5866bd618e81caa7a9895cee3f699f8f744e8f0a
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
370 modrm_byte rm;
371 rex_byte rex;
372 rex_byte vrex;
373 sib_byte sib;
374 vex_prefix vex;
375
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
393 dir_encoding_store,
394 dir_encoding_swap
395 } dir_encoding;
396
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
404
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
420 /* REP prefix. */
421 const char *rep_prefix;
422
423 /* HLE prefix. */
424 const char *hle_prefix;
425
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
432 /* Error message. */
433 enum i386_error error;
434 };
435
436 typedef struct _i386_insn i386_insn;
437
438 /* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440 struct RC_name
441 {
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445 };
446
447 static const struct RC_name RC_NamesTable[] =
448 {
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454 };
455
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars[] = "*%-([{}"
459 #ifdef LEX_AT
460 "@"
461 #endif
462 #ifdef LEX_QM
463 "?"
464 #endif
465 ;
466
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars = "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
481
482 #else
483 const char *i386_comment_chars = "#";
484 #define PREFIX_SEPARATOR '/'
485 #endif
486
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars[] = "#/";
496
497 const char line_separator_chars[] = ";";
498
499 /* Chars that can be used to separate mant from exp in floating point
500 nums. */
501 const char EXP_CHARS[] = "eE";
502
503 /* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
506 const char FLT_CHARS[] = "fFdDxX";
507
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars[256];
510 static char register_chars[256];
511 static char operand_chars[256];
512 static char identifier_chars[256];
513 static char digit_chars[256];
514
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
522
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack[32];
531 static char *save_stack_p;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
537 /* The instruction we're assembling. */
538 static i386_insn i;
539
540 /* Possible templates for current insn. */
541 static const templates *current_templates;
542
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
546
547 /* Current operand we are working on. */
548 static int this_operand = -1;
549
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553 enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558 static enum flag_code flag_code;
559 static unsigned int object_64bit;
560 static unsigned int disallow_64bit_reloc;
561 static int use_rela_relocations = 0;
562
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
567 /* The ELF ABI to use. */
568 enum x86_elf_abi
569 {
570 I386_ABI,
571 X86_64_ABI,
572 X86_64_X32_ABI
573 };
574
575 static enum x86_elf_abi x86_elf_abi = I386_ABI;
576 #endif
577
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj = 0;
581 #endif
582
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared = 0;
586 #endif
587
588 /* 1 for intel syntax,
589 0 if att syntax. */
590 static int intel_syntax = 0;
591
592 /* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594 static int intel64;
595
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic = !SYSV386_COMPAT;
599
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg = 0;
602
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg = 0;
605
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609 static int add_bnd_prefix = 0;
610
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg = 0;
613
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix = 0;
617
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence = 0;
621
622 /* 1 if the assembler should generate relax relocations. */
623
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
627 static enum check_kind
628 {
629 check_none = 0,
630 check_warning,
631 check_error
632 }
633 sse_check, operand_check = check_warning;
634
635 /* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640 static int optimize = 0;
641
642 /* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649 static int optimize_for_space = 0;
650
651 /* Register prefix used for error message. */
652 static const char *register_prefix = "%";
653
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size = '\0';
658
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code = 1;
661
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings = 0;
664
665 /* CPU name. */
666 static const char *cpu_arch_name = NULL;
667 static char *cpu_sub_arch_name = NULL;
668
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set = 0;
674
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
677
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags;
680
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
683
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags;
686
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion = 0;
690
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx;
693
694 /* Encode scalar AVX instructions with specific vector length. */
695 static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
701 /* Encode VEX WIG instructions with specific vex.w. */
702 static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
709 static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716 /* Encode EVEX WIG instructions with specific evex.w. */
717 static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig = rne;
725
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS *GOT_symbol;
728
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column;
731
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment;
734
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
739
740 /* Types. */
741 #define UNCOND_JUMP 0
742 #define COND_JUMP 1
743 #define COND_JUMP86 2
744
745 /* Sizes. */
746 #define CODE16 1
747 #define SMALL 0
748 #define SMALL16 (SMALL | CODE16)
749 #define BIG 2
750 #define BIG16 (BIG | CODE16)
751
752 #ifndef INLINE
753 #ifdef __GNUC__
754 #define INLINE __inline__
755 #else
756 #define INLINE
757 #endif
758 #endif
759
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
766
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775 const relax_typeS md_relax_table[] =
776 {
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
782
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
788 {0, 0, 4, 0},
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
791 {0, 0, 2, 0},
792
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
812 };
813
814 static const arch_entry cpu_arch[] =
815 {
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
819 CPU_GENERIC32_FLAGS, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
821 CPU_GENERIC64_FLAGS, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
823 CPU_NONE_FLAGS, 0 },
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
825 CPU_I186_FLAGS, 0 },
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
827 CPU_I286_FLAGS, 0 },
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
829 CPU_I386_FLAGS, 0 },
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
831 CPU_I486_FLAGS, 0 },
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
833 CPU_I586_FLAGS, 0 },
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
835 CPU_I686_FLAGS, 0 },
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
837 CPU_I586_FLAGS, 0 },
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
839 CPU_PENTIUMPRO_FLAGS, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
841 CPU_P2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
843 CPU_P3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
845 CPU_P4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
847 CPU_CORE_FLAGS, 0 },
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
849 CPU_NOCONA_FLAGS, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
851 CPU_CORE_FLAGS, 1 },
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
853 CPU_CORE_FLAGS, 0 },
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
855 CPU_CORE2_FLAGS, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
857 CPU_CORE2_FLAGS, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
859 CPU_COREI7_FLAGS, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
861 CPU_L1OM_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
863 CPU_K1OM_FLAGS, 0 },
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
865 CPU_IAMCU_FLAGS, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
867 CPU_K6_FLAGS, 0 },
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
869 CPU_K6_2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
871 CPU_ATHLON_FLAGS, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
873 CPU_K8_FLAGS, 1 },
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
875 CPU_K8_FLAGS, 0 },
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
877 CPU_K8_FLAGS, 0 },
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
879 CPU_AMDFAM10_FLAGS, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
881 CPU_BDVER1_FLAGS, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
883 CPU_BDVER2_FLAGS, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
885 CPU_BDVER3_FLAGS, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
887 CPU_BDVER4_FLAGS, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
889 CPU_ZNVER1_FLAGS, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
893 CPU_BTVER1_FLAGS, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
895 CPU_BTVER2_FLAGS, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
897 CPU_8087_FLAGS, 0 },
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
899 CPU_287_FLAGS, 0 },
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
901 CPU_387_FLAGS, 0 },
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
909 CPU_MMX_FLAGS, 0 },
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
911 CPU_SSE_FLAGS, 0 },
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
913 CPU_SSE2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
915 CPU_SSE3_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
917 CPU_SSSE3_FLAGS, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
919 CPU_SSE4_1_FLAGS, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
921 CPU_SSE4_2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
923 CPU_SSE4_2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
925 CPU_AVX_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
927 CPU_AVX2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
929 CPU_AVX512F_FLAGS, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
931 CPU_AVX512CD_FLAGS, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
933 CPU_AVX512ER_FLAGS, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
935 CPU_AVX512PF_FLAGS, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
937 CPU_AVX512DQ_FLAGS, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
939 CPU_AVX512BW_FLAGS, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
941 CPU_AVX512VL_FLAGS, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
943 CPU_VMX_FLAGS, 0 },
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
945 CPU_VMFUNC_FLAGS, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
947 CPU_SMX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
949 CPU_XSAVE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
951 CPU_XSAVEOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
953 CPU_XSAVEC_FLAGS, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
955 CPU_XSAVES_FLAGS, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
957 CPU_AES_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
959 CPU_PCLMUL_FLAGS, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
961 CPU_PCLMUL_FLAGS, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
963 CPU_FSGSBASE_FLAGS, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
965 CPU_RDRND_FLAGS, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
967 CPU_F16C_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
969 CPU_BMI2_FLAGS, 0 },
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
971 CPU_FMA_FLAGS, 0 },
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
973 CPU_FMA4_FLAGS, 0 },
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
975 CPU_XOP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
977 CPU_LWP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
979 CPU_MOVBE_FLAGS, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
981 CPU_CX16_FLAGS, 0 },
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
983 CPU_EPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
985 CPU_LZCNT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
987 CPU_HLE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
989 CPU_RTM_FLAGS, 0 },
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
991 CPU_INVPCID_FLAGS, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
993 CPU_CLFLUSH_FLAGS, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
995 CPU_NOP_FLAGS, 0 },
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
997 CPU_SYSCALL_FLAGS, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
999 CPU_RDTSCP_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1001 CPU_3DNOW_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1003 CPU_3DNOWA_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1005 CPU_PADLOCK_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1007 CPU_SVME_FLAGS, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1009 CPU_SVME_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1011 CPU_SSE4A_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1013 CPU_ABM_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1015 CPU_BMI_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1017 CPU_TBM_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1019 CPU_ADX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1021 CPU_RDSEED_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1023 CPU_PRFCHW_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1025 CPU_SMAP_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1027 CPU_MPX_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1029 CPU_SHA_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1031 CPU_CLFLUSHOPT_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1033 CPU_PREFETCHWT1_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1035 CPU_SE1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1037 CPU_CLWB_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512IFMA_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1041 CPU_AVX512VBMI_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1055 CPU_CLZERO_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1057 CPU_MWAITX_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1059 CPU_OSPKE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1061 CPU_RDPID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
1092 };
1093
1094 static const noarch_entry cpu_noarch[] =
1095 {
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1134 };
1135
1136 #ifdef I386COFF
1137 /* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140 static symbolS *
1141 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142 {
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
1147 if (needs_align
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
1151
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169 }
1170
1171 static void
1172 pe_lcomm (int needs_align)
1173 {
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175 }
1176 #endif
1177
1178 const pseudo_typeS md_pseudo_table[] =
1179 {
1180 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182 #else
1183 {"align", s_align_ptwo, 0},
1184 #endif
1185 {"arch", set_cpu_arch, 0},
1186 #ifndef I386COFF
1187 {"bss", s_bss, 0},
1188 #else
1189 {"lcomm", pe_lcomm, 1},
1190 #endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
1195 {"slong", signed_cons, 4},
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
1201 #ifdef BFD64
1202 {"code64", set_code_flag, CODE_64BIT},
1203 #endif
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
1214 #else
1215 {"file", dwarf2_directive_file, 0},
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1218 #endif
1219 #ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221 #endif
1222 {0, 0, 0}
1223 };
1224
1225 /* For interface with expression (). */
1226 extern char *input_line_pointer;
1227
1228 /* Hash table for instruction mnemonic lookup. */
1229 static struct hash_control *op_hash;
1230
1231 /* Hash table for register lookup. */
1232 static struct hash_control *reg_hash;
1233 \f
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
1237 static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239 static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241 static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243 static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1245 static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247 static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1249 static const unsigned char f16_3[] =
1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1251 static const unsigned char f16_4[] =
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253 static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255 static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257 static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
1259 /* 32-bit NOPs patterns. */
1260 static const unsigned char *const f32_patt[] = {
1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1262 };
1263 /* 16-bit NOPs patterns. */
1264 static const unsigned char *const f16_patt[] = {
1265 f32_1, f32_2, f16_3, f16_4
1266 };
1267 /* nopl (%[re]ax) */
1268 static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270 /* nopl 0(%[re]ax) */
1271 static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273 /* nopl 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopw 0(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279 /* nopl 0L(%[re]ax) */
1280 static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282 /* nopl 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw 0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289 static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* data16 nopw %cs:0L(%eax,%eax,1) */
1292 static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1294 /* 32-bit and 64-bit NOPs patterns. */
1295 static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1297 alt_9, alt_10, alt_11
1298 };
1299
1300 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303 static void
1304 i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307 {
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
1324 {
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
1327 }
1328
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
1350 }
1351
1352 static INLINE int
1353 fits_in_imm7 (offsetT num)
1354 {
1355 return (num & 0x7f) == num;
1356 }
1357
1358 static INLINE int
1359 fits_in_imm31 (offsetT num)
1360 {
1361 return (num & 0x7fffffff) == num;
1362 }
1363
1364 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367 void
1368 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1369 {
1370 const unsigned char *const *patt = NULL;
1371 int max_single_nop_size;
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
1374
1375 switch (fragP->fr_type)
1376 {
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
1381 return;
1382 }
1383
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
1386
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1393 be used.
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
1404 }
1405 else
1406 {
1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
1422 case PROCESSOR_CORE:
1423 case PROCESSOR_CORE2:
1424 case PROCESSOR_COREI7:
1425 case PROCESSOR_L1OM:
1426 case PROCESSOR_K1OM:
1427 case PROCESSOR_GENERIC64:
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
1431 case PROCESSOR_AMDFAM10:
1432 case PROCESSOR_BD:
1433 case PROCESSOR_ZNVER:
1434 case PROCESSOR_BT:
1435 patt = alt_patt;
1436 break;
1437 case PROCESSOR_I386:
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
1440 case PROCESSOR_PENTIUMPRO:
1441 case PROCESSOR_IAMCU:
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
1445 }
1446 }
1447 else
1448 {
1449 switch (fragP->tc_frag_data.tune)
1450 {
1451 case PROCESSOR_UNKNOWN:
1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
1457 case PROCESSOR_I386:
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
1460 case PROCESSOR_IAMCU:
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
1464 case PROCESSOR_AMDFAM10:
1465 case PROCESSOR_BD:
1466 case PROCESSOR_ZNVER:
1467 case PROCESSOR_BT:
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1472 patt = alt_patt;
1473 else
1474 patt = f32_patt;
1475 break;
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
1480 case PROCESSOR_CORE2:
1481 case PROCESSOR_COREI7:
1482 case PROCESSOR_L1OM:
1483 case PROCESSOR_K1OM:
1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1485 patt = alt_patt;
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
1490 patt = alt_patt;
1491 break;
1492 }
1493 }
1494
1495 if (patt == f32_patt)
1496 {
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
1500 }
1501 else
1502 {
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
1565 }
1566 }
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
1570 }
1571
1572 static INLINE int
1573 operand_type_all_zero (const union i386_operand_type *x)
1574 {
1575 switch (ARRAY_SIZE(x->array))
1576 {
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1580 /* Fall through. */
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1584 /* Fall through. */
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590 }
1591
1592 static INLINE void
1593 operand_type_set (union i386_operand_type *x, unsigned int v)
1594 {
1595 switch (ARRAY_SIZE(x->array))
1596 {
1597 case 3:
1598 x->array[2] = v;
1599 /* Fall through. */
1600 case 2:
1601 x->array[1] = v;
1602 /* Fall through. */
1603 case 1:
1604 x->array[0] = v;
1605 /* Fall through. */
1606 break;
1607 default:
1608 abort ();
1609 }
1610 }
1611
1612 static INLINE int
1613 operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
1615 {
1616 switch (ARRAY_SIZE(x->array))
1617 {
1618 case 3:
1619 if (x->array[2] != y->array[2])
1620 return 0;
1621 /* Fall through. */
1622 case 2:
1623 if (x->array[1] != y->array[1])
1624 return 0;
1625 /* Fall through. */
1626 case 1:
1627 return x->array[0] == y->array[0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 }
1633
1634 static INLINE int
1635 cpu_flags_all_zero (const union i386_cpu_flags *x)
1636 {
1637 switch (ARRAY_SIZE(x->array))
1638 {
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1646 /* Fall through. */
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1650 /* Fall through. */
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656 }
1657
1658 static INLINE int
1659 cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661 {
1662 switch (ARRAY_SIZE(x->array))
1663 {
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1671 /* Fall through. */
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1675 /* Fall through. */
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682 }
1683
1684 static INLINE int
1685 cpu_flags_check_cpu64 (i386_cpu_flags f)
1686 {
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1689 }
1690
1691 static INLINE i386_cpu_flags
1692 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1693 {
1694 switch (ARRAY_SIZE (x.array))
1695 {
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
1699 case 3:
1700 x.array [2] &= y.array [2];
1701 /* Fall through. */
1702 case 2:
1703 x.array [1] &= y.array [1];
1704 /* Fall through. */
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712 }
1713
1714 static INLINE i386_cpu_flags
1715 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1716 {
1717 switch (ARRAY_SIZE (x.array))
1718 {
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
1722 case 3:
1723 x.array [2] |= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] |= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] |= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static INLINE i386_cpu_flags
1738 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739 {
1740 switch (ARRAY_SIZE (x.array))
1741 {
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1747 /* Fall through. */
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1750 /* Fall through. */
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758 }
1759
1760 #define CPU_FLAGS_ARCH_MATCH 0x1
1761 #define CPU_FLAGS_64BIT_MATCH 0x2
1762
1763 #define CPU_FLAGS_PERFECT_MATCH \
1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1765
1766 /* Return CPU flags match bits. */
1767
1768 static int
1769 cpu_flags_match (const insn_template *t)
1770 {
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
1777 if (cpu_flags_all_zero (&x))
1778 {
1779 /* This instruction is available on all archs. */
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
1782 else
1783 {
1784 /* This instruction is available only on some archs. */
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
1792 cpu = cpu_flags_and (x, cpu);
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
1795 if (x.bitfield.cpuavx)
1796 {
1797 /* We need to check a few extra flags with AVX. */
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
1804 }
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 else
1815 match |= CPU_FLAGS_ARCH_MATCH;
1816 }
1817 }
1818 return match;
1819 }
1820
1821 static INLINE i386_operand_type
1822 operand_type_and (i386_operand_type x, i386_operand_type y)
1823 {
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1828 /* Fall through. */
1829 case 2:
1830 x.array [1] &= y.array [1];
1831 /* Fall through. */
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
1839 }
1840
1841 static INLINE i386_operand_type
1842 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843 {
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859 }
1860
1861 static INLINE i386_operand_type
1862 operand_type_or (i386_operand_type x, i386_operand_type y)
1863 {
1864 switch (ARRAY_SIZE (x.array))
1865 {
1866 case 3:
1867 x.array [2] |= y.array [2];
1868 /* Fall through. */
1869 case 2:
1870 x.array [1] |= y.array [1];
1871 /* Fall through. */
1872 case 1:
1873 x.array [0] |= y.array [0];
1874 break;
1875 default:
1876 abort ();
1877 }
1878 return x;
1879 }
1880
1881 static INLINE i386_operand_type
1882 operand_type_xor (i386_operand_type x, i386_operand_type y)
1883 {
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1888 /* Fall through. */
1889 case 2:
1890 x.array [1] ^= y.array [1];
1891 /* Fall through. */
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
1898 return x;
1899 }
1900
1901 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905 static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
1907 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1908 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1909 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919 enum operand_type
1920 {
1921 reg,
1922 imm,
1923 disp,
1924 anymem
1925 };
1926
1927 static INLINE int
1928 operand_type_check (i386_operand_type t, enum operand_type c)
1929 {
1930 switch (c)
1931 {
1932 case reg:
1933 return t.bitfield.reg;
1934
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
1961
1962 return 0;
1963 }
1964
1965 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
1967
1968 static INLINE int
1969 match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
1971 {
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
1982 }
1983
1984 /* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1997 }
1998
1999 /* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
2001
2002 static INLINE int
2003 match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
2005 {
2006 return (match_operand_size (t, wanted, given)
2007 && !((i.types[given].bitfield.unspecified
2008 && !i.broadcast
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
2016 || ((t->operand_types[wanted].bitfield.regsimd
2017 && !t->opcode_modifier.broadcast
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
2026 }
2027
2028 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
2032
2033 #define MATCH_STRAIGHT 1
2034 #define MATCH_REVERSE 2
2035
2036 static INLINE unsigned int
2037 operand_size_match (const insn_template *t)
2038 {
2039 unsigned int j, match = MATCH_STRAIGHT;
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
2053 continue;
2054
2055 if (t->operand_types[j].bitfield.reg
2056 && !match_operand_size (t, j, j))
2057 {
2058 match = 0;
2059 break;
2060 }
2061
2062 if (t->operand_types[j].bitfield.regsimd
2063 && !match_simd_size (t, j, j))
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2071 {
2072 match = 0;
2073 break;
2074 }
2075
2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
2083 if (!t->opcode_modifier.d)
2084 {
2085 mismatch:
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
2089 }
2090
2091 /* Check reverse. */
2092 gas_assert (i.operands >= 2 && i.operands <= 3);
2093
2094 for (j = 0; j < i.operands; j++)
2095 {
2096 unsigned int given = i.operands - j - 1;
2097
2098 if (t->operand_types[j].bitfield.reg
2099 && !match_operand_size (t, j, given))
2100 goto mismatch;
2101
2102 if (t->operand_types[j].bitfield.regsimd
2103 && !match_simd_size (t, j, given))
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
2109 goto mismatch;
2110
2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2112 goto mismatch;
2113 }
2114
2115 return match | MATCH_REVERSE;
2116 }
2117
2118 static INLINE int
2119 operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121 {
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
2125 temp.bitfield.unspecified = 0;
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
2133 temp.bitfield.ymmword = 0;
2134 temp.bitfield.zmmword = 0;
2135 if (operand_type_all_zero (&temp))
2136 goto mismatch;
2137
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142 mismatch:
2143 i.error = operand_type_mismatch;
2144 return 0;
2145 }
2146
2147 /* If given types g0 and g1 are registers they must be of the same type
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
2151
2152 static INLINE int
2153 operand_type_register_match (i386_operand_type g0,
2154 i386_operand_type t0,
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157 {
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
2163 return 1;
2164
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
2170 return 1;
2171
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2179 return 1;
2180
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2188 return 1;
2189
2190 i.error = register_type_mismatch;
2191
2192 return 0;
2193 }
2194
2195 static INLINE unsigned int
2196 register_number (const reg_entry *r)
2197 {
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
2206 return nr;
2207 }
2208
2209 static INLINE unsigned int
2210 mode_from_disp_size (i386_operand_type t)
2211 {
2212 if (t.bitfield.disp8)
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
2220 }
2221
2222 static INLINE int
2223 fits_in_signed_byte (addressT num)
2224 {
2225 return num + 0x80 <= 0xff;
2226 }
2227
2228 static INLINE int
2229 fits_in_unsigned_byte (addressT num)
2230 {
2231 return num <= 0xff;
2232 }
2233
2234 static INLINE int
2235 fits_in_unsigned_word (addressT num)
2236 {
2237 return num <= 0xffff;
2238 }
2239
2240 static INLINE int
2241 fits_in_signed_word (addressT num)
2242 {
2243 return num + 0x8000 <= 0xffff;
2244 }
2245
2246 static INLINE int
2247 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2248 {
2249 #ifndef BFD64
2250 return 1;
2251 #else
2252 return num + 0x80000000 <= 0xffffffff;
2253 #endif
2254 } /* fits_in_signed_long() */
2255
2256 static INLINE int
2257 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2258 {
2259 #ifndef BFD64
2260 return 1;
2261 #else
2262 return num <= 0xffffffff;
2263 #endif
2264 } /* fits_in_unsigned_long() */
2265
2266 static INLINE int
2267 fits_in_disp8 (offsetT num)
2268 {
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283 }
2284
2285 static INLINE int
2286 fits_in_imm4 (offsetT num)
2287 {
2288 return (num & 0xf) == num;
2289 }
2290
2291 static i386_operand_type
2292 smallest_imm_type (offsetT num)
2293 {
2294 i386_operand_type t;
2295
2296 operand_type_set (&t, 0);
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
2343 }
2344
2345 static offsetT
2346 offset_in_range (offsetT val, int size)
2347 {
2348 addressT mask;
2349
2350 switch (size)
2351 {
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
2355 #ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357 #endif
2358 default: abort ();
2359 }
2360
2361 #ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2367 #endif
2368
2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378 }
2379
2380 enum PREFIX_GROUP
2381 {
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
2385 PREFIX_DS,
2386 PREFIX_OTHER
2387 };
2388
2389 /* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
2396 */
2397
2398 static enum PREFIX_GROUP
2399 add_prefix (unsigned int prefix)
2400 {
2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
2402 unsigned int q;
2403
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
2406 {
2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2411 ret = PREFIX_EXIST;
2412 q = REX_PREFIX;
2413 }
2414 else
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
2421 case DS_PREFIX_OPCODE:
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
2438 case LOCK_PREFIX_OPCODE:
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
2456 ret = PREFIX_EXIST;
2457 }
2458
2459 if (ret)
2460 {
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
2464 }
2465 else
2466 as_bad (_("same type of prefix used twice"));
2467
2468 return ret;
2469 }
2470
2471 static void
2472 update_code_flag (int value, int check)
2473 {
2474 PRINTF_LIKE ((*as_error));
2475
2476 flag_code = (enum flag_code) value;
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2488 {
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
2495 }
2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2497 {
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
2504 }
2505 stackop_size = '\0';
2506 }
2507
2508 static void
2509 set_code_flag (int value)
2510 {
2511 update_code_flag (value, 0);
2512 }
2513
2514 static void
2515 set_16bit_gcc_code_flag (int new_code_flag)
2516 {
2517 flag_code = (enum flag_code) new_code_flag;
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
2522 stackop_size = LONG_MNEM_SUFFIX;
2523 }
2524
2525 static void
2526 set_intel_syntax (int syntax_flag)
2527 {
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2533 {
2534 char *string;
2535 int e = get_symbol_name (&string);
2536
2537 if (strcmp (string, "prefix") == 0)
2538 ask_naked_reg = 1;
2539 else if (strcmp (string, "noprefix") == 0)
2540 ask_naked_reg = -1;
2541 else
2542 as_bad (_("bad argument to syntax directive."));
2543 (void) restore_line_pointer (e);
2544 }
2545 demand_empty_rest_of_line ();
2546
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
2554
2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2556
2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
2559 register_prefix = allow_naked_reg ? "" : "%";
2560 }
2561
2562 static void
2563 set_intel_mnemonic (int mnemonic_flag)
2564 {
2565 intel_mnemonic = mnemonic_flag;
2566 }
2567
2568 static void
2569 set_allow_index_reg (int flag)
2570 {
2571 allow_index_reg = flag;
2572 }
2573
2574 static void
2575 set_check (int what)
2576 {
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
2595 char *string;
2596 int e = get_symbol_name (&string);
2597
2598 if (strcmp (string, "none") == 0)
2599 *kind = check_none;
2600 else if (strcmp (string, "warning") == 0)
2601 *kind = check_warning;
2602 else if (strcmp (string, "error") == 0)
2603 *kind = check_error;
2604 else
2605 as_bad (_("bad argument to %s_check directive."), str);
2606 (void) restore_line_pointer (e);
2607 }
2608 else
2609 as_bad (_("missing argument for %s_check directive"), str);
2610
2611 demand_empty_rest_of_line ();
2612 }
2613
2614 static void
2615 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2617 {
2618 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
2639 /* If we are targeting Intel L1OM, we must enable it. */
2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2641 || new_flag.bitfield.cpul1om)
2642 return;
2643
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650 #endif
2651 }
2652
2653 static void
2654 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2655 {
2656 SKIP_WHITESPACE ();
2657
2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2659 {
2660 char *string;
2661 int e = get_symbol_name (&string);
2662 unsigned int j;
2663 i386_cpu_flags flags;
2664
2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2666 {
2667 if (strcmp (string, cpu_arch[j].name) == 0)
2668 {
2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2670
2671 if (*string != '.')
2672 {
2673 cpu_arch_name = cpu_arch[j].name;
2674 cpu_sub_arch_name = NULL;
2675 cpu_arch_flags = cpu_arch[j].flags;
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
2693 break;
2694 }
2695
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
2698
2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2700 {
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
2705 cpu_arch[j].name,
2706 (const char *) NULL);
2707 free (name);
2708 }
2709 else
2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2711 cpu_arch_flags = flags;
2712 cpu_arch_isa_flags = flags;
2713 }
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
2718 (void) restore_line_pointer (e);
2719 demand_empty_rest_of_line ();
2720 return;
2721 }
2722 }
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
2726 /* Disable an ISA extension. */
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
2754 if (j >= ARRAY_SIZE (cpu_arch))
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2765 {
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
2779 (void) restore_line_pointer (e);
2780 }
2781
2782 demand_empty_rest_of_line ();
2783 }
2784
2785 enum bfd_architecture
2786 i386_arch (void)
2787 {
2788 if (cpu_arch_isa == PROCESSOR_L1OM)
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
2809 else
2810 return bfd_arch_i386;
2811 }
2812
2813 unsigned long
2814 i386_mach (void)
2815 {
2816 if (!strncmp (default_arch, "x86_64", 6))
2817 {
2818 if (cpu_arch_isa == PROCESSOR_L1OM)
2819 {
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
2832 else if (default_arch[6] == '\0')
2833 return bfd_mach_x86_64;
2834 else
2835 return bfd_mach_x64_32;
2836 }
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
2849 else
2850 as_fatal (_("unknown architecture"));
2851 }
2852 \f
2853 void
2854 md_begin (void)
2855 {
2856 const char *hash_err;
2857
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
2861 /* Initialize op_hash hash table. */
2862 op_hash = hash_new ();
2863
2864 {
2865 const insn_template *optab;
2866 templates *core_optab;
2867
2868 /* Setup for loop. */
2869 optab = i386_optab;
2870 core_optab = XNEW (templates);
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
2880 add to hash table; & begin anew. */
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
2884 (void *) core_optab);
2885 if (hash_err)
2886 {
2887 as_fatal (_("can't hash %s: %s"),
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
2893 core_optab = XNEW (templates);
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
2899 /* Initialize reg_hash hash table. */
2900 reg_hash = hash_new ();
2901 {
2902 const reg_entry *regtab;
2903 unsigned int regtab_size = i386_regtab_size;
2904
2905 for (regtab = i386_regtab; regtab_size--; regtab++)
2906 {
2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2908 if (hash_err)
2909 as_fatal (_("can't hash %s: %s"),
2910 regtab->reg_name,
2911 hash_err);
2912 }
2913 }
2914
2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2916 {
2917 int c;
2918 char *p;
2919
2920 for (c = 0; c < 256; c++)
2921 {
2922 if (ISDIGIT (c))
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
2929 else if (ISLOWER (c))
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
2935 else if (ISUPPER (c))
2936 {
2937 mnemonic_chars[c] = TOLOWER (c);
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
2941 else if (c == '{' || c == '}')
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
2946
2947 if (ISALPHA (c) || ISDIGIT (c))
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956 #ifdef LEX_AT
2957 identifier_chars['@'] = '@';
2958 #endif
2959 #ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
2962 #endif
2963 digit_chars['-'] = '-';
2964 mnemonic_chars['_'] = '_';
2965 mnemonic_chars['-'] = '-';
2966 mnemonic_chars['.'] = '.';
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
2974 if (flag_code == CODE_64BIT)
2975 {
2976 #if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979 #else
2980 x86_dwarf2_return_column = 16;
2981 #endif
2982 x86_cie_data_alignment = -8;
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
2989 }
2990
2991 void
2992 i386_print_statistics (FILE *file)
2993 {
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996 }
2997 \f
2998 #ifdef DEBUG386
2999
3000 /* Debugging routines for md_assemble. */
3001 static void pte (insn_template *);
3002 static void pt (i386_operand_type);
3003 static void pe (expressionS *);
3004 static void ps (symbolS *);
3005
3006 static void
3007 pi (const char *line, i386_insn *x)
3008 {
3009 unsigned int j;
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3018 x->rm.mode, x->rm.reg, x->rm.regmem);
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
3026 for (j = 0; j < x->operands; j++)
3027 {
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
3030 fprintf (stdout, "\n");
3031 if (x->types[j].bitfield.reg
3032 || x->types[j].bitfield.regmmx
3033 || x->types[j].bitfield.regsimd
3034 || x->types[j].bitfield.sreg
3035 || x->types[j].bitfield.control
3036 || x->types[j].bitfield.debug
3037 || x->types[j].bitfield.test)
3038 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3039 if (operand_type_check (x->types[j], imm))
3040 pe (x->op[j].imms);
3041 if (operand_type_check (x->types[j], disp))
3042 pe (x->op[j].disps);
3043 }
3044 }
3045
3046 static void
3047 pte (insn_template *t)
3048 {
3049 unsigned int j;
3050 fprintf (stdout, " %d operands ", t->operands);
3051 fprintf (stdout, "opcode %x ", t->base_opcode);
3052 if (t->extension_opcode != None)
3053 fprintf (stdout, "ext %x ", t->extension_opcode);
3054 if (t->opcode_modifier.d)
3055 fprintf (stdout, "D");
3056 if (t->opcode_modifier.w)
3057 fprintf (stdout, "W");
3058 fprintf (stdout, "\n");
3059 for (j = 0; j < t->operands; j++)
3060 {
3061 fprintf (stdout, " #%d type ", j + 1);
3062 pt (t->operand_types[j]);
3063 fprintf (stdout, "\n");
3064 }
3065 }
3066
3067 static void
3068 pe (expressionS *e)
3069 {
3070 fprintf (stdout, " operation %d\n", e->X_op);
3071 fprintf (stdout, " add_number %ld (%lx)\n",
3072 (long) e->X_add_number, (long) e->X_add_number);
3073 if (e->X_add_symbol)
3074 {
3075 fprintf (stdout, " add_symbol ");
3076 ps (e->X_add_symbol);
3077 fprintf (stdout, "\n");
3078 }
3079 if (e->X_op_symbol)
3080 {
3081 fprintf (stdout, " op_symbol ");
3082 ps (e->X_op_symbol);
3083 fprintf (stdout, "\n");
3084 }
3085 }
3086
3087 static void
3088 ps (symbolS *s)
3089 {
3090 fprintf (stdout, "%s type %s%s",
3091 S_GET_NAME (s),
3092 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s)));
3094 }
3095
3096 static struct type_name
3097 {
3098 i386_operand_type mask;
3099 const char *name;
3100 }
3101 const type_names[] =
3102 {
3103 { OPERAND_TYPE_REG8, "r8" },
3104 { OPERAND_TYPE_REG16, "r16" },
3105 { OPERAND_TYPE_REG32, "r32" },
3106 { OPERAND_TYPE_REG64, "r64" },
3107 { OPERAND_TYPE_ACC8, "acc8" },
3108 { OPERAND_TYPE_ACC16, "acc16" },
3109 { OPERAND_TYPE_ACC32, "acc32" },
3110 { OPERAND_TYPE_ACC64, "acc64" },
3111 { OPERAND_TYPE_IMM8, "i8" },
3112 { OPERAND_TYPE_IMM8, "i8s" },
3113 { OPERAND_TYPE_IMM16, "i16" },
3114 { OPERAND_TYPE_IMM32, "i32" },
3115 { OPERAND_TYPE_IMM32S, "i32s" },
3116 { OPERAND_TYPE_IMM64, "i64" },
3117 { OPERAND_TYPE_IMM1, "i1" },
3118 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8, "d8" },
3120 { OPERAND_TYPE_DISP16, "d16" },
3121 { OPERAND_TYPE_DISP32, "d32" },
3122 { OPERAND_TYPE_DISP32S, "d32s" },
3123 { OPERAND_TYPE_DISP64, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL, "control reg" },
3127 { OPERAND_TYPE_TEST, "test reg" },
3128 { OPERAND_TYPE_DEBUG, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG, "FReg" },
3130 { OPERAND_TYPE_FLOATACC, "FAcc" },
3131 { OPERAND_TYPE_SREG, "SReg" },
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
3135 { OPERAND_TYPE_REGYMM, "rYMM" },
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
3138 { OPERAND_TYPE_ESSEG, "es" },
3139 };
3140
3141 static void
3142 pt (i386_operand_type t)
3143 {
3144 unsigned int j;
3145 i386_operand_type a;
3146
3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
3150 if (operand_type_equal (&a, &type_names[j].mask))
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
3153 fflush (stdout);
3154 }
3155
3156 #endif /* DEBUG386 */
3157 \f
3158 static bfd_reloc_code_real_type
3159 reloc (unsigned int size,
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
3163 {
3164 if (other != NO_RELOC)
3165 {
3166 reloc_howto_type *rel;
3167
3168 if (size == 8)
3169 switch (other)
3170 {
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3194 }
3195
3196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
3200 other = BFD_RELOC_SIZE64;
3201 if (pcrel)
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
3206 }
3207 #endif
3208
3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3211 sign = -1;
3212
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3215 as_bad (_("unknown relocation (%u)"), other);
3216 else if (size != bfd_get_reloc_size (rel))
3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3218 bfd_get_reloc_size (rel),
3219 size);
3220 else if (pcrel && !rel->pc_relative)
3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3223 && !sign)
3224 || (rel->complain_on_overflow == complain_overflow_unsigned
3225 && sign > 0))
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
3231
3232 if (pcrel)
3233 {
3234 if (!sign)
3235 as_bad (_("there are no unsigned pc-relative relocations"));
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
3240 case 4: return BFD_RELOC_32_PCREL;
3241 case 8: return BFD_RELOC_64_PCREL;
3242 }
3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3244 }
3245 else
3246 {
3247 if (sign > 0)
3248 switch (size)
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
3262 }
3263
3264 return NO_RELOC;
3265 }
3266
3267 /* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
3272 int
3273 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3274 {
3275 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3276 if (!IS_ELF)
3277 return 1;
3278
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
3284 return 0;
3285
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
3328 #endif
3329 return 1;
3330 }
3331
3332 static int
3333 intel_float_operand (const char *mnemonic)
3334 {
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
3381
3382 return 1;
3383 }
3384
3385 /* Build the VEX prefix. */
3386
3387 static void
3388 build_vex_prefix (const insn_template *t)
3389 {
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
3393 unsigned int w;
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
3402 else
3403 register_specifier = 0xf;
3404
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
3409 && i.dir_encoding == dir_encoding_default
3410 && i.operands == i.reg_operands
3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3412 && i.tm.opcode_modifier.vexopcode == VEX0F
3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
3427 gas_assert (i.rm.mode == 3);
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
3439 }
3440
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i.reg_operands >= 3
3444 && i.vec_encoding != vex_encoding_vex3
3445 && i.reg_operands == i.operands - i.imm_operands
3446 && i.tm.opcode_modifier.vex
3447 && i.tm.opcode_modifier.commutative
3448 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3449 && i.rex == REX_B
3450 && i.vex.register_specifier
3451 && !(i.vex.register_specifier->reg_flags & RegRex))
3452 {
3453 unsigned int xchg = i.operands - i.reg_operands;
3454 union i386_op temp_op;
3455 i386_operand_type temp_type;
3456
3457 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3458 gas_assert (!i.tm.opcode_modifier.sae);
3459 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3460 &i.types[i.operands - 3]));
3461 gas_assert (i.rm.mode == 3);
3462
3463 temp_type = i.types[xchg];
3464 i.types[xchg] = i.types[xchg + 1];
3465 i.types[xchg + 1] = temp_type;
3466 temp_op = i.op[xchg];
3467 i.op[xchg] = i.op[xchg + 1];
3468 i.op[xchg + 1] = temp_op;
3469
3470 i.rex = 0;
3471 xchg = i.rm.regmem | 8;
3472 i.rm.regmem = ~register_specifier & 0xf;
3473 gas_assert (!(i.rm.regmem & 8));
3474 i.vex.register_specifier += xchg - i.rm.regmem;
3475 register_specifier = ~xchg & 0xf;
3476 }
3477
3478 if (i.tm.opcode_modifier.vex == VEXScalar)
3479 vector_length = avxscalar;
3480 else if (i.tm.opcode_modifier.vex == VEX256)
3481 vector_length = 1;
3482 else
3483 {
3484 unsigned int op;
3485
3486 /* Determine vector length from the last multi-length vector
3487 operand. */
3488 vector_length = 0;
3489 for (op = t->operands; op--;)
3490 if (t->operand_types[op].bitfield.xmmword
3491 && t->operand_types[op].bitfield.ymmword
3492 && i.types[op].bitfield.ymmword)
3493 {
3494 vector_length = 1;
3495 break;
3496 }
3497 }
3498
3499 switch ((i.tm.base_opcode >> 8) & 0xff)
3500 {
3501 case 0:
3502 implied_prefix = 0;
3503 break;
3504 case DATA_PREFIX_OPCODE:
3505 implied_prefix = 1;
3506 break;
3507 case REPE_PREFIX_OPCODE:
3508 implied_prefix = 2;
3509 break;
3510 case REPNE_PREFIX_OPCODE:
3511 implied_prefix = 3;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
3517 /* Check the REX.W bit and VEXW. */
3518 if (i.tm.opcode_modifier.vexw == VEXWIG)
3519 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3520 else if (i.tm.opcode_modifier.vexw)
3521 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3522 else
3523 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3524
3525 /* Use 2-byte VEX prefix if possible. */
3526 if (w == 0
3527 && i.vec_encoding != vex_encoding_vex3
3528 && i.tm.opcode_modifier.vexopcode == VEX0F
3529 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3530 {
3531 /* 2-byte VEX prefix. */
3532 unsigned int r;
3533
3534 i.vex.length = 2;
3535 i.vex.bytes[0] = 0xc5;
3536
3537 /* Check the REX.R bit. */
3538 r = (i.rex & REX_R) ? 0 : 1;
3539 i.vex.bytes[1] = (r << 7
3540 | register_specifier << 3
3541 | vector_length << 2
3542 | implied_prefix);
3543 }
3544 else
3545 {
3546 /* 3-byte VEX prefix. */
3547 unsigned int m;
3548
3549 i.vex.length = 3;
3550
3551 switch (i.tm.opcode_modifier.vexopcode)
3552 {
3553 case VEX0F:
3554 m = 0x1;
3555 i.vex.bytes[0] = 0xc4;
3556 break;
3557 case VEX0F38:
3558 m = 0x2;
3559 i.vex.bytes[0] = 0xc4;
3560 break;
3561 case VEX0F3A:
3562 m = 0x3;
3563 i.vex.bytes[0] = 0xc4;
3564 break;
3565 case XOP08:
3566 m = 0x8;
3567 i.vex.bytes[0] = 0x8f;
3568 break;
3569 case XOP09:
3570 m = 0x9;
3571 i.vex.bytes[0] = 0x8f;
3572 break;
3573 case XOP0A:
3574 m = 0xa;
3575 i.vex.bytes[0] = 0x8f;
3576 break;
3577 default:
3578 abort ();
3579 }
3580
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3584
3585 i.vex.bytes[2] = (w << 7
3586 | register_specifier << 3
3587 | vector_length << 2
3588 | implied_prefix);
3589 }
3590 }
3591
3592 static INLINE bfd_boolean
3593 is_evex_encoding (const insn_template *t)
3594 {
3595 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3596 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3597 || t->opcode_modifier.sae;
3598 }
3599
3600 static INLINE bfd_boolean
3601 is_any_vex_encoding (const insn_template *t)
3602 {
3603 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3604 || is_evex_encoding (t);
3605 }
3606
3607 /* Build the EVEX prefix. */
3608
3609 static void
3610 build_evex_prefix (void)
3611 {
3612 unsigned int register_specifier;
3613 unsigned int implied_prefix;
3614 unsigned int m, w;
3615 rex_byte vrex_used = 0;
3616
3617 /* Check register specifier. */
3618 if (i.vex.register_specifier)
3619 {
3620 gas_assert ((i.vrex & REX_X) == 0);
3621
3622 register_specifier = i.vex.register_specifier->reg_num;
3623 if ((i.vex.register_specifier->reg_flags & RegRex))
3624 register_specifier += 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3626 EVEX prefix. */
3627 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3628 i.vex.bytes[3] = 0x8;
3629 register_specifier = ~register_specifier & 0xf;
3630 }
3631 else
3632 {
3633 register_specifier = 0xf;
3634
3635 /* Encode upper 16 vector index register in the fourth byte of
3636 the EVEX prefix. */
3637 if (!(i.vrex & REX_X))
3638 i.vex.bytes[3] = 0x8;
3639 else
3640 vrex_used |= REX_X;
3641 }
3642
3643 switch ((i.tm.base_opcode >> 8) & 0xff)
3644 {
3645 case 0:
3646 implied_prefix = 0;
3647 break;
3648 case DATA_PREFIX_OPCODE:
3649 implied_prefix = 1;
3650 break;
3651 case REPE_PREFIX_OPCODE:
3652 implied_prefix = 2;
3653 break;
3654 case REPNE_PREFIX_OPCODE:
3655 implied_prefix = 3;
3656 break;
3657 default:
3658 abort ();
3659 }
3660
3661 /* 4 byte EVEX prefix. */
3662 i.vex.length = 4;
3663 i.vex.bytes[0] = 0x62;
3664
3665 /* mmmm bits. */
3666 switch (i.tm.opcode_modifier.vexopcode)
3667 {
3668 case VEX0F:
3669 m = 1;
3670 break;
3671 case VEX0F38:
3672 m = 2;
3673 break;
3674 case VEX0F3A:
3675 m = 3;
3676 break;
3677 default:
3678 abort ();
3679 break;
3680 }
3681
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3683 bits from REX. */
3684 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3685
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i.vrex & REX_R))
3689 i.vex.bytes[1] |= 0x10;
3690 else
3691 vrex_used |= REX_R;
3692
3693 if ((i.reg_operands + i.imm_operands) == i.operands)
3694 {
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i.vrex & REX_B))
3700 {
3701 vrex_used |= REX_B;
3702 i.vex.bytes[1] &= ~0x40;
3703 }
3704 }
3705
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i.vrex &= ~vrex_used;
3708 gas_assert (i.vrex == 0);
3709
3710 /* Check the REX.W bit and VEXW. */
3711 if (i.tm.opcode_modifier.vexw == VEXWIG)
3712 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3713 else if (i.tm.opcode_modifier.vexw)
3714 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3715 else
3716 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3717
3718 /* Encode the U bit. */
3719 implied_prefix |= 0x4;
3720
3721 /* The third byte of the EVEX prefix. */
3722 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3723
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i.mask && i.mask->zeroing)
3727 i.vex.bytes[3] |= 0x80;
3728
3729 /* Don't always set the broadcast bit if there is no RC. */
3730 if (!i.rounding)
3731 {
3732 /* Encode the vector length. */
3733 unsigned int vec_length;
3734
3735 if (!i.tm.opcode_modifier.evex
3736 || i.tm.opcode_modifier.evex == EVEXDYN)
3737 {
3738 unsigned int op;
3739
3740 /* Determine vector length from the last multi-length vector
3741 operand. */
3742 vec_length = 0;
3743 for (op = i.operands; op--;)
3744 if (i.tm.operand_types[op].bitfield.xmmword
3745 + i.tm.operand_types[op].bitfield.ymmword
3746 + i.tm.operand_types[op].bitfield.zmmword > 1)
3747 {
3748 if (i.types[op].bitfield.zmmword)
3749 {
3750 i.tm.opcode_modifier.evex = EVEX512;
3751 break;
3752 }
3753 else if (i.types[op].bitfield.ymmword)
3754 {
3755 i.tm.opcode_modifier.evex = EVEX256;
3756 break;
3757 }
3758 else if (i.types[op].bitfield.xmmword)
3759 {
3760 i.tm.opcode_modifier.evex = EVEX128;
3761 break;
3762 }
3763 else if (i.broadcast && (int) op == i.broadcast->operand)
3764 {
3765 switch (i.broadcast->bytes)
3766 {
3767 case 64:
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 case 32:
3771 i.tm.opcode_modifier.evex = EVEX256;
3772 break;
3773 case 16:
3774 i.tm.opcode_modifier.evex = EVEX128;
3775 break;
3776 default:
3777 abort ();
3778 }
3779 break;
3780 }
3781 }
3782
3783 if (op >= MAX_OPERANDS)
3784 abort ();
3785 }
3786
3787 switch (i.tm.opcode_modifier.evex)
3788 {
3789 case EVEXLIG: /* LL' is ignored */
3790 vec_length = evexlig << 5;
3791 break;
3792 case EVEX128:
3793 vec_length = 0 << 5;
3794 break;
3795 case EVEX256:
3796 vec_length = 1 << 5;
3797 break;
3798 case EVEX512:
3799 vec_length = 2 << 5;
3800 break;
3801 default:
3802 abort ();
3803 break;
3804 }
3805 i.vex.bytes[3] |= vec_length;
3806 /* Encode the broadcast bit. */
3807 if (i.broadcast)
3808 i.vex.bytes[3] |= 0x10;
3809 }
3810 else
3811 {
3812 if (i.rounding->type != saeonly)
3813 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3814 else
3815 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3816 }
3817
3818 if (i.mask && i.mask->mask)
3819 i.vex.bytes[3] |= i.mask->mask->reg_num;
3820 }
3821
3822 static void
3823 process_immext (void)
3824 {
3825 expressionS *exp;
3826
3827 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3828 && i.operands > 0)
3829 {
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
3834 unsigned int x;
3835
3836 for (x = 0; x < i.operands; x++)
3837 if (register_number (i.op[x].regs) != x)
3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3839 register_prefix, i.op[x].regs->reg_name, x + 1,
3840 i.tm.name);
3841
3842 i.operands = 0;
3843 }
3844
3845 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3846 {
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3849 field would be.
