x86: fix SSE4a dependencies of ".arch .nosse*"
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* The maximum padding size for fused jcc. CMP like instruction can
691 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
692 prefixes. */
693 #define MAX_FUSED_JCC_PADDING_SIZE 20
694
695 /* The maximum number of prefixes added for an instruction. */
696 static unsigned int align_branch_prefix_size = 5;
697
698 /* Optimization:
699 1. Clear the REX_W bit with register operand if possible.
700 2. Above plus use 128bit vector instruction to clear the full vector
701 register.
702 */
703 static int optimize = 0;
704
705 /* Optimization:
706 1. Clear the REX_W bit with register operand if possible.
707 2. Above plus use 128bit vector instruction to clear the full vector
708 register.
709 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
710 "testb $imm7,%r8".
711 */
712 static int optimize_for_space = 0;
713
714 /* Register prefix used for error message. */
715 static const char *register_prefix = "%";
716
717 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
718 leave, push, and pop instructions so that gcc has the same stack
719 frame as in 32 bit mode. */
720 static char stackop_size = '\0';
721
722 /* Non-zero to optimize code alignment. */
723 int optimize_align_code = 1;
724
725 /* Non-zero to quieten some warnings. */
726 static int quiet_warnings = 0;
727
728 /* CPU name. */
729 static const char *cpu_arch_name = NULL;
730 static char *cpu_sub_arch_name = NULL;
731
732 /* CPU feature flags. */
733 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
734
735 /* If we have selected a cpu we are generating instructions for. */
736 static int cpu_arch_tune_set = 0;
737
738 /* Cpu we are generating instructions for. */
739 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
740
741 /* CPU feature flags of cpu we are generating instructions for. */
742 static i386_cpu_flags cpu_arch_tune_flags;
743
744 /* CPU instruction set architecture used. */
745 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
746
747 /* CPU feature flags of instruction set architecture used. */
748 i386_cpu_flags cpu_arch_isa_flags;
749
750 /* If set, conditional jumps are not automatically promoted to handle
751 larger than a byte offset. */
752 static unsigned int no_cond_jump_promotion = 0;
753
754 /* Encode SSE instructions with VEX prefix. */
755 static unsigned int sse2avx;
756
757 /* Encode scalar AVX instructions with specific vector length. */
758 static enum
759 {
760 vex128 = 0,
761 vex256
762 } avxscalar;
763
764 /* Encode VEX WIG instructions with specific vex.w. */
765 static enum
766 {
767 vexw0 = 0,
768 vexw1
769 } vexwig;
770
771 /* Encode scalar EVEX LIG instructions with specific vector length. */
772 static enum
773 {
774 evexl128 = 0,
775 evexl256,
776 evexl512
777 } evexlig;
778
779 /* Encode EVEX WIG instructions with specific evex.w. */
780 static enum
781 {
782 evexw0 = 0,
783 evexw1
784 } evexwig;
785
786 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
787 static enum rc_type evexrcig = rne;
788
789 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
790 static symbolS *GOT_symbol;
791
792 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
793 unsigned int x86_dwarf2_return_column;
794
795 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
796 int x86_cie_data_alignment;
797
798 /* Interface to relax_segment.
799 There are 3 major relax states for 386 jump insns because the
800 different types of jumps add different sizes to frags when we're
801 figuring out what sort of jump to choose to reach a given label.
802
803 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
804 branches which are handled by md_estimate_size_before_relax() and
805 i386_generic_table_relax_frag(). */
806
807 /* Types. */
808 #define UNCOND_JUMP 0
809 #define COND_JUMP 1
810 #define COND_JUMP86 2
811 #define BRANCH_PADDING 3
812 #define BRANCH_PREFIX 4
813 #define FUSED_JCC_PADDING 5
814
815 /* Sizes. */
816 #define CODE16 1
817 #define SMALL 0
818 #define SMALL16 (SMALL | CODE16)
819 #define BIG 2
820 #define BIG16 (BIG | CODE16)
821
822 #ifndef INLINE
823 #ifdef __GNUC__
824 #define INLINE __inline__
825 #else
826 #define INLINE
827 #endif
828 #endif
829
830 #define ENCODE_RELAX_STATE(type, size) \
831 ((relax_substateT) (((type) << 2) | (size)))
832 #define TYPE_FROM_RELAX_STATE(s) \
833 ((s) >> 2)
834 #define DISP_SIZE_FROM_RELAX_STATE(s) \
835 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
836
837 /* This table is used by relax_frag to promote short jumps to long
838 ones where necessary. SMALL (short) jumps may be promoted to BIG
839 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
840 don't allow a short jump in a 32 bit code segment to be promoted to
841 a 16 bit offset jump because it's slower (requires data size
842 prefix), and doesn't work, unless the destination is in the bottom
843 64k of the code segment (The top 16 bits of eip are zeroed). */
844
845 const relax_typeS md_relax_table[] =
846 {
847 /* The fields are:
848 1) most positive reach of this state,
849 2) most negative reach of this state,
850 3) how many bytes this mode will have in the variable part of the frag
851 4) which index into the table to try if we can't fit into this one. */
852
853 /* UNCOND_JUMP states. */
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
856 /* dword jmp adds 4 bytes to frag:
857 0 extra opcode bytes, 4 displacement bytes. */
858 {0, 0, 4, 0},
859 /* word jmp adds 2 byte2 to frag:
860 0 extra opcode bytes, 2 displacement bytes. */
861 {0, 0, 2, 0},
862
863 /* COND_JUMP states. */
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
866 /* dword conditionals adds 5 bytes to frag:
867 1 extra opcode byte, 4 displacement bytes. */
868 {0, 0, 5, 0},
869 /* word conditionals add 3 bytes to frag:
870 1 extra opcode byte, 2 displacement bytes. */
871 {0, 0, 3, 0},
872
873 /* COND_JUMP86 states. */
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
876 /* dword conditionals adds 5 bytes to frag:
877 1 extra opcode byte, 4 displacement bytes. */
878 {0, 0, 5, 0},
879 /* word conditionals add 4 bytes to frag:
880 1 displacement byte and a 3 byte long branch insn. */
881 {0, 0, 4, 0}
882 };
883
884 static const arch_entry cpu_arch[] =
885 {
886 /* Do not replace the first two entries - i386_target_format()
887 relies on them being there in this order. */
888 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
889 CPU_GENERIC32_FLAGS, 0 },
890 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
891 CPU_GENERIC64_FLAGS, 0 },
892 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
893 CPU_NONE_FLAGS, 0 },
894 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
895 CPU_I186_FLAGS, 0 },
896 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
897 CPU_I286_FLAGS, 0 },
898 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
899 CPU_I386_FLAGS, 0 },
900 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
901 CPU_I486_FLAGS, 0 },
902 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
903 CPU_I586_FLAGS, 0 },
904 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
905 CPU_I686_FLAGS, 0 },
906 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
907 CPU_I586_FLAGS, 0 },
908 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
909 CPU_PENTIUMPRO_FLAGS, 0 },
910 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
911 CPU_P2_FLAGS, 0 },
912 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
913 CPU_P3_FLAGS, 0 },
914 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
915 CPU_P4_FLAGS, 0 },
916 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
917 CPU_CORE_FLAGS, 0 },
918 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
919 CPU_NOCONA_FLAGS, 0 },
920 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
921 CPU_CORE_FLAGS, 1 },
922 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
923 CPU_CORE_FLAGS, 0 },
924 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
925 CPU_CORE2_FLAGS, 1 },
926 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
927 CPU_CORE2_FLAGS, 0 },
928 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
929 CPU_COREI7_FLAGS, 0 },
930 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
931 CPU_L1OM_FLAGS, 0 },
932 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
933 CPU_K1OM_FLAGS, 0 },
934 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
935 CPU_IAMCU_FLAGS, 0 },
936 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
937 CPU_K6_FLAGS, 0 },
938 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
939 CPU_K6_2_FLAGS, 0 },
940 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
941 CPU_ATHLON_FLAGS, 0 },
942 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
943 CPU_K8_FLAGS, 1 },
944 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
945 CPU_K8_FLAGS, 0 },
946 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
947 CPU_K8_FLAGS, 0 },
948 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
949 CPU_AMDFAM10_FLAGS, 0 },
950 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
951 CPU_BDVER1_FLAGS, 0 },
952 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
953 CPU_BDVER2_FLAGS, 0 },
954 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
955 CPU_BDVER3_FLAGS, 0 },
956 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
957 CPU_BDVER4_FLAGS, 0 },
958 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
959 CPU_ZNVER1_FLAGS, 0 },
960 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
961 CPU_ZNVER2_FLAGS, 0 },
962 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
963 CPU_BTVER1_FLAGS, 0 },
964 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
965 CPU_BTVER2_FLAGS, 0 },
966 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
967 CPU_8087_FLAGS, 0 },
968 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
969 CPU_287_FLAGS, 0 },
970 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
971 CPU_387_FLAGS, 0 },
972 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
973 CPU_687_FLAGS, 0 },
974 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
975 CPU_CMOV_FLAGS, 0 },
976 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
977 CPU_FXSR_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
979 CPU_MMX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
981 CPU_SSE_FLAGS, 0 },
982 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
983 CPU_SSE2_FLAGS, 0 },
984 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
985 CPU_SSE3_FLAGS, 0 },
986 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
987 CPU_SSSE3_FLAGS, 0 },
988 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
989 CPU_SSE4_1_FLAGS, 0 },
990 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
991 CPU_SSE4_2_FLAGS, 0 },
992 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
993 CPU_SSE4_2_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
995 CPU_AVX_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
997 CPU_AVX2_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
999 CPU_AVX512F_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512CD_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512ER_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512PF_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512DQ_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512BW_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512VL_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1013 CPU_VMX_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1015 CPU_VMFUNC_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1017 CPU_SMX_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1019 CPU_XSAVE_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1021 CPU_XSAVEOPT_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1023 CPU_XSAVEC_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1025 CPU_XSAVES_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1027 CPU_AES_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1029 CPU_PCLMUL_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1031 CPU_PCLMUL_FLAGS, 1 },
1032 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1033 CPU_FSGSBASE_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1035 CPU_RDRND_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1037 CPU_F16C_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1039 CPU_BMI2_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1041 CPU_FMA_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1043 CPU_FMA4_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1045 CPU_XOP_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1047 CPU_LWP_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1049 CPU_MOVBE_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1051 CPU_CX16_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1053 CPU_EPT_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1055 CPU_LZCNT_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1057 CPU_HLE_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1059 CPU_RTM_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1061 CPU_INVPCID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1063 CPU_CLFLUSH_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1065 CPU_NOP_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1067 CPU_SYSCALL_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1069 CPU_RDTSCP_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1071 CPU_3DNOW_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1073 CPU_3DNOWA_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1075 CPU_PADLOCK_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1077 CPU_SVME_FLAGS, 1 },
1078 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1079 CPU_SVME_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1081 CPU_SSE4A_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1083 CPU_ABM_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1085 CPU_BMI_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1087 CPU_TBM_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1089 CPU_ADX_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1091 CPU_RDSEED_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1093 CPU_PRFCHW_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1095 CPU_SMAP_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1097 CPU_MPX_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1099 CPU_SHA_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1101 CPU_CLFLUSHOPT_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1103 CPU_PREFETCHWT1_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1105 CPU_SE1_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1107 CPU_CLWB_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1109 CPU_AVX512IFMA_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1111 CPU_AVX512VBMI_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1113 CPU_AVX512_4FMAPS_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1115 CPU_AVX512_4VNNIW_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1117 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1119 CPU_AVX512_VBMI2_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1121 CPU_AVX512_VNNI_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1123 CPU_AVX512_BITALG_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1125 CPU_CLZERO_FLAGS, 0 },
1126 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1127 CPU_MWAITX_FLAGS, 0 },
1128 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1129 CPU_OSPKE_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1131 CPU_RDPID_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1133 CPU_PTWRITE_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1135 CPU_IBT_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1137 CPU_SHSTK_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1139 CPU_GFNI_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1141 CPU_VAES_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1143 CPU_VPCLMULQDQ_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1145 CPU_WBNOINVD_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1147 CPU_PCONFIG_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1149 CPU_WAITPKG_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1151 CPU_CLDEMOTE_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1153 CPU_MOVDIRI_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1155 CPU_MOVDIR64B_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1157 CPU_AVX512_BF16_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1161 CPU_ENQCMD_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1163 CPU_RDPRU_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1165 CPU_MCOMMIT_FLAGS, 0 },
1166 };
1167
1168 static const noarch_entry cpu_noarch[] =
1169 {
1170 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1171 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1172 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1173 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1174 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1175 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1176 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1177 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1178 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1179 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1183 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_FLAGS },
1184 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1185 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1200 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1201 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1202 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1204 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1206 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1207 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1208 };
1209
1210 #ifdef I386COFF
1211 /* Like s_lcomm_internal in gas/read.c but the alignment string
1212 is allowed to be optional. */
1213
1214 static symbolS *
1215 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1216 {
1217 addressT align = 0;
1218
1219 SKIP_WHITESPACE ();
1220
1221 if (needs_align
1222 && *input_line_pointer == ',')
1223 {
1224 align = parse_align (needs_align - 1);
1225
1226 if (align == (addressT) -1)
1227 return NULL;
1228 }
1229 else
1230 {
1231 if (size >= 8)
1232 align = 3;
1233 else if (size >= 4)
1234 align = 2;
1235 else if (size >= 2)
1236 align = 1;
1237 else
1238 align = 0;
1239 }
1240
1241 bss_alloc (symbolP, size, align);
1242 return symbolP;
1243 }
1244
1245 static void
1246 pe_lcomm (int needs_align)
1247 {
1248 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1249 }
1250 #endif
1251
1252 const pseudo_typeS md_pseudo_table[] =
1253 {
1254 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1255 {"align", s_align_bytes, 0},
1256 #else
1257 {"align", s_align_ptwo, 0},
1258 #endif
1259 {"arch", set_cpu_arch, 0},
1260 #ifndef I386COFF
1261 {"bss", s_bss, 0},
1262 #else
1263 {"lcomm", pe_lcomm, 1},
1264 #endif
1265 {"ffloat", float_cons, 'f'},
1266 {"dfloat", float_cons, 'd'},
1267 {"tfloat", float_cons, 'x'},
1268 {"value", cons, 2},
1269 {"slong", signed_cons, 4},
1270 {"noopt", s_ignore, 0},
1271 {"optim", s_ignore, 0},
1272 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1273 {"code16", set_code_flag, CODE_16BIT},
1274 {"code32", set_code_flag, CODE_32BIT},
1275 #ifdef BFD64
1276 {"code64", set_code_flag, CODE_64BIT},
1277 #endif
1278 {"intel_syntax", set_intel_syntax, 1},
1279 {"att_syntax", set_intel_syntax, 0},
1280 {"intel_mnemonic", set_intel_mnemonic, 1},
1281 {"att_mnemonic", set_intel_mnemonic, 0},
1282 {"allow_index_reg", set_allow_index_reg, 1},
1283 {"disallow_index_reg", set_allow_index_reg, 0},
1284 {"sse_check", set_check, 0},
1285 {"operand_check", set_check, 1},
1286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1287 {"largecomm", handle_large_common, 0},
1288 #else
1289 {"file", dwarf2_directive_file, 0},
1290 {"loc", dwarf2_directive_loc, 0},
1291 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1292 #endif
1293 #ifdef TE_PE
1294 {"secrel32", pe_directive_secrel, 0},
1295 #endif
1296 {0, 0, 0}
1297 };
1298
1299 /* For interface with expression (). */
1300 extern char *input_line_pointer;
1301
1302 /* Hash table for instruction mnemonic lookup. */
1303 static struct hash_control *op_hash;
1304
1305 /* Hash table for register lookup. */
1306 static struct hash_control *reg_hash;
1307 \f
1308 /* Various efficient no-op patterns for aligning code labels.
1309 Note: Don't try to assemble the instructions in the comments.
1310 0L and 0w are not legal. */
1311 static const unsigned char f32_1[] =
1312 {0x90}; /* nop */
1313 static const unsigned char f32_2[] =
1314 {0x66,0x90}; /* xchg %ax,%ax */
1315 static const unsigned char f32_3[] =
1316 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1317 static const unsigned char f32_4[] =
1318 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1319 static const unsigned char f32_6[] =
1320 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1321 static const unsigned char f32_7[] =
1322 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1323 static const unsigned char f16_3[] =
1324 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1325 static const unsigned char f16_4[] =
1326 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1327 static const unsigned char jump_disp8[] =
1328 {0xeb}; /* jmp disp8 */
1329 static const unsigned char jump32_disp32[] =
1330 {0xe9}; /* jmp disp32 */
1331 static const unsigned char jump16_disp32[] =
1332 {0x66,0xe9}; /* jmp disp32 */
1333 /* 32-bit NOPs patterns. */
1334 static const unsigned char *const f32_patt[] = {
1335 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1336 };
1337 /* 16-bit NOPs patterns. */
1338 static const unsigned char *const f16_patt[] = {
1339 f32_1, f32_2, f16_3, f16_4
1340 };
1341 /* nopl (%[re]ax) */
1342 static const unsigned char alt_3[] =
1343 {0x0f,0x1f,0x00};
1344 /* nopl 0(%[re]ax) */
1345 static const unsigned char alt_4[] =
1346 {0x0f,0x1f,0x40,0x00};
1347 /* nopl 0(%[re]ax,%[re]ax,1) */
1348 static const unsigned char alt_5[] =
1349 {0x0f,0x1f,0x44,0x00,0x00};
1350 /* nopw 0(%[re]ax,%[re]ax,1) */
1351 static const unsigned char alt_6[] =
1352 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1353 /* nopl 0L(%[re]ax) */
1354 static const unsigned char alt_7[] =
1355 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1356 /* nopl 0L(%[re]ax,%[re]ax,1) */
1357 static const unsigned char alt_8[] =
1358 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1359 /* nopw 0L(%[re]ax,%[re]ax,1) */
1360 static const unsigned char alt_9[] =
1361 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1362 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1363 static const unsigned char alt_10[] =
1364 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1365 /* data16 nopw %cs:0L(%eax,%eax,1) */
1366 static const unsigned char alt_11[] =
1367 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1368 /* 32-bit and 64-bit NOPs patterns. */
1369 static const unsigned char *const alt_patt[] = {
1370 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1371 alt_9, alt_10, alt_11
1372 };
1373
1374 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1375 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1376
1377 static void
1378 i386_output_nops (char *where, const unsigned char *const *patt,
1379 int count, int max_single_nop_size)
1380
1381 {
1382 /* Place the longer NOP first. */
1383 int last;
1384 int offset;
1385 const unsigned char *nops;
1386
1387 if (max_single_nop_size < 1)
1388 {
1389 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1390 max_single_nop_size);
1391 return;
1392 }
1393
1394 nops = patt[max_single_nop_size - 1];
1395
1396 /* Use the smaller one if the requsted one isn't available. */
1397 if (nops == NULL)
1398 {
1399 max_single_nop_size--;
1400 nops = patt[max_single_nop_size - 1];
1401 }
1402
1403 last = count % max_single_nop_size;
1404
1405 count -= last;
1406 for (offset = 0; offset < count; offset += max_single_nop_size)
1407 memcpy (where + offset, nops, max_single_nop_size);
1408
1409 if (last)
1410 {
1411 nops = patt[last - 1];
1412 if (nops == NULL)
1413 {
1414 /* Use the smaller one plus one-byte NOP if the needed one
1415 isn't available. */
1416 last--;
1417 nops = patt[last - 1];
1418 memcpy (where + offset, nops, last);
1419 where[offset + last] = *patt[0];
1420 }
1421 else
1422 memcpy (where + offset, nops, last);
1423 }
1424 }
1425
1426 static INLINE int
1427 fits_in_imm7 (offsetT num)
1428 {
1429 return (num & 0x7f) == num;
1430 }
1431
1432 static INLINE int
1433 fits_in_imm31 (offsetT num)
1434 {
1435 return (num & 0x7fffffff) == num;
1436 }
1437
1438 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1439 single NOP instruction LIMIT. */
1440
1441 void
1442 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1443 {
1444 const unsigned char *const *patt = NULL;
1445 int max_single_nop_size;
1446 /* Maximum number of NOPs before switching to jump over NOPs. */
1447 int max_number_of_nops;
1448
1449 switch (fragP->fr_type)
1450 {
1451 case rs_fill_nop:
1452 case rs_align_code:
1453 break;
1454 case rs_machine_dependent:
1455 /* Allow NOP padding for jumps and calls. */
1456 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1457 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1458 break;
1459 /* Fall through. */
1460 default:
1461 return;
1462 }
1463
1464 /* We need to decide which NOP sequence to use for 32bit and
1465 64bit. When -mtune= is used:
1466
1467 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1468 PROCESSOR_GENERIC32, f32_patt will be used.
1469 2. For the rest, alt_patt will be used.
1470
1471 When -mtune= isn't used, alt_patt will be used if
1472 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1473 be used.
1474
1475 When -march= or .arch is used, we can't use anything beyond
1476 cpu_arch_isa_flags. */
1477
1478 if (flag_code == CODE_16BIT)
1479 {
1480 patt = f16_patt;
1481 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1482 /* Limit number of NOPs to 2 in 16-bit mode. */
1483 max_number_of_nops = 2;
1484 }
1485 else
1486 {
1487 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1488 {
1489 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1490 switch (cpu_arch_tune)
1491 {
1492 case PROCESSOR_UNKNOWN:
1493 /* We use cpu_arch_isa_flags to check if we SHOULD
1494 optimize with nops. */
1495 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1496 patt = alt_patt;
1497 else
1498 patt = f32_patt;
1499 break;
1500 case PROCESSOR_PENTIUM4:
1501 case PROCESSOR_NOCONA:
1502 case PROCESSOR_CORE:
1503 case PROCESSOR_CORE2:
1504 case PROCESSOR_COREI7:
1505 case PROCESSOR_L1OM:
1506 case PROCESSOR_K1OM:
1507 case PROCESSOR_GENERIC64:
1508 case PROCESSOR_K6:
1509 case PROCESSOR_ATHLON:
1510 case PROCESSOR_K8:
1511 case PROCESSOR_AMDFAM10:
1512 case PROCESSOR_BD:
1513 case PROCESSOR_ZNVER:
1514 case PROCESSOR_BT:
1515 patt = alt_patt;
1516 break;
1517 case PROCESSOR_I386:
1518 case PROCESSOR_I486:
1519 case PROCESSOR_PENTIUM:
1520 case PROCESSOR_PENTIUMPRO:
1521 case PROCESSOR_IAMCU:
1522 case PROCESSOR_GENERIC32:
1523 patt = f32_patt;
1524 break;
1525 }
1526 }
1527 else
1528 {
1529 switch (fragP->tc_frag_data.tune)
1530 {
1531 case PROCESSOR_UNKNOWN:
1532 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1533 PROCESSOR_UNKNOWN. */
1534 abort ();
1535 break;
1536
1537 case PROCESSOR_I386:
1538 case PROCESSOR_I486:
1539 case PROCESSOR_PENTIUM:
1540 case PROCESSOR_IAMCU:
1541 case PROCESSOR_K6:
1542 case PROCESSOR_ATHLON:
1543 case PROCESSOR_K8:
1544 case PROCESSOR_AMDFAM10:
1545 case PROCESSOR_BD:
1546 case PROCESSOR_ZNVER:
1547 case PROCESSOR_BT:
1548 case PROCESSOR_GENERIC32:
1549 /* We use cpu_arch_isa_flags to check if we CAN optimize
1550 with nops. */
1551 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1552 patt = alt_patt;
1553 else
1554 patt = f32_patt;
1555 break;
1556 case PROCESSOR_PENTIUMPRO:
1557 case PROCESSOR_PENTIUM4:
1558 case PROCESSOR_NOCONA:
1559 case PROCESSOR_CORE:
1560 case PROCESSOR_CORE2:
1561 case PROCESSOR_COREI7:
1562 case PROCESSOR_L1OM:
1563 case PROCESSOR_K1OM:
1564 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1565 patt = alt_patt;
1566 else
1567 patt = f32_patt;
1568 break;
1569 case PROCESSOR_GENERIC64:
1570 patt = alt_patt;
1571 break;
1572 }
1573 }
1574
1575 if (patt == f32_patt)
1576 {
1577 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1578 /* Limit number of NOPs to 2 for older processors. */
1579 max_number_of_nops = 2;
1580 }
1581 else
1582 {
1583 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1584 /* Limit number of NOPs to 7 for newer processors. */
1585 max_number_of_nops = 7;
1586 }
1587 }
1588
1589 if (limit == 0)
1590 limit = max_single_nop_size;
1591
1592 if (fragP->fr_type == rs_fill_nop)
1593 {
1594 /* Output NOPs for .nop directive. */
1595 if (limit > max_single_nop_size)
1596 {
1597 as_bad_where (fragP->fr_file, fragP->fr_line,
1598 _("invalid single nop size: %d "
1599 "(expect within [0, %d])"),
1600 limit, max_single_nop_size);
1601 return;
1602 }
1603 }
1604 else if (fragP->fr_type != rs_machine_dependent)
1605 fragP->fr_var = count;
1606
1607 if ((count / max_single_nop_size) > max_number_of_nops)
1608 {
1609 /* Generate jump over NOPs. */
1610 offsetT disp = count - 2;
1611 if (fits_in_imm7 (disp))
1612 {
1613 /* Use "jmp disp8" if possible. */
1614 count = disp;
1615 where[0] = jump_disp8[0];
1616 where[1] = count;
1617 where += 2;
1618 }
1619 else
1620 {
1621 unsigned int size_of_jump;
1622
1623 if (flag_code == CODE_16BIT)
1624 {
1625 where[0] = jump16_disp32[0];
1626 where[1] = jump16_disp32[1];
1627 size_of_jump = 2;
1628 }
1629 else
1630 {
1631 where[0] = jump32_disp32[0];
1632 size_of_jump = 1;
1633 }
1634
1635 count -= size_of_jump + 4;
1636 if (!fits_in_imm31 (count))
1637 {
1638 as_bad_where (fragP->fr_file, fragP->fr_line,
1639 _("jump over nop padding out of range"));
1640 return;
1641 }
1642
1643 md_number_to_chars (where + size_of_jump, count, 4);
1644 where += size_of_jump + 4;
1645 }
1646 }
1647
1648 /* Generate multiple NOPs. */
1649 i386_output_nops (where, patt, count, limit);
1650 }
1651
1652 static INLINE int
1653 operand_type_all_zero (const union i386_operand_type *x)
1654 {
1655 switch (ARRAY_SIZE(x->array))
1656 {
1657 case 3:
1658 if (x->array[2])
1659 return 0;
1660 /* Fall through. */
1661 case 2:
1662 if (x->array[1])
1663 return 0;
1664 /* Fall through. */
1665 case 1:
1666 return !x->array[0];
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 static INLINE void
1673 operand_type_set (union i386_operand_type *x, unsigned int v)
1674 {
1675 switch (ARRAY_SIZE(x->array))
1676 {
1677 case 3:
1678 x->array[2] = v;
1679 /* Fall through. */
1680 case 2:
1681 x->array[1] = v;
1682 /* Fall through. */
1683 case 1:
1684 x->array[0] = v;
1685 /* Fall through. */
1686 break;
1687 default:
1688 abort ();
1689 }
1690
1691 x->bitfield.class = ClassNone;
1692 x->bitfield.instance = InstanceNone;
1693 }
1694
1695 static INLINE int
1696 operand_type_equal (const union i386_operand_type *x,
1697 const union i386_operand_type *y)
1698 {
1699 switch (ARRAY_SIZE(x->array))
1700 {
1701 case 3:
1702 if (x->array[2] != y->array[2])
1703 return 0;
1704 /* Fall through. */
1705 case 2:
1706 if (x->array[1] != y->array[1])
1707 return 0;
1708 /* Fall through. */
1709 case 1:
1710 return x->array[0] == y->array[0];
1711 break;
1712 default:
1713 abort ();
1714 }
1715 }
1716
1717 static INLINE int
1718 cpu_flags_all_zero (const union i386_cpu_flags *x)
1719 {
1720 switch (ARRAY_SIZE(x->array))
1721 {
1722 case 4:
1723 if (x->array[3])
1724 return 0;
1725 /* Fall through. */
1726 case 3:
1727 if (x->array[2])
1728 return 0;
1729 /* Fall through. */
1730 case 2:
1731 if (x->array[1])
1732 return 0;
1733 /* Fall through. */
1734 case 1:
1735 return !x->array[0];
1736 default:
1737 abort ();
1738 }
1739 }
1740
1741 static INLINE int
1742 cpu_flags_equal (const union i386_cpu_flags *x,
1743 const union i386_cpu_flags *y)
1744 {
1745 switch (ARRAY_SIZE(x->array))
1746 {
1747 case 4:
1748 if (x->array[3] != y->array[3])
1749 return 0;
1750 /* Fall through. */
1751 case 3:
1752 if (x->array[2] != y->array[2])
1753 return 0;
1754 /* Fall through. */
1755 case 2:
1756 if (x->array[1] != y->array[1])
1757 return 0;
1758 /* Fall through. */
1759 case 1:
1760 return x->array[0] == y->array[0];
1761 break;
1762 default:
1763 abort ();
1764 }
1765 }
1766
1767 static INLINE int
1768 cpu_flags_check_cpu64 (i386_cpu_flags f)
1769 {
1770 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1771 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1772 }
1773
1774 static INLINE i386_cpu_flags
1775 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1776 {
1777 switch (ARRAY_SIZE (x.array))
1778 {
1779 case 4:
1780 x.array [3] &= y.array [3];
1781 /* Fall through. */
1782 case 3:
1783 x.array [2] &= y.array [2];
1784 /* Fall through. */
1785 case 2:
1786 x.array [1] &= y.array [1];
1787 /* Fall through. */
1788 case 1:
1789 x.array [0] &= y.array [0];
1790 break;
1791 default:
1792 abort ();
1793 }
1794 return x;
1795 }
1796
1797 static INLINE i386_cpu_flags
1798 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1799 {
1800 switch (ARRAY_SIZE (x.array))
1801 {
1802 case 4:
1803 x.array [3] |= y.array [3];
1804 /* Fall through. */
1805 case 3:
1806 x.array [2] |= y.array [2];
1807 /* Fall through. */
1808 case 2:
1809 x.array [1] |= y.array [1];
1810 /* Fall through. */
1811 case 1:
1812 x.array [0] |= y.array [0];
1813 break;
1814 default:
1815 abort ();
1816 }
1817 return x;
1818 }
1819
1820 static INLINE i386_cpu_flags
1821 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1822 {
1823 switch (ARRAY_SIZE (x.array))
1824 {
1825 case 4:
1826 x.array [3] &= ~y.array [3];
1827 /* Fall through. */
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841 }
1842
1843 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1844
1845 #define CPU_FLAGS_ARCH_MATCH 0x1
1846 #define CPU_FLAGS_64BIT_MATCH 0x2
1847
1848 #define CPU_FLAGS_PERFECT_MATCH \
1849 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1850
1851 /* Return CPU flags match bits. */
1852
1853 static int
1854 cpu_flags_match (const insn_template *t)
1855 {
1856 i386_cpu_flags x = t->cpu_flags;
1857 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1858
1859 x.bitfield.cpu64 = 0;
1860 x.bitfield.cpuno64 = 0;
1861
1862 if (cpu_flags_all_zero (&x))
1863 {
1864 /* This instruction is available on all archs. */
1865 match |= CPU_FLAGS_ARCH_MATCH;
1866 }
1867 else
1868 {
1869 /* This instruction is available only on some archs. */
1870 i386_cpu_flags cpu = cpu_arch_flags;
1871
1872 /* AVX512VL is no standalone feature - match it and then strip it. */
1873 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1874 return match;
1875 x.bitfield.cpuavx512vl = 0;
1876
1877 cpu = cpu_flags_and (x, cpu);
1878 if (!cpu_flags_all_zero (&cpu))
1879 {
1880 if (x.bitfield.cpuavx)
1881 {
1882 /* We need to check a few extra flags with AVX. */
1883 if (cpu.bitfield.cpuavx
1884 && (!t->opcode_modifier.sse2avx || sse2avx)
1885 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1886 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1887 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1888 match |= CPU_FLAGS_ARCH_MATCH;
1889 }
1890 else if (x.bitfield.cpuavx512f)
1891 {
1892 /* We need to check a few extra flags with AVX512F. */
1893 if (cpu.bitfield.cpuavx512f
1894 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1895 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1896 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 else
1900 match |= CPU_FLAGS_ARCH_MATCH;
1901 }
1902 }
1903 return match;
1904 }
1905
1906 static INLINE i386_operand_type
1907 operand_type_and (i386_operand_type x, i386_operand_type y)
1908 {
1909 if (x.bitfield.class != y.bitfield.class)
1910 x.bitfield.class = ClassNone;
1911 if (x.bitfield.instance != y.bitfield.instance)
1912 x.bitfield.instance = InstanceNone;
1913
1914 switch (ARRAY_SIZE (x.array))
1915 {
1916 case 3:
1917 x.array [2] &= y.array [2];
1918 /* Fall through. */
1919 case 2:
1920 x.array [1] &= y.array [1];
1921 /* Fall through. */
1922 case 1:
1923 x.array [0] &= y.array [0];
1924 break;
1925 default:
1926 abort ();
1927 }
1928 return x;
1929 }
1930
1931 static INLINE i386_operand_type
1932 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1933 {
1934 gas_assert (y.bitfield.class == ClassNone);
1935 gas_assert (y.bitfield.instance == InstanceNone);
1936
1937 switch (ARRAY_SIZE (x.array))
1938 {
1939 case 3:
1940 x.array [2] &= ~y.array [2];
1941 /* Fall through. */
1942 case 2:
1943 x.array [1] &= ~y.array [1];
1944 /* Fall through. */
1945 case 1:
1946 x.array [0] &= ~y.array [0];
1947 break;
1948 default:
1949 abort ();
1950 }
1951 return x;
1952 }
1953
1954 static INLINE i386_operand_type
1955 operand_type_or (i386_operand_type x, i386_operand_type y)
1956 {
1957 gas_assert (x.bitfield.class == ClassNone ||
1958 y.bitfield.class == ClassNone ||
1959 x.bitfield.class == y.bitfield.class);
1960 gas_assert (x.bitfield.instance == InstanceNone ||
1961 y.bitfield.instance == InstanceNone ||
1962 x.bitfield.instance == y.bitfield.instance);
1963
1964 switch (ARRAY_SIZE (x.array))
1965 {
1966 case 3:
1967 x.array [2] |= y.array [2];
1968 /* Fall through. */
1969 case 2:
1970 x.array [1] |= y.array [1];
1971 /* Fall through. */
1972 case 1:
1973 x.array [0] |= y.array [0];
1974 break;
1975 default:
1976 abort ();
1977 }
1978 return x;
1979 }
1980
1981 static INLINE i386_operand_type
1982 operand_type_xor (i386_operand_type x, i386_operand_type y)
1983 {
1984 gas_assert (y.bitfield.class == ClassNone);
1985 gas_assert (y.bitfield.instance == InstanceNone);
1986
1987 switch (ARRAY_SIZE (x.array))
1988 {
1989 case 3:
1990 x.array [2] ^= y.array [2];
1991 /* Fall through. */
1992 case 2:
1993 x.array [1] ^= y.array [1];
1994 /* Fall through. */
1995 case 1:
1996 x.array [0] ^= y.array [0];
1997 break;
1998 default:
1999 abort ();
2000 }
2001 return x;
2002 }
2003
2004 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2005 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2006 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2007 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2008 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2009 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2010 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2011 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2012 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2013 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2014 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2015 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2016 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2017 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2018 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2019 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2020 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2021
2022 enum operand_type
2023 {
2024 reg,
2025 imm,
2026 disp,
2027 anymem
2028 };
2029
2030 static INLINE int
2031 operand_type_check (i386_operand_type t, enum operand_type c)
2032 {
2033 switch (c)
2034 {
2035 case reg:
2036 return t.bitfield.class == Reg;
2037
2038 case imm:
2039 return (t.bitfield.imm8
2040 || t.bitfield.imm8s
2041 || t.bitfield.imm16
2042 || t.bitfield.imm32
2043 || t.bitfield.imm32s
2044 || t.bitfield.imm64);
2045
2046 case disp:
2047 return (t.bitfield.disp8
2048 || t.bitfield.disp16
2049 || t.bitfield.disp32
2050 || t.bitfield.disp32s
2051 || t.bitfield.disp64);
2052
2053 case anymem:
2054 return (t.bitfield.disp8
2055 || t.bitfield.disp16
2056 || t.bitfield.disp32
2057 || t.bitfield.disp32s
2058 || t.bitfield.disp64
2059 || t.bitfield.baseindex);
2060
2061 default:
2062 abort ();
2063 }
2064
2065 return 0;
2066 }
2067
2068 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2069 between operand GIVEN and opeand WANTED for instruction template T. */
2070
2071 static INLINE int
2072 match_operand_size (const insn_template *t, unsigned int wanted,
2073 unsigned int given)
2074 {
2075 return !((i.types[given].bitfield.byte
2076 && !t->operand_types[wanted].bitfield.byte)
2077 || (i.types[given].bitfield.word
2078 && !t->operand_types[wanted].bitfield.word)
2079 || (i.types[given].bitfield.dword
2080 && !t->operand_types[wanted].bitfield.dword)
2081 || (i.types[given].bitfield.qword
2082 && !t->operand_types[wanted].bitfield.qword)
2083 || (i.types[given].bitfield.tbyte
2084 && !t->operand_types[wanted].bitfield.tbyte));
2085 }
2086
2087 /* Return 1 if there is no conflict in SIMD register between operand
2088 GIVEN and opeand WANTED for instruction template T. */
2089
2090 static INLINE int
2091 match_simd_size (const insn_template *t, unsigned int wanted,
2092 unsigned int given)
2093 {
2094 return !((i.types[given].bitfield.xmmword
2095 && !t->operand_types[wanted].bitfield.xmmword)
2096 || (i.types[given].bitfield.ymmword
2097 && !t->operand_types[wanted].bitfield.ymmword)
2098 || (i.types[given].bitfield.zmmword
2099 && !t->operand_types[wanted].bitfield.zmmword));
2100 }
2101
2102 /* Return 1 if there is no conflict in any size between operand GIVEN
2103 and opeand WANTED for instruction template T. */
2104
2105 static INLINE int
2106 match_mem_size (const insn_template *t, unsigned int wanted,
2107 unsigned int given)
2108 {
2109 return (match_operand_size (t, wanted, given)
2110 && !((i.types[given].bitfield.unspecified
2111 && !i.broadcast
2112 && !t->operand_types[wanted].bitfield.unspecified)
2113 || (i.types[given].bitfield.fword
2114 && !t->operand_types[wanted].bitfield.fword)
2115 /* For scalar opcode templates to allow register and memory
2116 operands at the same time, some special casing is needed
2117 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2118 down-conversion vpmov*. */
2119 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2120 && !t->opcode_modifier.broadcast
2121 && (t->operand_types[wanted].bitfield.byte
2122 || t->operand_types[wanted].bitfield.word
2123 || t->operand_types[wanted].bitfield.dword
2124 || t->operand_types[wanted].bitfield.qword))
2125 ? (i.types[given].bitfield.xmmword
2126 || i.types[given].bitfield.ymmword
2127 || i.types[given].bitfield.zmmword)
2128 : !match_simd_size(t, wanted, given))));
2129 }
2130
2131 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2132 operands for instruction template T, and it has MATCH_REVERSE set if there
2133 is no size conflict on any operands for the template with operands reversed
2134 (and the template allows for reversing in the first place). */
2135
2136 #define MATCH_STRAIGHT 1
2137 #define MATCH_REVERSE 2
2138
2139 static INLINE unsigned int
2140 operand_size_match (const insn_template *t)
2141 {
2142 unsigned int j, match = MATCH_STRAIGHT;
2143
2144 /* Don't check non-absolute jump instructions. */
2145 if (t->opcode_modifier.jump
2146 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2147 return match;
2148
2149 /* Check memory and accumulator operand size. */
2150 for (j = 0; j < i.operands; j++)
2151 {
2152 if (i.types[j].bitfield.class != Reg
2153 && i.types[j].bitfield.class != RegSIMD
2154 && t->opcode_modifier.anysize)
2155 continue;
2156
2157 if (t->operand_types[j].bitfield.class == Reg
2158 && !match_operand_size (t, j, j))
2159 {
2160 match = 0;
2161 break;
2162 }
2163
2164 if (t->operand_types[j].bitfield.class == RegSIMD
2165 && !match_simd_size (t, j, j))
2166 {
2167 match = 0;
2168 break;
2169 }
2170
2171 if (t->operand_types[j].bitfield.instance == Accum
2172 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2173 {
2174 match = 0;
2175 break;
2176 }
2177
2178 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2179 {
2180 match = 0;
2181 break;
2182 }
2183 }
2184
2185 if (!t->opcode_modifier.d)
2186 {
2187 mismatch:
2188 if (!match)
2189 i.error = operand_size_mismatch;
2190 return match;
2191 }
2192
2193 /* Check reverse. */
2194 gas_assert (i.operands >= 2 && i.operands <= 3);
2195
2196 for (j = 0; j < i.operands; j++)
2197 {
2198 unsigned int given = i.operands - j - 1;
2199
2200 if (t->operand_types[j].bitfield.class == Reg
2201 && !match_operand_size (t, j, given))
2202 goto mismatch;
2203
2204 if (t->operand_types[j].bitfield.class == RegSIMD
2205 && !match_simd_size (t, j, given))
2206 goto mismatch;
2207
2208 if (t->operand_types[j].bitfield.instance == Accum
2209 && (!match_operand_size (t, j, given)
2210 || !match_simd_size (t, j, given)))
2211 goto mismatch;
2212
2213 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2214 goto mismatch;
2215 }
2216
2217 return match | MATCH_REVERSE;
2218 }
2219
2220 static INLINE int
2221 operand_type_match (i386_operand_type overlap,
2222 i386_operand_type given)
2223 {
2224 i386_operand_type temp = overlap;
2225
2226 temp.bitfield.unspecified = 0;
2227 temp.bitfield.byte = 0;
2228 temp.bitfield.word = 0;
2229 temp.bitfield.dword = 0;
2230 temp.bitfield.fword = 0;
2231 temp.bitfield.qword = 0;
2232 temp.bitfield.tbyte = 0;
2233 temp.bitfield.xmmword = 0;
2234 temp.bitfield.ymmword = 0;
2235 temp.bitfield.zmmword = 0;
2236 if (operand_type_all_zero (&temp))
2237 goto mismatch;
2238
2239 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2240 return 1;
2241
2242 mismatch:
2243 i.error = operand_type_mismatch;
2244 return 0;
2245 }
2246
2247 /* If given types g0 and g1 are registers they must be of the same type
2248 unless the expected operand type register overlap is null.
2249 Some Intel syntax memory operand size checking also happens here. */
2250
2251 static INLINE int
2252 operand_type_register_match (i386_operand_type g0,
2253 i386_operand_type t0,
2254 i386_operand_type g1,
2255 i386_operand_type t1)
2256 {
2257 if (g0.bitfield.class != Reg
2258 && g0.bitfield.class != RegSIMD
2259 && (!operand_type_check (g0, anymem)
2260 || g0.bitfield.unspecified
2261 || (t0.bitfield.class != Reg
2262 && t0.bitfield.class != RegSIMD)))
2263 return 1;
2264
2265 if (g1.bitfield.class != Reg
2266 && g1.bitfield.class != RegSIMD
2267 && (!operand_type_check (g1, anymem)
2268 || g1.bitfield.unspecified
2269 || (t1.bitfield.class != Reg
2270 && t1.bitfield.class != RegSIMD)))
2271 return 1;
2272
2273 if (g0.bitfield.byte == g1.bitfield.byte
2274 && g0.bitfield.word == g1.bitfield.word
2275 && g0.bitfield.dword == g1.bitfield.dword
2276 && g0.bitfield.qword == g1.bitfield.qword
2277 && g0.bitfield.xmmword == g1.bitfield.xmmword
2278 && g0.bitfield.ymmword == g1.bitfield.ymmword
2279 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2280 return 1;
2281
2282 if (!(t0.bitfield.byte & t1.bitfield.byte)
2283 && !(t0.bitfield.word & t1.bitfield.word)
2284 && !(t0.bitfield.dword & t1.bitfield.dword)
2285 && !(t0.bitfield.qword & t1.bitfield.qword)
2286 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2287 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2288 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2289 return 1;
2290
2291 i.error = register_type_mismatch;
2292
2293 return 0;
2294 }
2295
2296 static INLINE unsigned int
2297 register_number (const reg_entry *r)
2298 {
2299 unsigned int nr = r->reg_num;
2300
2301 if (r->reg_flags & RegRex)
2302 nr += 8;
2303
2304 if (r->reg_flags & RegVRex)
2305 nr += 16;
2306
2307 return nr;
2308 }
2309
2310 static INLINE unsigned int
2311 mode_from_disp_size (i386_operand_type t)
2312 {
2313 if (t.bitfield.disp8)
2314 return 1;
2315 else if (t.bitfield.disp16
2316 || t.bitfield.disp32
2317 || t.bitfield.disp32s)
2318 return 2;
2319 else
2320 return 0;
2321 }
2322
2323 static INLINE int
2324 fits_in_signed_byte (addressT num)
2325 {
2326 return num + 0x80 <= 0xff;
2327 }
2328
2329 static INLINE int
2330 fits_in_unsigned_byte (addressT num)
2331 {
2332 return num <= 0xff;
2333 }
2334
2335 static INLINE int
2336 fits_in_unsigned_word (addressT num)
2337 {
2338 return num <= 0xffff;
2339 }
2340
2341 static INLINE int
2342 fits_in_signed_word (addressT num)
2343 {
2344 return num + 0x8000 <= 0xffff;
2345 }
2346
2347 static INLINE int
2348 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2349 {
2350 #ifndef BFD64
2351 return 1;
2352 #else
2353 return num + 0x80000000 <= 0xffffffff;
2354 #endif
2355 } /* fits_in_signed_long() */
2356
2357 static INLINE int
2358 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2359 {
2360 #ifndef BFD64
2361 return 1;
2362 #else
2363 return num <= 0xffffffff;
2364 #endif
2365 } /* fits_in_unsigned_long() */
2366
2367 static INLINE int
2368 fits_in_disp8 (offsetT num)
2369 {
2370 int shift = i.memshift;
2371 unsigned int mask;
2372
2373 if (shift == -1)
2374 abort ();
2375
2376 mask = (1 << shift) - 1;
2377
2378 /* Return 0 if NUM isn't properly aligned. */
2379 if ((num & mask))
2380 return 0;
2381
2382 /* Check if NUM will fit in 8bit after shift. */
2383 return fits_in_signed_byte (num >> shift);
2384 }
2385
2386 static INLINE int
2387 fits_in_imm4 (offsetT num)
2388 {
2389 return (num & 0xf) == num;
2390 }
2391
2392 static i386_operand_type
2393 smallest_imm_type (offsetT num)
2394 {
2395 i386_operand_type t;
2396
2397 operand_type_set (&t, 0);
2398 t.bitfield.imm64 = 1;
2399
2400 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2401 {
2402 /* This code is disabled on the 486 because all the Imm1 forms
2403 in the opcode table are slower on the i486. They're the
2404 versions with the implicitly specified single-position
2405 displacement, which has another syntax if you really want to
2406 use that form. */
2407 t.bitfield.imm1 = 1;
2408 t.bitfield.imm8 = 1;
2409 t.bitfield.imm8s = 1;
2410 t.bitfield.imm16 = 1;
2411 t.bitfield.imm32 = 1;
2412 t.bitfield.imm32s = 1;
2413 }
2414 else if (fits_in_signed_byte (num))
2415 {
2416 t.bitfield.imm8 = 1;
2417 t.bitfield.imm8s = 1;
2418 t.bitfield.imm16 = 1;
2419 t.bitfield.imm32 = 1;
2420 t.bitfield.imm32s = 1;
2421 }
2422 else if (fits_in_unsigned_byte (num))
2423 {
2424 t.bitfield.imm8 = 1;
2425 t.bitfield.imm16 = 1;
2426 t.bitfield.imm32 = 1;
2427 t.bitfield.imm32s = 1;
2428 }
2429 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2430 {
2431 t.bitfield.imm16 = 1;
2432 t.bitfield.imm32 = 1;
2433 t.bitfield.imm32s = 1;
2434 }
2435 else if (fits_in_signed_long (num))
2436 {
2437 t.bitfield.imm32 = 1;
2438 t.bitfield.imm32s = 1;
2439 }
2440 else if (fits_in_unsigned_long (num))
2441 t.bitfield.imm32 = 1;
2442
2443 return t;
2444 }
2445
2446 static offsetT
2447 offset_in_range (offsetT val, int size)
2448 {
2449 addressT mask;
2450
2451 switch (size)
2452 {
2453 case 1: mask = ((addressT) 1 << 8) - 1; break;
2454 case 2: mask = ((addressT) 1 << 16) - 1; break;
2455 case 4: mask = ((addressT) 2 << 31) - 1; break;
2456 #ifdef BFD64
2457 case 8: mask = ((addressT) 2 << 63) - 1; break;
2458 #endif
2459 default: abort ();
2460 }
2461
2462 #ifdef BFD64
2463 /* If BFD64, sign extend val for 32bit address mode. */
2464 if (flag_code != CODE_64BIT
2465 || i.prefix[ADDR_PREFIX])
2466 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2467 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2468 #endif
2469
2470 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2471 {
2472 char buf1[40], buf2[40];
2473
2474 sprint_value (buf1, val);
2475 sprint_value (buf2, val & mask);
2476 as_warn (_("%s shortened to %s"), buf1, buf2);
2477 }
2478 return val & mask;
2479 }
2480
2481 enum PREFIX_GROUP
2482 {
2483 PREFIX_EXIST = 0,
2484 PREFIX_LOCK,
2485 PREFIX_REP,
2486 PREFIX_DS,
2487 PREFIX_OTHER
2488 };
2489
2490 /* Returns
2491 a. PREFIX_EXIST if attempting to add a prefix where one from the
2492 same class already exists.
