Improve -mlfence-after-load
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* 1 if lfence should be inserted after every load. */
633 static int lfence_after_load = 0;
634
635 /* Non-zero if lfence should be inserted before indirect branch. */
636 static enum lfence_before_indirect_branch_kind
637 {
638 lfence_branch_none = 0,
639 lfence_branch_register,
640 lfence_branch_memory,
641 lfence_branch_all
642 }
643 lfence_before_indirect_branch;
644
645 /* Non-zero if lfence should be inserted before ret. */
646 static enum lfence_before_ret_kind
647 {
648 lfence_before_ret_none = 0,
649 lfence_before_ret_not,
650 lfence_before_ret_or,
651 lfence_before_ret_shl
652 }
653 lfence_before_ret;
654
655 /* Types of previous instruction is .byte or prefix. */
656 static struct
657 {
658 segT seg;
659 const char *file;
660 const char *name;
661 unsigned int line;
662 enum last_insn_kind
663 {
664 last_insn_other = 0,
665 last_insn_directive,
666 last_insn_prefix
667 } kind;
668 } last_insn;
669
670 /* 1 if the assembler should generate relax relocations. */
671
672 static int generate_relax_relocations
673 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
674
675 static enum check_kind
676 {
677 check_none = 0,
678 check_warning,
679 check_error
680 }
681 sse_check, operand_check = check_warning;
682
683 /* Non-zero if branches should be aligned within power of 2 boundary. */
684 static int align_branch_power = 0;
685
686 /* Types of branches to align. */
687 enum align_branch_kind
688 {
689 align_branch_none = 0,
690 align_branch_jcc = 1,
691 align_branch_fused = 2,
692 align_branch_jmp = 3,
693 align_branch_call = 4,
694 align_branch_indirect = 5,
695 align_branch_ret = 6
696 };
697
698 /* Type bits of branches to align. */
699 enum align_branch_bit
700 {
701 align_branch_jcc_bit = 1 << align_branch_jcc,
702 align_branch_fused_bit = 1 << align_branch_fused,
703 align_branch_jmp_bit = 1 << align_branch_jmp,
704 align_branch_call_bit = 1 << align_branch_call,
705 align_branch_indirect_bit = 1 << align_branch_indirect,
706 align_branch_ret_bit = 1 << align_branch_ret
707 };
708
709 static unsigned int align_branch = (align_branch_jcc_bit
710 | align_branch_fused_bit
711 | align_branch_jmp_bit);
712
713 /* Types of condition jump used by macro-fusion. */
714 enum mf_jcc_kind
715 {
716 mf_jcc_jo = 0, /* base opcode 0x70 */
717 mf_jcc_jc, /* base opcode 0x72 */
718 mf_jcc_je, /* base opcode 0x74 */
719 mf_jcc_jna, /* base opcode 0x76 */
720 mf_jcc_js, /* base opcode 0x78 */
721 mf_jcc_jp, /* base opcode 0x7a */
722 mf_jcc_jl, /* base opcode 0x7c */
723 mf_jcc_jle, /* base opcode 0x7e */
724 };
725
726 /* Types of compare flag-modifying insntructions used by macro-fusion. */
727 enum mf_cmp_kind
728 {
729 mf_cmp_test_and, /* test/cmp */
730 mf_cmp_alu_cmp, /* add/sub/cmp */
731 mf_cmp_incdec /* inc/dec */
732 };
733
734 /* The maximum padding size for fused jcc. CMP like instruction can
735 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
736 prefixes. */
737 #define MAX_FUSED_JCC_PADDING_SIZE 20
738
739 /* The maximum number of prefixes added for an instruction. */
740 static unsigned int align_branch_prefix_size = 5;
741
742 /* Optimization:
743 1. Clear the REX_W bit with register operand if possible.
744 2. Above plus use 128bit vector instruction to clear the full vector
745 register.
746 */
747 static int optimize = 0;
748
749 /* Optimization:
750 1. Clear the REX_W bit with register operand if possible.
751 2. Above plus use 128bit vector instruction to clear the full vector
752 register.
753 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
754 "testb $imm7,%r8".
755 */
756 static int optimize_for_space = 0;
757
758 /* Register prefix used for error message. */
759 static const char *register_prefix = "%";
760
761 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
762 leave, push, and pop instructions so that gcc has the same stack
763 frame as in 32 bit mode. */
764 static char stackop_size = '\0';
765
766 /* Non-zero to optimize code alignment. */
767 int optimize_align_code = 1;
768
769 /* Non-zero to quieten some warnings. */
770 static int quiet_warnings = 0;
771
772 /* CPU name. */
773 static const char *cpu_arch_name = NULL;
774 static char *cpu_sub_arch_name = NULL;
775
776 /* CPU feature flags. */
777 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
778
779 /* If we have selected a cpu we are generating instructions for. */
780 static int cpu_arch_tune_set = 0;
781
782 /* Cpu we are generating instructions for. */
783 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
784
785 /* CPU feature flags of cpu we are generating instructions for. */
786 static i386_cpu_flags cpu_arch_tune_flags;
787
788 /* CPU instruction set architecture used. */
789 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
790
791 /* CPU feature flags of instruction set architecture used. */
792 i386_cpu_flags cpu_arch_isa_flags;
793
794 /* If set, conditional jumps are not automatically promoted to handle
795 larger than a byte offset. */
796 static unsigned int no_cond_jump_promotion = 0;
797
798 /* Encode SSE instructions with VEX prefix. */
799 static unsigned int sse2avx;
800
801 /* Encode scalar AVX instructions with specific vector length. */
802 static enum
803 {
804 vex128 = 0,
805 vex256
806 } avxscalar;
807
808 /* Encode VEX WIG instructions with specific vex.w. */
809 static enum
810 {
811 vexw0 = 0,
812 vexw1
813 } vexwig;
814
815 /* Encode scalar EVEX LIG instructions with specific vector length. */
816 static enum
817 {
818 evexl128 = 0,
819 evexl256,
820 evexl512
821 } evexlig;
822
823 /* Encode EVEX WIG instructions with specific evex.w. */
824 static enum
825 {
826 evexw0 = 0,
827 evexw1
828 } evexwig;
829
830 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
831 static enum rc_type evexrcig = rne;
832
833 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
834 static symbolS *GOT_symbol;
835
836 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
837 unsigned int x86_dwarf2_return_column;
838
839 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
840 int x86_cie_data_alignment;
841
842 /* Interface to relax_segment.
843 There are 3 major relax states for 386 jump insns because the
844 different types of jumps add different sizes to frags when we're
845 figuring out what sort of jump to choose to reach a given label.
846
847 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
848 branches which are handled by md_estimate_size_before_relax() and
849 i386_generic_table_relax_frag(). */
850
851 /* Types. */
852 #define UNCOND_JUMP 0
853 #define COND_JUMP 1
854 #define COND_JUMP86 2
855 #define BRANCH_PADDING 3
856 #define BRANCH_PREFIX 4
857 #define FUSED_JCC_PADDING 5
858
859 /* Sizes. */
860 #define CODE16 1
861 #define SMALL 0
862 #define SMALL16 (SMALL | CODE16)
863 #define BIG 2
864 #define BIG16 (BIG | CODE16)
865
866 #ifndef INLINE
867 #ifdef __GNUC__
868 #define INLINE __inline__
869 #else
870 #define INLINE
871 #endif
872 #endif
873
874 #define ENCODE_RELAX_STATE(type, size) \
875 ((relax_substateT) (((type) << 2) | (size)))
876 #define TYPE_FROM_RELAX_STATE(s) \
877 ((s) >> 2)
878 #define DISP_SIZE_FROM_RELAX_STATE(s) \
879 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
880
881 /* This table is used by relax_frag to promote short jumps to long
882 ones where necessary. SMALL (short) jumps may be promoted to BIG
883 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
884 don't allow a short jump in a 32 bit code segment to be promoted to
885 a 16 bit offset jump because it's slower (requires data size
886 prefix), and doesn't work, unless the destination is in the bottom
887 64k of the code segment (The top 16 bits of eip are zeroed). */
888
889 const relax_typeS md_relax_table[] =
890 {
891 /* The fields are:
892 1) most positive reach of this state,
893 2) most negative reach of this state,
894 3) how many bytes this mode will have in the variable part of the frag
895 4) which index into the table to try if we can't fit into this one. */
896
897 /* UNCOND_JUMP states. */
898 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
899 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
900 /* dword jmp adds 4 bytes to frag:
901 0 extra opcode bytes, 4 displacement bytes. */
902 {0, 0, 4, 0},
903 /* word jmp adds 2 byte2 to frag:
904 0 extra opcode bytes, 2 displacement bytes. */
905 {0, 0, 2, 0},
906
907 /* COND_JUMP states. */
908 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
909 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
910 /* dword conditionals adds 5 bytes to frag:
911 1 extra opcode byte, 4 displacement bytes. */
912 {0, 0, 5, 0},
913 /* word conditionals add 3 bytes to frag:
914 1 extra opcode byte, 2 displacement bytes. */
915 {0, 0, 3, 0},
916
917 /* COND_JUMP86 states. */
918 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
919 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
920 /* dword conditionals adds 5 bytes to frag:
921 1 extra opcode byte, 4 displacement bytes. */
922 {0, 0, 5, 0},
923 /* word conditionals add 4 bytes to frag:
924 1 displacement byte and a 3 byte long branch insn. */
925 {0, 0, 4, 0}
926 };
927
928 static const arch_entry cpu_arch[] =
929 {
930 /* Do not replace the first two entries - i386_target_format()
931 relies on them being there in this order. */
932 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
933 CPU_GENERIC32_FLAGS, 0 },
934 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
935 CPU_GENERIC64_FLAGS, 0 },
936 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
937 CPU_NONE_FLAGS, 0 },
938 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
939 CPU_I186_FLAGS, 0 },
940 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
941 CPU_I286_FLAGS, 0 },
942 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
943 CPU_I386_FLAGS, 0 },
944 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
945 CPU_I486_FLAGS, 0 },
946 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
947 CPU_I586_FLAGS, 0 },
948 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
949 CPU_I686_FLAGS, 0 },
950 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
951 CPU_I586_FLAGS, 0 },
952 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
953 CPU_PENTIUMPRO_FLAGS, 0 },
954 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
955 CPU_P2_FLAGS, 0 },
956 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
957 CPU_P3_FLAGS, 0 },
958 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
959 CPU_P4_FLAGS, 0 },
960 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
961 CPU_CORE_FLAGS, 0 },
962 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
963 CPU_NOCONA_FLAGS, 0 },
964 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
965 CPU_CORE_FLAGS, 1 },
966 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
967 CPU_CORE_FLAGS, 0 },
968 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
969 CPU_CORE2_FLAGS, 1 },
970 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
971 CPU_CORE2_FLAGS, 0 },
972 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
973 CPU_COREI7_FLAGS, 0 },
974 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
975 CPU_L1OM_FLAGS, 0 },
976 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
977 CPU_K1OM_FLAGS, 0 },
978 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
979 CPU_IAMCU_FLAGS, 0 },
980 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
981 CPU_K6_FLAGS, 0 },
982 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
983 CPU_K6_2_FLAGS, 0 },
984 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
985 CPU_ATHLON_FLAGS, 0 },
986 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
987 CPU_K8_FLAGS, 1 },
988 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
989 CPU_K8_FLAGS, 0 },
990 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
991 CPU_K8_FLAGS, 0 },
992 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
993 CPU_AMDFAM10_FLAGS, 0 },
994 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
995 CPU_BDVER1_FLAGS, 0 },
996 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
997 CPU_BDVER2_FLAGS, 0 },
998 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
999 CPU_BDVER3_FLAGS, 0 },
1000 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1001 CPU_BDVER4_FLAGS, 0 },
1002 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1003 CPU_ZNVER1_FLAGS, 0 },
1004 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1005 CPU_ZNVER2_FLAGS, 0 },
1006 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1007 CPU_BTVER1_FLAGS, 0 },
1008 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1009 CPU_BTVER2_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1011 CPU_8087_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1013 CPU_287_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1015 CPU_387_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1017 CPU_687_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1019 CPU_CMOV_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1021 CPU_FXSR_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1023 CPU_MMX_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1025 CPU_SSE_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1027 CPU_SSE2_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1029 CPU_SSE3_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1031 CPU_SSE4A_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1033 CPU_SSSE3_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1035 CPU_SSE4_1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1037 CPU_SSE4_2_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1039 CPU_SSE4_2_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1041 CPU_AVX_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1043 CPU_AVX2_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512F_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512CD_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512ER_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512PF_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512DQ_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1055 CPU_AVX512BW_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1057 CPU_AVX512VL_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1059 CPU_VMX_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1061 CPU_VMFUNC_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1063 CPU_SMX_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1065 CPU_XSAVE_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1067 CPU_XSAVEOPT_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1069 CPU_XSAVEC_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1071 CPU_XSAVES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1073 CPU_AES_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1075 CPU_PCLMUL_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1077 CPU_PCLMUL_FLAGS, 1 },
1078 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1079 CPU_FSGSBASE_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1081 CPU_RDRND_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1083 CPU_F16C_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1085 CPU_BMI2_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1087 CPU_FMA_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1089 CPU_FMA4_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1091 CPU_XOP_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1093 CPU_LWP_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1095 CPU_MOVBE_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1097 CPU_CX16_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1099 CPU_EPT_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1101 CPU_LZCNT_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1103 CPU_POPCNT_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1105 CPU_HLE_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1107 CPU_RTM_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1109 CPU_INVPCID_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1111 CPU_CLFLUSH_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1113 CPU_NOP_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1115 CPU_SYSCALL_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1117 CPU_RDTSCP_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1119 CPU_3DNOW_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1121 CPU_3DNOWA_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1123 CPU_PADLOCK_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1125 CPU_SVME_FLAGS, 1 },
1126 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1127 CPU_SVME_FLAGS, 0 },
1128 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1129 CPU_SSE4A_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1131 CPU_ABM_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1133 CPU_BMI_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1135 CPU_TBM_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1137 CPU_ADX_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1139 CPU_RDSEED_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1141 CPU_PRFCHW_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1143 CPU_SMAP_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1145 CPU_MPX_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1147 CPU_SHA_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1149 CPU_CLFLUSHOPT_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1151 CPU_PREFETCHWT1_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1153 CPU_SE1_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1155 CPU_CLWB_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1157 CPU_AVX512IFMA_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512VBMI_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1161 CPU_AVX512_4FMAPS_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1163 CPU_AVX512_4VNNIW_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1165 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1166 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1167 CPU_AVX512_VBMI2_FLAGS, 0 },
1168 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1169 CPU_AVX512_VNNI_FLAGS, 0 },
1170 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1171 CPU_AVX512_BITALG_FLAGS, 0 },
1172 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1173 CPU_CLZERO_FLAGS, 0 },
1174 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1175 CPU_MWAITX_FLAGS, 0 },
1176 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1177 CPU_OSPKE_FLAGS, 0 },
1178 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1179 CPU_RDPID_FLAGS, 0 },
1180 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1181 CPU_PTWRITE_FLAGS, 0 },
1182 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1183 CPU_IBT_FLAGS, 0 },
1184 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1185 CPU_SHSTK_FLAGS, 0 },
1186 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1187 CPU_GFNI_FLAGS, 0 },
1188 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1189 CPU_VAES_FLAGS, 0 },
1190 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1191 CPU_VPCLMULQDQ_FLAGS, 0 },
1192 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1193 CPU_WBNOINVD_FLAGS, 0 },
1194 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1195 CPU_PCONFIG_FLAGS, 0 },
1196 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1197 CPU_WAITPKG_FLAGS, 0 },
1198 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1199 CPU_CLDEMOTE_FLAGS, 0 },
1200 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1201 CPU_MOVDIRI_FLAGS, 0 },
1202 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1203 CPU_MOVDIR64B_FLAGS, 0 },
1204 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1205 CPU_AVX512_BF16_FLAGS, 0 },
1206 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1207 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1208 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1209 CPU_ENQCMD_FLAGS, 0 },
1210 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1211 CPU_SERIALIZE_FLAGS, 0 },
1212 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1213 CPU_RDPRU_FLAGS, 0 },
1214 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1215 CPU_MCOMMIT_FLAGS, 0 },
1216 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1217 CPU_SEV_ES_FLAGS, 0 },
1218 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1219 CPU_TSXLDTRK_FLAGS, 0 },
1220 };
1221
1222 static const noarch_entry cpu_noarch[] =
1223 {
1224 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1225 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1226 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1227 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1228 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1229 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1230 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1231 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1232 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1233 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1234 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1235 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1236 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1237 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1238 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1239 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1240 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1241 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1242 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1243 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1244 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1245 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1246 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1247 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1248 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1249 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1250 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1251 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1252 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1253 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1254 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1255 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1256 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1257 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1258 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1259 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1260 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1261 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1262 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1263 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1264 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1265 };
1266
1267 #ifdef I386COFF
1268 /* Like s_lcomm_internal in gas/read.c but the alignment string
1269 is allowed to be optional. */
1270
1271 static symbolS *
1272 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1273 {
1274 addressT align = 0;
1275
1276 SKIP_WHITESPACE ();
1277
1278 if (needs_align
1279 && *input_line_pointer == ',')
1280 {
1281 align = parse_align (needs_align - 1);
1282
1283 if (align == (addressT) -1)
1284 return NULL;
1285 }
1286 else
1287 {
1288 if (size >= 8)
1289 align = 3;
1290 else if (size >= 4)
1291 align = 2;
1292 else if (size >= 2)
1293 align = 1;
1294 else
1295 align = 0;
1296 }
1297
1298 bss_alloc (symbolP, size, align);
1299 return symbolP;
1300 }
1301
1302 static void
1303 pe_lcomm (int needs_align)
1304 {
1305 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1306 }
1307 #endif
1308
1309 const pseudo_typeS md_pseudo_table[] =
1310 {
1311 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1312 {"align", s_align_bytes, 0},
1313 #else
1314 {"align", s_align_ptwo, 0},
1315 #endif
1316 {"arch", set_cpu_arch, 0},
1317 #ifndef I386COFF
1318 {"bss", s_bss, 0},
1319 #else
1320 {"lcomm", pe_lcomm, 1},
1321 #endif
1322 {"ffloat", float_cons, 'f'},
1323 {"dfloat", float_cons, 'd'},
1324 {"tfloat", float_cons, 'x'},
1325 {"value", cons, 2},
1326 {"slong", signed_cons, 4},
1327 {"noopt", s_ignore, 0},
1328 {"optim", s_ignore, 0},
1329 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1330 {"code16", set_code_flag, CODE_16BIT},
1331 {"code32", set_code_flag, CODE_32BIT},
1332 #ifdef BFD64
1333 {"code64", set_code_flag, CODE_64BIT},
1334 #endif
1335 {"intel_syntax", set_intel_syntax, 1},
1336 {"att_syntax", set_intel_syntax, 0},
1337 {"intel_mnemonic", set_intel_mnemonic, 1},
1338 {"att_mnemonic", set_intel_mnemonic, 0},
1339 {"allow_index_reg", set_allow_index_reg, 1},
1340 {"disallow_index_reg", set_allow_index_reg, 0},
1341 {"sse_check", set_check, 0},
1342 {"operand_check", set_check, 1},
1343 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1344 {"largecomm", handle_large_common, 0},
1345 #else
1346 {"file", dwarf2_directive_file, 0},
1347 {"loc", dwarf2_directive_loc, 0},
1348 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1349 #endif
1350 #ifdef TE_PE
1351 {"secrel32", pe_directive_secrel, 0},
1352 #endif
1353 {0, 0, 0}
1354 };
1355
1356 /* For interface with expression (). */
1357 extern char *input_line_pointer;
1358
1359 /* Hash table for instruction mnemonic lookup. */
1360 static struct hash_control *op_hash;
1361
1362 /* Hash table for register lookup. */
1363 static struct hash_control *reg_hash;
1364 \f
1365 /* Various efficient no-op patterns for aligning code labels.
1366 Note: Don't try to assemble the instructions in the comments.
1367 0L and 0w are not legal. */
1368 static const unsigned char f32_1[] =
1369 {0x90}; /* nop */
1370 static const unsigned char f32_2[] =
1371 {0x66,0x90}; /* xchg %ax,%ax */
1372 static const unsigned char f32_3[] =
1373 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1374 static const unsigned char f32_4[] =
1375 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1376 static const unsigned char f32_6[] =
1377 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1378 static const unsigned char f32_7[] =
1379 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1380 static const unsigned char f16_3[] =
1381 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1382 static const unsigned char f16_4[] =
1383 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1384 static const unsigned char jump_disp8[] =
1385 {0xeb}; /* jmp disp8 */
1386 static const unsigned char jump32_disp32[] =
1387 {0xe9}; /* jmp disp32 */
1388 static const unsigned char jump16_disp32[] =
1389 {0x66,0xe9}; /* jmp disp32 */
1390 /* 32-bit NOPs patterns. */
1391 static const unsigned char *const f32_patt[] = {
1392 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1393 };
1394 /* 16-bit NOPs patterns. */
1395 static const unsigned char *const f16_patt[] = {
1396 f32_1, f32_2, f16_3, f16_4
1397 };
1398 /* nopl (%[re]ax) */
1399 static const unsigned char alt_3[] =
1400 {0x0f,0x1f,0x00};
1401 /* nopl 0(%[re]ax) */
1402 static const unsigned char alt_4[] =
1403 {0x0f,0x1f,0x40,0x00};
1404 /* nopl 0(%[re]ax,%[re]ax,1) */
1405 static const unsigned char alt_5[] =
1406 {0x0f,0x1f,0x44,0x00,0x00};
1407 /* nopw 0(%[re]ax,%[re]ax,1) */
1408 static const unsigned char alt_6[] =
1409 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1410 /* nopl 0L(%[re]ax) */
1411 static const unsigned char alt_7[] =
1412 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1413 /* nopl 0L(%[re]ax,%[re]ax,1) */
1414 static const unsigned char alt_8[] =
1415 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1416 /* nopw 0L(%[re]ax,%[re]ax,1) */
1417 static const unsigned char alt_9[] =
1418 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1419 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1420 static const unsigned char alt_10[] =
1421 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1422 /* data16 nopw %cs:0L(%eax,%eax,1) */
1423 static const unsigned char alt_11[] =
1424 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1425 /* 32-bit and 64-bit NOPs patterns. */
1426 static const unsigned char *const alt_patt[] = {
1427 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1428 alt_9, alt_10, alt_11
1429 };
1430
1431 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1432 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1433
1434 static void
1435 i386_output_nops (char *where, const unsigned char *const *patt,
1436 int count, int max_single_nop_size)
1437
1438 {
1439 /* Place the longer NOP first. */
1440 int last;
1441 int offset;
1442 const unsigned char *nops;
1443
1444 if (max_single_nop_size < 1)
1445 {
1446 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1447 max_single_nop_size);
1448 return;
1449 }
1450
1451 nops = patt[max_single_nop_size - 1];
1452
1453 /* Use the smaller one if the requsted one isn't available. */
1454 if (nops == NULL)
1455 {
1456 max_single_nop_size--;
1457 nops = patt[max_single_nop_size - 1];
1458 }
1459
1460 last = count % max_single_nop_size;
1461
1462 count -= last;
1463 for (offset = 0; offset < count; offset += max_single_nop_size)
1464 memcpy (where + offset, nops, max_single_nop_size);
1465
1466 if (last)
1467 {
1468 nops = patt[last - 1];
1469 if (nops == NULL)
1470 {
1471 /* Use the smaller one plus one-byte NOP if the needed one
1472 isn't available. */
1473 last--;
1474 nops = patt[last - 1];
1475 memcpy (where + offset, nops, last);
1476 where[offset + last] = *patt[0];
1477 }
1478 else
1479 memcpy (where + offset, nops, last);
1480 }
1481 }
1482
1483 static INLINE int
1484 fits_in_imm7 (offsetT num)
1485 {
1486 return (num & 0x7f) == num;
1487 }
1488
1489 static INLINE int
1490 fits_in_imm31 (offsetT num)
1491 {
1492 return (num & 0x7fffffff) == num;
1493 }
1494
1495 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1496 single NOP instruction LIMIT. */
1497
1498 void
1499 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1500 {
1501 const unsigned char *const *patt = NULL;
1502 int max_single_nop_size;
1503 /* Maximum number of NOPs before switching to jump over NOPs. */
1504 int max_number_of_nops;
1505
1506 switch (fragP->fr_type)
1507 {
1508 case rs_fill_nop:
1509 case rs_align_code:
1510 break;
1511 case rs_machine_dependent:
1512 /* Allow NOP padding for jumps and calls. */
1513 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1514 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1515 break;
1516 /* Fall through. */
1517 default:
1518 return;
1519 }
1520
1521 /* We need to decide which NOP sequence to use for 32bit and
1522 64bit. When -mtune= is used:
1523
1524 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1525 PROCESSOR_GENERIC32, f32_patt will be used.
1526 2. For the rest, alt_patt will be used.
1527
1528 When -mtune= isn't used, alt_patt will be used if
1529 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1530 be used.
1531
1532 When -march= or .arch is used, we can't use anything beyond
1533 cpu_arch_isa_flags. */
1534
1535 if (flag_code == CODE_16BIT)
1536 {
1537 patt = f16_patt;
1538 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1539 /* Limit number of NOPs to 2 in 16-bit mode. */
1540 max_number_of_nops = 2;
1541 }
1542 else
1543 {
1544 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1545 {
1546 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1547 switch (cpu_arch_tune)
1548 {
1549 case PROCESSOR_UNKNOWN:
1550 /* We use cpu_arch_isa_flags to check if we SHOULD
1551 optimize with nops. */
1552 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1553 patt = alt_patt;
1554 else
1555 patt = f32_patt;
1556 break;
1557 case PROCESSOR_PENTIUM4:
1558 case PROCESSOR_NOCONA:
1559 case PROCESSOR_CORE:
1560 case PROCESSOR_CORE2:
1561 case PROCESSOR_COREI7:
1562 case PROCESSOR_L1OM:
1563 case PROCESSOR_K1OM:
1564 case PROCESSOR_GENERIC64:
1565 case PROCESSOR_K6:
1566 case PROCESSOR_ATHLON:
1567 case PROCESSOR_K8:
1568 case PROCESSOR_AMDFAM10:
1569 case PROCESSOR_BD:
1570 case PROCESSOR_ZNVER:
1571 case PROCESSOR_BT:
1572 patt = alt_patt;
1573 break;
1574 case PROCESSOR_I386:
1575 case PROCESSOR_I486:
1576 case PROCESSOR_PENTIUM:
1577 case PROCESSOR_PENTIUMPRO:
1578 case PROCESSOR_IAMCU:
1579 case PROCESSOR_GENERIC32:
1580 patt = f32_patt;
1581 break;
1582 }
1583 }
1584 else
1585 {
1586 switch (fragP->tc_frag_data.tune)
1587 {
1588 case PROCESSOR_UNKNOWN:
1589 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1590 PROCESSOR_UNKNOWN. */
1591 abort ();
1592 break;
1593
1594 case PROCESSOR_I386:
1595 case PROCESSOR_I486:
1596 case PROCESSOR_PENTIUM:
1597 case PROCESSOR_IAMCU:
1598 case PROCESSOR_K6:
1599 case PROCESSOR_ATHLON:
1600 case PROCESSOR_K8:
1601 case PROCESSOR_AMDFAM10:
1602 case PROCESSOR_BD:
1603 case PROCESSOR_ZNVER:
1604 case PROCESSOR_BT:
1605 case PROCESSOR_GENERIC32:
1606 /* We use cpu_arch_isa_flags to check if we CAN optimize
1607 with nops. */
1608 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1609 patt = alt_patt;
1610 else
1611 patt = f32_patt;
1612 break;
1613 case PROCESSOR_PENTIUMPRO:
1614 case PROCESSOR_PENTIUM4:
1615 case PROCESSOR_NOCONA:
1616 case PROCESSOR_CORE:
1617 case PROCESSOR_CORE2:
1618 case PROCESSOR_COREI7:
1619 case PROCESSOR_L1OM:
1620 case PROCESSOR_K1OM:
1621 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1622 patt = alt_patt;
1623 else
1624 patt = f32_patt;
1625 break;
1626 case PROCESSOR_GENERIC64:
1627 patt = alt_patt;
1628 break;
1629 }
1630 }
1631
1632 if (patt == f32_patt)
1633 {
1634 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1635 /* Limit number of NOPs to 2 for older processors. */
1636 max_number_of_nops = 2;
1637 }
1638 else
1639 {
1640 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1641 /* Limit number of NOPs to 7 for newer processors. */
1642 max_number_of_nops = 7;
1643 }
1644 }
1645
1646 if (limit == 0)
1647 limit = max_single_nop_size;
1648
1649 if (fragP->fr_type == rs_fill_nop)
1650 {
1651 /* Output NOPs for .nop directive. */
1652 if (limit > max_single_nop_size)
1653 {
1654 as_bad_where (fragP->fr_file, fragP->fr_line,
1655 _("invalid single nop size: %d "
1656 "(expect within [0, %d])"),
1657 limit, max_single_nop_size);
1658 return;
1659 }
1660 }
1661 else if (fragP->fr_type != rs_machine_dependent)
1662 fragP->fr_var = count;
1663
1664 if ((count / max_single_nop_size) > max_number_of_nops)
1665 {
1666 /* Generate jump over NOPs. */
1667 offsetT disp = count - 2;
1668 if (fits_in_imm7 (disp))
1669 {
1670 /* Use "jmp disp8" if possible. */
1671 count = disp;
1672 where[0] = jump_disp8[0];
1673 where[1] = count;
1674 where += 2;
1675 }
1676 else
1677 {
1678 unsigned int size_of_jump;
1679
1680 if (flag_code == CODE_16BIT)
1681 {
1682 where[0] = jump16_disp32[0];
1683 where[1] = jump16_disp32[1];
1684 size_of_jump = 2;
1685 }
1686 else
1687 {
1688 where[0] = jump32_disp32[0];
1689 size_of_jump = 1;
1690 }
1691
1692 count -= size_of_jump + 4;
1693 if (!fits_in_imm31 (count))
1694 {
1695 as_bad_where (fragP->fr_file, fragP->fr_line,
1696 _("jump over nop padding out of range"));
1697 return;
1698 }
1699
1700 md_number_to_chars (where + size_of_jump, count, 4);
1701 where += size_of_jump + 4;
1702 }
1703 }
1704
1705 /* Generate multiple NOPs. */
1706 i386_output_nops (where, patt, count, limit);
1707 }
1708
1709 static INLINE int
1710 operand_type_all_zero (const union i386_operand_type *x)
1711 {
1712 switch (ARRAY_SIZE(x->array))
1713 {
1714 case 3:
1715 if (x->array[2])
1716 return 0;
1717 /* Fall through. */
1718 case 2:
1719 if (x->array[1])
1720 return 0;
1721 /* Fall through. */
1722 case 1:
1723 return !x->array[0];
1724 default:
1725 abort ();
1726 }
1727 }
1728
1729 static INLINE void
1730 operand_type_set (union i386_operand_type *x, unsigned int v)
1731 {
1732 switch (ARRAY_SIZE(x->array))
1733 {
1734 case 3:
1735 x->array[2] = v;
1736 /* Fall through. */
1737 case 2:
1738 x->array[1] = v;
1739 /* Fall through. */
1740 case 1:
1741 x->array[0] = v;
1742 /* Fall through. */
1743 break;
1744 default:
1745 abort ();
1746 }
1747
1748 x->bitfield.class = ClassNone;
1749 x->bitfield.instance = InstanceNone;
1750 }
1751
1752 static INLINE int
1753 operand_type_equal (const union i386_operand_type *x,
1754 const union i386_operand_type *y)
1755 {
1756 switch (ARRAY_SIZE(x->array))
1757 {
1758 case 3:
1759 if (x->array[2] != y->array[2])
1760 return 0;
1761 /* Fall through. */
1762 case 2:
1763 if (x->array[1] != y->array[1])
1764 return 0;
1765 /* Fall through. */
1766 case 1:
1767 return x->array[0] == y->array[0];
1768 break;
1769 default:
1770 abort ();
1771 }
1772 }
1773
1774 static INLINE int
1775 cpu_flags_all_zero (const union i386_cpu_flags *x)
1776 {
1777 switch (ARRAY_SIZE(x->array))
1778 {
1779 case 4:
1780 if (x->array[3])
1781 return 0;
1782 /* Fall through. */
1783 case 3:
1784 if (x->array[2])
1785 return 0;
1786 /* Fall through. */
1787 case 2:
1788 if (x->array[1])
1789 return 0;
1790 /* Fall through. */
1791 case 1:
1792 return !x->array[0];
1793 default:
1794 abort ();
1795 }
1796 }
1797
1798 static INLINE int
1799 cpu_flags_equal (const union i386_cpu_flags *x,
1800 const union i386_cpu_flags *y)
1801 {
1802 switch (ARRAY_SIZE(x->array))
1803 {
1804 case 4:
1805 if (x->array[3] != y->array[3])
1806 return 0;
1807 /* Fall through. */
1808 case 3:
1809 if (x->array[2] != y->array[2])
1810 return 0;
1811 /* Fall through. */
1812 case 2:
1813 if (x->array[1] != y->array[1])
1814 return 0;
1815 /* Fall through. */
1816 case 1:
1817 return x->array[0] == y->array[0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 }
1823
1824 static INLINE int
1825 cpu_flags_check_cpu64 (i386_cpu_flags f)
1826 {
1827 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1828 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1829 }
1830
1831 static INLINE i386_cpu_flags
1832 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1833 {
1834 switch (ARRAY_SIZE (x.array))
1835 {
1836 case 4:
1837 x.array [3] &= y.array [3];
1838 /* Fall through. */
1839 case 3:
1840 x.array [2] &= y.array [2];
1841 /* Fall through. */
1842 case 2:
1843 x.array [1] &= y.array [1];
1844 /* Fall through. */
1845 case 1:
1846 x.array [0] &= y.array [0];
1847 break;
1848 default:
1849 abort ();
1850 }
1851 return x;
1852 }
1853
1854 static INLINE i386_cpu_flags
1855 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1856 {
1857 switch (ARRAY_SIZE (x.array))
1858 {
1859 case 4:
1860 x.array [3] |= y.array [3];
1861 /* Fall through. */
1862 case 3:
1863 x.array [2] |= y.array [2];
1864 /* Fall through. */
1865 case 2:
1866 x.array [1] |= y.array [1];
1867 /* Fall through. */
1868 case 1:
1869 x.array [0] |= y.array [0];
1870 break;
1871 default:
1872 abort ();
1873 }
1874 return x;
1875 }
1876
1877 static INLINE i386_cpu_flags
1878 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1879 {
1880 switch (ARRAY_SIZE (x.array))
1881 {
1882 case 4:
1883 x.array [3] &= ~y.array [3];
1884 /* Fall through. */
1885 case 3:
1886 x.array [2] &= ~y.array [2];
1887 /* Fall through. */
1888 case 2:
1889 x.array [1] &= ~y.array [1];
1890 /* Fall through. */
1891 case 1:
1892 x.array [0] &= ~y.array [0];
1893 break;
1894 default:
1895 abort ();
1896 }
1897 return x;
1898 }
1899
1900 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1901
1902 #define CPU_FLAGS_ARCH_MATCH 0x1
1903 #define CPU_FLAGS_64BIT_MATCH 0x2
1904
1905 #define CPU_FLAGS_PERFECT_MATCH \
1906 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1907
1908 /* Return CPU flags match bits. */
1909
1910 static int
1911 cpu_flags_match (const insn_template *t)
1912 {
1913 i386_cpu_flags x = t->cpu_flags;
1914 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1915
1916 x.bitfield.cpu64 = 0;
1917 x.bitfield.cpuno64 = 0;
1918
1919 if (cpu_flags_all_zero (&x))
1920 {
1921 /* This instruction is available on all archs. */
1922 match |= CPU_FLAGS_ARCH_MATCH;
1923 }
1924 else
1925 {
1926 /* This instruction is available only on some archs. */
1927 i386_cpu_flags cpu = cpu_arch_flags;
1928
1929 /* AVX512VL is no standalone feature - match it and then strip it. */
1930 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1931 return match;
1932 x.bitfield.cpuavx512vl = 0;
1933
1934 cpu = cpu_flags_and (x, cpu);
1935 if (!cpu_flags_all_zero (&cpu))
1936 {
1937 if (x.bitfield.cpuavx)
1938 {
1939 /* We need to check a few extra flags with AVX. */
1940 if (cpu.bitfield.cpuavx
1941 && (!t->opcode_modifier.sse2avx || sse2avx)
1942 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1943 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1944 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1945 match |= CPU_FLAGS_ARCH_MATCH;
1946 }
1947 else if (x.bitfield.cpuavx512f)
1948 {
1949 /* We need to check a few extra flags with AVX512F. */
1950 if (cpu.bitfield.cpuavx512f
1951 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1952 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1953 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1954 match |= CPU_FLAGS_ARCH_MATCH;
1955 }
1956 else
1957 match |= CPU_FLAGS_ARCH_MATCH;
1958 }
1959 }
1960 return match;
1961 }
1962
1963 static INLINE i386_operand_type
1964 operand_type_and (i386_operand_type x, i386_operand_type y)
1965 {
1966 if (x.bitfield.class != y.bitfield.class)
1967 x.bitfield.class = ClassNone;
1968 if (x.bitfield.instance != y.bitfield.instance)
1969 x.bitfield.instance = InstanceNone;
1970
1971 switch (ARRAY_SIZE (x.array))
1972 {
1973 case 3:
1974 x.array [2] &= y.array [2];
1975 /* Fall through. */
1976 case 2:
1977 x.array [1] &= y.array [1];
1978 /* Fall through. */
1979 case 1:
1980 x.array [0] &= y.array [0];
1981 break;
1982 default:
1983 abort ();
1984 }
1985 return x;
1986 }
1987
1988 static INLINE i386_operand_type
1989 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1990 {
1991 gas_assert (y.bitfield.class == ClassNone);
1992 gas_assert (y.bitfield.instance == InstanceNone);
1993
1994 switch (ARRAY_SIZE (x.array))
1995 {
1996 case 3:
1997 x.array [2] &= ~y.array [2];
1998 /* Fall through. */
1999 case 2:
2000 x.array [1] &= ~y.array [1];
2001 /* Fall through. */
2002 case 1:
2003 x.array [0] &= ~y.array [0];
2004 break;
2005 default:
2006 abort ();
2007 }
2008 return x;
2009 }
2010
2011 static INLINE i386_operand_type
2012 operand_type_or (i386_operand_type x, i386_operand_type y)
2013 {
2014 gas_assert (x.bitfield.class == ClassNone ||
2015 y.bitfield.class == ClassNone ||
2016 x.bitfield.class == y.bitfield.class);
2017 gas_assert (x.bitfield.instance == InstanceNone ||
2018 y.bitfield.instance == InstanceNone ||
2019 x.bitfield.instance == y.bitfield.instance);
2020
2021 switch (ARRAY_SIZE (x.array))
2022 {
2023 case 3:
2024 x.array [2] |= y.array [2];
2025 /* Fall through. */
2026 case 2:
2027 x.array [1] |= y.array [1];
2028 /* Fall through. */
2029 case 1:
2030 x.array [0] |= y.array [0];
2031 break;
2032 default:
2033 abort ();
2034 }
2035 return x;
2036 }
2037
2038 static INLINE i386_operand_type
2039 operand_type_xor (i386_operand_type x, i386_operand_type y)
2040 {
2041 gas_assert (y.bitfield.class == ClassNone);
2042 gas_assert (y.bitfield.instance == InstanceNone);
2043
2044 switch (ARRAY_SIZE (x.array))
2045 {
2046 case 3:
2047 x.array [2] ^= y.array [2];
2048 /* Fall through. */
2049 case 2:
2050 x.array [1] ^= y.array [1];
2051 /* Fall through. */
2052 case 1:
2053 x.array [0] ^= y.array [0];
2054 break;
2055 default:
2056 abort ();
2057 }
2058 return x;
2059 }
2060
2061 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2062 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2063 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2064 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2065 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2066 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2067 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2068 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2069 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2070 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2071 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2072 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2073 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2074 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2075 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2076 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2077 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2078
2079 enum operand_type
2080 {
2081 reg,
2082 imm,
2083 disp,
2084 anymem
2085 };
2086
2087 static INLINE int
2088 operand_type_check (i386_operand_type t, enum operand_type c)
2089 {
2090 switch (c)
2091 {
2092 case reg:
2093 return t.bitfield.class == Reg;
2094
2095 case imm:
2096 return (t.bitfield.imm8
2097 || t.bitfield.imm8s
2098 || t.bitfield.imm16
2099 || t.bitfield.imm32
2100 || t.bitfield.imm32s
2101 || t.bitfield.imm64);
2102
2103 case disp:
2104 return (t.bitfield.disp8
2105 || t.bitfield.disp16
2106 || t.bitfield.disp32
2107 || t.bitfield.disp32s
2108 || t.bitfield.disp64);
2109
2110 case anymem:
2111 return (t.bitfield.disp8
2112 || t.bitfield.disp16
2113 || t.bitfield.disp32
2114 || t.bitfield.disp32s
2115 || t.bitfield.disp64
2116 || t.bitfield.baseindex);
2117
2118 default:
2119 abort ();
2120 }
2121
2122 return 0;
2123 }
2124
2125 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2126 between operand GIVEN and opeand WANTED for instruction template T. */
2127
2128 static INLINE int
2129 match_operand_size (const insn_template *t, unsigned int wanted,
2130 unsigned int given)
2131 {
2132 return !((i.types[given].bitfield.byte
2133 && !t->operand_types[wanted].bitfield.byte)
2134 || (i.types[given].bitfield.word
2135 && !t->operand_types[wanted].bitfield.word)
2136 || (i.types[given].bitfield.dword
2137 && !t->operand_types[wanted].bitfield.dword)
2138 || (i.types[given].bitfield.qword
2139 && !t->operand_types[wanted].bitfield.qword)
2140 || (i.types[given].bitfield.tbyte
2141 && !t->operand_types[wanted].bitfield.tbyte));
2142 }
2143
2144 /* Return 1 if there is no conflict in SIMD register between operand
2145 GIVEN and opeand WANTED for instruction template T. */
2146
2147 static INLINE int
2148 match_simd_size (const insn_template *t, unsigned int wanted,
2149 unsigned int given)
2150 {
2151 return !((i.types[given].bitfield.xmmword
2152 && !t->operand_types[wanted].bitfield.xmmword)
2153 || (i.types[given].bitfield.ymmword
2154 && !t->operand_types[wanted].bitfield.ymmword)
2155 || (i.types[given].bitfield.zmmword
2156 && !t->operand_types[wanted].bitfield.zmmword));
2157 }
2158
2159 /* Return 1 if there is no conflict in any size between operand GIVEN
2160 and opeand WANTED for instruction template T. */
2161
2162 static INLINE int
2163 match_mem_size (const insn_template *t, unsigned int wanted,
2164 unsigned int given)
2165 {
2166 return (match_operand_size (t, wanted, given)
2167 && !((i.types[given].bitfield.unspecified
2168 && !i.broadcast
2169 && !t->operand_types[wanted].bitfield.unspecified)
2170 || (i.types[given].bitfield.fword
2171 && !t->operand_types[wanted].bitfield.fword)
2172 /* For scalar opcode templates to allow register and memory
2173 operands at the same time, some special casing is needed
2174 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2175 down-conversion vpmov*. */
2176 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2177 && t->operand_types[wanted].bitfield.byte
2178 + t->operand_types[wanted].bitfield.word
2179 + t->operand_types[wanted].bitfield.dword
2180 + t->operand_types[wanted].bitfield.qword
2181 > !!t->opcode_modifier.broadcast)
2182 ? (i.types[given].bitfield.xmmword
2183 || i.types[given].bitfield.ymmword
2184 || i.types[given].bitfield.zmmword)
2185 : !match_simd_size(t, wanted, given))));
2186 }
2187
2188 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2189 operands for instruction template T, and it has MATCH_REVERSE set if there
2190 is no size conflict on any operands for the template with operands reversed
2191 (and the template allows for reversing in the first place). */
2192
2193 #define MATCH_STRAIGHT 1
2194 #define MATCH_REVERSE 2
2195
2196 static INLINE unsigned int
2197 operand_size_match (const insn_template *t)
2198 {
2199 unsigned int j, match = MATCH_STRAIGHT;
2200
2201 /* Don't check non-absolute jump instructions. */
2202 if (t->opcode_modifier.jump
2203 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2204 return match;
2205
2206 /* Check memory and accumulator operand size. */
2207 for (j = 0; j < i.operands; j++)
2208 {
2209 if (i.types[j].bitfield.class != Reg
2210 && i.types[j].bitfield.class != RegSIMD
2211 && t->opcode_modifier.anysize)
2212 continue;
2213
2214 if (t->operand_types[j].bitfield.class == Reg
2215 && !match_operand_size (t, j, j))
2216 {
2217 match = 0;
2218 break;
2219 }
2220
2221 if (t->operand_types[j].bitfield.class == RegSIMD
2222 && !match_simd_size (t, j, j))
2223 {
2224 match = 0;
2225 break;
2226 }
2227
2228 if (t->operand_types[j].bitfield.instance == Accum
2229 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2230 {
2231 match = 0;
2232 break;
2233 }
2234
2235 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2236 {
2237 match = 0;
2238 break;
2239 }
2240 }
2241
2242 if (!t->opcode_modifier.d)
2243 {
2244 mismatch:
2245 if (!match)
2246 i.error = operand_size_mismatch;
2247 return match;
2248 }
2249
2250 /* Check reverse. */
2251 gas_assert (i.operands >= 2 && i.operands <= 3);
2252
2253 for (j = 0; j < i.operands; j++)
2254 {
2255 unsigned int given = i.operands - j - 1;
2256
2257 if (t->operand_types[j].bitfield.class == Reg
2258 && !match_operand_size (t, j, given))
2259 goto mismatch;
2260
2261 if (t->operand_types[j].bitfield.class == RegSIMD
2262 && !match_simd_size (t, j, given))
2263 goto mismatch;
2264
2265 if (t->operand_types[j].bitfield.instance == Accum
2266 && (!match_operand_size (t, j, given)
2267 || !match_simd_size (t, j, given)))
2268 goto mismatch;
2269
2270 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2271 goto mismatch;
2272 }
2273
2274 return match | MATCH_REVERSE;
2275 }
2276
2277 static INLINE int
2278 operand_type_match (i386_operand_type overlap,
2279 i386_operand_type given)
2280 {
2281 i386_operand_type temp = overlap;
2282
2283 temp.bitfield.unspecified = 0;
2284 temp.bitfield.byte = 0;
2285 temp.bitfield.word = 0;
2286 temp.bitfield.dword = 0;
2287 temp.bitfield.fword = 0;
2288 temp.bitfield.qword = 0;
2289 temp.bitfield.tbyte = 0;
2290 temp.bitfield.xmmword = 0;
2291 temp.bitfield.ymmword = 0;
2292 temp.bitfield.zmmword = 0;
2293 if (operand_type_all_zero (&temp))
2294 goto mismatch;
2295
2296 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2297 return 1;
2298
2299 mismatch:
2300 i.error = operand_type_mismatch;
2301 return 0;
2302 }
2303
2304 /* If given types g0 and g1 are registers they must be of the same type
2305 unless the expected operand type register overlap is null.
2306 Some Intel syntax memory operand size checking also happens here. */
2307
2308 static INLINE int
2309 operand_type_register_match (i386_operand_type g0,
2310 i386_operand_type t0,
2311 i386_operand_type g1,
2312 i386_operand_type t1)
2313 {
2314 if (g0.bitfield.class != Reg
2315 && g0.bitfield.class != RegSIMD
2316 && (!operand_type_check (g0, anymem)
2317 || g0.bitfield.unspecified
2318 || (t0.bitfield.class != Reg
2319 && t0.bitfield.class != RegSIMD)))
2320 return 1;
2321
2322 if (g1.bitfield.class != Reg
2323 && g1.bitfield.class != RegSIMD
2324 && (!operand_type_check (g1, anymem)
2325 || g1.bitfield.unspecified
2326 || (t1.bitfield.class != Reg
2327 && t1.bitfield.class != RegSIMD)))
2328 return 1;
2329
2330 if (g0.bitfield.byte == g1.bitfield.byte
2331 && g0.bitfield.word == g1.bitfield.word
2332 && g0.bitfield.dword == g1.bitfield.dword
2333 && g0.bitfield.qword == g1.bitfield.qword
2334 && g0.bitfield.xmmword == g1.bitfield.xmmword
2335 && g0.bitfield.ymmword == g1.bitfield.ymmword
2336 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2337 return 1;
2338
2339 if (!(t0.bitfield.byte & t1.bitfield.byte)
2340 && !(t0.bitfield.word & t1.bitfield.word)
2341 && !(t0.bitfield.dword & t1.bitfield.dword)
2342 && !(t0.bitfield.qword & t1.bitfield.qword)
2343 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2344 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2345 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2346 return 1;
2347
2348 i.error = register_type_mismatch;
2349
2350 return 0;
2351 }
2352
2353 static INLINE unsigned int
2354 register_number (const reg_entry *r)
2355 {
2356 unsigned int nr = r->reg_num;
2357
2358 if (r->reg_flags & RegRex)
2359 nr += 8;
2360
2361 if (r->reg_flags & RegVRex)
2362 nr += 16;
2363
2364 return nr;
2365 }
2366
2367 static INLINE unsigned int
2368 mode_from_disp_size (i386_operand_type t)
2369 {
2370 if (t.bitfield.disp8)
2371 return 1;
2372 else if (t.bitfield.disp16
2373 || t.bitfield.disp32
2374 || t.bitfield.disp32s)
2375 return 2;
2376 else
2377 return 0;
2378 }
2379
2380 static INLINE int
2381 fits_in_signed_byte (addressT num)
2382 {
2383 return num + 0x80 <= 0xff;
2384 }
2385
2386 static INLINE int
2387 fits_in_unsigned_byte (addressT num)
2388 {
2389 return num <= 0xff;
2390 }
2391
2392 static INLINE int
2393 fits_in_unsigned_word (addressT num)
2394 {
2395 return num <= 0xffff;
2396 }
2397
2398 static INLINE int
2399 fits_in_signed_word (addressT num)
2400 {
2401 return num + 0x8000 <= 0xffff;
2402 }
2403
2404 static INLINE int
2405 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2406 {
2407 #ifndef BFD64
2408 return 1;
2409 #else
2410 return num + 0x80000000 <= 0xffffffff;
2411 #endif
2412 } /* fits_in_signed_long() */
2413
2414 static INLINE int
2415 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2416 {
2417 #ifndef BFD64
2418 return 1;
2419 #else
2420 return num <= 0xffffffff;
2421 #endif
2422 } /* fits_in_unsigned_long() */
2423
2424 static INLINE int
2425 fits_in_disp8 (offsetT num)
2426 {
2427 int shift = i.memshift;
2428 unsigned int mask;
2429
2430 if (shift == -1)
2431 abort ();
2432
2433 mask = (1 << shift) - 1;
2434
2435 /* Return 0 if NUM isn't properly aligned. */
2436 if ((num & mask))
2437 return 0;
2438
2439 /* Check if NUM will fit in 8bit after shift. */
2440 return fits_in_signed_byte (num >> shift);
2441 }
2442
2443 static INLINE int
2444 fits_in_imm4 (offsetT num)
2445 {
2446 return (num & 0xf) == num;
2447 }
2448
2449 static i386_operand_type
2450 smallest_imm_type (offsetT num)
2451 {
2452 i386_operand_type t;
2453
2454 operand_type_set (&t, 0);
2455 t.bitfield.imm64 = 1;
2456
2457 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2458 {
2459 /* This code is disabled on the 486 because all the Imm1 forms
2460 in the opcode table are slower on the i486. They're the
2461 versions with the implicitly specified single-position
2462 displacement, which has another syntax if you really want to
2463 use that form. */
2464 t.bitfield.imm1 = 1;
2465 t.bitfield.imm8 = 1;
2466 t.bitfield.imm8s = 1;
2467 t.bitfield.imm16 = 1;
2468 t.bitfield.imm32 = 1;
2469 t.bitfield.imm32s = 1;
2470 }
2471 else if (fits_in_signed_byte (num))
2472 {
2473 t.bitfield.imm8 = 1;
2474 t.bitfield.imm8s = 1;
2475 t.bitfield.imm16 = 1;
2476 t.bitfield.imm32 = 1;
2477 t.bitfield.imm32s = 1;
2478 }
2479 else if (fits_in_unsigned_byte (num))
2480 {
2481 t.bitfield.imm8 = 1;
2482 t.bitfield.imm16 = 1;
2483 t.bitfield.imm32 = 1;
2484 t.bitfield.imm32s = 1;
2485 }
2486 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2487 {
2488 t.bitfield.imm16 = 1;
2489 t.bitfield.imm32 = 1;
2490 t.bitfield.imm32s = 1;
2491 }
2492 else if (fits_in_signed_long (num))
2493 {
2494 t.bitfield.imm32 = 1;
2495 t.bitfield.imm32s = 1;
2496 }
2497 else if (fits_in_unsigned_long (num))
2498 t.bitfield.imm32 = 1;
2499
2500 return t;
2501 }
2502
2503 static offsetT
2504 offset_in_range (offsetT val, int size)
2505 {
2506 addressT mask;
2507
2508 switch (size)
2509 {
2510 case 1: mask = ((addressT) 1 << 8) - 1; break;
2511 case 2: mask = ((addressT) 1 << 16) - 1; break;
2512 case 4: mask = ((addressT) 2 << 31) - 1; break;
2513 #ifdef BFD64
2514 case 8: mask = ((addressT) 2 << 63) - 1; break;
2515 #endif
2516 default: abort ();
2517 }
2518
2519 #ifdef BFD64
2520 /* If BFD64, sign extend val for 32bit address mode. */
2521 if (flag_code != CODE_64BIT
2522 || i.prefix[ADDR_PREFIX])
2523 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2524 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2525 #endif
2526
2527 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2528 {
2529 char buf1[40], buf2[40];
2530
2531 sprint_value (buf1, val);
2532 sprint_value (buf2, val & mask);
2533 as_warn (_("%s shortened to %s"), buf1, buf2);
2534 }
2535 return val & mask;
2536 }
2537
2538 enum PREFIX_GROUP
2539 {
2540 PREFIX_EXIST = 0,
2541 PREFIX_LOCK,
2542 PREFIX_REP,
2543 PREFIX_DS,
2544 PREFIX_OTHER
2545 };
2546
2547 /* Returns
2548 a. PREFIX_EXIST if attempting to add a prefix where one from the
2549 same class already exists.