3850 Here we check those operands and remove them afterwards. */
3851 unsigned int x;
3852
3853 if (i.operands != 3)
3854 abort();
3855
3856 for (x = 0; x < 2; x++)
3857 if (register_number (i.op[x].regs) != x)
3858 goto bad_register_operand;
3859
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i.op[x].regs)
3862 != (x + (i.tm.extension_opcode == 0xfb)))
3863 {
3864 bad_register_operand:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix, i.op[x].regs->reg_name, x+1,
3867 i.tm.name);
3868 }
3869
3870 i.operands = 0;
3871 }
3872
3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3877
3878 AVX instructions also use this encoding, for some of
3879 3 argument instructions. */
3880
3881 gas_assert (i.imm_operands <= 1
3882 && (i.operands <= 2
3883 || (is_any_vex_encoding (&i.tm)
3884 && i.operands <= 4)));
3885
3886 exp = &im_expressions[i.imm_operands++];
3887 i.op[i.operands].imms = exp;
3888 i.types[i.operands] = imm8;
3889 i.operands++;
3890 exp->X_op = O_constant;
3891 exp->X_add_number = i.tm.extension_opcode;
3892 i.tm.extension_opcode = None;
3893 }
3894
3895
3896 static int
3897 check_hle (void)
3898 {
3899 switch (i.tm.opcode_modifier.hleprefixok)
3900 {
3901 default:
3902 abort ();
3903 case HLEPrefixNone:
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i.tm.name, i.hle_prefix);
3906 return 0;
3907 case HLEPrefixLock:
3908 if (i.prefix[LOCK_PREFIX])
3909 return 1;
3910 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3911 return 0;
3912 case HLEPrefixAny:
3913 return 1;
3914 case HLEPrefixRelease:
3915 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3916 {
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3918 i.tm.name);
3919 return 0;
3920 }
3921 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3922 {
3923 as_bad (_("memory destination needed for instruction `%s'"
3924 " after `xrelease'"), i.tm.name);
3925 return 0;
3926 }
3927 return 1;
3928 }
3929 }
3930
3931 /* Try the shortest encoding by shortening operand size. */
3932
3933 static void
3934 optimize_encoding (void)
3935 {
3936 unsigned int j;
3937
3938 if (optimize_for_space
3939 && i.reg_operands == 1
3940 && i.imm_operands == 1
3941 && !i.types[1].bitfield.byte
3942 && i.op[0].imms->X_op == O_constant
3943 && fits_in_imm7 (i.op[0].imms->X_add_number)
3944 && ((i.tm.base_opcode == 0xa8
3945 && i.tm.extension_opcode == None)
3946 || (i.tm.base_opcode == 0xf6
3947 && i.tm.extension_opcode == 0x0)))
3948 {
3949 /* Optimize: -Os:
3950 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3951 */
3952 unsigned int base_regnum = i.op[1].regs->reg_num;
3953 if (flag_code == CODE_64BIT || base_regnum < 4)
3954 {
3955 i.types[1].bitfield.byte = 1;
3956 /* Ignore the suffix. */
3957 i.suffix = 0;
3958 if (base_regnum >= 4
3959 && !(i.op[1].regs->reg_flags & RegRex))
3960 {
3961 /* Handle SP, BP, SI and DI registers. */
3962 if (i.types[1].bitfield.word)
3963 j = 16;
3964 else if (i.types[1].bitfield.dword)
3965 j = 32;
3966 else
3967 j = 48;
3968 i.op[1].regs -= j;
3969 }
3970 }
3971 }
3972 else if (flag_code == CODE_64BIT
3973 && ((i.types[1].bitfield.qword
3974 && i.reg_operands == 1
3975 && i.imm_operands == 1
3976 && i.op[0].imms->X_op == O_constant
3977 && ((i.tm.base_opcode == 0xb8
3978 && i.tm.extension_opcode == None
3979 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3980 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3981 && (((i.tm.base_opcode == 0x24
3982 || i.tm.base_opcode == 0xa8)
3983 && i.tm.extension_opcode == None)
3984 || (i.tm.base_opcode == 0x80
3985 && i.tm.extension_opcode == 0x4)
3986 || ((i.tm.base_opcode == 0xf6
3987 || (i.tm.base_opcode | 1) == 0xc7)
3988 && i.tm.extension_opcode == 0x0)))
3989 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3990 && i.tm.base_opcode == 0x83
3991 && i.tm.extension_opcode == 0x4)))
3992 || (i.types[0].bitfield.qword
3993 && ((i.reg_operands == 2
3994 && i.op[0].regs == i.op[1].regs
3995 && ((i.tm.base_opcode == 0x30
3996 || i.tm.base_opcode == 0x28)
3997 && i.tm.extension_opcode == None))
3998 || (i.reg_operands == 1
3999 && i.operands == 1
4000 && i.tm.base_opcode == 0x30
4001 && i.tm.extension_opcode == None)))))
4002 {
4003 /* Optimize: -O:
4004 andq $imm31, %r64 -> andl $imm31, %r32
4005 andq $imm7, %r64 -> andl $imm7, %r32
4006 testq $imm31, %r64 -> testl $imm31, %r32
4007 xorq %r64, %r64 -> xorl %r32, %r32
4008 subq %r64, %r64 -> subl %r32, %r32
4009 movq $imm31, %r64 -> movl $imm31, %r32
4010 movq $imm32, %r64 -> movl $imm32, %r32
4011 */
4012 i.tm.opcode_modifier.norex64 = 1;
4013 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4014 {
4015 /* Handle
4016 movq $imm31, %r64 -> movl $imm31, %r32
4017 movq $imm32, %r64 -> movl $imm32, %r32
4018 */
4019 i.tm.operand_types[0].bitfield.imm32 = 1;
4020 i.tm.operand_types[0].bitfield.imm32s = 0;
4021 i.tm.operand_types[0].bitfield.imm64 = 0;
4022 i.types[0].bitfield.imm32 = 1;
4023 i.types[0].bitfield.imm32s = 0;
4024 i.types[0].bitfield.imm64 = 0;
4025 i.types[1].bitfield.dword = 1;
4026 i.types[1].bitfield.qword = 0;
4027 if ((i.tm.base_opcode | 1) == 0xc7)
4028 {
4029 /* Handle
4030 movq $imm31, %r64 -> movl $imm31, %r32
4031 */
4032 i.tm.base_opcode = 0xb8;
4033 i.tm.extension_opcode = None;
4034 i.tm.opcode_modifier.w = 0;
4035 i.tm.opcode_modifier.shortform = 1;
4036 i.tm.opcode_modifier.modrm = 0;
4037 }
4038 }
4039 }
4040 else if (optimize > 1
4041 && !optimize_for_space
4042 && i.reg_operands == 2
4043 && i.op[0].regs == i.op[1].regs
4044 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4045 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4046 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4047 {
4048 /* Optimize: -O2:
4049 andb %rN, %rN -> testb %rN, %rN
4050 andw %rN, %rN -> testw %rN, %rN
4051 andq %rN, %rN -> testq %rN, %rN
4052 orb %rN, %rN -> testb %rN, %rN
4053 orw %rN, %rN -> testw %rN, %rN
4054 orq %rN, %rN -> testq %rN, %rN
4055
4056 and outside of 64-bit mode
4057
4058 andl %rN, %rN -> testl %rN, %rN
4059 orl %rN, %rN -> testl %rN, %rN
4060 */
4061 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4062 }
4063 else if (i.reg_operands == 3
4064 && i.op[0].regs == i.op[1].regs
4065 && !i.types[2].bitfield.xmmword
4066 && (i.tm.opcode_modifier.vex
4067 || ((!i.mask || i.mask->zeroing)
4068 && !i.rounding
4069 && is_evex_encoding (&i.tm)
4070 && (i.vec_encoding != vex_encoding_evex
4071 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4072 || i.tm.cpu_flags.bitfield.cpuavx512vl
4073 || (i.tm.operand_types[2].bitfield.zmmword
4074 && i.types[2].bitfield.ymmword))))
4075 && ((i.tm.base_opcode == 0x55
4076 || i.tm.base_opcode == 0x6655
4077 || i.tm.base_opcode == 0x66df
4078 || i.tm.base_opcode == 0x57
4079 || i.tm.base_opcode == 0x6657
4080 || i.tm.base_opcode == 0x66ef
4081 || i.tm.base_opcode == 0x66f8
4082 || i.tm.base_opcode == 0x66f9
4083 || i.tm.base_opcode == 0x66fa
4084 || i.tm.base_opcode == 0x66fb
4085 || i.tm.base_opcode == 0x42
4086 || i.tm.base_opcode == 0x6642
4087 || i.tm.base_opcode == 0x47
4088 || i.tm.base_opcode == 0x6647)
4089 && i.tm.extension_opcode == None))
4090 {
4091 /* Optimize: -O1:
4092 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4093 vpsubq and vpsubw:
4094 EVEX VOP %zmmM, %zmmM, %zmmN
4095 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4096 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4097 EVEX VOP %ymmM, %ymmM, %ymmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4100 VEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN
4102 VOP, one of vpandn and vpxor:
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandnd and vpandnq:
4106 EVEX VOP %zmmM, %zmmM, %zmmN
4107 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4108 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4109 EVEX VOP %ymmM, %ymmM, %ymmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4112 VOP, one of vpxord and vpxorq:
4113 EVEX VOP %zmmM, %zmmM, %zmmN
4114 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4115 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4116 EVEX VOP %ymmM, %ymmM, %ymmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4119 VOP, one of kxord and kxorq:
4120 VEX VOP %kM, %kM, %kN
4121 -> VEX kxorw %kM, %kM, %kN
4122 VOP, one of kandnd and kandnq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kandnw %kM, %kM, %kN
4125 */
4126 if (is_evex_encoding (&i.tm))
4127 {
4128 if (i.vec_encoding != vex_encoding_evex)
4129 {
4130 i.tm.opcode_modifier.vex = VEX128;
4131 i.tm.opcode_modifier.vexw = VEXW0;
4132 i.tm.opcode_modifier.evex = 0;
4133 }
4134 else if (optimize > 1)
4135 i.tm.opcode_modifier.evex = EVEX128;
4136 else
4137 return;
4138 }
4139 else if (i.tm.operand_types[0].bitfield.regmask)
4140 {
4141 i.tm.base_opcode &= 0xff;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 }
4144 else
4145 i.tm.opcode_modifier.vex = VEX128;
4146
4147 if (i.tm.opcode_modifier.vex)
4148 for (j = 0; j < 3; j++)
4149 {
4150 i.types[j].bitfield.xmmword = 1;
4151 i.types[j].bitfield.ymmword = 0;
4152 }
4153 }
4154 else if (i.vec_encoding != vex_encoding_evex
4155 && !i.types[0].bitfield.zmmword
4156 && !i.types[1].bitfield.zmmword
4157 && !i.mask
4158 && !i.broadcast
4159 && is_evex_encoding (&i.tm)
4160 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4161 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4162 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4163 || (i.tm.base_opcode & ~4) == 0x66db
4164 || (i.tm.base_opcode & ~4) == 0x66eb)
4165 && i.tm.extension_opcode == None)
4166 {
4167 /* Optimize: -O1:
4168 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4169 vmovdqu32 and vmovdqu64:
4170 EVEX VOP %xmmM, %xmmN
4171 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4172 EVEX VOP %ymmM, %ymmN
4173 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4174 EVEX VOP %xmmM, mem
4175 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4176 EVEX VOP %ymmM, mem
4177 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4178 EVEX VOP mem, %xmmN
4179 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4180 EVEX VOP mem, %ymmN
4181 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4182 VOP, one of vpand, vpandn, vpor, vpxor:
4183 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4184 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4185 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4186 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4187 EVEX VOP{d,q} mem, %xmmM, %xmmN
4188 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4189 EVEX VOP{d,q} mem, %ymmM, %ymmN
4190 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4191 */
4192 for (j = 0; j < i.operands; j++)
4193 if (operand_type_check (i.types[j], disp)
4194 && i.op[j].disps->X_op == O_constant)
4195 {
4196 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4197 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4198 bytes, we choose EVEX Disp8 over VEX Disp32. */
4199 int evex_disp8, vex_disp8;
4200 unsigned int memshift = i.memshift;
4201 offsetT n = i.op[j].disps->X_add_number;
4202
4203 evex_disp8 = fits_in_disp8 (n);
4204 i.memshift = 0;
4205 vex_disp8 = fits_in_disp8 (n);
4206 if (evex_disp8 != vex_disp8)
4207 {
4208 i.memshift = memshift;
4209 return;
4210 }
4211
4212 i.types[j].bitfield.disp8 = vex_disp8;
4213 break;
4214 }
4215 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4216 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4217 i.tm.opcode_modifier.vex
4218 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4219 i.tm.opcode_modifier.vexw = VEXW0;
4220 /* VPAND, VPOR, and VPXOR are commutative. */
4221 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4222 i.tm.opcode_modifier.commutative = 1;
4223 i.tm.opcode_modifier.evex = 0;
4224 i.tm.opcode_modifier.masking = 0;
4225 i.tm.opcode_modifier.broadcast = 0;
4226 i.tm.opcode_modifier.disp8memshift = 0;
4227 i.memshift = 0;
4228 if (j < i.operands)
4229 i.types[j].bitfield.disp8
4230 = fits_in_disp8 (i.op[j].disps->X_add_number);
4231 }
4232 }
4233
4234 /* This is the guts of the machine-dependent assembler. LINE points to a
4235 machine dependent instruction. This function is supposed to emit
4236 the frags/bytes it assembles to. */
4237
4238 void
4239 md_assemble (char *line)
4240 {
4241 unsigned int j;
4242 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4243 const insn_template *t;
4244
4245 /* Initialize globals. */
4246 memset (&i, '\0', sizeof (i));
4247 for (j = 0; j < MAX_OPERANDS; j++)
4248 i.reloc[j] = NO_RELOC;
4249 memset (disp_expressions, '\0', sizeof (disp_expressions));
4250 memset (im_expressions, '\0', sizeof (im_expressions));
4251 save_stack_p = save_stack;
4252
4253 /* First parse an instruction mnemonic & call i386_operand for the operands.
4254 We assume that the scrubber has arranged it so that line[0] is the valid
4255 start of a (possibly prefixed) mnemonic. */
4256
4257 line = parse_insn (line, mnemonic);
4258 if (line == NULL)
4259 return;
4260 mnem_suffix = i.suffix;
4261
4262 line = parse_operands (line, mnemonic);
4263 this_operand = -1;
4264 xfree (i.memop1_string);
4265 i.memop1_string = NULL;
4266 if (line == NULL)
4267 return;
4268
4269 /* Now we've parsed the mnemonic into a set of templates, and have the
4270 operands at hand. */
4271
4272 /* All intel opcodes have reversed operands except for "bound" and
4273 "enter". We also don't reverse intersegment "jmp" and "call"
4274 instructions with 2 immediate operands so that the immediate segment
4275 precedes the offset, as it does when in AT&T mode. */
4276 if (intel_syntax
4277 && i.operands > 1
4278 && (strcmp (mnemonic, "bound") != 0)
4279 && (strcmp (mnemonic, "invlpga") != 0)
4280 && !(operand_type_check (i.types[0], imm)
4281 && operand_type_check (i.types[1], imm)))
4282 swap_operands ();
4283
4284 /* The order of the immediates should be reversed
4285 for 2 immediates extrq and insertq instructions */
4286 if (i.imm_operands == 2
4287 && (strcmp (mnemonic, "extrq") == 0
4288 || strcmp (mnemonic, "insertq") == 0))
4289 swap_2_operands (0, 1);
4290
4291 if (i.imm_operands)
4292 optimize_imm ();
4293
4294 /* Don't optimize displacement for movabs since it only takes 64bit
4295 displacement. */
4296 if (i.disp_operands
4297 && i.disp_encoding != disp_encoding_32bit
4298 && (flag_code != CODE_64BIT
4299 || strcmp (mnemonic, "movabs") != 0))
4300 optimize_disp ();
4301
4302 /* Next, we find a template that matches the given insn,
4303 making sure the overlap of the given operands types is consistent
4304 with the template operand types. */
4305
4306 if (!(t = match_template (mnem_suffix)))
4307 return;
4308
4309 if (sse_check != check_none
4310 && !i.tm.opcode_modifier.noavx
4311 && !i.tm.cpu_flags.bitfield.cpuavx
4312 && (i.tm.cpu_flags.bitfield.cpusse
4313 || i.tm.cpu_flags.bitfield.cpusse2
4314 || i.tm.cpu_flags.bitfield.cpusse3
4315 || i.tm.cpu_flags.bitfield.cpussse3
4316 || i.tm.cpu_flags.bitfield.cpusse4_1
4317 || i.tm.cpu_flags.bitfield.cpusse4_2
4318 || i.tm.cpu_flags.bitfield.cpupclmul
4319 || i.tm.cpu_flags.bitfield.cpuaes
4320 || i.tm.cpu_flags.bitfield.cpugfni))
4321 {
4322 (sse_check == check_warning
4323 ? as_warn
4324 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4325 }
4326
4327 /* Zap movzx and movsx suffix. The suffix has been set from
4328 "word ptr" or "byte ptr" on the source operand in Intel syntax
4329 or extracted from mnemonic in AT&T syntax. But we'll use
4330 the destination register to choose the suffix for encoding. */
4331 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4332 {
4333 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4334 there is no suffix, the default will be byte extension. */
4335 if (i.reg_operands != 2
4336 && !i.suffix
4337 && intel_syntax)
4338 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4339
4340 i.suffix = 0;
4341 }
4342
4343 if (i.tm.opcode_modifier.fwait)
4344 if (!add_prefix (FWAIT_OPCODE))
4345 return;
4346
4347 /* Check if REP prefix is OK. */
4348 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4349 {
4350 as_bad (_("invalid instruction `%s' after `%s'"),
4351 i.tm.name, i.rep_prefix);
4352 return;
4353 }
4354
4355 /* Check for lock without a lockable instruction. Destination operand
4356 must be memory unless it is xchg (0x86). */
4357 if (i.prefix[LOCK_PREFIX]
4358 && (!i.tm.opcode_modifier.islockable
4359 || i.mem_operands == 0
4360 || (i.tm.base_opcode != 0x86
4361 && !(i.flags[i.operands - 1] & Operand_Mem))))
4362 {
4363 as_bad (_("expecting lockable instruction after `lock'"));
4364 return;
4365 }
4366
4367 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4368 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4369 {
4370 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4371 return;
4372 }
4373
4374 /* Check if HLE prefix is OK. */
4375 if (i.hle_prefix && !check_hle ())
4376 return;
4377
4378 /* Check BND prefix. */
4379 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4380 as_bad (_("expecting valid branch instruction after `bnd'"));
4381
4382 /* Check NOTRACK prefix. */
4383 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4384 as_bad (_("expecting indirect branch instruction after `notrack'"));
4385
4386 if (i.tm.cpu_flags.bitfield.cpumpx)
4387 {
4388 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4389 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4390 else if (flag_code != CODE_16BIT
4391 ? i.prefix[ADDR_PREFIX]
4392 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4393 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4394 }
4395
4396 /* Insert BND prefix. */
4397 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4398 {
4399 if (!i.prefix[BND_PREFIX])
4400 add_prefix (BND_PREFIX_OPCODE);
4401 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4402 {
4403 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4404 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4405 }
4406 }
4407
4408 /* Check string instruction segment overrides. */
4409 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4410 {
4411 if (!check_string ())
4412 return;
4413 i.disp_operands = 0;
4414 }
4415
4416 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4417 optimize_encoding ();
4418
4419 if (!process_suffix ())
4420 return;
4421
4422 /* Update operand types. */
4423 for (j = 0; j < i.operands; j++)
4424 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4425
4426 /* Make still unresolved immediate matches conform to size of immediate
4427 given in i.suffix. */
4428 if (!finalize_imm ())
4429 return;
4430
4431 if (i.types[0].bitfield.imm1)
4432 i.imm_operands = 0; /* kludge for shift insns. */
4433
4434 /* We only need to check those implicit registers for instructions
4435 with 3 operands or less. */
4436 if (i.operands <= 3)
4437 for (j = 0; j < i.operands; j++)
4438 if (i.types[j].bitfield.inoutportreg
4439 || i.types[j].bitfield.shiftcount
4440 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4441 i.reg_operands--;
4442
4443 /* ImmExt should be processed after SSE2AVX. */
4444 if (!i.tm.opcode_modifier.sse2avx
4445 && i.tm.opcode_modifier.immext)
4446 process_immext ();
4447
4448 /* For insns with operands there are more diddles to do to the opcode. */
4449 if (i.operands)
4450 {
4451 if (!process_operands ())
4452 return;
4453 }
4454 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4455 {
4456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4457 as_warn (_("translating to `%sp'"), i.tm.name);
4458 }
4459
4460 if (is_any_vex_encoding (&i.tm))
4461 {
4462 if (!cpu_arch_flags.bitfield.cpui286)
4463 {
4464 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4465 i.tm.name);
4466 return;
4467 }
4468
4469 if (i.tm.opcode_modifier.vex)
4470 build_vex_prefix (t);
4471 else
4472 build_evex_prefix ();
4473 }
4474
4475 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4476 instructions may define INT_OPCODE as well, so avoid this corner
4477 case for those instructions that use MODRM. */
4478 if (i.tm.base_opcode == INT_OPCODE
4479 && !i.tm.opcode_modifier.modrm
4480 && i.op[0].imms->X_add_number == 3)
4481 {
4482 i.tm.base_opcode = INT3_OPCODE;
4483 i.imm_operands = 0;
4484 }
4485
4486 if ((i.tm.opcode_modifier.jump
4487 || i.tm.opcode_modifier.jumpbyte
4488 || i.tm.opcode_modifier.jumpdword)
4489 && i.op[0].disps->X_op == O_constant)
4490 {
4491 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4492 the absolute address given by the constant. Since ix86 jumps and
4493 calls are pc relative, we need to generate a reloc. */
4494 i.op[0].disps->X_add_symbol = &abs_symbol;
4495 i.op[0].disps->X_op = O_symbol;
4496 }
4497
4498 if (i.tm.opcode_modifier.rex64)
4499 i.rex |= REX_W;
4500
4501 /* For 8 bit registers we need an empty rex prefix. Also if the
4502 instruction already has a prefix, we need to convert old
4503 registers to new ones. */
4504
4505 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4506 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4507 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4508 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4509 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4511 && i.rex != 0))
4512 {
4513 int x;
4514
4515 i.rex |= REX_OPCODE;
4516 for (x = 0; x < 2; x++)
4517 {
4518 /* Look for 8 bit operand that uses old registers. */
4519 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4520 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4521 {
4522 /* In case it is "hi" register, give up. */
4523 if (i.op[x].regs->reg_num > 3)
4524 as_bad (_("can't encode register '%s%s' in an "
4525 "instruction requiring REX prefix."),
4526 register_prefix, i.op[x].regs->reg_name);
4527
4528 /* Otherwise it is equivalent to the extended register.
4529 Since the encoding doesn't change this is merely
4530 cosmetic cleanup for debug output. */
4531
4532 i.op[x].regs = i.op[x].regs + 8;
4533 }
4534 }
4535 }
4536
4537 if (i.rex == 0 && i.rex_encoding)
4538 {
4539 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4540 that uses legacy register. If it is "hi" register, don't add
4541 the REX_OPCODE byte. */
4542 int x;
4543 for (x = 0; x < 2; x++)
4544 if (i.types[x].bitfield.reg
4545 && i.types[x].bitfield.byte
4546 && (i.op[x].regs->reg_flags & RegRex64) == 0
4547 && i.op[x].regs->reg_num > 3)
4548 {
4549 i.rex_encoding = FALSE;
4550 break;
4551 }
4552
4553 if (i.rex_encoding)
4554 i.rex = REX_OPCODE;
4555 }
4556
4557 if (i.rex != 0)
4558 add_prefix (REX_OPCODE | i.rex);
4559
4560 /* We are ready to output the insn. */
4561 output_insn ();
4562 }
4563
4564 static char *
4565 parse_insn (char *line, char *mnemonic)
4566 {
4567 char *l = line;
4568 char *token_start = l;
4569 char *mnem_p;
4570 int supported;
4571 const insn_template *t;
4572 char *dot_p = NULL;
4573
4574 while (1)
4575 {
4576 mnem_p = mnemonic;
4577 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4578 {
4579 if (*mnem_p == '.')
4580 dot_p = mnem_p;
4581 mnem_p++;
4582 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4583 {
4584 as_bad (_("no such instruction: `%s'"), token_start);
4585 return NULL;
4586 }
4587 l++;
4588 }
4589 if (!is_space_char (*l)
4590 && *l != END_OF_INSN
4591 && (intel_syntax
4592 || (*l != PREFIX_SEPARATOR
4593 && *l != ',')))
4594 {
4595 as_bad (_("invalid character %s in mnemonic"),
4596 output_invalid (*l));
4597 return NULL;
4598 }
4599 if (token_start == l)
4600 {
4601 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4602 as_bad (_("expecting prefix; got nothing"));
4603 else
4604 as_bad (_("expecting mnemonic; got nothing"));
4605 return NULL;
4606 }
4607
4608 /* Look up instruction (or prefix) via hash table. */
4609 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4610
4611 if (*l != END_OF_INSN
4612 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4613 && current_templates
4614 && current_templates->start->opcode_modifier.isprefix)
4615 {
4616 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4617 {
4618 as_bad ((flag_code != CODE_64BIT
4619 ? _("`%s' is only supported in 64-bit mode")
4620 : _("`%s' is not supported in 64-bit mode")),
4621 current_templates->start->name);
4622 return NULL;
4623 }
4624 /* If we are in 16-bit mode, do not allow addr16 or data16.
4625 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4626 if ((current_templates->start->opcode_modifier.size == SIZE16
4627 || current_templates->start->opcode_modifier.size == SIZE32)
4628 && flag_code != CODE_64BIT
4629 && ((current_templates->start->opcode_modifier.size == SIZE32)
4630 ^ (flag_code == CODE_16BIT)))
4631 {
4632 as_bad (_("redundant %s prefix"),
4633 current_templates->start->name);
4634 return NULL;
4635 }
4636 if (current_templates->start->opcode_length == 0)
4637 {
4638 /* Handle pseudo prefixes. */
4639 switch (current_templates->start->base_opcode)
4640 {
4641 case 0x0:
4642 /* {disp8} */
4643 i.disp_encoding = disp_encoding_8bit;
4644 break;
4645 case 0x1:
4646 /* {disp32} */
4647 i.disp_encoding = disp_encoding_32bit;
4648 break;
4649 case 0x2:
4650 /* {load} */
4651 i.dir_encoding = dir_encoding_load;
4652 break;
4653 case 0x3:
4654 /* {store} */
4655 i.dir_encoding = dir_encoding_store;
4656 break;
4657 case 0x4:
4658 /* {vex2} */
4659 i.vec_encoding = vex_encoding_vex2;
4660 break;
4661 case 0x5:
4662 /* {vex3} */
4663 i.vec_encoding = vex_encoding_vex3;
4664 break;
4665 case 0x6:
4666 /* {evex} */
4667 i.vec_encoding = vex_encoding_evex;
4668 break;
4669 case 0x7:
4670 /* {rex} */
4671 i.rex_encoding = TRUE;
4672 break;
4673 case 0x8:
4674 /* {nooptimize} */
4675 i.no_optimize = TRUE;
4676 break;
4677 default:
4678 abort ();
4679 }
4680 }
4681 else
4682 {
4683 /* Add prefix, checking for repeated prefixes. */
4684 switch (add_prefix (current_templates->start->base_opcode))
4685 {
4686 case PREFIX_EXIST:
4687 return NULL;
4688 case PREFIX_DS:
4689 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4690 i.notrack_prefix = current_templates->start->name;
4691 break;
4692 case PREFIX_REP:
4693 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4694 i.hle_prefix = current_templates->start->name;
4695 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4696 i.bnd_prefix = current_templates->start->name;
4697 else
4698 i.rep_prefix = current_templates->start->name;
4699 break;
4700 default:
4701 break;
4702 }
4703 }
4704 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4705 token_start = ++l;
4706 }
4707 else
4708 break;
4709 }
4710
4711 if (!current_templates)
4712 {
4713 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4714 Check if we should swap operand or force 32bit displacement in
4715 encoding. */
4716 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4717 i.dir_encoding = dir_encoding_swap;
4718 else if (mnem_p - 3 == dot_p
4719 && dot_p[1] == 'd'
4720 && dot_p[2] == '8')
4721 i.disp_encoding = disp_encoding_8bit;
4722 else if (mnem_p - 4 == dot_p
4723 && dot_p[1] == 'd'
4724 && dot_p[2] == '3'
4725 && dot_p[3] == '2')
4726 i.disp_encoding = disp_encoding_32bit;
4727 else
4728 goto check_suffix;
4729 mnem_p = dot_p;
4730 *dot_p = '\0';
4731 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4732 }
4733
4734 if (!current_templates)
4735 {
4736 check_suffix:
4737 if (mnem_p > mnemonic)
4738 {
4739 /* See if we can get a match by trimming off a suffix. */
4740 switch (mnem_p[-1])
4741 {
4742 case WORD_MNEM_SUFFIX:
4743 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4744 i.suffix = SHORT_MNEM_SUFFIX;
4745 else
4746 /* Fall through. */
4747 case BYTE_MNEM_SUFFIX:
4748 case QWORD_MNEM_SUFFIX:
4749 i.suffix = mnem_p[-1];
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 break;
4754 case SHORT_MNEM_SUFFIX:
4755 case LONG_MNEM_SUFFIX:
4756 if (!intel_syntax)
4757 {
4758 i.suffix = mnem_p[-1];
4759 mnem_p[-1] = '\0';
4760 current_templates = (const templates *) hash_find (op_hash,
4761 mnemonic);
4762 }
4763 break;
4764
4765 /* Intel Syntax. */
4766 case 'd':
4767 if (intel_syntax)
4768 {
4769 if (intel_float_operand (mnemonic) == 1)
4770 i.suffix = SHORT_MNEM_SUFFIX;
4771 else
4772 i.suffix = LONG_MNEM_SUFFIX;
4773 mnem_p[-1] = '\0';
4774 current_templates = (const templates *) hash_find (op_hash,
4775 mnemonic);
4776 }
4777 break;
4778 }
4779 }
4780
4781 if (!current_templates)
4782 {
4783 as_bad (_("no such instruction: `%s'"), token_start);
4784 return NULL;
4785 }
4786 }
4787
4788 if (current_templates->start->opcode_modifier.jump
4789 || current_templates->start->opcode_modifier.jumpbyte)
4790 {
4791 /* Check for a branch hint. We allow ",pt" and ",pn" for
4792 predict taken and predict not taken respectively.
