6677 }
6678
6679 static int
6680 check_long_reg (void)
6681 {
6682 int op;
6683
6684 for (op = i.operands; --op >= 0;)
6685 /* Skip non-register operands. */
6686 if (i.types[op].bitfield.class != Reg)
6687 continue;
6688 /* Reject eight bit registers, except where the template requires
6689 them. (eg. movzb) */
6690 else if (i.types[op].bitfield.byte
6691 && (i.tm.operand_types[op].bitfield.class == Reg
6692 || i.tm.operand_types[op].bitfield.instance == Accum)
6693 && (i.tm.operand_types[op].bitfield.word
6694 || i.tm.operand_types[op].bitfield.dword))
6695 {
6696 as_bad (_("`%s%s' not allowed with `%s%c'"),
6697 register_prefix,
6698 i.op[op].regs->reg_name,
6699 i.tm.name,
6700 i.suffix);
6701 return 0;
6702 }
6703 /* Error if the e prefix on a general reg is missing. */
6704 else if (i.types[op].bitfield.word
6705 && (i.tm.operand_types[op].bitfield.class == Reg
6706 || i.tm.operand_types[op].bitfield.instance == Accum)
6707 && i.tm.operand_types[op].bitfield.dword)
6708 {
6709 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6710 register_prefix, i.op[op].regs->reg_name,
6711 i.suffix);
6712 return 0;
6713 }
6714 /* Warn if the r prefix on a general reg is present. */
6715 else if (i.types[op].bitfield.qword
6716 && (i.tm.operand_types[op].bitfield.class == Reg
6717 || i.tm.operand_types[op].bitfield.instance == Accum)
6718 && i.tm.operand_types[op].bitfield.dword)
6719 {
6720 if (intel_syntax
6721 && (i.tm.opcode_modifier.toqword
6722 /* Also convert to QWORD for MOVSXD. */
6723 || i.tm.base_opcode == 0x63)
6724 && i.types[0].bitfield.class != RegSIMD)
6725 {
6726 /* Convert to QWORD. We want REX byte. */
6727 i.suffix = QWORD_MNEM_SUFFIX;
6728 }
6729 else
6730 {
6731 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6732 register_prefix, i.op[op].regs->reg_name,
6733 i.suffix);
6734 return 0;
6735 }
6736 }
6737 return 1;
6738 }
6739
6740 static int
6741 check_qword_reg (void)
6742 {
6743 int op;
6744
6745 for (op = i.operands; --op >= 0; )
6746 /* Skip non-register operands. */
6747 if (i.types[op].bitfield.class != Reg)
6748 continue;
6749 /* Reject eight bit registers, except where the template requires
6750 them. (eg. movzb) */
6751 else if (i.types[op].bitfield.byte
6752 && (i.tm.operand_types[op].bitfield.class == Reg
6753 || i.tm.operand_types[op].bitfield.instance == Accum)
6754 && (i.tm.operand_types[op].bitfield.word
6755 || i.tm.operand_types[op].bitfield.dword))
6756 {
6757 as_bad (_("`%s%s' not allowed with `%s%c'"),
6758 register_prefix,
6759 i.op[op].regs->reg_name,
6760 i.tm.name,
6761 i.suffix);
6762 return 0;
6763 }
6764 /* Warn if the r prefix on a general reg is missing. */
6765 else if ((i.types[op].bitfield.word
6766 || i.types[op].bitfield.dword)
6767 && (i.tm.operand_types[op].bitfield.class == Reg
6768 || i.tm.operand_types[op].bitfield.instance == Accum)
6769 && i.tm.operand_types[op].bitfield.qword)
6770 {
6771 /* Prohibit these changes in the 64bit mode, since the
6772 lowering is more complicated. */
6773 if (intel_syntax
6774 && i.tm.opcode_modifier.todword
6775 && i.types[0].bitfield.class != RegSIMD)
6776 {
6777 /* Convert to DWORD. We don't want REX byte. */
6778 i.suffix = LONG_MNEM_SUFFIX;
6779 }
6780 else
6781 {
6782 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6783 register_prefix, i.op[op].regs->reg_name,
6784 i.suffix);
6785 return 0;
6786 }
6787 }
6788 return 1;
6789 }
6790
6791 static int
6792 check_word_reg (void)
6793 {
6794 int op;
6795 for (op = i.operands; --op >= 0;)
6796 /* Skip non-register operands. */
6797 if (i.types[op].bitfield.class != Reg)
6798 continue;
6799 /* Reject eight bit registers, except where the template requires
6800 them. (eg. movzb) */
6801 else if (i.types[op].bitfield.byte
6802 && (i.tm.operand_types[op].bitfield.class == Reg
6803 || i.tm.operand_types[op].bitfield.instance == Accum)
6804 && (i.tm.operand_types[op].bitfield.word
6805 || i.tm.operand_types[op].bitfield.dword))
6806 {
6807 as_bad (_("`%s%s' not allowed with `%s%c'"),
6808 register_prefix,
6809 i.op[op].regs->reg_name,
6810 i.tm.name,
6811 i.suffix);
6812 return 0;
6813 }
6814 /* Warn if the e or r prefix on a general reg is present. */
6815 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6816 && (i.types[op].bitfield.dword
6817 || i.types[op].bitfield.qword)
6818 && (i.tm.operand_types[op].bitfield.class == Reg
6819 || i.tm.operand_types[op].bitfield.instance == Accum)
6820 && i.tm.operand_types[op].bitfield.word)
6821 {
6822 /* Prohibit these changes in the 64bit mode, since the
6823 lowering is more complicated. */
6824 if (flag_code == CODE_64BIT)
6825 {
6826 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6827 register_prefix, i.op[op].regs->reg_name,
6828 i.suffix);
6829 return 0;
6830 }
6831 #if REGISTER_WARNINGS
6832 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6833 register_prefix,
6834 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6835 register_prefix, i.op[op].regs->reg_name, i.suffix);
6836 #endif
6837 }
6838 return 1;
6839 }
6840
6841 static int
6842 update_imm (unsigned int j)
6843 {
6844 i386_operand_type overlap = i.types[j];
6845 if ((overlap.bitfield.imm8
6846 || overlap.bitfield.imm8s
6847 || overlap.bitfield.imm16
6848 || overlap.bitfield.imm32
6849 || overlap.bitfield.imm32s
6850 || overlap.bitfield.imm64)
6851 && !operand_type_equal (&overlap, &imm8)
6852 && !operand_type_equal (&overlap, &imm8s)
6853 && !operand_type_equal (&overlap, &imm16)
6854 && !operand_type_equal (&overlap, &imm32)
6855 && !operand_type_equal (&overlap, &imm32s)
6856 && !operand_type_equal (&overlap, &imm64))
6857 {
6858 if (i.suffix)
6859 {
6860 i386_operand_type temp;
6861
6862 operand_type_set (&temp, 0);
6863 if (i.suffix == BYTE_MNEM_SUFFIX)
6864 {
6865 temp.bitfield.imm8 = overlap.bitfield.imm8;
6866 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6867 }
6868 else if (i.suffix == WORD_MNEM_SUFFIX)
6869 temp.bitfield.imm16 = overlap.bitfield.imm16;
6870 else if (i.suffix == QWORD_MNEM_SUFFIX)
6871 {
6872 temp.bitfield.imm64 = overlap.bitfield.imm64;
6873 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6874 }
6875 else
6876 temp.bitfield.imm32 = overlap.bitfield.imm32;
6877 overlap = temp;
6878 }
6879 else if (operand_type_equal (&overlap, &imm16_32_32s)
6880 || operand_type_equal (&overlap, &imm16_32)
6881 || operand_type_equal (&overlap, &imm16_32s))
6882 {
6883 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6884 overlap = imm16;
6885 else
6886 overlap = imm32s;
6887 }
6888 if (!operand_type_equal (&overlap, &imm8)
6889 && !operand_type_equal (&overlap, &imm8s)
6890 && !operand_type_equal (&overlap, &imm16)
6891 && !operand_type_equal (&overlap, &imm32)
6892 && !operand_type_equal (&overlap, &imm32s)
6893 && !operand_type_equal (&overlap, &imm64))
6894 {
6895 as_bad (_("no instruction mnemonic suffix given; "
6896 "can't determine immediate size"));
6897 return 0;
6898 }
6899 }
6900 i.types[j] = overlap;
6901
6902 return 1;
6903 }
6904
6905 static int
6906 finalize_imm (void)
6907 {
6908 unsigned int j, n;
6909
6910 /* Update the first 2 immediate operands. */
6911 n = i.operands > 2 ? 2 : i.operands;
6912 if (n)
6913 {
6914 for (j = 0; j < n; j++)
6915 if (update_imm (j) == 0)
6916 return 0;
6917
6918 /* The 3rd operand can't be immediate operand. */
6919 gas_assert (operand_type_check (i.types[2], imm) == 0);
6920 }
6921
6922 return 1;
6923 }
6924
6925 static int
6926 process_operands (void)
6927 {
6928 /* Default segment register this instruction will use for memory
6929 accesses. 0 means unknown. This is only for optimizing out
6930 unnecessary segment overrides. */
6931 const seg_entry *default_seg = 0;
6932
6933 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6934 {
6935 unsigned int dupl = i.operands;
6936 unsigned int dest = dupl - 1;
6937 unsigned int j;
6938
6939 /* The destination must be an xmm register. */
6940 gas_assert (i.reg_operands
6941 && MAX_OPERANDS > dupl
6942 && operand_type_equal (&i.types[dest], &regxmm));
6943
6944 if (i.tm.operand_types[0].bitfield.instance == Accum
6945 && i.tm.operand_types[0].bitfield.xmmword)
6946 {
6947 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6948 {
6949 /* Keep xmm0 for instructions with VEX prefix and 3
6950 sources. */
6951 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6952 i.tm.operand_types[0].bitfield.class = RegSIMD;
6953 goto duplicate;
6954 }
6955 else
6956 {
6957 /* We remove the first xmm0 and keep the number of
6958 operands unchanged, which in fact duplicates the
6959 destination. */
6960 for (j = 1; j < i.operands; j++)
6961 {
6962 i.op[j - 1] = i.op[j];
6963 i.types[j - 1] = i.types[j];
6964 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6965 i.flags[j - 1] = i.flags[j];
6966 }
6967 }
6968 }
6969 else if (i.tm.opcode_modifier.implicit1stxmm0)
6970 {
6971 gas_assert ((MAX_OPERANDS - 1) > dupl
6972 && (i.tm.opcode_modifier.vexsources
6973 == VEX3SOURCES));
6974
6975 /* Add the implicit xmm0 for instructions with VEX prefix
6976 and 3 sources. */
6977 for (j = i.operands; j > 0; j--)
6978 {
6979 i.op[j] = i.op[j - 1];
6980 i.types[j] = i.types[j - 1];
6981 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6982 i.flags[j] = i.flags[j - 1];
6983 }
6984 i.op[0].regs
6985 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6986 i.types[0] = regxmm;
6987 i.tm.operand_types[0] = regxmm;
6988
6989 i.operands += 2;
6990 i.reg_operands += 2;
6991 i.tm.operands += 2;
6992
6993 dupl++;
6994 dest++;
6995 i.op[dupl] = i.op[dest];
6996 i.types[dupl] = i.types[dest];
6997 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6998 i.flags[dupl] = i.flags[dest];
6999 }
7000 else
7001 {
7002 duplicate:
7003 i.operands++;
7004 i.reg_operands++;
7005 i.tm.operands++;
7006
7007 i.op[dupl] = i.op[dest];
7008 i.types[dupl] = i.types[dest];
7009 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7010 i.flags[dupl] = i.flags[dest];
7011 }
7012
7013 if (i.tm.opcode_modifier.immext)
7014 process_immext ();
7015 }
7016 else if (i.tm.operand_types[0].bitfield.instance == Accum
7017 && i.tm.operand_types[0].bitfield.xmmword)
7018 {
7019 unsigned int j;
7020
7021 for (j = 1; j < i.operands; j++)
7022 {
7023 i.op[j - 1] = i.op[j];
7024 i.types[j - 1] = i.types[j];
7025
7026 /* We need to adjust fields in i.tm since they are used by
7027 build_modrm_byte. */
7028 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7029
7030 i.flags[j - 1] = i.flags[j];
7031 }
7032
7033 i.operands--;
7034 i.reg_operands--;
7035 i.tm.operands--;
7036 }
7037 else if (i.tm.opcode_modifier.implicitquadgroup)
7038 {
7039 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7040
7041 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7042 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7043 regnum = register_number (i.op[1].regs);
7044 first_reg_in_group = regnum & ~3;
7045 last_reg_in_group = first_reg_in_group + 3;
7046 if (regnum != first_reg_in_group)
7047 as_warn (_("source register `%s%s' implicitly denotes"
7048 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7049 register_prefix, i.op[1].regs->reg_name,
7050 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7051 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7052 i.tm.name);
7053 }
7054 else if (i.tm.opcode_modifier.regkludge)
7055 {
7056 /* The imul $imm, %reg instruction is converted into
7057 imul $imm, %reg, %reg, and the clr %reg instruction
7058 is converted into xor %reg, %reg. */
7059
7060 unsigned int first_reg_op;
7061
7062 if (operand_type_check (i.types[0], reg))
7063 first_reg_op = 0;
7064 else
7065 first_reg_op = 1;
7066 /* Pretend we saw the extra register operand. */
7067 gas_assert (i.reg_operands == 1
7068 && i.op[first_reg_op + 1].regs == 0);
7069 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7070 i.types[first_reg_op + 1] = i.types[first_reg_op];
7071 i.operands++;
7072 i.reg_operands++;
7073 }
7074
7075 if (i.tm.opcode_modifier.modrm)
7076 {
7077 /* The opcode is completed (modulo i.tm.extension_opcode which
7078 must be put into the modrm byte). Now, we make the modrm and
7079 index base bytes based on all the info we've collected. */
7080
7081 default_seg = build_modrm_byte ();
7082 }
7083 else if (i.types[0].bitfield.class == SReg)
7084 {
7085 if (flag_code != CODE_64BIT
7086 ? i.tm.base_opcode == POP_SEG_SHORT
7087 && i.op[0].regs->reg_num == 1
7088 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7089 && i.op[0].regs->reg_num < 4)
7090 {
7091 as_bad (_("you can't `%s %s%s'"),
7092 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7093 return 0;
7094 }
7095 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7096 {
7097 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7098 i.tm.opcode_length = 2;
7099 }
7100 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7101 }
7102 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7103 {
7104 default_seg = &ds;
7105 }
7106 else if (i.tm.opcode_modifier.isstring)
7107 {
7108 /* For the string instructions that allow a segment override
7109 on one of their operands, the default segment is ds. */
7110 default_seg = &ds;
7111 }
7112 else if (i.tm.opcode_modifier.shortform)
7113 {
7114 /* The register or float register operand is in operand
7115 0 or 1. */
7116 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7117
7118 /* Register goes in low 3 bits of opcode. */
7119 i.tm.base_opcode |= i.op[op].regs->reg_num;
7120 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7121 i.rex |= REX_B;
7122 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7123 {
7124 /* Warn about some common errors, but press on regardless.
7125 The first case can be generated by gcc (<= 2.8.1). */
7126 if (i.operands == 2)
7127 {
7128 /* Reversed arguments on faddp, fsubp, etc. */
7129 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7130 register_prefix, i.op[!intel_syntax].regs->reg_name,
7131 register_prefix, i.op[intel_syntax].regs->reg_name);
7132 }
7133 else
7134 {
7135 /* Extraneous `l' suffix on fp insn. */
7136 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7137 register_prefix, i.op[0].regs->reg_name);
7138 }
7139 }
7140 }
7141
7142 if (i.tm.base_opcode == 0x8d /* lea */
7143 && i.seg[0]
7144 && !quiet_warnings)
7145 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7146
7147 /* If a segment was explicitly specified, and the specified segment
7148 is not the default, use an opcode prefix to select it. If we
7149 never figured out what the default segment is, then default_seg
7150 will be zero at this point, and the specified segment prefix will
7151 always be used. */
7152 if ((i.seg[0]) && (i.seg[0] != default_seg))
7153 {
7154 if (!add_prefix (i.seg[0]->seg_prefix))
7155 return 0;
7156 }
7157 return 1;
7158 }
7159
7160 static const seg_entry *
7161 build_modrm_byte (void)
7162 {
7163 const seg_entry *default_seg = 0;
7164 unsigned int source, dest;
7165 int vex_3_sources;
7166
7167 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7168 if (vex_3_sources)
7169 {
7170 unsigned int nds, reg_slot;
7171 expressionS *exp;
7172
7173 dest = i.operands - 1;
7174 nds = dest - 1;
7175
7176 /* There are 2 kinds of instructions:
7177 1. 5 operands: 4 register operands or 3 register operands
7178 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7179 VexW0 or VexW1. The destination must be either XMM, YMM or
7180 ZMM register.
7181 2. 4 operands: 4 register operands or 3 register operands
7182 plus 1 memory operand, with VexXDS. */
7183 gas_assert ((i.reg_operands == 4
7184 || (i.reg_operands == 3 && i.mem_operands == 1))
7185 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7186 && i.tm.opcode_modifier.vexw
7187 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7188
7189 /* If VexW1 is set, the first non-immediate operand is the source and
7190 the second non-immediate one is encoded in the immediate operand. */
7191 if (i.tm.opcode_modifier.vexw == VEXW1)
7192 {
7193 source = i.imm_operands;
7194 reg_slot = i.imm_operands + 1;
7195 }
7196 else
7197 {
7198 source = i.imm_operands + 1;
7199 reg_slot = i.imm_operands;
7200 }
7201
7202 if (i.imm_operands == 0)
7203 {
7204 /* When there is no immediate operand, generate an 8bit
7205 immediate operand to encode the first operand. */
7206 exp = &im_expressions[i.imm_operands++];
7207 i.op[i.operands].imms = exp;
7208 i.types[i.operands] = imm8;
7209 i.operands++;
7210
7211 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7212 exp->X_op = O_constant;
7213 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7214 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7215 }
7216 else
7217 {
7218 gas_assert (i.imm_operands == 1);
7219 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7220 gas_assert (!i.tm.opcode_modifier.immext);
7221
7222 /* Turn on Imm8 again so that output_imm will generate it. */
7223 i.types[0].bitfield.imm8 = 1;
7224
7225 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7226 i.op[0].imms->X_add_number
7227 |= register_number (i.op[reg_slot].regs) << 4;
7228 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7229 }
7230
7231 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7232 i.vex.register_specifier = i.op[nds].regs;
7233 }
7234 else
7235 source = dest = 0;
7236
7237 /* i.reg_operands MUST be the number of real register operands;
7238 implicit registers do not count. If there are 3 register
7239 operands, it must be a instruction with VexNDS. For a
7240 instruction with VexNDD, the destination register is encoded
7241 in VEX prefix. If there are 4 register operands, it must be
7242 a instruction with VEX prefix and 3 sources. */
7243 if (i.mem_operands == 0
7244 && ((i.reg_operands == 2
7245 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7246 || (i.reg_operands == 3
7247 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7248 || (i.reg_operands == 4 && vex_3_sources)))
7249 {
7250 switch (i.operands)
7251 {
7252 case 2:
7253 source = 0;
7254 break;
7255 case 3:
7256 /* When there are 3 operands, one of them may be immediate,
7257 which may be the first or the last operand. Otherwise,
7258 the first operand must be shift count register (cl) or it
7259 is an instruction with VexNDS. */
7260 gas_assert (i.imm_operands == 1
7261 || (i.imm_operands == 0
7262 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7263 || (i.types[0].bitfield.instance == RegC
7264 && i.types[0].bitfield.byte))));
7265 if (operand_type_check (i.types[0], imm)
7266 || (i.types[0].bitfield.instance == RegC
7267 && i.types[0].bitfield.byte))
7268 source = 1;
7269 else
7270 source = 0;
7271 break;
7272 case 4:
7273 /* When there are 4 operands, the first two must be 8bit
7274 immediate operands. The source operand will be the 3rd
7275 one.
