x86/Intel: improve diagnostics for ambiguous VCVT* operands
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* The maximum padding size for fused jcc. CMP like instruction can
691 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
692 prefixes. */
693 #define MAX_FUSED_JCC_PADDING_SIZE 20
694
695 /* The maximum number of prefixes added for an instruction. */
696 static unsigned int align_branch_prefix_size = 5;
697
698 /* Optimization:
699 1. Clear the REX_W bit with register operand if possible.
700 2. Above plus use 128bit vector instruction to clear the full vector
701 register.
702 */
703 static int optimize = 0;
704
705 /* Optimization:
706 1. Clear the REX_W bit with register operand if possible.
707 2. Above plus use 128bit vector instruction to clear the full vector
708 register.
709 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
710 "testb $imm7,%r8".
711 */
712 static int optimize_for_space = 0;
713
714 /* Register prefix used for error message. */
715 static const char *register_prefix = "%";
716
717 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
718 leave, push, and pop instructions so that gcc has the same stack
719 frame as in 32 bit mode. */
720 static char stackop_size = '\0';
721
722 /* Non-zero to optimize code alignment. */
723 int optimize_align_code = 1;
724
725 /* Non-zero to quieten some warnings. */
726 static int quiet_warnings = 0;
727
728 /* CPU name. */
729 static const char *cpu_arch_name = NULL;
730 static char *cpu_sub_arch_name = NULL;
731
732 /* CPU feature flags. */
733 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
734
735 /* If we have selected a cpu we are generating instructions for. */
736 static int cpu_arch_tune_set = 0;
737
738 /* Cpu we are generating instructions for. */
739 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
740
741 /* CPU feature flags of cpu we are generating instructions for. */
742 static i386_cpu_flags cpu_arch_tune_flags;
743
744 /* CPU instruction set architecture used. */
745 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
746
747 /* CPU feature flags of instruction set architecture used. */
748 i386_cpu_flags cpu_arch_isa_flags;
749
750 /* If set, conditional jumps are not automatically promoted to handle
751 larger than a byte offset. */
752 static unsigned int no_cond_jump_promotion = 0;
753
754 /* Encode SSE instructions with VEX prefix. */
755 static unsigned int sse2avx;
756
757 /* Encode scalar AVX instructions with specific vector length. */
758 static enum
759 {
760 vex128 = 0,
761 vex256
762 } avxscalar;
763
764 /* Encode VEX WIG instructions with specific vex.w. */
765 static enum
766 {
767 vexw0 = 0,
768 vexw1
769 } vexwig;
770
771 /* Encode scalar EVEX LIG instructions with specific vector length. */
772 static enum
773 {
774 evexl128 = 0,
775 evexl256,
776 evexl512
777 } evexlig;
778
779 /* Encode EVEX WIG instructions with specific evex.w. */
780 static enum
781 {
782 evexw0 = 0,
783 evexw1
784 } evexwig;
785
786 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
787 static enum rc_type evexrcig = rne;
788
789 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
790 static symbolS *GOT_symbol;
791
792 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
793 unsigned int x86_dwarf2_return_column;
794
795 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
796 int x86_cie_data_alignment;
797
798 /* Interface to relax_segment.
799 There are 3 major relax states for 386 jump insns because the
800 different types of jumps add different sizes to frags when we're
801 figuring out what sort of jump to choose to reach a given label.
802
803 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
804 branches which are handled by md_estimate_size_before_relax() and
805 i386_generic_table_relax_frag(). */
806
807 /* Types. */
808 #define UNCOND_JUMP 0
809 #define COND_JUMP 1
810 #define COND_JUMP86 2
811 #define BRANCH_PADDING 3
812 #define BRANCH_PREFIX 4
813 #define FUSED_JCC_PADDING 5
814
815 /* Sizes. */
816 #define CODE16 1
817 #define SMALL 0
818 #define SMALL16 (SMALL | CODE16)
819 #define BIG 2
820 #define BIG16 (BIG | CODE16)
821
822 #ifndef INLINE
823 #ifdef __GNUC__
824 #define INLINE __inline__
825 #else
826 #define INLINE
827 #endif
828 #endif
829
830 #define ENCODE_RELAX_STATE(type, size) \
831 ((relax_substateT) (((type) << 2) | (size)))
832 #define TYPE_FROM_RELAX_STATE(s) \
833 ((s) >> 2)
834 #define DISP_SIZE_FROM_RELAX_STATE(s) \
835 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
836
837 /* This table is used by relax_frag to promote short jumps to long
838 ones where necessary. SMALL (short) jumps may be promoted to BIG
839 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
840 don't allow a short jump in a 32 bit code segment to be promoted to
841 a 16 bit offset jump because it's slower (requires data size
842 prefix), and doesn't work, unless the destination is in the bottom
843 64k of the code segment (The top 16 bits of eip are zeroed). */
844
845 const relax_typeS md_relax_table[] =
846 {
847 /* The fields are:
848 1) most positive reach of this state,
849 2) most negative reach of this state,
850 3) how many bytes this mode will have in the variable part of the frag
851 4) which index into the table to try if we can't fit into this one. */
852
853 /* UNCOND_JUMP states. */
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
856 /* dword jmp adds 4 bytes to frag:
857 0 extra opcode bytes, 4 displacement bytes. */
858 {0, 0, 4, 0},
859 /* word jmp adds 2 byte2 to frag:
860 0 extra opcode bytes, 2 displacement bytes. */
861 {0, 0, 2, 0},
862
863 /* COND_JUMP states. */
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
866 /* dword conditionals adds 5 bytes to frag:
867 1 extra opcode byte, 4 displacement bytes. */
868 {0, 0, 5, 0},
869 /* word conditionals add 3 bytes to frag:
870 1 extra opcode byte, 2 displacement bytes. */
871 {0, 0, 3, 0},
872
873 /* COND_JUMP86 states. */
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
876 /* dword conditionals adds 5 bytes to frag:
877 1 extra opcode byte, 4 displacement bytes. */
878 {0, 0, 5, 0},
879 /* word conditionals add 4 bytes to frag:
880 1 displacement byte and a 3 byte long branch insn. */
881 {0, 0, 4, 0}
882 };
883
884 static const arch_entry cpu_arch[] =
885 {
886 /* Do not replace the first two entries - i386_target_format()
887 relies on them being there in this order. */
888 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
889 CPU_GENERIC32_FLAGS, 0 },
890 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
891 CPU_GENERIC64_FLAGS, 0 },
892 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
893 CPU_NONE_FLAGS, 0 },
894 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
895 CPU_I186_FLAGS, 0 },
896 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
897 CPU_I286_FLAGS, 0 },
898 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
899 CPU_I386_FLAGS, 0 },
900 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
901 CPU_I486_FLAGS, 0 },
902 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
903 CPU_I586_FLAGS, 0 },
904 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
905 CPU_I686_FLAGS, 0 },
906 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
907 CPU_I586_FLAGS, 0 },
908 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
909 CPU_PENTIUMPRO_FLAGS, 0 },
910 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
911 CPU_P2_FLAGS, 0 },
912 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
913 CPU_P3_FLAGS, 0 },
914 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
915 CPU_P4_FLAGS, 0 },
916 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
917 CPU_CORE_FLAGS, 0 },
918 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
919 CPU_NOCONA_FLAGS, 0 },
920 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
921 CPU_CORE_FLAGS, 1 },
922 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
923 CPU_CORE_FLAGS, 0 },
924 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
925 CPU_CORE2_FLAGS, 1 },
926 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
927 CPU_CORE2_FLAGS, 0 },
928 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
929 CPU_COREI7_FLAGS, 0 },
930 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
931 CPU_L1OM_FLAGS, 0 },
932 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
933 CPU_K1OM_FLAGS, 0 },
934 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
935 CPU_IAMCU_FLAGS, 0 },
936 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
937 CPU_K6_FLAGS, 0 },
938 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
939 CPU_K6_2_FLAGS, 0 },
940 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
941 CPU_ATHLON_FLAGS, 0 },
942 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
943 CPU_K8_FLAGS, 1 },
944 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
945 CPU_K8_FLAGS, 0 },
946 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
947 CPU_K8_FLAGS, 0 },
948 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
949 CPU_AMDFAM10_FLAGS, 0 },
950 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
951 CPU_BDVER1_FLAGS, 0 },
952 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
953 CPU_BDVER2_FLAGS, 0 },
954 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
955 CPU_BDVER3_FLAGS, 0 },
956 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
957 CPU_BDVER4_FLAGS, 0 },
958 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
959 CPU_ZNVER1_FLAGS, 0 },
960 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
961 CPU_ZNVER2_FLAGS, 0 },
962 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
963 CPU_BTVER1_FLAGS, 0 },
964 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
965 CPU_BTVER2_FLAGS, 0 },
966 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
967 CPU_8087_FLAGS, 0 },
968 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
969 CPU_287_FLAGS, 0 },
970 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
971 CPU_387_FLAGS, 0 },
972 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
973 CPU_687_FLAGS, 0 },
974 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
975 CPU_CMOV_FLAGS, 0 },
976 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
977 CPU_FXSR_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
979 CPU_MMX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
981 CPU_SSE_FLAGS, 0 },
982 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
983 CPU_SSE2_FLAGS, 0 },
984 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
985 CPU_SSE3_FLAGS, 0 },
986 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
987 CPU_SSE4A_FLAGS, 0 },
988 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
989 CPU_SSSE3_FLAGS, 0 },
990 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
991 CPU_SSE4_1_FLAGS, 0 },
992 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
993 CPU_SSE4_2_FLAGS, 0 },
994 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
995 CPU_SSE4_2_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
997 CPU_AVX_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
999 CPU_AVX2_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512F_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512CD_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512ER_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512PF_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512DQ_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512BW_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1013 CPU_AVX512VL_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1015 CPU_VMX_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1017 CPU_VMFUNC_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1019 CPU_SMX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1021 CPU_XSAVE_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1023 CPU_XSAVEOPT_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1025 CPU_XSAVEC_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1027 CPU_XSAVES_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1029 CPU_AES_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1031 CPU_PCLMUL_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1033 CPU_PCLMUL_FLAGS, 1 },
1034 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1035 CPU_FSGSBASE_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1037 CPU_RDRND_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1039 CPU_F16C_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1041 CPU_BMI2_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1043 CPU_FMA_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1045 CPU_FMA4_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1047 CPU_XOP_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1049 CPU_LWP_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1051 CPU_MOVBE_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1053 CPU_CX16_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1055 CPU_EPT_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1057 CPU_LZCNT_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1059 CPU_HLE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1061 CPU_RTM_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1063 CPU_INVPCID_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1065 CPU_CLFLUSH_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1067 CPU_NOP_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1069 CPU_SYSCALL_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1071 CPU_RDTSCP_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1073 CPU_3DNOW_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1075 CPU_3DNOWA_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1077 CPU_PADLOCK_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1079 CPU_SVME_FLAGS, 1 },
1080 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1081 CPU_SVME_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1083 CPU_SSE4A_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1085 CPU_ABM_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1087 CPU_BMI_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1089 CPU_TBM_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1091 CPU_ADX_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1093 CPU_RDSEED_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1095 CPU_PRFCHW_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1097 CPU_SMAP_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1099 CPU_MPX_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1101 CPU_SHA_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1103 CPU_CLFLUSHOPT_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1105 CPU_PREFETCHWT1_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1107 CPU_SE1_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1109 CPU_CLWB_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1111 CPU_AVX512IFMA_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1113 CPU_AVX512VBMI_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1115 CPU_AVX512_4FMAPS_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1117 CPU_AVX512_4VNNIW_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1119 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1121 CPU_AVX512_VBMI2_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1123 CPU_AVX512_VNNI_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1125 CPU_AVX512_BITALG_FLAGS, 0 },
1126 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1127 CPU_CLZERO_FLAGS, 0 },
1128 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1129 CPU_MWAITX_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1131 CPU_OSPKE_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1133 CPU_RDPID_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1135 CPU_PTWRITE_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1137 CPU_IBT_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1139 CPU_SHSTK_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1141 CPU_GFNI_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1143 CPU_VAES_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1145 CPU_VPCLMULQDQ_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1147 CPU_WBNOINVD_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1149 CPU_PCONFIG_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1151 CPU_WAITPKG_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1153 CPU_CLDEMOTE_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1155 CPU_MOVDIRI_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1157 CPU_MOVDIR64B_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512_BF16_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1161 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1163 CPU_ENQCMD_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1165 CPU_RDPRU_FLAGS, 0 },
1166 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1167 CPU_MCOMMIT_FLAGS, 0 },
1168 };
1169
1170 static const noarch_entry cpu_noarch[] =
1171 {
1172 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1173 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1174 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1175 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1176 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1177 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1178 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1179 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1180 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1181 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1183 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1184 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1185 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1186 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1187 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1188 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1200 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1201 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1202 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1203 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1204 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1205 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1206 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1207 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1208 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1209 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1210 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1211 };
1212
1213 #ifdef I386COFF
1214 /* Like s_lcomm_internal in gas/read.c but the alignment string
1215 is allowed to be optional. */
1216
1217 static symbolS *
1218 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1219 {
1220 addressT align = 0;
1221
1222 SKIP_WHITESPACE ();
1223
1224 if (needs_align
1225 && *input_line_pointer == ',')
1226 {
1227 align = parse_align (needs_align - 1);
1228
1229 if (align == (addressT) -1)
1230 return NULL;
1231 }
1232 else
1233 {
1234 if (size >= 8)
1235 align = 3;
1236 else if (size >= 4)
1237 align = 2;
1238 else if (size >= 2)
1239 align = 1;
1240 else
1241 align = 0;
1242 }
1243
1244 bss_alloc (symbolP, size, align);
1245 return symbolP;
1246 }
1247
1248 static void
1249 pe_lcomm (int needs_align)
1250 {
1251 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1252 }
1253 #endif
1254
1255 const pseudo_typeS md_pseudo_table[] =
1256 {
1257 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1258 {"align", s_align_bytes, 0},
1259 #else
1260 {"align", s_align_ptwo, 0},
1261 #endif
1262 {"arch", set_cpu_arch, 0},
1263 #ifndef I386COFF
1264 {"bss", s_bss, 0},
1265 #else
1266 {"lcomm", pe_lcomm, 1},
1267 #endif
1268 {"ffloat", float_cons, 'f'},
1269 {"dfloat", float_cons, 'd'},
1270 {"tfloat", float_cons, 'x'},
1271 {"value", cons, 2},
1272 {"slong", signed_cons, 4},
1273 {"noopt", s_ignore, 0},
1274 {"optim", s_ignore, 0},
1275 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1276 {"code16", set_code_flag, CODE_16BIT},
1277 {"code32", set_code_flag, CODE_32BIT},
1278 #ifdef BFD64
1279 {"code64", set_code_flag, CODE_64BIT},
1280 #endif
1281 {"intel_syntax", set_intel_syntax, 1},
1282 {"att_syntax", set_intel_syntax, 0},
1283 {"intel_mnemonic", set_intel_mnemonic, 1},
1284 {"att_mnemonic", set_intel_mnemonic, 0},
1285 {"allow_index_reg", set_allow_index_reg, 1},
1286 {"disallow_index_reg", set_allow_index_reg, 0},
1287 {"sse_check", set_check, 0},
1288 {"operand_check", set_check, 1},
1289 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1290 {"largecomm", handle_large_common, 0},
1291 #else
1292 {"file", dwarf2_directive_file, 0},
1293 {"loc", dwarf2_directive_loc, 0},
1294 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1295 #endif
1296 #ifdef TE_PE
1297 {"secrel32", pe_directive_secrel, 0},
1298 #endif
1299 {0, 0, 0}
1300 };
1301
1302 /* For interface with expression (). */
1303 extern char *input_line_pointer;
1304
1305 /* Hash table for instruction mnemonic lookup. */
1306 static struct hash_control *op_hash;
1307
1308 /* Hash table for register lookup. */
1309 static struct hash_control *reg_hash;
1310 \f
1311 /* Various efficient no-op patterns for aligning code labels.