4793 I'm not sure that branch hints actually do anything on loop
4794 and jcxz insns (JumpByte) for current Pentium4 chips. They
4795 may work in the future and it doesn't hurt to accept them
4796 now. */
4797 if (l[0] == ',' && l[1] == 'p')
4798 {
4799 if (l[2] == 't')
4800 {
4801 if (!add_prefix (DS_PREFIX_OPCODE))
4802 return NULL;
4803 l += 3;
4804 }
4805 else if (l[2] == 'n')
4806 {
4807 if (!add_prefix (CS_PREFIX_OPCODE))
4808 return NULL;
4809 l += 3;
4810 }
4811 }
4812 }
4813 /* Any other comma loses. */
4814 if (*l == ',')
4815 {
4816 as_bad (_("invalid character %s in mnemonic"),
4817 output_invalid (*l));
4818 return NULL;
4819 }
4820
4821 /* Check if instruction is supported on specified architecture. */
4822 supported = 0;
4823 for (t = current_templates->start; t < current_templates->end; ++t)
4824 {
4825 supported |= cpu_flags_match (t);
4826 if (supported == CPU_FLAGS_PERFECT_MATCH)
4827 {
4828 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4829 as_warn (_("use .code16 to ensure correct addressing mode"));
4830
4831 return l;
4832 }
4833 }
4834
4835 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4836 as_bad (flag_code == CODE_64BIT
4837 ? _("`%s' is not supported in 64-bit mode")
4838 : _("`%s' is only supported in 64-bit mode"),
4839 current_templates->start->name);
4840 else
4841 as_bad (_("`%s' is not supported on `%s%s'"),
4842 current_templates->start->name,
4843 cpu_arch_name ? cpu_arch_name : default_arch,
4844 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4845
4846 return NULL;
4847 }
4848
4849 static char *
4850 parse_operands (char *l, const char *mnemonic)
4851 {
4852 char *token_start;
4853
4854 /* 1 if operand is pending after ','. */
4855 unsigned int expecting_operand = 0;
4856
4857 /* Non-zero if operand parens not balanced. */
4858 unsigned int paren_not_balanced;
4859
4860 while (*l != END_OF_INSN)
4861 {
4862 /* Skip optional white space before operand. */
4863 if (is_space_char (*l))
4864 ++l;
4865 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4866 {
4867 as_bad (_("invalid character %s before operand %d"),
4868 output_invalid (*l),
4869 i.operands + 1);
4870 return NULL;
4871 }
4872 token_start = l; /* After white space. */
4873 paren_not_balanced = 0;
4874 while (paren_not_balanced || *l != ',')
4875 {
4876 if (*l == END_OF_INSN)
4877 {
4878 if (paren_not_balanced)
4879 {
4880 if (!intel_syntax)
4881 as_bad (_("unbalanced parenthesis in operand %d."),
4882 i.operands + 1);
4883 else
4884 as_bad (_("unbalanced brackets in operand %d."),
4885 i.operands + 1);
4886 return NULL;
4887 }
4888 else
4889 break; /* we are done */
4890 }
4891 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4892 {
4893 as_bad (_("invalid character %s in operand %d"),
4894 output_invalid (*l),
4895 i.operands + 1);
4896 return NULL;
4897 }
4898 if (!intel_syntax)
4899 {
4900 if (*l == '(')
4901 ++paren_not_balanced;
4902 if (*l == ')')
4903 --paren_not_balanced;
4904 }
4905 else
4906 {
4907 if (*l == '[')
4908 ++paren_not_balanced;
4909 if (*l == ']')
4910 --paren_not_balanced;
4911 }
4912 l++;
4913 }
4914 if (l != token_start)
4915 { /* Yes, we've read in another operand. */
4916 unsigned int operand_ok;
4917 this_operand = i.operands++;
4918 if (i.operands > MAX_OPERANDS)
4919 {
4920 as_bad (_("spurious operands; (%d operands/instruction max)"),
4921 MAX_OPERANDS);
4922 return NULL;
4923 }
4924 i.types[this_operand].bitfield.unspecified = 1;
4925 /* Now parse operand adding info to 'i' as we go along. */
4926 END_STRING_AND_SAVE (l);
4927
4928 if (i.mem_operands > 1)
4929 {
4930 as_bad (_("too many memory references for `%s'"),
4931 mnemonic);
4932 return 0;
4933 }
4934
4935 if (intel_syntax)
4936 operand_ok =
4937 i386_intel_operand (token_start,
4938 intel_float_operand (mnemonic));
4939 else
4940 operand_ok = i386_att_operand (token_start);
4941
4942 RESTORE_END_STRING (l);
4943 if (!operand_ok)
4944 return NULL;
4945 }
4946 else
4947 {
4948 if (expecting_operand)
4949 {
4950 expecting_operand_after_comma:
4951 as_bad (_("expecting operand after ','; got nothing"));
4952 return NULL;
4953 }
4954 if (*l == ',')
4955 {
4956 as_bad (_("expecting operand before ','; got nothing"));
4957 return NULL;
4958 }
4959 }
4960
4961 /* Now *l must be either ',' or END_OF_INSN. */
4962 if (*l == ',')
4963 {
4964 if (*++l == END_OF_INSN)
4965 {
4966 /* Just skip it, if it's \n complain. */
4967 goto expecting_operand_after_comma;
4968 }
4969 expecting_operand = 1;
4970 }
4971 }
4972 return l;
4973 }
4974
4975 static void
4976 swap_2_operands (int xchg1, int xchg2)
4977 {
4978 union i386_op temp_op;
4979 i386_operand_type temp_type;
4980 unsigned int temp_flags;
4981 enum bfd_reloc_code_real temp_reloc;
4982
4983 temp_type = i.types[xchg2];
4984 i.types[xchg2] = i.types[xchg1];
4985 i.types[xchg1] = temp_type;
4986
4987 temp_flags = i.flags[xchg2];
4988 i.flags[xchg2] = i.flags[xchg1];
4989 i.flags[xchg1] = temp_flags;
4990
4991 temp_op = i.op[xchg2];
4992 i.op[xchg2] = i.op[xchg1];
4993 i.op[xchg1] = temp_op;
4994
4995 temp_reloc = i.reloc[xchg2];
4996 i.reloc[xchg2] = i.reloc[xchg1];
4997 i.reloc[xchg1] = temp_reloc;
4998
4999 if (i.mask)
5000 {
5001 if (i.mask->operand == xchg1)
5002 i.mask->operand = xchg2;
5003 else if (i.mask->operand == xchg2)
5004 i.mask->operand = xchg1;
5005 }
5006 if (i.broadcast)
5007 {
5008 if (i.broadcast->operand == xchg1)
5009 i.broadcast->operand = xchg2;
5010 else if (i.broadcast->operand == xchg2)
5011 i.broadcast->operand = xchg1;
5012 }
5013 if (i.rounding)
5014 {
5015 if (i.rounding->operand == xchg1)
5016 i.rounding->operand = xchg2;
5017 else if (i.rounding->operand == xchg2)
5018 i.rounding->operand = xchg1;
5019 }
5020 }
5021
5022 static void
5023 swap_operands (void)
5024 {
5025 switch (i.operands)
5026 {
5027 case 5:
5028 case 4:
5029 swap_2_operands (1, i.operands - 2);
5030 /* Fall through. */
5031 case 3:
5032 case 2:
5033 swap_2_operands (0, i.operands - 1);
5034 break;
5035 default:
5036 abort ();
5037 }
5038
5039 if (i.mem_operands == 2)
5040 {
5041 const seg_entry *temp_seg;
5042 temp_seg = i.seg[0];
5043 i.seg[0] = i.seg[1];
5044 i.seg[1] = temp_seg;
5045 }
5046 }
5047
5048 /* Try to ensure constant immediates are represented in the smallest
5049 opcode possible. */
5050 static void
5051 optimize_imm (void)
5052 {
5053 char guess_suffix = 0;
5054 int op;
5055
5056 if (i.suffix)
5057 guess_suffix = i.suffix;
5058 else if (i.reg_operands)
5059 {
5060 /* Figure out a suffix from the last register operand specified.
5061 We can't do this properly yet, ie. excluding InOutPortReg,
5062 but the following works for instructions with immediates.
5063 In any case, we can't set i.suffix yet. */
5064 for (op = i.operands; --op >= 0;)
5065 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5066 {
5067 guess_suffix = BYTE_MNEM_SUFFIX;
5068 break;
5069 }
5070 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5071 {
5072 guess_suffix = WORD_MNEM_SUFFIX;
5073 break;
5074 }
5075 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5076 {
5077 guess_suffix = LONG_MNEM_SUFFIX;
5078 break;
5079 }
5080 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5081 {
5082 guess_suffix = QWORD_MNEM_SUFFIX;
5083 break;
5084 }
5085 }
5086 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5087 guess_suffix = WORD_MNEM_SUFFIX;
5088
5089 for (op = i.operands; --op >= 0;)
5090 if (operand_type_check (i.types[op], imm))
5091 {
5092 switch (i.op[op].imms->X_op)
5093 {
5094 case O_constant:
5095 /* If a suffix is given, this operand may be shortened. */
5096 switch (guess_suffix)
5097 {
5098 case LONG_MNEM_SUFFIX:
5099 i.types[op].bitfield.imm32 = 1;
5100 i.types[op].bitfield.imm64 = 1;
5101 break;
5102 case WORD_MNEM_SUFFIX:
5103 i.types[op].bitfield.imm16 = 1;
5104 i.types[op].bitfield.imm32 = 1;
5105 i.types[op].bitfield.imm32s = 1;
5106 i.types[op].bitfield.imm64 = 1;
5107 break;
5108 case BYTE_MNEM_SUFFIX:
5109 i.types[op].bitfield.imm8 = 1;
5110 i.types[op].bitfield.imm8s = 1;
5111 i.types[op].bitfield.imm16 = 1;
5112 i.types[op].bitfield.imm32 = 1;
5113 i.types[op].bitfield.imm32s = 1;
5114 i.types[op].bitfield.imm64 = 1;
5115 break;
5116 }
5117
5118 /* If this operand is at most 16 bits, convert it
5119 to a signed 16 bit number before trying to see
5120 whether it will fit in an even smaller size.
5121 This allows a 16-bit operand such as $0xffe0 to
5122 be recognised as within Imm8S range. */
5123 if ((i.types[op].bitfield.imm16)
5124 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5125 {
5126 i.op[op].imms->X_add_number =
5127 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5128 }
5129 #ifdef BFD64
5130 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5131 if ((i.types[op].bitfield.imm32)
5132 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5133 == 0))
5134 {
5135 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5136 ^ ((offsetT) 1 << 31))
5137 - ((offsetT) 1 << 31));
5138 }
5139 #endif
5140 i.types[op]
5141 = operand_type_or (i.types[op],
5142 smallest_imm_type (i.op[op].imms->X_add_number));
5143
5144 /* We must avoid matching of Imm32 templates when 64bit
5145 only immediate is available. */
5146 if (guess_suffix == QWORD_MNEM_SUFFIX)
5147 i.types[op].bitfield.imm32 = 0;
5148 break;
5149
5150 case O_absent:
5151 case O_register:
5152 abort ();
5153
5154 /* Symbols and expressions. */
5155 default:
5156 /* Convert symbolic operand to proper sizes for matching, but don't
5157 prevent matching a set of insns that only supports sizes other
5158 than those matching the insn suffix. */
5159 {
5160 i386_operand_type mask, allowed;
5161 const insn_template *t;
5162
5163 operand_type_set (&mask, 0);
5164 operand_type_set (&allowed, 0);
5165
5166 for (t = current_templates->start;
5167 t < current_templates->end;
5168 ++t)
5169 allowed = operand_type_or (allowed,
5170 t->operand_types[op]);
5171 switch (guess_suffix)
5172 {
5173 case QWORD_MNEM_SUFFIX:
5174 mask.bitfield.imm64 = 1;
5175 mask.bitfield.imm32s = 1;
5176 break;
5177 case LONG_MNEM_SUFFIX:
5178 mask.bitfield.imm32 = 1;
5179 break;
5180 case WORD_MNEM_SUFFIX:
5181 mask.bitfield.imm16 = 1;
5182 break;
5183 case BYTE_MNEM_SUFFIX:
5184 mask.bitfield.imm8 = 1;
5185 break;
5186 default:
5187 break;
5188 }
5189 allowed = operand_type_and (mask, allowed);
5190 if (!operand_type_all_zero (&allowed))
5191 i.types[op] = operand_type_and (i.types[op], mask);
5192 }
5193 break;
5194 }
5195 }
5196 }
5197
5198 /* Try to use the smallest displacement type too. */
5199 static void
5200 optimize_disp (void)
5201 {
5202 int op;
5203
5204 for (op = i.operands; --op >= 0;)
5205 if (operand_type_check (i.types[op], disp))
5206 {
5207 if (i.op[op].disps->X_op == O_constant)
5208 {
5209 offsetT op_disp = i.op[op].disps->X_add_number;
5210
5211 if (i.types[op].bitfield.disp16
5212 && (op_disp & ~(offsetT) 0xffff) == 0)
5213 {
5214 /* If this operand is at most 16 bits, convert
5215 to a signed 16 bit number and don't use 64bit
5216 displacement. */
5217 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5218 i.types[op].bitfield.disp64 = 0;
5219 }
5220 #ifdef BFD64
5221 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5222 if (i.types[op].bitfield.disp32
5223 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5224 {
5225 /* If this operand is at most 32 bits, convert
5226 to a signed 32 bit number and don't use 64bit
5227 displacement. */
5228 op_disp &= (((offsetT) 2 << 31) - 1);
5229 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5230 i.types[op].bitfield.disp64 = 0;
5231 }
5232 #endif
5233 if (!op_disp && i.types[op].bitfield.baseindex)
5234 {
5235 i.types[op].bitfield.disp8 = 0;
5236 i.types[op].bitfield.disp16 = 0;
5237 i.types[op].bitfield.disp32 = 0;
5238 i.types[op].bitfield.disp32s = 0;
5239 i.types[op].bitfield.disp64 = 0;
5240 i.op[op].disps = 0;
5241 i.disp_operands--;
5242 }
5243 else if (flag_code == CODE_64BIT)
5244 {
5245 if (fits_in_signed_long (op_disp))
5246 {
5247 i.types[op].bitfield.disp64 = 0;
5248 i.types[op].bitfield.disp32s = 1;
5249 }
5250 if (i.prefix[ADDR_PREFIX]
5251 && fits_in_unsigned_long (op_disp))
5252 i.types[op].bitfield.disp32 = 1;
5253 }
5254 if ((i.types[op].bitfield.disp32
5255 || i.types[op].bitfield.disp32s
5256 || i.types[op].bitfield.disp16)
5257 && fits_in_disp8 (op_disp))
5258 i.types[op].bitfield.disp8 = 1;
5259 }
5260 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5261 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5262 {
5263 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5264 i.op[op].disps, 0, i.reloc[op]);
5265 i.types[op].bitfield.disp8 = 0;
5266 i.types[op].bitfield.disp16 = 0;
5267 i.types[op].bitfield.disp32 = 0;
5268 i.types[op].bitfield.disp32s = 0;
5269 i.types[op].bitfield.disp64 = 0;
5270 }
5271 else
5272 /* We only support 64bit displacement on constants. */
5273 i.types[op].bitfield.disp64 = 0;
5274 }
5275 }
5276
5277 /* Return 1 if there is a match in broadcast bytes between operand
5278 GIVEN and instruction template T. */
5279
5280 static INLINE int
5281 match_broadcast_size (const insn_template *t, unsigned int given)
5282 {
5283 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5284 && i.types[given].bitfield.byte)
5285 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5286 && i.types[given].bitfield.word)
5287 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5288 && i.types[given].bitfield.dword)
5289 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5290 && i.types[given].bitfield.qword));
5291 }
5292
5293 /* Check if operands are valid for the instruction. */
5294
5295 static int
5296 check_VecOperands (const insn_template *t)
5297 {
5298 unsigned int op;
5299 i386_cpu_flags cpu;
5300 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5301
5302 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5303 any one operand are implicity requiring AVX512VL support if the actual
5304 operand size is YMMword or XMMword. Since this function runs after
5305 template matching, there's no need to check for YMMword/XMMword in
5306 the template. */
5307 cpu = cpu_flags_and (t->cpu_flags, avx512);
5308 if (!cpu_flags_all_zero (&cpu)
5309 && !t->cpu_flags.bitfield.cpuavx512vl
5310 && !cpu_arch_flags.bitfield.cpuavx512vl)
5311 {
5312 for (op = 0; op < t->operands; ++op)
5313 {
5314 if (t->operand_types[op].bitfield.zmmword
5315 && (i.types[op].bitfield.ymmword
5316 || i.types[op].bitfield.xmmword))
5317 {
5318 i.error = unsupported;
5319 return 1;
5320 }
5321 }
5322 }
5323
5324 /* Without VSIB byte, we can't have a vector register for index. */
5325 if (!t->opcode_modifier.vecsib
5326 && i.index_reg
5327 && (i.index_reg->reg_type.bitfield.xmmword
5328 || i.index_reg->reg_type.bitfield.ymmword
5329 || i.index_reg->reg_type.bitfield.zmmword))
5330 {
5331 i.error = unsupported_vector_index_register;
5332 return 1;
5333 }
5334
5335 /* Check if default mask is allowed. */
5336 if (t->opcode_modifier.nodefmask
5337 && (!i.mask || i.mask->mask->reg_num == 0))
5338 {
5339 i.error = no_default_mask;
5340 return 1;
5341 }
5342
5343 /* For VSIB byte, we need a vector register for index, and all vector
5344 registers must be distinct. */
5345 if (t->opcode_modifier.vecsib)
5346 {
5347 if (!i.index_reg
5348 || !((t->opcode_modifier.vecsib == VecSIB128
5349 && i.index_reg->reg_type.bitfield.xmmword)
5350 || (t->opcode_modifier.vecsib == VecSIB256
5351 && i.index_reg->reg_type.bitfield.ymmword)
5352 || (t->opcode_modifier.vecsib == VecSIB512
5353 && i.index_reg->reg_type.bitfield.zmmword)))
5354 {
5355 i.error = invalid_vsib_address;
5356 return 1;
5357 }
5358
5359 gas_assert (i.reg_operands == 2 || i.mask);
5360 if (i.reg_operands == 2 && !i.mask)
5361 {
5362 gas_assert (i.types[0].bitfield.regsimd);
5363 gas_assert (i.types[0].bitfield.xmmword
5364 || i.types[0].bitfield.ymmword);
5365 gas_assert (i.types[2].bitfield.regsimd);
5366 gas_assert (i.types[2].bitfield.xmmword
5367 || i.types[2].bitfield.ymmword);
5368 if (operand_check == check_none)
5369 return 0;
5370 if (register_number (i.op[0].regs)
5371 != register_number (i.index_reg)
5372 && register_number (i.op[2].regs)
5373 != register_number (i.index_reg)
5374 && register_number (i.op[0].regs)
5375 != register_number (i.op[2].regs))
5376 return 0;
5377 if (operand_check == check_error)
5378 {
5379 i.error = invalid_vector_register_set;
5380 return 1;
5381 }
5382 as_warn (_("mask, index, and destination registers should be distinct"));
5383 }
5384 else if (i.reg_operands == 1 && i.mask)
5385 {
5386 if (i.types[1].bitfield.regsimd
5387 && (i.types[1].bitfield.xmmword
5388 || i.types[1].bitfield.ymmword
5389 || i.types[1].bitfield.zmmword)
5390 && (register_number (i.op[1].regs)
5391 == register_number (i.index_reg)))
5392 {
5393 if (operand_check == check_error)
5394 {
5395 i.error = invalid_vector_register_set;
5396 return 1;
5397 }
5398 if (operand_check != check_none)
5399 as_warn (_("index and destination registers should be distinct"));
5400 }
5401 }
5402 }
5403
5404 /* Check if broadcast is supported by the instruction and is applied
5405 to the memory operand. */
5406 if (i.broadcast)
5407 {
5408 i386_operand_type type, overlap;
5409
5410 /* Check if specified broadcast is supported in this instruction,
5411 and its broadcast bytes match the memory operand. */
5412 op = i.broadcast->operand;
5413 if (!t->opcode_modifier.broadcast
5414 || !(i.flags[op] & Operand_Mem)
5415 || (!i.types[op].bitfield.unspecified
5416 && !match_broadcast_size (t, op)))
5417 {
5418 bad_broadcast:
5419 i.error = unsupported_broadcast;
5420 return 1;
5421 }
5422
5423 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5424 * i.broadcast->type);
5425 operand_type_set (&type, 0);
5426 switch (i.broadcast->bytes)
5427 {
5428 case 2:
5429 type.bitfield.word = 1;
5430 break;
5431 case 4:
5432 type.bitfield.dword = 1;
5433 break;
5434 case 8:
5435 type.bitfield.qword = 1;
5436 break;
5437 case 16:
5438 type.bitfield.xmmword = 1;
5439 break;
5440 case 32:
5441 type.bitfield.ymmword = 1;
5442 break;
5443 case 64:
5444 type.bitfield.zmmword = 1;
5445 break;
5446 default:
5447 goto bad_broadcast;
5448 }
5449
5450 overlap = operand_type_and (type, t->operand_types[op]);
5451 if (operand_type_all_zero (&overlap))
5452 goto bad_broadcast;
5453
5454 if (t->opcode_modifier.checkregsize)
5455 {
5456 unsigned int j;
5457
5458 type.bitfield.baseindex = 1;
5459 for (j = 0; j < i.operands; ++j)
5460 {
5461 if (j != op
5462 && !operand_type_register_match(i.types[j],
5463 t->operand_types[j],
5464 type,
5465 t->operand_types[op]))
5466 goto bad_broadcast;
5467 }
5468 }
5469 }
5470 /* If broadcast is supported in this instruction, we need to check if
5471 operand of one-element size isn't specified without broadcast. */
5472 else if (t->opcode_modifier.broadcast && i.mem_operands)
5473 {
5474 /* Find memory operand. */
5475 for (op = 0; op < i.operands; op++)
5476 if (i.flags[op] & Operand_Mem)
5477 break;
5478 gas_assert (op < i.operands);
5479 /* Check size of the memory operand. */
5480 if (match_broadcast_size (t, op))
5481 {
5482 i.error = broadcast_needed;
5483 return 1;
5484 }
5485 }
5486 else
5487 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5488
5489 /* Check if requested masking is supported. */
5490 if (i.mask)
5491 {
5492 switch (t->opcode_modifier.masking)
5493 {
5494 case BOTH_MASKING:
5495 break;
5496 case MERGING_MASKING:
5497 if (i.mask->zeroing)
5498 {
5499 case 0:
5500 i.error = unsupported_masking;
5501 return 1;
5502 }
5503 break;
5504 case DYNAMIC_MASKING:
5505 /* Memory destinations allow only merging masking. */
5506 if (i.mask->zeroing && i.mem_operands)
5507 {
5508 /* Find memory operand. */
5509 for (op = 0; op < i.operands; op++)
5510 if (i.flags[op] & Operand_Mem)
5511 break;
5512 gas_assert (op < i.operands);
5513 if (op == i.operands - 1)
5514 {
5515 i.error = unsupported_masking;
5516 return 1;
5517 }
5518 }
5519 break;
5520 default:
5521 abort ();
5522 }
5523 }
5524
5525 /* Check if masking is applied to dest operand. */
5526 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5527 {
5528 i.error = mask_not_on_destination;
5529 return 1;
5530 }
5531
5532 /* Check RC/SAE. */
5533 if (i.rounding)
5534 {
5535 if (!t->opcode_modifier.sae
5536 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5537 {
5538 i.error = unsupported_rc_sae;
5539 return 1;
5540 }
5541 /* If the instruction has several immediate operands and one of
5542 them is rounding, the rounding operand should be the last
5543 immediate operand. */
5544 if (i.imm_operands > 1
5545 && i.rounding->operand != (int) (i.imm_operands - 1))
5546 {
5547 i.error = rc_sae_operand_not_last_imm;
5548 return 1;
5549 }
5550 }
5551
5552 /* Check vector Disp8 operand. */
5553 if (t->opcode_modifier.disp8memshift
5554 && i.disp_encoding != disp_encoding_32bit)
5555 {
5556 if (i.broadcast)
5557 i.memshift = t->opcode_modifier.broadcast - 1;
5558 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5559 i.memshift = t->opcode_modifier.disp8memshift;
5560 else
5561 {
5562 const i386_operand_type *type = NULL;
5563
5564 i.memshift = 0;
5565 for (op = 0; op < i.operands; op++)
5566 if (i.flags[op] & Operand_Mem)
5567 {
5568 if (t->opcode_modifier.evex == EVEXLIG)
5569 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5570 else if (t->operand_types[op].bitfield.xmmword
5571 + t->operand_types[op].bitfield.ymmword
5572 + t->operand_types[op].bitfield.zmmword <= 1)
5573 type = &t->operand_types[op];
5574 else if (!i.types[op].bitfield.unspecified)
5575 type = &i.types[op];
5576 }
5577 else if (i.types[op].bitfield.regsimd
5578 && t->opcode_modifier.evex != EVEXLIG)
5579 {
5580 if (i.types[op].bitfield.zmmword)
5581 i.memshift = 6;
5582 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5583 i.memshift = 5;
5584 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5585 i.memshift = 4;
5586 }
5587
5588 if (type)
5589 {
5590 if (type->bitfield.zmmword)
5591 i.memshift = 6;
5592 else if (type->bitfield.ymmword)
5593 i.memshift = 5;
5594 else if (type->bitfield.xmmword)
5595 i.memshift = 4;
5596 }
5597
5598 /* For the check in fits_in_disp8(). */
5599 if (i.memshift == 0)
5600 i.memshift = -1;
5601 }
5602
5603 for (op = 0; op < i.operands; op++)
5604 if (operand_type_check (i.types[op], disp)
5605 && i.op[op].disps->X_op == O_constant)
5606 {
5607 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5608 {
5609 i.types[op].bitfield.disp8 = 1;
5610 return 0;
5611 }
5612 i.types[op].bitfield.disp8 = 0;
5613 }
5614 }
5615
5616 i.memshift = 0;
5617
5618 return 0;
5619 }
5620
5621 /* Check if operands are valid for the instruction. Update VEX
5622 operand types. */
5623
5624 static int
5625 VEX_check_operands (const insn_template *t)
5626 {
5627 if (i.vec_encoding == vex_encoding_evex)
5628 {
5629 /* This instruction must be encoded with EVEX prefix. */
5630 if (!is_evex_encoding (t))
5631 {
5632 i.error = unsupported;
5633 return 1;
5634 }
5635 return 0;
5636 }
5637
5638 if (!t->opcode_modifier.vex)
5639 {
5640 /* This instruction template doesn't have VEX prefix. */
5641 if (i.vec_encoding != vex_encoding_default)
5642 {
5643 i.error = unsupported;
5644 return 1;
5645 }
5646 return 0;
5647 }
5648
5649 /* Check the special Imm4 cases; must be the first operand. */
5650 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5651 {
5652 if (i.op[0].imms->X_op != O_constant
5653 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5654 {
5655 i.error = bad_imm4;
5656 return 1;
5657 }
5658
5659 /* Turn off Imm<N> so that update_imm won't complain. */
5660 operand_type_set (&i.types[0], 0);
5661 }
5662
5663 return 0;
5664 }
5665
5666 static const insn_template *
5667 match_template (char mnem_suffix)
5668 {
5669 /* Points to template once we've found it. */
5670 const insn_template *t;
5671 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5672 i386_operand_type overlap4;
5673 unsigned int found_reverse_match;
5674 i386_opcode_modifier suffix_check, mnemsuf_check;
5675 i386_operand_type operand_types [MAX_OPERANDS];
5676 int addr_prefix_disp;
5677 unsigned int j;
5678 unsigned int found_cpu_match, size_match;
5679 unsigned int check_register;
5680 enum i386_error specific_error = 0;
5681
5682 #if MAX_OPERANDS != 5
5683 # error "MAX_OPERANDS must be 5."
5684 #endif
5685
5686 found_reverse_match = 0;
5687 addr_prefix_disp = -1;
5688
5689 memset (&suffix_check, 0, sizeof (suffix_check));
5690 if (intel_syntax && i.broadcast)
5691 /* nothing */;
5692 else if (i.suffix == BYTE_MNEM_SUFFIX)
5693 suffix_check.no_bsuf = 1;
5694 else if (i.suffix == WORD_MNEM_SUFFIX)
5695 suffix_check.no_wsuf = 1;
5696 else if (i.suffix == SHORT_MNEM_SUFFIX)
5697 suffix_check.no_ssuf = 1;
5698 else if (i.suffix == LONG_MNEM_SUFFIX)
5699 suffix_check.no_lsuf = 1;
5700 else if (i.suffix == QWORD_MNEM_SUFFIX)
5701 suffix_check.no_qsuf = 1;
5702 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5703 suffix_check.no_ldsuf = 1;
5704
5705 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5706 if (intel_syntax)
5707 {
5708 switch (mnem_suffix)
5709 {
5710 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5711 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5712 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5713 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5714 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5715 }
5716 }
5717
5718 /* Must have right number of operands. */
5719 i.error = number_of_operands_mismatch;
5720
5721 for (t = current_templates->start; t < current_templates->end; t++)
5722 {
5723 addr_prefix_disp = -1;
5724 found_reverse_match = 0;
5725
5726 if (i.operands != t->operands)
5727 continue;
5728
5729 /* Check processor support. */
5730 i.error = unsupported;
5731 found_cpu_match = (cpu_flags_match (t)
5732 == CPU_FLAGS_PERFECT_MATCH);
5733 if (!found_cpu_match)
5734 continue;
5735
5736 /* Check AT&T mnemonic. */
5737 i.error = unsupported_with_intel_mnemonic;
5738 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5739 continue;
5740
5741 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5742 i.error = unsupported_syntax;
5743 if ((intel_syntax && t->opcode_modifier.attsyntax)
5744 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5745 || (intel64 && t->opcode_modifier.amd64)
5746 || (!intel64 && t->opcode_modifier.intel64))
5747 continue;
5748
5749 /* Check the suffix, except for some instructions in intel mode. */
5750 i.error = invalid_instruction_suffix;
5751 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5752 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5753 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5754 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5755 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5756 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5757 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5758 continue;
5759 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5760 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5761 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5762 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5763 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5764 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5765 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5766 continue;
5767
5768 size_match = operand_size_match (t);
5769 if (!size_match)
5770 continue;
5771
5772 for (j = 0; j < MAX_OPERANDS; j++)
5773 operand_types[j] = t->operand_types[j];
5774
5775 /* In general, don't allow 64-bit operands in 32-bit mode. */
5776 if (i.suffix == QWORD_MNEM_SUFFIX
5777 && flag_code != CODE_64BIT
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !t->opcode_modifier.broadcast
5781 && !intel_float_operand (t->name))
5782 : intel_float_operand (t->name) != 2)
5783 && ((!operand_types[0].bitfield.regmmx
5784 && !operand_types[0].bitfield.regsimd)
5785 || (!operand_types[t->operands > 1].bitfield.regmmx
5786 && !operand_types[t->operands > 1].bitfield.regsimd))
5787 && (t->base_opcode != 0x0fc7
5788 || t->extension_opcode != 1 /* cmpxchg8b */))
5789 continue;
5790
5791 /* In general, don't allow 32-bit operands on pre-386. */
5792 else if (i.suffix == LONG_MNEM_SUFFIX
5793 && !cpu_arch_flags.bitfield.cpui386
5794 && (intel_syntax
5795 ? (!t->opcode_modifier.ignoresize
5796 && !intel_float_operand (t->name))
5797 : intel_float_operand (t->name) != 2)
5798 && ((!operand_types[0].bitfield.regmmx
5799 && !operand_types[0].bitfield.regsimd)
5800 || (!operand_types[t->operands > 1].bitfield.regmmx
5801 && !operand_types[t->operands > 1].bitfield.regsimd)))
5802 continue;
5803
5804 /* Do not verify operands when there are none. */
5805 else
5806 {
5807 if (!t->operands)
5808 /* We've found a match; break out of loop. */
5809 break;
5810 }
5811
5812 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5813 into Disp32/Disp16/Disp32 operand. */
5814 if (i.prefix[ADDR_PREFIX] != 0)
5815 {
5816 /* There should be only one Disp operand. */
5817 switch (flag_code)
5818 {
5819 case CODE_16BIT:
5820 for (j = 0; j < MAX_OPERANDS; j++)
5821 {
5822 if (operand_types[j].bitfield.disp16)
5823 {
5824 addr_prefix_disp = j;
5825 operand_types[j].bitfield.disp32 = 1;
5826 operand_types[j].bitfield.disp16 = 0;
5827 break;
5828 }
5829 }
5830 break;
5831 case CODE_32BIT:
5832 for (j = 0; j < MAX_OPERANDS; j++)
5833 {
5834 if (operand_types[j].bitfield.disp32)
5835 {
5836 addr_prefix_disp = j;
5837 operand_types[j].bitfield.disp32 = 0;
5838 operand_types[j].bitfield.disp16 = 1;
5839 break;
5840 }
5841 }
5842 break;
5843 case CODE_64BIT:
5844 for (j = 0; j < MAX_OPERANDS; j++)
5845 {
5846 if (operand_types[j].bitfield.disp64)
5847 {
5848 addr_prefix_disp = j;
5849 operand_types[j].bitfield.disp64 = 0;
5850 operand_types[j].bitfield.disp32 = 1;
5851 break;
5852 }
5853 }
5854 break;
5855 }
5856 }
5857
5858 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5859 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5860 continue;
5861
5862 /* We check register size if needed. */
5863 if (t->opcode_modifier.checkregsize)
5864 {
5865 check_register = (1 << t->operands) - 1;
5866 if (i.broadcast)
5867 check_register &= ~(1 << i.broadcast->operand);
5868 }
5869 else
5870 check_register = 0;
5871
5872 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5873 switch (t->operands)
5874 {
5875 case 1:
5876 if (!operand_type_match (overlap0, i.types[0]))
5877 continue;
5878 break;
5879 case 2:
5880 /* xchg %eax, %eax is a special case. It is an alias for nop
5881 only in 32bit mode and we can use opcode 0x90. In 64bit
5882 mode, we can't use 0x90 for xchg %eax, %eax since it should
5883 zero-extend %eax to %rax. */
5884 if (flag_code == CODE_64BIT
5885 && t->base_opcode == 0x90
5886 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5887 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5888 continue;
5889 /* xrelease mov %eax, <disp> is another special case. It must not
5890 match the accumulator-only encoding of mov. */
5891 if (flag_code != CODE_64BIT
5892 && i.hle_prefix
5893 && t->base_opcode == 0xa0
5894 && i.types[0].bitfield.acc
5895 && (i.flags[1] & Operand_Mem))
5896 continue;
5897 /* Fall through. */
5898
5899 case 3:
5900 if (!(size_match & MATCH_STRAIGHT))
5901 goto check_reverse;
5902 /* Reverse direction of operands if swapping is possible in the first
5903 place (operands need to be symmetric) and
5904 - the load form is requested, and the template is a store form,
5905 - the store form is requested, and the template is a load form,
5906 - the non-default (swapped) form is requested. */
5907 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5908 if (t->opcode_modifier.d && i.reg_operands == i.operands
5909 && !operand_type_all_zero (&overlap1))
5910 switch (i.dir_encoding)
5911 {
5912 case dir_encoding_load:
5913 if (operand_type_check (operand_types[i.operands - 1], anymem)
5914 || t->opcode_modifier.regmem)
5915 goto check_reverse;
5916 break;
5917
5918 case dir_encoding_store:
5919 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5920 && !t->opcode_modifier.regmem)
5921 goto check_reverse;
5922 break;
5923
5924 case dir_encoding_swap:
5925 goto check_reverse;
5926
5927 case dir_encoding_default:
5928 break;
5929 }
5930 /* If we want store form, we skip the current load. */
5931 if ((i.dir_encoding == dir_encoding_store
5932 || i.dir_encoding == dir_encoding_swap)
5933 && i.mem_operands == 0
5934 && t->opcode_modifier.load)
5935 continue;
5936 /* Fall through. */
5937 case 4:
5938 case 5:
5939 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5940 if (!operand_type_match (overlap0, i.types[0])
5941 || !operand_type_match (overlap1, i.types[1])
5942 || ((check_register & 3) == 3
5943 && !operand_type_register_match (i.types[0],
5944 operand_types[0],
5945 i.types[1],
5946 operand_types[1])))
5947 {
5948 /* Check if other direction is valid ... */
5949 if (!t->opcode_modifier.d)
5950 continue;
5951
5952 check_reverse:
5953 if (!(size_match & MATCH_REVERSE))
5954 continue;
5955 /* Try reversing direction of operands. */
5956 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5957 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5958 if (!operand_type_match (overlap0, i.types[0])
5959 || !operand_type_match (overlap1, i.types[i.operands - 1])
5960 || (check_register
5961 && !operand_type_register_match (i.types[0],
5962 operand_types[i.operands - 1],
5963 i.types[i.operands - 1],
5964 operand_types[0])))
5965 {
5966 /* Does not match either direction. */
5967 continue;
5968 }
5969 /* found_reverse_match holds which of D or FloatR
5970 we've found. */
5971 if (!t->opcode_modifier.d)
5972 found_reverse_match = 0;
5973 else if (operand_types[0].bitfield.tbyte)
5974 found_reverse_match = Opcode_FloatD;
5975 else if (operand_types[0].bitfield.xmmword
5976 || operand_types[i.operands - 1].bitfield.xmmword
5977 || operand_types[0].bitfield.regmmx
5978 || operand_types[i.operands - 1].bitfield.regmmx
5979 || is_any_vex_encoding(t))
5980 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5981 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5982 else
5983 found_reverse_match = Opcode_D;
5984 if (t->opcode_modifier.floatr)
5985 found_reverse_match |= Opcode_FloatR;
5986 }
5987 else
5988 {
5989 /* Found a forward 2 operand match here. */
5990 switch (t->operands)
5991 {
5992 case 5:
5993 overlap4 = operand_type_and (i.types[4],
5994 operand_types[4]);
5995 /* Fall through. */
5996 case 4:
5997 overlap3 = operand_type_and (i.types[3],
5998 operand_types[3]);
5999 /* Fall through. */
6000 case 3:
6001 overlap2 = operand_type_and (i.types[2],
6002 operand_types[2]);
6003 break;
6004 }
6005
6006 switch (t->operands)
6007 {
6008 case 5:
6009 if (!operand_type_match (overlap4, i.types[4])
6010 || !operand_type_register_match (i.types[3],
6011 operand_types[3],
6012 i.types[4],
6013 operand_types[4]))
6014 continue;
6015 /* Fall through. */
6016 case 4:
6017 if (!operand_type_match (overlap3, i.types[3])
6018 || ((check_register & 0xa) == 0xa
6019 && !operand_type_register_match (i.types[1],
6020 operand_types[1],
6021 i.types[3],
6022 operand_types[3]))
6023 || ((check_register & 0xc) == 0xc
6024 && !operand_type_register_match (i.types[2],
6025 operand_types[2],
6026 i.types[3],
6027 operand_types[3])))
6028 continue;
6029 /* Fall through. */
6030 case 3:
6031 /* Here we make use of the fact that there are no
6032 reverse match 3 operand instructions. */
6033 if (!operand_type_match (overlap2, i.types[2])
6034 || ((check_register & 5) == 5
6035 && !operand_type_register_match (i.types[0],
6036 operand_types[0],
6037 i.types[2],
6038 operand_types[2]))
6039 || ((check_register & 6) == 6
6040 && !operand_type_register_match (i.types[1],
6041 operand_types[1],
6042 i.types[2],
6043 operand_types[2])))
6044 continue;
6045 break;
6046 }
6047 }
6048 /* Found either forward/reverse 2, 3 or 4 operand match here:
6049 slip through to break. */
6050 }
6051 if (!found_cpu_match)
6052 continue;
6053
6054 /* Check if vector and VEX operands are valid. */
6055 if (check_VecOperands (t) || VEX_check_operands (t))
6056 {
6057 specific_error = i.error;
6058 continue;
6059 }
6060
6061 /* We've found a match; break out of loop. */
6062 break;
6063 }
6064
6065 if (t == current_templates->end)
6066 {
6067 /* We found no match. */
6068 const char *err_msg;
6069 switch (specific_error ? specific_error : i.error)
6070 {
6071 default:
6072 abort ();
6073 case operand_size_mismatch:
6074 err_msg = _("operand size mismatch");
6075 break;
6076 case operand_type_mismatch:
6077 err_msg = _("operand type mismatch");
6078 break;
6079 case register_type_mismatch:
6080 err_msg = _("register type mismatch");
6081 break;
6082 case number_of_operands_mismatch:
6083 err_msg = _("number of operands mismatch");
6084 break;
6085 case invalid_instruction_suffix:
6086 err_msg = _("invalid instruction suffix");
6087 break;
6088 case bad_imm4:
6089 err_msg = _("constant doesn't fit in 4 bits");
6090 break;
6091 case unsupported_with_intel_mnemonic:
6092 err_msg = _("unsupported with Intel mnemonic");
6093 break;
6094 case unsupported_syntax:
6095 err_msg = _("unsupported syntax");
6096 break;
6097 case unsupported:
6098 as_bad (_("unsupported instruction `%s'"),
6099 current_templates->start->name);
6100 return NULL;
6101 case invalid_vsib_address:
6102 err_msg = _("invalid VSIB address");
6103 break;
6104 case invalid_vector_register_set:
6105 err_msg = _("mask, index, and destination registers must be distinct");
6106 break;
6107 case unsupported_vector_index_register:
6108 err_msg = _("unsupported vector index register");
6109 break;
6110 case unsupported_broadcast:
6111 err_msg = _("unsupported broadcast");
6112 break;
6113 case broadcast_needed:
6114 err_msg = _("broadcast is needed for operand of such type");
6115 break;
6116 case unsupported_masking:
6117 err_msg = _("unsupported masking");
6118 break;
6119 case mask_not_on_destination:
6120 err_msg = _("mask not on destination operand");
6121 break;
6122 case no_default_mask:
6123 err_msg = _("default mask isn't allowed");
6124 break;
6125 case unsupported_rc_sae:
6126 err_msg = _("unsupported static rounding/sae");
6127 break;
6128 case rc_sae_operand_not_last_imm:
6129 if (intel_syntax)
6130 err_msg = _("RC/SAE operand must precede immediate operands");
6131 else
6132 err_msg = _("RC/SAE operand must follow immediate operands");
6133 break;
6134 case invalid_register_operand:
6135 err_msg = _("invalid register operand");
6136 break;
6137 }
6138 as_bad (_("%s for `%s'"), err_msg,
6139 current_templates->start->name);
6140 return NULL;
6141 }
6142
6143 if (!quiet_warnings)
6144 {
6145 if (!intel_syntax
6146 && (i.types[0].bitfield.jumpabsolute
6147 != operand_types[0].bitfield.jumpabsolute))
6148 {
6149 as_warn (_("indirect %s without `*'"), t->name);
6150 }
6151
6152 if (t->opcode_modifier.isprefix
6153 && t->opcode_modifier.ignoresize)
6154 {
6155 /* Warn them that a data or address size prefix doesn't
6156 affect assembly of the next line of code. */
6157 as_warn (_("stand-alone `%s' prefix"), t->name);
6158 }
6159 }
6160
6161 /* Copy the template we found. */
6162 i.tm = *t;
6163
6164 if (addr_prefix_disp != -1)
6165 i.tm.operand_types[addr_prefix_disp]
6166 = operand_types[addr_prefix_disp];
6167
6168 if (found_reverse_match)
6169 {
6170 /* If we found a reverse match we must alter the opcode direction
6171 bit and clear/flip the regmem modifier one. found_reverse_match
6172 holds bits to change (different for int & float insns). */
6173
6174 i.tm.base_opcode ^= found_reverse_match;
6175
6176 i.tm.operand_types[0] = operand_types[i.operands - 1];
6177 i.tm.operand_types[i.operands - 1] = operand_types[0];
6178
6179 /* Certain SIMD insns have their load forms specified in the opcode
6180 table, and hence we need to _set_ RegMem instead of clearing it.