7276
7277 For instructions with VexNDS, if the first operand
7278 an imm8, the source operand is the 2nd one. If the last
7279 operand is imm8, the source operand is the first one. */
7280 gas_assert ((i.imm_operands == 2
7281 && i.types[0].bitfield.imm8
7282 && i.types[1].bitfield.imm8)
7283 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7284 && i.imm_operands == 1
7285 && (i.types[0].bitfield.imm8
7286 || i.types[i.operands - 1].bitfield.imm8
7287 || i.rounding)));
7288 if (i.imm_operands == 2)
7289 source = 2;
7290 else
7291 {
7292 if (i.types[0].bitfield.imm8)
7293 source = 1;
7294 else
7295 source = 0;
7296 }
7297 break;
7298 case 5:
7299 if (is_evex_encoding (&i.tm))
7300 {
7301 /* For EVEX instructions, when there are 5 operands, the
7302 first one must be immediate operand. If the second one
7303 is immediate operand, the source operand is the 3th
7304 one. If the last one is immediate operand, the source
7305 operand is the 2nd one. */
7306 gas_assert (i.imm_operands == 2
7307 && i.tm.opcode_modifier.sae
7308 && operand_type_check (i.types[0], imm));
7309 if (operand_type_check (i.types[1], imm))
7310 source = 2;
7311 else if (operand_type_check (i.types[4], imm))
7312 source = 1;
7313 else
7314 abort ();
7315 }
7316 break;
7317 default:
7318 abort ();
7319 }
7320
7321 if (!vex_3_sources)
7322 {
7323 dest = source + 1;
7324
7325 /* RC/SAE operand could be between DEST and SRC. That happens
7326 when one operand is GPR and the other one is XMM/YMM/ZMM
7327 register. */
7328 if (i.rounding && i.rounding->operand == (int) dest)
7329 dest++;
7330
7331 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7332 {
7333 /* For instructions with VexNDS, the register-only source
7334 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7335 register. It is encoded in VEX prefix. */
7336
7337 i386_operand_type op;
7338 unsigned int vvvv;
7339
7340 /* Check register-only source operand when two source
7341 operands are swapped. */
7342 if (!i.tm.operand_types[source].bitfield.baseindex
7343 && i.tm.operand_types[dest].bitfield.baseindex)
7344 {
7345 vvvv = source;
7346 source = dest;
7347 }
7348 else
7349 vvvv = dest;
7350
7351 op = i.tm.operand_types[vvvv];
7352 if ((dest + 1) >= i.operands
7353 || ((op.bitfield.class != Reg
7354 || (!op.bitfield.dword && !op.bitfield.qword))
7355 && op.bitfield.class != RegSIMD
7356 && !operand_type_equal (&op, &regmask)))
7357 abort ();
7358 i.vex.register_specifier = i.op[vvvv].regs;
7359 dest++;
7360 }
7361 }
7362
7363 i.rm.mode = 3;
7364 /* One of the register operands will be encoded in the i.rm.reg
7365 field, the other in the combined i.rm.mode and i.rm.regmem
7366 fields. If no form of this instruction supports a memory
7367 destination operand, then we assume the source operand may
7368 sometimes be a memory operand and so we need to store the
7369 destination in the i.rm.reg field. */
7370 if (!i.tm.opcode_modifier.regmem
7371 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7372 {
7373 i.rm.reg = i.op[dest].regs->reg_num;
7374 i.rm.regmem = i.op[source].regs->reg_num;
7375 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7376 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7377 i.has_regmmx = TRUE;
7378 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7379 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7380 {
7381 if (i.types[dest].bitfield.zmmword
7382 || i.types[source].bitfield.zmmword)
7383 i.has_regzmm = TRUE;
7384 else if (i.types[dest].bitfield.ymmword
7385 || i.types[source].bitfield.ymmword)
7386 i.has_regymm = TRUE;
7387 else
7388 i.has_regxmm = TRUE;
7389 }
7390 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7391 i.rex |= REX_R;
7392 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7393 i.vrex |= REX_R;
7394 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7395 i.rex |= REX_B;
7396 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7397 i.vrex |= REX_B;
7398 }
7399 else
7400 {
7401 i.rm.reg = i.op[source].regs->reg_num;
7402 i.rm.regmem = i.op[dest].regs->reg_num;
7403 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7404 i.rex |= REX_B;
7405 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7406 i.vrex |= REX_B;
7407 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7408 i.rex |= REX_R;
7409 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7410 i.vrex |= REX_R;
7411 }
7412 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7413 {
7414 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7415 abort ();
7416 i.rex &= ~REX_R;
7417 add_prefix (LOCK_PREFIX_OPCODE);
7418 }
7419 }
7420 else
7421 { /* If it's not 2 reg operands... */
7422 unsigned int mem;
7423
7424 if (i.mem_operands)
7425 {
7426 unsigned int fake_zero_displacement = 0;
7427 unsigned int op;
7428
7429 for (op = 0; op < i.operands; op++)
7430 if (i.flags[op] & Operand_Mem)
7431 break;
7432 gas_assert (op < i.operands);
7433
7434 if (i.tm.opcode_modifier.vecsib)
7435 {
7436 if (i.index_reg->reg_num == RegIZ)
7437 abort ();
7438
7439 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7440 if (!i.base_reg)
7441 {
7442 i.sib.base = NO_BASE_REGISTER;
7443 i.sib.scale = i.log2_scale_factor;
7444 i.types[op].bitfield.disp8 = 0;
7445 i.types[op].bitfield.disp16 = 0;
7446 i.types[op].bitfield.disp64 = 0;
7447 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7448 {
7449 /* Must be 32 bit */
7450 i.types[op].bitfield.disp32 = 1;
7451 i.types[op].bitfield.disp32s = 0;
7452 }
7453 else
7454 {
7455 i.types[op].bitfield.disp32 = 0;
7456 i.types[op].bitfield.disp32s = 1;
7457 }
7458 }
7459 i.sib.index = i.index_reg->reg_num;
7460 if ((i.index_reg->reg_flags & RegRex) != 0)
7461 i.rex |= REX_X;
7462 if ((i.index_reg->reg_flags & RegVRex) != 0)
7463 i.vrex |= REX_X;
7464 }
7465
7466 default_seg = &ds;
7467
7468 if (i.base_reg == 0)
7469 {
7470 i.rm.mode = 0;
7471 if (!i.disp_operands)
7472 fake_zero_displacement = 1;
7473 if (i.index_reg == 0)
7474 {
7475 i386_operand_type newdisp;
7476
7477 gas_assert (!i.tm.opcode_modifier.vecsib);
7478 /* Operand is just <disp> */
7479 if (flag_code == CODE_64BIT)
7480 {
7481 /* 64bit mode overwrites the 32bit absolute
7482 addressing by RIP relative addressing and
7483 absolute addressing is encoded by one of the
7484 redundant SIB forms. */
7485 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7486 i.sib.base = NO_BASE_REGISTER;
7487 i.sib.index = NO_INDEX_REGISTER;
7488 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7489 }
7490 else if ((flag_code == CODE_16BIT)
7491 ^ (i.prefix[ADDR_PREFIX] != 0))
7492 {
7493 i.rm.regmem = NO_BASE_REGISTER_16;
7494 newdisp = disp16;
7495 }
7496 else
7497 {
7498 i.rm.regmem = NO_BASE_REGISTER;
7499 newdisp = disp32;
7500 }
7501 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7502 i.types[op] = operand_type_or (i.types[op], newdisp);
7503 }
7504 else if (!i.tm.opcode_modifier.vecsib)
7505 {
7506 /* !i.base_reg && i.index_reg */
7507 if (i.index_reg->reg_num == RegIZ)
7508 i.sib.index = NO_INDEX_REGISTER;
7509 else
7510 i.sib.index = i.index_reg->reg_num;
7511 i.sib.base = NO_BASE_REGISTER;
7512 i.sib.scale = i.log2_scale_factor;
7513 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7514 i.types[op].bitfield.disp8 = 0;
7515 i.types[op].bitfield.disp16 = 0;
7516 i.types[op].bitfield.disp64 = 0;
7517 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7518 {
7519 /* Must be 32 bit */
7520 i.types[op].bitfield.disp32 = 1;
7521 i.types[op].bitfield.disp32s = 0;
7522 }
7523 else
7524 {
7525 i.types[op].bitfield.disp32 = 0;
7526 i.types[op].bitfield.disp32s = 1;
7527 }
7528 if ((i.index_reg->reg_flags & RegRex) != 0)
7529 i.rex |= REX_X;
7530 }
7531 }
7532 /* RIP addressing for 64bit mode. */
7533 else if (i.base_reg->reg_num == RegIP)
7534 {
7535 gas_assert (!i.tm.opcode_modifier.vecsib);
7536 i.rm.regmem = NO_BASE_REGISTER;
7537 i.types[op].bitfield.disp8 = 0;
7538 i.types[op].bitfield.disp16 = 0;
7539 i.types[op].bitfield.disp32 = 0;
7540 i.types[op].bitfield.disp32s = 1;
7541 i.types[op].bitfield.disp64 = 0;
7542 i.flags[op] |= Operand_PCrel;
7543 if (! i.disp_operands)
7544 fake_zero_displacement = 1;
7545 }
7546 else if (i.base_reg->reg_type.bitfield.word)
7547 {
7548 gas_assert (!i.tm.opcode_modifier.vecsib);
7549 switch (i.base_reg->reg_num)
7550 {
7551 case 3: /* (%bx) */
7552 if (i.index_reg == 0)
7553 i.rm.regmem = 7;
7554 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7555 i.rm.regmem = i.index_reg->reg_num - 6;
7556 break;
7557 case 5: /* (%bp) */
7558 default_seg = &ss;
7559 if (i.index_reg == 0)
7560 {
7561 i.rm.regmem = 6;
7562 if (operand_type_check (i.types[op], disp) == 0)
7563 {
7564 /* fake (%bp) into 0(%bp) */
7565 i.types[op].bitfield.disp8 = 1;
7566 fake_zero_displacement = 1;
7567 }
7568 }
7569 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7570 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7571 break;
7572 default: /* (%si) -> 4 or (%di) -> 5 */
7573 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7574 }
7575 i.rm.mode = mode_from_disp_size (i.types[op]);
7576 }
7577 else /* i.base_reg and 32/64 bit mode */
7578 {
7579 if (flag_code == CODE_64BIT
7580 && operand_type_check (i.types[op], disp))
7581 {
7582 i.types[op].bitfield.disp16 = 0;
7583 i.types[op].bitfield.disp64 = 0;
7584 if (i.prefix[ADDR_PREFIX] == 0)
7585 {
7586 i.types[op].bitfield.disp32 = 0;
7587 i.types[op].bitfield.disp32s = 1;
7588 }
7589 else
7590 {
7591 i.types[op].bitfield.disp32 = 1;
7592 i.types[op].bitfield.disp32s = 0;
7593 }
7594 }
7595
7596 if (!i.tm.opcode_modifier.vecsib)
7597 i.rm.regmem = i.base_reg->reg_num;
7598 if ((i.base_reg->reg_flags & RegRex) != 0)
7599 i.rex |= REX_B;
7600 i.sib.base = i.base_reg->reg_num;
7601 /* x86-64 ignores REX prefix bit here to avoid decoder
7602 complications. */
7603 if (!(i.base_reg->reg_flags & RegRex)
7604 && (i.base_reg->reg_num == EBP_REG_NUM
7605 || i.base_reg->reg_num == ESP_REG_NUM))
7606 default_seg = &ss;
7607 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7608 {
7609 fake_zero_displacement = 1;
7610 i.types[op].bitfield.disp8 = 1;
7611 }
7612 i.sib.scale = i.log2_scale_factor;
7613 if (i.index_reg == 0)
7614 {
7615 gas_assert (!i.tm.opcode_modifier.vecsib);
7616 /* <disp>(%esp) becomes two byte modrm with no index
7617 register. We've already stored the code for esp
7618 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7619 Any base register besides %esp will not use the
7620 extra modrm byte. */
7621 i.sib.index = NO_INDEX_REGISTER;
7622 }
7623 else if (!i.tm.opcode_modifier.vecsib)
7624 {
7625 if (i.index_reg->reg_num == RegIZ)
7626 i.sib.index = NO_INDEX_REGISTER;
7627 else
7628 i.sib.index = i.index_reg->reg_num;
7629 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7630 if ((i.index_reg->reg_flags & RegRex) != 0)
7631 i.rex |= REX_X;
7632 }
7633
7634 if (i.disp_operands
7635 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7636 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7637 i.rm.mode = 0;
7638 else
7639 {
7640 if (!fake_zero_displacement
7641 && !i.disp_operands
7642 && i.disp_encoding)
7643 {
7644 fake_zero_displacement = 1;
7645 if (i.disp_encoding == disp_encoding_8bit)
7646 i.types[op].bitfield.disp8 = 1;
7647 else
7648 i.types[op].bitfield.disp32 = 1;
7649 }
7650 i.rm.mode = mode_from_disp_size (i.types[op]);
7651 }
7652 }
7653
7654 if (fake_zero_displacement)
7655 {
7656 /* Fakes a zero displacement assuming that i.types[op]
7657 holds the correct displacement size. */
7658 expressionS *exp;
7659
7660 gas_assert (i.op[op].disps == 0);
7661 exp = &disp_expressions[i.disp_operands++];
7662 i.op[op].disps = exp;
7663 exp->X_op = O_constant;
7664 exp->X_add_number = 0;
7665 exp->X_add_symbol = (symbolS *) 0;
7666 exp->X_op_symbol = (symbolS *) 0;
7667 }
7668
7669 mem = op;
7670 }
7671 else
7672 mem = ~0;
7673
7674 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7675 {
7676 if (operand_type_check (i.types[0], imm))
7677 i.vex.register_specifier = NULL;
7678 else
7679 {
7680 /* VEX.vvvv encodes one of the sources when the first
7681 operand is not an immediate. */
7682 if (i.tm.opcode_modifier.vexw == VEXW0)
7683 i.vex.register_specifier = i.op[0].regs;
7684 else
7685 i.vex.register_specifier = i.op[1].regs;
7686 }
7687
7688 /* Destination is a XMM register encoded in the ModRM.reg
7689 and VEX.R bit. */
7690 i.rm.reg = i.op[2].regs->reg_num;
7691 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7692 i.rex |= REX_R;
7693
7694 /* ModRM.rm and VEX.B encodes the other source. */
7695 if (!i.mem_operands)
7696 {
7697 i.rm.mode = 3;
7698
7699 if (i.tm.opcode_modifier.vexw == VEXW0)
7700 i.rm.regmem = i.op[1].regs->reg_num;
7701 else
7702 i.rm.regmem = i.op[0].regs->reg_num;
7703
7704 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7705 i.rex |= REX_B;
7706 }
7707 }
7708 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7709 {
7710 i.vex.register_specifier = i.op[2].regs;
7711 if (!i.mem_operands)
7712 {
7713 i.rm.mode = 3;
7714 i.rm.regmem = i.op[1].regs->reg_num;
7715 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7716 i.rex |= REX_B;
7717 }
7718 }
7719 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7720 (if any) based on i.tm.extension_opcode. Again, we must be
7721 careful to make sure that segment/control/debug/test/MMX
7722 registers are coded into the i.rm.reg field. */
7723 else if (i.reg_operands)
7724 {
7725 unsigned int op;
7726 unsigned int vex_reg = ~0;
7727
7728 for (op = 0; op < i.operands; op++)
7729 {
7730 if (i.types[op].bitfield.class == Reg
7731 || i.types[op].bitfield.class == RegBND
7732 || i.types[op].bitfield.class == RegMask
7733 || i.types[op].bitfield.class == SReg
7734 || i.types[op].bitfield.class == RegCR
7735 || i.types[op].bitfield.class == RegDR
7736 || i.types[op].bitfield.class == RegTR)
7737 break;
7738 if (i.types[op].bitfield.class == RegSIMD)
7739 {
7740 if (i.types[op].bitfield.zmmword)
7741 i.has_regzmm = TRUE;
7742 else if (i.types[op].bitfield.ymmword)
7743 i.has_regymm = TRUE;
7744 else
7745 i.has_regxmm = TRUE;
7746 break;
7747 }
7748 if (i.types[op].bitfield.class == RegMMX)
7749 {
7750 i.has_regmmx = TRUE;
7751 break;
7752 }
7753 }
7754
7755 if (vex_3_sources)
7756 op = dest;
7757 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7758 {
7759 /* For instructions with VexNDS, the register-only
7760 source operand is encoded in VEX prefix. */
7761 gas_assert (mem != (unsigned int) ~0);
7762
7763 if (op > mem)
7764 {
7765 vex_reg = op++;
7766 gas_assert (op < i.operands);
7767 }
7768 else
7769 {
7770 /* Check register-only source operand when two source
7771 operands are swapped. */
7772 if (!i.tm.operand_types[op].bitfield.baseindex
7773 && i.tm.operand_types[op + 1].bitfield.baseindex)
7774 {
7775 vex_reg = op;
7776 op += 2;
7777 gas_assert (mem == (vex_reg + 1)
7778 && op < i.operands);
7779 }
7780 else
7781 {
7782 vex_reg = op + 1;
7783 gas_assert (vex_reg < i.operands);
7784 }
7785 }
7786 }
7787 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7788 {
7789 /* For instructions with VexNDD, the register destination
7790 is encoded in VEX prefix. */
7791 if (i.mem_operands == 0)
7792 {
7793 /* There is no memory operand. */
7794 gas_assert ((op + 2) == i.operands);
7795 vex_reg = op + 1;
7796 }
7797 else
7798 {
7799 /* There are only 2 non-immediate operands. */
7800 gas_assert (op < i.imm_operands + 2
7801 && i.operands == i.imm_operands + 2);
7802 vex_reg = i.imm_operands + 1;
7803 }
7804 }
7805 else
7806 gas_assert (op < i.operands);
7807
7808 if (vex_reg != (unsigned int) ~0)
7809 {
7810 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7811
7812 if ((type->bitfield.class != Reg
7813 || (!type->bitfield.dword && !type->bitfield.qword))
7814 && type->bitfield.class != RegSIMD
7815 && !operand_type_equal (type, &regmask))
7816 abort ();
7817
7818 i.vex.register_specifier = i.op[vex_reg].regs;
7819 }
7820
7821 /* Don't set OP operand twice. */
7822 if (vex_reg != op)
7823 {
7824 /* If there is an extension opcode to put here, the
7825 register number must be put into the regmem field. */
7826 if (i.tm.extension_opcode != None)
7827 {
7828 i.rm.regmem = i.op[op].regs->reg_num;
7829 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7830 i.rex |= REX_B;
7831 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7832 i.vrex |= REX_B;
7833 }
7834 else
7835 {
7836 i.rm.reg = i.op[op].regs->reg_num;
7837 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7838 i.rex |= REX_R;
7839 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7840 i.vrex |= REX_R;
7841 }
7842 }
7843
7844 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7845 must set it to 3 to indicate this is a register operand
7846 in the regmem field. */
7847 if (!i.mem_operands)
7848 i.rm.mode = 3;
7849 }
7850
7851 /* Fill in i.rm.reg field with extension opcode (if any). */
7852 if (i.tm.extension_opcode != None)
7853 i.rm.reg = i.tm.extension_opcode;
7854 }
7855 return default_seg;
7856 }
7857
7858 static unsigned int
7859 flip_code16 (unsigned int code16)
7860 {
7861 gas_assert (i.tm.operands == 1);
7862
7863 return !(i.prefix[REX_PREFIX] & REX_W)
7864 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7865 || i.tm.operand_types[0].bitfield.disp32s
7866 : i.tm.operand_types[0].bitfield.disp16)
7867 ? CODE16 : 0;
7868 }
7869
7870 static void
7871 output_branch (void)
7872 {
7873 char *p;
7874 int size;
7875 int code16;
7876 int prefix;
7877 relax_substateT subtype;
7878 symbolS *sym;
7879 offsetT off;
7880
7881 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7882 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7883
7884 prefix = 0;
7885 if (i.prefix[DATA_PREFIX] != 0)
7886 {
7887 prefix = 1;
7888 i.prefixes -= 1;
7889 code16 ^= flip_code16(code16);
7890 }
7891 /* Pentium4 branch hints. */
7892 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7893 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7894 {
7895 prefix++;
7896 i.prefixes--;
7897 }
7898 if (i.prefix[REX_PREFIX] != 0)
7899 {
7900 prefix++;
7901 i.prefixes--;
7902 }
7903
7904 /* BND prefixed jump. */
7905 if (i.prefix[BND_PREFIX] != 0)
7906 {
7907 prefix++;
7908 i.prefixes--;
7909 }
7910
7911 if (i.prefixes != 0)
7912 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7913
7914 /* It's always a symbol; End frag & setup for relax.
7915 Make sure there is enough room in this frag for the largest
7916 instruction we may generate in md_convert_frag. This is 2
7917 bytes for the opcode and room for the prefix and largest
7918 displacement. */
7919 frag_grow (prefix + 2 + 4);
7920 /* Prefix and 1 opcode byte go in fr_fix. */
7921 p = frag_more (prefix + 1);
7922 if (i.prefix[DATA_PREFIX] != 0)
7923 *p++ = DATA_PREFIX_OPCODE;
7924 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7925 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7926 *p++ = i.prefix[SEG_PREFIX];
7927 if (i.prefix[BND_PREFIX] != 0)
7928 *p++ = BND_PREFIX_OPCODE;
7929 if (i.prefix[REX_PREFIX] != 0)
7930 *p++ = i.prefix[REX_PREFIX];
7931 *p = i.tm.base_opcode;
7932
7933 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7934 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7935 else if (cpu_arch_flags.bitfield.cpui386)
7936 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7937 else
7938 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7939 subtype |= code16;
7940
7941 sym = i.op[0].disps->X_add_symbol;
7942 off = i.op[0].disps->X_add_number;
7943
7944 if (i.op[0].disps->X_op != O_constant
7945 && i.op[0].disps->X_op != O_symbol)
7946 {
7947 /* Handle complex expressions. */
7948 sym = make_expr_symbol (i.op[0].disps);
7949 off = 0;
7950 }
7951
7952 /* 1 possible extra opcode + 4 byte displacement go in var part.
7953 Pass reloc in fr_var. */
7954 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7955 }
7956
7957 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7958 /* Return TRUE iff PLT32 relocation should be used for branching to
7959 symbol S. */
7960
7961 static bfd_boolean
7962 need_plt32_p (symbolS *s)
7963 {
7964 /* PLT32 relocation is ELF only. */
7965 if (!IS_ELF)
7966 return FALSE;
7967
7968 #ifdef TE_SOLARIS
7969 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7970 krtld support it. */
7971 return FALSE;
7972 #endif
7973
7974 /* Since there is no need to prepare for PLT branch on x86-64, we
7975 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7976 be used as a marker for 32-bit PC-relative branches. */
7977 if (!object_64bit)
7978 return FALSE;
7979
7980 /* Weak or undefined symbol need PLT32 relocation. */
7981 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7982 return TRUE;
7983
7984 /* Non-global symbol doesn't need PLT32 relocation. */
7985 if (! S_IS_EXTERNAL (s))
7986 return FALSE;
7987
7988 /* Other global symbols need PLT32 relocation. NB: Symbol with
7989 non-default visibilities are treated as normal global symbol
7990 so that PLT32 relocation can be used as a marker for 32-bit
7991 PC-relative branches. It is useful for linker relaxation. */
7992 return TRUE;
7993 }
7994 #endif
7995
7996 static void
7997 output_jump (void)
7998 {
7999 char *p;
8000 int size;
8001 fixS *fixP;
8002 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8003
8004 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8005 {
8006 /* This is a loop or jecxz type instruction. */
8007 size = 1;
8008 if (i.prefix[ADDR_PREFIX] != 0)
8009 {
8010 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8011 i.prefixes -= 1;
8012 }
8013 /* Pentium4 branch hints. */
8014 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8015 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8016 {
8017 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8018 i.prefixes--;
8019 }
8020 }
8021 else
8022 {
8023 int code16;
8024
8025 code16 = 0;
8026 if (flag_code == CODE_16BIT)
8027 code16 = CODE16;
8028
8029 if (i.prefix[DATA_PREFIX] != 0)
8030 {
8031 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8032 i.prefixes -= 1;
8033 code16 ^= flip_code16(code16);
8034 }
8035
8036 size = 4;
8037 if (code16)
8038 size = 2;
8039 }
8040
8041 /* BND prefixed jump. */
8042 if (i.prefix[BND_PREFIX] != 0)
8043 {
8044 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8045 i.prefixes -= 1;
8046 }
8047
8048 if (i.prefix[REX_PREFIX] != 0)
8049 {
8050 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8051 i.prefixes -= 1;
8052 }
8053
8054 if (i.prefixes != 0)
8055 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8056
8057 p = frag_more (i.tm.opcode_length + size);
8058 switch (i.tm.opcode_length)
8059 {
8060 case 2:
8061 *p++ = i.tm.base_opcode >> 8;
8062 /* Fall through. */
8063 case 1:
8064 *p++ = i.tm.base_opcode;
8065 break;
8066 default:
8067 abort ();
8068 }
8069
8070 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8071 if (size == 4
8072 && jump_reloc == NO_RELOC
8073 && need_plt32_p (i.op[0].disps->X_add_symbol))
8074 jump_reloc = BFD_RELOC_X86_64_PLT32;
8075 #endif
8076
8077 jump_reloc = reloc (size, 1, 1, jump_reloc);
8078
8079 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8080 i.op[0].disps, 1, jump_reloc);
8081
8082 /* All jumps handled here are signed, but don't use a signed limit
8083 check for 32 and 16 bit jumps as we want to allow wrap around at
8084 4G and 64k respectively. */
8085 if (size == 1)
8086 fixP->fx_signed = 1;
8087 }
8088
8089 static void
8090 output_interseg_jump (void)
8091 {
8092 char *p;
8093 int size;
8094 int prefix;
8095 int code16;
8096
8097 code16 = 0;
8098 if (flag_code == CODE_16BIT)
8099 code16 = CODE16;
8100
8101 prefix = 0;
8102 if (i.prefix[DATA_PREFIX] != 0)
8103 {
8104 prefix = 1;
8105 i.prefixes -= 1;
8106 code16 ^= CODE16;
8107 }
8108
8109 gas_assert (!i.prefix[REX_PREFIX]);
8110
8111 size = 4;
8112 if (code16)
8113 size = 2;
8114
8115 if (i.prefixes != 0)
8116 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8117
8118 /* 1 opcode; 2 segment; offset */
8119 p = frag_more (prefix + 1 + 2 + size);
8120
8121 if (i.prefix[DATA_PREFIX] != 0)
8122 *p++ = DATA_PREFIX_OPCODE;
8123
8124 if (i.prefix[REX_PREFIX] != 0)
8125 *p++ = i.prefix[REX_PREFIX];
8126
8127 *p++ = i.tm.base_opcode;
8128 if (i.op[1].imms->X_op == O_constant)
8129 {
8130 offsetT n = i.op[1].imms->X_add_number;
8131
8132 if (size == 2
8133 && !fits_in_unsigned_word (n)
8134 && !fits_in_signed_word (n))
8135 {
8136 as_bad (_("16-bit jump out of range"));
8137 return;
8138 }
8139 md_number_to_chars (p, n, size);
8140 }
8141 else
8142 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8143 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8144 if (i.op[0].imms->X_op != O_constant)
8145 as_bad (_("can't handle non absolute segment in `%s'"),
8146 i.tm.name);
8147 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8148 }
8149
8150 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8151 void
8152 x86_cleanup (void)
8153 {
8154 char *p;
8155 asection *seg = now_seg;
8156 subsegT subseg = now_subseg;
8157 asection *sec;
8158 unsigned int alignment, align_size_1;
8159 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8160 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8161 unsigned int padding;
8162
8163 if (!IS_ELF || !x86_used_note)
8164 return;
8165
8166 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8167
8168 /* The .note.gnu.property section layout:
8169
8170 Field Length Contents
8171 ---- ---- ----
8172 n_namsz 4 4
8173 n_descsz 4 The note descriptor size
8174 n_type 4 NT_GNU_PROPERTY_TYPE_0
8175 n_name 4 "GNU"
8176 n_desc n_descsz The program property array
8177 .... .... ....