1312 Note: Don't try to assemble the instructions in the comments.
1313 0L and 0w are not legal. */
1314 static const unsigned char f32_1[] =
1315 {0x90}; /* nop */
1316 static const unsigned char f32_2[] =
1317 {0x66,0x90}; /* xchg %ax,%ax */
1318 static const unsigned char f32_3[] =
1319 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1320 static const unsigned char f32_4[] =
1321 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1322 static const unsigned char f32_6[] =
1323 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1324 static const unsigned char f32_7[] =
1325 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1326 static const unsigned char f16_3[] =
1327 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1328 static const unsigned char f16_4[] =
1329 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1330 static const unsigned char jump_disp8[] =
1331 {0xeb}; /* jmp disp8 */
1332 static const unsigned char jump32_disp32[] =
1333 {0xe9}; /* jmp disp32 */
1334 static const unsigned char jump16_disp32[] =
1335 {0x66,0xe9}; /* jmp disp32 */
1336 /* 32-bit NOPs patterns. */
1337 static const unsigned char *const f32_patt[] = {
1338 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1339 };
1340 /* 16-bit NOPs patterns. */
1341 static const unsigned char *const f16_patt[] = {
1342 f32_1, f32_2, f16_3, f16_4
1343 };
1344 /* nopl (%[re]ax) */
1345 static const unsigned char alt_3[] =
1346 {0x0f,0x1f,0x00};
1347 /* nopl 0(%[re]ax) */
1348 static const unsigned char alt_4[] =
1349 {0x0f,0x1f,0x40,0x00};
1350 /* nopl 0(%[re]ax,%[re]ax,1) */
1351 static const unsigned char alt_5[] =
1352 {0x0f,0x1f,0x44,0x00,0x00};
1353 /* nopw 0(%[re]ax,%[re]ax,1) */
1354 static const unsigned char alt_6[] =
1355 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1356 /* nopl 0L(%[re]ax) */
1357 static const unsigned char alt_7[] =
1358 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1359 /* nopl 0L(%[re]ax,%[re]ax,1) */
1360 static const unsigned char alt_8[] =
1361 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1362 /* nopw 0L(%[re]ax,%[re]ax,1) */
1363 static const unsigned char alt_9[] =
1364 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1365 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1366 static const unsigned char alt_10[] =
1367 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1368 /* data16 nopw %cs:0L(%eax,%eax,1) */
1369 static const unsigned char alt_11[] =
1370 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1371 /* 32-bit and 64-bit NOPs patterns. */
1372 static const unsigned char *const alt_patt[] = {
1373 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1374 alt_9, alt_10, alt_11
1375 };
1376
1377 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1378 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1379
1380 static void
1381 i386_output_nops (char *where, const unsigned char *const *patt,
1382 int count, int max_single_nop_size)
1383
1384 {
1385 /* Place the longer NOP first. */
1386 int last;
1387 int offset;
1388 const unsigned char *nops;
1389
1390 if (max_single_nop_size < 1)
1391 {
1392 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1393 max_single_nop_size);
1394 return;
1395 }
1396
1397 nops = patt[max_single_nop_size - 1];
1398
1399 /* Use the smaller one if the requsted one isn't available. */
1400 if (nops == NULL)
1401 {
1402 max_single_nop_size--;
1403 nops = patt[max_single_nop_size - 1];
1404 }
1405
1406 last = count % max_single_nop_size;
1407
1408 count -= last;
1409 for (offset = 0; offset < count; offset += max_single_nop_size)
1410 memcpy (where + offset, nops, max_single_nop_size);
1411
1412 if (last)
1413 {
1414 nops = patt[last - 1];
1415 if (nops == NULL)
1416 {
1417 /* Use the smaller one plus one-byte NOP if the needed one
1418 isn't available. */
1419 last--;
1420 nops = patt[last - 1];
1421 memcpy (where + offset, nops, last);
1422 where[offset + last] = *patt[0];
1423 }
1424 else
1425 memcpy (where + offset, nops, last);
1426 }
1427 }
1428
1429 static INLINE int
1430 fits_in_imm7 (offsetT num)
1431 {
1432 return (num & 0x7f) == num;
1433 }
1434
1435 static INLINE int
1436 fits_in_imm31 (offsetT num)
1437 {
1438 return (num & 0x7fffffff) == num;
1439 }
1440
1441 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1442 single NOP instruction LIMIT. */
1443
1444 void
1445 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1446 {
1447 const unsigned char *const *patt = NULL;
1448 int max_single_nop_size;
1449 /* Maximum number of NOPs before switching to jump over NOPs. */
1450 int max_number_of_nops;
1451
1452 switch (fragP->fr_type)
1453 {
1454 case rs_fill_nop:
1455 case rs_align_code:
1456 break;
1457 case rs_machine_dependent:
1458 /* Allow NOP padding for jumps and calls. */
1459 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1460 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1461 break;
1462 /* Fall through. */
1463 default:
1464 return;
1465 }
1466
1467 /* We need to decide which NOP sequence to use for 32bit and
1468 64bit. When -mtune= is used:
1469
1470 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1471 PROCESSOR_GENERIC32, f32_patt will be used.
1472 2. For the rest, alt_patt will be used.
1473
1474 When -mtune= isn't used, alt_patt will be used if
1475 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1476 be used.
1477
1478 When -march= or .arch is used, we can't use anything beyond
1479 cpu_arch_isa_flags. */
1480
1481 if (flag_code == CODE_16BIT)
1482 {
1483 patt = f16_patt;
1484 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1485 /* Limit number of NOPs to 2 in 16-bit mode. */
1486 max_number_of_nops = 2;
1487 }
1488 else
1489 {
1490 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1491 {
1492 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1493 switch (cpu_arch_tune)
1494 {
1495 case PROCESSOR_UNKNOWN:
1496 /* We use cpu_arch_isa_flags to check if we SHOULD
1497 optimize with nops. */
1498 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1499 patt = alt_patt;
1500 else
1501 patt = f32_patt;
1502 break;
1503 case PROCESSOR_PENTIUM4:
1504 case PROCESSOR_NOCONA:
1505 case PROCESSOR_CORE:
1506 case PROCESSOR_CORE2:
1507 case PROCESSOR_COREI7:
1508 case PROCESSOR_L1OM:
1509 case PROCESSOR_K1OM:
1510 case PROCESSOR_GENERIC64:
1511 case PROCESSOR_K6:
1512 case PROCESSOR_ATHLON:
1513 case PROCESSOR_K8:
1514 case PROCESSOR_AMDFAM10:
1515 case PROCESSOR_BD:
1516 case PROCESSOR_ZNVER:
1517 case PROCESSOR_BT:
1518 patt = alt_patt;
1519 break;
1520 case PROCESSOR_I386:
1521 case PROCESSOR_I486:
1522 case PROCESSOR_PENTIUM:
1523 case PROCESSOR_PENTIUMPRO:
1524 case PROCESSOR_IAMCU:
1525 case PROCESSOR_GENERIC32:
1526 patt = f32_patt;
1527 break;
1528 }
1529 }
1530 else
1531 {
1532 switch (fragP->tc_frag_data.tune)
1533 {
1534 case PROCESSOR_UNKNOWN:
1535 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1536 PROCESSOR_UNKNOWN. */
1537 abort ();
1538 break;
1539
1540 case PROCESSOR_I386:
1541 case PROCESSOR_I486:
1542 case PROCESSOR_PENTIUM:
1543 case PROCESSOR_IAMCU:
1544 case PROCESSOR_K6:
1545 case PROCESSOR_ATHLON:
1546 case PROCESSOR_K8:
1547 case PROCESSOR_AMDFAM10:
1548 case PROCESSOR_BD:
1549 case PROCESSOR_ZNVER:
1550 case PROCESSOR_BT:
1551 case PROCESSOR_GENERIC32:
1552 /* We use cpu_arch_isa_flags to check if we CAN optimize
1553 with nops. */
1554 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1555 patt = alt_patt;
1556 else
1557 patt = f32_patt;
1558 break;
1559 case PROCESSOR_PENTIUMPRO:
1560 case PROCESSOR_PENTIUM4:
1561 case PROCESSOR_NOCONA:
1562 case PROCESSOR_CORE:
1563 case PROCESSOR_CORE2:
1564 case PROCESSOR_COREI7:
1565 case PROCESSOR_L1OM:
1566 case PROCESSOR_K1OM:
1567 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1568 patt = alt_patt;
1569 else
1570 patt = f32_patt;
1571 break;
1572 case PROCESSOR_GENERIC64:
1573 patt = alt_patt;
1574 break;
1575 }
1576 }
1577
1578 if (patt == f32_patt)
1579 {
1580 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1581 /* Limit number of NOPs to 2 for older processors. */
1582 max_number_of_nops = 2;
1583 }
1584 else
1585 {
1586 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1587 /* Limit number of NOPs to 7 for newer processors. */
1588 max_number_of_nops = 7;
1589 }
1590 }
1591
1592 if (limit == 0)
1593 limit = max_single_nop_size;
1594
1595 if (fragP->fr_type == rs_fill_nop)
1596 {
1597 /* Output NOPs for .nop directive. */
1598 if (limit > max_single_nop_size)
1599 {
1600 as_bad_where (fragP->fr_file, fragP->fr_line,
1601 _("invalid single nop size: %d "
1602 "(expect within [0, %d])"),
1603 limit, max_single_nop_size);
1604 return;
1605 }
1606 }
1607 else if (fragP->fr_type != rs_machine_dependent)
1608 fragP->fr_var = count;
1609
1610 if ((count / max_single_nop_size) > max_number_of_nops)
1611 {
1612 /* Generate jump over NOPs. */
1613 offsetT disp = count - 2;
1614 if (fits_in_imm7 (disp))
1615 {
1616 /* Use "jmp disp8" if possible. */
1617 count = disp;
1618 where[0] = jump_disp8[0];
1619 where[1] = count;
1620 where += 2;
1621 }
1622 else
1623 {
1624 unsigned int size_of_jump;
1625
1626 if (flag_code == CODE_16BIT)
1627 {
1628 where[0] = jump16_disp32[0];
1629 where[1] = jump16_disp32[1];
1630 size_of_jump = 2;
1631 }
1632 else
1633 {
1634 where[0] = jump32_disp32[0];
1635 size_of_jump = 1;
1636 }
1637
1638 count -= size_of_jump + 4;
1639 if (!fits_in_imm31 (count))
1640 {
1641 as_bad_where (fragP->fr_file, fragP->fr_line,
1642 _("jump over nop padding out of range"));
1643 return;
1644 }
1645
1646 md_number_to_chars (where + size_of_jump, count, 4);
1647 where += size_of_jump + 4;
1648 }
1649 }
1650
1651 /* Generate multiple NOPs. */
1652 i386_output_nops (where, patt, count, limit);
1653 }
1654
1655 static INLINE int
1656 operand_type_all_zero (const union i386_operand_type *x)
1657 {
1658 switch (ARRAY_SIZE(x->array))
1659 {
1660 case 3:
1661 if (x->array[2])
1662 return 0;
1663 /* Fall through. */
1664 case 2:
1665 if (x->array[1])
1666 return 0;
1667 /* Fall through. */
1668 case 1:
1669 return !x->array[0];
1670 default:
1671 abort ();
1672 }
1673 }
1674
1675 static INLINE void
1676 operand_type_set (union i386_operand_type *x, unsigned int v)
1677 {
1678 switch (ARRAY_SIZE(x->array))
1679 {
1680 case 3:
1681 x->array[2] = v;
1682 /* Fall through. */
1683 case 2:
1684 x->array[1] = v;
1685 /* Fall through. */
1686 case 1:
1687 x->array[0] = v;
1688 /* Fall through. */
1689 break;
1690 default:
1691 abort ();
1692 }
1693
1694 x->bitfield.class = ClassNone;
1695 x->bitfield.instance = InstanceNone;
1696 }
1697
1698 static INLINE int
1699 operand_type_equal (const union i386_operand_type *x,
1700 const union i386_operand_type *y)
1701 {
1702 switch (ARRAY_SIZE(x->array))
1703 {
1704 case 3:
1705 if (x->array[2] != y->array[2])
1706 return 0;
1707 /* Fall through. */
1708 case 2:
1709 if (x->array[1] != y->array[1])
1710 return 0;
1711 /* Fall through. */
1712 case 1:
1713 return x->array[0] == y->array[0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 }
1719
1720 static INLINE int
1721 cpu_flags_all_zero (const union i386_cpu_flags *x)
1722 {
1723 switch (ARRAY_SIZE(x->array))
1724 {
1725 case 4:
1726 if (x->array[3])
1727 return 0;
1728 /* Fall through. */
1729 case 3:
1730 if (x->array[2])
1731 return 0;
1732 /* Fall through. */
1733 case 2:
1734 if (x->array[1])
1735 return 0;
1736 /* Fall through. */
1737 case 1:
1738 return !x->array[0];
1739 default:
1740 abort ();
1741 }
1742 }
1743
1744 static INLINE int
1745 cpu_flags_equal (const union i386_cpu_flags *x,
1746 const union i386_cpu_flags *y)
1747 {
1748 switch (ARRAY_SIZE(x->array))
1749 {
1750 case 4:
1751 if (x->array[3] != y->array[3])
1752 return 0;
1753 /* Fall through. */
1754 case 3:
1755 if (x->array[2] != y->array[2])
1756 return 0;
1757 /* Fall through. */
1758 case 2:
1759 if (x->array[1] != y->array[1])
1760 return 0;
1761 /* Fall through. */
1762 case 1:
1763 return x->array[0] == y->array[0];
1764 break;
1765 default:
1766 abort ();
1767 }
1768 }
1769
1770 static INLINE int
1771 cpu_flags_check_cpu64 (i386_cpu_flags f)
1772 {
1773 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1774 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1775 }
1776
1777 static INLINE i386_cpu_flags
1778 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1779 {
1780 switch (ARRAY_SIZE (x.array))
1781 {
1782 case 4:
1783 x.array [3] &= y.array [3];
1784 /* Fall through. */
1785 case 3:
1786 x.array [2] &= y.array [2];
1787 /* Fall through. */
1788 case 2:
1789 x.array [1] &= y.array [1];
1790 /* Fall through. */
1791 case 1:
1792 x.array [0] &= y.array [0];
1793 break;
1794 default:
1795 abort ();
1796 }