2493 b. PREFIX_LOCK if lock prefix is added.
2494 c. PREFIX_REP if rep/repne prefix is added.
2495 d. PREFIX_DS if ds prefix is added.
2496 e. PREFIX_OTHER if other prefix is added.
2497 */
2498
2499 static enum PREFIX_GROUP
2500 add_prefix (unsigned int prefix)
2501 {
2502 enum PREFIX_GROUP ret = PREFIX_OTHER;
2503 unsigned int q;
2504
2505 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2506 && flag_code == CODE_64BIT)
2507 {
2508 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2509 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2510 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2511 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2512 ret = PREFIX_EXIST;
2513 q = REX_PREFIX;
2514 }
2515 else
2516 {
2517 switch (prefix)
2518 {
2519 default:
2520 abort ();
2521
2522 case DS_PREFIX_OPCODE:
2523 ret = PREFIX_DS;
2524 /* Fall through. */
2525 case CS_PREFIX_OPCODE:
2526 case ES_PREFIX_OPCODE:
2527 case FS_PREFIX_OPCODE:
2528 case GS_PREFIX_OPCODE:
2529 case SS_PREFIX_OPCODE:
2530 q = SEG_PREFIX;
2531 break;
2532
2533 case REPNE_PREFIX_OPCODE:
2534 case REPE_PREFIX_OPCODE:
2535 q = REP_PREFIX;
2536 ret = PREFIX_REP;
2537 break;
2538
2539 case LOCK_PREFIX_OPCODE:
2540 q = LOCK_PREFIX;
2541 ret = PREFIX_LOCK;
2542 break;
2543
2544 case FWAIT_OPCODE:
2545 q = WAIT_PREFIX;
2546 break;
2547
2548 case ADDR_PREFIX_OPCODE:
2549 q = ADDR_PREFIX;
2550 break;
2551
2552 case DATA_PREFIX_OPCODE:
2553 q = DATA_PREFIX;
2554 break;
2555 }
2556 if (i.prefix[q] != 0)
2557 ret = PREFIX_EXIST;
2558 }
2559
2560 if (ret)
2561 {
2562 if (!i.prefix[q])
2563 ++i.prefixes;
2564 i.prefix[q] |= prefix;
2565 }
2566 else
2567 as_bad (_("same type of prefix used twice"));
2568
2569 return ret;
2570 }
2571
2572 static void
2573 update_code_flag (int value, int check)
2574 {
2575 PRINTF_LIKE ((*as_error));
2576
2577 flag_code = (enum flag_code) value;
2578 if (flag_code == CODE_64BIT)
2579 {
2580 cpu_arch_flags.bitfield.cpu64 = 1;
2581 cpu_arch_flags.bitfield.cpuno64 = 0;
2582 }
2583 else
2584 {
2585 cpu_arch_flags.bitfield.cpu64 = 0;
2586 cpu_arch_flags.bitfield.cpuno64 = 1;
2587 }
2588 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2589 {
2590 if (check)
2591 as_error = as_fatal;
2592 else
2593 as_error = as_bad;
2594 (*as_error) (_("64bit mode not supported on `%s'."),
2595 cpu_arch_name ? cpu_arch_name : default_arch);
2596 }
2597 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2598 {
2599 if (check)
2600 as_error = as_fatal;
2601 else
2602 as_error = as_bad;
2603 (*as_error) (_("32bit mode not supported on `%s'."),
2604 cpu_arch_name ? cpu_arch_name : default_arch);
2605 }
2606 stackop_size = '\0';
2607 }
2608
2609 static void
2610 set_code_flag (int value)
2611 {
2612 update_code_flag (value, 0);
2613 }
2614
2615 static void
2616 set_16bit_gcc_code_flag (int new_code_flag)
2617 {
2618 flag_code = (enum flag_code) new_code_flag;
2619 if (flag_code != CODE_16BIT)
2620 abort ();
2621 cpu_arch_flags.bitfield.cpu64 = 0;
2622 cpu_arch_flags.bitfield.cpuno64 = 1;
2623 stackop_size = LONG_MNEM_SUFFIX;
2624 }
2625
2626 static void
2627 set_intel_syntax (int syntax_flag)
2628 {
2629 /* Find out if register prefixing is specified. */
2630 int ask_naked_reg = 0;
2631
2632 SKIP_WHITESPACE ();
2633 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2634 {
2635 char *string;
2636 int e = get_symbol_name (&string);
2637
2638 if (strcmp (string, "prefix") == 0)
2639 ask_naked_reg = 1;
2640 else if (strcmp (string, "noprefix") == 0)
2641 ask_naked_reg = -1;
2642 else
2643 as_bad (_("bad argument to syntax directive."));
2644 (void) restore_line_pointer (e);
2645 }
2646 demand_empty_rest_of_line ();
2647
2648 intel_syntax = syntax_flag;
2649
2650 if (ask_naked_reg == 0)
2651 allow_naked_reg = (intel_syntax
2652 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2653 else
2654 allow_naked_reg = (ask_naked_reg < 0);
2655
2656 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2657
2658 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2659 identifier_chars['$'] = intel_syntax ? '$' : 0;
2660 register_prefix = allow_naked_reg ? "" : "%";
2661 }
2662
2663 static void
2664 set_intel_mnemonic (int mnemonic_flag)
2665 {
2666 intel_mnemonic = mnemonic_flag;
2667 }
2668
2669 static void
2670 set_allow_index_reg (int flag)
2671 {
2672 allow_index_reg = flag;
2673 }
2674
2675 static void
2676 set_check (int what)
2677 {
2678 enum check_kind *kind;
2679 const char *str;
2680
2681 if (what)
2682 {
2683 kind = &operand_check;
2684 str = "operand";
2685 }
2686 else
2687 {
2688 kind = &sse_check;
2689 str = "sse";
2690 }
2691
2692 SKIP_WHITESPACE ();
2693
2694 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2695 {
2696 char *string;
2697 int e = get_symbol_name (&string);
2698
2699 if (strcmp (string, "none") == 0)
2700 *kind = check_none;
2701 else if (strcmp (string, "warning") == 0)
2702 *kind = check_warning;
2703 else if (strcmp (string, "error") == 0)
2704 *kind = check_error;
2705 else
2706 as_bad (_("bad argument to %s_check directive."), str);
2707 (void) restore_line_pointer (e);
2708 }
2709 else
2710 as_bad (_("missing argument for %s_check directive"), str);
2711
2712 demand_empty_rest_of_line ();
2713 }
2714
2715 static void
2716 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2717 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2718 {
2719 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2720 static const char *arch;
2721
2722 /* Intel LIOM is only supported on ELF. */
2723 if (!IS_ELF)
2724 return;
2725
2726 if (!arch)
2727 {
2728 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2729 use default_arch. */
2730 arch = cpu_arch_name;
2731 if (!arch)
2732 arch = default_arch;
2733 }
2734
2735 /* If we are targeting Intel MCU, we must enable it. */
2736 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2737 || new_flag.bitfield.cpuiamcu)
2738 return;
2739
2740 /* If we are targeting Intel L1OM, we must enable it. */
2741 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2742 || new_flag.bitfield.cpul1om)
2743 return;
2744
2745 /* If we are targeting Intel K1OM, we must enable it. */
2746 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2747 || new_flag.bitfield.cpuk1om)
2748 return;
2749
2750 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2751 #endif
2752 }
2753
2754 static void
2755 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2756 {
2757 SKIP_WHITESPACE ();
2758
2759 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2760 {
2761 char *string;
2762 int e = get_symbol_name (&string);
2763 unsigned int j;
2764 i386_cpu_flags flags;
2765
2766 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2767 {
2768 if (strcmp (string, cpu_arch[j].name) == 0)
2769 {
2770 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2771
2772 if (*string != '.')
2773 {
2774 cpu_arch_name = cpu_arch[j].name;
2775 cpu_sub_arch_name = NULL;
2776 cpu_arch_flags = cpu_arch[j].flags;
2777 if (flag_code == CODE_64BIT)
2778 {
2779 cpu_arch_flags.bitfield.cpu64 = 1;
2780 cpu_arch_flags.bitfield.cpuno64 = 0;
2781 }
2782 else
2783 {
2784 cpu_arch_flags.bitfield.cpu64 = 0;
2785 cpu_arch_flags.bitfield.cpuno64 = 1;
2786 }
2787 cpu_arch_isa = cpu_arch[j].type;
2788 cpu_arch_isa_flags = cpu_arch[j].flags;
2789 if (!cpu_arch_tune_set)
2790 {
2791 cpu_arch_tune = cpu_arch_isa;
2792 cpu_arch_tune_flags = cpu_arch_isa_flags;
2793 }
2794 break;
2795 }
2796
2797 flags = cpu_flags_or (cpu_arch_flags,
2798 cpu_arch[j].flags);
2799
2800 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2801 {
2802 if (cpu_sub_arch_name)
2803 {
2804 char *name = cpu_sub_arch_name;
2805 cpu_sub_arch_name = concat (name,
2806 cpu_arch[j].name,
2807 (const char *) NULL);
2808 free (name);
2809 }
2810 else
2811 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2812 cpu_arch_flags = flags;
2813 cpu_arch_isa_flags = flags;
2814 }
2815 else
2816 cpu_arch_isa_flags
2817 = cpu_flags_or (cpu_arch_isa_flags,
2818 cpu_arch[j].flags);
2819 (void) restore_line_pointer (e);
2820 demand_empty_rest_of_line ();
2821 return;
2822 }
2823 }
2824
2825 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2826 {
2827 /* Disable an ISA extension. */
2828 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2829 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2830 {
2831 flags = cpu_flags_and_not (cpu_arch_flags,
2832 cpu_noarch[j].flags);
2833 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2834 {
2835 if (cpu_sub_arch_name)
2836 {
2837 char *name = cpu_sub_arch_name;
2838 cpu_sub_arch_name = concat (name, string,
2839 (const char *) NULL);
2840 free (name);
2841 }
2842 else
2843 cpu_sub_arch_name = xstrdup (string);
2844 cpu_arch_flags = flags;
2845 cpu_arch_isa_flags = flags;
2846 }
2847 (void) restore_line_pointer (e);
2848 demand_empty_rest_of_line ();
2849 return;
2850 }
2851
2852 j = ARRAY_SIZE (cpu_arch);
2853 }
2854
2855 if (j >= ARRAY_SIZE (cpu_arch))
2856 as_bad (_("no such architecture: `%s'"), string);
2857
2858 *input_line_pointer = e;
2859 }
2860 else
2861 as_bad (_("missing cpu architecture"));
2862
2863 no_cond_jump_promotion = 0;
2864 if (*input_line_pointer == ','
2865 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2866 {
2867 char *string;
2868 char e;
2869
2870 ++input_line_pointer;
2871 e = get_symbol_name (&string);
2872
2873 if (strcmp (string, "nojumps") == 0)
2874 no_cond_jump_promotion = 1;
2875 else if (strcmp (string, "jumps") == 0)
2876 ;
2877 else
2878 as_bad (_("no such architecture modifier: `%s'"), string);
2879
2880 (void) restore_line_pointer (e);
2881 }
2882
2883 demand_empty_rest_of_line ();
2884 }
2885
2886 enum bfd_architecture
2887 i386_arch (void)
2888 {
2889 if (cpu_arch_isa == PROCESSOR_L1OM)
2890 {
2891 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2892 || flag_code != CODE_64BIT)
2893 as_fatal (_("Intel L1OM is 64bit ELF only"));
2894 return bfd_arch_l1om;
2895 }
2896 else if (cpu_arch_isa == PROCESSOR_K1OM)
2897 {
2898 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2899 || flag_code != CODE_64BIT)
2900 as_fatal (_("Intel K1OM is 64bit ELF only"));
2901 return bfd_arch_k1om;
2902 }
2903 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2904 {
2905 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2906 || flag_code == CODE_64BIT)
2907 as_fatal (_("Intel MCU is 32bit ELF only"));
2908 return bfd_arch_iamcu;
2909 }
2910 else
2911 return bfd_arch_i386;
2912 }
2913
2914 unsigned long
2915 i386_mach (void)
2916 {
2917 if (!strncmp (default_arch, "x86_64", 6))
2918 {
2919 if (cpu_arch_isa == PROCESSOR_L1OM)
2920 {
2921 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2922 || default_arch[6] != '\0')
2923 as_fatal (_("Intel L1OM is 64bit ELF only"));
2924 return bfd_mach_l1om;
2925 }
2926 else if (cpu_arch_isa == PROCESSOR_K1OM)
2927 {
2928 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2929 || default_arch[6] != '\0')
2930 as_fatal (_("Intel K1OM is 64bit ELF only"));
2931 return bfd_mach_k1om;
2932 }
2933 else if (default_arch[6] == '\0')
2934 return bfd_mach_x86_64;
2935 else
2936 return bfd_mach_x64_32;
2937 }
2938 else if (!strcmp (default_arch, "i386")
2939 || !strcmp (default_arch, "iamcu"))
2940 {
2941 if (cpu_arch_isa == PROCESSOR_IAMCU)
2942 {
2943 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2944 as_fatal (_("Intel MCU is 32bit ELF only"));
2945 return bfd_mach_i386_iamcu;
2946 }
2947 else
2948 return bfd_mach_i386_i386;
2949 }
2950 else
2951 as_fatal (_("unknown architecture"));
2952 }
2953 \f
2954 void
2955 md_begin (void)
2956 {
2957 const char *hash_err;
2958
2959 /* Support pseudo prefixes like {disp32}. */
2960 lex_type ['{'] = LEX_BEGIN_NAME;
2961
2962 /* Initialize op_hash hash table. */
2963 op_hash = hash_new ();
2964
2965 {
2966 const insn_template *optab;
2967 templates *core_optab;
2968
2969 /* Setup for loop. */
2970 optab = i386_optab;
2971 core_optab = XNEW (templates);
2972 core_optab->start = optab;
2973
2974 while (1)
2975 {
2976 ++optab;
2977 if (optab->name == NULL
2978 || strcmp (optab->name, (optab - 1)->name) != 0)
2979 {
2980 /* different name --> ship out current template list;
2981 add to hash table; & begin anew. */
2982 core_optab->end = optab;
2983 hash_err = hash_insert (op_hash,
2984 (optab - 1)->name,
2985 (void *) core_optab);
2986 if (hash_err)
2987 {
2988 as_fatal (_("can't hash %s: %s"),
2989 (optab - 1)->name,
2990 hash_err);
2991 }
2992 if (optab->name == NULL)
2993 break;
2994 core_optab = XNEW (templates);
2995 core_optab->start = optab;
2996 }
2997 }
2998 }
2999
3000 /* Initialize reg_hash hash table. */
3001 reg_hash = hash_new ();
3002 {
3003 const reg_entry *regtab;
3004 unsigned int regtab_size = i386_regtab_size;
3005
3006 for (regtab = i386_regtab; regtab_size--; regtab++)
3007 {
3008 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3009 if (hash_err)
3010 as_fatal (_("can't hash %s: %s"),
3011 regtab->reg_name,
3012 hash_err);
3013 }
3014 }
3015
3016 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3017 {
3018 int c;
3019 char *p;
3020
3021 for (c = 0; c < 256; c++)
3022 {
3023 if (ISDIGIT (c))
3024 {
3025 digit_chars[c] = c;
3026 mnemonic_chars[c] = c;
3027 register_chars[c] = c;
3028 operand_chars[c] = c;
3029 }
3030 else if (ISLOWER (c))
3031 {
3032 mnemonic_chars[c] = c;
3033 register_chars[c] = c;
3034 operand_chars[c] = c;
3035 }
3036 else if (ISUPPER (c))
3037 {
3038 mnemonic_chars[c] = TOLOWER (c);
3039 register_chars[c] = mnemonic_chars[c];
3040 operand_chars[c] = c;
3041 }
3042 else if (c == '{' || c == '}')
3043 {
3044 mnemonic_chars[c] = c;
3045 operand_chars[c] = c;
3046 }
3047
3048 if (ISALPHA (c) || ISDIGIT (c))
3049 identifier_chars[c] = c;
3050 else if (c >= 128)
3051 {
3052 identifier_chars[c] = c;
3053 operand_chars[c] = c;
3054 }
3055 }
3056
3057 #ifdef LEX_AT
3058 identifier_chars['@'] = '@';
3059 #endif
3060 #ifdef LEX_QM
3061 identifier_chars['?'] = '?';
3062 operand_chars['?'] = '?';
3063 #endif
3064 digit_chars['-'] = '-';
3065 mnemonic_chars['_'] = '_';
3066 mnemonic_chars['-'] = '-';
3067 mnemonic_chars['.'] = '.';
3068 identifier_chars['_'] = '_';
3069 identifier_chars['.'] = '.';
3070
3071 for (p = operand_special_chars; *p != '\0'; p++)
3072 operand_chars[(unsigned char) *p] = *p;
3073 }
3074
3075 if (flag_code == CODE_64BIT)
3076 {
3077 #if defined (OBJ_COFF) && defined (TE_PE)
3078 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3079 ? 32 : 16);
3080 #else
3081 x86_dwarf2_return_column = 16;
3082 #endif
3083 x86_cie_data_alignment = -8;
3084 }
3085 else
3086 {
3087 x86_dwarf2_return_column = 8;
3088 x86_cie_data_alignment = -4;
3089 }
3090
3091 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3092 can be turned into BRANCH_PREFIX frag. */
3093 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3094 abort ();
3095 }
3096
3097 void
3098 i386_print_statistics (FILE *file)
3099 {
3100 hash_print_statistics (file, "i386 opcode", op_hash);
3101 hash_print_statistics (file, "i386 register", reg_hash);
3102 }
3103 \f
3104 #ifdef DEBUG386
3105
3106 /* Debugging routines for md_assemble. */
3107 static void pte (insn_template *);
3108 static void pt (i386_operand_type);
3109 static void pe (expressionS *);
3110 static void ps (symbolS *);
3111
3112 static void
3113 pi (const char *line, i386_insn *x)
3114 {
3115 unsigned int j;
3116
3117 fprintf (stdout, "%s: template ", line);
3118 pte (&x->tm);
3119 fprintf (stdout, " address: base %s index %s scale %x\n",
3120 x->base_reg ? x->base_reg->reg_name : "none",
3121 x->index_reg ? x->index_reg->reg_name : "none",
3122 x->log2_scale_factor);
3123 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3124 x->rm.mode, x->rm.reg, x->rm.regmem);
3125 fprintf (stdout, " sib: base %x index %x scale %x\n",
3126 x->sib.base, x->sib.index, x->sib.scale);
3127 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3128 (x->rex & REX_W) != 0,
3129 (x->rex & REX_R) != 0,
3130 (x->rex & REX_X) != 0,
3131 (x->rex & REX_B) != 0);
3132 for (j = 0; j < x->operands; j++)
3133 {
3134 fprintf (stdout, " #%d: ", j + 1);
3135 pt (x->types[j]);
3136 fprintf (stdout, "\n");
3137 if (x->types[j].bitfield.class == Reg
3138 || x->types[j].bitfield.class == RegMMX
3139 || x->types[j].bitfield.class == RegSIMD
3140 || x->types[j].bitfield.class == SReg
3141 || x->types[j].bitfield.class == RegCR
3142 || x->types[j].bitfield.class == RegDR
3143 || x->types[j].bitfield.class == RegTR)
3144 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3145 if (operand_type_check (x->types[j], imm))
3146 pe (x->op[j].imms);
3147 if (operand_type_check (x->types[j], disp))
3148 pe (x->op[j].disps);
3149 }
3150 }
3151
3152 static void
3153 pte (insn_template *t)
3154 {
3155 unsigned int j;
3156 fprintf (stdout, " %d operands ", t->operands);
3157 fprintf (stdout, "opcode %x ", t->base_opcode);
3158 if (t->extension_opcode != None)
3159 fprintf (stdout, "ext %x ", t->extension_opcode);
3160 if (t->opcode_modifier.d)
3161 fprintf (stdout, "D");
3162 if (t->opcode_modifier.w)
3163 fprintf (stdout, "W");
3164 fprintf (stdout, "\n");
3165 for (j = 0; j < t->operands; j++)
3166 {
3167 fprintf (stdout, " #%d type ", j + 1);
3168 pt (t->operand_types[j]);
3169 fprintf (stdout, "\n");
3170 }
3171 }
3172
3173 static void
3174 pe (expressionS *e)
3175 {
3176 fprintf (stdout, " operation %d\n", e->X_op);
3177 fprintf (stdout, " add_number %ld (%lx)\n",
3178 (long) e->X_add_number, (long) e->X_add_number);
3179 if (e->X_add_symbol)
3180 {
3181 fprintf (stdout, " add_symbol ");
3182 ps (e->X_add_symbol);
3183 fprintf (stdout, "\n");
3184 }
3185 if (e->X_op_symbol)
3186 {
3187 fprintf (stdout, " op_symbol ");
3188 ps (e->X_op_symbol);
3189 fprintf (stdout, "\n");
3190 }
3191 }
3192
3193 static void
3194 ps (symbolS *s)
3195 {
3196 fprintf (stdout, "%s type %s%s",
3197 S_GET_NAME (s),
3198 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3199 segment_name (S_GET_SEGMENT (s)));
3200 }
3201
3202 static struct type_name
3203 {
3204 i386_operand_type mask;
3205 const char *name;
3206 }
3207 const type_names[] =
3208 {
3209 { OPERAND_TYPE_REG8, "r8" },
3210 { OPERAND_TYPE_REG16, "r16" },
3211 { OPERAND_TYPE_REG32, "r32" },
3212 { OPERAND_TYPE_REG64, "r64" },
3213 { OPERAND_TYPE_ACC8, "acc8" },
3214 { OPERAND_TYPE_ACC16, "acc16" },
3215 { OPERAND_TYPE_ACC32, "acc32" },
3216 { OPERAND_TYPE_ACC64, "acc64" },
3217 { OPERAND_TYPE_IMM8, "i8" },
3218 { OPERAND_TYPE_IMM8, "i8s" },
3219 { OPERAND_TYPE_IMM16, "i16" },
3220 { OPERAND_TYPE_IMM32, "i32" },
3221 { OPERAND_TYPE_IMM32S, "i32s" },
3222 { OPERAND_TYPE_IMM64, "i64" },
3223 { OPERAND_TYPE_IMM1, "i1" },
3224 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3225 { OPERAND_TYPE_DISP8, "d8" },
3226 { OPERAND_TYPE_DISP16, "d16" },
3227 { OPERAND_TYPE_DISP32, "d32" },
3228 { OPERAND_TYPE_DISP32S, "d32s" },
3229 { OPERAND_TYPE_DISP64, "d64" },
3230 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3231 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3232 { OPERAND_TYPE_CONTROL, "control reg" },
3233 { OPERAND_TYPE_TEST, "test reg" },
3234 { OPERAND_TYPE_DEBUG, "debug reg" },
3235 { OPERAND_TYPE_FLOATREG, "FReg" },
3236 { OPERAND_TYPE_FLOATACC, "FAcc" },
3237 { OPERAND_TYPE_SREG, "SReg" },
3238 { OPERAND_TYPE_REGMMX, "rMMX" },
3239 { OPERAND_TYPE_REGXMM, "rXMM" },
3240 { OPERAND_TYPE_REGYMM, "rYMM" },
3241 { OPERAND_TYPE_REGZMM, "rZMM" },
3242 { OPERAND_TYPE_REGMASK, "Mask reg" },
3243 };
3244
3245 static void
3246 pt (i386_operand_type t)
3247 {
3248 unsigned int j;
3249 i386_operand_type a;
3250
3251 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3252 {
3253 a = operand_type_and (t, type_names[j].mask);
3254 if (operand_type_equal (&a, &type_names[j].mask))
3255 fprintf (stdout, "%s, ", type_names[j].name);
3256 }
3257 fflush (stdout);
3258 }
3259
3260 #endif /* DEBUG386 */
3261 \f
3262 static bfd_reloc_code_real_type
3263 reloc (unsigned int size,
3264 int pcrel,
3265 int sign,
3266 bfd_reloc_code_real_type other)
3267 {
3268 if (other != NO_RELOC)
3269 {
3270 reloc_howto_type *rel;
3271
3272 if (size == 8)
3273 switch (other)
3274 {
3275 case BFD_RELOC_X86_64_GOT32:
3276 return BFD_RELOC_X86_64_GOT64;
3277 break;
3278 case BFD_RELOC_X86_64_GOTPLT64:
3279 return BFD_RELOC_X86_64_GOTPLT64;
3280 break;
3281 case BFD_RELOC_X86_64_PLTOFF64:
3282 return BFD_RELOC_X86_64_PLTOFF64;
3283 break;
3284 case BFD_RELOC_X86_64_GOTPC32:
3285 other = BFD_RELOC_X86_64_GOTPC64;
3286 break;
3287 case BFD_RELOC_X86_64_GOTPCREL:
3288 other = BFD_RELOC_X86_64_GOTPCREL64;
3289 break;
3290 case BFD_RELOC_X86_64_TPOFF32:
3291 other = BFD_RELOC_X86_64_TPOFF64;
3292 break;
3293 case BFD_RELOC_X86_64_DTPOFF32:
3294 other = BFD_RELOC_X86_64_DTPOFF64;
3295 break;
3296 default:
3297 break;
3298 }
3299
3300 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3301 if (other == BFD_RELOC_SIZE32)
3302 {
3303 if (size == 8)
3304 other = BFD_RELOC_SIZE64;
3305 if (pcrel)
3306 {
3307 as_bad (_("there are no pc-relative size relocations"));
3308 return NO_RELOC;
3309 }
3310 }
3311 #endif
3312
3313 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3314 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3315 sign = -1;
3316
3317 rel = bfd_reloc_type_lookup (stdoutput, other);
3318 if (!rel)
3319 as_bad (_("unknown relocation (%u)"), other);
3320 else if (size != bfd_get_reloc_size (rel))
3321 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3322 bfd_get_reloc_size (rel),
3323 size);
3324 else if (pcrel && !rel->pc_relative)
3325 as_bad (_("non-pc-relative relocation for pc-relative field"));
3326 else if ((rel->complain_on_overflow == complain_overflow_signed
3327 && !sign)
3328 || (rel->complain_on_overflow == complain_overflow_unsigned
3329 && sign > 0))
3330 as_bad (_("relocated field and relocation type differ in signedness"));
3331 else
3332 return other;
3333 return NO_RELOC;
3334 }
3335
3336 if (pcrel)
3337 {
3338 if (!sign)
3339 as_bad (_("there are no unsigned pc-relative relocations"));
3340 switch (size)
3341 {
3342 case 1: return BFD_RELOC_8_PCREL;
3343 case 2: return BFD_RELOC_16_PCREL;
3344 case 4: return BFD_RELOC_32_PCREL;
3345 case 8: return BFD_RELOC_64_PCREL;
3346 }
3347 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3348 }
3349 else
3350 {
3351 if (sign > 0)
3352 switch (size)
3353 {
3354 case 4: return BFD_RELOC_X86_64_32S;
3355 }
3356 else
3357 switch (size)
3358 {
3359 case 1: return BFD_RELOC_8;
3360 case 2: return BFD_RELOC_16;
3361 case 4: return BFD_RELOC_32;
3362 case 8: return BFD_RELOC_64;
3363 }
3364 as_bad (_("cannot do %s %u byte relocation"),
3365 sign > 0 ? "signed" : "unsigned", size);
3366 }
3367
3368 return NO_RELOC;
3369 }
3370
3371 /* Here we decide which fixups can be adjusted to make them relative to
3372 the beginning of the section instead of the symbol. Basically we need
3373 to make sure that the dynamic relocations are done correctly, so in
3374 some cases we force the original symbol to be used. */
3375
3376 int
3377 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3378 {
3379 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3380 if (!IS_ELF)
3381 return 1;
3382
3383 /* Don't adjust pc-relative references to merge sections in 64-bit
3384 mode. */
3385 if (use_rela_relocations
3386 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3387 && fixP->fx_pcrel)
3388 return 0;
3389
3390 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3391 and changed later by validate_fix. */
3392 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3393 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3394 return 0;
3395
3396 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3397 for size relocations. */
3398 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3399 || fixP->fx_r_type == BFD_RELOC_SIZE64
3400 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3401 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3402 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3403 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3412 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3413 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3427 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3428 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3429 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3430 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3431 return 0;
3432 #endif
3433 return 1;
3434 }
3435
3436 static int
3437 intel_float_operand (const char *mnemonic)
3438 {
3439 /* Note that the value returned is meaningful only for opcodes with (memory)
3440 operands, hence the code here is free to improperly handle opcodes that
3441 have no operands (for better performance and smaller code). */
3442
3443 if (mnemonic[0] != 'f')
3444 return 0; /* non-math */
3445
3446 switch (mnemonic[1])
3447 {
3448 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3449 the fs segment override prefix not currently handled because no
3450 call path can make opcodes without operands get here */
3451 case 'i':
3452 return 2 /* integer op */;
3453 case 'l':
3454 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3455 return 3; /* fldcw/fldenv */
3456 break;
3457 case 'n':
3458 if (mnemonic[2] != 'o' /* fnop */)
3459 return 3; /* non-waiting control op */
3460 break;
3461 case 'r':
3462 if (mnemonic[2] == 's')
3463 return 3; /* frstor/frstpm */
3464 break;
3465 case 's':
3466 if (mnemonic[2] == 'a')
3467 return 3; /* fsave */
3468 if (mnemonic[2] == 't')
3469 {
3470 switch (mnemonic[3])
3471 {
3472 case 'c': /* fstcw */
3473 case 'd': /* fstdw */
3474 case 'e': /* fstenv */
3475 case 's': /* fsts[gw] */
3476 return 3;
3477 }
3478 }
3479 break;
3480 case 'x':
3481 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3482 return 0; /* fxsave/fxrstor are not really math ops */
3483 break;
3484 }
3485
3486 return 1;
3487 }
3488
3489 /* Build the VEX prefix. */
3490
3491 static void
3492 build_vex_prefix (const insn_template *t)
3493 {
3494 unsigned int register_specifier;
3495 unsigned int implied_prefix;
3496 unsigned int vector_length;
3497 unsigned int w;
3498
3499 /* Check register specifier. */
3500 if (i.vex.register_specifier)
3501 {
3502 register_specifier =
3503 ~register_number (i.vex.register_specifier) & 0xf;
3504 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3505 }
3506 else
3507 register_specifier = 0xf;
3508
3509 /* Use 2-byte VEX prefix by swapping destination and source operand
3510 if there are more than 1 register operand. */
3511 if (i.reg_operands > 1
3512 && i.vec_encoding != vex_encoding_vex3
3513 && i.dir_encoding == dir_encoding_default
3514 && i.operands == i.reg_operands
3515 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3516 && i.tm.opcode_modifier.vexopcode == VEX0F
3517 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3518 && i.rex == REX_B)
3519 {
3520 unsigned int xchg = i.operands - 1;
3521 union i386_op temp_op;
3522 i386_operand_type temp_type;
3523
3524 temp_type = i.types[xchg];
3525 i.types[xchg] = i.types[0];
3526 i.types[0] = temp_type;
3527 temp_op = i.op[xchg];
3528 i.op[xchg] = i.op[0];
3529 i.op[0] = temp_op;
3530
3531 gas_assert (i.rm.mode == 3);
3532
3533 i.rex = REX_R;
3534 xchg = i.rm.regmem;
3535 i.rm.regmem = i.rm.reg;
3536 i.rm.reg = xchg;
3537
3538 if (i.tm.opcode_modifier.d)
3539 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3540 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3541 else /* Use the next insn. */
3542 i.tm = t[1];
3543 }
3544
3545 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3546 are no memory operands and at least 3 register ones. */
3547 if (i.reg_operands >= 3
3548 && i.vec_encoding != vex_encoding_vex3
3549 && i.reg_operands == i.operands - i.imm_operands
3550 && i.tm.opcode_modifier.vex
3551 && i.tm.opcode_modifier.commutative
3552 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3553 && i.rex == REX_B
3554 && i.vex.register_specifier
3555 && !(i.vex.register_specifier->reg_flags & RegRex))
3556 {
3557 unsigned int xchg = i.operands - i.reg_operands;
3558 union i386_op temp_op;
3559 i386_operand_type temp_type;
3560
3561 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3562 gas_assert (!i.tm.opcode_modifier.sae);
3563 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3564 &i.types[i.operands - 3]));
3565 gas_assert (i.rm.mode == 3);
3566
3567 temp_type = i.types[xchg];
3568 i.types[xchg] = i.types[xchg + 1];
3569 i.types[xchg + 1] = temp_type;
3570 temp_op = i.op[xchg];
3571 i.op[xchg] = i.op[xchg + 1];
3572 i.op[xchg + 1] = temp_op;
3573
3574 i.rex = 0;
3575 xchg = i.rm.regmem | 8;
3576 i.rm.regmem = ~register_specifier & 0xf;
3577 gas_assert (!(i.rm.regmem & 8));
3578 i.vex.register_specifier += xchg - i.rm.regmem;
3579 register_specifier = ~xchg & 0xf;
3580 }
3581
3582 if (i.tm.opcode_modifier.vex == VEXScalar)
3583 vector_length = avxscalar;
3584 else if (i.tm.opcode_modifier.vex == VEX256)
3585 vector_length = 1;
3586 else
3587 {
3588 unsigned int op;
3589
3590 /* Determine vector length from the last multi-length vector
3591 operand. */
3592 vector_length = 0;
3593 for (op = t->operands; op--;)
3594 if (t->operand_types[op].bitfield.xmmword
3595 && t->operand_types[op].bitfield.ymmword
3596 && i.types[op].bitfield.ymmword)
3597 {
3598 vector_length = 1;
3599 break;
3600 }
3601 }
3602
3603 switch ((i.tm.base_opcode >> 8) & 0xff)
3604 {
3605 case 0:
3606 implied_prefix = 0;
3607 break;
3608 case DATA_PREFIX_OPCODE:
3609 implied_prefix = 1;
3610 break;
3611 case REPE_PREFIX_OPCODE:
3612 implied_prefix = 2;
3613 break;
3614 case REPNE_PREFIX_OPCODE:
3615 implied_prefix = 3;
3616 break;
3617 default:
3618 abort ();
3619 }
3620
3621 /* Check the REX.W bit and VEXW. */
3622 if (i.tm.opcode_modifier.vexw == VEXWIG)
3623 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3624 else if (i.tm.opcode_modifier.vexw)
3625 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3626 else
3627 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3628
3629 /* Use 2-byte VEX prefix if possible. */
3630 if (w == 0
3631 && i.vec_encoding != vex_encoding_vex3
3632 && i.tm.opcode_modifier.vexopcode == VEX0F
3633 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3634 {
3635 /* 2-byte VEX prefix. */
3636 unsigned int r;
3637
3638 i.vex.length = 2;
3639 i.vex.bytes[0] = 0xc5;
3640
3641 /* Check the REX.R bit. */
3642 r = (i.rex & REX_R) ? 0 : 1;
3643 i.vex.bytes[1] = (r << 7
3644 | register_specifier << 3
3645 | vector_length << 2
3646 | implied_prefix);
3647 }
3648 else
3649 {
3650 /* 3-byte VEX prefix. */
3651 unsigned int m;
3652
3653 i.vex.length = 3;
3654
3655 switch (i.tm.opcode_modifier.vexopcode)
3656 {
3657 case VEX0F:
3658 m = 0x1;
3659 i.vex.bytes[0] = 0xc4;
3660 break;
3661 case VEX0F38:
3662 m = 0x2;
3663 i.vex.bytes[0] = 0xc4;
3664 break;
3665 case VEX0F3A:
3666 m = 0x3;
3667 i.vex.bytes[0] = 0xc4;
3668 break;
3669 case XOP08:
3670 m = 0x8;
3671 i.vex.bytes[0] = 0x8f;
3672 break;
3673 case XOP09:
3674 m = 0x9;
3675 i.vex.bytes[0] = 0x8f;
3676 break;
3677 case XOP0A:
3678 m = 0xa;
3679 i.vex.bytes[0] = 0x8f;
3680 break;
3681 default:
3682 abort ();
3683 }
3684
3685 /* The high 3 bits of the second VEX byte are 1's compliment
3686 of RXB bits from REX. */
3687 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3688
3689 i.vex.bytes[2] = (w << 7
3690 | register_specifier << 3
3691 | vector_length << 2
3692 | implied_prefix);
3693 }
3694 }
3695
3696 static INLINE bfd_boolean
3697 is_evex_encoding (const insn_template *t)
3698 {
3699 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3700 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3701 || t->opcode_modifier.sae;
3702 }
3703
3704 static INLINE bfd_boolean
3705 is_any_vex_encoding (const insn_template *t)
3706 {
3707 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3708 || is_evex_encoding (t);
3709 }
3710
3711 /* Build the EVEX prefix. */
3712
3713 static void
3714 build_evex_prefix (void)
3715 {
3716 unsigned int register_specifier;
3717 unsigned int implied_prefix;
3718 unsigned int m, w;
3719 rex_byte vrex_used = 0;
3720
3721 /* Check register specifier. */
3722 if (i.vex.register_specifier)
3723 {
3724 gas_assert ((i.vrex & REX_X) == 0);
3725
3726 register_specifier = i.vex.register_specifier->reg_num;
3727 if ((i.vex.register_specifier->reg_flags & RegRex))
3728 register_specifier += 8;
3729 /* The upper 16 registers are encoded in the fourth byte of the
3730 EVEX prefix. */
3731 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3732 i.vex.bytes[3] = 0x8;
3733 register_specifier = ~register_specifier & 0xf;
3734 }
3735 else
3736 {
3737 register_specifier = 0xf;
3738
3739 /* Encode upper 16 vector index register in the fourth byte of
3740 the EVEX prefix. */
3741 if (!(i.vrex & REX_X))
3742 i.vex.bytes[3] = 0x8;
3743 else
3744 vrex_used |= REX_X;
3745 }
3746
3747 switch ((i.tm.base_opcode >> 8) & 0xff)
3748 {
3749 case 0:
3750 implied_prefix = 0;
3751 break;
3752 case DATA_PREFIX_OPCODE:
3753 implied_prefix = 1;
3754 break;
3755 case REPE_PREFIX_OPCODE:
3756 implied_prefix = 2;
3757 break;
3758 case REPNE_PREFIX_OPCODE:
3759 implied_prefix = 3;
3760 break;
3761 default:
3762 abort ();
3763 }
3764
3765 /* 4 byte EVEX prefix. */
3766 i.vex.length = 4;
3767 i.vex.bytes[0] = 0x62;
3768
3769 /* mmmm bits. */
3770 switch (i.tm.opcode_modifier.vexopcode)
3771 {
3772 case VEX0F:
3773 m = 1;
3774 break;
3775 case VEX0F38:
3776 m = 2;
3777 break;
3778 case VEX0F3A:
3779 m = 3;
3780 break;
3781 default:
3782 abort ();
3783 break;
3784 }
3785
3786 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3787 bits from REX. */
3788 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3789
3790 /* The fifth bit of the second EVEX byte is 1's compliment of the
3791 REX_R bit in VREX. */
3792 if (!(i.vrex & REX_R))
3793 i.vex.bytes[1] |= 0x10;
3794 else
3795 vrex_used |= REX_R;
3796
3797 if ((i.reg_operands + i.imm_operands) == i.operands)
3798 {
3799 /* When all operands are registers, the REX_X bit in REX is not
3800 used. We reuse it to encode the upper 16 registers, which is
3801 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3802 as 1's compliment. */
3803 if ((i.vrex & REX_B))
3804 {
3805 vrex_used |= REX_B;
3806 i.vex.bytes[1] &= ~0x40;
3807 }
3808 }
3809
3810 /* EVEX instructions shouldn't need the REX prefix. */
3811 i.vrex &= ~vrex_used;
3812 gas_assert (i.vrex == 0);
3813
3814 /* Check the REX.W bit and VEXW. */
3815 if (i.tm.opcode_modifier.vexw == VEXWIG)
3816 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3817 else if (i.tm.opcode_modifier.vexw)
3818 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3819 else
3820 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3821
3822 /* Encode the U bit. */
3823 implied_prefix |= 0x4;
3824
3825 /* The third byte of the EVEX prefix. */
3826 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3827
3828 /* The fourth byte of the EVEX prefix. */
3829 /* The zeroing-masking bit. */
3830 if (i.mask && i.mask->zeroing)
3831 i.vex.bytes[3] |= 0x80;
3832
3833 /* Don't always set the broadcast bit if there is no RC. */
3834 if (!i.rounding)
3835 {
3836 /* Encode the vector length. */
3837 unsigned int vec_length;
3838
3839 if (!i.tm.opcode_modifier.evex
3840 || i.tm.opcode_modifier.evex == EVEXDYN)
3841 {
3842 unsigned int op;
3843
3844 /* Determine vector length from the last multi-length vector
3845 operand. */
3846 vec_length = 0;
3847 for (op = i.operands; op--;)
3848 if (i.tm.operand_types[op].bitfield.xmmword
3849 + i.tm.operand_types[op].bitfield.ymmword
3850 + i.tm.operand_types[op].bitfield.zmmword > 1)
3851 {
3852 if (i.types[op].bitfield.zmmword)
3853 {
3854 i.tm.opcode_modifier.evex = EVEX512;
3855 break;
3856 }
3857 else if (i.types[op].bitfield.ymmword)
3858 {
3859 i.tm.opcode_modifier.evex = EVEX256;
3860 break;
3861 }
3862 else if (i.types[op].bitfield.xmmword)
3863 {
3864 i.tm.opcode_modifier.evex = EVEX128;
3865 break;
3866 }
3867 else if (i.broadcast && (int) op == i.broadcast->operand)
3868 {
3869 switch (i.broadcast->bytes)
3870 {
3871 case 64:
3872 i.tm.opcode_modifier.evex = EVEX512;
3873 break;
3874 case 32:
3875 i.tm.opcode_modifier.evex = EVEX256;
3876 break;
3877 case 16:
3878 i.tm.opcode_modifier.evex = EVEX128;
3879 break;
3880 default:
3881 abort ();
3882 }
3883 break;
3884 }
3885 }
3886
3887 if (op >= MAX_OPERANDS)
3888 abort ();
3889 }
3890
3891 switch (i.tm.opcode_modifier.evex)
3892 {
3893 case EVEXLIG: /* LL' is ignored */
3894 vec_length = evexlig << 5;
3895 break;
3896 case EVEX128:
3897 vec_length = 0 << 5;
3898 break;
3899 case EVEX256:
3900 vec_length = 1 << 5;
3901 break;
3902 case EVEX512:
3903 vec_length = 2 << 5;
3904 break;
3905 default:
3906 abort ();
3907 break;
3908 }
3909 i.vex.bytes[3] |= vec_length;
3910 /* Encode the broadcast bit. */
3911 if (i.broadcast)
3912 i.vex.bytes[3] |= 0x10;
3913 }
3914 else
3915 {
3916 if (i.rounding->type != saeonly)
3917 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3918 else
3919 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3920 }
3921
3922 if (i.mask && i.mask->mask)
3923 i.vex.bytes[3] |= i.mask->mask->reg_num;
3924 }
3925
3926 static void
3927 process_immext (void)
3928 {
3929 expressionS *exp;
3930
3931 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3932 which is coded in the same place as an 8-bit immediate field
3933 would be. Here we fake an 8-bit immediate operand from the
3934 opcode suffix stored in tm.extension_opcode.