8178 */
8179
8180 /* Create the .note.gnu.property section. */
8181 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8182 bfd_set_section_flags (sec,
8183 (SEC_ALLOC
8184 | SEC_LOAD
8185 | SEC_DATA
8186 | SEC_HAS_CONTENTS
8187 | SEC_READONLY));
8188
8189 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8190 {
8191 align_size_1 = 7;
8192 alignment = 3;
8193 }
8194 else
8195 {
8196 align_size_1 = 3;
8197 alignment = 2;
8198 }
8199
8200 bfd_set_section_alignment (sec, alignment);
8201 elf_section_type (sec) = SHT_NOTE;
8202
8203 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8204 + 4-byte data */
8205 isa_1_descsz_raw = 4 + 4 + 4;
8206 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8207 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8208
8209 feature_2_descsz_raw = isa_1_descsz;
8210 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8211 + 4-byte data */
8212 feature_2_descsz_raw += 4 + 4 + 4;
8213 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8214 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8215 & ~align_size_1);
8216
8217 descsz = feature_2_descsz;
8218 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8219 p = frag_more (4 + 4 + 4 + 4 + descsz);
8220
8221 /* Write n_namsz. */
8222 md_number_to_chars (p, (valueT) 4, 4);
8223
8224 /* Write n_descsz. */
8225 md_number_to_chars (p + 4, (valueT) descsz, 4);
8226
8227 /* Write n_type. */
8228 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8229
8230 /* Write n_name. */
8231 memcpy (p + 4 * 3, "GNU", 4);
8232
8233 /* Write 4-byte type. */
8234 md_number_to_chars (p + 4 * 4,
8235 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8236
8237 /* Write 4-byte data size. */
8238 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8239
8240 /* Write 4-byte data. */
8241 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8242
8243 /* Zero out paddings. */
8244 padding = isa_1_descsz - isa_1_descsz_raw;
8245 if (padding)
8246 memset (p + 4 * 7, 0, padding);
8247
8248 /* Write 4-byte type. */
8249 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8250 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8251
8252 /* Write 4-byte data size. */
8253 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8254
8255 /* Write 4-byte data. */
8256 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8257 (valueT) x86_feature_2_used, 4);
8258
8259 /* Zero out paddings. */
8260 padding = feature_2_descsz - feature_2_descsz_raw;
8261 if (padding)
8262 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8263
8264 /* We probably can't restore the current segment, for there likely
8265 isn't one yet... */
8266 if (seg && subseg)
8267 subseg_set (seg, subseg);
8268 }
8269 #endif
8270
8271 static unsigned int
8272 encoding_length (const fragS *start_frag, offsetT start_off,
8273 const char *frag_now_ptr)
8274 {
8275 unsigned int len = 0;
8276
8277 if (start_frag != frag_now)
8278 {
8279 const fragS *fr = start_frag;
8280
8281 do {
8282 len += fr->fr_fix;
8283 fr = fr->fr_next;
8284 } while (fr && fr != frag_now);
8285 }
8286
8287 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8288 }
8289
8290 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8291 be macro-fused with conditional jumps. */
8292
8293 static int
8294 maybe_fused_with_jcc_p (void)
8295 {
8296 /* No RIP address. */
8297 if (i.base_reg && i.base_reg->reg_num == RegIP)
8298 return 0;
8299
8300 /* No VEX/EVEX encoding. */
8301 if (is_any_vex_encoding (&i.tm))
8302 return 0;
8303
8304 /* and, add, sub with destination register. */
8305 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8306 || i.tm.base_opcode <= 5
8307 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8308 || ((i.tm.base_opcode | 3) == 0x83
8309 && ((i.tm.extension_opcode | 1) == 0x5
8310 || i.tm.extension_opcode == 0x0)))
8311 return (i.types[1].bitfield.class == Reg
8312 || i.types[1].bitfield.instance == Accum);
8313
8314 /* test, cmp with any register. */
8315 if ((i.tm.base_opcode | 1) == 0x85
8316 || (i.tm.base_opcode | 1) == 0xa9
8317 || ((i.tm.base_opcode | 1) == 0xf7
8318 && i.tm.extension_opcode == 0)
8319 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8320 || ((i.tm.base_opcode | 3) == 0x83
8321 && (i.tm.extension_opcode == 0x7)))
8322 return (i.types[0].bitfield.class == Reg
8323 || i.types[0].bitfield.instance == Accum
8324 || i.types[1].bitfield.class == Reg
8325 || i.types[1].bitfield.instance == Accum);
8326
8327 /* inc, dec with any register. */
8328 if ((i.tm.cpu_flags.bitfield.cpuno64
8329 && (i.tm.base_opcode | 0xf) == 0x4f)
8330 || ((i.tm.base_opcode | 1) == 0xff
8331 && i.tm.extension_opcode <= 0x1))
8332 return (i.types[0].bitfield.class == Reg
8333 || i.types[0].bitfield.instance == Accum);
8334
8335 return 0;
8336 }
8337
8338 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8339
8340 static int
8341 add_fused_jcc_padding_frag_p (void)
8342 {
8343 /* NB: Don't work with COND_JUMP86 without i386. */
8344 if (!align_branch_power
8345 || now_seg == absolute_section
8346 || !cpu_arch_flags.bitfield.cpui386
8347 || !(align_branch & align_branch_fused_bit))
8348 return 0;
8349
8350 if (maybe_fused_with_jcc_p ())
8351 {
8352 if (last_insn.kind == last_insn_other
8353 || last_insn.seg != now_seg)
8354 return 1;
8355 if (flag_debug)
8356 as_warn_where (last_insn.file, last_insn.line,
8357 _("`%s` skips -malign-branch-boundary on `%s`"),
8358 last_insn.name, i.tm.name);
8359 }
8360
8361 return 0;
8362 }
8363
8364 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8365
8366 static int
8367 add_branch_prefix_frag_p (void)
8368 {
8369 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8370 to PadLock instructions since they include prefixes in opcode. */
8371 if (!align_branch_power
8372 || !align_branch_prefix_size
8373 || now_seg == absolute_section
8374 || i.tm.cpu_flags.bitfield.cpupadlock
8375 || !cpu_arch_flags.bitfield.cpui386)
8376 return 0;
8377
8378 /* Don't add prefix if it is a prefix or there is no operand in case
8379 that segment prefix is special. */
8380 if (!i.operands || i.tm.opcode_modifier.isprefix)
8381 return 0;
8382
8383 if (last_insn.kind == last_insn_other
8384 || last_insn.seg != now_seg)
8385 return 1;
8386
8387 if (flag_debug)
8388 as_warn_where (last_insn.file, last_insn.line,
8389 _("`%s` skips -malign-branch-boundary on `%s`"),
8390 last_insn.name, i.tm.name);
8391
8392 return 0;
8393 }
8394
8395 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8396
8397 static int
8398 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8399 {
8400 int add_padding;
8401
8402 /* NB: Don't work with COND_JUMP86 without i386. */
8403 if (!align_branch_power
8404 || now_seg == absolute_section
8405 || !cpu_arch_flags.bitfield.cpui386)
8406 return 0;
8407
8408 add_padding = 0;
8409
8410 /* Check for jcc and direct jmp. */
8411 if (i.tm.opcode_modifier.jump == JUMP)
8412 {
8413 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8414 {
8415 *branch_p = align_branch_jmp;
8416 add_padding = align_branch & align_branch_jmp_bit;
8417 }
8418 else
8419 {
8420 *branch_p = align_branch_jcc;
8421 if ((align_branch & align_branch_jcc_bit))
8422 add_padding = 1;
8423 }
8424 }
8425 else if (is_any_vex_encoding (&i.tm))
8426 return 0;
8427 else if ((i.tm.base_opcode | 1) == 0xc3)
8428 {
8429 /* Near ret. */
8430 *branch_p = align_branch_ret;
8431 if ((align_branch & align_branch_ret_bit))
8432 add_padding = 1;
8433 }
8434 else
8435 {
8436 /* Check for indirect jmp, direct and indirect calls. */
8437 if (i.tm.base_opcode == 0xe8)
8438 {
8439 /* Direct call. */
8440 *branch_p = align_branch_call;
8441 if ((align_branch & align_branch_call_bit))
8442 add_padding = 1;
8443 }
8444 else if (i.tm.base_opcode == 0xff
8445 && (i.tm.extension_opcode == 2
8446 || i.tm.extension_opcode == 4))
8447 {
8448 /* Indirect call and jmp. */
8449 *branch_p = align_branch_indirect;
8450 if ((align_branch & align_branch_indirect_bit))
8451 add_padding = 1;
8452 }
8453
8454 if (add_padding
8455 && i.disp_operands
8456 && tls_get_addr
8457 && (i.op[0].disps->X_op == O_symbol
8458 || (i.op[0].disps->X_op == O_subtract
8459 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8460 {
8461 symbolS *s = i.op[0].disps->X_add_symbol;
8462 /* No padding to call to global or undefined tls_get_addr. */
8463 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8464 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8465 return 0;
8466 }
8467 }
8468
8469 if (add_padding
8470 && last_insn.kind != last_insn_other
8471 && last_insn.seg == now_seg)
8472 {
8473 if (flag_debug)
8474 as_warn_where (last_insn.file, last_insn.line,
8475 _("`%s` skips -malign-branch-boundary on `%s`"),
8476 last_insn.name, i.tm.name);
8477 return 0;
8478 }
8479
8480 return add_padding;
8481 }
8482
8483 static void
8484 output_insn (void)
8485 {
8486 fragS *insn_start_frag;
8487 offsetT insn_start_off;
8488 fragS *fragP = NULL;
8489 enum align_branch_kind branch = align_branch_none;
8490
8491 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8492 if (IS_ELF && x86_used_note)
8493 {
8494 if (i.tm.cpu_flags.bitfield.cpucmov)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8496 if (i.tm.cpu_flags.bitfield.cpusse)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8498 if (i.tm.cpu_flags.bitfield.cpusse2)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8500 if (i.tm.cpu_flags.bitfield.cpusse3)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8502 if (i.tm.cpu_flags.bitfield.cpussse3)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8504 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8506 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8508 if (i.tm.cpu_flags.bitfield.cpuavx)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8510 if (i.tm.cpu_flags.bitfield.cpuavx2)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8512 if (i.tm.cpu_flags.bitfield.cpufma)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8514 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8516 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8517 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8518 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8519 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8520 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8522 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8524 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8525 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8526 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8527 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8528 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8529 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8530 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8531 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8532 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8533 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8534 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8535 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8536 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8537 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8538 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8539 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8540 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8541 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8542 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8543 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8544
8545 if (i.tm.cpu_flags.bitfield.cpu8087
8546 || i.tm.cpu_flags.bitfield.cpu287
8547 || i.tm.cpu_flags.bitfield.cpu387
8548 || i.tm.cpu_flags.bitfield.cpu687
8549 || i.tm.cpu_flags.bitfield.cpufisttp)
8550 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8551 if (i.has_regmmx
8552 || i.tm.base_opcode == 0xf77 /* emms */
8553 || i.tm.base_opcode == 0xf0e /* femms */)
8554 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8555 if (i.has_regxmm)
8556 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8557 if (i.has_regymm)
8558 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8559 if (i.has_regzmm)
8560 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8561 if (i.tm.cpu_flags.bitfield.cpufxsr)
8562 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8563 if (i.tm.cpu_flags.bitfield.cpuxsave)
8564 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8565 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8566 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8567 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8568 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8569 }
8570 #endif
8571
8572 /* Tie dwarf2 debug info to the address at the start of the insn.
8573 We can't do this after the insn has been output as the current
8574 frag may have been closed off. eg. by frag_var. */
8575 dwarf2_emit_insn (0);
8576
8577 insn_start_frag = frag_now;
8578 insn_start_off = frag_now_fix ();
8579
8580 if (add_branch_padding_frag_p (&branch))
8581 {
8582 char *p;
8583 /* Branch can be 8 bytes. Leave some room for prefixes. */
8584 unsigned int max_branch_padding_size = 14;
8585
8586 /* Align section to boundary. */
8587 record_alignment (now_seg, align_branch_power);
8588
8589 /* Make room for padding. */
8590 frag_grow (max_branch_padding_size);
8591
8592 /* Start of the padding. */
8593 p = frag_more (0);
8594
8595 fragP = frag_now;
8596
8597 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8598 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8599 NULL, 0, p);
8600
8601 fragP->tc_frag_data.branch_type = branch;
8602 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8603 }
8604
8605 /* Output jumps. */
8606 if (i.tm.opcode_modifier.jump == JUMP)
8607 output_branch ();
8608 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8609 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8610 output_jump ();
8611 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8612 output_interseg_jump ();
8613 else
8614 {
8615 /* Output normal instructions here. */
8616 char *p;
8617 unsigned char *q;
8618 unsigned int j;
8619 unsigned int prefix;
8620
8621 if (avoid_fence
8622 && (i.tm.base_opcode == 0xfaee8
8623 || i.tm.base_opcode == 0xfaef0
8624 || i.tm.base_opcode == 0xfaef8))
8625 {
8626 /* Encode lfence, mfence, and sfence as
8627 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8628 offsetT val = 0x240483f0ULL;
8629 p = frag_more (5);
8630 md_number_to_chars (p, val, 5);
8631 return;
8632 }
8633
8634 /* Some processors fail on LOCK prefix. This options makes
8635 assembler ignore LOCK prefix and serves as a workaround. */
8636 if (omit_lock_prefix)
8637 {
8638 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8639 return;
8640 i.prefix[LOCK_PREFIX] = 0;
8641 }
8642
8643 if (branch)
8644 /* Skip if this is a branch. */
8645 ;
8646 else if (add_fused_jcc_padding_frag_p ())
8647 {
8648 /* Make room for padding. */
8649 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8650 p = frag_more (0);
8651
8652 fragP = frag_now;
8653
8654 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8655 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8656 NULL, 0, p);
8657
8658 fragP->tc_frag_data.branch_type = align_branch_fused;
8659 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8660 }
8661 else if (add_branch_prefix_frag_p ())
8662 {
8663 unsigned int max_prefix_size = align_branch_prefix_size;
8664
8665 /* Make room for padding. */
8666 frag_grow (max_prefix_size);
8667 p = frag_more (0);
8668
8669 fragP = frag_now;
8670
8671 frag_var (rs_machine_dependent, max_prefix_size, 0,
8672 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8673 NULL, 0, p);
8674
8675 fragP->tc_frag_data.max_bytes = max_prefix_size;
8676 }
8677
8678 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8679 don't need the explicit prefix. */
8680 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8681 {
8682 switch (i.tm.opcode_length)
8683 {
8684 case 3:
8685 if (i.tm.base_opcode & 0xff000000)
8686 {
8687 prefix = (i.tm.base_opcode >> 24) & 0xff;
8688 if (!i.tm.cpu_flags.bitfield.cpupadlock
8689 || prefix != REPE_PREFIX_OPCODE
8690 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8691 add_prefix (prefix);
8692 }
8693 break;
8694 case 2:
8695 if ((i.tm.base_opcode & 0xff0000) != 0)
8696 {
8697 prefix = (i.tm.base_opcode >> 16) & 0xff;
8698 add_prefix (prefix);
8699 }
8700 break;
8701 case 1:
8702 break;
8703 case 0:
8704 /* Check for pseudo prefixes. */
8705 as_bad_where (insn_start_frag->fr_file,
8706 insn_start_frag->fr_line,
8707 _("pseudo prefix without instruction"));
8708 return;
8709 default:
8710 abort ();
8711 }
8712
8713 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8714 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8715 R_X86_64_GOTTPOFF relocation so that linker can safely
8716 perform IE->LE optimization. A dummy REX_OPCODE prefix
8717 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8718 relocation for GDesc -> IE/LE optimization. */
8719 if (x86_elf_abi == X86_64_X32_ABI
8720 && i.operands == 2
8721 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8722 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8723 && i.prefix[REX_PREFIX] == 0)
8724 add_prefix (REX_OPCODE);
8725 #endif
8726
8727 /* The prefix bytes. */
8728 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8729 if (*q)
8730 FRAG_APPEND_1_CHAR (*q);
8731 }
8732 else
8733 {
8734 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8735 if (*q)
8736 switch (j)
8737 {
8738 case REX_PREFIX:
8739 /* REX byte is encoded in VEX prefix. */
8740 break;
8741 case SEG_PREFIX:
8742 case ADDR_PREFIX:
8743 FRAG_APPEND_1_CHAR (*q);
8744 break;
8745 default:
8746 /* There should be no other prefixes for instructions
8747 with VEX prefix. */
8748 abort ();
8749 }
8750
8751 /* For EVEX instructions i.vrex should become 0 after
8752 build_evex_prefix. For VEX instructions upper 16 registers
8753 aren't available, so VREX should be 0. */
8754 if (i.vrex)
8755 abort ();
8756 /* Now the VEX prefix. */
8757 p = frag_more (i.vex.length);
8758 for (j = 0; j < i.vex.length; j++)
8759 p[j] = i.vex.bytes[j];
8760 }
8761
8762 /* Now the opcode; be careful about word order here! */
8763 if (i.tm.opcode_length == 1)
8764 {
8765 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8766 }
8767 else
8768 {
8769 switch (i.tm.opcode_length)
8770 {
8771 case 4:
8772 p = frag_more (4);
8773 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8774 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8775 break;
8776 case 3:
8777 p = frag_more (3);
8778 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8779 break;
8780 case 2:
8781 p = frag_more (2);
8782 break;
8783 default:
8784 abort ();
8785 break;
8786 }
8787
8788 /* Put out high byte first: can't use md_number_to_chars! */
8789 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8790 *p = i.tm.base_opcode & 0xff;
8791 }
8792
8793 /* Now the modrm byte and sib byte (if present). */
8794 if (i.tm.opcode_modifier.modrm)
8795 {
8796 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8797 | i.rm.reg << 3
8798 | i.rm.mode << 6));
8799 /* If i.rm.regmem == ESP (4)
8800 && i.rm.mode != (Register mode)
8801 && not 16 bit
8802 ==> need second modrm byte. */
8803 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8804 && i.rm.mode != 3
8805 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8806 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8807 | i.sib.index << 3
8808 | i.sib.scale << 6));
8809 }
8810
8811 if (i.disp_operands)
8812 output_disp (insn_start_frag, insn_start_off);
8813
8814 if (i.imm_operands)
8815 output_imm (insn_start_frag, insn_start_off);
8816
8817 /*
8818 * frag_now_fix () returning plain abs_section_offset when we're in the
8819 * absolute section, and abs_section_offset not getting updated as data
8820 * gets added to the frag breaks the logic below.
8821 */
8822 if (now_seg != absolute_section)
8823 {
8824 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8825 if (j > 15)
8826 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8827 j);
8828 else if (fragP)
8829 {
8830 /* NB: Don't add prefix with GOTPC relocation since
8831 output_disp() above depends on the fixed encoding
8832 length. Can't add prefix with TLS relocation since
8833 it breaks TLS linker optimization. */
8834 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8835 /* Prefix count on the current instruction. */
8836 unsigned int count = i.vex.length;
8837 unsigned int k;
8838 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8839 /* REX byte is encoded in VEX/EVEX prefix. */
8840 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8841 count++;
8842
8843 /* Count prefixes for extended opcode maps. */
8844 if (!i.vex.length)
8845 switch (i.tm.opcode_length)
8846 {
8847 case 3:
8848 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8849 {
8850 count++;
8851 switch ((i.tm.base_opcode >> 8) & 0xff)
8852 {
8853 case 0x38:
8854 case 0x3a:
8855 count++;
8856 break;
8857 default:
8858 break;
8859 }
8860 }
8861 break;
8862 case 2:
8863 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8864 count++;
8865 break;
8866 case 1:
8867 break;
8868 default:
8869 abort ();
8870 }
8871
8872 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8873 == BRANCH_PREFIX)
8874 {
8875 /* Set the maximum prefix size in BRANCH_PREFIX
8876 frag. */
8877 if (fragP->tc_frag_data.max_bytes > max)
8878 fragP->tc_frag_data.max_bytes = max;
8879 if (fragP->tc_frag_data.max_bytes > count)
8880 fragP->tc_frag_data.max_bytes -= count;
8881 else
8882 fragP->tc_frag_data.max_bytes = 0;
8883 }
8884 else
8885 {
8886 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8887 frag. */
8888 unsigned int max_prefix_size;
8889 if (align_branch_prefix_size > max)
8890 max_prefix_size = max;
8891 else
8892 max_prefix_size = align_branch_prefix_size;
8893 if (max_prefix_size > count)
8894 fragP->tc_frag_data.max_prefix_length
8895 = max_prefix_size - count;
8896 }
8897
8898 /* Use existing segment prefix if possible. Use CS
8899 segment prefix in 64-bit mode. In 32-bit mode, use SS
8900 segment prefix with ESP/EBP base register and use DS
8901 segment prefix without ESP/EBP base register. */
8902 if (i.prefix[SEG_PREFIX])
8903 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8904 else if (flag_code == CODE_64BIT)
8905 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8906 else if (i.base_reg
8907 && (i.base_reg->reg_num == 4
8908 || i.base_reg->reg_num == 5))
8909 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8910 else
8911 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8912 }
8913 }
8914 }
8915
8916 /* NB: Don't work with COND_JUMP86 without i386. */
8917 if (align_branch_power
8918 && now_seg != absolute_section
8919 && cpu_arch_flags.bitfield.cpui386)
8920 {
8921 /* Terminate each frag so that we can add prefix and check for
8922 fused jcc. */
8923 frag_wane (frag_now);
8924 frag_new (0);
8925 }
8926
8927 #ifdef DEBUG386
8928 if (flag_debug)
8929 {
8930 pi ("" /*line*/, &i);
8931 }
8932 #endif /* DEBUG386 */
8933 }
8934
8935 /* Return the size of the displacement operand N. */
8936
8937 static int
8938 disp_size (unsigned int n)
8939 {
8940 int size = 4;
8941
8942 if (i.types[n].bitfield.disp64)
8943 size = 8;
8944 else if (i.types[n].bitfield.disp8)
8945 size = 1;
8946 else if (i.types[n].bitfield.disp16)
8947 size = 2;
8948 return size;
8949 }
8950
8951 /* Return the size of the immediate operand N. */
8952
8953 static int
8954 imm_size (unsigned int n)
8955 {
8956 int size = 4;
8957 if (i.types[n].bitfield.imm64)
8958 size = 8;
8959 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8960 size = 1;
8961 else if (i.types[n].bitfield.imm16)
8962 size = 2;
8963 return size;
8964 }
8965
8966 static void
8967 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8968 {
8969 char *p;
8970 unsigned int n;
8971
8972 for (n = 0; n < i.operands; n++)
8973 {
8974 if (operand_type_check (i.types[n], disp))
8975 {
8976 if (i.op[n].disps->X_op == O_constant)
8977 {
8978 int size = disp_size (n);
8979 offsetT val = i.op[n].disps->X_add_number;
8980
8981 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8982 size);
8983 p = frag_more (size);
8984 md_number_to_chars (p, val, size);
8985 }
8986 else
8987 {
8988 enum bfd_reloc_code_real reloc_type;
8989 int size = disp_size (n);
8990 int sign = i.types[n].bitfield.disp32s;
8991 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8992 fixS *fixP;
8993
8994 /* We can't have 8 bit displacement here. */
8995 gas_assert (!i.types[n].bitfield.disp8);
8996
8997 /* The PC relative address is computed relative
8998 to the instruction boundary, so in case immediate
8999 fields follows, we need to adjust the value. */
9000 if (pcrel && i.imm_operands)
9001 {
9002 unsigned int n1;
9003 int sz = 0;
9004
9005 for (n1 = 0; n1 < i.operands; n1++)
9006 if (operand_type_check (i.types[n1], imm))
9007 {
9008 /* Only one immediate is allowed for PC
9009 relative address. */
9010 gas_assert (sz == 0);
9011 sz = imm_size (n1);
9012 i.op[n].disps->X_add_number -= sz;
9013 }
9014 /* We should find the immediate. */
9015 gas_assert (sz != 0);
9016 }
9017
9018 p = frag_more (size);
9019 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9020 if (GOT_symbol
9021 && GOT_symbol == i.op[n].disps->X_add_symbol
9022 && (((reloc_type == BFD_RELOC_32
9023 || reloc_type == BFD_RELOC_X86_64_32S
9024 || (reloc_type == BFD_RELOC_64
9025 && object_64bit))
9026 && (i.op[n].disps->X_op == O_symbol
9027 || (i.op[n].disps->X_op == O_add
9028 && ((symbol_get_value_expression
9029 (i.op[n].disps->X_op_symbol)->X_op)
9030 == O_subtract))))
9031 || reloc_type == BFD_RELOC_32_PCREL))
9032 {
9033 if (!object_64bit)
9034 {
9035 reloc_type = BFD_RELOC_386_GOTPC;
9036 i.has_gotpc_tls_reloc = TRUE;
9037 i.op[n].imms->X_add_number +=
9038 encoding_length (insn_start_frag, insn_start_off, p);
9039 }
9040 else if (reloc_type == BFD_RELOC_64)
9041 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9042 else
9043 /* Don't do the adjustment for x86-64, as there
9044 the pcrel addressing is relative to the _next_
9045 insn, and that is taken care of in other code. */
9046 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9047 }
9048 else if (align_branch_power)
9049 {
9050 switch (reloc_type)
9051 {
9052 case BFD_RELOC_386_TLS_GD:
9053 case BFD_RELOC_386_TLS_LDM:
9054 case BFD_RELOC_386_TLS_IE:
9055 case BFD_RELOC_386_TLS_IE_32:
9056 case BFD_RELOC_386_TLS_GOTIE:
9057 case BFD_RELOC_386_TLS_GOTDESC:
9058 case BFD_RELOC_386_TLS_DESC_CALL:
9059 case BFD_RELOC_X86_64_TLSGD:
9060 case BFD_RELOC_X86_64_TLSLD:
9061 case BFD_RELOC_X86_64_GOTTPOFF:
9062 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9063 case BFD_RELOC_X86_64_TLSDESC_CALL:
9064 i.has_gotpc_tls_reloc = TRUE;
9065 default:
9066 break;
9067 }
9068 }
9069 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9070 size, i.op[n].disps, pcrel,
9071 reloc_type);
9072 /* Check for "call/jmp *mem", "mov mem, %reg",
9073 "test %reg, mem" and "binop mem, %reg" where binop
9074 is one of adc, add, and, cmp, or, sbb, sub, xor
9075 instructions without data prefix. Always generate
9076 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9077 if (i.prefix[DATA_PREFIX] == 0
9078 && (generate_relax_relocations
9079 || (!object_64bit
9080 && i.rm.mode == 0
9081 && i.rm.regmem == 5))
9082 && (i.rm.mode == 2
9083 || (i.rm.mode == 0 && i.rm.regmem == 5))
9084 && !is_any_vex_encoding(&i.tm)
9085 && ((i.operands == 1
9086 && i.tm.base_opcode == 0xff
9087 && (i.rm.reg == 2 || i.rm.reg == 4))
9088 || (i.operands == 2
9089 && (i.tm.base_opcode == 0x8b
9090 || i.tm.base_opcode == 0x85
9091 || (i.tm.base_opcode & ~0x38) == 0x03))))
9092 {
9093 if (object_64bit)
9094 {
9095 fixP->fx_tcbit = i.rex != 0;
9096 if (i.base_reg
9097 && (i.base_reg->reg_num == RegIP))
9098 fixP->fx_tcbit2 = 1;
9099 }
9100 else
9101 fixP->fx_tcbit2 = 1;
9102 }
9103 }
9104 }
9105 }
9106 }
9107
9108 static void
9109 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9110 {
9111 char *p;
9112 unsigned int n;
9113
9114 for (n = 0; n < i.operands; n++)
9115 {
9116 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9117 if (i.rounding && (int) n == i.rounding->operand)
9118 continue;
9119
9120 if (operand_type_check (i.types[n], imm))
9121 {
9122 if (i.op[n].imms->X_op == O_constant)
9123 {
9124 int size = imm_size (n);
9125 offsetT val;
9126
9127 val = offset_in_range (i.op[n].imms->X_add_number,
9128 size);
9129 p = frag_more (size);
9130 md_number_to_chars (p, val, size);
9131 }
9132 else
9133 {
9134 /* Not absolute_section.
9135 Need a 32-bit fixup (don't support 8bit
9136 non-absolute imms). Try to support other
9137 sizes ... */
9138 enum bfd_reloc_code_real reloc_type;
9139 int size = imm_size (n);
9140 int sign;
9141
9142 if (i.types[n].bitfield.imm32s
9143 && (i.suffix == QWORD_MNEM_SUFFIX
9144 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9145 sign = 1;
9146 else
9147 sign = 0;
9148
9149 p = frag_more (size);
9150 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9151
9152 /* This is tough to explain. We end up with this one if we
9153 * have operands that look like
9154 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9155 * obtain the absolute address of the GOT, and it is strongly
9156 * preferable from a performance point of view to avoid using
9157 * a runtime relocation for this. The actual sequence of
9158 * instructions often look something like:
9159 *
9160 * call .L66
9161 * .L66:
9162 * popl %ebx
9163 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9164 *
9165 * The call and pop essentially return the absolute address
9166 * of the label .L66 and store it in %ebx. The linker itself
9167 * will ultimately change the first operand of the addl so
9168 * that %ebx points to the GOT, but to keep things simple, the
9169 * .o file must have this operand set so that it generates not
9170 * the absolute address of .L66, but the absolute address of
9171 * itself. This allows the linker itself simply treat a GOTPC
9172 * relocation as asking for a pcrel offset to the GOT to be
9173 * added in, and the addend of the relocation is stored in the
9174 * operand field for the instruction itself.