2550 b. PREFIX_LOCK if lock prefix is added.
2551 c. PREFIX_REP if rep/repne prefix is added.
2552 d. PREFIX_DS if ds prefix is added.
2553 e. PREFIX_OTHER if other prefix is added.
2554 */
2555
2556 static enum PREFIX_GROUP
2557 add_prefix (unsigned int prefix)
2558 {
2559 enum PREFIX_GROUP ret = PREFIX_OTHER;
2560 unsigned int q;
2561
2562 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2563 && flag_code == CODE_64BIT)
2564 {
2565 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2566 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2567 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2568 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2569 ret = PREFIX_EXIST;
2570 q = REX_PREFIX;
2571 }
2572 else
2573 {
2574 switch (prefix)
2575 {
2576 default:
2577 abort ();
2578
2579 case DS_PREFIX_OPCODE:
2580 ret = PREFIX_DS;
2581 /* Fall through. */
2582 case CS_PREFIX_OPCODE:
2583 case ES_PREFIX_OPCODE:
2584 case FS_PREFIX_OPCODE:
2585 case GS_PREFIX_OPCODE:
2586 case SS_PREFIX_OPCODE:
2587 q = SEG_PREFIX;
2588 break;
2589
2590 case REPNE_PREFIX_OPCODE:
2591 case REPE_PREFIX_OPCODE:
2592 q = REP_PREFIX;
2593 ret = PREFIX_REP;
2594 break;
2595
2596 case LOCK_PREFIX_OPCODE:
2597 q = LOCK_PREFIX;
2598 ret = PREFIX_LOCK;
2599 break;
2600
2601 case FWAIT_OPCODE:
2602 q = WAIT_PREFIX;
2603 break;
2604
2605 case ADDR_PREFIX_OPCODE:
2606 q = ADDR_PREFIX;
2607 break;
2608
2609 case DATA_PREFIX_OPCODE:
2610 q = DATA_PREFIX;
2611 break;
2612 }
2613 if (i.prefix[q] != 0)
2614 ret = PREFIX_EXIST;
2615 }
2616
2617 if (ret)
2618 {
2619 if (!i.prefix[q])
2620 ++i.prefixes;
2621 i.prefix[q] |= prefix;
2622 }
2623 else
2624 as_bad (_("same type of prefix used twice"));
2625
2626 return ret;
2627 }
2628
2629 static void
2630 update_code_flag (int value, int check)
2631 {
2632 PRINTF_LIKE ((*as_error));
2633
2634 flag_code = (enum flag_code) value;
2635 if (flag_code == CODE_64BIT)
2636 {
2637 cpu_arch_flags.bitfield.cpu64 = 1;
2638 cpu_arch_flags.bitfield.cpuno64 = 0;
2639 }
2640 else
2641 {
2642 cpu_arch_flags.bitfield.cpu64 = 0;
2643 cpu_arch_flags.bitfield.cpuno64 = 1;
2644 }
2645 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2646 {
2647 if (check)
2648 as_error = as_fatal;
2649 else
2650 as_error = as_bad;
2651 (*as_error) (_("64bit mode not supported on `%s'."),
2652 cpu_arch_name ? cpu_arch_name : default_arch);
2653 }
2654 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2655 {
2656 if (check)
2657 as_error = as_fatal;
2658 else
2659 as_error = as_bad;
2660 (*as_error) (_("32bit mode not supported on `%s'."),
2661 cpu_arch_name ? cpu_arch_name : default_arch);
2662 }
2663 stackop_size = '\0';
2664 }
2665
2666 static void
2667 set_code_flag (int value)
2668 {
2669 update_code_flag (value, 0);
2670 }
2671
2672 static void
2673 set_16bit_gcc_code_flag (int new_code_flag)
2674 {
2675 flag_code = (enum flag_code) new_code_flag;
2676 if (flag_code != CODE_16BIT)
2677 abort ();
2678 cpu_arch_flags.bitfield.cpu64 = 0;
2679 cpu_arch_flags.bitfield.cpuno64 = 1;
2680 stackop_size = LONG_MNEM_SUFFIX;
2681 }
2682
2683 static void
2684 set_intel_syntax (int syntax_flag)
2685 {
2686 /* Find out if register prefixing is specified. */
2687 int ask_naked_reg = 0;
2688
2689 SKIP_WHITESPACE ();
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
2692 char *string;
2693 int e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "prefix") == 0)
2696 ask_naked_reg = 1;
2697 else if (strcmp (string, "noprefix") == 0)
2698 ask_naked_reg = -1;
2699 else
2700 as_bad (_("bad argument to syntax directive."));
2701 (void) restore_line_pointer (e);
2702 }
2703 demand_empty_rest_of_line ();
2704
2705 intel_syntax = syntax_flag;
2706
2707 if (ask_naked_reg == 0)
2708 allow_naked_reg = (intel_syntax
2709 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2710 else
2711 allow_naked_reg = (ask_naked_reg < 0);
2712
2713 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2714
2715 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2716 identifier_chars['$'] = intel_syntax ? '$' : 0;
2717 register_prefix = allow_naked_reg ? "" : "%";
2718 }
2719
2720 static void
2721 set_intel_mnemonic (int mnemonic_flag)
2722 {
2723 intel_mnemonic = mnemonic_flag;
2724 }
2725
2726 static void
2727 set_allow_index_reg (int flag)
2728 {
2729 allow_index_reg = flag;
2730 }
2731
2732 static void
2733 set_check (int what)
2734 {
2735 enum check_kind *kind;
2736 const char *str;
2737
2738 if (what)
2739 {
2740 kind = &operand_check;
2741 str = "operand";
2742 }
2743 else
2744 {
2745 kind = &sse_check;
2746 str = "sse";
2747 }
2748
2749 SKIP_WHITESPACE ();
2750
2751 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2752 {
2753 char *string;
2754 int e = get_symbol_name (&string);
2755
2756 if (strcmp (string, "none") == 0)
2757 *kind = check_none;
2758 else if (strcmp (string, "warning") == 0)
2759 *kind = check_warning;
2760 else if (strcmp (string, "error") == 0)
2761 *kind = check_error;
2762 else
2763 as_bad (_("bad argument to %s_check directive."), str);
2764 (void) restore_line_pointer (e);
2765 }
2766 else
2767 as_bad (_("missing argument for %s_check directive"), str);
2768
2769 demand_empty_rest_of_line ();
2770 }
2771
2772 static void
2773 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2774 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2775 {
2776 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2777 static const char *arch;
2778
2779 /* Intel LIOM is only supported on ELF. */
2780 if (!IS_ELF)
2781 return;
2782
2783 if (!arch)
2784 {
2785 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2786 use default_arch. */
2787 arch = cpu_arch_name;
2788 if (!arch)
2789 arch = default_arch;
2790 }
2791
2792 /* If we are targeting Intel MCU, we must enable it. */
2793 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2794 || new_flag.bitfield.cpuiamcu)
2795 return;
2796
2797 /* If we are targeting Intel L1OM, we must enable it. */
2798 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2799 || new_flag.bitfield.cpul1om)
2800 return;
2801
2802 /* If we are targeting Intel K1OM, we must enable it. */
2803 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2804 || new_flag.bitfield.cpuk1om)
2805 return;
2806
2807 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2808 #endif
2809 }
2810
2811 static void
2812 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2813 {
2814 SKIP_WHITESPACE ();
2815
2816 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2817 {
2818 char *string;
2819 int e = get_symbol_name (&string);
2820 unsigned int j;
2821 i386_cpu_flags flags;
2822
2823 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2824 {
2825 if (strcmp (string, cpu_arch[j].name) == 0)
2826 {
2827 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2828
2829 if (*string != '.')
2830 {
2831 cpu_arch_name = cpu_arch[j].name;
2832 cpu_sub_arch_name = NULL;
2833 cpu_arch_flags = cpu_arch[j].flags;
2834 if (flag_code == CODE_64BIT)
2835 {
2836 cpu_arch_flags.bitfield.cpu64 = 1;
2837 cpu_arch_flags.bitfield.cpuno64 = 0;
2838 }
2839 else
2840 {
2841 cpu_arch_flags.bitfield.cpu64 = 0;
2842 cpu_arch_flags.bitfield.cpuno64 = 1;
2843 }
2844 cpu_arch_isa = cpu_arch[j].type;
2845 cpu_arch_isa_flags = cpu_arch[j].flags;
2846 if (!cpu_arch_tune_set)
2847 {
2848 cpu_arch_tune = cpu_arch_isa;
2849 cpu_arch_tune_flags = cpu_arch_isa_flags;
2850 }
2851 break;
2852 }
2853
2854 flags = cpu_flags_or (cpu_arch_flags,
2855 cpu_arch[j].flags);
2856
2857 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2858 {
2859 if (cpu_sub_arch_name)
2860 {
2861 char *name = cpu_sub_arch_name;
2862 cpu_sub_arch_name = concat (name,
2863 cpu_arch[j].name,
2864 (const char *) NULL);
2865 free (name);
2866 }
2867 else
2868 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2869 cpu_arch_flags = flags;
2870 cpu_arch_isa_flags = flags;
2871 }
2872 else
2873 cpu_arch_isa_flags
2874 = cpu_flags_or (cpu_arch_isa_flags,
2875 cpu_arch[j].flags);
2876 (void) restore_line_pointer (e);
2877 demand_empty_rest_of_line ();
2878 return;
2879 }
2880 }
2881
2882 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2883 {
2884 /* Disable an ISA extension. */
2885 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2886 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2887 {
2888 flags = cpu_flags_and_not (cpu_arch_flags,
2889 cpu_noarch[j].flags);
2890 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2891 {
2892 if (cpu_sub_arch_name)
2893 {
2894 char *name = cpu_sub_arch_name;
2895 cpu_sub_arch_name = concat (name, string,
2896 (const char *) NULL);
2897 free (name);
2898 }
2899 else
2900 cpu_sub_arch_name = xstrdup (string);
2901 cpu_arch_flags = flags;
2902 cpu_arch_isa_flags = flags;
2903 }
2904 (void) restore_line_pointer (e);
2905 demand_empty_rest_of_line ();
2906 return;
2907 }
2908
2909 j = ARRAY_SIZE (cpu_arch);
2910 }
2911
2912 if (j >= ARRAY_SIZE (cpu_arch))
2913 as_bad (_("no such architecture: `%s'"), string);
2914
2915 *input_line_pointer = e;
2916 }
2917 else
2918 as_bad (_("missing cpu architecture"));
2919
2920 no_cond_jump_promotion = 0;
2921 if (*input_line_pointer == ','
2922 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2923 {
2924 char *string;
2925 char e;
2926
2927 ++input_line_pointer;
2928 e = get_symbol_name (&string);
2929
2930 if (strcmp (string, "nojumps") == 0)
2931 no_cond_jump_promotion = 1;
2932 else if (strcmp (string, "jumps") == 0)
2933 ;
2934 else
2935 as_bad (_("no such architecture modifier: `%s'"), string);
2936
2937 (void) restore_line_pointer (e);
2938 }
2939
2940 demand_empty_rest_of_line ();
2941 }
2942
2943 enum bfd_architecture
2944 i386_arch (void)
2945 {
2946 if (cpu_arch_isa == PROCESSOR_L1OM)
2947 {
2948 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2949 || flag_code != CODE_64BIT)
2950 as_fatal (_("Intel L1OM is 64bit ELF only"));
2951 return bfd_arch_l1om;
2952 }
2953 else if (cpu_arch_isa == PROCESSOR_K1OM)
2954 {
2955 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2956 || flag_code != CODE_64BIT)
2957 as_fatal (_("Intel K1OM is 64bit ELF only"));
2958 return bfd_arch_k1om;
2959 }
2960 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2961 {
2962 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2963 || flag_code == CODE_64BIT)
2964 as_fatal (_("Intel MCU is 32bit ELF only"));
2965 return bfd_arch_iamcu;
2966 }
2967 else
2968 return bfd_arch_i386;
2969 }
2970
2971 unsigned long
2972 i386_mach (void)
2973 {
2974 if (!strncmp (default_arch, "x86_64", 6))
2975 {
2976 if (cpu_arch_isa == PROCESSOR_L1OM)
2977 {
2978 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2979 || default_arch[6] != '\0')
2980 as_fatal (_("Intel L1OM is 64bit ELF only"));
2981 return bfd_mach_l1om;
2982 }
2983 else if (cpu_arch_isa == PROCESSOR_K1OM)
2984 {
2985 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2986 || default_arch[6] != '\0')
2987 as_fatal (_("Intel K1OM is 64bit ELF only"));
2988 return bfd_mach_k1om;
2989 }
2990 else if (default_arch[6] == '\0')
2991 return bfd_mach_x86_64;
2992 else
2993 return bfd_mach_x64_32;
2994 }
2995 else if (!strcmp (default_arch, "i386")
2996 || !strcmp (default_arch, "iamcu"))
2997 {
2998 if (cpu_arch_isa == PROCESSOR_IAMCU)
2999 {
3000 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3001 as_fatal (_("Intel MCU is 32bit ELF only"));
3002 return bfd_mach_i386_iamcu;
3003 }
3004 else
3005 return bfd_mach_i386_i386;
3006 }
3007 else
3008 as_fatal (_("unknown architecture"));
3009 }
3010 \f
3011 void
3012 md_begin (void)
3013 {
3014 const char *hash_err;
3015
3016 /* Support pseudo prefixes like {disp32}. */
3017 lex_type ['{'] = LEX_BEGIN_NAME;
3018
3019 /* Initialize op_hash hash table. */
3020 op_hash = hash_new ();
3021
3022 {
3023 const insn_template *optab;
3024 templates *core_optab;
3025
3026 /* Setup for loop. */
3027 optab = i386_optab;
3028 core_optab = XNEW (templates);
3029 core_optab->start = optab;
3030
3031 while (1)
3032 {
3033 ++optab;
3034 if (optab->name == NULL
3035 || strcmp (optab->name, (optab - 1)->name) != 0)
3036 {
3037 /* different name --> ship out current template list;
3038 add to hash table; & begin anew. */
3039 core_optab->end = optab;
3040 hash_err = hash_insert (op_hash,
3041 (optab - 1)->name,
3042 (void *) core_optab);
3043 if (hash_err)
3044 {
3045 as_fatal (_("can't hash %s: %s"),
3046 (optab - 1)->name,
3047 hash_err);
3048 }
3049 if (optab->name == NULL)
3050 break;
3051 core_optab = XNEW (templates);
3052 core_optab->start = optab;
3053 }
3054 }
3055 }
3056
3057 /* Initialize reg_hash hash table. */
3058 reg_hash = hash_new ();
3059 {
3060 const reg_entry *regtab;
3061 unsigned int regtab_size = i386_regtab_size;
3062
3063 for (regtab = i386_regtab; regtab_size--; regtab++)
3064 {
3065 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3066 if (hash_err)
3067 as_fatal (_("can't hash %s: %s"),
3068 regtab->reg_name,
3069 hash_err);
3070 }
3071 }
3072
3073 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3074 {
3075 int c;
3076 char *p;
3077
3078 for (c = 0; c < 256; c++)
3079 {
3080 if (ISDIGIT (c))
3081 {
3082 digit_chars[c] = c;
3083 mnemonic_chars[c] = c;
3084 register_chars[c] = c;
3085 operand_chars[c] = c;
3086 }
3087 else if (ISLOWER (c))
3088 {
3089 mnemonic_chars[c] = c;
3090 register_chars[c] = c;
3091 operand_chars[c] = c;
3092 }
3093 else if (ISUPPER (c))
3094 {
3095 mnemonic_chars[c] = TOLOWER (c);
3096 register_chars[c] = mnemonic_chars[c];
3097 operand_chars[c] = c;
3098 }
3099 else if (c == '{' || c == '}')
3100 {
3101 mnemonic_chars[c] = c;
3102 operand_chars[c] = c;
3103 }
3104
3105 if (ISALPHA (c) || ISDIGIT (c))
3106 identifier_chars[c] = c;
3107 else if (c >= 128)
3108 {
3109 identifier_chars[c] = c;
3110 operand_chars[c] = c;
3111 }
3112 }
3113
3114 #ifdef LEX_AT
3115 identifier_chars['@'] = '@';
3116 #endif
3117 #ifdef LEX_QM
3118 identifier_chars['?'] = '?';
3119 operand_chars['?'] = '?';
3120 #endif
3121 digit_chars['-'] = '-';
3122 mnemonic_chars['_'] = '_';
3123 mnemonic_chars['-'] = '-';
3124 mnemonic_chars['.'] = '.';
3125 identifier_chars['_'] = '_';
3126 identifier_chars['.'] = '.';
3127
3128 for (p = operand_special_chars; *p != '\0'; p++)
3129 operand_chars[(unsigned char) *p] = *p;
3130 }
3131
3132 if (flag_code == CODE_64BIT)
3133 {
3134 #if defined (OBJ_COFF) && defined (TE_PE)
3135 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3136 ? 32 : 16);
3137 #else
3138 x86_dwarf2_return_column = 16;
3139 #endif
3140 x86_cie_data_alignment = -8;
3141 }
3142 else
3143 {
3144 x86_dwarf2_return_column = 8;
3145 x86_cie_data_alignment = -4;
3146 }
3147
3148 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3149 can be turned into BRANCH_PREFIX frag. */
3150 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3151 abort ();
3152 }
3153
3154 void
3155 i386_print_statistics (FILE *file)
3156 {
3157 hash_print_statistics (file, "i386 opcode", op_hash);
3158 hash_print_statistics (file, "i386 register", reg_hash);
3159 }
3160 \f
3161 #ifdef DEBUG386
3162
3163 /* Debugging routines for md_assemble. */
3164 static void pte (insn_template *);
3165 static void pt (i386_operand_type);
3166 static void pe (expressionS *);
3167 static void ps (symbolS *);
3168
3169 static void
3170 pi (const char *line, i386_insn *x)
3171 {
3172 unsigned int j;
3173
3174 fprintf (stdout, "%s: template ", line);
3175 pte (&x->tm);
3176 fprintf (stdout, " address: base %s index %s scale %x\n",
3177 x->base_reg ? x->base_reg->reg_name : "none",
3178 x->index_reg ? x->index_reg->reg_name : "none",
3179 x->log2_scale_factor);
3180 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3181 x->rm.mode, x->rm.reg, x->rm.regmem);
3182 fprintf (stdout, " sib: base %x index %x scale %x\n",
3183 x->sib.base, x->sib.index, x->sib.scale);
3184 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3185 (x->rex & REX_W) != 0,
3186 (x->rex & REX_R) != 0,
3187 (x->rex & REX_X) != 0,
3188 (x->rex & REX_B) != 0);
3189 for (j = 0; j < x->operands; j++)
3190 {
3191 fprintf (stdout, " #%d: ", j + 1);
3192 pt (x->types[j]);
3193 fprintf (stdout, "\n");
3194 if (x->types[j].bitfield.class == Reg
3195 || x->types[j].bitfield.class == RegMMX
3196 || x->types[j].bitfield.class == RegSIMD
3197 || x->types[j].bitfield.class == SReg
3198 || x->types[j].bitfield.class == RegCR
3199 || x->types[j].bitfield.class == RegDR
3200 || x->types[j].bitfield.class == RegTR)
3201 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3202 if (operand_type_check (x->types[j], imm))
3203 pe (x->op[j].imms);
3204 if (operand_type_check (x->types[j], disp))
3205 pe (x->op[j].disps);
3206 }
3207 }
3208
3209 static void
3210 pte (insn_template *t)
3211 {
3212 unsigned int j;
3213 fprintf (stdout, " %d operands ", t->operands);
3214 fprintf (stdout, "opcode %x ", t->base_opcode);
3215 if (t->extension_opcode != None)
3216 fprintf (stdout, "ext %x ", t->extension_opcode);
3217 if (t->opcode_modifier.d)
3218 fprintf (stdout, "D");
3219 if (t->opcode_modifier.w)
3220 fprintf (stdout, "W");
3221 fprintf (stdout, "\n");
3222 for (j = 0; j < t->operands; j++)
3223 {
3224 fprintf (stdout, " #%d type ", j + 1);
3225 pt (t->operand_types[j]);
3226 fprintf (stdout, "\n");
3227 }
3228 }
3229
3230 static void
3231 pe (expressionS *e)
3232 {
3233 fprintf (stdout, " operation %d\n", e->X_op);
3234 fprintf (stdout, " add_number %ld (%lx)\n",
3235 (long) e->X_add_number, (long) e->X_add_number);
3236 if (e->X_add_symbol)
3237 {
3238 fprintf (stdout, " add_symbol ");
3239 ps (e->X_add_symbol);
3240 fprintf (stdout, "\n");
3241 }
3242 if (e->X_op_symbol)
3243 {
3244 fprintf (stdout, " op_symbol ");
3245 ps (e->X_op_symbol);
3246 fprintf (stdout, "\n");
3247 }
3248 }
3249
3250 static void
3251 ps (symbolS *s)
3252 {
3253 fprintf (stdout, "%s type %s%s",
3254 S_GET_NAME (s),
3255 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3256 segment_name (S_GET_SEGMENT (s)));
3257 }
3258
3259 static struct type_name
3260 {
3261 i386_operand_type mask;
3262 const char *name;
3263 }
3264 const type_names[] =
3265 {
3266 { OPERAND_TYPE_REG8, "r8" },
3267 { OPERAND_TYPE_REG16, "r16" },
3268 { OPERAND_TYPE_REG32, "r32" },
3269 { OPERAND_TYPE_REG64, "r64" },
3270 { OPERAND_TYPE_ACC8, "acc8" },
3271 { OPERAND_TYPE_ACC16, "acc16" },
3272 { OPERAND_TYPE_ACC32, "acc32" },
3273 { OPERAND_TYPE_ACC64, "acc64" },
3274 { OPERAND_TYPE_IMM8, "i8" },
3275 { OPERAND_TYPE_IMM8, "i8s" },
3276 { OPERAND_TYPE_IMM16, "i16" },
3277 { OPERAND_TYPE_IMM32, "i32" },
3278 { OPERAND_TYPE_IMM32S, "i32s" },
3279 { OPERAND_TYPE_IMM64, "i64" },
3280 { OPERAND_TYPE_IMM1, "i1" },
3281 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3282 { OPERAND_TYPE_DISP8, "d8" },
3283 { OPERAND_TYPE_DISP16, "d16" },
3284 { OPERAND_TYPE_DISP32, "d32" },
3285 { OPERAND_TYPE_DISP32S, "d32s" },
3286 { OPERAND_TYPE_DISP64, "d64" },
3287 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3288 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3289 { OPERAND_TYPE_CONTROL, "control reg" },
3290 { OPERAND_TYPE_TEST, "test reg" },
3291 { OPERAND_TYPE_DEBUG, "debug reg" },
3292 { OPERAND_TYPE_FLOATREG, "FReg" },
3293 { OPERAND_TYPE_FLOATACC, "FAcc" },
3294 { OPERAND_TYPE_SREG, "SReg" },
3295 { OPERAND_TYPE_REGMMX, "rMMX" },
3296 { OPERAND_TYPE_REGXMM, "rXMM" },
3297 { OPERAND_TYPE_REGYMM, "rYMM" },
3298 { OPERAND_TYPE_REGZMM, "rZMM" },
3299 { OPERAND_TYPE_REGMASK, "Mask reg" },
3300 };
3301
3302 static void
3303 pt (i386_operand_type t)
3304 {
3305 unsigned int j;
3306 i386_operand_type a;
3307
3308 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3309 {
3310 a = operand_type_and (t, type_names[j].mask);
3311 if (operand_type_equal (&a, &type_names[j].mask))
3312 fprintf (stdout, "%s, ", type_names[j].name);
3313 }
3314 fflush (stdout);
3315 }
3316
3317 #endif /* DEBUG386 */
3318 \f
3319 static bfd_reloc_code_real_type
3320 reloc (unsigned int size,
3321 int pcrel,
3322 int sign,
3323 bfd_reloc_code_real_type other)
3324 {
3325 if (other != NO_RELOC)
3326 {
3327 reloc_howto_type *rel;
3328
3329 if (size == 8)
3330 switch (other)
3331 {
3332 case BFD_RELOC_X86_64_GOT32:
3333 return BFD_RELOC_X86_64_GOT64;
3334 break;
3335 case BFD_RELOC_X86_64_GOTPLT64:
3336 return BFD_RELOC_X86_64_GOTPLT64;
3337 break;
3338 case BFD_RELOC_X86_64_PLTOFF64:
3339 return BFD_RELOC_X86_64_PLTOFF64;
3340 break;
3341 case BFD_RELOC_X86_64_GOTPC32:
3342 other = BFD_RELOC_X86_64_GOTPC64;
3343 break;
3344 case BFD_RELOC_X86_64_GOTPCREL:
3345 other = BFD_RELOC_X86_64_GOTPCREL64;
3346 break;
3347 case BFD_RELOC_X86_64_TPOFF32:
3348 other = BFD_RELOC_X86_64_TPOFF64;
3349 break;
3350 case BFD_RELOC_X86_64_DTPOFF32:
3351 other = BFD_RELOC_X86_64_DTPOFF64;
3352 break;
3353 default:
3354 break;
3355 }
3356
3357 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3358 if (other == BFD_RELOC_SIZE32)
3359 {
3360 if (size == 8)
3361 other = BFD_RELOC_SIZE64;
3362 if (pcrel)
3363 {
3364 as_bad (_("there are no pc-relative size relocations"));
3365 return NO_RELOC;
3366 }
3367 }
3368 #endif
3369
3370 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3371 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3372 sign = -1;
3373
3374 rel = bfd_reloc_type_lookup (stdoutput, other);
3375 if (!rel)
3376 as_bad (_("unknown relocation (%u)"), other);
3377 else if (size != bfd_get_reloc_size (rel))
3378 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3379 bfd_get_reloc_size (rel),
3380 size);
3381 else if (pcrel && !rel->pc_relative)
3382 as_bad (_("non-pc-relative relocation for pc-relative field"));
3383 else if ((rel->complain_on_overflow == complain_overflow_signed
3384 && !sign)
3385 || (rel->complain_on_overflow == complain_overflow_unsigned
3386 && sign > 0))
3387 as_bad (_("relocated field and relocation type differ in signedness"));
3388 else
3389 return other;
3390 return NO_RELOC;
3391 }
3392
3393 if (pcrel)
3394 {
3395 if (!sign)
3396 as_bad (_("there are no unsigned pc-relative relocations"));
3397 switch (size)
3398 {
3399 case 1: return BFD_RELOC_8_PCREL;
3400 case 2: return BFD_RELOC_16_PCREL;
3401 case 4: return BFD_RELOC_32_PCREL;
3402 case 8: return BFD_RELOC_64_PCREL;
3403 }
3404 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3405 }
3406 else
3407 {
3408 if (sign > 0)
3409 switch (size)
3410 {
3411 case 4: return BFD_RELOC_X86_64_32S;
3412 }
3413 else
3414 switch (size)
3415 {
3416 case 1: return BFD_RELOC_8;
3417 case 2: return BFD_RELOC_16;
3418 case 4: return BFD_RELOC_32;
3419 case 8: return BFD_RELOC_64;
3420 }
3421 as_bad (_("cannot do %s %u byte relocation"),
3422 sign > 0 ? "signed" : "unsigned", size);
3423 }
3424
3425 return NO_RELOC;
3426 }
3427
3428 /* Here we decide which fixups can be adjusted to make them relative to
3429 the beginning of the section instead of the symbol. Basically we need
3430 to make sure that the dynamic relocations are done correctly, so in
3431 some cases we force the original symbol to be used. */
3432
3433 int
3434 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3435 {
3436 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3437 if (!IS_ELF)
3438 return 1;
3439
3440 /* Don't adjust pc-relative references to merge sections in 64-bit
3441 mode. */
3442 if (use_rela_relocations
3443 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3444 && fixP->fx_pcrel)
3445 return 0;
3446
3447 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3448 and changed later by validate_fix. */
3449 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3450 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3451 return 0;
3452
3453 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3454 for size relocations. */
3455 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3456 || fixP->fx_r_type == BFD_RELOC_SIZE64
3457 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3458 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3459 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3460 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3461 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3462 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3463 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3464 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3465 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3466 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3467 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3468 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3469 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3470 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3471 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3472 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3473 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3474 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3475 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3476 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3477 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3478 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3479 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3480 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3481 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3482 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3483 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3484 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3485 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3486 return 0;
3487 #endif
3488 return 1;
3489 }
3490
3491 static int
3492 intel_float_operand (const char *mnemonic)
3493 {
3494 /* Note that the value returned is meaningful only for opcodes with (memory)
3495 operands, hence the code here is free to improperly handle opcodes that
3496 have no operands (for better performance and smaller code). */
3497
3498 if (mnemonic[0] != 'f')
3499 return 0; /* non-math */
3500
3501 switch (mnemonic[1])
3502 {
3503 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3504 the fs segment override prefix not currently handled because no
3505 call path can make opcodes without operands get here */
3506 case 'i':
3507 return 2 /* integer op */;
3508 case 'l':
3509 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3510 return 3; /* fldcw/fldenv */
3511 break;
3512 case 'n':
3513 if (mnemonic[2] != 'o' /* fnop */)
3514 return 3; /* non-waiting control op */
3515 break;
3516 case 'r':
3517 if (mnemonic[2] == 's')
3518 return 3; /* frstor/frstpm */
3519 break;
3520 case 's':
3521 if (mnemonic[2] == 'a')
3522 return 3; /* fsave */
3523 if (mnemonic[2] == 't')
3524 {
3525 switch (mnemonic[3])
3526 {
3527 case 'c': /* fstcw */
3528 case 'd': /* fstdw */
3529 case 'e': /* fstenv */
3530 case 's': /* fsts[gw] */
3531 return 3;
3532 }
3533 }
3534 break;
3535 case 'x':
3536 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3537 return 0; /* fxsave/fxrstor are not really math ops */
3538 break;
3539 }
3540
3541 return 1;
3542 }
3543
3544 /* Build the VEX prefix. */
3545
3546 static void
3547 build_vex_prefix (const insn_template *t)
3548 {
3549 unsigned int register_specifier;
3550 unsigned int implied_prefix;
3551 unsigned int vector_length;
3552 unsigned int w;
3553
3554 /* Check register specifier. */
3555 if (i.vex.register_specifier)
3556 {
3557 register_specifier =
3558 ~register_number (i.vex.register_specifier) & 0xf;
3559 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3560 }
3561 else
3562 register_specifier = 0xf;
3563
3564 /* Use 2-byte VEX prefix by swapping destination and source operand
3565 if there are more than 1 register operand. */
3566 if (i.reg_operands > 1
3567 && i.vec_encoding != vex_encoding_vex3
3568 && i.dir_encoding == dir_encoding_default
3569 && i.operands == i.reg_operands
3570 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3571 && i.tm.opcode_modifier.vexopcode == VEX0F
3572 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3573 && i.rex == REX_B)
3574 {
3575 unsigned int xchg = i.operands - 1;
3576 union i386_op temp_op;
3577 i386_operand_type temp_type;
3578
3579 temp_type = i.types[xchg];
3580 i.types[xchg] = i.types[0];
3581 i.types[0] = temp_type;
3582 temp_op = i.op[xchg];
3583 i.op[xchg] = i.op[0];
3584 i.op[0] = temp_op;
3585
3586 gas_assert (i.rm.mode == 3);
3587
3588 i.rex = REX_R;
3589 xchg = i.rm.regmem;
3590 i.rm.regmem = i.rm.reg;
3591 i.rm.reg = xchg;
3592
3593 if (i.tm.opcode_modifier.d)
3594 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3595 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3596 else /* Use the next insn. */
3597 i.tm = t[1];
3598 }
3599
3600 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3601 are no memory operands and at least 3 register ones. */
3602 if (i.reg_operands >= 3
3603 && i.vec_encoding != vex_encoding_vex3
3604 && i.reg_operands == i.operands - i.imm_operands
3605 && i.tm.opcode_modifier.vex
3606 && i.tm.opcode_modifier.commutative
3607 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3608 && i.rex == REX_B
3609 && i.vex.register_specifier
3610 && !(i.vex.register_specifier->reg_flags & RegRex))
3611 {
3612 unsigned int xchg = i.operands - i.reg_operands;
3613 union i386_op temp_op;
3614 i386_operand_type temp_type;
3615
3616 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3617 gas_assert (!i.tm.opcode_modifier.sae);
3618 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3619 &i.types[i.operands - 3]));
3620 gas_assert (i.rm.mode == 3);
3621
3622 temp_type = i.types[xchg];
3623 i.types[xchg] = i.types[xchg + 1];
3624 i.types[xchg + 1] = temp_type;
3625 temp_op = i.op[xchg];
3626 i.op[xchg] = i.op[xchg + 1];
3627 i.op[xchg + 1] = temp_op;
3628
3629 i.rex = 0;
3630 xchg = i.rm.regmem | 8;
3631 i.rm.regmem = ~register_specifier & 0xf;
3632 gas_assert (!(i.rm.regmem & 8));
3633 i.vex.register_specifier += xchg - i.rm.regmem;
3634 register_specifier = ~xchg & 0xf;
3635 }
3636
3637 if (i.tm.opcode_modifier.vex == VEXScalar)
3638 vector_length = avxscalar;
3639 else if (i.tm.opcode_modifier.vex == VEX256)
3640 vector_length = 1;
3641 else
3642 {
3643 unsigned int op;
3644
3645 /* Determine vector length from the last multi-length vector
3646 operand. */
3647 vector_length = 0;
3648 for (op = t->operands; op--;)
3649 if (t->operand_types[op].bitfield.xmmword
3650 && t->operand_types[op].bitfield.ymmword
3651 && i.types[op].bitfield.ymmword)
3652 {
3653 vector_length = 1;
3654 break;
3655 }
3656 }
3657
3658 switch ((i.tm.base_opcode >> 8) & 0xff)
3659 {
3660 case 0:
3661 implied_prefix = 0;
3662 break;
3663 case DATA_PREFIX_OPCODE:
3664 implied_prefix = 1;
3665 break;
3666 case REPE_PREFIX_OPCODE:
3667 implied_prefix = 2;
3668 break;
3669 case REPNE_PREFIX_OPCODE:
3670 implied_prefix = 3;
3671 break;
3672 default:
3673 abort ();
3674 }
3675
3676 /* Check the REX.W bit and VEXW. */
3677 if (i.tm.opcode_modifier.vexw == VEXWIG)
3678 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3679 else if (i.tm.opcode_modifier.vexw)
3680 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3681 else
3682 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3683
3684 /* Use 2-byte VEX prefix if possible. */
3685 if (w == 0
3686 && i.vec_encoding != vex_encoding_vex3
3687 && i.tm.opcode_modifier.vexopcode == VEX0F
3688 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3689 {
3690 /* 2-byte VEX prefix. */
3691 unsigned int r;
3692
3693 i.vex.length = 2;
3694 i.vex.bytes[0] = 0xc5;
3695
3696 /* Check the REX.R bit. */
3697 r = (i.rex & REX_R) ? 0 : 1;
3698 i.vex.bytes[1] = (r << 7
3699 | register_specifier << 3
3700 | vector_length << 2
3701 | implied_prefix);
3702 }
3703 else
3704 {
3705 /* 3-byte VEX prefix. */
3706 unsigned int m;
3707
3708 i.vex.length = 3;
3709
3710 switch (i.tm.opcode_modifier.vexopcode)
3711 {
3712 case VEX0F:
3713 m = 0x1;
3714 i.vex.bytes[0] = 0xc4;
3715 break;
3716 case VEX0F38:
3717 m = 0x2;
3718 i.vex.bytes[0] = 0xc4;
3719 break;
3720 case VEX0F3A:
3721 m = 0x3;
3722 i.vex.bytes[0] = 0xc4;
3723 break;
3724 case XOP08:
3725 m = 0x8;
3726 i.vex.bytes[0] = 0x8f;
3727 break;
3728 case XOP09:
3729 m = 0x9;
3730 i.vex.bytes[0] = 0x8f;
3731 break;
3732 case XOP0A:
3733 m = 0xa;
3734 i.vex.bytes[0] = 0x8f;
3735 break;
3736 default:
3737 abort ();
3738 }
3739
3740 /* The high 3 bits of the second VEX byte are 1's compliment
3741 of RXB bits from REX. */
3742 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3743
3744 i.vex.bytes[2] = (w << 7
3745 | register_specifier << 3
3746 | vector_length << 2
3747 | implied_prefix);
3748 }
3749 }
3750
3751 static INLINE bfd_boolean
3752 is_evex_encoding (const insn_template *t)
3753 {
3754 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3755 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3756 || t->opcode_modifier.sae;
3757 }
3758
3759 static INLINE bfd_boolean
3760 is_any_vex_encoding (const insn_template *t)
3761 {
3762 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3763 || is_evex_encoding (t);
3764 }
3765
3766 /* Build the EVEX prefix. */
3767
3768 static void
3769 build_evex_prefix (void)
3770 {
3771 unsigned int register_specifier;
3772 unsigned int implied_prefix;
3773 unsigned int m, w;
3774 rex_byte vrex_used = 0;
3775
3776 /* Check register specifier. */
3777 if (i.vex.register_specifier)
3778 {
3779 gas_assert ((i.vrex & REX_X) == 0);
3780
3781 register_specifier = i.vex.register_specifier->reg_num;
3782 if ((i.vex.register_specifier->reg_flags & RegRex))
3783 register_specifier += 8;
3784 /* The upper 16 registers are encoded in the fourth byte of the
3785 EVEX prefix. */
3786 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3787 i.vex.bytes[3] = 0x8;
3788 register_specifier = ~register_specifier & 0xf;
3789 }
3790 else
3791 {
3792 register_specifier = 0xf;
3793
3794 /* Encode upper 16 vector index register in the fourth byte of
3795 the EVEX prefix. */
3796 if (!(i.vrex & REX_X))
3797 i.vex.bytes[3] = 0x8;
3798 else
3799 vrex_used |= REX_X;
3800 }
3801
3802 switch ((i.tm.base_opcode >> 8) & 0xff)
3803 {
3804 case 0:
3805 implied_prefix = 0;
3806 break;
3807 case DATA_PREFIX_OPCODE:
3808 implied_prefix = 1;
3809 break;
3810 case REPE_PREFIX_OPCODE:
3811 implied_prefix = 2;
3812 break;
3813 case REPNE_PREFIX_OPCODE:
3814 implied_prefix = 3;
3815 break;
3816 default:
3817 abort ();
3818 }
3819
3820 /* 4 byte EVEX prefix. */
3821 i.vex.length = 4;
3822 i.vex.bytes[0] = 0x62;
3823
3824 /* mmmm bits. */
3825 switch (i.tm.opcode_modifier.vexopcode)
3826 {
3827 case VEX0F:
3828 m = 1;
3829 break;
3830 case VEX0F38:
3831 m = 2;
3832 break;
3833 case VEX0F3A:
3834 m = 3;
3835 break;
3836 default:
3837 abort ();
3838 break;
3839 }
3840
3841 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3842 bits from REX. */
3843 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3844
3845 /* The fifth bit of the second EVEX byte is 1's compliment of the
3846 REX_R bit in VREX. */
3847 if (!(i.vrex & REX_R))
3848 i.vex.bytes[1] |= 0x10;
3849 else
3850 vrex_used |= REX_R;
3851
3852 if ((i.reg_operands + i.imm_operands) == i.operands)
3853 {
3854 /* When all operands are registers, the REX_X bit in REX is not
3855 used. We reuse it to encode the upper 16 registers, which is
3856 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3857 as 1's compliment. */
3858 if ((i.vrex & REX_B))
3859 {
3860 vrex_used |= REX_B;
3861 i.vex.bytes[1] &= ~0x40;
3862 }
3863 }
3864
3865 /* EVEX instructions shouldn't need the REX prefix. */
3866 i.vrex &= ~vrex_used;
3867 gas_assert (i.vrex == 0);
3868
3869 /* Check the REX.W bit and VEXW. */
3870 if (i.tm.opcode_modifier.vexw == VEXWIG)
3871 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3872 else if (i.tm.opcode_modifier.vexw)
3873 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3874 else
3875 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3876
3877 /* Encode the U bit. */
3878 implied_prefix |= 0x4;
3879
3880 /* The third byte of the EVEX prefix. */
3881 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3882
3883 /* The fourth byte of the EVEX prefix. */
3884 /* The zeroing-masking bit. */
3885 if (i.mask && i.mask->zeroing)
3886 i.vex.bytes[3] |= 0x80;
3887
3888 /* Don't always set the broadcast bit if there is no RC. */
3889 if (!i.rounding)
3890 {
3891 /* Encode the vector length. */
3892 unsigned int vec_length;
3893
3894 if (!i.tm.opcode_modifier.evex
3895 || i.tm.opcode_modifier.evex == EVEXDYN)
3896 {
3897 unsigned int op;
3898
3899 /* Determine vector length from the last multi-length vector
3900 operand. */
3901 vec_length = 0;
3902 for (op = i.operands; op--;)
3903 if (i.tm.operand_types[op].bitfield.xmmword
3904 + i.tm.operand_types[op].bitfield.ymmword
3905 + i.tm.operand_types[op].bitfield.zmmword > 1)
3906 {
3907 if (i.types[op].bitfield.zmmword)
3908 {
3909 i.tm.opcode_modifier.evex = EVEX512;
3910 break;
3911 }
3912 else if (i.types[op].bitfield.ymmword)
3913 {
3914 i.tm.opcode_modifier.evex = EVEX256;
3915 break;
3916 }
3917 else if (i.types[op].bitfield.xmmword)
3918 {
3919 i.tm.opcode_modifier.evex = EVEX128;
3920 break;
3921 }
3922 else if (i.broadcast && (int) op == i.broadcast->operand)
3923 {
3924 switch (i.broadcast->bytes)
3925 {
3926 case 64:
3927 i.tm.opcode_modifier.evex = EVEX512;
3928 break;
3929 case 32:
3930 i.tm.opcode_modifier.evex = EVEX256;
3931 break;
3932 case 16:
3933 i.tm.opcode_modifier.evex = EVEX128;
3934 break;
3935 default:
3936 abort ();
3937 }
3938 break;
3939 }
3940 }
3941
3942 if (op >= MAX_OPERANDS)
3943 abort ();
3944 }
3945
3946 switch (i.tm.opcode_modifier.evex)
3947 {
3948 case EVEXLIG: /* LL' is ignored */
3949 vec_length = evexlig << 5;
3950 break;
3951 case EVEX128:
3952 vec_length = 0 << 5;
3953 break;
3954 case EVEX256:
3955 vec_length = 1 << 5;
3956 break;
3957 case EVEX512:
3958 vec_length = 2 << 5;
3959 break;
3960 default:
3961 abort ();
3962 break;
3963 }
3964 i.vex.bytes[3] |= vec_length;
3965 /* Encode the broadcast bit. */
3966 if (i.broadcast)
3967 i.vex.bytes[3] |= 0x10;
3968 }
3969 else
3970 {
3971 if (i.rounding->type != saeonly)
3972 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3973 else
3974 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3975 }
3976
3977 if (i.mask && i.mask->mask)
3978 i.vex.bytes[3] |= i.mask->mask->reg_num;
3979 }
3980
3981 static void
3982 process_immext (void)
3983 {
3984 expressionS *exp;
3985
3986 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3987 which is coded in the same place as an 8-bit immediate field
3988 would be. Here we fake an 8-bit immediate operand from the
3989 opcode suffix stored in tm.extension_opcode.