3935
3936 AVX instructions also use this encoding, for some of
3937 3 argument instructions. */
3938
3939 gas_assert (i.imm_operands <= 1
3940 && (i.operands <= 2
3941 || (is_any_vex_encoding (&i.tm)
3942 && i.operands <= 4)));
3943
3944 exp = &im_expressions[i.imm_operands++];
3945 i.op[i.operands].imms = exp;
3946 i.types[i.operands] = imm8;
3947 i.operands++;
3948 exp->X_op = O_constant;
3949 exp->X_add_number = i.tm.extension_opcode;
3950 i.tm.extension_opcode = None;
3951 }
3952
3953
3954 static int
3955 check_hle (void)
3956 {
3957 switch (i.tm.opcode_modifier.hleprefixok)
3958 {
3959 default:
3960 abort ();
3961 case HLEPrefixNone:
3962 as_bad (_("invalid instruction `%s' after `%s'"),
3963 i.tm.name, i.hle_prefix);
3964 return 0;
3965 case HLEPrefixLock:
3966 if (i.prefix[LOCK_PREFIX])
3967 return 1;
3968 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3969 return 0;
3970 case HLEPrefixAny:
3971 return 1;
3972 case HLEPrefixRelease:
3973 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3974 {
3975 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3976 i.tm.name);
3977 return 0;
3978 }
3979 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3980 {
3981 as_bad (_("memory destination needed for instruction `%s'"
3982 " after `xrelease'"), i.tm.name);
3983 return 0;
3984 }
3985 return 1;
3986 }
3987 }
3988
3989 /* Try the shortest encoding by shortening operand size. */
3990
3991 static void
3992 optimize_encoding (void)
3993 {
3994 unsigned int j;
3995
3996 if (optimize_for_space
3997 && !is_any_vex_encoding (&i.tm)
3998 && i.reg_operands == 1
3999 && i.imm_operands == 1
4000 && !i.types[1].bitfield.byte
4001 && i.op[0].imms->X_op == O_constant
4002 && fits_in_imm7 (i.op[0].imms->X_add_number)
4003 && (i.tm.base_opcode == 0xa8
4004 || (i.tm.base_opcode == 0xf6
4005 && i.tm.extension_opcode == 0x0)))
4006 {
4007 /* Optimize: -Os:
4008 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4009 */
4010 unsigned int base_regnum = i.op[1].regs->reg_num;
4011 if (flag_code == CODE_64BIT || base_regnum < 4)
4012 {
4013 i.types[1].bitfield.byte = 1;
4014 /* Ignore the suffix. */
4015 i.suffix = 0;
4016 /* Convert to byte registers. */
4017 if (i.types[1].bitfield.word)
4018 j = 16;
4019 else if (i.types[1].bitfield.dword)
4020 j = 32;
4021 else
4022 j = 48;
4023 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4024 j += 8;
4025 i.op[1].regs -= j;
4026 }
4027 }
4028 else if (flag_code == CODE_64BIT
4029 && !is_any_vex_encoding (&i.tm)
4030 && ((i.types[1].bitfield.qword
4031 && i.reg_operands == 1
4032 && i.imm_operands == 1
4033 && i.op[0].imms->X_op == O_constant
4034 && ((i.tm.base_opcode == 0xb8
4035 && i.tm.extension_opcode == None
4036 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4037 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4038 && ((i.tm.base_opcode == 0x24
4039 || i.tm.base_opcode == 0xa8)
4040 || (i.tm.base_opcode == 0x80
4041 && i.tm.extension_opcode == 0x4)
4042 || ((i.tm.base_opcode == 0xf6
4043 || (i.tm.base_opcode | 1) == 0xc7)
4044 && i.tm.extension_opcode == 0x0)))
4045 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4046 && i.tm.base_opcode == 0x83
4047 && i.tm.extension_opcode == 0x4)))
4048 || (i.types[0].bitfield.qword
4049 && ((i.reg_operands == 2
4050 && i.op[0].regs == i.op[1].regs
4051 && (i.tm.base_opcode == 0x30
4052 || i.tm.base_opcode == 0x28))
4053 || (i.reg_operands == 1
4054 && i.operands == 1
4055 && i.tm.base_opcode == 0x30)))))
4056 {
4057 /* Optimize: -O:
4058 andq $imm31, %r64 -> andl $imm31, %r32
4059 andq $imm7, %r64 -> andl $imm7, %r32
4060 testq $imm31, %r64 -> testl $imm31, %r32
4061 xorq %r64, %r64 -> xorl %r32, %r32
4062 subq %r64, %r64 -> subl %r32, %r32
4063 movq $imm31, %r64 -> movl $imm31, %r32
4064 movq $imm32, %r64 -> movl $imm32, %r32
4065 */
4066 i.tm.opcode_modifier.norex64 = 1;
4067 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4068 {
4069 /* Handle
4070 movq $imm31, %r64 -> movl $imm31, %r32
4071 movq $imm32, %r64 -> movl $imm32, %r32
4072 */
4073 i.tm.operand_types[0].bitfield.imm32 = 1;
4074 i.tm.operand_types[0].bitfield.imm32s = 0;
4075 i.tm.operand_types[0].bitfield.imm64 = 0;
4076 i.types[0].bitfield.imm32 = 1;
4077 i.types[0].bitfield.imm32s = 0;
4078 i.types[0].bitfield.imm64 = 0;
4079 i.types[1].bitfield.dword = 1;
4080 i.types[1].bitfield.qword = 0;
4081 if ((i.tm.base_opcode | 1) == 0xc7)
4082 {
4083 /* Handle
4084 movq $imm31, %r64 -> movl $imm31, %r32
4085 */
4086 i.tm.base_opcode = 0xb8;
4087 i.tm.extension_opcode = None;
4088 i.tm.opcode_modifier.w = 0;
4089 i.tm.opcode_modifier.modrm = 0;
4090 }
4091 }
4092 }
4093 else if (optimize > 1
4094 && !optimize_for_space
4095 && !is_any_vex_encoding (&i.tm)
4096 && i.reg_operands == 2
4097 && i.op[0].regs == i.op[1].regs
4098 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4099 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4100 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4101 {
4102 /* Optimize: -O2:
4103 andb %rN, %rN -> testb %rN, %rN
4104 andw %rN, %rN -> testw %rN, %rN
4105 andq %rN, %rN -> testq %rN, %rN
4106 orb %rN, %rN -> testb %rN, %rN
4107 orw %rN, %rN -> testw %rN, %rN
4108 orq %rN, %rN -> testq %rN, %rN
4109
4110 and outside of 64-bit mode
4111
4112 andl %rN, %rN -> testl %rN, %rN
4113 orl %rN, %rN -> testl %rN, %rN
4114 */
4115 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4116 }
4117 else if (i.reg_operands == 3
4118 && i.op[0].regs == i.op[1].regs
4119 && !i.types[2].bitfield.xmmword
4120 && (i.tm.opcode_modifier.vex
4121 || ((!i.mask || i.mask->zeroing)
4122 && !i.rounding
4123 && is_evex_encoding (&i.tm)
4124 && (i.vec_encoding != vex_encoding_evex
4125 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4126 || i.tm.cpu_flags.bitfield.cpuavx512vl
4127 || (i.tm.operand_types[2].bitfield.zmmword
4128 && i.types[2].bitfield.ymmword))))
4129 && ((i.tm.base_opcode == 0x55
4130 || i.tm.base_opcode == 0x6655
4131 || i.tm.base_opcode == 0x66df
4132 || i.tm.base_opcode == 0x57
4133 || i.tm.base_opcode == 0x6657
4134 || i.tm.base_opcode == 0x66ef
4135 || i.tm.base_opcode == 0x66f8
4136 || i.tm.base_opcode == 0x66f9
4137 || i.tm.base_opcode == 0x66fa
4138 || i.tm.base_opcode == 0x66fb
4139 || i.tm.base_opcode == 0x42
4140 || i.tm.base_opcode == 0x6642
4141 || i.tm.base_opcode == 0x47
4142 || i.tm.base_opcode == 0x6647)
4143 && i.tm.extension_opcode == None))
4144 {
4145 /* Optimize: -O1:
4146 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4147 vpsubq and vpsubw:
4148 EVEX VOP %zmmM, %zmmM, %zmmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4151 EVEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4153 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandn and vpxor:
4157 VEX VOP %ymmM, %ymmM, %ymmN
4158 -> VEX VOP %xmmM, %xmmM, %xmmN
4159 VOP, one of vpandnd and vpandnq:
4160 EVEX VOP %zmmM, %zmmM, %zmmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4163 EVEX VOP %ymmM, %ymmM, %ymmN
4164 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4165 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4166 VOP, one of vpxord and vpxorq:
4167 EVEX VOP %zmmM, %zmmM, %zmmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4170 EVEX VOP %ymmM, %ymmM, %ymmN
4171 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4172 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4173 VOP, one of kxord and kxorq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kxorw %kM, %kM, %kN
4176 VOP, one of kandnd and kandnq:
4177 VEX VOP %kM, %kM, %kN
4178 -> VEX kandnw %kM, %kM, %kN
4179 */
4180 if (is_evex_encoding (&i.tm))
4181 {
4182 if (i.vec_encoding != vex_encoding_evex)
4183 {
4184 i.tm.opcode_modifier.vex = VEX128;
4185 i.tm.opcode_modifier.vexw = VEXW0;
4186 i.tm.opcode_modifier.evex = 0;
4187 }
4188 else if (optimize > 1)
4189 i.tm.opcode_modifier.evex = EVEX128;
4190 else
4191 return;
4192 }
4193 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4194 {
4195 i.tm.base_opcode &= 0xff;
4196 i.tm.opcode_modifier.vexw = VEXW0;
4197 }
4198 else
4199 i.tm.opcode_modifier.vex = VEX128;
4200
4201 if (i.tm.opcode_modifier.vex)
4202 for (j = 0; j < 3; j++)
4203 {
4204 i.types[j].bitfield.xmmword = 1;
4205 i.types[j].bitfield.ymmword = 0;
4206 }
4207 }
4208 else if (i.vec_encoding != vex_encoding_evex
4209 && !i.types[0].bitfield.zmmword
4210 && !i.types[1].bitfield.zmmword
4211 && !i.mask
4212 && !i.broadcast
4213 && is_evex_encoding (&i.tm)
4214 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4215 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4216 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4217 || (i.tm.base_opcode & ~4) == 0x66db
4218 || (i.tm.base_opcode & ~4) == 0x66eb)
4219 && i.tm.extension_opcode == None)
4220 {
4221 /* Optimize: -O1:
4222 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4223 vmovdqu32 and vmovdqu64:
4224 EVEX VOP %xmmM, %xmmN
4225 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4226 EVEX VOP %ymmM, %ymmN
4227 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4228 EVEX VOP %xmmM, mem
4229 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4230 EVEX VOP %ymmM, mem
4231 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4232 EVEX VOP mem, %xmmN
4233 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4234 EVEX VOP mem, %ymmN
4235 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4236 VOP, one of vpand, vpandn, vpor, vpxor:
4237 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4238 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4239 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4240 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4241 EVEX VOP{d,q} mem, %xmmM, %xmmN
4242 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4243 EVEX VOP{d,q} mem, %ymmM, %ymmN
4244 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4245 */
4246 for (j = 0; j < i.operands; j++)
4247 if (operand_type_check (i.types[j], disp)
4248 && i.op[j].disps->X_op == O_constant)
4249 {
4250 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4251 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4252 bytes, we choose EVEX Disp8 over VEX Disp32. */
4253 int evex_disp8, vex_disp8;
4254 unsigned int memshift = i.memshift;
4255 offsetT n = i.op[j].disps->X_add_number;
4256
4257 evex_disp8 = fits_in_disp8 (n);
4258 i.memshift = 0;
4259 vex_disp8 = fits_in_disp8 (n);
4260 if (evex_disp8 != vex_disp8)
4261 {
4262 i.memshift = memshift;
4263 return;
4264 }
4265
4266 i.types[j].bitfield.disp8 = vex_disp8;
4267 break;
4268 }
4269 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4270 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4271 i.tm.opcode_modifier.vex
4272 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4273 i.tm.opcode_modifier.vexw = VEXW0;
4274 /* VPAND, VPOR, and VPXOR are commutative. */
4275 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4276 i.tm.opcode_modifier.commutative = 1;
4277 i.tm.opcode_modifier.evex = 0;
4278 i.tm.opcode_modifier.masking = 0;
4279 i.tm.opcode_modifier.broadcast = 0;
4280 i.tm.opcode_modifier.disp8memshift = 0;
4281 i.memshift = 0;
4282 if (j < i.operands)
4283 i.types[j].bitfield.disp8
4284 = fits_in_disp8 (i.op[j].disps->X_add_number);
4285 }
4286 }
4287
4288 /* This is the guts of the machine-dependent assembler. LINE points to a
4289 machine dependent instruction. This function is supposed to emit
4290 the frags/bytes it assembles to. */
4291
4292 void
4293 md_assemble (char *line)
4294 {
4295 unsigned int j;
4296 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4297 const insn_template *t;
4298
4299 /* Initialize globals. */
4300 memset (&i, '\0', sizeof (i));
4301 for (j = 0; j < MAX_OPERANDS; j++)
4302 i.reloc[j] = NO_RELOC;
4303 memset (disp_expressions, '\0', sizeof (disp_expressions));
4304 memset (im_expressions, '\0', sizeof (im_expressions));
4305 save_stack_p = save_stack;
4306
4307 /* First parse an instruction mnemonic & call i386_operand for the operands.
4308 We assume that the scrubber has arranged it so that line[0] is the valid
4309 start of a (possibly prefixed) mnemonic. */
4310
4311 line = parse_insn (line, mnemonic);
4312 if (line == NULL)
4313 return;
4314 mnem_suffix = i.suffix;
4315
4316 line = parse_operands (line, mnemonic);
4317 this_operand = -1;
4318 xfree (i.memop1_string);
4319 i.memop1_string = NULL;
4320 if (line == NULL)
4321 return;
4322
4323 /* Now we've parsed the mnemonic into a set of templates, and have the
4324 operands at hand. */
4325
4326 /* All intel opcodes have reversed operands except for "bound" and
4327 "enter". We also don't reverse intersegment "jmp" and "call"
4328 instructions with 2 immediate operands so that the immediate segment
4329 precedes the offset, as it does when in AT&T mode. */
4330 if (intel_syntax
4331 && i.operands > 1
4332 && (strcmp (mnemonic, "bound") != 0)
4333 && (strcmp (mnemonic, "invlpga") != 0)
4334 && !(operand_type_check (i.types[0], imm)
4335 && operand_type_check (i.types[1], imm)))
4336 swap_operands ();
4337
4338 /* The order of the immediates should be reversed
4339 for 2 immediates extrq and insertq instructions */
4340 if (i.imm_operands == 2
4341 && (strcmp (mnemonic, "extrq") == 0
4342 || strcmp (mnemonic, "insertq") == 0))
4343 swap_2_operands (0, 1);
4344
4345 if (i.imm_operands)
4346 optimize_imm ();
4347
4348 /* Don't optimize displacement for movabs since it only takes 64bit
4349 displacement. */
4350 if (i.disp_operands
4351 && i.disp_encoding != disp_encoding_32bit
4352 && (flag_code != CODE_64BIT
4353 || strcmp (mnemonic, "movabs") != 0))
4354 optimize_disp ();
4355
4356 /* Next, we find a template that matches the given insn,
4357 making sure the overlap of the given operands types is consistent
4358 with the template operand types. */
4359
4360 if (!(t = match_template (mnem_suffix)))
4361 return;
4362
4363 if (sse_check != check_none
4364 && !i.tm.opcode_modifier.noavx
4365 && !i.tm.cpu_flags.bitfield.cpuavx
4366 && !i.tm.cpu_flags.bitfield.cpuavx512f
4367 && (i.tm.cpu_flags.bitfield.cpusse
4368 || i.tm.cpu_flags.bitfield.cpusse2
4369 || i.tm.cpu_flags.bitfield.cpusse3
4370 || i.tm.cpu_flags.bitfield.cpussse3
4371 || i.tm.cpu_flags.bitfield.cpusse4_1
4372 || i.tm.cpu_flags.bitfield.cpusse4_2
4373 || i.tm.cpu_flags.bitfield.cpusse4a
4374 || i.tm.cpu_flags.bitfield.cpupclmul
4375 || i.tm.cpu_flags.bitfield.cpuaes
4376 || i.tm.cpu_flags.bitfield.cpusha
4377 || i.tm.cpu_flags.bitfield.cpugfni))
4378 {
4379 (sse_check == check_warning
4380 ? as_warn
4381 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4382 }
4383
4384 /* Zap movzx and movsx suffix. The suffix has been set from
4385 "word ptr" or "byte ptr" on the source operand in Intel syntax
4386 or extracted from mnemonic in AT&T syntax. But we'll use
4387 the destination register to choose the suffix for encoding. */
4388 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4389 {
4390 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4391 there is no suffix, the default will be byte extension. */
4392 if (i.reg_operands != 2
4393 && !i.suffix
4394 && intel_syntax)
4395 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4396
4397 i.suffix = 0;
4398 }
4399
4400 if (i.tm.opcode_modifier.fwait)
4401 if (!add_prefix (FWAIT_OPCODE))
4402 return;
4403
4404 /* Check if REP prefix is OK. */
4405 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4406 {
4407 as_bad (_("invalid instruction `%s' after `%s'"),
4408 i.tm.name, i.rep_prefix);
4409 return;
4410 }
4411
4412 /* Check for lock without a lockable instruction. Destination operand
4413 must be memory unless it is xchg (0x86). */
4414 if (i.prefix[LOCK_PREFIX]
4415 && (!i.tm.opcode_modifier.islockable
4416 || i.mem_operands == 0
4417 || (i.tm.base_opcode != 0x86
4418 && !(i.flags[i.operands - 1] & Operand_Mem))))
4419 {
4420 as_bad (_("expecting lockable instruction after `lock'"));
4421 return;
4422 }
4423
4424 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4425 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4426 {
4427 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4428 return;
4429 }
4430
4431 /* Check if HLE prefix is OK. */
4432 if (i.hle_prefix && !check_hle ())
4433 return;
4434
4435 /* Check BND prefix. */
4436 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4437 as_bad (_("expecting valid branch instruction after `bnd'"));
4438
4439 /* Check NOTRACK prefix. */
4440 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4441 as_bad (_("expecting indirect branch instruction after `notrack'"));
4442
4443 if (i.tm.cpu_flags.bitfield.cpumpx)
4444 {
4445 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4446 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4447 else if (flag_code != CODE_16BIT
4448 ? i.prefix[ADDR_PREFIX]
4449 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4450 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4451 }
4452
4453 /* Insert BND prefix. */
4454 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4455 {
4456 if (!i.prefix[BND_PREFIX])
4457 add_prefix (BND_PREFIX_OPCODE);
4458 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4459 {
4460 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4461 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4462 }
4463 }
4464
4465 /* Check string instruction segment overrides. */
4466 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4467 {
4468 gas_assert (i.mem_operands);
4469 if (!check_string ())
4470 return;
4471 i.disp_operands = 0;
4472 }
4473
4474 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4475 optimize_encoding ();
4476
4477 if (!process_suffix ())
4478 return;
4479
4480 /* Update operand types. */
4481 for (j = 0; j < i.operands; j++)
4482 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4483
4484 /* Make still unresolved immediate matches conform to size of immediate
4485 given in i.suffix. */
4486 if (!finalize_imm ())
4487 return;
4488
4489 if (i.types[0].bitfield.imm1)
4490 i.imm_operands = 0; /* kludge for shift insns. */
4491
4492 /* We only need to check those implicit registers for instructions
4493 with 3 operands or less. */
4494 if (i.operands <= 3)
4495 for (j = 0; j < i.operands; j++)
4496 if (i.types[j].bitfield.instance != InstanceNone
4497 && !i.types[j].bitfield.xmmword)
4498 i.reg_operands--;
4499
4500 /* ImmExt should be processed after SSE2AVX. */
4501 if (!i.tm.opcode_modifier.sse2avx
4502 && i.tm.opcode_modifier.immext)
4503 process_immext ();
4504
4505 /* For insns with operands there are more diddles to do to the opcode. */
4506 if (i.operands)
4507 {
4508 if (!process_operands ())
4509 return;
4510 }
4511 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4512 {
4513 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4514 as_warn (_("translating to `%sp'"), i.tm.name);
4515 }
4516
4517 if (is_any_vex_encoding (&i.tm))
4518 {
4519 if (!cpu_arch_flags.bitfield.cpui286)
4520 {
4521 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4522 i.tm.name);
4523 return;
4524 }
4525
4526 if (i.tm.opcode_modifier.vex)
4527 build_vex_prefix (t);
4528 else
4529 build_evex_prefix ();
4530 }
4531
4532 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4533 instructions may define INT_OPCODE as well, so avoid this corner
4534 case for those instructions that use MODRM. */
4535 if (i.tm.base_opcode == INT_OPCODE
4536 && !i.tm.opcode_modifier.modrm
4537 && i.op[0].imms->X_add_number == 3)
4538 {
4539 i.tm.base_opcode = INT3_OPCODE;
4540 i.imm_operands = 0;
4541 }
4542
4543 if ((i.tm.opcode_modifier.jump == JUMP
4544 || i.tm.opcode_modifier.jump == JUMP_BYTE
4545 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4546 && i.op[0].disps->X_op == O_constant)
4547 {
4548 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4549 the absolute address given by the constant. Since ix86 jumps and
4550 calls are pc relative, we need to generate a reloc. */
4551 i.op[0].disps->X_add_symbol = &abs_symbol;
4552 i.op[0].disps->X_op = O_symbol;
4553 }
4554
4555 if (i.tm.opcode_modifier.rex64)
4556 i.rex |= REX_W;
4557
4558 /* For 8 bit registers we need an empty rex prefix. Also if the
4559 instruction already has a prefix, we need to convert old
4560 registers to new ones. */
4561
4562 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4563 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4565 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4566 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4567 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4568 && i.rex != 0))
4569 {
4570 int x;
4571
4572 i.rex |= REX_OPCODE;
4573 for (x = 0; x < 2; x++)
4574 {
4575 /* Look for 8 bit operand that uses old registers. */
4576 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4577 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4578 {
4579 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4580 /* In case it is "hi" register, give up. */
4581 if (i.op[x].regs->reg_num > 3)
4582 as_bad (_("can't encode register '%s%s' in an "
4583 "instruction requiring REX prefix."),
4584 register_prefix, i.op[x].regs->reg_name);
4585
4586 /* Otherwise it is equivalent to the extended register.
4587 Since the encoding doesn't change this is merely
4588 cosmetic cleanup for debug output. */
4589
4590 i.op[x].regs = i.op[x].regs + 8;
4591 }
4592 }
4593 }
4594
4595 if (i.rex == 0 && i.rex_encoding)
4596 {
4597 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4598 that uses legacy register. If it is "hi" register, don't add
4599 the REX_OPCODE byte. */
4600 int x;
4601 for (x = 0; x < 2; x++)
4602 if (i.types[x].bitfield.class == Reg
4603 && i.types[x].bitfield.byte
4604 && (i.op[x].regs->reg_flags & RegRex64) == 0
4605 && i.op[x].regs->reg_num > 3)
4606 {
4607 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4608 i.rex_encoding = FALSE;
4609 break;
4610 }
4611
4612 if (i.rex_encoding)
4613 i.rex = REX_OPCODE;
4614 }
4615
4616 if (i.rex != 0)
4617 add_prefix (REX_OPCODE | i.rex);
4618
4619 /* We are ready to output the insn. */
4620 output_insn ();
4621
4622 last_insn.seg = now_seg;
4623
4624 if (i.tm.opcode_modifier.isprefix)
4625 {
4626 last_insn.kind = last_insn_prefix;
4627 last_insn.name = i.tm.name;
4628 last_insn.file = as_where (&last_insn.line);
4629 }
4630 else
4631 last_insn.kind = last_insn_other;
4632 }
4633
4634 static char *
4635 parse_insn (char *line, char *mnemonic)
4636 {
4637 char *l = line;
4638 char *token_start = l;
4639 char *mnem_p;
4640 int supported;
4641 const insn_template *t;
4642 char *dot_p = NULL;
4643
4644 while (1)
4645 {
4646 mnem_p = mnemonic;
4647 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4648 {
4649 if (*mnem_p == '.')
4650 dot_p = mnem_p;
4651 mnem_p++;
4652 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4653 {
4654 as_bad (_("no such instruction: `%s'"), token_start);
4655 return NULL;
4656 }
4657 l++;
4658 }
4659 if (!is_space_char (*l)
4660 && *l != END_OF_INSN
4661 && (intel_syntax
4662 || (*l != PREFIX_SEPARATOR
4663 && *l != ',')))
4664 {
4665 as_bad (_("invalid character %s in mnemonic"),
4666 output_invalid (*l));
4667 return NULL;
4668 }
4669 if (token_start == l)
4670 {
4671 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4672 as_bad (_("expecting prefix; got nothing"));
4673 else
4674 as_bad (_("expecting mnemonic; got nothing"));
4675 return NULL;
4676 }
4677
4678 /* Look up instruction (or prefix) via hash table. */
4679 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4680
4681 if (*l != END_OF_INSN
4682 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4683 && current_templates
4684 && current_templates->start->opcode_modifier.isprefix)
4685 {
4686 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4687 {
4688 as_bad ((flag_code != CODE_64BIT
4689 ? _("`%s' is only supported in 64-bit mode")
4690 : _("`%s' is not supported in 64-bit mode")),
4691 current_templates->start->name);
4692 return NULL;
4693 }
4694 /* If we are in 16-bit mode, do not allow addr16 or data16.
4695 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4696 if ((current_templates->start->opcode_modifier.size == SIZE16
4697 || current_templates->start->opcode_modifier.size == SIZE32)
4698 && flag_code != CODE_64BIT
4699 && ((current_templates->start->opcode_modifier.size == SIZE32)
4700 ^ (flag_code == CODE_16BIT)))
4701 {
4702 as_bad (_("redundant %s prefix"),
4703 current_templates->start->name);
4704 return NULL;
4705 }
4706 if (current_templates->start->opcode_length == 0)
4707 {
4708 /* Handle pseudo prefixes. */
4709 switch (current_templates->start->base_opcode)
4710 {
4711 case 0x0:
4712 /* {disp8} */
4713 i.disp_encoding = disp_encoding_8bit;
4714 break;
4715 case 0x1:
4716 /* {disp32} */
4717 i.disp_encoding = disp_encoding_32bit;
4718 break;
4719 case 0x2:
4720 /* {load} */
4721 i.dir_encoding = dir_encoding_load;
4722 break;
4723 case 0x3:
4724 /* {store} */
4725 i.dir_encoding = dir_encoding_store;
4726 break;
4727 case 0x4:
4728 /* {vex} */
4729 i.vec_encoding = vex_encoding_vex;
4730 break;
4731 case 0x5:
4732 /* {vex3} */
4733 i.vec_encoding = vex_encoding_vex3;
4734 break;
4735 case 0x6:
4736 /* {evex} */
4737 i.vec_encoding = vex_encoding_evex;
4738 break;
4739 case 0x7:
4740 /* {rex} */
4741 i.rex_encoding = TRUE;
4742 break;
4743 case 0x8:
4744 /* {nooptimize} */
4745 i.no_optimize = TRUE;
4746 break;
4747 default:
4748 abort ();
4749 }
4750 }
4751 else
4752 {
4753 /* Add prefix, checking for repeated prefixes. */
4754 switch (add_prefix (current_templates->start->base_opcode))
4755 {
4756 case PREFIX_EXIST:
4757 return NULL;
4758 case PREFIX_DS:
4759 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4760 i.notrack_prefix = current_templates->start->name;
4761 break;
4762 case PREFIX_REP:
4763 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4764 i.hle_prefix = current_templates->start->name;
4765 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4766 i.bnd_prefix = current_templates->start->name;
4767 else
4768 i.rep_prefix = current_templates->start->name;
4769 break;
4770 default:
4771 break;
4772 }
4773 }
4774 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4775 token_start = ++l;
4776 }
4777 else
4778 break;
4779 }
4780
4781 if (!current_templates)
4782 {
4783 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4784 Check if we should swap operand or force 32bit displacement in
4785 encoding. */
4786 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4787 i.dir_encoding = dir_encoding_swap;
4788 else if (mnem_p - 3 == dot_p
4789 && dot_p[1] == 'd'
4790 && dot_p[2] == '8')
4791 i.disp_encoding = disp_encoding_8bit;
4792 else if (mnem_p - 4 == dot_p
4793 && dot_p[1] == 'd'
4794 && dot_p[2] == '3'
4795 && dot_p[3] == '2')
4796 i.disp_encoding = disp_encoding_32bit;
4797 else
4798 goto check_suffix;
4799 mnem_p = dot_p;
4800 *dot_p = '\0';
4801 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4802 }
4803
4804 if (!current_templates)
4805 {
4806 check_suffix:
4807 if (mnem_p > mnemonic)
4808 {
4809 /* See if we can get a match by trimming off a suffix. */
4810 switch (mnem_p[-1])
4811 {
4812 case WORD_MNEM_SUFFIX:
4813 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4814 i.suffix = SHORT_MNEM_SUFFIX;
4815 else
4816 /* Fall through. */
4817 case BYTE_MNEM_SUFFIX:
4818 case QWORD_MNEM_SUFFIX:
4819 i.suffix = mnem_p[-1];
4820 mnem_p[-1] = '\0';
4821 current_templates = (const templates *) hash_find (op_hash,
4822 mnemonic);
4823 break;
4824 case SHORT_MNEM_SUFFIX:
4825 case LONG_MNEM_SUFFIX:
4826 if (!intel_syntax)
4827 {
4828 i.suffix = mnem_p[-1];
4829 mnem_p[-1] = '\0';
4830 current_templates = (const templates *) hash_find (op_hash,
4831 mnemonic);
4832 }
4833 break;
4834
4835 /* Intel Syntax. */
4836 case 'd':
4837 if (intel_syntax)
4838 {
4839 if (intel_float_operand (mnemonic) == 1)
4840 i.suffix = SHORT_MNEM_SUFFIX;
4841 else
4842 i.suffix = LONG_MNEM_SUFFIX;
4843 mnem_p[-1] = '\0';
4844 current_templates = (const templates *) hash_find (op_hash,
4845 mnemonic);
4846 }
4847 break;
4848 }
4849 }
4850
4851 if (!current_templates)
4852 {
4853 as_bad (_("no such instruction: `%s'"), token_start);
4854 return NULL;
4855 }
4856 }
4857
4858 if (current_templates->start->opcode_modifier.jump == JUMP
4859 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4860 {
4861 /* Check for a branch hint. We allow ",pt" and ",pn" for
4862 predict taken and predict not taken respectively.
4863 I'm not sure that branch hints actually do anything on loop
4864 and jcxz insns (JumpByte) for current Pentium4 chips. They
4865 may work in the future and it doesn't hurt to accept them
4866 now. */
4867 if (l[0] == ',' && l[1] == 'p')
4868 {
4869 if (l[2] == 't')
4870 {
4871 if (!add_prefix (DS_PREFIX_OPCODE))
4872 return NULL;
4873 l += 3;
4874 }
4875 else if (l[2] == 'n')
4876 {
4877 if (!add_prefix (CS_PREFIX_OPCODE))
4878 return NULL;
4879 l += 3;
4880 }
4881 }
4882 }
4883 /* Any other comma loses. */
4884 if (*l == ',')
4885 {
4886 as_bad (_("invalid character %s in mnemonic"),
4887 output_invalid (*l));
4888 return NULL;
4889 }
4890
4891 /* Check if instruction is supported on specified architecture. */
4892 supported = 0;
4893 for (t = current_templates->start; t < current_templates->end; ++t)
4894 {
4895 supported |= cpu_flags_match (t);
4896 if (supported == CPU_FLAGS_PERFECT_MATCH)
4897 {
4898 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4899 as_warn (_("use .code16 to ensure correct addressing mode"));
4900
4901 return l;
4902 }
4903 }
4904
4905 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4906 as_bad (flag_code == CODE_64BIT
4907 ? _("`%s' is not supported in 64-bit mode")
4908 : _("`%s' is only supported in 64-bit mode"),
4909 current_templates->start->name);
4910 else
4911 as_bad (_("`%s' is not supported on `%s%s'"),
4912 current_templates->start->name,
4913 cpu_arch_name ? cpu_arch_name : default_arch,
4914 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4915
4916 return NULL;
4917 }
4918
4919 static char *
4920 parse_operands (char *l, const char *mnemonic)
4921 {
4922 char *token_start;
4923
4924 /* 1 if operand is pending after ','. */
4925 unsigned int expecting_operand = 0;
4926
4927 /* Non-zero if operand parens not balanced. */
4928 unsigned int paren_not_balanced;
4929
4930 while (*l != END_OF_INSN)
4931 {
4932 /* Skip optional white space before operand. */
4933 if (is_space_char (*l))
4934 ++l;
4935 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4936 {
4937 as_bad (_("invalid character %s before operand %d"),
4938 output_invalid (*l),
4939 i.operands + 1);
4940 return NULL;
4941 }
4942 token_start = l; /* After white space. */
4943 paren_not_balanced = 0;
4944 while (paren_not_balanced || *l != ',')
4945 {
4946 if (*l == END_OF_INSN)
4947 {
4948 if (paren_not_balanced)
4949 {
4950 if (!intel_syntax)
4951 as_bad (_("unbalanced parenthesis in operand %d."),
4952 i.operands + 1);
4953 else
4954 as_bad (_("unbalanced brackets in operand %d."),
4955 i.operands + 1);
4956 return NULL;
4957 }
4958 else
4959 break; /* we are done */
4960 }
4961 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4962 {
4963 as_bad (_("invalid character %s in operand %d"),
4964 output_invalid (*l),
4965 i.operands + 1);
4966 return NULL;
4967 }
4968 if (!intel_syntax)
4969 {
4970 if (*l == '(')
4971 ++paren_not_balanced;
4972 if (*l == ')')
4973 --paren_not_balanced;
4974 }
4975 else
4976 {
4977 if (*l == '[')
4978 ++paren_not_balanced;
4979 if (*l == ']')
4980 --paren_not_balanced;
4981 }
4982 l++;
4983 }
4984 if (l != token_start)
4985 { /* Yes, we've read in another operand. */
4986 unsigned int operand_ok;
4987 this_operand = i.operands++;
4988 if (i.operands > MAX_OPERANDS)
4989 {
4990 as_bad (_("spurious operands; (%d operands/instruction max)"),
4991 MAX_OPERANDS);
4992 return NULL;
4993 }
4994 i.types[this_operand].bitfield.unspecified = 1;
4995 /* Now parse operand adding info to 'i' as we go along. */
4996 END_STRING_AND_SAVE (l);
4997
4998 if (i.mem_operands > 1)
4999 {
5000 as_bad (_("too many memory references for `%s'"),
5001 mnemonic);
5002 return 0;
5003 }
5004
5005 if (intel_syntax)
5006 operand_ok =
5007 i386_intel_operand (token_start,
5008 intel_float_operand (mnemonic));
5009 else
5010 operand_ok = i386_att_operand (token_start);
5011
5012 RESTORE_END_STRING (l);
5013 if (!operand_ok)
5014 return NULL;
5015 }
5016 else
5017 {
5018 if (expecting_operand)
5019 {
5020 expecting_operand_after_comma:
5021 as_bad (_("expecting operand after ','; got nothing"));
5022 return NULL;
5023 }
5024 if (*l == ',')
5025 {
5026 as_bad (_("expecting operand before ','; got nothing"));
5027 return NULL;
5028 }
5029 }
5030
5031 /* Now *l must be either ',' or END_OF_INSN. */
5032 if (*l == ',')
5033 {
5034 if (*++l == END_OF_INSN)
5035 {
5036 /* Just skip it, if it's \n complain. */
5037 goto expecting_operand_after_comma;
5038 }
5039 expecting_operand = 1;
5040 }
5041 }
5042 return l;
5043 }
5044
5045 static void
5046 swap_2_operands (int xchg1, int xchg2)
5047 {
5048 union i386_op temp_op;
5049 i386_operand_type temp_type;
5050 unsigned int temp_flags;
5051 enum bfd_reloc_code_real temp_reloc;
5052
5053 temp_type = i.types[xchg2];
5054 i.types[xchg2] = i.types[xchg1];
5055 i.types[xchg1] = temp_type;
5056
5057 temp_flags = i.flags[xchg2];
5058 i.flags[xchg2] = i.flags[xchg1];
5059 i.flags[xchg1] = temp_flags;
5060
5061 temp_op = i.op[xchg2];
5062 i.op[xchg2] = i.op[xchg1];
5063 i.op[xchg1] = temp_op;
5064
5065 temp_reloc = i.reloc[xchg2];
5066 i.reloc[xchg2] = i.reloc[xchg1];
5067 i.reloc[xchg1] = temp_reloc;
5068
5069 if (i.mask)
5070 {
5071 if (i.mask->operand == xchg1)
5072 i.mask->operand = xchg2;
5073 else if (i.mask->operand == xchg2)
5074 i.mask->operand = xchg1;
5075 }
5076 if (i.broadcast)
5077 {
5078 if (i.broadcast->operand == xchg1)
5079 i.broadcast->operand = xchg2;
5080 else if (i.broadcast->operand == xchg2)
5081 i.broadcast->operand = xchg1;
5082 }
5083 if (i.rounding)
5084 {
5085 if (i.rounding->operand == xchg1)
5086 i.rounding->operand = xchg2;
5087 else if (i.rounding->operand == xchg2)
5088 i.rounding->operand = xchg1;
5089 }
5090 }
5091
5092 static void
5093 swap_operands (void)
5094 {
5095 switch (i.operands)
5096 {
5097 case 5:
5098 case 4:
5099 swap_2_operands (1, i.operands - 2);
5100 /* Fall through. */
5101 case 3:
5102 case 2:
5103 swap_2_operands (0, i.operands - 1);
5104 break;
5105 default:
5106 abort ();
5107 }
5108
5109 if (i.mem_operands == 2)
5110 {
5111 const seg_entry *temp_seg;
5112 temp_seg = i.seg[0];
5113 i.seg[0] = i.seg[1];
5114 i.seg[1] = temp_seg;
5115 }
5116 }
5117
5118 /* Try to ensure constant immediates are represented in the smallest
5119 opcode possible. */
5120 static void
5121 optimize_imm (void)
5122 {
5123 char guess_suffix = 0;
5124 int op;
5125
5126 if (i.suffix)
5127 guess_suffix = i.suffix;
5128 else if (i.reg_operands)
5129 {
5130 /* Figure out a suffix from the last register operand specified.
5131 We can't do this properly yet, i.e. excluding special register
5132 instances, but the following works for instructions with
5133 immediates. In any case, we can't set i.suffix yet. */
5134 for (op = i.operands; --op >= 0;)
5135 if (i.types[op].bitfield.class != Reg)
5136 continue;
5137 else if (i.types[op].bitfield.byte)
5138 {
5139 guess_suffix = BYTE_MNEM_SUFFIX;
5140 break;
5141 }
5142 else if (i.types[op].bitfield.word)
5143 {
5144 guess_suffix = WORD_MNEM_SUFFIX;
5145 break;
5146 }
5147 else if (i.types[op].bitfield.dword)
5148 {
5149 guess_suffix = LONG_MNEM_SUFFIX;
5150 break;
5151 }
5152 else if (i.types[op].bitfield.qword)
5153 {
5154 guess_suffix = QWORD_MNEM_SUFFIX;
5155 break;
5156 }
5157 }
5158 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5159 guess_suffix = WORD_MNEM_SUFFIX;
5160
5161 for (op = i.operands; --op >= 0;)
5162 if (operand_type_check (i.types[op], imm))
5163 {
5164 switch (i.op[op].imms->X_op)
5165 {
5166 case O_constant:
5167 /* If a suffix is given, this operand may be shortened. */
5168 switch (guess_suffix)
5169 {
5170 case LONG_MNEM_SUFFIX:
5171 i.types[op].bitfield.imm32 = 1;
5172 i.types[op].bitfield.imm64 = 1;
5173 break;
5174 case WORD_MNEM_SUFFIX:
5175 i.types[op].bitfield.imm16 = 1;
5176 i.types[op].bitfield.imm32 = 1;
5177 i.types[op].bitfield.imm32s = 1;
5178 i.types[op].bitfield.imm64 = 1;
5179 break;
5180 case BYTE_MNEM_SUFFIX:
5181 i.types[op].bitfield.imm8 = 1;
5182 i.types[op].bitfield.imm8s = 1;
5183 i.types[op].bitfield.imm16 = 1;
5184 i.types[op].bitfield.imm32 = 1;
5185 i.types[op].bitfield.imm32s = 1;
5186 i.types[op].bitfield.imm64 = 1;
5187 break;
5188 }
5189
5190 /* If this operand is at most 16 bits, convert it
5191 to a signed 16 bit number before trying to see
5192 whether it will fit in an even smaller size.
5193 This allows a 16-bit operand such as $0xffe0 to
5194 be recognised as within Imm8S range. */
5195 if ((i.types[op].bitfield.imm16)
5196 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5197 {
5198 i.op[op].imms->X_add_number =
5199 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5200 }
5201 #ifdef BFD64
5202 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5203 if ((i.types[op].bitfield.imm32)
5204 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5205 == 0))
5206 {
5207 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5208 ^ ((offsetT) 1 << 31))
5209 - ((offsetT) 1 << 31));
5210 }
5211 #endif
5212 i.types[op]
5213 = operand_type_or (i.types[op],
5214 smallest_imm_type (i.op[op].imms->X_add_number));
5215
5216 /* We must avoid matching of Imm32 templates when 64bit
5217 only immediate is available. */
5218 if (guess_suffix == QWORD_MNEM_SUFFIX)
5219 i.types[op].bitfield.imm32 = 0;
5220 break;
5221
5222 case O_absent:
5223 case O_register:
5224 abort ();
5225
5226 /* Symbols and expressions. */
5227 default:
5228 /* Convert symbolic operand to proper sizes for matching, but don't
5229 prevent matching a set of insns that only supports sizes other
5230 than those matching the insn suffix. */
5231 {
5232 i386_operand_type mask, allowed;
5233 const insn_template *t;
5234
5235 operand_type_set (&mask, 0);
5236 operand_type_set (&allowed, 0);
5237
5238 for (t = current_templates->start;
5239 t < current_templates->end;
5240 ++t)
5241 {
5242 allowed = operand_type_or (allowed, t->operand_types[op]);
5243 allowed = operand_type_and (allowed, anyimm);
5244 }
5245 switch (guess_suffix)
5246 {
5247 case QWORD_MNEM_SUFFIX:
5248 mask.bitfield.imm64 = 1;
5249 mask.bitfield.imm32s = 1;
5250 break;
5251 case LONG_MNEM_SUFFIX:
5252 mask.bitfield.imm32 = 1;
5253 break;
5254 case WORD_MNEM_SUFFIX:
5255 mask.bitfield.imm16 = 1;
5256 break;
5257 case BYTE_MNEM_SUFFIX:
5258 mask.bitfield.imm8 = 1;
5259 break;
5260 default:
5261 break;
5262 }
5263 allowed = operand_type_and (mask, allowed);
5264 if (!operand_type_all_zero (&allowed))
5265 i.types[op] = operand_type_and (i.types[op], mask);
5266 }
5267 break;
5268 }
5269 }
5270 }
5271
5272 /* Try to use the smallest displacement type too. */
5273 static void
5274 optimize_disp (void)
5275 {
5276 int op;
5277
5278 for (op = i.operands; --op >= 0;)
5279 if (operand_type_check (i.types[op], disp))
5280 {
5281 if (i.op[op].disps->X_op == O_constant)
5282 {
5283 offsetT op_disp = i.op[op].disps->X_add_number;
5284
5285 if (i.types[op].bitfield.disp16
5286 && (op_disp & ~(offsetT) 0xffff) == 0)
5287 {
5288 /* If this operand is at most 16 bits, convert
5289 to a signed 16 bit number and don't use 64bit
5290 displacement. */
5291 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5292 i.types[op].bitfield.disp64 = 0;
5293 }
5294 #ifdef BFD64
5295 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5296 if (i.types[op].bitfield.disp32
5297 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5298 {
5299 /* If this operand is at most 32 bits, convert
5300 to a signed 32 bit number and don't use 64bit
5301 displacement. */
5302 op_disp &= (((offsetT) 2 << 31) - 1);
5303 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5304 i.types[op].bitfield.disp64 = 0;
5305 }
5306 #endif
5307 if (!op_disp && i.types[op].bitfield.baseindex)
5308 {
5309 i.types[op].bitfield.disp8 = 0;
5310 i.types[op].bitfield.disp16 = 0;
5311 i.types[op].bitfield.disp32 = 0;
5312 i.types[op].bitfield.disp32s = 0;
5313 i.types[op].bitfield.disp64 = 0;
5314 i.op[op].disps = 0;
5315 i.disp_operands--;
5316 }
5317 else if (flag_code == CODE_64BIT)
5318 {
5319 if (fits_in_signed_long (op_disp))
5320 {
5321 i.types[op].bitfield.disp64 = 0;
5322 i.types[op].bitfield.disp32s = 1;
5323 }
5324 if (i.prefix[ADDR_PREFIX]
5325 && fits_in_unsigned_long (op_disp))
5326 i.types[op].bitfield.disp32 = 1;
5327 }
5328 if ((i.types[op].bitfield.disp32
5329 || i.types[op].bitfield.disp32s
5330 || i.types[op].bitfield.disp16)
5331 && fits_in_disp8 (op_disp))
5332 i.types[op].bitfield.disp8 = 1;
5333 }
5334 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5335 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5336 {
5337 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5338 i.op[op].disps, 0, i.reloc[op]);
5339 i.types[op].bitfield.disp8 = 0;
5340 i.types[op].bitfield.disp16 = 0;
5341 i.types[op].bitfield.disp32 = 0;
5342 i.types[op].bitfield.disp32s = 0;
5343 i.types[op].bitfield.disp64 = 0;
5344 }
5345 else
5346 /* We only support 64bit displacement on constants. */
5347 i.types[op].bitfield.disp64 = 0;
5348 }
5349 }
5350
5351 /* Return 1 if there is a match in broadcast bytes between operand
5352 GIVEN and instruction template T. */
5353
5354 static INLINE int
5355 match_broadcast_size (const insn_template *t, unsigned int given)
5356 {
5357 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5358 && i.types[given].bitfield.byte)
5359 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5360 && i.types[given].bitfield.word)
5361 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5362 && i.types[given].bitfield.dword)
5363 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5364 && i.types[given].bitfield.qword));
5365 }
5366
5367 /* Check if operands are valid for the instruction. */
5368
5369 static int
5370 check_VecOperands (const insn_template *t)
5371 {
5372 unsigned int op;
5373 i386_cpu_flags cpu;
5374
5375 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5376 any one operand are implicity requiring AVX512VL support if the actual
5377 operand size is YMMword or XMMword. Since this function runs after
5378 template matching, there's no need to check for YMMword/XMMword in
5379 the template. */
5380 cpu = cpu_flags_and (t->cpu_flags, avx512);
5381 if (!cpu_flags_all_zero (&cpu)
5382 && !t->cpu_flags.bitfield.cpuavx512vl
5383 && !cpu_arch_flags.bitfield.cpuavx512vl)
5384 {
5385 for (op = 0; op < t->operands; ++op)
5386 {
5387 if (t->operand_types[op].bitfield.zmmword
5388 && (i.types[op].bitfield.ymmword
5389 || i.types[op].bitfield.xmmword))
5390 {
5391 i.error = unsupported;
5392 return 1;
5393 }
5394 }
5395 }
5396
5397 /* Without VSIB byte, we can't have a vector register for index. */
5398 if (!t->opcode_modifier.vecsib
5399 && i.index_reg
5400 && (i.index_reg->reg_type.bitfield.xmmword
5401 || i.index_reg->reg_type.bitfield.ymmword
5402 || i.index_reg->reg_type.bitfield.zmmword))
5403 {
5404 i.error = unsupported_vector_index_register;
5405 return 1;
5406 }
5407
5408 /* Check if default mask is allowed. */
5409 if (t->opcode_modifier.nodefmask
5410 && (!i.mask || i.mask->mask->reg_num == 0))
5411 {
5412 i.error = no_default_mask;
5413 return 1;
5414 }
5415
5416 /* For VSIB byte, we need a vector register for index, and all vector
5417 registers must be distinct. */
5418 if (t->opcode_modifier.vecsib)
5419 {
5420 if (!i.index_reg
5421 || !((t->opcode_modifier.vecsib == VecSIB128
5422 && i.index_reg->reg_type.bitfield.xmmword)
5423 || (t->opcode_modifier.vecsib == VecSIB256
5424 && i.index_reg->reg_type.bitfield.ymmword)
5425 || (t->opcode_modifier.vecsib == VecSIB512
5426 && i.index_reg->reg_type.bitfield.zmmword)))
5427 {
5428 i.error = invalid_vsib_address;
5429 return 1;
5430 }
5431
5432 gas_assert (i.reg_operands == 2 || i.mask);
5433 if (i.reg_operands == 2 && !i.mask)
5434 {
5435 gas_assert (i.types[0].bitfield.class == RegSIMD);
5436 gas_assert (i.types[0].bitfield.xmmword
5437 || i.types[0].bitfield.ymmword);
5438 gas_assert (i.types[2].bitfield.class == RegSIMD);
5439 gas_assert (i.types[2].bitfield.xmmword
5440 || i.types[2].bitfield.ymmword);
5441 if (operand_check == check_none)
5442 return 0;
5443 if (register_number (i.op[0].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[2].regs)
5446 != register_number (i.index_reg)
5447 && register_number (i.op[0].regs)
5448 != register_number (i.op[2].regs))
5449 return 0;
5450 if (operand_check == check_error)
5451 {
5452 i.error = invalid_vector_register_set;
5453 return 1;
5454 }
5455 as_warn (_("mask, index, and destination registers should be distinct"));
5456 }
5457 else if (i.reg_operands == 1 && i.mask)
5458 {
5459 if (i.types[1].bitfield.class == RegSIMD
5460 && (i.types[1].bitfield.xmmword
5461 || i.types[1].bitfield.ymmword
5462 || i.types[1].bitfield.zmmword)
5463 && (register_number (i.op[1].regs)
5464 == register_number (i.index_reg)))
5465 {
5466 if (operand_check == check_error)
5467 {
5468 i.error = invalid_vector_register_set;
5469 return 1;
5470 }
5471 if (operand_check != check_none)
5472 as_warn (_("index and destination registers should be distinct"));
5473 }
5474 }
5475 }
5476
5477 /* Check if broadcast is supported by the instruction and is applied
5478 to the memory operand. */
5479 if (i.broadcast)
5480 {
5481 i386_operand_type type, overlap;
5482
5483 /* Check if specified broadcast is supported in this instruction,
5484 and its broadcast bytes match the memory operand. */
5485 op = i.broadcast->operand;
5486 if (!t->opcode_modifier.broadcast
5487 || !(i.flags[op] & Operand_Mem)
5488 || (!i.types[op].bitfield.unspecified
5489 && !match_broadcast_size (t, op)))
5490 {
5491 bad_broadcast:
5492 i.error = unsupported_broadcast;
5493 return 1;
5494 }
5495
5496 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5497 * i.broadcast->type);
5498 operand_type_set (&type, 0);
5499 switch (i.broadcast->bytes)
5500 {
5501 case 2:
5502 type.bitfield.word = 1;
5503 break;
5504 case 4:
5505 type.bitfield.dword = 1;
5506 break;
5507 case 8:
5508 type.bitfield.qword = 1;
5509 break;
5510 case 16:
5511 type.bitfield.xmmword = 1;
5512 break;
5513 case 32:
5514 type.bitfield.ymmword = 1;
5515 break;
5516 case 64:
5517 type.bitfield.zmmword = 1;
5518 break;
5519 default:
5520 goto bad_broadcast;
5521 }
5522
5523 overlap = operand_type_and (type, t->operand_types[op]);
5524 if (operand_type_all_zero (&overlap))
5525 goto bad_broadcast;
5526
5527 if (t->opcode_modifier.checkregsize)
5528 {
5529 unsigned int j;
5530
5531 type.bitfield.baseindex = 1;
5532 for (j = 0; j < i.operands; ++j)
5533 {
5534 if (j != op
5535 && !operand_type_register_match(i.types[j],
5536 t->operand_types[j],
5537 type,
5538 t->operand_types[op]))
5539 goto bad_broadcast;
5540 }
5541 }
5542 }
5543 /* If broadcast is supported in this instruction, we need to check if
5544 operand of one-element size isn't specified without broadcast. */
5545 else if (t->opcode_modifier.broadcast && i.mem_operands)
5546 {
5547 /* Find memory operand. */
5548 for (op = 0; op < i.operands; op++)
5549 if (i.flags[op] & Operand_Mem)
5550 break;
5551 gas_assert (op < i.operands);
5552 /* Check size of the memory operand. */
5553 if (match_broadcast_size (t, op))
5554 {
5555 i.error = broadcast_needed;
5556 return 1;
5557 }
5558 }
5559 else
5560 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5561
5562 /* Check if requested masking is supported. */
5563 if (i.mask)
5564 {
5565 switch (t->opcode_modifier.masking)
5566 {
5567 case BOTH_MASKING:
5568 break;
5569 case MERGING_MASKING:
5570 if (i.mask->zeroing)
5571 {
5572 case 0:
5573 i.error = unsupported_masking;
5574 return 1;
5575 }
5576 break;
5577 case DYNAMIC_MASKING:
5578 /* Memory destinations allow only merging masking. */
5579 if (i.mask->zeroing && i.mem_operands)
5580 {
5581 /* Find memory operand. */
5582 for (op = 0; op < i.operands; op++)
5583 if (i.flags[op] & Operand_Mem)
5584 break;
5585 gas_assert (op < i.operands);
5586 if (op == i.operands - 1)
5587 {
5588 i.error = unsupported_masking;
5589 return 1;
5590 }
5591 }
5592 break;
5593 default:
5594 abort ();
5595 }
5596 }
5597
5598 /* Check if masking is applied to dest operand. */
5599 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5600 {
5601 i.error = mask_not_on_destination;
5602 return 1;
5603 }
5604
5605 /* Check RC/SAE. */
5606 if (i.rounding)
5607 {
5608 if (!t->opcode_modifier.sae
5609 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5610 {
5611 i.error = unsupported_rc_sae;
5612 return 1;
5613 }
5614 /* If the instruction has several immediate operands and one of
5615 them is rounding, the rounding operand should be the last
5616 immediate operand. */
5617 if (i.imm_operands > 1
5618 && i.rounding->operand != (int) (i.imm_operands - 1))
5619 {
5620 i.error = rc_sae_operand_not_last_imm;
5621 return 1;
5622 }
5623 }
5624
5625 /* Check vector Disp8 operand. */
5626 if (t->opcode_modifier.disp8memshift
5627 && i.disp_encoding != disp_encoding_32bit)
5628 {
5629 if (i.broadcast)
5630 i.memshift = t->opcode_modifier.broadcast - 1;
5631 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5632 i.memshift = t->opcode_modifier.disp8memshift;
5633 else
5634 {
5635 const i386_operand_type *type = NULL;
5636
5637 i.memshift = 0;
5638 for (op = 0; op < i.operands; op++)
5639 if (i.flags[op] & Operand_Mem)
5640 {
5641 if (t->opcode_modifier.evex == EVEXLIG)
5642 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5643 else if (t->operand_types[op].bitfield.xmmword
5644 + t->operand_types[op].bitfield.ymmword
5645 + t->operand_types[op].bitfield.zmmword <= 1)
5646 type = &t->operand_types[op];
5647 else if (!i.types[op].bitfield.unspecified)
5648 type = &i.types[op];
5649 }
5650 else if (i.types[op].bitfield.class == RegSIMD
5651 && t->opcode_modifier.evex != EVEXLIG)
5652 {
5653 if (i.types[op].bitfield.zmmword)
5654 i.memshift = 6;
5655 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5656 i.memshift = 5;
5657 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5658 i.memshift = 4;
5659 }
5660
5661 if (type)
5662 {
5663 if (type->bitfield.zmmword)
5664 i.memshift = 6;
5665 else if (type->bitfield.ymmword)
5666 i.memshift = 5;
5667 else if (type->bitfield.xmmword)
5668 i.memshift = 4;
5669 }
5670
5671 /* For the check in fits_in_disp8(). */
5672 if (i.memshift == 0)
5673 i.memshift = -1;
5674 }
5675
5676 for (op = 0; op < i.operands; op++)
5677 if (operand_type_check (i.types[op], disp)
5678 && i.op[op].disps->X_op == O_constant)
5679 {
5680 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5681 {
5682 i.types[op].bitfield.disp8 = 1;
5683 return 0;
5684 }
5685 i.types[op].bitfield.disp8 = 0;
5686 }
5687 }
5688
5689 i.memshift = 0;
5690
5691 return 0;
5692 }
5693
5694 /* Check if operands are valid for the instruction. Update VEX
5695 operand types. */
5696
5697 static int
5698 VEX_check_operands (const insn_template *t)
5699 {
5700 if (i.vec_encoding == vex_encoding_evex)
5701 {
5702 /* This instruction must be encoded with EVEX prefix. */
5703 if (!is_evex_encoding (t))
5704 {
5705 i.error = unsupported;
5706 return 1;
5707 }
5708 return 0;
5709 }
5710
5711 if (!t->opcode_modifier.vex)
5712 {
5713 /* This instruction template doesn't have VEX prefix. */
5714 if (i.vec_encoding != vex_encoding_default)
5715 {
5716 i.error = unsupported;
5717 return 1;
5718 }
5719 return 0;
5720 }
5721
5722 /* Check the special Imm4 cases; must be the first operand. */
5723 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5724 {
5725 if (i.op[0].imms->X_op != O_constant
5726 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5727 {
5728 i.error = bad_imm4;
5729 return 1;
5730 }
5731
5732 /* Turn off Imm<N> so that update_imm won't complain. */
5733 operand_type_set (&i.types[0], 0);
5734 }
5735
5736 return 0;
5737 }
5738
5739 static const insn_template *
5740 match_template (char mnem_suffix)
5741 {
5742 /* Points to template once we've found it. */
5743 const insn_template *t;
5744 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5745 i386_operand_type overlap4;
5746 unsigned int found_reverse_match;
5747 i386_opcode_modifier suffix_check;
5748 i386_operand_type operand_types [MAX_OPERANDS];
5749 int addr_prefix_disp;
5750 unsigned int j, size_match, check_register;
5751 enum i386_error specific_error = 0;
5752
5753 #if MAX_OPERANDS != 5
5754 # error "MAX_OPERANDS must be 5."