9175 *
9176 * Our job here is to fix the operand so that it would add
9177 * the correct offset so that %ebx would point to itself. The
9178 * thing that is tricky is that .-.L66 will point to the
9179 * beginning of the instruction, so we need to further modify
9180 * the operand so that it will point to itself. There are
9181 * other cases where you have something like:
9182 *
9183 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9184 *
9185 * and here no correction would be required. Internally in
9186 * the assembler we treat operands of this form as not being
9187 * pcrel since the '.' is explicitly mentioned, and I wonder
9188 * whether it would simplify matters to do it this way. Who
9189 * knows. In earlier versions of the PIC patches, the
9190 * pcrel_adjust field was used to store the correction, but
9191 * since the expression is not pcrel, I felt it would be
9192 * confusing to do it this way. */
9193
9194 if ((reloc_type == BFD_RELOC_32
9195 || reloc_type == BFD_RELOC_X86_64_32S
9196 || reloc_type == BFD_RELOC_64)
9197 && GOT_symbol
9198 && GOT_symbol == i.op[n].imms->X_add_symbol
9199 && (i.op[n].imms->X_op == O_symbol
9200 || (i.op[n].imms->X_op == O_add
9201 && ((symbol_get_value_expression
9202 (i.op[n].imms->X_op_symbol)->X_op)
9203 == O_subtract))))
9204 {
9205 if (!object_64bit)
9206 reloc_type = BFD_RELOC_386_GOTPC;
9207 else if (size == 4)
9208 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9209 else if (size == 8)
9210 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9211 i.has_gotpc_tls_reloc = TRUE;
9212 i.op[n].imms->X_add_number +=
9213 encoding_length (insn_start_frag, insn_start_off, p);
9214 }
9215 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9216 i.op[n].imms, 0, reloc_type);
9217 }
9218 }
9219 }
9220 }
9221 \f
9222 /* x86_cons_fix_new is called via the expression parsing code when a
9223 reloc is needed. We use this hook to get the correct .got reloc. */
9224 static int cons_sign = -1;
9225
9226 void
9227 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9228 expressionS *exp, bfd_reloc_code_real_type r)
9229 {
9230 r = reloc (len, 0, cons_sign, r);
9231
9232 #ifdef TE_PE
9233 if (exp->X_op == O_secrel)
9234 {
9235 exp->X_op = O_symbol;
9236 r = BFD_RELOC_32_SECREL;
9237 }
9238 #endif
9239
9240 fix_new_exp (frag, off, len, exp, 0, r);
9241 }
9242
9243 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9244 purpose of the `.dc.a' internal pseudo-op. */
9245
9246 int
9247 x86_address_bytes (void)
9248 {
9249 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9250 return 4;
9251 return stdoutput->arch_info->bits_per_address / 8;
9252 }
9253
9254 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9255 || defined (LEX_AT)
9256 # define lex_got(reloc, adjust, types) NULL
9257 #else
9258 /* Parse operands of the form
9259 <symbol>@GOTOFF+<nnn>
9260 and similar .plt or .got references.
9261
9262 If we find one, set up the correct relocation in RELOC and copy the
9263 input string, minus the `@GOTOFF' into a malloc'd buffer for
9264 parsing by the calling routine. Return this buffer, and if ADJUST
9265 is non-null set it to the length of the string we removed from the
9266 input line. Otherwise return NULL. */
9267 static char *
9268 lex_got (enum bfd_reloc_code_real *rel,
9269 int *adjust,
9270 i386_operand_type *types)
9271 {
9272 /* Some of the relocations depend on the size of what field is to
9273 be relocated. But in our callers i386_immediate and i386_displacement
9274 we don't yet know the operand size (this will be set by insn
9275 matching). Hence we record the word32 relocation here,
9276 and adjust the reloc according to the real size in reloc(). */
9277 static const struct {
9278 const char *str;
9279 int len;
9280 const enum bfd_reloc_code_real rel[2];
9281 const i386_operand_type types64;
9282 } gotrel[] = {
9283 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9284 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9285 BFD_RELOC_SIZE32 },
9286 OPERAND_TYPE_IMM32_64 },
9287 #endif
9288 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9289 BFD_RELOC_X86_64_PLTOFF64 },
9290 OPERAND_TYPE_IMM64 },
9291 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9292 BFD_RELOC_X86_64_PLT32 },
9293 OPERAND_TYPE_IMM32_32S_DISP32 },
9294 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9295 BFD_RELOC_X86_64_GOTPLT64 },
9296 OPERAND_TYPE_IMM64_DISP64 },
9297 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9298 BFD_RELOC_X86_64_GOTOFF64 },
9299 OPERAND_TYPE_IMM64_DISP64 },
9300 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9301 BFD_RELOC_X86_64_GOTPCREL },
9302 OPERAND_TYPE_IMM32_32S_DISP32 },
9303 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9304 BFD_RELOC_X86_64_TLSGD },
9305 OPERAND_TYPE_IMM32_32S_DISP32 },
9306 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9307 _dummy_first_bfd_reloc_code_real },
9308 OPERAND_TYPE_NONE },
9309 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9310 BFD_RELOC_X86_64_TLSLD },
9311 OPERAND_TYPE_IMM32_32S_DISP32 },
9312 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9313 BFD_RELOC_X86_64_GOTTPOFF },
9314 OPERAND_TYPE_IMM32_32S_DISP32 },
9315 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9316 BFD_RELOC_X86_64_TPOFF32 },
9317 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9318 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9319 _dummy_first_bfd_reloc_code_real },
9320 OPERAND_TYPE_NONE },
9321 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9322 BFD_RELOC_X86_64_DTPOFF32 },
9323 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9324 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9325 _dummy_first_bfd_reloc_code_real },
9326 OPERAND_TYPE_NONE },
9327 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9328 _dummy_first_bfd_reloc_code_real },
9329 OPERAND_TYPE_NONE },
9330 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9331 BFD_RELOC_X86_64_GOT32 },
9332 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9333 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9334 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9335 OPERAND_TYPE_IMM32_32S_DISP32 },
9336 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9337 BFD_RELOC_X86_64_TLSDESC_CALL },
9338 OPERAND_TYPE_IMM32_32S_DISP32 },
9339 };
9340 char *cp;
9341 unsigned int j;
9342
9343 #if defined (OBJ_MAYBE_ELF)
9344 if (!IS_ELF)
9345 return NULL;
9346 #endif
9347
9348 for (cp = input_line_pointer; *cp != '@'; cp++)
9349 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9350 return NULL;
9351
9352 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9353 {
9354 int len = gotrel[j].len;
9355 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9356 {
9357 if (gotrel[j].rel[object_64bit] != 0)
9358 {
9359 int first, second;
9360 char *tmpbuf, *past_reloc;
9361
9362 *rel = gotrel[j].rel[object_64bit];
9363
9364 if (types)
9365 {
9366 if (flag_code != CODE_64BIT)
9367 {
9368 types->bitfield.imm32 = 1;
9369 types->bitfield.disp32 = 1;
9370 }
9371 else
9372 *types = gotrel[j].types64;
9373 }
9374
9375 if (j != 0 && GOT_symbol == NULL)
9376 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9377
9378 /* The length of the first part of our input line. */
9379 first = cp - input_line_pointer;
9380
9381 /* The second part goes from after the reloc token until
9382 (and including) an end_of_line char or comma. */
9383 past_reloc = cp + 1 + len;
9384 cp = past_reloc;
9385 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9386 ++cp;
9387 second = cp + 1 - past_reloc;
9388
9389 /* Allocate and copy string. The trailing NUL shouldn't
9390 be necessary, but be safe. */
9391 tmpbuf = XNEWVEC (char, first + second + 2);
9392 memcpy (tmpbuf, input_line_pointer, first);
9393 if (second != 0 && *past_reloc != ' ')
9394 /* Replace the relocation token with ' ', so that
9395 errors like foo@GOTOFF1 will be detected. */
9396 tmpbuf[first++] = ' ';
9397 else
9398 /* Increment length by 1 if the relocation token is
9399 removed. */
9400 len++;
9401 if (adjust)
9402 *adjust = len;
9403 memcpy (tmpbuf + first, past_reloc, second);
9404 tmpbuf[first + second] = '\0';
9405 return tmpbuf;
9406 }
9407
9408 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9409 gotrel[j].str, 1 << (5 + object_64bit));
9410 return NULL;
9411 }
9412 }
9413
9414 /* Might be a symbol version string. Don't as_bad here. */
9415 return NULL;
9416 }
9417 #endif
9418
9419 #ifdef TE_PE
9420 #ifdef lex_got
9421 #undef lex_got
9422 #endif
9423 /* Parse operands of the form
9424 <symbol>@SECREL32+<nnn>
9425
9426 If we find one, set up the correct relocation in RELOC and copy the
9427 input string, minus the `@SECREL32' into a malloc'd buffer for
9428 parsing by the calling routine. Return this buffer, and if ADJUST
9429 is non-null set it to the length of the string we removed from the
9430 input line. Otherwise return NULL.
9431
9432 This function is copied from the ELF version above adjusted for PE targets. */
9433
9434 static char *
9435 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9436 int *adjust ATTRIBUTE_UNUSED,
9437 i386_operand_type *types)
9438 {
9439 static const struct
9440 {
9441 const char *str;
9442 int len;
9443 const enum bfd_reloc_code_real rel[2];
9444 const i386_operand_type types64;
9445 }
9446 gotrel[] =
9447 {
9448 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9449 BFD_RELOC_32_SECREL },
9450 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9451 };
9452
9453 char *cp;
9454 unsigned j;
9455
9456 for (cp = input_line_pointer; *cp != '@'; cp++)
9457 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9458 return NULL;
9459
9460 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9461 {
9462 int len = gotrel[j].len;
9463
9464 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9465 {
9466 if (gotrel[j].rel[object_64bit] != 0)
9467 {
9468 int first, second;
9469 char *tmpbuf, *past_reloc;
9470
9471 *rel = gotrel[j].rel[object_64bit];
9472 if (adjust)
9473 *adjust = len;
9474
9475 if (types)
9476 {
9477 if (flag_code != CODE_64BIT)
9478 {
9479 types->bitfield.imm32 = 1;
9480 types->bitfield.disp32 = 1;
9481 }
9482 else
9483 *types = gotrel[j].types64;
9484 }
9485
9486 /* The length of the first part of our input line. */
9487 first = cp - input_line_pointer;
9488
9489 /* The second part goes from after the reloc token until
9490 (and including) an end_of_line char or comma. */
9491 past_reloc = cp + 1 + len;
9492 cp = past_reloc;
9493 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9494 ++cp;
9495 second = cp + 1 - past_reloc;
9496
9497 /* Allocate and copy string. The trailing NUL shouldn't
9498 be necessary, but be safe. */
9499 tmpbuf = XNEWVEC (char, first + second + 2);
9500 memcpy (tmpbuf, input_line_pointer, first);
9501 if (second != 0 && *past_reloc != ' ')
9502 /* Replace the relocation token with ' ', so that
9503 errors like foo@SECLREL321 will be detected. */
9504 tmpbuf[first++] = ' ';
9505 memcpy (tmpbuf + first, past_reloc, second);
9506 tmpbuf[first + second] = '\0';
9507 return tmpbuf;
9508 }
9509
9510 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9511 gotrel[j].str, 1 << (5 + object_64bit));
9512 return NULL;
9513 }
9514 }
9515
9516 /* Might be a symbol version string. Don't as_bad here. */
9517 return NULL;
9518 }
9519
9520 #endif /* TE_PE */
9521
9522 bfd_reloc_code_real_type
9523 x86_cons (expressionS *exp, int size)
9524 {
9525 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9526
9527 intel_syntax = -intel_syntax;
9528
9529 exp->X_md = 0;
9530 if (size == 4 || (object_64bit && size == 8))
9531 {
9532 /* Handle @GOTOFF and the like in an expression. */
9533 char *save;
9534 char *gotfree_input_line;
9535 int adjust = 0;
9536
9537 save = input_line_pointer;
9538 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9539 if (gotfree_input_line)
9540 input_line_pointer = gotfree_input_line;
9541
9542 expression (exp);
9543
9544 if (gotfree_input_line)
9545 {
9546 /* expression () has merrily parsed up to the end of line,
9547 or a comma - in the wrong buffer. Transfer how far
9548 input_line_pointer has moved to the right buffer. */
9549 input_line_pointer = (save
9550 + (input_line_pointer - gotfree_input_line)
9551 + adjust);
9552 free (gotfree_input_line);
9553 if (exp->X_op == O_constant
9554 || exp->X_op == O_absent
9555 || exp->X_op == O_illegal
9556 || exp->X_op == O_register
9557 || exp->X_op == O_big)
9558 {
9559 char c = *input_line_pointer;
9560 *input_line_pointer = 0;
9561 as_bad (_("missing or invalid expression `%s'"), save);
9562 *input_line_pointer = c;
9563 }
9564 else if ((got_reloc == BFD_RELOC_386_PLT32
9565 || got_reloc == BFD_RELOC_X86_64_PLT32)
9566 && exp->X_op != O_symbol)
9567 {
9568 char c = *input_line_pointer;
9569 *input_line_pointer = 0;
9570 as_bad (_("invalid PLT expression `%s'"), save);
9571 *input_line_pointer = c;
9572 }
9573 }
9574 }
9575 else
9576 expression (exp);
9577
9578 intel_syntax = -intel_syntax;
9579
9580 if (intel_syntax)
9581 i386_intel_simplify (exp);
9582
9583 return got_reloc;
9584 }
9585
9586 static void
9587 signed_cons (int size)
9588 {
9589 if (flag_code == CODE_64BIT)
9590 cons_sign = 1;
9591 cons (size);
9592 cons_sign = -1;
9593 }
9594
9595 #ifdef TE_PE
9596 static void
9597 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9598 {
9599 expressionS exp;
9600
9601 do
9602 {
9603 expression (&exp);
9604 if (exp.X_op == O_symbol)
9605 exp.X_op = O_secrel;
9606
9607 emit_expr (&exp, 4);
9608 }
9609 while (*input_line_pointer++ == ',');
9610
9611 input_line_pointer--;
9612 demand_empty_rest_of_line ();
9613 }
9614 #endif
9615
9616 /* Handle Vector operations. */
9617
9618 static char *
9619 check_VecOperations (char *op_string, char *op_end)
9620 {
9621 const reg_entry *mask;
9622 const char *saved;
9623 char *end_op;
9624
9625 while (*op_string
9626 && (op_end == NULL || op_string < op_end))
9627 {
9628 saved = op_string;
9629 if (*op_string == '{')
9630 {
9631 op_string++;
9632
9633 /* Check broadcasts. */
9634 if (strncmp (op_string, "1to", 3) == 0)
9635 {
9636 int bcst_type;
9637
9638 if (i.broadcast)
9639 goto duplicated_vec_op;
9640
9641 op_string += 3;
9642 if (*op_string == '8')
9643 bcst_type = 8;
9644 else if (*op_string == '4')
9645 bcst_type = 4;
9646 else if (*op_string == '2')
9647 bcst_type = 2;
9648 else if (*op_string == '1'
9649 && *(op_string+1) == '6')
9650 {
9651 bcst_type = 16;
9652 op_string++;
9653 }
9654 else
9655 {
9656 as_bad (_("Unsupported broadcast: `%s'"), saved);
9657 return NULL;
9658 }
9659 op_string++;
9660
9661 broadcast_op.type = bcst_type;
9662 broadcast_op.operand = this_operand;
9663 broadcast_op.bytes = 0;
9664 i.broadcast = &broadcast_op;
9665 }
9666 /* Check masking operation. */
9667 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9668 {
9669 /* k0 can't be used for write mask. */
9670 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9671 {
9672 as_bad (_("`%s%s' can't be used for write mask"),
9673 register_prefix, mask->reg_name);
9674 return NULL;
9675 }
9676
9677 if (!i.mask)
9678 {
9679 mask_op.mask = mask;
9680 mask_op.zeroing = 0;
9681 mask_op.operand = this_operand;
9682 i.mask = &mask_op;
9683 }
9684 else
9685 {
9686 if (i.mask->mask)
9687 goto duplicated_vec_op;
9688
9689 i.mask->mask = mask;
9690
9691 /* Only "{z}" is allowed here. No need to check
9692 zeroing mask explicitly. */
9693 if (i.mask->operand != this_operand)
9694 {
9695 as_bad (_("invalid write mask `%s'"), saved);
9696 return NULL;
9697 }
9698 }
9699
9700 op_string = end_op;
9701 }
9702 /* Check zeroing-flag for masking operation. */
9703 else if (*op_string == 'z')
9704 {
9705 if (!i.mask)
9706 {
9707 mask_op.mask = NULL;
9708 mask_op.zeroing = 1;
9709 mask_op.operand = this_operand;
9710 i.mask = &mask_op;
9711 }
9712 else
9713 {
9714 if (i.mask->zeroing)
9715 {
9716 duplicated_vec_op:
9717 as_bad (_("duplicated `%s'"), saved);
9718 return NULL;
9719 }
9720
9721 i.mask->zeroing = 1;
9722
9723 /* Only "{%k}" is allowed here. No need to check mask
9724 register explicitly. */
9725 if (i.mask->operand != this_operand)
9726 {
9727 as_bad (_("invalid zeroing-masking `%s'"),
9728 saved);
9729 return NULL;
9730 }
9731 }
9732
9733 op_string++;
9734 }
9735 else
9736 goto unknown_vec_op;
9737
9738 if (*op_string != '}')
9739 {
9740 as_bad (_("missing `}' in `%s'"), saved);
9741 return NULL;
9742 }
9743 op_string++;
9744
9745 /* Strip whitespace since the addition of pseudo prefixes
9746 changed how the scrubber treats '{'. */
9747 if (is_space_char (*op_string))
9748 ++op_string;
9749
9750 continue;
9751 }
9752 unknown_vec_op:
9753 /* We don't know this one. */
9754 as_bad (_("unknown vector operation: `%s'"), saved);
9755 return NULL;
9756 }
9757
9758 if (i.mask && i.mask->zeroing && !i.mask->mask)
9759 {
9760 as_bad (_("zeroing-masking only allowed with write mask"));
9761 return NULL;
9762 }
9763
9764 return op_string;
9765 }
9766
9767 static int
9768 i386_immediate (char *imm_start)
9769 {
9770 char *save_input_line_pointer;
9771 char *gotfree_input_line;
9772 segT exp_seg = 0;
9773 expressionS *exp;
9774 i386_operand_type types;
9775
9776 operand_type_set (&types, ~0);
9777
9778 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9779 {
9780 as_bad (_("at most %d immediate operands are allowed"),
9781 MAX_IMMEDIATE_OPERANDS);
9782 return 0;
9783 }
9784
9785 exp = &im_expressions[i.imm_operands++];
9786 i.op[this_operand].imms = exp;
9787
9788 if (is_space_char (*imm_start))
9789 ++imm_start;
9790
9791 save_input_line_pointer = input_line_pointer;
9792 input_line_pointer = imm_start;
9793
9794 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9795 if (gotfree_input_line)
9796 input_line_pointer = gotfree_input_line;
9797
9798 exp_seg = expression (exp);
9799
9800 SKIP_WHITESPACE ();
9801
9802 /* Handle vector operations. */
9803 if (*input_line_pointer == '{')
9804 {
9805 input_line_pointer = check_VecOperations (input_line_pointer,
9806 NULL);
9807 if (input_line_pointer == NULL)
9808 return 0;
9809 }
9810
9811 if (*input_line_pointer)
9812 as_bad (_("junk `%s' after expression"), input_line_pointer);
9813
9814 input_line_pointer = save_input_line_pointer;
9815 if (gotfree_input_line)
9816 {
9817 free (gotfree_input_line);
9818
9819 if (exp->X_op == O_constant || exp->X_op == O_register)
9820 exp->X_op = O_illegal;
9821 }
9822
9823 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9824 }
9825
9826 static int
9827 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9828 i386_operand_type types, const char *imm_start)
9829 {
9830 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9831 {
9832 if (imm_start)
9833 as_bad (_("missing or invalid immediate expression `%s'"),
9834 imm_start);
9835 return 0;
9836 }
9837 else if (exp->X_op == O_constant)
9838 {
9839 /* Size it properly later. */
9840 i.types[this_operand].bitfield.imm64 = 1;
9841 /* If not 64bit, sign extend val. */
9842 if (flag_code != CODE_64BIT
9843 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9844 exp->X_add_number
9845 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9846 }
9847 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9848 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9849 && exp_seg != absolute_section
9850 && exp_seg != text_section
9851 && exp_seg != data_section
9852 && exp_seg != bss_section
9853 && exp_seg != undefined_section
9854 && !bfd_is_com_section (exp_seg))
9855 {
9856 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9857 return 0;
9858 }
9859 #endif
9860 else if (!intel_syntax && exp_seg == reg_section)
9861 {
9862 if (imm_start)
9863 as_bad (_("illegal immediate register operand %s"), imm_start);
9864 return 0;
9865 }
9866 else
9867 {
9868 /* This is an address. The size of the address will be
9869 determined later, depending on destination register,
9870 suffix, or the default for the section. */
9871 i.types[this_operand].bitfield.imm8 = 1;
9872 i.types[this_operand].bitfield.imm16 = 1;
9873 i.types[this_operand].bitfield.imm32 = 1;
9874 i.types[this_operand].bitfield.imm32s = 1;
9875 i.types[this_operand].bitfield.imm64 = 1;
9876 i.types[this_operand] = operand_type_and (i.types[this_operand],
9877 types);
9878 }
9879
9880 return 1;
9881 }
9882
9883 static char *
9884 i386_scale (char *scale)
9885 {
9886 offsetT val;
9887 char *save = input_line_pointer;
9888
9889 input_line_pointer = scale;
9890 val = get_absolute_expression ();
9891
9892 switch (val)
9893 {
9894 case 1:
9895 i.log2_scale_factor = 0;
9896 break;
9897 case 2:
9898 i.log2_scale_factor = 1;
9899 break;
9900 case 4:
9901 i.log2_scale_factor = 2;
9902 break;
9903 case 8:
9904 i.log2_scale_factor = 3;
9905 break;
9906 default:
9907 {
9908 char sep = *input_line_pointer;
9909
9910 *input_line_pointer = '\0';
9911 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9912 scale);
9913 *input_line_pointer = sep;
9914 input_line_pointer = save;
9915 return NULL;
9916 }
9917 }
9918 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9919 {
9920 as_warn (_("scale factor of %d without an index register"),
9921 1 << i.log2_scale_factor);
9922 i.log2_scale_factor = 0;
9923 }
9924 scale = input_line_pointer;
9925 input_line_pointer = save;
9926 return scale;
9927 }
9928
9929 static int
9930 i386_displacement (char *disp_start, char *disp_end)
9931 {
9932 expressionS *exp;
9933 segT exp_seg = 0;
9934 char *save_input_line_pointer;
9935 char *gotfree_input_line;
9936 int override;
9937 i386_operand_type bigdisp, types = anydisp;
9938 int ret;
9939
9940 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9941 {
9942 as_bad (_("at most %d displacement operands are allowed"),
9943 MAX_MEMORY_OPERANDS);
9944 return 0;
9945 }
9946
9947 operand_type_set (&bigdisp, 0);
9948 if (i.jumpabsolute
9949 || i.types[this_operand].bitfield.baseindex
9950 || (current_templates->start->opcode_modifier.jump != JUMP
9951 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9952 {
9953 i386_addressing_mode ();
9954 override = (i.prefix[ADDR_PREFIX] != 0);
9955 if (flag_code == CODE_64BIT)
9956 {
9957 if (!override)
9958 {
9959 bigdisp.bitfield.disp32s = 1;
9960 bigdisp.bitfield.disp64 = 1;
9961 }
9962 else
9963 bigdisp.bitfield.disp32 = 1;
9964 }
9965 else if ((flag_code == CODE_16BIT) ^ override)
9966 bigdisp.bitfield.disp16 = 1;
9967 else
9968 bigdisp.bitfield.disp32 = 1;
9969 }
9970 else
9971 {
9972 /* For PC-relative branches, the width of the displacement may be
9973 dependent upon data size, but is never dependent upon address size.
9974 Also make sure to not unintentionally match against a non-PC-relative
9975 branch template. */
9976 static templates aux_templates;
9977 const insn_template *t = current_templates->start;
9978 bfd_boolean has_intel64 = FALSE;
9979
9980 aux_templates.start = t;
9981 while (++t < current_templates->end)
9982 {
9983 if (t->opcode_modifier.jump
9984 != current_templates->start->opcode_modifier.jump)
9985 break;
9986 if ((t->opcode_modifier.isa64 >= INTEL64))
9987 has_intel64 = TRUE;
9988 }
9989 if (t < current_templates->end)
9990 {
9991 aux_templates.end = t;
9992 current_templates = &aux_templates;
9993 }
9994
9995 override = (i.prefix[DATA_PREFIX] != 0);
9996 if (flag_code == CODE_64BIT)
9997 {
9998 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9999 && (!intel64 || !has_intel64))
10000 bigdisp.bitfield.disp16 = 1;
10001 else
10002 bigdisp.bitfield.disp32s = 1;
10003 }
10004 else
10005 {
10006 if (!override)
10007 override = (i.suffix == (flag_code != CODE_16BIT
10008 ? WORD_MNEM_SUFFIX
10009 : LONG_MNEM_SUFFIX));
10010 bigdisp.bitfield.disp32 = 1;
10011 if ((flag_code == CODE_16BIT) ^ override)
10012 {
10013 bigdisp.bitfield.disp32 = 0;
10014 bigdisp.bitfield.disp16 = 1;
10015 }
10016 }
10017 }
10018 i.types[this_operand] = operand_type_or (i.types[this_operand],
10019 bigdisp);
10020
10021 exp = &disp_expressions[i.disp_operands];
10022 i.op[this_operand].disps = exp;
10023 i.disp_operands++;
10024 save_input_line_pointer = input_line_pointer;
10025 input_line_pointer = disp_start;
10026 END_STRING_AND_SAVE (disp_end);
10027
10028 #ifndef GCC_ASM_O_HACK
10029 #define GCC_ASM_O_HACK 0
10030 #endif
10031 #if GCC_ASM_O_HACK
10032 END_STRING_AND_SAVE (disp_end + 1);
10033 if (i.types[this_operand].bitfield.baseIndex
10034 && displacement_string_end[-1] == '+')
10035 {
10036 /* This hack is to avoid a warning when using the "o"
10037 constraint within gcc asm statements.