3990
3991 AVX instructions also use this encoding, for some of
3992 3 argument instructions. */
3993
3994 gas_assert (i.imm_operands <= 1
3995 && (i.operands <= 2
3996 || (is_any_vex_encoding (&i.tm)
3997 && i.operands <= 4)));
3998
3999 exp = &im_expressions[i.imm_operands++];
4000 i.op[i.operands].imms = exp;
4001 i.types[i.operands] = imm8;
4002 i.operands++;
4003 exp->X_op = O_constant;
4004 exp->X_add_number = i.tm.extension_opcode;
4005 i.tm.extension_opcode = None;
4006 }
4007
4008
4009 static int
4010 check_hle (void)
4011 {
4012 switch (i.tm.opcode_modifier.hleprefixok)
4013 {
4014 default:
4015 abort ();
4016 case HLEPrefixNone:
4017 as_bad (_("invalid instruction `%s' after `%s'"),
4018 i.tm.name, i.hle_prefix);
4019 return 0;
4020 case HLEPrefixLock:
4021 if (i.prefix[LOCK_PREFIX])
4022 return 1;
4023 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4024 return 0;
4025 case HLEPrefixAny:
4026 return 1;
4027 case HLEPrefixRelease:
4028 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4029 {
4030 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4031 i.tm.name);
4032 return 0;
4033 }
4034 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4035 {
4036 as_bad (_("memory destination needed for instruction `%s'"
4037 " after `xrelease'"), i.tm.name);
4038 return 0;
4039 }
4040 return 1;
4041 }
4042 }
4043
4044 /* Try the shortest encoding by shortening operand size. */
4045
4046 static void
4047 optimize_encoding (void)
4048 {
4049 unsigned int j;
4050
4051 if (optimize_for_space
4052 && !is_any_vex_encoding (&i.tm)
4053 && i.reg_operands == 1
4054 && i.imm_operands == 1
4055 && !i.types[1].bitfield.byte
4056 && i.op[0].imms->X_op == O_constant
4057 && fits_in_imm7 (i.op[0].imms->X_add_number)
4058 && (i.tm.base_opcode == 0xa8
4059 || (i.tm.base_opcode == 0xf6
4060 && i.tm.extension_opcode == 0x0)))
4061 {
4062 /* Optimize: -Os:
4063 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4064 */
4065 unsigned int base_regnum = i.op[1].regs->reg_num;
4066 if (flag_code == CODE_64BIT || base_regnum < 4)
4067 {
4068 i.types[1].bitfield.byte = 1;
4069 /* Ignore the suffix. */
4070 i.suffix = 0;
4071 /* Convert to byte registers. */
4072 if (i.types[1].bitfield.word)
4073 j = 16;
4074 else if (i.types[1].bitfield.dword)
4075 j = 32;
4076 else
4077 j = 48;
4078 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4079 j += 8;
4080 i.op[1].regs -= j;
4081 }
4082 }
4083 else if (flag_code == CODE_64BIT
4084 && !is_any_vex_encoding (&i.tm)
4085 && ((i.types[1].bitfield.qword
4086 && i.reg_operands == 1
4087 && i.imm_operands == 1
4088 && i.op[0].imms->X_op == O_constant
4089 && ((i.tm.base_opcode == 0xb8
4090 && i.tm.extension_opcode == None
4091 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4092 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4093 && ((i.tm.base_opcode == 0x24
4094 || i.tm.base_opcode == 0xa8)
4095 || (i.tm.base_opcode == 0x80
4096 && i.tm.extension_opcode == 0x4)
4097 || ((i.tm.base_opcode == 0xf6
4098 || (i.tm.base_opcode | 1) == 0xc7)
4099 && i.tm.extension_opcode == 0x0)))
4100 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4101 && i.tm.base_opcode == 0x83
4102 && i.tm.extension_opcode == 0x4)))
4103 || (i.types[0].bitfield.qword
4104 && ((i.reg_operands == 2
4105 && i.op[0].regs == i.op[1].regs
4106 && (i.tm.base_opcode == 0x30
4107 || i.tm.base_opcode == 0x28))
4108 || (i.reg_operands == 1
4109 && i.operands == 1
4110 && i.tm.base_opcode == 0x30)))))
4111 {
4112 /* Optimize: -O:
4113 andq $imm31, %r64 -> andl $imm31, %r32
4114 andq $imm7, %r64 -> andl $imm7, %r32
4115 testq $imm31, %r64 -> testl $imm31, %r32
4116 xorq %r64, %r64 -> xorl %r32, %r32
4117 subq %r64, %r64 -> subl %r32, %r32
4118 movq $imm31, %r64 -> movl $imm31, %r32
4119 movq $imm32, %r64 -> movl $imm32, %r32
4120 */
4121 i.tm.opcode_modifier.norex64 = 1;
4122 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4123 {
4124 /* Handle
4125 movq $imm31, %r64 -> movl $imm31, %r32
4126 movq $imm32, %r64 -> movl $imm32, %r32
4127 */
4128 i.tm.operand_types[0].bitfield.imm32 = 1;
4129 i.tm.operand_types[0].bitfield.imm32s = 0;
4130 i.tm.operand_types[0].bitfield.imm64 = 0;
4131 i.types[0].bitfield.imm32 = 1;
4132 i.types[0].bitfield.imm32s = 0;
4133 i.types[0].bitfield.imm64 = 0;
4134 i.types[1].bitfield.dword = 1;
4135 i.types[1].bitfield.qword = 0;
4136 if ((i.tm.base_opcode | 1) == 0xc7)
4137 {
4138 /* Handle
4139 movq $imm31, %r64 -> movl $imm31, %r32
4140 */
4141 i.tm.base_opcode = 0xb8;
4142 i.tm.extension_opcode = None;
4143 i.tm.opcode_modifier.w = 0;
4144 i.tm.opcode_modifier.modrm = 0;
4145 }
4146 }
4147 }
4148 else if (optimize > 1
4149 && !optimize_for_space
4150 && !is_any_vex_encoding (&i.tm)
4151 && i.reg_operands == 2
4152 && i.op[0].regs == i.op[1].regs
4153 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4154 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4155 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4156 {
4157 /* Optimize: -O2:
4158 andb %rN, %rN -> testb %rN, %rN
4159 andw %rN, %rN -> testw %rN, %rN
4160 andq %rN, %rN -> testq %rN, %rN
4161 orb %rN, %rN -> testb %rN, %rN
4162 orw %rN, %rN -> testw %rN, %rN
4163 orq %rN, %rN -> testq %rN, %rN
4164
4165 and outside of 64-bit mode
4166
4167 andl %rN, %rN -> testl %rN, %rN
4168 orl %rN, %rN -> testl %rN, %rN
4169 */
4170 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4171 }
4172 else if (i.reg_operands == 3
4173 && i.op[0].regs == i.op[1].regs
4174 && !i.types[2].bitfield.xmmword
4175 && (i.tm.opcode_modifier.vex
4176 || ((!i.mask || i.mask->zeroing)
4177 && !i.rounding
4178 && is_evex_encoding (&i.tm)
4179 && (i.vec_encoding != vex_encoding_evex
4180 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4181 || i.tm.cpu_flags.bitfield.cpuavx512vl
4182 || (i.tm.operand_types[2].bitfield.zmmword
4183 && i.types[2].bitfield.ymmword))))
4184 && ((i.tm.base_opcode == 0x55
4185 || i.tm.base_opcode == 0x6655
4186 || i.tm.base_opcode == 0x66df
4187 || i.tm.base_opcode == 0x57
4188 || i.tm.base_opcode == 0x6657
4189 || i.tm.base_opcode == 0x66ef
4190 || i.tm.base_opcode == 0x66f8
4191 || i.tm.base_opcode == 0x66f9
4192 || i.tm.base_opcode == 0x66fa
4193 || i.tm.base_opcode == 0x66fb
4194 || i.tm.base_opcode == 0x42
4195 || i.tm.base_opcode == 0x6642
4196 || i.tm.base_opcode == 0x47
4197 || i.tm.base_opcode == 0x6647)
4198 && i.tm.extension_opcode == None))
4199 {
4200 /* Optimize: -O1:
4201 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4202 vpsubq and vpsubw:
4203 EVEX VOP %zmmM, %zmmM, %zmmN
4204 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4205 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4206 EVEX VOP %ymmM, %ymmM, %ymmN
4207 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4208 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4209 VEX VOP %ymmM, %ymmM, %ymmN
4210 -> VEX VOP %xmmM, %xmmM, %xmmN
4211 VOP, one of vpandn and vpxor:
4212 VEX VOP %ymmM, %ymmM, %ymmN
4213 -> VEX VOP %xmmM, %xmmM, %xmmN
4214 VOP, one of vpandnd and vpandnq:
4215 EVEX VOP %zmmM, %zmmM, %zmmN
4216 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4217 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4218 EVEX VOP %ymmM, %ymmM, %ymmN
4219 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4220 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4221 VOP, one of vpxord and vpxorq:
4222 EVEX VOP %zmmM, %zmmM, %zmmN
4223 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4224 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4225 EVEX VOP %ymmM, %ymmM, %ymmN
4226 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4227 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4228 VOP, one of kxord and kxorq:
4229 VEX VOP %kM, %kM, %kN
4230 -> VEX kxorw %kM, %kM, %kN
4231 VOP, one of kandnd and kandnq:
4232 VEX VOP %kM, %kM, %kN
4233 -> VEX kandnw %kM, %kM, %kN
4234 */
4235 if (is_evex_encoding (&i.tm))
4236 {
4237 if (i.vec_encoding != vex_encoding_evex)
4238 {
4239 i.tm.opcode_modifier.vex = VEX128;
4240 i.tm.opcode_modifier.vexw = VEXW0;
4241 i.tm.opcode_modifier.evex = 0;
4242 }
4243 else if (optimize > 1)
4244 i.tm.opcode_modifier.evex = EVEX128;
4245 else
4246 return;
4247 }
4248 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4249 {
4250 i.tm.base_opcode &= 0xff;
4251 i.tm.opcode_modifier.vexw = VEXW0;
4252 }
4253 else
4254 i.tm.opcode_modifier.vex = VEX128;
4255
4256 if (i.tm.opcode_modifier.vex)
4257 for (j = 0; j < 3; j++)
4258 {
4259 i.types[j].bitfield.xmmword = 1;
4260 i.types[j].bitfield.ymmword = 0;
4261 }
4262 }
4263 else if (i.vec_encoding != vex_encoding_evex
4264 && !i.types[0].bitfield.zmmword
4265 && !i.types[1].bitfield.zmmword
4266 && !i.mask
4267 && !i.broadcast
4268 && is_evex_encoding (&i.tm)
4269 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4270 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4271 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4272 || (i.tm.base_opcode & ~4) == 0x66db
4273 || (i.tm.base_opcode & ~4) == 0x66eb)
4274 && i.tm.extension_opcode == None)
4275 {
4276 /* Optimize: -O1:
4277 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4278 vmovdqu32 and vmovdqu64:
4279 EVEX VOP %xmmM, %xmmN
4280 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4281 EVEX VOP %ymmM, %ymmN
4282 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4283 EVEX VOP %xmmM, mem
4284 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4285 EVEX VOP %ymmM, mem
4286 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4287 EVEX VOP mem, %xmmN
4288 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4289 EVEX VOP mem, %ymmN
4290 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4291 VOP, one of vpand, vpandn, vpor, vpxor:
4292 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4293 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4294 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4295 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4296 EVEX VOP{d,q} mem, %xmmM, %xmmN
4297 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4298 EVEX VOP{d,q} mem, %ymmM, %ymmN
4299 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4300 */
4301 for (j = 0; j < i.operands; j++)
4302 if (operand_type_check (i.types[j], disp)
4303 && i.op[j].disps->X_op == O_constant)
4304 {
4305 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4306 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4307 bytes, we choose EVEX Disp8 over VEX Disp32. */
4308 int evex_disp8, vex_disp8;
4309 unsigned int memshift = i.memshift;
4310 offsetT n = i.op[j].disps->X_add_number;
4311
4312 evex_disp8 = fits_in_disp8 (n);
4313 i.memshift = 0;
4314 vex_disp8 = fits_in_disp8 (n);
4315 if (evex_disp8 != vex_disp8)
4316 {
4317 i.memshift = memshift;
4318 return;
4319 }
4320
4321 i.types[j].bitfield.disp8 = vex_disp8;
4322 break;
4323 }
4324 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4325 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4326 i.tm.opcode_modifier.vex
4327 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4328 i.tm.opcode_modifier.vexw = VEXW0;
4329 /* VPAND, VPOR, and VPXOR are commutative. */
4330 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4331 i.tm.opcode_modifier.commutative = 1;
4332 i.tm.opcode_modifier.evex = 0;
4333 i.tm.opcode_modifier.masking = 0;
4334 i.tm.opcode_modifier.broadcast = 0;
4335 i.tm.opcode_modifier.disp8memshift = 0;
4336 i.memshift = 0;
4337 if (j < i.operands)
4338 i.types[j].bitfield.disp8
4339 = fits_in_disp8 (i.op[j].disps->X_add_number);
4340 }
4341 }
4342
4343 /* Return non-zero for load instruction. */
4344
4345 static int
4346 load_insn_p (void)
4347 {
4348 unsigned int dest;
4349 int any_vex_p = is_any_vex_encoding (&i.tm);
4350 unsigned int base_opcode = i.tm.base_opcode | 1;
4351
4352 if (!any_vex_p)
4353 {
4354 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4355 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4356 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4357 if (i.tm.opcode_modifier.anysize)
4358 return 0;
4359
4360 /* pop, popf, popa. */
4361 if (strcmp (i.tm.name, "pop") == 0
4362 || i.tm.base_opcode == 0x9d
4363 || i.tm.base_opcode == 0x61)
4364 return 1;
4365
4366 /* movs, cmps, lods, scas. */
4367 if ((i.tm.base_opcode | 0xb) == 0xaf)
4368 return 1;
4369
4370 /* outs, xlatb. */
4371 if (base_opcode == 0x6f
4372 || i.tm.base_opcode == 0xd7)
4373 return 1;
4374 /* NB: For AMD-specific insns with implicit memory operands,
4375 they're intentionally not covered. */
4376 }
4377
4378 /* No memory operand. */
4379 if (!i.mem_operands)
4380 return 0;
4381
4382 if (any_vex_p)
4383 {
4384 /* vldmxcsr. */
4385 if (i.tm.base_opcode == 0xae
4386 && i.tm.opcode_modifier.vex
4387 && i.tm.opcode_modifier.vexopcode == VEX0F
4388 && i.tm.extension_opcode == 2)
4389 return 1;
4390 }
4391 else
4392 {
4393 /* test, not, neg, mul, imul, div, idiv. */
4394 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4395 && i.tm.extension_opcode != 1)
4396 return 1;
4397
4398 /* inc, dec. */
4399 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4400 return 1;
4401
4402 /* add, or, adc, sbb, and, sub, xor, cmp. */
4403 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4404 return 1;
4405
4406 /* bt, bts, btr, btc. */
4407 if (i.tm.base_opcode == 0xfba
4408 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4409 return 1;
4410
4411 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4412 if ((base_opcode == 0xc1
4413 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4414 && i.tm.extension_opcode != 6)
4415 return 1;
4416
4417 /* cmpxchg8b, cmpxchg16b, xrstors. */
4418 if (i.tm.base_opcode == 0xfc7
4419 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4420 return 1;
4421
4422 /* fxrstor, ldmxcsr, xrstor. */
4423 if (i.tm.base_opcode == 0xfae
4424 && (i.tm.extension_opcode == 1
4425 || i.tm.extension_opcode == 2
4426 || i.tm.extension_opcode == 5))
4427 return 1;
4428
4429 /* lgdt, lidt, lmsw. */
4430 if (i.tm.base_opcode == 0xf01
4431 && (i.tm.extension_opcode == 2
4432 || i.tm.extension_opcode == 3
4433 || i.tm.extension_opcode == 6))
4434 return 1;
4435
4436 /* vmptrld */
4437 if (i.tm.base_opcode == 0xfc7
4438 && i.tm.extension_opcode == 6)
4439 return 1;
4440
4441 /* Check for x87 instructions. */
4442 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4443 {
4444 /* Skip fst, fstp, fstenv, fstcw. */
4445 if (i.tm.base_opcode == 0xd9
4446 && (i.tm.extension_opcode == 2
4447 || i.tm.extension_opcode == 3
4448 || i.tm.extension_opcode == 6
4449 || i.tm.extension_opcode == 7))
4450 return 0;
4451
4452 /* Skip fisttp, fist, fistp, fstp. */
4453 if (i.tm.base_opcode == 0xdb
4454 && (i.tm.extension_opcode == 1
4455 || i.tm.extension_opcode == 2
4456 || i.tm.extension_opcode == 3
4457 || i.tm.extension_opcode == 7))
4458 return 0;
4459
4460 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4461 if (i.tm.base_opcode == 0xdd
4462 && (i.tm.extension_opcode == 1
4463 || i.tm.extension_opcode == 2
4464 || i.tm.extension_opcode == 3
4465 || i.tm.extension_opcode == 6
4466 || i.tm.extension_opcode == 7))
4467 return 0;
4468
4469 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4470 if (i.tm.base_opcode == 0xdf
4471 && (i.tm.extension_opcode == 1
4472 || i.tm.extension_opcode == 2
4473 || i.tm.extension_opcode == 3
4474 || i.tm.extension_opcode == 6
4475 || i.tm.extension_opcode == 7))
4476 return 0;
4477
4478 return 1;
4479 }
4480 }
4481
4482 dest = i.operands - 1;
4483
4484 /* Check fake imm8 operand and 3 source operands. */
4485 if ((i.tm.opcode_modifier.immext
4486 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4487 && i.types[dest].bitfield.imm8)
4488 dest--;
4489
4490 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4491 if (!any_vex_p
4492 && (base_opcode == 0x1
4493 || base_opcode == 0x9
4494 || base_opcode == 0x11
4495 || base_opcode == 0x19
4496 || base_opcode == 0x21
4497 || base_opcode == 0x29
4498 || base_opcode == 0x31
4499 || base_opcode == 0x39
4500 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4501 || base_opcode == 0xfc1))
4502 return 1;
4503
4504 /* Check for load instruction. */
4505 return (i.types[dest].bitfield.class != ClassNone
4506 || i.types[dest].bitfield.instance == Accum);
4507 }
4508
4509 /* Output lfence, 0xfaee8, after instruction. */
4510
4511 static void
4512 insert_lfence_after (void)
4513 {
4514 if (lfence_after_load && load_insn_p ())
4515 {
4516 /* There are also two REP string instructions that require
4517 special treatment. Specifically, the compare string (CMPS)
4518 and scan string (SCAS) instructions set EFLAGS in a manner
4519 that depends on the data being compared/scanned. When used
4520 with a REP prefix, the number of iterations may therefore
4521 vary depending on this data. If the data is a program secret
4522 chosen by the adversary using an LVI method,
4523 then this data-dependent behavior may leak some aspect
4524 of the secret. */
4525 if (((i.tm.base_opcode | 0x1) == 0xa7
4526 || (i.tm.base_opcode | 0x1) == 0xaf)
4527 && i.prefix[REP_PREFIX])
4528 {
4529 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4530 i.tm.name);
4531 }
4532 char *p = frag_more (3);
4533 *p++ = 0xf;
4534 *p++ = 0xae;
4535 *p = 0xe8;
4536 }
4537 }
4538
4539 /* Output lfence, 0xfaee8, before instruction. */
4540
4541 static void
4542 insert_lfence_before (void)
4543 {
4544 char *p;
4545
4546 if (is_any_vex_encoding (&i.tm))
4547 return;
4548
4549 if (i.tm.base_opcode == 0xff
4550 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4551 {
4552 /* Insert lfence before indirect branch if needed. */
4553
4554 if (lfence_before_indirect_branch == lfence_branch_none)
4555 return;
4556
4557 if (i.operands != 1)
4558 abort ();
4559
4560 if (i.reg_operands == 1)
4561 {
4562 /* Indirect branch via register. Don't insert lfence with
4563 -mlfence-after-load=yes. */
4564 if (lfence_after_load
4565 || lfence_before_indirect_branch == lfence_branch_memory)
4566 return;
4567 }
4568 else if (i.mem_operands == 1
4569 && lfence_before_indirect_branch != lfence_branch_register)
4570 {
4571 as_warn (_("indirect `%s` with memory operand should be avoided"),
4572 i.tm.name);
4573 return;
4574 }
4575 else
4576 return;
4577
4578 if (last_insn.kind != last_insn_other
4579 && last_insn.seg == now_seg)
4580 {
4581 as_warn_where (last_insn.file, last_insn.line,
4582 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4583 last_insn.name, i.tm.name);
4584 return;
4585 }
4586
4587 p = frag_more (3);
4588 *p++ = 0xf;
4589 *p++ = 0xae;
4590 *p = 0xe8;
4591 return;
4592 }
4593
4594 /* Output or/not/shl and lfence before ret/lret/iret. */
4595 if (lfence_before_ret != lfence_before_ret_none
4596 && (i.tm.base_opcode == 0xc2
4597 || i.tm.base_opcode == 0xc3
4598 || i.tm.base_opcode == 0xca
4599 || i.tm.base_opcode == 0xcb
4600 || i.tm.base_opcode == 0xcf))
4601 {
4602 if (last_insn.kind != last_insn_other
4603 && last_insn.seg == now_seg)
4604 {
4605 as_warn_where (last_insn.file, last_insn.line,
4606 _("`%s` skips -mlfence-before-ret on `%s`"),
4607 last_insn.name, i.tm.name);
4608 return;
4609 }
4610
4611 /* lret or iret. */
4612 bfd_boolean lret = (i.tm.base_opcode | 0x5) == 0xcf;
4613 bfd_boolean has_rexw = i.prefix[REX_PREFIX] & REX_W;
4614 char prefix = 0x0;
4615 /* Default operand size for far return is 32 bits,
4616 64 bits for near return. */
4617 /* Near ret ingore operand size override under CPU64. */
4618 if ((!lret && flag_code == CODE_64BIT) || has_rexw)
4619 prefix = 0x48;
4620 else if (i.prefix[DATA_PREFIX])
4621 prefix = 0x66;
4622
4623 if (lfence_before_ret == lfence_before_ret_not)
4624 {
4625 /* not: 0xf71424, may add prefix
4626 for operand size override or 64-bit code. */
4627 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4628 if (prefix)
4629 *p++ = prefix;
4630 *p++ = 0xf7;
4631 *p++ = 0x14;
4632 *p++ = 0x24;
4633 if (prefix)
4634 *p++ = prefix;
4635 *p++ = 0xf7;
4636 *p++ = 0x14;
4637 *p++ = 0x24;
4638 }
4639 else
4640 {
4641 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4642 if (prefix)
4643 *p++ = prefix;
4644 if (lfence_before_ret == lfence_before_ret_or)
4645 {
4646 /* or: 0x830c2400, may add prefix
4647 for operand size override or 64-bit code. */
4648 *p++ = 0x83;
4649 *p++ = 0x0c;
4650 }
4651 else
4652 {
4653 /* shl: 0xc1242400, may add prefix
4654 for operand size override or 64-bit code. */
4655 *p++ = 0xc1;
4656 *p++ = 0x24;
4657 }
4658
4659 *p++ = 0x24;
4660 *p++ = 0x0;
4661 }
4662
4663 *p++ = 0xf;
4664 *p++ = 0xae;
4665 *p = 0xe8;
4666 }
4667 }
4668
4669 /* This is the guts of the machine-dependent assembler. LINE points to a
4670 machine dependent instruction. This function is supposed to emit
4671 the frags/bytes it assembles to. */
4672
4673 void
4674 md_assemble (char *line)
4675 {
4676 unsigned int j;
4677 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4678 const insn_template *t;
4679
4680 /* Initialize globals. */
4681 memset (&i, '\0', sizeof (i));
4682 for (j = 0; j < MAX_OPERANDS; j++)
4683 i.reloc[j] = NO_RELOC;
4684 memset (disp_expressions, '\0', sizeof (disp_expressions));
4685 memset (im_expressions, '\0', sizeof (im_expressions));
4686 save_stack_p = save_stack;
4687
4688 /* First parse an instruction mnemonic & call i386_operand for the operands.
4689 We assume that the scrubber has arranged it so that line[0] is the valid
4690 start of a (possibly prefixed) mnemonic. */
4691
4692 line = parse_insn (line, mnemonic);
4693 if (line == NULL)
4694 return;
4695 mnem_suffix = i.suffix;
4696
4697 line = parse_operands (line, mnemonic);
4698 this_operand = -1;
4699 xfree (i.memop1_string);
4700 i.memop1_string = NULL;
4701 if (line == NULL)
4702 return;
4703
4704 /* Now we've parsed the mnemonic into a set of templates, and have the
4705 operands at hand. */
4706
4707 /* All Intel opcodes have reversed operands except for "bound", "enter",
4708 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4709 intersegment "jmp" and "call" instructions with 2 immediate operands so
4710 that the immediate segment precedes the offset, as it does when in AT&T
4711 mode. */
4712 if (intel_syntax
4713 && i.operands > 1
4714 && (strcmp (mnemonic, "bound") != 0)
4715 && (strcmp (mnemonic, "invlpga") != 0)
4716 && (strncmp (mnemonic, "monitor", 7) != 0)
4717 && (strncmp (mnemonic, "mwait", 5) != 0)
4718 && (strcmp (mnemonic, "tpause") != 0)
4719 && (strcmp (mnemonic, "umwait") != 0)
4720 && !(operand_type_check (i.types[0], imm)
4721 && operand_type_check (i.types[1], imm)))
4722 swap_operands ();
4723
4724 /* The order of the immediates should be reversed
4725 for 2 immediates extrq and insertq instructions */
4726 if (i.imm_operands == 2
4727 && (strcmp (mnemonic, "extrq") == 0
4728 || strcmp (mnemonic, "insertq") == 0))
4729 swap_2_operands (0, 1);
4730
4731 if (i.imm_operands)
4732 optimize_imm ();
4733
4734 /* Don't optimize displacement for movabs since it only takes 64bit
4735 displacement. */
4736 if (i.disp_operands
4737 && i.disp_encoding != disp_encoding_32bit
4738 && (flag_code != CODE_64BIT
4739 || strcmp (mnemonic, "movabs") != 0))
4740 optimize_disp ();
4741
4742 /* Next, we find a template that matches the given insn,
4743 making sure the overlap of the given operands types is consistent
4744 with the template operand types. */
4745
4746 if (!(t = match_template (mnem_suffix)))
4747 return;
4748
4749 if (sse_check != check_none
4750 && !i.tm.opcode_modifier.noavx
4751 && !i.tm.cpu_flags.bitfield.cpuavx
4752 && !i.tm.cpu_flags.bitfield.cpuavx512f
4753 && (i.tm.cpu_flags.bitfield.cpusse
4754 || i.tm.cpu_flags.bitfield.cpusse2
4755 || i.tm.cpu_flags.bitfield.cpusse3
4756 || i.tm.cpu_flags.bitfield.cpussse3
4757 || i.tm.cpu_flags.bitfield.cpusse4_1
4758 || i.tm.cpu_flags.bitfield.cpusse4_2
4759 || i.tm.cpu_flags.bitfield.cpusse4a
4760 || i.tm.cpu_flags.bitfield.cpupclmul
4761 || i.tm.cpu_flags.bitfield.cpuaes
4762 || i.tm.cpu_flags.bitfield.cpusha
4763 || i.tm.cpu_flags.bitfield.cpugfni))
4764 {
4765 (sse_check == check_warning
4766 ? as_warn
4767 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4768 }
4769
4770 if (i.tm.opcode_modifier.fwait)
4771 if (!add_prefix (FWAIT_OPCODE))
4772 return;
4773
4774 /* Check if REP prefix is OK. */
4775 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4776 {
4777 as_bad (_("invalid instruction `%s' after `%s'"),
4778 i.tm.name, i.rep_prefix);
4779 return;
4780 }
4781
4782 /* Check for lock without a lockable instruction. Destination operand
4783 must be memory unless it is xchg (0x86). */
4784 if (i.prefix[LOCK_PREFIX]
4785 && (!i.tm.opcode_modifier.islockable
4786 || i.mem_operands == 0
4787 || (i.tm.base_opcode != 0x86
4788 && !(i.flags[i.operands - 1] & Operand_Mem))))
4789 {
4790 as_bad (_("expecting lockable instruction after `lock'"));
4791 return;
4792 }
4793
4794 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4795 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4796 {
4797 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4798 return;
4799 }
4800
4801 /* Check if HLE prefix is OK. */
4802 if (i.hle_prefix && !check_hle ())
4803 return;
4804
4805 /* Check BND prefix. */
4806 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4807 as_bad (_("expecting valid branch instruction after `bnd'"));
4808
4809 /* Check NOTRACK prefix. */
4810 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4811 as_bad (_("expecting indirect branch instruction after `notrack'"));
4812
4813 if (i.tm.cpu_flags.bitfield.cpumpx)
4814 {
4815 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4816 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4817 else if (flag_code != CODE_16BIT
4818 ? i.prefix[ADDR_PREFIX]
4819 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4820 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4821 }
4822
4823 /* Insert BND prefix. */
4824 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4825 {
4826 if (!i.prefix[BND_PREFIX])
4827 add_prefix (BND_PREFIX_OPCODE);
4828 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4829 {
4830 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4831 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4832 }
4833 }
4834
4835 /* Check string instruction segment overrides. */
4836 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4837 {
4838 gas_assert (i.mem_operands);
4839 if (!check_string ())
4840 return;
4841 i.disp_operands = 0;
4842 }
4843
4844 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4845 optimize_encoding ();
4846
4847 if (!process_suffix ())
4848 return;
4849
4850 /* Update operand types. */
4851 for (j = 0; j < i.operands; j++)
4852 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4853
4854 /* Make still unresolved immediate matches conform to size of immediate
4855 given in i.suffix. */
4856 if (!finalize_imm ())
4857 return;
4858
4859 if (i.types[0].bitfield.imm1)
4860 i.imm_operands = 0; /* kludge for shift insns. */
4861
4862 /* We only need to check those implicit registers for instructions
4863 with 3 operands or less. */
4864 if (i.operands <= 3)
4865 for (j = 0; j < i.operands; j++)
4866 if (i.types[j].bitfield.instance != InstanceNone
4867 && !i.types[j].bitfield.xmmword)
4868 i.reg_operands--;
4869
4870 /* ImmExt should be processed after SSE2AVX. */
4871 if (!i.tm.opcode_modifier.sse2avx
4872 && i.tm.opcode_modifier.immext)
4873 process_immext ();
4874
4875 /* For insns with operands there are more diddles to do to the opcode. */
4876 if (i.operands)
4877 {
4878 if (!process_operands ())
4879 return;
4880 }
4881 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4882 {
4883 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4884 as_warn (_("translating to `%sp'"), i.tm.name);
4885 }
4886
4887 if (is_any_vex_encoding (&i.tm))
4888 {
4889 if (!cpu_arch_flags.bitfield.cpui286)
4890 {
4891 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4892 i.tm.name);
4893 return;
4894 }
4895
4896 if (i.tm.opcode_modifier.vex)
4897 build_vex_prefix (t);
4898 else
4899 build_evex_prefix ();
4900 }
4901
4902 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4903 instructions may define INT_OPCODE as well, so avoid this corner
4904 case for those instructions that use MODRM. */
4905 if (i.tm.base_opcode == INT_OPCODE
4906 && !i.tm.opcode_modifier.modrm
4907 && i.op[0].imms->X_add_number == 3)
4908 {
4909 i.tm.base_opcode = INT3_OPCODE;
4910 i.imm_operands = 0;
4911 }
4912
4913 if ((i.tm.opcode_modifier.jump == JUMP
4914 || i.tm.opcode_modifier.jump == JUMP_BYTE
4915 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4916 && i.op[0].disps->X_op == O_constant)
4917 {
4918 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4919 the absolute address given by the constant. Since ix86 jumps and
4920 calls are pc relative, we need to generate a reloc. */
4921 i.op[0].disps->X_add_symbol = &abs_symbol;
4922 i.op[0].disps->X_op = O_symbol;
4923 }
4924
4925 /* For 8 bit registers we need an empty rex prefix. Also if the
4926 instruction already has a prefix, we need to convert old
4927 registers to new ones. */
4928
4929 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4930 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4931 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4932 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4933 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4934 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4935 && i.rex != 0))
4936 {
4937 int x;
4938
4939 i.rex |= REX_OPCODE;
4940 for (x = 0; x < 2; x++)
4941 {
4942 /* Look for 8 bit operand that uses old registers. */
4943 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4944 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4945 {
4946 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4947 /* In case it is "hi" register, give up. */
4948 if (i.op[x].regs->reg_num > 3)
4949 as_bad (_("can't encode register '%s%s' in an "
4950 "instruction requiring REX prefix."),
4951 register_prefix, i.op[x].regs->reg_name);
4952
4953 /* Otherwise it is equivalent to the extended register.
4954 Since the encoding doesn't change this is merely
4955 cosmetic cleanup for debug output. */
4956
4957 i.op[x].regs = i.op[x].regs + 8;
4958 }
4959 }
4960 }
4961
4962 if (i.rex == 0 && i.rex_encoding)
4963 {
4964 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4965 that uses legacy register. If it is "hi" register, don't add
4966 the REX_OPCODE byte. */
4967 int x;
4968 for (x = 0; x < 2; x++)
4969 if (i.types[x].bitfield.class == Reg
4970 && i.types[x].bitfield.byte
4971 && (i.op[x].regs->reg_flags & RegRex64) == 0
4972 && i.op[x].regs->reg_num > 3)
4973 {
4974 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4975 i.rex_encoding = FALSE;
4976 break;
4977 }
4978
4979 if (i.rex_encoding)
4980 i.rex = REX_OPCODE;
4981 }
4982
4983 if (i.rex != 0)
4984 add_prefix (REX_OPCODE | i.rex);
4985
4986 insert_lfence_before ();
4987
4988 /* We are ready to output the insn. */
4989 output_insn ();
4990
4991 insert_lfence_after ();
4992
4993 last_insn.seg = now_seg;
4994
4995 if (i.tm.opcode_modifier.isprefix)
4996 {
4997 last_insn.kind = last_insn_prefix;
4998 last_insn.name = i.tm.name;
4999 last_insn.file = as_where (&last_insn.line);
5000 }
5001 else
5002 last_insn.kind = last_insn_other;
5003 }
5004
5005 static char *
5006 parse_insn (char *line, char *mnemonic)
5007 {
5008 char *l = line;
5009 char *token_start = l;
5010 char *mnem_p;
5011 int supported;
5012 const insn_template *t;
5013 char *dot_p = NULL;
5014
5015 while (1)
5016 {
5017 mnem_p = mnemonic;
5018 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5019 {
5020 if (*mnem_p == '.')
5021 dot_p = mnem_p;
5022 mnem_p++;
5023 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5024 {
5025 as_bad (_("no such instruction: `%s'"), token_start);
5026 return NULL;
5027 }
5028 l++;
5029 }
5030 if (!is_space_char (*l)
5031 && *l != END_OF_INSN
5032 && (intel_syntax
5033 || (*l != PREFIX_SEPARATOR
5034 && *l != ',')))
5035 {
5036 as_bad (_("invalid character %s in mnemonic"),
5037 output_invalid (*l));
5038 return NULL;
5039 }
5040 if (token_start == l)
5041 {
5042 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5043 as_bad (_("expecting prefix; got nothing"));
5044 else
5045 as_bad (_("expecting mnemonic; got nothing"));
5046 return NULL;
5047 }
5048
5049 /* Look up instruction (or prefix) via hash table. */
5050 current_templates = (const templates *) hash_find (op_hash, mnemonic);
5051
5052 if (*l != END_OF_INSN
5053 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5054 && current_templates
5055 && current_templates->start->opcode_modifier.isprefix)
5056 {
5057 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5058 {
5059 as_bad ((flag_code != CODE_64BIT
5060 ? _("`%s' is only supported in 64-bit mode")
5061 : _("`%s' is not supported in 64-bit mode")),
5062 current_templates->start->name);
5063 return NULL;
5064 }
5065 /* If we are in 16-bit mode, do not allow addr16 or data16.
5066 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5067 if ((current_templates->start->opcode_modifier.size == SIZE16
5068 || current_templates->start->opcode_modifier.size == SIZE32)
5069 && flag_code != CODE_64BIT
5070 && ((current_templates->start->opcode_modifier.size == SIZE32)
5071 ^ (flag_code == CODE_16BIT)))
5072 {
5073 as_bad (_("redundant %s prefix"),
5074 current_templates->start->name);
5075 return NULL;
5076 }
5077 if (current_templates->start->opcode_length == 0)
5078 {
5079 /* Handle pseudo prefixes. */
5080 switch (current_templates->start->base_opcode)
5081 {
5082 case 0x0:
5083 /* {disp8} */
5084 i.disp_encoding = disp_encoding_8bit;
5085 break;
5086 case 0x1:
5087 /* {disp32} */
5088 i.disp_encoding = disp_encoding_32bit;
5089 break;
5090 case 0x2:
5091 /* {load} */
5092 i.dir_encoding = dir_encoding_load;
5093 break;
5094 case 0x3:
5095 /* {store} */
5096 i.dir_encoding = dir_encoding_store;
5097 break;
5098 case 0x4:
5099 /* {vex} */
5100 i.vec_encoding = vex_encoding_vex;
5101 break;
5102 case 0x5:
5103 /* {vex3} */
5104 i.vec_encoding = vex_encoding_vex3;
5105 break;
5106 case 0x6:
5107 /* {evex} */
5108 i.vec_encoding = vex_encoding_evex;
5109 break;
5110 case 0x7:
5111 /* {rex} */
5112 i.rex_encoding = TRUE;
5113 break;
5114 case 0x8:
5115 /* {nooptimize} */
5116 i.no_optimize = TRUE;
5117 break;
5118 default:
5119 abort ();
5120 }
5121 }
5122 else
5123 {
5124 /* Add prefix, checking for repeated prefixes. */
5125 switch (add_prefix (current_templates->start->base_opcode))
5126 {
5127 case PREFIX_EXIST:
5128 return NULL;
5129 case PREFIX_DS:
5130 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5131 i.notrack_prefix = current_templates->start->name;
5132 break;
5133 case PREFIX_REP:
5134 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5135 i.hle_prefix = current_templates->start->name;
5136 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5137 i.bnd_prefix = current_templates->start->name;
5138 else
5139 i.rep_prefix = current_templates->start->name;
5140 break;
5141 default:
5142 break;
5143 }
5144 }
5145 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5146 token_start = ++l;
5147 }
5148 else
5149 break;
5150 }
5151
5152 if (!current_templates)
5153 {
5154 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5155 Check if we should swap operand or force 32bit displacement in
5156 encoding. */
5157 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5158 i.dir_encoding = dir_encoding_swap;
5159 else if (mnem_p - 3 == dot_p
5160 && dot_p[1] == 'd'
5161 && dot_p[2] == '8')
5162 i.disp_encoding = disp_encoding_8bit;
5163 else if (mnem_p - 4 == dot_p
5164 && dot_p[1] == 'd'
5165 && dot_p[2] == '3'
5166 && dot_p[3] == '2')
5167 i.disp_encoding = disp_encoding_32bit;
5168 else
5169 goto check_suffix;
5170 mnem_p = dot_p;
5171 *dot_p = '\0';
5172 current_templates = (const templates *) hash_find (op_hash, mnemonic);
5173 }
5174
5175 if (!current_templates)
5176 {
5177 check_suffix:
5178 if (mnem_p > mnemonic)
5179 {
5180 /* See if we can get a match by trimming off a suffix. */
5181 switch (mnem_p[-1])
5182 {
5183 case WORD_MNEM_SUFFIX:
5184 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5185 i.suffix = SHORT_MNEM_SUFFIX;
5186 else
5187 /* Fall through. */
5188 case BYTE_MNEM_SUFFIX:
5189 case QWORD_MNEM_SUFFIX:
5190 i.suffix = mnem_p[-1];
5191 mnem_p[-1] = '\0';
5192 current_templates = (const templates *) hash_find (op_hash,
5193 mnemonic);
5194 break;
5195 case SHORT_MNEM_SUFFIX:
5196 case LONG_MNEM_SUFFIX:
5197 if (!intel_syntax)
5198 {
5199 i.suffix = mnem_p[-1];
5200 mnem_p[-1] = '\0';
5201 current_templates = (const templates *) hash_find (op_hash,
5202 mnemonic);
5203 }
5204 break;
5205
5206 /* Intel Syntax. */
5207 case 'd':
5208 if (intel_syntax)
5209 {
5210 if (intel_float_operand (mnemonic) == 1)
5211 i.suffix = SHORT_MNEM_SUFFIX;
5212 else
5213 i.suffix = LONG_MNEM_SUFFIX;
5214 mnem_p[-1] = '\0';
5215 current_templates = (const templates *) hash_find (op_hash,
5216 mnemonic);
5217 }
5218 break;
5219 }
5220 }
5221
5222 if (!current_templates)
5223 {
5224 as_bad (_("no such instruction: `%s'"), token_start);
5225 return NULL;
5226 }
5227 }
5228
5229 if (current_templates->start->opcode_modifier.jump == JUMP
5230 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5231 {
5232 /* Check for a branch hint. We allow ",pt" and ",pn" for
5233 predict taken and predict not taken respectively.
5234 I'm not sure that branch hints actually do anything on loop
5235 and jcxz insns (JumpByte) for current Pentium4 chips. They
5236 may work in the future and it doesn't hurt to accept them
5237 now. */
5238 if (l[0] == ',' && l[1] == 'p')
5239 {
5240 if (l[2] == 't')
5241 {
5242 if (!add_prefix (DS_PREFIX_OPCODE))
5243 return NULL;
5244 l += 3;
5245 }
5246 else if (l[2] == 'n')
5247 {
5248 if (!add_prefix (CS_PREFIX_OPCODE))
5249 return NULL;
5250 l += 3;
5251 }
5252 }
5253 }
5254 /* Any other comma loses. */
5255 if (*l == ',')
5256 {
5257 as_bad (_("invalid character %s in mnemonic"),
5258 output_invalid (*l));
5259 return NULL;
5260 }
5261
5262 /* Check if instruction is supported on specified architecture. */
5263 supported = 0;
5264 for (t = current_templates->start; t < current_templates->end; ++t)
5265 {
5266 supported |= cpu_flags_match (t);
5267 if (supported == CPU_FLAGS_PERFECT_MATCH)
5268 {
5269 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5270 as_warn (_("use .code16 to ensure correct addressing mode"));
5271
5272 return l;
5273 }
5274 }
5275
5276 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5277 as_bad (flag_code == CODE_64BIT
5278 ? _("`%s' is not supported in 64-bit mode")
5279 : _("`%s' is only supported in 64-bit mode"),
5280 current_templates->start->name);
5281 else
5282 as_bad (_("`%s' is not supported on `%s%s'"),
5283 current_templates->start->name,
5284 cpu_arch_name ? cpu_arch_name : default_arch,
5285 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5286
5287 return NULL;
5288 }
5289
5290 static char *
5291 parse_operands (char *l, const char *mnemonic)
5292 {
5293 char *token_start;
5294
5295 /* 1 if operand is pending after ','. */
5296 unsigned int expecting_operand = 0;
5297
5298 /* Non-zero if operand parens not balanced. */
5299 unsigned int paren_not_balanced;
5300
5301 while (*l != END_OF_INSN)
5302 {
5303 /* Skip optional white space before operand. */
5304 if (is_space_char (*l))
5305 ++l;
5306 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5307 {
5308 as_bad (_("invalid character %s before operand %d"),
5309 output_invalid (*l),
5310 i.operands + 1);
5311 return NULL;
5312 }
5313 token_start = l; /* After white space. */
5314 paren_not_balanced = 0;
5315 while (paren_not_balanced || *l != ',')
5316 {
5317 if (*l == END_OF_INSN)
5318 {
5319 if (paren_not_balanced)
5320 {
5321 if (!intel_syntax)
5322 as_bad (_("unbalanced parenthesis in operand %d."),
5323 i.operands + 1);
5324 else
5325 as_bad (_("unbalanced brackets in operand %d."),
5326 i.operands + 1);
5327 return NULL;
5328 }
5329 else
5330 break; /* we are done */
5331 }
5332 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
5333 {
5334 as_bad (_("invalid character %s in operand %d"),
5335 output_invalid (*l),
5336 i.operands + 1);
5337 return NULL;
5338 }
5339 if (!intel_syntax)
5340 {
5341 if (*l == '(')
5342 ++paren_not_balanced;
5343 if (*l == ')')
5344 --paren_not_balanced;
5345 }
5346 else
5347 {
5348 if (*l == '[')
5349 ++paren_not_balanced;
5350 if (*l == ']')
5351 --paren_not_balanced;
5352 }
5353 l++;
5354 }
5355 if (l != token_start)
5356 { /* Yes, we've read in another operand. */
5357 unsigned int operand_ok;
5358 this_operand = i.operands++;
5359 if (i.operands > MAX_OPERANDS)
5360 {
5361 as_bad (_("spurious operands; (%d operands/instruction max)"),
5362 MAX_OPERANDS);
5363 return NULL;
5364 }
5365 i.types[this_operand].bitfield.unspecified = 1;
5366 /* Now parse operand adding info to 'i' as we go along. */
5367 END_STRING_AND_SAVE (l);
5368
5369 if (i.mem_operands > 1)
5370 {
5371 as_bad (_("too many memory references for `%s'"),
5372 mnemonic);
5373 return 0;
5374 }
5375
5376 if (intel_syntax)
5377 operand_ok =
5378 i386_intel_operand (token_start,
5379 intel_float_operand (mnemonic));
5380 else
5381 operand_ok = i386_att_operand (token_start);
5382
5383 RESTORE_END_STRING (l);
5384 if (!operand_ok)
5385 return NULL;
5386 }
5387 else
5388 {
5389 if (expecting_operand)
5390 {
5391 expecting_operand_after_comma:
5392 as_bad (_("expecting operand after ','; got nothing"));
5393 return NULL;
5394 }
5395 if (*l == ',')
5396 {
5397 as_bad (_("expecting operand before ','; got nothing"));
5398 return NULL;
5399 }
5400 }
5401
5402 /* Now *l must be either ',' or END_OF_INSN. */
5403 if (*l == ',')
5404 {
5405 if (*++l == END_OF_INSN)
5406 {
5407 /* Just skip it, if it's \n complain. */
5408 goto expecting_operand_after_comma;
5409 }
5410 expecting_operand = 1;
5411 }
5412 }
5413 return l;
5414 }
5415
5416 static void
5417 swap_2_operands (int xchg1, int xchg2)
5418 {
5419 union i386_op temp_op;
5420 i386_operand_type temp_type;
5421 unsigned int temp_flags;
5422 enum bfd_reloc_code_real temp_reloc;
5423
5424 temp_type = i.types[xchg2];
5425 i.types[xchg2] = i.types[xchg1];
5426 i.types[xchg1] = temp_type;
5427
5428 temp_flags = i.flags[xchg2];
5429 i.flags[xchg2] = i.flags[xchg1];
5430 i.flags[xchg1] = temp_flags;
5431
5432 temp_op = i.op[xchg2];
5433 i.op[xchg2] = i.op[xchg1];
5434 i.op[xchg1] = temp_op;
5435
5436 temp_reloc = i.reloc[xchg2];
5437 i.reloc[xchg2] = i.reloc[xchg1];
5438 i.reloc[xchg1] = temp_reloc;
5439
5440 if (i.mask)
5441 {
5442 if (i.mask->operand == xchg1)
5443 i.mask->operand = xchg2;
5444 else if (i.mask->operand == xchg2)
5445 i.mask->operand = xchg1;
5446 }
5447 if (i.broadcast)
5448 {
5449 if (i.broadcast->operand == xchg1)
5450 i.broadcast->operand = xchg2;
5451 else if (i.broadcast->operand == xchg2)
5452 i.broadcast->operand = xchg1;
5453 }
5454 if (i.rounding)
5455 {
5456 if (i.rounding->operand == xchg1)
5457 i.rounding->operand = xchg2;
5458 else if (i.rounding->operand == xchg2)
5459 i.rounding->operand = xchg1;
5460 }
5461 }
5462
5463 static void
5464 swap_operands (void)
5465 {
5466 switch (i.operands)
5467 {
5468 case 5:
5469 case 4:
5470 swap_2_operands (1, i.operands - 2);
5471 /* Fall through. */
5472 case 3:
5473 case 2:
5474 swap_2_operands (0, i.operands - 1);
5475 break;
5476 default:
5477 abort ();
5478 }
5479
5480 if (i.mem_operands == 2)
5481 {
5482 const seg_entry *temp_seg;
5483 temp_seg = i.seg[0];
5484 i.seg[0] = i.seg[1];
5485 i.seg[1] = temp_seg;
5486 }
5487 }
5488
5489 /* Try to ensure constant immediates are represented in the smallest
5490 opcode possible. */
5491 static void
5492 optimize_imm (void)
5493 {
5494 char guess_suffix = 0;
5495 int op;
5496
5497 if (i.suffix)
5498 guess_suffix = i.suffix;
5499 else if (i.reg_operands)
5500 {
5501 /* Figure out a suffix from the last register operand specified.
5502 We can't do this properly yet, i.e. excluding special register
5503 instances, but the following works for instructions with
5504 immediates. In any case, we can't set i.suffix yet. */
5505 for (op = i.operands; --op >= 0;)
5506 if (i.types[op].bitfield.class != Reg)
5507 continue;
5508 else if (i.types[op].bitfield.byte)
5509 {
5510 guess_suffix = BYTE_MNEM_SUFFIX;
5511 break;
5512 }
5513 else if (i.types[op].bitfield.word)
5514 {
5515 guess_suffix = WORD_MNEM_SUFFIX;
5516 break;
5517 }
5518 else if (i.types[op].bitfield.dword)
5519 {
5520 guess_suffix = LONG_MNEM_SUFFIX;
5521 break;
5522 }
5523 else if (i.types[op].bitfield.qword)
5524 {
5525 guess_suffix = QWORD_MNEM_SUFFIX;
5526 break;
5527 }
5528 }
5529 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5530 guess_suffix = WORD_MNEM_SUFFIX;
5531
5532 for (op = i.operands; --op >= 0;)
5533 if (operand_type_check (i.types[op], imm))
5534 {
5535 switch (i.op[op].imms->X_op)
5536 {
5537 case O_constant:
5538 /* If a suffix is given, this operand may be shortened. */
5539 switch (guess_suffix)
5540 {
5541 case LONG_MNEM_SUFFIX:
5542 i.types[op].bitfield.imm32 = 1;
5543 i.types[op].bitfield.imm64 = 1;
5544 break;
5545 case WORD_MNEM_SUFFIX:
5546 i.types[op].bitfield.imm16 = 1;
5547 i.types[op].bitfield.imm32 = 1;
5548 i.types[op].bitfield.imm32s = 1;
5549 i.types[op].bitfield.imm64 = 1;
5550 break;
5551 case BYTE_MNEM_SUFFIX:
5552 i.types[op].bitfield.imm8 = 1;
5553 i.types[op].bitfield.imm8s = 1;
5554 i.types[op].bitfield.imm16 = 1;
5555 i.types[op].bitfield.imm32 = 1;
5556 i.types[op].bitfield.imm32s = 1;
5557 i.types[op].bitfield.imm64 = 1;
5558 break;
5559 }
5560
5561 /* If this operand is at most 16 bits, convert it
5562 to a signed 16 bit number before trying to see
5563 whether it will fit in an even smaller size.