5755 #endif
5756
5757 found_reverse_match = 0;
5758 addr_prefix_disp = -1;
5759
5760 /* Prepare for mnemonic suffix check. */
5761 memset (&suffix_check, 0, sizeof (suffix_check));
5762 switch (mnem_suffix)
5763 {
5764 case BYTE_MNEM_SUFFIX:
5765 suffix_check.no_bsuf = 1;
5766 break;
5767 case WORD_MNEM_SUFFIX:
5768 suffix_check.no_wsuf = 1;
5769 break;
5770 case SHORT_MNEM_SUFFIX:
5771 suffix_check.no_ssuf = 1;
5772 break;
5773 case LONG_MNEM_SUFFIX:
5774 suffix_check.no_lsuf = 1;
5775 break;
5776 case QWORD_MNEM_SUFFIX:
5777 suffix_check.no_qsuf = 1;
5778 break;
5779 default:
5780 /* NB: In Intel syntax, normally we can check for memory operand
5781 size when there is no mnemonic suffix. But jmp and call have
5782 2 different encodings with Dword memory operand size, one with
5783 No_ldSuf and the other without. i.suffix is set to
5784 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5785 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5786 suffix_check.no_ldsuf = 1;
5787 }
5788
5789 /* Must have right number of operands. */
5790 i.error = number_of_operands_mismatch;
5791
5792 for (t = current_templates->start; t < current_templates->end; t++)
5793 {
5794 addr_prefix_disp = -1;
5795 found_reverse_match = 0;
5796
5797 if (i.operands != t->operands)
5798 continue;
5799
5800 /* Check processor support. */
5801 i.error = unsupported;
5802 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5803 continue;
5804
5805 /* Check AT&T mnemonic. */
5806 i.error = unsupported_with_intel_mnemonic;
5807 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5808 continue;
5809
5810 /* Check AT&T/Intel syntax. */
5811 i.error = unsupported_syntax;
5812 if ((intel_syntax && t->opcode_modifier.attsyntax)
5813 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5814 continue;
5815
5816 /* Check Intel64/AMD64 ISA. */
5817 switch (isa64)
5818 {
5819 default:
5820 /* Default: Don't accept Intel64. */
5821 if (t->opcode_modifier.isa64 == INTEL64)
5822 continue;
5823 break;
5824 case amd64:
5825 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5826 if (t->opcode_modifier.isa64 >= INTEL64)
5827 continue;
5828 break;
5829 case intel64:
5830 /* -mintel64: Don't accept AMD64. */
5831 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5832 continue;
5833 break;
5834 }
5835
5836 /* Check the suffix. */
5837 i.error = invalid_instruction_suffix;
5838 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5839 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5840 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5841 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5842 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5843 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5844 continue;
5845
5846 size_match = operand_size_match (t);
5847 if (!size_match)
5848 continue;
5849
5850 /* This is intentionally not
5851
5852 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5853
5854 as the case of a missing * on the operand is accepted (perhaps with
5855 a warning, issued further down). */
5856 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5857 {
5858 i.error = operand_type_mismatch;
5859 continue;
5860 }
5861
5862 for (j = 0; j < MAX_OPERANDS; j++)
5863 operand_types[j] = t->operand_types[j];
5864
5865 /* In general, don't allow 64-bit operands in 32-bit mode. */
5866 if (i.suffix == QWORD_MNEM_SUFFIX
5867 && flag_code != CODE_64BIT
5868 && (intel_syntax
5869 ? (!t->opcode_modifier.ignoresize
5870 && !t->opcode_modifier.broadcast
5871 && !intel_float_operand (t->name))
5872 : intel_float_operand (t->name) != 2)
5873 && ((operand_types[0].bitfield.class != RegMMX
5874 && operand_types[0].bitfield.class != RegSIMD)
5875 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5876 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5877 && (t->base_opcode != 0x0fc7
5878 || t->extension_opcode != 1 /* cmpxchg8b */))
5879 continue;
5880
5881 /* In general, don't allow 32-bit operands on pre-386. */
5882 else if (i.suffix == LONG_MNEM_SUFFIX
5883 && !cpu_arch_flags.bitfield.cpui386
5884 && (intel_syntax
5885 ? (!t->opcode_modifier.ignoresize
5886 && !intel_float_operand (t->name))
5887 : intel_float_operand (t->name) != 2)
5888 && ((operand_types[0].bitfield.class != RegMMX
5889 && operand_types[0].bitfield.class != RegSIMD)
5890 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5891 && operand_types[t->operands > 1].bitfield.class
5892 != RegSIMD)))
5893 continue;
5894
5895 /* Do not verify operands when there are none. */
5896 else
5897 {
5898 if (!t->operands)
5899 /* We've found a match; break out of loop. */
5900 break;
5901 }
5902
5903 if (!t->opcode_modifier.jump
5904 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5905 {
5906 /* There should be only one Disp operand. */
5907 for (j = 0; j < MAX_OPERANDS; j++)
5908 if (operand_type_check (operand_types[j], disp))
5909 break;
5910 if (j < MAX_OPERANDS)
5911 {
5912 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5913
5914 addr_prefix_disp = j;
5915
5916 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5917 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5918 switch (flag_code)
5919 {
5920 case CODE_16BIT:
5921 override = !override;
5922 /* Fall through. */
5923 case CODE_32BIT:
5924 if (operand_types[j].bitfield.disp32
5925 && operand_types[j].bitfield.disp16)
5926 {
5927 operand_types[j].bitfield.disp16 = override;
5928 operand_types[j].bitfield.disp32 = !override;
5929 }
5930 operand_types[j].bitfield.disp32s = 0;
5931 operand_types[j].bitfield.disp64 = 0;
5932 break;
5933
5934 case CODE_64BIT:
5935 if (operand_types[j].bitfield.disp32s
5936 || operand_types[j].bitfield.disp64)
5937 {
5938 operand_types[j].bitfield.disp64 &= !override;
5939 operand_types[j].bitfield.disp32s &= !override;
5940 operand_types[j].bitfield.disp32 = override;
5941 }
5942 operand_types[j].bitfield.disp16 = 0;
5943 break;
5944 }
5945 }
5946 }
5947
5948 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5949 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5950 continue;
5951
5952 /* We check register size if needed. */
5953 if (t->opcode_modifier.checkregsize)
5954 {
5955 check_register = (1 << t->operands) - 1;
5956 if (i.broadcast)
5957 check_register &= ~(1 << i.broadcast->operand);
5958 }
5959 else
5960 check_register = 0;
5961
5962 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5963 switch (t->operands)
5964 {
5965 case 1:
5966 if (!operand_type_match (overlap0, i.types[0]))
5967 continue;
5968 break;
5969 case 2:
5970 /* xchg %eax, %eax is a special case. It is an alias for nop
5971 only in 32bit mode and we can use opcode 0x90. In 64bit
5972 mode, we can't use 0x90 for xchg %eax, %eax since it should
5973 zero-extend %eax to %rax. */
5974 if (flag_code == CODE_64BIT
5975 && t->base_opcode == 0x90
5976 && i.types[0].bitfield.instance == Accum
5977 && i.types[0].bitfield.dword
5978 && i.types[1].bitfield.instance == Accum
5979 && i.types[1].bitfield.dword)
5980 continue;
5981 /* xrelease mov %eax, <disp> is another special case. It must not
5982 match the accumulator-only encoding of mov. */
5983 if (flag_code != CODE_64BIT
5984 && i.hle_prefix
5985 && t->base_opcode == 0xa0
5986 && i.types[0].bitfield.instance == Accum
5987 && (i.flags[1] & Operand_Mem))
5988 continue;
5989 /* Fall through. */
5990
5991 case 3:
5992 if (!(size_match & MATCH_STRAIGHT))
5993 goto check_reverse;
5994 /* Reverse direction of operands if swapping is possible in the first
5995 place (operands need to be symmetric) and
5996 - the load form is requested, and the template is a store form,
5997 - the store form is requested, and the template is a load form,
5998 - the non-default (swapped) form is requested. */
5999 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6000 if (t->opcode_modifier.d && i.reg_operands == i.operands
6001 && !operand_type_all_zero (&overlap1))
6002 switch (i.dir_encoding)
6003 {
6004 case dir_encoding_load:
6005 if (operand_type_check (operand_types[i.operands - 1], anymem)
6006 || t->opcode_modifier.regmem)
6007 goto check_reverse;
6008 break;
6009
6010 case dir_encoding_store:
6011 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6012 && !t->opcode_modifier.regmem)
6013 goto check_reverse;
6014 break;
6015
6016 case dir_encoding_swap:
6017 goto check_reverse;
6018
6019 case dir_encoding_default:
6020 break;
6021 }
6022 /* If we want store form, we skip the current load. */
6023 if ((i.dir_encoding == dir_encoding_store
6024 || i.dir_encoding == dir_encoding_swap)
6025 && i.mem_operands == 0
6026 && t->opcode_modifier.load)
6027 continue;
6028 /* Fall through. */
6029 case 4:
6030 case 5:
6031 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6032 if (!operand_type_match (overlap0, i.types[0])
6033 || !operand_type_match (overlap1, i.types[1])
6034 || ((check_register & 3) == 3
6035 && !operand_type_register_match (i.types[0],
6036 operand_types[0],
6037 i.types[1],
6038 operand_types[1])))
6039 {
6040 /* Check if other direction is valid ... */
6041 if (!t->opcode_modifier.d)
6042 continue;
6043
6044 check_reverse:
6045 if (!(size_match & MATCH_REVERSE))
6046 continue;
6047 /* Try reversing direction of operands. */
6048 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6049 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6050 if (!operand_type_match (overlap0, i.types[0])
6051 || !operand_type_match (overlap1, i.types[i.operands - 1])
6052 || (check_register
6053 && !operand_type_register_match (i.types[0],
6054 operand_types[i.operands - 1],
6055 i.types[i.operands - 1],
6056 operand_types[0])))
6057 {
6058 /* Does not match either direction. */
6059 continue;
6060 }
6061 /* found_reverse_match holds which of D or FloatR
6062 we've found. */
6063 if (!t->opcode_modifier.d)
6064 found_reverse_match = 0;
6065 else if (operand_types[0].bitfield.tbyte)
6066 found_reverse_match = Opcode_FloatD;
6067 else if (operand_types[0].bitfield.xmmword
6068 || operand_types[i.operands - 1].bitfield.xmmword
6069 || operand_types[0].bitfield.class == RegMMX
6070 || operand_types[i.operands - 1].bitfield.class == RegMMX
6071 || is_any_vex_encoding(t))
6072 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6073 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6074 else
6075 found_reverse_match = Opcode_D;
6076 if (t->opcode_modifier.floatr)
6077 found_reverse_match |= Opcode_FloatR;
6078 }
6079 else
6080 {
6081 /* Found a forward 2 operand match here. */
6082 switch (t->operands)
6083 {
6084 case 5:
6085 overlap4 = operand_type_and (i.types[4],
6086 operand_types[4]);
6087 /* Fall through. */
6088 case 4:
6089 overlap3 = operand_type_and (i.types[3],
6090 operand_types[3]);
6091 /* Fall through. */
6092 case 3:
6093 overlap2 = operand_type_and (i.types[2],
6094 operand_types[2]);
6095 break;
6096 }
6097
6098 switch (t->operands)
6099 {
6100 case 5:
6101 if (!operand_type_match (overlap4, i.types[4])
6102 || !operand_type_register_match (i.types[3],
6103 operand_types[3],
6104 i.types[4],
6105 operand_types[4]))
6106 continue;
6107 /* Fall through. */
6108 case 4:
6109 if (!operand_type_match (overlap3, i.types[3])
6110 || ((check_register & 0xa) == 0xa
6111 && !operand_type_register_match (i.types[1],
6112 operand_types[1],
6113 i.types[3],
6114 operand_types[3]))
6115 || ((check_register & 0xc) == 0xc
6116 && !operand_type_register_match (i.types[2],
6117 operand_types[2],
6118 i.types[3],
6119 operand_types[3])))
6120 continue;
6121 /* Fall through. */
6122 case 3:
6123 /* Here we make use of the fact that there are no
6124 reverse match 3 operand instructions. */
6125 if (!operand_type_match (overlap2, i.types[2])
6126 || ((check_register & 5) == 5
6127 && !operand_type_register_match (i.types[0],
6128 operand_types[0],
6129 i.types[2],
6130 operand_types[2]))
6131 || ((check_register & 6) == 6
6132 && !operand_type_register_match (i.types[1],
6133 operand_types[1],
6134 i.types[2],
6135 operand_types[2])))
6136 continue;
6137 break;
6138 }
6139 }
6140 /* Found either forward/reverse 2, 3 or 4 operand match here:
6141 slip through to break. */
6142 }
6143
6144 /* Check if vector and VEX operands are valid. */
6145 if (check_VecOperands (t) || VEX_check_operands (t))
6146 {
6147 specific_error = i.error;
6148 continue;
6149 }
6150
6151 /* We've found a match; break out of loop. */
6152 break;
6153 }
6154
6155 if (t == current_templates->end)
6156 {
6157 /* We found no match. */
6158 const char *err_msg;
6159 switch (specific_error ? specific_error : i.error)
6160 {
6161 default:
6162 abort ();
6163 case operand_size_mismatch:
6164 err_msg = _("operand size mismatch");
6165 break;
6166 case operand_type_mismatch:
6167 err_msg = _("operand type mismatch");
6168 break;
6169 case register_type_mismatch:
6170 err_msg = _("register type mismatch");
6171 break;
6172 case number_of_operands_mismatch:
6173 err_msg = _("number of operands mismatch");
6174 break;
6175 case invalid_instruction_suffix:
6176 err_msg = _("invalid instruction suffix");
6177 break;
6178 case bad_imm4:
6179 err_msg = _("constant doesn't fit in 4 bits");
6180 break;
6181 case unsupported_with_intel_mnemonic:
6182 err_msg = _("unsupported with Intel mnemonic");
6183 break;
6184 case unsupported_syntax:
6185 err_msg = _("unsupported syntax");
6186 break;
6187 case unsupported:
6188 as_bad (_("unsupported instruction `%s'"),
6189 current_templates->start->name);
6190 return NULL;
6191 case invalid_vsib_address:
6192 err_msg = _("invalid VSIB address");
6193 break;
6194 case invalid_vector_register_set:
6195 err_msg = _("mask, index, and destination registers must be distinct");
6196 break;
6197 case unsupported_vector_index_register:
6198 err_msg = _("unsupported vector index register");
6199 break;
6200 case unsupported_broadcast:
6201 err_msg = _("unsupported broadcast");
6202 break;
6203 case broadcast_needed:
6204 err_msg = _("broadcast is needed for operand of such type");
6205 break;
6206 case unsupported_masking:
6207 err_msg = _("unsupported masking");
6208 break;
6209 case mask_not_on_destination:
6210 err_msg = _("mask not on destination operand");
6211 break;
6212 case no_default_mask:
6213 err_msg = _("default mask isn't allowed");
6214 break;
6215 case unsupported_rc_sae:
6216 err_msg = _("unsupported static rounding/sae");
6217 break;
6218 case rc_sae_operand_not_last_imm:
6219 if (intel_syntax)
6220 err_msg = _("RC/SAE operand must precede immediate operands");
6221 else
6222 err_msg = _("RC/SAE operand must follow immediate operands");
6223 break;
6224 case invalid_register_operand:
6225 err_msg = _("invalid register operand");
6226 break;
6227 }
6228 as_bad (_("%s for `%s'"), err_msg,
6229 current_templates->start->name);
6230 return NULL;
6231 }
6232
6233 if (!quiet_warnings)
6234 {
6235 if (!intel_syntax
6236 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6237 as_warn (_("indirect %s without `*'"), t->name);
6238
6239 if (t->opcode_modifier.isprefix
6240 && t->opcode_modifier.ignoresize)
6241 {
6242 /* Warn them that a data or address size prefix doesn't
6243 affect assembly of the next line of code. */
6244 as_warn (_("stand-alone `%s' prefix"), t->name);
6245 }
6246 }
6247
6248 /* Copy the template we found. */
6249 i.tm = *t;
6250
6251 if (addr_prefix_disp != -1)
6252 i.tm.operand_types[addr_prefix_disp]
6253 = operand_types[addr_prefix_disp];
6254
6255 if (found_reverse_match)
6256 {
6257 /* If we found a reverse match we must alter the opcode direction
6258 bit and clear/flip the regmem modifier one. found_reverse_match
6259 holds bits to change (different for int & float insns). */
6260
6261 i.tm.base_opcode ^= found_reverse_match;
6262
6263 i.tm.operand_types[0] = operand_types[i.operands - 1];
6264 i.tm.operand_types[i.operands - 1] = operand_types[0];
6265
6266 /* Certain SIMD insns have their load forms specified in the opcode
6267 table, and hence we need to _set_ RegMem instead of clearing it.
6268 We need to avoid setting the bit though on insns like KMOVW. */
6269 i.tm.opcode_modifier.regmem
6270 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6271 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6272 && !i.tm.opcode_modifier.regmem;
6273 }
6274
6275 return t;
6276 }
6277
6278 static int
6279 check_string (void)
6280 {
6281 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6282 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6283
6284 if (i.seg[op] != NULL && i.seg[op] != &es)
6285 {
6286 as_bad (_("`%s' operand %u must use `%ses' segment"),
6287 i.tm.name,
6288 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6289 register_prefix);
6290 return 0;
6291 }
6292
6293 /* There's only ever one segment override allowed per instruction.
6294 This instruction possibly has a legal segment override on the
6295 second operand, so copy the segment to where non-string
6296 instructions store it, allowing common code. */
6297 i.seg[op] = i.seg[1];
6298
6299 return 1;
6300 }
6301
6302 static int
6303 process_suffix (void)
6304 {
6305 /* If matched instruction specifies an explicit instruction mnemonic
6306 suffix, use it. */
6307 if (i.tm.opcode_modifier.size == SIZE16)
6308 i.suffix = WORD_MNEM_SUFFIX;
6309 else if (i.tm.opcode_modifier.size == SIZE32)
6310 i.suffix = LONG_MNEM_SUFFIX;
6311 else if (i.tm.opcode_modifier.size == SIZE64)
6312 i.suffix = QWORD_MNEM_SUFFIX;
6313 else if (i.reg_operands
6314 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6315 {
6316 /* If there's no instruction mnemonic suffix we try to invent one
6317 based on GPR operands. */
6318 if (!i.suffix)
6319 {
6320 /* We take i.suffix from the last register operand specified,
6321 Destination register type is more significant than source
6322 register type. crc32 in SSE4.2 prefers source register
6323 type. */
6324 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6325
6326 while (op--)
6327 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6328 || i.tm.operand_types[op].bitfield.instance == Accum)
6329 {
6330 if (i.types[op].bitfield.class != Reg)
6331 continue;
6332 if (i.types[op].bitfield.byte)
6333 i.suffix = BYTE_MNEM_SUFFIX;
6334 else if (i.types[op].bitfield.word)
6335 i.suffix = WORD_MNEM_SUFFIX;
6336 else if (i.types[op].bitfield.dword)
6337 i.suffix = LONG_MNEM_SUFFIX;
6338 else if (i.types[op].bitfield.qword)
6339 i.suffix = QWORD_MNEM_SUFFIX;
6340 else
6341 continue;
6342 break;
6343 }
6344 }
6345 else if (i.suffix == BYTE_MNEM_SUFFIX)
6346 {
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
6349 && i.tm.opcode_modifier.no_bsuf)
6350 i.suffix = 0;
6351 else if (!check_byte_reg ())
6352 return 0;
6353 }
6354 else if (i.suffix == LONG_MNEM_SUFFIX)
6355 {
6356 if (intel_syntax
6357 && i.tm.opcode_modifier.ignoresize
6358 && i.tm.opcode_modifier.no_lsuf
6359 && !i.tm.opcode_modifier.todword
6360 && !i.tm.opcode_modifier.toqword)
6361 i.suffix = 0;
6362 else if (!check_long_reg ())
6363 return 0;
6364 }
6365 else if (i.suffix == QWORD_MNEM_SUFFIX)
6366 {
6367 if (intel_syntax
6368 && i.tm.opcode_modifier.ignoresize
6369 && i.tm.opcode_modifier.no_qsuf
6370 && !i.tm.opcode_modifier.todword
6371 && !i.tm.opcode_modifier.toqword)
6372 i.suffix = 0;
6373 else if (!check_qword_reg ())
6374 return 0;
6375 }
6376 else if (i.suffix == WORD_MNEM_SUFFIX)
6377 {
6378 if (intel_syntax
6379 && i.tm.opcode_modifier.ignoresize
6380 && i.tm.opcode_modifier.no_wsuf)
6381 i.suffix = 0;
6382 else if (!check_word_reg ())
6383 return 0;
6384 }
6385 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6386 /* Do nothing if the instruction is going to ignore the prefix. */
6387 ;
6388 else
6389 abort ();
6390 }
6391 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6392 {
6393 i.suffix = stackop_size;
6394 if (stackop_size == LONG_MNEM_SUFFIX)
6395 {
6396 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6397 .code16gcc directive to support 16-bit mode with
6398 32-bit address. For IRET without a suffix, generate
6399 16-bit IRET (opcode 0xcf) to return from an interrupt
6400 handler. */
6401 if (i.tm.base_opcode == 0xcf)
6402 {
6403 i.suffix = WORD_MNEM_SUFFIX;
6404 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6405 }
6406 /* Warn about changed behavior for segment register push/pop. */
6407 else if ((i.tm.base_opcode | 1) == 0x07)
6408 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6409 i.tm.name);
6410 }
6411 }
6412 else if (!i.suffix
6413 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6414 || i.tm.opcode_modifier.jump == JUMP_BYTE
6415 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6416 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6417 && i.tm.extension_opcode <= 3)))
6418 {
6419 switch (flag_code)
6420 {
6421 case CODE_64BIT:
6422 if (!i.tm.opcode_modifier.no_qsuf)
6423 {
6424 i.suffix = QWORD_MNEM_SUFFIX;
6425 break;
6426 }
6427 /* Fall through. */
6428 case CODE_32BIT:
6429 if (!i.tm.opcode_modifier.no_lsuf)
6430 i.suffix = LONG_MNEM_SUFFIX;
6431 break;
6432 case CODE_16BIT:
6433 if (!i.tm.opcode_modifier.no_wsuf)
6434 i.suffix = WORD_MNEM_SUFFIX;
6435 break;
6436 }
6437 }
6438
6439 if (!i.suffix
6440 && (!i.tm.opcode_modifier.defaultsize
6441 /* Also cover lret/retf/iret in 64-bit mode. */
6442 || (flag_code == CODE_64BIT
6443 && !i.tm.opcode_modifier.no_lsuf
6444 && !i.tm.opcode_modifier.no_qsuf))
6445 && !i.tm.opcode_modifier.ignoresize
6446 /* Accept FLDENV et al without suffix. */
6447 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6448 {
6449 unsigned int suffixes, evex = 0;
6450
6451 suffixes = !i.tm.opcode_modifier.no_bsuf;
6452 if (!i.tm.opcode_modifier.no_wsuf)
6453 suffixes |= 1 << 1;
6454 if (!i.tm.opcode_modifier.no_lsuf)
6455 suffixes |= 1 << 2;
6456 if (!i.tm.opcode_modifier.no_ldsuf)
6457 suffixes |= 1 << 3;
6458 if (!i.tm.opcode_modifier.no_ssuf)
6459 suffixes |= 1 << 4;
6460 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6461 suffixes |= 1 << 5;
6462
6463 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6464 also suitable for AT&T syntax mode, it was requested that this be
6465 restricted to just Intel syntax. */
6466 if (intel_syntax)
6467 {
6468 i386_cpu_flags cpu = cpu_flags_and (i.tm.cpu_flags, avx512);
6469
6470 if (!cpu_flags_all_zero (&cpu) && !i.broadcast)
6471 {
6472 unsigned int op;
6473
6474 for (op = 0; op < i.tm.operands; ++op)
6475 {
6476 if (!cpu_arch_flags.bitfield.cpuavx512vl)
6477 {
6478 if (i.tm.operand_types[op].bitfield.ymmword)
6479 i.tm.operand_types[op].bitfield.xmmword = 0;
6480 if (i.tm.operand_types[op].bitfield.zmmword)
6481 i.tm.operand_types[op].bitfield.ymmword = 0;
6482 if (!i.tm.opcode_modifier.evex
6483 || i.tm.opcode_modifier.evex == EVEXDYN)
6484 i.tm.opcode_modifier.evex = EVEX512;
6485 }
6486
6487 if (i.tm.operand_types[op].bitfield.xmmword
6488 + i.tm.operand_types[op].bitfield.ymmword
6489 + i.tm.operand_types[op].bitfield.zmmword < 2)
6490 continue;
6491
6492 /* Any properly sized operand disambiguates the insn. */
6493 if (i.types[op].bitfield.xmmword
6494 || i.types[op].bitfield.ymmword
6495 || i.types[op].bitfield.zmmword)
6496 {
6497 suffixes &= ~(7 << 6);
6498 evex = 0;
6499 break;
6500 }
6501
6502 if ((i.flags[op] & Operand_Mem)
6503 && i.tm.operand_types[op].bitfield.unspecified)
6504 {
6505 if (i.tm.operand_types[op].bitfield.xmmword)
6506 suffixes |= 1 << 6;
6507 if (i.tm.operand_types[op].bitfield.ymmword)
6508 suffixes |= 1 << 7;
6509 if (i.tm.operand_types[op].bitfield.zmmword)
6510 suffixes |= 1 << 8;
6511 evex = EVEX512;
6512 }
6513 }
6514 }
6515 }
6516
6517 /* Are multiple suffixes / operand sizes allowed? */
6518 if (suffixes & (suffixes - 1))
6519 {
6520 if (intel_syntax
6521 && (!i.tm.opcode_modifier.defaultsize
6522 || operand_check == check_error))
6523 {
6524 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6525 return 0;
6526 }
6527 if (operand_check == check_error)
6528 {
6529 as_bad (_("no instruction mnemonic suffix given and "
6530 "no register operands; can't size `%s'"), i.tm.name);
6531 return 0;
6532 }
6533 if (operand_check == check_warning)
6534 as_warn (_("%s; using default for `%s'"),
6535 intel_syntax
6536 ? _("ambiguous operand size")
6537 : _("no instruction mnemonic suffix given and "
6538 "no register operands"),
6539 i.tm.name);
6540
6541 if (i.tm.opcode_modifier.floatmf)
6542 i.suffix = SHORT_MNEM_SUFFIX;
6543 else if (evex)
6544 i.tm.opcode_modifier.evex = evex;
6545 else if (flag_code == CODE_16BIT)
6546 i.suffix = WORD_MNEM_SUFFIX;
6547 else if (!i.tm.opcode_modifier.no_lsuf)
6548 i.suffix = LONG_MNEM_SUFFIX;
6549 else
6550 i.suffix = QWORD_MNEM_SUFFIX;
6551 }
6552 }
6553
6554 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6555 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6556 != (i.tm.operand_types[1].bitfield.class == Reg);
6557
6558 /* Change the opcode based on the operand size given by i.suffix. */
6559 switch (i.suffix)
6560 {
6561 /* Size floating point instruction. */
6562 case LONG_MNEM_SUFFIX:
6563 if (i.tm.opcode_modifier.floatmf)
6564 {
6565 i.tm.base_opcode ^= 4;
6566 break;
6567 }
6568 /* fall through */
6569 case WORD_MNEM_SUFFIX:
6570 case QWORD_MNEM_SUFFIX:
6571 /* It's not a byte, select word/dword operation. */
6572 if (i.tm.opcode_modifier.w)
6573 {
6574 if (i.short_form)
6575 i.tm.base_opcode |= 8;
6576 else
6577 i.tm.base_opcode |= 1;
6578 }
6579 /* fall through */
6580 case SHORT_MNEM_SUFFIX:
6581 /* Now select between word & dword operations via the operand
6582 size prefix, except for instructions that will ignore this
6583 prefix anyway. */
6584 if (i.reg_operands > 0
6585 && i.types[0].bitfield.class == Reg
6586 && i.tm.opcode_modifier.addrprefixopreg
6587 && (i.tm.operand_types[0].bitfield.instance == Accum
6588 || i.operands == 1))
6589 {
6590 /* The address size override prefix changes the size of the
6591 first operand. */
6592 if ((flag_code == CODE_32BIT
6593 && i.op[0].regs->reg_type.bitfield.word)
6594 || (flag_code != CODE_32BIT
6595 && i.op[0].regs->reg_type.bitfield.dword))
6596 if (!add_prefix (ADDR_PREFIX_OPCODE))
6597 return 0;
6598 }
6599 else if (i.suffix != QWORD_MNEM_SUFFIX
6600 && !i.tm.opcode_modifier.ignoresize
6601 && !i.tm.opcode_modifier.floatmf
6602 && !is_any_vex_encoding (&i.tm)
6603 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6604 || (flag_code == CODE_64BIT
6605 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6606 {
6607 unsigned int prefix = DATA_PREFIX_OPCODE;
6608
6609 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6610 prefix = ADDR_PREFIX_OPCODE;
6611
6612 if (!add_prefix (prefix))
6613 return 0;
6614 }
6615
6616 /* Set mode64 for an operand. */
6617 if (i.suffix == QWORD_MNEM_SUFFIX
6618 && flag_code == CODE_64BIT
6619 && !i.tm.opcode_modifier.norex64
6620 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6621 need rex64. */
6622 && ! (i.operands == 2
6623 && i.tm.base_opcode == 0x90
6624 && i.tm.extension_opcode == None
6625 && i.types[0].bitfield.instance == Accum
6626 && i.types[0].bitfield.qword
6627 && i.types[1].bitfield.instance == Accum
6628 && i.types[1].bitfield.qword))
6629 i.rex |= REX_W;
6630
6631 break;
6632 }
6633
6634 if (i.reg_operands != 0
6635 && i.operands > 1
6636 && i.tm.opcode_modifier.addrprefixopreg
6637 && i.tm.operand_types[0].bitfield.instance != Accum)
6638 {
6639 /* Check invalid register operand when the address size override
6640 prefix changes the size of register operands. */
6641 unsigned int op;
6642 enum { need_word, need_dword, need_qword } need;
6643
6644 if (flag_code == CODE_32BIT)
6645 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6646 else
6647 {
6648 if (i.prefix[ADDR_PREFIX])
6649 need = need_dword;
6650 else
6651 need = flag_code == CODE_64BIT ? need_qword : need_word;
6652 }
6653
6654 for (op = 0; op < i.operands; op++)
6655 if (i.types[op].bitfield.class == Reg
6656 && ((need == need_word
6657 && !i.op[op].regs->reg_type.bitfield.word)
6658 || (need == need_dword
6659 && !i.op[op].regs->reg_type.bitfield.dword)
6660 || (need == need_qword
6661 && !i.op[op].regs->reg_type.bitfield.qword)))
6662 {
6663 as_bad (_("invalid register operand size for `%s'"),
6664 i.tm.name);
6665 return 0;
6666 }
6667 }
6668
6669 return 1;
6670 }
6671
6672 static int
6673 check_byte_reg (void)
6674 {
6675 int op;
6676
6677 for (op = i.operands; --op >= 0;)
6678 {
6679 /* Skip non-register operands. */
6680 if (i.types[op].bitfield.class != Reg)
6681 continue;
6682
6683 /* If this is an eight bit register, it's OK. If it's the 16 or
6684 32 bit version of an eight bit register, we will just use the
6685 low portion, and that's OK too. */
6686 if (i.types[op].bitfield.byte)
6687 continue;
6688
6689 /* I/O port address operands are OK too. */
6690 if (i.tm.operand_types[op].bitfield.instance == RegD
6691 && i.tm.operand_types[op].bitfield.word)
6692 continue;
6693
6694 /* crc32 only wants its source operand checked here. */
6695 if (i.tm.base_opcode == 0xf20f38f0 && op)
6696 continue;
6697
6698 /* Any other register is bad. */
6699 if (i.types[op].bitfield.class == Reg
6700 || i.types[op].bitfield.class == RegMMX
6701 || i.types[op].bitfield.class == RegSIMD
6702 || i.types[op].bitfield.class == SReg
6703 || i.types[op].bitfield.class == RegCR
6704 || i.types[op].bitfield.class == RegDR
6705 || i.types[op].bitfield.class == RegTR)
6706 {
6707 as_bad (_("`%s%s' not allowed with `%s%c'"),
6708 register_prefix,
6709 i.op[op].regs->reg_name,
6710 i.tm.name,
6711 i.suffix);
6712 return 0;
6713 }
6714 }
6715 return 1;
6716 }
6717
6718 static int
6719 check_long_reg (void)
6720 {
6721 int op;
6722
6723 for (op = i.operands; --op >= 0;)
6724 /* Skip non-register operands. */
6725 if (i.types[op].bitfield.class != Reg)
6726 continue;
6727 /* Reject eight bit registers, except where the template requires
6728 them. (eg. movzb) */
6729 else if (i.types[op].bitfield.byte
6730 && (i.tm.operand_types[op].bitfield.class == Reg
6731 || i.tm.operand_types[op].bitfield.instance == Accum)
6732 && (i.tm.operand_types[op].bitfield.word
6733 || i.tm.operand_types[op].bitfield.dword))
6734 {
6735 as_bad (_("`%s%s' not allowed with `%s%c'"),
6736 register_prefix,
6737 i.op[op].regs->reg_name,
6738 i.tm.name,
6739 i.suffix);
6740 return 0;
6741 }
6742 /* Error if the e prefix on a general reg is missing. */
6743 else if (i.types[op].bitfield.word
6744 && (i.tm.operand_types[op].bitfield.class == Reg
6745 || i.tm.operand_types[op].bitfield.instance == Accum)
6746 && i.tm.operand_types[op].bitfield.dword)
6747 {
6748 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6749 register_prefix, i.op[op].regs->reg_name,
6750 i.suffix);
6751 return 0;
6752 }
6753 /* Warn if the r prefix on a general reg is present. */
6754 else if (i.types[op].bitfield.qword
6755 && (i.tm.operand_types[op].bitfield.class == Reg
6756 || i.tm.operand_types[op].bitfield.instance == Accum)
6757 && i.tm.operand_types[op].bitfield.dword)
6758 {
6759 if (intel_syntax
6760 && (i.tm.opcode_modifier.toqword
6761 /* Also convert to QWORD for MOVSXD. */
6762 || i.tm.base_opcode == 0x63)
6763 && i.types[0].bitfield.class != RegSIMD)
6764 {
6765 /* Convert to QWORD. We want REX byte. */
6766 i.suffix = QWORD_MNEM_SUFFIX;
6767 }
6768 else
6769 {
6770 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6771 register_prefix, i.op[op].regs->reg_name,
6772 i.suffix);
6773 return 0;
6774 }
6775 }
6776 return 1;
6777 }
6778
6779 static int
6780 check_qword_reg (void)
6781 {
6782 int op;
6783
6784 for (op = i.operands; --op >= 0; )
6785 /* Skip non-register operands. */
6786 if (i.types[op].bitfield.class != Reg)
6787 continue;
6788 /* Reject eight bit registers, except where the template requires
6789 them. (eg. movzb) */
6790 else if (i.types[op].bitfield.byte
6791 && (i.tm.operand_types[op].bitfield.class == Reg
6792 || i.tm.operand_types[op].bitfield.instance == Accum)
6793 && (i.tm.operand_types[op].bitfield.word
6794 || i.tm.operand_types[op].bitfield.dword))
6795 {
6796 as_bad (_("`%s%s' not allowed with `%s%c'"),
6797 register_prefix,
6798 i.op[op].regs->reg_name,
6799 i.tm.name,
6800 i.suffix);
6801 return 0;
6802 }
6803 /* Warn if the r prefix on a general reg is missing. */
6804 else if ((i.types[op].bitfield.word
6805 || i.types[op].bitfield.dword)
6806 && (i.tm.operand_types[op].bitfield.class == Reg
6807 || i.tm.operand_types[op].bitfield.instance == Accum)
6808 && i.tm.operand_types[op].bitfield.qword)
6809 {
6810 /* Prohibit these changes in the 64bit mode, since the
6811 lowering is more complicated. */
6812 if (intel_syntax
6813 && i.tm.opcode_modifier.todword
6814 && i.types[0].bitfield.class != RegSIMD)
6815 {
6816 /* Convert to DWORD. We don't want REX byte. */
6817 i.suffix = LONG_MNEM_SUFFIX;
6818 }
6819 else
6820 {
6821 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6822 register_prefix, i.op[op].regs->reg_name,
6823 i.suffix);
6824 return 0;
6825 }
6826 }
6827 return 1;
6828 }
6829
6830 static int
6831 check_word_reg (void)
6832 {
6833 int op;
6834 for (op = i.operands; --op >= 0;)
6835 /* Skip non-register operands. */
6836 if (i.types[op].bitfield.class != Reg)
6837 continue;
6838 /* Reject eight bit registers, except where the template requires
6839 them. (eg. movzb) */
6840 else if (i.types[op].bitfield.byte
6841 && (i.tm.operand_types[op].bitfield.class == Reg
6842 || i.tm.operand_types[op].bitfield.instance == Accum)
6843 && (i.tm.operand_types[op].bitfield.word
6844 || i.tm.operand_types[op].bitfield.dword))
6845 {
6846 as_bad (_("`%s%s' not allowed with `%s%c'"),
6847 register_prefix,
6848 i.op[op].regs->reg_name,
6849 i.tm.name,
6850 i.suffix);
6851 return 0;
6852 }
6853 /* Error if the e or r prefix on a general reg is present. */
6854 else if ((i.types[op].bitfield.dword
6855 || i.types[op].bitfield.qword)
6856 && (i.tm.operand_types[op].bitfield.class == Reg
6857 || i.tm.operand_types[op].bitfield.instance == Accum)
6858 && i.tm.operand_types[op].bitfield.word)
6859 {
6860 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6861 register_prefix, i.op[op].regs->reg_name,
6862 i.suffix);
6863 return 0;
6864 }
6865 return 1;
6866 }
6867
6868 static int
6869 update_imm (unsigned int j)
6870 {
6871 i386_operand_type overlap = i.types[j];
6872 if ((overlap.bitfield.imm8
6873 || overlap.bitfield.imm8s
6874 || overlap.bitfield.imm16
6875 || overlap.bitfield.imm32
6876 || overlap.bitfield.imm32s
6877 || overlap.bitfield.imm64)
6878 && !operand_type_equal (&overlap, &imm8)
6879 && !operand_type_equal (&overlap, &imm8s)
6880 && !operand_type_equal (&overlap, &imm16)
6881 && !operand_type_equal (&overlap, &imm32)
6882 && !operand_type_equal (&overlap, &imm32s)
6883 && !operand_type_equal (&overlap, &imm64))
6884 {
6885 if (i.suffix)
6886 {
6887 i386_operand_type temp;
6888
6889 operand_type_set (&temp, 0);
6890 if (i.suffix == BYTE_MNEM_SUFFIX)
6891 {
6892 temp.bitfield.imm8 = overlap.bitfield.imm8;
6893 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6894 }
6895 else if (i.suffix == WORD_MNEM_SUFFIX)
6896 temp.bitfield.imm16 = overlap.bitfield.imm16;
6897 else if (i.suffix == QWORD_MNEM_SUFFIX)
6898 {
6899 temp.bitfield.imm64 = overlap.bitfield.imm64;
6900 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6901 }
6902 else
6903 temp.bitfield.imm32 = overlap.bitfield.imm32;
6904 overlap = temp;
6905 }
6906 else if (operand_type_equal (&overlap, &imm16_32_32s)
6907 || operand_type_equal (&overlap, &imm16_32)
6908 || operand_type_equal (&overlap, &imm16_32s))
6909 {
6910 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6911 overlap = imm16;
6912 else
6913 overlap = imm32s;
6914 }
6915 if (!operand_type_equal (&overlap, &imm8)
6916 && !operand_type_equal (&overlap, &imm8s)
6917 && !operand_type_equal (&overlap, &imm16)
6918 && !operand_type_equal (&overlap, &imm32)
6919 && !operand_type_equal (&overlap, &imm32s)
6920 && !operand_type_equal (&overlap, &imm64))
6921 {
6922 as_bad (_("no instruction mnemonic suffix given; "
6923 "can't determine immediate size"));
6924 return 0;
6925 }
6926 }
6927 i.types[j] = overlap;
6928
6929 return 1;
6930 }
6931
6932 static int
6933 finalize_imm (void)
6934 {
6935 unsigned int j, n;
6936
6937 /* Update the first 2 immediate operands. */
6938 n = i.operands > 2 ? 2 : i.operands;
6939 if (n)
6940 {
6941 for (j = 0; j < n; j++)
6942 if (update_imm (j) == 0)
6943 return 0;
6944
6945 /* The 3rd operand can't be immediate operand. */
6946 gas_assert (operand_type_check (i.types[2], imm) == 0);
6947 }
6948
6949 return 1;
6950 }
6951
6952 static int
6953 process_operands (void)
6954 {
6955 /* Default segment register this instruction will use for memory
6956 accesses. 0 means unknown. This is only for optimizing out
6957 unnecessary segment overrides. */
6958 const seg_entry *default_seg = 0;
6959
6960 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6961 {
6962 unsigned int dupl = i.operands;
6963 unsigned int dest = dupl - 1;
6964 unsigned int j;
6965
6966 /* The destination must be an xmm register. */
6967 gas_assert (i.reg_operands
6968 && MAX_OPERANDS > dupl
6969 && operand_type_equal (&i.types[dest], &regxmm));
6970
6971 if (i.tm.operand_types[0].bitfield.instance == Accum
6972 && i.tm.operand_types[0].bitfield.xmmword)
6973 {
6974 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6975 {
6976 /* Keep xmm0 for instructions with VEX prefix and 3
6977 sources. */
6978 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6979 i.tm.operand_types[0].bitfield.class = RegSIMD;
6980 goto duplicate;
6981 }
6982 else
6983 {
6984 /* We remove the first xmm0 and keep the number of
6985 operands unchanged, which in fact duplicates the
6986 destination. */
6987 for (j = 1; j < i.operands; j++)
6988 {
6989 i.op[j - 1] = i.op[j];
6990 i.types[j - 1] = i.types[j];
6991 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6992 i.flags[j - 1] = i.flags[j];
6993 }
6994 }
6995 }
6996 else if (i.tm.opcode_modifier.implicit1stxmm0)
6997 {
6998 gas_assert ((MAX_OPERANDS - 1) > dupl
6999 && (i.tm.opcode_modifier.vexsources
7000 == VEX3SOURCES));
7001
7002 /* Add the implicit xmm0 for instructions with VEX prefix
7003 and 3 sources. */
7004 for (j = i.operands; j > 0; j--)
7005 {
7006 i.op[j] = i.op[j - 1];
7007 i.types[j] = i.types[j - 1];
7008 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7009 i.flags[j] = i.flags[j - 1];
7010 }
7011 i.op[0].regs
7012 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7013 i.types[0] = regxmm;
7014 i.tm.operand_types[0] = regxmm;
7015
7016 i.operands += 2;
7017 i.reg_operands += 2;
7018 i.tm.operands += 2;
7019
7020 dupl++;
7021 dest++;
7022 i.op[dupl] = i.op[dest];
7023 i.types[dupl] = i.types[dest];
7024 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7025 i.flags[dupl] = i.flags[dest];
7026 }
7027 else
7028 {
7029 duplicate:
7030 i.operands++;
7031 i.reg_operands++;
7032 i.tm.operands++;
7033
7034 i.op[dupl] = i.op[dest];
7035 i.types[dupl] = i.types[dest];
7036 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7037 i.flags[dupl] = i.flags[dest];
7038 }
7039
7040 if (i.tm.opcode_modifier.immext)
7041 process_immext ();
7042 }
7043 else if (i.tm.operand_types[0].bitfield.instance == Accum
7044 && i.tm.operand_types[0].bitfield.xmmword)
7045 {
7046 unsigned int j;
7047
7048 for (j = 1; j < i.operands; j++)
7049 {
7050 i.op[j - 1] = i.op[j];
7051 i.types[j - 1] = i.types[j];
7052
7053 /* We need to adjust fields in i.tm since they are used by
7054 build_modrm_byte. */
7055 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7056
7057 i.flags[j - 1] = i.flags[j];
7058 }
7059
7060 i.operands--;
7061 i.reg_operands--;
7062 i.tm.operands--;
7063 }
7064 else if (i.tm.opcode_modifier.implicitquadgroup)
7065 {
7066 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7067
7068 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7069 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7070 regnum = register_number (i.op[1].regs);
7071 first_reg_in_group = regnum & ~3;
7072 last_reg_in_group = first_reg_in_group + 3;
7073 if (regnum != first_reg_in_group)
7074 as_warn (_("source register `%s%s' implicitly denotes"
7075 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7076 register_prefix, i.op[1].regs->reg_name,
7077 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7078 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7079 i.tm.name);
7080 }
7081 else if (i.tm.opcode_modifier.regkludge)
7082 {
7083 /* The imul $imm, %reg instruction is converted into
7084 imul $imm, %reg, %reg, and the clr %reg instruction
7085 is converted into xor %reg, %reg. */
7086
7087 unsigned int first_reg_op;
7088
7089 if (operand_type_check (i.types[0], reg))
7090 first_reg_op = 0;
7091 else
7092 first_reg_op = 1;
7093 /* Pretend we saw the extra register operand. */
7094 gas_assert (i.reg_operands == 1
7095 && i.op[first_reg_op + 1].regs == 0);
7096 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7097 i.types[first_reg_op + 1] = i.types[first_reg_op];
7098 i.operands++;
7099 i.reg_operands++;
7100 }
7101
7102 if (i.tm.opcode_modifier.modrm)
7103 {
7104 /* The opcode is completed (modulo i.tm.extension_opcode which
7105 must be put into the modrm byte). Now, we make the modrm and
7106 index base bytes based on all the info we've collected. */
7107
7108 default_seg = build_modrm_byte ();
7109 }
7110 else if (i.types[0].bitfield.class == SReg)
7111 {
7112 if (flag_code != CODE_64BIT
7113 ? i.tm.base_opcode == POP_SEG_SHORT
7114 && i.op[0].regs->reg_num == 1
7115 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7116 && i.op[0].regs->reg_num < 4)
7117 {
7118 as_bad (_("you can't `%s %s%s'"),
7119 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7120 return 0;
7121 }
7122 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7123 {
7124 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7125 i.tm.opcode_length = 2;
7126 }
7127 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7128 }
7129 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7130 {
7131 default_seg = &ds;
7132 }
7133 else if (i.tm.opcode_modifier.isstring)
7134 {
7135 /* For the string instructions that allow a segment override
7136 on one of their operands, the default segment is ds. */
7137 default_seg = &ds;
7138 }
7139 else if (i.short_form)
7140 {
7141 /* The register or float register operand is in operand
7142 0 or 1. */
7143 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7144
7145 /* Register goes in low 3 bits of opcode. */
7146 i.tm.base_opcode |= i.op[op].regs->reg_num;
7147 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7148 i.rex |= REX_B;
7149 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7150 {
7151 /* Warn about some common errors, but press on regardless.