1797 return x;
1798 }
1799
1800 static INLINE i386_cpu_flags
1801 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1802 {
1803 switch (ARRAY_SIZE (x.array))
1804 {
1805 case 4:
1806 x.array [3] |= y.array [3];
1807 /* Fall through. */
1808 case 3:
1809 x.array [2] |= y.array [2];
1810 /* Fall through. */
1811 case 2:
1812 x.array [1] |= y.array [1];
1813 /* Fall through. */
1814 case 1:
1815 x.array [0] |= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
1821 }
1822
1823 static INLINE i386_cpu_flags
1824 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1825 {
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 4:
1829 x.array [3] &= ~y.array [3];
1830 /* Fall through. */
1831 case 3:
1832 x.array [2] &= ~y.array [2];
1833 /* Fall through. */
1834 case 2:
1835 x.array [1] &= ~y.array [1];
1836 /* Fall through. */
1837 case 1:
1838 x.array [0] &= ~y.array [0];
1839 break;
1840 default:
1841 abort ();
1842 }
1843 return x;
1844 }
1845
1846 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1847
1848 #define CPU_FLAGS_ARCH_MATCH 0x1
1849 #define CPU_FLAGS_64BIT_MATCH 0x2
1850
1851 #define CPU_FLAGS_PERFECT_MATCH \
1852 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1853
1854 /* Return CPU flags match bits. */
1855
1856 static int
1857 cpu_flags_match (const insn_template *t)
1858 {
1859 i386_cpu_flags x = t->cpu_flags;
1860 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1861
1862 x.bitfield.cpu64 = 0;
1863 x.bitfield.cpuno64 = 0;
1864
1865 if (cpu_flags_all_zero (&x))
1866 {
1867 /* This instruction is available on all archs. */
1868 match |= CPU_FLAGS_ARCH_MATCH;
1869 }
1870 else
1871 {
1872 /* This instruction is available only on some archs. */
1873 i386_cpu_flags cpu = cpu_arch_flags;
1874
1875 /* AVX512VL is no standalone feature - match it and then strip it. */
1876 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1877 return match;
1878 x.bitfield.cpuavx512vl = 0;
1879
1880 cpu = cpu_flags_and (x, cpu);
1881 if (!cpu_flags_all_zero (&cpu))
1882 {
1883 if (x.bitfield.cpuavx)
1884 {
1885 /* We need to check a few extra flags with AVX. */
1886 if (cpu.bitfield.cpuavx
1887 && (!t->opcode_modifier.sse2avx || sse2avx)
1888 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1889 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1890 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1891 match |= CPU_FLAGS_ARCH_MATCH;
1892 }
1893 else if (x.bitfield.cpuavx512f)
1894 {
1895 /* We need to check a few extra flags with AVX512F. */
1896 if (cpu.bitfield.cpuavx512f
1897 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1898 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1899 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1900 match |= CPU_FLAGS_ARCH_MATCH;
1901 }
1902 else
1903 match |= CPU_FLAGS_ARCH_MATCH;
1904 }
1905 }
1906 return match;
1907 }
1908
1909 static INLINE i386_operand_type
1910 operand_type_and (i386_operand_type x, i386_operand_type y)
1911 {
1912 if (x.bitfield.class != y.bitfield.class)
1913 x.bitfield.class = ClassNone;
1914 if (x.bitfield.instance != y.bitfield.instance)
1915 x.bitfield.instance = InstanceNone;
1916
1917 switch (ARRAY_SIZE (x.array))
1918 {
1919 case 3:
1920 x.array [2] &= y.array [2];
1921 /* Fall through. */
1922 case 2:
1923 x.array [1] &= y.array [1];
1924 /* Fall through. */
1925 case 1:
1926 x.array [0] &= y.array [0];
1927 break;
1928 default:
1929 abort ();
1930 }
1931 return x;
1932 }
1933
1934 static INLINE i386_operand_type
1935 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1936 {
1937 gas_assert (y.bitfield.class == ClassNone);
1938 gas_assert (y.bitfield.instance == InstanceNone);
1939
1940 switch (ARRAY_SIZE (x.array))
1941 {
1942 case 3:
1943 x.array [2] &= ~y.array [2];
1944 /* Fall through. */
1945 case 2:
1946 x.array [1] &= ~y.array [1];
1947 /* Fall through. */
1948 case 1:
1949 x.array [0] &= ~y.array [0];
1950 break;
1951 default:
1952 abort ();
1953 }
1954 return x;
1955 }
1956
1957 static INLINE i386_operand_type
1958 operand_type_or (i386_operand_type x, i386_operand_type y)
1959 {
1960 gas_assert (x.bitfield.class == ClassNone ||
1961 y.bitfield.class == ClassNone ||
1962 x.bitfield.class == y.bitfield.class);
1963 gas_assert (x.bitfield.instance == InstanceNone ||
1964 y.bitfield.instance == InstanceNone ||
1965 x.bitfield.instance == y.bitfield.instance);
1966
1967 switch (ARRAY_SIZE (x.array))
1968 {
1969 case 3:
1970 x.array [2] |= y.array [2];
1971 /* Fall through. */
1972 case 2:
1973 x.array [1] |= y.array [1];
1974 /* Fall through. */
1975 case 1:
1976 x.array [0] |= y.array [0];
1977 break;
1978 default:
1979 abort ();
1980 }
1981 return x;
1982 }
1983
1984 static INLINE i386_operand_type
1985 operand_type_xor (i386_operand_type x, i386_operand_type y)
1986 {
1987 gas_assert (y.bitfield.class == ClassNone);
1988 gas_assert (y.bitfield.instance == InstanceNone);
1989
1990 switch (ARRAY_SIZE (x.array))
1991 {
1992 case 3:
1993 x.array [2] ^= y.array [2];
1994 /* Fall through. */
1995 case 2:
1996 x.array [1] ^= y.array [1];
1997 /* Fall through. */
1998 case 1:
1999 x.array [0] ^= y.array [0];
2000 break;
2001 default:
2002 abort ();
2003 }
2004 return x;
2005 }
2006
2007 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2008 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2009 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2010 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2011 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2012 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2013 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2014 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2015 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2016 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2017 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2018 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2019 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2020 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2021 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2022 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2023 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2024
2025 enum operand_type
2026 {
2027 reg,
2028 imm,
2029 disp,
2030 anymem
2031 };
2032
2033 static INLINE int
2034 operand_type_check (i386_operand_type t, enum operand_type c)
2035 {
2036 switch (c)
2037 {
2038 case reg:
2039 return t.bitfield.class == Reg;
2040
2041 case imm:
2042 return (t.bitfield.imm8
2043 || t.bitfield.imm8s
2044 || t.bitfield.imm16
2045 || t.bitfield.imm32
2046 || t.bitfield.imm32s
2047 || t.bitfield.imm64);
2048
2049 case disp:
2050 return (t.bitfield.disp8
2051 || t.bitfield.disp16
2052 || t.bitfield.disp32
2053 || t.bitfield.disp32s
2054 || t.bitfield.disp64);
2055
2056 case anymem:
2057 return (t.bitfield.disp8
2058 || t.bitfield.disp16
2059 || t.bitfield.disp32
2060 || t.bitfield.disp32s
2061 || t.bitfield.disp64
2062 || t.bitfield.baseindex);
2063
2064 default:
2065 abort ();
2066 }
2067
2068 return 0;
2069 }
2070
2071 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2072 between operand GIVEN and opeand WANTED for instruction template T. */
2073
2074 static INLINE int
2075 match_operand_size (const insn_template *t, unsigned int wanted,
2076 unsigned int given)
2077 {
2078 return !((i.types[given].bitfield.byte
2079 && !t->operand_types[wanted].bitfield.byte)
2080 || (i.types[given].bitfield.word
2081 && !t->operand_types[wanted].bitfield.word)
2082 || (i.types[given].bitfield.dword
2083 && !t->operand_types[wanted].bitfield.dword)
2084 || (i.types[given].bitfield.qword
2085 && !t->operand_types[wanted].bitfield.qword)
2086 || (i.types[given].bitfield.tbyte
2087 && !t->operand_types[wanted].bitfield.tbyte));
2088 }
2089
2090 /* Return 1 if there is no conflict in SIMD register between operand
2091 GIVEN and opeand WANTED for instruction template T. */
2092
2093 static INLINE int
2094 match_simd_size (const insn_template *t, unsigned int wanted,
2095 unsigned int given)
2096 {
2097 return !((i.types[given].bitfield.xmmword
2098 && !t->operand_types[wanted].bitfield.xmmword)
2099 || (i.types[given].bitfield.ymmword
2100 && !t->operand_types[wanted].bitfield.ymmword)
2101 || (i.types[given].bitfield.zmmword
2102 && !t->operand_types[wanted].bitfield.zmmword));
2103 }
2104
2105 /* Return 1 if there is no conflict in any size between operand GIVEN
2106 and opeand WANTED for instruction template T. */
2107
2108 static INLINE int
2109 match_mem_size (const insn_template *t, unsigned int wanted,
2110 unsigned int given)
2111 {
2112 return (match_operand_size (t, wanted, given)
2113 && !((i.types[given].bitfield.unspecified
2114 && !i.broadcast
2115 && !t->operand_types[wanted].bitfield.unspecified)
2116 || (i.types[given].bitfield.fword
2117 && !t->operand_types[wanted].bitfield.fword)
2118 /* For scalar opcode templates to allow register and memory
2119 operands at the same time, some special casing is needed
2120 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2121 down-conversion vpmov*. */
2122 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2123 && !t->opcode_modifier.broadcast
2124 && (t->operand_types[wanted].bitfield.byte
2125 || t->operand_types[wanted].bitfield.word
2126 || t->operand_types[wanted].bitfield.dword
2127 || t->operand_types[wanted].bitfield.qword))
2128 ? (i.types[given].bitfield.xmmword
2129 || i.types[given].bitfield.ymmword
2130 || i.types[given].bitfield.zmmword)
2131 : !match_simd_size(t, wanted, given))));
2132 }
2133
2134 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2135 operands for instruction template T, and it has MATCH_REVERSE set if there
2136 is no size conflict on any operands for the template with operands reversed
2137 (and the template allows for reversing in the first place). */
2138
2139 #define MATCH_STRAIGHT 1
2140 #define MATCH_REVERSE 2
2141
2142 static INLINE unsigned int
2143 operand_size_match (const insn_template *t)
2144 {
2145 unsigned int j, match = MATCH_STRAIGHT;
2146
2147 /* Don't check non-absolute jump instructions. */
2148 if (t->opcode_modifier.jump
2149 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2150 return match;
2151
2152 /* Check memory and accumulator operand size. */
2153 for (j = 0; j < i.operands; j++)
2154 {
2155 if (i.types[j].bitfield.class != Reg
2156 && i.types[j].bitfield.class != RegSIMD
2157 && t->opcode_modifier.anysize)
2158 continue;
2159
2160 if (t->operand_types[j].bitfield.class == Reg
2161 && !match_operand_size (t, j, j))
2162 {
2163 match = 0;
2164 break;
2165 }
2166
2167 if (t->operand_types[j].bitfield.class == RegSIMD
2168 && !match_simd_size (t, j, j))
2169 {
2170 match = 0;
2171 break;
2172 }
2173
2174 if (t->operand_types[j].bitfield.instance == Accum
2175 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2176 {
2177 match = 0;
2178 break;
2179 }
2180
2181 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2182 {
2183 match = 0;
2184 break;
2185 }
2186 }
2187
2188 if (!t->opcode_modifier.d)
2189 {
2190 mismatch:
2191 if (!match)
2192 i.error = operand_size_mismatch;
2193 return match;
2194 }
2195
2196 /* Check reverse. */
2197 gas_assert (i.operands >= 2 && i.operands <= 3);
2198
2199 for (j = 0; j < i.operands; j++)
2200 {
2201 unsigned int given = i.operands - j - 1;
2202
2203 if (t->operand_types[j].bitfield.class == Reg
2204 && !match_operand_size (t, j, given))
2205 goto mismatch;
2206
2207 if (t->operand_types[j].bitfield.class == RegSIMD
2208 && !match_simd_size (t, j, given))
2209 goto mismatch;
2210
2211 if (t->operand_types[j].bitfield.instance == Accum
2212 && (!match_operand_size (t, j, given)
2213 || !match_simd_size (t, j, given)))
2214 goto mismatch;
2215
2216 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2217 goto mismatch;
2218 }
2219
2220 return match | MATCH_REVERSE;
2221 }
2222
2223 static INLINE int
2224 operand_type_match (i386_operand_type overlap,
2225 i386_operand_type given)
2226 {
2227 i386_operand_type temp = overlap;
2228
2229 temp.bitfield.unspecified = 0;
2230 temp.bitfield.byte = 0;
2231 temp.bitfield.word = 0;
2232 temp.bitfield.dword = 0;
2233 temp.bitfield.fword = 0;
2234 temp.bitfield.qword = 0;
2235 temp.bitfield.tbyte = 0;
2236 temp.bitfield.xmmword = 0;
2237 temp.bitfield.ymmword = 0;
2238 temp.bitfield.zmmword = 0;
2239 if (operand_type_all_zero (&temp))
2240 goto mismatch;
2241
2242 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2243 return 1;
2244
2245 mismatch:
2246 i.error = operand_type_mismatch;
2247 return 0;
2248 }
2249
2250 /* If given types g0 and g1 are registers they must be of the same type
2251 unless the expected operand type register overlap is null.