10038 For instance:
10039
10040 #define _set_tssldt_desc(n,addr,limit,type) \
10041 __asm__ __volatile__ ( \
10042 "movw %w2,%0\n\t" \
10043 "movw %w1,2+%0\n\t" \
10044 "rorl $16,%1\n\t" \
10045 "movb %b1,4+%0\n\t" \
10046 "movb %4,5+%0\n\t" \
10047 "movb $0,6+%0\n\t" \
10048 "movb %h1,7+%0\n\t" \
10049 "rorl $16,%1" \
10050 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10051
10052 This works great except that the output assembler ends
10053 up looking a bit weird if it turns out that there is
10054 no offset. You end up producing code that looks like:
10055
10056 #APP
10057 movw $235,(%eax)
10058 movw %dx,2+(%eax)
10059 rorl $16,%edx
10060 movb %dl,4+(%eax)
10061 movb $137,5+(%eax)
10062 movb $0,6+(%eax)
10063 movb %dh,7+(%eax)
10064 rorl $16,%edx
10065 #NO_APP
10066
10067 So here we provide the missing zero. */
10068
10069 *displacement_string_end = '0';
10070 }
10071 #endif
10072 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10073 if (gotfree_input_line)
10074 input_line_pointer = gotfree_input_line;
10075
10076 exp_seg = expression (exp);
10077
10078 SKIP_WHITESPACE ();
10079 if (*input_line_pointer)
10080 as_bad (_("junk `%s' after expression"), input_line_pointer);
10081 #if GCC_ASM_O_HACK
10082 RESTORE_END_STRING (disp_end + 1);
10083 #endif
10084 input_line_pointer = save_input_line_pointer;
10085 if (gotfree_input_line)
10086 {
10087 free (gotfree_input_line);
10088
10089 if (exp->X_op == O_constant || exp->X_op == O_register)
10090 exp->X_op = O_illegal;
10091 }
10092
10093 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10094
10095 RESTORE_END_STRING (disp_end);
10096
10097 return ret;
10098 }
10099
10100 static int
10101 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10102 i386_operand_type types, const char *disp_start)
10103 {
10104 i386_operand_type bigdisp;
10105 int ret = 1;
10106
10107 /* We do this to make sure that the section symbol is in
10108 the symbol table. We will ultimately change the relocation
10109 to be relative to the beginning of the section. */
10110 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10111 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10112 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10113 {
10114 if (exp->X_op != O_symbol)
10115 goto inv_disp;
10116
10117 if (S_IS_LOCAL (exp->X_add_symbol)
10118 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10119 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10120 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10121 exp->X_op = O_subtract;
10122 exp->X_op_symbol = GOT_symbol;
10123 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10124 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10125 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10126 i.reloc[this_operand] = BFD_RELOC_64;
10127 else
10128 i.reloc[this_operand] = BFD_RELOC_32;
10129 }
10130
10131 else if (exp->X_op == O_absent
10132 || exp->X_op == O_illegal
10133 || exp->X_op == O_big)
10134 {
10135 inv_disp:
10136 as_bad (_("missing or invalid displacement expression `%s'"),
10137 disp_start);
10138 ret = 0;
10139 }
10140
10141 else if (flag_code == CODE_64BIT
10142 && !i.prefix[ADDR_PREFIX]
10143 && exp->X_op == O_constant)
10144 {
10145 /* Since displacement is signed extended to 64bit, don't allow
10146 disp32 and turn off disp32s if they are out of range. */
10147 i.types[this_operand].bitfield.disp32 = 0;
10148 if (!fits_in_signed_long (exp->X_add_number))
10149 {
10150 i.types[this_operand].bitfield.disp32s = 0;
10151 if (i.types[this_operand].bitfield.baseindex)
10152 {
10153 as_bad (_("0x%lx out range of signed 32bit displacement"),
10154 (long) exp->X_add_number);
10155 ret = 0;
10156 }
10157 }
10158 }
10159
10160 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10161 else if (exp->X_op != O_constant
10162 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10163 && exp_seg != absolute_section
10164 && exp_seg != text_section
10165 && exp_seg != data_section
10166 && exp_seg != bss_section
10167 && exp_seg != undefined_section
10168 && !bfd_is_com_section (exp_seg))
10169 {
10170 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10171 ret = 0;
10172 }
10173 #endif
10174
10175 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10176 /* Constants get taken care of by optimize_disp(). */
10177 && exp->X_op != O_constant)
10178 i.types[this_operand].bitfield.disp8 = 1;
10179
10180 /* Check if this is a displacement only operand. */
10181 bigdisp = i.types[this_operand];
10182 bigdisp.bitfield.disp8 = 0;
10183 bigdisp.bitfield.disp16 = 0;
10184 bigdisp.bitfield.disp32 = 0;
10185 bigdisp.bitfield.disp32s = 0;
10186 bigdisp.bitfield.disp64 = 0;
10187 if (operand_type_all_zero (&bigdisp))
10188 i.types[this_operand] = operand_type_and (i.types[this_operand],
10189 types);
10190
10191 return ret;
10192 }
10193
10194 /* Return the active addressing mode, taking address override and
10195 registers forming the address into consideration. Update the
10196 address override prefix if necessary. */
10197
10198 static enum flag_code
10199 i386_addressing_mode (void)
10200 {
10201 enum flag_code addr_mode;
10202
10203 if (i.prefix[ADDR_PREFIX])
10204 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10205 else
10206 {
10207 addr_mode = flag_code;
10208
10209 #if INFER_ADDR_PREFIX
10210 if (i.mem_operands == 0)
10211 {
10212 /* Infer address prefix from the first memory operand. */
10213 const reg_entry *addr_reg = i.base_reg;
10214
10215 if (addr_reg == NULL)
10216 addr_reg = i.index_reg;
10217
10218 if (addr_reg)
10219 {
10220 if (addr_reg->reg_type.bitfield.dword)
10221 addr_mode = CODE_32BIT;
10222 else if (flag_code != CODE_64BIT
10223 && addr_reg->reg_type.bitfield.word)
10224 addr_mode = CODE_16BIT;
10225
10226 if (addr_mode != flag_code)
10227 {
10228 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10229 i.prefixes += 1;
10230 /* Change the size of any displacement too. At most one
10231 of Disp16 or Disp32 is set.
10232 FIXME. There doesn't seem to be any real need for
10233 separate Disp16 and Disp32 flags. The same goes for
10234 Imm16 and Imm32. Removing them would probably clean
10235 up the code quite a lot. */
10236 if (flag_code != CODE_64BIT
10237 && (i.types[this_operand].bitfield.disp16
10238 || i.types[this_operand].bitfield.disp32))
10239 i.types[this_operand]
10240 = operand_type_xor (i.types[this_operand], disp16_32);
10241 }
10242 }
10243 }
10244 #endif
10245 }
10246
10247 return addr_mode;
10248 }
10249
10250 /* Make sure the memory operand we've been dealt is valid.
10251 Return 1 on success, 0 on a failure. */
10252
10253 static int
10254 i386_index_check (const char *operand_string)
10255 {
10256 const char *kind = "base/index";
10257 enum flag_code addr_mode = i386_addressing_mode ();
10258
10259 if (current_templates->start->opcode_modifier.isstring
10260 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10261 && (current_templates->end[-1].opcode_modifier.isstring
10262 || i.mem_operands))
10263 {
10264 /* Memory operands of string insns are special in that they only allow
10265 a single register (rDI, rSI, or rBX) as their memory address. */
10266 const reg_entry *expected_reg;
10267 static const char *di_si[][2] =
10268 {
10269 { "esi", "edi" },
10270 { "si", "di" },
10271 { "rsi", "rdi" }
10272 };
10273 static const char *bx[] = { "ebx", "bx", "rbx" };
10274
10275 kind = "string address";
10276
10277 if (current_templates->start->opcode_modifier.repprefixok)
10278 {
10279 int es_op = current_templates->end[-1].opcode_modifier.isstring
10280 - IS_STRING_ES_OP0;
10281 int op = 0;
10282
10283 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10284 || ((!i.mem_operands != !intel_syntax)
10285 && current_templates->end[-1].operand_types[1]
10286 .bitfield.baseindex))
10287 op = 1;
10288 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10289 }
10290 else
10291 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10292
10293 if (i.base_reg != expected_reg
10294 || i.index_reg
10295 || operand_type_check (i.types[this_operand], disp))
10296 {
10297 /* The second memory operand must have the same size as
10298 the first one. */
10299 if (i.mem_operands
10300 && i.base_reg
10301 && !((addr_mode == CODE_64BIT
10302 && i.base_reg->reg_type.bitfield.qword)
10303 || (addr_mode == CODE_32BIT
10304 ? i.base_reg->reg_type.bitfield.dword
10305 : i.base_reg->reg_type.bitfield.word)))
10306 goto bad_address;
10307
10308 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10309 operand_string,
10310 intel_syntax ? '[' : '(',
10311 register_prefix,
10312 expected_reg->reg_name,
10313 intel_syntax ? ']' : ')');
10314 return 1;
10315 }
10316 else
10317 return 1;
10318
10319 bad_address:
10320 as_bad (_("`%s' is not a valid %s expression"),
10321 operand_string, kind);
10322 return 0;
10323 }
10324 else
10325 {
10326 if (addr_mode != CODE_16BIT)
10327 {
10328 /* 32-bit/64-bit checks. */
10329 if ((i.base_reg
10330 && ((addr_mode == CODE_64BIT
10331 ? !i.base_reg->reg_type.bitfield.qword
10332 : !i.base_reg->reg_type.bitfield.dword)
10333 || (i.index_reg && i.base_reg->reg_num == RegIP)
10334 || i.base_reg->reg_num == RegIZ))
10335 || (i.index_reg
10336 && !i.index_reg->reg_type.bitfield.xmmword
10337 && !i.index_reg->reg_type.bitfield.ymmword
10338 && !i.index_reg->reg_type.bitfield.zmmword
10339 && ((addr_mode == CODE_64BIT
10340 ? !i.index_reg->reg_type.bitfield.qword
10341 : !i.index_reg->reg_type.bitfield.dword)
10342 || !i.index_reg->reg_type.bitfield.baseindex)))
10343 goto bad_address;
10344
10345 /* bndmk, bndldx, and bndstx have special restrictions. */
10346 if (current_templates->start->base_opcode == 0xf30f1b
10347 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10348 {
10349 /* They cannot use RIP-relative addressing. */
10350 if (i.base_reg && i.base_reg->reg_num == RegIP)
10351 {
10352 as_bad (_("`%s' cannot be used here"), operand_string);
10353 return 0;
10354 }
10355
10356 /* bndldx and bndstx ignore their scale factor. */
10357 if (current_templates->start->base_opcode != 0xf30f1b
10358 && i.log2_scale_factor)
10359 as_warn (_("register scaling is being ignored here"));
10360 }
10361 }
10362 else
10363 {
10364 /* 16-bit checks. */
10365 if ((i.base_reg
10366 && (!i.base_reg->reg_type.bitfield.word
10367 || !i.base_reg->reg_type.bitfield.baseindex))
10368 || (i.index_reg
10369 && (!i.index_reg->reg_type.bitfield.word
10370 || !i.index_reg->reg_type.bitfield.baseindex
10371 || !(i.base_reg
10372 && i.base_reg->reg_num < 6
10373 && i.index_reg->reg_num >= 6
10374 && i.log2_scale_factor == 0))))
10375 goto bad_address;
10376 }
10377 }
10378 return 1;
10379 }
10380
10381 /* Handle vector immediates. */
10382
10383 static int
10384 RC_SAE_immediate (const char *imm_start)
10385 {
10386 unsigned int match_found, j;
10387 const char *pstr = imm_start;
10388 expressionS *exp;
10389
10390 if (*pstr != '{')
10391 return 0;
10392
10393 pstr++;
10394 match_found = 0;
10395 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10396 {
10397 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10398 {
10399 if (!i.rounding)
10400 {
10401 rc_op.type = RC_NamesTable[j].type;
10402 rc_op.operand = this_operand;
10403 i.rounding = &rc_op;
10404 }
10405 else
10406 {
10407 as_bad (_("duplicated `%s'"), imm_start);
10408 return 0;
10409 }
10410 pstr += RC_NamesTable[j].len;
10411 match_found = 1;
10412 break;
10413 }
10414 }
10415 if (!match_found)
10416 return 0;
10417
10418 if (*pstr++ != '}')
10419 {
10420 as_bad (_("Missing '}': '%s'"), imm_start);
10421 return 0;
10422 }
10423 /* RC/SAE immediate string should contain nothing more. */;
10424 if (*pstr != 0)
10425 {
10426 as_bad (_("Junk after '}': '%s'"), imm_start);
10427 return 0;
10428 }
10429
10430 exp = &im_expressions[i.imm_operands++];
10431 i.op[this_operand].imms = exp;
10432
10433 exp->X_op = O_constant;
10434 exp->X_add_number = 0;
10435 exp->X_add_symbol = (symbolS *) 0;
10436 exp->X_op_symbol = (symbolS *) 0;
10437
10438 i.types[this_operand].bitfield.imm8 = 1;
10439 return 1;
10440 }
10441
10442 /* Only string instructions can have a second memory operand, so
10443 reduce current_templates to just those if it contains any. */
10444 static int
10445 maybe_adjust_templates (void)
10446 {
10447 const insn_template *t;
10448
10449 gas_assert (i.mem_operands == 1);
10450
10451 for (t = current_templates->start; t < current_templates->end; ++t)
10452 if (t->opcode_modifier.isstring)
10453 break;
10454
10455 if (t < current_templates->end)
10456 {
10457 static templates aux_templates;
10458 bfd_boolean recheck;
10459
10460 aux_templates.start = t;
10461 for (; t < current_templates->end; ++t)
10462 if (!t->opcode_modifier.isstring)
10463 break;
10464 aux_templates.end = t;
10465
10466 /* Determine whether to re-check the first memory operand. */
10467 recheck = (aux_templates.start != current_templates->start
10468 || t != current_templates->end);
10469
10470 current_templates = &aux_templates;
10471
10472 if (recheck)
10473 {
10474 i.mem_operands = 0;
10475 if (i.memop1_string != NULL
10476 && i386_index_check (i.memop1_string) == 0)
10477 return 0;
10478 i.mem_operands = 1;
10479 }
10480 }
10481
10482 return 1;
10483 }
10484
10485 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10486 on error. */
10487
10488 static int
10489 i386_att_operand (char *operand_string)
10490 {
10491 const reg_entry *r;
10492 char *end_op;
10493 char *op_string = operand_string;
10494
10495 if (is_space_char (*op_string))
10496 ++op_string;
10497
10498 /* We check for an absolute prefix (differentiating,
10499 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10500 if (*op_string == ABSOLUTE_PREFIX)
10501 {
10502 ++op_string;
10503 if (is_space_char (*op_string))
10504 ++op_string;
10505 i.jumpabsolute = TRUE;
10506 }
10507
10508 /* Check if operand is a register. */
10509 if ((r = parse_register (op_string, &end_op)) != NULL)
10510 {
10511 i386_operand_type temp;
10512
10513 /* Check for a segment override by searching for ':' after a
10514 segment register. */
10515 op_string = end_op;
10516 if (is_space_char (*op_string))
10517 ++op_string;
10518 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10519 {
10520 switch (r->reg_num)
10521 {
10522 case 0:
10523 i.seg[i.mem_operands] = &es;
10524 break;
10525 case 1:
10526 i.seg[i.mem_operands] = &cs;
10527 break;
10528 case 2:
10529 i.seg[i.mem_operands] = &ss;
10530 break;
10531 case 3:
10532 i.seg[i.mem_operands] = &ds;
10533 break;
10534 case 4:
10535 i.seg[i.mem_operands] = &fs;
10536 break;
10537 case 5:
10538 i.seg[i.mem_operands] = &gs;
10539 break;
10540 }
10541
10542 /* Skip the ':' and whitespace. */
10543 ++op_string;
10544 if (is_space_char (*op_string))
10545 ++op_string;
10546
10547 if (!is_digit_char (*op_string)
10548 && !is_identifier_char (*op_string)
10549 && *op_string != '('
10550 && *op_string != ABSOLUTE_PREFIX)
10551 {
10552 as_bad (_("bad memory operand `%s'"), op_string);
10553 return 0;
10554 }
10555 /* Handle case of %es:*foo. */
10556 if (*op_string == ABSOLUTE_PREFIX)
10557 {
10558 ++op_string;
10559 if (is_space_char (*op_string))
10560 ++op_string;
10561 i.jumpabsolute = TRUE;
10562 }
10563 goto do_memory_reference;
10564 }
10565
10566 /* Handle vector operations. */
10567 if (*op_string == '{')
10568 {
10569 op_string = check_VecOperations (op_string, NULL);
10570 if (op_string == NULL)
10571 return 0;
10572 }
10573
10574 if (*op_string)
10575 {
10576 as_bad (_("junk `%s' after register"), op_string);
10577 return 0;
10578 }
10579 temp = r->reg_type;
10580 temp.bitfield.baseindex = 0;
10581 i.types[this_operand] = operand_type_or (i.types[this_operand],
10582 temp);
10583 i.types[this_operand].bitfield.unspecified = 0;
10584 i.op[this_operand].regs = r;
10585 i.reg_operands++;
10586 }
10587 else if (*op_string == REGISTER_PREFIX)
10588 {
10589 as_bad (_("bad register name `%s'"), op_string);
10590 return 0;
10591 }
10592 else if (*op_string == IMMEDIATE_PREFIX)
10593 {
10594 ++op_string;
10595 if (i.jumpabsolute)
10596 {
10597 as_bad (_("immediate operand illegal with absolute jump"));
10598 return 0;
10599 }
10600 if (!i386_immediate (op_string))
10601 return 0;
10602 }
10603 else if (RC_SAE_immediate (operand_string))
10604 {
10605 /* If it is a RC or SAE immediate, do nothing. */
10606 ;
10607 }
10608 else if (is_digit_char (*op_string)
10609 || is_identifier_char (*op_string)
10610 || *op_string == '"'
10611 || *op_string == '(')
10612 {
10613 /* This is a memory reference of some sort. */
10614 char *base_string;
10615
10616 /* Start and end of displacement string expression (if found). */
10617 char *displacement_string_start;
10618 char *displacement_string_end;
10619 char *vop_start;
10620
10621 do_memory_reference:
10622 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10623 return 0;
10624 if ((i.mem_operands == 1
10625 && !current_templates->start->opcode_modifier.isstring)
10626 || i.mem_operands == 2)
10627 {
10628 as_bad (_("too many memory references for `%s'"),
10629 current_templates->start->name);
10630 return 0;
10631 }
10632
10633 /* Check for base index form. We detect the base index form by
10634 looking for an ')' at the end of the operand, searching
10635 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10636 after the '('. */
10637 base_string = op_string + strlen (op_string);
10638
10639 /* Handle vector operations. */
10640 vop_start = strchr (op_string, '{');
10641 if (vop_start && vop_start < base_string)
10642 {
10643 if (check_VecOperations (vop_start, base_string) == NULL)
10644 return 0;
10645 base_string = vop_start;
10646 }
10647
10648 --base_string;
10649 if (is_space_char (*base_string))
10650 --base_string;
10651
10652 /* If we only have a displacement, set-up for it to be parsed later. */
10653 displacement_string_start = op_string;
10654 displacement_string_end = base_string + 1;
10655
10656 if (*base_string == ')')
10657 {
10658 char *temp_string;
10659 unsigned int parens_balanced = 1;
10660 /* We've already checked that the number of left & right ()'s are
10661 equal, so this loop will not be infinite. */
10662 do
10663 {
10664 base_string--;
10665 if (*base_string == ')')
10666 parens_balanced++;
10667 if (*base_string == '(')
10668 parens_balanced--;
10669 }
10670 while (parens_balanced);
10671
10672 temp_string = base_string;
10673
10674 /* Skip past '(' and whitespace. */
10675 ++base_string;
10676 if (is_space_char (*base_string))
10677 ++base_string;
10678
10679 if (*base_string == ','
10680 || ((i.base_reg = parse_register (base_string, &end_op))
10681 != NULL))
10682 {
10683 displacement_string_end = temp_string;
10684
10685 i.types[this_operand].bitfield.baseindex = 1;
10686
10687 if (i.base_reg)
10688 {
10689 base_string = end_op;
10690 if (is_space_char (*base_string))
10691 ++base_string;
10692 }
10693
10694 /* There may be an index reg or scale factor here. */
10695 if (*base_string == ',')
10696 {
10697 ++base_string;
10698 if (is_space_char (*base_string))
10699 ++base_string;
10700
10701 if ((i.index_reg = parse_register (base_string, &end_op))
10702 != NULL)
10703 {
10704 base_string = end_op;
10705 if (is_space_char (*base_string))
10706 ++base_string;
10707 if (*base_string == ',')
10708 {
10709 ++base_string;
10710 if (is_space_char (*base_string))
10711 ++base_string;
10712 }
10713 else if (*base_string != ')')
10714 {
10715 as_bad (_("expecting `,' or `)' "
10716 "after index register in `%s'"),
10717 operand_string);
10718 return 0;
10719 }
10720 }
10721 else if (*base_string == REGISTER_PREFIX)
10722 {
10723 end_op = strchr (base_string, ',');
10724 if (end_op)
10725 *end_op = '\0';
10726 as_bad (_("bad register name `%s'"), base_string);
10727 return 0;
10728 }
10729
10730 /* Check for scale factor. */
10731 if (*base_string != ')')
10732 {
10733 char *end_scale = i386_scale (base_string);
10734
10735 if (!end_scale)
10736 return 0;
10737
10738 base_string = end_scale;
10739 if (is_space_char (*base_string))
10740 ++base_string;
10741 if (*base_string != ')')
10742 {
10743 as_bad (_("expecting `)' "
10744 "after scale factor in `%s'"),
10745 operand_string);
10746 return 0;
10747 }
10748 }
10749 else if (!i.index_reg)
10750 {
10751 as_bad (_("expecting index register or scale factor "
10752 "after `,'; got '%c'"),
10753 *base_string);
10754 return 0;
10755 }
10756 }
10757 else if (*base_string != ')')
10758 {
10759 as_bad (_("expecting `,' or `)' "
10760 "after base register in `%s'"),
10761 operand_string);
10762 return 0;
10763 }
10764 }
10765 else if (*base_string == REGISTER_PREFIX)
10766 {
10767 end_op = strchr (base_string, ',');
10768 if (end_op)
10769 *end_op = '\0';
10770 as_bad (_("bad register name `%s'"), base_string);
10771 return 0;
10772 }
10773 }
10774
10775 /* If there's an expression beginning the operand, parse it,
10776 assuming displacement_string_start and
10777 displacement_string_end are meaningful. */
10778 if (displacement_string_start != displacement_string_end)
10779 {
10780 if (!i386_displacement (displacement_string_start,
10781 displacement_string_end))
10782 return 0;
10783 }
10784
10785 /* Special case for (%dx) while doing input/output op. */
10786 if (i.base_reg
10787 && i.base_reg->reg_type.bitfield.instance == RegD
10788 && i.base_reg->reg_type.bitfield.word
10789 && i.index_reg == 0
10790 && i.log2_scale_factor == 0
10791 && i.seg[i.mem_operands] == 0
10792 && !operand_type_check (i.types[this_operand], disp))
10793 {
10794 i.types[this_operand] = i.base_reg->reg_type;
10795 return 1;
10796 }
10797
10798 if (i386_index_check (operand_string) == 0)
10799 return 0;
10800 i.flags[this_operand] |= Operand_Mem;
10801 if (i.mem_operands == 0)
10802 i.memop1_string = xstrdup (operand_string);
10803 i.mem_operands++;
10804 }
10805 else
10806 {
10807 /* It's not a memory operand; argh! */
10808 as_bad (_("invalid char %s beginning operand %d `%s'"),
10809 output_invalid (*op_string),
10810 this_operand + 1,
10811 op_string);
10812 return 0;
10813 }
10814 return 1; /* Normal return. */
10815 }
10816 \f
10817 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10818 that an rs_machine_dependent frag may reach. */
10819
10820 unsigned int
10821 i386_frag_max_var (fragS *frag)
10822 {
10823 /* The only relaxable frags are for jumps.