7152 The first case can be generated by gcc (<= 2.8.1). */
7153 if (i.operands == 2)
7154 {
7155 /* Reversed arguments on faddp, fsubp, etc. */
7156 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7157 register_prefix, i.op[!intel_syntax].regs->reg_name,
7158 register_prefix, i.op[intel_syntax].regs->reg_name);
7159 }
7160 else
7161 {
7162 /* Extraneous `l' suffix on fp insn. */
7163 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7164 register_prefix, i.op[0].regs->reg_name);
7165 }
7166 }
7167 }
7168
7169 if (i.tm.base_opcode == 0x8d /* lea */
7170 && i.seg[0]
7171 && !quiet_warnings)
7172 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7173
7174 /* If a segment was explicitly specified, and the specified segment
7175 is not the default, use an opcode prefix to select it. If we
7176 never figured out what the default segment is, then default_seg
7177 will be zero at this point, and the specified segment prefix will
7178 always be used. */
7179 if ((i.seg[0]) && (i.seg[0] != default_seg))
7180 {
7181 if (!add_prefix (i.seg[0]->seg_prefix))
7182 return 0;
7183 }
7184 return 1;
7185 }
7186
7187 static const seg_entry *
7188 build_modrm_byte (void)
7189 {
7190 const seg_entry *default_seg = 0;
7191 unsigned int source, dest;
7192 int vex_3_sources;
7193
7194 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7195 if (vex_3_sources)
7196 {
7197 unsigned int nds, reg_slot;
7198 expressionS *exp;
7199
7200 dest = i.operands - 1;
7201 nds = dest - 1;
7202
7203 /* There are 2 kinds of instructions:
7204 1. 5 operands: 4 register operands or 3 register operands
7205 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7206 VexW0 or VexW1. The destination must be either XMM, YMM or
7207 ZMM register.
7208 2. 4 operands: 4 register operands or 3 register operands
7209 plus 1 memory operand, with VexXDS. */
7210 gas_assert ((i.reg_operands == 4
7211 || (i.reg_operands == 3 && i.mem_operands == 1))
7212 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7213 && i.tm.opcode_modifier.vexw
7214 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7215
7216 /* If VexW1 is set, the first non-immediate operand is the source and
7217 the second non-immediate one is encoded in the immediate operand. */
7218 if (i.tm.opcode_modifier.vexw == VEXW1)
7219 {
7220 source = i.imm_operands;
7221 reg_slot = i.imm_operands + 1;
7222 }
7223 else
7224 {
7225 source = i.imm_operands + 1;
7226 reg_slot = i.imm_operands;
7227 }
7228
7229 if (i.imm_operands == 0)
7230 {
7231 /* When there is no immediate operand, generate an 8bit
7232 immediate operand to encode the first operand. */
7233 exp = &im_expressions[i.imm_operands++];
7234 i.op[i.operands].imms = exp;
7235 i.types[i.operands] = imm8;
7236 i.operands++;
7237
7238 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7239 exp->X_op = O_constant;
7240 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7241 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7242 }
7243 else
7244 {
7245 gas_assert (i.imm_operands == 1);
7246 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7247 gas_assert (!i.tm.opcode_modifier.immext);
7248
7249 /* Turn on Imm8 again so that output_imm will generate it. */
7250 i.types[0].bitfield.imm8 = 1;
7251
7252 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7253 i.op[0].imms->X_add_number
7254 |= register_number (i.op[reg_slot].regs) << 4;
7255 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7256 }
7257
7258 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7259 i.vex.register_specifier = i.op[nds].regs;
7260 }
7261 else
7262 source = dest = 0;
7263
7264 /* i.reg_operands MUST be the number of real register operands;
7265 implicit registers do not count. If there are 3 register
7266 operands, it must be a instruction with VexNDS. For a
7267 instruction with VexNDD, the destination register is encoded
7268 in VEX prefix. If there are 4 register operands, it must be
7269 a instruction with VEX prefix and 3 sources. */
7270 if (i.mem_operands == 0
7271 && ((i.reg_operands == 2
7272 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7273 || (i.reg_operands == 3
7274 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7275 || (i.reg_operands == 4 && vex_3_sources)))
7276 {
7277 switch (i.operands)
7278 {
7279 case 2:
7280 source = 0;
7281 break;
7282 case 3:
7283 /* When there are 3 operands, one of them may be immediate,
7284 which may be the first or the last operand. Otherwise,
7285 the first operand must be shift count register (cl) or it
7286 is an instruction with VexNDS. */
7287 gas_assert (i.imm_operands == 1
7288 || (i.imm_operands == 0
7289 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7290 || (i.types[0].bitfield.instance == RegC
7291 && i.types[0].bitfield.byte))));
7292 if (operand_type_check (i.types[0], imm)
7293 || (i.types[0].bitfield.instance == RegC
7294 && i.types[0].bitfield.byte))
7295 source = 1;
7296 else
7297 source = 0;
7298 break;
7299 case 4:
7300 /* When there are 4 operands, the first two must be 8bit
7301 immediate operands. The source operand will be the 3rd
7302 one.
7303
7304 For instructions with VexNDS, if the first operand
7305 an imm8, the source operand is the 2nd one. If the last
7306 operand is imm8, the source operand is the first one. */
7307 gas_assert ((i.imm_operands == 2
7308 && i.types[0].bitfield.imm8
7309 && i.types[1].bitfield.imm8)
7310 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7311 && i.imm_operands == 1
7312 && (i.types[0].bitfield.imm8
7313 || i.types[i.operands - 1].bitfield.imm8
7314 || i.rounding)));
7315 if (i.imm_operands == 2)
7316 source = 2;
7317 else
7318 {
7319 if (i.types[0].bitfield.imm8)
7320 source = 1;
7321 else
7322 source = 0;
7323 }
7324 break;
7325 case 5:
7326 if (is_evex_encoding (&i.tm))
7327 {
7328 /* For EVEX instructions, when there are 5 operands, the
7329 first one must be immediate operand. If the second one
7330 is immediate operand, the source operand is the 3th
7331 one. If the last one is immediate operand, the source
7332 operand is the 2nd one. */
7333 gas_assert (i.imm_operands == 2
7334 && i.tm.opcode_modifier.sae
7335 && operand_type_check (i.types[0], imm));
7336 if (operand_type_check (i.types[1], imm))
7337 source = 2;
7338 else if (operand_type_check (i.types[4], imm))
7339 source = 1;
7340 else
7341 abort ();
7342 }
7343 break;
7344 default:
7345 abort ();
7346 }
7347
7348 if (!vex_3_sources)
7349 {
7350 dest = source + 1;
7351
7352 /* RC/SAE operand could be between DEST and SRC. That happens
7353 when one operand is GPR and the other one is XMM/YMM/ZMM
7354 register. */
7355 if (i.rounding && i.rounding->operand == (int) dest)
7356 dest++;
7357
7358 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7359 {
7360 /* For instructions with VexNDS, the register-only source
7361 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7362 register. It is encoded in VEX prefix. */
7363
7364 i386_operand_type op;
7365 unsigned int vvvv;
7366
7367 /* Check register-only source operand when two source
7368 operands are swapped. */
7369 if (!i.tm.operand_types[source].bitfield.baseindex
7370 && i.tm.operand_types[dest].bitfield.baseindex)
7371 {
7372 vvvv = source;
7373 source = dest;
7374 }
7375 else
7376 vvvv = dest;
7377
7378 op = i.tm.operand_types[vvvv];
7379 if ((dest + 1) >= i.operands
7380 || ((op.bitfield.class != Reg
7381 || (!op.bitfield.dword && !op.bitfield.qword))
7382 && op.bitfield.class != RegSIMD
7383 && !operand_type_equal (&op, &regmask)))
7384 abort ();
7385 i.vex.register_specifier = i.op[vvvv].regs;
7386 dest++;
7387 }
7388 }
7389
7390 i.rm.mode = 3;
7391 /* One of the register operands will be encoded in the i.rm.reg
7392 field, the other in the combined i.rm.mode and i.rm.regmem
7393 fields. If no form of this instruction supports a memory
7394 destination operand, then we assume the source operand may
7395 sometimes be a memory operand and so we need to store the
7396 destination in the i.rm.reg field. */
7397 if (!i.tm.opcode_modifier.regmem
7398 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7399 {
7400 i.rm.reg = i.op[dest].regs->reg_num;
7401 i.rm.regmem = i.op[source].regs->reg_num;
7402 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7403 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7404 i.has_regmmx = TRUE;
7405 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7406 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7407 {
7408 if (i.types[dest].bitfield.zmmword
7409 || i.types[source].bitfield.zmmword)
7410 i.has_regzmm = TRUE;
7411 else if (i.types[dest].bitfield.ymmword
7412 || i.types[source].bitfield.ymmword)
7413 i.has_regymm = TRUE;
7414 else
7415 i.has_regxmm = TRUE;
7416 }
7417 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7418 i.rex |= REX_R;
7419 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7420 i.vrex |= REX_R;
7421 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7422 i.rex |= REX_B;
7423 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7424 i.vrex |= REX_B;
7425 }
7426 else
7427 {
7428 i.rm.reg = i.op[source].regs->reg_num;
7429 i.rm.regmem = i.op[dest].regs->reg_num;
7430 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7431 i.rex |= REX_B;
7432 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7433 i.vrex |= REX_B;
7434 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7435 i.rex |= REX_R;
7436 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7437 i.vrex |= REX_R;
7438 }
7439 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7440 {
7441 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7442 abort ();
7443 i.rex &= ~REX_R;
7444 add_prefix (LOCK_PREFIX_OPCODE);
7445 }
7446 }
7447 else
7448 { /* If it's not 2 reg operands... */
7449 unsigned int mem;
7450
7451 if (i.mem_operands)
7452 {
7453 unsigned int fake_zero_displacement = 0;
7454 unsigned int op;
7455
7456 for (op = 0; op < i.operands; op++)
7457 if (i.flags[op] & Operand_Mem)
7458 break;
7459 gas_assert (op < i.operands);
7460
7461 if (i.tm.opcode_modifier.vecsib)
7462 {
7463 if (i.index_reg->reg_num == RegIZ)
7464 abort ();
7465
7466 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7467 if (!i.base_reg)
7468 {
7469 i.sib.base = NO_BASE_REGISTER;
7470 i.sib.scale = i.log2_scale_factor;
7471 i.types[op].bitfield.disp8 = 0;
7472 i.types[op].bitfield.disp16 = 0;
7473 i.types[op].bitfield.disp64 = 0;
7474 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7475 {
7476 /* Must be 32 bit */
7477 i.types[op].bitfield.disp32 = 1;
7478 i.types[op].bitfield.disp32s = 0;
7479 }
7480 else
7481 {
7482 i.types[op].bitfield.disp32 = 0;
7483 i.types[op].bitfield.disp32s = 1;
7484 }
7485 }
7486 i.sib.index = i.index_reg->reg_num;
7487 if ((i.index_reg->reg_flags & RegRex) != 0)
7488 i.rex |= REX_X;
7489 if ((i.index_reg->reg_flags & RegVRex) != 0)
7490 i.vrex |= REX_X;
7491 }
7492
7493 default_seg = &ds;
7494
7495 if (i.base_reg == 0)
7496 {
7497 i.rm.mode = 0;
7498 if (!i.disp_operands)
7499 fake_zero_displacement = 1;
7500 if (i.index_reg == 0)
7501 {
7502 i386_operand_type newdisp;
7503
7504 gas_assert (!i.tm.opcode_modifier.vecsib);
7505 /* Operand is just <disp> */
7506 if (flag_code == CODE_64BIT)
7507 {
7508 /* 64bit mode overwrites the 32bit absolute
7509 addressing by RIP relative addressing and
7510 absolute addressing is encoded by one of the
7511 redundant SIB forms. */
7512 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7513 i.sib.base = NO_BASE_REGISTER;
7514 i.sib.index = NO_INDEX_REGISTER;
7515 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7516 }
7517 else if ((flag_code == CODE_16BIT)
7518 ^ (i.prefix[ADDR_PREFIX] != 0))
7519 {
7520 i.rm.regmem = NO_BASE_REGISTER_16;
7521 newdisp = disp16;
7522 }
7523 else
7524 {
7525 i.rm.regmem = NO_BASE_REGISTER;
7526 newdisp = disp32;
7527 }
7528 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7529 i.types[op] = operand_type_or (i.types[op], newdisp);
7530 }
7531 else if (!i.tm.opcode_modifier.vecsib)
7532 {
7533 /* !i.base_reg && i.index_reg */
7534 if (i.index_reg->reg_num == RegIZ)
7535 i.sib.index = NO_INDEX_REGISTER;
7536 else
7537 i.sib.index = i.index_reg->reg_num;
7538 i.sib.base = NO_BASE_REGISTER;
7539 i.sib.scale = i.log2_scale_factor;
7540 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7541 i.types[op].bitfield.disp8 = 0;
7542 i.types[op].bitfield.disp16 = 0;
7543 i.types[op].bitfield.disp64 = 0;
7544 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7545 {
7546 /* Must be 32 bit */
7547 i.types[op].bitfield.disp32 = 1;
7548 i.types[op].bitfield.disp32s = 0;
7549 }
7550 else
7551 {
7552 i.types[op].bitfield.disp32 = 0;
7553 i.types[op].bitfield.disp32s = 1;
7554 }
7555 if ((i.index_reg->reg_flags & RegRex) != 0)
7556 i.rex |= REX_X;
7557 }
7558 }
7559 /* RIP addressing for 64bit mode. */
7560 else if (i.base_reg->reg_num == RegIP)
7561 {
7562 gas_assert (!i.tm.opcode_modifier.vecsib);
7563 i.rm.regmem = NO_BASE_REGISTER;
7564 i.types[op].bitfield.disp8 = 0;
7565 i.types[op].bitfield.disp16 = 0;
7566 i.types[op].bitfield.disp32 = 0;
7567 i.types[op].bitfield.disp32s = 1;
7568 i.types[op].bitfield.disp64 = 0;
7569 i.flags[op] |= Operand_PCrel;
7570 if (! i.disp_operands)
7571 fake_zero_displacement = 1;
7572 }
7573 else if (i.base_reg->reg_type.bitfield.word)
7574 {
7575 gas_assert (!i.tm.opcode_modifier.vecsib);
7576 switch (i.base_reg->reg_num)
7577 {
7578 case 3: /* (%bx) */
7579 if (i.index_reg == 0)
7580 i.rm.regmem = 7;
7581 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7582 i.rm.regmem = i.index_reg->reg_num - 6;
7583 break;
7584 case 5: /* (%bp) */
7585 default_seg = &ss;
7586 if (i.index_reg == 0)
7587 {
7588 i.rm.regmem = 6;
7589 if (operand_type_check (i.types[op], disp) == 0)
7590 {
7591 /* fake (%bp) into 0(%bp) */
7592 i.types[op].bitfield.disp8 = 1;
7593 fake_zero_displacement = 1;
7594 }
7595 }
7596 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7597 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7598 break;
7599 default: /* (%si) -> 4 or (%di) -> 5 */
7600 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7601 }
7602 i.rm.mode = mode_from_disp_size (i.types[op]);
7603 }
7604 else /* i.base_reg and 32/64 bit mode */
7605 {
7606 if (flag_code == CODE_64BIT
7607 && operand_type_check (i.types[op], disp))
7608 {
7609 i.types[op].bitfield.disp16 = 0;
7610 i.types[op].bitfield.disp64 = 0;
7611 if (i.prefix[ADDR_PREFIX] == 0)
7612 {
7613 i.types[op].bitfield.disp32 = 0;
7614 i.types[op].bitfield.disp32s = 1;
7615 }
7616 else
7617 {
7618 i.types[op].bitfield.disp32 = 1;
7619 i.types[op].bitfield.disp32s = 0;
7620 }
7621 }
7622
7623 if (!i.tm.opcode_modifier.vecsib)
7624 i.rm.regmem = i.base_reg->reg_num;
7625 if ((i.base_reg->reg_flags & RegRex) != 0)
7626 i.rex |= REX_B;
7627 i.sib.base = i.base_reg->reg_num;
7628 /* x86-64 ignores REX prefix bit here to avoid decoder
7629 complications. */
7630 if (!(i.base_reg->reg_flags & RegRex)
7631 && (i.base_reg->reg_num == EBP_REG_NUM
7632 || i.base_reg->reg_num == ESP_REG_NUM))
7633 default_seg = &ss;
7634 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7635 {
7636 fake_zero_displacement = 1;
7637 i.types[op].bitfield.disp8 = 1;
7638 }
7639 i.sib.scale = i.log2_scale_factor;
7640 if (i.index_reg == 0)
7641 {
7642 gas_assert (!i.tm.opcode_modifier.vecsib);
7643 /* <disp>(%esp) becomes two byte modrm with no index
7644 register. We've already stored the code for esp
7645 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7646 Any base register besides %esp will not use the
7647 extra modrm byte. */
7648 i.sib.index = NO_INDEX_REGISTER;
7649 }
7650 else if (!i.tm.opcode_modifier.vecsib)
7651 {
7652 if (i.index_reg->reg_num == RegIZ)
7653 i.sib.index = NO_INDEX_REGISTER;
7654 else
7655 i.sib.index = i.index_reg->reg_num;
7656 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7657 if ((i.index_reg->reg_flags & RegRex) != 0)
7658 i.rex |= REX_X;
7659 }
7660
7661 if (i.disp_operands
7662 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7663 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7664 i.rm.mode = 0;
7665 else
7666 {
7667 if (!fake_zero_displacement
7668 && !i.disp_operands
7669 && i.disp_encoding)
7670 {
7671 fake_zero_displacement = 1;
7672 if (i.disp_encoding == disp_encoding_8bit)
7673 i.types[op].bitfield.disp8 = 1;
7674 else
7675 i.types[op].bitfield.disp32 = 1;
7676 }
7677 i.rm.mode = mode_from_disp_size (i.types[op]);
7678 }
7679 }
7680
7681 if (fake_zero_displacement)
7682 {
7683 /* Fakes a zero displacement assuming that i.types[op]
7684 holds the correct displacement size. */
7685 expressionS *exp;
7686
7687 gas_assert (i.op[op].disps == 0);
7688 exp = &disp_expressions[i.disp_operands++];
7689 i.op[op].disps = exp;
7690 exp->X_op = O_constant;
7691 exp->X_add_number = 0;
7692 exp->X_add_symbol = (symbolS *) 0;
7693 exp->X_op_symbol = (symbolS *) 0;
7694 }
7695
7696 mem = op;
7697 }
7698 else
7699 mem = ~0;
7700
7701 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7702 {
7703 if (operand_type_check (i.types[0], imm))
7704 i.vex.register_specifier = NULL;
7705 else
7706 {
7707 /* VEX.vvvv encodes one of the sources when the first
7708 operand is not an immediate. */
7709 if (i.tm.opcode_modifier.vexw == VEXW0)
7710 i.vex.register_specifier = i.op[0].regs;
7711 else
7712 i.vex.register_specifier = i.op[1].regs;
7713 }
7714
7715 /* Destination is a XMM register encoded in the ModRM.reg
7716 and VEX.R bit. */
7717 i.rm.reg = i.op[2].regs->reg_num;
7718 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7719 i.rex |= REX_R;
7720
7721 /* ModRM.rm and VEX.B encodes the other source. */
7722 if (!i.mem_operands)
7723 {
7724 i.rm.mode = 3;
7725
7726 if (i.tm.opcode_modifier.vexw == VEXW0)
7727 i.rm.regmem = i.op[1].regs->reg_num;
7728 else
7729 i.rm.regmem = i.op[0].regs->reg_num;
7730
7731 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7732 i.rex |= REX_B;
7733 }
7734 }
7735 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7736 {
7737 i.vex.register_specifier = i.op[2].regs;
7738 if (!i.mem_operands)
7739 {
7740 i.rm.mode = 3;
7741 i.rm.regmem = i.op[1].regs->reg_num;
7742 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7743 i.rex |= REX_B;
7744 }
7745 }
7746 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7747 (if any) based on i.tm.extension_opcode. Again, we must be
7748 careful to make sure that segment/control/debug/test/MMX
7749 registers are coded into the i.rm.reg field. */
7750 else if (i.reg_operands)
7751 {
7752 unsigned int op;
7753 unsigned int vex_reg = ~0;
7754
7755 for (op = 0; op < i.operands; op++)
7756 {
7757 if (i.types[op].bitfield.class == Reg
7758 || i.types[op].bitfield.class == RegBND
7759 || i.types[op].bitfield.class == RegMask
7760 || i.types[op].bitfield.class == SReg
7761 || i.types[op].bitfield.class == RegCR
7762 || i.types[op].bitfield.class == RegDR
7763 || i.types[op].bitfield.class == RegTR)
7764 break;
7765 if (i.types[op].bitfield.class == RegSIMD)
7766 {
7767 if (i.types[op].bitfield.zmmword)
7768 i.has_regzmm = TRUE;
7769 else if (i.types[op].bitfield.ymmword)
7770 i.has_regymm = TRUE;
7771 else
7772 i.has_regxmm = TRUE;
7773 break;
7774 }
7775 if (i.types[op].bitfield.class == RegMMX)
7776 {
7777 i.has_regmmx = TRUE;
7778 break;
7779 }
7780 }
7781
7782 if (vex_3_sources)
7783 op = dest;
7784 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7785 {
7786 /* For instructions with VexNDS, the register-only
7787 source operand is encoded in VEX prefix. */
7788 gas_assert (mem != (unsigned int) ~0);
7789
7790 if (op > mem)
7791 {
7792 vex_reg = op++;
7793 gas_assert (op < i.operands);
7794 }
7795 else
7796 {
7797 /* Check register-only source operand when two source
7798 operands are swapped. */
7799 if (!i.tm.operand_types[op].bitfield.baseindex
7800 && i.tm.operand_types[op + 1].bitfield.baseindex)
7801 {
7802 vex_reg = op;
7803 op += 2;
7804 gas_assert (mem == (vex_reg + 1)
7805 && op < i.operands);
7806 }
7807 else
7808 {
7809 vex_reg = op + 1;
7810 gas_assert (vex_reg < i.operands);
7811 }
7812 }
7813 }
7814 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7815 {
7816 /* For instructions with VexNDD, the register destination
7817 is encoded in VEX prefix. */
7818 if (i.mem_operands == 0)
7819 {
7820 /* There is no memory operand. */
7821 gas_assert ((op + 2) == i.operands);
7822 vex_reg = op + 1;
7823 }
7824 else
7825 {
7826 /* There are only 2 non-immediate operands. */
7827 gas_assert (op < i.imm_operands + 2
7828 && i.operands == i.imm_operands + 2);
7829 vex_reg = i.imm_operands + 1;
7830 }
7831 }
7832 else
7833 gas_assert (op < i.operands);
7834
7835 if (vex_reg != (unsigned int) ~0)
7836 {
7837 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7838
7839 if ((type->bitfield.class != Reg
7840 || (!type->bitfield.dword && !type->bitfield.qword))
7841 && type->bitfield.class != RegSIMD
7842 && !operand_type_equal (type, &regmask))
7843 abort ();
7844
7845 i.vex.register_specifier = i.op[vex_reg].regs;
7846 }
7847
7848 /* Don't set OP operand twice. */
7849 if (vex_reg != op)
7850 {
7851 /* If there is an extension opcode to put here, the
7852 register number must be put into the regmem field. */
7853 if (i.tm.extension_opcode != None)
7854 {
7855 i.rm.regmem = i.op[op].regs->reg_num;
7856 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7857 i.rex |= REX_B;
7858 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7859 i.vrex |= REX_B;
7860 }
7861 else
7862 {
7863 i.rm.reg = i.op[op].regs->reg_num;
7864 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7865 i.rex |= REX_R;
7866 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7867 i.vrex |= REX_R;
7868 }
7869 }
7870
7871 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7872 must set it to 3 to indicate this is a register operand
7873 in the regmem field. */
7874 if (!i.mem_operands)
7875 i.rm.mode = 3;
7876 }
7877
7878 /* Fill in i.rm.reg field with extension opcode (if any). */
7879 if (i.tm.extension_opcode != None)
7880 i.rm.reg = i.tm.extension_opcode;
7881 }
7882 return default_seg;
7883 }
7884
7885 static unsigned int
7886 flip_code16 (unsigned int code16)
7887 {
7888 gas_assert (i.tm.operands == 1);
7889
7890 return !(i.prefix[REX_PREFIX] & REX_W)
7891 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7892 || i.tm.operand_types[0].bitfield.disp32s
7893 : i.tm.operand_types[0].bitfield.disp16)
7894 ? CODE16 : 0;
7895 }
7896
7897 static void
7898 output_branch (void)
7899 {
7900 char *p;
7901 int size;
7902 int code16;
7903 int prefix;
7904 relax_substateT subtype;
7905 symbolS *sym;
7906 offsetT off;
7907
7908 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7909 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7910
7911 prefix = 0;
7912 if (i.prefix[DATA_PREFIX] != 0)
7913 {
7914 prefix = 1;
7915 i.prefixes -= 1;
7916 code16 ^= flip_code16(code16);
7917 }
7918 /* Pentium4 branch hints. */
7919 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7920 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7921 {
7922 prefix++;
7923 i.prefixes--;
7924 }
7925 if (i.prefix[REX_PREFIX] != 0)
7926 {
7927 prefix++;
7928 i.prefixes--;
7929 }
7930
7931 /* BND prefixed jump. */
7932 if (i.prefix[BND_PREFIX] != 0)
7933 {
7934 prefix++;
7935 i.prefixes--;
7936 }
7937
7938 if (i.prefixes != 0)
7939 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7940
7941 /* It's always a symbol; End frag & setup for relax.
7942 Make sure there is enough room in this frag for the largest
7943 instruction we may generate in md_convert_frag. This is 2
7944 bytes for the opcode and room for the prefix and largest
7945 displacement. */
7946 frag_grow (prefix + 2 + 4);
7947 /* Prefix and 1 opcode byte go in fr_fix. */
7948 p = frag_more (prefix + 1);
7949 if (i.prefix[DATA_PREFIX] != 0)
7950 *p++ = DATA_PREFIX_OPCODE;
7951 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7952 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7953 *p++ = i.prefix[SEG_PREFIX];
7954 if (i.prefix[BND_PREFIX] != 0)
7955 *p++ = BND_PREFIX_OPCODE;
7956 if (i.prefix[REX_PREFIX] != 0)
7957 *p++ = i.prefix[REX_PREFIX];
7958 *p = i.tm.base_opcode;
7959
7960 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7961 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7962 else if (cpu_arch_flags.bitfield.cpui386)
7963 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7964 else
7965 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7966 subtype |= code16;
7967
7968 sym = i.op[0].disps->X_add_symbol;
7969 off = i.op[0].disps->X_add_number;
7970
7971 if (i.op[0].disps->X_op != O_constant
7972 && i.op[0].disps->X_op != O_symbol)
7973 {
7974 /* Handle complex expressions. */
7975 sym = make_expr_symbol (i.op[0].disps);
7976 off = 0;
7977 }
7978
7979 /* 1 possible extra opcode + 4 byte displacement go in var part.
7980 Pass reloc in fr_var. */
7981 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7982 }
7983
7984 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7985 /* Return TRUE iff PLT32 relocation should be used for branching to
7986 symbol S. */
7987
7988 static bfd_boolean
7989 need_plt32_p (symbolS *s)
7990 {
7991 /* PLT32 relocation is ELF only. */
7992 if (!IS_ELF)
7993 return FALSE;
7994
7995 #ifdef TE_SOLARIS
7996 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7997 krtld support it. */
7998 return FALSE;
7999 #endif
8000
8001 /* Since there is no need to prepare for PLT branch on x86-64, we
8002 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8003 be used as a marker for 32-bit PC-relative branches. */
8004 if (!object_64bit)
8005 return FALSE;
8006
8007 /* Weak or undefined symbol need PLT32 relocation. */
8008 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8009 return TRUE;
8010
8011 /* Non-global symbol doesn't need PLT32 relocation. */
8012 if (! S_IS_EXTERNAL (s))
8013 return FALSE;
8014
8015 /* Other global symbols need PLT32 relocation. NB: Symbol with
8016 non-default visibilities are treated as normal global symbol
8017 so that PLT32 relocation can be used as a marker for 32-bit
8018 PC-relative branches. It is useful for linker relaxation. */
8019 return TRUE;
8020 }
8021 #endif
8022
8023 static void
8024 output_jump (void)
8025 {
8026 char *p;
8027 int size;
8028 fixS *fixP;
8029 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8030
8031 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8032 {
8033 /* This is a loop or jecxz type instruction. */
8034 size = 1;
8035 if (i.prefix[ADDR_PREFIX] != 0)
8036 {
8037 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8038 i.prefixes -= 1;
8039 }
8040 /* Pentium4 branch hints. */
8041 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8042 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8043 {
8044 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8045 i.prefixes--;
8046 }
8047 }
8048 else
8049 {
8050 int code16;
8051
8052 code16 = 0;
8053 if (flag_code == CODE_16BIT)
8054 code16 = CODE16;
8055
8056 if (i.prefix[DATA_PREFIX] != 0)
8057 {
8058 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8059 i.prefixes -= 1;
8060 code16 ^= flip_code16(code16);
8061 }
8062
8063 size = 4;
8064 if (code16)
8065 size = 2;
8066 }
8067
8068 /* BND prefixed jump. */
8069 if (i.prefix[BND_PREFIX] != 0)
8070 {
8071 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8072 i.prefixes -= 1;
8073 }
8074
8075 if (i.prefix[REX_PREFIX] != 0)
8076 {
8077 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8078 i.prefixes -= 1;
8079 }
8080
8081 if (i.prefixes != 0)
8082 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8083
8084 p = frag_more (i.tm.opcode_length + size);
8085 switch (i.tm.opcode_length)
8086 {
8087 case 2:
8088 *p++ = i.tm.base_opcode >> 8;
8089 /* Fall through. */
8090 case 1:
8091 *p++ = i.tm.base_opcode;
8092 break;
8093 default:
8094 abort ();
8095 }
8096
8097 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8098 if (size == 4
8099 && jump_reloc == NO_RELOC
8100 && need_plt32_p (i.op[0].disps->X_add_symbol))
8101 jump_reloc = BFD_RELOC_X86_64_PLT32;
8102 #endif
8103
8104 jump_reloc = reloc (size, 1, 1, jump_reloc);
8105
8106 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8107 i.op[0].disps, 1, jump_reloc);
8108
8109 /* All jumps handled here are signed, but don't use a signed limit
8110 check for 32 and 16 bit jumps as we want to allow wrap around at
8111 4G and 64k respectively. */
8112 if (size == 1)
8113 fixP->fx_signed = 1;
8114 }
8115
8116 static void
8117 output_interseg_jump (void)
8118 {
8119 char *p;
8120 int size;
8121 int prefix;
8122 int code16;
8123
8124 code16 = 0;
8125 if (flag_code == CODE_16BIT)
8126 code16 = CODE16;
8127
8128 prefix = 0;
8129 if (i.prefix[DATA_PREFIX] != 0)
8130 {
8131 prefix = 1;
8132 i.prefixes -= 1;
8133 code16 ^= CODE16;
8134 }
8135
8136 gas_assert (!i.prefix[REX_PREFIX]);
8137
8138 size = 4;
8139 if (code16)
8140 size = 2;
8141
8142 if (i.prefixes != 0)
8143 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8144
8145 /* 1 opcode; 2 segment; offset */
8146 p = frag_more (prefix + 1 + 2 + size);
8147
8148 if (i.prefix[DATA_PREFIX] != 0)
8149 *p++ = DATA_PREFIX_OPCODE;
8150
8151 if (i.prefix[REX_PREFIX] != 0)
8152 *p++ = i.prefix[REX_PREFIX];
8153
8154 *p++ = i.tm.base_opcode;
8155 if (i.op[1].imms->X_op == O_constant)
8156 {
8157 offsetT n = i.op[1].imms->X_add_number;
8158
8159 if (size == 2
8160 && !fits_in_unsigned_word (n)
8161 && !fits_in_signed_word (n))
8162 {
8163 as_bad (_("16-bit jump out of range"));
8164 return;
8165 }
8166 md_number_to_chars (p, n, size);
8167 }
8168 else
8169 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8170 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8171 if (i.op[0].imms->X_op != O_constant)
8172 as_bad (_("can't handle non absolute segment in `%s'"),
8173 i.tm.name);
8174 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8175 }
8176
8177 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8178 void
8179 x86_cleanup (void)
8180 {
8181 char *p;
8182 asection *seg = now_seg;
8183 subsegT subseg = now_subseg;
8184 asection *sec;
8185 unsigned int alignment, align_size_1;
8186 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8187 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8188 unsigned int padding;
8189
8190 if (!IS_ELF || !x86_used_note)
8191 return;
8192
8193 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8194
8195 /* The .note.gnu.property section layout:
8196
8197 Field Length Contents
8198 ---- ---- ----
8199 n_namsz 4 4
8200 n_descsz 4 The note descriptor size
8201 n_type 4 NT_GNU_PROPERTY_TYPE_0
8202 n_name 4 "GNU"
8203 n_desc n_descsz The program property array
8204 .... .... ....
8205 */
8206
8207 /* Create the .note.gnu.property section. */
8208 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8209 bfd_set_section_flags (sec,
8210 (SEC_ALLOC
8211 | SEC_LOAD
8212 | SEC_DATA
8213 | SEC_HAS_CONTENTS
8214 | SEC_READONLY));
8215
8216 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8217 {
8218 align_size_1 = 7;
8219 alignment = 3;
8220 }
8221 else
8222 {
8223 align_size_1 = 3;
8224 alignment = 2;
8225 }
8226
8227 bfd_set_section_alignment (sec, alignment);
8228 elf_section_type (sec) = SHT_NOTE;
8229
8230 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8231 + 4-byte data */
8232 isa_1_descsz_raw = 4 + 4 + 4;
8233 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8234 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8235
8236 feature_2_descsz_raw = isa_1_descsz;
8237 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8238 + 4-byte data */
8239 feature_2_descsz_raw += 4 + 4 + 4;
8240 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8241 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8242 & ~align_size_1);
8243
8244 descsz = feature_2_descsz;
8245 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8246 p = frag_more (4 + 4 + 4 + 4 + descsz);
8247
8248 /* Write n_namsz. */
8249 md_number_to_chars (p, (valueT) 4, 4);
8250
8251 /* Write n_descsz. */
8252 md_number_to_chars (p + 4, (valueT) descsz, 4);
8253
8254 /* Write n_type. */
8255 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8256
8257 /* Write n_name. */
8258 memcpy (p + 4 * 3, "GNU", 4);
8259
8260 /* Write 4-byte type. */
8261 md_number_to_chars (p + 4 * 4,
8262 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8263
8264 /* Write 4-byte data size. */
8265 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8266
8267 /* Write 4-byte data. */
8268 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8269
8270 /* Zero out paddings. */
8271 padding = isa_1_descsz - isa_1_descsz_raw;
8272 if (padding)
8273 memset (p + 4 * 7, 0, padding);
8274
8275 /* Write 4-byte type. */
8276 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8277 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8278
8279 /* Write 4-byte data size. */
8280 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8281
8282 /* Write 4-byte data. */
8283 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8284 (valueT) x86_feature_2_used, 4);
8285
8286 /* Zero out paddings. */
8287 padding = feature_2_descsz - feature_2_descsz_raw;
8288 if (padding)
8289 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8290
8291 /* We probably can't restore the current segment, for there likely
8292 isn't one yet... */
8293 if (seg && subseg)
8294 subseg_set (seg, subseg);
8295 }
8296 #endif
8297
8298 static unsigned int
8299 encoding_length (const fragS *start_frag, offsetT start_off,
8300 const char *frag_now_ptr)
8301 {
8302 unsigned int len = 0;
8303
8304 if (start_frag != frag_now)
8305 {
8306 const fragS *fr = start_frag;
8307
8308 do {
8309 len += fr->fr_fix;
8310 fr = fr->fr_next;
8311 } while (fr && fr != frag_now);
8312 }
8313
8314 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8315 }
8316
8317 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8318 be macro-fused with conditional jumps. */
8319
8320 static int
8321 maybe_fused_with_jcc_p (void)
8322 {
8323 /* No RIP address. */
8324 if (i.base_reg && i.base_reg->reg_num == RegIP)
8325 return 0;
8326
8327 /* No VEX/EVEX encoding. */
8328 if (is_any_vex_encoding (&i.tm))
8329 return 0;
8330
8331 /* and, add, sub with destination register. */
8332 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8333 || i.tm.base_opcode <= 5
8334 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8335 || ((i.tm.base_opcode | 3) == 0x83
8336 && ((i.tm.extension_opcode | 1) == 0x5
8337 || i.tm.extension_opcode == 0x0)))
8338 return (i.types[1].bitfield.class == Reg
8339 || i.types[1].bitfield.instance == Accum);
8340
8341 /* test, cmp with any register. */
8342 if ((i.tm.base_opcode | 1) == 0x85
8343 || (i.tm.base_opcode | 1) == 0xa9
8344 || ((i.tm.base_opcode | 1) == 0xf7
8345 && i.tm.extension_opcode == 0)
8346 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8347 || ((i.tm.base_opcode | 3) == 0x83
8348 && (i.tm.extension_opcode == 0x7)))
8349 return (i.types[0].bitfield.class == Reg
8350 || i.types[0].bitfield.instance == Accum
8351 || i.types[1].bitfield.class == Reg
8352 || i.types[1].bitfield.instance == Accum);
8353
8354 /* inc, dec with any register. */
8355 if ((i.tm.cpu_flags.bitfield.cpuno64
8356 && (i.tm.base_opcode | 0xf) == 0x4f)
8357 || ((i.tm.base_opcode | 1) == 0xff
8358 && i.tm.extension_opcode <= 0x1))
8359 return (i.types[0].bitfield.class == Reg
8360 || i.types[0].bitfield.instance == Accum);
8361
8362 return 0;
8363 }
8364
8365 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8366
8367 static int
8368 add_fused_jcc_padding_frag_p (void)
8369 {
8370 /* NB: Don't work with COND_JUMP86 without i386. */
8371 if (!align_branch_power
8372 || now_seg == absolute_section
8373 || !cpu_arch_flags.bitfield.cpui386
8374 || !(align_branch & align_branch_fused_bit))
8375 return 0;
8376
8377 if (maybe_fused_with_jcc_p ())
8378 {
8379 if (last_insn.kind == last_insn_other
8380 || last_insn.seg != now_seg)
8381 return 1;
8382 if (flag_debug)
8383 as_warn_where (last_insn.file, last_insn.line,
8384 _("`%s` skips -malign-branch-boundary on `%s`"),
8385 last_insn.name, i.tm.name);
8386 }
8387
8388 return 0;
8389 }
8390
8391 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8392
8393 static int
8394 add_branch_prefix_frag_p (void)
8395 {
8396 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8397 to PadLock instructions since they include prefixes in opcode. */
8398 if (!align_branch_power
8399 || !align_branch_prefix_size
8400 || now_seg == absolute_section
8401 || i.tm.cpu_flags.bitfield.cpupadlock
8402 || !cpu_arch_flags.bitfield.cpui386)
8403 return 0;
8404
8405 /* Don't add prefix if it is a prefix or there is no operand in case
8406 that segment prefix is special. */
8407 if (!i.operands || i.tm.opcode_modifier.isprefix)
8408 return 0;
8409
8410 if (last_insn.kind == last_insn_other
8411 || last_insn.seg != now_seg)
8412 return 1;
8413
8414 if (flag_debug)
8415 as_warn_where (last_insn.file, last_insn.line,
8416 _("`%s` skips -malign-branch-boundary on `%s`"),
8417 last_insn.name, i.tm.name);
8418
8419 return 0;
8420 }
8421
8422 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8423
8424 static int
8425 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8426 {
8427 int add_padding;
8428
8429 /* NB: Don't work with COND_JUMP86 without i386. */
8430 if (!align_branch_power
8431 || now_seg == absolute_section
8432 || !cpu_arch_flags.bitfield.cpui386)
8433 return 0;
8434
8435 add_padding = 0;
8436
8437 /* Check for jcc and direct jmp. */
8438 if (i.tm.opcode_modifier.jump == JUMP)
8439 {
8440 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8441 {
8442 *branch_p = align_branch_jmp;
8443 add_padding = align_branch & align_branch_jmp_bit;
8444 }
8445 else
8446 {
8447 *branch_p = align_branch_jcc;
8448 if ((align_branch & align_branch_jcc_bit))
8449 add_padding = 1;
8450 }
8451 }
8452 else if (is_any_vex_encoding (&i.tm))
8453 return 0;
8454 else if ((i.tm.base_opcode | 1) == 0xc3)
8455 {
8456 /* Near ret. */
8457 *branch_p = align_branch_ret;
8458 if ((align_branch & align_branch_ret_bit))
8459 add_padding = 1;
8460 }
8461 else
8462 {
8463 /* Check for indirect jmp, direct and indirect calls. */
8464 if (i.tm.base_opcode == 0xe8)
8465 {
8466 /* Direct call. */
8467 *branch_p = align_branch_call;
8468 if ((align_branch & align_branch_call_bit))
8469 add_padding = 1;
8470 }
8471 else if (i.tm.base_opcode == 0xff
8472 && (i.tm.extension_opcode == 2
8473 || i.tm.extension_opcode == 4))
8474 {
8475 /* Indirect call and jmp. */
8476 *branch_p = align_branch_indirect;
8477 if ((align_branch & align_branch_indirect_bit))
8478 add_padding = 1;
8479 }
8480
8481 if (add_padding
8482 && i.disp_operands
8483 && tls_get_addr
8484 && (i.op[0].disps->X_op == O_symbol
8485 || (i.op[0].disps->X_op == O_subtract
8486 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8487 {
8488 symbolS *s = i.op[0].disps->X_add_symbol;
8489 /* No padding to call to global or undefined tls_get_addr. */
8490 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8491 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8492 return 0;
8493 }
8494 }
8495
8496 if (add_padding
8497 && last_insn.kind != last_insn_other
8498 && last_insn.seg == now_seg)
8499 {
8500 if (flag_debug)
8501 as_warn_where (last_insn.file, last_insn.line,
8502 _("`%s` skips -malign-branch-boundary on `%s`"),
8503 last_insn.name, i.tm.name);
8504 return 0;
8505 }
8506
8507 return add_padding;
8508 }
8509
8510 static void
8511 output_insn (void)
8512 {
8513 fragS *insn_start_frag;
8514 offsetT insn_start_off;
8515 fragS *fragP = NULL;
8516 enum align_branch_kind branch = align_branch_none;
8517
8518 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8519 if (IS_ELF && x86_used_note)
8520 {
8521 if (i.tm.cpu_flags.bitfield.cpucmov)
8522 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8523 if (i.tm.cpu_flags.bitfield.cpusse)
8524 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8525 if (i.tm.cpu_flags.bitfield.cpusse2)
8526 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8527 if (i.tm.cpu_flags.bitfield.cpusse3)
8528 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8529 if (i.tm.cpu_flags.bitfield.cpussse3)
8530 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8531 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8532 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8533 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8534 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8535 if (i.tm.cpu_flags.bitfield.cpuavx)
8536 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8537 if (i.tm.cpu_flags.bitfield.cpuavx2)
8538 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8539 if (i.tm.cpu_flags.bitfield.cpufma)
8540 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8541 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8542 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8543 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8544 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8545 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8546 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8547 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8548 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8549 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8550 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8551 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8552 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8553 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8554 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8555 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8556 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8557 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8558 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8559 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8560 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8561 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8562 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8563 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8564 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8565 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8566 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8567 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8568 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8569 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8570 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8571
8572 if (i.tm.cpu_flags.bitfield.cpu8087
8573 || i.tm.cpu_flags.bitfield.cpu287
8574 || i.tm.cpu_flags.bitfield.cpu387
8575 || i.tm.cpu_flags.bitfield.cpu687
8576 || i.tm.cpu_flags.bitfield.cpufisttp)
8577 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8578 if (i.has_regmmx
8579 || i.tm.base_opcode == 0xf77 /* emms */
8580 || i.tm.base_opcode == 0xf0e /* femms */)
8581 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8582 if (i.has_regxmm)
8583 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8584 if (i.has_regymm)
8585 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8586 if (i.has_regzmm)
8587 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8588 if (i.tm.cpu_flags.bitfield.cpufxsr)
8589 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8590 if (i.tm.cpu_flags.bitfield.cpuxsave)
8591 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8592 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8593 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8594 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8595 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8596 }
8597 #endif
8598
8599 /* Tie dwarf2 debug info to the address at the start of the insn.