2252 Some Intel syntax memory operand size checking also happens here. */
2253
2254 static INLINE int
2255 operand_type_register_match (i386_operand_type g0,
2256 i386_operand_type t0,
2257 i386_operand_type g1,
2258 i386_operand_type t1)
2259 {
2260 if (g0.bitfield.class != Reg
2261 && g0.bitfield.class != RegSIMD
2262 && (!operand_type_check (g0, anymem)
2263 || g0.bitfield.unspecified
2264 || (t0.bitfield.class != Reg
2265 && t0.bitfield.class != RegSIMD)))
2266 return 1;
2267
2268 if (g1.bitfield.class != Reg
2269 && g1.bitfield.class != RegSIMD
2270 && (!operand_type_check (g1, anymem)
2271 || g1.bitfield.unspecified
2272 || (t1.bitfield.class != Reg
2273 && t1.bitfield.class != RegSIMD)))
2274 return 1;
2275
2276 if (g0.bitfield.byte == g1.bitfield.byte
2277 && g0.bitfield.word == g1.bitfield.word
2278 && g0.bitfield.dword == g1.bitfield.dword
2279 && g0.bitfield.qword == g1.bitfield.qword
2280 && g0.bitfield.xmmword == g1.bitfield.xmmword
2281 && g0.bitfield.ymmword == g1.bitfield.ymmword
2282 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2283 return 1;
2284
2285 if (!(t0.bitfield.byte & t1.bitfield.byte)
2286 && !(t0.bitfield.word & t1.bitfield.word)
2287 && !(t0.bitfield.dword & t1.bitfield.dword)
2288 && !(t0.bitfield.qword & t1.bitfield.qword)
2289 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2290 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2291 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2292 return 1;
2293
2294 i.error = register_type_mismatch;
2295
2296 return 0;
2297 }
2298
2299 static INLINE unsigned int
2300 register_number (const reg_entry *r)
2301 {
2302 unsigned int nr = r->reg_num;
2303
2304 if (r->reg_flags & RegRex)
2305 nr += 8;
2306
2307 if (r->reg_flags & RegVRex)
2308 nr += 16;
2309
2310 return nr;
2311 }
2312
2313 static INLINE unsigned int
2314 mode_from_disp_size (i386_operand_type t)
2315 {
2316 if (t.bitfield.disp8)
2317 return 1;
2318 else if (t.bitfield.disp16
2319 || t.bitfield.disp32
2320 || t.bitfield.disp32s)
2321 return 2;
2322 else
2323 return 0;
2324 }
2325
2326 static INLINE int
2327 fits_in_signed_byte (addressT num)
2328 {
2329 return num + 0x80 <= 0xff;
2330 }
2331
2332 static INLINE int
2333 fits_in_unsigned_byte (addressT num)
2334 {
2335 return num <= 0xff;
2336 }
2337
2338 static INLINE int
2339 fits_in_unsigned_word (addressT num)
2340 {
2341 return num <= 0xffff;
2342 }
2343
2344 static INLINE int
2345 fits_in_signed_word (addressT num)
2346 {
2347 return num + 0x8000 <= 0xffff;
2348 }
2349
2350 static INLINE int
2351 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2352 {
2353 #ifndef BFD64
2354 return 1;
2355 #else
2356 return num + 0x80000000 <= 0xffffffff;
2357 #endif
2358 } /* fits_in_signed_long() */
2359
2360 static INLINE int
2361 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2362 {
2363 #ifndef BFD64
2364 return 1;
2365 #else
2366 return num <= 0xffffffff;
2367 #endif
2368 } /* fits_in_unsigned_long() */
2369
2370 static INLINE int
2371 fits_in_disp8 (offsetT num)
2372 {
2373 int shift = i.memshift;
2374 unsigned int mask;
2375
2376 if (shift == -1)
2377 abort ();
2378
2379 mask = (1 << shift) - 1;
2380
2381 /* Return 0 if NUM isn't properly aligned. */
2382 if ((num & mask))
2383 return 0;
2384
2385 /* Check if NUM will fit in 8bit after shift. */
2386 return fits_in_signed_byte (num >> shift);
2387 }
2388
2389 static INLINE int
2390 fits_in_imm4 (offsetT num)
2391 {
2392 return (num & 0xf) == num;
2393 }
2394
2395 static i386_operand_type
2396 smallest_imm_type (offsetT num)
2397 {
2398 i386_operand_type t;
2399
2400 operand_type_set (&t, 0);
2401 t.bitfield.imm64 = 1;
2402
2403 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2404 {
2405 /* This code is disabled on the 486 because all the Imm1 forms
2406 in the opcode table are slower on the i486. They're the
2407 versions with the implicitly specified single-position
2408 displacement, which has another syntax if you really want to
2409 use that form. */
2410 t.bitfield.imm1 = 1;
2411 t.bitfield.imm8 = 1;
2412 t.bitfield.imm8s = 1;
2413 t.bitfield.imm16 = 1;
2414 t.bitfield.imm32 = 1;
2415 t.bitfield.imm32s = 1;
2416 }
2417 else if (fits_in_signed_byte (num))
2418 {
2419 t.bitfield.imm8 = 1;
2420 t.bitfield.imm8s = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_unsigned_byte (num))
2426 {
2427 t.bitfield.imm8 = 1;
2428 t.bitfield.imm16 = 1;
2429 t.bitfield.imm32 = 1;
2430 t.bitfield.imm32s = 1;
2431 }
2432 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2433 {
2434 t.bitfield.imm16 = 1;
2435 t.bitfield.imm32 = 1;
2436 t.bitfield.imm32s = 1;
2437 }
2438 else if (fits_in_signed_long (num))
2439 {
2440 t.bitfield.imm32 = 1;
2441 t.bitfield.imm32s = 1;
2442 }
2443 else if (fits_in_unsigned_long (num))
2444 t.bitfield.imm32 = 1;
2445
2446 return t;
2447 }
2448
2449 static offsetT
2450 offset_in_range (offsetT val, int size)
2451 {
2452 addressT mask;
2453
2454 switch (size)
2455 {
2456 case 1: mask = ((addressT) 1 << 8) - 1; break;
2457 case 2: mask = ((addressT) 1 << 16) - 1; break;
2458 case 4: mask = ((addressT) 2 << 31) - 1; break;
2459 #ifdef BFD64
2460 case 8: mask = ((addressT) 2 << 63) - 1; break;
2461 #endif
2462 default: abort ();
2463 }
2464
2465 #ifdef BFD64
2466 /* If BFD64, sign extend val for 32bit address mode. */
2467 if (flag_code != CODE_64BIT
2468 || i.prefix[ADDR_PREFIX])
2469 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2470 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2471 #endif
2472
2473 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2474 {
2475 char buf1[40], buf2[40];
2476
2477 sprint_value (buf1, val);
2478 sprint_value (buf2, val & mask);
2479 as_warn (_("%s shortened to %s"), buf1, buf2);
2480 }
2481 return val & mask;
2482 }
2483
2484 enum PREFIX_GROUP
2485 {
2486 PREFIX_EXIST = 0,
2487 PREFIX_LOCK,
2488 PREFIX_REP,
2489 PREFIX_DS,
2490 PREFIX_OTHER
2491 };
2492
2493 /* Returns
2494 a. PREFIX_EXIST if attempting to add a prefix where one from the
2495 same class already exists.
2496 b. PREFIX_LOCK if lock prefix is added.
2497 c. PREFIX_REP if rep/repne prefix is added.
2498 d. PREFIX_DS if ds prefix is added.
2499 e. PREFIX_OTHER if other prefix is added.
2500 */
2501
2502 static enum PREFIX_GROUP
2503 add_prefix (unsigned int prefix)
2504 {
2505 enum PREFIX_GROUP ret = PREFIX_OTHER;
2506 unsigned int q;
2507
2508 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2509 && flag_code == CODE_64BIT)
2510 {
2511 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2512 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2513 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2514 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2515 ret = PREFIX_EXIST;
2516 q = REX_PREFIX;
2517 }
2518 else
2519 {
2520 switch (prefix)
2521 {
2522 default:
2523 abort ();
2524
2525 case DS_PREFIX_OPCODE:
2526 ret = PREFIX_DS;
2527 /* Fall through. */
2528 case CS_PREFIX_OPCODE:
2529 case ES_PREFIX_OPCODE:
2530 case FS_PREFIX_OPCODE:
2531 case GS_PREFIX_OPCODE:
2532 case SS_PREFIX_OPCODE:
2533 q = SEG_PREFIX;
2534 break;
2535
2536 case REPNE_PREFIX_OPCODE:
2537 case REPE_PREFIX_OPCODE:
2538 q = REP_PREFIX;
2539 ret = PREFIX_REP;
2540 break;
2541
2542 case LOCK_PREFIX_OPCODE:
2543 q = LOCK_PREFIX;
2544 ret = PREFIX_LOCK;
2545 break;
2546
2547 case FWAIT_OPCODE:
2548 q = WAIT_PREFIX;
2549 break;
2550
2551 case ADDR_PREFIX_OPCODE:
2552 q = ADDR_PREFIX;
2553 break;
2554
2555 case DATA_PREFIX_OPCODE:
2556 q = DATA_PREFIX;
2557 break;
2558 }
2559 if (i.prefix[q] != 0)
2560 ret = PREFIX_EXIST;
2561 }
2562
2563 if (ret)
2564 {
2565 if (!i.prefix[q])
2566 ++i.prefixes;
2567 i.prefix[q] |= prefix;
2568 }
2569 else
2570 as_bad (_("same type of prefix used twice"));
2571
2572 return ret;
2573 }
2574
2575 static void
2576 update_code_flag (int value, int check)
2577 {
2578 PRINTF_LIKE ((*as_error));
2579
2580 flag_code = (enum flag_code) value;
2581 if (flag_code == CODE_64BIT)
2582 {
2583 cpu_arch_flags.bitfield.cpu64 = 1;
2584 cpu_arch_flags.bitfield.cpuno64 = 0;
2585 }
2586 else
2587 {
2588 cpu_arch_flags.bitfield.cpu64 = 0;
2589 cpu_arch_flags.bitfield.cpuno64 = 1;
2590 }
2591 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2592 {
2593 if (check)
2594 as_error = as_fatal;
2595 else
2596 as_error = as_bad;
2597 (*as_error) (_("64bit mode not supported on `%s'."),
2598 cpu_arch_name ? cpu_arch_name : default_arch);
2599 }
2600 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2601 {
2602 if (check)
2603 as_error = as_fatal;
2604 else
2605 as_error = as_bad;
2606 (*as_error) (_("32bit mode not supported on `%s'."),
2607 cpu_arch_name ? cpu_arch_name : default_arch);
2608 }
2609 stackop_size = '\0';
2610 }
2611
2612 static void
2613 set_code_flag (int value)
2614 {
2615 update_code_flag (value, 0);
2616 }
2617
2618 static void
2619 set_16bit_gcc_code_flag (int new_code_flag)
2620 {
2621 flag_code = (enum flag_code) new_code_flag;
2622 if (flag_code != CODE_16BIT)
2623 abort ();
2624 cpu_arch_flags.bitfield.cpu64 = 0;
2625 cpu_arch_flags.bitfield.cpuno64 = 1;
2626 stackop_size = LONG_MNEM_SUFFIX;
2627 }
2628
2629 static void
2630 set_intel_syntax (int syntax_flag)
2631 {
2632 /* Find out if register prefixing is specified. */
2633 int ask_naked_reg = 0;
2634
2635 SKIP_WHITESPACE ();
2636 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2637 {
2638 char *string;
2639 int e = get_symbol_name (&string);
2640
2641 if (strcmp (string, "prefix") == 0)
2642 ask_naked_reg = 1;
2643 else if (strcmp (string, "noprefix") == 0)
2644 ask_naked_reg = -1;
2645 else
2646 as_bad (_("bad argument to syntax directive."));
2647 (void) restore_line_pointer (e);
2648 }
2649 demand_empty_rest_of_line ();
2650
2651 intel_syntax = syntax_flag;
2652
2653 if (ask_naked_reg == 0)
2654 allow_naked_reg = (intel_syntax
2655 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2656 else
2657 allow_naked_reg = (ask_naked_reg < 0);
2658
2659 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2660
2661 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2662 identifier_chars['$'] = intel_syntax ? '$' : 0;
2663 register_prefix = allow_naked_reg ? "" : "%";
2664 }
2665
2666 static void
2667 set_intel_mnemonic (int mnemonic_flag)
2668 {
2669 intel_mnemonic = mnemonic_flag;
2670 }
2671
2672 static void
2673 set_allow_index_reg (int flag)
2674 {
2675 allow_index_reg = flag;
2676 }
2677
2678 static void
2679 set_check (int what)
2680 {
2681 enum check_kind *kind;
2682 const char *str;
2683
2684 if (what)
2685 {
2686 kind = &operand_check;
2687 str = "operand";
2688 }
2689 else
2690 {
2691 kind = &sse_check;
2692 str = "sse";
2693 }
2694
2695 SKIP_WHITESPACE ();
2696
2697 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2698 {
2699 char *string;
2700 int e = get_symbol_name (&string);
2701
2702 if (strcmp (string, "none") == 0)
2703 *kind = check_none;
2704 else if (strcmp (string, "warning") == 0)
2705 *kind = check_warning;
2706 else if (strcmp (string, "error") == 0)
2707 *kind = check_error;
2708 else
2709 as_bad (_("bad argument to %s_check directive."), str);
2710 (void) restore_line_pointer (e);
2711 }
2712 else
2713 as_bad (_("missing argument for %s_check directive"), str);
2714
2715 demand_empty_rest_of_line ();
2716 }
2717
2718 static void
2719 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2720 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2721 {
2722 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2723 static const char *arch;
2724
2725 /* Intel LIOM is only supported on ELF. */
2726 if (!IS_ELF)
2727 return;
2728
2729 if (!arch)
2730 {
2731 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2732 use default_arch. */
2733 arch = cpu_arch_name;
2734 if (!arch)
2735 arch = default_arch;
2736 }
2737
2738 /* If we are targeting Intel MCU, we must enable it. */
2739 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2740 || new_flag.bitfield.cpuiamcu)
2741 return;
2742
2743 /* If we are targeting Intel L1OM, we must enable it. */
2744 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2745 || new_flag.bitfield.cpul1om)
2746 return;
2747
2748 /* If we are targeting Intel K1OM, we must enable it. */
2749 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2750 || new_flag.bitfield.cpuk1om)
2751 return;
2752
2753 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2754 #endif
2755 }
2756
2757 static void
2758 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2759 {
2760 SKIP_WHITESPACE ();
2761
2762 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2763 {
2764 char *string;
2765 int e = get_symbol_name (&string);
2766 unsigned int j;
2767 i386_cpu_flags flags;
2768
2769 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2770 {
2771 if (strcmp (string, cpu_arch[j].name) == 0)
2772 {
2773 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2774
2775 if (*string != '.')