5564 This allows a 16-bit operand such as $0xffe0 to
5565 be recognised as within Imm8S range. */
5566 if ((i.types[op].bitfield.imm16)
5567 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5568 {
5569 i.op[op].imms->X_add_number =
5570 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5571 }
5572 #ifdef BFD64
5573 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5574 if ((i.types[op].bitfield.imm32)
5575 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5576 == 0))
5577 {
5578 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5579 ^ ((offsetT) 1 << 31))
5580 - ((offsetT) 1 << 31));
5581 }
5582 #endif
5583 i.types[op]
5584 = operand_type_or (i.types[op],
5585 smallest_imm_type (i.op[op].imms->X_add_number));
5586
5587 /* We must avoid matching of Imm32 templates when 64bit
5588 only immediate is available. */
5589 if (guess_suffix == QWORD_MNEM_SUFFIX)
5590 i.types[op].bitfield.imm32 = 0;
5591 break;
5592
5593 case O_absent:
5594 case O_register:
5595 abort ();
5596
5597 /* Symbols and expressions. */
5598 default:
5599 /* Convert symbolic operand to proper sizes for matching, but don't
5600 prevent matching a set of insns that only supports sizes other
5601 than those matching the insn suffix. */
5602 {
5603 i386_operand_type mask, allowed;
5604 const insn_template *t;
5605
5606 operand_type_set (&mask, 0);
5607 operand_type_set (&allowed, 0);
5608
5609 for (t = current_templates->start;
5610 t < current_templates->end;
5611 ++t)
5612 {
5613 allowed = operand_type_or (allowed, t->operand_types[op]);
5614 allowed = operand_type_and (allowed, anyimm);
5615 }
5616 switch (guess_suffix)
5617 {
5618 case QWORD_MNEM_SUFFIX:
5619 mask.bitfield.imm64 = 1;
5620 mask.bitfield.imm32s = 1;
5621 break;
5622 case LONG_MNEM_SUFFIX:
5623 mask.bitfield.imm32 = 1;
5624 break;
5625 case WORD_MNEM_SUFFIX:
5626 mask.bitfield.imm16 = 1;
5627 break;
5628 case BYTE_MNEM_SUFFIX:
5629 mask.bitfield.imm8 = 1;
5630 break;
5631 default:
5632 break;
5633 }
5634 allowed = operand_type_and (mask, allowed);
5635 if (!operand_type_all_zero (&allowed))
5636 i.types[op] = operand_type_and (i.types[op], mask);
5637 }
5638 break;
5639 }
5640 }
5641 }
5642
5643 /* Try to use the smallest displacement type too. */
5644 static void
5645 optimize_disp (void)
5646 {
5647 int op;
5648
5649 for (op = i.operands; --op >= 0;)
5650 if (operand_type_check (i.types[op], disp))
5651 {
5652 if (i.op[op].disps->X_op == O_constant)
5653 {
5654 offsetT op_disp = i.op[op].disps->X_add_number;
5655
5656 if (i.types[op].bitfield.disp16
5657 && (op_disp & ~(offsetT) 0xffff) == 0)
5658 {
5659 /* If this operand is at most 16 bits, convert
5660 to a signed 16 bit number and don't use 64bit
5661 displacement. */
5662 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5663 i.types[op].bitfield.disp64 = 0;
5664 }
5665 #ifdef BFD64
5666 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5667 if (i.types[op].bitfield.disp32
5668 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5669 {
5670 /* If this operand is at most 32 bits, convert
5671 to a signed 32 bit number and don't use 64bit
5672 displacement. */
5673 op_disp &= (((offsetT) 2 << 31) - 1);
5674 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5675 i.types[op].bitfield.disp64 = 0;
5676 }
5677 #endif
5678 if (!op_disp && i.types[op].bitfield.baseindex)
5679 {
5680 i.types[op].bitfield.disp8 = 0;
5681 i.types[op].bitfield.disp16 = 0;
5682 i.types[op].bitfield.disp32 = 0;
5683 i.types[op].bitfield.disp32s = 0;
5684 i.types[op].bitfield.disp64 = 0;
5685 i.op[op].disps = 0;
5686 i.disp_operands--;
5687 }
5688 else if (flag_code == CODE_64BIT)
5689 {
5690 if (fits_in_signed_long (op_disp))
5691 {
5692 i.types[op].bitfield.disp64 = 0;
5693 i.types[op].bitfield.disp32s = 1;
5694 }
5695 if (i.prefix[ADDR_PREFIX]
5696 && fits_in_unsigned_long (op_disp))
5697 i.types[op].bitfield.disp32 = 1;
5698 }
5699 if ((i.types[op].bitfield.disp32
5700 || i.types[op].bitfield.disp32s
5701 || i.types[op].bitfield.disp16)
5702 && fits_in_disp8 (op_disp))
5703 i.types[op].bitfield.disp8 = 1;
5704 }
5705 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5706 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5707 {
5708 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5709 i.op[op].disps, 0, i.reloc[op]);
5710 i.types[op].bitfield.disp8 = 0;
5711 i.types[op].bitfield.disp16 = 0;
5712 i.types[op].bitfield.disp32 = 0;
5713 i.types[op].bitfield.disp32s = 0;
5714 i.types[op].bitfield.disp64 = 0;
5715 }
5716 else
5717 /* We only support 64bit displacement on constants. */
5718 i.types[op].bitfield.disp64 = 0;
5719 }
5720 }
5721
5722 /* Return 1 if there is a match in broadcast bytes between operand
5723 GIVEN and instruction template T. */
5724
5725 static INLINE int
5726 match_broadcast_size (const insn_template *t, unsigned int given)
5727 {
5728 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5729 && i.types[given].bitfield.byte)
5730 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5731 && i.types[given].bitfield.word)
5732 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5733 && i.types[given].bitfield.dword)
5734 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5735 && i.types[given].bitfield.qword));
5736 }
5737
5738 /* Check if operands are valid for the instruction. */
5739
5740 static int
5741 check_VecOperands (const insn_template *t)
5742 {
5743 unsigned int op;
5744 i386_cpu_flags cpu;
5745
5746 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5747 any one operand are implicity requiring AVX512VL support if the actual
5748 operand size is YMMword or XMMword. Since this function runs after
5749 template matching, there's no need to check for YMMword/XMMword in
5750 the template. */
5751 cpu = cpu_flags_and (t->cpu_flags, avx512);
5752 if (!cpu_flags_all_zero (&cpu)
5753 && !t->cpu_flags.bitfield.cpuavx512vl
5754 && !cpu_arch_flags.bitfield.cpuavx512vl)
5755 {
5756 for (op = 0; op < t->operands; ++op)
5757 {
5758 if (t->operand_types[op].bitfield.zmmword
5759 && (i.types[op].bitfield.ymmword
5760 || i.types[op].bitfield.xmmword))
5761 {
5762 i.error = unsupported;
5763 return 1;
5764 }
5765 }
5766 }
5767
5768 /* Without VSIB byte, we can't have a vector register for index. */
5769 if (!t->opcode_modifier.vecsib
5770 && i.index_reg
5771 && (i.index_reg->reg_type.bitfield.xmmword
5772 || i.index_reg->reg_type.bitfield.ymmword
5773 || i.index_reg->reg_type.bitfield.zmmword))
5774 {
5775 i.error = unsupported_vector_index_register;
5776 return 1;
5777 }
5778
5779 /* Check if default mask is allowed. */
5780 if (t->opcode_modifier.nodefmask
5781 && (!i.mask || i.mask->mask->reg_num == 0))
5782 {
5783 i.error = no_default_mask;
5784 return 1;
5785 }
5786
5787 /* For VSIB byte, we need a vector register for index, and all vector
5788 registers must be distinct. */
5789 if (t->opcode_modifier.vecsib)
5790 {
5791 if (!i.index_reg
5792 || !((t->opcode_modifier.vecsib == VecSIB128
5793 && i.index_reg->reg_type.bitfield.xmmword)
5794 || (t->opcode_modifier.vecsib == VecSIB256
5795 && i.index_reg->reg_type.bitfield.ymmword)
5796 || (t->opcode_modifier.vecsib == VecSIB512
5797 && i.index_reg->reg_type.bitfield.zmmword)))
5798 {
5799 i.error = invalid_vsib_address;
5800 return 1;
5801 }
5802
5803 gas_assert (i.reg_operands == 2 || i.mask);
5804 if (i.reg_operands == 2 && !i.mask)
5805 {
5806 gas_assert (i.types[0].bitfield.class == RegSIMD);
5807 gas_assert (i.types[0].bitfield.xmmword
5808 || i.types[0].bitfield.ymmword);
5809 gas_assert (i.types[2].bitfield.class == RegSIMD);
5810 gas_assert (i.types[2].bitfield.xmmword
5811 || i.types[2].bitfield.ymmword);
5812 if (operand_check == check_none)
5813 return 0;
5814 if (register_number (i.op[0].regs)
5815 != register_number (i.index_reg)
5816 && register_number (i.op[2].regs)
5817 != register_number (i.index_reg)
5818 && register_number (i.op[0].regs)
5819 != register_number (i.op[2].regs))
5820 return 0;
5821 if (operand_check == check_error)
5822 {
5823 i.error = invalid_vector_register_set;
5824 return 1;
5825 }
5826 as_warn (_("mask, index, and destination registers should be distinct"));
5827 }
5828 else if (i.reg_operands == 1 && i.mask)
5829 {
5830 if (i.types[1].bitfield.class == RegSIMD
5831 && (i.types[1].bitfield.xmmword
5832 || i.types[1].bitfield.ymmword
5833 || i.types[1].bitfield.zmmword)
5834 && (register_number (i.op[1].regs)
5835 == register_number (i.index_reg)))
5836 {
5837 if (operand_check == check_error)
5838 {
5839 i.error = invalid_vector_register_set;
5840 return 1;
5841 }
5842 if (operand_check != check_none)
5843 as_warn (_("index and destination registers should be distinct"));
5844 }
5845 }
5846 }
5847
5848 /* Check if broadcast is supported by the instruction and is applied
5849 to the memory operand. */
5850 if (i.broadcast)
5851 {
5852 i386_operand_type type, overlap;
5853
5854 /* Check if specified broadcast is supported in this instruction,
5855 and its broadcast bytes match the memory operand. */
5856 op = i.broadcast->operand;
5857 if (!t->opcode_modifier.broadcast
5858 || !(i.flags[op] & Operand_Mem)
5859 || (!i.types[op].bitfield.unspecified
5860 && !match_broadcast_size (t, op)))
5861 {
5862 bad_broadcast:
5863 i.error = unsupported_broadcast;
5864 return 1;
5865 }
5866
5867 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5868 * i.broadcast->type);
5869 operand_type_set (&type, 0);
5870 switch (i.broadcast->bytes)
5871 {
5872 case 2:
5873 type.bitfield.word = 1;
5874 break;
5875 case 4:
5876 type.bitfield.dword = 1;
5877 break;
5878 case 8:
5879 type.bitfield.qword = 1;
5880 break;
5881 case 16:
5882 type.bitfield.xmmword = 1;
5883 break;
5884 case 32:
5885 type.bitfield.ymmword = 1;
5886 break;
5887 case 64:
5888 type.bitfield.zmmword = 1;
5889 break;
5890 default:
5891 goto bad_broadcast;
5892 }
5893
5894 overlap = operand_type_and (type, t->operand_types[op]);
5895 if (t->operand_types[op].bitfield.class == RegSIMD
5896 && t->operand_types[op].bitfield.byte
5897 + t->operand_types[op].bitfield.word
5898 + t->operand_types[op].bitfield.dword
5899 + t->operand_types[op].bitfield.qword > 1)
5900 {
5901 overlap.bitfield.xmmword = 0;
5902 overlap.bitfield.ymmword = 0;
5903 overlap.bitfield.zmmword = 0;
5904 }
5905 if (operand_type_all_zero (&overlap))
5906 goto bad_broadcast;
5907
5908 if (t->opcode_modifier.checkregsize)
5909 {
5910 unsigned int j;
5911
5912 type.bitfield.baseindex = 1;
5913 for (j = 0; j < i.operands; ++j)
5914 {
5915 if (j != op
5916 && !operand_type_register_match(i.types[j],
5917 t->operand_types[j],
5918 type,
5919 t->operand_types[op]))
5920 goto bad_broadcast;
5921 }
5922 }
5923 }
5924 /* If broadcast is supported in this instruction, we need to check if
5925 operand of one-element size isn't specified without broadcast. */
5926 else if (t->opcode_modifier.broadcast && i.mem_operands)
5927 {
5928 /* Find memory operand. */
5929 for (op = 0; op < i.operands; op++)
5930 if (i.flags[op] & Operand_Mem)
5931 break;
5932 gas_assert (op < i.operands);
5933 /* Check size of the memory operand. */
5934 if (match_broadcast_size (t, op))
5935 {
5936 i.error = broadcast_needed;
5937 return 1;
5938 }
5939 }
5940 else
5941 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5942
5943 /* Check if requested masking is supported. */
5944 if (i.mask)
5945 {
5946 switch (t->opcode_modifier.masking)
5947 {
5948 case BOTH_MASKING:
5949 break;
5950 case MERGING_MASKING:
5951 if (i.mask->zeroing)
5952 {
5953 case 0:
5954 i.error = unsupported_masking;
5955 return 1;
5956 }
5957 break;
5958 case DYNAMIC_MASKING:
5959 /* Memory destinations allow only merging masking. */
5960 if (i.mask->zeroing && i.mem_operands)
5961 {
5962 /* Find memory operand. */
5963 for (op = 0; op < i.operands; op++)
5964 if (i.flags[op] & Operand_Mem)
5965 break;
5966 gas_assert (op < i.operands);
5967 if (op == i.operands - 1)
5968 {
5969 i.error = unsupported_masking;
5970 return 1;
5971 }
5972 }
5973 break;
5974 default:
5975 abort ();
5976 }
5977 }
5978
5979 /* Check if masking is applied to dest operand. */
5980 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5981 {
5982 i.error = mask_not_on_destination;
5983 return 1;
5984 }
5985
5986 /* Check RC/SAE. */
5987 if (i.rounding)
5988 {
5989 if (!t->opcode_modifier.sae
5990 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5991 {
5992 i.error = unsupported_rc_sae;
5993 return 1;
5994 }
5995 /* If the instruction has several immediate operands and one of
5996 them is rounding, the rounding operand should be the last
5997 immediate operand. */
5998 if (i.imm_operands > 1
5999 && i.rounding->operand != (int) (i.imm_operands - 1))
6000 {
6001 i.error = rc_sae_operand_not_last_imm;
6002 return 1;
6003 }
6004 }
6005
6006 /* Check vector Disp8 operand. */
6007 if (t->opcode_modifier.disp8memshift
6008 && i.disp_encoding != disp_encoding_32bit)
6009 {
6010 if (i.broadcast)
6011 i.memshift = t->opcode_modifier.broadcast - 1;
6012 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6013 i.memshift = t->opcode_modifier.disp8memshift;
6014 else
6015 {
6016 const i386_operand_type *type = NULL;
6017
6018 i.memshift = 0;
6019 for (op = 0; op < i.operands; op++)
6020 if (i.flags[op] & Operand_Mem)
6021 {
6022 if (t->opcode_modifier.evex == EVEXLIG)
6023 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6024 else if (t->operand_types[op].bitfield.xmmword
6025 + t->operand_types[op].bitfield.ymmword
6026 + t->operand_types[op].bitfield.zmmword <= 1)
6027 type = &t->operand_types[op];
6028 else if (!i.types[op].bitfield.unspecified)
6029 type = &i.types[op];
6030 }
6031 else if (i.types[op].bitfield.class == RegSIMD
6032 && t->opcode_modifier.evex != EVEXLIG)
6033 {
6034 if (i.types[op].bitfield.zmmword)
6035 i.memshift = 6;
6036 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6037 i.memshift = 5;
6038 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6039 i.memshift = 4;
6040 }
6041
6042 if (type)
6043 {
6044 if (type->bitfield.zmmword)
6045 i.memshift = 6;
6046 else if (type->bitfield.ymmword)
6047 i.memshift = 5;
6048 else if (type->bitfield.xmmword)
6049 i.memshift = 4;
6050 }
6051
6052 /* For the check in fits_in_disp8(). */
6053 if (i.memshift == 0)
6054 i.memshift = -1;
6055 }
6056
6057 for (op = 0; op < i.operands; op++)
6058 if (operand_type_check (i.types[op], disp)
6059 && i.op[op].disps->X_op == O_constant)
6060 {
6061 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6062 {
6063 i.types[op].bitfield.disp8 = 1;
6064 return 0;
6065 }
6066 i.types[op].bitfield.disp8 = 0;
6067 }
6068 }
6069
6070 i.memshift = 0;
6071
6072 return 0;
6073 }
6074
6075 /* Check if operands are valid for the instruction. Update VEX
6076 operand types. */
6077
6078 static int
6079 VEX_check_operands (const insn_template *t)
6080 {
6081 if (i.vec_encoding == vex_encoding_evex)
6082 {
6083 /* This instruction must be encoded with EVEX prefix. */
6084 if (!is_evex_encoding (t))
6085 {
6086 i.error = unsupported;
6087 return 1;
6088 }
6089 return 0;
6090 }
6091
6092 if (!t->opcode_modifier.vex)
6093 {
6094 /* This instruction template doesn't have VEX prefix. */
6095 if (i.vec_encoding != vex_encoding_default)
6096 {
6097 i.error = unsupported;
6098 return 1;
6099 }
6100 return 0;
6101 }
6102
6103 /* Check the special Imm4 cases; must be the first operand. */
6104 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6105 {
6106 if (i.op[0].imms->X_op != O_constant
6107 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6108 {
6109 i.error = bad_imm4;
6110 return 1;
6111 }
6112
6113 /* Turn off Imm<N> so that update_imm won't complain. */
6114 operand_type_set (&i.types[0], 0);
6115 }
6116
6117 return 0;
6118 }
6119
6120 static const insn_template *
6121 match_template (char mnem_suffix)
6122 {
6123 /* Points to template once we've found it. */
6124 const insn_template *t;
6125 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6126 i386_operand_type overlap4;
6127 unsigned int found_reverse_match;
6128 i386_opcode_modifier suffix_check;
6129 i386_operand_type operand_types [MAX_OPERANDS];
6130 int addr_prefix_disp;
6131 unsigned int j, size_match, check_register;
6132 enum i386_error specific_error = 0;
6133
6134 #if MAX_OPERANDS != 5
6135 # error "MAX_OPERANDS must be 5."
6136 #endif
6137
6138 found_reverse_match = 0;
6139 addr_prefix_disp = -1;
6140
6141 /* Prepare for mnemonic suffix check. */
6142 memset (&suffix_check, 0, sizeof (suffix_check));
6143 switch (mnem_suffix)
6144 {
6145 case BYTE_MNEM_SUFFIX:
6146 suffix_check.no_bsuf = 1;
6147 break;
6148 case WORD_MNEM_SUFFIX:
6149 suffix_check.no_wsuf = 1;
6150 break;
6151 case SHORT_MNEM_SUFFIX:
6152 suffix_check.no_ssuf = 1;
6153 break;
6154 case LONG_MNEM_SUFFIX:
6155 suffix_check.no_lsuf = 1;
6156 break;
6157 case QWORD_MNEM_SUFFIX:
6158 suffix_check.no_qsuf = 1;
6159 break;
6160 default:
6161 /* NB: In Intel syntax, normally we can check for memory operand
6162 size when there is no mnemonic suffix. But jmp and call have
6163 2 different encodings with Dword memory operand size, one with
6164 No_ldSuf and the other without. i.suffix is set to
6165 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6166 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6167 suffix_check.no_ldsuf = 1;
6168 }
6169
6170 /* Must have right number of operands. */
6171 i.error = number_of_operands_mismatch;
6172
6173 for (t = current_templates->start; t < current_templates->end; t++)
6174 {
6175 addr_prefix_disp = -1;
6176 found_reverse_match = 0;
6177
6178 if (i.operands != t->operands)
6179 continue;
6180
6181 /* Check processor support. */
6182 i.error = unsupported;
6183 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6184 continue;
6185
6186 /* Check AT&T mnemonic. */
6187 i.error = unsupported_with_intel_mnemonic;
6188 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6189 continue;
6190
6191 /* Check AT&T/Intel syntax. */
6192 i.error = unsupported_syntax;
6193 if ((intel_syntax && t->opcode_modifier.attsyntax)
6194 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6195 continue;
6196
6197 /* Check Intel64/AMD64 ISA. */
6198 switch (isa64)
6199 {
6200 default:
6201 /* Default: Don't accept Intel64. */
6202 if (t->opcode_modifier.isa64 == INTEL64)
6203 continue;
6204 break;
6205 case amd64:
6206 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6207 if (t->opcode_modifier.isa64 >= INTEL64)
6208 continue;
6209 break;
6210 case intel64:
6211 /* -mintel64: Don't accept AMD64. */
6212 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6213 continue;
6214 break;
6215 }
6216
6217 /* Check the suffix. */
6218 i.error = invalid_instruction_suffix;
6219 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6220 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6221 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6222 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6223 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6224 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6225 continue;
6226
6227 size_match = operand_size_match (t);
6228 if (!size_match)
6229 continue;
6230
6231 /* This is intentionally not
6232
6233 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6234
6235 as the case of a missing * on the operand is accepted (perhaps with
6236 a warning, issued further down). */
6237 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6238 {
6239 i.error = operand_type_mismatch;
6240 continue;
6241 }
6242
6243 for (j = 0; j < MAX_OPERANDS; j++)
6244 operand_types[j] = t->operand_types[j];
6245
6246 /* In general, don't allow
6247 - 64-bit operands outside of 64-bit mode,
6248 - 32-bit operands on pre-386. */
6249 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6250 if (((i.suffix == QWORD_MNEM_SUFFIX
6251 && flag_code != CODE_64BIT
6252 && (t->base_opcode != 0x0fc7
6253 || t->extension_opcode != 1 /* cmpxchg8b */))
6254 || (i.suffix == LONG_MNEM_SUFFIX
6255 && !cpu_arch_flags.bitfield.cpui386))
6256 && (intel_syntax
6257 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6258 && !intel_float_operand (t->name))
6259 : intel_float_operand (t->name) != 2)
6260 && (t->operands == i.imm_operands
6261 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6262 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6263 && operand_types[i.imm_operands].bitfield.class != RegMask)
6264 || (operand_types[j].bitfield.class != RegMMX
6265 && operand_types[j].bitfield.class != RegSIMD
6266 && operand_types[j].bitfield.class != RegMask))
6267 && !t->opcode_modifier.vecsib)
6268 continue;
6269
6270 /* Do not verify operands when there are none. */
6271 if (!t->operands)
6272 /* We've found a match; break out of loop. */
6273 break;
6274
6275 if (!t->opcode_modifier.jump
6276 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6277 {
6278 /* There should be only one Disp operand. */
6279 for (j = 0; j < MAX_OPERANDS; j++)
6280 if (operand_type_check (operand_types[j], disp))
6281 break;
6282 if (j < MAX_OPERANDS)
6283 {
6284 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6285
6286 addr_prefix_disp = j;
6287
6288 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6289 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6290 switch (flag_code)
6291 {
6292 case CODE_16BIT:
6293 override = !override;
6294 /* Fall through. */
6295 case CODE_32BIT:
6296 if (operand_types[j].bitfield.disp32
6297 && operand_types[j].bitfield.disp16)
6298 {
6299 operand_types[j].bitfield.disp16 = override;
6300 operand_types[j].bitfield.disp32 = !override;
6301 }
6302 operand_types[j].bitfield.disp32s = 0;
6303 operand_types[j].bitfield.disp64 = 0;
6304 break;
6305
6306 case CODE_64BIT:
6307 if (operand_types[j].bitfield.disp32s
6308 || operand_types[j].bitfield.disp64)
6309 {
6310 operand_types[j].bitfield.disp64 &= !override;
6311 operand_types[j].bitfield.disp32s &= !override;
6312 operand_types[j].bitfield.disp32 = override;
6313 }
6314 operand_types[j].bitfield.disp16 = 0;
6315 break;
6316 }
6317 }
6318 }
6319
6320 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6321 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6322 continue;
6323
6324 /* We check register size if needed. */
6325 if (t->opcode_modifier.checkregsize)
6326 {
6327 check_register = (1 << t->operands) - 1;
6328 if (i.broadcast)
6329 check_register &= ~(1 << i.broadcast->operand);
6330 }
6331 else
6332 check_register = 0;
6333
6334 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6335 switch (t->operands)
6336 {
6337 case 1:
6338 if (!operand_type_match (overlap0, i.types[0]))
6339 continue;
6340 break;
6341 case 2:
6342 /* xchg %eax, %eax is a special case. It is an alias for nop
6343 only in 32bit mode and we can use opcode 0x90. In 64bit
6344 mode, we can't use 0x90 for xchg %eax, %eax since it should
6345 zero-extend %eax to %rax. */
6346 if (flag_code == CODE_64BIT
6347 && t->base_opcode == 0x90
6348 && i.types[0].bitfield.instance == Accum
6349 && i.types[0].bitfield.dword
6350 && i.types[1].bitfield.instance == Accum
6351 && i.types[1].bitfield.dword)
6352 continue;
6353 /* xrelease mov %eax, <disp> is another special case. It must not
6354 match the accumulator-only encoding of mov. */
6355 if (flag_code != CODE_64BIT
6356 && i.hle_prefix
6357 && t->base_opcode == 0xa0
6358 && i.types[0].bitfield.instance == Accum
6359 && (i.flags[1] & Operand_Mem))
6360 continue;
6361 /* Fall through. */
6362
6363 case 3:
6364 if (!(size_match & MATCH_STRAIGHT))
6365 goto check_reverse;
6366 /* Reverse direction of operands if swapping is possible in the first
6367 place (operands need to be symmetric) and
6368 - the load form is requested, and the template is a store form,
6369 - the store form is requested, and the template is a load form,
6370 - the non-default (swapped) form is requested. */
6371 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6372 if (t->opcode_modifier.d && i.reg_operands == i.operands
6373 && !operand_type_all_zero (&overlap1))
6374 switch (i.dir_encoding)
6375 {
6376 case dir_encoding_load:
6377 if (operand_type_check (operand_types[i.operands - 1], anymem)
6378 || t->opcode_modifier.regmem)
6379 goto check_reverse;
6380 break;
6381
6382 case dir_encoding_store:
6383 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6384 && !t->opcode_modifier.regmem)
6385 goto check_reverse;
6386 break;
6387
6388 case dir_encoding_swap:
6389 goto check_reverse;
6390
6391 case dir_encoding_default:
6392 break;
6393 }
6394 /* If we want store form, we skip the current load. */
6395 if ((i.dir_encoding == dir_encoding_store
6396 || i.dir_encoding == dir_encoding_swap)
6397 && i.mem_operands == 0
6398 && t->opcode_modifier.load)
6399 continue;
6400 /* Fall through. */
6401 case 4:
6402 case 5:
6403 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6404 if (!operand_type_match (overlap0, i.types[0])
6405 || !operand_type_match (overlap1, i.types[1])
6406 || ((check_register & 3) == 3
6407 && !operand_type_register_match (i.types[0],
6408 operand_types[0],
6409 i.types[1],
6410 operand_types[1])))
6411 {
6412 /* Check if other direction is valid ... */
6413 if (!t->opcode_modifier.d)
6414 continue;
6415
6416 check_reverse:
6417 if (!(size_match & MATCH_REVERSE))
6418 continue;
6419 /* Try reversing direction of operands. */
6420 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6421 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6422 if (!operand_type_match (overlap0, i.types[0])
6423 || !operand_type_match (overlap1, i.types[i.operands - 1])
6424 || (check_register
6425 && !operand_type_register_match (i.types[0],
6426 operand_types[i.operands - 1],
6427 i.types[i.operands - 1],
6428 operand_types[0])))
6429 {
6430 /* Does not match either direction. */
6431 continue;
6432 }
6433 /* found_reverse_match holds which of D or FloatR
6434 we've found. */
6435 if (!t->opcode_modifier.d)
6436 found_reverse_match = 0;
6437 else if (operand_types[0].bitfield.tbyte)
6438 found_reverse_match = Opcode_FloatD;
6439 else if (operand_types[0].bitfield.xmmword
6440 || operand_types[i.operands - 1].bitfield.xmmword
6441 || operand_types[0].bitfield.class == RegMMX
6442 || operand_types[i.operands - 1].bitfield.class == RegMMX
6443 || is_any_vex_encoding(t))
6444 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6445 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6446 else
6447 found_reverse_match = Opcode_D;
6448 if (t->opcode_modifier.floatr)
6449 found_reverse_match |= Opcode_FloatR;
6450 }
6451 else
6452 {
6453 /* Found a forward 2 operand match here. */
6454 switch (t->operands)
6455 {
6456 case 5:
6457 overlap4 = operand_type_and (i.types[4],
6458 operand_types[4]);
6459 /* Fall through. */
6460 case 4:
6461 overlap3 = operand_type_and (i.types[3],
6462 operand_types[3]);
6463 /* Fall through. */
6464 case 3:
6465 overlap2 = operand_type_and (i.types[2],
6466 operand_types[2]);
6467 break;
6468 }
6469
6470 switch (t->operands)
6471 {
6472 case 5:
6473 if (!operand_type_match (overlap4, i.types[4])
6474 || !operand_type_register_match (i.types[3],
6475 operand_types[3],
6476 i.types[4],
6477 operand_types[4]))
6478 continue;
6479 /* Fall through. */
6480 case 4:
6481 if (!operand_type_match (overlap3, i.types[3])
6482 || ((check_register & 0xa) == 0xa
6483 && !operand_type_register_match (i.types[1],
6484 operand_types[1],
6485 i.types[3],
6486 operand_types[3]))
6487 || ((check_register & 0xc) == 0xc
6488 && !operand_type_register_match (i.types[2],
6489 operand_types[2],
6490 i.types[3],
6491 operand_types[3])))
6492 continue;
6493 /* Fall through. */
6494 case 3:
6495 /* Here we make use of the fact that there are no
6496 reverse match 3 operand instructions. */
6497 if (!operand_type_match (overlap2, i.types[2])
6498 || ((check_register & 5) == 5
6499 && !operand_type_register_match (i.types[0],
6500 operand_types[0],
6501 i.types[2],
6502 operand_types[2]))
6503 || ((check_register & 6) == 6
6504 && !operand_type_register_match (i.types[1],
6505 operand_types[1],
6506 i.types[2],
6507 operand_types[2])))
6508 continue;
6509 break;
6510 }
6511 }
6512 /* Found either forward/reverse 2, 3 or 4 operand match here:
6513 slip through to break. */
6514 }
6515
6516 /* Check if vector and VEX operands are valid. */
6517 if (check_VecOperands (t) || VEX_check_operands (t))
6518 {
6519 specific_error = i.error;
6520 continue;
6521 }
6522
6523 /* We've found a match; break out of loop. */
6524 break;
6525 }
6526
6527 if (t == current_templates->end)
6528 {
6529 /* We found no match. */
6530 const char *err_msg;
6531 switch (specific_error ? specific_error : i.error)
6532 {
6533 default:
6534 abort ();
6535 case operand_size_mismatch:
6536 err_msg = _("operand size mismatch");
6537 break;
6538 case operand_type_mismatch:
6539 err_msg = _("operand type mismatch");
6540 break;
6541 case register_type_mismatch:
6542 err_msg = _("register type mismatch");
6543 break;
6544 case number_of_operands_mismatch:
6545 err_msg = _("number of operands mismatch");
6546 break;
6547 case invalid_instruction_suffix:
6548 err_msg = _("invalid instruction suffix");
6549 break;
6550 case bad_imm4:
6551 err_msg = _("constant doesn't fit in 4 bits");
6552 break;
6553 case unsupported_with_intel_mnemonic:
6554 err_msg = _("unsupported with Intel mnemonic");
6555 break;
6556 case unsupported_syntax:
6557 err_msg = _("unsupported syntax");
6558 break;
6559 case unsupported:
6560 as_bad (_("unsupported instruction `%s'"),
6561 current_templates->start->name);
6562 return NULL;
6563 case invalid_vsib_address:
6564 err_msg = _("invalid VSIB address");
6565 break;
6566 case invalid_vector_register_set:
6567 err_msg = _("mask, index, and destination registers must be distinct");
6568 break;
6569 case unsupported_vector_index_register:
6570 err_msg = _("unsupported vector index register");
6571 break;
6572 case unsupported_broadcast:
6573 err_msg = _("unsupported broadcast");
6574 break;
6575 case broadcast_needed:
6576 err_msg = _("broadcast is needed for operand of such type");
6577 break;
6578 case unsupported_masking:
6579 err_msg = _("unsupported masking");
6580 break;
6581 case mask_not_on_destination:
6582 err_msg = _("mask not on destination operand");
6583 break;
6584 case no_default_mask:
6585 err_msg = _("default mask isn't allowed");
6586 break;
6587 case unsupported_rc_sae:
6588 err_msg = _("unsupported static rounding/sae");
6589 break;
6590 case rc_sae_operand_not_last_imm:
6591 if (intel_syntax)
6592 err_msg = _("RC/SAE operand must precede immediate operands");
6593 else
6594 err_msg = _("RC/SAE operand must follow immediate operands");
6595 break;
6596 case invalid_register_operand:
6597 err_msg = _("invalid register operand");
6598 break;
6599 }
6600 as_bad (_("%s for `%s'"), err_msg,
6601 current_templates->start->name);
6602 return NULL;
6603 }
6604
6605 if (!quiet_warnings)
6606 {
6607 if (!intel_syntax
6608 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6609 as_warn (_("indirect %s without `*'"), t->name);
6610
6611 if (t->opcode_modifier.isprefix
6612 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6613 {
6614 /* Warn them that a data or address size prefix doesn't
6615 affect assembly of the next line of code. */
6616 as_warn (_("stand-alone `%s' prefix"), t->name);
6617 }
6618 }
6619
6620 /* Copy the template we found. */
6621 i.tm = *t;
6622
6623 if (addr_prefix_disp != -1)
6624 i.tm.operand_types[addr_prefix_disp]
6625 = operand_types[addr_prefix_disp];
6626
6627 if (found_reverse_match)
6628 {
6629 /* If we found a reverse match we must alter the opcode direction
6630 bit and clear/flip the regmem modifier one. found_reverse_match
6631 holds bits to change (different for int & float insns). */
6632
6633 i.tm.base_opcode ^= found_reverse_match;
6634
6635 i.tm.operand_types[0] = operand_types[i.operands - 1];
6636 i.tm.operand_types[i.operands - 1] = operand_types[0];
6637
6638 /* Certain SIMD insns have their load forms specified in the opcode
6639 table, and hence we need to _set_ RegMem instead of clearing it.
6640 We need to avoid setting the bit though on insns like KMOVW. */
6641 i.tm.opcode_modifier.regmem
6642 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6643 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6644 && !i.tm.opcode_modifier.regmem;
6645 }
6646
6647 return t;
6648 }
6649
6650 static int
6651 check_string (void)
6652 {
6653 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6654 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6655
6656 if (i.seg[op] != NULL && i.seg[op] != &es)
6657 {
6658 as_bad (_("`%s' operand %u must use `%ses' segment"),
6659 i.tm.name,
6660 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6661 register_prefix);
6662 return 0;
6663 }
6664
6665 /* There's only ever one segment override allowed per instruction.
6666 This instruction possibly has a legal segment override on the
6667 second operand, so copy the segment to where non-string
6668 instructions store it, allowing common code. */
6669 i.seg[op] = i.seg[1];
6670
6671 return 1;
6672 }
6673
6674 static int
6675 process_suffix (void)
6676 {
6677 /* If matched instruction specifies an explicit instruction mnemonic
6678 suffix, use it. */
6679 if (i.tm.opcode_modifier.size == SIZE16)
6680 i.suffix = WORD_MNEM_SUFFIX;
6681 else if (i.tm.opcode_modifier.size == SIZE32)
6682 i.suffix = LONG_MNEM_SUFFIX;
6683 else if (i.tm.opcode_modifier.size == SIZE64)
6684 i.suffix = QWORD_MNEM_SUFFIX;
6685 else if (i.reg_operands
6686 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6687 && !i.tm.opcode_modifier.addrprefixopreg)
6688 {
6689 unsigned int numop = i.operands;
6690
6691 /* movsx/movzx want only their source operand considered here, for the
6692 ambiguity checking below. The suffix will be replaced afterwards
6693 to represent the destination (register). */
6694 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6695 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6696 --i.operands;
6697
6698 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6699 if (i.tm.base_opcode == 0xf20f38f0
6700 && i.tm.operand_types[1].bitfield.qword)
6701 i.rex |= REX_W;
6702
6703 /* If there's no instruction mnemonic suffix we try to invent one
6704 based on GPR operands. */
6705 if (!i.suffix)
6706 {
6707 /* We take i.suffix from the last register operand specified,
6708 Destination register type is more significant than source
6709 register type. crc32 in SSE4.2 prefers source register
6710 type. */
6711 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6712
6713 while (op--)
6714 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6715 || i.tm.operand_types[op].bitfield.instance == Accum)
6716 {
6717 if (i.types[op].bitfield.class != Reg)
6718 continue;
6719 if (i.types[op].bitfield.byte)
6720 i.suffix = BYTE_MNEM_SUFFIX;
6721 else if (i.types[op].bitfield.word)
6722 i.suffix = WORD_MNEM_SUFFIX;
6723 else if (i.types[op].bitfield.dword)
6724 i.suffix = LONG_MNEM_SUFFIX;
6725 else if (i.types[op].bitfield.qword)
6726 i.suffix = QWORD_MNEM_SUFFIX;
6727 else
6728 continue;
6729 break;
6730 }
6731
6732 /* As an exception, movsx/movzx silently default to a byte source
6733 in AT&T mode. */
6734 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6735 && !i.suffix && !intel_syntax)
6736 i.suffix = BYTE_MNEM_SUFFIX;
6737 }
6738 else if (i.suffix == BYTE_MNEM_SUFFIX)
6739 {
6740 if (intel_syntax
6741 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6742 && i.tm.opcode_modifier.no_bsuf)
6743 i.suffix = 0;
6744 else if (!check_byte_reg ())
6745 return 0;
6746 }
6747 else if (i.suffix == LONG_MNEM_SUFFIX)
6748 {
6749 if (intel_syntax
6750 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6751 && i.tm.opcode_modifier.no_lsuf
6752 && !i.tm.opcode_modifier.todword
6753 && !i.tm.opcode_modifier.toqword)
6754 i.suffix = 0;
6755 else if (!check_long_reg ())
6756 return 0;
6757 }
6758 else if (i.suffix == QWORD_MNEM_SUFFIX)
6759 {
6760 if (intel_syntax
6761 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6762 && i.tm.opcode_modifier.no_qsuf
6763 && !i.tm.opcode_modifier.todword
6764 && !i.tm.opcode_modifier.toqword)
6765 i.suffix = 0;
6766 else if (!check_qword_reg ())
6767 return 0;
6768 }
6769 else if (i.suffix == WORD_MNEM_SUFFIX)
6770 {
6771 if (intel_syntax
6772 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6773 && i.tm.opcode_modifier.no_wsuf)
6774 i.suffix = 0;
6775 else if (!check_word_reg ())
6776 return 0;
6777 }
6778 else if (intel_syntax
6779 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6780 /* Do nothing if the instruction is going to ignore the prefix. */
6781 ;
6782 else
6783 abort ();
6784
6785 /* Undo the movsx/movzx change done above. */
6786 i.operands = numop;
6787 }
6788 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6789 && !i.suffix)
6790 {
6791 i.suffix = stackop_size;
6792 if (stackop_size == LONG_MNEM_SUFFIX)
6793 {
6794 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6795 .code16gcc directive to support 16-bit mode with
6796 32-bit address. For IRET without a suffix, generate
6797 16-bit IRET (opcode 0xcf) to return from an interrupt
6798 handler. */
6799 if (i.tm.base_opcode == 0xcf)
6800 {
6801 i.suffix = WORD_MNEM_SUFFIX;
6802 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6803 }
6804 /* Warn about changed behavior for segment register push/pop. */
6805 else if ((i.tm.base_opcode | 1) == 0x07)
6806 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6807 i.tm.name);
6808 }
6809 }
6810 else if (!i.suffix
6811 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6812 || i.tm.opcode_modifier.jump == JUMP_BYTE
6813 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6814 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6815 && i.tm.extension_opcode <= 3)))
6816 {
6817 switch (flag_code)
6818 {
6819 case CODE_64BIT:
6820 if (!i.tm.opcode_modifier.no_qsuf)
6821 {
6822 i.suffix = QWORD_MNEM_SUFFIX;
6823 break;
6824 }
6825 /* Fall through. */
6826 case CODE_32BIT:
6827 if (!i.tm.opcode_modifier.no_lsuf)
6828 i.suffix = LONG_MNEM_SUFFIX;
6829 break;
6830 case CODE_16BIT:
6831 if (!i.tm.opcode_modifier.no_wsuf)
6832 i.suffix = WORD_MNEM_SUFFIX;
6833 break;
6834 }
6835 }
6836
6837 if (!i.suffix
6838 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6839 /* Also cover lret/retf/iret in 64-bit mode. */
6840 || (flag_code == CODE_64BIT
6841 && !i.tm.opcode_modifier.no_lsuf
6842 && !i.tm.opcode_modifier.no_qsuf))
6843 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6844 /* Accept FLDENV et al without suffix. */
6845 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6846 {
6847 unsigned int suffixes, evex = 0;
6848
6849 suffixes = !i.tm.opcode_modifier.no_bsuf;
6850 if (!i.tm.opcode_modifier.no_wsuf)
6851 suffixes |= 1 << 1;
6852 if (!i.tm.opcode_modifier.no_lsuf)
6853 suffixes |= 1 << 2;
6854 if (!i.tm.opcode_modifier.no_ldsuf)
6855 suffixes |= 1 << 3;
6856 if (!i.tm.opcode_modifier.no_ssuf)
6857 suffixes |= 1 << 4;
6858 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6859 suffixes |= 1 << 5;
6860
6861 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6862 also suitable for AT&T syntax mode, it was requested that this be
6863 restricted to just Intel syntax. */
6864 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6865 {
6866 unsigned int op;
6867
6868 for (op = 0; op < i.tm.operands; ++op)
6869 {
6870 if (is_evex_encoding (&i.tm)
6871 && !cpu_arch_flags.bitfield.cpuavx512vl)
6872 {
6873 if (i.tm.operand_types[op].bitfield.ymmword)
6874 i.tm.operand_types[op].bitfield.xmmword = 0;
6875 if (i.tm.operand_types[op].bitfield.zmmword)
6876 i.tm.operand_types[op].bitfield.ymmword = 0;
6877 if (!i.tm.opcode_modifier.evex
6878 || i.tm.opcode_modifier.evex == EVEXDYN)
6879 i.tm.opcode_modifier.evex = EVEX512;
6880 }
6881
6882 if (i.tm.operand_types[op].bitfield.xmmword
6883 + i.tm.operand_types[op].bitfield.ymmword
6884 + i.tm.operand_types[op].bitfield.zmmword < 2)
6885 continue;
6886
6887 /* Any properly sized operand disambiguates the insn. */
6888 if (i.types[op].bitfield.xmmword
6889 || i.types[op].bitfield.ymmword
6890 || i.types[op].bitfield.zmmword)
6891 {
6892 suffixes &= ~(7 << 6);
6893 evex = 0;
6894 break;
6895 }
6896
6897 if ((i.flags[op] & Operand_Mem)
6898 && i.tm.operand_types[op].bitfield.unspecified)
6899 {
6900 if (i.tm.operand_types[op].bitfield.xmmword)
6901 suffixes |= 1 << 6;
6902 if (i.tm.operand_types[op].bitfield.ymmword)
6903 suffixes |= 1 << 7;
6904 if (i.tm.operand_types[op].bitfield.zmmword)
6905 suffixes |= 1 << 8;
6906 if (is_evex_encoding (&i.tm))
6907 evex = EVEX512;
6908 }
6909 }
6910 }
6911
6912 /* Are multiple suffixes / operand sizes allowed? */
6913 if (suffixes & (suffixes - 1))
6914 {
6915 if (intel_syntax
6916 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6917 || operand_check == check_error))
6918 {
6919 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6920 return 0;
6921 }
6922 if (operand_check == check_error)
6923 {
6924 as_bad (_("no instruction mnemonic suffix given and "
6925 "no register operands; can't size `%s'"), i.tm.name);
6926 return 0;
6927 }
6928 if (operand_check == check_warning)
6929 as_warn (_("%s; using default for `%s'"),
6930 intel_syntax
6931 ? _("ambiguous operand size")
6932 : _("no instruction mnemonic suffix given and "
6933 "no register operands"),
6934 i.tm.name);
6935
6936 if (i.tm.opcode_modifier.floatmf)
6937 i.suffix = SHORT_MNEM_SUFFIX;
6938 else if ((i.tm.base_opcode | 8) == 0xfbe
6939 || (i.tm.base_opcode == 0x63
6940 && i.tm.cpu_flags.bitfield.cpu64))
6941 /* handled below */;
6942 else if (evex)
6943 i.tm.opcode_modifier.evex = evex;
6944 else if (flag_code == CODE_16BIT)
6945 i.suffix = WORD_MNEM_SUFFIX;
6946 else if (!i.tm.opcode_modifier.no_lsuf)
6947 i.suffix = LONG_MNEM_SUFFIX;
6948 else
6949 i.suffix = QWORD_MNEM_SUFFIX;
6950 }
6951 }
6952
6953 if ((i.tm.base_opcode | 8) == 0xfbe
6954 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6955 {
6956 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6957 In AT&T syntax, if there is no suffix (warned about above), the default
6958 will be byte extension. */
6959 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6960 i.tm.base_opcode |= 1;
6961
6962 /* For further processing, the suffix should represent the destination
6963 (register). This is already the case when one was used with
6964 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6965 no suffix to begin with. */
6966 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6967 {
6968 if (i.types[1].bitfield.word)
6969 i.suffix = WORD_MNEM_SUFFIX;
6970 else if (i.types[1].bitfield.qword)
6971 i.suffix = QWORD_MNEM_SUFFIX;
6972 else
6973 i.suffix = LONG_MNEM_SUFFIX;
6974
6975 i.tm.opcode_modifier.w = 0;
6976 }
6977 }
6978
6979 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6980 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6981 != (i.tm.operand_types[1].bitfield.class == Reg);
6982
6983 /* Change the opcode based on the operand size given by i.suffix. */
6984 switch (i.suffix)
6985 {
6986 /* Size floating point instruction. */
6987 case LONG_MNEM_SUFFIX:
6988 if (i.tm.opcode_modifier.floatmf)
6989 {
6990 i.tm.base_opcode ^= 4;
6991 break;
6992 }
6993 /* fall through */
6994 case WORD_MNEM_SUFFIX:
6995 case QWORD_MNEM_SUFFIX:
6996 /* It's not a byte, select word/dword operation. */
6997 if (i.tm.opcode_modifier.w)
6998 {
6999 if (i.short_form)
7000 i.tm.base_opcode |= 8;
7001 else
7002 i.tm.base_opcode |= 1;
7003 }
7004 /* fall through */
7005 case SHORT_MNEM_SUFFIX:
7006 /* Now select between word & dword operations via the operand
7007 size prefix, except for instructions that will ignore this
7008 prefix anyway. */
7009 if (i.suffix != QWORD_MNEM_SUFFIX
7010 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7011 && !i.tm.opcode_modifier.floatmf
7012 && !is_any_vex_encoding (&i.tm)
7013 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7014 || (flag_code == CODE_64BIT
7015 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7016 {
7017 unsigned int prefix = DATA_PREFIX_OPCODE;
7018
7019 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7020 prefix = ADDR_PREFIX_OPCODE;
7021
7022 if (!add_prefix (prefix))
7023 return 0;
7024 }
7025
7026 /* Set mode64 for an operand. */
7027 if (i.suffix == QWORD_MNEM_SUFFIX
7028 && flag_code == CODE_64BIT
7029 && !i.tm.opcode_modifier.norex64
7030 && !i.tm.opcode_modifier.vexw
7031 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7032 need rex64. */
7033 && ! (i.operands == 2
7034 && i.tm.base_opcode == 0x90
7035 && i.tm.extension_opcode == None
7036 && i.types[0].bitfield.instance == Accum
7037 && i.types[0].bitfield.qword
7038 && i.types[1].bitfield.instance == Accum
7039 && i.types[1].bitfield.qword))
7040 i.rex |= REX_W;
7041
7042 break;
7043 }
7044
7045 if (i.tm.opcode_modifier.addrprefixopreg)
7046 {
7047 gas_assert (!i.suffix);
7048 gas_assert (i.reg_operands);
7049
7050 if (i.tm.operand_types[0].bitfield.instance == Accum
7051 || i.operands == 1)
7052 {
7053 /* The address size override prefix changes the size of the
7054 first operand. */
7055 if (flag_code == CODE_64BIT
7056 && i.op[0].regs->reg_type.bitfield.word)
7057 {
7058 as_bad (_("16-bit addressing unavailable for `%s'"),
7059 i.tm.name);
7060 return 0;
7061 }
7062
7063 if ((flag_code == CODE_32BIT
7064 ? i.op[0].regs->reg_type.bitfield.word
7065 : i.op[0].regs->reg_type.bitfield.dword)
7066 && !add_prefix (ADDR_PREFIX_OPCODE))
7067 return 0;
7068 }
7069 else
7070 {
7071 /* Check invalid register operand when the address size override
7072 prefix changes the size of register operands. */
7073 unsigned int op;
7074 enum { need_word, need_dword, need_qword } need;
7075
7076 if (flag_code == CODE_32BIT)
7077 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7078 else if (i.prefix[ADDR_PREFIX])
7079 need = need_dword;
7080 else
7081 need = flag_code == CODE_64BIT ? need_qword : need_word;
7082
7083 for (op = 0; op < i.operands; op++)
7084 {
7085 if (i.types[op].bitfield.class != Reg)
7086 continue;
7087
7088 switch (need)
7089 {
7090 case need_word:
7091 if (i.op[op].regs->reg_type.bitfield.word)
7092 continue;
7093 break;
7094 case need_dword:
7095 if (i.op[op].regs->reg_type.bitfield.dword)
7096 continue;
7097 break;
7098 case need_qword:
7099 if (i.op[op].regs->reg_type.bitfield.qword)
7100 continue;
7101 break;
7102 }
7103
7104 as_bad (_("invalid register operand size for `%s'"),
7105 i.tm.name);
7106 return 0;
7107 }
7108 }
7109 }
7110
7111 return 1;
7112 }
7113
7114 static int
7115 check_byte_reg (void)
7116 {
7117 int op;
7118
7119 for (op = i.operands; --op >= 0;)
7120 {
7121 /* Skip non-register operands. */
7122 if (i.types[op].bitfield.class != Reg)
7123 continue;
7124
7125 /* If this is an eight bit register, it's OK. If it's the 16 or
7126 32 bit version of an eight bit register, we will just use the
7127 low portion, and that's OK too. */
7128 if (i.types[op].bitfield.byte)
7129 continue;
7130
7131 /* I/O port address operands are OK too. */
7132 if (i.tm.operand_types[op].bitfield.instance == RegD
7133 && i.tm.operand_types[op].bitfield.word)
7134 continue;
7135
7136 /* crc32 only wants its source operand checked here. */
7137 if (i.tm.base_opcode == 0xf20f38f0 && op)
7138 continue;
7139
7140 /* Any other register is bad. */
7141 if (i.types[op].bitfield.class == Reg
7142 || i.types[op].bitfield.class == RegMMX
7143 || i.types[op].bitfield.class == RegSIMD
7144 || i.types[op].bitfield.class == SReg
7145 || i.types[op].bitfield.class == RegCR
7146 || i.types[op].bitfield.class == RegDR
7147 || i.types[op].bitfield.class == RegTR)
7148 {
7149 as_bad (_("`%s%s' not allowed with `%s%c'"),
7150 register_prefix,
7151 i.op[op].regs->reg_name,
7152 i.tm.name,
7153 i.suffix);
7154 return 0;
7155 }
7156 }
7157 return 1;
7158 }
7159
7160 static int
7161 check_long_reg (void)
7162 {
7163 int op;
7164
7165 for (op = i.operands; --op >= 0;)
7166 /* Skip non-register operands. */
7167 if (i.types[op].bitfield.class != Reg)
7168 continue;
7169 /* Reject eight bit registers, except where the template requires
7170 them. (eg. movzb) */
7171 else if (i.types[op].bitfield.byte
7172 && (i.tm.operand_types[op].bitfield.class == Reg
7173 || i.tm.operand_types[op].bitfield.instance == Accum)
7174 && (i.tm.operand_types[op].bitfield.word
7175 || i.tm.operand_types[op].bitfield.dword))
7176 {
7177 as_bad (_("`%s%s' not allowed with `%s%c'"),
7178 register_prefix,
7179 i.op[op].regs->reg_name,
7180 i.tm.name,
7181 i.suffix);
7182 return 0;
7183 }
7184 /* Error if the e prefix on a general reg is missing. */
7185 else if (i.types[op].bitfield.word
7186 && (i.tm.operand_types[op].bitfield.class == Reg
7187 || i.tm.operand_types[op].bitfield.instance == Accum)
7188 && i.tm.operand_types[op].bitfield.dword)
7189 {
7190 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7191 register_prefix, i.op[op].regs->reg_name,
7192 i.suffix);
7193 return 0;
7194 }
7195 /* Warn if the r prefix on a general reg is present. */
7196 else if (i.types[op].bitfield.qword
7197 && (i.tm.operand_types[op].bitfield.class == Reg
7198 || i.tm.operand_types[op].bitfield.instance == Accum)
7199 && i.tm.operand_types[op].bitfield.dword)
7200 {
7201 if (intel_syntax
7202 && i.tm.opcode_modifier.toqword
7203 && i.types[0].bitfield.class != RegSIMD)
7204 {
7205 /* Convert to QWORD. We want REX byte. */
7206 i.suffix = QWORD_MNEM_SUFFIX;
7207 }
7208 else
7209 {
7210 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7211 register_prefix, i.op[op].regs->reg_name,
7212 i.suffix);
7213 return 0;
7214 }
7215 }
7216 return 1;
7217 }
7218
7219 static int
7220 check_qword_reg (void)
7221 {
7222 int op;
7223
7224 for (op = i.operands; --op >= 0; )
7225 /* Skip non-register operands. */
7226 if (i.types[op].bitfield.class != Reg)
7227 continue;
7228 /* Reject eight bit registers, except where the template requires
7229 them. (eg. movzb) */
7230 else if (i.types[op].bitfield.byte
7231 && (i.tm.operand_types[op].bitfield.class == Reg
7232 || i.tm.operand_types[op].bitfield.instance == Accum)
7233 && (i.tm.operand_types[op].bitfield.word
7234 || i.tm.operand_types[op].bitfield.dword))
7235 {
7236 as_bad (_("`%s%s' not allowed with `%s%c'"),
7237 register_prefix,
7238 i.op[op].regs->reg_name,
7239 i.tm.name,
7240 i.suffix);
7241 return 0;
7242 }
7243 /* Warn if the r prefix on a general reg is missing. */
7244 else if ((i.types[op].bitfield.word
7245 || i.types[op].bitfield.dword)
7246 && (i.tm.operand_types[op].bitfield.class == Reg
7247 || i.tm.operand_types[op].bitfield.instance == Accum)
7248 && i.tm.operand_types[op].bitfield.qword)
7249 {
7250 /* Prohibit these changes in the 64bit mode, since the
7251 lowering is more complicated. */
7252 if (intel_syntax
7253 && i.tm.opcode_modifier.todword
7254 && i.types[0].bitfield.class != RegSIMD)
7255 {
7256 /* Convert to DWORD. We don't want REX byte. */
7257 i.suffix = LONG_MNEM_SUFFIX;
7258 }
7259 else
7260 {
7261 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7262 register_prefix, i.op[op].regs->reg_name,
7263 i.suffix);
7264 return 0;
7265 }
7266 }
7267 return 1;
7268 }
7269
7270 static int
7271 check_word_reg (void)
7272 {
7273 int op;
7274 for (op = i.operands; --op >= 0;)
7275 /* Skip non-register operands. */
7276 if (i.types[op].bitfield.class != Reg)
7277 continue;
7278 /* Reject eight bit registers, except where the template requires
7279 them. (eg. movzb) */
7280 else if (i.types[op].bitfield.byte
7281 && (i.tm.operand_types[op].bitfield.class == Reg
7282 || i.tm.operand_types[op].bitfield.instance == Accum)
7283 && (i.tm.operand_types[op].bitfield.word
7284 || i.tm.operand_types[op].bitfield.dword))
7285 {
7286 as_bad (_("`%s%s' not allowed with `%s%c'"),
7287 register_prefix,
7288 i.op[op].regs->reg_name,
7289 i.tm.name,
7290 i.suffix);
7291 return 0;
7292 }
7293 /* Error if the e or r prefix on a general reg is present. */
7294 else if ((i.types[op].bitfield.dword
7295 || i.types[op].bitfield.qword)
7296 && (i.tm.operand_types[op].bitfield.class == Reg
7297 || i.tm.operand_types[op].bitfield.instance == Accum)
7298 && i.tm.operand_types[op].bitfield.word)
7299 {
7300 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7301 register_prefix, i.op[op].regs->reg_name,
7302 i.suffix);
7303 return 0;
7304 }
7305 return 1;
7306 }
7307
7308 static int
7309 update_imm (unsigned int j)
7310 {
7311 i386_operand_type overlap = i.types[j];
7312 if ((overlap.bitfield.imm8
7313 || overlap.bitfield.imm8s
7314 || overlap.bitfield.imm16
7315 || overlap.bitfield.imm32
7316 || overlap.bitfield.imm32s
7317 || overlap.bitfield.imm64)
7318 && !operand_type_equal (&overlap, &imm8)
7319 && !operand_type_equal (&overlap, &imm8s)
7320 && !operand_type_equal (&overlap, &imm16)
7321 && !operand_type_equal (&overlap, &imm32)
7322 && !operand_type_equal (&overlap, &imm32s)
7323 && !operand_type_equal (&overlap, &imm64))
7324 {
7325 if (i.suffix)
7326 {
7327 i386_operand_type temp;
7328
7329 operand_type_set (&temp, 0);
7330 if (i.suffix == BYTE_MNEM_SUFFIX)
7331 {
7332 temp.bitfield.imm8 = overlap.bitfield.imm8;
7333 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7334 }
7335 else if (i.suffix == WORD_MNEM_SUFFIX)
7336 temp.bitfield.imm16 = overlap.bitfield.imm16;
7337 else if (i.suffix == QWORD_MNEM_SUFFIX)
7338 {
7339 temp.bitfield.imm64 = overlap.bitfield.imm64;
7340 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7341 }
7342 else
7343 temp.bitfield.imm32 = overlap.bitfield.imm32;
7344 overlap = temp;
7345 }
7346 else if (operand_type_equal (&overlap, &imm16_32_32s)
7347 || operand_type_equal (&overlap, &imm16_32)
7348 || operand_type_equal (&overlap, &imm16_32s))
7349 {
7350 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7351 overlap = imm16;
7352 else
7353 overlap = imm32s;
7354 }
7355 if (!operand_type_equal (&overlap, &imm8)
7356 && !operand_type_equal (&overlap, &imm8s)
7357 && !operand_type_equal (&overlap, &imm16)
7358 && !operand_type_equal (&overlap, &imm32)
7359 && !operand_type_equal (&overlap, &imm32s)
7360 && !operand_type_equal (&overlap, &imm64))
7361 {
7362 as_bad (_("no instruction mnemonic suffix given; "
7363 "can't determine immediate size"));
7364 return 0;
7365 }
7366 }
7367 i.types[j] = overlap;
7368
7369 return 1;
7370 }
7371
7372 static int
7373 finalize_imm (void)
7374 {
7375 unsigned int j, n;
7376
7377 /* Update the first 2 immediate operands. */
7378 n = i.operands > 2 ? 2 : i.operands;
7379 if (n)
7380 {
7381 for (j = 0; j < n; j++)
7382 if (update_imm (j) == 0)
7383 return 0;
7384
7385 /* The 3rd operand can't be immediate operand. */
7386 gas_assert (operand_type_check (i.types[2], imm) == 0);
7387 }
7388
7389 return 1;
7390 }
7391
7392 static int
7393 process_operands (void)
7394 {
7395 /* Default segment register this instruction will use for memory
7396 accesses. 0 means unknown. This is only for optimizing out
7397 unnecessary segment overrides. */
7398 const seg_entry *default_seg = 0;
7399
7400 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7401 {
7402 unsigned int dupl = i.operands;
7403 unsigned int dest = dupl - 1;
7404 unsigned int j;
7405
7406 /* The destination must be an xmm register. */
7407 gas_assert (i.reg_operands
7408 && MAX_OPERANDS > dupl
7409 && operand_type_equal (&i.types[dest], &regxmm));
7410
7411 if (i.tm.operand_types[0].bitfield.instance == Accum
7412 && i.tm.operand_types[0].bitfield.xmmword)
7413 {
7414 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7415 {
7416 /* Keep xmm0 for instructions with VEX prefix and 3
7417 sources. */
7418 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7419 i.tm.operand_types[0].bitfield.class = RegSIMD;
7420 goto duplicate;
7421 }
7422 else
7423 {
7424 /* We remove the first xmm0 and keep the number of
7425 operands unchanged, which in fact duplicates the
7426 destination. */
7427 for (j = 1; j < i.operands; j++)
7428 {
7429 i.op[j - 1] = i.op[j];
7430 i.types[j - 1] = i.types[j];
7431 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7432 i.flags[j - 1] = i.flags[j];
7433 }
7434 }
7435 }
7436 else if (i.tm.opcode_modifier.implicit1stxmm0)
7437 {
7438 gas_assert ((MAX_OPERANDS - 1) > dupl
7439 && (i.tm.opcode_modifier.vexsources
7440 == VEX3SOURCES));
7441
7442 /* Add the implicit xmm0 for instructions with VEX prefix
7443 and 3 sources. */
7444 for (j = i.operands; j > 0; j--)
7445 {
7446 i.op[j] = i.op[j - 1];
7447 i.types[j] = i.types[j - 1];
7448 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7449 i.flags[j] = i.flags[j - 1];
7450 }
7451 i.op[0].regs
7452 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7453 i.types[0] = regxmm;
7454 i.tm.operand_types[0] = regxmm;
7455
7456 i.operands += 2;
7457 i.reg_operands += 2;
7458 i.tm.operands += 2;
7459
7460 dupl++;
7461 dest++;
7462 i.op[dupl] = i.op[dest];
7463 i.types[dupl] = i.types[dest];
7464 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7465 i.flags[dupl] = i.flags[dest];
7466 }
7467 else
7468 {
7469 duplicate:
7470 i.operands++;
7471 i.reg_operands++;
7472 i.tm.operands++;
7473
7474 i.op[dupl] = i.op[dest];
7475 i.types[dupl] = i.types[dest];
7476 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7477 i.flags[dupl] = i.flags[dest];
7478 }
7479
7480 if (i.tm.opcode_modifier.immext)
7481 process_immext ();
7482 }
7483 else if (i.tm.operand_types[0].bitfield.instance == Accum
7484 && i.tm.operand_types[0].bitfield.xmmword)
7485 {
7486 unsigned int j;
7487
7488 for (j = 1; j < i.operands; j++)
7489 {
7490 i.op[j - 1] = i.op[j];
7491 i.types[j - 1] = i.types[j];
7492
7493 /* We need to adjust fields in i.tm since they are used by
7494 build_modrm_byte. */
7495 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7496
7497 i.flags[j - 1] = i.flags[j];
7498 }
7499
7500 i.operands--;
7501 i.reg_operands--;
7502 i.tm.operands--;
7503 }
7504 else if (i.tm.opcode_modifier.implicitquadgroup)
7505 {
7506 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7507
7508 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7509 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7510 regnum = register_number (i.op[1].regs);
7511 first_reg_in_group = regnum & ~3;
7512 last_reg_in_group = first_reg_in_group + 3;
7513 if (regnum != first_reg_in_group)
7514 as_warn (_("source register `%s%s' implicitly denotes"
7515 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7516 register_prefix, i.op[1].regs->reg_name,
7517 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7518 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7519 i.tm.name);
7520 }
7521 else if (i.tm.opcode_modifier.regkludge)
7522 {
7523 /* The imul $imm, %reg instruction is converted into
7524 imul $imm, %reg, %reg, and the clr %reg instruction
7525 is converted into xor %reg, %reg. */
7526
7527 unsigned int first_reg_op;
7528
7529 if (operand_type_check (i.types[0], reg))
7530 first_reg_op = 0;
7531 else
7532 first_reg_op = 1;
7533 /* Pretend we saw the extra register operand. */
7534 gas_assert (i.reg_operands == 1
7535 && i.op[first_reg_op + 1].regs == 0);
7536 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7537 i.types[first_reg_op + 1] = i.types[first_reg_op];
7538 i.operands++;
7539 i.reg_operands++;
7540 }
7541
7542 if (i.tm.opcode_modifier.modrm)
7543 {
7544 /* The opcode is completed (modulo i.tm.extension_opcode which
7545 must be put into the modrm byte). Now, we make the modrm and
7546 index base bytes based on all the info we've collected. */
7547
7548 default_seg = build_modrm_byte ();
7549 }
7550 else if (i.types[0].bitfield.class == SReg)
7551 {
7552 if (flag_code != CODE_64BIT
7553 ? i.tm.base_opcode == POP_SEG_SHORT
7554 && i.op[0].regs->reg_num == 1
7555 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7556 && i.op[0].regs->reg_num < 4)
7557 {
7558 as_bad (_("you can't `%s %s%s'"),
7559 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7560 return 0;
7561 }
7562 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7563 {
7564 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7565 i.tm.opcode_length = 2;
7566 }
7567 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7568 }
7569 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7570 {
7571 default_seg = &ds;
7572 }
7573 else if (i.tm.opcode_modifier.isstring)
7574 {
7575 /* For the string instructions that allow a segment override
7576 on one of their operands, the default segment is ds. */
7577 default_seg = &ds;
7578 }
7579 else if (i.short_form)
7580 {
7581 /* The register or float register operand is in operand
7582 0 or 1. */
7583 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7584
7585 /* Register goes in low 3 bits of opcode. */
7586 i.tm.base_opcode |= i.op[op].regs->reg_num;
7587 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7588 i.rex |= REX_B;
7589 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7590 {
7591 /* Warn about some common errors, but press on regardless.