10824 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10825 gas_assert (frag->fr_type == rs_machine_dependent);
10826 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10827 }
10828
10829 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10830 static int
10831 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10832 {
10833 /* STT_GNU_IFUNC symbol must go through PLT. */
10834 if ((symbol_get_bfdsym (fr_symbol)->flags
10835 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10836 return 0;
10837
10838 if (!S_IS_EXTERNAL (fr_symbol))
10839 /* Symbol may be weak or local. */
10840 return !S_IS_WEAK (fr_symbol);
10841
10842 /* Global symbols with non-default visibility can't be preempted. */
10843 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10844 return 1;
10845
10846 if (fr_var != NO_RELOC)
10847 switch ((enum bfd_reloc_code_real) fr_var)
10848 {
10849 case BFD_RELOC_386_PLT32:
10850 case BFD_RELOC_X86_64_PLT32:
10851 /* Symbol with PLT relocation may be preempted. */
10852 return 0;
10853 default:
10854 abort ();
10855 }
10856
10857 /* Global symbols with default visibility in a shared library may be
10858 preempted by another definition. */
10859 return !shared;
10860 }
10861 #endif
10862
10863 /* Return the next non-empty frag. */
10864
10865 static fragS *
10866 i386_next_non_empty_frag (fragS *fragP)
10867 {
10868 /* There may be a frag with a ".fill 0" when there is no room in
10869 the current frag for frag_grow in output_insn. */
10870 for (fragP = fragP->fr_next;
10871 (fragP != NULL
10872 && fragP->fr_type == rs_fill
10873 && fragP->fr_fix == 0);
10874 fragP = fragP->fr_next)
10875 ;
10876 return fragP;
10877 }
10878
10879 /* Return the next jcc frag after BRANCH_PADDING. */
10880
10881 static fragS *
10882 i386_next_jcc_frag (fragS *fragP)
10883 {
10884 if (!fragP)
10885 return NULL;
10886
10887 if (fragP->fr_type == rs_machine_dependent
10888 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10889 == BRANCH_PADDING))
10890 {
10891 fragP = i386_next_non_empty_frag (fragP);
10892 if (fragP->fr_type != rs_machine_dependent)
10893 return NULL;
10894 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10895 return fragP;
10896 }
10897
10898 return NULL;
10899 }
10900
10901 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10902
10903 static void
10904 i386_classify_machine_dependent_frag (fragS *fragP)
10905 {
10906 fragS *cmp_fragP;
10907 fragS *pad_fragP;
10908 fragS *branch_fragP;
10909 fragS *next_fragP;
10910 unsigned int max_prefix_length;
10911
10912 if (fragP->tc_frag_data.classified)
10913 return;
10914
10915 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10916 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10917 for (next_fragP = fragP;
10918 next_fragP != NULL;
10919 next_fragP = next_fragP->fr_next)
10920 {
10921 next_fragP->tc_frag_data.classified = 1;
10922 if (next_fragP->fr_type == rs_machine_dependent)
10923 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10924 {
10925 case BRANCH_PADDING:
10926 /* The BRANCH_PADDING frag must be followed by a branch
10927 frag. */
10928 branch_fragP = i386_next_non_empty_frag (next_fragP);
10929 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10930 break;
10931 case FUSED_JCC_PADDING:
10932 /* Check if this is a fused jcc:
10933 FUSED_JCC_PADDING
10934 CMP like instruction
10935 BRANCH_PADDING
10936 COND_JUMP
10937 */
10938 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10939 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10940 branch_fragP = i386_next_jcc_frag (pad_fragP);
10941 if (branch_fragP)
10942 {
10943 /* The BRANCH_PADDING frag is merged with the
10944 FUSED_JCC_PADDING frag. */
10945 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10946 /* CMP like instruction size. */
10947 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10948 frag_wane (pad_fragP);
10949 /* Skip to branch_fragP. */
10950 next_fragP = branch_fragP;
10951 }
10952 else if (next_fragP->tc_frag_data.max_prefix_length)
10953 {
10954 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10955 a fused jcc. */
10956 next_fragP->fr_subtype
10957 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10958 next_fragP->tc_frag_data.max_bytes
10959 = next_fragP->tc_frag_data.max_prefix_length;
10960 /* This will be updated in the BRANCH_PREFIX scan. */
10961 next_fragP->tc_frag_data.max_prefix_length = 0;
10962 }
10963 else
10964 frag_wane (next_fragP);
10965 break;
10966 }
10967 }
10968
10969 /* Stop if there is no BRANCH_PREFIX. */
10970 if (!align_branch_prefix_size)
10971 return;
10972
10973 /* Scan for BRANCH_PREFIX. */
10974 for (; fragP != NULL; fragP = fragP->fr_next)
10975 {
10976 if (fragP->fr_type != rs_machine_dependent
10977 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10978 != BRANCH_PREFIX))
10979 continue;
10980
10981 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10982 COND_JUMP_PREFIX. */
10983 max_prefix_length = 0;
10984 for (next_fragP = fragP;
10985 next_fragP != NULL;
10986 next_fragP = next_fragP->fr_next)
10987 {
10988 if (next_fragP->fr_type == rs_fill)
10989 /* Skip rs_fill frags. */
10990 continue;
10991 else if (next_fragP->fr_type != rs_machine_dependent)
10992 /* Stop for all other frags. */
10993 break;
10994
10995 /* rs_machine_dependent frags. */
10996 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10997 == BRANCH_PREFIX)
10998 {
10999 /* Count BRANCH_PREFIX frags. */
11000 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11001 {
11002 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11003 frag_wane (next_fragP);
11004 }
11005 else
11006 max_prefix_length
11007 += next_fragP->tc_frag_data.max_bytes;
11008 }
11009 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11010 == BRANCH_PADDING)
11011 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11012 == FUSED_JCC_PADDING))
11013 {
11014 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11015 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11016 break;
11017 }
11018 else
11019 /* Stop for other rs_machine_dependent frags. */
11020 break;
11021 }
11022
11023 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11024
11025 /* Skip to the next frag. */
11026 fragP = next_fragP;
11027 }
11028 }
11029
11030 /* Compute padding size for
11031
11032 FUSED_JCC_PADDING
11033 CMP like instruction
11034 BRANCH_PADDING
11035 COND_JUMP/UNCOND_JUMP
11036
11037 or
11038
11039 BRANCH_PADDING
11040 COND_JUMP/UNCOND_JUMP
11041 */
11042
11043 static int
11044 i386_branch_padding_size (fragS *fragP, offsetT address)
11045 {
11046 unsigned int offset, size, padding_size;
11047 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11048
11049 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11050 if (!address)
11051 address = fragP->fr_address;
11052 address += fragP->fr_fix;
11053
11054 /* CMP like instrunction size. */
11055 size = fragP->tc_frag_data.cmp_size;
11056
11057 /* The base size of the branch frag. */
11058 size += branch_fragP->fr_fix;
11059
11060 /* Add opcode and displacement bytes for the rs_machine_dependent
11061 branch frag. */
11062 if (branch_fragP->fr_type == rs_machine_dependent)
11063 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11064
11065 /* Check if branch is within boundary and doesn't end at the last
11066 byte. */
11067 offset = address & ((1U << align_branch_power) - 1);
11068 if ((offset + size) >= (1U << align_branch_power))
11069 /* Padding needed to avoid crossing boundary. */
11070 padding_size = (1U << align_branch_power) - offset;
11071 else
11072 /* No padding needed. */
11073 padding_size = 0;
11074
11075 /* The return value may be saved in tc_frag_data.length which is
11076 unsigned byte. */
11077 if (!fits_in_unsigned_byte (padding_size))
11078 abort ();
11079
11080 return padding_size;
11081 }
11082
11083 /* i386_generic_table_relax_frag()
11084
11085 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11086 grow/shrink padding to align branch frags. Hand others to
11087 relax_frag(). */
11088
11089 long
11090 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11091 {
11092 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11093 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11094 {
11095 long padding_size = i386_branch_padding_size (fragP, 0);
11096 long grow = padding_size - fragP->tc_frag_data.length;
11097
11098 /* When the BRANCH_PREFIX frag is used, the computed address
11099 must match the actual address and there should be no padding. */
11100 if (fragP->tc_frag_data.padding_address
11101 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11102 || padding_size))
11103 abort ();
11104
11105 /* Update the padding size. */
11106 if (grow)
11107 fragP->tc_frag_data.length = padding_size;
11108
11109 return grow;
11110 }
11111 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11112 {
11113 fragS *padding_fragP, *next_fragP;
11114 long padding_size, left_size, last_size;
11115
11116 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11117 if (!padding_fragP)
11118 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11119 return (fragP->tc_frag_data.length
11120 - fragP->tc_frag_data.last_length);
11121
11122 /* Compute the relative address of the padding frag in the very
11123 first time where the BRANCH_PREFIX frag sizes are zero. */
11124 if (!fragP->tc_frag_data.padding_address)
11125 fragP->tc_frag_data.padding_address
11126 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11127
11128 /* First update the last length from the previous interation. */
11129 left_size = fragP->tc_frag_data.prefix_length;
11130 for (next_fragP = fragP;
11131 next_fragP != padding_fragP;
11132 next_fragP = next_fragP->fr_next)
11133 if (next_fragP->fr_type == rs_machine_dependent
11134 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11135 == BRANCH_PREFIX))
11136 {
11137 if (left_size)
11138 {
11139 int max = next_fragP->tc_frag_data.max_bytes;
11140 if (max)
11141 {
11142 int size;
11143 if (max > left_size)
11144 size = left_size;
11145 else
11146 size = max;
11147 left_size -= size;
11148 next_fragP->tc_frag_data.last_length = size;
11149 }
11150 }
11151 else
11152 next_fragP->tc_frag_data.last_length = 0;
11153 }
11154
11155 /* Check the padding size for the padding frag. */
11156 padding_size = i386_branch_padding_size
11157 (padding_fragP, (fragP->fr_address
11158 + fragP->tc_frag_data.padding_address));
11159
11160 last_size = fragP->tc_frag_data.prefix_length;
11161 /* Check if there is change from the last interation. */
11162 if (padding_size == last_size)
11163 {
11164 /* Update the expected address of the padding frag. */
11165 padding_fragP->tc_frag_data.padding_address
11166 = (fragP->fr_address + padding_size
11167 + fragP->tc_frag_data.padding_address);
11168 return 0;
11169 }
11170
11171 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11172 {
11173 /* No padding if there is no sufficient room. Clear the
11174 expected address of the padding frag. */
11175 padding_fragP->tc_frag_data.padding_address = 0;
11176 padding_size = 0;
11177 }
11178 else
11179 /* Store the expected address of the padding frag. */
11180 padding_fragP->tc_frag_data.padding_address
11181 = (fragP->fr_address + padding_size
11182 + fragP->tc_frag_data.padding_address);
11183
11184 fragP->tc_frag_data.prefix_length = padding_size;
11185
11186 /* Update the length for the current interation. */
11187 left_size = padding_size;
11188 for (next_fragP = fragP;
11189 next_fragP != padding_fragP;
11190 next_fragP = next_fragP->fr_next)
11191 if (next_fragP->fr_type == rs_machine_dependent
11192 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11193 == BRANCH_PREFIX))
11194 {
11195 if (left_size)
11196 {
11197 int max = next_fragP->tc_frag_data.max_bytes;
11198 if (max)
11199 {
11200 int size;
11201 if (max > left_size)
11202 size = left_size;
11203 else
11204 size = max;
11205 left_size -= size;
11206 next_fragP->tc_frag_data.length = size;
11207 }
11208 }
11209 else
11210 next_fragP->tc_frag_data.length = 0;
11211 }
11212
11213 return (fragP->tc_frag_data.length
11214 - fragP->tc_frag_data.last_length);
11215 }
11216 return relax_frag (segment, fragP, stretch);
11217 }
11218
11219 /* md_estimate_size_before_relax()
11220
11221 Called just before relax() for rs_machine_dependent frags. The x86
11222 assembler uses these frags to handle variable size jump
11223 instructions.
11224
11225 Any symbol that is now undefined will not become defined.
11226 Return the correct fr_subtype in the frag.
11227 Return the initial "guess for variable size of frag" to caller.
11228 The guess is actually the growth beyond the fixed part. Whatever
11229 we do to grow the fixed or variable part contributes to our
11230 returned value. */
11231
11232 int
11233 md_estimate_size_before_relax (fragS *fragP, segT segment)
11234 {
11235 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11236 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11237 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11238 {
11239 i386_classify_machine_dependent_frag (fragP);
11240 return fragP->tc_frag_data.length;
11241 }
11242
11243 /* We've already got fragP->fr_subtype right; all we have to do is
11244 check for un-relaxable symbols. On an ELF system, we can't relax
11245 an externally visible symbol, because it may be overridden by a
11246 shared library. */
11247 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11248 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11249 || (IS_ELF
11250 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11251 fragP->fr_var))
11252 #endif
11253 #if defined (OBJ_COFF) && defined (TE_PE)
11254 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11255 && S_IS_WEAK (fragP->fr_symbol))
11256 #endif
11257 )
11258 {
11259 /* Symbol is undefined in this segment, or we need to keep a
11260 reloc so that weak symbols can be overridden. */
11261 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11262 enum bfd_reloc_code_real reloc_type;
11263 unsigned char *opcode;
11264 int old_fr_fix;
11265
11266 if (fragP->fr_var != NO_RELOC)
11267 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11268 else if (size == 2)
11269 reloc_type = BFD_RELOC_16_PCREL;
11270 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11271 else if (need_plt32_p (fragP->fr_symbol))
11272 reloc_type = BFD_RELOC_X86_64_PLT32;
11273 #endif
11274 else
11275 reloc_type = BFD_RELOC_32_PCREL;
11276
11277 old_fr_fix = fragP->fr_fix;
11278 opcode = (unsigned char *) fragP->fr_opcode;
11279
11280 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11281 {
11282 case UNCOND_JUMP:
11283 /* Make jmp (0xeb) a (d)word displacement jump. */
11284 opcode[0] = 0xe9;
11285 fragP->fr_fix += size;
11286 fix_new (fragP, old_fr_fix, size,
11287 fragP->fr_symbol,
11288 fragP->fr_offset, 1,
11289 reloc_type);
11290 break;
11291
11292 case COND_JUMP86:
11293 if (size == 2
11294 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11295 {
11296 /* Negate the condition, and branch past an
11297 unconditional jump. */
11298 opcode[0] ^= 1;
11299 opcode[1] = 3;
11300 /* Insert an unconditional jump. */
11301 opcode[2] = 0xe9;
11302 /* We added two extra opcode bytes, and have a two byte
11303 offset. */
11304 fragP->fr_fix += 2 + 2;
11305 fix_new (fragP, old_fr_fix + 2, 2,
11306 fragP->fr_symbol,
11307 fragP->fr_offset, 1,
11308 reloc_type);
11309 break;
11310 }
11311 /* Fall through. */
11312
11313 case COND_JUMP:
11314 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11315 {
11316 fixS *fixP;
11317
11318 fragP->fr_fix += 1;
11319 fixP = fix_new (fragP, old_fr_fix, 1,
11320 fragP->fr_symbol,
11321 fragP->fr_offset, 1,
11322 BFD_RELOC_8_PCREL);
11323 fixP->fx_signed = 1;
11324 break;
11325 }
11326
11327 /* This changes the byte-displacement jump 0x7N
11328 to the (d)word-displacement jump 0x0f,0x8N. */
11329 opcode[1] = opcode[0] + 0x10;
11330 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11331 /* We've added an opcode byte. */
11332 fragP->fr_fix += 1 + size;
11333 fix_new (fragP, old_fr_fix + 1, size,
11334 fragP->fr_symbol,
11335 fragP->fr_offset, 1,
11336 reloc_type);
11337 break;
11338
11339 default:
11340 BAD_CASE (fragP->fr_subtype);
11341 break;
11342 }
11343 frag_wane (fragP);
11344 return fragP->fr_fix - old_fr_fix;
11345 }
11346
11347 /* Guess size depending on current relax state. Initially the relax
11348 state will correspond to a short jump and we return 1, because
11349 the variable part of the frag (the branch offset) is one byte
11350 long. However, we can relax a section more than once and in that
11351 case we must either set fr_subtype back to the unrelaxed state,
11352 or return the value for the appropriate branch. */
11353 return md_relax_table[fragP->fr_subtype].rlx_length;
11354 }
11355
11356 /* Called after relax() is finished.
11357
11358 In: Address of frag.
11359 fr_type == rs_machine_dependent.
11360 fr_subtype is what the address relaxed to.
11361
11362 Out: Any fixSs and constants are set up.
11363 Caller will turn frag into a ".space 0". */
11364
11365 void
11366 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11367 fragS *fragP)
11368 {
11369 unsigned char *opcode;
11370 unsigned char *where_to_put_displacement = NULL;
11371 offsetT target_address;
11372 offsetT opcode_address;
11373 unsigned int extension = 0;
11374 offsetT displacement_from_opcode_start;
11375
11376 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11377 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11378 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11379 {
11380 /* Generate nop padding. */
11381 unsigned int size = fragP->tc_frag_data.length;
11382 if (size)
11383 {
11384 if (size > fragP->tc_frag_data.max_bytes)
11385 abort ();
11386
11387 if (flag_debug)
11388 {
11389 const char *msg;
11390 const char *branch = "branch";
11391 const char *prefix = "";
11392 fragS *padding_fragP;
11393 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11394 == BRANCH_PREFIX)
11395 {
11396 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11397 switch (fragP->tc_frag_data.default_prefix)
11398 {
11399 default:
11400 abort ();
11401 break;
11402 case CS_PREFIX_OPCODE:
11403 prefix = " cs";
11404 break;
11405 case DS_PREFIX_OPCODE:
11406 prefix = " ds";
11407 break;
11408 case ES_PREFIX_OPCODE:
11409 prefix = " es";
11410 break;
11411 case FS_PREFIX_OPCODE:
11412 prefix = " fs";
11413 break;
11414 case GS_PREFIX_OPCODE:
11415 prefix = " gs";
11416 break;
11417 case SS_PREFIX_OPCODE:
11418 prefix = " ss";
11419 break;
11420 }
11421 if (padding_fragP)
11422 msg = _("%s:%u: add %d%s at 0x%llx to align "
11423 "%s within %d-byte boundary\n");
11424 else
11425 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11426 "align %s within %d-byte boundary\n");
11427 }
11428 else
11429 {
11430 padding_fragP = fragP;
11431 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11432 "%s within %d-byte boundary\n");
11433 }
11434
11435 if (padding_fragP)
11436 switch (padding_fragP->tc_frag_data.branch_type)
11437 {
11438 case align_branch_jcc:
11439 branch = "jcc";
11440 break;
11441 case align_branch_fused:
11442 branch = "fused jcc";
11443 break;
11444 case align_branch_jmp:
11445 branch = "jmp";
11446 break;
11447 case align_branch_call:
11448 branch = "call";
11449 break;
11450 case align_branch_indirect:
11451 branch = "indiret branch";
11452 break;
11453 case align_branch_ret:
11454 branch = "ret";
11455 break;
11456 default:
11457 break;
11458 }
11459
11460 fprintf (stdout, msg,
11461 fragP->fr_file, fragP->fr_line, size, prefix,
11462 (long long) fragP->fr_address, branch,
11463 1 << align_branch_power);
11464 }
11465 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11466 memset (fragP->fr_opcode,
11467 fragP->tc_frag_data.default_prefix, size);
11468 else
11469 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11470 size, 0);
11471 fragP->fr_fix += size;
11472 }
11473 return;
11474 }
11475
11476 opcode = (unsigned char *) fragP->fr_opcode;
11477
11478 /* Address we want to reach in file space. */
11479 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11480
11481 /* Address opcode resides at in file space. */
11482 opcode_address = fragP->fr_address + fragP->fr_fix;
11483
11484 /* Displacement from opcode start to fill into instruction. */
11485 displacement_from_opcode_start = target_address - opcode_address;
11486
11487 if ((fragP->fr_subtype & BIG) == 0)
11488 {
11489 /* Don't have to change opcode. */
11490 extension = 1; /* 1 opcode + 1 displacement */
11491 where_to_put_displacement = &opcode[1];
11492 }
11493 else
11494 {
11495 if (no_cond_jump_promotion
11496 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11497 as_warn_where (fragP->fr_file, fragP->fr_line,
11498 _("long jump required"));
11499
11500 switch (fragP->fr_subtype)
11501 {
11502 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11503 extension = 4; /* 1 opcode + 4 displacement */
11504 opcode[0] = 0xe9;
11505 where_to_put_displacement = &opcode[1];
11506 break;
11507
11508 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11509 extension = 2; /* 1 opcode + 2 displacement */
11510 opcode[0] = 0xe9;
11511 where_to_put_displacement = &opcode[1];
11512 break;
11513
11514 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11515 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11516 extension = 5; /* 2 opcode + 4 displacement */
11517 opcode[1] = opcode[0] + 0x10;
11518 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11519 where_to_put_displacement = &opcode[2];
11520 break;
11521
11522 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11523 extension = 3; /* 2 opcode + 2 displacement */
11524 opcode[1] = opcode[0] + 0x10;
11525 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11526 where_to_put_displacement = &opcode[2];
11527 break;
11528
11529 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11530 extension = 4;
11531 opcode[0] ^= 1;
11532 opcode[1] = 3;
11533 opcode[2] = 0xe9;
11534 where_to_put_displacement = &opcode[3];
11535 break;
11536
11537 default:
11538 BAD_CASE (fragP->fr_subtype);
11539 break;
11540 }
11541 }
11542
11543 /* If size if less then four we are sure that the operand fits,
11544 but if it's 4, then it could be that the displacement is larger
11545 then -/+ 2GB. */
11546 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11547 && object_64bit
11548 && ((addressT) (displacement_from_opcode_start - extension
11549 + ((addressT) 1 << 31))
11550 > (((addressT) 2 << 31) - 1)))
11551 {
11552 as_bad_where (fragP->fr_file, fragP->fr_line,
11553 _("jump target out of range"));
11554 /* Make us emit 0. */
11555 displacement_from_opcode_start = extension;
11556 }
11557 /* Now put displacement after opcode. */
11558 md_number_to_chars ((char *) where_to_put_displacement,
11559 (valueT) (displacement_from_opcode_start - extension),
11560 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11561 fragP->fr_fix += extension;
11562 }
11563 \f
11564 /* Apply a fixup (fixP) to segment data, once it has been determined
11565 by our caller that we have all the info we need to fix it up.
11566
11567 Parameter valP is the pointer to the value of the bits.
11568
11569 On the 386, immediates, displacements, and data pointers are all in
11570 the same (little-endian) format, so we don't need to care about which
11571 we are handling. */
11572
11573 void
11574 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11575 {
11576 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11577 valueT value = *valP;
11578
11579 #if !defined (TE_Mach)
11580 if (fixP->fx_pcrel)
11581 {
11582 switch (fixP->fx_r_type)
11583 {
11584 default:
11585 break;
11586
11587 case BFD_RELOC_64:
11588 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11589 break;
11590 case BFD_RELOC_32:
11591 case BFD_RELOC_X86_64_32S:
11592 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11593 break;
11594 case BFD_RELOC_16:
11595 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11596 break;
11597 case BFD_RELOC_8:
11598 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11599 break;
11600 }
11601 }
11602
11603 if (fixP->fx_addsy != NULL
11604 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11605 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11606 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11607 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11608 && !use_rela_relocations)
11609 {
11610 /* This is a hack. There should be a better way to handle this.
11611 This covers for the fact that bfd_install_relocation will
11612 subtract the current location (for partial_inplace, PC relative
11613 relocations); see more below. */
11614 #ifndef OBJ_AOUT
11615 if (IS_ELF
11616 #ifdef TE_PE
11617 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11618 #endif
11619 )
11620 value += fixP->fx_where + fixP->fx_frag->fr_address;
11621 #endif
11622 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11623 if (IS_ELF)
11624 {
11625 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11626
11627 if ((sym_seg == seg
11628 || (symbol_section_p (fixP->fx_addsy)
11629 && sym_seg != absolute_section))
11630 && !generic_force_reloc (fixP))
11631 {
11632 /* Yes, we add the values in twice. This is because
11633 bfd_install_relocation subtracts them out again. I think
11634 bfd_install_relocation is broken, but I don't dare change
11635 it. FIXME. */
11636 value += fixP->fx_where + fixP->fx_frag->fr_address;
11637 }
11638 }
11639 #endif
11640 #if defined (OBJ_COFF) && defined (TE_PE)
11641 /* For some reason, the PE format does not store a
11642 section address offset for a PC relative symbol. */
11643 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11644 || S_IS_WEAK (fixP->fx_addsy))
11645 value += md_pcrel_from (fixP);
11646 #endif
11647 }
11648 #if defined (OBJ_COFF) && defined (TE_PE)
11649 if (fixP->fx_addsy != NULL
11650 && S_IS_WEAK (fixP->fx_addsy)
11651 /* PR 16858: Do not modify weak function references. */
11652 && ! fixP->fx_pcrel)
11653 {
11654 #if !defined (TE_PEP)
11655 /* For x86 PE weak function symbols are neither PC-relative
11656 nor do they set S_IS_FUNCTION. So the only reliable way
11657 to detect them is to check the flags of their containing
11658 section. */
11659 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11660 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11661 ;
11662 else
11663 #endif
11664 value -= S_GET_VALUE (fixP->fx_addsy);
11665 }
11666 #endif
11667
11668 /* Fix a few things - the dynamic linker expects certain values here,
11669 and we must not disappoint it. */
11670 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11671 if (IS_ELF && fixP->fx_addsy)
11672 switch (fixP->fx_r_type)
11673 {
11674 case BFD_RELOC_386_PLT32:
11675 case BFD_RELOC_X86_64_PLT32:
11676 /* Make the jump instruction point to the address of the operand.
11677 At runtime we merely add the offset to the actual PLT entry.
11678 NB: Subtract the offset size only for jump instructions. */
11679 if (fixP->fx_pcrel)
11680 value = -4;
11681 break;
11682
11683 case BFD_RELOC_386_TLS_GD:
11684 case BFD_RELOC_386_TLS_LDM:
11685 case BFD_RELOC_386_TLS_IE_32:
11686 case BFD_RELOC_386_TLS_IE:
11687 case BFD_RELOC_386_TLS_GOTIE:
11688 case BFD_RELOC_386_TLS_GOTDESC:
11689 case BFD_RELOC_X86_64_TLSGD:
11690 case BFD_RELOC_X86_64_TLSLD:
11691 case BFD_RELOC_X86_64_GOTTPOFF:
11692 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11693 value = 0; /* Fully resolved at runtime. No addend. */
11694 /* Fallthrough */
11695 case BFD_RELOC_386_TLS_LE:
11696 case BFD_RELOC_386_TLS_LDO_32:
11697 case BFD_RELOC_386_TLS_LE_32:
11698 case BFD_RELOC_X86_64_DTPOFF32:
11699 case BFD_RELOC_X86_64_DTPOFF64:
11700 case BFD_RELOC_X86_64_TPOFF32:
11701 case BFD_RELOC_X86_64_TPOFF64:
11702 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11703 break;
11704
11705 case BFD_RELOC_386_TLS_DESC_CALL:
11706 case BFD_RELOC_X86_64_TLSDESC_CALL:
11707 value = 0; /* Fully resolved at runtime. No addend. */
11708 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11709 fixP->fx_done = 0;
11710 return;
11711
11712 case BFD_RELOC_VTABLE_INHERIT:
11713 case BFD_RELOC_VTABLE_ENTRY:
11714 fixP->fx_done = 0;
11715 return;
11716
11717 default:
11718 break;
11719 }
11720 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11721 *valP = value;
11722 #endif /* !defined (TE_Mach) */
11723
11724 /* Are we finished with this relocation now? */
11725 if (fixP->fx_addsy == NULL)
11726 fixP->fx_done = 1;
11727 #if defined (OBJ_COFF) && defined (TE_PE)
11728 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11729 {
11730 fixP->fx_done = 0;
11731 /* Remember value for tc_gen_reloc. */
11732 fixP->fx_addnumber = value;
11733 /* Clear out the frag for now. */
11734 value = 0;
11735 }
11736 #endif
11737 else if (use_rela_relocations)
11738 {
11739 fixP->fx_no_overflow = 1;
11740 /* Remember value for tc_gen_reloc. */
11741 fixP->fx_addnumber = value;
11742 value = 0;
11743 }
11744
11745 md_number_to_chars (p, value, fixP->fx_size);
11746 }
11747 \f
11748 const char *
11749 md_atof (int type, char *litP, int *sizeP)
11750 {
11751 /* This outputs the LITTLENUMs in REVERSE order;
11752 in accord with the bigendian 386. */
11753 return ieee_md_atof (type, litP, sizeP, FALSE);
11754 }
11755 \f
11756 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11757
11758 static char *
11759 output_invalid (int c)
11760 {
11761 if (ISPRINT (c))
11762 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11763 "'%c'", c);
11764 else
11765 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11766 "(0x%x)", (unsigned char) c);
11767 return output_invalid_buf;
11768 }
11769
11770 /* REG_STRING starts *before* REGISTER_PREFIX. */
11771
11772 static const reg_entry *
11773 parse_real_register (char *reg_string, char **end_op)
11774 {
11775 char *s = reg_string;
11776 char *p;
11777 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11778 const reg_entry *r;
11779
11780 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11781 if (*s == REGISTER_PREFIX)
11782 ++s;
11783
11784 if (is_space_char (*s))
11785 ++s;
11786
11787 p = reg_name_given;
11788 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11789 {
11790 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11791 return (const reg_entry *) NULL;
11792 s++;
11793 }
11794
11795 /* For naked regs, make sure that we are not dealing with an identifier.