2776 {
2777 cpu_arch_name = cpu_arch[j].name;
2778 cpu_sub_arch_name = NULL;
2779 cpu_arch_flags = cpu_arch[j].flags;
2780 if (flag_code == CODE_64BIT)
2781 {
2782 cpu_arch_flags.bitfield.cpu64 = 1;
2783 cpu_arch_flags.bitfield.cpuno64 = 0;
2784 }
2785 else
2786 {
2787 cpu_arch_flags.bitfield.cpu64 = 0;
2788 cpu_arch_flags.bitfield.cpuno64 = 1;
2789 }
2790 cpu_arch_isa = cpu_arch[j].type;
2791 cpu_arch_isa_flags = cpu_arch[j].flags;
2792 if (!cpu_arch_tune_set)
2793 {
2794 cpu_arch_tune = cpu_arch_isa;
2795 cpu_arch_tune_flags = cpu_arch_isa_flags;
2796 }
2797 break;
2798 }
2799
2800 flags = cpu_flags_or (cpu_arch_flags,
2801 cpu_arch[j].flags);
2802
2803 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2804 {
2805 if (cpu_sub_arch_name)
2806 {
2807 char *name = cpu_sub_arch_name;
2808 cpu_sub_arch_name = concat (name,
2809 cpu_arch[j].name,
2810 (const char *) NULL);
2811 free (name);
2812 }
2813 else
2814 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2815 cpu_arch_flags = flags;
2816 cpu_arch_isa_flags = flags;
2817 }
2818 else
2819 cpu_arch_isa_flags
2820 = cpu_flags_or (cpu_arch_isa_flags,
2821 cpu_arch[j].flags);
2822 (void) restore_line_pointer (e);
2823 demand_empty_rest_of_line ();
2824 return;
2825 }
2826 }
2827
2828 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2829 {
2830 /* Disable an ISA extension. */
2831 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2832 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2833 {
2834 flags = cpu_flags_and_not (cpu_arch_flags,
2835 cpu_noarch[j].flags);
2836 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2837 {
2838 if (cpu_sub_arch_name)
2839 {
2840 char *name = cpu_sub_arch_name;
2841 cpu_sub_arch_name = concat (name, string,
2842 (const char *) NULL);
2843 free (name);
2844 }
2845 else
2846 cpu_sub_arch_name = xstrdup (string);
2847 cpu_arch_flags = flags;
2848 cpu_arch_isa_flags = flags;
2849 }
2850 (void) restore_line_pointer (e);
2851 demand_empty_rest_of_line ();
2852 return;
2853 }
2854
2855 j = ARRAY_SIZE (cpu_arch);
2856 }
2857
2858 if (j >= ARRAY_SIZE (cpu_arch))
2859 as_bad (_("no such architecture: `%s'"), string);
2860
2861 *input_line_pointer = e;
2862 }
2863 else
2864 as_bad (_("missing cpu architecture"));
2865
2866 no_cond_jump_promotion = 0;
2867 if (*input_line_pointer == ','
2868 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2869 {
2870 char *string;
2871 char e;
2872
2873 ++input_line_pointer;
2874 e = get_symbol_name (&string);
2875
2876 if (strcmp (string, "nojumps") == 0)
2877 no_cond_jump_promotion = 1;
2878 else if (strcmp (string, "jumps") == 0)
2879 ;
2880 else
2881 as_bad (_("no such architecture modifier: `%s'"), string);
2882
2883 (void) restore_line_pointer (e);
2884 }
2885
2886 demand_empty_rest_of_line ();
2887 }
2888
2889 enum bfd_architecture
2890 i386_arch (void)
2891 {
2892 if (cpu_arch_isa == PROCESSOR_L1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel L1OM is 64bit ELF only"));
2897 return bfd_arch_l1om;
2898 }
2899 else if (cpu_arch_isa == PROCESSOR_K1OM)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code != CODE_64BIT)
2903 as_fatal (_("Intel K1OM is 64bit ELF only"));
2904 return bfd_arch_k1om;
2905 }
2906 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2907 {
2908 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2909 || flag_code == CODE_64BIT)
2910 as_fatal (_("Intel MCU is 32bit ELF only"));
2911 return bfd_arch_iamcu;
2912 }
2913 else
2914 return bfd_arch_i386;
2915 }
2916
2917 unsigned long
2918 i386_mach (void)
2919 {
2920 if (!strncmp (default_arch, "x86_64", 6))
2921 {
2922 if (cpu_arch_isa == PROCESSOR_L1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel L1OM is 64bit ELF only"));
2927 return bfd_mach_l1om;
2928 }
2929 else if (cpu_arch_isa == PROCESSOR_K1OM)
2930 {
2931 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2932 || default_arch[6] != '\0')
2933 as_fatal (_("Intel K1OM is 64bit ELF only"));
2934 return bfd_mach_k1om;
2935 }
2936 else if (default_arch[6] == '\0')
2937 return bfd_mach_x86_64;
2938 else
2939 return bfd_mach_x64_32;
2940 }
2941 else if (!strcmp (default_arch, "i386")
2942 || !strcmp (default_arch, "iamcu"))
2943 {
2944 if (cpu_arch_isa == PROCESSOR_IAMCU)
2945 {
2946 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2947 as_fatal (_("Intel MCU is 32bit ELF only"));
2948 return bfd_mach_i386_iamcu;
2949 }
2950 else
2951 return bfd_mach_i386_i386;
2952 }
2953 else
2954 as_fatal (_("unknown architecture"));
2955 }
2956 \f
2957 void
2958 md_begin (void)
2959 {
2960 const char *hash_err;
2961
2962 /* Support pseudo prefixes like {disp32}. */
2963 lex_type ['{'] = LEX_BEGIN_NAME;
2964
2965 /* Initialize op_hash hash table. */
2966 op_hash = hash_new ();
2967
2968 {
2969 const insn_template *optab;
2970 templates *core_optab;
2971
2972 /* Setup for loop. */
2973 optab = i386_optab;
2974 core_optab = XNEW (templates);
2975 core_optab->start = optab;
2976
2977 while (1)
2978 {
2979 ++optab;
2980 if (optab->name == NULL
2981 || strcmp (optab->name, (optab - 1)->name) != 0)
2982 {
2983 /* different name --> ship out current template list;
2984 add to hash table; & begin anew. */
2985 core_optab->end = optab;
2986 hash_err = hash_insert (op_hash,
2987 (optab - 1)->name,
2988 (void *) core_optab);
2989 if (hash_err)
2990 {
2991 as_fatal (_("can't hash %s: %s"),
2992 (optab - 1)->name,
2993 hash_err);
2994 }
2995 if (optab->name == NULL)
2996 break;
2997 core_optab = XNEW (templates);
2998 core_optab->start = optab;
2999 }
3000 }
3001 }
3002
3003 /* Initialize reg_hash hash table. */
3004 reg_hash = hash_new ();
3005 {
3006 const reg_entry *regtab;
3007 unsigned int regtab_size = i386_regtab_size;
3008
3009 for (regtab = i386_regtab; regtab_size--; regtab++)
3010 {
3011 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3012 if (hash_err)
3013 as_fatal (_("can't hash %s: %s"),
3014 regtab->reg_name,
3015 hash_err);
3016 }
3017 }
3018
3019 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3020 {
3021 int c;
3022 char *p;
3023
3024 for (c = 0; c < 256; c++)
3025 {
3026 if (ISDIGIT (c))
3027 {
3028 digit_chars[c] = c;
3029 mnemonic_chars[c] = c;
3030 register_chars[c] = c;
3031 operand_chars[c] = c;
3032 }
3033 else if (ISLOWER (c))
3034 {
3035 mnemonic_chars[c] = c;
3036 register_chars[c] = c;
3037 operand_chars[c] = c;
3038 }
3039 else if (ISUPPER (c))
3040 {
3041 mnemonic_chars[c] = TOLOWER (c);
3042 register_chars[c] = mnemonic_chars[c];
3043 operand_chars[c] = c;
3044 }
3045 else if (c == '{' || c == '}')
3046 {
3047 mnemonic_chars[c] = c;
3048 operand_chars[c] = c;
3049 }
3050
3051 if (ISALPHA (c) || ISDIGIT (c))
3052 identifier_chars[c] = c;
3053 else if (c >= 128)
3054 {
3055 identifier_chars[c] = c;
3056 operand_chars[c] = c;
3057 }
3058 }
3059
3060 #ifdef LEX_AT
3061 identifier_chars['@'] = '@';
3062 #endif
3063 #ifdef LEX_QM
3064 identifier_chars['?'] = '?';
3065 operand_chars['?'] = '?';
3066 #endif
3067 digit_chars['-'] = '-';
3068 mnemonic_chars['_'] = '_';
3069 mnemonic_chars['-'] = '-';
3070 mnemonic_chars['.'] = '.';
3071 identifier_chars['_'] = '_';
3072 identifier_chars['.'] = '.';
3073
3074 for (p = operand_special_chars; *p != '\0'; p++)
3075 operand_chars[(unsigned char) *p] = *p;
3076 }
3077
3078 if (flag_code == CODE_64BIT)
3079 {
3080 #if defined (OBJ_COFF) && defined (TE_PE)
3081 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3082 ? 32 : 16);
3083 #else
3084 x86_dwarf2_return_column = 16;
3085 #endif
3086 x86_cie_data_alignment = -8;
3087 }
3088 else
3089 {
3090 x86_dwarf2_return_column = 8;
3091 x86_cie_data_alignment = -4;
3092 }
3093
3094 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3095 can be turned into BRANCH_PREFIX frag. */
3096 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3097 abort ();
3098 }
3099
3100 void
3101 i386_print_statistics (FILE *file)
3102 {
3103 hash_print_statistics (file, "i386 opcode", op_hash);
3104 hash_print_statistics (file, "i386 register", reg_hash);
3105 }
3106 \f
3107 #ifdef DEBUG386
3108
3109 /* Debugging routines for md_assemble. */
3110 static void pte (insn_template *);
3111 static void pt (i386_operand_type);
3112 static void pe (expressionS *);
3113 static void ps (symbolS *);
3114
3115 static void
3116 pi (const char *line, i386_insn *x)
3117 {
3118 unsigned int j;
3119
3120 fprintf (stdout, "%s: template ", line);
3121 pte (&x->tm);
3122 fprintf (stdout, " address: base %s index %s scale %x\n",
3123 x->base_reg ? x->base_reg->reg_name : "none",
3124 x->index_reg ? x->index_reg->reg_name : "none",
3125 x->log2_scale_factor);
3126 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3127 x->rm.mode, x->rm.reg, x->rm.regmem);
3128 fprintf (stdout, " sib: base %x index %x scale %x\n",
3129 x->sib.base, x->sib.index, x->sib.scale);
3130 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3131 (x->rex & REX_W) != 0,
3132 (x->rex & REX_R) != 0,
3133 (x->rex & REX_X) != 0,
3134 (x->rex & REX_B) != 0);
3135 for (j = 0; j < x->operands; j++)
3136 {
3137 fprintf (stdout, " #%d: ", j + 1);
3138 pt (x->types[j]);
3139 fprintf (stdout, "\n");
3140 if (x->types[j].bitfield.class == Reg
3141 || x->types[j].bitfield.class == RegMMX
3142 || x->types[j].bitfield.class == RegSIMD
3143 || x->types[j].bitfield.class == SReg
3144 || x->types[j].bitfield.class == RegCR
3145 || x->types[j].bitfield.class == RegDR
3146 || x->types[j].bitfield.class == RegTR)
3147 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3148 if (operand_type_check (x->types[j], imm))
3149 pe (x->op[j].imms);
3150 if (operand_type_check (x->types[j], disp))
3151 pe (x->op[j].disps);
3152 }
3153 }
3154
3155 static void
3156 pte (insn_template *t)
3157 {
3158 unsigned int j;
3159 fprintf (stdout, " %d operands ", t->operands);
3160 fprintf (stdout, "opcode %x ", t->base_opcode);
3161 if (t->extension_opcode != None)
3162 fprintf (stdout, "ext %x ", t->extension_opcode);
3163 if (t->opcode_modifier.d)
3164 fprintf (stdout, "D");
3165 if (t->opcode_modifier.w)
3166 fprintf (stdout, "W");
3167 fprintf (stdout, "\n");
3168 for (j = 0; j < t->operands; j++)
3169 {
3170 fprintf (stdout, " #%d type ", j + 1);
3171 pt (t->operand_types[j]);
3172 fprintf (stdout, "\n");
3173 }
3174 }
3175
3176 static void
3177 pe (expressionS *e)
3178 {
3179 fprintf (stdout, " operation %d\n", e->X_op);
3180 fprintf (stdout, " add_number %ld (%lx)\n",
3181 (long) e->X_add_number, (long) e->X_add_number);
3182 if (e->X_add_symbol)
3183 {
3184 fprintf (stdout, " add_symbol ");
3185 ps (e->X_add_symbol);
3186 fprintf (stdout, "\n");
3187 }
3188 if (e->X_op_symbol)
3189 {
3190 fprintf (stdout, " op_symbol ");
3191 ps (e->X_op_symbol);
3192 fprintf (stdout, "\n");
3193 }
3194 }
3195
3196 static void
3197 ps (symbolS *s)
3198 {
3199 fprintf (stdout, "%s type %s%s",
3200 S_GET_NAME (s),
3201 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3202 segment_name (S_GET_SEGMENT (s)));
3203 }
3204
3205 static struct type_name
3206 {
3207 i386_operand_type mask;
3208 const char *name;
3209 }
3210 const type_names[] =
3211 {
3212 { OPERAND_TYPE_REG8, "r8" },
3213 { OPERAND_TYPE_REG16, "r16" },
3214 { OPERAND_TYPE_REG32, "r32" },
3215 { OPERAND_TYPE_REG64, "r64" },
3216 { OPERAND_TYPE_ACC8, "acc8" },
3217 { OPERAND_TYPE_ACC16, "acc16" },
3218 { OPERAND_TYPE_ACC32, "acc32" },
3219 { OPERAND_TYPE_ACC64, "acc64" },
3220 { OPERAND_TYPE_IMM8, "i8" },
3221 { OPERAND_TYPE_IMM8, "i8s" },
3222 { OPERAND_TYPE_IMM16, "i16" },
3223 { OPERAND_TYPE_IMM32, "i32" },
3224 { OPERAND_TYPE_IMM32S, "i32s" },
3225 { OPERAND_TYPE_IMM64, "i64" },
3226 { OPERAND_TYPE_IMM1, "i1" },
3227 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3228 { OPERAND_TYPE_DISP8, "d8" },
3229 { OPERAND_TYPE_DISP16, "d16" },
3230 { OPERAND_TYPE_DISP32, "d32" },
3231 { OPERAND_TYPE_DISP32S, "d32s" },
3232 { OPERAND_TYPE_DISP64, "d64" },
3233 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3234 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3235 { OPERAND_TYPE_CONTROL, "control reg" },
3236 { OPERAND_TYPE_TEST, "test reg" },
3237 { OPERAND_TYPE_DEBUG, "debug reg" },
3238 { OPERAND_TYPE_FLOATREG, "FReg" },
3239 { OPERAND_TYPE_FLOATACC, "FAcc" },
3240 { OPERAND_TYPE_SREG, "SReg" },
3241 { OPERAND_TYPE_REGMMX, "rMMX" },
3242 { OPERAND_TYPE_REGXMM, "rXMM" },
3243 { OPERAND_TYPE_REGYMM, "rYMM" },
3244 { OPERAND_TYPE_REGZMM, "rZMM" },
3245 { OPERAND_TYPE_REGMASK, "Mask reg" },
3246 };
3247
3248 static void
3249 pt (i386_operand_type t)
3250 {
3251 unsigned int j;
3252 i386_operand_type a;
3253
3254 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3255 {
3256 a = operand_type_and (t, type_names[j].mask);
3257 if (operand_type_equal (&a, &type_names[j].mask))
3258 fprintf (stdout, "%s, ", type_names[j].name);
3259 }
3260 fflush (stdout);
3261 }
3262
3263 #endif /* DEBUG386 */
3264 \f
3265 static bfd_reloc_code_real_type
3266 reloc (unsigned int size,
3267 int pcrel,
3268 int sign,
3269 bfd_reloc_code_real_type other)
3270 {
3271 if (other != NO_RELOC)
3272 {
3273 reloc_howto_type *rel;
3274
3275 if (size == 8)
3276 switch (other)
3277 {
3278 case BFD_RELOC_X86_64_GOT32:
3279 return BFD_RELOC_X86_64_GOT64;
3280 break;
3281 case BFD_RELOC_X86_64_GOTPLT64:
3282 return BFD_RELOC_X86_64_GOTPLT64;
3283 break;
3284 case BFD_RELOC_X86_64_PLTOFF64:
3285 return BFD_RELOC_X86_64_PLTOFF64;
3286 break;
3287 case BFD_RELOC_X86_64_GOTPC32:
3288 other = BFD_RELOC_X86_64_GOTPC64;
3289 break;
3290 case BFD_RELOC_X86_64_GOTPCREL:
3291 other = BFD_RELOC_X86_64_GOTPCREL64;
3292 break;
3293 case BFD_RELOC_X86_64_TPOFF32:
3294 other = BFD_RELOC_X86_64_TPOFF64;
3295 break;
3296 case BFD_RELOC_X86_64_DTPOFF32:
3297 other = BFD_RELOC_X86_64_DTPOFF64;
3298 break;
3299 default:
3300 break;
3301 }
3302
3303 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3304 if (other == BFD_RELOC_SIZE32)
3305 {
3306 if (size == 8)
3307 other = BFD_RELOC_SIZE64;
3308 if (pcrel)
3309 {
3310 as_bad (_("there are no pc-relative size relocations"));
3311 return NO_RELOC;
3312 }
3313 }
3314 #endif
3315
3316 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3317 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3318 sign = -1;
3319
3320 rel = bfd_reloc_type_lookup (stdoutput, other);
3321 if (!rel)
3322 as_bad (_("unknown relocation (%u)"), other);
3323 else if (size != bfd_get_reloc_size (rel))
3324 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3325 bfd_get_reloc_size (rel),
3326 size);
3327 else if (pcrel && !rel->pc_relative)
3328 as_bad (_("non-pc-relative relocation for pc-relative field"));
3329 else if ((rel->complain_on_overflow == complain_overflow_signed
3330 && !sign)
3331 || (rel->complain_on_overflow == complain_overflow_unsigned
3332 && sign > 0))
3333 as_bad (_("relocated field and relocation type differ in signedness"));
3334 else
3335 return other;
3336 return NO_RELOC;
3337 }
3338
3339 if (pcrel)
3340 {
3341 if (!sign)
3342 as_bad (_("there are no unsigned pc-relative relocations"));
3343 switch (size)
3344 {
3345 case 1: return BFD_RELOC_8_PCREL;
3346 case 2: return BFD_RELOC_16_PCREL;
3347 case 4: return BFD_RELOC_32_PCREL;
3348 case 8: return BFD_RELOC_64_PCREL;
3349 }
3350 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3351 }
3352 else
3353 {
3354 if (sign > 0)
3355 switch (size)