7592 The first case can be generated by gcc (<= 2.8.1). */
7593 if (i.operands == 2)
7594 {
7595 /* Reversed arguments on faddp, fsubp, etc. */
7596 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7597 register_prefix, i.op[!intel_syntax].regs->reg_name,
7598 register_prefix, i.op[intel_syntax].regs->reg_name);
7599 }
7600 else
7601 {
7602 /* Extraneous `l' suffix on fp insn. */
7603 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7604 register_prefix, i.op[0].regs->reg_name);
7605 }
7606 }
7607 }
7608
7609 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7610 && i.tm.base_opcode == 0x8d /* lea */
7611 && !is_any_vex_encoding(&i.tm))
7612 {
7613 if (!quiet_warnings)
7614 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7615 if (optimize)
7616 {
7617 i.seg[0] = NULL;
7618 i.prefix[SEG_PREFIX] = 0;
7619 }
7620 }
7621
7622 /* If a segment was explicitly specified, and the specified segment
7623 is neither the default nor the one already recorded from a prefix,
7624 use an opcode prefix to select it. If we never figured out what
7625 the default segment is, then default_seg will be zero at this
7626 point, and the specified segment prefix will always be used. */
7627 if (i.seg[0]
7628 && i.seg[0] != default_seg
7629 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7630 {
7631 if (!add_prefix (i.seg[0]->seg_prefix))
7632 return 0;
7633 }
7634 return 1;
7635 }
7636
7637 static const seg_entry *
7638 build_modrm_byte (void)
7639 {
7640 const seg_entry *default_seg = 0;
7641 unsigned int source, dest;
7642 int vex_3_sources;
7643
7644 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7645 if (vex_3_sources)
7646 {
7647 unsigned int nds, reg_slot;
7648 expressionS *exp;
7649
7650 dest = i.operands - 1;
7651 nds = dest - 1;
7652
7653 /* There are 2 kinds of instructions:
7654 1. 5 operands: 4 register operands or 3 register operands
7655 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7656 VexW0 or VexW1. The destination must be either XMM, YMM or
7657 ZMM register.
7658 2. 4 operands: 4 register operands or 3 register operands
7659 plus 1 memory operand, with VexXDS. */
7660 gas_assert ((i.reg_operands == 4
7661 || (i.reg_operands == 3 && i.mem_operands == 1))
7662 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7663 && i.tm.opcode_modifier.vexw
7664 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7665
7666 /* If VexW1 is set, the first non-immediate operand is the source and
7667 the second non-immediate one is encoded in the immediate operand. */
7668 if (i.tm.opcode_modifier.vexw == VEXW1)
7669 {
7670 source = i.imm_operands;
7671 reg_slot = i.imm_operands + 1;
7672 }
7673 else
7674 {
7675 source = i.imm_operands + 1;
7676 reg_slot = i.imm_operands;
7677 }
7678
7679 if (i.imm_operands == 0)
7680 {
7681 /* When there is no immediate operand, generate an 8bit
7682 immediate operand to encode the first operand. */
7683 exp = &im_expressions[i.imm_operands++];
7684 i.op[i.operands].imms = exp;
7685 i.types[i.operands] = imm8;
7686 i.operands++;
7687
7688 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7689 exp->X_op = O_constant;
7690 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7691 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7692 }
7693 else
7694 {
7695 gas_assert (i.imm_operands == 1);
7696 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7697 gas_assert (!i.tm.opcode_modifier.immext);
7698
7699 /* Turn on Imm8 again so that output_imm will generate it. */
7700 i.types[0].bitfield.imm8 = 1;
7701
7702 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7703 i.op[0].imms->X_add_number
7704 |= register_number (i.op[reg_slot].regs) << 4;
7705 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7706 }
7707
7708 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7709 i.vex.register_specifier = i.op[nds].regs;
7710 }
7711 else
7712 source = dest = 0;
7713
7714 /* i.reg_operands MUST be the number of real register operands;
7715 implicit registers do not count. If there are 3 register
7716 operands, it must be a instruction with VexNDS. For a
7717 instruction with VexNDD, the destination register is encoded
7718 in VEX prefix. If there are 4 register operands, it must be
7719 a instruction with VEX prefix and 3 sources. */
7720 if (i.mem_operands == 0
7721 && ((i.reg_operands == 2
7722 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7723 || (i.reg_operands == 3
7724 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7725 || (i.reg_operands == 4 && vex_3_sources)))
7726 {
7727 switch (i.operands)
7728 {
7729 case 2:
7730 source = 0;
7731 break;
7732 case 3:
7733 /* When there are 3 operands, one of them may be immediate,
7734 which may be the first or the last operand. Otherwise,
7735 the first operand must be shift count register (cl) or it
7736 is an instruction with VexNDS. */
7737 gas_assert (i.imm_operands == 1
7738 || (i.imm_operands == 0
7739 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7740 || (i.types[0].bitfield.instance == RegC
7741 && i.types[0].bitfield.byte))));
7742 if (operand_type_check (i.types[0], imm)
7743 || (i.types[0].bitfield.instance == RegC
7744 && i.types[0].bitfield.byte))
7745 source = 1;
7746 else
7747 source = 0;
7748 break;
7749 case 4:
7750 /* When there are 4 operands, the first two must be 8bit
7751 immediate operands. The source operand will be the 3rd
7752 one.
7753
7754 For instructions with VexNDS, if the first operand
7755 an imm8, the source operand is the 2nd one. If the last
7756 operand is imm8, the source operand is the first one. */
7757 gas_assert ((i.imm_operands == 2
7758 && i.types[0].bitfield.imm8
7759 && i.types[1].bitfield.imm8)
7760 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7761 && i.imm_operands == 1
7762 && (i.types[0].bitfield.imm8
7763 || i.types[i.operands - 1].bitfield.imm8
7764 || i.rounding)));
7765 if (i.imm_operands == 2)
7766 source = 2;
7767 else
7768 {
7769 if (i.types[0].bitfield.imm8)
7770 source = 1;
7771 else
7772 source = 0;
7773 }
7774 break;
7775 case 5:
7776 if (is_evex_encoding (&i.tm))
7777 {
7778 /* For EVEX instructions, when there are 5 operands, the
7779 first one must be immediate operand. If the second one
7780 is immediate operand, the source operand is the 3th
7781 one. If the last one is immediate operand, the source
7782 operand is the 2nd one. */
7783 gas_assert (i.imm_operands == 2
7784 && i.tm.opcode_modifier.sae
7785 && operand_type_check (i.types[0], imm));
7786 if (operand_type_check (i.types[1], imm))
7787 source = 2;
7788 else if (operand_type_check (i.types[4], imm))
7789 source = 1;
7790 else
7791 abort ();
7792 }
7793 break;
7794 default:
7795 abort ();
7796 }
7797
7798 if (!vex_3_sources)
7799 {
7800 dest = source + 1;
7801
7802 /* RC/SAE operand could be between DEST and SRC. That happens
7803 when one operand is GPR and the other one is XMM/YMM/ZMM
7804 register. */
7805 if (i.rounding && i.rounding->operand == (int) dest)
7806 dest++;
7807
7808 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7809 {
7810 /* For instructions with VexNDS, the register-only source
7811 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7812 register. It is encoded in VEX prefix. */
7813
7814 i386_operand_type op;
7815 unsigned int vvvv;
7816
7817 /* Check register-only source operand when two source
7818 operands are swapped. */
7819 if (!i.tm.operand_types[source].bitfield.baseindex
7820 && i.tm.operand_types[dest].bitfield.baseindex)
7821 {
7822 vvvv = source;
7823 source = dest;
7824 }
7825 else
7826 vvvv = dest;
7827
7828 op = i.tm.operand_types[vvvv];
7829 if ((dest + 1) >= i.operands
7830 || ((op.bitfield.class != Reg
7831 || (!op.bitfield.dword && !op.bitfield.qword))
7832 && op.bitfield.class != RegSIMD
7833 && !operand_type_equal (&op, &regmask)))
7834 abort ();
7835 i.vex.register_specifier = i.op[vvvv].regs;
7836 dest++;
7837 }
7838 }
7839
7840 i.rm.mode = 3;
7841 /* One of the register operands will be encoded in the i.rm.reg
7842 field, the other in the combined i.rm.mode and i.rm.regmem
7843 fields. If no form of this instruction supports a memory
7844 destination operand, then we assume the source operand may
7845 sometimes be a memory operand and so we need to store the
7846 destination in the i.rm.reg field. */
7847 if (!i.tm.opcode_modifier.regmem
7848 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7849 {
7850 i.rm.reg = i.op[dest].regs->reg_num;
7851 i.rm.regmem = i.op[source].regs->reg_num;
7852 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7853 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7854 i.has_regmmx = TRUE;
7855 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7856 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7857 {
7858 if (i.types[dest].bitfield.zmmword
7859 || i.types[source].bitfield.zmmword)
7860 i.has_regzmm = TRUE;
7861 else if (i.types[dest].bitfield.ymmword
7862 || i.types[source].bitfield.ymmword)
7863 i.has_regymm = TRUE;
7864 else
7865 i.has_regxmm = TRUE;
7866 }
7867 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7868 i.rex |= REX_R;
7869 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7870 i.vrex |= REX_R;
7871 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7872 i.rex |= REX_B;
7873 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7874 i.vrex |= REX_B;
7875 }
7876 else
7877 {
7878 i.rm.reg = i.op[source].regs->reg_num;
7879 i.rm.regmem = i.op[dest].regs->reg_num;
7880 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7881 i.rex |= REX_B;
7882 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7883 i.vrex |= REX_B;
7884 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7885 i.rex |= REX_R;
7886 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7887 i.vrex |= REX_R;
7888 }
7889 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7890 {
7891 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7892 abort ();
7893 i.rex &= ~REX_R;
7894 add_prefix (LOCK_PREFIX_OPCODE);
7895 }
7896 }
7897 else
7898 { /* If it's not 2 reg operands... */
7899 unsigned int mem;
7900
7901 if (i.mem_operands)
7902 {
7903 unsigned int fake_zero_displacement = 0;
7904 unsigned int op;
7905
7906 for (op = 0; op < i.operands; op++)
7907 if (i.flags[op] & Operand_Mem)
7908 break;
7909 gas_assert (op < i.operands);
7910
7911 if (i.tm.opcode_modifier.vecsib)
7912 {
7913 if (i.index_reg->reg_num == RegIZ)
7914 abort ();
7915
7916 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7917 if (!i.base_reg)
7918 {
7919 i.sib.base = NO_BASE_REGISTER;
7920 i.sib.scale = i.log2_scale_factor;
7921 i.types[op].bitfield.disp8 = 0;
7922 i.types[op].bitfield.disp16 = 0;
7923 i.types[op].bitfield.disp64 = 0;
7924 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7925 {
7926 /* Must be 32 bit */
7927 i.types[op].bitfield.disp32 = 1;
7928 i.types[op].bitfield.disp32s = 0;
7929 }
7930 else
7931 {
7932 i.types[op].bitfield.disp32 = 0;
7933 i.types[op].bitfield.disp32s = 1;
7934 }
7935 }
7936 i.sib.index = i.index_reg->reg_num;
7937 if ((i.index_reg->reg_flags & RegRex) != 0)
7938 i.rex |= REX_X;
7939 if ((i.index_reg->reg_flags & RegVRex) != 0)
7940 i.vrex |= REX_X;
7941 }
7942
7943 default_seg = &ds;
7944
7945 if (i.base_reg == 0)
7946 {
7947 i.rm.mode = 0;
7948 if (!i.disp_operands)
7949 fake_zero_displacement = 1;
7950 if (i.index_reg == 0)
7951 {
7952 i386_operand_type newdisp;
7953
7954 gas_assert (!i.tm.opcode_modifier.vecsib);
7955 /* Operand is just <disp> */
7956 if (flag_code == CODE_64BIT)
7957 {
7958 /* 64bit mode overwrites the 32bit absolute
7959 addressing by RIP relative addressing and
7960 absolute addressing is encoded by one of the
7961 redundant SIB forms. */
7962 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7963 i.sib.base = NO_BASE_REGISTER;
7964 i.sib.index = NO_INDEX_REGISTER;
7965 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7966 }
7967 else if ((flag_code == CODE_16BIT)
7968 ^ (i.prefix[ADDR_PREFIX] != 0))
7969 {
7970 i.rm.regmem = NO_BASE_REGISTER_16;
7971 newdisp = disp16;
7972 }
7973 else
7974 {
7975 i.rm.regmem = NO_BASE_REGISTER;
7976 newdisp = disp32;
7977 }
7978 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7979 i.types[op] = operand_type_or (i.types[op], newdisp);
7980 }
7981 else if (!i.tm.opcode_modifier.vecsib)
7982 {
7983 /* !i.base_reg && i.index_reg */
7984 if (i.index_reg->reg_num == RegIZ)
7985 i.sib.index = NO_INDEX_REGISTER;
7986 else
7987 i.sib.index = i.index_reg->reg_num;
7988 i.sib.base = NO_BASE_REGISTER;
7989 i.sib.scale = i.log2_scale_factor;
7990 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7991 i.types[op].bitfield.disp8 = 0;
7992 i.types[op].bitfield.disp16 = 0;
7993 i.types[op].bitfield.disp64 = 0;
7994 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7995 {
7996 /* Must be 32 bit */
7997 i.types[op].bitfield.disp32 = 1;
7998 i.types[op].bitfield.disp32s = 0;
7999 }
8000 else
8001 {
8002 i.types[op].bitfield.disp32 = 0;
8003 i.types[op].bitfield.disp32s = 1;
8004 }
8005 if ((i.index_reg->reg_flags & RegRex) != 0)
8006 i.rex |= REX_X;
8007 }
8008 }
8009 /* RIP addressing for 64bit mode. */
8010 else if (i.base_reg->reg_num == RegIP)
8011 {
8012 gas_assert (!i.tm.opcode_modifier.vecsib);
8013 i.rm.regmem = NO_BASE_REGISTER;
8014 i.types[op].bitfield.disp8 = 0;
8015 i.types[op].bitfield.disp16 = 0;
8016 i.types[op].bitfield.disp32 = 0;
8017 i.types[op].bitfield.disp32s = 1;
8018 i.types[op].bitfield.disp64 = 0;
8019 i.flags[op] |= Operand_PCrel;
8020 if (! i.disp_operands)
8021 fake_zero_displacement = 1;
8022 }
8023 else if (i.base_reg->reg_type.bitfield.word)
8024 {
8025 gas_assert (!i.tm.opcode_modifier.vecsib);
8026 switch (i.base_reg->reg_num)
8027 {
8028 case 3: /* (%bx) */
8029 if (i.index_reg == 0)
8030 i.rm.regmem = 7;
8031 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8032 i.rm.regmem = i.index_reg->reg_num - 6;
8033 break;
8034 case 5: /* (%bp) */
8035 default_seg = &ss;
8036 if (i.index_reg == 0)
8037 {
8038 i.rm.regmem = 6;
8039 if (operand_type_check (i.types[op], disp) == 0)
8040 {
8041 /* fake (%bp) into 0(%bp) */
8042 i.types[op].bitfield.disp8 = 1;
8043 fake_zero_displacement = 1;
8044 }
8045 }
8046 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8047 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8048 break;
8049 default: /* (%si) -> 4 or (%di) -> 5 */
8050 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8051 }
8052 i.rm.mode = mode_from_disp_size (i.types[op]);
8053 }
8054 else /* i.base_reg and 32/64 bit mode */
8055 {
8056 if (flag_code == CODE_64BIT
8057 && operand_type_check (i.types[op], disp))
8058 {
8059 i.types[op].bitfield.disp16 = 0;
8060 i.types[op].bitfield.disp64 = 0;
8061 if (i.prefix[ADDR_PREFIX] == 0)
8062 {
8063 i.types[op].bitfield.disp32 = 0;
8064 i.types[op].bitfield.disp32s = 1;
8065 }
8066 else
8067 {
8068 i.types[op].bitfield.disp32 = 1;
8069 i.types[op].bitfield.disp32s = 0;
8070 }
8071 }
8072
8073 if (!i.tm.opcode_modifier.vecsib)
8074 i.rm.regmem = i.base_reg->reg_num;
8075 if ((i.base_reg->reg_flags & RegRex) != 0)
8076 i.rex |= REX_B;
8077 i.sib.base = i.base_reg->reg_num;
8078 /* x86-64 ignores REX prefix bit here to avoid decoder
8079 complications. */
8080 if (!(i.base_reg->reg_flags & RegRex)
8081 && (i.base_reg->reg_num == EBP_REG_NUM
8082 || i.base_reg->reg_num == ESP_REG_NUM))
8083 default_seg = &ss;
8084 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8085 {
8086 fake_zero_displacement = 1;
8087 i.types[op].bitfield.disp8 = 1;
8088 }
8089 i.sib.scale = i.log2_scale_factor;
8090 if (i.index_reg == 0)
8091 {
8092 gas_assert (!i.tm.opcode_modifier.vecsib);
8093 /* <disp>(%esp) becomes two byte modrm with no index
8094 register. We've already stored the code for esp
8095 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8096 Any base register besides %esp will not use the
8097 extra modrm byte. */
8098 i.sib.index = NO_INDEX_REGISTER;
8099 }
8100 else if (!i.tm.opcode_modifier.vecsib)
8101 {
8102 if (i.index_reg->reg_num == RegIZ)
8103 i.sib.index = NO_INDEX_REGISTER;
8104 else
8105 i.sib.index = i.index_reg->reg_num;
8106 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8107 if ((i.index_reg->reg_flags & RegRex) != 0)
8108 i.rex |= REX_X;
8109 }
8110
8111 if (i.disp_operands
8112 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8113 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8114 i.rm.mode = 0;
8115 else
8116 {
8117 if (!fake_zero_displacement
8118 && !i.disp_operands
8119 && i.disp_encoding)
8120 {
8121 fake_zero_displacement = 1;
8122 if (i.disp_encoding == disp_encoding_8bit)
8123 i.types[op].bitfield.disp8 = 1;
8124 else
8125 i.types[op].bitfield.disp32 = 1;
8126 }
8127 i.rm.mode = mode_from_disp_size (i.types[op]);
8128 }
8129 }
8130
8131 if (fake_zero_displacement)
8132 {
8133 /* Fakes a zero displacement assuming that i.types[op]
8134 holds the correct displacement size. */
8135 expressionS *exp;
8136
8137 gas_assert (i.op[op].disps == 0);
8138 exp = &disp_expressions[i.disp_operands++];
8139 i.op[op].disps = exp;
8140 exp->X_op = O_constant;
8141 exp->X_add_number = 0;
8142 exp->X_add_symbol = (symbolS *) 0;
8143 exp->X_op_symbol = (symbolS *) 0;
8144 }
8145
8146 mem = op;
8147 }
8148 else
8149 mem = ~0;
8150
8151 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8152 {
8153 if (operand_type_check (i.types[0], imm))
8154 i.vex.register_specifier = NULL;
8155 else
8156 {
8157 /* VEX.vvvv encodes one of the sources when the first
8158 operand is not an immediate. */
8159 if (i.tm.opcode_modifier.vexw == VEXW0)
8160 i.vex.register_specifier = i.op[0].regs;
8161 else
8162 i.vex.register_specifier = i.op[1].regs;
8163 }
8164
8165 /* Destination is a XMM register encoded in the ModRM.reg
8166 and VEX.R bit. */
8167 i.rm.reg = i.op[2].regs->reg_num;
8168 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8169 i.rex |= REX_R;
8170
8171 /* ModRM.rm and VEX.B encodes the other source. */
8172 if (!i.mem_operands)
8173 {
8174 i.rm.mode = 3;
8175
8176 if (i.tm.opcode_modifier.vexw == VEXW0)
8177 i.rm.regmem = i.op[1].regs->reg_num;
8178 else
8179 i.rm.regmem = i.op[0].regs->reg_num;
8180
8181 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8182 i.rex |= REX_B;
8183 }
8184 }
8185 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8186 {
8187 i.vex.register_specifier = i.op[2].regs;
8188 if (!i.mem_operands)
8189 {
8190 i.rm.mode = 3;
8191 i.rm.regmem = i.op[1].regs->reg_num;
8192 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8193 i.rex |= REX_B;
8194 }
8195 }
8196 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8197 (if any) based on i.tm.extension_opcode. Again, we must be
8198 careful to make sure that segment/control/debug/test/MMX
8199 registers are coded into the i.rm.reg field. */
8200 else if (i.reg_operands)
8201 {
8202 unsigned int op;
8203 unsigned int vex_reg = ~0;
8204
8205 for (op = 0; op < i.operands; op++)
8206 {
8207 if (i.types[op].bitfield.class == Reg
8208 || i.types[op].bitfield.class == RegBND
8209 || i.types[op].bitfield.class == RegMask
8210 || i.types[op].bitfield.class == SReg
8211 || i.types[op].bitfield.class == RegCR
8212 || i.types[op].bitfield.class == RegDR
8213 || i.types[op].bitfield.class == RegTR)
8214 break;
8215 if (i.types[op].bitfield.class == RegSIMD)
8216 {
8217 if (i.types[op].bitfield.zmmword)
8218 i.has_regzmm = TRUE;
8219 else if (i.types[op].bitfield.ymmword)
8220 i.has_regymm = TRUE;
8221 else
8222 i.has_regxmm = TRUE;
8223 break;
8224 }
8225 if (i.types[op].bitfield.class == RegMMX)
8226 {
8227 i.has_regmmx = TRUE;
8228 break;
8229 }
8230 }
8231
8232 if (vex_3_sources)
8233 op = dest;
8234 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8235 {
8236 /* For instructions with VexNDS, the register-only
8237 source operand is encoded in VEX prefix. */
8238 gas_assert (mem != (unsigned int) ~0);
8239
8240 if (op > mem)
8241 {
8242 vex_reg = op++;
8243 gas_assert (op < i.operands);
8244 }
8245 else
8246 {
8247 /* Check register-only source operand when two source
8248 operands are swapped. */
8249 if (!i.tm.operand_types[op].bitfield.baseindex
8250 && i.tm.operand_types[op + 1].bitfield.baseindex)
8251 {
8252 vex_reg = op;
8253 op += 2;
8254 gas_assert (mem == (vex_reg + 1)
8255 && op < i.operands);
8256 }
8257 else
8258 {
8259 vex_reg = op + 1;
8260 gas_assert (vex_reg < i.operands);
8261 }
8262 }
8263 }
8264 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8265 {
8266 /* For instructions with VexNDD, the register destination
8267 is encoded in VEX prefix. */
8268 if (i.mem_operands == 0)
8269 {
8270 /* There is no memory operand. */
8271 gas_assert ((op + 2) == i.operands);
8272 vex_reg = op + 1;
8273 }
8274 else
8275 {
8276 /* There are only 2 non-immediate operands. */
8277 gas_assert (op < i.imm_operands + 2
8278 && i.operands == i.imm_operands + 2);
8279 vex_reg = i.imm_operands + 1;
8280 }
8281 }
8282 else
8283 gas_assert (op < i.operands);
8284
8285 if (vex_reg != (unsigned int) ~0)
8286 {
8287 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8288
8289 if ((type->bitfield.class != Reg
8290 || (!type->bitfield.dword && !type->bitfield.qword))
8291 && type->bitfield.class != RegSIMD
8292 && !operand_type_equal (type, &regmask))
8293 abort ();
8294
8295 i.vex.register_specifier = i.op[vex_reg].regs;
8296 }
8297
8298 /* Don't set OP operand twice. */
8299 if (vex_reg != op)
8300 {
8301 /* If there is an extension opcode to put here, the
8302 register number must be put into the regmem field. */
8303 if (i.tm.extension_opcode != None)
8304 {
8305 i.rm.regmem = i.op[op].regs->reg_num;
8306 if ((i.op[op].regs->reg_flags & RegRex) != 0)
8307 i.rex |= REX_B;
8308 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
8309 i.vrex |= REX_B;
8310 }
8311 else
8312 {
8313 i.rm.reg = i.op[op].regs->reg_num;
8314 if ((i.op[op].regs->reg_flags & RegRex) != 0)
8315 i.rex |= REX_R;
8316 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
8317 i.vrex |= REX_R;
8318 }
8319 }
8320
8321 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8322 must set it to 3 to indicate this is a register operand
8323 in the regmem field. */
8324 if (!i.mem_operands)
8325 i.rm.mode = 3;
8326 }
8327
8328 /* Fill in i.rm.reg field with extension opcode (if any). */
8329 if (i.tm.extension_opcode != None)
8330 i.rm.reg = i.tm.extension_opcode;
8331 }
8332 return default_seg;
8333 }
8334
8335 static unsigned int
8336 flip_code16 (unsigned int code16)
8337 {
8338 gas_assert (i.tm.operands == 1);
8339
8340 return !(i.prefix[REX_PREFIX] & REX_W)
8341 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8342 || i.tm.operand_types[0].bitfield.disp32s
8343 : i.tm.operand_types[0].bitfield.disp16)
8344 ? CODE16 : 0;
8345 }
8346
8347 static void
8348 output_branch (void)
8349 {
8350 char *p;
8351 int size;
8352 int code16;
8353 int prefix;
8354 relax_substateT subtype;
8355 symbolS *sym;
8356 offsetT off;
8357
8358 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8359 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8360
8361 prefix = 0;
8362 if (i.prefix[DATA_PREFIX] != 0)
8363 {
8364 prefix = 1;
8365 i.prefixes -= 1;
8366 code16 ^= flip_code16(code16);
8367 }
8368 /* Pentium4 branch hints. */
8369 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8370 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8371 {
8372 prefix++;
8373 i.prefixes--;
8374 }
8375 if (i.prefix[REX_PREFIX] != 0)
8376 {
8377 prefix++;
8378 i.prefixes--;
8379 }
8380
8381 /* BND prefixed jump. */
8382 if (i.prefix[BND_PREFIX] != 0)
8383 {
8384 prefix++;
8385 i.prefixes--;
8386 }
8387
8388 if (i.prefixes != 0)
8389 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8390
8391 /* It's always a symbol; End frag & setup for relax.
8392 Make sure there is enough room in this frag for the largest
8393 instruction we may generate in md_convert_frag. This is 2
8394 bytes for the opcode and room for the prefix and largest
8395 displacement. */
8396 frag_grow (prefix + 2 + 4);
8397 /* Prefix and 1 opcode byte go in fr_fix. */
8398 p = frag_more (prefix + 1);
8399 if (i.prefix[DATA_PREFIX] != 0)
8400 *p++ = DATA_PREFIX_OPCODE;
8401 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8402 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8403 *p++ = i.prefix[SEG_PREFIX];
8404 if (i.prefix[BND_PREFIX] != 0)
8405 *p++ = BND_PREFIX_OPCODE;
8406 if (i.prefix[REX_PREFIX] != 0)
8407 *p++ = i.prefix[REX_PREFIX];
8408 *p = i.tm.base_opcode;
8409
8410 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8411 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8412 else if (cpu_arch_flags.bitfield.cpui386)
8413 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8414 else
8415 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8416 subtype |= code16;
8417
8418 sym = i.op[0].disps->X_add_symbol;
8419 off = i.op[0].disps->X_add_number;
8420
8421 if (i.op[0].disps->X_op != O_constant
8422 && i.op[0].disps->X_op != O_symbol)
8423 {
8424 /* Handle complex expressions. */
8425 sym = make_expr_symbol (i.op[0].disps);
8426 off = 0;
8427 }
8428
8429 /* 1 possible extra opcode + 4 byte displacement go in var part.
8430 Pass reloc in fr_var. */
8431 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8432 }
8433
8434 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8435 /* Return TRUE iff PLT32 relocation should be used for branching to
8436 symbol S. */
8437
8438 static bfd_boolean
8439 need_plt32_p (symbolS *s)
8440 {
8441 /* PLT32 relocation is ELF only. */
8442 if (!IS_ELF)
8443 return FALSE;
8444
8445 #ifdef TE_SOLARIS
8446 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8447 krtld support it. */
8448 return FALSE;
8449 #endif
8450
8451 /* Since there is no need to prepare for PLT branch on x86-64, we
8452 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8453 be used as a marker for 32-bit PC-relative branches. */
8454 if (!object_64bit)
8455 return FALSE;
8456
8457 /* Weak or undefined symbol need PLT32 relocation. */
8458 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8459 return TRUE;
8460
8461 /* Non-global symbol doesn't need PLT32 relocation. */
8462 if (! S_IS_EXTERNAL (s))
8463 return FALSE;
8464
8465 /* Other global symbols need PLT32 relocation. NB: Symbol with
8466 non-default visibilities are treated as normal global symbol
8467 so that PLT32 relocation can be used as a marker for 32-bit
8468 PC-relative branches. It is useful for linker relaxation. */
8469 return TRUE;
8470 }
8471 #endif
8472
8473 static void
8474 output_jump (void)
8475 {
8476 char *p;
8477 int size;
8478 fixS *fixP;
8479 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8480
8481 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8482 {
8483 /* This is a loop or jecxz type instruction. */
8484 size = 1;
8485 if (i.prefix[ADDR_PREFIX] != 0)
8486 {
8487 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8488 i.prefixes -= 1;
8489 }
8490 /* Pentium4 branch hints. */
8491 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8492 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8493 {
8494 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8495 i.prefixes--;
8496 }
8497 }
8498 else
8499 {
8500 int code16;
8501
8502 code16 = 0;
8503 if (flag_code == CODE_16BIT)
8504 code16 = CODE16;
8505
8506 if (i.prefix[DATA_PREFIX] != 0)
8507 {
8508 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8509 i.prefixes -= 1;
8510 code16 ^= flip_code16(code16);
8511 }
8512
8513 size = 4;
8514 if (code16)
8515 size = 2;
8516 }
8517
8518 /* BND prefixed jump. */
8519 if (i.prefix[BND_PREFIX] != 0)
8520 {
8521 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8522 i.prefixes -= 1;
8523 }
8524
8525 if (i.prefix[REX_PREFIX] != 0)
8526 {
8527 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8528 i.prefixes -= 1;
8529 }
8530
8531 if (i.prefixes != 0)
8532 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8533
8534 p = frag_more (i.tm.opcode_length + size);
8535 switch (i.tm.opcode_length)
8536 {
8537 case 2:
8538 *p++ = i.tm.base_opcode >> 8;
8539 /* Fall through. */
8540 case 1:
8541 *p++ = i.tm.base_opcode;
8542 break;
8543 default:
8544 abort ();
8545 }
8546
8547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8548 if (size == 4
8549 && jump_reloc == NO_RELOC
8550 && need_plt32_p (i.op[0].disps->X_add_symbol))
8551 jump_reloc = BFD_RELOC_X86_64_PLT32;
8552 #endif
8553
8554 jump_reloc = reloc (size, 1, 1, jump_reloc);
8555
8556 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8557 i.op[0].disps, 1, jump_reloc);
8558
8559 /* All jumps handled here are signed, but don't use a signed limit
8560 check for 32 and 16 bit jumps as we want to allow wrap around at
8561 4G and 64k respectively. */
8562 if (size == 1)
8563 fixP->fx_signed = 1;
8564 }
8565
8566 static void
8567 output_interseg_jump (void)
8568 {
8569 char *p;
8570 int size;
8571 int prefix;
8572 int code16;
8573
8574 code16 = 0;
8575 if (flag_code == CODE_16BIT)
8576 code16 = CODE16;
8577
8578 prefix = 0;
8579 if (i.prefix[DATA_PREFIX] != 0)
8580 {
8581 prefix = 1;
8582 i.prefixes -= 1;
8583 code16 ^= CODE16;
8584 }
8585
8586 gas_assert (!i.prefix[REX_PREFIX]);
8587
8588 size = 4;
8589 if (code16)
8590 size = 2;
8591
8592 if (i.prefixes != 0)
8593 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8594
8595 /* 1 opcode; 2 segment; offset */
8596 p = frag_more (prefix + 1 + 2 + size);
8597
8598 if (i.prefix[DATA_PREFIX] != 0)
8599 *p++ = DATA_PREFIX_OPCODE;
8600
8601 if (i.prefix[REX_PREFIX] != 0)
8602 *p++ = i.prefix[REX_PREFIX];
8603
8604 *p++ = i.tm.base_opcode;
8605 if (i.op[1].imms->X_op == O_constant)
8606 {
8607 offsetT n = i.op[1].imms->X_add_number;
8608
8609 if (size == 2
8610 && !fits_in_unsigned_word (n)
8611 && !fits_in_signed_word (n))
8612 {
8613 as_bad (_("16-bit jump out of range"));
8614 return;
8615 }
8616 md_number_to_chars (p, n, size);
8617 }
8618 else
8619 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8620 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8621 if (i.op[0].imms->X_op != O_constant)
8622 as_bad (_("can't handle non absolute segment in `%s'"),
8623 i.tm.name);
8624 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8625 }
8626
8627 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8628 void
8629 x86_cleanup (void)
8630 {
8631 char *p;
8632 asection *seg = now_seg;
8633 subsegT subseg = now_subseg;
8634 asection *sec;
8635 unsigned int alignment, align_size_1;
8636 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8637 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8638 unsigned int padding;
8639
8640 if (!IS_ELF || !x86_used_note)
8641 return;
8642
8643 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8644
8645 /* The .note.gnu.property section layout:
8646
8647 Field Length Contents
8648 ---- ---- ----
8649 n_namsz 4 4
8650 n_descsz 4 The note descriptor size
8651 n_type 4 NT_GNU_PROPERTY_TYPE_0
8652 n_name 4 "GNU"
8653 n_desc n_descsz The program property array
8654 .... .... ....
8655 */
8656
8657 /* Create the .note.gnu.property section. */
8658 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8659 bfd_set_section_flags (sec,
8660 (SEC_ALLOC
8661 | SEC_LOAD
8662 | SEC_DATA
8663 | SEC_HAS_CONTENTS
8664 | SEC_READONLY));
8665
8666 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8667 {
8668 align_size_1 = 7;
8669 alignment = 3;
8670 }
8671 else
8672 {
8673 align_size_1 = 3;
8674 alignment = 2;
8675 }
8676
8677 bfd_set_section_alignment (sec, alignment);
8678 elf_section_type (sec) = SHT_NOTE;
8679
8680 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8681 + 4-byte data */
8682 isa_1_descsz_raw = 4 + 4 + 4;
8683 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8684 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8685
8686 feature_2_descsz_raw = isa_1_descsz;
8687 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8688 + 4-byte data */
8689 feature_2_descsz_raw += 4 + 4 + 4;
8690 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8691 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8692 & ~align_size_1);
8693
8694 descsz = feature_2_descsz;
8695 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8696 p = frag_more (4 + 4 + 4 + 4 + descsz);
8697
8698 /* Write n_namsz. */
8699 md_number_to_chars (p, (valueT) 4, 4);
8700
8701 /* Write n_descsz. */
8702 md_number_to_chars (p + 4, (valueT) descsz, 4);
8703
8704 /* Write n_type. */
8705 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8706
8707 /* Write n_name. */
8708 memcpy (p + 4 * 3, "GNU", 4);
8709
8710 /* Write 4-byte type. */
8711 md_number_to_chars (p + 4 * 4,
8712 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8713
8714 /* Write 4-byte data size. */
8715 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8716
8717 /* Write 4-byte data. */
8718 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8719
8720 /* Zero out paddings. */
8721 padding = isa_1_descsz - isa_1_descsz_raw;
8722 if (padding)
8723 memset (p + 4 * 7, 0, padding);
8724
8725 /* Write 4-byte type. */
8726 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8727 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8728
8729 /* Write 4-byte data size. */
8730 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8731
8732 /* Write 4-byte data. */
8733 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8734 (valueT) x86_feature_2_used, 4);
8735
8736 /* Zero out paddings. */
8737 padding = feature_2_descsz - feature_2_descsz_raw;
8738 if (padding)
8739 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8740
8741 /* We probably can't restore the current segment, for there likely
8742 isn't one yet... */
8743 if (seg && subseg)
8744 subseg_set (seg, subseg);
8745 }
8746 #endif
8747
8748 static unsigned int
8749 encoding_length (const fragS *start_frag, offsetT start_off,
8750 const char *frag_now_ptr)
8751 {
8752 unsigned int len = 0;
8753
8754 if (start_frag != frag_now)
8755 {
8756 const fragS *fr = start_frag;
8757
8758 do {
8759 len += fr->fr_fix;
8760 fr = fr->fr_next;
8761 } while (fr && fr != frag_now);
8762 }
8763
8764 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8765 }
8766
8767 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8768 be macro-fused with conditional jumps.
8769 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8770 or is one of the following format:
8771
8772 cmp m, imm
8773 add m, imm
8774 sub m, imm
8775 test m, imm
8776 and m, imm
8777 inc m
8778 dec m
8779
8780 it is unfusible. */
8781
8782 static int
8783 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8784 {
8785 /* No RIP address. */
8786 if (i.base_reg && i.base_reg->reg_num == RegIP)
8787 return 0;
8788
8789 /* No VEX/EVEX encoding. */
8790 if (is_any_vex_encoding (&i.tm))
8791 return 0;
8792
8793 /* add, sub without add/sub m, imm. */
8794 if (i.tm.base_opcode <= 5
8795 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8796 || ((i.tm.base_opcode | 3) == 0x83
8797 && (i.tm.extension_opcode == 0x5
8798 || i.tm.extension_opcode == 0x0)))
8799 {
8800 *mf_cmp_p = mf_cmp_alu_cmp;
8801 return !(i.mem_operands && i.imm_operands);
8802 }
8803
8804 /* and without and m, imm. */
8805 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8806 || ((i.tm.base_opcode | 3) == 0x83
8807 && i.tm.extension_opcode == 0x4))
8808 {
8809 *mf_cmp_p = mf_cmp_test_and;
8810 return !(i.mem_operands && i.imm_operands);
8811 }
8812
8813 /* test without test m imm. */
8814 if ((i.tm.base_opcode | 1) == 0x85
8815 || (i.tm.base_opcode | 1) == 0xa9
8816 || ((i.tm.base_opcode | 1) == 0xf7
8817 && i.tm.extension_opcode == 0))
8818 {
8819 *mf_cmp_p = mf_cmp_test_and;
8820 return !(i.mem_operands && i.imm_operands);
8821 }
8822
8823 /* cmp without cmp m, imm. */
8824 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8825 || ((i.tm.base_opcode | 3) == 0x83
8826 && (i.tm.extension_opcode == 0x7)))
8827 {
8828 *mf_cmp_p = mf_cmp_alu_cmp;
8829 return !(i.mem_operands && i.imm_operands);
8830 }
8831
8832 /* inc, dec without inc/dec m. */
8833 if ((i.tm.cpu_flags.bitfield.cpuno64
8834 && (i.tm.base_opcode | 0xf) == 0x4f)
8835 || ((i.tm.base_opcode | 1) == 0xff
8836 && i.tm.extension_opcode <= 0x1))
8837 {
8838 *mf_cmp_p = mf_cmp_incdec;
8839 return !i.mem_operands;
8840 }
8841
8842 return 0;
8843 }
8844
8845 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8846
8847 static int
8848 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
8849 {
8850 /* NB: Don't work with COND_JUMP86 without i386. */
8851 if (!align_branch_power
8852 || now_seg == absolute_section
8853 || !cpu_arch_flags.bitfield.cpui386
8854 || !(align_branch & align_branch_fused_bit))
8855 return 0;
8856
8857 if (maybe_fused_with_jcc_p (mf_cmp_p))
8858 {
8859 if (last_insn.kind == last_insn_other
8860 || last_insn.seg != now_seg)
8861 return 1;
8862 if (flag_debug)
8863 as_warn_where (last_insn.file, last_insn.line,
8864 _("`%s` skips -malign-branch-boundary on `%s`"),
8865 last_insn.name, i.tm.name);
8866 }
8867
8868 return 0;
8869 }
8870
8871 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8872
8873 static int
8874 add_branch_prefix_frag_p (void)
8875 {
8876 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8877 to PadLock instructions since they include prefixes in opcode. */
8878 if (!align_branch_power
8879 || !align_branch_prefix_size
8880 || now_seg == absolute_section
8881 || i.tm.cpu_flags.bitfield.cpupadlock
8882 || !cpu_arch_flags.bitfield.cpui386)
8883 return 0;
8884
8885 /* Don't add prefix if it is a prefix or there is no operand in case
8886 that segment prefix is special. */
8887 if (!i.operands || i.tm.opcode_modifier.isprefix)
8888 return 0;
8889
8890 if (last_insn.kind == last_insn_other
8891 || last_insn.seg != now_seg)
8892 return 1;
8893
8894 if (flag_debug)
8895 as_warn_where (last_insn.file, last_insn.line,
8896 _("`%s` skips -malign-branch-boundary on `%s`"),
8897 last_insn.name, i.tm.name);
8898
8899 return 0;
8900 }
8901
8902 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8903
8904 static int
8905 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8906 enum mf_jcc_kind *mf_jcc_p)
8907 {
8908 int add_padding;
8909
8910 /* NB: Don't work with COND_JUMP86 without i386. */
8911 if (!align_branch_power
8912 || now_seg == absolute_section
8913 || !cpu_arch_flags.bitfield.cpui386)
8914 return 0;
8915
8916 add_padding = 0;
8917
8918 /* Check for jcc and direct jmp. */
8919 if (i.tm.opcode_modifier.jump == JUMP)
8920 {
8921 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8922 {
8923 *branch_p = align_branch_jmp;
8924 add_padding = align_branch & align_branch_jmp_bit;
8925 }
8926 else
8927 {
8928 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8929 igore the lowest bit. */
8930 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
8931 *branch_p = align_branch_jcc;
8932 if ((align_branch & align_branch_jcc_bit))
8933 add_padding = 1;
8934 }
8935 }
8936 else if (is_any_vex_encoding (&i.tm))
8937 return 0;
8938 else if ((i.tm.base_opcode | 1) == 0xc3)
8939 {
8940 /* Near ret. */
8941 *branch_p = align_branch_ret;
8942 if ((align_branch & align_branch_ret_bit))
8943 add_padding = 1;
8944 }
8945 else
8946 {
8947 /* Check for indirect jmp, direct and indirect calls. */
8948 if (i.tm.base_opcode == 0xe8)
8949 {
8950 /* Direct call. */
8951 *branch_p = align_branch_call;
8952 if ((align_branch & align_branch_call_bit))
8953 add_padding = 1;
8954 }
8955 else if (i.tm.base_opcode == 0xff
8956 && (i.tm.extension_opcode == 2
8957 || i.tm.extension_opcode == 4))
8958 {
8959 /* Indirect call and jmp. */
8960 *branch_p = align_branch_indirect;
8961 if ((align_branch & align_branch_indirect_bit))
8962 add_padding = 1;
8963 }
8964
8965 if (add_padding
8966 && i.disp_operands
8967 && tls_get_addr
8968 && (i.op[0].disps->X_op == O_symbol
8969 || (i.op[0].disps->X_op == O_subtract
8970 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8971 {
8972 symbolS *s = i.op[0].disps->X_add_symbol;
8973 /* No padding to call to global or undefined tls_get_addr. */
8974 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8975 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8976 return 0;
8977 }
8978 }
8979
8980 if (add_padding
8981 && last_insn.kind != last_insn_other
8982 && last_insn.seg == now_seg)
8983 {
8984 if (flag_debug)
8985 as_warn_where (last_insn.file, last_insn.line,
8986 _("`%s` skips -malign-branch-boundary on `%s`"),
8987 last_insn.name, i.tm.name);
8988 return 0;
8989 }
8990
8991 return add_padding;
8992 }
8993
8994 static void
8995 output_insn (void)
8996 {
8997 fragS *insn_start_frag;
8998 offsetT insn_start_off;
8999 fragS *fragP = NULL;
9000 enum align_branch_kind branch = align_branch_none;
9001 /* The initializer is arbitrary just to avoid uninitialized error.