6181 We need to avoid setting the bit though on insns like KMOVW. */
6182 i.tm.opcode_modifier.regmem
6183 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6184 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6185 && !i.tm.opcode_modifier.regmem;
6186 }
6187
6188 return t;
6189 }
6190
6191 static int
6192 check_string (void)
6193 {
6194 unsigned int mem_op = i.flags[0] & Operand_Mem ? 0 : 1;
6195
6196 if (i.tm.operand_types[mem_op].bitfield.esseg)
6197 {
6198 if (i.seg[0] != NULL && i.seg[0] != &es)
6199 {
6200 as_bad (_("`%s' operand %d must use `%ses' segment"),
6201 i.tm.name,
6202 intel_syntax ? i.tm.operands - mem_op : mem_op + 1,
6203 register_prefix);
6204 return 0;
6205 }
6206 /* There's only ever one segment override allowed per instruction.
6207 This instruction possibly has a legal segment override on the
6208 second operand, so copy the segment to where non-string
6209 instructions store it, allowing common code. */
6210 i.seg[0] = i.seg[1];
6211 }
6212 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6213 {
6214 if (i.seg[1] != NULL && i.seg[1] != &es)
6215 {
6216 as_bad (_("`%s' operand %d must use `%ses' segment"),
6217 i.tm.name,
6218 intel_syntax ? i.tm.operands - mem_op - 1 : mem_op + 2,
6219 register_prefix);
6220 return 0;
6221 }
6222 }
6223 return 1;
6224 }
6225
6226 static int
6227 process_suffix (void)
6228 {
6229 /* If matched instruction specifies an explicit instruction mnemonic
6230 suffix, use it. */
6231 if (i.tm.opcode_modifier.size == SIZE16)
6232 i.suffix = WORD_MNEM_SUFFIX;
6233 else if (i.tm.opcode_modifier.size == SIZE32)
6234 i.suffix = LONG_MNEM_SUFFIX;
6235 else if (i.tm.opcode_modifier.size == SIZE64)
6236 i.suffix = QWORD_MNEM_SUFFIX;
6237 else if (i.reg_operands)
6238 {
6239 /* If there's no instruction mnemonic suffix we try to invent one
6240 based on register operands. */
6241 if (!i.suffix)
6242 {
6243 /* We take i.suffix from the last register operand specified,
6244 Destination register type is more significant than source
6245 register type. crc32 in SSE4.2 prefers source register
6246 type. */
6247 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6248 {
6249 if (i.types[0].bitfield.byte)
6250 i.suffix = BYTE_MNEM_SUFFIX;
6251 else if (i.types[0].bitfield.word)
6252 i.suffix = WORD_MNEM_SUFFIX;
6253 else if (i.types[0].bitfield.dword)
6254 i.suffix = LONG_MNEM_SUFFIX;
6255 else if (i.types[0].bitfield.qword)
6256 i.suffix = QWORD_MNEM_SUFFIX;
6257 }
6258
6259 if (!i.suffix)
6260 {
6261 int op;
6262
6263 if (i.tm.base_opcode == 0xf20f38f0)
6264 {
6265 /* We have to know the operand size for crc32. */
6266 as_bad (_("ambiguous memory operand size for `%s`"),
6267 i.tm.name);
6268 return 0;
6269 }
6270
6271 for (op = i.operands; --op >= 0;)
6272 if (!i.tm.operand_types[op].bitfield.inoutportreg
6273 && !i.tm.operand_types[op].bitfield.shiftcount)
6274 {
6275 if (!i.types[op].bitfield.reg)
6276 continue;
6277 if (i.types[op].bitfield.byte)
6278 i.suffix = BYTE_MNEM_SUFFIX;
6279 else if (i.types[op].bitfield.word)
6280 i.suffix = WORD_MNEM_SUFFIX;
6281 else if (i.types[op].bitfield.dword)
6282 i.suffix = LONG_MNEM_SUFFIX;
6283 else if (i.types[op].bitfield.qword)
6284 i.suffix = QWORD_MNEM_SUFFIX;
6285 else
6286 continue;
6287 break;
6288 }
6289 }
6290 }
6291 else if (i.suffix == BYTE_MNEM_SUFFIX)
6292 {
6293 if (intel_syntax
6294 && i.tm.opcode_modifier.ignoresize
6295 && i.tm.opcode_modifier.no_bsuf)
6296 i.suffix = 0;
6297 else if (!check_byte_reg ())
6298 return 0;
6299 }
6300 else if (i.suffix == LONG_MNEM_SUFFIX)
6301 {
6302 if (intel_syntax
6303 && i.tm.opcode_modifier.ignoresize
6304 && i.tm.opcode_modifier.no_lsuf
6305 && !i.tm.opcode_modifier.todword
6306 && !i.tm.opcode_modifier.toqword)
6307 i.suffix = 0;
6308 else if (!check_long_reg ())
6309 return 0;
6310 }
6311 else if (i.suffix == QWORD_MNEM_SUFFIX)
6312 {
6313 if (intel_syntax
6314 && i.tm.opcode_modifier.ignoresize
6315 && i.tm.opcode_modifier.no_qsuf
6316 && !i.tm.opcode_modifier.todword
6317 && !i.tm.opcode_modifier.toqword)
6318 i.suffix = 0;
6319 else if (!check_qword_reg ())
6320 return 0;
6321 }
6322 else if (i.suffix == WORD_MNEM_SUFFIX)
6323 {
6324 if (intel_syntax
6325 && i.tm.opcode_modifier.ignoresize
6326 && i.tm.opcode_modifier.no_wsuf)
6327 i.suffix = 0;
6328 else if (!check_word_reg ())
6329 return 0;
6330 }
6331 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6332 /* Do nothing if the instruction is going to ignore the prefix. */
6333 ;
6334 else
6335 abort ();
6336 }
6337 else if (i.tm.opcode_modifier.defaultsize
6338 && !i.suffix
6339 /* exclude fldenv/frstor/fsave/fstenv */
6340 && i.tm.opcode_modifier.no_ssuf)
6341 {
6342 if (stackop_size == LONG_MNEM_SUFFIX
6343 && i.tm.base_opcode == 0xcf)
6344 {
6345 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6346 .code16gcc directive to support 16-bit mode with
6347 32-bit address. For IRET without a suffix, generate
6348 16-bit IRET (opcode 0xcf) to return from an interrupt
6349 handler. */
6350 i.suffix = WORD_MNEM_SUFFIX;
6351 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6352 }
6353 else
6354 i.suffix = stackop_size;
6355 }
6356 else if (intel_syntax
6357 && !i.suffix
6358 && (i.tm.operand_types[0].bitfield.jumpabsolute
6359 || i.tm.opcode_modifier.jumpbyte
6360 || i.tm.opcode_modifier.jumpintersegment
6361 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6362 && i.tm.extension_opcode <= 3)))
6363 {
6364 switch (flag_code)
6365 {
6366 case CODE_64BIT:
6367 if (!i.tm.opcode_modifier.no_qsuf)
6368 {
6369 i.suffix = QWORD_MNEM_SUFFIX;
6370 break;
6371 }
6372 /* Fall through. */
6373 case CODE_32BIT:
6374 if (!i.tm.opcode_modifier.no_lsuf)
6375 i.suffix = LONG_MNEM_SUFFIX;
6376 break;
6377 case CODE_16BIT:
6378 if (!i.tm.opcode_modifier.no_wsuf)
6379 i.suffix = WORD_MNEM_SUFFIX;
6380 break;
6381 }
6382 }
6383
6384 if (!i.suffix)
6385 {
6386 if (!intel_syntax)
6387 {
6388 if (i.tm.opcode_modifier.w)
6389 {
6390 as_bad (_("no instruction mnemonic suffix given and "
6391 "no register operands; can't size instruction"));
6392 return 0;
6393 }
6394 }
6395 else
6396 {
6397 unsigned int suffixes;
6398
6399 suffixes = !i.tm.opcode_modifier.no_bsuf;
6400 if (!i.tm.opcode_modifier.no_wsuf)
6401 suffixes |= 1 << 1;
6402 if (!i.tm.opcode_modifier.no_lsuf)
6403 suffixes |= 1 << 2;
6404 if (!i.tm.opcode_modifier.no_ldsuf)
6405 suffixes |= 1 << 3;
6406 if (!i.tm.opcode_modifier.no_ssuf)
6407 suffixes |= 1 << 4;
6408 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6409 suffixes |= 1 << 5;
6410
6411 /* There are more than suffix matches. */
6412 if (i.tm.opcode_modifier.w
6413 || ((suffixes & (suffixes - 1))
6414 && !i.tm.opcode_modifier.defaultsize
6415 && !i.tm.opcode_modifier.ignoresize))
6416 {
6417 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6418 return 0;
6419 }
6420 }
6421 }
6422
6423 /* Change the opcode based on the operand size given by i.suffix. */
6424 switch (i.suffix)
6425 {
6426 /* Size floating point instruction. */
6427 case LONG_MNEM_SUFFIX:
6428 if (i.tm.opcode_modifier.floatmf)
6429 {
6430 i.tm.base_opcode ^= 4;
6431 break;
6432 }
6433 /* fall through */
6434 case WORD_MNEM_SUFFIX:
6435 case QWORD_MNEM_SUFFIX:
6436 /* It's not a byte, select word/dword operation. */
6437 if (i.tm.opcode_modifier.w)
6438 {
6439 if (i.tm.opcode_modifier.shortform)
6440 i.tm.base_opcode |= 8;
6441 else
6442 i.tm.base_opcode |= 1;
6443 }
6444 /* fall through */
6445 case SHORT_MNEM_SUFFIX:
6446 /* Now select between word & dword operations via the operand
6447 size prefix, except for instructions that will ignore this
6448 prefix anyway. */
6449 if (i.reg_operands > 0
6450 && i.types[0].bitfield.reg
6451 && i.tm.opcode_modifier.addrprefixopreg
6452 && (i.tm.opcode_modifier.immext
6453 || i.operands == 1))
6454 {
6455 /* The address size override prefix changes the size of the
6456 first operand. */
6457 if ((flag_code == CODE_32BIT
6458 && i.op[0].regs->reg_type.bitfield.word)
6459 || (flag_code != CODE_32BIT
6460 && i.op[0].regs->reg_type.bitfield.dword))
6461 if (!add_prefix (ADDR_PREFIX_OPCODE))
6462 return 0;
6463 }
6464 else if (i.suffix != QWORD_MNEM_SUFFIX
6465 && !i.tm.opcode_modifier.ignoresize
6466 && !i.tm.opcode_modifier.floatmf
6467 && !is_any_vex_encoding (&i.tm)
6468 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6469 || (flag_code == CODE_64BIT
6470 && i.tm.opcode_modifier.jumpbyte)))
6471 {
6472 unsigned int prefix = DATA_PREFIX_OPCODE;
6473
6474 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6475 prefix = ADDR_PREFIX_OPCODE;
6476
6477 if (!add_prefix (prefix))
6478 return 0;
6479 }
6480
6481 /* Set mode64 for an operand. */
6482 if (i.suffix == QWORD_MNEM_SUFFIX
6483 && flag_code == CODE_64BIT
6484 && !i.tm.opcode_modifier.norex64
6485 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6486 need rex64. */
6487 && ! (i.operands == 2
6488 && i.tm.base_opcode == 0x90
6489 && i.tm.extension_opcode == None
6490 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6491 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6492 i.rex |= REX_W;
6493
6494 break;
6495 }
6496
6497 if (i.reg_operands != 0
6498 && i.operands > 1
6499 && i.tm.opcode_modifier.addrprefixopreg
6500 && !i.tm.opcode_modifier.immext)
6501 {
6502 /* Check invalid register operand when the address size override
6503 prefix changes the size of register operands. */
6504 unsigned int op;
6505 enum { need_word, need_dword, need_qword } need;
6506
6507 if (flag_code == CODE_32BIT)
6508 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6509 else
6510 {
6511 if (i.prefix[ADDR_PREFIX])
6512 need = need_dword;
6513 else
6514 need = flag_code == CODE_64BIT ? need_qword : need_word;
6515 }
6516
6517 for (op = 0; op < i.operands; op++)
6518 if (i.types[op].bitfield.reg
6519 && ((need == need_word
6520 && !i.op[op].regs->reg_type.bitfield.word)
6521 || (need == need_dword
6522 && !i.op[op].regs->reg_type.bitfield.dword)
6523 || (need == need_qword
6524 && !i.op[op].regs->reg_type.bitfield.qword)))
6525 {
6526 as_bad (_("invalid register operand size for `%s'"),
6527 i.tm.name);
6528 return 0;
6529 }
6530 }
6531
6532 return 1;
6533 }
6534
6535 static int
6536 check_byte_reg (void)
6537 {
6538 int op;
6539
6540 for (op = i.operands; --op >= 0;)
6541 {
6542 /* Skip non-register operands. */
6543 if (!i.types[op].bitfield.reg)
6544 continue;
6545
6546 /* If this is an eight bit register, it's OK. If it's the 16 or
6547 32 bit version of an eight bit register, we will just use the
6548 low portion, and that's OK too. */
6549 if (i.types[op].bitfield.byte)
6550 continue;
6551
6552 /* I/O port address operands are OK too. */
6553 if (i.tm.operand_types[op].bitfield.inoutportreg)
6554 continue;
6555
6556 /* crc32 doesn't generate this warning. */
6557 if (i.tm.base_opcode == 0xf20f38f0)
6558 continue;
6559
6560 if ((i.types[op].bitfield.word
6561 || i.types[op].bitfield.dword
6562 || i.types[op].bitfield.qword)
6563 && i.op[op].regs->reg_num < 4
6564 /* Prohibit these changes in 64bit mode, since the lowering
6565 would be more complicated. */
6566 && flag_code != CODE_64BIT)
6567 {
6568 #if REGISTER_WARNINGS
6569 if (!quiet_warnings)
6570 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6571 register_prefix,
6572 (i.op[op].regs + (i.types[op].bitfield.word
6573 ? REGNAM_AL - REGNAM_AX
6574 : REGNAM_AL - REGNAM_EAX))->reg_name,
6575 register_prefix,
6576 i.op[op].regs->reg_name,
6577 i.suffix);
6578 #endif
6579 continue;
6580 }
6581 /* Any other register is bad. */
6582 if (i.types[op].bitfield.reg
6583 || i.types[op].bitfield.regmmx
6584 || i.types[op].bitfield.regsimd
6585 || i.types[op].bitfield.sreg
6586 || i.types[op].bitfield.control
6587 || i.types[op].bitfield.debug
6588 || i.types[op].bitfield.test)
6589 {
6590 as_bad (_("`%s%s' not allowed with `%s%c'"),
6591 register_prefix,
6592 i.op[op].regs->reg_name,
6593 i.tm.name,
6594 i.suffix);
6595 return 0;
6596 }
6597 }
6598 return 1;
6599 }
6600
6601 static int
6602 check_long_reg (void)
6603 {
6604 int op;
6605
6606 for (op = i.operands; --op >= 0;)
6607 /* Skip non-register operands. */
6608 if (!i.types[op].bitfield.reg)
6609 continue;
6610 /* Reject eight bit registers, except where the template requires
6611 them. (eg. movzb) */
6612 else if (i.types[op].bitfield.byte
6613 && (i.tm.operand_types[op].bitfield.reg
6614 || i.tm.operand_types[op].bitfield.acc)
6615 && (i.tm.operand_types[op].bitfield.word
6616 || i.tm.operand_types[op].bitfield.dword))
6617 {
6618 as_bad (_("`%s%s' not allowed with `%s%c'"),
6619 register_prefix,
6620 i.op[op].regs->reg_name,
6621 i.tm.name,
6622 i.suffix);
6623 return 0;
6624 }
6625 /* Warn if the e prefix on a general reg is missing. */
6626 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6627 && i.types[op].bitfield.word
6628 && (i.tm.operand_types[op].bitfield.reg
6629 || i.tm.operand_types[op].bitfield.acc)
6630 && i.tm.operand_types[op].bitfield.dword)
6631 {
6632 /* Prohibit these changes in the 64bit mode, since the
6633 lowering is more complicated. */
6634 if (flag_code == CODE_64BIT)
6635 {
6636 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6637 register_prefix, i.op[op].regs->reg_name,
6638 i.suffix);
6639 return 0;
6640 }
6641 #if REGISTER_WARNINGS
6642 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6643 register_prefix,
6644 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6645 register_prefix, i.op[op].regs->reg_name, i.suffix);
6646 #endif
6647 }
6648 /* Warn if the r prefix on a general reg is present. */
6649 else if (i.types[op].bitfield.qword
6650 && (i.tm.operand_types[op].bitfield.reg
6651 || i.tm.operand_types[op].bitfield.acc)
6652 && i.tm.operand_types[op].bitfield.dword)
6653 {
6654 if (intel_syntax
6655 && i.tm.opcode_modifier.toqword
6656 && !i.types[0].bitfield.regsimd)
6657 {
6658 /* Convert to QWORD. We want REX byte. */
6659 i.suffix = QWORD_MNEM_SUFFIX;
6660 }
6661 else
6662 {
6663 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6664 register_prefix, i.op[op].regs->reg_name,
6665 i.suffix);
6666 return 0;
6667 }
6668 }
6669 return 1;
6670 }
6671
6672 static int
6673 check_qword_reg (void)
6674 {
6675 int op;
6676
6677 for (op = i.operands; --op >= 0; )
6678 /* Skip non-register operands. */
6679 if (!i.types[op].bitfield.reg)
6680 continue;
6681 /* Reject eight bit registers, except where the template requires
6682 them. (eg. movzb) */
6683 else if (i.types[op].bitfield.byte
6684 && (i.tm.operand_types[op].bitfield.reg
6685 || i.tm.operand_types[op].bitfield.acc)
6686 && (i.tm.operand_types[op].bitfield.word
6687 || i.tm.operand_types[op].bitfield.dword))
6688 {
6689 as_bad (_("`%s%s' not allowed with `%s%c'"),
6690 register_prefix,
6691 i.op[op].regs->reg_name,
6692 i.tm.name,
6693 i.suffix);
6694 return 0;
6695 }
6696 /* Warn if the r prefix on a general reg is missing. */
6697 else if ((i.types[op].bitfield.word
6698 || i.types[op].bitfield.dword)
6699 && (i.tm.operand_types[op].bitfield.reg
6700 || i.tm.operand_types[op].bitfield.acc)
6701 && i.tm.operand_types[op].bitfield.qword)
6702 {
6703 /* Prohibit these changes in the 64bit mode, since the
6704 lowering is more complicated. */
6705 if (intel_syntax
6706 && i.tm.opcode_modifier.todword
6707 && !i.types[0].bitfield.regsimd)
6708 {
6709 /* Convert to DWORD. We don't want REX byte. */
6710 i.suffix = LONG_MNEM_SUFFIX;
6711 }
6712 else
6713 {
6714 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6715 register_prefix, i.op[op].regs->reg_name,
6716 i.suffix);
6717 return 0;
6718 }
6719 }
6720 return 1;
6721 }
6722
6723 static int
6724 check_word_reg (void)
6725 {
6726 int op;
6727 for (op = i.operands; --op >= 0;)
6728 /* Skip non-register operands. */
6729 if (!i.types[op].bitfield.reg)
6730 continue;
6731 /* Reject eight bit registers, except where the template requires
6732 them. (eg. movzb) */
6733 else if (i.types[op].bitfield.byte
6734 && (i.tm.operand_types[op].bitfield.reg
6735 || i.tm.operand_types[op].bitfield.acc)
6736 && (i.tm.operand_types[op].bitfield.word
6737 || i.tm.operand_types[op].bitfield.dword))
6738 {
6739 as_bad (_("`%s%s' not allowed with `%s%c'"),
6740 register_prefix,
6741 i.op[op].regs->reg_name,
6742 i.tm.name,
6743 i.suffix);
6744 return 0;
6745 }
6746 /* Warn if the e or r prefix on a general reg is present. */
6747 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6748 && (i.types[op].bitfield.dword
6749 || i.types[op].bitfield.qword)
6750 && (i.tm.operand_types[op].bitfield.reg
6751 || i.tm.operand_types[op].bitfield.acc)
6752 && i.tm.operand_types[op].bitfield.word)
6753 {
6754 /* Prohibit these changes in the 64bit mode, since the
6755 lowering is more complicated. */
6756 if (flag_code == CODE_64BIT)
6757 {
6758 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6759 register_prefix, i.op[op].regs->reg_name,
6760 i.suffix);
6761 return 0;
6762 }
6763 #if REGISTER_WARNINGS
6764 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6765 register_prefix,
6766 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6767 register_prefix, i.op[op].regs->reg_name, i.suffix);
6768 #endif
6769 }
6770 return 1;
6771 }
6772
6773 static int
6774 update_imm (unsigned int j)
6775 {
6776 i386_operand_type overlap = i.types[j];
6777 if ((overlap.bitfield.imm8
6778 || overlap.bitfield.imm8s
6779 || overlap.bitfield.imm16
6780 || overlap.bitfield.imm32
6781 || overlap.bitfield.imm32s
6782 || overlap.bitfield.imm64)
6783 && !operand_type_equal (&overlap, &imm8)
6784 && !operand_type_equal (&overlap, &imm8s)
6785 && !operand_type_equal (&overlap, &imm16)
6786 && !operand_type_equal (&overlap, &imm32)
6787 && !operand_type_equal (&overlap, &imm32s)
6788 && !operand_type_equal (&overlap, &imm64))
6789 {
6790 if (i.suffix)
6791 {
6792 i386_operand_type temp;
6793
6794 operand_type_set (&temp, 0);
6795 if (i.suffix == BYTE_MNEM_SUFFIX)
6796 {
6797 temp.bitfield.imm8 = overlap.bitfield.imm8;
6798 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6799 }
6800 else if (i.suffix == WORD_MNEM_SUFFIX)
6801 temp.bitfield.imm16 = overlap.bitfield.imm16;
6802 else if (i.suffix == QWORD_MNEM_SUFFIX)
6803 {
6804 temp.bitfield.imm64 = overlap.bitfield.imm64;
6805 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6806 }
6807 else
6808 temp.bitfield.imm32 = overlap.bitfield.imm32;
6809 overlap = temp;
6810 }
6811 else if (operand_type_equal (&overlap, &imm16_32_32s)
6812 || operand_type_equal (&overlap, &imm16_32)
6813 || operand_type_equal (&overlap, &imm16_32s))
6814 {
6815 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6816 overlap = imm16;
6817 else
6818 overlap = imm32s;
6819 }
6820 if (!operand_type_equal (&overlap, &imm8)
6821 && !operand_type_equal (&overlap, &imm8s)
6822 && !operand_type_equal (&overlap, &imm16)
6823 && !operand_type_equal (&overlap, &imm32)
6824 && !operand_type_equal (&overlap, &imm32s)
6825 && !operand_type_equal (&overlap, &imm64))
6826 {
6827 as_bad (_("no instruction mnemonic suffix given; "
6828 "can't determine immediate size"));
6829 return 0;
6830 }
6831 }
6832 i.types[j] = overlap;
6833
6834 return 1;
6835 }
6836
6837 static int
6838 finalize_imm (void)
6839 {
6840 unsigned int j, n;
6841
6842 /* Update the first 2 immediate operands. */
6843 n = i.operands > 2 ? 2 : i.operands;
6844 if (n)
6845 {
6846 for (j = 0; j < n; j++)
6847 if (update_imm (j) == 0)
6848 return 0;
6849
6850 /* The 3rd operand can't be immediate operand. */
6851 gas_assert (operand_type_check (i.types[2], imm) == 0);
6852 }
6853
6854 return 1;
6855 }
6856
6857 static int
6858 process_operands (void)
6859 {
6860 /* Default segment register this instruction will use for memory
6861 accesses. 0 means unknown. This is only for optimizing out
6862 unnecessary segment overrides. */
6863 const seg_entry *default_seg = 0;
6864
6865 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6866 {
6867 unsigned int dupl = i.operands;
6868 unsigned int dest = dupl - 1;
6869 unsigned int j;
6870
6871 /* The destination must be an xmm register. */
6872 gas_assert (i.reg_operands
6873 && MAX_OPERANDS > dupl
6874 && operand_type_equal (&i.types[dest], &regxmm));
6875
6876 if (i.tm.operand_types[0].bitfield.acc
6877 && i.tm.operand_types[0].bitfield.xmmword)
6878 {
6879 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6880 {
6881 /* Keep xmm0 for instructions with VEX prefix and 3
6882 sources. */
6883 i.tm.operand_types[0].bitfield.acc = 0;
6884 i.tm.operand_types[0].bitfield.regsimd = 1;
6885 goto duplicate;
6886 }
6887 else
6888 {
6889 /* We remove the first xmm0 and keep the number of
6890 operands unchanged, which in fact duplicates the
6891 destination. */
6892 for (j = 1; j < i.operands; j++)
6893 {
6894 i.op[j - 1] = i.op[j];
6895 i.types[j - 1] = i.types[j];
6896 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6897 i.flags[j - 1] = i.flags[j];
6898 }
6899 }
6900 }
6901 else if (i.tm.opcode_modifier.implicit1stxmm0)
6902 {
6903 gas_assert ((MAX_OPERANDS - 1) > dupl
6904 && (i.tm.opcode_modifier.vexsources
6905 == VEX3SOURCES));
6906
6907 /* Add the implicit xmm0 for instructions with VEX prefix
6908 and 3 sources. */
6909 for (j = i.operands; j > 0; j--)
6910 {
6911 i.op[j] = i.op[j - 1];
6912 i.types[j] = i.types[j - 1];
6913 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6914 i.flags[j] = i.flags[j - 1];
6915 }
6916 i.op[0].regs
6917 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6918 i.types[0] = regxmm;
6919 i.tm.operand_types[0] = regxmm;
6920
6921 i.operands += 2;
6922 i.reg_operands += 2;
6923 i.tm.operands += 2;
6924
6925 dupl++;
6926 dest++;
6927 i.op[dupl] = i.op[dest];
6928 i.types[dupl] = i.types[dest];
6929 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6930 i.flags[dupl] = i.flags[dest];
6931 }
6932 else
6933 {
6934 duplicate:
6935 i.operands++;
6936 i.reg_operands++;
6937 i.tm.operands++;
6938
6939 i.op[dupl] = i.op[dest];
6940 i.types[dupl] = i.types[dest];
6941 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6942 i.flags[dupl] = i.flags[dest];
6943 }
6944
6945 if (i.tm.opcode_modifier.immext)
6946 process_immext ();
6947 }
6948 else if (i.tm.operand_types[0].bitfield.acc
6949 && i.tm.operand_types[0].bitfield.xmmword)
6950 {
6951 unsigned int j;
6952
6953 for (j = 1; j < i.operands; j++)
6954 {
6955 i.op[j - 1] = i.op[j];
6956 i.types[j - 1] = i.types[j];
6957
6958 /* We need to adjust fields in i.tm since they are used by
6959 build_modrm_byte. */
6960 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6961
6962 i.flags[j - 1] = i.flags[j];
6963 }
6964
6965 i.operands--;
6966 i.reg_operands--;
6967 i.tm.operands--;
6968 }
6969 else if (i.tm.opcode_modifier.implicitquadgroup)
6970 {
6971 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6972
6973 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6974 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6975 regnum = register_number (i.op[1].regs);
6976 first_reg_in_group = regnum & ~3;
6977 last_reg_in_group = first_reg_in_group + 3;
6978 if (regnum != first_reg_in_group)
6979 as_warn (_("source register `%s%s' implicitly denotes"
6980 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6981 register_prefix, i.op[1].regs->reg_name,
6982 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6983 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6984 i.tm.name);
6985 }
6986 else if (i.tm.opcode_modifier.regkludge)
6987 {
6988 /* The imul $imm, %reg instruction is converted into
6989 imul $imm, %reg, %reg, and the clr %reg instruction
6990 is converted into xor %reg, %reg. */
6991
6992 unsigned int first_reg_op;
6993
6994 if (operand_type_check (i.types[0], reg))
6995 first_reg_op = 0;
6996 else
6997 first_reg_op = 1;
6998 /* Pretend we saw the extra register operand. */
6999 gas_assert (i.reg_operands == 1
7000 && i.op[first_reg_op + 1].regs == 0);
7001 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7002 i.types[first_reg_op + 1] = i.types[first_reg_op];
7003 i.operands++;
7004 i.reg_operands++;
7005 }
7006
7007 if (i.tm.opcode_modifier.modrm)
7008 {
7009 /* The opcode is completed (modulo i.tm.extension_opcode which
7010 must be put into the modrm byte). Now, we make the modrm and
7011 index base bytes based on all the info we've collected. */
7012
7013 default_seg = build_modrm_byte ();
7014 }
7015 else if (i.types[0].bitfield.sreg)
7016 {
7017 if (flag_code != CODE_64BIT
7018 ? i.tm.base_opcode == POP_SEG_SHORT
7019 && i.op[0].regs->reg_num == 1
7020 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7021 && i.op[0].regs->reg_num < 4)
7022 {
7023 as_bad (_("you can't `%s %s%s'"),
7024 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7025 return 0;
7026 }
7027 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7028 {
7029 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7030 i.tm.opcode_length = 2;
7031 }
7032 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7033 }
7034 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7035 {
7036 default_seg = &ds;
7037 }
7038 else if (i.tm.opcode_modifier.isstring)
7039 {
7040 /* For the string instructions that allow a segment override
7041 on one of their operands, the default segment is ds. */
7042 default_seg = &ds;
7043 }
7044 else if (i.tm.opcode_modifier.shortform)
7045 {
7046 /* The register or float register operand is in operand
7047 0 or 1. */
7048 unsigned int op = !i.tm.operand_types[0].bitfield.reg;
7049
7050 /* Register goes in low 3 bits of opcode. */
7051 i.tm.base_opcode |= i.op[op].regs->reg_num;
7052 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7053 i.rex |= REX_B;
7054 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7055 {
7056 /* Warn about some common errors, but press on regardless.
7057 The first case can be generated by gcc (<= 2.8.1). */
7058 if (i.operands == 2)
7059 {
7060 /* Reversed arguments on faddp, fsubp, etc. */
7061 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7062 register_prefix, i.op[!intel_syntax].regs->reg_name,
7063 register_prefix, i.op[intel_syntax].regs->reg_name);
7064 }
7065 else
7066 {
7067 /* Extraneous `l' suffix on fp insn. */
7068 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7069 register_prefix, i.op[0].regs->reg_name);
7070 }
7071 }
7072 }
7073
7074 if (i.tm.base_opcode == 0x8d /* lea */
7075 && i.seg[0]
7076 && !quiet_warnings)
7077 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7078
7079 /* If a segment was explicitly specified, and the specified segment
7080 is not the default, use an opcode prefix to select it. If we
7081 never figured out what the default segment is, then default_seg
7082 will be zero at this point, and the specified segment prefix will
7083 always be used. */
7084 if ((i.seg[0]) && (i.seg[0] != default_seg))
7085 {
7086 if (!add_prefix (i.seg[0]->seg_prefix))
7087 return 0;
7088 }
7089 return 1;
7090 }
7091
7092 static const seg_entry *
7093 build_modrm_byte (void)
7094 {
7095 const seg_entry *default_seg = 0;
7096 unsigned int source, dest;
7097 int vex_3_sources;
7098
7099 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7100 if (vex_3_sources)
7101 {
7102 unsigned int nds, reg_slot;
7103 expressionS *exp;
7104
7105 dest = i.operands - 1;
7106 nds = dest - 1;
7107
7108 /* There are 2 kinds of instructions:
7109 1. 5 operands: 4 register operands or 3 register operands
7110 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7111 VexW0 or VexW1. The destination must be either XMM, YMM or
7112 ZMM register.
7113 2. 4 operands: 4 register operands or 3 register operands
7114 plus 1 memory operand, with VexXDS. */
7115 gas_assert ((i.reg_operands == 4
7116 || (i.reg_operands == 3 && i.mem_operands == 1))
7117 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7118 && i.tm.opcode_modifier.vexw
7119 && i.tm.operand_types[dest].bitfield.regsimd);
7120
7121 /* If VexW1 is set, the first non-immediate operand is the source and
7122 the second non-immediate one is encoded in the immediate operand. */
7123 if (i.tm.opcode_modifier.vexw == VEXW1)
7124 {
7125 source = i.imm_operands;
7126 reg_slot = i.imm_operands + 1;
7127 }
7128 else
7129 {
7130 source = i.imm_operands + 1;
7131 reg_slot = i.imm_operands;
7132 }
7133
7134 if (i.imm_operands == 0)
7135 {
7136 /* When there is no immediate operand, generate an 8bit
7137 immediate operand to encode the first operand. */
7138 exp = &im_expressions[i.imm_operands++];
7139 i.op[i.operands].imms = exp;
7140 i.types[i.operands] = imm8;
7141 i.operands++;
7142
7143 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7144 exp->X_op = O_constant;
7145 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7146 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7147 }
7148 else
7149 {
7150 gas_assert (i.imm_operands == 1);
7151 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7152 gas_assert (!i.tm.opcode_modifier.immext);
7153
7154 /* Turn on Imm8 again so that output_imm will generate it. */
7155 i.types[0].bitfield.imm8 = 1;
7156
7157 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7158 i.op[0].imms->X_add_number
7159 |= register_number (i.op[reg_slot].regs) << 4;
7160 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7161 }
7162
7163 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7164 i.vex.register_specifier = i.op[nds].regs;
7165 }
7166 else
7167 source = dest = 0;
7168
7169 /* i.reg_operands MUST be the number of real register operands;
7170 implicit registers do not count. If there are 3 register
7171 operands, it must be a instruction with VexNDS. For a
7172 instruction with VexNDD, the destination register is encoded
7173 in VEX prefix. If there are 4 register operands, it must be
7174 a instruction with VEX prefix and 3 sources. */
7175 if (i.mem_operands == 0
7176 && ((i.reg_operands == 2
7177 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7178 || (i.reg_operands == 3
7179 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7180 || (i.reg_operands == 4 && vex_3_sources)))
7181 {
7182 switch (i.operands)
7183 {
7184 case 2:
7185 source = 0;
7186 break;
7187 case 3:
7188 /* When there are 3 operands, one of them may be immediate,
7189 which may be the first or the last operand. Otherwise,
7190 the first operand must be shift count register (cl) or it
7191 is an instruction with VexNDS. */
7192 gas_assert (i.imm_operands == 1
7193 || (i.imm_operands == 0
7194 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7195 || i.types[0].bitfield.shiftcount)));
7196 if (operand_type_check (i.types[0], imm)
7197 || i.types[0].bitfield.shiftcount)
7198 source = 1;
7199 else
7200 source = 0;
7201 break;
7202 case 4:
7203 /* When there are 4 operands, the first two must be 8bit
7204 immediate operands. The source operand will be the 3rd
7205 one.