3356 {
3357 case 4: return BFD_RELOC_X86_64_32S;
3358 }
3359 else
3360 switch (size)
3361 {
3362 case 1: return BFD_RELOC_8;
3363 case 2: return BFD_RELOC_16;
3364 case 4: return BFD_RELOC_32;
3365 case 8: return BFD_RELOC_64;
3366 }
3367 as_bad (_("cannot do %s %u byte relocation"),
3368 sign > 0 ? "signed" : "unsigned", size);
3369 }
3370
3371 return NO_RELOC;
3372 }
3373
3374 /* Here we decide which fixups can be adjusted to make them relative to
3375 the beginning of the section instead of the symbol. Basically we need
3376 to make sure that the dynamic relocations are done correctly, so in
3377 some cases we force the original symbol to be used. */
3378
3379 int
3380 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3381 {
3382 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3383 if (!IS_ELF)
3384 return 1;
3385
3386 /* Don't adjust pc-relative references to merge sections in 64-bit
3387 mode. */
3388 if (use_rela_relocations
3389 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3390 && fixP->fx_pcrel)
3391 return 0;
3392
3393 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3394 and changed later by validate_fix. */
3395 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3396 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3397 return 0;
3398
3399 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3400 for size relocations. */
3401 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3402 || fixP->fx_r_type == BFD_RELOC_SIZE64
3403 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3404 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3405 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3412 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3413 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3414 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3415 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3427 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3428 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3429 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3430 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3431 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3432 return 0;
3433 #endif
3434 return 1;
3435 }
3436
3437 static int
3438 intel_float_operand (const char *mnemonic)
3439 {
3440 /* Note that the value returned is meaningful only for opcodes with (memory)
3441 operands, hence the code here is free to improperly handle opcodes that
3442 have no operands (for better performance and smaller code). */
3443
3444 if (mnemonic[0] != 'f')
3445 return 0; /* non-math */
3446
3447 switch (mnemonic[1])
3448 {
3449 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3450 the fs segment override prefix not currently handled because no
3451 call path can make opcodes without operands get here */
3452 case 'i':
3453 return 2 /* integer op */;
3454 case 'l':
3455 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3456 return 3; /* fldcw/fldenv */
3457 break;
3458 case 'n':
3459 if (mnemonic[2] != 'o' /* fnop */)
3460 return 3; /* non-waiting control op */
3461 break;
3462 case 'r':
3463 if (mnemonic[2] == 's')
3464 return 3; /* frstor/frstpm */
3465 break;
3466 case 's':
3467 if (mnemonic[2] == 'a')
3468 return 3; /* fsave */
3469 if (mnemonic[2] == 't')
3470 {
3471 switch (mnemonic[3])
3472 {
3473 case 'c': /* fstcw */
3474 case 'd': /* fstdw */
3475 case 'e': /* fstenv */
3476 case 's': /* fsts[gw] */
3477 return 3;
3478 }
3479 }
3480 break;
3481 case 'x':
3482 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3483 return 0; /* fxsave/fxrstor are not really math ops */
3484 break;
3485 }
3486
3487 return 1;
3488 }
3489
3490 /* Build the VEX prefix. */
3491
3492 static void
3493 build_vex_prefix (const insn_template *t)
3494 {
3495 unsigned int register_specifier;
3496 unsigned int implied_prefix;
3497 unsigned int vector_length;
3498 unsigned int w;
3499
3500 /* Check register specifier. */
3501 if (i.vex.register_specifier)
3502 {
3503 register_specifier =
3504 ~register_number (i.vex.register_specifier) & 0xf;
3505 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3506 }
3507 else
3508 register_specifier = 0xf;
3509
3510 /* Use 2-byte VEX prefix by swapping destination and source operand
3511 if there are more than 1 register operand. */
3512 if (i.reg_operands > 1
3513 && i.vec_encoding != vex_encoding_vex3
3514 && i.dir_encoding == dir_encoding_default
3515 && i.operands == i.reg_operands
3516 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3517 && i.tm.opcode_modifier.vexopcode == VEX0F
3518 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3519 && i.rex == REX_B)
3520 {
3521 unsigned int xchg = i.operands - 1;
3522 union i386_op temp_op;
3523 i386_operand_type temp_type;
3524
3525 temp_type = i.types[xchg];
3526 i.types[xchg] = i.types[0];
3527 i.types[0] = temp_type;
3528 temp_op = i.op[xchg];
3529 i.op[xchg] = i.op[0];
3530 i.op[0] = temp_op;
3531
3532 gas_assert (i.rm.mode == 3);
3533
3534 i.rex = REX_R;
3535 xchg = i.rm.regmem;
3536 i.rm.regmem = i.rm.reg;
3537 i.rm.reg = xchg;
3538
3539 if (i.tm.opcode_modifier.d)
3540 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3541 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3542 else /* Use the next insn. */
3543 i.tm = t[1];
3544 }
3545
3546 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3547 are no memory operands and at least 3 register ones. */
3548 if (i.reg_operands >= 3
3549 && i.vec_encoding != vex_encoding_vex3
3550 && i.reg_operands == i.operands - i.imm_operands
3551 && i.tm.opcode_modifier.vex
3552 && i.tm.opcode_modifier.commutative
3553 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3554 && i.rex == REX_B
3555 && i.vex.register_specifier
3556 && !(i.vex.register_specifier->reg_flags & RegRex))
3557 {
3558 unsigned int xchg = i.operands - i.reg_operands;
3559 union i386_op temp_op;
3560 i386_operand_type temp_type;
3561
3562 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3563 gas_assert (!i.tm.opcode_modifier.sae);
3564 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3565 &i.types[i.operands - 3]));
3566 gas_assert (i.rm.mode == 3);
3567
3568 temp_type = i.types[xchg];
3569 i.types[xchg] = i.types[xchg + 1];
3570 i.types[xchg + 1] = temp_type;
3571 temp_op = i.op[xchg];
3572 i.op[xchg] = i.op[xchg + 1];
3573 i.op[xchg + 1] = temp_op;
3574
3575 i.rex = 0;
3576 xchg = i.rm.regmem | 8;
3577 i.rm.regmem = ~register_specifier & 0xf;
3578 gas_assert (!(i.rm.regmem & 8));
3579 i.vex.register_specifier += xchg - i.rm.regmem;
3580 register_specifier = ~xchg & 0xf;
3581 }
3582
3583 if (i.tm.opcode_modifier.vex == VEXScalar)
3584 vector_length = avxscalar;
3585 else if (i.tm.opcode_modifier.vex == VEX256)
3586 vector_length = 1;
3587 else
3588 {
3589 unsigned int op;
3590
3591 /* Determine vector length from the last multi-length vector
3592 operand. */
3593 vector_length = 0;
3594 for (op = t->operands; op--;)
3595 if (t->operand_types[op].bitfield.xmmword
3596 && t->operand_types[op].bitfield.ymmword
3597 && i.types[op].bitfield.ymmword)
3598 {
3599 vector_length = 1;
3600 break;
3601 }
3602 }
3603
3604 switch ((i.tm.base_opcode >> 8) & 0xff)
3605 {
3606 case 0:
3607 implied_prefix = 0;
3608 break;
3609 case DATA_PREFIX_OPCODE:
3610 implied_prefix = 1;
3611 break;
3612 case REPE_PREFIX_OPCODE:
3613 implied_prefix = 2;
3614 break;
3615 case REPNE_PREFIX_OPCODE:
3616 implied_prefix = 3;
3617 break;
3618 default:
3619 abort ();
3620 }
3621
3622 /* Check the REX.W bit and VEXW. */
3623 if (i.tm.opcode_modifier.vexw == VEXWIG)
3624 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3625 else if (i.tm.opcode_modifier.vexw)
3626 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3627 else
3628 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3629
3630 /* Use 2-byte VEX prefix if possible. */
3631 if (w == 0
3632 && i.vec_encoding != vex_encoding_vex3
3633 && i.tm.opcode_modifier.vexopcode == VEX0F
3634 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3635 {
3636 /* 2-byte VEX prefix. */
3637 unsigned int r;
3638
3639 i.vex.length = 2;
3640 i.vex.bytes[0] = 0xc5;
3641
3642 /* Check the REX.R bit. */
3643 r = (i.rex & REX_R) ? 0 : 1;
3644 i.vex.bytes[1] = (r << 7
3645 | register_specifier << 3
3646 | vector_length << 2
3647 | implied_prefix);
3648 }
3649 else
3650 {
3651 /* 3-byte VEX prefix. */
3652 unsigned int m;
3653
3654 i.vex.length = 3;
3655
3656 switch (i.tm.opcode_modifier.vexopcode)
3657 {
3658 case VEX0F:
3659 m = 0x1;
3660 i.vex.bytes[0] = 0xc4;
3661 break;
3662 case VEX0F38:
3663 m = 0x2;
3664 i.vex.bytes[0] = 0xc4;
3665 break;
3666 case VEX0F3A:
3667 m = 0x3;
3668 i.vex.bytes[0] = 0xc4;
3669 break;
3670 case XOP08:
3671 m = 0x8;
3672 i.vex.bytes[0] = 0x8f;
3673 break;
3674 case XOP09:
3675 m = 0x9;
3676 i.vex.bytes[0] = 0x8f;
3677 break;
3678 case XOP0A:
3679 m = 0xa;
3680 i.vex.bytes[0] = 0x8f;
3681 break;
3682 default:
3683 abort ();
3684 }
3685
3686 /* The high 3 bits of the second VEX byte are 1's compliment
3687 of RXB bits from REX. */
3688 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3689
3690 i.vex.bytes[2] = (w << 7
3691 | register_specifier << 3
3692 | vector_length << 2
3693 | implied_prefix);
3694 }
3695 }
3696
3697 static INLINE bfd_boolean
3698 is_evex_encoding (const insn_template *t)
3699 {
3700 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3701 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3702 || t->opcode_modifier.sae;
3703 }
3704
3705 static INLINE bfd_boolean
3706 is_any_vex_encoding (const insn_template *t)
3707 {
3708 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3709 || is_evex_encoding (t);
3710 }
3711
3712 /* Build the EVEX prefix. */
3713
3714 static void
3715 build_evex_prefix (void)
3716 {
3717 unsigned int register_specifier;
3718 unsigned int implied_prefix;
3719 unsigned int m, w;
3720 rex_byte vrex_used = 0;
3721
3722 /* Check register specifier. */
3723 if (i.vex.register_specifier)
3724 {
3725 gas_assert ((i.vrex & REX_X) == 0);
3726
3727 register_specifier = i.vex.register_specifier->reg_num;
3728 if ((i.vex.register_specifier->reg_flags & RegRex))
3729 register_specifier += 8;
3730 /* The upper 16 registers are encoded in the fourth byte of the
3731 EVEX prefix. */
3732 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3733 i.vex.bytes[3] = 0x8;
3734 register_specifier = ~register_specifier & 0xf;
3735 }
3736 else
3737 {
3738 register_specifier = 0xf;
3739
3740 /* Encode upper 16 vector index register in the fourth byte of
3741 the EVEX prefix. */
3742 if (!(i.vrex & REX_X))
3743 i.vex.bytes[3] = 0x8;
3744 else
3745 vrex_used |= REX_X;
3746 }
3747
3748 switch ((i.tm.base_opcode >> 8) & 0xff)
3749 {
3750 case 0:
3751 implied_prefix = 0;
3752 break;
3753 case DATA_PREFIX_OPCODE:
3754 implied_prefix = 1;
3755 break;
3756 case REPE_PREFIX_OPCODE:
3757 implied_prefix = 2;
3758 break;
3759 case REPNE_PREFIX_OPCODE:
3760 implied_prefix = 3;
3761 break;
3762 default:
3763 abort ();
3764 }
3765
3766 /* 4 byte EVEX prefix. */
3767 i.vex.length = 4;
3768 i.vex.bytes[0] = 0x62;
3769
3770 /* mmmm bits. */
3771 switch (i.tm.opcode_modifier.vexopcode)
3772 {
3773 case VEX0F:
3774 m = 1;
3775 break;
3776 case VEX0F38:
3777 m = 2;
3778 break;
3779 case VEX0F3A:
3780 m = 3;
3781 break;
3782 default:
3783 abort ();
3784 break;
3785 }
3786
3787 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3788 bits from REX. */
3789 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3790
3791 /* The fifth bit of the second EVEX byte is 1's compliment of the
3792 REX_R bit in VREX. */
3793 if (!(i.vrex & REX_R))
3794 i.vex.bytes[1] |= 0x10;
3795 else
3796 vrex_used |= REX_R;
3797
3798 if ((i.reg_operands + i.imm_operands) == i.operands)
3799 {
3800 /* When all operands are registers, the REX_X bit in REX is not
3801 used. We reuse it to encode the upper 16 registers, which is
3802 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3803 as 1's compliment. */
3804 if ((i.vrex & REX_B))
3805 {
3806 vrex_used |= REX_B;
3807 i.vex.bytes[1] &= ~0x40;
3808 }
3809 }
3810
3811 /* EVEX instructions shouldn't need the REX prefix. */
3812 i.vrex &= ~vrex_used;
3813 gas_assert (i.vrex == 0);
3814
3815 /* Check the REX.W bit and VEXW. */
3816 if (i.tm.opcode_modifier.vexw == VEXWIG)
3817 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3818 else if (i.tm.opcode_modifier.vexw)
3819 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3820 else
3821 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3822
3823 /* Encode the U bit. */
3824 implied_prefix |= 0x4;
3825
3826 /* The third byte of the EVEX prefix. */
3827 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3828
3829 /* The fourth byte of the EVEX prefix. */
3830 /* The zeroing-masking bit. */
3831 if (i.mask && i.mask->zeroing)
3832 i.vex.bytes[3] |= 0x80;
3833
3834 /* Don't always set the broadcast bit if there is no RC. */
3835 if (!i.rounding)
3836 {
3837 /* Encode the vector length. */
3838 unsigned int vec_length;
3839
3840 if (!i.tm.opcode_modifier.evex
3841 || i.tm.opcode_modifier.evex == EVEXDYN)
3842 {
3843 unsigned int op;
3844
3845 /* Determine vector length from the last multi-length vector
3846 operand. */
3847 vec_length = 0;
3848 for (op = i.operands; op--;)
3849 if (i.tm.operand_types[op].bitfield.xmmword
3850 + i.tm.operand_types[op].bitfield.ymmword
3851 + i.tm.operand_types[op].bitfield.zmmword > 1)
3852 {
3853 if (i.types[op].bitfield.zmmword)
3854 {
3855 i.tm.opcode_modifier.evex = EVEX512;
3856 break;
3857 }
3858 else if (i.types[op].bitfield.ymmword)
3859 {
3860 i.tm.opcode_modifier.evex = EVEX256;
3861 break;
3862 }
3863 else if (i.types[op].bitfield.xmmword)
3864 {
3865 i.tm.opcode_modifier.evex = EVEX128;
3866 break;
3867 }
3868 else if (i.broadcast && (int) op == i.broadcast->operand)
3869 {
3870 switch (i.broadcast->bytes)
3871 {
3872 case 64:
3873 i.tm.opcode_modifier.evex = EVEX512;
3874 break;
3875 case 32:
3876 i.tm.opcode_modifier.evex = EVEX256;
3877 break;
3878 case 16:
3879 i.tm.opcode_modifier.evex = EVEX128;
3880 break;
3881 default:
3882 abort ();
3883 }
3884 break;
3885 }
3886 }
3887
3888 if (op >= MAX_OPERANDS)
3889 abort ();
3890 }
3891
3892 switch (i.tm.opcode_modifier.evex)
3893 {
3894 case EVEXLIG: /* LL' is ignored */
3895 vec_length = evexlig << 5;
3896 break;
3897 case EVEX128:
3898 vec_length = 0 << 5;
3899 break;
3900 case EVEX256:
3901 vec_length = 1 << 5;
3902 break;
3903 case EVEX512:
3904 vec_length = 2 << 5;
3905 break;
3906 default:
3907 abort ();
3908 break;
3909 }
3910 i.vex.bytes[3] |= vec_length;
3911 /* Encode the broadcast bit. */
3912 if (i.broadcast)
3913 i.vex.bytes[3] |= 0x10;
3914 }
3915 else
3916 {
3917 if (i.rounding->type != saeonly)
3918 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3919 else
3920 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3921 }
3922
3923 if (i.mask && i.mask->mask)
3924 i.vex.bytes[3] |= i.mask->mask->reg_num;
3925 }
3926
3927 static void
3928 process_immext (void)
3929 {
3930 expressionS *exp;
3931
3932 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3933 which is coded in the same place as an 8-bit immediate field
3934 would be. Here we fake an 8-bit immediate operand from the
3935 opcode suffix stored in tm.extension_opcode.