9002 it's actually either assigned in add_branch_padding_frag_p
9003 or never be used. */
9004 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9005
9006 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9007 if (IS_ELF && x86_used_note)
9008 {
9009 if (i.tm.cpu_flags.bitfield.cpucmov)
9010 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
9011 if (i.tm.cpu_flags.bitfield.cpusse)
9012 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
9013 if (i.tm.cpu_flags.bitfield.cpusse2)
9014 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
9015 if (i.tm.cpu_flags.bitfield.cpusse3)
9016 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
9017 if (i.tm.cpu_flags.bitfield.cpussse3)
9018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
9019 if (i.tm.cpu_flags.bitfield.cpusse4_1)
9020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
9021 if (i.tm.cpu_flags.bitfield.cpusse4_2)
9022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
9023 if (i.tm.cpu_flags.bitfield.cpuavx)
9024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
9025 if (i.tm.cpu_flags.bitfield.cpuavx2)
9026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
9027 if (i.tm.cpu_flags.bitfield.cpufma)
9028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
9029 if (i.tm.cpu_flags.bitfield.cpuavx512f)
9030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
9031 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
9032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
9033 if (i.tm.cpu_flags.bitfield.cpuavx512er)
9034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
9035 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
9036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
9037 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
9038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
9039 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
9040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
9041 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
9042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
9043 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
9044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
9045 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
9046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
9047 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
9048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
9049 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
9050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
9051 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
9052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
9053 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
9054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
9055 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
9056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
9057 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
9058 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
9059
9060 if (i.tm.cpu_flags.bitfield.cpu8087
9061 || i.tm.cpu_flags.bitfield.cpu287
9062 || i.tm.cpu_flags.bitfield.cpu387
9063 || i.tm.cpu_flags.bitfield.cpu687
9064 || i.tm.cpu_flags.bitfield.cpufisttp)
9065 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9066 if (i.has_regmmx
9067 || i.tm.base_opcode == 0xf77 /* emms */
9068 || i.tm.base_opcode == 0xf0e /* femms */
9069 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
9070 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
9071 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9072 if (i.has_regxmm)
9073 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9074 if (i.has_regymm)
9075 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9076 if (i.has_regzmm)
9077 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9078 if (i.tm.cpu_flags.bitfield.cpufxsr)
9079 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9080 if (i.tm.cpu_flags.bitfield.cpuxsave)
9081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9082 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9084 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9086 }
9087 #endif
9088
9089 /* Tie dwarf2 debug info to the address at the start of the insn.
9090 We can't do this after the insn has been output as the current
9091 frag may have been closed off. eg. by frag_var. */
9092 dwarf2_emit_insn (0);
9093
9094 insn_start_frag = frag_now;
9095 insn_start_off = frag_now_fix ();
9096
9097 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9098 {
9099 char *p;
9100 /* Branch can be 8 bytes. Leave some room for prefixes. */
9101 unsigned int max_branch_padding_size = 14;
9102
9103 /* Align section to boundary. */
9104 record_alignment (now_seg, align_branch_power);
9105
9106 /* Make room for padding. */
9107 frag_grow (max_branch_padding_size);
9108
9109 /* Start of the padding. */
9110 p = frag_more (0);
9111
9112 fragP = frag_now;
9113
9114 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9115 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9116 NULL, 0, p);
9117
9118 fragP->tc_frag_data.mf_type = mf_jcc;
9119 fragP->tc_frag_data.branch_type = branch;
9120 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9121 }
9122
9123 /* Output jumps. */
9124 if (i.tm.opcode_modifier.jump == JUMP)
9125 output_branch ();
9126 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9127 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9128 output_jump ();
9129 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9130 output_interseg_jump ();
9131 else
9132 {
9133 /* Output normal instructions here. */
9134 char *p;
9135 unsigned char *q;
9136 unsigned int j;
9137 unsigned int prefix;
9138 enum mf_cmp_kind mf_cmp;
9139
9140 if (avoid_fence
9141 && (i.tm.base_opcode == 0xfaee8
9142 || i.tm.base_opcode == 0xfaef0
9143 || i.tm.base_opcode == 0xfaef8))
9144 {
9145 /* Encode lfence, mfence, and sfence as
9146 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9147 offsetT val = 0x240483f0ULL;
9148 p = frag_more (5);
9149 md_number_to_chars (p, val, 5);
9150 return;
9151 }
9152
9153 /* Some processors fail on LOCK prefix. This options makes
9154 assembler ignore LOCK prefix and serves as a workaround. */
9155 if (omit_lock_prefix)
9156 {
9157 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9158 return;
9159 i.prefix[LOCK_PREFIX] = 0;
9160 }
9161
9162 if (branch)
9163 /* Skip if this is a branch. */
9164 ;
9165 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9166 {
9167 /* Make room for padding. */
9168 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9169 p = frag_more (0);
9170
9171 fragP = frag_now;
9172
9173 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9174 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9175 NULL, 0, p);
9176
9177 fragP->tc_frag_data.mf_type = mf_cmp;
9178 fragP->tc_frag_data.branch_type = align_branch_fused;
9179 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9180 }
9181 else if (add_branch_prefix_frag_p ())
9182 {
9183 unsigned int max_prefix_size = align_branch_prefix_size;
9184
9185 /* Make room for padding. */
9186 frag_grow (max_prefix_size);
9187 p = frag_more (0);
9188
9189 fragP = frag_now;
9190
9191 frag_var (rs_machine_dependent, max_prefix_size, 0,
9192 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9193 NULL, 0, p);
9194
9195 fragP->tc_frag_data.max_bytes = max_prefix_size;
9196 }
9197
9198 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9199 don't need the explicit prefix. */
9200 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9201 {
9202 switch (i.tm.opcode_length)
9203 {
9204 case 3:
9205 if (i.tm.base_opcode & 0xff000000)
9206 {
9207 prefix = (i.tm.base_opcode >> 24) & 0xff;
9208 if (!i.tm.cpu_flags.bitfield.cpupadlock
9209 || prefix != REPE_PREFIX_OPCODE
9210 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
9211 add_prefix (prefix);
9212 }
9213 break;
9214 case 2:
9215 if ((i.tm.base_opcode & 0xff0000) != 0)
9216 {
9217 prefix = (i.tm.base_opcode >> 16) & 0xff;
9218 add_prefix (prefix);
9219 }
9220 break;
9221 case 1:
9222 break;
9223 case 0:
9224 /* Check for pseudo prefixes. */
9225 as_bad_where (insn_start_frag->fr_file,
9226 insn_start_frag->fr_line,
9227 _("pseudo prefix without instruction"));
9228 return;
9229 default:
9230 abort ();
9231 }
9232
9233 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9234 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9235 R_X86_64_GOTTPOFF relocation so that linker can safely
9236 perform IE->LE optimization. A dummy REX_OPCODE prefix
9237 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9238 relocation for GDesc -> IE/LE optimization. */
9239 if (x86_elf_abi == X86_64_X32_ABI
9240 && i.operands == 2
9241 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9242 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9243 && i.prefix[REX_PREFIX] == 0)
9244 add_prefix (REX_OPCODE);
9245 #endif
9246
9247 /* The prefix bytes. */
9248 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9249 if (*q)
9250 FRAG_APPEND_1_CHAR (*q);
9251 }
9252 else
9253 {
9254 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9255 if (*q)
9256 switch (j)
9257 {
9258 case REX_PREFIX:
9259 /* REX byte is encoded in VEX prefix. */
9260 break;
9261 case SEG_PREFIX:
9262 case ADDR_PREFIX:
9263 FRAG_APPEND_1_CHAR (*q);
9264 break;
9265 default:
9266 /* There should be no other prefixes for instructions
9267 with VEX prefix. */
9268 abort ();
9269 }
9270
9271 /* For EVEX instructions i.vrex should become 0 after
9272 build_evex_prefix. For VEX instructions upper 16 registers
9273 aren't available, so VREX should be 0. */
9274 if (i.vrex)
9275 abort ();
9276 /* Now the VEX prefix. */
9277 p = frag_more (i.vex.length);
9278 for (j = 0; j < i.vex.length; j++)
9279 p[j] = i.vex.bytes[j];
9280 }
9281
9282 /* Now the opcode; be careful about word order here! */
9283 if (i.tm.opcode_length == 1)
9284 {
9285 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9286 }
9287 else
9288 {
9289 switch (i.tm.opcode_length)
9290 {
9291 case 4:
9292 p = frag_more (4);
9293 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9294 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9295 break;
9296 case 3:
9297 p = frag_more (3);
9298 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9299 break;
9300 case 2:
9301 p = frag_more (2);
9302 break;
9303 default:
9304 abort ();
9305 break;
9306 }
9307
9308 /* Put out high byte first: can't use md_number_to_chars! */
9309 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9310 *p = i.tm.base_opcode & 0xff;
9311 }
9312
9313 /* Now the modrm byte and sib byte (if present). */
9314 if (i.tm.opcode_modifier.modrm)
9315 {
9316 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
9317 | i.rm.reg << 3
9318 | i.rm.mode << 6));
9319 /* If i.rm.regmem == ESP (4)
9320 && i.rm.mode != (Register mode)
9321 && not 16 bit
9322 ==> need second modrm byte. */
9323 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9324 && i.rm.mode != 3
9325 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9326 FRAG_APPEND_1_CHAR ((i.sib.base << 0
9327 | i.sib.index << 3
9328 | i.sib.scale << 6));
9329 }
9330
9331 if (i.disp_operands)
9332 output_disp (insn_start_frag, insn_start_off);
9333
9334 if (i.imm_operands)
9335 output_imm (insn_start_frag, insn_start_off);
9336
9337 /*
9338 * frag_now_fix () returning plain abs_section_offset when we're in the
9339 * absolute section, and abs_section_offset not getting updated as data
9340 * gets added to the frag breaks the logic below.
9341 */
9342 if (now_seg != absolute_section)
9343 {
9344 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9345 if (j > 15)
9346 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9347 j);
9348 else if (fragP)
9349 {
9350 /* NB: Don't add prefix with GOTPC relocation since
9351 output_disp() above depends on the fixed encoding
9352 length. Can't add prefix with TLS relocation since
9353 it breaks TLS linker optimization. */
9354 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9355 /* Prefix count on the current instruction. */
9356 unsigned int count = i.vex.length;
9357 unsigned int k;
9358 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9359 /* REX byte is encoded in VEX/EVEX prefix. */
9360 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9361 count++;
9362
9363 /* Count prefixes for extended opcode maps. */
9364 if (!i.vex.length)
9365 switch (i.tm.opcode_length)
9366 {
9367 case 3:
9368 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9369 {
9370 count++;
9371 switch ((i.tm.base_opcode >> 8) & 0xff)
9372 {
9373 case 0x38:
9374 case 0x3a:
9375 count++;
9376 break;
9377 default:
9378 break;
9379 }
9380 }
9381 break;
9382 case 2:
9383 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9384 count++;
9385 break;
9386 case 1:
9387 break;
9388 default:
9389 abort ();
9390 }
9391
9392 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9393 == BRANCH_PREFIX)
9394 {
9395 /* Set the maximum prefix size in BRANCH_PREFIX
9396 frag. */
9397 if (fragP->tc_frag_data.max_bytes > max)
9398 fragP->tc_frag_data.max_bytes = max;
9399 if (fragP->tc_frag_data.max_bytes > count)
9400 fragP->tc_frag_data.max_bytes -= count;
9401 else
9402 fragP->tc_frag_data.max_bytes = 0;
9403 }
9404 else
9405 {
9406 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9407 frag. */
9408 unsigned int max_prefix_size;
9409 if (align_branch_prefix_size > max)
9410 max_prefix_size = max;
9411 else
9412 max_prefix_size = align_branch_prefix_size;
9413 if (max_prefix_size > count)
9414 fragP->tc_frag_data.max_prefix_length
9415 = max_prefix_size - count;
9416 }
9417
9418 /* Use existing segment prefix if possible. Use CS
9419 segment prefix in 64-bit mode. In 32-bit mode, use SS
9420 segment prefix with ESP/EBP base register and use DS
9421 segment prefix without ESP/EBP base register. */
9422 if (i.prefix[SEG_PREFIX])
9423 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9424 else if (flag_code == CODE_64BIT)
9425 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9426 else if (i.base_reg
9427 && (i.base_reg->reg_num == 4
9428 || i.base_reg->reg_num == 5))
9429 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9430 else
9431 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9432 }
9433 }
9434 }
9435
9436 /* NB: Don't work with COND_JUMP86 without i386. */
9437 if (align_branch_power
9438 && now_seg != absolute_section
9439 && cpu_arch_flags.bitfield.cpui386)
9440 {
9441 /* Terminate each frag so that we can add prefix and check for
9442 fused jcc. */
9443 frag_wane (frag_now);
9444 frag_new (0);
9445 }
9446
9447 #ifdef DEBUG386
9448 if (flag_debug)
9449 {
9450 pi ("" /*line*/, &i);
9451 }
9452 #endif /* DEBUG386 */
9453 }
9454
9455 /* Return the size of the displacement operand N. */
9456
9457 static int
9458 disp_size (unsigned int n)
9459 {
9460 int size = 4;
9461
9462 if (i.types[n].bitfield.disp64)
9463 size = 8;
9464 else if (i.types[n].bitfield.disp8)
9465 size = 1;
9466 else if (i.types[n].bitfield.disp16)
9467 size = 2;
9468 return size;
9469 }
9470
9471 /* Return the size of the immediate operand N. */
9472
9473 static int
9474 imm_size (unsigned int n)
9475 {
9476 int size = 4;
9477 if (i.types[n].bitfield.imm64)
9478 size = 8;
9479 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9480 size = 1;
9481 else if (i.types[n].bitfield.imm16)
9482 size = 2;
9483 return size;
9484 }
9485
9486 static void
9487 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9488 {
9489 char *p;
9490 unsigned int n;
9491
9492 for (n = 0; n < i.operands; n++)
9493 {
9494 if (operand_type_check (i.types[n], disp))
9495 {
9496 if (i.op[n].disps->X_op == O_constant)
9497 {
9498 int size = disp_size (n);
9499 offsetT val = i.op[n].disps->X_add_number;
9500
9501 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9502 size);
9503 p = frag_more (size);
9504 md_number_to_chars (p, val, size);
9505 }
9506 else
9507 {
9508 enum bfd_reloc_code_real reloc_type;
9509 int size = disp_size (n);
9510 int sign = i.types[n].bitfield.disp32s;
9511 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9512 fixS *fixP;
9513
9514 /* We can't have 8 bit displacement here. */
9515 gas_assert (!i.types[n].bitfield.disp8);
9516
9517 /* The PC relative address is computed relative
9518 to the instruction boundary, so in case immediate
9519 fields follows, we need to adjust the value. */
9520 if (pcrel && i.imm_operands)
9521 {
9522 unsigned int n1;
9523 int sz = 0;
9524
9525 for (n1 = 0; n1 < i.operands; n1++)
9526 if (operand_type_check (i.types[n1], imm))
9527 {
9528 /* Only one immediate is allowed for PC
9529 relative address. */
9530 gas_assert (sz == 0);
9531 sz = imm_size (n1);
9532 i.op[n].disps->X_add_number -= sz;
9533 }
9534 /* We should find the immediate. */
9535 gas_assert (sz != 0);
9536 }
9537
9538 p = frag_more (size);
9539 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9540 if (GOT_symbol
9541 && GOT_symbol == i.op[n].disps->X_add_symbol
9542 && (((reloc_type == BFD_RELOC_32
9543 || reloc_type == BFD_RELOC_X86_64_32S
9544 || (reloc_type == BFD_RELOC_64
9545 && object_64bit))
9546 && (i.op[n].disps->X_op == O_symbol
9547 || (i.op[n].disps->X_op == O_add
9548 && ((symbol_get_value_expression
9549 (i.op[n].disps->X_op_symbol)->X_op)
9550 == O_subtract))))
9551 || reloc_type == BFD_RELOC_32_PCREL))
9552 {
9553 if (!object_64bit)
9554 {
9555 reloc_type = BFD_RELOC_386_GOTPC;
9556 i.has_gotpc_tls_reloc = TRUE;
9557 i.op[n].imms->X_add_number +=
9558 encoding_length (insn_start_frag, insn_start_off, p);
9559 }
9560 else if (reloc_type == BFD_RELOC_64)
9561 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9562 else
9563 /* Don't do the adjustment for x86-64, as there
9564 the pcrel addressing is relative to the _next_
9565 insn, and that is taken care of in other code. */
9566 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9567 }
9568 else if (align_branch_power)
9569 {
9570 switch (reloc_type)
9571 {
9572 case BFD_RELOC_386_TLS_GD:
9573 case BFD_RELOC_386_TLS_LDM:
9574 case BFD_RELOC_386_TLS_IE:
9575 case BFD_RELOC_386_TLS_IE_32:
9576 case BFD_RELOC_386_TLS_GOTIE:
9577 case BFD_RELOC_386_TLS_GOTDESC:
9578 case BFD_RELOC_386_TLS_DESC_CALL:
9579 case BFD_RELOC_X86_64_TLSGD:
9580 case BFD_RELOC_X86_64_TLSLD:
9581 case BFD_RELOC_X86_64_GOTTPOFF:
9582 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9583 case BFD_RELOC_X86_64_TLSDESC_CALL:
9584 i.has_gotpc_tls_reloc = TRUE;
9585 default:
9586 break;
9587 }
9588 }
9589 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9590 size, i.op[n].disps, pcrel,
9591 reloc_type);
9592 /* Check for "call/jmp *mem", "mov mem, %reg",
9593 "test %reg, mem" and "binop mem, %reg" where binop
9594 is one of adc, add, and, cmp, or, sbb, sub, xor
9595 instructions without data prefix. Always generate
9596 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9597 if (i.prefix[DATA_PREFIX] == 0
9598 && (generate_relax_relocations
9599 || (!object_64bit
9600 && i.rm.mode == 0
9601 && i.rm.regmem == 5))
9602 && (i.rm.mode == 2
9603 || (i.rm.mode == 0 && i.rm.regmem == 5))
9604 && !is_any_vex_encoding(&i.tm)
9605 && ((i.operands == 1
9606 && i.tm.base_opcode == 0xff
9607 && (i.rm.reg == 2 || i.rm.reg == 4))
9608 || (i.operands == 2
9609 && (i.tm.base_opcode == 0x8b
9610 || i.tm.base_opcode == 0x85
9611 || (i.tm.base_opcode & ~0x38) == 0x03))))
9612 {
9613 if (object_64bit)
9614 {
9615 fixP->fx_tcbit = i.rex != 0;
9616 if (i.base_reg
9617 && (i.base_reg->reg_num == RegIP))
9618 fixP->fx_tcbit2 = 1;
9619 }
9620 else
9621 fixP->fx_tcbit2 = 1;
9622 }
9623 }
9624 }
9625 }
9626 }
9627
9628 static void
9629 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9630 {
9631 char *p;
9632 unsigned int n;
9633
9634 for (n = 0; n < i.operands; n++)
9635 {
9636 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9637 if (i.rounding && (int) n == i.rounding->operand)
9638 continue;
9639
9640 if (operand_type_check (i.types[n], imm))
9641 {
9642 if (i.op[n].imms->X_op == O_constant)
9643 {
9644 int size = imm_size (n);
9645 offsetT val;
9646
9647 val = offset_in_range (i.op[n].imms->X_add_number,
9648 size);
9649 p = frag_more (size);
9650 md_number_to_chars (p, val, size);
9651 }
9652 else
9653 {
9654 /* Not absolute_section.
9655 Need a 32-bit fixup (don't support 8bit
9656 non-absolute imms). Try to support other
9657 sizes ... */
9658 enum bfd_reloc_code_real reloc_type;
9659 int size = imm_size (n);
9660 int sign;
9661
9662 if (i.types[n].bitfield.imm32s
9663 && (i.suffix == QWORD_MNEM_SUFFIX
9664 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9665 sign = 1;
9666 else
9667 sign = 0;
9668
9669 p = frag_more (size);
9670 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9671
9672 /* This is tough to explain. We end up with this one if we
9673 * have operands that look like
9674 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9675 * obtain the absolute address of the GOT, and it is strongly
9676 * preferable from a performance point of view to avoid using
9677 * a runtime relocation for this. The actual sequence of
9678 * instructions often look something like:
9679 *
9680 * call .L66
9681 * .L66:
9682 * popl %ebx
9683 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9684 *
9685 * The call and pop essentially return the absolute address
9686 * of the label .L66 and store it in %ebx. The linker itself
9687 * will ultimately change the first operand of the addl so
9688 * that %ebx points to the GOT, but to keep things simple, the
9689 * .o file must have this operand set so that it generates not
9690 * the absolute address of .L66, but the absolute address of
9691 * itself. This allows the linker itself simply treat a GOTPC
9692 * relocation as asking for a pcrel offset to the GOT to be
9693 * added in, and the addend of the relocation is stored in the
9694 * operand field for the instruction itself.
9695 *
9696 * Our job here is to fix the operand so that it would add
9697 * the correct offset so that %ebx would point to itself. The
9698 * thing that is tricky is that .-.L66 will point to the
9699 * beginning of the instruction, so we need to further modify
9700 * the operand so that it will point to itself. There are
9701 * other cases where you have something like:
9702 *
9703 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9704 *
9705 * and here no correction would be required. Internally in
9706 * the assembler we treat operands of this form as not being
9707 * pcrel since the '.' is explicitly mentioned, and I wonder
9708 * whether it would simplify matters to do it this way. Who
9709 * knows. In earlier versions of the PIC patches, the
9710 * pcrel_adjust field was used to store the correction, but
9711 * since the expression is not pcrel, I felt it would be
9712 * confusing to do it this way. */
9713
9714 if ((reloc_type == BFD_RELOC_32
9715 || reloc_type == BFD_RELOC_X86_64_32S
9716 || reloc_type == BFD_RELOC_64)
9717 && GOT_symbol
9718 && GOT_symbol == i.op[n].imms->X_add_symbol
9719 && (i.op[n].imms->X_op == O_symbol
9720 || (i.op[n].imms->X_op == O_add
9721 && ((symbol_get_value_expression
9722 (i.op[n].imms->X_op_symbol)->X_op)
9723 == O_subtract))))
9724 {
9725 if (!object_64bit)
9726 reloc_type = BFD_RELOC_386_GOTPC;
9727 else if (size == 4)
9728 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9729 else if (size == 8)
9730 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9731 i.has_gotpc_tls_reloc = TRUE;
9732 i.op[n].imms->X_add_number +=
9733 encoding_length (insn_start_frag, insn_start_off, p);
9734 }
9735 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9736 i.op[n].imms, 0, reloc_type);
9737 }
9738 }
9739 }
9740 }
9741 \f
9742 /* x86_cons_fix_new is called via the expression parsing code when a
9743 reloc is needed. We use this hook to get the correct .got reloc. */
9744 static int cons_sign = -1;
9745
9746 void
9747 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9748 expressionS *exp, bfd_reloc_code_real_type r)
9749 {
9750 r = reloc (len, 0, cons_sign, r);
9751
9752 #ifdef TE_PE
9753 if (exp->X_op == O_secrel)
9754 {
9755 exp->X_op = O_symbol;
9756 r = BFD_RELOC_32_SECREL;
9757 }
9758 #endif
9759
9760 fix_new_exp (frag, off, len, exp, 0, r);
9761 }
9762
9763 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9764 purpose of the `.dc.a' internal pseudo-op. */
9765
9766 int
9767 x86_address_bytes (void)
9768 {
9769 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9770 return 4;
9771 return stdoutput->arch_info->bits_per_address / 8;
9772 }
9773
9774 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9775 || defined (LEX_AT)
9776 # define lex_got(reloc, adjust, types) NULL
9777 #else
9778 /* Parse operands of the form
9779 <symbol>@GOTOFF+<nnn>
9780 and similar .plt or .got references.
9781
9782 If we find one, set up the correct relocation in RELOC and copy the
9783 input string, minus the `@GOTOFF' into a malloc'd buffer for
9784 parsing by the calling routine. Return this buffer, and if ADJUST
9785 is non-null set it to the length of the string we removed from the
9786 input line. Otherwise return NULL. */
9787 static char *
9788 lex_got (enum bfd_reloc_code_real *rel,
9789 int *adjust,
9790 i386_operand_type *types)
9791 {
9792 /* Some of the relocations depend on the size of what field is to
9793 be relocated. But in our callers i386_immediate and i386_displacement
9794 we don't yet know the operand size (this will be set by insn
9795 matching). Hence we record the word32 relocation here,
9796 and adjust the reloc according to the real size in reloc(). */
9797 static const struct {
9798 const char *str;
9799 int len;
9800 const enum bfd_reloc_code_real rel[2];
9801 const i386_operand_type types64;
9802 } gotrel[] = {
9803 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9804 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9805 BFD_RELOC_SIZE32 },
9806 OPERAND_TYPE_IMM32_64 },
9807 #endif
9808 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9809 BFD_RELOC_X86_64_PLTOFF64 },
9810 OPERAND_TYPE_IMM64 },
9811 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9812 BFD_RELOC_X86_64_PLT32 },
9813 OPERAND_TYPE_IMM32_32S_DISP32 },
9814 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9815 BFD_RELOC_X86_64_GOTPLT64 },
9816 OPERAND_TYPE_IMM64_DISP64 },
9817 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9818 BFD_RELOC_X86_64_GOTOFF64 },
9819 OPERAND_TYPE_IMM64_DISP64 },
9820 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9821 BFD_RELOC_X86_64_GOTPCREL },
9822 OPERAND_TYPE_IMM32_32S_DISP32 },
9823 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9824 BFD_RELOC_X86_64_TLSGD },
9825 OPERAND_TYPE_IMM32_32S_DISP32 },
9826 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9827 _dummy_first_bfd_reloc_code_real },
9828 OPERAND_TYPE_NONE },
9829 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9830 BFD_RELOC_X86_64_TLSLD },
9831 OPERAND_TYPE_IMM32_32S_DISP32 },
9832 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9833 BFD_RELOC_X86_64_GOTTPOFF },
9834 OPERAND_TYPE_IMM32_32S_DISP32 },
9835 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9836 BFD_RELOC_X86_64_TPOFF32 },
9837 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9838 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9839 _dummy_first_bfd_reloc_code_real },
9840 OPERAND_TYPE_NONE },
9841 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9842 BFD_RELOC_X86_64_DTPOFF32 },
9843 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9844 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9845 _dummy_first_bfd_reloc_code_real },
9846 OPERAND_TYPE_NONE },
9847 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9848 _dummy_first_bfd_reloc_code_real },
9849 OPERAND_TYPE_NONE },
9850 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9851 BFD_RELOC_X86_64_GOT32 },
9852 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9853 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9854 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9855 OPERAND_TYPE_IMM32_32S_DISP32 },
9856 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9857 BFD_RELOC_X86_64_TLSDESC_CALL },
9858 OPERAND_TYPE_IMM32_32S_DISP32 },
9859 };
9860 char *cp;
9861 unsigned int j;
9862
9863 #if defined (OBJ_MAYBE_ELF)
9864 if (!IS_ELF)
9865 return NULL;
9866 #endif
9867
9868 for (cp = input_line_pointer; *cp != '@'; cp++)
9869 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9870 return NULL;
9871
9872 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9873 {
9874 int len = gotrel[j].len;
9875 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9876 {
9877 if (gotrel[j].rel[object_64bit] != 0)
9878 {
9879 int first, second;
9880 char *tmpbuf, *past_reloc;
9881
9882 *rel = gotrel[j].rel[object_64bit];
9883
9884 if (types)
9885 {
9886 if (flag_code != CODE_64BIT)
9887 {
9888 types->bitfield.imm32 = 1;
9889 types->bitfield.disp32 = 1;
9890 }
9891 else
9892 *types = gotrel[j].types64;
9893 }
9894
9895 if (j != 0 && GOT_symbol == NULL)
9896 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9897
9898 /* The length of the first part of our input line. */
9899 first = cp - input_line_pointer;
9900
9901 /* The second part goes from after the reloc token until
9902 (and including) an end_of_line char or comma. */
9903 past_reloc = cp + 1 + len;
9904 cp = past_reloc;
9905 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9906 ++cp;
9907 second = cp + 1 - past_reloc;
9908
9909 /* Allocate and copy string. The trailing NUL shouldn't
9910 be necessary, but be safe. */
9911 tmpbuf = XNEWVEC (char, first + second + 2);
9912 memcpy (tmpbuf, input_line_pointer, first);
9913 if (second != 0 && *past_reloc != ' ')
9914 /* Replace the relocation token with ' ', so that
9915 errors like foo@GOTOFF1 will be detected. */
9916 tmpbuf[first++] = ' ';
9917 else
9918 /* Increment length by 1 if the relocation token is
9919 removed. */
9920 len++;
9921 if (adjust)
9922 *adjust = len;
9923 memcpy (tmpbuf + first, past_reloc, second);
9924 tmpbuf[first + second] = '\0';
9925 return tmpbuf;
9926 }
9927
9928 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9929 gotrel[j].str, 1 << (5 + object_64bit));
9930 return NULL;
9931 }
9932 }
9933
9934 /* Might be a symbol version string. Don't as_bad here. */
9935 return NULL;
9936 }
9937 #endif
9938
9939 #ifdef TE_PE
9940 #ifdef lex_got
9941 #undef lex_got
9942 #endif
9943 /* Parse operands of the form
9944 <symbol>@SECREL32+<nnn>
9945
9946 If we find one, set up the correct relocation in RELOC and copy the
9947 input string, minus the `@SECREL32' into a malloc'd buffer for
9948 parsing by the calling routine. Return this buffer, and if ADJUST
9949 is non-null set it to the length of the string we removed from the
9950 input line. Otherwise return NULL.
9951
9952 This function is copied from the ELF version above adjusted for PE targets. */
9953
9954 static char *
9955 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9956 int *adjust ATTRIBUTE_UNUSED,
9957 i386_operand_type *types)
9958 {
9959 static const struct
9960 {
9961 const char *str;
9962 int len;
9963 const enum bfd_reloc_code_real rel[2];
9964 const i386_operand_type types64;
9965 }
9966 gotrel[] =
9967 {
9968 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9969 BFD_RELOC_32_SECREL },
9970 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9971 };
9972
9973 char *cp;
9974 unsigned j;
9975
9976 for (cp = input_line_pointer; *cp != '@'; cp++)
9977 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9978 return NULL;
9979
9980 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9981 {
9982 int len = gotrel[j].len;
9983
9984 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9985 {
9986 if (gotrel[j].rel[object_64bit] != 0)
9987 {
9988 int first, second;
9989 char *tmpbuf, *past_reloc;
9990
9991 *rel = gotrel[j].rel[object_64bit];
9992 if (adjust)
9993 *adjust = len;
9994
9995 if (types)
9996 {
9997 if (flag_code != CODE_64BIT)
9998 {
9999 types->bitfield.imm32 = 1;
10000 types->bitfield.disp32 = 1;
10001 }
10002 else
10003 *types = gotrel[j].types64;
10004 }
10005
10006 /* The length of the first part of our input line. */
10007 first = cp - input_line_pointer;
10008
10009 /* The second part goes from after the reloc token until
10010 (and including) an end_of_line char or comma. */
10011 past_reloc = cp + 1 + len;
10012 cp = past_reloc;
10013 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10014 ++cp;
10015 second = cp + 1 - past_reloc;
10016
10017 /* Allocate and copy string. The trailing NUL shouldn't
10018 be necessary, but be safe. */
10019 tmpbuf = XNEWVEC (char, first + second + 2);
10020 memcpy (tmpbuf, input_line_pointer, first);
10021 if (second != 0 && *past_reloc != ' ')
10022 /* Replace the relocation token with ' ', so that
10023 errors like foo@SECLREL321 will be detected. */
10024 tmpbuf[first++] = ' ';
10025 memcpy (tmpbuf + first, past_reloc, second);
10026 tmpbuf[first + second] = '\0';
10027 return tmpbuf;
10028 }
10029
10030 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10031 gotrel[j].str, 1 << (5 + object_64bit));
10032 return NULL;
10033 }
10034 }
10035
10036 /* Might be a symbol version string. Don't as_bad here. */
10037 return NULL;
10038 }
10039
10040 #endif /* TE_PE */
10041
10042 bfd_reloc_code_real_type
10043 x86_cons (expressionS *exp, int size)
10044 {
10045 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10046
10047 intel_syntax = -intel_syntax;
10048
10049 exp->X_md = 0;
10050 if (size == 4 || (object_64bit && size == 8))
10051 {
10052 /* Handle @GOTOFF and the like in an expression. */
10053 char *save;
10054 char *gotfree_input_line;
10055 int adjust = 0;
10056
10057 save = input_line_pointer;
10058 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10059 if (gotfree_input_line)
10060 input_line_pointer = gotfree_input_line;
10061
10062 expression (exp);
10063
10064 if (gotfree_input_line)
10065 {
10066 /* expression () has merrily parsed up to the end of line,
10067 or a comma - in the wrong buffer. Transfer how far
10068 input_line_pointer has moved to the right buffer. */
10069 input_line_pointer = (save
10070 + (input_line_pointer - gotfree_input_line)
10071 + adjust);
10072 free (gotfree_input_line);
10073 if (exp->X_op == O_constant
10074 || exp->X_op == O_absent
10075 || exp->X_op == O_illegal
10076 || exp->X_op == O_register
10077 || exp->X_op == O_big)
10078 {
10079 char c = *input_line_pointer;
10080 *input_line_pointer = 0;
10081 as_bad (_("missing or invalid expression `%s'"), save);
10082 *input_line_pointer = c;
10083 }
10084 else if ((got_reloc == BFD_RELOC_386_PLT32
10085 || got_reloc == BFD_RELOC_X86_64_PLT32)
10086 && exp->X_op != O_symbol)
10087 {
10088 char c = *input_line_pointer;
10089 *input_line_pointer = 0;
10090 as_bad (_("invalid PLT expression `%s'"), save);
10091 *input_line_pointer = c;
10092 }
10093 }
10094 }
10095 else
10096 expression (exp);
10097
10098 intel_syntax = -intel_syntax;
10099
10100 if (intel_syntax)
10101 i386_intel_simplify (exp);
10102
10103 return got_reloc;
10104 }
10105
10106 static void
10107 signed_cons (int size)
10108 {
10109 if (flag_code == CODE_64BIT)
10110 cons_sign = 1;
10111 cons (size);
10112 cons_sign = -1;
10113 }
10114
10115 #ifdef TE_PE
10116 static void
10117 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10118 {
10119 expressionS exp;
10120
10121 do
10122 {
10123 expression (&exp);
10124 if (exp.X_op == O_symbol)
10125 exp.X_op = O_secrel;
10126
10127 emit_expr (&exp, 4);
10128 }
10129 while (*input_line_pointer++ == ',');
10130
10131 input_line_pointer--;
10132 demand_empty_rest_of_line ();
10133 }
10134 #endif
10135
10136 /* Handle Vector operations. */
10137
10138 static char *
10139 check_VecOperations (char *op_string, char *op_end)
10140 {
10141 const reg_entry *mask;
10142 const char *saved;
10143 char *end_op;
10144
10145 while (*op_string
10146 && (op_end == NULL || op_string < op_end))
10147 {
10148 saved = op_string;
10149 if (*op_string == '{')
10150 {
10151 op_string++;
10152
10153 /* Check broadcasts. */
10154 if (strncmp (op_string, "1to", 3) == 0)
10155 {
10156 int bcst_type;
10157
10158 if (i.broadcast)
10159 goto duplicated_vec_op;
10160
10161 op_string += 3;
10162 if (*op_string == '8')
10163 bcst_type = 8;
10164 else if (*op_string == '4')
10165 bcst_type = 4;
10166 else if (*op_string == '2')
10167 bcst_type = 2;
10168 else if (*op_string == '1'
10169 && *(op_string+1) == '6')
10170 {
10171 bcst_type = 16;
10172 op_string++;
10173 }
10174 else
10175 {
10176 as_bad (_("Unsupported broadcast: `%s'"), saved);
10177 return NULL;
10178 }
10179 op_string++;
10180
10181 broadcast_op.type = bcst_type;
10182 broadcast_op.operand = this_operand;
10183 broadcast_op.bytes = 0;
10184 i.broadcast = &broadcast_op;
10185 }
10186 /* Check masking operation. */
10187 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10188 {
10189 /* k0 can't be used for write mask. */
10190 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10191 {
10192 as_bad (_("`%s%s' can't be used for write mask"),
10193 register_prefix, mask->reg_name);
10194 return NULL;
10195 }
10196
10197 if (!i.mask)
10198 {
10199 mask_op.mask = mask;
10200 mask_op.zeroing = 0;
10201 mask_op.operand = this_operand;
10202 i.mask = &mask_op;
10203 }
10204 else
10205 {
10206 if (i.mask->mask)
10207 goto duplicated_vec_op;
10208
10209 i.mask->mask = mask;
10210
10211 /* Only "{z}" is allowed here. No need to check
10212 zeroing mask explicitly. */
10213 if (i.mask->operand != this_operand)
10214 {
10215 as_bad (_("invalid write mask `%s'"), saved);
10216 return NULL;
10217 }
10218 }
10219
10220 op_string = end_op;
10221 }
10222 /* Check zeroing-flag for masking operation. */
10223 else if (*op_string == 'z')
10224 {
10225 if (!i.mask)
10226 {
10227 mask_op.mask = NULL;
10228 mask_op.zeroing = 1;
10229 mask_op.operand = this_operand;
10230 i.mask = &mask_op;
10231 }
10232 else
10233 {
10234 if (i.mask->zeroing)
10235 {
10236 duplicated_vec_op:
10237 as_bad (_("duplicated `%s'"), saved);
10238 return NULL;
10239 }
10240
10241 i.mask->zeroing = 1;
10242
10243 /* Only "{%k}" is allowed here. No need to check mask
10244 register explicitly. */
10245 if (i.mask->operand != this_operand)
10246 {
10247 as_bad (_("invalid zeroing-masking `%s'"),
10248 saved);
10249 return NULL;
10250 }
10251 }
10252
10253 op_string++;
10254 }
10255 else
10256 goto unknown_vec_op;
10257
10258 if (*op_string != '}')
10259 {
10260 as_bad (_("missing `}' in `%s'"), saved);
10261 return NULL;
10262 }
10263 op_string++;
10264
10265 /* Strip whitespace since the addition of pseudo prefixes
10266 changed how the scrubber treats '{'. */
10267 if (is_space_char (*op_string))
10268 ++op_string;
10269
10270 continue;
10271 }
10272 unknown_vec_op:
10273 /* We don't know this one. */
10274 as_bad (_("unknown vector operation: `%s'"), saved);
10275 return NULL;
10276 }
10277
10278 if (i.mask && i.mask->zeroing && !i.mask->mask)
10279 {
10280 as_bad (_("zeroing-masking only allowed with write mask"));
10281 return NULL;
10282 }
10283
10284 return op_string;
10285 }
10286
10287 static int
10288 i386_immediate (char *imm_start)
10289 {
10290 char *save_input_line_pointer;
10291 char *gotfree_input_line;
10292 segT exp_seg = 0;
10293 expressionS *exp;
10294 i386_operand_type types;
10295
10296 operand_type_set (&types, ~0);
10297
10298 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10299 {
10300 as_bad (_("at most %d immediate operands are allowed"),
10301 MAX_IMMEDIATE_OPERANDS);
10302 return 0;
10303 }
10304
10305 exp = &im_expressions[i.imm_operands++];
10306 i.op[this_operand].imms = exp;
10307
10308 if (is_space_char (*imm_start))
10309 ++imm_start;
10310
10311 save_input_line_pointer = input_line_pointer;
10312 input_line_pointer = imm_start;
10313
10314 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10315 if (gotfree_input_line)
10316 input_line_pointer = gotfree_input_line;
10317
10318 exp_seg = expression (exp);
10319
10320 SKIP_WHITESPACE ();
10321
10322 /* Handle vector operations. */
10323 if (*input_line_pointer == '{')
10324 {
10325 input_line_pointer = check_VecOperations (input_line_pointer,
10326 NULL);
10327 if (input_line_pointer == NULL)
10328 return 0;
10329 }
10330
10331 if (*input_line_pointer)
10332 as_bad (_("junk `%s' after expression"), input_line_pointer);
10333
10334 input_line_pointer = save_input_line_pointer;
10335 if (gotfree_input_line)
10336 {
10337 free (gotfree_input_line);
10338
10339 if (exp->X_op == O_constant || exp->X_op == O_register)
10340 exp->X_op = O_illegal;
10341 }
10342
10343 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10344 }
10345
10346 static int
10347 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10348 i386_operand_type types, const char *imm_start)
10349 {
10350 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10351 {
10352 if (imm_start)
10353 as_bad (_("missing or invalid immediate expression `%s'"),
10354 imm_start);
10355 return 0;
10356 }
10357 else if (exp->X_op == O_constant)
10358 {
10359 /* Size it properly later. */
10360 i.types[this_operand].bitfield.imm64 = 1;
10361 /* If not 64bit, sign extend val. */
10362 if (flag_code != CODE_64BIT
10363 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10364 exp->X_add_number
10365 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10366 }
10367 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10368 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10369 && exp_seg != absolute_section
10370 && exp_seg != text_section
10371 && exp_seg != data_section
10372 && exp_seg != bss_section
10373 && exp_seg != undefined_section
10374 && !bfd_is_com_section (exp_seg))
10375 {
10376 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10377 return 0;
10378 }
10379 #endif
10380 else if (!intel_syntax && exp_seg == reg_section)
10381 {
10382 if (imm_start)
10383 as_bad (_("illegal immediate register operand %s"), imm_start);
10384 return 0;
10385 }
10386 else
10387 {
10388 /* This is an address. The size of the address will be
10389 determined later, depending on destination register,
10390 suffix, or the default for the section. */
10391 i.types[this_operand].bitfield.imm8 = 1;
10392 i.types[this_operand].bitfield.imm16 = 1;
10393 i.types[this_operand].bitfield.imm32 = 1;
10394 i.types[this_operand].bitfield.imm32s = 1;
10395 i.types[this_operand].bitfield.imm64 = 1;
10396 i.types[this_operand] = operand_type_and (i.types[this_operand],
10397 types);
10398 }
10399
10400 return 1;
10401 }
10402
10403 static char *
10404 i386_scale (char *scale)
10405 {
10406 offsetT val;
10407 char *save = input_line_pointer;
10408
10409 input_line_pointer = scale;
10410 val = get_absolute_expression ();
10411
10412 switch (val)
10413 {
10414 case 1:
10415 i.log2_scale_factor = 0;
10416 break;
10417 case 2:
10418 i.log2_scale_factor = 1;
10419 break;
10420 case 4:
10421 i.log2_scale_factor = 2;
10422 break;
10423 case 8:
10424 i.log2_scale_factor = 3;
10425 break;
10426 default:
10427 {
10428 char sep = *input_line_pointer;
10429
10430 *input_line_pointer = '\0';
10431 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10432 scale);
10433 *input_line_pointer = sep;
10434 input_line_pointer = save;
10435 return NULL;
10436 }
10437 }
10438 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10439 {
10440 as_warn (_("scale factor of %d without an index register"),
10441 1 << i.log2_scale_factor);
10442 i.log2_scale_factor = 0;
10443 }
10444 scale = input_line_pointer;
10445 input_line_pointer = save;
10446 return scale;
10447 }
10448
10449 static int
10450 i386_displacement (char *disp_start, char *disp_end)
10451 {
10452 expressionS *exp;
10453 segT exp_seg = 0;
10454 char *save_input_line_pointer;
10455 char *gotfree_input_line;
10456 int override;
10457 i386_operand_type bigdisp, types = anydisp;
10458 int ret;
10459
10460 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10461 {
10462 as_bad (_("at most %d displacement operands are allowed"),
10463 MAX_MEMORY_OPERANDS);
10464 return 0;
10465 }
10466
10467 operand_type_set (&bigdisp, 0);
10468 if (i.jumpabsolute
10469 || i.types[this_operand].bitfield.baseindex
10470 || (current_templates->start->opcode_modifier.jump != JUMP
10471 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10472 {
10473 i386_addressing_mode ();
10474 override = (i.prefix[ADDR_PREFIX] != 0);
10475 if (flag_code == CODE_64BIT)
10476 {
10477 if (!override)
10478 {
10479 bigdisp.bitfield.disp32s = 1;
10480 bigdisp.bitfield.disp64 = 1;
10481 }
10482 else
10483 bigdisp.bitfield.disp32 = 1;
10484 }
10485 else if ((flag_code == CODE_16BIT) ^ override)
10486 bigdisp.bitfield.disp16 = 1;
10487 else
10488 bigdisp.bitfield.disp32 = 1;
10489 }
10490 else
10491 {
10492 /* For PC-relative branches, the width of the displacement may be
10493 dependent upon data size, but is never dependent upon address size.
10494 Also make sure to not unintentionally match against a non-PC-relative
10495 branch template. */
10496 static templates aux_templates;
10497 const insn_template *t = current_templates->start;
10498 bfd_boolean has_intel64 = FALSE;
10499
10500 aux_templates.start = t;
10501 while (++t < current_templates->end)
10502 {
10503 if (t->opcode_modifier.jump
10504 != current_templates->start->opcode_modifier.jump)
10505 break;
10506 if ((t->opcode_modifier.isa64 >= INTEL64))
10507 has_intel64 = TRUE;
10508 }
10509 if (t < current_templates->end)
10510 {
10511 aux_templates.end = t;
10512 current_templates = &aux_templates;
10513 }
10514
10515 override = (i.prefix[DATA_PREFIX] != 0);
10516 if (flag_code == CODE_64BIT)
10517 {
10518 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10519 && (!intel64 || !has_intel64))
10520 bigdisp.bitfield.disp16 = 1;
10521 else
10522 bigdisp.bitfield.disp32s = 1;
10523 }
10524 else
10525 {
10526 if (!override)
10527 override = (i.suffix == (flag_code != CODE_16BIT
10528 ? WORD_MNEM_SUFFIX
10529 : LONG_MNEM_SUFFIX));
10530 bigdisp.bitfield.disp32 = 1;
10531 if ((flag_code == CODE_16BIT) ^ override)
10532 {
10533 bigdisp.bitfield.disp32 = 0;
10534 bigdisp.bitfield.disp16 = 1;
10535 }
10536 }
10537 }
10538 i.types[this_operand] = operand_type_or (i.types[this_operand],
10539 bigdisp);
10540
10541 exp = &disp_expressions[i.disp_operands];
10542 i.op[this_operand].disps = exp;
10543 i.disp_operands++;
10544 save_input_line_pointer = input_line_pointer;
10545 input_line_pointer = disp_start;
10546 END_STRING_AND_SAVE (disp_end);
10547
10548 #ifndef GCC_ASM_O_HACK
10549 #define GCC_ASM_O_HACK 0
10550 #endif
10551 #if GCC_ASM_O_HACK
10552 END_STRING_AND_SAVE (disp_end + 1);
10553 if (i.types[this_operand].bitfield.baseIndex
10554 && displacement_string_end[-1] == '+')
10555 {
10556 /* This hack is to avoid a warning when using the "o"
10557 constraint within gcc asm statements.
10558 For instance:
10559
10560 #define _set_tssldt_desc(n,addr,limit,type) \
10561 __asm__ __volatile__ ( \
10562 "movw %w2,%0\n\t" \
10563 "movw %w1,2+%0\n\t" \
10564 "rorl $16,%1\n\t" \
10565 "movb %b1,4+%0\n\t" \
10566 "movb %4,5+%0\n\t" \
10567 "movb $0,6+%0\n\t" \
10568 "movb %h1,7+%0\n\t" \
10569 "rorl $16,%1" \
10570 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10571
10572 This works great except that the output assembler ends
10573 up looking a bit weird if it turns out that there is
10574 no offset. You end up producing code that looks like:
10575
10576 #APP
10577 movw $235,(%eax)
10578 movw %dx,2+(%eax)
10579 rorl $16,%edx
10580 movb %dl,4+(%eax)
10581 movb $137,5+(%eax)
10582 movb $0,6+(%eax)
10583 movb %dh,7+(%eax)
10584 rorl $16,%edx
10585 #NO_APP
10586
10587 So here we provide the missing zero. */
10588
10589 *displacement_string_end = '0';
10590 }
10591 #endif
10592 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10593 if (gotfree_input_line)
10594 input_line_pointer = gotfree_input_line;
10595
10596 exp_seg = expression (exp);
10597
10598 SKIP_WHITESPACE ();
10599 if (*input_line_pointer)
10600 as_bad (_("junk `%s' after expression"), input_line_pointer);
10601 #if GCC_ASM_O_HACK
10602 RESTORE_END_STRING (disp_end + 1);
10603 #endif
10604 input_line_pointer = save_input_line_pointer;
10605 if (gotfree_input_line)
10606 {
10607 free (gotfree_input_line);
10608
10609 if (exp->X_op == O_constant || exp->X_op == O_register)
10610 exp->X_op = O_illegal;
10611 }
10612
10613 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10614
10615 RESTORE_END_STRING (disp_end);
10616
10617 return ret;
10618 }
10619
10620 static int
10621 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10622 i386_operand_type types, const char *disp_start)
10623 {
10624 i386_operand_type bigdisp;
10625 int ret = 1;
10626
10627 /* We do this to make sure that the section symbol is in
10628 the symbol table. We will ultimately change the relocation
10629 to be relative to the beginning of the section. */
10630 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10631 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10632 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10633 {
10634 if (exp->X_op != O_symbol)
10635 goto inv_disp;
10636
10637 if (S_IS_LOCAL (exp->X_add_symbol)
10638 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10639 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10640 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10641 exp->X_op = O_subtract;
10642 exp->X_op_symbol = GOT_symbol;
10643 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10644 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10645 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10646 i.reloc[this_operand] = BFD_RELOC_64;
10647 else
10648 i.reloc[this_operand] = BFD_RELOC_32;
10649 }
10650
10651 else if (exp->X_op == O_absent
10652 || exp->X_op == O_illegal
10653 || exp->X_op == O_big)
10654 {
10655 inv_disp:
10656 as_bad (_("missing or invalid displacement expression `%s'"),
10657 disp_start);
10658 ret = 0;
10659 }
10660
10661 else if (flag_code == CODE_64BIT
10662 && !i.prefix[ADDR_PREFIX]
10663 && exp->X_op == O_constant)
10664 {
10665 /* Since displacement is signed extended to 64bit, don't allow
10666 disp32 and turn off disp32s if they are out of range. */
10667 i.types[this_operand].bitfield.disp32 = 0;
10668 if (!fits_in_signed_long (exp->X_add_number))
10669 {
10670 i.types[this_operand].bitfield.disp32s = 0;
10671 if (i.types[this_operand].bitfield.baseindex)
10672 {
10673 as_bad (_("0x%lx out range of signed 32bit displacement"),
10674 (long) exp->X_add_number);
10675 ret = 0;
10676 }
10677 }
10678 }
10679
10680 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10681 else if (exp->X_op != O_constant
10682 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10683 && exp_seg != absolute_section
10684 && exp_seg != text_section
10685 && exp_seg != data_section
10686 && exp_seg != bss_section
10687 && exp_seg != undefined_section
10688 && !bfd_is_com_section (exp_seg))
10689 {
10690 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10691 ret = 0;
10692 }
10693 #endif
10694
10695 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10696 /* Constants get taken care of by optimize_disp(). */
10697 && exp->X_op != O_constant)
10698 i.types[this_operand].bitfield.disp8 = 1;
10699
10700 /* Check if this is a displacement only operand. */
10701 bigdisp = i.types[this_operand];
10702 bigdisp.bitfield.disp8 = 0;
10703 bigdisp.bitfield.disp16 = 0;
10704 bigdisp.bitfield.disp32 = 0;
10705 bigdisp.bitfield.disp32s = 0;
10706 bigdisp.bitfield.disp64 = 0;
10707 if (operand_type_all_zero (&bigdisp))
10708 i.types[this_operand] = operand_type_and (i.types[this_operand],
10709 types);
10710
10711 return ret;
10712 }
10713
10714 /* Return the active addressing mode, taking address override and
10715 registers forming the address into consideration. Update the
10716 address override prefix if necessary. */
10717
10718 static enum flag_code
10719 i386_addressing_mode (void)
10720 {
10721 enum flag_code addr_mode;
10722
10723 if (i.prefix[ADDR_PREFIX])
10724 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10725 else if (flag_code == CODE_16BIT
10726 && current_templates->start->cpu_flags.bitfield.cpumpx
10727 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10728 from md_assemble() by "is not a valid base/index expression"
10729 when there is a base and/or index. */
10730 && !i.types[this_operand].bitfield.baseindex)
10731 {
10732 /* MPX insn memory operands with neither base nor index must be forced
10733 to use 32-bit addressing in 16-bit mode. */
10734 addr_mode = CODE_32BIT;
10735 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10736 ++i.prefixes;
10737 gas_assert (!i.types[this_operand].bitfield.disp16);
10738 gas_assert (!i.types[this_operand].bitfield.disp32);
10739 }
10740 else
10741 {
10742 addr_mode = flag_code;
10743
10744 #if INFER_ADDR_PREFIX
10745 if (i.mem_operands == 0)
10746 {
10747 /* Infer address prefix from the first memory operand. */
10748 const reg_entry *addr_reg = i.base_reg;
10749
10750 if (addr_reg == NULL)
10751 addr_reg = i.index_reg;
10752
10753 if (addr_reg)
10754 {
10755 if (addr_reg->reg_type.bitfield.dword)
10756 addr_mode = CODE_32BIT;
10757 else if (flag_code != CODE_64BIT
10758 && addr_reg->reg_type.bitfield.word)
10759 addr_mode = CODE_16BIT;
10760
10761 if (addr_mode != flag_code)
10762 {
10763 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10764 i.prefixes += 1;
10765 /* Change the size of any displacement too. At most one
10766 of Disp16 or Disp32 is set.