7206
7207 For instructions with VexNDS, if the first operand
7208 an imm8, the source operand is the 2nd one. If the last
7209 operand is imm8, the source operand is the first one. */
7210 gas_assert ((i.imm_operands == 2
7211 && i.types[0].bitfield.imm8
7212 && i.types[1].bitfield.imm8)
7213 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7214 && i.imm_operands == 1
7215 && (i.types[0].bitfield.imm8
7216 || i.types[i.operands - 1].bitfield.imm8
7217 || i.rounding)));
7218 if (i.imm_operands == 2)
7219 source = 2;
7220 else
7221 {
7222 if (i.types[0].bitfield.imm8)
7223 source = 1;
7224 else
7225 source = 0;
7226 }
7227 break;
7228 case 5:
7229 if (is_evex_encoding (&i.tm))
7230 {
7231 /* For EVEX instructions, when there are 5 operands, the
7232 first one must be immediate operand. If the second one
7233 is immediate operand, the source operand is the 3th
7234 one. If the last one is immediate operand, the source
7235 operand is the 2nd one. */
7236 gas_assert (i.imm_operands == 2
7237 && i.tm.opcode_modifier.sae
7238 && operand_type_check (i.types[0], imm));
7239 if (operand_type_check (i.types[1], imm))
7240 source = 2;
7241 else if (operand_type_check (i.types[4], imm))
7242 source = 1;
7243 else
7244 abort ();
7245 }
7246 break;
7247 default:
7248 abort ();
7249 }
7250
7251 if (!vex_3_sources)
7252 {
7253 dest = source + 1;
7254
7255 /* RC/SAE operand could be between DEST and SRC. That happens
7256 when one operand is GPR and the other one is XMM/YMM/ZMM
7257 register. */
7258 if (i.rounding && i.rounding->operand == (int) dest)
7259 dest++;
7260
7261 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7262 {
7263 /* For instructions with VexNDS, the register-only source
7264 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7265 register. It is encoded in VEX prefix. */
7266
7267 i386_operand_type op;
7268 unsigned int vvvv;
7269
7270 /* Check register-only source operand when two source
7271 operands are swapped. */
7272 if (!i.tm.operand_types[source].bitfield.baseindex
7273 && i.tm.operand_types[dest].bitfield.baseindex)
7274 {
7275 vvvv = source;
7276 source = dest;
7277 }
7278 else
7279 vvvv = dest;
7280
7281 op = i.tm.operand_types[vvvv];
7282 if ((dest + 1) >= i.operands
7283 || ((!op.bitfield.reg
7284 || (!op.bitfield.dword && !op.bitfield.qword))
7285 && !op.bitfield.regsimd
7286 && !operand_type_equal (&op, &regmask)))
7287 abort ();
7288 i.vex.register_specifier = i.op[vvvv].regs;
7289 dest++;
7290 }
7291 }
7292
7293 i.rm.mode = 3;
7294 /* One of the register operands will be encoded in the i.rm.reg
7295 field, the other in the combined i.rm.mode and i.rm.regmem
7296 fields. If no form of this instruction supports a memory
7297 destination operand, then we assume the source operand may
7298 sometimes be a memory operand and so we need to store the
7299 destination in the i.rm.reg field. */
7300 if (!i.tm.opcode_modifier.regmem
7301 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7302 {
7303 i.rm.reg = i.op[dest].regs->reg_num;
7304 i.rm.regmem = i.op[source].regs->reg_num;
7305 if (i.op[dest].regs->reg_type.bitfield.regmmx
7306 || i.op[source].regs->reg_type.bitfield.regmmx)
7307 i.has_regmmx = TRUE;
7308 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7309 || i.op[source].regs->reg_type.bitfield.regsimd)
7310 {
7311 if (i.types[dest].bitfield.zmmword
7312 || i.types[source].bitfield.zmmword)
7313 i.has_regzmm = TRUE;
7314 else if (i.types[dest].bitfield.ymmword
7315 || i.types[source].bitfield.ymmword)
7316 i.has_regymm = TRUE;
7317 else
7318 i.has_regxmm = TRUE;
7319 }
7320 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7321 i.rex |= REX_R;
7322 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7323 i.vrex |= REX_R;
7324 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7325 i.rex |= REX_B;
7326 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7327 i.vrex |= REX_B;
7328 }
7329 else
7330 {
7331 i.rm.reg = i.op[source].regs->reg_num;
7332 i.rm.regmem = i.op[dest].regs->reg_num;
7333 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7334 i.rex |= REX_B;
7335 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7336 i.vrex |= REX_B;
7337 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7338 i.rex |= REX_R;
7339 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7340 i.vrex |= REX_R;
7341 }
7342 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7343 {
7344 if (!i.types[!i.tm.opcode_modifier.regmem].bitfield.control)
7345 abort ();
7346 i.rex &= ~REX_R;
7347 add_prefix (LOCK_PREFIX_OPCODE);
7348 }
7349 }
7350 else
7351 { /* If it's not 2 reg operands... */
7352 unsigned int mem;
7353
7354 if (i.mem_operands)
7355 {
7356 unsigned int fake_zero_displacement = 0;
7357 unsigned int op;
7358
7359 for (op = 0; op < i.operands; op++)
7360 if (i.flags[op] & Operand_Mem)
7361 break;
7362 gas_assert (op < i.operands);
7363
7364 if (i.tm.opcode_modifier.vecsib)
7365 {
7366 if (i.index_reg->reg_num == RegIZ)
7367 abort ();
7368
7369 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7370 if (!i.base_reg)
7371 {
7372 i.sib.base = NO_BASE_REGISTER;
7373 i.sib.scale = i.log2_scale_factor;
7374 i.types[op].bitfield.disp8 = 0;
7375 i.types[op].bitfield.disp16 = 0;
7376 i.types[op].bitfield.disp64 = 0;
7377 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7378 {
7379 /* Must be 32 bit */
7380 i.types[op].bitfield.disp32 = 1;
7381 i.types[op].bitfield.disp32s = 0;
7382 }
7383 else
7384 {
7385 i.types[op].bitfield.disp32 = 0;
7386 i.types[op].bitfield.disp32s = 1;
7387 }
7388 }
7389 i.sib.index = i.index_reg->reg_num;
7390 if ((i.index_reg->reg_flags & RegRex) != 0)
7391 i.rex |= REX_X;
7392 if ((i.index_reg->reg_flags & RegVRex) != 0)
7393 i.vrex |= REX_X;
7394 }
7395
7396 default_seg = &ds;
7397
7398 if (i.base_reg == 0)
7399 {
7400 i.rm.mode = 0;
7401 if (!i.disp_operands)
7402 fake_zero_displacement = 1;
7403 if (i.index_reg == 0)
7404 {
7405 i386_operand_type newdisp;
7406
7407 gas_assert (!i.tm.opcode_modifier.vecsib);
7408 /* Operand is just <disp> */
7409 if (flag_code == CODE_64BIT)
7410 {
7411 /* 64bit mode overwrites the 32bit absolute
7412 addressing by RIP relative addressing and
7413 absolute addressing is encoded by one of the
7414 redundant SIB forms. */
7415 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7416 i.sib.base = NO_BASE_REGISTER;
7417 i.sib.index = NO_INDEX_REGISTER;
7418 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7419 }
7420 else if ((flag_code == CODE_16BIT)
7421 ^ (i.prefix[ADDR_PREFIX] != 0))
7422 {
7423 i.rm.regmem = NO_BASE_REGISTER_16;
7424 newdisp = disp16;
7425 }
7426 else
7427 {
7428 i.rm.regmem = NO_BASE_REGISTER;
7429 newdisp = disp32;
7430 }
7431 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7432 i.types[op] = operand_type_or (i.types[op], newdisp);
7433 }
7434 else if (!i.tm.opcode_modifier.vecsib)
7435 {
7436 /* !i.base_reg && i.index_reg */
7437 if (i.index_reg->reg_num == RegIZ)
7438 i.sib.index = NO_INDEX_REGISTER;
7439 else
7440 i.sib.index = i.index_reg->reg_num;
7441 i.sib.base = NO_BASE_REGISTER;
7442 i.sib.scale = i.log2_scale_factor;
7443 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7444 i.types[op].bitfield.disp8 = 0;
7445 i.types[op].bitfield.disp16 = 0;
7446 i.types[op].bitfield.disp64 = 0;
7447 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7448 {
7449 /* Must be 32 bit */
7450 i.types[op].bitfield.disp32 = 1;
7451 i.types[op].bitfield.disp32s = 0;
7452 }
7453 else
7454 {
7455 i.types[op].bitfield.disp32 = 0;
7456 i.types[op].bitfield.disp32s = 1;
7457 }
7458 if ((i.index_reg->reg_flags & RegRex) != 0)
7459 i.rex |= REX_X;
7460 }
7461 }
7462 /* RIP addressing for 64bit mode. */
7463 else if (i.base_reg->reg_num == RegIP)
7464 {
7465 gas_assert (!i.tm.opcode_modifier.vecsib);
7466 i.rm.regmem = NO_BASE_REGISTER;
7467 i.types[op].bitfield.disp8 = 0;
7468 i.types[op].bitfield.disp16 = 0;
7469 i.types[op].bitfield.disp32 = 0;
7470 i.types[op].bitfield.disp32s = 1;
7471 i.types[op].bitfield.disp64 = 0;
7472 i.flags[op] |= Operand_PCrel;
7473 if (! i.disp_operands)
7474 fake_zero_displacement = 1;
7475 }
7476 else if (i.base_reg->reg_type.bitfield.word)
7477 {
7478 gas_assert (!i.tm.opcode_modifier.vecsib);
7479 switch (i.base_reg->reg_num)
7480 {
7481 case 3: /* (%bx) */
7482 if (i.index_reg == 0)
7483 i.rm.regmem = 7;
7484 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7485 i.rm.regmem = i.index_reg->reg_num - 6;
7486 break;
7487 case 5: /* (%bp) */
7488 default_seg = &ss;
7489 if (i.index_reg == 0)
7490 {
7491 i.rm.regmem = 6;
7492 if (operand_type_check (i.types[op], disp) == 0)
7493 {
7494 /* fake (%bp) into 0(%bp) */
7495 i.types[op].bitfield.disp8 = 1;
7496 fake_zero_displacement = 1;
7497 }
7498 }
7499 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7500 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7501 break;
7502 default: /* (%si) -> 4 or (%di) -> 5 */
7503 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7504 }
7505 i.rm.mode = mode_from_disp_size (i.types[op]);
7506 }
7507 else /* i.base_reg and 32/64 bit mode */
7508 {
7509 if (flag_code == CODE_64BIT
7510 && operand_type_check (i.types[op], disp))
7511 {
7512 i.types[op].bitfield.disp16 = 0;
7513 i.types[op].bitfield.disp64 = 0;
7514 if (i.prefix[ADDR_PREFIX] == 0)
7515 {
7516 i.types[op].bitfield.disp32 = 0;
7517 i.types[op].bitfield.disp32s = 1;
7518 }
7519 else
7520 {
7521 i.types[op].bitfield.disp32 = 1;
7522 i.types[op].bitfield.disp32s = 0;
7523 }
7524 }
7525
7526 if (!i.tm.opcode_modifier.vecsib)
7527 i.rm.regmem = i.base_reg->reg_num;
7528 if ((i.base_reg->reg_flags & RegRex) != 0)
7529 i.rex |= REX_B;
7530 i.sib.base = i.base_reg->reg_num;
7531 /* x86-64 ignores REX prefix bit here to avoid decoder
7532 complications. */
7533 if (!(i.base_reg->reg_flags & RegRex)
7534 && (i.base_reg->reg_num == EBP_REG_NUM
7535 || i.base_reg->reg_num == ESP_REG_NUM))
7536 default_seg = &ss;
7537 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7538 {
7539 fake_zero_displacement = 1;
7540 i.types[op].bitfield.disp8 = 1;
7541 }
7542 i.sib.scale = i.log2_scale_factor;
7543 if (i.index_reg == 0)
7544 {
7545 gas_assert (!i.tm.opcode_modifier.vecsib);
7546 /* <disp>(%esp) becomes two byte modrm with no index
7547 register. We've already stored the code for esp
7548 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7549 Any base register besides %esp will not use the
7550 extra modrm byte. */
7551 i.sib.index = NO_INDEX_REGISTER;
7552 }
7553 else if (!i.tm.opcode_modifier.vecsib)
7554 {
7555 if (i.index_reg->reg_num == RegIZ)
7556 i.sib.index = NO_INDEX_REGISTER;
7557 else
7558 i.sib.index = i.index_reg->reg_num;
7559 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7560 if ((i.index_reg->reg_flags & RegRex) != 0)
7561 i.rex |= REX_X;
7562 }
7563
7564 if (i.disp_operands
7565 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7566 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7567 i.rm.mode = 0;
7568 else
7569 {
7570 if (!fake_zero_displacement
7571 && !i.disp_operands
7572 && i.disp_encoding)
7573 {
7574 fake_zero_displacement = 1;
7575 if (i.disp_encoding == disp_encoding_8bit)
7576 i.types[op].bitfield.disp8 = 1;
7577 else
7578 i.types[op].bitfield.disp32 = 1;
7579 }
7580 i.rm.mode = mode_from_disp_size (i.types[op]);
7581 }
7582 }
7583
7584 if (fake_zero_displacement)
7585 {
7586 /* Fakes a zero displacement assuming that i.types[op]
7587 holds the correct displacement size. */
7588 expressionS *exp;
7589
7590 gas_assert (i.op[op].disps == 0);
7591 exp = &disp_expressions[i.disp_operands++];
7592 i.op[op].disps = exp;
7593 exp->X_op = O_constant;
7594 exp->X_add_number = 0;
7595 exp->X_add_symbol = (symbolS *) 0;
7596 exp->X_op_symbol = (symbolS *) 0;
7597 }
7598
7599 mem = op;
7600 }
7601 else
7602 mem = ~0;
7603
7604 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7605 {
7606 if (operand_type_check (i.types[0], imm))
7607 i.vex.register_specifier = NULL;
7608 else
7609 {
7610 /* VEX.vvvv encodes one of the sources when the first
7611 operand is not an immediate. */
7612 if (i.tm.opcode_modifier.vexw == VEXW0)
7613 i.vex.register_specifier = i.op[0].regs;
7614 else
7615 i.vex.register_specifier = i.op[1].regs;
7616 }
7617
7618 /* Destination is a XMM register encoded in the ModRM.reg
7619 and VEX.R bit. */
7620 i.rm.reg = i.op[2].regs->reg_num;
7621 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7622 i.rex |= REX_R;
7623
7624 /* ModRM.rm and VEX.B encodes the other source. */
7625 if (!i.mem_operands)
7626 {
7627 i.rm.mode = 3;
7628
7629 if (i.tm.opcode_modifier.vexw == VEXW0)
7630 i.rm.regmem = i.op[1].regs->reg_num;
7631 else
7632 i.rm.regmem = i.op[0].regs->reg_num;
7633
7634 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7635 i.rex |= REX_B;
7636 }
7637 }
7638 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7639 {
7640 i.vex.register_specifier = i.op[2].regs;
7641 if (!i.mem_operands)
7642 {
7643 i.rm.mode = 3;
7644 i.rm.regmem = i.op[1].regs->reg_num;
7645 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7646 i.rex |= REX_B;
7647 }
7648 }
7649 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7650 (if any) based on i.tm.extension_opcode. Again, we must be
7651 careful to make sure that segment/control/debug/test/MMX
7652 registers are coded into the i.rm.reg field. */
7653 else if (i.reg_operands)
7654 {
7655 unsigned int op;
7656 unsigned int vex_reg = ~0;
7657
7658 for (op = 0; op < i.operands; op++)
7659 {
7660 if (i.types[op].bitfield.reg
7661 || i.types[op].bitfield.regbnd
7662 || i.types[op].bitfield.regmask
7663 || i.types[op].bitfield.sreg
7664 || i.types[op].bitfield.control
7665 || i.types[op].bitfield.debug
7666 || i.types[op].bitfield.test)
7667 break;
7668 if (i.types[op].bitfield.regsimd)
7669 {
7670 if (i.types[op].bitfield.zmmword)
7671 i.has_regzmm = TRUE;
7672 else if (i.types[op].bitfield.ymmword)
7673 i.has_regymm = TRUE;
7674 else
7675 i.has_regxmm = TRUE;
7676 break;
7677 }
7678 if (i.types[op].bitfield.regmmx)
7679 {
7680 i.has_regmmx = TRUE;
7681 break;
7682 }
7683 }
7684
7685 if (vex_3_sources)
7686 op = dest;
7687 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7688 {
7689 /* For instructions with VexNDS, the register-only
7690 source operand is encoded in VEX prefix. */
7691 gas_assert (mem != (unsigned int) ~0);
7692
7693 if (op > mem)
7694 {
7695 vex_reg = op++;
7696 gas_assert (op < i.operands);
7697 }
7698 else
7699 {
7700 /* Check register-only source operand when two source
7701 operands are swapped. */
7702 if (!i.tm.operand_types[op].bitfield.baseindex
7703 && i.tm.operand_types[op + 1].bitfield.baseindex)
7704 {
7705 vex_reg = op;
7706 op += 2;
7707 gas_assert (mem == (vex_reg + 1)
7708 && op < i.operands);
7709 }
7710 else
7711 {
7712 vex_reg = op + 1;
7713 gas_assert (vex_reg < i.operands);
7714 }
7715 }
7716 }
7717 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7718 {
7719 /* For instructions with VexNDD, the register destination
7720 is encoded in VEX prefix. */
7721 if (i.mem_operands == 0)
7722 {
7723 /* There is no memory operand. */
7724 gas_assert ((op + 2) == i.operands);
7725 vex_reg = op + 1;
7726 }
7727 else
7728 {
7729 /* There are only 2 non-immediate operands. */
7730 gas_assert (op < i.imm_operands + 2
7731 && i.operands == i.imm_operands + 2);
7732 vex_reg = i.imm_operands + 1;
7733 }
7734 }
7735 else
7736 gas_assert (op < i.operands);
7737
7738 if (vex_reg != (unsigned int) ~0)
7739 {
7740 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7741
7742 if ((!type->bitfield.reg
7743 || (!type->bitfield.dword && !type->bitfield.qword))
7744 && !type->bitfield.regsimd
7745 && !operand_type_equal (type, &regmask))
7746 abort ();
7747
7748 i.vex.register_specifier = i.op[vex_reg].regs;
7749 }
7750
7751 /* Don't set OP operand twice. */
7752 if (vex_reg != op)
7753 {
7754 /* If there is an extension opcode to put here, the
7755 register number must be put into the regmem field. */
7756 if (i.tm.extension_opcode != None)
7757 {
7758 i.rm.regmem = i.op[op].regs->reg_num;
7759 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7760 i.rex |= REX_B;
7761 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7762 i.vrex |= REX_B;
7763 }
7764 else
7765 {
7766 i.rm.reg = i.op[op].regs->reg_num;
7767 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7768 i.rex |= REX_R;
7769 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7770 i.vrex |= REX_R;
7771 }
7772 }
7773
7774 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7775 must set it to 3 to indicate this is a register operand
7776 in the regmem field. */
7777 if (!i.mem_operands)
7778 i.rm.mode = 3;
7779 }
7780
7781 /* Fill in i.rm.reg field with extension opcode (if any). */
7782 if (i.tm.extension_opcode != None)
7783 i.rm.reg = i.tm.extension_opcode;
7784 }
7785 return default_seg;
7786 }
7787
7788 static void
7789 output_branch (void)
7790 {
7791 char *p;
7792 int size;
7793 int code16;
7794 int prefix;
7795 relax_substateT subtype;
7796 symbolS *sym;
7797 offsetT off;
7798
7799 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7800 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7801
7802 prefix = 0;
7803 if (i.prefix[DATA_PREFIX] != 0)
7804 {
7805 prefix = 1;
7806 i.prefixes -= 1;
7807 code16 ^= CODE16;
7808 }
7809 /* Pentium4 branch hints. */
7810 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7811 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7812 {
7813 prefix++;
7814 i.prefixes--;
7815 }
7816 if (i.prefix[REX_PREFIX] != 0)
7817 {
7818 prefix++;
7819 i.prefixes--;
7820 }
7821
7822 /* BND prefixed jump. */
7823 if (i.prefix[BND_PREFIX] != 0)
7824 {
7825 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7826 i.prefixes -= 1;
7827 }
7828
7829 if (i.prefixes != 0 && !intel_syntax)
7830 as_warn (_("skipping prefixes on this instruction"));
7831
7832 /* It's always a symbol; End frag & setup for relax.
7833 Make sure there is enough room in this frag for the largest
7834 instruction we may generate in md_convert_frag. This is 2
7835 bytes for the opcode and room for the prefix and largest
7836 displacement. */
7837 frag_grow (prefix + 2 + 4);
7838 /* Prefix and 1 opcode byte go in fr_fix. */
7839 p = frag_more (prefix + 1);
7840 if (i.prefix[DATA_PREFIX] != 0)
7841 *p++ = DATA_PREFIX_OPCODE;
7842 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7843 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7844 *p++ = i.prefix[SEG_PREFIX];
7845 if (i.prefix[REX_PREFIX] != 0)
7846 *p++ = i.prefix[REX_PREFIX];
7847 *p = i.tm.base_opcode;
7848
7849 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7850 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7851 else if (cpu_arch_flags.bitfield.cpui386)
7852 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7853 else
7854 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7855 subtype |= code16;
7856
7857 sym = i.op[0].disps->X_add_symbol;
7858 off = i.op[0].disps->X_add_number;
7859
7860 if (i.op[0].disps->X_op != O_constant
7861 && i.op[0].disps->X_op != O_symbol)
7862 {
7863 /* Handle complex expressions. */
7864 sym = make_expr_symbol (i.op[0].disps);
7865 off = 0;
7866 }
7867
7868 /* 1 possible extra opcode + 4 byte displacement go in var part.
7869 Pass reloc in fr_var. */
7870 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7871 }
7872
7873 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7874 /* Return TRUE iff PLT32 relocation should be used for branching to
7875 symbol S. */
7876
7877 static bfd_boolean
7878 need_plt32_p (symbolS *s)
7879 {
7880 /* PLT32 relocation is ELF only. */
7881 if (!IS_ELF)
7882 return FALSE;
7883
7884 #ifdef TE_SOLARIS
7885 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7886 krtld support it. */
7887 return FALSE;
7888 #endif
7889
7890 /* Since there is no need to prepare for PLT branch on x86-64, we
7891 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7892 be used as a marker for 32-bit PC-relative branches. */
7893 if (!object_64bit)
7894 return FALSE;
7895
7896 /* Weak or undefined symbol need PLT32 relocation. */
7897 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7898 return TRUE;
7899
7900 /* Non-global symbol doesn't need PLT32 relocation. */
7901 if (! S_IS_EXTERNAL (s))
7902 return FALSE;
7903
7904 /* Other global symbols need PLT32 relocation. NB: Symbol with
7905 non-default visibilities are treated as normal global symbol
7906 so that PLT32 relocation can be used as a marker for 32-bit
7907 PC-relative branches. It is useful for linker relaxation. */
7908 return TRUE;
7909 }
7910 #endif
7911
7912 static void
7913 output_jump (void)
7914 {
7915 char *p;
7916 int size;
7917 fixS *fixP;
7918 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7919
7920 if (i.tm.opcode_modifier.jumpbyte)
7921 {
7922 /* This is a loop or jecxz type instruction. */
7923 size = 1;
7924 if (i.prefix[ADDR_PREFIX] != 0)
7925 {
7926 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7927 i.prefixes -= 1;
7928 }
7929 /* Pentium4 branch hints. */
7930 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7931 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7932 {
7933 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7934 i.prefixes--;
7935 }
7936 }
7937 else
7938 {
7939 int code16;
7940
7941 code16 = 0;
7942 if (flag_code == CODE_16BIT)
7943 code16 = CODE16;
7944
7945 if (i.prefix[DATA_PREFIX] != 0)
7946 {
7947 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7948 i.prefixes -= 1;
7949 code16 ^= CODE16;
7950 }
7951
7952 size = 4;
7953 if (code16)
7954 size = 2;
7955 }
7956
7957 if (i.prefix[REX_PREFIX] != 0)
7958 {
7959 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7960 i.prefixes -= 1;
7961 }
7962
7963 /* BND prefixed jump. */
7964 if (i.prefix[BND_PREFIX] != 0)
7965 {
7966 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7967 i.prefixes -= 1;
7968 }
7969
7970 if (i.prefixes != 0 && !intel_syntax)
7971 as_warn (_("skipping prefixes on this instruction"));
7972
7973 p = frag_more (i.tm.opcode_length + size);
7974 switch (i.tm.opcode_length)
7975 {
7976 case 2:
7977 *p++ = i.tm.base_opcode >> 8;
7978 /* Fall through. */
7979 case 1:
7980 *p++ = i.tm.base_opcode;
7981 break;
7982 default:
7983 abort ();
7984 }
7985
7986 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7987 if (size == 4
7988 && jump_reloc == NO_RELOC
7989 && need_plt32_p (i.op[0].disps->X_add_symbol))
7990 jump_reloc = BFD_RELOC_X86_64_PLT32;
7991 #endif
7992
7993 jump_reloc = reloc (size, 1, 1, jump_reloc);
7994
7995 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7996 i.op[0].disps, 1, jump_reloc);
7997
7998 /* All jumps handled here are signed, but don't use a signed limit
7999 check for 32 and 16 bit jumps as we want to allow wrap around at
8000 4G and 64k respectively. */
8001 if (size == 1)
8002 fixP->fx_signed = 1;
8003 }
8004
8005 static void
8006 output_interseg_jump (void)
8007 {
8008 char *p;
8009 int size;
8010 int prefix;
8011 int code16;
8012
8013 code16 = 0;
8014 if (flag_code == CODE_16BIT)
8015 code16 = CODE16;
8016
8017 prefix = 0;
8018 if (i.prefix[DATA_PREFIX] != 0)
8019 {
8020 prefix = 1;
8021 i.prefixes -= 1;
8022 code16 ^= CODE16;
8023 }
8024 if (i.prefix[REX_PREFIX] != 0)
8025 {
8026 prefix++;
8027 i.prefixes -= 1;
8028 }
8029
8030 size = 4;
8031 if (code16)
8032 size = 2;
8033
8034 if (i.prefixes != 0 && !intel_syntax)
8035 as_warn (_("skipping prefixes on this instruction"));
8036
8037 /* 1 opcode; 2 segment; offset */
8038 p = frag_more (prefix + 1 + 2 + size);
8039
8040 if (i.prefix[DATA_PREFIX] != 0)
8041 *p++ = DATA_PREFIX_OPCODE;
8042
8043 if (i.prefix[REX_PREFIX] != 0)
8044 *p++ = i.prefix[REX_PREFIX];
8045
8046 *p++ = i.tm.base_opcode;
8047 if (i.op[1].imms->X_op == O_constant)
8048 {
8049 offsetT n = i.op[1].imms->X_add_number;
8050
8051 if (size == 2
8052 && !fits_in_unsigned_word (n)
8053 && !fits_in_signed_word (n))
8054 {
8055 as_bad (_("16-bit jump out of range"));
8056 return;
8057 }
8058 md_number_to_chars (p, n, size);
8059 }
8060 else
8061 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8062 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8063 if (i.op[0].imms->X_op != O_constant)
8064 as_bad (_("can't handle non absolute segment in `%s'"),
8065 i.tm.name);
8066 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8067 }
8068
8069 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8070 void
8071 x86_cleanup (void)
8072 {
8073 char *p;
8074 asection *seg = now_seg;
8075 subsegT subseg = now_subseg;
8076 asection *sec;
8077 unsigned int alignment, align_size_1;
8078 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8079 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8080 unsigned int padding;
8081
8082 if (!IS_ELF || !x86_used_note)
8083 return;
8084
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8086
8087 /* The .note.gnu.property section layout:
8088
8089 Field Length Contents
8090 ---- ---- ----
8091 n_namsz 4 4
8092 n_descsz 4 The note descriptor size
8093 n_type 4 NT_GNU_PROPERTY_TYPE_0
8094 n_name 4 "GNU"
8095 n_desc n_descsz The program property array
8096 .... .... ....
8097 */
8098
8099 /* Create the .note.gnu.property section. */
8100 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8101 bfd_set_section_flags (sec,
8102 (SEC_ALLOC
8103 | SEC_LOAD
8104 | SEC_DATA
8105 | SEC_HAS_CONTENTS
8106 | SEC_READONLY));
8107
8108 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8109 {
8110 align_size_1 = 7;
8111 alignment = 3;
8112 }
8113 else
8114 {
8115 align_size_1 = 3;
8116 alignment = 2;
8117 }
8118
8119 bfd_set_section_alignment (sec, alignment);
8120 elf_section_type (sec) = SHT_NOTE;
8121
8122 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8123 + 4-byte data */
8124 isa_1_descsz_raw = 4 + 4 + 4;
8125 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8126 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8127
8128 feature_2_descsz_raw = isa_1_descsz;
8129 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8130 + 4-byte data */
8131 feature_2_descsz_raw += 4 + 4 + 4;
8132 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8133 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8134 & ~align_size_1);
8135
8136 descsz = feature_2_descsz;
8137 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8138 p = frag_more (4 + 4 + 4 + 4 + descsz);
8139
8140 /* Write n_namsz. */
8141 md_number_to_chars (p, (valueT) 4, 4);
8142
8143 /* Write n_descsz. */
8144 md_number_to_chars (p + 4, (valueT) descsz, 4);
8145
8146 /* Write n_type. */
8147 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8148
8149 /* Write n_name. */
8150 memcpy (p + 4 * 3, "GNU", 4);
8151
8152 /* Write 4-byte type. */
8153 md_number_to_chars (p + 4 * 4,
8154 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8155
8156 /* Write 4-byte data size. */
8157 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8158
8159 /* Write 4-byte data. */
8160 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8161
8162 /* Zero out paddings. */
8163 padding = isa_1_descsz - isa_1_descsz_raw;
8164 if (padding)
8165 memset (p + 4 * 7, 0, padding);
8166
8167 /* Write 4-byte type. */
8168 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8169 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8170
8171 /* Write 4-byte data size. */
8172 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8173
8174 /* Write 4-byte data. */
8175 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8176 (valueT) x86_feature_2_used, 4);
8177
8178 /* Zero out paddings. */
8179 padding = feature_2_descsz - feature_2_descsz_raw;
8180 if (padding)
8181 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8182
8183 /* We probably can't restore the current segment, for there likely
8184 isn't one yet... */
8185 if (seg && subseg)
8186 subseg_set (seg, subseg);
8187 }
8188 #endif
8189
8190 static unsigned int
8191 encoding_length (const fragS *start_frag, offsetT start_off,
8192 const char *frag_now_ptr)
8193 {
8194 unsigned int len = 0;
8195
8196 if (start_frag != frag_now)
8197 {
8198 const fragS *fr = start_frag;
8199
8200 do {
8201 len += fr->fr_fix;
8202 fr = fr->fr_next;
8203 } while (fr && fr != frag_now);
8204 }
8205
8206 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8207 }
8208
8209 static void
8210 output_insn (void)
8211 {
8212 fragS *insn_start_frag;
8213 offsetT insn_start_off;
8214
8215 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8216 if (IS_ELF && x86_used_note)
8217 {
8218 if (i.tm.cpu_flags.bitfield.cpucmov)
8219 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8220 if (i.tm.cpu_flags.bitfield.cpusse)
8221 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8222 if (i.tm.cpu_flags.bitfield.cpusse2)
8223 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8224 if (i.tm.cpu_flags.bitfield.cpusse3)
8225 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8226 if (i.tm.cpu_flags.bitfield.cpussse3)
8227 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8228 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8229 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8230 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8232 if (i.tm.cpu_flags.bitfield.cpuavx)
8233 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8234 if (i.tm.cpu_flags.bitfield.cpuavx2)
8235 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8236 if (i.tm.cpu_flags.bitfield.cpufma)
8237 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8238 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8239 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8240 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8241 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8242 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8244 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8246 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8248 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8250 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8252 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8253 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8254 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8255 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8256 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8257 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8258 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8259 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8260 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8261 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8262 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8263 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8264 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8265 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8266 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8267 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8268
8269 if (i.tm.cpu_flags.bitfield.cpu8087
8270 || i.tm.cpu_flags.bitfield.cpu287
8271 || i.tm.cpu_flags.bitfield.cpu387
8272 || i.tm.cpu_flags.bitfield.cpu687
8273 || i.tm.cpu_flags.bitfield.cpufisttp)
8274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8275 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8276 Xfence instructions. */
8277 if (i.tm.base_opcode != 0xf18
8278 && i.tm.base_opcode != 0xf0d
8279 && i.tm.base_opcode != 0xfaef8
8280 && (i.has_regmmx
8281 || i.tm.cpu_flags.bitfield.cpummx
8282 || i.tm.cpu_flags.bitfield.cpua3dnow
8283 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8284 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8285 if (i.has_regxmm)
8286 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8287 if (i.has_regymm)
8288 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8289 if (i.has_regzmm)
8290 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8291 if (i.tm.cpu_flags.bitfield.cpufxsr)
8292 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8293 if (i.tm.cpu_flags.bitfield.cpuxsave)
8294 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8295 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8296 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8297 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8298 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8299 }
8300 #endif
8301
8302 /* Tie dwarf2 debug info to the address at the start of the insn.
8303 We can't do this after the insn has been output as the current
8304 frag may have been closed off. eg. by frag_var. */
8305 dwarf2_emit_insn (0);
8306
8307 insn_start_frag = frag_now;
8308 insn_start_off = frag_now_fix ();
8309
8310 /* Output jumps. */
8311 if (i.tm.opcode_modifier.jump)
8312 output_branch ();
8313 else if (i.tm.opcode_modifier.jumpbyte
8314 || i.tm.opcode_modifier.jumpdword)
8315 output_jump ();
8316 else if (i.tm.opcode_modifier.jumpintersegment)
8317 output_interseg_jump ();
8318 else
8319 {
8320 /* Output normal instructions here. */
8321 char *p;
8322 unsigned char *q;
8323 unsigned int j;
8324 unsigned int prefix;
8325
8326 if (avoid_fence
8327 && (i.tm.base_opcode == 0xfaee8
8328 || i.tm.base_opcode == 0xfaef0
8329 || i.tm.base_opcode == 0xfaef8))
8330 {
8331 /* Encode lfence, mfence, and sfence as
8332 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8333 offsetT val = 0x240483f0ULL;
8334 p = frag_more (5);
8335 md_number_to_chars (p, val, 5);
8336 return;
8337 }
8338
8339 /* Some processors fail on LOCK prefix. This options makes
8340 assembler ignore LOCK prefix and serves as a workaround. */
8341 if (omit_lock_prefix)
8342 {
8343 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8344 return;
8345 i.prefix[LOCK_PREFIX] = 0;
8346 }
8347
8348 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8349 don't need the explicit prefix. */
8350 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8351 {
8352 switch (i.tm.opcode_length)
8353 {
8354 case 3:
8355 if (i.tm.base_opcode & 0xff000000)
8356 {
8357 prefix = (i.tm.base_opcode >> 24) & 0xff;
8358 if (!i.tm.cpu_flags.bitfield.cpupadlock
8359 || prefix != REPE_PREFIX_OPCODE
8360 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8361 add_prefix (prefix);
8362 }
8363 break;
8364 case 2:
8365 if ((i.tm.base_opcode & 0xff0000) != 0)
8366 {
8367 prefix = (i.tm.base_opcode >> 16) & 0xff;
8368 add_prefix (prefix);
8369 }
8370 break;
8371 case 1:
8372 break;
8373 case 0:
8374 /* Check for pseudo prefixes. */
8375 as_bad_where (insn_start_frag->fr_file,
8376 insn_start_frag->fr_line,
8377 _("pseudo prefix without instruction"));
8378 return;
8379 default:
8380 abort ();
8381 }
8382
8383 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8384 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8385 R_X86_64_GOTTPOFF relocation so that linker can safely
8386 perform IE->LE optimization. */
8387 if (x86_elf_abi == X86_64_X32_ABI
8388 && i.operands == 2
8389 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8390 && i.prefix[REX_PREFIX] == 0)
8391 add_prefix (REX_OPCODE);
8392 #endif
8393
8394 /* The prefix bytes. */
8395 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8396 if (*q)
8397 FRAG_APPEND_1_CHAR (*q);
8398 }
8399 else
8400 {
8401 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8402 if (*q)
8403 switch (j)
8404 {
8405 case REX_PREFIX:
8406 /* REX byte is encoded in VEX prefix. */
8407 break;
8408 case SEG_PREFIX:
8409 case ADDR_PREFIX:
8410 FRAG_APPEND_1_CHAR (*q);
8411 break;
8412 default:
8413 /* There should be no other prefixes for instructions
8414 with VEX prefix. */
8415 abort ();
8416 }
8417
8418 /* For EVEX instructions i.vrex should become 0 after
8419 build_evex_prefix. For VEX instructions upper 16 registers
8420 aren't available, so VREX should be 0. */
8421 if (i.vrex)
8422 abort ();
8423 /* Now the VEX prefix. */
8424 p = frag_more (i.vex.length);
8425 for (j = 0; j < i.vex.length; j++)
8426 p[j] = i.vex.bytes[j];
8427 }
8428
8429 /* Now the opcode; be careful about word order here! */
8430 if (i.tm.opcode_length == 1)
8431 {
8432 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8433 }
8434 else
8435 {
8436 switch (i.tm.opcode_length)
8437 {
8438 case 4:
8439 p = frag_more (4);
8440 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8441 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8442 break;
8443 case 3:
8444 p = frag_more (3);
8445 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8446 break;
8447 case 2:
8448 p = frag_more (2);
8449 break;
8450 default:
8451 abort ();
8452 break;
8453 }
8454
8455 /* Put out high byte first: can't use md_number_to_chars! */
8456 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8457 *p = i.tm.base_opcode & 0xff;
8458 }
8459
8460 /* Now the modrm byte and sib byte (if present). */
8461 if (i.tm.opcode_modifier.modrm)
8462 {
8463 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8464 | i.rm.reg << 3
8465 | i.rm.mode << 6));
8466 /* If i.rm.regmem == ESP (4)
8467 && i.rm.mode != (Register mode)
8468 && not 16 bit
8469 ==> need second modrm byte. */
8470 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8471 && i.rm.mode != 3
8472 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8473 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8474 | i.sib.index << 3
8475 | i.sib.scale << 6));
8476 }
8477
8478 if (i.disp_operands)
8479 output_disp (insn_start_frag, insn_start_off);
8480
8481 if (i.imm_operands)
8482 output_imm (insn_start_frag, insn_start_off);
8483
8484 /*
8485 * frag_now_fix () returning plain abs_section_offset when we're in the
8486 * absolute section, and abs_section_offset not getting updated as data
8487 * gets added to the frag breaks the logic below.