3936
3937 AVX instructions also use this encoding, for some of
3938 3 argument instructions. */
3939
3940 gas_assert (i.imm_operands <= 1
3941 && (i.operands <= 2
3942 || (is_any_vex_encoding (&i.tm)
3943 && i.operands <= 4)));
3944
3945 exp = &im_expressions[i.imm_operands++];
3946 i.op[i.operands].imms = exp;
3947 i.types[i.operands] = imm8;
3948 i.operands++;
3949 exp->X_op = O_constant;
3950 exp->X_add_number = i.tm.extension_opcode;
3951 i.tm.extension_opcode = None;
3952 }
3953
3954
3955 static int
3956 check_hle (void)
3957 {
3958 switch (i.tm.opcode_modifier.hleprefixok)
3959 {
3960 default:
3961 abort ();
3962 case HLEPrefixNone:
3963 as_bad (_("invalid instruction `%s' after `%s'"),
3964 i.tm.name, i.hle_prefix);
3965 return 0;
3966 case HLEPrefixLock:
3967 if (i.prefix[LOCK_PREFIX])
3968 return 1;
3969 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3970 return 0;
3971 case HLEPrefixAny:
3972 return 1;
3973 case HLEPrefixRelease:
3974 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3975 {
3976 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3977 i.tm.name);
3978 return 0;
3979 }
3980 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3981 {
3982 as_bad (_("memory destination needed for instruction `%s'"
3983 " after `xrelease'"), i.tm.name);
3984 return 0;
3985 }
3986 return 1;
3987 }
3988 }
3989
3990 /* Try the shortest encoding by shortening operand size. */
3991
3992 static void
3993 optimize_encoding (void)
3994 {
3995 unsigned int j;
3996
3997 if (optimize_for_space
3998 && !is_any_vex_encoding (&i.tm)
3999 && i.reg_operands == 1
4000 && i.imm_operands == 1
4001 && !i.types[1].bitfield.byte
4002 && i.op[0].imms->X_op == O_constant
4003 && fits_in_imm7 (i.op[0].imms->X_add_number)
4004 && (i.tm.base_opcode == 0xa8
4005 || (i.tm.base_opcode == 0xf6
4006 && i.tm.extension_opcode == 0x0)))
4007 {
4008 /* Optimize: -Os:
4009 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4010 */
4011 unsigned int base_regnum = i.op[1].regs->reg_num;
4012 if (flag_code == CODE_64BIT || base_regnum < 4)
4013 {
4014 i.types[1].bitfield.byte = 1;
4015 /* Ignore the suffix. */
4016 i.suffix = 0;
4017 /* Convert to byte registers. */
4018 if (i.types[1].bitfield.word)
4019 j = 16;
4020 else if (i.types[1].bitfield.dword)
4021 j = 32;
4022 else
4023 j = 48;
4024 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4025 j += 8;
4026 i.op[1].regs -= j;
4027 }
4028 }
4029 else if (flag_code == CODE_64BIT
4030 && !is_any_vex_encoding (&i.tm)
4031 && ((i.types[1].bitfield.qword
4032 && i.reg_operands == 1
4033 && i.imm_operands == 1
4034 && i.op[0].imms->X_op == O_constant
4035 && ((i.tm.base_opcode == 0xb8
4036 && i.tm.extension_opcode == None
4037 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4038 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4039 && ((i.tm.base_opcode == 0x24
4040 || i.tm.base_opcode == 0xa8)
4041 || (i.tm.base_opcode == 0x80
4042 && i.tm.extension_opcode == 0x4)
4043 || ((i.tm.base_opcode == 0xf6
4044 || (i.tm.base_opcode | 1) == 0xc7)
4045 && i.tm.extension_opcode == 0x0)))
4046 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4047 && i.tm.base_opcode == 0x83
4048 && i.tm.extension_opcode == 0x4)))
4049 || (i.types[0].bitfield.qword
4050 && ((i.reg_operands == 2
4051 && i.op[0].regs == i.op[1].regs
4052 && (i.tm.base_opcode == 0x30
4053 || i.tm.base_opcode == 0x28))
4054 || (i.reg_operands == 1
4055 && i.operands == 1
4056 && i.tm.base_opcode == 0x30)))))
4057 {
4058 /* Optimize: -O:
4059 andq $imm31, %r64 -> andl $imm31, %r32
4060 andq $imm7, %r64 -> andl $imm7, %r32
4061 testq $imm31, %r64 -> testl $imm31, %r32
4062 xorq %r64, %r64 -> xorl %r32, %r32
4063 subq %r64, %r64 -> subl %r32, %r32
4064 movq $imm31, %r64 -> movl $imm31, %r32
4065 movq $imm32, %r64 -> movl $imm32, %r32
4066 */
4067 i.tm.opcode_modifier.norex64 = 1;
4068 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4069 {
4070 /* Handle
4071 movq $imm31, %r64 -> movl $imm31, %r32
4072 movq $imm32, %r64 -> movl $imm32, %r32
4073 */
4074 i.tm.operand_types[0].bitfield.imm32 = 1;
4075 i.tm.operand_types[0].bitfield.imm32s = 0;
4076 i.tm.operand_types[0].bitfield.imm64 = 0;
4077 i.types[0].bitfield.imm32 = 1;
4078 i.types[0].bitfield.imm32s = 0;
4079 i.types[0].bitfield.imm64 = 0;
4080 i.types[1].bitfield.dword = 1;
4081 i.types[1].bitfield.qword = 0;
4082 if ((i.tm.base_opcode | 1) == 0xc7)
4083 {
4084 /* Handle
4085 movq $imm31, %r64 -> movl $imm31, %r32
4086 */
4087 i.tm.base_opcode = 0xb8;
4088 i.tm.extension_opcode = None;
4089 i.tm.opcode_modifier.w = 0;
4090 i.tm.opcode_modifier.modrm = 0;
4091 }
4092 }
4093 }
4094 else if (optimize > 1
4095 && !optimize_for_space
4096 && !is_any_vex_encoding (&i.tm)
4097 && i.reg_operands == 2
4098 && i.op[0].regs == i.op[1].regs
4099 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4100 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4101 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4102 {
4103 /* Optimize: -O2:
4104 andb %rN, %rN -> testb %rN, %rN
4105 andw %rN, %rN -> testw %rN, %rN
4106 andq %rN, %rN -> testq %rN, %rN
4107 orb %rN, %rN -> testb %rN, %rN
4108 orw %rN, %rN -> testw %rN, %rN
4109 orq %rN, %rN -> testq %rN, %rN
4110
4111 and outside of 64-bit mode
4112
4113 andl %rN, %rN -> testl %rN, %rN
4114 orl %rN, %rN -> testl %rN, %rN
4115 */
4116 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4117 }
4118 else if (i.reg_operands == 3
4119 && i.op[0].regs == i.op[1].regs
4120 && !i.types[2].bitfield.xmmword
4121 && (i.tm.opcode_modifier.vex
4122 || ((!i.mask || i.mask->zeroing)
4123 && !i.rounding
4124 && is_evex_encoding (&i.tm)
4125 && (i.vec_encoding != vex_encoding_evex
4126 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4127 || i.tm.cpu_flags.bitfield.cpuavx512vl
4128 || (i.tm.operand_types[2].bitfield.zmmword
4129 && i.types[2].bitfield.ymmword))))
4130 && ((i.tm.base_opcode == 0x55
4131 || i.tm.base_opcode == 0x6655
4132 || i.tm.base_opcode == 0x66df
4133 || i.tm.base_opcode == 0x57
4134 || i.tm.base_opcode == 0x6657
4135 || i.tm.base_opcode == 0x66ef
4136 || i.tm.base_opcode == 0x66f8
4137 || i.tm.base_opcode == 0x66f9
4138 || i.tm.base_opcode == 0x66fa
4139 || i.tm.base_opcode == 0x66fb
4140 || i.tm.base_opcode == 0x42
4141 || i.tm.base_opcode == 0x6642
4142 || i.tm.base_opcode == 0x47
4143 || i.tm.base_opcode == 0x6647)
4144 && i.tm.extension_opcode == None))
4145 {
4146 /* Optimize: -O1:
4147 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4148 vpsubq and vpsubw:
4149 EVEX VOP %zmmM, %zmmM, %zmmN
4150 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4151 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4152 EVEX VOP %ymmM, %ymmM, %ymmN
4153 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4154 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4155 VEX VOP %ymmM, %ymmM, %ymmN
4156 -> VEX VOP %xmmM, %xmmM, %xmmN
4157 VOP, one of vpandn and vpxor:
4158 VEX VOP %ymmM, %ymmM, %ymmN
4159 -> VEX VOP %xmmM, %xmmM, %xmmN
4160 VOP, one of vpandnd and vpandnq:
4161 EVEX VOP %zmmM, %zmmM, %zmmN
4162 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4163 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4164 EVEX VOP %ymmM, %ymmM, %ymmN
4165 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4167 VOP, one of vpxord and vpxorq:
4168 EVEX VOP %zmmM, %zmmM, %zmmN
4169 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4170 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4171 EVEX VOP %ymmM, %ymmM, %ymmN
4172 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4173 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4174 VOP, one of kxord and kxorq:
4175 VEX VOP %kM, %kM, %kN
4176 -> VEX kxorw %kM, %kM, %kN
4177 VOP, one of kandnd and kandnq:
4178 VEX VOP %kM, %kM, %kN
4179 -> VEX kandnw %kM, %kM, %kN
4180 */
4181 if (is_evex_encoding (&i.tm))
4182 {
4183 if (i.vec_encoding != vex_encoding_evex)
4184 {
4185 i.tm.opcode_modifier.vex = VEX128;
4186 i.tm.opcode_modifier.vexw = VEXW0;
4187 i.tm.opcode_modifier.evex = 0;
4188 }
4189 else if (optimize > 1)
4190 i.tm.opcode_modifier.evex = EVEX128;
4191 else
4192 return;
4193 }
4194 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4195 {
4196 i.tm.base_opcode &= 0xff;
4197 i.tm.opcode_modifier.vexw = VEXW0;
4198 }
4199 else
4200 i.tm.opcode_modifier.vex = VEX128;
4201
4202 if (i.tm.opcode_modifier.vex)
4203 for (j = 0; j < 3; j++)
4204 {
4205 i.types[j].bitfield.xmmword = 1;
4206 i.types[j].bitfield.ymmword = 0;
4207 }
4208 }
4209 else if (i.vec_encoding != vex_encoding_evex
4210 && !i.types[0].bitfield.zmmword
4211 && !i.types[1].bitfield.zmmword
4212 && !i.mask
4213 && !i.broadcast
4214 && is_evex_encoding (&i.tm)
4215 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4216 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4217 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4218 || (i.tm.base_opcode & ~4) == 0x66db
4219 || (i.tm.base_opcode & ~4) == 0x66eb)
4220 && i.tm.extension_opcode == None)
4221 {
4222 /* Optimize: -O1:
4223 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4224 vmovdqu32 and vmovdqu64:
4225 EVEX VOP %xmmM, %xmmN
4226 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4227 EVEX VOP %ymmM, %ymmN
4228 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4229 EVEX VOP %xmmM, mem
4230 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4231 EVEX VOP %ymmM, mem
4232 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4233 EVEX VOP mem, %xmmN
4234 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4235 EVEX VOP mem, %ymmN
4236 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4237 VOP, one of vpand, vpandn, vpor, vpxor:
4238 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4239 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4240 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4241 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4242 EVEX VOP{d,q} mem, %xmmM, %xmmN
4243 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4244 EVEX VOP{d,q} mem, %ymmM, %ymmN
4245 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4246 */
4247 for (j = 0; j < i.operands; j++)
4248 if (operand_type_check (i.types[j], disp)
4249 && i.op[j].disps->X_op == O_constant)
4250 {
4251 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4252 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4253 bytes, we choose EVEX Disp8 over VEX Disp32. */
4254 int evex_disp8, vex_disp8;
4255 unsigned int memshift = i.memshift;
4256 offsetT n = i.op[j].disps->X_add_number;
4257
4258 evex_disp8 = fits_in_disp8 (n);
4259 i.memshift = 0;
4260 vex_disp8 = fits_in_disp8 (n);
4261 if (evex_disp8 != vex_disp8)
4262 {
4263 i.memshift = memshift;
4264 return;
4265 }
4266
4267 i.types[j].bitfield.disp8 = vex_disp8;
4268 break;
4269 }
4270 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4271 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4272 i.tm.opcode_modifier.vex
4273 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4274 i.tm.opcode_modifier.vexw = VEXW0;
4275 /* VPAND, VPOR, and VPXOR are commutative. */
4276 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4277 i.tm.opcode_modifier.commutative = 1;
4278 i.tm.opcode_modifier.evex = 0;
4279 i.tm.opcode_modifier.masking = 0;
4280 i.tm.opcode_modifier.broadcast = 0;
4281 i.tm.opcode_modifier.disp8memshift = 0;
4282 i.memshift = 0;
4283 if (j < i.operands)
4284 i.types[j].bitfield.disp8
4285 = fits_in_disp8 (i.op[j].disps->X_add_number);
4286 }
4287 }
4288
4289 /* This is the guts of the machine-dependent assembler. LINE points to a
4290 machine dependent instruction. This function is supposed to emit
4291 the frags/bytes it assembles to. */
4292
4293 void
4294 md_assemble (char *line)
4295 {
4296 unsigned int j;
4297 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4298 const insn_template *t;
4299
4300 /* Initialize globals. */
4301 memset (&i, '\0', sizeof (i));
4302 for (j = 0; j < MAX_OPERANDS; j++)
4303 i.reloc[j] = NO_RELOC;
4304 memset (disp_expressions, '\0', sizeof (disp_expressions));
4305 memset (im_expressions, '\0', sizeof (im_expressions));
4306 save_stack_p = save_stack;
4307
4308 /* First parse an instruction mnemonic & call i386_operand for the operands.