10767 FIXME. There doesn't seem to be any real need for
10768 separate Disp16 and Disp32 flags. The same goes for
10769 Imm16 and Imm32. Removing them would probably clean
10770 up the code quite a lot. */
10771 if (flag_code != CODE_64BIT
10772 && (i.types[this_operand].bitfield.disp16
10773 || i.types[this_operand].bitfield.disp32))
10774 i.types[this_operand]
10775 = operand_type_xor (i.types[this_operand], disp16_32);
10776 }
10777 }
10778 }
10779 #endif
10780 }
10781
10782 return addr_mode;
10783 }
10784
10785 /* Make sure the memory operand we've been dealt is valid.
10786 Return 1 on success, 0 on a failure. */
10787
10788 static int
10789 i386_index_check (const char *operand_string)
10790 {
10791 const char *kind = "base/index";
10792 enum flag_code addr_mode = i386_addressing_mode ();
10793
10794 if (current_templates->start->opcode_modifier.isstring
10795 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10796 && (current_templates->end[-1].opcode_modifier.isstring
10797 || i.mem_operands))
10798 {
10799 /* Memory operands of string insns are special in that they only allow
10800 a single register (rDI, rSI, or rBX) as their memory address. */
10801 const reg_entry *expected_reg;
10802 static const char *di_si[][2] =
10803 {
10804 { "esi", "edi" },
10805 { "si", "di" },
10806 { "rsi", "rdi" }
10807 };
10808 static const char *bx[] = { "ebx", "bx", "rbx" };
10809
10810 kind = "string address";
10811
10812 if (current_templates->start->opcode_modifier.repprefixok)
10813 {
10814 int es_op = current_templates->end[-1].opcode_modifier.isstring
10815 - IS_STRING_ES_OP0;
10816 int op = 0;
10817
10818 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10819 || ((!i.mem_operands != !intel_syntax)
10820 && current_templates->end[-1].operand_types[1]
10821 .bitfield.baseindex))
10822 op = 1;
10823 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10824 }
10825 else
10826 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10827
10828 if (i.base_reg != expected_reg
10829 || i.index_reg
10830 || operand_type_check (i.types[this_operand], disp))
10831 {
10832 /* The second memory operand must have the same size as
10833 the first one. */
10834 if (i.mem_operands
10835 && i.base_reg
10836 && !((addr_mode == CODE_64BIT
10837 && i.base_reg->reg_type.bitfield.qword)
10838 || (addr_mode == CODE_32BIT
10839 ? i.base_reg->reg_type.bitfield.dword
10840 : i.base_reg->reg_type.bitfield.word)))
10841 goto bad_address;
10842
10843 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10844 operand_string,
10845 intel_syntax ? '[' : '(',
10846 register_prefix,
10847 expected_reg->reg_name,
10848 intel_syntax ? ']' : ')');
10849 return 1;
10850 }
10851 else
10852 return 1;
10853
10854 bad_address:
10855 as_bad (_("`%s' is not a valid %s expression"),
10856 operand_string, kind);
10857 return 0;
10858 }
10859 else
10860 {
10861 if (addr_mode != CODE_16BIT)
10862 {
10863 /* 32-bit/64-bit checks. */
10864 if ((i.base_reg
10865 && ((addr_mode == CODE_64BIT
10866 ? !i.base_reg->reg_type.bitfield.qword
10867 : !i.base_reg->reg_type.bitfield.dword)
10868 || (i.index_reg && i.base_reg->reg_num == RegIP)
10869 || i.base_reg->reg_num == RegIZ))
10870 || (i.index_reg
10871 && !i.index_reg->reg_type.bitfield.xmmword
10872 && !i.index_reg->reg_type.bitfield.ymmword
10873 && !i.index_reg->reg_type.bitfield.zmmword
10874 && ((addr_mode == CODE_64BIT
10875 ? !i.index_reg->reg_type.bitfield.qword
10876 : !i.index_reg->reg_type.bitfield.dword)
10877 || !i.index_reg->reg_type.bitfield.baseindex)))
10878 goto bad_address;
10879
10880 /* bndmk, bndldx, and bndstx have special restrictions. */
10881 if (current_templates->start->base_opcode == 0xf30f1b
10882 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10883 {
10884 /* They cannot use RIP-relative addressing. */
10885 if (i.base_reg && i.base_reg->reg_num == RegIP)
10886 {
10887 as_bad (_("`%s' cannot be used here"), operand_string);
10888 return 0;
10889 }
10890
10891 /* bndldx and bndstx ignore their scale factor. */
10892 if (current_templates->start->base_opcode != 0xf30f1b
10893 && i.log2_scale_factor)
10894 as_warn (_("register scaling is being ignored here"));
10895 }
10896 }
10897 else
10898 {
10899 /* 16-bit checks. */
10900 if ((i.base_reg
10901 && (!i.base_reg->reg_type.bitfield.word
10902 || !i.base_reg->reg_type.bitfield.baseindex))
10903 || (i.index_reg
10904 && (!i.index_reg->reg_type.bitfield.word
10905 || !i.index_reg->reg_type.bitfield.baseindex
10906 || !(i.base_reg
10907 && i.base_reg->reg_num < 6
10908 && i.index_reg->reg_num >= 6
10909 && i.log2_scale_factor == 0))))
10910 goto bad_address;
10911 }
10912 }
10913 return 1;
10914 }
10915
10916 /* Handle vector immediates. */
10917
10918 static int
10919 RC_SAE_immediate (const char *imm_start)
10920 {
10921 unsigned int match_found, j;
10922 const char *pstr = imm_start;
10923 expressionS *exp;
10924
10925 if (*pstr != '{')
10926 return 0;
10927
10928 pstr++;
10929 match_found = 0;
10930 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10931 {
10932 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10933 {
10934 if (!i.rounding)
10935 {
10936 rc_op.type = RC_NamesTable[j].type;
10937 rc_op.operand = this_operand;
10938 i.rounding = &rc_op;
10939 }
10940 else
10941 {
10942 as_bad (_("duplicated `%s'"), imm_start);
10943 return 0;
10944 }
10945 pstr += RC_NamesTable[j].len;
10946 match_found = 1;
10947 break;
10948 }
10949 }
10950 if (!match_found)
10951 return 0;
10952
10953 if (*pstr++ != '}')
10954 {
10955 as_bad (_("Missing '}': '%s'"), imm_start);
10956 return 0;
10957 }
10958 /* RC/SAE immediate string should contain nothing more. */;
10959 if (*pstr != 0)
10960 {
10961 as_bad (_("Junk after '}': '%s'"), imm_start);
10962 return 0;
10963 }
10964
10965 exp = &im_expressions[i.imm_operands++];
10966 i.op[this_operand].imms = exp;
10967
10968 exp->X_op = O_constant;
10969 exp->X_add_number = 0;
10970 exp->X_add_symbol = (symbolS *) 0;
10971 exp->X_op_symbol = (symbolS *) 0;
10972
10973 i.types[this_operand].bitfield.imm8 = 1;
10974 return 1;
10975 }
10976
10977 /* Only string instructions can have a second memory operand, so
10978 reduce current_templates to just those if it contains any. */
10979 static int
10980 maybe_adjust_templates (void)
10981 {
10982 const insn_template *t;
10983
10984 gas_assert (i.mem_operands == 1);
10985
10986 for (t = current_templates->start; t < current_templates->end; ++t)
10987 if (t->opcode_modifier.isstring)
10988 break;
10989
10990 if (t < current_templates->end)
10991 {
10992 static templates aux_templates;
10993 bfd_boolean recheck;
10994
10995 aux_templates.start = t;
10996 for (; t < current_templates->end; ++t)
10997 if (!t->opcode_modifier.isstring)
10998 break;
10999 aux_templates.end = t;
11000
11001 /* Determine whether to re-check the first memory operand. */
11002 recheck = (aux_templates.start != current_templates->start
11003 || t != current_templates->end);
11004
11005 current_templates = &aux_templates;
11006
11007 if (recheck)
11008 {
11009 i.mem_operands = 0;
11010 if (i.memop1_string != NULL
11011 && i386_index_check (i.memop1_string) == 0)
11012 return 0;
11013 i.mem_operands = 1;
11014 }
11015 }
11016
11017 return 1;
11018 }
11019
11020 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11021 on error. */
11022
11023 static int
11024 i386_att_operand (char *operand_string)
11025 {
11026 const reg_entry *r;
11027 char *end_op;
11028 char *op_string = operand_string;
11029
11030 if (is_space_char (*op_string))
11031 ++op_string;
11032
11033 /* We check for an absolute prefix (differentiating,
11034 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11035 if (*op_string == ABSOLUTE_PREFIX)
11036 {
11037 ++op_string;
11038 if (is_space_char (*op_string))
11039 ++op_string;
11040 i.jumpabsolute = TRUE;
11041 }
11042
11043 /* Check if operand is a register. */
11044 if ((r = parse_register (op_string, &end_op)) != NULL)
11045 {
11046 i386_operand_type temp;
11047
11048 /* Check for a segment override by searching for ':' after a
11049 segment register. */
11050 op_string = end_op;
11051 if (is_space_char (*op_string))
11052 ++op_string;
11053 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11054 {
11055 switch (r->reg_num)
11056 {
11057 case 0:
11058 i.seg[i.mem_operands] = &es;
11059 break;
11060 case 1:
11061 i.seg[i.mem_operands] = &cs;
11062 break;
11063 case 2:
11064 i.seg[i.mem_operands] = &ss;
11065 break;
11066 case 3:
11067 i.seg[i.mem_operands] = &ds;
11068 break;
11069 case 4:
11070 i.seg[i.mem_operands] = &fs;
11071 break;
11072 case 5:
11073 i.seg[i.mem_operands] = &gs;
11074 break;
11075 }
11076
11077 /* Skip the ':' and whitespace. */
11078 ++op_string;
11079 if (is_space_char (*op_string))
11080 ++op_string;
11081
11082 if (!is_digit_char (*op_string)
11083 && !is_identifier_char (*op_string)
11084 && *op_string != '('
11085 && *op_string != ABSOLUTE_PREFIX)
11086 {
11087 as_bad (_("bad memory operand `%s'"), op_string);
11088 return 0;
11089 }
11090 /* Handle case of %es:*foo. */
11091 if (*op_string == ABSOLUTE_PREFIX)
11092 {
11093 ++op_string;
11094 if (is_space_char (*op_string))
11095 ++op_string;
11096 i.jumpabsolute = TRUE;
11097 }
11098 goto do_memory_reference;
11099 }
11100
11101 /* Handle vector operations. */
11102 if (*op_string == '{')
11103 {
11104 op_string = check_VecOperations (op_string, NULL);
11105 if (op_string == NULL)
11106 return 0;
11107 }
11108
11109 if (*op_string)
11110 {
11111 as_bad (_("junk `%s' after register"), op_string);
11112 return 0;
11113 }
11114 temp = r->reg_type;
11115 temp.bitfield.baseindex = 0;
11116 i.types[this_operand] = operand_type_or (i.types[this_operand],
11117 temp);
11118 i.types[this_operand].bitfield.unspecified = 0;
11119 i.op[this_operand].regs = r;
11120 i.reg_operands++;
11121 }
11122 else if (*op_string == REGISTER_PREFIX)
11123 {
11124 as_bad (_("bad register name `%s'"), op_string);
11125 return 0;
11126 }
11127 else if (*op_string == IMMEDIATE_PREFIX)
11128 {
11129 ++op_string;
11130 if (i.jumpabsolute)
11131 {
11132 as_bad (_("immediate operand illegal with absolute jump"));
11133 return 0;
11134 }
11135 if (!i386_immediate (op_string))
11136 return 0;
11137 }
11138 else if (RC_SAE_immediate (operand_string))
11139 {
11140 /* If it is a RC or SAE immediate, do nothing. */
11141 ;
11142 }
11143 else if (is_digit_char (*op_string)
11144 || is_identifier_char (*op_string)
11145 || *op_string == '"'
11146 || *op_string == '(')
11147 {
11148 /* This is a memory reference of some sort. */
11149 char *base_string;
11150
11151 /* Start and end of displacement string expression (if found). */
11152 char *displacement_string_start;
11153 char *displacement_string_end;
11154 char *vop_start;
11155
11156 do_memory_reference:
11157 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11158 return 0;
11159 if ((i.mem_operands == 1
11160 && !current_templates->start->opcode_modifier.isstring)
11161 || i.mem_operands == 2)
11162 {
11163 as_bad (_("too many memory references for `%s'"),
11164 current_templates->start->name);
11165 return 0;
11166 }
11167
11168 /* Check for base index form. We detect the base index form by
11169 looking for an ')' at the end of the operand, searching
11170 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11171 after the '('. */
11172 base_string = op_string + strlen (op_string);
11173
11174 /* Handle vector operations. */
11175 vop_start = strchr (op_string, '{');
11176 if (vop_start && vop_start < base_string)
11177 {
11178 if (check_VecOperations (vop_start, base_string) == NULL)
11179 return 0;
11180 base_string = vop_start;
11181 }
11182
11183 --base_string;
11184 if (is_space_char (*base_string))
11185 --base_string;
11186
11187 /* If we only have a displacement, set-up for it to be parsed later. */
11188 displacement_string_start = op_string;
11189 displacement_string_end = base_string + 1;
11190
11191 if (*base_string == ')')
11192 {
11193 char *temp_string;
11194 unsigned int parens_balanced = 1;
11195 /* We've already checked that the number of left & right ()'s are
11196 equal, so this loop will not be infinite. */
11197 do
11198 {
11199 base_string--;
11200 if (*base_string == ')')
11201 parens_balanced++;
11202 if (*base_string == '(')
11203 parens_balanced--;
11204 }
11205 while (parens_balanced);
11206
11207 temp_string = base_string;
11208
11209 /* Skip past '(' and whitespace. */
11210 ++base_string;
11211 if (is_space_char (*base_string))
11212 ++base_string;
11213
11214 if (*base_string == ','
11215 || ((i.base_reg = parse_register (base_string, &end_op))
11216 != NULL))
11217 {
11218 displacement_string_end = temp_string;
11219
11220 i.types[this_operand].bitfield.baseindex = 1;
11221
11222 if (i.base_reg)
11223 {
11224 base_string = end_op;
11225 if (is_space_char (*base_string))
11226 ++base_string;
11227 }
11228
11229 /* There may be an index reg or scale factor here. */
11230 if (*base_string == ',')
11231 {
11232 ++base_string;
11233 if (is_space_char (*base_string))
11234 ++base_string;
11235
11236 if ((i.index_reg = parse_register (base_string, &end_op))
11237 != NULL)
11238 {
11239 base_string = end_op;
11240 if (is_space_char (*base_string))
11241 ++base_string;
11242 if (*base_string == ',')
11243 {
11244 ++base_string;
11245 if (is_space_char (*base_string))
11246 ++base_string;
11247 }
11248 else if (*base_string != ')')
11249 {
11250 as_bad (_("expecting `,' or `)' "
11251 "after index register in `%s'"),
11252 operand_string);
11253 return 0;
11254 }
11255 }
11256 else if (*base_string == REGISTER_PREFIX)
11257 {
11258 end_op = strchr (base_string, ',');
11259 if (end_op)
11260 *end_op = '\0';
11261 as_bad (_("bad register name `%s'"), base_string);
11262 return 0;
11263 }
11264
11265 /* Check for scale factor. */
11266 if (*base_string != ')')
11267 {
11268 char *end_scale = i386_scale (base_string);
11269
11270 if (!end_scale)
11271 return 0;
11272
11273 base_string = end_scale;
11274 if (is_space_char (*base_string))
11275 ++base_string;
11276 if (*base_string != ')')
11277 {
11278 as_bad (_("expecting `)' "
11279 "after scale factor in `%s'"),
11280 operand_string);
11281 return 0;
11282 }
11283 }
11284 else if (!i.index_reg)
11285 {
11286 as_bad (_("expecting index register or scale factor "
11287 "after `,'; got '%c'"),
11288 *base_string);
11289 return 0;
11290 }
11291 }
11292 else if (*base_string != ')')
11293 {
11294 as_bad (_("expecting `,' or `)' "
11295 "after base register in `%s'"),
11296 operand_string);
11297 return 0;
11298 }
11299 }
11300 else if (*base_string == REGISTER_PREFIX)
11301 {
11302 end_op = strchr (base_string, ',');
11303 if (end_op)
11304 *end_op = '\0';
11305 as_bad (_("bad register name `%s'"), base_string);
11306 return 0;
11307 }
11308 }
11309
11310 /* If there's an expression beginning the operand, parse it,
11311 assuming displacement_string_start and
11312 displacement_string_end are meaningful. */
11313 if (displacement_string_start != displacement_string_end)
11314 {
11315 if (!i386_displacement (displacement_string_start,
11316 displacement_string_end))
11317 return 0;
11318 }
11319
11320 /* Special case for (%dx) while doing input/output op. */
11321 if (i.base_reg
11322 && i.base_reg->reg_type.bitfield.instance == RegD
11323 && i.base_reg->reg_type.bitfield.word
11324 && i.index_reg == 0
11325 && i.log2_scale_factor == 0
11326 && i.seg[i.mem_operands] == 0
11327 && !operand_type_check (i.types[this_operand], disp))
11328 {
11329 i.types[this_operand] = i.base_reg->reg_type;
11330 return 1;
11331 }
11332
11333 if (i386_index_check (operand_string) == 0)
11334 return 0;
11335 i.flags[this_operand] |= Operand_Mem;
11336 if (i.mem_operands == 0)
11337 i.memop1_string = xstrdup (operand_string);
11338 i.mem_operands++;
11339 }
11340 else
11341 {
11342 /* It's not a memory operand; argh! */
11343 as_bad (_("invalid char %s beginning operand %d `%s'"),
11344 output_invalid (*op_string),
11345 this_operand + 1,
11346 op_string);
11347 return 0;
11348 }
11349 return 1; /* Normal return. */
11350 }
11351 \f
11352 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11353 that an rs_machine_dependent frag may reach. */
11354
11355 unsigned int
11356 i386_frag_max_var (fragS *frag)
11357 {
11358 /* The only relaxable frags are for jumps.
11359 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11360 gas_assert (frag->fr_type == rs_machine_dependent);
11361 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11362 }
11363
11364 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11365 static int
11366 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11367 {
11368 /* STT_GNU_IFUNC symbol must go through PLT. */
11369 if ((symbol_get_bfdsym (fr_symbol)->flags
11370 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11371 return 0;
11372
11373 if (!S_IS_EXTERNAL (fr_symbol))
11374 /* Symbol may be weak or local. */
11375 return !S_IS_WEAK (fr_symbol);
11376
11377 /* Global symbols with non-default visibility can't be preempted. */
11378 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11379 return 1;
11380
11381 if (fr_var != NO_RELOC)
11382 switch ((enum bfd_reloc_code_real) fr_var)
11383 {
11384 case BFD_RELOC_386_PLT32:
11385 case BFD_RELOC_X86_64_PLT32:
11386 /* Symbol with PLT relocation may be preempted. */
11387 return 0;
11388 default:
11389 abort ();
11390 }
11391
11392 /* Global symbols with default visibility in a shared library may be
11393 preempted by another definition. */
11394 return !shared;
11395 }
11396 #endif
11397
11398 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11399 Note also work for Skylake and Cascadelake.
11400 ---------------------------------------------------------------------
11401 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11402 | ------ | ----------- | ------- | -------- |
11403 | Jo | N | N | Y |
11404 | Jno | N | N | Y |
11405 | Jc/Jb | Y | N | Y |
11406 | Jae/Jnb | Y | N | Y |
11407 | Je/Jz | Y | Y | Y |
11408 | Jne/Jnz | Y | Y | Y |
11409 | Jna/Jbe | Y | N | Y |
11410 | Ja/Jnbe | Y | N | Y |
11411 | Js | N | N | Y |
11412 | Jns | N | N | Y |
11413 | Jp/Jpe | N | N | Y |
11414 | Jnp/Jpo | N | N | Y |
11415 | Jl/Jnge | Y | Y | Y |
11416 | Jge/Jnl | Y | Y | Y |
11417 | Jle/Jng | Y | Y | Y |
11418 | Jg/Jnle | Y | Y | Y |
11419 --------------------------------------------------------------------- */
11420 static int
11421 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11422 {
11423 if (mf_cmp == mf_cmp_alu_cmp)
11424 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11425 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11426 if (mf_cmp == mf_cmp_incdec)
11427 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11428 || mf_jcc == mf_jcc_jle);
11429 if (mf_cmp == mf_cmp_test_and)
11430 return 1;
11431 return 0;
11432 }
11433
11434 /* Return the next non-empty frag. */
11435
11436 static fragS *
11437 i386_next_non_empty_frag (fragS *fragP)
11438 {
11439 /* There may be a frag with a ".fill 0" when there is no room in
11440 the current frag for frag_grow in output_insn. */
11441 for (fragP = fragP->fr_next;
11442 (fragP != NULL
11443 && fragP->fr_type == rs_fill
11444 && fragP->fr_fix == 0);
11445 fragP = fragP->fr_next)
11446 ;
11447 return fragP;
11448 }
11449
11450 /* Return the next jcc frag after BRANCH_PADDING. */
11451
11452 static fragS *
11453 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11454 {
11455 fragS *branch_fragP;
11456 if (!pad_fragP)
11457 return NULL;
11458
11459 if (pad_fragP->fr_type == rs_machine_dependent
11460 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11461 == BRANCH_PADDING))
11462 {
11463 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11464 if (branch_fragP->fr_type != rs_machine_dependent)
11465 return NULL;
11466 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11467 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11468 pad_fragP->tc_frag_data.mf_type))
11469 return branch_fragP;
11470 }
11471
11472 return NULL;
11473 }
11474
11475 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11476
11477 static void
11478 i386_classify_machine_dependent_frag (fragS *fragP)
11479 {
11480 fragS *cmp_fragP;
11481 fragS *pad_fragP;
11482 fragS *branch_fragP;
11483 fragS *next_fragP;
11484 unsigned int max_prefix_length;
11485
11486 if (fragP->tc_frag_data.classified)
11487 return;
11488
11489 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11490 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11491 for (next_fragP = fragP;
11492 next_fragP != NULL;
11493 next_fragP = next_fragP->fr_next)
11494 {
11495 next_fragP->tc_frag_data.classified = 1;
11496 if (next_fragP->fr_type == rs_machine_dependent)
11497 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11498 {
11499 case BRANCH_PADDING:
11500 /* The BRANCH_PADDING frag must be followed by a branch
11501 frag. */
11502 branch_fragP = i386_next_non_empty_frag (next_fragP);
11503 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11504 break;
11505 case FUSED_JCC_PADDING:
11506 /* Check if this is a fused jcc:
11507 FUSED_JCC_PADDING
11508 CMP like instruction
11509 BRANCH_PADDING
11510 COND_JUMP
11511 */
11512 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11513 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11514 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11515 if (branch_fragP)
11516 {
11517 /* The BRANCH_PADDING frag is merged with the
11518 FUSED_JCC_PADDING frag. */
11519 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11520 /* CMP like instruction size. */
11521 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11522 frag_wane (pad_fragP);
11523 /* Skip to branch_fragP. */
11524 next_fragP = branch_fragP;
11525 }
11526 else if (next_fragP->tc_frag_data.max_prefix_length)
11527 {
11528 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11529 a fused jcc. */
11530 next_fragP->fr_subtype
11531 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11532 next_fragP->tc_frag_data.max_bytes
11533 = next_fragP->tc_frag_data.max_prefix_length;
11534 /* This will be updated in the BRANCH_PREFIX scan. */
11535 next_fragP->tc_frag_data.max_prefix_length = 0;
11536 }
11537 else
11538 frag_wane (next_fragP);
11539 break;
11540 }
11541 }
11542
11543 /* Stop if there is no BRANCH_PREFIX. */
11544 if (!align_branch_prefix_size)
11545 return;
11546
11547 /* Scan for BRANCH_PREFIX. */
11548 for (; fragP != NULL; fragP = fragP->fr_next)
11549 {
11550 if (fragP->fr_type != rs_machine_dependent
11551 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11552 != BRANCH_PREFIX))
11553 continue;
11554
11555 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11556 COND_JUMP_PREFIX. */
11557 max_prefix_length = 0;
11558 for (next_fragP = fragP;
11559 next_fragP != NULL;
11560 next_fragP = next_fragP->fr_next)
11561 {
11562 if (next_fragP->fr_type == rs_fill)
11563 /* Skip rs_fill frags. */
11564 continue;
11565 else if (next_fragP->fr_type != rs_machine_dependent)
11566 /* Stop for all other frags. */
11567 break;
11568
11569 /* rs_machine_dependent frags. */
11570 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11571 == BRANCH_PREFIX)
11572 {
11573 /* Count BRANCH_PREFIX frags. */
11574 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11575 {
11576 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11577 frag_wane (next_fragP);
11578 }
11579 else
11580 max_prefix_length
11581 += next_fragP->tc_frag_data.max_bytes;
11582 }
11583 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11584 == BRANCH_PADDING)
11585 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11586 == FUSED_JCC_PADDING))
11587 {
11588 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11589 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11590 break;
11591 }
11592 else
11593 /* Stop for other rs_machine_dependent frags. */
11594 break;
11595 }
11596
11597 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11598
11599 /* Skip to the next frag. */
11600 fragP = next_fragP;
11601 }
11602 }
11603
11604 /* Compute padding size for
11605
11606 FUSED_JCC_PADDING
11607 CMP like instruction
11608 BRANCH_PADDING
11609 COND_JUMP/UNCOND_JUMP
11610
11611 or
11612
11613 BRANCH_PADDING
11614 COND_JUMP/UNCOND_JUMP
11615 */
11616
11617 static int
11618 i386_branch_padding_size (fragS *fragP, offsetT address)
11619 {
11620 unsigned int offset, size, padding_size;
11621 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11622
11623 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11624 if (!address)
11625 address = fragP->fr_address;
11626 address += fragP->fr_fix;
11627
11628 /* CMP like instrunction size. */
11629 size = fragP->tc_frag_data.cmp_size;
11630
11631 /* The base size of the branch frag. */
11632 size += branch_fragP->fr_fix;
11633
11634 /* Add opcode and displacement bytes for the rs_machine_dependent
11635 branch frag. */
11636 if (branch_fragP->fr_type == rs_machine_dependent)
11637 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11638
11639 /* Check if branch is within boundary and doesn't end at the last
11640 byte. */
11641 offset = address & ((1U << align_branch_power) - 1);
11642 if ((offset + size) >= (1U << align_branch_power))
11643 /* Padding needed to avoid crossing boundary. */
11644 padding_size = (1U << align_branch_power) - offset;
11645 else
11646 /* No padding needed. */
11647 padding_size = 0;
11648
11649 /* The return value may be saved in tc_frag_data.length which is
11650 unsigned byte. */
11651 if (!fits_in_unsigned_byte (padding_size))
11652 abort ();
11653
11654 return padding_size;
11655 }
11656
11657 /* i386_generic_table_relax_frag()
11658
11659 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11660 grow/shrink padding to align branch frags. Hand others to
11661 relax_frag(). */
11662
11663 long
11664 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11665 {
11666 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11667 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11668 {
11669 long padding_size = i386_branch_padding_size (fragP, 0);
11670 long grow = padding_size - fragP->tc_frag_data.length;
11671
11672 /* When the BRANCH_PREFIX frag is used, the computed address
11673 must match the actual address and there should be no padding. */
11674 if (fragP->tc_frag_data.padding_address
11675 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11676 || padding_size))
11677 abort ();
11678
11679 /* Update the padding size. */
11680 if (grow)
11681 fragP->tc_frag_data.length = padding_size;
11682
11683 return grow;
11684 }
11685 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11686 {
11687 fragS *padding_fragP, *next_fragP;
11688 long padding_size, left_size, last_size;
11689
11690 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11691 if (!padding_fragP)
11692 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11693 return (fragP->tc_frag_data.length
11694 - fragP->tc_frag_data.last_length);
11695
11696 /* Compute the relative address of the padding frag in the very
11697 first time where the BRANCH_PREFIX frag sizes are zero. */
11698 if (!fragP->tc_frag_data.padding_address)
11699 fragP->tc_frag_data.padding_address
11700 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11701
11702 /* First update the last length from the previous interation. */
11703 left_size = fragP->tc_frag_data.prefix_length;
11704 for (next_fragP = fragP;
11705 next_fragP != padding_fragP;
11706 next_fragP = next_fragP->fr_next)
11707 if (next_fragP->fr_type == rs_machine_dependent
11708 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11709 == BRANCH_PREFIX))
11710 {
11711 if (left_size)
11712 {
11713 int max = next_fragP->tc_frag_data.max_bytes;
11714 if (max)
11715 {
11716 int size;
11717 if (max > left_size)
11718 size = left_size;
11719 else
11720 size = max;
11721 left_size -= size;
11722 next_fragP->tc_frag_data.last_length = size;
11723 }
11724 }
11725 else
11726 next_fragP->tc_frag_data.last_length = 0;
11727 }
11728
11729 /* Check the padding size for the padding frag. */
11730 padding_size = i386_branch_padding_size
11731 (padding_fragP, (fragP->fr_address
11732 + fragP->tc_frag_data.padding_address));
11733
11734 last_size = fragP->tc_frag_data.prefix_length;
11735 /* Check if there is change from the last interation. */
11736 if (padding_size == last_size)
11737 {
11738 /* Update the expected address of the padding frag. */
11739 padding_fragP->tc_frag_data.padding_address
11740 = (fragP->fr_address + padding_size
11741 + fragP->tc_frag_data.padding_address);
11742 return 0;
11743 }
11744
11745 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11746 {
11747 /* No padding if there is no sufficient room. Clear the
11748 expected address of the padding frag. */
11749 padding_fragP->tc_frag_data.padding_address = 0;
11750 padding_size = 0;
11751 }
11752 else
11753 /* Store the expected address of the padding frag. */
11754 padding_fragP->tc_frag_data.padding_address
11755 = (fragP->fr_address + padding_size
11756 + fragP->tc_frag_data.padding_address);
11757
11758 fragP->tc_frag_data.prefix_length = padding_size;
11759
11760 /* Update the length for the current interation. */
11761 left_size = padding_size;
11762 for (next_fragP = fragP;
11763 next_fragP != padding_fragP;
11764 next_fragP = next_fragP->fr_next)
11765 if (next_fragP->fr_type == rs_machine_dependent
11766 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11767 == BRANCH_PREFIX))
11768 {
11769 if (left_size)
11770 {
11771 int max = next_fragP->tc_frag_data.max_bytes;
11772 if (max)
11773 {
11774 int size;
11775 if (max > left_size)
11776 size = left_size;
11777 else
11778 size = max;
11779 left_size -= size;
11780 next_fragP->tc_frag_data.length = size;
11781 }
11782 }
11783 else
11784 next_fragP->tc_frag_data.length = 0;
11785 }
11786
11787 return (fragP->tc_frag_data.length
11788 - fragP->tc_frag_data.last_length);
11789 }
11790 return relax_frag (segment, fragP, stretch);
11791 }
11792
11793 /* md_estimate_size_before_relax()
11794
11795 Called just before relax() for rs_machine_dependent frags. The x86
11796 assembler uses these frags to handle variable size jump
11797 instructions.
11798
11799 Any symbol that is now undefined will not become defined.
11800 Return the correct fr_subtype in the frag.
11801 Return the initial "guess for variable size of frag" to caller.
11802 The guess is actually the growth beyond the fixed part. Whatever
11803 we do to grow the fixed or variable part contributes to our
11804 returned value. */
11805
11806 int
11807 md_estimate_size_before_relax (fragS *fragP, segT segment)
11808 {
11809 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11810 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11811 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11812 {
11813 i386_classify_machine_dependent_frag (fragP);
11814 return fragP->tc_frag_data.length;
11815 }
11816
11817 /* We've already got fragP->fr_subtype right; all we have to do is
11818 check for un-relaxable symbols. On an ELF system, we can't relax
11819 an externally visible symbol, because it may be overridden by a
11820 shared library. */
11821 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11822 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11823 || (IS_ELF
11824 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11825 fragP->fr_var))
11826 #endif
11827 #if defined (OBJ_COFF) && defined (TE_PE)
11828 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11829 && S_IS_WEAK (fragP->fr_symbol))
11830 #endif
11831 )
11832 {
11833 /* Symbol is undefined in this segment, or we need to keep a
11834 reloc so that weak symbols can be overridden. */
11835 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11836 enum bfd_reloc_code_real reloc_type;
11837 unsigned char *opcode;
11838 int old_fr_fix;
11839
11840 if (fragP->fr_var != NO_RELOC)
11841 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11842 else if (size == 2)
11843 reloc_type = BFD_RELOC_16_PCREL;
11844 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11845 else if (need_plt32_p (fragP->fr_symbol))
11846 reloc_type = BFD_RELOC_X86_64_PLT32;
11847 #endif
11848 else
11849 reloc_type = BFD_RELOC_32_PCREL;
11850
11851 old_fr_fix = fragP->fr_fix;
11852 opcode = (unsigned char *) fragP->fr_opcode;
11853
11854 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11855 {
11856 case UNCOND_JUMP:
11857 /* Make jmp (0xeb) a (d)word displacement jump. */
11858 opcode[0] = 0xe9;
11859 fragP->fr_fix += size;
11860 fix_new (fragP, old_fr_fix, size,
11861 fragP->fr_symbol,
11862 fragP->fr_offset, 1,
11863 reloc_type);
11864 break;
11865
11866 case COND_JUMP86:
11867 if (size == 2
11868 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11869 {
11870 /* Negate the condition, and branch past an
11871 unconditional jump. */
11872 opcode[0] ^= 1;
11873 opcode[1] = 3;
11874 /* Insert an unconditional jump. */
11875 opcode[2] = 0xe9;
11876 /* We added two extra opcode bytes, and have a two byte
11877 offset. */
11878 fragP->fr_fix += 2 + 2;
11879 fix_new (fragP, old_fr_fix + 2, 2,
11880 fragP->fr_symbol,
11881 fragP->fr_offset, 1,
11882 reloc_type);
11883 break;
11884 }
11885 /* Fall through. */
11886
11887 case COND_JUMP:
11888 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11889 {
11890 fixS *fixP;
11891
11892 fragP->fr_fix += 1;
11893 fixP = fix_new (fragP, old_fr_fix, 1,
11894 fragP->fr_symbol,
11895 fragP->fr_offset, 1,
11896 BFD_RELOC_8_PCREL);
11897 fixP->fx_signed = 1;
11898 break;
11899 }
11900
11901 /* This changes the byte-displacement jump 0x7N
11902 to the (d)word-displacement jump 0x0f,0x8N. */
11903 opcode[1] = opcode[0] + 0x10;
11904 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11905 /* We've added an opcode byte. */
11906 fragP->fr_fix += 1 + size;
11907 fix_new (fragP, old_fr_fix + 1, size,
11908 fragP->fr_symbol,
11909 fragP->fr_offset, 1,
11910 reloc_type);
11911 break;
11912
11913 default:
11914 BAD_CASE (fragP->fr_subtype);
11915 break;
11916 }
11917 frag_wane (fragP);
11918 return fragP->fr_fix - old_fr_fix;
11919 }
11920
11921 /* Guess size depending on current relax state. Initially the relax
11922 state will correspond to a short jump and we return 1, because
11923 the variable part of the frag (the branch offset) is one byte
11924 long. However, we can relax a section more than once and in that
11925 case we must either set fr_subtype back to the unrelaxed state,
11926 or return the value for the appropriate branch. */
11927 return md_relax_table[fragP->fr_subtype].rlx_length;
11928 }
11929
11930 /* Called after relax() is finished.
11931
11932 In: Address of frag.
11933 fr_type == rs_machine_dependent.
11934 fr_subtype is what the address relaxed to.
11935
11936 Out: Any fixSs and constants are set up.
11937 Caller will turn frag into a ".space 0". */
11938
11939 void
11940 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11941 fragS *fragP)
11942 {
11943 unsigned char *opcode;
11944 unsigned char *where_to_put_displacement = NULL;
11945 offsetT target_address;
11946 offsetT opcode_address;
11947 unsigned int extension = 0;
11948 offsetT displacement_from_opcode_start;
11949
11950 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11951 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11952 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11953 {
11954 /* Generate nop padding. */
11955 unsigned int size = fragP->tc_frag_data.length;
11956 if (size)
11957 {
11958 if (size > fragP->tc_frag_data.max_bytes)
11959 abort ();
11960
11961 if (flag_debug)
11962 {
11963 const char *msg;
11964 const char *branch = "branch";
11965 const char *prefix = "";
11966 fragS *padding_fragP;
11967 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11968 == BRANCH_PREFIX)
11969 {
11970 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11971 switch (fragP->tc_frag_data.default_prefix)
11972 {
11973 default:
11974 abort ();
11975 break;
11976 case CS_PREFIX_OPCODE:
11977 prefix = " cs";
11978 break;
11979 case DS_PREFIX_OPCODE:
11980 prefix = " ds";
11981 break;
11982 case ES_PREFIX_OPCODE:
11983 prefix = " es";
11984 break;
11985 case FS_PREFIX_OPCODE:
11986 prefix = " fs";
11987 break;
11988 case GS_PREFIX_OPCODE:
11989 prefix = " gs";
11990 break;
11991 case SS_PREFIX_OPCODE:
11992 prefix = " ss";
11993 break;
11994 }
11995 if (padding_fragP)
11996 msg = _("%s:%u: add %d%s at 0x%llx to align "
11997 "%s within %d-byte boundary\n");
11998 else
11999 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12000 "align %s within %d-byte boundary\n");
12001 }
12002 else
12003 {
12004 padding_fragP = fragP;
12005 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12006 "%s within %d-byte boundary\n");
12007 }
12008
12009 if (padding_fragP)
12010 switch (padding_fragP->tc_frag_data.branch_type)
12011 {
12012 case align_branch_jcc:
12013 branch = "jcc";
12014 break;
12015 case align_branch_fused:
12016 branch = "fused jcc";
12017 break;
12018 case align_branch_jmp:
12019 branch = "jmp";
12020 break;
12021 case align_branch_call:
12022 branch = "call";
12023 break;
12024 case align_branch_indirect:
12025 branch = "indiret branch";
12026 break;
12027 case align_branch_ret:
12028 branch = "ret";
12029 break;
12030 default:
12031 break;
12032 }
12033
12034 fprintf (stdout, msg,
12035 fragP->fr_file, fragP->fr_line, size, prefix,
12036 (long long) fragP->fr_address, branch,
12037 1 << align_branch_power);
12038 }
12039 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12040 memset (fragP->fr_opcode,
12041 fragP->tc_frag_data.default_prefix, size);
12042 else
12043 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12044 size, 0);
12045 fragP->fr_fix += size;
12046 }
12047 return;
12048 }
12049
12050 opcode = (unsigned char *) fragP->fr_opcode;
12051
12052 /* Address we want to reach in file space. */
12053 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12054
12055 /* Address opcode resides at in file space. */
12056 opcode_address = fragP->fr_address + fragP->fr_fix;
12057
12058 /* Displacement from opcode start to fill into instruction. */
12059 displacement_from_opcode_start = target_address - opcode_address;
12060
12061 if ((fragP->fr_subtype & BIG) == 0)
12062 {
12063 /* Don't have to change opcode. */
12064 extension = 1; /* 1 opcode + 1 displacement */
12065 where_to_put_displacement = &opcode[1];
12066 }
12067 else
12068 {
12069 if (no_cond_jump_promotion
12070 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12071 as_warn_where (fragP->fr_file, fragP->fr_line,
12072 _("long jump required"));
12073
12074 switch (fragP->fr_subtype)
12075 {
12076 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12077 extension = 4; /* 1 opcode + 4 displacement */
12078 opcode[0] = 0xe9;
12079 where_to_put_displacement = &opcode[1];
12080 break;
12081
12082 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12083 extension = 2; /* 1 opcode + 2 displacement */
12084 opcode[0] = 0xe9;
12085 where_to_put_displacement = &opcode[1];
12086 break;
12087
12088 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12089 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12090 extension = 5; /* 2 opcode + 4 displacement */
12091 opcode[1] = opcode[0] + 0x10;
12092 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12093 where_to_put_displacement = &opcode[2];
12094 break;
12095
12096 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12097 extension = 3; /* 2 opcode + 2 displacement */
12098 opcode[1] = opcode[0] + 0x10;
12099 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12100 where_to_put_displacement = &opcode[2];
12101 break;
12102
12103 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12104 extension = 4;
12105 opcode[0] ^= 1;
12106 opcode[1] = 3;
12107 opcode[2] = 0xe9;
12108 where_to_put_displacement = &opcode[3];
12109 break;
12110
12111 default:
12112 BAD_CASE (fragP->fr_subtype);
12113 break;
12114 }
12115 }
12116
12117 /* If size if less then four we are sure that the operand fits,
12118 but if it's 4, then it could be that the displacement is larger
12119 then -/+ 2GB. */
12120 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12121 && object_64bit
12122 && ((addressT) (displacement_from_opcode_start - extension
12123 + ((addressT) 1 << 31))
12124 > (((addressT) 2 << 31) - 1)))
12125 {
12126 as_bad_where (fragP->fr_file, fragP->fr_line,
12127 _("jump target out of range"));
12128 /* Make us emit 0. */
12129 displacement_from_opcode_start = extension;
12130 }
12131 /* Now put displacement after opcode. */
12132 md_number_to_chars ((char *) where_to_put_displacement,
12133 (valueT) (displacement_from_opcode_start - extension),
12134 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12135 fragP->fr_fix += extension;
12136 }
12137 \f
12138 /* Apply a fixup (fixP) to segment data, once it has been determined
12139 by our caller that we have all the info we need to fix it up.
12140
12141 Parameter valP is the pointer to the value of the bits.
12142
12143 On the 386, immediates, displacements, and data pointers are all in
12144 the same (little-endian) format, so we don't need to care about which
12145 we are handling. */
12146
12147 void
12148 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12149 {
12150 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12151 valueT value = *valP;
12152
12153 #if !defined (TE_Mach)
12154 if (fixP->fx_pcrel)
12155 {
12156 switch (fixP->fx_r_type)
12157 {
12158 default:
12159 break;
12160
12161 case BFD_RELOC_64:
12162 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12163 break;
12164 case BFD_RELOC_32:
12165 case BFD_RELOC_X86_64_32S:
12166 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12167 break;
12168 case BFD_RELOC_16:
12169 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12170 break;
12171 case BFD_RELOC_8:
12172 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12173 break;
12174 }
12175 }
12176
12177 if (fixP->fx_addsy != NULL
12178 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12179 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12180 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12181 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12182 && !use_rela_relocations)
12183 {
12184 /* This is a hack. There should be a better way to handle this.
12185 This covers for the fact that bfd_install_relocation will
12186 subtract the current location (for partial_inplace, PC relative
12187 relocations); see more below. */
12188 #ifndef OBJ_AOUT
12189 if (IS_ELF
12190 #ifdef TE_PE
12191 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12192 #endif
12193 )
12194 value += fixP->fx_where + fixP->fx_frag->fr_address;
12195 #endif
12196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12197 if (IS_ELF)
12198 {
12199 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12200
12201 if ((sym_seg == seg
12202 || (symbol_section_p (fixP->fx_addsy)
12203 && sym_seg != absolute_section))
12204 && !generic_force_reloc (fixP))
12205 {
12206 /* Yes, we add the values in twice. This is because
12207 bfd_install_relocation subtracts them out again. I think
12208 bfd_install_relocation is broken, but I don't dare change
12209 it. FIXME. */
12210 value += fixP->fx_where + fixP->fx_frag->fr_address;
12211 }
12212 }
12213 #endif
12214 #if defined (OBJ_COFF) && defined (TE_PE)
12215 /* For some reason, the PE format does not store a
12216 section address offset for a PC relative symbol. */
12217 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12218 || S_IS_WEAK (fixP->fx_addsy))
12219 value += md_pcrel_from (fixP);
12220 #endif
12221 }
12222 #if defined (OBJ_COFF) && defined (TE_PE)
12223 if (fixP->fx_addsy != NULL
12224 && S_IS_WEAK (fixP->fx_addsy)
12225 /* PR 16858: Do not modify weak function references. */
12226 && ! fixP->fx_pcrel)
12227 {
12228 #if !defined (TE_PEP)
12229 /* For x86 PE weak function symbols are neither PC-relative
12230 nor do they set S_IS_FUNCTION. So the only reliable way
12231 to detect them is to check the flags of their containing
12232 section. */
12233 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12234 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12235 ;
12236 else
12237 #endif
12238 value -= S_GET_VALUE (fixP->fx_addsy);
12239 }
12240 #endif
12241
12242 /* Fix a few things - the dynamic linker expects certain values here,
12243 and we must not disappoint it. */
12244 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12245 if (IS_ELF && fixP->fx_addsy)
12246 switch (fixP->fx_r_type)
12247 {
12248 case BFD_RELOC_386_PLT32:
12249 case BFD_RELOC_X86_64_PLT32:
12250 /* Make the jump instruction point to the address of the operand.
12251 At runtime we merely add the offset to the actual PLT entry.
12252 NB: Subtract the offset size only for jump instructions. */
12253 if (fixP->fx_pcrel)
12254 value = -4;
12255 break;
12256
12257 case BFD_RELOC_386_TLS_GD:
12258 case BFD_RELOC_386_TLS_LDM:
12259 case BFD_RELOC_386_TLS_IE_32:
12260 case BFD_RELOC_386_TLS_IE:
12261 case BFD_RELOC_386_TLS_GOTIE:
12262 case BFD_RELOC_386_TLS_GOTDESC:
12263 case BFD_RELOC_X86_64_TLSGD:
12264 case BFD_RELOC_X86_64_TLSLD:
12265 case BFD_RELOC_X86_64_GOTTPOFF:
12266 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12267 value = 0; /* Fully resolved at runtime. No addend. */
12268 /* Fallthrough */
12269 case BFD_RELOC_386_TLS_LE:
12270 case BFD_RELOC_386_TLS_LDO_32:
12271 case BFD_RELOC_386_TLS_LE_32:
12272 case BFD_RELOC_X86_64_DTPOFF32:
12273 case BFD_RELOC_X86_64_DTPOFF64:
12274 case BFD_RELOC_X86_64_TPOFF32:
12275 case BFD_RELOC_X86_64_TPOFF64:
12276 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12277 break;
12278
12279 case BFD_RELOC_386_TLS_DESC_CALL:
12280 case BFD_RELOC_X86_64_TLSDESC_CALL:
12281 value = 0; /* Fully resolved at runtime. No addend. */
12282 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12283 fixP->fx_done = 0;
12284 return;
12285
12286 case BFD_RELOC_VTABLE_INHERIT:
12287 case BFD_RELOC_VTABLE_ENTRY:
12288 fixP->fx_done = 0;
12289 return;
12290
12291 default:
12292 break;
12293 }
12294 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12295 *valP = value;
12296 #endif /* !defined (TE_Mach) */
12297
12298 /* Are we finished with this relocation now? */
12299 if (fixP->fx_addsy == NULL)
12300 fixP->fx_done = 1;
12301 #if defined (OBJ_COFF) && defined (TE_PE)
12302 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12303 {
12304 fixP->fx_done = 0;
12305 /* Remember value for tc_gen_reloc. */
12306 fixP->fx_addnumber = value;
12307 /* Clear out the frag for now. */
12308 value = 0;
12309 }
12310 #endif
12311 else if (use_rela_relocations)
12312 {
12313 fixP->fx_no_overflow = 1;
12314 /* Remember value for tc_gen_reloc. */
12315 fixP->fx_addnumber = value;
12316 value = 0;
12317 }
12318
12319 md_number_to_chars (p, value, fixP->fx_size);
12320 }
12321 \f
12322 const char *
12323 md_atof (int type, char *litP, int *sizeP)
12324 {
12325 /* This outputs the LITTLENUMs in REVERSE order;
12326 in accord with the bigendian 386. */
12327 return ieee_md_atof (type, litP, sizeP, FALSE);
12328 }
12329 \f
12330 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12331
12332 static char *
12333 output_invalid (int c)
12334 {
12335 if (ISPRINT (c))
12336 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12337 "'%c'", c);
12338 else
12339 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12340 "(0x%x)", (unsigned char) c);
12341 return output_invalid_buf;
12342 }
12343
12344 /* REG_STRING starts *before* REGISTER_PREFIX. */
12345
12346 static const reg_entry *
12347 parse_real_register (char *reg_string, char **end_op)
12348 {
12349 char *s = reg_string;
12350 char *p;
12351 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12352 const reg_entry *r;
12353
12354 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12355 if (*s == REGISTER_PREFIX)
12356 ++s;
12357
12358 if (is_space_char (*s))
12359 ++s;
12360
12361 p = reg_name_given;
12362 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12363 {
12364 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12365 return (const reg_entry *) NULL;
12366 s++;
12367 }
12368
12369 /* For naked regs, make sure that we are not dealing with an identifier.