8600 We can't do this after the insn has been output as the current
8601 frag may have been closed off. eg. by frag_var. */
8602 dwarf2_emit_insn (0);
8603
8604 insn_start_frag = frag_now;
8605 insn_start_off = frag_now_fix ();
8606
8607 if (add_branch_padding_frag_p (&branch))
8608 {
8609 char *p;
8610 /* Branch can be 8 bytes. Leave some room for prefixes. */
8611 unsigned int max_branch_padding_size = 14;
8612
8613 /* Align section to boundary. */
8614 record_alignment (now_seg, align_branch_power);
8615
8616 /* Make room for padding. */
8617 frag_grow (max_branch_padding_size);
8618
8619 /* Start of the padding. */
8620 p = frag_more (0);
8621
8622 fragP = frag_now;
8623
8624 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8625 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8626 NULL, 0, p);
8627
8628 fragP->tc_frag_data.branch_type = branch;
8629 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8630 }
8631
8632 /* Output jumps. */
8633 if (i.tm.opcode_modifier.jump == JUMP)
8634 output_branch ();
8635 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8636 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8637 output_jump ();
8638 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8639 output_interseg_jump ();
8640 else
8641 {
8642 /* Output normal instructions here. */
8643 char *p;
8644 unsigned char *q;
8645 unsigned int j;
8646 unsigned int prefix;
8647
8648 if (avoid_fence
8649 && (i.tm.base_opcode == 0xfaee8
8650 || i.tm.base_opcode == 0xfaef0
8651 || i.tm.base_opcode == 0xfaef8))
8652 {
8653 /* Encode lfence, mfence, and sfence as
8654 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8655 offsetT val = 0x240483f0ULL;
8656 p = frag_more (5);
8657 md_number_to_chars (p, val, 5);
8658 return;
8659 }
8660
8661 /* Some processors fail on LOCK prefix. This options makes
8662 assembler ignore LOCK prefix and serves as a workaround. */
8663 if (omit_lock_prefix)
8664 {
8665 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8666 return;
8667 i.prefix[LOCK_PREFIX] = 0;
8668 }
8669
8670 if (branch)
8671 /* Skip if this is a branch. */
8672 ;
8673 else if (add_fused_jcc_padding_frag_p ())
8674 {
8675 /* Make room for padding. */
8676 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8677 p = frag_more (0);
8678
8679 fragP = frag_now;
8680
8681 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8682 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8683 NULL, 0, p);
8684
8685 fragP->tc_frag_data.branch_type = align_branch_fused;
8686 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8687 }
8688 else if (add_branch_prefix_frag_p ())
8689 {
8690 unsigned int max_prefix_size = align_branch_prefix_size;
8691
8692 /* Make room for padding. */
8693 frag_grow (max_prefix_size);
8694 p = frag_more (0);
8695
8696 fragP = frag_now;
8697
8698 frag_var (rs_machine_dependent, max_prefix_size, 0,
8699 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8700 NULL, 0, p);
8701
8702 fragP->tc_frag_data.max_bytes = max_prefix_size;
8703 }
8704
8705 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8706 don't need the explicit prefix. */
8707 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8708 {
8709 switch (i.tm.opcode_length)
8710 {
8711 case 3:
8712 if (i.tm.base_opcode & 0xff000000)
8713 {
8714 prefix = (i.tm.base_opcode >> 24) & 0xff;
8715 if (!i.tm.cpu_flags.bitfield.cpupadlock
8716 || prefix != REPE_PREFIX_OPCODE
8717 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8718 add_prefix (prefix);
8719 }
8720 break;
8721 case 2:
8722 if ((i.tm.base_opcode & 0xff0000) != 0)
8723 {
8724 prefix = (i.tm.base_opcode >> 16) & 0xff;
8725 add_prefix (prefix);
8726 }
8727 break;
8728 case 1:
8729 break;
8730 case 0:
8731 /* Check for pseudo prefixes. */
8732 as_bad_where (insn_start_frag->fr_file,
8733 insn_start_frag->fr_line,
8734 _("pseudo prefix without instruction"));
8735 return;
8736 default:
8737 abort ();
8738 }
8739
8740 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8741 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8742 R_X86_64_GOTTPOFF relocation so that linker can safely
8743 perform IE->LE optimization. A dummy REX_OPCODE prefix
8744 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8745 relocation for GDesc -> IE/LE optimization. */
8746 if (x86_elf_abi == X86_64_X32_ABI
8747 && i.operands == 2
8748 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8749 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8750 && i.prefix[REX_PREFIX] == 0)
8751 add_prefix (REX_OPCODE);
8752 #endif
8753
8754 /* The prefix bytes. */
8755 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8756 if (*q)
8757 FRAG_APPEND_1_CHAR (*q);
8758 }
8759 else
8760 {
8761 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8762 if (*q)
8763 switch (j)
8764 {
8765 case REX_PREFIX:
8766 /* REX byte is encoded in VEX prefix. */
8767 break;
8768 case SEG_PREFIX:
8769 case ADDR_PREFIX:
8770 FRAG_APPEND_1_CHAR (*q);
8771 break;
8772 default:
8773 /* There should be no other prefixes for instructions
8774 with VEX prefix. */
8775 abort ();
8776 }
8777
8778 /* For EVEX instructions i.vrex should become 0 after
8779 build_evex_prefix. For VEX instructions upper 16 registers
8780 aren't available, so VREX should be 0. */
8781 if (i.vrex)
8782 abort ();
8783 /* Now the VEX prefix. */
8784 p = frag_more (i.vex.length);
8785 for (j = 0; j < i.vex.length; j++)
8786 p[j] = i.vex.bytes[j];
8787 }
8788
8789 /* Now the opcode; be careful about word order here! */
8790 if (i.tm.opcode_length == 1)
8791 {
8792 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8793 }
8794 else
8795 {
8796 switch (i.tm.opcode_length)
8797 {
8798 case 4:
8799 p = frag_more (4);
8800 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8801 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8802 break;
8803 case 3:
8804 p = frag_more (3);
8805 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8806 break;
8807 case 2:
8808 p = frag_more (2);
8809 break;
8810 default:
8811 abort ();
8812 break;
8813 }
8814
8815 /* Put out high byte first: can't use md_number_to_chars! */
8816 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8817 *p = i.tm.base_opcode & 0xff;
8818 }
8819
8820 /* Now the modrm byte and sib byte (if present). */
8821 if (i.tm.opcode_modifier.modrm)
8822 {
8823 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8824 | i.rm.reg << 3
8825 | i.rm.mode << 6));
8826 /* If i.rm.regmem == ESP (4)
8827 && i.rm.mode != (Register mode)
8828 && not 16 bit
8829 ==> need second modrm byte. */
8830 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8831 && i.rm.mode != 3
8832 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8833 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8834 | i.sib.index << 3
8835 | i.sib.scale << 6));
8836 }
8837
8838 if (i.disp_operands)
8839 output_disp (insn_start_frag, insn_start_off);
8840
8841 if (i.imm_operands)
8842 output_imm (insn_start_frag, insn_start_off);
8843
8844 /*
8845 * frag_now_fix () returning plain abs_section_offset when we're in the
8846 * absolute section, and abs_section_offset not getting updated as data
8847 * gets added to the frag breaks the logic below.
8848 */
8849 if (now_seg != absolute_section)
8850 {
8851 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8852 if (j > 15)
8853 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8854 j);
8855 else if (fragP)
8856 {
8857 /* NB: Don't add prefix with GOTPC relocation since
8858 output_disp() above depends on the fixed encoding
8859 length. Can't add prefix with TLS relocation since
8860 it breaks TLS linker optimization. */
8861 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8862 /* Prefix count on the current instruction. */
8863 unsigned int count = i.vex.length;
8864 unsigned int k;
8865 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8866 /* REX byte is encoded in VEX/EVEX prefix. */
8867 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8868 count++;
8869
8870 /* Count prefixes for extended opcode maps. */
8871 if (!i.vex.length)
8872 switch (i.tm.opcode_length)
8873 {
8874 case 3:
8875 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8876 {
8877 count++;
8878 switch ((i.tm.base_opcode >> 8) & 0xff)
8879 {
8880 case 0x38:
8881 case 0x3a:
8882 count++;
8883 break;
8884 default:
8885 break;
8886 }
8887 }
8888 break;
8889 case 2:
8890 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8891 count++;
8892 break;
8893 case 1:
8894 break;
8895 default:
8896 abort ();
8897 }
8898
8899 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8900 == BRANCH_PREFIX)
8901 {
8902 /* Set the maximum prefix size in BRANCH_PREFIX
8903 frag. */
8904 if (fragP->tc_frag_data.max_bytes > max)
8905 fragP->tc_frag_data.max_bytes = max;
8906 if (fragP->tc_frag_data.max_bytes > count)
8907 fragP->tc_frag_data.max_bytes -= count;
8908 else
8909 fragP->tc_frag_data.max_bytes = 0;
8910 }
8911 else
8912 {
8913 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8914 frag. */
8915 unsigned int max_prefix_size;
8916 if (align_branch_prefix_size > max)
8917 max_prefix_size = max;
8918 else
8919 max_prefix_size = align_branch_prefix_size;
8920 if (max_prefix_size > count)
8921 fragP->tc_frag_data.max_prefix_length
8922 = max_prefix_size - count;
8923 }
8924
8925 /* Use existing segment prefix if possible. Use CS
8926 segment prefix in 64-bit mode. In 32-bit mode, use SS
8927 segment prefix with ESP/EBP base register and use DS
8928 segment prefix without ESP/EBP base register. */
8929 if (i.prefix[SEG_PREFIX])
8930 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8931 else if (flag_code == CODE_64BIT)
8932 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8933 else if (i.base_reg
8934 && (i.base_reg->reg_num == 4
8935 || i.base_reg->reg_num == 5))
8936 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8937 else
8938 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8939 }
8940 }
8941 }
8942
8943 /* NB: Don't work with COND_JUMP86 without i386. */
8944 if (align_branch_power
8945 && now_seg != absolute_section
8946 && cpu_arch_flags.bitfield.cpui386)
8947 {
8948 /* Terminate each frag so that we can add prefix and check for
8949 fused jcc. */
8950 frag_wane (frag_now);
8951 frag_new (0);
8952 }
8953
8954 #ifdef DEBUG386
8955 if (flag_debug)
8956 {
8957 pi ("" /*line*/, &i);
8958 }
8959 #endif /* DEBUG386 */
8960 }
8961
8962 /* Return the size of the displacement operand N. */
8963
8964 static int
8965 disp_size (unsigned int n)
8966 {
8967 int size = 4;
8968
8969 if (i.types[n].bitfield.disp64)
8970 size = 8;
8971 else if (i.types[n].bitfield.disp8)
8972 size = 1;
8973 else if (i.types[n].bitfield.disp16)
8974 size = 2;
8975 return size;
8976 }
8977
8978 /* Return the size of the immediate operand N. */
8979
8980 static int
8981 imm_size (unsigned int n)
8982 {
8983 int size = 4;
8984 if (i.types[n].bitfield.imm64)
8985 size = 8;
8986 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8987 size = 1;
8988 else if (i.types[n].bitfield.imm16)
8989 size = 2;
8990 return size;
8991 }
8992
8993 static void
8994 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8995 {
8996 char *p;
8997 unsigned int n;
8998
8999 for (n = 0; n < i.operands; n++)
9000 {
9001 if (operand_type_check (i.types[n], disp))
9002 {
9003 if (i.op[n].disps->X_op == O_constant)
9004 {
9005 int size = disp_size (n);
9006 offsetT val = i.op[n].disps->X_add_number;
9007
9008 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9009 size);
9010 p = frag_more (size);
9011 md_number_to_chars (p, val, size);
9012 }
9013 else
9014 {
9015 enum bfd_reloc_code_real reloc_type;
9016 int size = disp_size (n);
9017 int sign = i.types[n].bitfield.disp32s;
9018 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9019 fixS *fixP;
9020
9021 /* We can't have 8 bit displacement here. */
9022 gas_assert (!i.types[n].bitfield.disp8);
9023
9024 /* The PC relative address is computed relative
9025 to the instruction boundary, so in case immediate
9026 fields follows, we need to adjust the value. */
9027 if (pcrel && i.imm_operands)
9028 {
9029 unsigned int n1;
9030 int sz = 0;
9031
9032 for (n1 = 0; n1 < i.operands; n1++)
9033 if (operand_type_check (i.types[n1], imm))
9034 {
9035 /* Only one immediate is allowed for PC
9036 relative address. */
9037 gas_assert (sz == 0);
9038 sz = imm_size (n1);
9039 i.op[n].disps->X_add_number -= sz;
9040 }
9041 /* We should find the immediate. */
9042 gas_assert (sz != 0);
9043 }
9044
9045 p = frag_more (size);
9046 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9047 if (GOT_symbol
9048 && GOT_symbol == i.op[n].disps->X_add_symbol
9049 && (((reloc_type == BFD_RELOC_32
9050 || reloc_type == BFD_RELOC_X86_64_32S
9051 || (reloc_type == BFD_RELOC_64
9052 && object_64bit))
9053 && (i.op[n].disps->X_op == O_symbol
9054 || (i.op[n].disps->X_op == O_add
9055 && ((symbol_get_value_expression
9056 (i.op[n].disps->X_op_symbol)->X_op)
9057 == O_subtract))))
9058 || reloc_type == BFD_RELOC_32_PCREL))
9059 {
9060 if (!object_64bit)
9061 {
9062 reloc_type = BFD_RELOC_386_GOTPC;
9063 i.has_gotpc_tls_reloc = TRUE;
9064 i.op[n].imms->X_add_number +=
9065 encoding_length (insn_start_frag, insn_start_off, p);
9066 }
9067 else if (reloc_type == BFD_RELOC_64)
9068 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9069 else
9070 /* Don't do the adjustment for x86-64, as there
9071 the pcrel addressing is relative to the _next_
9072 insn, and that is taken care of in other code. */
9073 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9074 }
9075 else if (align_branch_power)
9076 {
9077 switch (reloc_type)
9078 {
9079 case BFD_RELOC_386_TLS_GD:
9080 case BFD_RELOC_386_TLS_LDM:
9081 case BFD_RELOC_386_TLS_IE:
9082 case BFD_RELOC_386_TLS_IE_32:
9083 case BFD_RELOC_386_TLS_GOTIE:
9084 case BFD_RELOC_386_TLS_GOTDESC:
9085 case BFD_RELOC_386_TLS_DESC_CALL:
9086 case BFD_RELOC_X86_64_TLSGD:
9087 case BFD_RELOC_X86_64_TLSLD:
9088 case BFD_RELOC_X86_64_GOTTPOFF:
9089 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9090 case BFD_RELOC_X86_64_TLSDESC_CALL:
9091 i.has_gotpc_tls_reloc = TRUE;
9092 default:
9093 break;
9094 }
9095 }
9096 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9097 size, i.op[n].disps, pcrel,
9098 reloc_type);
9099 /* Check for "call/jmp *mem", "mov mem, %reg",
9100 "test %reg, mem" and "binop mem, %reg" where binop
9101 is one of adc, add, and, cmp, or, sbb, sub, xor
9102 instructions without data prefix. Always generate
9103 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9104 if (i.prefix[DATA_PREFIX] == 0
9105 && (generate_relax_relocations
9106 || (!object_64bit
9107 && i.rm.mode == 0
9108 && i.rm.regmem == 5))
9109 && (i.rm.mode == 2
9110 || (i.rm.mode == 0 && i.rm.regmem == 5))
9111 && !is_any_vex_encoding(&i.tm)
9112 && ((i.operands == 1
9113 && i.tm.base_opcode == 0xff
9114 && (i.rm.reg == 2 || i.rm.reg == 4))
9115 || (i.operands == 2
9116 && (i.tm.base_opcode == 0x8b
9117 || i.tm.base_opcode == 0x85
9118 || (i.tm.base_opcode & ~0x38) == 0x03))))
9119 {
9120 if (object_64bit)
9121 {
9122 fixP->fx_tcbit = i.rex != 0;
9123 if (i.base_reg
9124 && (i.base_reg->reg_num == RegIP))
9125 fixP->fx_tcbit2 = 1;
9126 }
9127 else
9128 fixP->fx_tcbit2 = 1;
9129 }
9130 }
9131 }
9132 }
9133 }
9134
9135 static void
9136 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9137 {
9138 char *p;
9139 unsigned int n;
9140
9141 for (n = 0; n < i.operands; n++)
9142 {
9143 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9144 if (i.rounding && (int) n == i.rounding->operand)
9145 continue;
9146
9147 if (operand_type_check (i.types[n], imm))
9148 {
9149 if (i.op[n].imms->X_op == O_constant)
9150 {
9151 int size = imm_size (n);
9152 offsetT val;
9153
9154 val = offset_in_range (i.op[n].imms->X_add_number,
9155 size);
9156 p = frag_more (size);
9157 md_number_to_chars (p, val, size);
9158 }
9159 else
9160 {
9161 /* Not absolute_section.
9162 Need a 32-bit fixup (don't support 8bit
9163 non-absolute imms). Try to support other
9164 sizes ... */
9165 enum bfd_reloc_code_real reloc_type;
9166 int size = imm_size (n);
9167 int sign;
9168
9169 if (i.types[n].bitfield.imm32s
9170 && (i.suffix == QWORD_MNEM_SUFFIX
9171 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9172 sign = 1;
9173 else
9174 sign = 0;
9175
9176 p = frag_more (size);
9177 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9178
9179 /* This is tough to explain. We end up with this one if we
9180 * have operands that look like
9181 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9182 * obtain the absolute address of the GOT, and it is strongly
9183 * preferable from a performance point of view to avoid using
9184 * a runtime relocation for this. The actual sequence of
9185 * instructions often look something like:
9186 *
9187 * call .L66
9188 * .L66:
9189 * popl %ebx
9190 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9191 *
9192 * The call and pop essentially return the absolute address
9193 * of the label .L66 and store it in %ebx. The linker itself
9194 * will ultimately change the first operand of the addl so
9195 * that %ebx points to the GOT, but to keep things simple, the
9196 * .o file must have this operand set so that it generates not
9197 * the absolute address of .L66, but the absolute address of
9198 * itself. This allows the linker itself simply treat a GOTPC
9199 * relocation as asking for a pcrel offset to the GOT to be
9200 * added in, and the addend of the relocation is stored in the
9201 * operand field for the instruction itself.
9202 *
9203 * Our job here is to fix the operand so that it would add
9204 * the correct offset so that %ebx would point to itself. The
9205 * thing that is tricky is that .-.L66 will point to the
9206 * beginning of the instruction, so we need to further modify
9207 * the operand so that it will point to itself. There are
9208 * other cases where you have something like:
9209 *
9210 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9211 *
9212 * and here no correction would be required. Internally in
9213 * the assembler we treat operands of this form as not being
9214 * pcrel since the '.' is explicitly mentioned, and I wonder
9215 * whether it would simplify matters to do it this way. Who
9216 * knows. In earlier versions of the PIC patches, the
9217 * pcrel_adjust field was used to store the correction, but
9218 * since the expression is not pcrel, I felt it would be
9219 * confusing to do it this way. */
9220
9221 if ((reloc_type == BFD_RELOC_32
9222 || reloc_type == BFD_RELOC_X86_64_32S
9223 || reloc_type == BFD_RELOC_64)
9224 && GOT_symbol
9225 && GOT_symbol == i.op[n].imms->X_add_symbol
9226 && (i.op[n].imms->X_op == O_symbol
9227 || (i.op[n].imms->X_op == O_add
9228 && ((symbol_get_value_expression
9229 (i.op[n].imms->X_op_symbol)->X_op)
9230 == O_subtract))))
9231 {
9232 if (!object_64bit)
9233 reloc_type = BFD_RELOC_386_GOTPC;
9234 else if (size == 4)
9235 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9236 else if (size == 8)
9237 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9238 i.has_gotpc_tls_reloc = TRUE;
9239 i.op[n].imms->X_add_number +=
9240 encoding_length (insn_start_frag, insn_start_off, p);
9241 }
9242 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9243 i.op[n].imms, 0, reloc_type);
9244 }
9245 }
9246 }
9247 }
9248 \f
9249 /* x86_cons_fix_new is called via the expression parsing code when a
9250 reloc is needed. We use this hook to get the correct .got reloc. */
9251 static int cons_sign = -1;
9252
9253 void
9254 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9255 expressionS *exp, bfd_reloc_code_real_type r)
9256 {
9257 r = reloc (len, 0, cons_sign, r);
9258
9259 #ifdef TE_PE
9260 if (exp->X_op == O_secrel)
9261 {
9262 exp->X_op = O_symbol;
9263 r = BFD_RELOC_32_SECREL;
9264 }
9265 #endif
9266
9267 fix_new_exp (frag, off, len, exp, 0, r);
9268 }
9269
9270 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9271 purpose of the `.dc.a' internal pseudo-op. */
9272
9273 int
9274 x86_address_bytes (void)
9275 {
9276 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9277 return 4;
9278 return stdoutput->arch_info->bits_per_address / 8;
9279 }
9280
9281 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9282 || defined (LEX_AT)
9283 # define lex_got(reloc, adjust, types) NULL
9284 #else
9285 /* Parse operands of the form
9286 <symbol>@GOTOFF+<nnn>
9287 and similar .plt or .got references.
9288
9289 If we find one, set up the correct relocation in RELOC and copy the
9290 input string, minus the `@GOTOFF' into a malloc'd buffer for
9291 parsing by the calling routine. Return this buffer, and if ADJUST
9292 is non-null set it to the length of the string we removed from the
9293 input line. Otherwise return NULL. */
9294 static char *
9295 lex_got (enum bfd_reloc_code_real *rel,
9296 int *adjust,
9297 i386_operand_type *types)
9298 {
9299 /* Some of the relocations depend on the size of what field is to
9300 be relocated. But in our callers i386_immediate and i386_displacement
9301 we don't yet know the operand size (this will be set by insn
9302 matching). Hence we record the word32 relocation here,
9303 and adjust the reloc according to the real size in reloc(). */
9304 static const struct {
9305 const char *str;
9306 int len;
9307 const enum bfd_reloc_code_real rel[2];
9308 const i386_operand_type types64;
9309 } gotrel[] = {
9310 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9311 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9312 BFD_RELOC_SIZE32 },
9313 OPERAND_TYPE_IMM32_64 },
9314 #endif
9315 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9316 BFD_RELOC_X86_64_PLTOFF64 },
9317 OPERAND_TYPE_IMM64 },
9318 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9319 BFD_RELOC_X86_64_PLT32 },
9320 OPERAND_TYPE_IMM32_32S_DISP32 },
9321 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9322 BFD_RELOC_X86_64_GOTPLT64 },
9323 OPERAND_TYPE_IMM64_DISP64 },
9324 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9325 BFD_RELOC_X86_64_GOTOFF64 },
9326 OPERAND_TYPE_IMM64_DISP64 },
9327 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9328 BFD_RELOC_X86_64_GOTPCREL },
9329 OPERAND_TYPE_IMM32_32S_DISP32 },
9330 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9331 BFD_RELOC_X86_64_TLSGD },
9332 OPERAND_TYPE_IMM32_32S_DISP32 },
9333 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9334 _dummy_first_bfd_reloc_code_real },
9335 OPERAND_TYPE_NONE },
9336 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9337 BFD_RELOC_X86_64_TLSLD },
9338 OPERAND_TYPE_IMM32_32S_DISP32 },
9339 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9340 BFD_RELOC_X86_64_GOTTPOFF },
9341 OPERAND_TYPE_IMM32_32S_DISP32 },
9342 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9343 BFD_RELOC_X86_64_TPOFF32 },
9344 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9345 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9346 _dummy_first_bfd_reloc_code_real },
9347 OPERAND_TYPE_NONE },
9348 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9349 BFD_RELOC_X86_64_DTPOFF32 },
9350 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9351 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9352 _dummy_first_bfd_reloc_code_real },
9353 OPERAND_TYPE_NONE },
9354 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9355 _dummy_first_bfd_reloc_code_real },
9356 OPERAND_TYPE_NONE },
9357 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9358 BFD_RELOC_X86_64_GOT32 },
9359 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9360 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9361 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9362 OPERAND_TYPE_IMM32_32S_DISP32 },
9363 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9364 BFD_RELOC_X86_64_TLSDESC_CALL },
9365 OPERAND_TYPE_IMM32_32S_DISP32 },
9366 };
9367 char *cp;
9368 unsigned int j;
9369
9370 #if defined (OBJ_MAYBE_ELF)
9371 if (!IS_ELF)
9372 return NULL;
9373 #endif
9374
9375 for (cp = input_line_pointer; *cp != '@'; cp++)
9376 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9377 return NULL;
9378
9379 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9380 {
9381 int len = gotrel[j].len;
9382 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9383 {
9384 if (gotrel[j].rel[object_64bit] != 0)
9385 {
9386 int first, second;
9387 char *tmpbuf, *past_reloc;
9388
9389 *rel = gotrel[j].rel[object_64bit];
9390
9391 if (types)
9392 {
9393 if (flag_code != CODE_64BIT)
9394 {
9395 types->bitfield.imm32 = 1;
9396 types->bitfield.disp32 = 1;
9397 }
9398 else
9399 *types = gotrel[j].types64;
9400 }
9401
9402 if (j != 0 && GOT_symbol == NULL)
9403 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9404
9405 /* The length of the first part of our input line. */
9406 first = cp - input_line_pointer;
9407
9408 /* The second part goes from after the reloc token until
9409 (and including) an end_of_line char or comma. */
9410 past_reloc = cp + 1 + len;
9411 cp = past_reloc;
9412 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9413 ++cp;
9414 second = cp + 1 - past_reloc;
9415
9416 /* Allocate and copy string. The trailing NUL shouldn't
9417 be necessary, but be safe. */
9418 tmpbuf = XNEWVEC (char, first + second + 2);
9419 memcpy (tmpbuf, input_line_pointer, first);
9420 if (second != 0 && *past_reloc != ' ')
9421 /* Replace the relocation token with ' ', so that
9422 errors like foo@GOTOFF1 will be detected. */
9423 tmpbuf[first++] = ' ';
9424 else
9425 /* Increment length by 1 if the relocation token is
9426 removed. */
9427 len++;
9428 if (adjust)
9429 *adjust = len;
9430 memcpy (tmpbuf + first, past_reloc, second);
9431 tmpbuf[first + second] = '\0';
9432 return tmpbuf;
9433 }
9434
9435 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9436 gotrel[j].str, 1 << (5 + object_64bit));
9437 return NULL;
9438 }
9439 }
9440
9441 /* Might be a symbol version string. Don't as_bad here. */
9442 return NULL;
9443 }
9444 #endif
9445
9446 #ifdef TE_PE
9447 #ifdef lex_got
9448 #undef lex_got
9449 #endif
9450 /* Parse operands of the form
9451 <symbol>@SECREL32+<nnn>
9452
9453 If we find one, set up the correct relocation in RELOC and copy the
9454 input string, minus the `@SECREL32' into a malloc'd buffer for
9455 parsing by the calling routine. Return this buffer, and if ADJUST
9456 is non-null set it to the length of the string we removed from the
9457 input line. Otherwise return NULL.
9458
9459 This function is copied from the ELF version above adjusted for PE targets. */
9460
9461 static char *
9462 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9463 int *adjust ATTRIBUTE_UNUSED,
9464 i386_operand_type *types)
9465 {
9466 static const struct
9467 {
9468 const char *str;
9469 int len;
9470 const enum bfd_reloc_code_real rel[2];
9471 const i386_operand_type types64;
9472 }
9473 gotrel[] =
9474 {
9475 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9476 BFD_RELOC_32_SECREL },
9477 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9478 };
9479
9480 char *cp;
9481 unsigned j;
9482
9483 for (cp = input_line_pointer; *cp != '@'; cp++)
9484 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9485 return NULL;
9486
9487 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9488 {
9489 int len = gotrel[j].len;
9490
9491 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9492 {
9493 if (gotrel[j].rel[object_64bit] != 0)
9494 {
9495 int first, second;
9496 char *tmpbuf, *past_reloc;
9497
9498 *rel = gotrel[j].rel[object_64bit];
9499 if (adjust)
9500 *adjust = len;
9501
9502 if (types)
9503 {
9504 if (flag_code != CODE_64BIT)
9505 {
9506 types->bitfield.imm32 = 1;
9507 types->bitfield.disp32 = 1;
9508 }
9509 else
9510 *types = gotrel[j].types64;
9511 }
9512
9513 /* The length of the first part of our input line. */
9514 first = cp - input_line_pointer;
9515
9516 /* The second part goes from after the reloc token until
9517 (and including) an end_of_line char or comma. */
9518 past_reloc = cp + 1 + len;
9519 cp = past_reloc;
9520 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9521 ++cp;
9522 second = cp + 1 - past_reloc;
9523
9524 /* Allocate and copy string. The trailing NUL shouldn't
9525 be necessary, but be safe. */
9526 tmpbuf = XNEWVEC (char, first + second + 2);
9527 memcpy (tmpbuf, input_line_pointer, first);
9528 if (second != 0 && *past_reloc != ' ')
9529 /* Replace the relocation token with ' ', so that
9530 errors like foo@SECLREL321 will be detected. */
9531 tmpbuf[first++] = ' ';
9532 memcpy (tmpbuf + first, past_reloc, second);
9533 tmpbuf[first + second] = '\0';
9534 return tmpbuf;
9535 }
9536
9537 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9538 gotrel[j].str, 1 << (5 + object_64bit));
9539 return NULL;
9540 }
9541 }
9542
9543 /* Might be a symbol version string. Don't as_bad here. */
9544 return NULL;
9545 }
9546
9547 #endif /* TE_PE */
9548
9549 bfd_reloc_code_real_type
9550 x86_cons (expressionS *exp, int size)
9551 {
9552 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9553
9554 intel_syntax = -intel_syntax;
9555
9556 exp->X_md = 0;
9557 if (size == 4 || (object_64bit && size == 8))
9558 {
9559 /* Handle @GOTOFF and the like in an expression. */
9560 char *save;
9561 char *gotfree_input_line;
9562 int adjust = 0;
9563
9564 save = input_line_pointer;
9565 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9566 if (gotfree_input_line)
9567 input_line_pointer = gotfree_input_line;
9568
9569 expression (exp);
9570
9571 if (gotfree_input_line)
9572 {
9573 /* expression () has merrily parsed up to the end of line,
9574 or a comma - in the wrong buffer. Transfer how far
9575 input_line_pointer has moved to the right buffer. */
9576 input_line_pointer = (save
9577 + (input_line_pointer - gotfree_input_line)
9578 + adjust);
9579 free (gotfree_input_line);
9580 if (exp->X_op == O_constant
9581 || exp->X_op == O_absent
9582 || exp->X_op == O_illegal
9583 || exp->X_op == O_register
9584 || exp->X_op == O_big)
9585 {
9586 char c = *input_line_pointer;
9587 *input_line_pointer = 0;
9588 as_bad (_("missing or invalid expression `%s'"), save);
9589 *input_line_pointer = c;
9590 }
9591 else if ((got_reloc == BFD_RELOC_386_PLT32
9592 || got_reloc == BFD_RELOC_X86_64_PLT32)
9593 && exp->X_op != O_symbol)
9594 {
9595 char c = *input_line_pointer;
9596 *input_line_pointer = 0;
9597 as_bad (_("invalid PLT expression `%s'"), save);
9598 *input_line_pointer = c;
9599 }
9600 }
9601 }
9602 else
9603 expression (exp);
9604
9605 intel_syntax = -intel_syntax;
9606
9607 if (intel_syntax)
9608 i386_intel_simplify (exp);
9609
9610 return got_reloc;
9611 }
9612
9613 static void
9614 signed_cons (int size)
9615 {
9616 if (flag_code == CODE_64BIT)
9617 cons_sign = 1;
9618 cons (size);
9619 cons_sign = -1;
9620 }
9621
9622 #ifdef TE_PE
9623 static void
9624 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9625 {
9626 expressionS exp;
9627
9628 do
9629 {
9630 expression (&exp);
9631 if (exp.X_op == O_symbol)
9632 exp.X_op = O_secrel;
9633
9634 emit_expr (&exp, 4);
9635 }
9636 while (*input_line_pointer++ == ',');
9637
9638 input_line_pointer--;
9639 demand_empty_rest_of_line ();
9640 }
9641 #endif
9642
9643 /* Handle Vector operations. */
9644
9645 static char *
9646 check_VecOperations (char *op_string, char *op_end)
9647 {
9648 const reg_entry *mask;
9649 const char *saved;
9650 char *end_op;
9651
9652 while (*op_string
9653 && (op_end == NULL || op_string < op_end))
9654 {
9655 saved = op_string;
9656 if (*op_string == '{')
9657 {
9658 op_string++;
9659
9660 /* Check broadcasts. */
9661 if (strncmp (op_string, "1to", 3) == 0)
9662 {
9663 int bcst_type;
9664
9665 if (i.broadcast)
9666 goto duplicated_vec_op;
9667
9668 op_string += 3;
9669 if (*op_string == '8')
9670 bcst_type = 8;
9671 else if (*op_string == '4')
9672 bcst_type = 4;
9673 else if (*op_string == '2')
9674 bcst_type = 2;
9675 else if (*op_string == '1'
9676 && *(op_string+1) == '6')
9677 {
9678 bcst_type = 16;
9679 op_string++;
9680 }
9681 else
9682 {
9683 as_bad (_("Unsupported broadcast: `%s'"), saved);
9684 return NULL;
9685 }
9686 op_string++;
9687
9688 broadcast_op.type = bcst_type;
9689 broadcast_op.operand = this_operand;
9690 broadcast_op.bytes = 0;
9691 i.broadcast = &broadcast_op;
9692 }
9693 /* Check masking operation. */
9694 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9695 {
9696 /* k0 can't be used for write mask. */
9697 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9698 {
9699 as_bad (_("`%s%s' can't be used for write mask"),
9700 register_prefix, mask->reg_name);
9701 return NULL;
9702 }
9703
9704 if (!i.mask)
9705 {
9706 mask_op.mask = mask;
9707 mask_op.zeroing = 0;
9708 mask_op.operand = this_operand;
9709 i.mask = &mask_op;
9710 }
9711 else
9712 {
9713 if (i.mask->mask)
9714 goto duplicated_vec_op;
9715
9716 i.mask->mask = mask;
9717
9718 /* Only "{z}" is allowed here. No need to check
9719 zeroing mask explicitly. */
9720 if (i.mask->operand != this_operand)
9721 {
9722 as_bad (_("invalid write mask `%s'"), saved);
9723 return NULL;
9724 }
9725 }
9726
9727 op_string = end_op;
9728 }
9729 /* Check zeroing-flag for masking operation. */
9730 else if (*op_string == 'z')
9731 {
9732 if (!i.mask)
9733 {
9734 mask_op.mask = NULL;
9735 mask_op.zeroing = 1;
9736 mask_op.operand = this_operand;
9737 i.mask = &mask_op;
9738 }
9739 else
9740 {
9741 if (i.mask->zeroing)
9742 {
9743 duplicated_vec_op:
9744 as_bad (_("duplicated `%s'"), saved);
9745 return NULL;
9746 }
9747
9748 i.mask->zeroing = 1;
9749
9750 /* Only "{%k}" is allowed here. No need to check mask
9751 register explicitly. */
9752 if (i.mask->operand != this_operand)
9753 {
9754 as_bad (_("invalid zeroing-masking `%s'"),
9755 saved);
9756 return NULL;
9757 }
9758 }
9759
9760 op_string++;
9761 }
9762 else
9763 goto unknown_vec_op;
9764
9765 if (*op_string != '}')
9766 {
9767 as_bad (_("missing `}' in `%s'"), saved);
9768 return NULL;
9769 }
9770 op_string++;
9771
9772 /* Strip whitespace since the addition of pseudo prefixes
9773 changed how the scrubber treats '{'. */
9774 if (is_space_char (*op_string))
9775 ++op_string;
9776
9777 continue;
9778 }
9779 unknown_vec_op:
9780 /* We don't know this one. */
9781 as_bad (_("unknown vector operation: `%s'"), saved);
9782 return NULL;
9783 }
9784
9785 if (i.mask && i.mask->zeroing && !i.mask->mask)
9786 {
9787 as_bad (_("zeroing-masking only allowed with write mask"));
9788 return NULL;
9789 }
9790
9791 return op_string;
9792 }
9793
9794 static int
9795 i386_immediate (char *imm_start)
9796 {
9797 char *save_input_line_pointer;
9798 char *gotfree_input_line;
9799 segT exp_seg = 0;
9800 expressionS *exp;
9801 i386_operand_type types;
9802
9803 operand_type_set (&types, ~0);
9804
9805 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9806 {
9807 as_bad (_("at most %d immediate operands are allowed"),
9808 MAX_IMMEDIATE_OPERANDS);
9809 return 0;
9810 }
9811
9812 exp = &im_expressions[i.imm_operands++];
9813 i.op[this_operand].imms = exp;
9814
9815 if (is_space_char (*imm_start))
9816 ++imm_start;
9817
9818 save_input_line_pointer = input_line_pointer;
9819 input_line_pointer = imm_start;
9820
9821 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9822 if (gotfree_input_line)
9823 input_line_pointer = gotfree_input_line;
9824
9825 exp_seg = expression (exp);
9826
9827 SKIP_WHITESPACE ();
9828
9829 /* Handle vector operations. */
9830 if (*input_line_pointer == '{')
9831 {
9832 input_line_pointer = check_VecOperations (input_line_pointer,
9833 NULL);
9834 if (input_line_pointer == NULL)
9835 return 0;
9836 }
9837
9838 if (*input_line_pointer)
9839 as_bad (_("junk `%s' after expression"), input_line_pointer);
9840
9841 input_line_pointer = save_input_line_pointer;
9842 if (gotfree_input_line)
9843 {
9844 free (gotfree_input_line);
9845
9846 if (exp->X_op == O_constant || exp->X_op == O_register)
9847 exp->X_op = O_illegal;
9848 }
9849
9850 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9851 }
9852
9853 static int
9854 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9855 i386_operand_type types, const char *imm_start)
9856 {
9857 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9858 {
9859 if (imm_start)
9860 as_bad (_("missing or invalid immediate expression `%s'"),
9861 imm_start);
9862 return 0;
9863 }
9864 else if (exp->X_op == O_constant)
9865 {
9866 /* Size it properly later. */
9867 i.types[this_operand].bitfield.imm64 = 1;
9868 /* If not 64bit, sign extend val. */
9869 if (flag_code != CODE_64BIT
9870 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9871 exp->X_add_number
9872 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9873 }
9874 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9875 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9876 && exp_seg != absolute_section
9877 && exp_seg != text_section
9878 && exp_seg != data_section
9879 && exp_seg != bss_section
9880 && exp_seg != undefined_section
9881 && !bfd_is_com_section (exp_seg))
9882 {
9883 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9884 return 0;
9885 }
9886 #endif
9887 else if (!intel_syntax && exp_seg == reg_section)
9888 {
9889 if (imm_start)
9890 as_bad (_("illegal immediate register operand %s"), imm_start);
9891 return 0;
9892 }
9893 else
9894 {
9895 /* This is an address. The size of the address will be
9896 determined later, depending on destination register,
9897 suffix, or the default for the section. */
9898 i.types[this_operand].bitfield.imm8 = 1;
9899 i.types[this_operand].bitfield.imm16 = 1;
9900 i.types[this_operand].bitfield.imm32 = 1;
9901 i.types[this_operand].bitfield.imm32s = 1;
9902 i.types[this_operand].bitfield.imm64 = 1;
9903 i.types[this_operand] = operand_type_and (i.types[this_operand],
9904 types);
9905 }
9906
9907 return 1;
9908 }
9909
9910 static char *
9911 i386_scale (char *scale)
9912 {
9913 offsetT val;
9914 char *save = input_line_pointer;
9915
9916 input_line_pointer = scale;
9917 val = get_absolute_expression ();
9918
9919 switch (val)
9920 {
9921 case 1:
9922 i.log2_scale_factor = 0;
9923 break;
9924 case 2:
9925 i.log2_scale_factor = 1;
9926 break;
9927 case 4:
9928 i.log2_scale_factor = 2;
9929 break;
9930 case 8:
9931 i.log2_scale_factor = 3;
9932 break;
9933 default:
9934 {
9935 char sep = *input_line_pointer;
9936
9937 *input_line_pointer = '\0';
9938 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9939 scale);
9940 *input_line_pointer = sep;
9941 input_line_pointer = save;
9942 return NULL;
9943 }
9944 }
9945 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9946 {
9947 as_warn (_("scale factor of %d without an index register"),
9948 1 << i.log2_scale_factor);
9949 i.log2_scale_factor = 0;
9950 }
9951 scale = input_line_pointer;
9952 input_line_pointer = save;
9953 return scale;
9954 }
9955
9956 static int
9957 i386_displacement (char *disp_start, char *disp_end)
9958 {
9959 expressionS *exp;
9960 segT exp_seg = 0;
9961 char *save_input_line_pointer;
9962 char *gotfree_input_line;
9963 int override;
9964 i386_operand_type bigdisp, types = anydisp;
9965 int ret;
9966
9967 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9968 {
9969 as_bad (_("at most %d displacement operands are allowed"),
9970 MAX_MEMORY_OPERANDS);
9971 return 0;
9972 }
9973
9974 operand_type_set (&bigdisp, 0);
9975 if (i.jumpabsolute
9976 || i.types[this_operand].bitfield.baseindex
9977 || (current_templates->start->opcode_modifier.jump != JUMP
9978 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9979 {
9980 i386_addressing_mode ();
9981 override = (i.prefix[ADDR_PREFIX] != 0);
9982 if (flag_code == CODE_64BIT)
9983 {
9984 if (!override)
9985 {
9986 bigdisp.bitfield.disp32s = 1;
9987 bigdisp.bitfield.disp64 = 1;
9988 }
9989 else
9990 bigdisp.bitfield.disp32 = 1;
9991 }
9992 else if ((flag_code == CODE_16BIT) ^ override)
9993 bigdisp.bitfield.disp16 = 1;
9994 else
9995 bigdisp.bitfield.disp32 = 1;
9996 }
9997 else
9998 {
9999 /* For PC-relative branches, the width of the displacement may be
10000 dependent upon data size, but is never dependent upon address size.
10001 Also make sure to not unintentionally match against a non-PC-relative
10002 branch template. */
10003 static templates aux_templates;
10004 const insn_template *t = current_templates->start;
10005 bfd_boolean has_intel64 = FALSE;
10006
10007 aux_templates.start = t;
10008 while (++t < current_templates->end)
10009 {
10010 if (t->opcode_modifier.jump
10011 != current_templates->start->opcode_modifier.jump)
10012 break;
10013 if ((t->opcode_modifier.isa64 >= INTEL64))
10014 has_intel64 = TRUE;
10015 }
10016 if (t < current_templates->end)
10017 {
10018 aux_templates.end = t;
10019 current_templates = &aux_templates;
10020 }
10021
10022 override = (i.prefix[DATA_PREFIX] != 0);
10023 if (flag_code == CODE_64BIT)
10024 {
10025 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10026 && (!intel64 || !has_intel64))
10027 bigdisp.bitfield.disp16 = 1;
10028 else
10029 bigdisp.bitfield.disp32s = 1;
10030 }
10031 else
10032 {
10033 if (!override)
10034 override = (i.suffix == (flag_code != CODE_16BIT
10035 ? WORD_MNEM_SUFFIX
10036 : LONG_MNEM_SUFFIX));
10037 bigdisp.bitfield.disp32 = 1;
10038 if ((flag_code == CODE_16BIT) ^ override)
10039 {
10040 bigdisp.bitfield.disp32 = 0;
10041 bigdisp.bitfield.disp16 = 1;
10042 }
10043 }
10044 }
10045 i.types[this_operand] = operand_type_or (i.types[this_operand],
10046 bigdisp);
10047
10048 exp = &disp_expressions[i.disp_operands];
10049 i.op[this_operand].disps = exp;
10050 i.disp_operands++;
10051 save_input_line_pointer = input_line_pointer;
10052 input_line_pointer = disp_start;
10053 END_STRING_AND_SAVE (disp_end);
10054
10055 #ifndef GCC_ASM_O_HACK
10056 #define GCC_ASM_O_HACK 0
10057 #endif
10058 #if GCC_ASM_O_HACK
10059 END_STRING_AND_SAVE (disp_end + 1);
10060 if (i.types[this_operand].bitfield.baseIndex
10061 && displacement_string_end[-1] == '+')
10062 {
10063 /* This hack is to avoid a warning when using the "o"
10064 constraint within gcc asm statements.
10065 For instance:
10066
10067 #define _set_tssldt_desc(n,addr,limit,type) \
10068 __asm__ __volatile__ ( \
10069 "movw %w2,%0\n\t" \
10070 "movw %w1,2+%0\n\t" \
10071 "rorl $16,%1\n\t" \
10072 "movb %b1,4+%0\n\t" \
10073 "movb %4,5+%0\n\t" \
10074 "movb $0,6+%0\n\t" \
10075 "movb %h1,7+%0\n\t" \
10076 "rorl $16,%1" \
10077 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10078
10079 This works great except that the output assembler ends
10080 up looking a bit weird if it turns out that there is
10081 no offset. You end up producing code that looks like:
10082
10083 #APP
10084 movw $235,(%eax)
10085 movw %dx,2+(%eax)
10086 rorl $16,%edx
10087 movb %dl,4+(%eax)
10088 movb $137,5+(%eax)
10089 movb $0,6+(%eax)
10090 movb %dh,7+(%eax)
10091 rorl $16,%edx
10092 #NO_APP
10093
10094 So here we provide the missing zero. */
10095
10096 *displacement_string_end = '0';
10097 }
10098 #endif
10099 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10100 if (gotfree_input_line)
10101 input_line_pointer = gotfree_input_line;
10102
10103 exp_seg = expression (exp);
10104
10105 SKIP_WHITESPACE ();
10106 if (*input_line_pointer)
10107 as_bad (_("junk `%s' after expression"), input_line_pointer);
10108 #if GCC_ASM_O_HACK
10109 RESTORE_END_STRING (disp_end + 1);
10110 #endif
10111 input_line_pointer = save_input_line_pointer;
10112 if (gotfree_input_line)
10113 {
10114 free (gotfree_input_line);
10115
10116 if (exp->X_op == O_constant || exp->X_op == O_register)
10117 exp->X_op = O_illegal;
10118 }
10119
10120 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10121
10122 RESTORE_END_STRING (disp_end);
10123
10124 return ret;
10125 }
10126
10127 static int
10128 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10129 i386_operand_type types, const char *disp_start)
10130 {
10131 i386_operand_type bigdisp;
10132 int ret = 1;
10133
10134 /* We do this to make sure that the section symbol is in
10135 the symbol table. We will ultimately change the relocation
10136 to be relative to the beginning of the section. */
10137 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10138 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10139 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10140 {
10141 if (exp->X_op != O_symbol)
10142 goto inv_disp;
10143
10144 if (S_IS_LOCAL (exp->X_add_symbol)
10145 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10146 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10147 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10148 exp->X_op = O_subtract;
10149 exp->X_op_symbol = GOT_symbol;
10150 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10151 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10152 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10153 i.reloc[this_operand] = BFD_RELOC_64;
10154 else
10155 i.reloc[this_operand] = BFD_RELOC_32;
10156 }
10157
10158 else if (exp->X_op == O_absent
10159 || exp->X_op == O_illegal
10160 || exp->X_op == O_big)
10161 {
10162 inv_disp:
10163 as_bad (_("missing or invalid displacement expression `%s'"),
10164 disp_start);
10165 ret = 0;
10166 }
10167
10168 else if (flag_code == CODE_64BIT
10169 && !i.prefix[ADDR_PREFIX]
10170 && exp->X_op == O_constant)
10171 {
10172 /* Since displacement is signed extended to 64bit, don't allow
10173 disp32 and turn off disp32s if they are out of range. */
10174 i.types[this_operand].bitfield.disp32 = 0;
10175 if (!fits_in_signed_long (exp->X_add_number))
10176 {
10177 i.types[this_operand].bitfield.disp32s = 0;
10178 if (i.types[this_operand].bitfield.baseindex)
10179 {
10180 as_bad (_("0x%lx out range of signed 32bit displacement"),
10181 (long) exp->X_add_number);
10182 ret = 0;
10183 }
10184 }
10185 }
10186
10187 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10188 else if (exp->X_op != O_constant
10189 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10190 && exp_seg != absolute_section
10191 && exp_seg != text_section
10192 && exp_seg != data_section
10193 && exp_seg != bss_section
10194 && exp_seg != undefined_section
10195 && !bfd_is_com_section (exp_seg))
10196 {
10197 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10198 ret = 0;
10199 }
10200 #endif
10201
10202 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10203 /* Constants get taken care of by optimize_disp(). */
10204 && exp->X_op != O_constant)
10205 i.types[this_operand].bitfield.disp8 = 1;
10206
10207 /* Check if this is a displacement only operand. */
10208 bigdisp = i.types[this_operand];
10209 bigdisp.bitfield.disp8 = 0;
10210 bigdisp.bitfield.disp16 = 0;
10211 bigdisp.bitfield.disp32 = 0;
10212 bigdisp.bitfield.disp32s = 0;
10213 bigdisp.bitfield.disp64 = 0;
10214 if (operand_type_all_zero (&bigdisp))
10215 i.types[this_operand] = operand_type_and (i.types[this_operand],
10216 types);
10217
10218 return ret;
10219 }
10220
10221 /* Return the active addressing mode, taking address override and
10222 registers forming the address into consideration. Update the
10223 address override prefix if necessary. */
10224
10225 static enum flag_code
10226 i386_addressing_mode (void)
10227 {
10228 enum flag_code addr_mode;
10229
10230 if (i.prefix[ADDR_PREFIX])
10231 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10232 else
10233 {
10234 addr_mode = flag_code;
10235
10236 #if INFER_ADDR_PREFIX
10237 if (i.mem_operands == 0)
10238 {
10239 /* Infer address prefix from the first memory operand. */
10240 const reg_entry *addr_reg = i.base_reg;
10241
10242 if (addr_reg == NULL)
10243 addr_reg = i.index_reg;
10244
10245 if (addr_reg)
10246 {
10247 if (addr_reg->reg_type.bitfield.dword)
10248 addr_mode = CODE_32BIT;
10249 else if (flag_code != CODE_64BIT
10250 && addr_reg->reg_type.bitfield.word)
10251 addr_mode = CODE_16BIT;
10252
10253 if (addr_mode != flag_code)
10254 {
10255 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10256 i.prefixes += 1;
10257 /* Change the size of any displacement too. At most one
10258 of Disp16 or Disp32 is set.