8488 */
8489 if (now_seg != absolute_section)
8490 {
8491 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8492 if (j > 15)
8493 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8494 j);
8495 }
8496 }
8497
8498 #ifdef DEBUG386
8499 if (flag_debug)
8500 {
8501 pi ("" /*line*/, &i);
8502 }
8503 #endif /* DEBUG386 */
8504 }
8505
8506 /* Return the size of the displacement operand N. */
8507
8508 static int
8509 disp_size (unsigned int n)
8510 {
8511 int size = 4;
8512
8513 if (i.types[n].bitfield.disp64)
8514 size = 8;
8515 else if (i.types[n].bitfield.disp8)
8516 size = 1;
8517 else if (i.types[n].bitfield.disp16)
8518 size = 2;
8519 return size;
8520 }
8521
8522 /* Return the size of the immediate operand N. */
8523
8524 static int
8525 imm_size (unsigned int n)
8526 {
8527 int size = 4;
8528 if (i.types[n].bitfield.imm64)
8529 size = 8;
8530 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8531 size = 1;
8532 else if (i.types[n].bitfield.imm16)
8533 size = 2;
8534 return size;
8535 }
8536
8537 static void
8538 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8539 {
8540 char *p;
8541 unsigned int n;
8542
8543 for (n = 0; n < i.operands; n++)
8544 {
8545 if (operand_type_check (i.types[n], disp))
8546 {
8547 if (i.op[n].disps->X_op == O_constant)
8548 {
8549 int size = disp_size (n);
8550 offsetT val = i.op[n].disps->X_add_number;
8551
8552 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8553 size);
8554 p = frag_more (size);
8555 md_number_to_chars (p, val, size);
8556 }
8557 else
8558 {
8559 enum bfd_reloc_code_real reloc_type;
8560 int size = disp_size (n);
8561 int sign = i.types[n].bitfield.disp32s;
8562 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8563 fixS *fixP;
8564
8565 /* We can't have 8 bit displacement here. */
8566 gas_assert (!i.types[n].bitfield.disp8);
8567
8568 /* The PC relative address is computed relative
8569 to the instruction boundary, so in case immediate
8570 fields follows, we need to adjust the value. */
8571 if (pcrel && i.imm_operands)
8572 {
8573 unsigned int n1;
8574 int sz = 0;
8575
8576 for (n1 = 0; n1 < i.operands; n1++)
8577 if (operand_type_check (i.types[n1], imm))
8578 {
8579 /* Only one immediate is allowed for PC
8580 relative address. */
8581 gas_assert (sz == 0);
8582 sz = imm_size (n1);
8583 i.op[n].disps->X_add_number -= sz;
8584 }
8585 /* We should find the immediate. */
8586 gas_assert (sz != 0);
8587 }
8588
8589 p = frag_more (size);
8590 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8591 if (GOT_symbol
8592 && GOT_symbol == i.op[n].disps->X_add_symbol
8593 && (((reloc_type == BFD_RELOC_32
8594 || reloc_type == BFD_RELOC_X86_64_32S
8595 || (reloc_type == BFD_RELOC_64
8596 && object_64bit))
8597 && (i.op[n].disps->X_op == O_symbol
8598 || (i.op[n].disps->X_op == O_add
8599 && ((symbol_get_value_expression
8600 (i.op[n].disps->X_op_symbol)->X_op)
8601 == O_subtract))))
8602 || reloc_type == BFD_RELOC_32_PCREL))
8603 {
8604 if (!object_64bit)
8605 {
8606 reloc_type = BFD_RELOC_386_GOTPC;
8607 i.op[n].imms->X_add_number +=
8608 encoding_length (insn_start_frag, insn_start_off, p);
8609 }
8610 else if (reloc_type == BFD_RELOC_64)
8611 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8612 else
8613 /* Don't do the adjustment for x86-64, as there
8614 the pcrel addressing is relative to the _next_
8615 insn, and that is taken care of in other code. */
8616 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8617 }
8618 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8619 size, i.op[n].disps, pcrel,
8620 reloc_type);
8621 /* Check for "call/jmp *mem", "mov mem, %reg",
8622 "test %reg, mem" and "binop mem, %reg" where binop
8623 is one of adc, add, and, cmp, or, sbb, sub, xor
8624 instructions without data prefix. Always generate
8625 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8626 if (i.prefix[DATA_PREFIX] == 0
8627 && (generate_relax_relocations
8628 || (!object_64bit
8629 && i.rm.mode == 0
8630 && i.rm.regmem == 5))
8631 && (i.rm.mode == 2
8632 || (i.rm.mode == 0 && i.rm.regmem == 5))
8633 && ((i.operands == 1
8634 && i.tm.base_opcode == 0xff
8635 && (i.rm.reg == 2 || i.rm.reg == 4))
8636 || (i.operands == 2
8637 && (i.tm.base_opcode == 0x8b
8638 || i.tm.base_opcode == 0x85
8639 || (i.tm.base_opcode & 0xc7) == 0x03))))
8640 {
8641 if (object_64bit)
8642 {
8643 fixP->fx_tcbit = i.rex != 0;
8644 if (i.base_reg
8645 && (i.base_reg->reg_num == RegIP))
8646 fixP->fx_tcbit2 = 1;
8647 }
8648 else
8649 fixP->fx_tcbit2 = 1;
8650 }
8651 }
8652 }
8653 }
8654 }
8655
8656 static void
8657 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8658 {
8659 char *p;
8660 unsigned int n;
8661
8662 for (n = 0; n < i.operands; n++)
8663 {
8664 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8665 if (i.rounding && (int) n == i.rounding->operand)
8666 continue;
8667
8668 if (operand_type_check (i.types[n], imm))
8669 {
8670 if (i.op[n].imms->X_op == O_constant)
8671 {
8672 int size = imm_size (n);
8673 offsetT val;
8674
8675 val = offset_in_range (i.op[n].imms->X_add_number,
8676 size);
8677 p = frag_more (size);
8678 md_number_to_chars (p, val, size);
8679 }
8680 else
8681 {
8682 /* Not absolute_section.
8683 Need a 32-bit fixup (don't support 8bit
8684 non-absolute imms). Try to support other
8685 sizes ... */
8686 enum bfd_reloc_code_real reloc_type;
8687 int size = imm_size (n);
8688 int sign;
8689
8690 if (i.types[n].bitfield.imm32s
8691 && (i.suffix == QWORD_MNEM_SUFFIX
8692 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8693 sign = 1;
8694 else
8695 sign = 0;
8696
8697 p = frag_more (size);
8698 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8699
8700 /* This is tough to explain. We end up with this one if we
8701 * have operands that look like
8702 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8703 * obtain the absolute address of the GOT, and it is strongly
8704 * preferable from a performance point of view to avoid using
8705 * a runtime relocation for this. The actual sequence of
8706 * instructions often look something like:
8707 *
8708 * call .L66
8709 * .L66:
8710 * popl %ebx
8711 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8712 *
8713 * The call and pop essentially return the absolute address
8714 * of the label .L66 and store it in %ebx. The linker itself
8715 * will ultimately change the first operand of the addl so
8716 * that %ebx points to the GOT, but to keep things simple, the
8717 * .o file must have this operand set so that it generates not
8718 * the absolute address of .L66, but the absolute address of
8719 * itself. This allows the linker itself simply treat a GOTPC
8720 * relocation as asking for a pcrel offset to the GOT to be
8721 * added in, and the addend of the relocation is stored in the
8722 * operand field for the instruction itself.
8723 *
8724 * Our job here is to fix the operand so that it would add
8725 * the correct offset so that %ebx would point to itself. The
8726 * thing that is tricky is that .-.L66 will point to the
8727 * beginning of the instruction, so we need to further modify
8728 * the operand so that it will point to itself. There are
8729 * other cases where you have something like:
8730 *
8731 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8732 *
8733 * and here no correction would be required. Internally in
8734 * the assembler we treat operands of this form as not being
8735 * pcrel since the '.' is explicitly mentioned, and I wonder
8736 * whether it would simplify matters to do it this way. Who
8737 * knows. In earlier versions of the PIC patches, the
8738 * pcrel_adjust field was used to store the correction, but
8739 * since the expression is not pcrel, I felt it would be
8740 * confusing to do it this way. */
8741
8742 if ((reloc_type == BFD_RELOC_32
8743 || reloc_type == BFD_RELOC_X86_64_32S
8744 || reloc_type == BFD_RELOC_64)
8745 && GOT_symbol
8746 && GOT_symbol == i.op[n].imms->X_add_symbol
8747 && (i.op[n].imms->X_op == O_symbol
8748 || (i.op[n].imms->X_op == O_add
8749 && ((symbol_get_value_expression
8750 (i.op[n].imms->X_op_symbol)->X_op)
8751 == O_subtract))))
8752 {
8753 if (!object_64bit)
8754 reloc_type = BFD_RELOC_386_GOTPC;
8755 else if (size == 4)
8756 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8757 else if (size == 8)
8758 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8759 i.op[n].imms->X_add_number +=
8760 encoding_length (insn_start_frag, insn_start_off, p);
8761 }
8762 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8763 i.op[n].imms, 0, reloc_type);
8764 }
8765 }
8766 }
8767 }
8768 \f
8769 /* x86_cons_fix_new is called via the expression parsing code when a
8770 reloc is needed. We use this hook to get the correct .got reloc. */
8771 static int cons_sign = -1;
8772
8773 void
8774 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8775 expressionS *exp, bfd_reloc_code_real_type r)
8776 {
8777 r = reloc (len, 0, cons_sign, r);
8778
8779 #ifdef TE_PE
8780 if (exp->X_op == O_secrel)
8781 {
8782 exp->X_op = O_symbol;
8783 r = BFD_RELOC_32_SECREL;
8784 }
8785 #endif
8786
8787 fix_new_exp (frag, off, len, exp, 0, r);
8788 }
8789
8790 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8791 purpose of the `.dc.a' internal pseudo-op. */
8792
8793 int
8794 x86_address_bytes (void)
8795 {
8796 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8797 return 4;
8798 return stdoutput->arch_info->bits_per_address / 8;
8799 }
8800
8801 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8802 || defined (LEX_AT)
8803 # define lex_got(reloc, adjust, types) NULL
8804 #else
8805 /* Parse operands of the form
8806 <symbol>@GOTOFF+<nnn>
8807 and similar .plt or .got references.
8808
8809 If we find one, set up the correct relocation in RELOC and copy the
8810 input string, minus the `@GOTOFF' into a malloc'd buffer for
8811 parsing by the calling routine. Return this buffer, and if ADJUST
8812 is non-null set it to the length of the string we removed from the
8813 input line. Otherwise return NULL. */
8814 static char *
8815 lex_got (enum bfd_reloc_code_real *rel,
8816 int *adjust,
8817 i386_operand_type *types)
8818 {
8819 /* Some of the relocations depend on the size of what field is to
8820 be relocated. But in our callers i386_immediate and i386_displacement
8821 we don't yet know the operand size (this will be set by insn
8822 matching). Hence we record the word32 relocation here,
8823 and adjust the reloc according to the real size in reloc(). */
8824 static const struct {
8825 const char *str;
8826 int len;
8827 const enum bfd_reloc_code_real rel[2];
8828 const i386_operand_type types64;
8829 } gotrel[] = {
8830 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8831 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8832 BFD_RELOC_SIZE32 },
8833 OPERAND_TYPE_IMM32_64 },
8834 #endif
8835 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8836 BFD_RELOC_X86_64_PLTOFF64 },
8837 OPERAND_TYPE_IMM64 },
8838 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8839 BFD_RELOC_X86_64_PLT32 },
8840 OPERAND_TYPE_IMM32_32S_DISP32 },
8841 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8842 BFD_RELOC_X86_64_GOTPLT64 },
8843 OPERAND_TYPE_IMM64_DISP64 },
8844 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8845 BFD_RELOC_X86_64_GOTOFF64 },
8846 OPERAND_TYPE_IMM64_DISP64 },
8847 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8848 BFD_RELOC_X86_64_GOTPCREL },
8849 OPERAND_TYPE_IMM32_32S_DISP32 },
8850 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8851 BFD_RELOC_X86_64_TLSGD },
8852 OPERAND_TYPE_IMM32_32S_DISP32 },
8853 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8854 _dummy_first_bfd_reloc_code_real },
8855 OPERAND_TYPE_NONE },
8856 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8857 BFD_RELOC_X86_64_TLSLD },
8858 OPERAND_TYPE_IMM32_32S_DISP32 },
8859 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8860 BFD_RELOC_X86_64_GOTTPOFF },
8861 OPERAND_TYPE_IMM32_32S_DISP32 },
8862 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8863 BFD_RELOC_X86_64_TPOFF32 },
8864 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8865 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8866 _dummy_first_bfd_reloc_code_real },
8867 OPERAND_TYPE_NONE },
8868 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8869 BFD_RELOC_X86_64_DTPOFF32 },
8870 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8871 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8872 _dummy_first_bfd_reloc_code_real },
8873 OPERAND_TYPE_NONE },
8874 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8875 _dummy_first_bfd_reloc_code_real },
8876 OPERAND_TYPE_NONE },
8877 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8878 BFD_RELOC_X86_64_GOT32 },
8879 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8880 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8881 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8882 OPERAND_TYPE_IMM32_32S_DISP32 },
8883 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8884 BFD_RELOC_X86_64_TLSDESC_CALL },
8885 OPERAND_TYPE_IMM32_32S_DISP32 },
8886 };
8887 char *cp;
8888 unsigned int j;
8889
8890 #if defined (OBJ_MAYBE_ELF)
8891 if (!IS_ELF)
8892 return NULL;
8893 #endif
8894
8895 for (cp = input_line_pointer; *cp != '@'; cp++)
8896 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8897 return NULL;
8898
8899 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8900 {
8901 int len = gotrel[j].len;
8902 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8903 {
8904 if (gotrel[j].rel[object_64bit] != 0)
8905 {
8906 int first, second;
8907 char *tmpbuf, *past_reloc;
8908
8909 *rel = gotrel[j].rel[object_64bit];
8910
8911 if (types)
8912 {
8913 if (flag_code != CODE_64BIT)
8914 {
8915 types->bitfield.imm32 = 1;
8916 types->bitfield.disp32 = 1;
8917 }
8918 else
8919 *types = gotrel[j].types64;
8920 }
8921
8922 if (j != 0 && GOT_symbol == NULL)
8923 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8924
8925 /* The length of the first part of our input line. */
8926 first = cp - input_line_pointer;
8927
8928 /* The second part goes from after the reloc token until
8929 (and including) an end_of_line char or comma. */
8930 past_reloc = cp + 1 + len;
8931 cp = past_reloc;
8932 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8933 ++cp;
8934 second = cp + 1 - past_reloc;
8935
8936 /* Allocate and copy string. The trailing NUL shouldn't
8937 be necessary, but be safe. */
8938 tmpbuf = XNEWVEC (char, first + second + 2);
8939 memcpy (tmpbuf, input_line_pointer, first);
8940 if (second != 0 && *past_reloc != ' ')
8941 /* Replace the relocation token with ' ', so that
8942 errors like foo@GOTOFF1 will be detected. */
8943 tmpbuf[first++] = ' ';
8944 else
8945 /* Increment length by 1 if the relocation token is
8946 removed. */
8947 len++;
8948 if (adjust)
8949 *adjust = len;
8950 memcpy (tmpbuf + first, past_reloc, second);
8951 tmpbuf[first + second] = '\0';
8952 return tmpbuf;
8953 }
8954
8955 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8956 gotrel[j].str, 1 << (5 + object_64bit));
8957 return NULL;
8958 }
8959 }
8960
8961 /* Might be a symbol version string. Don't as_bad here. */
8962 return NULL;
8963 }
8964 #endif
8965
8966 #ifdef TE_PE
8967 #ifdef lex_got
8968 #undef lex_got
8969 #endif
8970 /* Parse operands of the form
8971 <symbol>@SECREL32+<nnn>
8972
8973 If we find one, set up the correct relocation in RELOC and copy the
8974 input string, minus the `@SECREL32' into a malloc'd buffer for
8975 parsing by the calling routine. Return this buffer, and if ADJUST
8976 is non-null set it to the length of the string we removed from the
8977 input line. Otherwise return NULL.
8978
8979 This function is copied from the ELF version above adjusted for PE targets. */
8980
8981 static char *
8982 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8983 int *adjust ATTRIBUTE_UNUSED,
8984 i386_operand_type *types)
8985 {
8986 static const struct
8987 {
8988 const char *str;
8989 int len;
8990 const enum bfd_reloc_code_real rel[2];
8991 const i386_operand_type types64;
8992 }
8993 gotrel[] =
8994 {
8995 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8996 BFD_RELOC_32_SECREL },
8997 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8998 };
8999
9000 char *cp;
9001 unsigned j;
9002
9003 for (cp = input_line_pointer; *cp != '@'; cp++)
9004 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9005 return NULL;
9006
9007 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9008 {
9009 int len = gotrel[j].len;
9010
9011 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9012 {
9013 if (gotrel[j].rel[object_64bit] != 0)
9014 {
9015 int first, second;
9016 char *tmpbuf, *past_reloc;
9017
9018 *rel = gotrel[j].rel[object_64bit];
9019 if (adjust)
9020 *adjust = len;
9021
9022 if (types)
9023 {
9024 if (flag_code != CODE_64BIT)
9025 {
9026 types->bitfield.imm32 = 1;
9027 types->bitfield.disp32 = 1;
9028 }
9029 else
9030 *types = gotrel[j].types64;
9031 }
9032
9033 /* The length of the first part of our input line. */
9034 first = cp - input_line_pointer;
9035
9036 /* The second part goes from after the reloc token until
9037 (and including) an end_of_line char or comma. */
9038 past_reloc = cp + 1 + len;
9039 cp = past_reloc;
9040 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9041 ++cp;
9042 second = cp + 1 - past_reloc;
9043
9044 /* Allocate and copy string. The trailing NUL shouldn't
9045 be necessary, but be safe. */
9046 tmpbuf = XNEWVEC (char, first + second + 2);
9047 memcpy (tmpbuf, input_line_pointer, first);
9048 if (second != 0 && *past_reloc != ' ')
9049 /* Replace the relocation token with ' ', so that
9050 errors like foo@SECLREL321 will be detected. */
9051 tmpbuf[first++] = ' ';
9052 memcpy (tmpbuf + first, past_reloc, second);
9053 tmpbuf[first + second] = '\0';
9054 return tmpbuf;
9055 }
9056
9057 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9058 gotrel[j].str, 1 << (5 + object_64bit));
9059 return NULL;
9060 }
9061 }
9062
9063 /* Might be a symbol version string. Don't as_bad here. */
9064 return NULL;
9065 }
9066
9067 #endif /* TE_PE */
9068
9069 bfd_reloc_code_real_type
9070 x86_cons (expressionS *exp, int size)
9071 {
9072 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9073
9074 intel_syntax = -intel_syntax;
9075
9076 exp->X_md = 0;
9077 if (size == 4 || (object_64bit && size == 8))
9078 {
9079 /* Handle @GOTOFF and the like in an expression. */
9080 char *save;
9081 char *gotfree_input_line;
9082 int adjust = 0;
9083
9084 save = input_line_pointer;
9085 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9086 if (gotfree_input_line)
9087 input_line_pointer = gotfree_input_line;
9088
9089 expression (exp);
9090
9091 if (gotfree_input_line)
9092 {
9093 /* expression () has merrily parsed up to the end of line,
9094 or a comma - in the wrong buffer. Transfer how far
9095 input_line_pointer has moved to the right buffer. */
9096 input_line_pointer = (save
9097 + (input_line_pointer - gotfree_input_line)
9098 + adjust);
9099 free (gotfree_input_line);
9100 if (exp->X_op == O_constant
9101 || exp->X_op == O_absent
9102 || exp->X_op == O_illegal
9103 || exp->X_op == O_register
9104 || exp->X_op == O_big)
9105 {
9106 char c = *input_line_pointer;
9107 *input_line_pointer = 0;
9108 as_bad (_("missing or invalid expression `%s'"), save);
9109 *input_line_pointer = c;
9110 }
9111 else if ((got_reloc == BFD_RELOC_386_PLT32
9112 || got_reloc == BFD_RELOC_X86_64_PLT32)
9113 && exp->X_op != O_symbol)
9114 {
9115 char c = *input_line_pointer;
9116 *input_line_pointer = 0;
9117 as_bad (_("invalid PLT expression `%s'"), save);
9118 *input_line_pointer = c;
9119 }
9120 }
9121 }
9122 else
9123 expression (exp);
9124
9125 intel_syntax = -intel_syntax;
9126
9127 if (intel_syntax)
9128 i386_intel_simplify (exp);
9129
9130 return got_reloc;
9131 }
9132
9133 static void
9134 signed_cons (int size)
9135 {
9136 if (flag_code == CODE_64BIT)
9137 cons_sign = 1;
9138 cons (size);
9139 cons_sign = -1;
9140 }
9141
9142 #ifdef TE_PE
9143 static void
9144 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9145 {
9146 expressionS exp;
9147
9148 do
9149 {
9150 expression (&exp);
9151 if (exp.X_op == O_symbol)
9152 exp.X_op = O_secrel;
9153
9154 emit_expr (&exp, 4);
9155 }
9156 while (*input_line_pointer++ == ',');
9157
9158 input_line_pointer--;
9159 demand_empty_rest_of_line ();
9160 }
9161 #endif
9162
9163 /* Handle Vector operations. */
9164
9165 static char *
9166 check_VecOperations (char *op_string, char *op_end)
9167 {
9168 const reg_entry *mask;
9169 const char *saved;
9170 char *end_op;
9171
9172 while (*op_string
9173 && (op_end == NULL || op_string < op_end))
9174 {
9175 saved = op_string;
9176 if (*op_string == '{')
9177 {
9178 op_string++;
9179
9180 /* Check broadcasts. */
9181 if (strncmp (op_string, "1to", 3) == 0)
9182 {
9183 int bcst_type;
9184
9185 if (i.broadcast)
9186 goto duplicated_vec_op;
9187
9188 op_string += 3;
9189 if (*op_string == '8')
9190 bcst_type = 8;
9191 else if (*op_string == '4')
9192 bcst_type = 4;
9193 else if (*op_string == '2')
9194 bcst_type = 2;
9195 else if (*op_string == '1'
9196 && *(op_string+1) == '6')
9197 {
9198 bcst_type = 16;
9199 op_string++;
9200 }
9201 else
9202 {
9203 as_bad (_("Unsupported broadcast: `%s'"), saved);
9204 return NULL;
9205 }
9206 op_string++;
9207
9208 broadcast_op.type = bcst_type;
9209 broadcast_op.operand = this_operand;
9210 broadcast_op.bytes = 0;
9211 i.broadcast = &broadcast_op;
9212 }
9213 /* Check masking operation. */
9214 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9215 {
9216 /* k0 can't be used for write mask. */
9217 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9218 {
9219 as_bad (_("`%s%s' can't be used for write mask"),
9220 register_prefix, mask->reg_name);
9221 return NULL;
9222 }
9223
9224 if (!i.mask)
9225 {
9226 mask_op.mask = mask;
9227 mask_op.zeroing = 0;
9228 mask_op.operand = this_operand;
9229 i.mask = &mask_op;
9230 }
9231 else
9232 {
9233 if (i.mask->mask)
9234 goto duplicated_vec_op;
9235
9236 i.mask->mask = mask;
9237
9238 /* Only "{z}" is allowed here. No need to check
9239 zeroing mask explicitly. */
9240 if (i.mask->operand != this_operand)
9241 {
9242 as_bad (_("invalid write mask `%s'"), saved);
9243 return NULL;
9244 }
9245 }
9246
9247 op_string = end_op;
9248 }
9249 /* Check zeroing-flag for masking operation. */
9250 else if (*op_string == 'z')
9251 {
9252 if (!i.mask)
9253 {
9254 mask_op.mask = NULL;
9255 mask_op.zeroing = 1;
9256 mask_op.operand = this_operand;
9257 i.mask = &mask_op;
9258 }
9259 else
9260 {
9261 if (i.mask->zeroing)
9262 {
9263 duplicated_vec_op:
9264 as_bad (_("duplicated `%s'"), saved);
9265 return NULL;
9266 }
9267
9268 i.mask->zeroing = 1;
9269
9270 /* Only "{%k}" is allowed here. No need to check mask
9271 register explicitly. */
9272 if (i.mask->operand != this_operand)
9273 {
9274 as_bad (_("invalid zeroing-masking `%s'"),
9275 saved);
9276 return NULL;
9277 }
9278 }
9279
9280 op_string++;
9281 }
9282 else
9283 goto unknown_vec_op;
9284
9285 if (*op_string != '}')
9286 {
9287 as_bad (_("missing `}' in `%s'"), saved);
9288 return NULL;
9289 }
9290 op_string++;
9291
9292 /* Strip whitespace since the addition of pseudo prefixes
9293 changed how the scrubber treats '{'. */
9294 if (is_space_char (*op_string))
9295 ++op_string;
9296
9297 continue;
9298 }
9299 unknown_vec_op:
9300 /* We don't know this one. */
9301 as_bad (_("unknown vector operation: `%s'"), saved);
9302 return NULL;
9303 }
9304
9305 if (i.mask && i.mask->zeroing && !i.mask->mask)
9306 {
9307 as_bad (_("zeroing-masking only allowed with write mask"));
9308 return NULL;
9309 }
9310
9311 return op_string;
9312 }
9313
9314 static int
9315 i386_immediate (char *imm_start)
9316 {
9317 char *save_input_line_pointer;
9318 char *gotfree_input_line;
9319 segT exp_seg = 0;
9320 expressionS *exp;
9321 i386_operand_type types;
9322
9323 operand_type_set (&types, ~0);
9324
9325 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9326 {
9327 as_bad (_("at most %d immediate operands are allowed"),
9328 MAX_IMMEDIATE_OPERANDS);
9329 return 0;
9330 }
9331
9332 exp = &im_expressions[i.imm_operands++];
9333 i.op[this_operand].imms = exp;
9334
9335 if (is_space_char (*imm_start))
9336 ++imm_start;
9337
9338 save_input_line_pointer = input_line_pointer;
9339 input_line_pointer = imm_start;
9340
9341 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9342 if (gotfree_input_line)
9343 input_line_pointer = gotfree_input_line;
9344
9345 exp_seg = expression (exp);
9346
9347 SKIP_WHITESPACE ();
9348
9349 /* Handle vector operations. */
9350 if (*input_line_pointer == '{')
9351 {
9352 input_line_pointer = check_VecOperations (input_line_pointer,
9353 NULL);
9354 if (input_line_pointer == NULL)
9355 return 0;
9356 }
9357
9358 if (*input_line_pointer)
9359 as_bad (_("junk `%s' after expression"), input_line_pointer);
9360
9361 input_line_pointer = save_input_line_pointer;
9362 if (gotfree_input_line)
9363 {
9364 free (gotfree_input_line);
9365
9366 if (exp->X_op == O_constant || exp->X_op == O_register)
9367 exp->X_op = O_illegal;
9368 }
9369
9370 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9371 }
9372
9373 static int
9374 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9375 i386_operand_type types, const char *imm_start)
9376 {
9377 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9378 {
9379 if (imm_start)
9380 as_bad (_("missing or invalid immediate expression `%s'"),
9381 imm_start);
9382 return 0;
9383 }
9384 else if (exp->X_op == O_constant)
9385 {
9386 /* Size it properly later. */
9387 i.types[this_operand].bitfield.imm64 = 1;
9388 /* If not 64bit, sign extend val. */
9389 if (flag_code != CODE_64BIT
9390 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9391 exp->X_add_number
9392 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9393 }
9394 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9395 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9396 && exp_seg != absolute_section
9397 && exp_seg != text_section
9398 && exp_seg != data_section
9399 && exp_seg != bss_section
9400 && exp_seg != undefined_section
9401 && !bfd_is_com_section (exp_seg))
9402 {
9403 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9404 return 0;
9405 }
9406 #endif
9407 else if (!intel_syntax && exp_seg == reg_section)
9408 {
9409 if (imm_start)
9410 as_bad (_("illegal immediate register operand %s"), imm_start);
9411 return 0;
9412 }
9413 else
9414 {
9415 /* This is an address. The size of the address will be
9416 determined later, depending on destination register,
9417 suffix, or the default for the section. */
9418 i.types[this_operand].bitfield.imm8 = 1;
9419 i.types[this_operand].bitfield.imm16 = 1;
9420 i.types[this_operand].bitfield.imm32 = 1;
9421 i.types[this_operand].bitfield.imm32s = 1;
9422 i.types[this_operand].bitfield.imm64 = 1;
9423 i.types[this_operand] = operand_type_and (i.types[this_operand],
9424 types);
9425 }
9426
9427 return 1;
9428 }
9429
9430 static char *
9431 i386_scale (char *scale)
9432 {
9433 offsetT val;
9434 char *save = input_line_pointer;
9435
9436 input_line_pointer = scale;
9437 val = get_absolute_expression ();
9438
9439 switch (val)
9440 {
9441 case 1:
9442 i.log2_scale_factor = 0;
9443 break;
9444 case 2:
9445 i.log2_scale_factor = 1;
9446 break;
9447 case 4:
9448 i.log2_scale_factor = 2;
9449 break;
9450 case 8:
9451 i.log2_scale_factor = 3;
9452 break;
9453 default:
9454 {
9455 char sep = *input_line_pointer;
9456
9457 *input_line_pointer = '\0';
9458 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9459 scale);
9460 *input_line_pointer = sep;
9461 input_line_pointer = save;
9462 return NULL;
9463 }
9464 }
9465 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9466 {
9467 as_warn (_("scale factor of %d without an index register"),
9468 1 << i.log2_scale_factor);
9469 i.log2_scale_factor = 0;
9470 }
9471 scale = input_line_pointer;
9472 input_line_pointer = save;
9473 return scale;
9474 }
9475
9476 static int
9477 i386_displacement (char *disp_start, char *disp_end)
9478 {
9479 expressionS *exp;
9480 segT exp_seg = 0;
9481 char *save_input_line_pointer;
9482 char *gotfree_input_line;
9483 int override;
9484 i386_operand_type bigdisp, types = anydisp;
9485 int ret;
9486
9487 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9488 {
9489 as_bad (_("at most %d displacement operands are allowed"),
9490 MAX_MEMORY_OPERANDS);
9491 return 0;
9492 }
9493
9494 operand_type_set (&bigdisp, 0);
9495 if ((i.types[this_operand].bitfield.jumpabsolute)
9496 || (!current_templates->start->opcode_modifier.jump
9497 && !current_templates->start->opcode_modifier.jumpdword))
9498 {
9499 bigdisp.bitfield.disp32 = 1;
9500 override = (i.prefix[ADDR_PREFIX] != 0);
9501 if (flag_code == CODE_64BIT)
9502 {
9503 if (!override)
9504 {
9505 bigdisp.bitfield.disp32s = 1;
9506 bigdisp.bitfield.disp64 = 1;
9507 }
9508 }
9509 else if ((flag_code == CODE_16BIT) ^ override)
9510 {
9511 bigdisp.bitfield.disp32 = 0;
9512 bigdisp.bitfield.disp16 = 1;
9513 }
9514 }
9515 else
9516 {
9517 /* For PC-relative branches, the width of the displacement
9518 is dependent upon data size, not address size. */
9519 override = (i.prefix[DATA_PREFIX] != 0);
9520 if (flag_code == CODE_64BIT)
9521 {
9522 if (override || i.suffix == WORD_MNEM_SUFFIX)
9523 bigdisp.bitfield.disp16 = 1;
9524 else
9525 {
9526 bigdisp.bitfield.disp32 = 1;
9527 bigdisp.bitfield.disp32s = 1;
9528 }
9529 }
9530 else
9531 {
9532 if (!override)
9533 override = (i.suffix == (flag_code != CODE_16BIT
9534 ? WORD_MNEM_SUFFIX
9535 : LONG_MNEM_SUFFIX));
9536 bigdisp.bitfield.disp32 = 1;
9537 if ((flag_code == CODE_16BIT) ^ override)
9538 {
9539 bigdisp.bitfield.disp32 = 0;
9540 bigdisp.bitfield.disp16 = 1;
9541 }
9542 }
9543 }
9544 i.types[this_operand] = operand_type_or (i.types[this_operand],
9545 bigdisp);
9546
9547 exp = &disp_expressions[i.disp_operands];
9548 i.op[this_operand].disps = exp;
9549 i.disp_operands++;
9550 save_input_line_pointer = input_line_pointer;
9551 input_line_pointer = disp_start;
9552 END_STRING_AND_SAVE (disp_end);
9553
9554 #ifndef GCC_ASM_O_HACK
9555 #define GCC_ASM_O_HACK 0
9556 #endif
9557 #if GCC_ASM_O_HACK
9558 END_STRING_AND_SAVE (disp_end + 1);
9559 if (i.types[this_operand].bitfield.baseIndex
9560 && displacement_string_end[-1] == '+')
9561 {
9562 /* This hack is to avoid a warning when using the "o"
9563 constraint within gcc asm statements.
9564 For instance:
9565
9566 #define _set_tssldt_desc(n,addr,limit,type) \
9567 __asm__ __volatile__ ( \
9568 "movw %w2,%0\n\t" \
9569 "movw %w1,2+%0\n\t" \
9570 "rorl $16,%1\n\t" \
9571 "movb %b1,4+%0\n\t" \
9572 "movb %4,5+%0\n\t" \
9573 "movb $0,6+%0\n\t" \
9574 "movb %h1,7+%0\n\t" \
9575 "rorl $16,%1" \
9576 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9577
9578 This works great except that the output assembler ends
9579 up looking a bit weird if it turns out that there is
9580 no offset. You end up producing code that looks like:
9581
9582 #APP
9583 movw $235,(%eax)
9584 movw %dx,2+(%eax)
9585 rorl $16,%edx
9586 movb %dl,4+(%eax)
9587 movb $137,5+(%eax)
9588 movb $0,6+(%eax)
9589 movb %dh,7+(%eax)
9590 rorl $16,%edx
9591 #NO_APP
9592
9593 So here we provide the missing zero. */
9594
9595 *displacement_string_end = '0';
9596 }
9597 #endif
9598 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9599 if (gotfree_input_line)
9600 input_line_pointer = gotfree_input_line;
9601
9602 exp_seg = expression (exp);
9603
9604 SKIP_WHITESPACE ();
9605 if (*input_line_pointer)
9606 as_bad (_("junk `%s' after expression"), input_line_pointer);
9607 #if GCC_ASM_O_HACK
9608 RESTORE_END_STRING (disp_end + 1);
9609 #endif
9610 input_line_pointer = save_input_line_pointer;
9611 if (gotfree_input_line)
9612 {
9613 free (gotfree_input_line);
9614
9615 if (exp->X_op == O_constant || exp->X_op == O_register)
9616 exp->X_op = O_illegal;
9617 }
9618
9619 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9620
9621 RESTORE_END_STRING (disp_end);
9622
9623 return ret;
9624 }
9625
9626 static int
9627 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9628 i386_operand_type types, const char *disp_start)
9629 {
9630 i386_operand_type bigdisp;
9631 int ret = 1;
9632
9633 /* We do this to make sure that the section symbol is in
9634 the symbol table. We will ultimately change the relocation
9635 to be relative to the beginning of the section. */
9636 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9637 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9638 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9639 {
9640 if (exp->X_op != O_symbol)
9641 goto inv_disp;
9642
9643 if (S_IS_LOCAL (exp->X_add_symbol)
9644 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9645 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9646 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9647 exp->X_op = O_subtract;
9648 exp->X_op_symbol = GOT_symbol;
9649 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9650 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9651 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9652 i.reloc[this_operand] = BFD_RELOC_64;
9653 else
9654 i.reloc[this_operand] = BFD_RELOC_32;
9655 }
9656
9657 else if (exp->X_op == O_absent
9658 || exp->X_op == O_illegal
9659 || exp->X_op == O_big)
9660 {
9661 inv_disp:
9662 as_bad (_("missing or invalid displacement expression `%s'"),
9663 disp_start);
9664 ret = 0;
9665 }
9666
9667 else if (flag_code == CODE_64BIT
9668 && !i.prefix[ADDR_PREFIX]
9669 && exp->X_op == O_constant)
9670 {
9671 /* Since displacement is signed extended to 64bit, don't allow
9672 disp32 and turn off disp32s if they are out of range. */
9673 i.types[this_operand].bitfield.disp32 = 0;
9674 if (!fits_in_signed_long (exp->X_add_number))
9675 {
9676 i.types[this_operand].bitfield.disp32s = 0;
9677 if (i.types[this_operand].bitfield.baseindex)
9678 {
9679 as_bad (_("0x%lx out range of signed 32bit displacement"),
9680 (long) exp->X_add_number);
9681 ret = 0;
9682 }
9683 }
9684 }
9685
9686 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9687 else if (exp->X_op != O_constant
9688 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9689 && exp_seg != absolute_section
9690 && exp_seg != text_section
9691 && exp_seg != data_section
9692 && exp_seg != bss_section
9693 && exp_seg != undefined_section
9694 && !bfd_is_com_section (exp_seg))
9695 {
9696 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9697 ret = 0;
9698 }
9699 #endif
9700
9701 /* Check if this is a displacement only operand. */
9702 bigdisp = i.types[this_operand];
9703 bigdisp.bitfield.disp8 = 0;
9704 bigdisp.bitfield.disp16 = 0;
9705 bigdisp.bitfield.disp32 = 0;
9706 bigdisp.bitfield.disp32s = 0;
9707 bigdisp.bitfield.disp64 = 0;
9708 if (operand_type_all_zero (&bigdisp))
9709 i.types[this_operand] = operand_type_and (i.types[this_operand],
9710 types);
9711
9712 return ret;
9713 }
9714
9715 /* Return the active addressing mode, taking address override and
9716 registers forming the address into consideration. Update the
9717 address override prefix if necessary. */
9718
9719 static enum flag_code
9720 i386_addressing_mode (void)
9721 {
9722 enum flag_code addr_mode;
9723
9724 if (i.prefix[ADDR_PREFIX])
9725 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9726 else
9727 {
9728 addr_mode = flag_code;
9729
9730 #if INFER_ADDR_PREFIX
9731 if (i.mem_operands == 0)
9732 {
9733 /* Infer address prefix from the first memory operand. */
9734 const reg_entry *addr_reg = i.base_reg;
9735
9736 if (addr_reg == NULL)
9737 addr_reg = i.index_reg;
9738
9739 if (addr_reg)
9740 {
9741 if (addr_reg->reg_type.bitfield.dword)
9742 addr_mode = CODE_32BIT;
9743 else if (flag_code != CODE_64BIT
9744 && addr_reg->reg_type.bitfield.word)
9745 addr_mode = CODE_16BIT;
9746
9747 if (addr_mode != flag_code)
9748 {
9749 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9750 i.prefixes += 1;
9751 /* Change the size of any displacement too. At most one
9752 of Disp16 or Disp32 is set.
9753 FIXME. There doesn't seem to be any real need for
9754 separate Disp16 and Disp32 flags. The same goes for
9755 Imm16 and Imm32. Removing them would probably clean
9756 up the code quite a lot. */
9757 if (flag_code != CODE_64BIT
9758 && (i.types[this_operand].bitfield.disp16
9759 || i.types[this_operand].bitfield.disp32))
9760 i.types[this_operand]
9761 = operand_type_xor (i.types[this_operand], disp16_32);
9762 }
9763 }
9764 }
9765 #endif
9766 }
9767
9768 return addr_mode;
9769 }
9770
9771 /* Make sure the memory operand we've been dealt is valid.