12370 This prevents confusing an identifier like `eax_var' with register
12371 `eax'. */
12372 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12373 return (const reg_entry *) NULL;
12374
12375 *end_op = s;
12376
12377 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
12378
12379 /* Handle floating point regs, allowing spaces in the (i) part. */
12380 if (r == i386_regtab /* %st is first entry of table */)
12381 {
12382 if (!cpu_arch_flags.bitfield.cpu8087
12383 && !cpu_arch_flags.bitfield.cpu287
12384 && !cpu_arch_flags.bitfield.cpu387)
12385 return (const reg_entry *) NULL;
12386
12387 if (is_space_char (*s))
12388 ++s;
12389 if (*s == '(')
12390 {
12391 ++s;
12392 if (is_space_char (*s))
12393 ++s;
12394 if (*s >= '0' && *s <= '7')
12395 {
12396 int fpr = *s - '0';
12397 ++s;
12398 if (is_space_char (*s))
12399 ++s;
12400 if (*s == ')')
12401 {
12402 *end_op = s + 1;
12403 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
12404 know (r);
12405 return r + fpr;
12406 }
12407 }
12408 /* We have "%st(" then garbage. */
12409 return (const reg_entry *) NULL;
12410 }
12411 }
12412
12413 if (r == NULL || allow_pseudo_reg)
12414 return r;
12415
12416 if (operand_type_all_zero (&r->reg_type))
12417 return (const reg_entry *) NULL;
12418
12419 if ((r->reg_type.bitfield.dword
12420 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12421 || r->reg_type.bitfield.class == RegCR
12422 || r->reg_type.bitfield.class == RegDR
12423 || r->reg_type.bitfield.class == RegTR)
12424 && !cpu_arch_flags.bitfield.cpui386)
12425 return (const reg_entry *) NULL;
12426
12427 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12428 return (const reg_entry *) NULL;
12429
12430 if (!cpu_arch_flags.bitfield.cpuavx512f)
12431 {
12432 if (r->reg_type.bitfield.zmmword
12433 || r->reg_type.bitfield.class == RegMask)
12434 return (const reg_entry *) NULL;
12435
12436 if (!cpu_arch_flags.bitfield.cpuavx)
12437 {
12438 if (r->reg_type.bitfield.ymmword)
12439 return (const reg_entry *) NULL;
12440
12441 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12442 return (const reg_entry *) NULL;
12443 }
12444 }
12445
12446 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12447 return (const reg_entry *) NULL;
12448
12449 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12450 if (!allow_index_reg && r->reg_num == RegIZ)
12451 return (const reg_entry *) NULL;
12452
12453 /* Upper 16 vector registers are only available with VREX in 64bit
12454 mode, and require EVEX encoding. */
12455 if (r->reg_flags & RegVRex)
12456 {
12457 if (!cpu_arch_flags.bitfield.cpuavx512f
12458 || flag_code != CODE_64BIT)
12459 return (const reg_entry *) NULL;
12460
12461 i.vec_encoding = vex_encoding_evex;
12462 }
12463
12464 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12465 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12466 && flag_code != CODE_64BIT)
12467 return (const reg_entry *) NULL;
12468
12469 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12470 && !intel_syntax)
12471 return (const reg_entry *) NULL;
12472
12473 return r;
12474 }
12475
12476 /* REG_STRING starts *before* REGISTER_PREFIX. */
12477
12478 static const reg_entry *
12479 parse_register (char *reg_string, char **end_op)
12480 {
12481 const reg_entry *r;
12482
12483 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12484 r = parse_real_register (reg_string, end_op);
12485 else
12486 r = NULL;
12487 if (!r)
12488 {
12489 char *save = input_line_pointer;
12490 char c;
12491 symbolS *symbolP;
12492
12493 input_line_pointer = reg_string;
12494 c = get_symbol_name (&reg_string);
12495 symbolP = symbol_find (reg_string);
12496 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12497 {
12498 const expressionS *e = symbol_get_value_expression (symbolP);
12499
12500 know (e->X_op == O_register);
12501 know (e->X_add_number >= 0
12502 && (valueT) e->X_add_number < i386_regtab_size);
12503 r = i386_regtab + e->X_add_number;
12504 if ((r->reg_flags & RegVRex))
12505 i.vec_encoding = vex_encoding_evex;
12506 *end_op = input_line_pointer;
12507 }
12508 *input_line_pointer = c;
12509 input_line_pointer = save;
12510 }
12511 return r;
12512 }
12513
12514 int
12515 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12516 {
12517 const reg_entry *r;
12518 char *end = input_line_pointer;
12519
12520 *end = *nextcharP;
12521 r = parse_register (name, &input_line_pointer);
12522 if (r && end <= input_line_pointer)
12523 {
12524 *nextcharP = *input_line_pointer;
12525 *input_line_pointer = 0;
12526 e->X_op = O_register;
12527 e->X_add_number = r - i386_regtab;
12528 return 1;
12529 }
12530 input_line_pointer = end;
12531 *end = 0;
12532 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12533 }
12534
12535 void
12536 md_operand (expressionS *e)
12537 {
12538 char *end;
12539 const reg_entry *r;
12540
12541 switch (*input_line_pointer)
12542 {
12543 case REGISTER_PREFIX:
12544 r = parse_real_register (input_line_pointer, &end);
12545 if (r)
12546 {
12547 e->X_op = O_register;
12548 e->X_add_number = r - i386_regtab;
12549 input_line_pointer = end;
12550 }
12551 break;
12552
12553 case '[':
12554 gas_assert (intel_syntax);
12555 end = input_line_pointer++;
12556 expression (e);
12557 if (*input_line_pointer == ']')
12558 {
12559 ++input_line_pointer;
12560 e->X_op_symbol = make_expr_symbol (e);
12561 e->X_add_symbol = NULL;
12562 e->X_add_number = 0;
12563 e->X_op = O_index;
12564 }
12565 else
12566 {
12567 e->X_op = O_absent;
12568 input_line_pointer = end;
12569 }
12570 break;
12571 }
12572 }
12573
12574 \f
12575 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12576 const char *md_shortopts = "kVQ:sqnO::";
12577 #else
12578 const char *md_shortopts = "qnO::";
12579 #endif
12580
12581 #define OPTION_32 (OPTION_MD_BASE + 0)
12582 #define OPTION_64 (OPTION_MD_BASE + 1)
12583 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12584 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12585 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12586 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12587 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12588 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12589 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12590 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12591 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12592 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12593 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12594 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12595 #define OPTION_X32 (OPTION_MD_BASE + 14)
12596 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12597 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12598 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12599 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12600 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12601 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12602 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12603 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12604 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12605 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12606 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12607 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12608 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12609 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12610 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12611 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12612 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12613 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12614 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
12615
12616 struct option md_longopts[] =
12617 {
12618 {"32", no_argument, NULL, OPTION_32},
12619 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12620 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12621 {"64", no_argument, NULL, OPTION_64},
12622 #endif
12623 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12624 {"x32", no_argument, NULL, OPTION_X32},
12625 {"mshared", no_argument, NULL, OPTION_MSHARED},
12626 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12627 #endif
12628 {"divide", no_argument, NULL, OPTION_DIVIDE},
12629 {"march", required_argument, NULL, OPTION_MARCH},
12630 {"mtune", required_argument, NULL, OPTION_MTUNE},
12631 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12632 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12633 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12634 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12635 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12636 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12637 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12638 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12639 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12640 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12641 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12642 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12643 # if defined (TE_PE) || defined (TE_PEP)
12644 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12645 #endif
12646 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12647 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12648 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12649 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12650 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12651 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12652 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12653 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12654 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12655 {"mlfence-before-indirect-branch", required_argument, NULL,
12656 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12657 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
12658 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12659 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12660 {NULL, no_argument, NULL, 0}
12661 };
12662 size_t md_longopts_size = sizeof (md_longopts);
12663
12664 int
12665 md_parse_option (int c, const char *arg)
12666 {
12667 unsigned int j;
12668 char *arch, *next, *saved, *type;
12669
12670 switch (c)
12671 {
12672 case 'n':
12673 optimize_align_code = 0;
12674 break;
12675
12676 case 'q':
12677 quiet_warnings = 1;
12678 break;
12679
12680 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12681 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12682 should be emitted or not. FIXME: Not implemented. */
12683 case 'Q':
12684 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12685 return 0;
12686 break;
12687
12688 /* -V: SVR4 argument to print version ID. */
12689 case 'V':
12690 print_version_id ();
12691 break;
12692
12693 /* -k: Ignore for FreeBSD compatibility. */
12694 case 'k':
12695 break;
12696
12697 case 's':
12698 /* -s: On i386 Solaris, this tells the native assembler to use
12699 .stab instead of .stab.excl. We always use .stab anyhow. */
12700 break;
12701
12702 case OPTION_MSHARED:
12703 shared = 1;
12704 break;
12705
12706 case OPTION_X86_USED_NOTE:
12707 if (strcasecmp (arg, "yes") == 0)
12708 x86_used_note = 1;
12709 else if (strcasecmp (arg, "no") == 0)
12710 x86_used_note = 0;
12711 else
12712 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12713 break;
12714
12715
12716 #endif
12717 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12718 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12719 case OPTION_64:
12720 {
12721 const char **list, **l;
12722
12723 list = bfd_target_list ();
12724 for (l = list; *l != NULL; l++)
12725 if (CONST_STRNEQ (*l, "elf64-x86-64")
12726 || strcmp (*l, "coff-x86-64") == 0
12727 || strcmp (*l, "pe-x86-64") == 0
12728 || strcmp (*l, "pei-x86-64") == 0
12729 || strcmp (*l, "mach-o-x86-64") == 0)
12730 {
12731 default_arch = "x86_64";
12732 break;
12733 }
12734 if (*l == NULL)
12735 as_fatal (_("no compiled in support for x86_64"));
12736 free (list);
12737 }
12738 break;
12739 #endif
12740
12741 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12742 case OPTION_X32:
12743 if (IS_ELF)
12744 {
12745 const char **list, **l;
12746
12747 list = bfd_target_list ();
12748 for (l = list; *l != NULL; l++)
12749 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12750 {
12751 default_arch = "x86_64:32";
12752 break;
12753 }
12754 if (*l == NULL)
12755 as_fatal (_("no compiled in support for 32bit x86_64"));
12756 free (list);
12757 }
12758 else
12759 as_fatal (_("32bit x86_64 is only supported for ELF"));
12760 break;
12761 #endif
12762
12763 case OPTION_32:
12764 default_arch = "i386";
12765 break;
12766
12767 case OPTION_DIVIDE:
12768 #ifdef SVR4_COMMENT_CHARS
12769 {
12770 char *n, *t;
12771 const char *s;
12772
12773 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12774 t = n;
12775 for (s = i386_comment_chars; *s != '\0'; s++)
12776 if (*s != '/')
12777 *t++ = *s;
12778 *t = '\0';
12779 i386_comment_chars = n;
12780 }
12781 #endif
12782 break;
12783
12784 case OPTION_MARCH:
12785 saved = xstrdup (arg);
12786 arch = saved;
12787 /* Allow -march=+nosse. */
12788 if (*arch == '+')
12789 arch++;
12790 do
12791 {
12792 if (*arch == '.')
12793 as_fatal (_("invalid -march= option: `%s'"), arg);
12794 next = strchr (arch, '+');
12795 if (next)
12796 *next++ = '\0';
12797 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12798 {
12799 if (strcmp (arch, cpu_arch [j].name) == 0)
12800 {
12801 /* Processor. */
12802 if (! cpu_arch[j].flags.bitfield.cpui386)
12803 continue;
12804
12805 cpu_arch_name = cpu_arch[j].name;
12806 cpu_sub_arch_name = NULL;
12807 cpu_arch_flags = cpu_arch[j].flags;
12808 cpu_arch_isa = cpu_arch[j].type;
12809 cpu_arch_isa_flags = cpu_arch[j].flags;
12810 if (!cpu_arch_tune_set)
12811 {
12812 cpu_arch_tune = cpu_arch_isa;
12813 cpu_arch_tune_flags = cpu_arch_isa_flags;
12814 }
12815 break;
12816 }
12817 else if (*cpu_arch [j].name == '.'
12818 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12819 {
12820 /* ISA extension. */
12821 i386_cpu_flags flags;
12822
12823 flags = cpu_flags_or (cpu_arch_flags,
12824 cpu_arch[j].flags);
12825
12826 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12827 {
12828 if (cpu_sub_arch_name)
12829 {
12830 char *name = cpu_sub_arch_name;
12831 cpu_sub_arch_name = concat (name,
12832 cpu_arch[j].name,
12833 (const char *) NULL);
12834 free (name);
12835 }
12836 else
12837 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12838 cpu_arch_flags = flags;
12839 cpu_arch_isa_flags = flags;
12840 }
12841 else
12842 cpu_arch_isa_flags
12843 = cpu_flags_or (cpu_arch_isa_flags,
12844 cpu_arch[j].flags);
12845 break;
12846 }
12847 }
12848
12849 if (j >= ARRAY_SIZE (cpu_arch))
12850 {
12851 /* Disable an ISA extension. */
12852 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12853 if (strcmp (arch, cpu_noarch [j].name) == 0)
12854 {
12855 i386_cpu_flags flags;
12856
12857 flags = cpu_flags_and_not (cpu_arch_flags,
12858 cpu_noarch[j].flags);
12859 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12860 {
12861 if (cpu_sub_arch_name)
12862 {
12863 char *name = cpu_sub_arch_name;
12864 cpu_sub_arch_name = concat (arch,
12865 (const char *) NULL);
12866 free (name);
12867 }
12868 else
12869 cpu_sub_arch_name = xstrdup (arch);
12870 cpu_arch_flags = flags;
12871 cpu_arch_isa_flags = flags;
12872 }
12873 break;
12874 }
12875
12876 if (j >= ARRAY_SIZE (cpu_noarch))
12877 j = ARRAY_SIZE (cpu_arch);
12878 }
12879
12880 if (j >= ARRAY_SIZE (cpu_arch))
12881 as_fatal (_("invalid -march= option: `%s'"), arg);
12882
12883 arch = next;
12884 }
12885 while (next != NULL);
12886 free (saved);
12887 break;
12888
12889 case OPTION_MTUNE:
12890 if (*arg == '.')
12891 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12892 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12893 {
12894 if (strcmp (arg, cpu_arch [j].name) == 0)
12895 {
12896 cpu_arch_tune_set = 1;
12897 cpu_arch_tune = cpu_arch [j].type;
12898 cpu_arch_tune_flags = cpu_arch[j].flags;
12899 break;
12900 }
12901 }
12902 if (j >= ARRAY_SIZE (cpu_arch))
12903 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12904 break;
12905
12906 case OPTION_MMNEMONIC:
12907 if (strcasecmp (arg, "att") == 0)
12908 intel_mnemonic = 0;
12909 else if (strcasecmp (arg, "intel") == 0)
12910 intel_mnemonic = 1;
12911 else
12912 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12913 break;
12914
12915 case OPTION_MSYNTAX:
12916 if (strcasecmp (arg, "att") == 0)
12917 intel_syntax = 0;
12918 else if (strcasecmp (arg, "intel") == 0)
12919 intel_syntax = 1;
12920 else
12921 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12922 break;
12923
12924 case OPTION_MINDEX_REG:
12925 allow_index_reg = 1;
12926 break;
12927
12928 case OPTION_MNAKED_REG:
12929 allow_naked_reg = 1;
12930 break;
12931
12932 case OPTION_MSSE2AVX:
12933 sse2avx = 1;
12934 break;
12935
12936 case OPTION_MSSE_CHECK:
12937 if (strcasecmp (arg, "error") == 0)
12938 sse_check = check_error;
12939 else if (strcasecmp (arg, "warning") == 0)
12940 sse_check = check_warning;
12941 else if (strcasecmp (arg, "none") == 0)
12942 sse_check = check_none;
12943 else
12944 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12945 break;
12946
12947 case OPTION_MOPERAND_CHECK:
12948 if (strcasecmp (arg, "error") == 0)
12949 operand_check = check_error;
12950 else if (strcasecmp (arg, "warning") == 0)
12951 operand_check = check_warning;
12952 else if (strcasecmp (arg, "none") == 0)
12953 operand_check = check_none;
12954 else
12955 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12956 break;
12957
12958 case OPTION_MAVXSCALAR:
12959 if (strcasecmp (arg, "128") == 0)
12960 avxscalar = vex128;
12961 else if (strcasecmp (arg, "256") == 0)
12962 avxscalar = vex256;
12963 else
12964 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12965 break;
12966
12967 case OPTION_MVEXWIG:
12968 if (strcmp (arg, "0") == 0)
12969 vexwig = vexw0;
12970 else if (strcmp (arg, "1") == 0)
12971 vexwig = vexw1;
12972 else
12973 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12974 break;
12975
12976 case OPTION_MADD_BND_PREFIX:
12977 add_bnd_prefix = 1;
12978 break;
12979
12980 case OPTION_MEVEXLIG:
12981 if (strcmp (arg, "128") == 0)
12982 evexlig = evexl128;
12983 else if (strcmp (arg, "256") == 0)
12984 evexlig = evexl256;
12985 else if (strcmp (arg, "512") == 0)
12986 evexlig = evexl512;
12987 else
12988 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12989 break;
12990
12991 case OPTION_MEVEXRCIG:
12992 if (strcmp (arg, "rne") == 0)
12993 evexrcig = rne;
12994 else if (strcmp (arg, "rd") == 0)
12995 evexrcig = rd;
12996 else if (strcmp (arg, "ru") == 0)
12997 evexrcig = ru;
12998 else if (strcmp (arg, "rz") == 0)
12999 evexrcig = rz;
13000 else
13001 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13002 break;
13003
13004 case OPTION_MEVEXWIG:
13005 if (strcmp (arg, "0") == 0)
13006 evexwig = evexw0;
13007 else if (strcmp (arg, "1") == 0)
13008 evexwig = evexw1;
13009 else
13010 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13011 break;
13012
13013 # if defined (TE_PE) || defined (TE_PEP)
13014 case OPTION_MBIG_OBJ:
13015 use_big_obj = 1;
13016 break;
13017 #endif
13018
13019 case OPTION_MOMIT_LOCK_PREFIX:
13020 if (strcasecmp (arg, "yes") == 0)
13021 omit_lock_prefix = 1;
13022 else if (strcasecmp (arg, "no") == 0)
13023 omit_lock_prefix = 0;
13024 else
13025 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13026 break;
13027
13028 case OPTION_MFENCE_AS_LOCK_ADD:
13029 if (strcasecmp (arg, "yes") == 0)
13030 avoid_fence = 1;
13031 else if (strcasecmp (arg, "no") == 0)
13032 avoid_fence = 0;
13033 else
13034 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13035 break;
13036
13037 case OPTION_MLFENCE_AFTER_LOAD:
13038 if (strcasecmp (arg, "yes") == 0)
13039 lfence_after_load = 1;
13040 else if (strcasecmp (arg, "no") == 0)
13041 lfence_after_load = 0;
13042 else
13043 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13044 break;
13045
13046 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13047 if (strcasecmp (arg, "all") == 0)
13048 {
13049 lfence_before_indirect_branch = lfence_branch_all;
13050 if (lfence_before_ret == lfence_before_ret_none)
13051 lfence_before_ret = lfence_before_ret_shl;
13052 }
13053 else if (strcasecmp (arg, "memory") == 0)
13054 lfence_before_indirect_branch = lfence_branch_memory;
13055 else if (strcasecmp (arg, "register") == 0)
13056 lfence_before_indirect_branch = lfence_branch_register;
13057 else if (strcasecmp (arg, "none") == 0)
13058 lfence_before_indirect_branch = lfence_branch_none;
13059 else
13060 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13061 arg);
13062 break;
13063
13064 case OPTION_MLFENCE_BEFORE_RET:
13065 if (strcasecmp (arg, "or") == 0)
13066 lfence_before_ret = lfence_before_ret_or;
13067 else if (strcasecmp (arg, "not") == 0)
13068 lfence_before_ret = lfence_before_ret_not;
13069 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13070 lfence_before_ret = lfence_before_ret_shl;
13071 else if (strcasecmp (arg, "none") == 0)
13072 lfence_before_ret = lfence_before_ret_none;
13073 else
13074 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13075 arg);
13076 break;
13077
13078 case OPTION_MRELAX_RELOCATIONS:
13079 if (strcasecmp (arg, "yes") == 0)
13080 generate_relax_relocations = 1;
13081 else if (strcasecmp (arg, "no") == 0)
13082 generate_relax_relocations = 0;
13083 else
13084 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13085 break;
13086
13087 case OPTION_MALIGN_BRANCH_BOUNDARY:
13088 {
13089 char *end;
13090 long int align = strtoul (arg, &end, 0);
13091 if (*end == '\0')
13092 {
13093 if (align == 0)
13094 {
13095 align_branch_power = 0;
13096 break;
13097 }
13098 else if (align >= 16)
13099 {
13100 int align_power;
13101 for (align_power = 0;
13102 (align & 1) == 0;
13103 align >>= 1, align_power++)
13104 continue;
13105 /* Limit alignment power to 31. */
13106 if (align == 1 && align_power < 32)
13107 {
13108 align_branch_power = align_power;
13109 break;
13110 }
13111 }
13112 }
13113 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13114 }
13115 break;
13116
13117 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13118 {
13119 char *end;
13120 int align = strtoul (arg, &end, 0);
13121 /* Some processors only support 5 prefixes. */
13122 if (*end == '\0' && align >= 0 && align < 6)
13123 {
13124 align_branch_prefix_size = align;
13125 break;
13126 }
13127 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13128 arg);
13129 }
13130 break;
13131
13132 case OPTION_MALIGN_BRANCH:
13133 align_branch = 0;
13134 saved = xstrdup (arg);
13135 type = saved;
13136 do
13137 {
13138 next = strchr (type, '+');
13139 if (next)
13140 *next++ = '\0';
13141 if (strcasecmp (type, "jcc") == 0)
13142 align_branch |= align_branch_jcc_bit;
13143 else if (strcasecmp (type, "fused") == 0)
13144 align_branch |= align_branch_fused_bit;
13145 else if (strcasecmp (type, "jmp") == 0)
13146 align_branch |= align_branch_jmp_bit;
13147 else if (strcasecmp (type, "call") == 0)
13148 align_branch |= align_branch_call_bit;
13149 else if (strcasecmp (type, "ret") == 0)
13150 align_branch |= align_branch_ret_bit;
13151 else if (strcasecmp (type, "indirect") == 0)
13152 align_branch |= align_branch_indirect_bit;
13153 else
13154 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13155 type = next;
13156 }
13157 while (next != NULL);
13158 free (saved);
13159 break;
13160
13161 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13162 align_branch_power = 5;
13163 align_branch_prefix_size = 5;
13164 align_branch = (align_branch_jcc_bit
13165 | align_branch_fused_bit
13166 | align_branch_jmp_bit);
13167 break;
13168
13169 case OPTION_MAMD64:
13170 isa64 = amd64;
13171 break;
13172
13173 case OPTION_MINTEL64:
13174 isa64 = intel64;
13175 break;
13176
13177 case 'O':
13178 if (arg == NULL)
13179 {
13180 optimize = 1;
13181 /* Turn off -Os. */
13182 optimize_for_space = 0;
13183 }
13184 else if (*arg == 's')
13185 {
13186 optimize_for_space = 1;
13187 /* Turn on all encoding optimizations. */
13188 optimize = INT_MAX;
13189 }
13190 else
13191 {
13192 optimize = atoi (arg);
13193 /* Turn off -Os. */
13194 optimize_for_space = 0;
13195 }
13196 break;
13197
13198 default:
13199 return 0;
13200 }
13201 return 1;
13202 }
13203
13204 #define MESSAGE_TEMPLATE \
13205 " "
13206
13207 static char *
13208 output_message (FILE *stream, char *p, char *message, char *start,
13209 int *left_p, const char *name, int len)
13210 {
13211 int size = sizeof (MESSAGE_TEMPLATE);
13212 int left = *left_p;
13213
13214 /* Reserve 2 spaces for ", " or ",\0" */
13215 left -= len + 2;
13216
13217 /* Check if there is any room. */
13218 if (left >= 0)
13219 {
13220 if (p != start)
13221 {
13222 *p++ = ',';
13223 *p++ = ' ';
13224 }
13225 p = mempcpy (p, name, len);
13226 }
13227 else
13228 {
13229 /* Output the current message now and start a new one. */
13230 *p++ = ',';
13231 *p = '\0';
13232 fprintf (stream, "%s\n", message);
13233 p = start;
13234 left = size - (start - message) - len - 2;
13235
13236 gas_assert (left >= 0);
13237
13238 p = mempcpy (p, name, len);
13239 }
13240
13241 *left_p = left;
13242 return p;
13243 }
13244
13245 static void
13246 show_arch (FILE *stream, int ext, int check)
13247 {
13248 static char message[] = MESSAGE_TEMPLATE;
13249 char *start = message + 27;
13250 char *p;
13251 int size = sizeof (MESSAGE_TEMPLATE);
13252 int left;
13253 const char *name;
13254 int len;
13255 unsigned int j;
13256
13257 p = start;
13258 left = size - (start - message);
13259 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13260 {
13261 /* Should it be skipped? */
13262 if (cpu_arch [j].skip)
13263 continue;
13264
13265 name = cpu_arch [j].name;
13266 len = cpu_arch [j].len;
13267 if (*name == '.')
13268 {
13269 /* It is an extension. Skip if we aren't asked to show it. */
13270 if (ext)
13271 {
13272 name++;
13273 len--;
13274 }
13275 else
13276 continue;
13277 }
13278 else if (ext)
13279 {
13280 /* It is an processor. Skip if we show only extension. */
13281 continue;
13282 }
13283 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13284 {
13285 /* It is an impossible processor - skip. */
13286 continue;
13287 }
13288
13289 p = output_message (stream, p, message, start, &left, name, len);
13290 }
13291
13292 /* Display disabled extensions. */
13293 if (ext)
13294 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13295 {
13296 name = cpu_noarch [j].name;
13297 len = cpu_noarch [j].len;
13298 p = output_message (stream, p, message, start, &left, name,
13299 len);
13300 }
13301
13302 *p = '\0';
13303 fprintf (stream, "%s\n", message);
13304 }
13305
13306 void
13307 md_show_usage (FILE *stream)
13308 {
13309 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13310 fprintf (stream, _("\
13311 -Qy, -Qn ignored\n\
13312 -V print assembler version number\n\
13313 -k ignored\n"));
13314 #endif
13315 fprintf (stream, _("\
13316 -n Do not optimize code alignment\n\
13317 -q quieten some warnings\n"));
13318 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13319 fprintf (stream, _("\
13320 -s ignored\n"));
13321 #endif
13322 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13323 || defined (TE_PE) || defined (TE_PEP))
13324 fprintf (stream, _("\
13325 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13326 #endif
13327 #ifdef SVR4_COMMENT_CHARS
13328 fprintf (stream, _("\
13329 --divide do not treat `/' as a comment character\n"));
13330 #else
13331 fprintf (stream, _("\
13332 --divide ignored\n"));
13333 #endif
13334 fprintf (stream, _("\
13335 -march=CPU[,+EXTENSION...]\n\
13336 generate code for CPU and EXTENSION, CPU is one of:\n"));
13337 show_arch (stream, 0, 1);
13338 fprintf (stream, _("\
13339 EXTENSION is combination of:\n"));
13340 show_arch (stream, 1, 0);
13341 fprintf (stream, _("\
13342 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13343 show_arch (stream, 0, 0);
13344 fprintf (stream, _("\
13345 -msse2avx encode SSE instructions with VEX prefix\n"));
13346 fprintf (stream, _("\
13347 -msse-check=[none|error|warning] (default: warning)\n\
13348 check SSE instructions\n"));
13349 fprintf (stream, _("\
13350 -moperand-check=[none|error|warning] (default: warning)\n\
13351 check operand combinations for validity\n"));
13352 fprintf (stream, _("\
13353 -mavxscalar=[128|256] (default: 128)\n\
13354 encode scalar AVX instructions with specific vector\n\
13355 length\n"));
13356 fprintf (stream, _("\
13357 -mvexwig=[0|1] (default: 0)\n\
13358 encode VEX instructions with specific VEX.W value\n\
13359 for VEX.W bit ignored instructions\n"));
13360 fprintf (stream, _("\
13361 -mevexlig=[128|256|512] (default: 128)\n\
13362 encode scalar EVEX instructions with specific vector\n\
13363 length\n"));
13364 fprintf (stream, _("\
13365 -mevexwig=[0|1] (default: 0)\n\
13366 encode EVEX instructions with specific EVEX.W value\n\
13367 for EVEX.W bit ignored instructions\n"));
13368 fprintf (stream, _("\
13369 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13370 encode EVEX instructions with specific EVEX.RC value\n\
13371 for SAE-only ignored instructions\n"));
13372 fprintf (stream, _("\
13373 -mmnemonic=[att|intel] "));
13374 if (SYSV386_COMPAT)
13375 fprintf (stream, _("(default: att)\n"));
13376 else
13377 fprintf (stream, _("(default: intel)\n"));
13378 fprintf (stream, _("\
13379 use AT&T/Intel mnemonic\n"));
13380 fprintf (stream, _("\
13381 -msyntax=[att|intel] (default: att)\n\
13382 use AT&T/Intel syntax\n"));
13383 fprintf (stream, _("\
13384 -mindex-reg support pseudo index registers\n"));
13385 fprintf (stream, _("\
13386 -mnaked-reg don't require `%%' prefix for registers\n"));
13387 fprintf (stream, _("\
13388 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13389 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13390 fprintf (stream, _("\
13391 -mshared disable branch optimization for shared code\n"));
13392 fprintf (stream, _("\
13393 -mx86-used-note=[no|yes] "));
13394 if (DEFAULT_X86_USED_NOTE)
13395 fprintf (stream, _("(default: yes)\n"));
13396 else
13397 fprintf (stream, _("(default: no)\n"));
13398 fprintf (stream, _("\
13399 generate x86 used ISA and feature properties\n"));
13400 #endif
13401 #if defined (TE_PE) || defined (TE_PEP)
13402 fprintf (stream, _("\
13403 -mbig-obj generate big object files\n"));
13404 #endif
13405 fprintf (stream, _("\
13406 -momit-lock-prefix=[no|yes] (default: no)\n\
13407 strip all lock prefixes\n"));
13408 fprintf (stream, _("\
13409 -mfence-as-lock-add=[no|yes] (default: no)\n\
13410 encode lfence, mfence and sfence as\n\
13411 lock addl $0x0, (%%{re}sp)\n"));
13412 fprintf (stream, _("\
13413 -mrelax-relocations=[no|yes] "));
13414 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13415 fprintf (stream, _("(default: yes)\n"));
13416 else
13417 fprintf (stream, _("(default: no)\n"));
13418 fprintf (stream, _("\
13419 generate relax relocations\n"));
13420 fprintf (stream, _("\
13421 -malign-branch-boundary=NUM (default: 0)\n\
13422 align branches within NUM byte boundary\n"));
13423 fprintf (stream, _("\
13424 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13425 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13426 indirect\n\
13427 specify types of branches to align\n"));
13428 fprintf (stream, _("\
13429 -malign-branch-prefix-size=NUM (default: 5)\n\
13430 align branches with NUM prefixes per instruction\n"));
13431 fprintf (stream, _("\
13432 -mbranches-within-32B-boundaries\n\
13433 align branches within 32 byte boundary\n"));
13434 fprintf (stream, _("\
13435 -mlfence-after-load=[no|yes] (default: no)\n\
13436 generate lfence after load\n"));
13437 fprintf (stream, _("\
13438 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13439 generate lfence before indirect near branch\n"));
13440 fprintf (stream, _("\
13441 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13442 generate lfence before ret\n"));
13443 fprintf (stream, _("\
13444 -mamd64 accept only AMD64 ISA [default]\n"));
13445 fprintf (stream, _("\
13446 -mintel64 accept only Intel64 ISA\n"));
13447 }
13448
13449 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13450 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13451 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13452
13453 /* Pick the target format to use. */
13454
13455 const char *
13456 i386_target_format (void)
13457 {
13458 if (!strncmp (default_arch, "x86_64", 6))
13459 {
13460 update_code_flag (CODE_64BIT, 1);
13461 if (default_arch[6] == '\0')
13462 x86_elf_abi = X86_64_ABI;
13463 else
13464 x86_elf_abi = X86_64_X32_ABI;
13465 }
13466 else if (!strcmp (default_arch, "i386"))
13467 update_code_flag (CODE_32BIT, 1);
13468 else if (!strcmp (default_arch, "iamcu"))
13469 {
13470 update_code_flag (CODE_32BIT, 1);
13471 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13472 {
13473 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13474 cpu_arch_name = "iamcu";
13475 cpu_sub_arch_name = NULL;
13476 cpu_arch_flags = iamcu_flags;
13477 cpu_arch_isa = PROCESSOR_IAMCU;
13478 cpu_arch_isa_flags = iamcu_flags;
13479 if (!cpu_arch_tune_set)
13480 {
13481 cpu_arch_tune = cpu_arch_isa;
13482 cpu_arch_tune_flags = cpu_arch_isa_flags;
13483 }
13484 }
13485 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13486 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13487 cpu_arch_name);
13488 }
13489 else
13490 as_fatal (_("unknown architecture"));
13491
13492 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13493 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13494 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13495 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13496
13497 switch (OUTPUT_FLAVOR)
13498 {
13499 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13500 case bfd_target_aout_flavour:
13501 return AOUT_TARGET_FORMAT;
13502 #endif
13503 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13504 # if defined (TE_PE) || defined (TE_PEP)
13505 case bfd_target_coff_flavour:
13506 if (flag_code == CODE_64BIT)
13507 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13508 else
13509 return "pe-i386";
13510 # elif defined (TE_GO32)
13511 case bfd_target_coff_flavour:
13512 return "coff-go32";
13513 # else
13514 case bfd_target_coff_flavour:
13515 return "coff-i386";
13516 # endif
13517 #endif
13518 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13519 case bfd_target_elf_flavour:
13520 {
13521 const char *format;
13522
13523 switch (x86_elf_abi)
13524 {
13525 default:
13526 format = ELF_TARGET_FORMAT;
13527 #ifndef TE_SOLARIS
13528 tls_get_addr = "___tls_get_addr";
13529 #endif
13530 break;
13531 case X86_64_ABI:
13532 use_rela_relocations = 1;
13533 object_64bit = 1;
13534 #ifndef TE_SOLARIS
13535 tls_get_addr = "__tls_get_addr";
13536 #endif
13537 format = ELF_TARGET_FORMAT64;
13538 break;
13539 case X86_64_X32_ABI:
13540 use_rela_relocations = 1;
13541 object_64bit = 1;
13542 #ifndef TE_SOLARIS
13543 tls_get_addr = "__tls_get_addr";
13544 #endif
13545 disallow_64bit_reloc = 1;
13546 format = ELF_TARGET_FORMAT32;
13547 break;
13548 }
13549 if (cpu_arch_isa == PROCESSOR_L1OM)
13550 {
13551 if (x86_elf_abi != X86_64_ABI)
13552 as_fatal (_("Intel L1OM is 64bit only"));
13553 return ELF_TARGET_L1OM_FORMAT;
13554 }
13555 else if (cpu_arch_isa == PROCESSOR_K1OM)
13556 {
13557 if (x86_elf_abi != X86_64_ABI)
13558 as_fatal (_("Intel K1OM is 64bit only"));
13559 return ELF_TARGET_K1OM_FORMAT;
13560 }
13561 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13562 {
13563 if (x86_elf_abi != I386_ABI)
13564 as_fatal (_("Intel MCU is 32bit only"));
13565 return ELF_TARGET_IAMCU_FORMAT;
13566 }
13567 else
13568 return format;
13569 }
13570 #endif
13571 #if defined (OBJ_MACH_O)
13572 case bfd_target_mach_o_flavour:
13573 if (flag_code == CODE_64BIT)
13574 {
13575 use_rela_relocations = 1;
13576 object_64bit = 1;
13577 return "mach-o-x86-64";
13578 }
13579 else
13580 return "mach-o-i386";
13581 #endif
13582 default:
13583 abort ();
13584 return NULL;
13585 }
13586 }
13587
13588 #endif /* OBJ_MAYBE_ more than one */
13589 \f
13590 symbolS *
13591 md_undefined_symbol (char *name)
13592 {
13593 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13594 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13595 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13596 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13597 {
13598 if (!GOT_symbol)
13599 {
13600 if (symbol_find (name))
13601 as_bad (_("GOT already in symbol table"));
13602 GOT_symbol = symbol_new (name, undefined_section,
13603 (valueT) 0, &zero_address_frag);
13604 };
13605 return GOT_symbol;
13606 }
13607 return 0;
13608 }
13609
13610 /* Round up a section size to the appropriate boundary. */
13611
13612 valueT
13613 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13614 {
13615 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13616 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13617 {
13618 /* For a.out, force the section size to be aligned. If we don't do
13619 this, BFD will align it for us, but it will not write out the
13620 final bytes of the section. This may be a bug in BFD, but it is
13621 easier to fix it here since that is how the other a.out targets
13622 work. */
13623 int align;
13624
13625 align = bfd_section_alignment (segment);
13626 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13627 }
13628 #endif
13629
13630 return size;
13631 }
13632
13633 /* On the i386, PC-relative offsets are relative to the start of the
13634 next instruction. That is, the address of the offset, plus its
13635 size, since the offset is always the last part of the insn. */
13636
13637 long
13638 md_pcrel_from (fixS *fixP)
13639 {
13640 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13641 }
13642
13643 #ifndef I386COFF
13644
13645 static void
13646 s_bss (int ignore ATTRIBUTE_UNUSED)
13647 {
13648 int temp;
13649
13650 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13651 if (IS_ELF)
13652 obj_elf_section_change_hook ();
13653 #endif
13654 temp = get_absolute_expression ();
13655 subseg_set (bss_section, (subsegT) temp);
13656 demand_empty_rest_of_line ();
13657 }
13658
13659 #endif
13660
13661 /* Remember constant directive. */
13662
13663 void
13664 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13665 {
13666 if (last_insn.kind != last_insn_directive
13667 && (bfd_section_flags (now_seg) & SEC_CODE))
13668 {
13669 last_insn.seg = now_seg;
13670 last_insn.kind = last_insn_directive;
13671 last_insn.name = "constant directive";
13672 last_insn.file = as_where (&last_insn.line);
13673 if (lfence_before_ret != lfence_before_ret_none)
13674 {
13675 if (lfence_before_indirect_branch != lfence_branch_none)
13676 as_warn (_("constant directive skips -mlfence-before-ret "
13677 "and -mlfence-before-indirect-branch"));
13678 else
13679 as_warn (_("constant directive skips -mlfence-before-ret"));
13680 }
13681 else if (lfence_before_indirect_branch != lfence_branch_none)
13682 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
13683 }
13684 }
13685
13686 void
13687 i386_validate_fix (fixS *fixp)
13688 {
13689 if (fixp->fx_subsy)
13690 {
13691 if (fixp->fx_subsy == GOT_symbol)
13692 {
13693 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13694 {
13695 if (!object_64bit)
13696 abort ();
13697 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13698 if (fixp->fx_tcbit2)
13699 fixp->fx_r_type = (fixp->fx_tcbit
13700 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13701 : BFD_RELOC_X86_64_GOTPCRELX);
13702 else
13703 #endif
13704 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13705 }
13706 else
13707 {
13708 if (!object_64bit)
13709 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13710 else
13711 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13712 }
13713 fixp->fx_subsy = 0;
13714 }
13715 }
13716 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13717 else if (!object_64bit)
13718 {
13719 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13720 && fixp->fx_tcbit2)
13721 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13722 }
13723 #endif
13724 }
13725
13726 arelent *
13727 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13728 {
13729 arelent *rel;
13730 bfd_reloc_code_real_type code;
13731
13732 switch (fixp->fx_r_type)
13733 {
13734 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13735 case BFD_RELOC_SIZE32:
13736 case BFD_RELOC_SIZE64:
13737 if (S_IS_DEFINED (fixp->fx_addsy)
13738 && !S_IS_EXTERNAL (fixp->fx_addsy))
13739 {
13740 /* Resolve size relocation against local symbol to size of
13741 the symbol plus addend. */
13742 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13743 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13744 && !fits_in_unsigned_long (value))
13745 as_bad_where (fixp->fx_file, fixp->fx_line,
13746 _("symbol size computation overflow"));
13747 fixp->fx_addsy = NULL;
13748 fixp->fx_subsy = NULL;
13749 md_apply_fix (fixp, (valueT *) &value, NULL);
13750 return NULL;
13751 }
13752 #endif
13753 /* Fall through. */
13754
13755 case BFD_RELOC_X86_64_PLT32:
13756 case BFD_RELOC_X86_64_GOT32:
13757 case BFD_RELOC_X86_64_GOTPCREL:
13758 case BFD_RELOC_X86_64_GOTPCRELX:
13759 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13760 case BFD_RELOC_386_PLT32:
13761 case BFD_RELOC_386_GOT32:
13762 case BFD_RELOC_386_GOT32X:
13763 case BFD_RELOC_386_GOTOFF:
13764 case BFD_RELOC_386_GOTPC:
13765 case BFD_RELOC_386_TLS_GD:
13766 case BFD_RELOC_386_TLS_LDM:
13767 case BFD_RELOC_386_TLS_LDO_32:
13768 case BFD_RELOC_386_TLS_IE_32:
13769 case BFD_RELOC_386_TLS_IE:
13770 case BFD_RELOC_386_TLS_GOTIE:
13771 case BFD_RELOC_386_TLS_LE_32:
13772 case BFD_RELOC_386_TLS_LE:
13773 case BFD_RELOC_386_TLS_GOTDESC:
13774 case BFD_RELOC_386_TLS_DESC_CALL:
13775 case BFD_RELOC_X86_64_TLSGD:
13776 case BFD_RELOC_X86_64_TLSLD:
13777 case BFD_RELOC_X86_64_DTPOFF32:
13778 case BFD_RELOC_X86_64_DTPOFF64:
13779 case BFD_RELOC_X86_64_GOTTPOFF:
13780 case BFD_RELOC_X86_64_TPOFF32:
13781 case BFD_RELOC_X86_64_TPOFF64:
13782 case BFD_RELOC_X86_64_GOTOFF64:
13783 case BFD_RELOC_X86_64_GOTPC32:
13784 case BFD_RELOC_X86_64_GOT64:
13785 case BFD_RELOC_X86_64_GOTPCREL64:
13786 case BFD_RELOC_X86_64_GOTPC64:
13787 case BFD_RELOC_X86_64_GOTPLT64:
13788 case BFD_RELOC_X86_64_PLTOFF64:
13789 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13790 case BFD_RELOC_X86_64_TLSDESC_CALL:
13791 case BFD_RELOC_RVA:
13792 case BFD_RELOC_VTABLE_ENTRY:
13793 case BFD_RELOC_VTABLE_INHERIT:
13794 #ifdef TE_PE
13795 case BFD_RELOC_32_SECREL:
13796 #endif
13797 code = fixp->fx_r_type;
13798 break;
13799 case BFD_RELOC_X86_64_32S:
13800 if (!fixp->fx_pcrel)
13801 {
13802 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13803 code = fixp->fx_r_type;
13804 break;
13805 }
13806 /* Fall through. */
13807 default:
13808 if (fixp->fx_pcrel)
13809 {
13810 switch (fixp->fx_size)
13811 {
13812 default:
13813 as_bad_where (fixp->fx_file, fixp->fx_line,
13814 _("can not do %d byte pc-relative relocation"),
13815 fixp->fx_size);
13816 code = BFD_RELOC_32_PCREL;
13817 break;
13818 case 1: code = BFD_RELOC_8_PCREL; break;
13819 case 2: code = BFD_RELOC_16_PCREL; break;
13820 case 4: code = BFD_RELOC_32_PCREL; break;
13821 #ifdef BFD64
13822 case 8: code = BFD_RELOC_64_PCREL; break;
13823 #endif
13824 }
13825 }
13826 else
13827 {
13828 switch (fixp->fx_size)
13829 {
13830 default:
13831 as_bad_where (fixp->fx_file, fixp->fx_line,
13832 _("can not do %d byte relocation"),
13833 fixp->fx_size);
13834 code = BFD_RELOC_32;
13835 break;
13836 case 1: code = BFD_RELOC_8; break;
13837 case 2: code = BFD_RELOC_16; break;
13838 case 4: code = BFD_RELOC_32; break;
13839 #ifdef BFD64
13840 case 8: code = BFD_RELOC_64; break;
13841 #endif
13842 }
13843 }
13844 break;
13845 }
13846
13847 if ((code == BFD_RELOC_32
13848 || code == BFD_RELOC_32_PCREL
13849 || code == BFD_RELOC_X86_64_32S)
13850 && GOT_symbol
13851 && fixp->fx_addsy == GOT_symbol)
13852 {
13853 if (!object_64bit)
13854 code = BFD_RELOC_386_GOTPC;
13855 else
13856 code = BFD_RELOC_X86_64_GOTPC32;
13857 }
13858 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13859 && GOT_symbol
13860 && fixp->fx_addsy == GOT_symbol)
13861 {
13862 code = BFD_RELOC_X86_64_GOTPC64;
13863 }
13864
13865 rel = XNEW (arelent);
13866 rel->sym_ptr_ptr = XNEW (asymbol *);
13867 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13868
13869 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13870
13871 if (!use_rela_relocations)
13872 {
13873 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13874 vtable entry to be used in the relocation's section offset. */
13875 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13876 rel->address = fixp->fx_offset;
13877 #if defined (OBJ_COFF) && defined (TE_PE)
13878 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13879 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13880 else
13881 #endif
13882 rel->addend = 0;
13883 }
13884 /* Use the rela in 64bit mode. */
13885 else
13886 {
13887 if (disallow_64bit_reloc)
13888 switch (code)
13889 {
13890 case BFD_RELOC_X86_64_DTPOFF64:
13891 case BFD_RELOC_X86_64_TPOFF64:
13892 case BFD_RELOC_64_PCREL:
13893 case BFD_RELOC_X86_64_GOTOFF64:
13894 case BFD_RELOC_X86_64_GOT64:
13895 case BFD_RELOC_X86_64_GOTPCREL64:
13896 case BFD_RELOC_X86_64_GOTPC64:
13897 case BFD_RELOC_X86_64_GOTPLT64:
13898 case BFD_RELOC_X86_64_PLTOFF64:
13899 as_bad_where (fixp->fx_file, fixp->fx_line,
13900 _("cannot represent relocation type %s in x32 mode"),
13901 bfd_get_reloc_code_name (code));
13902 break;
13903 default:
13904 break;
13905 }
13906
13907 if (!fixp->fx_pcrel)
13908 rel->addend = fixp->fx_offset;
13909 else
13910 switch (code)
13911 {
13912 case BFD_RELOC_X86_64_PLT32:
13913 case BFD_RELOC_X86_64_GOT32:
13914 case BFD_RELOC_X86_64_GOTPCREL:
13915 case BFD_RELOC_X86_64_GOTPCRELX:
13916 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13917 case BFD_RELOC_X86_64_TLSGD:
13918 case BFD_RELOC_X86_64_TLSLD:
13919 case BFD_RELOC_X86_64_GOTTPOFF:
13920 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13921 case BFD_RELOC_X86_64_TLSDESC_CALL:
13922 rel->addend = fixp->fx_offset - fixp->fx_size;
13923 break;
13924 default:
13925 rel->addend = (section->vma
13926 - fixp->fx_size
13927 + fixp->fx_addnumber
13928 + md_pcrel_from (fixp));
13929 break;
13930 }
13931 }
13932
13933 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13934 if (rel->howto == NULL)
13935 {
13936 as_bad_where (fixp->fx_file, fixp->fx_line,
13937 _("cannot represent relocation type %s"),
13938 bfd_get_reloc_code_name (code));
13939 /* Set howto to a garbage value so that we can keep going. */
13940 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13941 gas_assert (rel->howto != NULL);
13942 }
13943
13944 return rel;
13945 }
13946
13947 #include "tc-i386-intel.c"
13948
13949 void
13950 tc_x86_parse_to_dw2regnum (expressionS *exp)
13951 {
13952 int saved_naked_reg;
13953 char saved_register_dot;
13954
13955 saved_naked_reg = allow_naked_reg;
13956 allow_naked_reg = 1;
13957 saved_register_dot = register_chars['.'];
13958 register_chars['.'] = '.';
13959 allow_pseudo_reg = 1;
13960 expression_and_evaluate (exp);
13961 allow_pseudo_reg = 0;
13962 register_chars['.'] = saved_register_dot;
13963 allow_naked_reg = saved_naked_reg;
13964
13965 if (exp->X_op == O_register && exp->X_add_number >= 0)
13966 {
13967 if ((addressT) exp->X_add_number < i386_regtab_size)
13968 {
13969 exp->X_op = O_constant;
13970 exp->X_add_number = i386_regtab[exp->X_add_number]
13971 .dw2_regnum[flag_code >> 1];
13972 }
13973 else
13974 exp->X_op = O_illegal;
13975 }
13976 }
13977
13978 void
13979 tc_x86_frame_initial_instructions (void)
13980 {
13981 static unsigned int sp_regno[2];
13982
13983 if (!sp_regno[flag_code >> 1])
13984 {
13985 char *saved_input = input_line_pointer;
13986 char sp[][4] = {"esp", "rsp"};
13987 expressionS exp;
13988
13989 input_line_pointer = sp[flag_code >> 1];
13990 tc_x86_parse_to_dw2regnum (&exp);
13991 gas_assert (exp.X_op == O_constant);
13992 sp_regno[flag_code >> 1] = exp.X_add_number;
13993 input_line_pointer = saved_input;
13994 }
13995
13996 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13997 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13998 }
13999
14000 int
14001 x86_dwarf2_addr_size (void)
14002 {
14003 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14004 if (x86_elf_abi == X86_64_X32_ABI)
14005 return 4;
14006 #endif
14007 return bfd_arch_bits_per_address (stdoutput) / 8;
14008 }
14009
14010 int
14011 i386_elf_section_type (const char *str, size_t len)
14012 {
14013 if (flag_code == CODE_64BIT
14014 && len == sizeof ("unwind") - 1
14015 && strncmp (str, "unwind", 6) == 0)
14016 return SHT_X86_64_UNWIND;
14017
14018 return -1;
14019 }
14020
14021 #ifdef TE_SOLARIS
14022 void
14023 i386_solaris_fix_up_eh_frame (segT sec)
14024 {
14025 if (flag_code == CODE_64BIT)
14026 elf_section_type (sec) = SHT_X86_64_UNWIND;
14027 }
14028 #endif
14029
14030 #ifdef TE_PE
14031 void
14032 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14033 {
14034 expressionS exp;
14035
14036 exp.X_op = O_secrel;
14037 exp.X_add_symbol = symbol;
14038 exp.X_add_number = 0;
14039 emit_expr (&exp, size);
14040 }
14041 #endif
14042
14043 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14044 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14045
14046 bfd_vma
14047 x86_64_section_letter (int letter, const char **ptr_msg)
14048 {
14049 if (flag_code == CODE_64BIT)
14050 {
14051 if (letter == 'l')
14052 return SHF_X86_64_LARGE;
14053
14054 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14055 }
14056 else
14057 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14058 return -1;
14059 }
14060
14061 bfd_vma
14062 x86_64_section_word (char *str, size_t len)
14063 {
14064 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
14065 return SHF_X86_64_LARGE;
14066
14067 return -1;
14068 }
14069
14070 static void
14071 handle_large_common (int small ATTRIBUTE_UNUSED)
14072 {
14073 if (flag_code != CODE_64BIT)
14074 {
14075 s_comm_internal (0, elf_common_parse);
14076 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14077 }
14078 else
14079 {
14080 static segT lbss_section;
14081 asection *saved_com_section_ptr = elf_com_section_ptr;
14082 asection *saved_bss_section = bss_section;
14083
14084 if (lbss_section == NULL)
14085 {
14086 flagword applicable;
14087 segT seg = now_seg;
14088 subsegT subseg = now_subseg;
14089
14090 /* The .lbss section is for local .largecomm symbols. */
14091 lbss_section = subseg_new (".lbss", 0);
14092 applicable = bfd_applicable_section_flags (stdoutput);
14093 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14094 seg_info (lbss_section)->bss = 1;
14095
14096 subseg_set (seg, subseg);
14097 }
14098
14099 elf_com_section_ptr = &_bfd_elf_large_com_section;
14100 bss_section = lbss_section;
14101
14102 s_comm_internal (0, elf_common_parse);
14103
14104 elf_com_section_ptr = saved_com_section_ptr;
14105 bss_section = saved_bss_section;
14106 }
14107 }
14108 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.328136 seconds and 4 git commands to generate.