10259 FIXME. There doesn't seem to be any real need for
10260 separate Disp16 and Disp32 flags. The same goes for
10261 Imm16 and Imm32. Removing them would probably clean
10262 up the code quite a lot. */
10263 if (flag_code != CODE_64BIT
10264 && (i.types[this_operand].bitfield.disp16
10265 || i.types[this_operand].bitfield.disp32))
10266 i.types[this_operand]
10267 = operand_type_xor (i.types[this_operand], disp16_32);
10268 }
10269 }
10270 }
10271 #endif
10272 }
10273
10274 return addr_mode;
10275 }
10276
10277 /* Make sure the memory operand we've been dealt is valid.
10278 Return 1 on success, 0 on a failure. */
10279
10280 static int
10281 i386_index_check (const char *operand_string)
10282 {
10283 const char *kind = "base/index";
10284 enum flag_code addr_mode = i386_addressing_mode ();
10285
10286 if (current_templates->start->opcode_modifier.isstring
10287 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10288 && (current_templates->end[-1].opcode_modifier.isstring
10289 || i.mem_operands))
10290 {
10291 /* Memory operands of string insns are special in that they only allow
10292 a single register (rDI, rSI, or rBX) as their memory address. */
10293 const reg_entry *expected_reg;
10294 static const char *di_si[][2] =
10295 {
10296 { "esi", "edi" },
10297 { "si", "di" },
10298 { "rsi", "rdi" }
10299 };
10300 static const char *bx[] = { "ebx", "bx", "rbx" };
10301
10302 kind = "string address";
10303
10304 if (current_templates->start->opcode_modifier.repprefixok)
10305 {
10306 int es_op = current_templates->end[-1].opcode_modifier.isstring
10307 - IS_STRING_ES_OP0;
10308 int op = 0;
10309
10310 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10311 || ((!i.mem_operands != !intel_syntax)
10312 && current_templates->end[-1].operand_types[1]
10313 .bitfield.baseindex))
10314 op = 1;
10315 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10316 }
10317 else
10318 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10319
10320 if (i.base_reg != expected_reg
10321 || i.index_reg
10322 || operand_type_check (i.types[this_operand], disp))
10323 {
10324 /* The second memory operand must have the same size as
10325 the first one. */
10326 if (i.mem_operands
10327 && i.base_reg
10328 && !((addr_mode == CODE_64BIT
10329 && i.base_reg->reg_type.bitfield.qword)
10330 || (addr_mode == CODE_32BIT
10331 ? i.base_reg->reg_type.bitfield.dword
10332 : i.base_reg->reg_type.bitfield.word)))
10333 goto bad_address;
10334
10335 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10336 operand_string,
10337 intel_syntax ? '[' : '(',
10338 register_prefix,
10339 expected_reg->reg_name,
10340 intel_syntax ? ']' : ')');
10341 return 1;
10342 }
10343 else
10344 return 1;
10345
10346 bad_address:
10347 as_bad (_("`%s' is not a valid %s expression"),
10348 operand_string, kind);
10349 return 0;
10350 }
10351 else
10352 {
10353 if (addr_mode != CODE_16BIT)
10354 {
10355 /* 32-bit/64-bit checks. */
10356 if ((i.base_reg
10357 && ((addr_mode == CODE_64BIT
10358 ? !i.base_reg->reg_type.bitfield.qword
10359 : !i.base_reg->reg_type.bitfield.dword)
10360 || (i.index_reg && i.base_reg->reg_num == RegIP)
10361 || i.base_reg->reg_num == RegIZ))
10362 || (i.index_reg
10363 && !i.index_reg->reg_type.bitfield.xmmword
10364 && !i.index_reg->reg_type.bitfield.ymmword
10365 && !i.index_reg->reg_type.bitfield.zmmword
10366 && ((addr_mode == CODE_64BIT
10367 ? !i.index_reg->reg_type.bitfield.qword
10368 : !i.index_reg->reg_type.bitfield.dword)
10369 || !i.index_reg->reg_type.bitfield.baseindex)))
10370 goto bad_address;
10371
10372 /* bndmk, bndldx, and bndstx have special restrictions. */
10373 if (current_templates->start->base_opcode == 0xf30f1b
10374 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10375 {
10376 /* They cannot use RIP-relative addressing. */
10377 if (i.base_reg && i.base_reg->reg_num == RegIP)
10378 {
10379 as_bad (_("`%s' cannot be used here"), operand_string);
10380 return 0;
10381 }
10382
10383 /* bndldx and bndstx ignore their scale factor. */
10384 if (current_templates->start->base_opcode != 0xf30f1b
10385 && i.log2_scale_factor)
10386 as_warn (_("register scaling is being ignored here"));
10387 }
10388 }
10389 else
10390 {
10391 /* 16-bit checks. */
10392 if ((i.base_reg
10393 && (!i.base_reg->reg_type.bitfield.word
10394 || !i.base_reg->reg_type.bitfield.baseindex))
10395 || (i.index_reg
10396 && (!i.index_reg->reg_type.bitfield.word
10397 || !i.index_reg->reg_type.bitfield.baseindex
10398 || !(i.base_reg
10399 && i.base_reg->reg_num < 6
10400 && i.index_reg->reg_num >= 6
10401 && i.log2_scale_factor == 0))))
10402 goto bad_address;
10403 }
10404 }
10405 return 1;
10406 }
10407
10408 /* Handle vector immediates. */
10409
10410 static int
10411 RC_SAE_immediate (const char *imm_start)
10412 {
10413 unsigned int match_found, j;
10414 const char *pstr = imm_start;
10415 expressionS *exp;
10416
10417 if (*pstr != '{')
10418 return 0;
10419
10420 pstr++;
10421 match_found = 0;
10422 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10423 {
10424 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10425 {
10426 if (!i.rounding)
10427 {
10428 rc_op.type = RC_NamesTable[j].type;
10429 rc_op.operand = this_operand;
10430 i.rounding = &rc_op;
10431 }
10432 else
10433 {
10434 as_bad (_("duplicated `%s'"), imm_start);
10435 return 0;
10436 }
10437 pstr += RC_NamesTable[j].len;
10438 match_found = 1;
10439 break;
10440 }
10441 }
10442 if (!match_found)
10443 return 0;
10444
10445 if (*pstr++ != '}')
10446 {
10447 as_bad (_("Missing '}': '%s'"), imm_start);
10448 return 0;
10449 }
10450 /* RC/SAE immediate string should contain nothing more. */;
10451 if (*pstr != 0)
10452 {
10453 as_bad (_("Junk after '}': '%s'"), imm_start);
10454 return 0;
10455 }
10456
10457 exp = &im_expressions[i.imm_operands++];
10458 i.op[this_operand].imms = exp;
10459
10460 exp->X_op = O_constant;
10461 exp->X_add_number = 0;
10462 exp->X_add_symbol = (symbolS *) 0;
10463 exp->X_op_symbol = (symbolS *) 0;
10464
10465 i.types[this_operand].bitfield.imm8 = 1;
10466 return 1;
10467 }
10468
10469 /* Only string instructions can have a second memory operand, so
10470 reduce current_templates to just those if it contains any. */
10471 static int
10472 maybe_adjust_templates (void)
10473 {
10474 const insn_template *t;
10475
10476 gas_assert (i.mem_operands == 1);
10477
10478 for (t = current_templates->start; t < current_templates->end; ++t)
10479 if (t->opcode_modifier.isstring)
10480 break;
10481
10482 if (t < current_templates->end)
10483 {
10484 static templates aux_templates;
10485 bfd_boolean recheck;
10486
10487 aux_templates.start = t;
10488 for (; t < current_templates->end; ++t)
10489 if (!t->opcode_modifier.isstring)
10490 break;
10491 aux_templates.end = t;
10492
10493 /* Determine whether to re-check the first memory operand. */
10494 recheck = (aux_templates.start != current_templates->start
10495 || t != current_templates->end);
10496
10497 current_templates = &aux_templates;
10498
10499 if (recheck)
10500 {
10501 i.mem_operands = 0;
10502 if (i.memop1_string != NULL
10503 && i386_index_check (i.memop1_string) == 0)
10504 return 0;
10505 i.mem_operands = 1;
10506 }
10507 }
10508
10509 return 1;
10510 }
10511
10512 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10513 on error. */
10514
10515 static int
10516 i386_att_operand (char *operand_string)
10517 {
10518 const reg_entry *r;
10519 char *end_op;
10520 char *op_string = operand_string;
10521
10522 if (is_space_char (*op_string))
10523 ++op_string;
10524
10525 /* We check for an absolute prefix (differentiating,
10526 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10527 if (*op_string == ABSOLUTE_PREFIX)
10528 {
10529 ++op_string;
10530 if (is_space_char (*op_string))
10531 ++op_string;
10532 i.jumpabsolute = TRUE;
10533 }
10534
10535 /* Check if operand is a register. */
10536 if ((r = parse_register (op_string, &end_op)) != NULL)
10537 {
10538 i386_operand_type temp;
10539
10540 /* Check for a segment override by searching for ':' after a
10541 segment register. */
10542 op_string = end_op;
10543 if (is_space_char (*op_string))
10544 ++op_string;
10545 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10546 {
10547 switch (r->reg_num)
10548 {
10549 case 0:
10550 i.seg[i.mem_operands] = &es;
10551 break;
10552 case 1:
10553 i.seg[i.mem_operands] = &cs;
10554 break;
10555 case 2:
10556 i.seg[i.mem_operands] = &ss;
10557 break;
10558 case 3:
10559 i.seg[i.mem_operands] = &ds;
10560 break;
10561 case 4:
10562 i.seg[i.mem_operands] = &fs;
10563 break;
10564 case 5:
10565 i.seg[i.mem_operands] = &gs;
10566 break;
10567 }
10568
10569 /* Skip the ':' and whitespace. */
10570 ++op_string;
10571 if (is_space_char (*op_string))
10572 ++op_string;
10573
10574 if (!is_digit_char (*op_string)
10575 && !is_identifier_char (*op_string)
10576 && *op_string != '('
10577 && *op_string != ABSOLUTE_PREFIX)
10578 {
10579 as_bad (_("bad memory operand `%s'"), op_string);
10580 return 0;
10581 }
10582 /* Handle case of %es:*foo. */
10583 if (*op_string == ABSOLUTE_PREFIX)
10584 {
10585 ++op_string;
10586 if (is_space_char (*op_string))
10587 ++op_string;
10588 i.jumpabsolute = TRUE;
10589 }
10590 goto do_memory_reference;
10591 }
10592
10593 /* Handle vector operations. */
10594 if (*op_string == '{')
10595 {
10596 op_string = check_VecOperations (op_string, NULL);
10597 if (op_string == NULL)
10598 return 0;
10599 }
10600
10601 if (*op_string)
10602 {
10603 as_bad (_("junk `%s' after register"), op_string);
10604 return 0;
10605 }
10606 temp = r->reg_type;
10607 temp.bitfield.baseindex = 0;
10608 i.types[this_operand] = operand_type_or (i.types[this_operand],
10609 temp);
10610 i.types[this_operand].bitfield.unspecified = 0;
10611 i.op[this_operand].regs = r;
10612 i.reg_operands++;
10613 }
10614 else if (*op_string == REGISTER_PREFIX)
10615 {
10616 as_bad (_("bad register name `%s'"), op_string);
10617 return 0;
10618 }
10619 else if (*op_string == IMMEDIATE_PREFIX)
10620 {
10621 ++op_string;
10622 if (i.jumpabsolute)
10623 {
10624 as_bad (_("immediate operand illegal with absolute jump"));
10625 return 0;
10626 }
10627 if (!i386_immediate (op_string))
10628 return 0;
10629 }
10630 else if (RC_SAE_immediate (operand_string))
10631 {
10632 /* If it is a RC or SAE immediate, do nothing. */
10633 ;
10634 }
10635 else if (is_digit_char (*op_string)
10636 || is_identifier_char (*op_string)
10637 || *op_string == '"'
10638 || *op_string == '(')
10639 {
10640 /* This is a memory reference of some sort. */
10641 char *base_string;
10642
10643 /* Start and end of displacement string expression (if found). */
10644 char *displacement_string_start;
10645 char *displacement_string_end;
10646 char *vop_start;
10647
10648 do_memory_reference:
10649 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10650 return 0;
10651 if ((i.mem_operands == 1
10652 && !current_templates->start->opcode_modifier.isstring)
10653 || i.mem_operands == 2)
10654 {
10655 as_bad (_("too many memory references for `%s'"),
10656 current_templates->start->name);
10657 return 0;
10658 }
10659
10660 /* Check for base index form. We detect the base index form by
10661 looking for an ')' at the end of the operand, searching
10662 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10663 after the '('. */
10664 base_string = op_string + strlen (op_string);
10665
10666 /* Handle vector operations. */
10667 vop_start = strchr (op_string, '{');
10668 if (vop_start && vop_start < base_string)
10669 {
10670 if (check_VecOperations (vop_start, base_string) == NULL)
10671 return 0;
10672 base_string = vop_start;
10673 }
10674
10675 --base_string;
10676 if (is_space_char (*base_string))
10677 --base_string;
10678
10679 /* If we only have a displacement, set-up for it to be parsed later. */
10680 displacement_string_start = op_string;
10681 displacement_string_end = base_string + 1;
10682
10683 if (*base_string == ')')
10684 {
10685 char *temp_string;
10686 unsigned int parens_balanced = 1;
10687 /* We've already checked that the number of left & right ()'s are
10688 equal, so this loop will not be infinite. */
10689 do
10690 {
10691 base_string--;
10692 if (*base_string == ')')
10693 parens_balanced++;
10694 if (*base_string == '(')
10695 parens_balanced--;
10696 }
10697 while (parens_balanced);
10698
10699 temp_string = base_string;
10700
10701 /* Skip past '(' and whitespace. */
10702 ++base_string;
10703 if (is_space_char (*base_string))
10704 ++base_string;
10705
10706 if (*base_string == ','
10707 || ((i.base_reg = parse_register (base_string, &end_op))
10708 != NULL))
10709 {
10710 displacement_string_end = temp_string;
10711
10712 i.types[this_operand].bitfield.baseindex = 1;
10713
10714 if (i.base_reg)
10715 {
10716 base_string = end_op;
10717 if (is_space_char (*base_string))
10718 ++base_string;
10719 }
10720
10721 /* There may be an index reg or scale factor here. */
10722 if (*base_string == ',')
10723 {
10724 ++base_string;
10725 if (is_space_char (*base_string))
10726 ++base_string;
10727
10728 if ((i.index_reg = parse_register (base_string, &end_op))
10729 != NULL)
10730 {
10731 base_string = end_op;
10732 if (is_space_char (*base_string))
10733 ++base_string;
10734 if (*base_string == ',')
10735 {
10736 ++base_string;
10737 if (is_space_char (*base_string))
10738 ++base_string;
10739 }
10740 else if (*base_string != ')')
10741 {
10742 as_bad (_("expecting `,' or `)' "
10743 "after index register in `%s'"),
10744 operand_string);
10745 return 0;
10746 }
10747 }
10748 else if (*base_string == REGISTER_PREFIX)
10749 {
10750 end_op = strchr (base_string, ',');
10751 if (end_op)
10752 *end_op = '\0';
10753 as_bad (_("bad register name `%s'"), base_string);
10754 return 0;
10755 }
10756
10757 /* Check for scale factor. */
10758 if (*base_string != ')')
10759 {
10760 char *end_scale = i386_scale (base_string);
10761
10762 if (!end_scale)
10763 return 0;
10764
10765 base_string = end_scale;
10766 if (is_space_char (*base_string))
10767 ++base_string;
10768 if (*base_string != ')')
10769 {
10770 as_bad (_("expecting `)' "
10771 "after scale factor in `%s'"),
10772 operand_string);
10773 return 0;
10774 }
10775 }
10776 else if (!i.index_reg)
10777 {
10778 as_bad (_("expecting index register or scale factor "
10779 "after `,'; got '%c'"),
10780 *base_string);
10781 return 0;
10782 }
10783 }
10784 else if (*base_string != ')')
10785 {
10786 as_bad (_("expecting `,' or `)' "
10787 "after base register in `%s'"),
10788 operand_string);
10789 return 0;
10790 }
10791 }
10792 else if (*base_string == REGISTER_PREFIX)
10793 {
10794 end_op = strchr (base_string, ',');
10795 if (end_op)
10796 *end_op = '\0';
10797 as_bad (_("bad register name `%s'"), base_string);
10798 return 0;
10799 }
10800 }
10801
10802 /* If there's an expression beginning the operand, parse it,
10803 assuming displacement_string_start and
10804 displacement_string_end are meaningful. */
10805 if (displacement_string_start != displacement_string_end)
10806 {
10807 if (!i386_displacement (displacement_string_start,
10808 displacement_string_end))
10809 return 0;
10810 }
10811
10812 /* Special case for (%dx) while doing input/output op. */
10813 if (i.base_reg
10814 && i.base_reg->reg_type.bitfield.instance == RegD
10815 && i.base_reg->reg_type.bitfield.word
10816 && i.index_reg == 0
10817 && i.log2_scale_factor == 0
10818 && i.seg[i.mem_operands] == 0
10819 && !operand_type_check (i.types[this_operand], disp))
10820 {
10821 i.types[this_operand] = i.base_reg->reg_type;
10822 return 1;
10823 }
10824
10825 if (i386_index_check (operand_string) == 0)
10826 return 0;
10827 i.flags[this_operand] |= Operand_Mem;
10828 if (i.mem_operands == 0)
10829 i.memop1_string = xstrdup (operand_string);
10830 i.mem_operands++;
10831 }
10832 else
10833 {
10834 /* It's not a memory operand; argh! */
10835 as_bad (_("invalid char %s beginning operand %d `%s'"),
10836 output_invalid (*op_string),
10837 this_operand + 1,
10838 op_string);
10839 return 0;
10840 }
10841 return 1; /* Normal return. */
10842 }
10843 \f
10844 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10845 that an rs_machine_dependent frag may reach. */
10846
10847 unsigned int
10848 i386_frag_max_var (fragS *frag)
10849 {
10850 /* The only relaxable frags are for jumps.
10851 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10852 gas_assert (frag->fr_type == rs_machine_dependent);
10853 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10854 }
10855
10856 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10857 static int
10858 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10859 {
10860 /* STT_GNU_IFUNC symbol must go through PLT. */
10861 if ((symbol_get_bfdsym (fr_symbol)->flags
10862 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10863 return 0;
10864
10865 if (!S_IS_EXTERNAL (fr_symbol))
10866 /* Symbol may be weak or local. */
10867 return !S_IS_WEAK (fr_symbol);
10868
10869 /* Global symbols with non-default visibility can't be preempted. */
10870 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10871 return 1;
10872
10873 if (fr_var != NO_RELOC)
10874 switch ((enum bfd_reloc_code_real) fr_var)
10875 {
10876 case BFD_RELOC_386_PLT32:
10877 case BFD_RELOC_X86_64_PLT32:
10878 /* Symbol with PLT relocation may be preempted. */
10879 return 0;
10880 default:
10881 abort ();
10882 }
10883
10884 /* Global symbols with default visibility in a shared library may be
10885 preempted by another definition. */
10886 return !shared;
10887 }
10888 #endif
10889
10890 /* Return the next non-empty frag. */
10891
10892 static fragS *
10893 i386_next_non_empty_frag (fragS *fragP)
10894 {
10895 /* There may be a frag with a ".fill 0" when there is no room in
10896 the current frag for frag_grow in output_insn. */
10897 for (fragP = fragP->fr_next;
10898 (fragP != NULL
10899 && fragP->fr_type == rs_fill
10900 && fragP->fr_fix == 0);
10901 fragP = fragP->fr_next)
10902 ;
10903 return fragP;
10904 }
10905
10906 /* Return the next jcc frag after BRANCH_PADDING. */
10907
10908 static fragS *
10909 i386_next_jcc_frag (fragS *fragP)
10910 {
10911 if (!fragP)
10912 return NULL;
10913
10914 if (fragP->fr_type == rs_machine_dependent
10915 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10916 == BRANCH_PADDING))
10917 {
10918 fragP = i386_next_non_empty_frag (fragP);
10919 if (fragP->fr_type != rs_machine_dependent)
10920 return NULL;
10921 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10922 return fragP;
10923 }
10924
10925 return NULL;
10926 }
10927
10928 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10929
10930 static void
10931 i386_classify_machine_dependent_frag (fragS *fragP)
10932 {
10933 fragS *cmp_fragP;
10934 fragS *pad_fragP;
10935 fragS *branch_fragP;
10936 fragS *next_fragP;
10937 unsigned int max_prefix_length;
10938
10939 if (fragP->tc_frag_data.classified)
10940 return;
10941
10942 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10943 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10944 for (next_fragP = fragP;
10945 next_fragP != NULL;
10946 next_fragP = next_fragP->fr_next)
10947 {
10948 next_fragP->tc_frag_data.classified = 1;
10949 if (next_fragP->fr_type == rs_machine_dependent)
10950 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10951 {
10952 case BRANCH_PADDING:
10953 /* The BRANCH_PADDING frag must be followed by a branch
10954 frag. */
10955 branch_fragP = i386_next_non_empty_frag (next_fragP);
10956 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10957 break;
10958 case FUSED_JCC_PADDING:
10959 /* Check if this is a fused jcc:
10960 FUSED_JCC_PADDING
10961 CMP like instruction
10962 BRANCH_PADDING
10963 COND_JUMP
10964 */
10965 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10966 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10967 branch_fragP = i386_next_jcc_frag (pad_fragP);
10968 if (branch_fragP)
10969 {
10970 /* The BRANCH_PADDING frag is merged with the
10971 FUSED_JCC_PADDING frag. */
10972 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10973 /* CMP like instruction size. */
10974 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10975 frag_wane (pad_fragP);
10976 /* Skip to branch_fragP. */
10977 next_fragP = branch_fragP;
10978 }
10979 else if (next_fragP->tc_frag_data.max_prefix_length)
10980 {
10981 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10982 a fused jcc. */
10983 next_fragP->fr_subtype
10984 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10985 next_fragP->tc_frag_data.max_bytes
10986 = next_fragP->tc_frag_data.max_prefix_length;
10987 /* This will be updated in the BRANCH_PREFIX scan. */
10988 next_fragP->tc_frag_data.max_prefix_length = 0;
10989 }
10990 else
10991 frag_wane (next_fragP);
10992 break;
10993 }
10994 }
10995
10996 /* Stop if there is no BRANCH_PREFIX. */
10997 if (!align_branch_prefix_size)
10998 return;
10999
11000 /* Scan for BRANCH_PREFIX. */
11001 for (; fragP != NULL; fragP = fragP->fr_next)
11002 {
11003 if (fragP->fr_type != rs_machine_dependent
11004 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11005 != BRANCH_PREFIX))
11006 continue;
11007
11008 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11009 COND_JUMP_PREFIX. */
11010 max_prefix_length = 0;
11011 for (next_fragP = fragP;
11012 next_fragP != NULL;
11013 next_fragP = next_fragP->fr_next)
11014 {
11015 if (next_fragP->fr_type == rs_fill)
11016 /* Skip rs_fill frags. */
11017 continue;
11018 else if (next_fragP->fr_type != rs_machine_dependent)
11019 /* Stop for all other frags. */
11020 break;
11021
11022 /* rs_machine_dependent frags. */
11023 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11024 == BRANCH_PREFIX)
11025 {
11026 /* Count BRANCH_PREFIX frags. */
11027 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11028 {
11029 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11030 frag_wane (next_fragP);
11031 }
11032 else
11033 max_prefix_length
11034 += next_fragP->tc_frag_data.max_bytes;
11035 }
11036 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11037 == BRANCH_PADDING)
11038 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11039 == FUSED_JCC_PADDING))
11040 {
11041 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11042 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11043 break;
11044 }
11045 else
11046 /* Stop for other rs_machine_dependent frags. */
11047 break;
11048 }
11049
11050 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11051
11052 /* Skip to the next frag. */
11053 fragP = next_fragP;
11054 }
11055 }
11056
11057 /* Compute padding size for
11058
11059 FUSED_JCC_PADDING
11060 CMP like instruction
11061 BRANCH_PADDING
11062 COND_JUMP/UNCOND_JUMP
11063
11064 or
11065
11066 BRANCH_PADDING
11067 COND_JUMP/UNCOND_JUMP
11068 */
11069
11070 static int
11071 i386_branch_padding_size (fragS *fragP, offsetT address)
11072 {
11073 unsigned int offset, size, padding_size;
11074 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11075
11076 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11077 if (!address)
11078 address = fragP->fr_address;
11079 address += fragP->fr_fix;
11080
11081 /* CMP like instrunction size. */
11082 size = fragP->tc_frag_data.cmp_size;
11083
11084 /* The base size of the branch frag. */
11085 size += branch_fragP->fr_fix;
11086
11087 /* Add opcode and displacement bytes for the rs_machine_dependent
11088 branch frag. */
11089 if (branch_fragP->fr_type == rs_machine_dependent)
11090 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11091
11092 /* Check if branch is within boundary and doesn't end at the last
11093 byte. */
11094 offset = address & ((1U << align_branch_power) - 1);
11095 if ((offset + size) >= (1U << align_branch_power))
11096 /* Padding needed to avoid crossing boundary. */
11097 padding_size = (1U << align_branch_power) - offset;
11098 else
11099 /* No padding needed. */
11100 padding_size = 0;
11101
11102 /* The return value may be saved in tc_frag_data.length which is
11103 unsigned byte. */
11104 if (!fits_in_unsigned_byte (padding_size))
11105 abort ();
11106
11107 return padding_size;
11108 }
11109
11110 /* i386_generic_table_relax_frag()
11111
11112 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11113 grow/shrink padding to align branch frags. Hand others to
11114 relax_frag(). */
11115
11116 long
11117 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11118 {
11119 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11120 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11121 {
11122 long padding_size = i386_branch_padding_size (fragP, 0);
11123 long grow = padding_size - fragP->tc_frag_data.length;
11124
11125 /* When the BRANCH_PREFIX frag is used, the computed address
11126 must match the actual address and there should be no padding. */
11127 if (fragP->tc_frag_data.padding_address
11128 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11129 || padding_size))
11130 abort ();
11131
11132 /* Update the padding size. */
11133 if (grow)
11134 fragP->tc_frag_data.length = padding_size;
11135
11136 return grow;
11137 }
11138 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11139 {
11140 fragS *padding_fragP, *next_fragP;
11141 long padding_size, left_size, last_size;
11142
11143 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11144 if (!padding_fragP)
11145 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11146 return (fragP->tc_frag_data.length
11147 - fragP->tc_frag_data.last_length);
11148
11149 /* Compute the relative address of the padding frag in the very
11150 first time where the BRANCH_PREFIX frag sizes are zero. */
11151 if (!fragP->tc_frag_data.padding_address)
11152 fragP->tc_frag_data.padding_address
11153 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11154
11155 /* First update the last length from the previous interation. */
11156 left_size = fragP->tc_frag_data.prefix_length;
11157 for (next_fragP = fragP;
11158 next_fragP != padding_fragP;
11159 next_fragP = next_fragP->fr_next)
11160 if (next_fragP->fr_type == rs_machine_dependent
11161 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11162 == BRANCH_PREFIX))
11163 {
11164 if (left_size)
11165 {
11166 int max = next_fragP->tc_frag_data.max_bytes;
11167 if (max)
11168 {
11169 int size;
11170 if (max > left_size)
11171 size = left_size;
11172 else
11173 size = max;
11174 left_size -= size;
11175 next_fragP->tc_frag_data.last_length = size;
11176 }
11177 }
11178 else
11179 next_fragP->tc_frag_data.last_length = 0;
11180 }
11181
11182 /* Check the padding size for the padding frag. */
11183 padding_size = i386_branch_padding_size
11184 (padding_fragP, (fragP->fr_address
11185 + fragP->tc_frag_data.padding_address));
11186
11187 last_size = fragP->tc_frag_data.prefix_length;
11188 /* Check if there is change from the last interation. */
11189 if (padding_size == last_size)
11190 {
11191 /* Update the expected address of the padding frag. */
11192 padding_fragP->tc_frag_data.padding_address
11193 = (fragP->fr_address + padding_size
11194 + fragP->tc_frag_data.padding_address);
11195 return 0;
11196 }
11197
11198 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11199 {
11200 /* No padding if there is no sufficient room. Clear the
11201 expected address of the padding frag. */
11202 padding_fragP->tc_frag_data.padding_address = 0;
11203 padding_size = 0;
11204 }
11205 else
11206 /* Store the expected address of the padding frag. */
11207 padding_fragP->tc_frag_data.padding_address
11208 = (fragP->fr_address + padding_size
11209 + fragP->tc_frag_data.padding_address);
11210
11211 fragP->tc_frag_data.prefix_length = padding_size;
11212
11213 /* Update the length for the current interation. */
11214 left_size = padding_size;
11215 for (next_fragP = fragP;
11216 next_fragP != padding_fragP;
11217 next_fragP = next_fragP->fr_next)
11218 if (next_fragP->fr_type == rs_machine_dependent
11219 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11220 == BRANCH_PREFIX))
11221 {
11222 if (left_size)
11223 {
11224 int max = next_fragP->tc_frag_data.max_bytes;
11225 if (max)
11226 {
11227 int size;
11228 if (max > left_size)
11229 size = left_size;
11230 else
11231 size = max;
11232 left_size -= size;
11233 next_fragP->tc_frag_data.length = size;
11234 }
11235 }
11236 else
11237 next_fragP->tc_frag_data.length = 0;
11238 }
11239
11240 return (fragP->tc_frag_data.length
11241 - fragP->tc_frag_data.last_length);
11242 }
11243 return relax_frag (segment, fragP, stretch);
11244 }
11245
11246 /* md_estimate_size_before_relax()
11247
11248 Called just before relax() for rs_machine_dependent frags. The x86
11249 assembler uses these frags to handle variable size jump
11250 instructions.
11251
11252 Any symbol that is now undefined will not become defined.
11253 Return the correct fr_subtype in the frag.
11254 Return the initial "guess for variable size of frag" to caller.
11255 The guess is actually the growth beyond the fixed part. Whatever
11256 we do to grow the fixed or variable part contributes to our
11257 returned value. */
11258
11259 int
11260 md_estimate_size_before_relax (fragS *fragP, segT segment)
11261 {
11262 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11263 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11264 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11265 {
11266 i386_classify_machine_dependent_frag (fragP);
11267 return fragP->tc_frag_data.length;
11268 }
11269
11270 /* We've already got fragP->fr_subtype right; all we have to do is
11271 check for un-relaxable symbols. On an ELF system, we can't relax
11272 an externally visible symbol, because it may be overridden by a
11273 shared library. */
11274 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11275 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11276 || (IS_ELF
11277 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11278 fragP->fr_var))
11279 #endif
11280 #if defined (OBJ_COFF) && defined (TE_PE)
11281 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11282 && S_IS_WEAK (fragP->fr_symbol))
11283 #endif
11284 )
11285 {
11286 /* Symbol is undefined in this segment, or we need to keep a
11287 reloc so that weak symbols can be overridden. */
11288 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11289 enum bfd_reloc_code_real reloc_type;
11290 unsigned char *opcode;
11291 int old_fr_fix;
11292
11293 if (fragP->fr_var != NO_RELOC)
11294 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11295 else if (size == 2)
11296 reloc_type = BFD_RELOC_16_PCREL;
11297 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11298 else if (need_plt32_p (fragP->fr_symbol))
11299 reloc_type = BFD_RELOC_X86_64_PLT32;
11300 #endif
11301 else
11302 reloc_type = BFD_RELOC_32_PCREL;
11303
11304 old_fr_fix = fragP->fr_fix;
11305 opcode = (unsigned char *) fragP->fr_opcode;
11306
11307 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11308 {
11309 case UNCOND_JUMP:
11310 /* Make jmp (0xeb) a (d)word displacement jump. */
11311 opcode[0] = 0xe9;
11312 fragP->fr_fix += size;
11313 fix_new (fragP, old_fr_fix, size,
11314 fragP->fr_symbol,
11315 fragP->fr_offset, 1,
11316 reloc_type);
11317 break;
11318
11319 case COND_JUMP86:
11320 if (size == 2
11321 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11322 {
11323 /* Negate the condition, and branch past an
11324 unconditional jump. */
11325 opcode[0] ^= 1;
11326 opcode[1] = 3;
11327 /* Insert an unconditional jump. */
11328 opcode[2] = 0xe9;
11329 /* We added two extra opcode bytes, and have a two byte
11330 offset. */
11331 fragP->fr_fix += 2 + 2;
11332 fix_new (fragP, old_fr_fix + 2, 2,
11333 fragP->fr_symbol,
11334 fragP->fr_offset, 1,
11335 reloc_type);
11336 break;
11337 }
11338 /* Fall through. */
11339
11340 case COND_JUMP:
11341 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11342 {
11343 fixS *fixP;
11344
11345 fragP->fr_fix += 1;
11346 fixP = fix_new (fragP, old_fr_fix, 1,
11347 fragP->fr_symbol,
11348 fragP->fr_offset, 1,
11349 BFD_RELOC_8_PCREL);
11350 fixP->fx_signed = 1;
11351 break;
11352 }
11353
11354 /* This changes the byte-displacement jump 0x7N
11355 to the (d)word-displacement jump 0x0f,0x8N. */
11356 opcode[1] = opcode[0] + 0x10;
11357 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11358 /* We've added an opcode byte. */
11359 fragP->fr_fix += 1 + size;
11360 fix_new (fragP, old_fr_fix + 1, size,
11361 fragP->fr_symbol,
11362 fragP->fr_offset, 1,
11363 reloc_type);
11364 break;
11365
11366 default:
11367 BAD_CASE (fragP->fr_subtype);
11368 break;
11369 }
11370 frag_wane (fragP);
11371 return fragP->fr_fix - old_fr_fix;
11372 }
11373
11374 /* Guess size depending on current relax state. Initially the relax
11375 state will correspond to a short jump and we return 1, because
11376 the variable part of the frag (the branch offset) is one byte
11377 long. However, we can relax a section more than once and in that
11378 case we must either set fr_subtype back to the unrelaxed state,
11379 or return the value for the appropriate branch. */
11380 return md_relax_table[fragP->fr_subtype].rlx_length;
11381 }
11382
11383 /* Called after relax() is finished.
11384
11385 In: Address of frag.
11386 fr_type == rs_machine_dependent.
11387 fr_subtype is what the address relaxed to.
11388
11389 Out: Any fixSs and constants are set up.
11390 Caller will turn frag into a ".space 0". */
11391
11392 void
11393 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11394 fragS *fragP)
11395 {
11396 unsigned char *opcode;
11397 unsigned char *where_to_put_displacement = NULL;
11398 offsetT target_address;
11399 offsetT opcode_address;
11400 unsigned int extension = 0;
11401 offsetT displacement_from_opcode_start;
11402
11403 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11404 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11405 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11406 {
11407 /* Generate nop padding. */
11408 unsigned int size = fragP->tc_frag_data.length;
11409 if (size)
11410 {
11411 if (size > fragP->tc_frag_data.max_bytes)
11412 abort ();
11413
11414 if (flag_debug)
11415 {
11416 const char *msg;
11417 const char *branch = "branch";
11418 const char *prefix = "";
11419 fragS *padding_fragP;
11420 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11421 == BRANCH_PREFIX)
11422 {
11423 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11424 switch (fragP->tc_frag_data.default_prefix)
11425 {
11426 default:
11427 abort ();
11428 break;
11429 case CS_PREFIX_OPCODE:
11430 prefix = " cs";
11431 break;
11432 case DS_PREFIX_OPCODE:
11433 prefix = " ds";
11434 break;
11435 case ES_PREFIX_OPCODE:
11436 prefix = " es";
11437 break;
11438 case FS_PREFIX_OPCODE:
11439 prefix = " fs";
11440 break;
11441 case GS_PREFIX_OPCODE:
11442 prefix = " gs";
11443 break;
11444 case SS_PREFIX_OPCODE:
11445 prefix = " ss";
11446 break;
11447 }
11448 if (padding_fragP)
11449 msg = _("%s:%u: add %d%s at 0x%llx to align "
11450 "%s within %d-byte boundary\n");
11451 else
11452 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11453 "align %s within %d-byte boundary\n");
11454 }
11455 else
11456 {
11457 padding_fragP = fragP;
11458 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11459 "%s within %d-byte boundary\n");
11460 }
11461
11462 if (padding_fragP)
11463 switch (padding_fragP->tc_frag_data.branch_type)
11464 {
11465 case align_branch_jcc:
11466 branch = "jcc";
11467 break;
11468 case align_branch_fused:
11469 branch = "fused jcc";
11470 break;
11471 case align_branch_jmp:
11472 branch = "jmp";
11473 break;
11474 case align_branch_call:
11475 branch = "call";
11476 break;
11477 case align_branch_indirect:
11478 branch = "indiret branch";
11479 break;
11480 case align_branch_ret:
11481 branch = "ret";
11482 break;
11483 default:
11484 break;
11485 }
11486
11487 fprintf (stdout, msg,
11488 fragP->fr_file, fragP->fr_line, size, prefix,
11489 (long long) fragP->fr_address, branch,
11490 1 << align_branch_power);
11491 }
11492 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11493 memset (fragP->fr_opcode,
11494 fragP->tc_frag_data.default_prefix, size);
11495 else
11496 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11497 size, 0);
11498 fragP->fr_fix += size;
11499 }
11500 return;
11501 }
11502
11503 opcode = (unsigned char *) fragP->fr_opcode;
11504
11505 /* Address we want to reach in file space. */
11506 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11507
11508 /* Address opcode resides at in file space. */
11509 opcode_address = fragP->fr_address + fragP->fr_fix;
11510
11511 /* Displacement from opcode start to fill into instruction. */
11512 displacement_from_opcode_start = target_address - opcode_address;
11513
11514 if ((fragP->fr_subtype & BIG) == 0)
11515 {
11516 /* Don't have to change opcode. */
11517 extension = 1; /* 1 opcode + 1 displacement */
11518 where_to_put_displacement = &opcode[1];
11519 }
11520 else
11521 {
11522 if (no_cond_jump_promotion
11523 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11524 as_warn_where (fragP->fr_file, fragP->fr_line,
11525 _("long jump required"));
11526
11527 switch (fragP->fr_subtype)
11528 {
11529 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11530 extension = 4; /* 1 opcode + 4 displacement */
11531 opcode[0] = 0xe9;
11532 where_to_put_displacement = &opcode[1];
11533 break;
11534
11535 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11536 extension = 2; /* 1 opcode + 2 displacement */
11537 opcode[0] = 0xe9;
11538 where_to_put_displacement = &opcode[1];
11539 break;
11540
11541 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11542 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11543 extension = 5; /* 2 opcode + 4 displacement */
11544 opcode[1] = opcode[0] + 0x10;
11545 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11546 where_to_put_displacement = &opcode[2];
11547 break;
11548
11549 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11550 extension = 3; /* 2 opcode + 2 displacement */
11551 opcode[1] = opcode[0] + 0x10;
11552 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11553 where_to_put_displacement = &opcode[2];
11554 break;
11555
11556 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11557 extension = 4;
11558 opcode[0] ^= 1;
11559 opcode[1] = 3;
11560 opcode[2] = 0xe9;
11561 where_to_put_displacement = &opcode[3];
11562 break;
11563
11564 default:
11565 BAD_CASE (fragP->fr_subtype);
11566 break;
11567 }
11568 }
11569
11570 /* If size if less then four we are sure that the operand fits,
11571 but if it's 4, then it could be that the displacement is larger
11572 then -/+ 2GB. */
11573 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11574 && object_64bit
11575 && ((addressT) (displacement_from_opcode_start - extension
11576 + ((addressT) 1 << 31))
11577 > (((addressT) 2 << 31) - 1)))
11578 {
11579 as_bad_where (fragP->fr_file, fragP->fr_line,
11580 _("jump target out of range"));
11581 /* Make us emit 0. */
11582 displacement_from_opcode_start = extension;
11583 }
11584 /* Now put displacement after opcode. */
11585 md_number_to_chars ((char *) where_to_put_displacement,
11586 (valueT) (displacement_from_opcode_start - extension),
11587 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11588 fragP->fr_fix += extension;
11589 }
11590 \f
11591 /* Apply a fixup (fixP) to segment data, once it has been determined
11592 by our caller that we have all the info we need to fix it up.
11593
11594 Parameter valP is the pointer to the value of the bits.
11595
11596 On the 386, immediates, displacements, and data pointers are all in
11597 the same (little-endian) format, so we don't need to care about which
11598 we are handling. */
11599
11600 void
11601 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11602 {
11603 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11604 valueT value = *valP;
11605
11606 #if !defined (TE_Mach)
11607 if (fixP->fx_pcrel)
11608 {
11609 switch (fixP->fx_r_type)
11610 {
11611 default:
11612 break;
11613
11614 case BFD_RELOC_64:
11615 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11616 break;
11617 case BFD_RELOC_32:
11618 case BFD_RELOC_X86_64_32S:
11619 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11620 break;
11621 case BFD_RELOC_16:
11622 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11623 break;
11624 case BFD_RELOC_8:
11625 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11626 break;
11627 }
11628 }
11629
11630 if (fixP->fx_addsy != NULL
11631 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11632 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11633 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11634 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11635 && !use_rela_relocations)
11636 {
11637 /* This is a hack. There should be a better way to handle this.
11638 This covers for the fact that bfd_install_relocation will
11639 subtract the current location (for partial_inplace, PC relative
11640 relocations); see more below. */
11641 #ifndef OBJ_AOUT
11642 if (IS_ELF
11643 #ifdef TE_PE
11644 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11645 #endif
11646 )
11647 value += fixP->fx_where + fixP->fx_frag->fr_address;
11648 #endif
11649 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11650 if (IS_ELF)
11651 {
11652 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11653
11654 if ((sym_seg == seg
11655 || (symbol_section_p (fixP->fx_addsy)
11656 && sym_seg != absolute_section))
11657 && !generic_force_reloc (fixP))
11658 {
11659 /* Yes, we add the values in twice. This is because
11660 bfd_install_relocation subtracts them out again. I think
11661 bfd_install_relocation is broken, but I don't dare change
11662 it. FIXME. */
11663 value += fixP->fx_where + fixP->fx_frag->fr_address;
11664 }
11665 }
11666 #endif
11667 #if defined (OBJ_COFF) && defined (TE_PE)
11668 /* For some reason, the PE format does not store a
11669 section address offset for a PC relative symbol. */
11670 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11671 || S_IS_WEAK (fixP->fx_addsy))
11672 value += md_pcrel_from (fixP);
11673 #endif
11674 }
11675 #if defined (OBJ_COFF) && defined (TE_PE)
11676 if (fixP->fx_addsy != NULL
11677 && S_IS_WEAK (fixP->fx_addsy)
11678 /* PR 16858: Do not modify weak function references. */
11679 && ! fixP->fx_pcrel)
11680 {
11681 #if !defined (TE_PEP)
11682 /* For x86 PE weak function symbols are neither PC-relative
11683 nor do they set S_IS_FUNCTION. So the only reliable way
11684 to detect them is to check the flags of their containing
11685 section. */
11686 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11687 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11688 ;
11689 else
11690 #endif
11691 value -= S_GET_VALUE (fixP->fx_addsy);
11692 }
11693 #endif
11694
11695 /* Fix a few things - the dynamic linker expects certain values here,
11696 and we must not disappoint it. */
11697 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11698 if (IS_ELF && fixP->fx_addsy)
11699 switch (fixP->fx_r_type)
11700 {
11701 case BFD_RELOC_386_PLT32:
11702 case BFD_RELOC_X86_64_PLT32:
11703 /* Make the jump instruction point to the address of the operand.
11704 At runtime we merely add the offset to the actual PLT entry.
11705 NB: Subtract the offset size only for jump instructions. */
11706 if (fixP->fx_pcrel)
11707 value = -4;
11708 break;
11709
11710 case BFD_RELOC_386_TLS_GD:
11711 case BFD_RELOC_386_TLS_LDM:
11712 case BFD_RELOC_386_TLS_IE_32:
11713 case BFD_RELOC_386_TLS_IE:
11714 case BFD_RELOC_386_TLS_GOTIE:
11715 case BFD_RELOC_386_TLS_GOTDESC:
11716 case BFD_RELOC_X86_64_TLSGD:
11717 case BFD_RELOC_X86_64_TLSLD:
11718 case BFD_RELOC_X86_64_GOTTPOFF:
11719 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11720 value = 0; /* Fully resolved at runtime. No addend. */
11721 /* Fallthrough */
11722 case BFD_RELOC_386_TLS_LE:
11723 case BFD_RELOC_386_TLS_LDO_32:
11724 case BFD_RELOC_386_TLS_LE_32:
11725 case BFD_RELOC_X86_64_DTPOFF32:
11726 case BFD_RELOC_X86_64_DTPOFF64:
11727 case BFD_RELOC_X86_64_TPOFF32:
11728 case BFD_RELOC_X86_64_TPOFF64:
11729 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11730 break;
11731
11732 case BFD_RELOC_386_TLS_DESC_CALL:
11733 case BFD_RELOC_X86_64_TLSDESC_CALL:
11734 value = 0; /* Fully resolved at runtime. No addend. */
11735 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11736 fixP->fx_done = 0;
11737 return;
11738
11739 case BFD_RELOC_VTABLE_INHERIT:
11740 case BFD_RELOC_VTABLE_ENTRY:
11741 fixP->fx_done = 0;
11742 return;
11743
11744 default:
11745 break;
11746 }
11747 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11748 *valP = value;
11749 #endif /* !defined (TE_Mach) */
11750
11751 /* Are we finished with this relocation now? */
11752 if (fixP->fx_addsy == NULL)
11753 fixP->fx_done = 1;
11754 #if defined (OBJ_COFF) && defined (TE_PE)
11755 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11756 {
11757 fixP->fx_done = 0;
11758 /* Remember value for tc_gen_reloc. */
11759 fixP->fx_addnumber = value;
11760 /* Clear out the frag for now. */
11761 value = 0;
11762 }
11763 #endif
11764 else if (use_rela_relocations)
11765 {
11766 fixP->fx_no_overflow = 1;
11767 /* Remember value for tc_gen_reloc. */
11768 fixP->fx_addnumber = value;
11769 value = 0;
11770 }
11771
11772 md_number_to_chars (p, value, fixP->fx_size);
11773 }
11774 \f
11775 const char *
11776 md_atof (int type, char *litP, int *sizeP)
11777 {
11778 /* This outputs the LITTLENUMs in REVERSE order;
11779 in accord with the bigendian 386. */
11780 return ieee_md_atof (type, litP, sizeP, FALSE);
11781 }
11782 \f
11783 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11784
11785 static char *
11786 output_invalid (int c)
11787 {
11788 if (ISPRINT (c))
11789 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11790 "'%c'", c);
11791 else
11792 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11793 "(0x%x)", (unsigned char) c);
11794 return output_invalid_buf;
11795 }
11796
11797 /* REG_STRING starts *before* REGISTER_PREFIX. */
11798
11799 static const reg_entry *
11800 parse_real_register (char *reg_string, char **end_op)
11801 {
11802 char *s = reg_string;
11803 char *p;
11804 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11805 const reg_entry *r;
11806
11807 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11808 if (*s == REGISTER_PREFIX)
11809 ++s;
11810
11811 if (is_space_char (*s))
11812 ++s;
11813
11814 p = reg_name_given;
11815 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11816 {
11817 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11818 return (const reg_entry *) NULL;
11819 s++;
11820 }
11821
11822 /* For naked regs, make sure that we are not dealing with an identifier.