11796 This prevents confusing an identifier like `eax_var' with register
11797 `eax'. */
11798 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11799 return (const reg_entry *) NULL;
11800
11801 *end_op = s;
11802
11803 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11804
11805 /* Handle floating point regs, allowing spaces in the (i) part. */
11806 if (r == i386_regtab /* %st is first entry of table */)
11807 {
11808 if (!cpu_arch_flags.bitfield.cpu8087
11809 && !cpu_arch_flags.bitfield.cpu287
11810 && !cpu_arch_flags.bitfield.cpu387)
11811 return (const reg_entry *) NULL;
11812
11813 if (is_space_char (*s))
11814 ++s;
11815 if (*s == '(')
11816 {
11817 ++s;
11818 if (is_space_char (*s))
11819 ++s;
11820 if (*s >= '0' && *s <= '7')
11821 {
11822 int fpr = *s - '0';
11823 ++s;
11824 if (is_space_char (*s))
11825 ++s;
11826 if (*s == ')')
11827 {
11828 *end_op = s + 1;
11829 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11830 know (r);
11831 return r + fpr;
11832 }
11833 }
11834 /* We have "%st(" then garbage. */
11835 return (const reg_entry *) NULL;
11836 }
11837 }
11838
11839 if (r == NULL || allow_pseudo_reg)
11840 return r;
11841
11842 if (operand_type_all_zero (&r->reg_type))
11843 return (const reg_entry *) NULL;
11844
11845 if ((r->reg_type.bitfield.dword
11846 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11847 || r->reg_type.bitfield.class == RegCR
11848 || r->reg_type.bitfield.class == RegDR
11849 || r->reg_type.bitfield.class == RegTR)
11850 && !cpu_arch_flags.bitfield.cpui386)
11851 return (const reg_entry *) NULL;
11852
11853 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11854 return (const reg_entry *) NULL;
11855
11856 if (!cpu_arch_flags.bitfield.cpuavx512f)
11857 {
11858 if (r->reg_type.bitfield.zmmword
11859 || r->reg_type.bitfield.class == RegMask)
11860 return (const reg_entry *) NULL;
11861
11862 if (!cpu_arch_flags.bitfield.cpuavx)
11863 {
11864 if (r->reg_type.bitfield.ymmword)
11865 return (const reg_entry *) NULL;
11866
11867 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11868 return (const reg_entry *) NULL;
11869 }
11870 }
11871
11872 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11873 return (const reg_entry *) NULL;
11874
11875 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11876 if (!allow_index_reg && r->reg_num == RegIZ)
11877 return (const reg_entry *) NULL;
11878
11879 /* Upper 16 vector registers are only available with VREX in 64bit
11880 mode, and require EVEX encoding. */
11881 if (r->reg_flags & RegVRex)
11882 {
11883 if (!cpu_arch_flags.bitfield.cpuavx512f
11884 || flag_code != CODE_64BIT)
11885 return (const reg_entry *) NULL;
11886
11887 i.vec_encoding = vex_encoding_evex;
11888 }
11889
11890 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11891 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11892 && flag_code != CODE_64BIT)
11893 return (const reg_entry *) NULL;
11894
11895 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11896 && !intel_syntax)
11897 return (const reg_entry *) NULL;
11898
11899 return r;
11900 }
11901
11902 /* REG_STRING starts *before* REGISTER_PREFIX. */
11903
11904 static const reg_entry *
11905 parse_register (char *reg_string, char **end_op)
11906 {
11907 const reg_entry *r;
11908
11909 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11910 r = parse_real_register (reg_string, end_op);
11911 else
11912 r = NULL;
11913 if (!r)
11914 {
11915 char *save = input_line_pointer;
11916 char c;
11917 symbolS *symbolP;
11918
11919 input_line_pointer = reg_string;
11920 c = get_symbol_name (&reg_string);
11921 symbolP = symbol_find (reg_string);
11922 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11923 {
11924 const expressionS *e = symbol_get_value_expression (symbolP);
11925
11926 know (e->X_op == O_register);
11927 know (e->X_add_number >= 0
11928 && (valueT) e->X_add_number < i386_regtab_size);
11929 r = i386_regtab + e->X_add_number;
11930 if ((r->reg_flags & RegVRex))
11931 i.vec_encoding = vex_encoding_evex;
11932 *end_op = input_line_pointer;
11933 }
11934 *input_line_pointer = c;
11935 input_line_pointer = save;
11936 }
11937 return r;
11938 }
11939
11940 int
11941 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11942 {
11943 const reg_entry *r;
11944 char *end = input_line_pointer;
11945
11946 *end = *nextcharP;
11947 r = parse_register (name, &input_line_pointer);
11948 if (r && end <= input_line_pointer)
11949 {
11950 *nextcharP = *input_line_pointer;
11951 *input_line_pointer = 0;
11952 e->X_op = O_register;
11953 e->X_add_number = r - i386_regtab;
11954 return 1;
11955 }
11956 input_line_pointer = end;
11957 *end = 0;
11958 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11959 }
11960
11961 void
11962 md_operand (expressionS *e)
11963 {
11964 char *end;
11965 const reg_entry *r;
11966
11967 switch (*input_line_pointer)
11968 {
11969 case REGISTER_PREFIX:
11970 r = parse_real_register (input_line_pointer, &end);
11971 if (r)
11972 {
11973 e->X_op = O_register;
11974 e->X_add_number = r - i386_regtab;
11975 input_line_pointer = end;
11976 }
11977 break;
11978
11979 case '[':
11980 gas_assert (intel_syntax);
11981 end = input_line_pointer++;
11982 expression (e);
11983 if (*input_line_pointer == ']')
11984 {
11985 ++input_line_pointer;
11986 e->X_op_symbol = make_expr_symbol (e);
11987 e->X_add_symbol = NULL;
11988 e->X_add_number = 0;
11989 e->X_op = O_index;
11990 }
11991 else
11992 {
11993 e->X_op = O_absent;
11994 input_line_pointer = end;
11995 }
11996 break;
11997 }
11998 }
11999
12000 \f
12001 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12002 const char *md_shortopts = "kVQ:sqnO::";
12003 #else
12004 const char *md_shortopts = "qnO::";
12005 #endif
12006
12007 #define OPTION_32 (OPTION_MD_BASE + 0)
12008 #define OPTION_64 (OPTION_MD_BASE + 1)
12009 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12010 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12011 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12012 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12013 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12014 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12015 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12016 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12017 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12018 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12019 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12020 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12021 #define OPTION_X32 (OPTION_MD_BASE + 14)
12022 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12023 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12024 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12025 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12026 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12027 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12028 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12029 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12030 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12031 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12032 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12033 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12034 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12035 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12036 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12037 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12038
12039 struct option md_longopts[] =
12040 {
12041 {"32", no_argument, NULL, OPTION_32},
12042 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12043 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12044 {"64", no_argument, NULL, OPTION_64},
12045 #endif
12046 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12047 {"x32", no_argument, NULL, OPTION_X32},
12048 {"mshared", no_argument, NULL, OPTION_MSHARED},
12049 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12050 #endif
12051 {"divide", no_argument, NULL, OPTION_DIVIDE},
12052 {"march", required_argument, NULL, OPTION_MARCH},
12053 {"mtune", required_argument, NULL, OPTION_MTUNE},
12054 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12055 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12056 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12057 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12058 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12059 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12060 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12061 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12062 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12063 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12064 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12065 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12066 # if defined (TE_PE) || defined (TE_PEP)
12067 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12068 #endif
12069 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12070 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12071 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12072 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12073 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12074 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12075 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12076 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12077 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12078 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12079 {NULL, no_argument, NULL, 0}
12080 };
12081 size_t md_longopts_size = sizeof (md_longopts);
12082
12083 int
12084 md_parse_option (int c, const char *arg)
12085 {
12086 unsigned int j;
12087 char *arch, *next, *saved, *type;
12088
12089 switch (c)
12090 {
12091 case 'n':
12092 optimize_align_code = 0;
12093 break;
12094
12095 case 'q':
12096 quiet_warnings = 1;
12097 break;
12098
12099 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12100 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12101 should be emitted or not. FIXME: Not implemented. */
12102 case 'Q':
12103 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12104 return 0;
12105 break;
12106
12107 /* -V: SVR4 argument to print version ID. */
12108 case 'V':
12109 print_version_id ();
12110 break;
12111
12112 /* -k: Ignore for FreeBSD compatibility. */
12113 case 'k':
12114 break;
12115
12116 case 's':
12117 /* -s: On i386 Solaris, this tells the native assembler to use
12118 .stab instead of .stab.excl. We always use .stab anyhow. */
12119 break;
12120
12121 case OPTION_MSHARED:
12122 shared = 1;
12123 break;
12124
12125 case OPTION_X86_USED_NOTE:
12126 if (strcasecmp (arg, "yes") == 0)
12127 x86_used_note = 1;
12128 else if (strcasecmp (arg, "no") == 0)
12129 x86_used_note = 0;
12130 else
12131 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12132 break;
12133
12134
12135 #endif
12136 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12137 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12138 case OPTION_64:
12139 {
12140 const char **list, **l;
12141
12142 list = bfd_target_list ();
12143 for (l = list; *l != NULL; l++)
12144 if (CONST_STRNEQ (*l, "elf64-x86-64")
12145 || strcmp (*l, "coff-x86-64") == 0
12146 || strcmp (*l, "pe-x86-64") == 0
12147 || strcmp (*l, "pei-x86-64") == 0
12148 || strcmp (*l, "mach-o-x86-64") == 0)
12149 {
12150 default_arch = "x86_64";
12151 break;
12152 }
12153 if (*l == NULL)
12154 as_fatal (_("no compiled in support for x86_64"));
12155 free (list);
12156 }
12157 break;
12158 #endif
12159
12160 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12161 case OPTION_X32:
12162 if (IS_ELF)
12163 {
12164 const char **list, **l;
12165
12166 list = bfd_target_list ();
12167 for (l = list; *l != NULL; l++)
12168 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12169 {
12170 default_arch = "x86_64:32";
12171 break;
12172 }
12173 if (*l == NULL)
12174 as_fatal (_("no compiled in support for 32bit x86_64"));
12175 free (list);
12176 }
12177 else
12178 as_fatal (_("32bit x86_64 is only supported for ELF"));
12179 break;
12180 #endif
12181
12182 case OPTION_32:
12183 default_arch = "i386";
12184 break;
12185
12186 case OPTION_DIVIDE:
12187 #ifdef SVR4_COMMENT_CHARS
12188 {
12189 char *n, *t;
12190 const char *s;
12191
12192 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12193 t = n;
12194 for (s = i386_comment_chars; *s != '\0'; s++)
12195 if (*s != '/')
12196 *t++ = *s;
12197 *t = '\0';
12198 i386_comment_chars = n;
12199 }
12200 #endif
12201 break;
12202
12203 case OPTION_MARCH:
12204 saved = xstrdup (arg);
12205 arch = saved;
12206 /* Allow -march=+nosse. */
12207 if (*arch == '+')
12208 arch++;
12209 do
12210 {
12211 if (*arch == '.')
12212 as_fatal (_("invalid -march= option: `%s'"), arg);
12213 next = strchr (arch, '+');
12214 if (next)
12215 *next++ = '\0';
12216 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12217 {
12218 if (strcmp (arch, cpu_arch [j].name) == 0)
12219 {
12220 /* Processor. */
12221 if (! cpu_arch[j].flags.bitfield.cpui386)
12222 continue;
12223
12224 cpu_arch_name = cpu_arch[j].name;
12225 cpu_sub_arch_name = NULL;
12226 cpu_arch_flags = cpu_arch[j].flags;
12227 cpu_arch_isa = cpu_arch[j].type;
12228 cpu_arch_isa_flags = cpu_arch[j].flags;
12229 if (!cpu_arch_tune_set)
12230 {
12231 cpu_arch_tune = cpu_arch_isa;
12232 cpu_arch_tune_flags = cpu_arch_isa_flags;
12233 }
12234 break;
12235 }
12236 else if (*cpu_arch [j].name == '.'
12237 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12238 {
12239 /* ISA extension. */
12240 i386_cpu_flags flags;
12241
12242 flags = cpu_flags_or (cpu_arch_flags,
12243 cpu_arch[j].flags);
12244
12245 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12246 {
12247 if (cpu_sub_arch_name)
12248 {
12249 char *name = cpu_sub_arch_name;
12250 cpu_sub_arch_name = concat (name,
12251 cpu_arch[j].name,
12252 (const char *) NULL);
12253 free (name);
12254 }
12255 else
12256 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12257 cpu_arch_flags = flags;
12258 cpu_arch_isa_flags = flags;
12259 }
12260 else
12261 cpu_arch_isa_flags
12262 = cpu_flags_or (cpu_arch_isa_flags,
12263 cpu_arch[j].flags);
12264 break;
12265 }
12266 }
12267
12268 if (j >= ARRAY_SIZE (cpu_arch))
12269 {
12270 /* Disable an ISA extension. */
12271 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12272 if (strcmp (arch, cpu_noarch [j].name) == 0)
12273 {
12274 i386_cpu_flags flags;
12275
12276 flags = cpu_flags_and_not (cpu_arch_flags,
12277 cpu_noarch[j].flags);
12278 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12279 {
12280 if (cpu_sub_arch_name)
12281 {
12282 char *name = cpu_sub_arch_name;
12283 cpu_sub_arch_name = concat (arch,
12284 (const char *) NULL);
12285 free (name);
12286 }
12287 else
12288 cpu_sub_arch_name = xstrdup (arch);
12289 cpu_arch_flags = flags;
12290 cpu_arch_isa_flags = flags;
12291 }
12292 break;
12293 }
12294
12295 if (j >= ARRAY_SIZE (cpu_noarch))
12296 j = ARRAY_SIZE (cpu_arch);
12297 }
12298
12299 if (j >= ARRAY_SIZE (cpu_arch))
12300 as_fatal (_("invalid -march= option: `%s'"), arg);
12301
12302 arch = next;
12303 }
12304 while (next != NULL);
12305 free (saved);
12306 break;
12307
12308 case OPTION_MTUNE:
12309 if (*arg == '.')
12310 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12311 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12312 {
12313 if (strcmp (arg, cpu_arch [j].name) == 0)
12314 {
12315 cpu_arch_tune_set = 1;
12316 cpu_arch_tune = cpu_arch [j].type;
12317 cpu_arch_tune_flags = cpu_arch[j].flags;
12318 break;
12319 }
12320 }
12321 if (j >= ARRAY_SIZE (cpu_arch))
12322 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12323 break;
12324
12325 case OPTION_MMNEMONIC:
12326 if (strcasecmp (arg, "att") == 0)
12327 intel_mnemonic = 0;
12328 else if (strcasecmp (arg, "intel") == 0)
12329 intel_mnemonic = 1;
12330 else
12331 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12332 break;
12333
12334 case OPTION_MSYNTAX:
12335 if (strcasecmp (arg, "att") == 0)
12336 intel_syntax = 0;
12337 else if (strcasecmp (arg, "intel") == 0)
12338 intel_syntax = 1;
12339 else
12340 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12341 break;
12342
12343 case OPTION_MINDEX_REG:
12344 allow_index_reg = 1;
12345 break;
12346
12347 case OPTION_MNAKED_REG:
12348 allow_naked_reg = 1;
12349 break;
12350
12351 case OPTION_MSSE2AVX:
12352 sse2avx = 1;
12353 break;
12354
12355 case OPTION_MSSE_CHECK:
12356 if (strcasecmp (arg, "error") == 0)
12357 sse_check = check_error;
12358 else if (strcasecmp (arg, "warning") == 0)
12359 sse_check = check_warning;
12360 else if (strcasecmp (arg, "none") == 0)
12361 sse_check = check_none;
12362 else
12363 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12364 break;
12365
12366 case OPTION_MOPERAND_CHECK:
12367 if (strcasecmp (arg, "error") == 0)
12368 operand_check = check_error;
12369 else if (strcasecmp (arg, "warning") == 0)
12370 operand_check = check_warning;
12371 else if (strcasecmp (arg, "none") == 0)
12372 operand_check = check_none;
12373 else
12374 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12375 break;
12376
12377 case OPTION_MAVXSCALAR:
12378 if (strcasecmp (arg, "128") == 0)
12379 avxscalar = vex128;
12380 else if (strcasecmp (arg, "256") == 0)
12381 avxscalar = vex256;
12382 else
12383 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12384 break;
12385
12386 case OPTION_MVEXWIG:
12387 if (strcmp (arg, "0") == 0)
12388 vexwig = vexw0;
12389 else if (strcmp (arg, "1") == 0)
12390 vexwig = vexw1;
12391 else
12392 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12393 break;
12394
12395 case OPTION_MADD_BND_PREFIX:
12396 add_bnd_prefix = 1;
12397 break;
12398
12399 case OPTION_MEVEXLIG:
12400 if (strcmp (arg, "128") == 0)
12401 evexlig = evexl128;
12402 else if (strcmp (arg, "256") == 0)
12403 evexlig = evexl256;
12404 else if (strcmp (arg, "512") == 0)
12405 evexlig = evexl512;
12406 else
12407 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12408 break;
12409
12410 case OPTION_MEVEXRCIG:
12411 if (strcmp (arg, "rne") == 0)
12412 evexrcig = rne;
12413 else if (strcmp (arg, "rd") == 0)
12414 evexrcig = rd;
12415 else if (strcmp (arg, "ru") == 0)
12416 evexrcig = ru;
12417 else if (strcmp (arg, "rz") == 0)
12418 evexrcig = rz;
12419 else
12420 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12421 break;
12422
12423 case OPTION_MEVEXWIG:
12424 if (strcmp (arg, "0") == 0)
12425 evexwig = evexw0;
12426 else if (strcmp (arg, "1") == 0)
12427 evexwig = evexw1;
12428 else
12429 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12430 break;
12431
12432 # if defined (TE_PE) || defined (TE_PEP)
12433 case OPTION_MBIG_OBJ:
12434 use_big_obj = 1;
12435 break;
12436 #endif
12437
12438 case OPTION_MOMIT_LOCK_PREFIX:
12439 if (strcasecmp (arg, "yes") == 0)
12440 omit_lock_prefix = 1;
12441 else if (strcasecmp (arg, "no") == 0)
12442 omit_lock_prefix = 0;
12443 else
12444 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12445 break;
12446
12447 case OPTION_MFENCE_AS_LOCK_ADD:
12448 if (strcasecmp (arg, "yes") == 0)
12449 avoid_fence = 1;
12450 else if (strcasecmp (arg, "no") == 0)
12451 avoid_fence = 0;
12452 else
12453 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12454 break;
12455
12456 case OPTION_MRELAX_RELOCATIONS:
12457 if (strcasecmp (arg, "yes") == 0)
12458 generate_relax_relocations = 1;
12459 else if (strcasecmp (arg, "no") == 0)
12460 generate_relax_relocations = 0;
12461 else
12462 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12463 break;
12464
12465 case OPTION_MALIGN_BRANCH_BOUNDARY:
12466 {
12467 char *end;
12468 long int align = strtoul (arg, &end, 0);
12469 if (*end == '\0')
12470 {
12471 if (align == 0)
12472 {
12473 align_branch_power = 0;
12474 break;
12475 }
12476 else if (align >= 16)
12477 {
12478 int align_power;
12479 for (align_power = 0;
12480 (align & 1) == 0;
12481 align >>= 1, align_power++)
12482 continue;
12483 /* Limit alignment power to 31. */
12484 if (align == 1 && align_power < 32)
12485 {
12486 align_branch_power = align_power;
12487 break;
12488 }
12489 }
12490 }
12491 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12492 }
12493 break;
12494
12495 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12496 {
12497 char *end;
12498 int align = strtoul (arg, &end, 0);
12499 /* Some processors only support 5 prefixes. */
12500 if (*end == '\0' && align >= 0 && align < 6)
12501 {
12502 align_branch_prefix_size = align;
12503 break;
12504 }
12505 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12506 arg);
12507 }
12508 break;
12509
12510 case OPTION_MALIGN_BRANCH:
12511 align_branch = 0;
12512 saved = xstrdup (arg);
12513 type = saved;
12514 do
12515 {
12516 next = strchr (type, '+');
12517 if (next)
12518 *next++ = '\0';
12519 if (strcasecmp (type, "jcc") == 0)
12520 align_branch |= align_branch_jcc_bit;
12521 else if (strcasecmp (type, "fused") == 0)
12522 align_branch |= align_branch_fused_bit;
12523 else if (strcasecmp (type, "jmp") == 0)
12524 align_branch |= align_branch_jmp_bit;
12525 else if (strcasecmp (type, "call") == 0)
12526 align_branch |= align_branch_call_bit;
12527 else if (strcasecmp (type, "ret") == 0)
12528 align_branch |= align_branch_ret_bit;
12529 else if (strcasecmp (type, "indirect") == 0)
12530 align_branch |= align_branch_indirect_bit;
12531 else
12532 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12533 type = next;
12534 }
12535 while (next != NULL);
12536 free (saved);
12537 break;
12538
12539 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12540 align_branch_power = 5;
12541 align_branch_prefix_size = 5;
12542 align_branch = (align_branch_jcc_bit
12543 | align_branch_fused_bit
12544 | align_branch_jmp_bit);
12545 break;
12546
12547 case OPTION_MAMD64:
12548 isa64 = amd64;
12549 break;
12550
12551 case OPTION_MINTEL64:
12552 isa64 = intel64;
12553 break;
12554
12555 case 'O':
12556 if (arg == NULL)
12557 {
12558 optimize = 1;
12559 /* Turn off -Os. */
12560 optimize_for_space = 0;
12561 }
12562 else if (*arg == 's')
12563 {
12564 optimize_for_space = 1;
12565 /* Turn on all encoding optimizations. */
12566 optimize = INT_MAX;
12567 }
12568 else
12569 {
12570 optimize = atoi (arg);
12571 /* Turn off -Os. */
12572 optimize_for_space = 0;
12573 }
12574 break;
12575
12576 default:
12577 return 0;
12578 }
12579 return 1;
12580 }
12581
12582 #define MESSAGE_TEMPLATE \
12583 " "
12584
12585 static char *
12586 output_message (FILE *stream, char *p, char *message, char *start,
12587 int *left_p, const char *name, int len)
12588 {
12589 int size = sizeof (MESSAGE_TEMPLATE);
12590 int left = *left_p;
12591
12592 /* Reserve 2 spaces for ", " or ",\0" */
12593 left -= len + 2;
12594
12595 /* Check if there is any room. */
12596 if (left >= 0)
12597 {
12598 if (p != start)
12599 {
12600 *p++ = ',';
12601 *p++ = ' ';
12602 }
12603 p = mempcpy (p, name, len);
12604 }
12605 else
12606 {
12607 /* Output the current message now and start a new one. */
12608 *p++ = ',';
12609 *p = '\0';
12610 fprintf (stream, "%s\n", message);
12611 p = start;
12612 left = size - (start - message) - len - 2;
12613
12614 gas_assert (left >= 0);
12615
12616 p = mempcpy (p, name, len);
12617 }
12618
12619 *left_p = left;
12620 return p;
12621 }
12622
12623 static void
12624 show_arch (FILE *stream, int ext, int check)
12625 {
12626 static char message[] = MESSAGE_TEMPLATE;
12627 char *start = message + 27;
12628 char *p;
12629 int size = sizeof (MESSAGE_TEMPLATE);
12630 int left;
12631 const char *name;
12632 int len;
12633 unsigned int j;
12634
12635 p = start;
12636 left = size - (start - message);
12637 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12638 {
12639 /* Should it be skipped? */
12640 if (cpu_arch [j].skip)
12641 continue;
12642
12643 name = cpu_arch [j].name;
12644 len = cpu_arch [j].len;
12645 if (*name == '.')