9772 Return 1 on success, 0 on a failure. */
9773
9774 static int
9775 i386_index_check (const char *operand_string)
9776 {
9777 const char *kind = "base/index";
9778 enum flag_code addr_mode = i386_addressing_mode ();
9779
9780 if (current_templates->start->opcode_modifier.isstring
9781 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9782 && (current_templates->end[-1].opcode_modifier.isstring
9783 || i.mem_operands))
9784 {
9785 /* Memory operands of string insns are special in that they only allow
9786 a single register (rDI, rSI, or rBX) as their memory address. */
9787 const reg_entry *expected_reg;
9788 static const char *di_si[][2] =
9789 {
9790 { "esi", "edi" },
9791 { "si", "di" },
9792 { "rsi", "rdi" }
9793 };
9794 static const char *bx[] = { "ebx", "bx", "rbx" };
9795
9796 kind = "string address";
9797
9798 if (current_templates->start->opcode_modifier.repprefixok)
9799 {
9800 i386_operand_type type = current_templates->end[-1].operand_types[0];
9801
9802 if (!type.bitfield.baseindex
9803 || ((!i.mem_operands != !intel_syntax)
9804 && current_templates->end[-1].operand_types[1]
9805 .bitfield.baseindex))
9806 type = current_templates->end[-1].operand_types[1];
9807 expected_reg = hash_find (reg_hash,
9808 di_si[addr_mode][type.bitfield.esseg]);
9809
9810 }
9811 else
9812 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9813
9814 if (i.base_reg != expected_reg
9815 || i.index_reg
9816 || operand_type_check (i.types[this_operand], disp))
9817 {
9818 /* The second memory operand must have the same size as
9819 the first one. */
9820 if (i.mem_operands
9821 && i.base_reg
9822 && !((addr_mode == CODE_64BIT
9823 && i.base_reg->reg_type.bitfield.qword)
9824 || (addr_mode == CODE_32BIT
9825 ? i.base_reg->reg_type.bitfield.dword
9826 : i.base_reg->reg_type.bitfield.word)))
9827 goto bad_address;
9828
9829 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9830 operand_string,
9831 intel_syntax ? '[' : '(',
9832 register_prefix,
9833 expected_reg->reg_name,
9834 intel_syntax ? ']' : ')');
9835 return 1;
9836 }
9837 else
9838 return 1;
9839
9840 bad_address:
9841 as_bad (_("`%s' is not a valid %s expression"),
9842 operand_string, kind);
9843 return 0;
9844 }
9845 else
9846 {
9847 if (addr_mode != CODE_16BIT)
9848 {
9849 /* 32-bit/64-bit checks. */
9850 if ((i.base_reg
9851 && ((addr_mode == CODE_64BIT
9852 ? !i.base_reg->reg_type.bitfield.qword
9853 : !i.base_reg->reg_type.bitfield.dword)
9854 || (i.index_reg && i.base_reg->reg_num == RegIP)
9855 || i.base_reg->reg_num == RegIZ))
9856 || (i.index_reg
9857 && !i.index_reg->reg_type.bitfield.xmmword
9858 && !i.index_reg->reg_type.bitfield.ymmword
9859 && !i.index_reg->reg_type.bitfield.zmmword
9860 && ((addr_mode == CODE_64BIT
9861 ? !i.index_reg->reg_type.bitfield.qword
9862 : !i.index_reg->reg_type.bitfield.dword)
9863 || !i.index_reg->reg_type.bitfield.baseindex)))
9864 goto bad_address;
9865
9866 /* bndmk, bndldx, and bndstx have special restrictions. */
9867 if (current_templates->start->base_opcode == 0xf30f1b
9868 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9869 {
9870 /* They cannot use RIP-relative addressing. */
9871 if (i.base_reg && i.base_reg->reg_num == RegIP)
9872 {
9873 as_bad (_("`%s' cannot be used here"), operand_string);
9874 return 0;
9875 }
9876
9877 /* bndldx and bndstx ignore their scale factor. */
9878 if (current_templates->start->base_opcode != 0xf30f1b
9879 && i.log2_scale_factor)
9880 as_warn (_("register scaling is being ignored here"));
9881 }
9882 }
9883 else
9884 {
9885 /* 16-bit checks. */
9886 if ((i.base_reg
9887 && (!i.base_reg->reg_type.bitfield.word
9888 || !i.base_reg->reg_type.bitfield.baseindex))
9889 || (i.index_reg
9890 && (!i.index_reg->reg_type.bitfield.word
9891 || !i.index_reg->reg_type.bitfield.baseindex
9892 || !(i.base_reg
9893 && i.base_reg->reg_num < 6
9894 && i.index_reg->reg_num >= 6
9895 && i.log2_scale_factor == 0))))
9896 goto bad_address;
9897 }
9898 }
9899 return 1;
9900 }
9901
9902 /* Handle vector immediates. */
9903
9904 static int
9905 RC_SAE_immediate (const char *imm_start)
9906 {
9907 unsigned int match_found, j;
9908 const char *pstr = imm_start;
9909 expressionS *exp;
9910
9911 if (*pstr != '{')
9912 return 0;
9913
9914 pstr++;
9915 match_found = 0;
9916 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9917 {
9918 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9919 {
9920 if (!i.rounding)
9921 {
9922 rc_op.type = RC_NamesTable[j].type;
9923 rc_op.operand = this_operand;
9924 i.rounding = &rc_op;
9925 }
9926 else
9927 {
9928 as_bad (_("duplicated `%s'"), imm_start);
9929 return 0;
9930 }
9931 pstr += RC_NamesTable[j].len;
9932 match_found = 1;
9933 break;
9934 }
9935 }
9936 if (!match_found)
9937 return 0;
9938
9939 if (*pstr++ != '}')
9940 {
9941 as_bad (_("Missing '}': '%s'"), imm_start);
9942 return 0;
9943 }
9944 /* RC/SAE immediate string should contain nothing more. */;
9945 if (*pstr != 0)
9946 {
9947 as_bad (_("Junk after '}': '%s'"), imm_start);
9948 return 0;
9949 }
9950
9951 exp = &im_expressions[i.imm_operands++];
9952 i.op[this_operand].imms = exp;
9953
9954 exp->X_op = O_constant;
9955 exp->X_add_number = 0;
9956 exp->X_add_symbol = (symbolS *) 0;
9957 exp->X_op_symbol = (symbolS *) 0;
9958
9959 i.types[this_operand].bitfield.imm8 = 1;
9960 return 1;
9961 }
9962
9963 /* Only string instructions can have a second memory operand, so
9964 reduce current_templates to just those if it contains any. */
9965 static int
9966 maybe_adjust_templates (void)
9967 {
9968 const insn_template *t;
9969
9970 gas_assert (i.mem_operands == 1);
9971
9972 for (t = current_templates->start; t < current_templates->end; ++t)
9973 if (t->opcode_modifier.isstring)
9974 break;
9975
9976 if (t < current_templates->end)
9977 {
9978 static templates aux_templates;
9979 bfd_boolean recheck;
9980
9981 aux_templates.start = t;
9982 for (; t < current_templates->end; ++t)
9983 if (!t->opcode_modifier.isstring)
9984 break;
9985 aux_templates.end = t;
9986
9987 /* Determine whether to re-check the first memory operand. */
9988 recheck = (aux_templates.start != current_templates->start
9989 || t != current_templates->end);
9990
9991 current_templates = &aux_templates;
9992
9993 if (recheck)
9994 {
9995 i.mem_operands = 0;
9996 if (i.memop1_string != NULL
9997 && i386_index_check (i.memop1_string) == 0)
9998 return 0;
9999 i.mem_operands = 1;
10000 }
10001 }
10002
10003 return 1;
10004 }
10005
10006 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10007 on error. */
10008
10009 static int
10010 i386_att_operand (char *operand_string)
10011 {
10012 const reg_entry *r;
10013 char *end_op;
10014 char *op_string = operand_string;
10015
10016 if (is_space_char (*op_string))
10017 ++op_string;
10018
10019 /* We check for an absolute prefix (differentiating,
10020 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10021 if (*op_string == ABSOLUTE_PREFIX)
10022 {
10023 ++op_string;
10024 if (is_space_char (*op_string))
10025 ++op_string;
10026 i.types[this_operand].bitfield.jumpabsolute = 1;
10027 }
10028
10029 /* Check if operand is a register. */
10030 if ((r = parse_register (op_string, &end_op)) != NULL)
10031 {
10032 i386_operand_type temp;
10033
10034 /* Check for a segment override by searching for ':' after a
10035 segment register. */
10036 op_string = end_op;
10037 if (is_space_char (*op_string))
10038 ++op_string;
10039 if (*op_string == ':' && r->reg_type.bitfield.sreg)
10040 {
10041 switch (r->reg_num)
10042 {
10043 case 0:
10044 i.seg[i.mem_operands] = &es;
10045 break;
10046 case 1:
10047 i.seg[i.mem_operands] = &cs;
10048 break;
10049 case 2:
10050 i.seg[i.mem_operands] = &ss;
10051 break;
10052 case 3:
10053 i.seg[i.mem_operands] = &ds;
10054 break;
10055 case 4:
10056 i.seg[i.mem_operands] = &fs;
10057 break;
10058 case 5:
10059 i.seg[i.mem_operands] = &gs;
10060 break;
10061 }
10062
10063 /* Skip the ':' and whitespace. */
10064 ++op_string;
10065 if (is_space_char (*op_string))
10066 ++op_string;
10067
10068 if (!is_digit_char (*op_string)
10069 && !is_identifier_char (*op_string)
10070 && *op_string != '('
10071 && *op_string != ABSOLUTE_PREFIX)
10072 {
10073 as_bad (_("bad memory operand `%s'"), op_string);
10074 return 0;
10075 }
10076 /* Handle case of %es:*foo. */
10077 if (*op_string == ABSOLUTE_PREFIX)
10078 {
10079 ++op_string;
10080 if (is_space_char (*op_string))
10081 ++op_string;
10082 i.types[this_operand].bitfield.jumpabsolute = 1;
10083 }
10084 goto do_memory_reference;
10085 }
10086
10087 /* Handle vector operations. */
10088 if (*op_string == '{')
10089 {
10090 op_string = check_VecOperations (op_string, NULL);
10091 if (op_string == NULL)
10092 return 0;
10093 }
10094
10095 if (*op_string)
10096 {
10097 as_bad (_("junk `%s' after register"), op_string);
10098 return 0;
10099 }
10100 temp = r->reg_type;
10101 temp.bitfield.baseindex = 0;
10102 i.types[this_operand] = operand_type_or (i.types[this_operand],
10103 temp);
10104 i.types[this_operand].bitfield.unspecified = 0;
10105 i.op[this_operand].regs = r;
10106 i.reg_operands++;
10107 }
10108 else if (*op_string == REGISTER_PREFIX)
10109 {
10110 as_bad (_("bad register name `%s'"), op_string);
10111 return 0;
10112 }
10113 else if (*op_string == IMMEDIATE_PREFIX)
10114 {
10115 ++op_string;
10116 if (i.types[this_operand].bitfield.jumpabsolute)
10117 {
10118 as_bad (_("immediate operand illegal with absolute jump"));
10119 return 0;
10120 }
10121 if (!i386_immediate (op_string))
10122 return 0;
10123 }
10124 else if (RC_SAE_immediate (operand_string))
10125 {
10126 /* If it is a RC or SAE immediate, do nothing. */
10127 ;
10128 }
10129 else if (is_digit_char (*op_string)
10130 || is_identifier_char (*op_string)
10131 || *op_string == '"'
10132 || *op_string == '(')
10133 {
10134 /* This is a memory reference of some sort. */
10135 char *base_string;
10136
10137 /* Start and end of displacement string expression (if found). */
10138 char *displacement_string_start;
10139 char *displacement_string_end;
10140 char *vop_start;
10141
10142 do_memory_reference:
10143 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10144 return 0;
10145 if ((i.mem_operands == 1
10146 && !current_templates->start->opcode_modifier.isstring)
10147 || i.mem_operands == 2)
10148 {
10149 as_bad (_("too many memory references for `%s'"),
10150 current_templates->start->name);
10151 return 0;
10152 }
10153
10154 /* Check for base index form. We detect the base index form by
10155 looking for an ')' at the end of the operand, searching
10156 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10157 after the '('. */
10158 base_string = op_string + strlen (op_string);
10159
10160 /* Handle vector operations. */
10161 vop_start = strchr (op_string, '{');
10162 if (vop_start && vop_start < base_string)
10163 {
10164 if (check_VecOperations (vop_start, base_string) == NULL)
10165 return 0;
10166 base_string = vop_start;
10167 }
10168
10169 --base_string;
10170 if (is_space_char (*base_string))
10171 --base_string;
10172
10173 /* If we only have a displacement, set-up for it to be parsed later. */
10174 displacement_string_start = op_string;
10175 displacement_string_end = base_string + 1;
10176
10177 if (*base_string == ')')
10178 {
10179 char *temp_string;
10180 unsigned int parens_balanced = 1;
10181 /* We've already checked that the number of left & right ()'s are
10182 equal, so this loop will not be infinite. */
10183 do
10184 {
10185 base_string--;
10186 if (*base_string == ')')
10187 parens_balanced++;
10188 if (*base_string == '(')
10189 parens_balanced--;
10190 }
10191 while (parens_balanced);
10192
10193 temp_string = base_string;
10194
10195 /* Skip past '(' and whitespace. */
10196 ++base_string;
10197 if (is_space_char (*base_string))
10198 ++base_string;
10199
10200 if (*base_string == ','
10201 || ((i.base_reg = parse_register (base_string, &end_op))
10202 != NULL))
10203 {
10204 displacement_string_end = temp_string;
10205
10206 i.types[this_operand].bitfield.baseindex = 1;
10207
10208 if (i.base_reg)
10209 {
10210 base_string = end_op;
10211 if (is_space_char (*base_string))
10212 ++base_string;
10213 }
10214
10215 /* There may be an index reg or scale factor here. */
10216 if (*base_string == ',')
10217 {
10218 ++base_string;
10219 if (is_space_char (*base_string))
10220 ++base_string;
10221
10222 if ((i.index_reg = parse_register (base_string, &end_op))
10223 != NULL)
10224 {
10225 base_string = end_op;
10226 if (is_space_char (*base_string))
10227 ++base_string;
10228 if (*base_string == ',')
10229 {
10230 ++base_string;
10231 if (is_space_char (*base_string))
10232 ++base_string;
10233 }
10234 else if (*base_string != ')')
10235 {
10236 as_bad (_("expecting `,' or `)' "
10237 "after index register in `%s'"),
10238 operand_string);
10239 return 0;
10240 }
10241 }
10242 else if (*base_string == REGISTER_PREFIX)
10243 {
10244 end_op = strchr (base_string, ',');
10245 if (end_op)
10246 *end_op = '\0';
10247 as_bad (_("bad register name `%s'"), base_string);
10248 return 0;
10249 }
10250
10251 /* Check for scale factor. */
10252 if (*base_string != ')')
10253 {
10254 char *end_scale = i386_scale (base_string);
10255
10256 if (!end_scale)
10257 return 0;
10258
10259 base_string = end_scale;
10260 if (is_space_char (*base_string))
10261 ++base_string;
10262 if (*base_string != ')')
10263 {
10264 as_bad (_("expecting `)' "
10265 "after scale factor in `%s'"),
10266 operand_string);
10267 return 0;
10268 }
10269 }
10270 else if (!i.index_reg)
10271 {
10272 as_bad (_("expecting index register or scale factor "
10273 "after `,'; got '%c'"),
10274 *base_string);
10275 return 0;
10276 }
10277 }
10278 else if (*base_string != ')')
10279 {
10280 as_bad (_("expecting `,' or `)' "
10281 "after base register in `%s'"),
10282 operand_string);
10283 return 0;
10284 }
10285 }
10286 else if (*base_string == REGISTER_PREFIX)
10287 {
10288 end_op = strchr (base_string, ',');
10289 if (end_op)
10290 *end_op = '\0';
10291 as_bad (_("bad register name `%s'"), base_string);
10292 return 0;
10293 }
10294 }
10295
10296 /* If there's an expression beginning the operand, parse it,
10297 assuming displacement_string_start and
10298 displacement_string_end are meaningful. */
10299 if (displacement_string_start != displacement_string_end)
10300 {
10301 if (!i386_displacement (displacement_string_start,
10302 displacement_string_end))
10303 return 0;
10304 }
10305
10306 /* Special case for (%dx) while doing input/output op. */
10307 if (i.base_reg
10308 && i.base_reg->reg_type.bitfield.inoutportreg
10309 && i.index_reg == 0
10310 && i.log2_scale_factor == 0
10311 && i.seg[i.mem_operands] == 0
10312 && !operand_type_check (i.types[this_operand], disp))
10313 {
10314 i.types[this_operand] = i.base_reg->reg_type;
10315 return 1;
10316 }
10317
10318 if (i386_index_check (operand_string) == 0)
10319 return 0;
10320 i.flags[this_operand] |= Operand_Mem;
10321 if (i.mem_operands == 0)
10322 i.memop1_string = xstrdup (operand_string);
10323 i.mem_operands++;
10324 }
10325 else
10326 {
10327 /* It's not a memory operand; argh! */
10328 as_bad (_("invalid char %s beginning operand %d `%s'"),
10329 output_invalid (*op_string),
10330 this_operand + 1,
10331 op_string);
10332 return 0;
10333 }
10334 return 1; /* Normal return. */
10335 }
10336 \f
10337 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10338 that an rs_machine_dependent frag may reach. */
10339
10340 unsigned int
10341 i386_frag_max_var (fragS *frag)
10342 {
10343 /* The only relaxable frags are for jumps.
10344 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10345 gas_assert (frag->fr_type == rs_machine_dependent);
10346 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10347 }
10348
10349 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10350 static int
10351 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10352 {
10353 /* STT_GNU_IFUNC symbol must go through PLT. */
10354 if ((symbol_get_bfdsym (fr_symbol)->flags
10355 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10356 return 0;
10357
10358 if (!S_IS_EXTERNAL (fr_symbol))
10359 /* Symbol may be weak or local. */
10360 return !S_IS_WEAK (fr_symbol);
10361
10362 /* Global symbols with non-default visibility can't be preempted. */
10363 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10364 return 1;
10365
10366 if (fr_var != NO_RELOC)
10367 switch ((enum bfd_reloc_code_real) fr_var)
10368 {
10369 case BFD_RELOC_386_PLT32:
10370 case BFD_RELOC_X86_64_PLT32:
10371 /* Symbol with PLT relocation may be preempted. */
10372 return 0;
10373 default:
10374 abort ();
10375 }
10376
10377 /* Global symbols with default visibility in a shared library may be
10378 preempted by another definition. */
10379 return !shared;
10380 }
10381 #endif
10382
10383 /* md_estimate_size_before_relax()
10384
10385 Called just before relax() for rs_machine_dependent frags. The x86
10386 assembler uses these frags to handle variable size jump
10387 instructions.
10388
10389 Any symbol that is now undefined will not become defined.
10390 Return the correct fr_subtype in the frag.
10391 Return the initial "guess for variable size of frag" to caller.
10392 The guess is actually the growth beyond the fixed part. Whatever
10393 we do to grow the fixed or variable part contributes to our
10394 returned value. */
10395
10396 int
10397 md_estimate_size_before_relax (fragS *fragP, segT segment)
10398 {
10399 /* We've already got fragP->fr_subtype right; all we have to do is
10400 check for un-relaxable symbols. On an ELF system, we can't relax
10401 an externally visible symbol, because it may be overridden by a
10402 shared library. */
10403 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10404 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10405 || (IS_ELF
10406 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10407 fragP->fr_var))
10408 #endif
10409 #if defined (OBJ_COFF) && defined (TE_PE)
10410 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10411 && S_IS_WEAK (fragP->fr_symbol))
10412 #endif
10413 )
10414 {
10415 /* Symbol is undefined in this segment, or we need to keep a
10416 reloc so that weak symbols can be overridden. */
10417 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10418 enum bfd_reloc_code_real reloc_type;
10419 unsigned char *opcode;
10420 int old_fr_fix;
10421
10422 if (fragP->fr_var != NO_RELOC)
10423 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10424 else if (size == 2)
10425 reloc_type = BFD_RELOC_16_PCREL;
10426 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10427 else if (need_plt32_p (fragP->fr_symbol))
10428 reloc_type = BFD_RELOC_X86_64_PLT32;
10429 #endif
10430 else
10431 reloc_type = BFD_RELOC_32_PCREL;
10432
10433 old_fr_fix = fragP->fr_fix;
10434 opcode = (unsigned char *) fragP->fr_opcode;
10435
10436 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10437 {
10438 case UNCOND_JUMP:
10439 /* Make jmp (0xeb) a (d)word displacement jump. */
10440 opcode[0] = 0xe9;
10441 fragP->fr_fix += size;
10442 fix_new (fragP, old_fr_fix, size,
10443 fragP->fr_symbol,
10444 fragP->fr_offset, 1,
10445 reloc_type);
10446 break;
10447
10448 case COND_JUMP86:
10449 if (size == 2
10450 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10451 {
10452 /* Negate the condition, and branch past an
10453 unconditional jump. */
10454 opcode[0] ^= 1;
10455 opcode[1] = 3;
10456 /* Insert an unconditional jump. */
10457 opcode[2] = 0xe9;
10458 /* We added two extra opcode bytes, and have a two byte
10459 offset. */
10460 fragP->fr_fix += 2 + 2;
10461 fix_new (fragP, old_fr_fix + 2, 2,
10462 fragP->fr_symbol,
10463 fragP->fr_offset, 1,
10464 reloc_type);
10465 break;
10466 }
10467 /* Fall through. */
10468
10469 case COND_JUMP:
10470 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10471 {
10472 fixS *fixP;
10473
10474 fragP->fr_fix += 1;
10475 fixP = fix_new (fragP, old_fr_fix, 1,
10476 fragP->fr_symbol,
10477 fragP->fr_offset, 1,
10478 BFD_RELOC_8_PCREL);
10479 fixP->fx_signed = 1;
10480 break;
10481 }
10482
10483 /* This changes the byte-displacement jump 0x7N
10484 to the (d)word-displacement jump 0x0f,0x8N. */
10485 opcode[1] = opcode[0] + 0x10;
10486 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10487 /* We've added an opcode byte. */
10488 fragP->fr_fix += 1 + size;
10489 fix_new (fragP, old_fr_fix + 1, size,
10490 fragP->fr_symbol,
10491 fragP->fr_offset, 1,
10492 reloc_type);
10493 break;
10494
10495 default:
10496 BAD_CASE (fragP->fr_subtype);
10497 break;
10498 }
10499 frag_wane (fragP);
10500 return fragP->fr_fix - old_fr_fix;
10501 }
10502
10503 /* Guess size depending on current relax state. Initially the relax
10504 state will correspond to a short jump and we return 1, because
10505 the variable part of the frag (the branch offset) is one byte
10506 long. However, we can relax a section more than once and in that
10507 case we must either set fr_subtype back to the unrelaxed state,
10508 or return the value for the appropriate branch. */
10509 return md_relax_table[fragP->fr_subtype].rlx_length;
10510 }
10511
10512 /* Called after relax() is finished.
10513
10514 In: Address of frag.
10515 fr_type == rs_machine_dependent.
10516 fr_subtype is what the address relaxed to.
10517
10518 Out: Any fixSs and constants are set up.
10519 Caller will turn frag into a ".space 0". */
10520
10521 void
10522 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10523 fragS *fragP)
10524 {
10525 unsigned char *opcode;
10526 unsigned char *where_to_put_displacement = NULL;
10527 offsetT target_address;
10528 offsetT opcode_address;
10529 unsigned int extension = 0;
10530 offsetT displacement_from_opcode_start;
10531
10532 opcode = (unsigned char *) fragP->fr_opcode;
10533
10534 /* Address we want to reach in file space. */
10535 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10536
10537 /* Address opcode resides at in file space. */
10538 opcode_address = fragP->fr_address + fragP->fr_fix;
10539
10540 /* Displacement from opcode start to fill into instruction. */
10541 displacement_from_opcode_start = target_address - opcode_address;
10542
10543 if ((fragP->fr_subtype & BIG) == 0)
10544 {
10545 /* Don't have to change opcode. */
10546 extension = 1; /* 1 opcode + 1 displacement */
10547 where_to_put_displacement = &opcode[1];
10548 }
10549 else
10550 {
10551 if (no_cond_jump_promotion
10552 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10553 as_warn_where (fragP->fr_file, fragP->fr_line,
10554 _("long jump required"));
10555
10556 switch (fragP->fr_subtype)
10557 {
10558 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10559 extension = 4; /* 1 opcode + 4 displacement */
10560 opcode[0] = 0xe9;
10561 where_to_put_displacement = &opcode[1];
10562 break;
10563
10564 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10565 extension = 2; /* 1 opcode + 2 displacement */
10566 opcode[0] = 0xe9;
10567 where_to_put_displacement = &opcode[1];
10568 break;
10569
10570 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10571 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10572 extension = 5; /* 2 opcode + 4 displacement */
10573 opcode[1] = opcode[0] + 0x10;
10574 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10575 where_to_put_displacement = &opcode[2];
10576 break;
10577
10578 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10579 extension = 3; /* 2 opcode + 2 displacement */
10580 opcode[1] = opcode[0] + 0x10;
10581 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10582 where_to_put_displacement = &opcode[2];
10583 break;
10584
10585 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10586 extension = 4;
10587 opcode[0] ^= 1;
10588 opcode[1] = 3;
10589 opcode[2] = 0xe9;
10590 where_to_put_displacement = &opcode[3];
10591 break;
10592
10593 default:
10594 BAD_CASE (fragP->fr_subtype);
10595 break;
10596 }
10597 }
10598
10599 /* If size if less then four we are sure that the operand fits,
10600 but if it's 4, then it could be that the displacement is larger
10601 then -/+ 2GB. */
10602 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10603 && object_64bit
10604 && ((addressT) (displacement_from_opcode_start - extension
10605 + ((addressT) 1 << 31))
10606 > (((addressT) 2 << 31) - 1)))
10607 {
10608 as_bad_where (fragP->fr_file, fragP->fr_line,
10609 _("jump target out of range"));
10610 /* Make us emit 0. */
10611 displacement_from_opcode_start = extension;
10612 }
10613 /* Now put displacement after opcode. */
10614 md_number_to_chars ((char *) where_to_put_displacement,
10615 (valueT) (displacement_from_opcode_start - extension),
10616 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10617 fragP->fr_fix += extension;
10618 }
10619 \f
10620 /* Apply a fixup (fixP) to segment data, once it has been determined
10621 by our caller that we have all the info we need to fix it up.
10622
10623 Parameter valP is the pointer to the value of the bits.
10624
10625 On the 386, immediates, displacements, and data pointers are all in
10626 the same (little-endian) format, so we don't need to care about which
10627 we are handling. */
10628
10629 void
10630 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10631 {
10632 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10633 valueT value = *valP;
10634
10635 #if !defined (TE_Mach)
10636 if (fixP->fx_pcrel)
10637 {
10638 switch (fixP->fx_r_type)
10639 {
10640 default:
10641 break;
10642
10643 case BFD_RELOC_64:
10644 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10645 break;
10646 case BFD_RELOC_32:
10647 case BFD_RELOC_X86_64_32S:
10648 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10649 break;
10650 case BFD_RELOC_16:
10651 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10652 break;
10653 case BFD_RELOC_8:
10654 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10655 break;
10656 }
10657 }
10658
10659 if (fixP->fx_addsy != NULL
10660 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10661 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10662 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10663 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10664 && !use_rela_relocations)
10665 {
10666 /* This is a hack. There should be a better way to handle this.
10667 This covers for the fact that bfd_install_relocation will
10668 subtract the current location (for partial_inplace, PC relative
10669 relocations); see more below. */
10670 #ifndef OBJ_AOUT
10671 if (IS_ELF
10672 #ifdef TE_PE
10673 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10674 #endif
10675 )
10676 value += fixP->fx_where + fixP->fx_frag->fr_address;
10677 #endif
10678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10679 if (IS_ELF)
10680 {
10681 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10682
10683 if ((sym_seg == seg
10684 || (symbol_section_p (fixP->fx_addsy)
10685 && sym_seg != absolute_section))
10686 && !generic_force_reloc (fixP))
10687 {
10688 /* Yes, we add the values in twice. This is because
10689 bfd_install_relocation subtracts them out again. I think
10690 bfd_install_relocation is broken, but I don't dare change
10691 it. FIXME. */
10692 value += fixP->fx_where + fixP->fx_frag->fr_address;
10693 }
10694 }
10695 #endif
10696 #if defined (OBJ_COFF) && defined (TE_PE)
10697 /* For some reason, the PE format does not store a
10698 section address offset for a PC relative symbol. */
10699 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10700 || S_IS_WEAK (fixP->fx_addsy))
10701 value += md_pcrel_from (fixP);
10702 #endif
10703 }
10704 #if defined (OBJ_COFF) && defined (TE_PE)
10705 if (fixP->fx_addsy != NULL
10706 && S_IS_WEAK (fixP->fx_addsy)
10707 /* PR 16858: Do not modify weak function references. */
10708 && ! fixP->fx_pcrel)
10709 {
10710 #if !defined (TE_PEP)
10711 /* For x86 PE weak function symbols are neither PC-relative
10712 nor do they set S_IS_FUNCTION. So the only reliable way
10713 to detect them is to check the flags of their containing
10714 section. */
10715 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10716 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10717 ;
10718 else
10719 #endif
10720 value -= S_GET_VALUE (fixP->fx_addsy);
10721 }
10722 #endif
10723
10724 /* Fix a few things - the dynamic linker expects certain values here,
10725 and we must not disappoint it. */
10726 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10727 if (IS_ELF && fixP->fx_addsy)
10728 switch (fixP->fx_r_type)
10729 {
10730 case BFD_RELOC_386_PLT32:
10731 case BFD_RELOC_X86_64_PLT32:
10732 /* Make the jump instruction point to the address of the operand.
10733 At runtime we merely add the offset to the actual PLT entry.
10734 NB: Subtract the offset size only for jump instructions. */
10735 if (fixP->fx_pcrel)
10736 value = -4;
10737 break;
10738
10739 case BFD_RELOC_386_TLS_GD:
10740 case BFD_RELOC_386_TLS_LDM:
10741 case BFD_RELOC_386_TLS_IE_32:
10742 case BFD_RELOC_386_TLS_IE:
10743 case BFD_RELOC_386_TLS_GOTIE:
10744 case BFD_RELOC_386_TLS_GOTDESC:
10745 case BFD_RELOC_X86_64_TLSGD:
10746 case BFD_RELOC_X86_64_TLSLD:
10747 case BFD_RELOC_X86_64_GOTTPOFF:
10748 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10749 value = 0; /* Fully resolved at runtime. No addend. */
10750 /* Fallthrough */
10751 case BFD_RELOC_386_TLS_LE:
10752 case BFD_RELOC_386_TLS_LDO_32:
10753 case BFD_RELOC_386_TLS_LE_32:
10754 case BFD_RELOC_X86_64_DTPOFF32:
10755 case BFD_RELOC_X86_64_DTPOFF64:
10756 case BFD_RELOC_X86_64_TPOFF32:
10757 case BFD_RELOC_X86_64_TPOFF64:
10758 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10759 break;
10760
10761 case BFD_RELOC_386_TLS_DESC_CALL:
10762 case BFD_RELOC_X86_64_TLSDESC_CALL:
10763 value = 0; /* Fully resolved at runtime. No addend. */
10764 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10765 fixP->fx_done = 0;
10766 return;
10767
10768 case BFD_RELOC_VTABLE_INHERIT:
10769 case BFD_RELOC_VTABLE_ENTRY:
10770 fixP->fx_done = 0;
10771 return;
10772
10773 default:
10774 break;
10775 }
10776 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10777 *valP = value;
10778 #endif /* !defined (TE_Mach) */
10779
10780 /* Are we finished with this relocation now? */
10781 if (fixP->fx_addsy == NULL)
10782 fixP->fx_done = 1;
10783 #if defined (OBJ_COFF) && defined (TE_PE)
10784 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10785 {
10786 fixP->fx_done = 0;
10787 /* Remember value for tc_gen_reloc. */
10788 fixP->fx_addnumber = value;
10789 /* Clear out the frag for now. */
10790 value = 0;
10791 }
10792 #endif
10793 else if (use_rela_relocations)
10794 {
10795 fixP->fx_no_overflow = 1;
10796 /* Remember value for tc_gen_reloc. */
10797 fixP->fx_addnumber = value;
10798 value = 0;
10799 }
10800
10801 md_number_to_chars (p, value, fixP->fx_size);
10802 }
10803 \f
10804 const char *
10805 md_atof (int type, char *litP, int *sizeP)
10806 {
10807 /* This outputs the LITTLENUMs in REVERSE order;
10808 in accord with the bigendian 386. */
10809 return ieee_md_atof (type, litP, sizeP, FALSE);
10810 }
10811 \f
10812 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10813
10814 static char *
10815 output_invalid (int c)
10816 {
10817 if (ISPRINT (c))
10818 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10819 "'%c'", c);
10820 else
10821 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10822 "(0x%x)", (unsigned char) c);
10823 return output_invalid_buf;
10824 }
10825
10826 /* REG_STRING starts *before* REGISTER_PREFIX. */
10827
10828 static const reg_entry *
10829 parse_real_register (char *reg_string, char **end_op)
10830 {
10831 char *s = reg_string;
10832 char *p;
10833 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10834 const reg_entry *r;
10835
10836 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10837 if (*s == REGISTER_PREFIX)
10838 ++s;
10839
10840 if (is_space_char (*s))
10841 ++s;
10842
10843 p = reg_name_given;
10844 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10845 {
10846 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10847 return (const reg_entry *) NULL;
10848 s++;
10849 }
10850
10851 /* For naked regs, make sure that we are not dealing with an identifier.
10852 This prevents confusing an identifier like `eax_var' with register
10853 `eax'. */
10854 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10855 return (const reg_entry *) NULL;
10856
10857 *end_op = s;
10858
10859 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10860
10861 /* Handle floating point regs, allowing spaces in the (i) part. */
10862 if (r == i386_regtab /* %st is first entry of table */)
10863 {
10864 if (!cpu_arch_flags.bitfield.cpu8087
10865 && !cpu_arch_flags.bitfield.cpu287
10866 && !cpu_arch_flags.bitfield.cpu387)
10867 return (const reg_entry *) NULL;
10868
10869 if (is_space_char (*s))
10870 ++s;
10871 if (*s == '(')
10872 {
10873 ++s;
10874 if (is_space_char (*s))
10875 ++s;
10876 if (*s >= '0' && *s <= '7')
10877 {
10878 int fpr = *s - '0';
10879 ++s;
10880 if (is_space_char (*s))
10881 ++s;
10882 if (*s == ')')
10883 {
10884 *end_op = s + 1;
10885 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10886 know (r);
10887 return r + fpr;
10888 }
10889 }
10890 /* We have "%st(" then garbage. */
10891 return (const reg_entry *) NULL;
10892 }
10893 }
10894
10895 if (r == NULL || allow_pseudo_reg)
10896 return r;
10897
10898 if (operand_type_all_zero (&r->reg_type))
10899 return (const reg_entry *) NULL;
10900
10901 if ((r->reg_type.bitfield.dword
10902 || (r->reg_type.bitfield.sreg && r->reg_num > 3)
10903 || r->reg_type.bitfield.control
10904 || r->reg_type.bitfield.debug
10905 || r->reg_type.bitfield.test)
10906 && !cpu_arch_flags.bitfield.cpui386)
10907 return (const reg_entry *) NULL;
10908
10909 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10910 return (const reg_entry *) NULL;
10911
10912 if (!cpu_arch_flags.bitfield.cpuavx512f)
10913 {
10914 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10915 return (const reg_entry *) NULL;
10916
10917 if (!cpu_arch_flags.bitfield.cpuavx)
10918 {
10919 if (r->reg_type.bitfield.ymmword)
10920 return (const reg_entry *) NULL;
10921
10922 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10923 return (const reg_entry *) NULL;
10924 }
10925 }
10926
10927 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10928 return (const reg_entry *) NULL;
10929
10930 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10931 if (!allow_index_reg && r->reg_num == RegIZ)
10932 return (const reg_entry *) NULL;
10933
10934 /* Upper 16 vector registers are only available with VREX in 64bit
10935 mode, and require EVEX encoding. */
10936 if (r->reg_flags & RegVRex)
10937 {
10938 if (!cpu_arch_flags.bitfield.cpuavx512f
10939 || flag_code != CODE_64BIT)
10940 return (const reg_entry *) NULL;
10941
10942 i.vec_encoding = vex_encoding_evex;
10943 }
10944
10945 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10946 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10947 && flag_code != CODE_64BIT)
10948 return (const reg_entry *) NULL;
10949
10950 if (r->reg_type.bitfield.sreg && r->reg_num == RegFlat && !intel_syntax)
10951 return (const reg_entry *) NULL;
10952
10953 return r;
10954 }
10955
10956 /* REG_STRING starts *before* REGISTER_PREFIX. */
10957
10958 static const reg_entry *
10959 parse_register (char *reg_string, char **end_op)
10960 {
10961 const reg_entry *r;
10962
10963 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10964 r = parse_real_register (reg_string, end_op);
10965 else
10966 r = NULL;
10967 if (!r)
10968 {
10969 char *save = input_line_pointer;
10970 char c;
10971 symbolS *symbolP;
10972
10973 input_line_pointer = reg_string;
10974 c = get_symbol_name (&reg_string);
10975 symbolP = symbol_find (reg_string);
10976 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10977 {
10978 const expressionS *e = symbol_get_value_expression (symbolP);
10979
10980 know (e->X_op == O_register);
10981 know (e->X_add_number >= 0
10982 && (valueT) e->X_add_number < i386_regtab_size);
10983 r = i386_regtab + e->X_add_number;
10984 if ((r->reg_flags & RegVRex))
10985 i.vec_encoding = vex_encoding_evex;
10986 *end_op = input_line_pointer;
10987 }
10988 *input_line_pointer = c;
10989 input_line_pointer = save;
10990 }
10991 return r;
10992 }
10993
10994 int
10995 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10996 {
10997 const reg_entry *r;
10998 char *end = input_line_pointer;
10999
11000 *end = *nextcharP;
11001 r = parse_register (name, &input_line_pointer);
11002 if (r && end <= input_line_pointer)
11003 {
11004 *nextcharP = *input_line_pointer;
11005 *input_line_pointer = 0;
11006 e->X_op = O_register;
11007 e->X_add_number = r - i386_regtab;
11008 return 1;
11009 }
11010 input_line_pointer = end;
11011 *end = 0;
11012 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11013 }
11014
11015 void
11016 md_operand (expressionS *e)
11017 {
11018 char *end;
11019 const reg_entry *r;
11020
11021 switch (*input_line_pointer)
11022 {
11023 case REGISTER_PREFIX:
11024 r = parse_real_register (input_line_pointer, &end);
11025 if (r)
11026 {
11027 e->X_op = O_register;
11028 e->X_add_number = r - i386_regtab;
11029 input_line_pointer = end;
11030 }
11031 break;
11032
11033 case '[':
11034 gas_assert (intel_syntax);
11035 end = input_line_pointer++;
11036 expression (e);
11037 if (*input_line_pointer == ']')
11038 {
11039 ++input_line_pointer;
11040 e->X_op_symbol = make_expr_symbol (e);
11041 e->X_add_symbol = NULL;
11042 e->X_add_number = 0;
11043 e->X_op = O_index;
11044 }
11045 else
11046 {
11047 e->X_op = O_absent;
11048 input_line_pointer = end;
11049 }
11050 break;
11051 }
11052 }
11053
11054 \f
11055 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11056 const char *md_shortopts = "kVQ:sqnO::";
11057 #else
11058 const char *md_shortopts = "qnO::";
11059 #endif
11060
11061 #define OPTION_32 (OPTION_MD_BASE + 0)
11062 #define OPTION_64 (OPTION_MD_BASE + 1)
11063 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11064 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11065 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11066 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11067 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11068 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11069 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11070 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11071 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11072 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11073 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11074 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11075 #define OPTION_X32 (OPTION_MD_BASE + 14)
11076 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11077 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11078 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11079 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11080 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11081 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11082 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11083 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11084 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11085 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11086 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11087 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11088
11089 struct option md_longopts[] =
11090 {
11091 {"32", no_argument, NULL, OPTION_32},
11092 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11093 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11094 {"64", no_argument, NULL, OPTION_64},
11095 #endif
11096 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11097 {"x32", no_argument, NULL, OPTION_X32},
11098 {"mshared", no_argument, NULL, OPTION_MSHARED},
11099 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11100 #endif
11101 {"divide", no_argument, NULL, OPTION_DIVIDE},
11102 {"march", required_argument, NULL, OPTION_MARCH},
11103 {"mtune", required_argument, NULL, OPTION_MTUNE},
11104 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11105 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11106 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11107 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11108 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11109 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11110 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11111 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11112 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11113 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11114 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11115 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11116 # if defined (TE_PE) || defined (TE_PEP)
11117 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11118 #endif
11119 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11120 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11121 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11122 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11123 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11124 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11125 {NULL, no_argument, NULL, 0}
11126 };
11127 size_t md_longopts_size = sizeof (md_longopts);
11128
11129 int
11130 md_parse_option (int c, const char *arg)
11131 {
11132 unsigned int j;
11133 char *arch, *next, *saved;
11134
11135 switch (c)
11136 {
11137 case 'n':
11138 optimize_align_code = 0;
11139 break;
11140
11141 case 'q':
11142 quiet_warnings = 1;
11143 break;
11144
11145 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11146 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11147 should be emitted or not. FIXME: Not implemented. */
11148 case 'Q':
11149 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11150 return 0;
11151 break;
11152
11153 /* -V: SVR4 argument to print version ID. */
11154 case 'V':
11155 print_version_id ();
11156 break;
11157
11158 /* -k: Ignore for FreeBSD compatibility. */
11159 case 'k':
11160 break;
11161
11162 case 's':
11163 /* -s: On i386 Solaris, this tells the native assembler to use
11164 .stab instead of .stab.excl. We always use .stab anyhow. */
11165 break;
11166
11167 case OPTION_MSHARED:
11168 shared = 1;
11169 break;
11170
11171 case OPTION_X86_USED_NOTE:
11172 if (strcasecmp (arg, "yes") == 0)
11173 x86_used_note = 1;
11174 else if (strcasecmp (arg, "no") == 0)
11175 x86_used_note = 0;
11176 else
11177 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11178 break;
11179
11180
11181 #endif
11182 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11183 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11184 case OPTION_64:
11185 {
11186 const char **list, **l;
11187
11188 list = bfd_target_list ();
11189 for (l = list; *l != NULL; l++)
11190 if (CONST_STRNEQ (*l, "elf64-x86-64")
11191 || strcmp (*l, "coff-x86-64") == 0
11192 || strcmp (*l, "pe-x86-64") == 0
11193 || strcmp (*l, "pei-x86-64") == 0
11194 || strcmp (*l, "mach-o-x86-64") == 0)
11195 {
11196 default_arch = "x86_64";
11197 break;
11198 }
11199 if (*l == NULL)
11200 as_fatal (_("no compiled in support for x86_64"));
11201 free (list);
11202 }
11203 break;
11204 #endif
11205
11206 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11207 case OPTION_X32:
11208 if (IS_ELF)
11209 {
11210 const char **list, **l;
11211
11212 list = bfd_target_list ();
11213 for (l = list; *l != NULL; l++)
11214 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11215 {
11216 default_arch = "x86_64:32";
11217 break;
11218 }
11219 if (*l == NULL)
11220 as_fatal (_("no compiled in support for 32bit x86_64"));
11221 free (list);
11222 }
11223 else
11224 as_fatal (_("32bit x86_64 is only supported for ELF"));
11225 break;
11226 #endif
11227
11228 case OPTION_32:
11229 default_arch = "i386";
11230 break;
11231
11232 case OPTION_DIVIDE:
11233 #ifdef SVR4_COMMENT_CHARS
11234 {
11235 char *n, *t;
11236 const char *s;
11237
11238 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11239 t = n;
11240 for (s = i386_comment_chars; *s != '\0'; s++)
11241 if (*s != '/')
11242 *t++ = *s;
11243 *t = '\0';
11244 i386_comment_chars = n;
11245 }
11246 #endif
11247 break;
11248
11249 case OPTION_MARCH:
11250 saved = xstrdup (arg);
11251 arch = saved;
11252 /* Allow -march=+nosse. */
11253 if (*arch == '+')
11254 arch++;
11255 do
11256 {
11257 if (*arch == '.')