11823 This prevents confusing an identifier like `eax_var' with register
11824 `eax'. */
11825 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11826 return (const reg_entry *) NULL;
11827
11828 *end_op = s;
11829
11830 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11831
11832 /* Handle floating point regs, allowing spaces in the (i) part. */
11833 if (r == i386_regtab /* %st is first entry of table */)
11834 {
11835 if (!cpu_arch_flags.bitfield.cpu8087
11836 && !cpu_arch_flags.bitfield.cpu287
11837 && !cpu_arch_flags.bitfield.cpu387)
11838 return (const reg_entry *) NULL;
11839
11840 if (is_space_char (*s))
11841 ++s;
11842 if (*s == '(')
11843 {
11844 ++s;
11845 if (is_space_char (*s))
11846 ++s;
11847 if (*s >= '0' && *s <= '7')
11848 {
11849 int fpr = *s - '0';
11850 ++s;
11851 if (is_space_char (*s))
11852 ++s;
11853 if (*s == ')')
11854 {
11855 *end_op = s + 1;
11856 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11857 know (r);
11858 return r + fpr;
11859 }
11860 }
11861 /* We have "%st(" then garbage. */
11862 return (const reg_entry *) NULL;
11863 }
11864 }
11865
11866 if (r == NULL || allow_pseudo_reg)
11867 return r;
11868
11869 if (operand_type_all_zero (&r->reg_type))
11870 return (const reg_entry *) NULL;
11871
11872 if ((r->reg_type.bitfield.dword
11873 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11874 || r->reg_type.bitfield.class == RegCR
11875 || r->reg_type.bitfield.class == RegDR
11876 || r->reg_type.bitfield.class == RegTR)
11877 && !cpu_arch_flags.bitfield.cpui386)
11878 return (const reg_entry *) NULL;
11879
11880 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11881 return (const reg_entry *) NULL;
11882
11883 if (!cpu_arch_flags.bitfield.cpuavx512f)
11884 {
11885 if (r->reg_type.bitfield.zmmword
11886 || r->reg_type.bitfield.class == RegMask)
11887 return (const reg_entry *) NULL;
11888
11889 if (!cpu_arch_flags.bitfield.cpuavx)
11890 {
11891 if (r->reg_type.bitfield.ymmword)
11892 return (const reg_entry *) NULL;
11893
11894 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11895 return (const reg_entry *) NULL;
11896 }
11897 }
11898
11899 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11900 return (const reg_entry *) NULL;
11901
11902 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11903 if (!allow_index_reg && r->reg_num == RegIZ)
11904 return (const reg_entry *) NULL;
11905
11906 /* Upper 16 vector registers are only available with VREX in 64bit
11907 mode, and require EVEX encoding. */
11908 if (r->reg_flags & RegVRex)
11909 {
11910 if (!cpu_arch_flags.bitfield.cpuavx512f
11911 || flag_code != CODE_64BIT)
11912 return (const reg_entry *) NULL;
11913
11914 i.vec_encoding = vex_encoding_evex;
11915 }
11916
11917 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11918 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11919 && flag_code != CODE_64BIT)
11920 return (const reg_entry *) NULL;
11921
11922 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11923 && !intel_syntax)
11924 return (const reg_entry *) NULL;
11925
11926 return r;
11927 }
11928
11929 /* REG_STRING starts *before* REGISTER_PREFIX. */
11930
11931 static const reg_entry *
11932 parse_register (char *reg_string, char **end_op)
11933 {
11934 const reg_entry *r;
11935
11936 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11937 r = parse_real_register (reg_string, end_op);
11938 else
11939 r = NULL;
11940 if (!r)
11941 {
11942 char *save = input_line_pointer;
11943 char c;
11944 symbolS *symbolP;
11945
11946 input_line_pointer = reg_string;
11947 c = get_symbol_name (&reg_string);
11948 symbolP = symbol_find (reg_string);
11949 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11950 {
11951 const expressionS *e = symbol_get_value_expression (symbolP);
11952
11953 know (e->X_op == O_register);
11954 know (e->X_add_number >= 0
11955 && (valueT) e->X_add_number < i386_regtab_size);
11956 r = i386_regtab + e->X_add_number;
11957 if ((r->reg_flags & RegVRex))
11958 i.vec_encoding = vex_encoding_evex;
11959 *end_op = input_line_pointer;
11960 }
11961 *input_line_pointer = c;
11962 input_line_pointer = save;
11963 }
11964 return r;
11965 }
11966
11967 int
11968 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11969 {
11970 const reg_entry *r;
11971 char *end = input_line_pointer;
11972
11973 *end = *nextcharP;
11974 r = parse_register (name, &input_line_pointer);
11975 if (r && end <= input_line_pointer)
11976 {
11977 *nextcharP = *input_line_pointer;
11978 *input_line_pointer = 0;
11979 e->X_op = O_register;
11980 e->X_add_number = r - i386_regtab;
11981 return 1;
11982 }
11983 input_line_pointer = end;
11984 *end = 0;
11985 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11986 }
11987
11988 void
11989 md_operand (expressionS *e)
11990 {
11991 char *end;
11992 const reg_entry *r;
11993
11994 switch (*input_line_pointer)
11995 {
11996 case REGISTER_PREFIX:
11997 r = parse_real_register (input_line_pointer, &end);
11998 if (r)
11999 {
12000 e->X_op = O_register;
12001 e->X_add_number = r - i386_regtab;
12002 input_line_pointer = end;
12003 }
12004 break;
12005
12006 case '[':
12007 gas_assert (intel_syntax);
12008 end = input_line_pointer++;
12009 expression (e);
12010 if (*input_line_pointer == ']')
12011 {
12012 ++input_line_pointer;
12013 e->X_op_symbol = make_expr_symbol (e);
12014 e->X_add_symbol = NULL;
12015 e->X_add_number = 0;
12016 e->X_op = O_index;
12017 }
12018 else
12019 {
12020 e->X_op = O_absent;
12021 input_line_pointer = end;
12022 }
12023 break;
12024 }
12025 }
12026
12027 \f
12028 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12029 const char *md_shortopts = "kVQ:sqnO::";
12030 #else
12031 const char *md_shortopts = "qnO::";
12032 #endif
12033
12034 #define OPTION_32 (OPTION_MD_BASE + 0)
12035 #define OPTION_64 (OPTION_MD_BASE + 1)
12036 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12037 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12038 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12039 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12040 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12041 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12042 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12043 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12044 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12045 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12046 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12047 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12048 #define OPTION_X32 (OPTION_MD_BASE + 14)
12049 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12050 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12051 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12052 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12053 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12054 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12055 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12056 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12057 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12058 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12059 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12060 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12061 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12062 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12063 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12064 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12065
12066 struct option md_longopts[] =
12067 {
12068 {"32", no_argument, NULL, OPTION_32},
12069 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12070 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12071 {"64", no_argument, NULL, OPTION_64},
12072 #endif
12073 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12074 {"x32", no_argument, NULL, OPTION_X32},
12075 {"mshared", no_argument, NULL, OPTION_MSHARED},
12076 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12077 #endif
12078 {"divide", no_argument, NULL, OPTION_DIVIDE},
12079 {"march", required_argument, NULL, OPTION_MARCH},
12080 {"mtune", required_argument, NULL, OPTION_MTUNE},
12081 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12082 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12083 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12084 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12085 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12086 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12087 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12088 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12089 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12090 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12091 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12092 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12093 # if defined (TE_PE) || defined (TE_PEP)
12094 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12095 #endif
12096 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12097 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12098 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12099 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12100 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12101 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12102 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12103 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12104 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12105 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12106 {NULL, no_argument, NULL, 0}
12107 };
12108 size_t md_longopts_size = sizeof (md_longopts);
12109
12110 int
12111 md_parse_option (int c, const char *arg)
12112 {
12113 unsigned int j;
12114 char *arch, *next, *saved, *type;
12115
12116 switch (c)
12117 {
12118 case 'n':
12119 optimize_align_code = 0;
12120 break;
12121
12122 case 'q':
12123 quiet_warnings = 1;
12124 break;
12125
12126 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12127 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12128 should be emitted or not. FIXME: Not implemented. */
12129 case 'Q':
12130 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12131 return 0;
12132 break;
12133
12134 /* -V: SVR4 argument to print version ID. */
12135 case 'V':
12136 print_version_id ();
12137 break;
12138
12139 /* -k: Ignore for FreeBSD compatibility. */
12140 case 'k':
12141 break;
12142
12143 case 's':
12144 /* -s: On i386 Solaris, this tells the native assembler to use
12145 .stab instead of .stab.excl. We always use .stab anyhow. */
12146 break;
12147
12148 case OPTION_MSHARED:
12149 shared = 1;
12150 break;
12151
12152 case OPTION_X86_USED_NOTE:
12153 if (strcasecmp (arg, "yes") == 0)
12154 x86_used_note = 1;
12155 else if (strcasecmp (arg, "no") == 0)
12156 x86_used_note = 0;
12157 else
12158 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12159 break;
12160
12161
12162 #endif
12163 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12164 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12165 case OPTION_64:
12166 {
12167 const char **list, **l;
12168
12169 list = bfd_target_list ();
12170 for (l = list; *l != NULL; l++)
12171 if (CONST_STRNEQ (*l, "elf64-x86-64")
12172 || strcmp (*l, "coff-x86-64") == 0
12173 || strcmp (*l, "pe-x86-64") == 0
12174 || strcmp (*l, "pei-x86-64") == 0
12175 || strcmp (*l, "mach-o-x86-64") == 0)
12176 {
12177 default_arch = "x86_64";
12178 break;
12179 }
12180 if (*l == NULL)
12181 as_fatal (_("no compiled in support for x86_64"));
12182 free (list);
12183 }
12184 break;
12185 #endif
12186
12187 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12188 case OPTION_X32:
12189 if (IS_ELF)
12190 {
12191 const char **list, **l;
12192
12193 list = bfd_target_list ();
12194 for (l = list; *l != NULL; l++)
12195 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12196 {
12197 default_arch = "x86_64:32";
12198 break;
12199 }
12200 if (*l == NULL)
12201 as_fatal (_("no compiled in support for 32bit x86_64"));
12202 free (list);
12203 }
12204 else
12205 as_fatal (_("32bit x86_64 is only supported for ELF"));
12206 break;
12207 #endif
12208
12209 case OPTION_32:
12210 default_arch = "i386";
12211 break;
12212
12213 case OPTION_DIVIDE:
12214 #ifdef SVR4_COMMENT_CHARS
12215 {
12216 char *n, *t;
12217 const char *s;
12218
12219 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12220 t = n;
12221 for (s = i386_comment_chars; *s != '\0'; s++)
12222 if (*s != '/')
12223 *t++ = *s;
12224 *t = '\0';
12225 i386_comment_chars = n;
12226 }
12227 #endif
12228 break;
12229
12230 case OPTION_MARCH:
12231 saved = xstrdup (arg);
12232 arch = saved;
12233 /* Allow -march=+nosse. */
12234 if (*arch == '+')
12235 arch++;
12236 do
12237 {
12238 if (*arch == '.')
12239 as_fatal (_("invalid -march= option: `%s'"), arg);
12240 next = strchr (arch, '+');
12241 if (next)
12242 *next++ = '\0';
12243 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12244 {
12245 if (strcmp (arch, cpu_arch [j].name) == 0)
12246 {
12247 /* Processor. */
12248 if (! cpu_arch[j].flags.bitfield.cpui386)
12249 continue;
12250
12251 cpu_arch_name = cpu_arch[j].name;
12252 cpu_sub_arch_name = NULL;
12253 cpu_arch_flags = cpu_arch[j].flags;
12254 cpu_arch_isa = cpu_arch[j].type;
12255 cpu_arch_isa_flags = cpu_arch[j].flags;
12256 if (!cpu_arch_tune_set)
12257 {
12258 cpu_arch_tune = cpu_arch_isa;
12259 cpu_arch_tune_flags = cpu_arch_isa_flags;
12260 }
12261 break;
12262 }
12263 else if (*cpu_arch [j].name == '.'
12264 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12265 {
12266 /* ISA extension. */
12267 i386_cpu_flags flags;
12268
12269 flags = cpu_flags_or (cpu_arch_flags,
12270 cpu_arch[j].flags);
12271
12272 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12273 {
12274 if (cpu_sub_arch_name)
12275 {
12276 char *name = cpu_sub_arch_name;
12277 cpu_sub_arch_name = concat (name,
12278 cpu_arch[j].name,
12279 (const char *) NULL);
12280 free (name);
12281 }
12282 else
12283 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12284 cpu_arch_flags = flags;
12285 cpu_arch_isa_flags = flags;
12286 }
12287 else
12288 cpu_arch_isa_flags
12289 = cpu_flags_or (cpu_arch_isa_flags,
12290 cpu_arch[j].flags);
12291 break;
12292 }
12293 }
12294
12295 if (j >= ARRAY_SIZE (cpu_arch))
12296 {
12297 /* Disable an ISA extension. */
12298 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12299 if (strcmp (arch, cpu_noarch [j].name) == 0)
12300 {
12301 i386_cpu_flags flags;
12302
12303 flags = cpu_flags_and_not (cpu_arch_flags,
12304 cpu_noarch[j].flags);
12305 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12306 {
12307 if (cpu_sub_arch_name)
12308 {
12309 char *name = cpu_sub_arch_name;
12310 cpu_sub_arch_name = concat (arch,
12311 (const char *) NULL);
12312 free (name);
12313 }
12314 else
12315 cpu_sub_arch_name = xstrdup (arch);
12316 cpu_arch_flags = flags;
12317 cpu_arch_isa_flags = flags;
12318 }
12319 break;
12320 }
12321
12322 if (j >= ARRAY_SIZE (cpu_noarch))
12323 j = ARRAY_SIZE (cpu_arch);
12324 }
12325
12326 if (j >= ARRAY_SIZE (cpu_arch))
12327 as_fatal (_("invalid -march= option: `%s'"), arg);
12328
12329 arch = next;
12330 }
12331 while (next != NULL);
12332 free (saved);
12333 break;
12334
12335 case OPTION_MTUNE:
12336 if (*arg == '.')
12337 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12338 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12339 {
12340 if (strcmp (arg, cpu_arch [j].name) == 0)
12341 {
12342 cpu_arch_tune_set = 1;
12343 cpu_arch_tune = cpu_arch [j].type;
12344 cpu_arch_tune_flags = cpu_arch[j].flags;
12345 break;
12346 }
12347 }
12348 if (j >= ARRAY_SIZE (cpu_arch))
12349 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12350 break;
12351
12352 case OPTION_MMNEMONIC:
12353 if (strcasecmp (arg, "att") == 0)
12354 intel_mnemonic = 0;
12355 else if (strcasecmp (arg, "intel") == 0)
12356 intel_mnemonic = 1;
12357 else
12358 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12359 break;
12360
12361 case OPTION_MSYNTAX:
12362 if (strcasecmp (arg, "att") == 0)
12363 intel_syntax = 0;
12364 else if (strcasecmp (arg, "intel") == 0)
12365 intel_syntax = 1;
12366 else
12367 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12368 break;
12369
12370 case OPTION_MINDEX_REG:
12371 allow_index_reg = 1;
12372 break;
12373
12374 case OPTION_MNAKED_REG:
12375 allow_naked_reg = 1;
12376 break;
12377
12378 case OPTION_MSSE2AVX:
12379 sse2avx = 1;
12380 break;
12381
12382 case OPTION_MSSE_CHECK:
12383 if (strcasecmp (arg, "error") == 0)
12384 sse_check = check_error;
12385 else if (strcasecmp (arg, "warning") == 0)
12386 sse_check = check_warning;
12387 else if (strcasecmp (arg, "none") == 0)
12388 sse_check = check_none;
12389 else
12390 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12391 break;
12392
12393 case OPTION_MOPERAND_CHECK:
12394 if (strcasecmp (arg, "error") == 0)
12395 operand_check = check_error;
12396 else if (strcasecmp (arg, "warning") == 0)
12397 operand_check = check_warning;
12398 else if (strcasecmp (arg, "none") == 0)
12399 operand_check = check_none;
12400 else
12401 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12402 break;
12403
12404 case OPTION_MAVXSCALAR:
12405 if (strcasecmp (arg, "128") == 0)
12406 avxscalar = vex128;
12407 else if (strcasecmp (arg, "256") == 0)
12408 avxscalar = vex256;
12409 else
12410 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12411 break;
12412
12413 case OPTION_MVEXWIG:
12414 if (strcmp (arg, "0") == 0)
12415 vexwig = vexw0;
12416 else if (strcmp (arg, "1") == 0)
12417 vexwig = vexw1;
12418 else
12419 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12420 break;
12421
12422 case OPTION_MADD_BND_PREFIX:
12423 add_bnd_prefix = 1;
12424 break;
12425
12426 case OPTION_MEVEXLIG:
12427 if (strcmp (arg, "128") == 0)
12428 evexlig = evexl128;
12429 else if (strcmp (arg, "256") == 0)
12430 evexlig = evexl256;
12431 else if (strcmp (arg, "512") == 0)
12432 evexlig = evexl512;
12433 else
12434 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12435 break;
12436
12437 case OPTION_MEVEXRCIG:
12438 if (strcmp (arg, "rne") == 0)
12439 evexrcig = rne;
12440 else if (strcmp (arg, "rd") == 0)
12441 evexrcig = rd;
12442 else if (strcmp (arg, "ru") == 0)
12443 evexrcig = ru;
12444 else if (strcmp (arg, "rz") == 0)
12445 evexrcig = rz;
12446 else
12447 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12448 break;
12449
12450 case OPTION_MEVEXWIG:
12451 if (strcmp (arg, "0") == 0)
12452 evexwig = evexw0;
12453 else if (strcmp (arg, "1") == 0)
12454 evexwig = evexw1;
12455 else
12456 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12457 break;
12458
12459 # if defined (TE_PE) || defined (TE_PEP)
12460 case OPTION_MBIG_OBJ:
12461 use_big_obj = 1;
12462 break;
12463 #endif
12464
12465 case OPTION_MOMIT_LOCK_PREFIX:
12466 if (strcasecmp (arg, "yes") == 0)
12467 omit_lock_prefix = 1;
12468 else if (strcasecmp (arg, "no") == 0)
12469 omit_lock_prefix = 0;
12470 else
12471 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12472 break;
12473
12474 case OPTION_MFENCE_AS_LOCK_ADD:
12475 if (strcasecmp (arg, "yes") == 0)
12476 avoid_fence = 1;
12477 else if (strcasecmp (arg, "no") == 0)
12478 avoid_fence = 0;
12479 else
12480 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12481 break;
12482
12483 case OPTION_MRELAX_RELOCATIONS:
12484 if (strcasecmp (arg, "yes") == 0)
12485 generate_relax_relocations = 1;
12486 else if (strcasecmp (arg, "no") == 0)
12487 generate_relax_relocations = 0;
12488 else
12489 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12490 break;
12491
12492 case OPTION_MALIGN_BRANCH_BOUNDARY:
12493 {
12494 char *end;
12495 long int align = strtoul (arg, &end, 0);
12496 if (*end == '\0')
12497 {
12498 if (align == 0)
12499 {
12500 align_branch_power = 0;
12501 break;
12502 }
12503 else if (align >= 16)
12504 {
12505 int align_power;
12506 for (align_power = 0;
12507 (align & 1) == 0;
12508 align >>= 1, align_power++)
12509 continue;
12510 /* Limit alignment power to 31. */
12511 if (align == 1 && align_power < 32)
12512 {
12513 align_branch_power = align_power;
12514 break;
12515 }
12516 }
12517 }
12518 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12519 }
12520 break;
12521
12522 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12523 {
12524 char *end;
12525 int align = strtoul (arg, &end, 0);
12526 /* Some processors only support 5 prefixes. */
12527 if (*end == '\0' && align >= 0 && align < 6)
12528 {
12529 align_branch_prefix_size = align;
12530 break;
12531 }
12532 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12533 arg);
12534 }
12535 break;
12536
12537 case OPTION_MALIGN_BRANCH:
12538 align_branch = 0;
12539 saved = xstrdup (arg);
12540 type = saved;
12541 do
12542 {
12543 next = strchr (type, '+');
12544 if (next)
12545 *next++ = '\0';
12546 if (strcasecmp (type, "jcc") == 0)
12547 align_branch |= align_branch_jcc_bit;
12548 else if (strcasecmp (type, "fused") == 0)
12549 align_branch |= align_branch_fused_bit;
12550 else if (strcasecmp (type, "jmp") == 0)
12551 align_branch |= align_branch_jmp_bit;
12552 else if (strcasecmp (type, "call") == 0)
12553 align_branch |= align_branch_call_bit;
12554 else if (strcasecmp (type, "ret") == 0)
12555 align_branch |= align_branch_ret_bit;
12556 else if (strcasecmp (type, "indirect") == 0)
12557 align_branch |= align_branch_indirect_bit;
12558 else
12559 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12560 type = next;
12561 }
12562 while (next != NULL);
12563 free (saved);
12564 break;
12565
12566 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12567 align_branch_power = 5;
12568 align_branch_prefix_size = 5;
12569 align_branch = (align_branch_jcc_bit
12570 | align_branch_fused_bit
12571 | align_branch_jmp_bit);
12572 break;
12573
12574 case OPTION_MAMD64:
12575 isa64 = amd64;
12576 break;
12577
12578 case OPTION_MINTEL64:
12579 isa64 = intel64;
12580 break;
12581
12582 case 'O':
12583 if (arg == NULL)
12584 {
12585 optimize = 1;
12586 /* Turn off -Os. */
12587 optimize_for_space = 0;
12588 }
12589 else if (*arg == 's')
12590 {
12591 optimize_for_space = 1;
12592 /* Turn on all encoding optimizations. */
12593 optimize = INT_MAX;
12594 }
12595 else
12596 {
12597 optimize = atoi (arg);
12598 /* Turn off -Os. */
12599 optimize_for_space = 0;
12600 }
12601 break;
12602
12603 default:
12604 return 0;
12605 }
12606 return 1;
12607 }
12608
12609 #define MESSAGE_TEMPLATE \
12610 " "
12611
12612 static char *
12613 output_message (FILE *stream, char *p, char *message, char *start,
12614 int *left_p, const char *name, int len)
12615 {
12616 int size = sizeof (MESSAGE_TEMPLATE);
12617 int left = *left_p;
12618
12619 /* Reserve 2 spaces for ", " or ",\0" */
12620 left -= len + 2;
12621
12622 /* Check if there is any room. */
12623 if (left >= 0)
12624 {
12625 if (p != start)
12626 {
12627 *p++ = ',';
12628 *p++ = ' ';
12629 }
12630 p = mempcpy (p, name, len);
12631 }
12632 else
12633 {
12634 /* Output the current message now and start a new one. */
12635 *p++ = ',';
12636 *p = '\0';
12637 fprintf (stream, "%s\n", message);
12638 p = start;
12639 left = size - (start - message) - len - 2;
12640
12641 gas_assert (left >= 0);
12642
12643 p = mempcpy (p, name, len);
12644 }
12645
12646 *left_p = left;
12647 return p;
12648 }
12649
12650 static void
12651 show_arch (FILE *stream, int ext, int check)
12652 {
12653 static char message[] = MESSAGE_TEMPLATE;
12654 char *start = message + 27;
12655 char *p;
12656 int size = sizeof (MESSAGE_TEMPLATE);
12657 int left;
12658 const char *name;
12659 int len;
12660 unsigned int j;
12661
12662 p = start;
12663 left = size - (start - message);
12664 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12665 {
12666 /* Should it be skipped? */
12667 if (cpu_arch [j].skip)
12668 continue;
12669
12670 name = cpu_arch [j].name;
12671 len = cpu_arch [j].len;
12672 if (*name == '.')
12673 {
12674 /* It is an extension. Skip if we aren't asked to show it. */
12675 if (ext)
12676 {
12677 name++;
12678 len--;
12679 }
12680 else
12681 continue;
12682 }
12683 else if (ext)
12684 {
12685 /* It is an processor. Skip if we show only extension. */
12686 continue;
12687 }
12688 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12689 {
12690 /* It is an impossible processor - skip. */
12691 continue;
12692 }
12693
12694 p = output_message (stream, p, message, start, &left, name, len);
12695 }
12696
12697 /* Display disabled extensions. */
12698 if (ext)
12699 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12700 {
12701 name = cpu_noarch [j].name;
12702 len = cpu_noarch [j].len;
12703 p = output_message (stream, p, message, start, &left, name,
12704 len);
12705 }
12706
12707 *p = '\0';
12708 fprintf (stream, "%s\n", message);
12709 }
12710
12711 void
12712 md_show_usage (FILE *stream)
12713 {
12714 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12715 fprintf (stream, _("\
12716 -Qy, -Qn ignored\n\
12717 -V print assembler version number\n\
12718 -k ignored\n"));
12719 #endif
12720 fprintf (stream, _("\
12721 -n Do not optimize code alignment\n\
12722 -q quieten some warnings\n"));
12723 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12724 fprintf (stream, _("\
12725 -s ignored\n"));
12726 #endif
12727 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12728 || defined (TE_PE) || defined (TE_PEP))
12729 fprintf (stream, _("\
12730 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12731 #endif
12732 #ifdef SVR4_COMMENT_CHARS
12733 fprintf (stream, _("\
12734 --divide do not treat `/' as a comment character\n"));
12735 #else
12736 fprintf (stream, _("\
12737 --divide ignored\n"));
12738 #endif
12739 fprintf (stream, _("\
12740 -march=CPU[,+EXTENSION...]\n\
12741 generate code for CPU and EXTENSION, CPU is one of:\n"));
12742 show_arch (stream, 0, 1);
12743 fprintf (stream, _("\
12744 EXTENSION is combination of:\n"));
12745 show_arch (stream, 1, 0);
12746 fprintf (stream, _("\
12747 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12748 show_arch (stream, 0, 0);
12749 fprintf (stream, _("\
12750 -msse2avx encode SSE instructions with VEX prefix\n"));
12751 fprintf (stream, _("\
12752 -msse-check=[none|error|warning] (default: warning)\n\
12753 check SSE instructions\n"));
12754 fprintf (stream, _("\
12755 -moperand-check=[none|error|warning] (default: warning)\n\
12756 check operand combinations for validity\n"));
12757 fprintf (stream, _("\
12758 -mavxscalar=[128|256] (default: 128)\n\
12759 encode scalar AVX instructions with specific vector\n\
12760 length\n"));
12761 fprintf (stream, _("\
12762 -mvexwig=[0|1] (default: 0)\n\
12763 encode VEX instructions with specific VEX.W value\n\
12764 for VEX.W bit ignored instructions\n"));
12765 fprintf (stream, _("\
12766 -mevexlig=[128|256|512] (default: 128)\n\
12767 encode scalar EVEX instructions with specific vector\n\
12768 length\n"));
12769 fprintf (stream, _("\
12770 -mevexwig=[0|1] (default: 0)\n\
12771 encode EVEX instructions with specific EVEX.W value\n\
12772 for EVEX.W bit ignored instructions\n"));
12773 fprintf (stream, _("\
12774 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12775 encode EVEX instructions with specific EVEX.RC value\n\
12776 for SAE-only ignored instructions\n"));
12777 fprintf (stream, _("\
12778 -mmnemonic=[att|intel] "));
12779 if (SYSV386_COMPAT)
12780 fprintf (stream, _("(default: att)\n"));
12781 else
12782 fprintf (stream, _("(default: intel)\n"));
12783 fprintf (stream, _("\
12784 use AT&T/Intel mnemonic\n"));
12785 fprintf (stream, _("\
12786 -msyntax=[att|intel] (default: att)\n\
12787 use AT&T/Intel syntax\n"));
12788 fprintf (stream, _("\
12789 -mindex-reg support pseudo index registers\n"));
12790 fprintf (stream, _("\
12791 -mnaked-reg don't require `%%' prefix for registers\n"));
12792 fprintf (stream, _("\
12793 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12794 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12795 fprintf (stream, _("\
12796 -mshared disable branch optimization for shared code\n"));
12797 fprintf (stream, _("\
12798 -mx86-used-note=[no|yes] "));
12799 if (DEFAULT_X86_USED_NOTE)
12800 fprintf (stream, _("(default: yes)\n"));
12801 else
12802 fprintf (stream, _("(default: no)\n"));
12803 fprintf (stream, _("\
12804 generate x86 used ISA and feature properties\n"));
12805 #endif
12806 #if defined (TE_PE) || defined (TE_PEP)
12807 fprintf (stream, _("\
12808 -mbig-obj generate big object files\n"));
12809 #endif
12810 fprintf (stream, _("\
12811 -momit-lock-prefix=[no|yes] (default: no)\n\
12812 strip all lock prefixes\n"));
12813 fprintf (stream, _("\
12814 -mfence-as-lock-add=[no|yes] (default: no)\n\
12815 encode lfence, mfence and sfence as\n\
12816 lock addl $0x0, (%%{re}sp)\n"));
12817 fprintf (stream, _("\
12818 -mrelax-relocations=[no|yes] "));
12819 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12820 fprintf (stream, _("(default: yes)\n"));
12821 else
12822 fprintf (stream, _("(default: no)\n"));
12823 fprintf (stream, _("\
12824 generate relax relocations\n"));
12825 fprintf (stream, _("\
12826 -malign-branch-boundary=NUM (default: 0)\n\
12827 align branches within NUM byte boundary\n"));
12828 fprintf (stream, _("\
12829 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12830 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12831 indirect\n\
12832 specify types of branches to align\n"));
12833 fprintf (stream, _("\
12834 -malign-branch-prefix-size=NUM (default: 5)\n\
12835 align branches with NUM prefixes per instruction\n"));
12836 fprintf (stream, _("\
12837 -mbranches-within-32B-boundaries\n\
12838 align branches within 32 byte boundary\n"));
12839 fprintf (stream, _("\
12840 -mamd64 accept only AMD64 ISA [default]\n"));
12841 fprintf (stream, _("\
12842 -mintel64 accept only Intel64 ISA\n"));
12843 }
12844
12845 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12846 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12847 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12848
12849 /* Pick the target format to use. */
12850
12851 const char *
12852 i386_target_format (void)
12853 {
12854 if (!strncmp (default_arch, "x86_64", 6))
12855 {
12856 update_code_flag (CODE_64BIT, 1);
12857 if (default_arch[6] == '\0')
12858 x86_elf_abi = X86_64_ABI;
12859 else
12860 x86_elf_abi = X86_64_X32_ABI;
12861 }
12862 else if (!strcmp (default_arch, "i386"))
12863 update_code_flag (CODE_32BIT, 1);
12864 else if (!strcmp (default_arch, "iamcu"))
12865 {
12866 update_code_flag (CODE_32BIT, 1);
12867 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12868 {
12869 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12870 cpu_arch_name = "iamcu";
12871 cpu_sub_arch_name = NULL;
12872 cpu_arch_flags = iamcu_flags;
12873 cpu_arch_isa = PROCESSOR_IAMCU;
12874 cpu_arch_isa_flags = iamcu_flags;
12875 if (!cpu_arch_tune_set)
12876 {
12877 cpu_arch_tune = cpu_arch_isa;
12878 cpu_arch_tune_flags = cpu_arch_isa_flags;
12879 }
12880 }
12881 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12882 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12883 cpu_arch_name);
12884 }
12885 else
12886 as_fatal (_("unknown architecture"));
12887
12888 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12889 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12890 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12891 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12892
12893 switch (OUTPUT_FLAVOR)
12894 {
12895 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12896 case bfd_target_aout_flavour:
12897 return AOUT_TARGET_FORMAT;
12898 #endif
12899 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12900 # if defined (TE_PE) || defined (TE_PEP)
12901 case bfd_target_coff_flavour:
12902 if (flag_code == CODE_64BIT)
12903 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12904 else
12905 return "pe-i386";
12906 # elif defined (TE_GO32)
12907 case bfd_target_coff_flavour:
12908 return "coff-go32";
12909 # else
12910 case bfd_target_coff_flavour:
12911 return "coff-i386";
12912 # endif
12913 #endif
12914 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12915 case bfd_target_elf_flavour:
12916 {
12917 const char *format;
12918
12919 switch (x86_elf_abi)
12920 {
12921 default:
12922 format = ELF_TARGET_FORMAT;
12923 #ifndef TE_SOLARIS
12924 tls_get_addr = "___tls_get_addr";
12925 #endif
12926 break;
12927 case X86_64_ABI:
12928 use_rela_relocations = 1;
12929 object_64bit = 1;
12930 #ifndef TE_SOLARIS
12931 tls_get_addr = "__tls_get_addr";
12932 #endif
12933 format = ELF_TARGET_FORMAT64;
12934 break;
12935 case X86_64_X32_ABI:
12936 use_rela_relocations = 1;
12937 object_64bit = 1;
12938 #ifndef TE_SOLARIS
12939 tls_get_addr = "__tls_get_addr";
12940 #endif
12941 disallow_64bit_reloc = 1;
12942 format = ELF_TARGET_FORMAT32;
12943 break;
12944 }
12945 if (cpu_arch_isa == PROCESSOR_L1OM)
12946 {
12947 if (x86_elf_abi != X86_64_ABI)
12948 as_fatal (_("Intel L1OM is 64bit only"));
12949 return ELF_TARGET_L1OM_FORMAT;
12950 }
12951 else if (cpu_arch_isa == PROCESSOR_K1OM)
12952 {
12953 if (x86_elf_abi != X86_64_ABI)
12954 as_fatal (_("Intel K1OM is 64bit only"));
12955 return ELF_TARGET_K1OM_FORMAT;
12956 }
12957 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12958 {
12959 if (x86_elf_abi != I386_ABI)
12960 as_fatal (_("Intel MCU is 32bit only"));
12961 return ELF_TARGET_IAMCU_FORMAT;
12962 }
12963 else
12964 return format;
12965 }
12966 #endif
12967 #if defined (OBJ_MACH_O)
12968 case bfd_target_mach_o_flavour:
12969 if (flag_code == CODE_64BIT)
12970 {
12971 use_rela_relocations = 1;
12972 object_64bit = 1;
12973 return "mach-o-x86-64";
12974 }
12975 else
12976 return "mach-o-i386";
12977 #endif
12978 default:
12979 abort ();
12980 return NULL;
12981 }
12982 }
12983
12984 #endif /* OBJ_MAYBE_ more than one */
12985 \f
12986 symbolS *
12987 md_undefined_symbol (char *name)
12988 {
12989 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12990 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12991 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12992 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12993 {
12994 if (!GOT_symbol)
12995 {
12996 if (symbol_find (name))
12997 as_bad (_("GOT already in symbol table"));
12998 GOT_symbol = symbol_new (name, undefined_section,
12999 (valueT) 0, &zero_address_frag);
13000 };
13001 return GOT_symbol;
13002 }
13003 return 0;
13004 }
13005
13006 /* Round up a section size to the appropriate boundary. */
13007
13008 valueT
13009 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13010 {
13011 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13012 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13013 {
13014 /* For a.out, force the section size to be aligned. If we don't do
13015 this, BFD will align it for us, but it will not write out the
13016 final bytes of the section. This may be a bug in BFD, but it is
13017 easier to fix it here since that is how the other a.out targets
13018 work. */
13019 int align;
13020
13021 align = bfd_section_alignment (segment);
13022 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13023 }
13024 #endif
13025
13026 return size;
13027 }
13028
13029 /* On the i386, PC-relative offsets are relative to the start of the
13030 next instruction. That is, the address of the offset, plus its
13031 size, since the offset is always the last part of the insn. */
13032
13033 long
13034 md_pcrel_from (fixS *fixP)
13035 {
13036 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13037 }
13038
13039 #ifndef I386COFF
13040
13041 static void
13042 s_bss (int ignore ATTRIBUTE_UNUSED)
13043 {
13044 int temp;
13045
13046 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13047 if (IS_ELF)
13048 obj_elf_section_change_hook ();
13049 #endif
13050 temp = get_absolute_expression ();
13051 subseg_set (bss_section, (subsegT) temp);
13052 demand_empty_rest_of_line ();
13053 }
13054
13055 #endif
13056
13057 /* Remember constant directive. */
13058
13059 void
13060 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13061 {
13062 if (last_insn.kind != last_insn_directive
13063 && (bfd_section_flags (now_seg) & SEC_CODE))
13064 {
13065 last_insn.seg = now_seg;
13066 last_insn.kind = last_insn_directive;
13067 last_insn.name = "constant directive";
13068 last_insn.file = as_where (&last_insn.line);
13069 }
13070 }
13071
13072 void
13073 i386_validate_fix (fixS *fixp)
13074 {
13075 if (fixp->fx_subsy)
13076 {
13077 if (fixp->fx_subsy == GOT_symbol)
13078 {
13079 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13080 {
13081 if (!object_64bit)
13082 abort ();
13083 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13084 if (fixp->fx_tcbit2)
13085 fixp->fx_r_type = (fixp->fx_tcbit
13086 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13087 : BFD_RELOC_X86_64_GOTPCRELX);
13088 else
13089 #endif
13090 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13091 }
13092 else
13093 {
13094 if (!object_64bit)
13095 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13096 else
13097 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13098 }
13099 fixp->fx_subsy = 0;
13100 }
13101 }
13102 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13103 else if (!object_64bit)
13104 {
13105 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13106 && fixp->fx_tcbit2)
13107 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13108 }
13109 #endif
13110 }
13111
13112 arelent *
13113 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13114 {
13115 arelent *rel;
13116 bfd_reloc_code_real_type code;
13117
13118 switch (fixp->fx_r_type)
13119 {
13120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13121 case BFD_RELOC_SIZE32:
13122 case BFD_RELOC_SIZE64:
13123 if (S_IS_DEFINED (fixp->fx_addsy)
13124 && !S_IS_EXTERNAL (fixp->fx_addsy))
13125 {
13126 /* Resolve size relocation against local symbol to size of
13127 the symbol plus addend. */
13128 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13129 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13130 && !fits_in_unsigned_long (value))
13131 as_bad_where (fixp->fx_file, fixp->fx_line,
13132 _("symbol size computation overflow"));
13133 fixp->fx_addsy = NULL;
13134 fixp->fx_subsy = NULL;
13135 md_apply_fix (fixp, (valueT *) &value, NULL);
13136 return NULL;
13137 }
13138 #endif
13139 /* Fall through. */
13140
13141 case BFD_RELOC_X86_64_PLT32:
13142 case BFD_RELOC_X86_64_GOT32:
13143 case BFD_RELOC_X86_64_GOTPCREL:
13144 case BFD_RELOC_X86_64_GOTPCRELX:
13145 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13146 case BFD_RELOC_386_PLT32:
13147 case BFD_RELOC_386_GOT32:
13148 case BFD_RELOC_386_GOT32X:
13149 case BFD_RELOC_386_GOTOFF:
13150 case BFD_RELOC_386_GOTPC:
13151 case BFD_RELOC_386_TLS_GD:
13152 case BFD_RELOC_386_TLS_LDM:
13153 case BFD_RELOC_386_TLS_LDO_32:
13154 case BFD_RELOC_386_TLS_IE_32:
13155 case BFD_RELOC_386_TLS_IE:
13156 case BFD_RELOC_386_TLS_GOTIE:
13157 case BFD_RELOC_386_TLS_LE_32:
13158 case BFD_RELOC_386_TLS_LE:
13159 case BFD_RELOC_386_TLS_GOTDESC:
13160 case BFD_RELOC_386_TLS_DESC_CALL:
13161 case BFD_RELOC_X86_64_TLSGD:
13162 case BFD_RELOC_X86_64_TLSLD:
13163 case BFD_RELOC_X86_64_DTPOFF32:
13164 case BFD_RELOC_X86_64_DTPOFF64:
13165 case BFD_RELOC_X86_64_GOTTPOFF:
13166 case BFD_RELOC_X86_64_TPOFF32:
13167 case BFD_RELOC_X86_64_TPOFF64:
13168 case BFD_RELOC_X86_64_GOTOFF64:
13169 case BFD_RELOC_X86_64_GOTPC32:
13170 case BFD_RELOC_X86_64_GOT64:
13171 case BFD_RELOC_X86_64_GOTPCREL64:
13172 case BFD_RELOC_X86_64_GOTPC64:
13173 case BFD_RELOC_X86_64_GOTPLT64:
13174 case BFD_RELOC_X86_64_PLTOFF64:
13175 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13176 case BFD_RELOC_X86_64_TLSDESC_CALL:
13177 case BFD_RELOC_RVA:
13178 case BFD_RELOC_VTABLE_ENTRY:
13179 case BFD_RELOC_VTABLE_INHERIT:
13180 #ifdef TE_PE
13181 case BFD_RELOC_32_SECREL:
13182 #endif
13183 code = fixp->fx_r_type;
13184 break;
13185 case BFD_RELOC_X86_64_32S:
13186 if (!fixp->fx_pcrel)
13187 {
13188 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13189 code = fixp->fx_r_type;
13190 break;
13191 }
13192 /* Fall through. */
13193 default:
13194 if (fixp->fx_pcrel)
13195 {
13196 switch (fixp->fx_size)
13197 {
13198 default:
13199 as_bad_where (fixp->fx_file, fixp->fx_line,
13200 _("can not do %d byte pc-relative relocation"),
13201 fixp->fx_size);
13202 code = BFD_RELOC_32_PCREL;
13203 break;
13204 case 1: code = BFD_RELOC_8_PCREL; break;
13205 case 2: code = BFD_RELOC_16_PCREL; break;
13206 case 4: code = BFD_RELOC_32_PCREL; break;
13207 #ifdef BFD64
13208 case 8: code = BFD_RELOC_64_PCREL; break;
13209 #endif
13210 }
13211 }
13212 else
13213 {
13214 switch (fixp->fx_size)
13215 {
13216 default:
13217 as_bad_where (fixp->fx_file, fixp->fx_line,
13218 _("can not do %d byte relocation"),
13219 fixp->fx_size);
13220 code = BFD_RELOC_32;
13221 break;
13222 case 1: code = BFD_RELOC_8; break;
13223 case 2: code = BFD_RELOC_16; break;
13224 case 4: code = BFD_RELOC_32; break;
13225 #ifdef BFD64
13226 case 8: code = BFD_RELOC_64; break;
13227 #endif
13228 }
13229 }
13230 break;
13231 }
13232
13233 if ((code == BFD_RELOC_32
13234 || code == BFD_RELOC_32_PCREL
13235 || code == BFD_RELOC_X86_64_32S)
13236 && GOT_symbol
13237 && fixp->fx_addsy == GOT_symbol)
13238 {
13239 if (!object_64bit)
13240 code = BFD_RELOC_386_GOTPC;
13241 else
13242 code = BFD_RELOC_X86_64_GOTPC32;
13243 }
13244 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13245 && GOT_symbol
13246 && fixp->fx_addsy == GOT_symbol)
13247 {
13248 code = BFD_RELOC_X86_64_GOTPC64;
13249 }
13250
13251 rel = XNEW (arelent);
13252 rel->sym_ptr_ptr = XNEW (asymbol *);
13253 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13254
13255 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13256
13257 if (!use_rela_relocations)
13258 {
13259 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13260 vtable entry to be used in the relocation's section offset. */
13261 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13262 rel->address = fixp->fx_offset;
13263 #if defined (OBJ_COFF) && defined (TE_PE)
13264 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13265 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13266 else
13267 #endif
13268 rel->addend = 0;
13269 }
13270 /* Use the rela in 64bit mode. */
13271 else
13272 {
13273 if (disallow_64bit_reloc)
13274 switch (code)
13275 {
13276 case BFD_RELOC_X86_64_DTPOFF64:
13277 case BFD_RELOC_X86_64_TPOFF64:
13278 case BFD_RELOC_64_PCREL:
13279 case BFD_RELOC_X86_64_GOTOFF64:
13280 case BFD_RELOC_X86_64_GOT64:
13281 case BFD_RELOC_X86_64_GOTPCREL64:
13282 case BFD_RELOC_X86_64_GOTPC64:
13283 case BFD_RELOC_X86_64_GOTPLT64:
13284 case BFD_RELOC_X86_64_PLTOFF64:
13285 as_bad_where (fixp->fx_file, fixp->fx_line,
13286 _("cannot represent relocation type %s in x32 mode"),
13287 bfd_get_reloc_code_name (code));
13288 break;
13289 default:
13290 break;
13291 }
13292
13293 if (!fixp->fx_pcrel)
13294 rel->addend = fixp->fx_offset;
13295 else
13296 switch (code)
13297 {
13298 case BFD_RELOC_X86_64_PLT32:
13299 case BFD_RELOC_X86_64_GOT32:
13300 case BFD_RELOC_X86_64_GOTPCREL:
13301 case BFD_RELOC_X86_64_GOTPCRELX:
13302 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13303 case BFD_RELOC_X86_64_TLSGD:
13304 case BFD_RELOC_X86_64_TLSLD:
13305 case BFD_RELOC_X86_64_GOTTPOFF:
13306 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13307 case BFD_RELOC_X86_64_TLSDESC_CALL:
13308 rel->addend = fixp->fx_offset - fixp->fx_size;
13309 break;
13310 default:
13311 rel->addend = (section->vma
13312 - fixp->fx_size
13313 + fixp->fx_addnumber
13314 + md_pcrel_from (fixp));
13315 break;
13316 }
13317 }
13318
13319 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13320 if (rel->howto == NULL)
13321 {
13322 as_bad_where (fixp->fx_file, fixp->fx_line,
13323 _("cannot represent relocation type %s"),
13324 bfd_get_reloc_code_name (code));
13325 /* Set howto to a garbage value so that we can keep going. */
13326 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13327 gas_assert (rel->howto != NULL);
13328 }
13329
13330 return rel;
13331 }
13332
13333 #include "tc-i386-intel.c"
13334
13335 void
13336 tc_x86_parse_to_dw2regnum (expressionS *exp)
13337 {
13338 int saved_naked_reg;
13339 char saved_register_dot;
13340
13341 saved_naked_reg = allow_naked_reg;
13342 allow_naked_reg = 1;
13343 saved_register_dot = register_chars['.'];
13344 register_chars['.'] = '.';
13345 allow_pseudo_reg = 1;
13346 expression_and_evaluate (exp);
13347 allow_pseudo_reg = 0;
13348 register_chars['.'] = saved_register_dot;
13349 allow_naked_reg = saved_naked_reg;
13350
13351 if (exp->X_op == O_register && exp->X_add_number >= 0)
13352 {
13353 if ((addressT) exp->X_add_number < i386_regtab_size)
13354 {
13355 exp->X_op = O_constant;
13356 exp->X_add_number = i386_regtab[exp->X_add_number]
13357 .dw2_regnum[flag_code >> 1];
13358 }
13359 else
13360 exp->X_op = O_illegal;
13361 }
13362 }
13363
13364 void
13365 tc_x86_frame_initial_instructions (void)
13366 {
13367 static unsigned int sp_regno[2];
13368
13369 if (!sp_regno[flag_code >> 1])
13370 {
13371 char *saved_input = input_line_pointer;
13372 char sp[][4] = {"esp", "rsp"};
13373 expressionS exp;
13374
13375 input_line_pointer = sp[flag_code >> 1];
13376 tc_x86_parse_to_dw2regnum (&exp);
13377 gas_assert (exp.X_op == O_constant);
13378 sp_regno[flag_code >> 1] = exp.X_add_number;
13379 input_line_pointer = saved_input;
13380 }
13381
13382 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13383 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13384 }
13385
13386 int
13387 x86_dwarf2_addr_size (void)
13388 {
13389 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13390 if (x86_elf_abi == X86_64_X32_ABI)
13391 return 4;
13392 #endif
13393 return bfd_arch_bits_per_address (stdoutput) / 8;
13394 }
13395
13396 int
13397 i386_elf_section_type (const char *str, size_t len)
13398 {
13399 if (flag_code == CODE_64BIT
13400 && len == sizeof ("unwind") - 1
13401 && strncmp (str, "unwind", 6) == 0)
13402 return SHT_X86_64_UNWIND;
13403
13404 return -1;
13405 }
13406
13407 #ifdef TE_SOLARIS
13408 void
13409 i386_solaris_fix_up_eh_frame (segT sec)
13410 {
13411 if (flag_code == CODE_64BIT)
13412 elf_section_type (sec) = SHT_X86_64_UNWIND;
13413 }
13414 #endif
13415
13416 #ifdef TE_PE
13417 void
13418 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13419 {
13420 expressionS exp;
13421
13422 exp.X_op = O_secrel;
13423 exp.X_add_symbol = symbol;
13424 exp.X_add_number = 0;
13425 emit_expr (&exp, size);
13426 }
13427 #endif
13428
13429 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13430 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13431
13432 bfd_vma
13433 x86_64_section_letter (int letter, const char **ptr_msg)
13434 {
13435 if (flag_code == CODE_64BIT)
13436 {
13437 if (letter == 'l')
13438 return SHF_X86_64_LARGE;
13439
13440 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13441 }
13442 else
13443 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13444 return -1;
13445 }
13446
13447 bfd_vma
13448 x86_64_section_word (char *str, size_t len)
13449 {
13450 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13451 return SHF_X86_64_LARGE;
13452
13453 return -1;
13454 }
13455
13456 static void
13457 handle_large_common (int small ATTRIBUTE_UNUSED)
13458 {
13459 if (flag_code != CODE_64BIT)
13460 {
13461 s_comm_internal (0, elf_common_parse);
13462 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13463 }
13464 else
13465 {
13466 static segT lbss_section;
13467 asection *saved_com_section_ptr = elf_com_section_ptr;
13468 asection *saved_bss_section = bss_section;
13469
13470 if (lbss_section == NULL)
13471 {
13472 flagword applicable;
13473 segT seg = now_seg;
13474 subsegT subseg = now_subseg;
13475
13476 /* The .lbss section is for local .largecomm symbols. */
13477 lbss_section = subseg_new (".lbss", 0);
13478 applicable = bfd_applicable_section_flags (stdoutput);
13479 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13480 seg_info (lbss_section)->bss = 1;
13481
13482 subseg_set (seg, subseg);
13483 }
13484
13485 elf_com_section_ptr = &_bfd_elf_large_com_section;
13486 bss_section = lbss_section;
13487
13488 s_comm_internal (0, elf_common_parse);
13489
13490 elf_com_section_ptr = saved_com_section_ptr;
13491 bss_section = saved_bss_section;
13492 }
13493 }
13494 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.321606 seconds and 4 git commands to generate.