12646 {
12647 /* It is an extension. Skip if we aren't asked to show it. */
12648 if (ext)
12649 {
12650 name++;
12651 len--;
12652 }
12653 else
12654 continue;
12655 }
12656 else if (ext)
12657 {
12658 /* It is an processor. Skip if we show only extension. */
12659 continue;
12660 }
12661 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12662 {
12663 /* It is an impossible processor - skip. */
12664 continue;
12665 }
12666
12667 p = output_message (stream, p, message, start, &left, name, len);
12668 }
12669
12670 /* Display disabled extensions. */
12671 if (ext)
12672 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12673 {
12674 name = cpu_noarch [j].name;
12675 len = cpu_noarch [j].len;
12676 p = output_message (stream, p, message, start, &left, name,
12677 len);
12678 }
12679
12680 *p = '\0';
12681 fprintf (stream, "%s\n", message);
12682 }
12683
12684 void
12685 md_show_usage (FILE *stream)
12686 {
12687 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12688 fprintf (stream, _("\
12689 -Qy, -Qn ignored\n\
12690 -V print assembler version number\n\
12691 -k ignored\n"));
12692 #endif
12693 fprintf (stream, _("\
12694 -n Do not optimize code alignment\n\
12695 -q quieten some warnings\n"));
12696 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12697 fprintf (stream, _("\
12698 -s ignored\n"));
12699 #endif
12700 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12701 || defined (TE_PE) || defined (TE_PEP))
12702 fprintf (stream, _("\
12703 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12704 #endif
12705 #ifdef SVR4_COMMENT_CHARS
12706 fprintf (stream, _("\
12707 --divide do not treat `/' as a comment character\n"));
12708 #else
12709 fprintf (stream, _("\
12710 --divide ignored\n"));
12711 #endif
12712 fprintf (stream, _("\
12713 -march=CPU[,+EXTENSION...]\n\
12714 generate code for CPU and EXTENSION, CPU is one of:\n"));
12715 show_arch (stream, 0, 1);
12716 fprintf (stream, _("\
12717 EXTENSION is combination of:\n"));
12718 show_arch (stream, 1, 0);
12719 fprintf (stream, _("\
12720 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12721 show_arch (stream, 0, 0);
12722 fprintf (stream, _("\
12723 -msse2avx encode SSE instructions with VEX prefix\n"));
12724 fprintf (stream, _("\
12725 -msse-check=[none|error|warning] (default: warning)\n\
12726 check SSE instructions\n"));
12727 fprintf (stream, _("\
12728 -moperand-check=[none|error|warning] (default: warning)\n\
12729 check operand combinations for validity\n"));
12730 fprintf (stream, _("\
12731 -mavxscalar=[128|256] (default: 128)\n\
12732 encode scalar AVX instructions with specific vector\n\
12733 length\n"));
12734 fprintf (stream, _("\
12735 -mvexwig=[0|1] (default: 0)\n\
12736 encode VEX instructions with specific VEX.W value\n\
12737 for VEX.W bit ignored instructions\n"));
12738 fprintf (stream, _("\
12739 -mevexlig=[128|256|512] (default: 128)\n\
12740 encode scalar EVEX instructions with specific vector\n\
12741 length\n"));
12742 fprintf (stream, _("\
12743 -mevexwig=[0|1] (default: 0)\n\
12744 encode EVEX instructions with specific EVEX.W value\n\
12745 for EVEX.W bit ignored instructions\n"));
12746 fprintf (stream, _("\
12747 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12748 encode EVEX instructions with specific EVEX.RC value\n\
12749 for SAE-only ignored instructions\n"));
12750 fprintf (stream, _("\
12751 -mmnemonic=[att|intel] "));
12752 if (SYSV386_COMPAT)
12753 fprintf (stream, _("(default: att)\n"));
12754 else
12755 fprintf (stream, _("(default: intel)\n"));
12756 fprintf (stream, _("\
12757 use AT&T/Intel mnemonic\n"));
12758 fprintf (stream, _("\
12759 -msyntax=[att|intel] (default: att)\n\
12760 use AT&T/Intel syntax\n"));
12761 fprintf (stream, _("\
12762 -mindex-reg support pseudo index registers\n"));
12763 fprintf (stream, _("\
12764 -mnaked-reg don't require `%%' prefix for registers\n"));
12765 fprintf (stream, _("\
12766 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12767 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12768 fprintf (stream, _("\
12769 -mshared disable branch optimization for shared code\n"));
12770 fprintf (stream, _("\
12771 -mx86-used-note=[no|yes] "));
12772 if (DEFAULT_X86_USED_NOTE)
12773 fprintf (stream, _("(default: yes)\n"));
12774 else
12775 fprintf (stream, _("(default: no)\n"));
12776 fprintf (stream, _("\
12777 generate x86 used ISA and feature properties\n"));
12778 #endif
12779 #if defined (TE_PE) || defined (TE_PEP)
12780 fprintf (stream, _("\
12781 -mbig-obj generate big object files\n"));
12782 #endif
12783 fprintf (stream, _("\
12784 -momit-lock-prefix=[no|yes] (default: no)\n\
12785 strip all lock prefixes\n"));
12786 fprintf (stream, _("\
12787 -mfence-as-lock-add=[no|yes] (default: no)\n\
12788 encode lfence, mfence and sfence as\n\
12789 lock addl $0x0, (%%{re}sp)\n"));
12790 fprintf (stream, _("\
12791 -mrelax-relocations=[no|yes] "));
12792 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12793 fprintf (stream, _("(default: yes)\n"));
12794 else
12795 fprintf (stream, _("(default: no)\n"));
12796 fprintf (stream, _("\
12797 generate relax relocations\n"));
12798 fprintf (stream, _("\
12799 -malign-branch-boundary=NUM (default: 0)\n\
12800 align branches within NUM byte boundary\n"));
12801 fprintf (stream, _("\
12802 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12803 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12804 indirect\n\
12805 specify types of branches to align\n"));
12806 fprintf (stream, _("\
12807 -malign-branch-prefix-size=NUM (default: 5)\n\
12808 align branches with NUM prefixes per instruction\n"));
12809 fprintf (stream, _("\
12810 -mbranches-within-32B-boundaries\n\
12811 align branches within 32 byte boundary\n"));
12812 fprintf (stream, _("\
12813 -mamd64 accept only AMD64 ISA [default]\n"));
12814 fprintf (stream, _("\
12815 -mintel64 accept only Intel64 ISA\n"));
12816 }
12817
12818 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12819 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12820 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12821
12822 /* Pick the target format to use. */
12823
12824 const char *
12825 i386_target_format (void)
12826 {
12827 if (!strncmp (default_arch, "x86_64", 6))
12828 {
12829 update_code_flag (CODE_64BIT, 1);
12830 if (default_arch[6] == '\0')
12831 x86_elf_abi = X86_64_ABI;
12832 else
12833 x86_elf_abi = X86_64_X32_ABI;
12834 }
12835 else if (!strcmp (default_arch, "i386"))
12836 update_code_flag (CODE_32BIT, 1);
12837 else if (!strcmp (default_arch, "iamcu"))
12838 {
12839 update_code_flag (CODE_32BIT, 1);
12840 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12841 {
12842 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12843 cpu_arch_name = "iamcu";
12844 cpu_sub_arch_name = NULL;
12845 cpu_arch_flags = iamcu_flags;
12846 cpu_arch_isa = PROCESSOR_IAMCU;
12847 cpu_arch_isa_flags = iamcu_flags;
12848 if (!cpu_arch_tune_set)
12849 {
12850 cpu_arch_tune = cpu_arch_isa;
12851 cpu_arch_tune_flags = cpu_arch_isa_flags;
12852 }
12853 }
12854 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12855 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12856 cpu_arch_name);
12857 }
12858 else
12859 as_fatal (_("unknown architecture"));
12860
12861 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12862 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12863 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12864 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12865
12866 switch (OUTPUT_FLAVOR)
12867 {
12868 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12869 case bfd_target_aout_flavour:
12870 return AOUT_TARGET_FORMAT;
12871 #endif
12872 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12873 # if defined (TE_PE) || defined (TE_PEP)
12874 case bfd_target_coff_flavour:
12875 if (flag_code == CODE_64BIT)
12876 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12877 else
12878 return "pe-i386";
12879 # elif defined (TE_GO32)
12880 case bfd_target_coff_flavour:
12881 return "coff-go32";
12882 # else
12883 case bfd_target_coff_flavour:
12884 return "coff-i386";
12885 # endif
12886 #endif
12887 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12888 case bfd_target_elf_flavour:
12889 {
12890 const char *format;
12891
12892 switch (x86_elf_abi)
12893 {
12894 default:
12895 format = ELF_TARGET_FORMAT;
12896 #ifndef TE_SOLARIS
12897 tls_get_addr = "___tls_get_addr";
12898 #endif
12899 break;
12900 case X86_64_ABI:
12901 use_rela_relocations = 1;
12902 object_64bit = 1;
12903 #ifndef TE_SOLARIS
12904 tls_get_addr = "__tls_get_addr";
12905 #endif
12906 format = ELF_TARGET_FORMAT64;
12907 break;
12908 case X86_64_X32_ABI:
12909 use_rela_relocations = 1;
12910 object_64bit = 1;
12911 #ifndef TE_SOLARIS
12912 tls_get_addr = "__tls_get_addr";
12913 #endif
12914 disallow_64bit_reloc = 1;
12915 format = ELF_TARGET_FORMAT32;
12916 break;
12917 }
12918 if (cpu_arch_isa == PROCESSOR_L1OM)
12919 {
12920 if (x86_elf_abi != X86_64_ABI)
12921 as_fatal (_("Intel L1OM is 64bit only"));
12922 return ELF_TARGET_L1OM_FORMAT;
12923 }
12924 else if (cpu_arch_isa == PROCESSOR_K1OM)
12925 {
12926 if (x86_elf_abi != X86_64_ABI)
12927 as_fatal (_("Intel K1OM is 64bit only"));
12928 return ELF_TARGET_K1OM_FORMAT;
12929 }
12930 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12931 {
12932 if (x86_elf_abi != I386_ABI)
12933 as_fatal (_("Intel MCU is 32bit only"));
12934 return ELF_TARGET_IAMCU_FORMAT;
12935 }
12936 else
12937 return format;
12938 }
12939 #endif
12940 #if defined (OBJ_MACH_O)
12941 case bfd_target_mach_o_flavour:
12942 if (flag_code == CODE_64BIT)
12943 {
12944 use_rela_relocations = 1;
12945 object_64bit = 1;
12946 return "mach-o-x86-64";
12947 }
12948 else
12949 return "mach-o-i386";
12950 #endif
12951 default:
12952 abort ();
12953 return NULL;
12954 }
12955 }
12956
12957 #endif /* OBJ_MAYBE_ more than one */
12958 \f
12959 symbolS *
12960 md_undefined_symbol (char *name)
12961 {
12962 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12963 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12964 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12965 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12966 {
12967 if (!GOT_symbol)
12968 {
12969 if (symbol_find (name))
12970 as_bad (_("GOT already in symbol table"));
12971 GOT_symbol = symbol_new (name, undefined_section,
12972 (valueT) 0, &zero_address_frag);
12973 };
12974 return GOT_symbol;
12975 }
12976 return 0;
12977 }
12978
12979 /* Round up a section size to the appropriate boundary. */
12980
12981 valueT
12982 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
12983 {
12984 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12985 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12986 {
12987 /* For a.out, force the section size to be aligned. If we don't do
12988 this, BFD will align it for us, but it will not write out the
12989 final bytes of the section. This may be a bug in BFD, but it is
12990 easier to fix it here since that is how the other a.out targets
12991 work. */
12992 int align;
12993
12994 align = bfd_section_alignment (segment);
12995 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
12996 }
12997 #endif
12998
12999 return size;
13000 }
13001
13002 /* On the i386, PC-relative offsets are relative to the start of the
13003 next instruction. That is, the address of the offset, plus its
13004 size, since the offset is always the last part of the insn. */
13005
13006 long
13007 md_pcrel_from (fixS *fixP)
13008 {
13009 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13010 }
13011
13012 #ifndef I386COFF
13013
13014 static void
13015 s_bss (int ignore ATTRIBUTE_UNUSED)
13016 {
13017 int temp;
13018
13019 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13020 if (IS_ELF)
13021 obj_elf_section_change_hook ();
13022 #endif
13023 temp = get_absolute_expression ();
13024 subseg_set (bss_section, (subsegT) temp);
13025 demand_empty_rest_of_line ();
13026 }
13027
13028 #endif
13029
13030 /* Remember constant directive. */
13031
13032 void
13033 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13034 {
13035 if (last_insn.kind != last_insn_directive
13036 && (bfd_section_flags (now_seg) & SEC_CODE))
13037 {
13038 last_insn.seg = now_seg;
13039 last_insn.kind = last_insn_directive;
13040 last_insn.name = "constant directive";
13041 last_insn.file = as_where (&last_insn.line);
13042 }
13043 }
13044
13045 void
13046 i386_validate_fix (fixS *fixp)
13047 {
13048 if (fixp->fx_subsy)
13049 {
13050 if (fixp->fx_subsy == GOT_symbol)
13051 {
13052 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13053 {
13054 if (!object_64bit)
13055 abort ();
13056 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13057 if (fixp->fx_tcbit2)
13058 fixp->fx_r_type = (fixp->fx_tcbit
13059 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13060 : BFD_RELOC_X86_64_GOTPCRELX);
13061 else
13062 #endif
13063 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13064 }
13065 else
13066 {
13067 if (!object_64bit)
13068 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13069 else
13070 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13071 }
13072 fixp->fx_subsy = 0;
13073 }
13074 }
13075 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13076 else if (!object_64bit)
13077 {
13078 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13079 && fixp->fx_tcbit2)
13080 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13081 }
13082 #endif
13083 }
13084
13085 arelent *
13086 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13087 {
13088 arelent *rel;
13089 bfd_reloc_code_real_type code;
13090
13091 switch (fixp->fx_r_type)
13092 {
13093 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13094 case BFD_RELOC_SIZE32:
13095 case BFD_RELOC_SIZE64:
13096 if (S_IS_DEFINED (fixp->fx_addsy)
13097 && !S_IS_EXTERNAL (fixp->fx_addsy))
13098 {
13099 /* Resolve size relocation against local symbol to size of
13100 the symbol plus addend. */
13101 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13102 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13103 && !fits_in_unsigned_long (value))
13104 as_bad_where (fixp->fx_file, fixp->fx_line,
13105 _("symbol size computation overflow"));
13106 fixp->fx_addsy = NULL;
13107 fixp->fx_subsy = NULL;
13108 md_apply_fix (fixp, (valueT *) &value, NULL);
13109 return NULL;
13110 }
13111 #endif
13112 /* Fall through. */
13113
13114 case BFD_RELOC_X86_64_PLT32:
13115 case BFD_RELOC_X86_64_GOT32:
13116 case BFD_RELOC_X86_64_GOTPCREL:
13117 case BFD_RELOC_X86_64_GOTPCRELX:
13118 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13119 case BFD_RELOC_386_PLT32:
13120 case BFD_RELOC_386_GOT32:
13121 case BFD_RELOC_386_GOT32X:
13122 case BFD_RELOC_386_GOTOFF:
13123 case BFD_RELOC_386_GOTPC:
13124 case BFD_RELOC_386_TLS_GD:
13125 case BFD_RELOC_386_TLS_LDM:
13126 case BFD_RELOC_386_TLS_LDO_32:
13127 case BFD_RELOC_386_TLS_IE_32:
13128 case BFD_RELOC_386_TLS_IE:
13129 case BFD_RELOC_386_TLS_GOTIE:
13130 case BFD_RELOC_386_TLS_LE_32:
13131 case BFD_RELOC_386_TLS_LE:
13132 case BFD_RELOC_386_TLS_GOTDESC:
13133 case BFD_RELOC_386_TLS_DESC_CALL:
13134 case BFD_RELOC_X86_64_TLSGD:
13135 case BFD_RELOC_X86_64_TLSLD:
13136 case BFD_RELOC_X86_64_DTPOFF32:
13137 case BFD_RELOC_X86_64_DTPOFF64:
13138 case BFD_RELOC_X86_64_GOTTPOFF:
13139 case BFD_RELOC_X86_64_TPOFF32:
13140 case BFD_RELOC_X86_64_TPOFF64:
13141 case BFD_RELOC_X86_64_GOTOFF64:
13142 case BFD_RELOC_X86_64_GOTPC32:
13143 case BFD_RELOC_X86_64_GOT64:
13144 case BFD_RELOC_X86_64_GOTPCREL64:
13145 case BFD_RELOC_X86_64_GOTPC64:
13146 case BFD_RELOC_X86_64_GOTPLT64:
13147 case BFD_RELOC_X86_64_PLTOFF64:
13148 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13149 case BFD_RELOC_X86_64_TLSDESC_CALL:
13150 case BFD_RELOC_RVA:
13151 case BFD_RELOC_VTABLE_ENTRY:
13152 case BFD_RELOC_VTABLE_INHERIT:
13153 #ifdef TE_PE
13154 case BFD_RELOC_32_SECREL:
13155 #endif
13156 code = fixp->fx_r_type;
13157 break;
13158 case BFD_RELOC_X86_64_32S:
13159 if (!fixp->fx_pcrel)
13160 {
13161 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13162 code = fixp->fx_r_type;
13163 break;
13164 }
13165 /* Fall through. */
13166 default:
13167 if (fixp->fx_pcrel)
13168 {
13169 switch (fixp->fx_size)
13170 {
13171 default:
13172 as_bad_where (fixp->fx_file, fixp->fx_line,
13173 _("can not do %d byte pc-relative relocation"),
13174 fixp->fx_size);
13175 code = BFD_RELOC_32_PCREL;
13176 break;
13177 case 1: code = BFD_RELOC_8_PCREL; break;
13178 case 2: code = BFD_RELOC_16_PCREL; break;
13179 case 4: code = BFD_RELOC_32_PCREL; break;
13180 #ifdef BFD64
13181 case 8: code = BFD_RELOC_64_PCREL; break;
13182 #endif
13183 }
13184 }
13185 else
13186 {
13187 switch (fixp->fx_size)
13188 {
13189 default:
13190 as_bad_where (fixp->fx_file, fixp->fx_line,
13191 _("can not do %d byte relocation"),
13192 fixp->fx_size);
13193 code = BFD_RELOC_32;
13194 break;
13195 case 1: code = BFD_RELOC_8; break;
13196 case 2: code = BFD_RELOC_16; break;
13197 case 4: code = BFD_RELOC_32; break;
13198 #ifdef BFD64
13199 case 8: code = BFD_RELOC_64; break;
13200 #endif
13201 }
13202 }
13203 break;
13204 }
13205
13206 if ((code == BFD_RELOC_32
13207 || code == BFD_RELOC_32_PCREL
13208 || code == BFD_RELOC_X86_64_32S)
13209 && GOT_symbol
13210 && fixp->fx_addsy == GOT_symbol)
13211 {
13212 if (!object_64bit)
13213 code = BFD_RELOC_386_GOTPC;
13214 else
13215 code = BFD_RELOC_X86_64_GOTPC32;
13216 }
13217 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13218 && GOT_symbol
13219 && fixp->fx_addsy == GOT_symbol)
13220 {
13221 code = BFD_RELOC_X86_64_GOTPC64;
13222 }
13223
13224 rel = XNEW (arelent);
13225 rel->sym_ptr_ptr = XNEW (asymbol *);
13226 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13227
13228 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13229
13230 if (!use_rela_relocations)
13231 {
13232 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13233 vtable entry to be used in the relocation's section offset. */
13234 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13235 rel->address = fixp->fx_offset;
13236 #if defined (OBJ_COFF) && defined (TE_PE)
13237 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13238 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13239 else
13240 #endif
13241 rel->addend = 0;
13242 }
13243 /* Use the rela in 64bit mode. */
13244 else
13245 {
13246 if (disallow_64bit_reloc)
13247 switch (code)
13248 {
13249 case BFD_RELOC_X86_64_DTPOFF64:
13250 case BFD_RELOC_X86_64_TPOFF64:
13251 case BFD_RELOC_64_PCREL:
13252 case BFD_RELOC_X86_64_GOTOFF64:
13253 case BFD_RELOC_X86_64_GOT64:
13254 case BFD_RELOC_X86_64_GOTPCREL64:
13255 case BFD_RELOC_X86_64_GOTPC64:
13256 case BFD_RELOC_X86_64_GOTPLT64:
13257 case BFD_RELOC_X86_64_PLTOFF64:
13258 as_bad_where (fixp->fx_file, fixp->fx_line,
13259 _("cannot represent relocation type %s in x32 mode"),
13260 bfd_get_reloc_code_name (code));
13261 break;
13262 default:
13263 break;
13264 }
13265
13266 if (!fixp->fx_pcrel)
13267 rel->addend = fixp->fx_offset;
13268 else
13269 switch (code)
13270 {
13271 case BFD_RELOC_X86_64_PLT32:
13272 case BFD_RELOC_X86_64_GOT32:
13273 case BFD_RELOC_X86_64_GOTPCREL:
13274 case BFD_RELOC_X86_64_GOTPCRELX:
13275 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13276 case BFD_RELOC_X86_64_TLSGD:
13277 case BFD_RELOC_X86_64_TLSLD:
13278 case BFD_RELOC_X86_64_GOTTPOFF:
13279 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13280 case BFD_RELOC_X86_64_TLSDESC_CALL:
13281 rel->addend = fixp->fx_offset - fixp->fx_size;
13282 break;
13283 default:
13284 rel->addend = (section->vma
13285 - fixp->fx_size
13286 + fixp->fx_addnumber
13287 + md_pcrel_from (fixp));
13288 break;
13289 }
13290 }
13291
13292 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13293 if (rel->howto == NULL)
13294 {
13295 as_bad_where (fixp->fx_file, fixp->fx_line,
13296 _("cannot represent relocation type %s"),
13297 bfd_get_reloc_code_name (code));
13298 /* Set howto to a garbage value so that we can keep going. */
13299 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13300 gas_assert (rel->howto != NULL);
13301 }
13302
13303 return rel;
13304 }
13305
13306 #include "tc-i386-intel.c"
13307
13308 void
13309 tc_x86_parse_to_dw2regnum (expressionS *exp)
13310 {
13311 int saved_naked_reg;
13312 char saved_register_dot;
13313
13314 saved_naked_reg = allow_naked_reg;
13315 allow_naked_reg = 1;
13316 saved_register_dot = register_chars['.'];
13317 register_chars['.'] = '.';
13318 allow_pseudo_reg = 1;
13319 expression_and_evaluate (exp);
13320 allow_pseudo_reg = 0;
13321 register_chars['.'] = saved_register_dot;
13322 allow_naked_reg = saved_naked_reg;
13323
13324 if (exp->X_op == O_register && exp->X_add_number >= 0)
13325 {
13326 if ((addressT) exp->X_add_number < i386_regtab_size)
13327 {
13328 exp->X_op = O_constant;
13329 exp->X_add_number = i386_regtab[exp->X_add_number]
13330 .dw2_regnum[flag_code >> 1];
13331 }
13332 else
13333 exp->X_op = O_illegal;
13334 }
13335 }
13336
13337 void
13338 tc_x86_frame_initial_instructions (void)
13339 {
13340 static unsigned int sp_regno[2];
13341
13342 if (!sp_regno[flag_code >> 1])
13343 {
13344 char *saved_input = input_line_pointer;
13345 char sp[][4] = {"esp", "rsp"};
13346 expressionS exp;
13347
13348 input_line_pointer = sp[flag_code >> 1];
13349 tc_x86_parse_to_dw2regnum (&exp);
13350 gas_assert (exp.X_op == O_constant);
13351 sp_regno[flag_code >> 1] = exp.X_add_number;
13352 input_line_pointer = saved_input;
13353 }
13354
13355 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13356 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13357 }
13358
13359 int
13360 x86_dwarf2_addr_size (void)
13361 {
13362 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13363 if (x86_elf_abi == X86_64_X32_ABI)
13364 return 4;
13365 #endif
13366 return bfd_arch_bits_per_address (stdoutput) / 8;
13367 }
13368
13369 int
13370 i386_elf_section_type (const char *str, size_t len)
13371 {
13372 if (flag_code == CODE_64BIT
13373 && len == sizeof ("unwind") - 1
13374 && strncmp (str, "unwind", 6) == 0)
13375 return SHT_X86_64_UNWIND;
13376
13377 return -1;
13378 }
13379
13380 #ifdef TE_SOLARIS
13381 void
13382 i386_solaris_fix_up_eh_frame (segT sec)
13383 {
13384 if (flag_code == CODE_64BIT)
13385 elf_section_type (sec) = SHT_X86_64_UNWIND;
13386 }
13387 #endif
13388
13389 #ifdef TE_PE
13390 void
13391 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13392 {
13393 expressionS exp;
13394
13395 exp.X_op = O_secrel;
13396 exp.X_add_symbol = symbol;
13397 exp.X_add_number = 0;
13398 emit_expr (&exp, size);
13399 }
13400 #endif
13401
13402 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13403 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13404
13405 bfd_vma
13406 x86_64_section_letter (int letter, const char **ptr_msg)
13407 {
13408 if (flag_code == CODE_64BIT)
13409 {
13410 if (letter == 'l')
13411 return SHF_X86_64_LARGE;
13412
13413 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13414 }
13415 else
13416 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13417 return -1;
13418 }
13419
13420 bfd_vma
13421 x86_64_section_word (char *str, size_t len)
13422 {
13423 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13424 return SHF_X86_64_LARGE;
13425
13426 return -1;
13427 }
13428
13429 static void
13430 handle_large_common (int small ATTRIBUTE_UNUSED)
13431 {
13432 if (flag_code != CODE_64BIT)
13433 {
13434 s_comm_internal (0, elf_common_parse);
13435 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13436 }
13437 else
13438 {
13439 static segT lbss_section;
13440 asection *saved_com_section_ptr = elf_com_section_ptr;
13441 asection *saved_bss_section = bss_section;
13442
13443 if (lbss_section == NULL)
13444 {
13445 flagword applicable;
13446 segT seg = now_seg;
13447 subsegT subseg = now_subseg;
13448
13449 /* The .lbss section is for local .largecomm symbols. */
13450 lbss_section = subseg_new (".lbss", 0);
13451 applicable = bfd_applicable_section_flags (stdoutput);
13452 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13453 seg_info (lbss_section)->bss = 1;
13454
13455 subseg_set (seg, subseg);
13456 }
13457
13458 elf_com_section_ptr = &_bfd_elf_large_com_section;
13459 bss_section = lbss_section;
13460
13461 s_comm_internal (0, elf_common_parse);
13462
13463 elf_com_section_ptr = saved_com_section_ptr;
13464 bss_section = saved_bss_section;
13465 }
13466 }
13467 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.47023 seconds and 3 git commands to generate.