11258 as_fatal (_("invalid -march= option: `%s'"), arg);
11259 next = strchr (arch, '+');
11260 if (next)
11261 *next++ = '\0';
11262 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11263 {
11264 if (strcmp (arch, cpu_arch [j].name) == 0)
11265 {
11266 /* Processor. */
11267 if (! cpu_arch[j].flags.bitfield.cpui386)
11268 continue;
11269
11270 cpu_arch_name = cpu_arch[j].name;
11271 cpu_sub_arch_name = NULL;
11272 cpu_arch_flags = cpu_arch[j].flags;
11273 cpu_arch_isa = cpu_arch[j].type;
11274 cpu_arch_isa_flags = cpu_arch[j].flags;
11275 if (!cpu_arch_tune_set)
11276 {
11277 cpu_arch_tune = cpu_arch_isa;
11278 cpu_arch_tune_flags = cpu_arch_isa_flags;
11279 }
11280 break;
11281 }
11282 else if (*cpu_arch [j].name == '.'
11283 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11284 {
11285 /* ISA extension. */
11286 i386_cpu_flags flags;
11287
11288 flags = cpu_flags_or (cpu_arch_flags,
11289 cpu_arch[j].flags);
11290
11291 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11292 {
11293 if (cpu_sub_arch_name)
11294 {
11295 char *name = cpu_sub_arch_name;
11296 cpu_sub_arch_name = concat (name,
11297 cpu_arch[j].name,
11298 (const char *) NULL);
11299 free (name);
11300 }
11301 else
11302 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11303 cpu_arch_flags = flags;
11304 cpu_arch_isa_flags = flags;
11305 }
11306 else
11307 cpu_arch_isa_flags
11308 = cpu_flags_or (cpu_arch_isa_flags,
11309 cpu_arch[j].flags);
11310 break;
11311 }
11312 }
11313
11314 if (j >= ARRAY_SIZE (cpu_arch))
11315 {
11316 /* Disable an ISA extension. */
11317 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11318 if (strcmp (arch, cpu_noarch [j].name) == 0)
11319 {
11320 i386_cpu_flags flags;
11321
11322 flags = cpu_flags_and_not (cpu_arch_flags,
11323 cpu_noarch[j].flags);
11324 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11325 {
11326 if (cpu_sub_arch_name)
11327 {
11328 char *name = cpu_sub_arch_name;
11329 cpu_sub_arch_name = concat (arch,
11330 (const char *) NULL);
11331 free (name);
11332 }
11333 else
11334 cpu_sub_arch_name = xstrdup (arch);
11335 cpu_arch_flags = flags;
11336 cpu_arch_isa_flags = flags;
11337 }
11338 break;
11339 }
11340
11341 if (j >= ARRAY_SIZE (cpu_noarch))
11342 j = ARRAY_SIZE (cpu_arch);
11343 }
11344
11345 if (j >= ARRAY_SIZE (cpu_arch))
11346 as_fatal (_("invalid -march= option: `%s'"), arg);
11347
11348 arch = next;
11349 }
11350 while (next != NULL);
11351 free (saved);
11352 break;
11353
11354 case OPTION_MTUNE:
11355 if (*arg == '.')
11356 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11357 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11358 {
11359 if (strcmp (arg, cpu_arch [j].name) == 0)
11360 {
11361 cpu_arch_tune_set = 1;
11362 cpu_arch_tune = cpu_arch [j].type;
11363 cpu_arch_tune_flags = cpu_arch[j].flags;
11364 break;
11365 }
11366 }
11367 if (j >= ARRAY_SIZE (cpu_arch))
11368 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11369 break;
11370
11371 case OPTION_MMNEMONIC:
11372 if (strcasecmp (arg, "att") == 0)
11373 intel_mnemonic = 0;
11374 else if (strcasecmp (arg, "intel") == 0)
11375 intel_mnemonic = 1;
11376 else
11377 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11378 break;
11379
11380 case OPTION_MSYNTAX:
11381 if (strcasecmp (arg, "att") == 0)
11382 intel_syntax = 0;
11383 else if (strcasecmp (arg, "intel") == 0)
11384 intel_syntax = 1;
11385 else
11386 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11387 break;
11388
11389 case OPTION_MINDEX_REG:
11390 allow_index_reg = 1;
11391 break;
11392
11393 case OPTION_MNAKED_REG:
11394 allow_naked_reg = 1;
11395 break;
11396
11397 case OPTION_MSSE2AVX:
11398 sse2avx = 1;
11399 break;
11400
11401 case OPTION_MSSE_CHECK:
11402 if (strcasecmp (arg, "error") == 0)
11403 sse_check = check_error;
11404 else if (strcasecmp (arg, "warning") == 0)
11405 sse_check = check_warning;
11406 else if (strcasecmp (arg, "none") == 0)
11407 sse_check = check_none;
11408 else
11409 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11410 break;
11411
11412 case OPTION_MOPERAND_CHECK:
11413 if (strcasecmp (arg, "error") == 0)
11414 operand_check = check_error;
11415 else if (strcasecmp (arg, "warning") == 0)
11416 operand_check = check_warning;
11417 else if (strcasecmp (arg, "none") == 0)
11418 operand_check = check_none;
11419 else
11420 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11421 break;
11422
11423 case OPTION_MAVXSCALAR:
11424 if (strcasecmp (arg, "128") == 0)
11425 avxscalar = vex128;
11426 else if (strcasecmp (arg, "256") == 0)
11427 avxscalar = vex256;
11428 else
11429 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11430 break;
11431
11432 case OPTION_MVEXWIG:
11433 if (strcmp (arg, "0") == 0)
11434 vexwig = vexw0;
11435 else if (strcmp (arg, "1") == 0)
11436 vexwig = vexw1;
11437 else
11438 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11439 break;
11440
11441 case OPTION_MADD_BND_PREFIX:
11442 add_bnd_prefix = 1;
11443 break;
11444
11445 case OPTION_MEVEXLIG:
11446 if (strcmp (arg, "128") == 0)
11447 evexlig = evexl128;
11448 else if (strcmp (arg, "256") == 0)
11449 evexlig = evexl256;
11450 else if (strcmp (arg, "512") == 0)
11451 evexlig = evexl512;
11452 else
11453 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11454 break;
11455
11456 case OPTION_MEVEXRCIG:
11457 if (strcmp (arg, "rne") == 0)
11458 evexrcig = rne;
11459 else if (strcmp (arg, "rd") == 0)
11460 evexrcig = rd;
11461 else if (strcmp (arg, "ru") == 0)
11462 evexrcig = ru;
11463 else if (strcmp (arg, "rz") == 0)
11464 evexrcig = rz;
11465 else
11466 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11467 break;
11468
11469 case OPTION_MEVEXWIG:
11470 if (strcmp (arg, "0") == 0)
11471 evexwig = evexw0;
11472 else if (strcmp (arg, "1") == 0)
11473 evexwig = evexw1;
11474 else
11475 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11476 break;
11477
11478 # if defined (TE_PE) || defined (TE_PEP)
11479 case OPTION_MBIG_OBJ:
11480 use_big_obj = 1;
11481 break;
11482 #endif
11483
11484 case OPTION_MOMIT_LOCK_PREFIX:
11485 if (strcasecmp (arg, "yes") == 0)
11486 omit_lock_prefix = 1;
11487 else if (strcasecmp (arg, "no") == 0)
11488 omit_lock_prefix = 0;
11489 else
11490 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11491 break;
11492
11493 case OPTION_MFENCE_AS_LOCK_ADD:
11494 if (strcasecmp (arg, "yes") == 0)
11495 avoid_fence = 1;
11496 else if (strcasecmp (arg, "no") == 0)
11497 avoid_fence = 0;
11498 else
11499 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11500 break;
11501
11502 case OPTION_MRELAX_RELOCATIONS:
11503 if (strcasecmp (arg, "yes") == 0)
11504 generate_relax_relocations = 1;
11505 else if (strcasecmp (arg, "no") == 0)
11506 generate_relax_relocations = 0;
11507 else
11508 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11509 break;
11510
11511 case OPTION_MAMD64:
11512 intel64 = 0;
11513 break;
11514
11515 case OPTION_MINTEL64:
11516 intel64 = 1;
11517 break;
11518
11519 case 'O':
11520 if (arg == NULL)
11521 {
11522 optimize = 1;
11523 /* Turn off -Os. */
11524 optimize_for_space = 0;
11525 }
11526 else if (*arg == 's')
11527 {
11528 optimize_for_space = 1;
11529 /* Turn on all encoding optimizations. */
11530 optimize = INT_MAX;
11531 }
11532 else
11533 {
11534 optimize = atoi (arg);
11535 /* Turn off -Os. */
11536 optimize_for_space = 0;
11537 }
11538 break;
11539
11540 default:
11541 return 0;
11542 }
11543 return 1;
11544 }
11545
11546 #define MESSAGE_TEMPLATE \
11547 " "
11548
11549 static char *
11550 output_message (FILE *stream, char *p, char *message, char *start,
11551 int *left_p, const char *name, int len)
11552 {
11553 int size = sizeof (MESSAGE_TEMPLATE);
11554 int left = *left_p;
11555
11556 /* Reserve 2 spaces for ", " or ",\0" */
11557 left -= len + 2;
11558
11559 /* Check if there is any room. */
11560 if (left >= 0)
11561 {
11562 if (p != start)
11563 {
11564 *p++ = ',';
11565 *p++ = ' ';
11566 }
11567 p = mempcpy (p, name, len);
11568 }
11569 else
11570 {
11571 /* Output the current message now and start a new one. */
11572 *p++ = ',';
11573 *p = '\0';
11574 fprintf (stream, "%s\n", message);
11575 p = start;
11576 left = size - (start - message) - len - 2;
11577
11578 gas_assert (left >= 0);
11579
11580 p = mempcpy (p, name, len);
11581 }
11582
11583 *left_p = left;
11584 return p;
11585 }
11586
11587 static void
11588 show_arch (FILE *stream, int ext, int check)
11589 {
11590 static char message[] = MESSAGE_TEMPLATE;
11591 char *start = message + 27;
11592 char *p;
11593 int size = sizeof (MESSAGE_TEMPLATE);
11594 int left;
11595 const char *name;
11596 int len;
11597 unsigned int j;
11598
11599 p = start;
11600 left = size - (start - message);
11601 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11602 {
11603 /* Should it be skipped? */
11604 if (cpu_arch [j].skip)
11605 continue;
11606
11607 name = cpu_arch [j].name;
11608 len = cpu_arch [j].len;
11609 if (*name == '.')
11610 {
11611 /* It is an extension. Skip if we aren't asked to show it. */
11612 if (ext)
11613 {
11614 name++;
11615 len--;
11616 }
11617 else
11618 continue;
11619 }
11620 else if (ext)
11621 {
11622 /* It is an processor. Skip if we show only extension. */
11623 continue;
11624 }
11625 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11626 {
11627 /* It is an impossible processor - skip. */
11628 continue;
11629 }
11630
11631 p = output_message (stream, p, message, start, &left, name, len);
11632 }
11633
11634 /* Display disabled extensions. */
11635 if (ext)
11636 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11637 {
11638 name = cpu_noarch [j].name;
11639 len = cpu_noarch [j].len;
11640 p = output_message (stream, p, message, start, &left, name,
11641 len);
11642 }
11643
11644 *p = '\0';
11645 fprintf (stream, "%s\n", message);
11646 }
11647
11648 void
11649 md_show_usage (FILE *stream)
11650 {
11651 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11652 fprintf (stream, _("\
11653 -Qy, -Qn ignored\n\
11654 -V print assembler version number\n\
11655 -k ignored\n"));
11656 #endif
11657 fprintf (stream, _("\
11658 -n Do not optimize code alignment\n\
11659 -q quieten some warnings\n"));
11660 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11661 fprintf (stream, _("\
11662 -s ignored\n"));
11663 #endif
11664 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11665 || defined (TE_PE) || defined (TE_PEP))
11666 fprintf (stream, _("\
11667 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11668 #endif
11669 #ifdef SVR4_COMMENT_CHARS
11670 fprintf (stream, _("\
11671 --divide do not treat `/' as a comment character\n"));
11672 #else
11673 fprintf (stream, _("\
11674 --divide ignored\n"));
11675 #endif
11676 fprintf (stream, _("\
11677 -march=CPU[,+EXTENSION...]\n\
11678 generate code for CPU and EXTENSION, CPU is one of:\n"));
11679 show_arch (stream, 0, 1);
11680 fprintf (stream, _("\
11681 EXTENSION is combination of:\n"));
11682 show_arch (stream, 1, 0);
11683 fprintf (stream, _("\
11684 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11685 show_arch (stream, 0, 0);
11686 fprintf (stream, _("\
11687 -msse2avx encode SSE instructions with VEX prefix\n"));
11688 fprintf (stream, _("\
11689 -msse-check=[none|error|warning] (default: warning)\n\
11690 check SSE instructions\n"));
11691 fprintf (stream, _("\
11692 -moperand-check=[none|error|warning] (default: warning)\n\
11693 check operand combinations for validity\n"));
11694 fprintf (stream, _("\
11695 -mavxscalar=[128|256] (default: 128)\n\
11696 encode scalar AVX instructions with specific vector\n\
11697 length\n"));
11698 fprintf (stream, _("\
11699 -mvexwig=[0|1] (default: 0)\n\
11700 encode VEX instructions with specific VEX.W value\n\
11701 for VEX.W bit ignored instructions\n"));
11702 fprintf (stream, _("\
11703 -mevexlig=[128|256|512] (default: 128)\n\
11704 encode scalar EVEX instructions with specific vector\n\
11705 length\n"));
11706 fprintf (stream, _("\
11707 -mevexwig=[0|1] (default: 0)\n\
11708 encode EVEX instructions with specific EVEX.W value\n\
11709 for EVEX.W bit ignored instructions\n"));
11710 fprintf (stream, _("\
11711 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11712 encode EVEX instructions with specific EVEX.RC value\n\
11713 for SAE-only ignored instructions\n"));
11714 fprintf (stream, _("\
11715 -mmnemonic=[att|intel] "));
11716 if (SYSV386_COMPAT)
11717 fprintf (stream, _("(default: att)\n"));
11718 else
11719 fprintf (stream, _("(default: intel)\n"));
11720 fprintf (stream, _("\
11721 use AT&T/Intel mnemonic\n"));
11722 fprintf (stream, _("\
11723 -msyntax=[att|intel] (default: att)\n\
11724 use AT&T/Intel syntax\n"));
11725 fprintf (stream, _("\
11726 -mindex-reg support pseudo index registers\n"));
11727 fprintf (stream, _("\
11728 -mnaked-reg don't require `%%' prefix for registers\n"));
11729 fprintf (stream, _("\
11730 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11731 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11732 fprintf (stream, _("\
11733 -mshared disable branch optimization for shared code\n"));
11734 fprintf (stream, _("\
11735 -mx86-used-note=[no|yes] "));
11736 if (DEFAULT_X86_USED_NOTE)
11737 fprintf (stream, _("(default: yes)\n"));
11738 else
11739 fprintf (stream, _("(default: no)\n"));
11740 fprintf (stream, _("\
11741 generate x86 used ISA and feature properties\n"));
11742 #endif
11743 #if defined (TE_PE) || defined (TE_PEP)
11744 fprintf (stream, _("\
11745 -mbig-obj generate big object files\n"));
11746 #endif
11747 fprintf (stream, _("\
11748 -momit-lock-prefix=[no|yes] (default: no)\n\
11749 strip all lock prefixes\n"));
11750 fprintf (stream, _("\
11751 -mfence-as-lock-add=[no|yes] (default: no)\n\
11752 encode lfence, mfence and sfence as\n\
11753 lock addl $0x0, (%%{re}sp)\n"));
11754 fprintf (stream, _("\
11755 -mrelax-relocations=[no|yes] "));
11756 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11757 fprintf (stream, _("(default: yes)\n"));
11758 else
11759 fprintf (stream, _("(default: no)\n"));
11760 fprintf (stream, _("\
11761 generate relax relocations\n"));
11762 fprintf (stream, _("\
11763 -mamd64 accept only AMD64 ISA [default]\n"));
11764 fprintf (stream, _("\
11765 -mintel64 accept only Intel64 ISA\n"));
11766 }
11767
11768 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11769 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11770 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11771
11772 /* Pick the target format to use. */
11773
11774 const char *
11775 i386_target_format (void)
11776 {
11777 if (!strncmp (default_arch, "x86_64", 6))
11778 {
11779 update_code_flag (CODE_64BIT, 1);
11780 if (default_arch[6] == '\0')
11781 x86_elf_abi = X86_64_ABI;
11782 else
11783 x86_elf_abi = X86_64_X32_ABI;
11784 }
11785 else if (!strcmp (default_arch, "i386"))
11786 update_code_flag (CODE_32BIT, 1);
11787 else if (!strcmp (default_arch, "iamcu"))
11788 {
11789 update_code_flag (CODE_32BIT, 1);
11790 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11791 {
11792 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11793 cpu_arch_name = "iamcu";
11794 cpu_sub_arch_name = NULL;
11795 cpu_arch_flags = iamcu_flags;
11796 cpu_arch_isa = PROCESSOR_IAMCU;
11797 cpu_arch_isa_flags = iamcu_flags;
11798 if (!cpu_arch_tune_set)
11799 {
11800 cpu_arch_tune = cpu_arch_isa;
11801 cpu_arch_tune_flags = cpu_arch_isa_flags;
11802 }
11803 }
11804 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11805 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11806 cpu_arch_name);
11807 }
11808 else
11809 as_fatal (_("unknown architecture"));
11810
11811 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11812 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11813 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11814 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11815
11816 switch (OUTPUT_FLAVOR)
11817 {
11818 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11819 case bfd_target_aout_flavour:
11820 return AOUT_TARGET_FORMAT;
11821 #endif
11822 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11823 # if defined (TE_PE) || defined (TE_PEP)
11824 case bfd_target_coff_flavour:
11825 if (flag_code == CODE_64BIT)
11826 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11827 else
11828 return "pe-i386";
11829 # elif defined (TE_GO32)
11830 case bfd_target_coff_flavour:
11831 return "coff-go32";
11832 # else
11833 case bfd_target_coff_flavour:
11834 return "coff-i386";
11835 # endif
11836 #endif
11837 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11838 case bfd_target_elf_flavour:
11839 {
11840 const char *format;
11841
11842 switch (x86_elf_abi)
11843 {
11844 default:
11845 format = ELF_TARGET_FORMAT;
11846 break;
11847 case X86_64_ABI:
11848 use_rela_relocations = 1;
11849 object_64bit = 1;
11850 format = ELF_TARGET_FORMAT64;
11851 break;
11852 case X86_64_X32_ABI:
11853 use_rela_relocations = 1;
11854 object_64bit = 1;
11855 disallow_64bit_reloc = 1;
11856 format = ELF_TARGET_FORMAT32;
11857 break;
11858 }
11859 if (cpu_arch_isa == PROCESSOR_L1OM)
11860 {
11861 if (x86_elf_abi != X86_64_ABI)
11862 as_fatal (_("Intel L1OM is 64bit only"));
11863 return ELF_TARGET_L1OM_FORMAT;
11864 }
11865 else if (cpu_arch_isa == PROCESSOR_K1OM)
11866 {
11867 if (x86_elf_abi != X86_64_ABI)
11868 as_fatal (_("Intel K1OM is 64bit only"));
11869 return ELF_TARGET_K1OM_FORMAT;
11870 }
11871 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11872 {
11873 if (x86_elf_abi != I386_ABI)
11874 as_fatal (_("Intel MCU is 32bit only"));
11875 return ELF_TARGET_IAMCU_FORMAT;
11876 }
11877 else
11878 return format;
11879 }
11880 #endif
11881 #if defined (OBJ_MACH_O)
11882 case bfd_target_mach_o_flavour:
11883 if (flag_code == CODE_64BIT)
11884 {
11885 use_rela_relocations = 1;
11886 object_64bit = 1;
11887 return "mach-o-x86-64";
11888 }
11889 else
11890 return "mach-o-i386";
11891 #endif
11892 default:
11893 abort ();
11894 return NULL;
11895 }
11896 }
11897
11898 #endif /* OBJ_MAYBE_ more than one */
11899 \f
11900 symbolS *
11901 md_undefined_symbol (char *name)
11902 {
11903 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11904 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11905 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11906 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11907 {
11908 if (!GOT_symbol)
11909 {
11910 if (symbol_find (name))
11911 as_bad (_("GOT already in symbol table"));
11912 GOT_symbol = symbol_new (name, undefined_section,
11913 (valueT) 0, &zero_address_frag);
11914 };
11915 return GOT_symbol;
11916 }
11917 return 0;
11918 }
11919
11920 /* Round up a section size to the appropriate boundary. */
11921
11922 valueT
11923 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11924 {
11925 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11926 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11927 {
11928 /* For a.out, force the section size to be aligned. If we don't do
11929 this, BFD will align it for us, but it will not write out the
11930 final bytes of the section. This may be a bug in BFD, but it is
11931 easier to fix it here since that is how the other a.out targets
11932 work. */
11933 int align;
11934
11935 align = bfd_section_alignment (segment);
11936 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11937 }
11938 #endif
11939
11940 return size;
11941 }
11942
11943 /* On the i386, PC-relative offsets are relative to the start of the
11944 next instruction. That is, the address of the offset, plus its
11945 size, since the offset is always the last part of the insn. */
11946
11947 long
11948 md_pcrel_from (fixS *fixP)
11949 {
11950 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11951 }
11952
11953 #ifndef I386COFF
11954
11955 static void
11956 s_bss (int ignore ATTRIBUTE_UNUSED)
11957 {
11958 int temp;
11959
11960 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11961 if (IS_ELF)
11962 obj_elf_section_change_hook ();
11963 #endif
11964 temp = get_absolute_expression ();
11965 subseg_set (bss_section, (subsegT) temp);
11966 demand_empty_rest_of_line ();
11967 }
11968
11969 #endif
11970
11971 void
11972 i386_validate_fix (fixS *fixp)
11973 {
11974 if (fixp->fx_subsy)
11975 {
11976 if (fixp->fx_subsy == GOT_symbol)
11977 {
11978 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11979 {
11980 if (!object_64bit)
11981 abort ();
11982 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11983 if (fixp->fx_tcbit2)
11984 fixp->fx_r_type = (fixp->fx_tcbit
11985 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11986 : BFD_RELOC_X86_64_GOTPCRELX);
11987 else
11988 #endif
11989 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11990 }
11991 else
11992 {
11993 if (!object_64bit)
11994 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11995 else
11996 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11997 }
11998 fixp->fx_subsy = 0;
11999 }
12000 }
12001 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12002 else if (!object_64bit)
12003 {
12004 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12005 && fixp->fx_tcbit2)
12006 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12007 }
12008 #endif
12009 }
12010
12011 arelent *
12012 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12013 {
12014 arelent *rel;
12015 bfd_reloc_code_real_type code;
12016
12017 switch (fixp->fx_r_type)
12018 {
12019 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12020 case BFD_RELOC_SIZE32:
12021 case BFD_RELOC_SIZE64:
12022 if (S_IS_DEFINED (fixp->fx_addsy)
12023 && !S_IS_EXTERNAL (fixp->fx_addsy))
12024 {
12025 /* Resolve size relocation against local symbol to size of
12026 the symbol plus addend. */
12027 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12028 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12029 && !fits_in_unsigned_long (value))
12030 as_bad_where (fixp->fx_file, fixp->fx_line,
12031 _("symbol size computation overflow"));
12032 fixp->fx_addsy = NULL;
12033 fixp->fx_subsy = NULL;
12034 md_apply_fix (fixp, (valueT *) &value, NULL);
12035 return NULL;
12036 }
12037 #endif
12038 /* Fall through. */
12039
12040 case BFD_RELOC_X86_64_PLT32:
12041 case BFD_RELOC_X86_64_GOT32:
12042 case BFD_RELOC_X86_64_GOTPCREL:
12043 case BFD_RELOC_X86_64_GOTPCRELX:
12044 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12045 case BFD_RELOC_386_PLT32:
12046 case BFD_RELOC_386_GOT32:
12047 case BFD_RELOC_386_GOT32X:
12048 case BFD_RELOC_386_GOTOFF:
12049 case BFD_RELOC_386_GOTPC:
12050 case BFD_RELOC_386_TLS_GD:
12051 case BFD_RELOC_386_TLS_LDM:
12052 case BFD_RELOC_386_TLS_LDO_32:
12053 case BFD_RELOC_386_TLS_IE_32:
12054 case BFD_RELOC_386_TLS_IE:
12055 case BFD_RELOC_386_TLS_GOTIE:
12056 case BFD_RELOC_386_TLS_LE_32:
12057 case BFD_RELOC_386_TLS_LE:
12058 case BFD_RELOC_386_TLS_GOTDESC:
12059 case BFD_RELOC_386_TLS_DESC_CALL:
12060 case BFD_RELOC_X86_64_TLSGD:
12061 case BFD_RELOC_X86_64_TLSLD:
12062 case BFD_RELOC_X86_64_DTPOFF32:
12063 case BFD_RELOC_X86_64_DTPOFF64:
12064 case BFD_RELOC_X86_64_GOTTPOFF:
12065 case BFD_RELOC_X86_64_TPOFF32:
12066 case BFD_RELOC_X86_64_TPOFF64:
12067 case BFD_RELOC_X86_64_GOTOFF64:
12068 case BFD_RELOC_X86_64_GOTPC32:
12069 case BFD_RELOC_X86_64_GOT64:
12070 case BFD_RELOC_X86_64_GOTPCREL64:
12071 case BFD_RELOC_X86_64_GOTPC64:
12072 case BFD_RELOC_X86_64_GOTPLT64:
12073 case BFD_RELOC_X86_64_PLTOFF64:
12074 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12075 case BFD_RELOC_X86_64_TLSDESC_CALL:
12076 case BFD_RELOC_RVA:
12077 case BFD_RELOC_VTABLE_ENTRY:
12078 case BFD_RELOC_VTABLE_INHERIT:
12079 #ifdef TE_PE
12080 case BFD_RELOC_32_SECREL:
12081 #endif
12082 code = fixp->fx_r_type;
12083 break;
12084 case BFD_RELOC_X86_64_32S:
12085 if (!fixp->fx_pcrel)
12086 {
12087 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12088 code = fixp->fx_r_type;
12089 break;
12090 }
12091 /* Fall through. */
12092 default:
12093 if (fixp->fx_pcrel)
12094 {
12095 switch (fixp->fx_size)
12096 {
12097 default:
12098 as_bad_where (fixp->fx_file, fixp->fx_line,
12099 _("can not do %d byte pc-relative relocation"),
12100 fixp->fx_size);
12101 code = BFD_RELOC_32_PCREL;
12102 break;
12103 case 1: code = BFD_RELOC_8_PCREL; break;
12104 case 2: code = BFD_RELOC_16_PCREL; break;
12105 case 4: code = BFD_RELOC_32_PCREL; break;
12106 #ifdef BFD64
12107 case 8: code = BFD_RELOC_64_PCREL; break;
12108 #endif
12109 }
12110 }
12111 else
12112 {
12113 switch (fixp->fx_size)
12114 {
12115 default:
12116 as_bad_where (fixp->fx_file, fixp->fx_line,
12117 _("can not do %d byte relocation"),
12118 fixp->fx_size);
12119 code = BFD_RELOC_32;
12120 break;
12121 case 1: code = BFD_RELOC_8; break;
12122 case 2: code = BFD_RELOC_16; break;
12123 case 4: code = BFD_RELOC_32; break;
12124 #ifdef BFD64
12125 case 8: code = BFD_RELOC_64; break;
12126 #endif
12127 }
12128 }
12129 break;
12130 }
12131
12132 if ((code == BFD_RELOC_32
12133 || code == BFD_RELOC_32_PCREL
12134 || code == BFD_RELOC_X86_64_32S)
12135 && GOT_symbol
12136 && fixp->fx_addsy == GOT_symbol)
12137 {
12138 if (!object_64bit)
12139 code = BFD_RELOC_386_GOTPC;
12140 else
12141 code = BFD_RELOC_X86_64_GOTPC32;
12142 }
12143 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12144 && GOT_symbol
12145 && fixp->fx_addsy == GOT_symbol)
12146 {
12147 code = BFD_RELOC_X86_64_GOTPC64;
12148 }
12149
12150 rel = XNEW (arelent);
12151 rel->sym_ptr_ptr = XNEW (asymbol *);
12152 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12153
12154 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12155
12156 if (!use_rela_relocations)
12157 {
12158 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12159 vtable entry to be used in the relocation's section offset. */
12160 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12161 rel->address = fixp->fx_offset;
12162 #if defined (OBJ_COFF) && defined (TE_PE)
12163 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12164 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12165 else
12166 #endif
12167 rel->addend = 0;
12168 }
12169 /* Use the rela in 64bit mode. */
12170 else
12171 {
12172 if (disallow_64bit_reloc)
12173 switch (code)
12174 {
12175 case BFD_RELOC_X86_64_DTPOFF64:
12176 case BFD_RELOC_X86_64_TPOFF64:
12177 case BFD_RELOC_64_PCREL:
12178 case BFD_RELOC_X86_64_GOTOFF64:
12179 case BFD_RELOC_X86_64_GOT64:
12180 case BFD_RELOC_X86_64_GOTPCREL64:
12181 case BFD_RELOC_X86_64_GOTPC64:
12182 case BFD_RELOC_X86_64_GOTPLT64:
12183 case BFD_RELOC_X86_64_PLTOFF64:
12184 as_bad_where (fixp->fx_file, fixp->fx_line,
12185 _("cannot represent relocation type %s in x32 mode"),
12186 bfd_get_reloc_code_name (code));
12187 break;
12188 default:
12189 break;
12190 }
12191
12192 if (!fixp->fx_pcrel)
12193 rel->addend = fixp->fx_offset;
12194 else
12195 switch (code)
12196 {
12197 case BFD_RELOC_X86_64_PLT32:
12198 case BFD_RELOC_X86_64_GOT32:
12199 case BFD_RELOC_X86_64_GOTPCREL:
12200 case BFD_RELOC_X86_64_GOTPCRELX:
12201 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12202 case BFD_RELOC_X86_64_TLSGD:
12203 case BFD_RELOC_X86_64_TLSLD:
12204 case BFD_RELOC_X86_64_GOTTPOFF:
12205 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12206 case BFD_RELOC_X86_64_TLSDESC_CALL:
12207 rel->addend = fixp->fx_offset - fixp->fx_size;
12208 break;
12209 default:
12210 rel->addend = (section->vma
12211 - fixp->fx_size
12212 + fixp->fx_addnumber
12213 + md_pcrel_from (fixp));
12214 break;
12215 }
12216 }
12217
12218 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12219 if (rel->howto == NULL)
12220 {
12221 as_bad_where (fixp->fx_file, fixp->fx_line,
12222 _("cannot represent relocation type %s"),
12223 bfd_get_reloc_code_name (code));
12224 /* Set howto to a garbage value so that we can keep going. */
12225 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12226 gas_assert (rel->howto != NULL);
12227 }
12228
12229 return rel;
12230 }
12231
12232 #include "tc-i386-intel.c"
12233
12234 void
12235 tc_x86_parse_to_dw2regnum (expressionS *exp)
12236 {
12237 int saved_naked_reg;
12238 char saved_register_dot;
12239
12240 saved_naked_reg = allow_naked_reg;
12241 allow_naked_reg = 1;
12242 saved_register_dot = register_chars['.'];
12243 register_chars['.'] = '.';
12244 allow_pseudo_reg = 1;
12245 expression_and_evaluate (exp);
12246 allow_pseudo_reg = 0;
12247 register_chars['.'] = saved_register_dot;
12248 allow_naked_reg = saved_naked_reg;
12249
12250 if (exp->X_op == O_register && exp->X_add_number >= 0)
12251 {
12252 if ((addressT) exp->X_add_number < i386_regtab_size)
12253 {
12254 exp->X_op = O_constant;
12255 exp->X_add_number = i386_regtab[exp->X_add_number]
12256 .dw2_regnum[flag_code >> 1];
12257 }
12258 else
12259 exp->X_op = O_illegal;
12260 }
12261 }
12262
12263 void
12264 tc_x86_frame_initial_instructions (void)
12265 {
12266 static unsigned int sp_regno[2];
12267
12268 if (!sp_regno[flag_code >> 1])
12269 {
12270 char *saved_input = input_line_pointer;
12271 char sp[][4] = {"esp", "rsp"};
12272 expressionS exp;
12273
12274 input_line_pointer = sp[flag_code >> 1];
12275 tc_x86_parse_to_dw2regnum (&exp);
12276 gas_assert (exp.X_op == O_constant);
12277 sp_regno[flag_code >> 1] = exp.X_add_number;
12278 input_line_pointer = saved_input;
12279 }
12280
12281 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12282 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12283 }
12284
12285 int
12286 x86_dwarf2_addr_size (void)
12287 {
12288 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12289 if (x86_elf_abi == X86_64_X32_ABI)
12290 return 4;
12291 #endif
12292 return bfd_arch_bits_per_address (stdoutput) / 8;
12293 }
12294
12295 int
12296 i386_elf_section_type (const char *str, size_t len)
12297 {
12298 if (flag_code == CODE_64BIT
12299 && len == sizeof ("unwind") - 1
12300 && strncmp (str, "unwind", 6) == 0)
12301 return SHT_X86_64_UNWIND;
12302
12303 return -1;
12304 }
12305
12306 #ifdef TE_SOLARIS
12307 void
12308 i386_solaris_fix_up_eh_frame (segT sec)
12309 {
12310 if (flag_code == CODE_64BIT)
12311 elf_section_type (sec) = SHT_X86_64_UNWIND;
12312 }
12313 #endif
12314
12315 #ifdef TE_PE
12316 void
12317 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12318 {
12319 expressionS exp;
12320
12321 exp.X_op = O_secrel;
12322 exp.X_add_symbol = symbol;
12323 exp.X_add_number = 0;
12324 emit_expr (&exp, size);
12325 }
12326 #endif
12327
12328 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12329 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12330
12331 bfd_vma
12332 x86_64_section_letter (int letter, const char **ptr_msg)
12333 {
12334 if (flag_code == CODE_64BIT)
12335 {
12336 if (letter == 'l')
12337 return SHF_X86_64_LARGE;
12338
12339 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12340 }
12341 else
12342 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12343 return -1;
12344 }
12345
12346 bfd_vma
12347 x86_64_section_word (char *str, size_t len)
12348 {
12349 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12350 return SHF_X86_64_LARGE;
12351
12352 return -1;
12353 }
12354
12355 static void
12356 handle_large_common (int small ATTRIBUTE_UNUSED)
12357 {
12358 if (flag_code != CODE_64BIT)
12359 {
12360 s_comm_internal (0, elf_common_parse);
12361 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12362 }
12363 else
12364 {
12365 static segT lbss_section;
12366 asection *saved_com_section_ptr = elf_com_section_ptr;
12367 asection *saved_bss_section = bss_section;
12368
12369 if (lbss_section == NULL)
12370 {
12371 flagword applicable;
12372 segT seg = now_seg;
12373 subsegT subseg = now_subseg;
12374
12375 /* The .lbss section is for local .largecomm symbols. */
12376 lbss_section = subseg_new (".lbss", 0);
12377 applicable = bfd_applicable_section_flags (stdoutput);
12378 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
12379 seg_info (lbss_section)->bss = 1;
12380
12381 subseg_set (seg, subseg);
12382 }
12383
12384 elf_com_section_ptr = &_bfd_elf_large_com_section;
12385 bss_section = lbss_section;
12386
12387 s_comm_internal (0, elf_common_parse);
12388
12389 elf_com_section_ptr = saved_com_section_ptr;
12390 bss_section = saved_bss_section;
12391 }
12392 }
12393 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.351645 seconds and 3 git commands to generate.