4309 We assume that the scrubber has arranged it so that line[0] is the valid
4310 start of a (possibly prefixed) mnemonic. */
4311
4312 line = parse_insn (line, mnemonic);
4313 if (line == NULL)
4314 return;
4315 mnem_suffix = i.suffix;
4316
4317 line = parse_operands (line, mnemonic);
4318 this_operand = -1;
4319 xfree (i.memop1_string);
4320 i.memop1_string = NULL;
4321 if (line == NULL)
4322 return;
4323
4324 /* Now we've parsed the mnemonic into a set of templates, and have the
4325 operands at hand. */
4326
4327 /* All intel opcodes have reversed operands except for "bound" and
4328 "enter". We also don't reverse intersegment "jmp" and "call"
4329 instructions with 2 immediate operands so that the immediate segment
4330 precedes the offset, as it does when in AT&T mode. */
4331 if (intel_syntax
4332 && i.operands > 1
4333 && (strcmp (mnemonic, "bound") != 0)
4334 && (strcmp (mnemonic, "invlpga") != 0)
4335 && !(operand_type_check (i.types[0], imm)
4336 && operand_type_check (i.types[1], imm)))
4337 swap_operands ();
4338
4339 /* The order of the immediates should be reversed
4340 for 2 immediates extrq and insertq instructions */
4341 if (i.imm_operands == 2
4342 && (strcmp (mnemonic, "extrq") == 0
4343 || strcmp (mnemonic, "insertq") == 0))
4344 swap_2_operands (0, 1);
4345
4346 if (i.imm_operands)
4347 optimize_imm ();
4348
4349 /* Don't optimize displacement for movabs since it only takes 64bit
4350 displacement. */
4351 if (i.disp_operands
4352 && i.disp_encoding != disp_encoding_32bit
4353 && (flag_code != CODE_64BIT
4354 || strcmp (mnemonic, "movabs") != 0))
4355 optimize_disp ();
4356
4357 /* Next, we find a template that matches the given insn,
4358 making sure the overlap of the given operands types is consistent
4359 with the template operand types. */
4360
4361 if (!(t = match_template (mnem_suffix)))
4362 return;
4363
4364 if (sse_check != check_none
4365 && !i.tm.opcode_modifier.noavx
4366 && !i.tm.cpu_flags.bitfield.cpuavx
4367 && !i.tm.cpu_flags.bitfield.cpuavx512f
4368 && (i.tm.cpu_flags.bitfield.cpusse
4369 || i.tm.cpu_flags.bitfield.cpusse2
4370 || i.tm.cpu_flags.bitfield.cpusse3
4371 || i.tm.cpu_flags.bitfield.cpussse3
4372 || i.tm.cpu_flags.bitfield.cpusse4_1
4373 || i.tm.cpu_flags.bitfield.cpusse4_2
4374 || i.tm.cpu_flags.bitfield.cpusse4a
4375 || i.tm.cpu_flags.bitfield.cpupclmul
4376 || i.tm.cpu_flags.bitfield.cpuaes
4377 || i.tm.cpu_flags.bitfield.cpusha
4378 || i.tm.cpu_flags.bitfield.cpugfni))
4379 {
4380 (sse_check == check_warning
4381 ? as_warn
4382 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4383 }
4384
4385 if (i.tm.opcode_modifier.fwait)
4386 if (!add_prefix (FWAIT_OPCODE))
4387 return;
4388
4389 /* Check if REP prefix is OK. */
4390 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4391 {
4392 as_bad (_("invalid instruction `%s' after `%s'"),
4393 i.tm.name, i.rep_prefix);
4394 return;
4395 }
4396
4397 /* Check for lock without a lockable instruction. Destination operand
4398 must be memory unless it is xchg (0x86). */
4399 if (i.prefix[LOCK_PREFIX]
4400 && (!i.tm.opcode_modifier.islockable
4401 || i.mem_operands == 0
4402 || (i.tm.base_opcode != 0x86
4403 && !(i.flags[i.operands - 1] & Operand_Mem))))
4404 {
4405 as_bad (_("expecting lockable instruction after `lock'"));
4406 return;
4407 }
4408
4409 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4410 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4411 {
4412 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4413 return;
4414 }
4415
4416 /* Check if HLE prefix is OK. */
4417 if (i.hle_prefix && !check_hle ())
4418 return;
4419
4420 /* Check BND prefix. */
4421 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4422 as_bad (_("expecting valid branch instruction after `bnd'"));
4423
4424 /* Check NOTRACK prefix. */
4425 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4426 as_bad (_("expecting indirect branch instruction after `notrack'"));
4427
4428 if (i.tm.cpu_flags.bitfield.cpumpx)
4429 {
4430 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4431 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4432 else if (flag_code != CODE_16BIT
4433 ? i.prefix[ADDR_PREFIX]
4434 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4435 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4436 }
4437
4438 /* Insert BND prefix. */
4439 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4440 {
4441 if (!i.prefix[BND_PREFIX])
4442 add_prefix (BND_PREFIX_OPCODE);
4443 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4444 {
4445 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4446 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4447 }
4448 }
4449
4450 /* Check string instruction segment overrides. */
4451 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4452 {
4453 gas_assert (i.mem_operands);
4454 if (!check_string ())
4455 return;
4456 i.disp_operands = 0;
4457 }
4458
4459 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4460 optimize_encoding ();
4461
4462 if (!process_suffix ())
4463 return;
4464
4465 /* Update operand types. */
4466 for (j = 0; j < i.operands; j++)
4467 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4468
4469 /* Make still unresolved immediate matches conform to size of immediate
4470 given in i.suffix. */
4471 if (!finalize_imm ())
4472 return;
4473
4474 if (i.types[0].bitfield.imm1)
4475 i.imm_operands = 0; /* kludge for shift insns. */
4476
4477 /* We only need to check those implicit registers for instructions
4478 with 3 operands or less. */
4479 if (i.operands <= 3)
4480 for (j = 0; j < i.operands; j++)
4481 if (i.types[j].bitfield.instance != InstanceNone
4482 && !i.types[j].bitfield.xmmword)
4483 i.reg_operands--;
4484
4485 /* ImmExt should be processed after SSE2AVX. */
4486 if (!i.tm.opcode_modifier.sse2avx
4487 && i.tm.opcode_modifier.immext)
4488 process_immext ();
4489
4490 /* For insns with operands there are more diddles to do to the opcode. */
4491 if (i.operands)
4492 {
4493 if (!process_operands ())
4494 return;
4495 }
4496 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4497 {
4498 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4499 as_warn (_("translating to `%sp'"), i.tm.name);
4500 }
4501
4502 if (is_any_vex_encoding (&i.tm))
4503 {
4504 if (!cpu_arch_flags.bitfield.cpui286)
4505 {
4506 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4507 i.tm.name);
4508 return;
4509 }
4510
4511 if (i.tm.opcode_modifier.vex)
4512 build_vex_prefix (t);
4513 else
4514 build_evex_prefix ();
4515 }
4516
4517 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4518 instructions may define INT_OPCODE as well, so avoid this corner
4519 case for those instructions that use MODRM. */
4520 if (i.tm.base_opcode == INT_OPCODE
4521 && !i.tm.opcode_modifier.modrm
4522 && i.op[0].imms->X_add_number == 3)
4523 {
4524 i.tm.base_opcode = INT3_OPCODE;
4525 i.imm_operands = 0;
4526 }
4527
4528 if ((i.tm.opcode_modifier.jump == JUMP
4529 || i.tm.opcode_modifier.jump == JUMP_BYTE
4530 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4531 && i.op[0].disps->X_op == O_constant)
4532 {
4533 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4534 the absolute address given by the constant. Since ix86 jumps and
4535 calls are pc relative, we need to generate a reloc. */
4536 i.op[0].disps->X_add_symbol = &abs_symbol;
4537 i.op[0].disps->X_op = O_symbol;
4538 }
4539
4540 if (i.tm.opcode_modifier.rex64)
4541 i.rex |= REX_W;
4542
4543 /* For 8 bit registers we need an empty rex prefix. Also if the
4544 instruction already has a prefix, we need to convert old
4545 registers to new ones. */
4546
4547 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4548 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4549 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4550 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4551 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4552 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4553 && i.rex != 0))
4554 {
4555 int x;
4556
4557 i.rex |= REX_OPCODE;
4558 for (x = 0; x < 2; x++)
4559 {
4560 /* Look for 8 bit operand that uses old registers. */
4561 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4562 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4563 {
4564 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4565 /* In case it is "hi" register, give up. */
4566 if (i.op[x].regs->reg_num > 3)
4567 as_bad (_("can't encode register '%s%s' in an "
4568 "instruction requiring REX prefix."),
4569 register_prefix, i.op[x].regs->reg_name);
4570
4571 /* Otherwise it is equivalent to the extended register.
4572 Since the encoding doesn't change this is merely
4573 cosmetic cleanup for debug output. */
4574
4575 i.op[x].regs = i.op[x].regs + 8;
4576 }
4577 }
4578 }
4579
4580 if (i.rex == 0 && i.rex_encoding)
4581 {
4582 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4583 that uses legacy register. If it is "hi" register, don't add
4584 the REX_OPCODE byte. */
4585 int x;
4586 for (x = 0; x < 2; x++)
4587 if (i.types[x].bitfield.class == Reg
4588 && i.types[x].bitfield.byte
4589 && (i.op[x].regs->reg_flags & RegRex64) == 0
4590 && i.op[x].regs->reg_num > 3)
4591 {
4592 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4593 i.rex_encoding = FALSE;
4594 break;
4595 }
4596
4597 if (i.rex_encoding)
4598 i.rex = REX_OPCODE;
4599 }
4600
4601 if (i.rex != 0)
4602 add_prefix (REX_OPCODE | i.rex);
4603
4604 /* We are ready to output the insn. */
4605 output_insn ();
4606
4607 last_insn.seg = now_seg;
4608
4609 if (i.tm.opcode_modifier.isprefix)
4610 {
4611 last_insn.kind = last_insn_prefix;
4612 last_insn.name = i.tm.name;
4613 last_insn.file = as_where (&last_insn.line);
4614 }
4615 else
4616 last_insn.kind = last_insn_other;
4617 }
4618
4619 static char *
4620 parse_insn (char *line, char *mnemonic)
4621 {
4622 char *l = line;
4623 char *token_start = l;
4624 char *mnem_p;
4625 int supported;
4626 const insn_template *t;
4627 char *dot_p = NULL;
4628
4629 while (1)
4630 {
4631 mnem_p = mnemonic;
4632 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4633 {
4634 if (*mnem_p == '.')
4635 dot_p = mnem_p;
4636 mnem_p++;
4637 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4638 {
4639 as_bad (_("no such instruction: `%s'"), token_start);
4640 return NULL;
4641 }
4642 l++;
4643 }
4644 if (!is_space_char (*l)
4645 && *l != END_OF_INSN
4646 && (intel_syntax
4647 || (*l != PREFIX_SEPARATOR
4648 && *l != ',')))
4649 {
4650 as_bad (_("invalid character %s in mnemonic"),
4651 output_invalid (*l));
4652 return NULL;
4653 }
4654 if (token_start == l)
4655 {
4656 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4657 as_bad (_("expecting prefix; got nothing"));
4658 else
4659 as_bad (_("expecting mnemonic; got nothing"));
4660 return NULL;
4661 }
4662
4663 /* Look up instruction (or prefix) via hash table. */
4664 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4665
4666 if (*l != END_OF_INSN
4667 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4668 && current_templates
4669 && current_templates->start->opcode_modifier.isprefix)
4670 {
4671 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4672 {
4673 as_bad ((flag_code != CODE_64BIT
4674 ? _("`%s' is only supported in 64-bit mode")
4675 : _("`%s' is not supported in 64-bit mode")),
4676 current_templates->start->name);
4677 return NULL;
4678 }
4679 /* If we are in 16-bit mode, do not allow addr16 or data16.
4680 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4681 if ((current_templates->start->opcode_modifier.size == SIZE16
4682 || current_templates->start->opcode_modifier.size == SIZE32)
4683 && flag_code != CODE_64BIT
4684 && ((current_templates->start->opcode_modifier.size == SIZE32)
4685 ^ (flag_code == CODE_16BIT)))
4686 {
4687 as_bad (_("redundant %s prefix"),
4688 current_templates->start->name);
4689 return NULL;
4690 }
4691 if (current_templates->start->opcode_length == 0)
4692 {
4693 /* Handle pseudo prefixes. */
4694 switch (current_templates->start->base_opcode)
4695 {
4696 case 0x0:
4697 /* {disp8} */
4698 i.disp_encoding = disp_encoding_8bit;
4699 break;
4700 case 0x1:
4701 /* {disp32} */
4702 i.disp_encoding = disp_encoding_32bit;
4703 break;
4704 case 0x2:
4705 /* {load} */
4706 i.dir_encoding = dir_encoding_load;
4707 break;
4708 case 0x3:
4709 /* {store} */
4710 i.dir_encoding = dir_encoding_store;
4711 break;
4712 case 0x4:
4713 /* {vex} */
4714 i.vec_encoding = vex_encoding_vex;
4715 break;
4716 case 0x5:
4717 /* {vex3} */
4718 i.vec_encoding = vex_encoding_vex3;
4719 break;
4720 case 0x6:
4721 /* {evex} */
4722 i.vec_encoding = vex_encoding_evex;
4723 break;
4724 case 0x7:
4725 /* {rex} */
4726 i.rex_encoding = TRUE;
4727 break;
4728 case 0x8:
4729 /* {nooptimize} */
4730 i.no_optimize = TRUE;
4731 break;
4732 default:
4733 abort ();
4734 }
4735 }
4736 else
4737 {
4738 /* Add prefix, checking for repeated prefixes. */
4739 switch (add_prefix (current_templates->start->base_opcode))
4740 {
4741 case PREFIX_EXIST:
4742 return NULL;
4743 case PREFIX_DS:
4744 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4745 i.notrack_prefix = current_templates->start->name;
4746 break;
4747 case PREFIX_REP:
4748 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4749 i.hle_prefix = current_templates->start->name;
4750 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4751 i.bnd_prefix = current_templates->start->name;
4752 else
4753 i.rep_prefix = current_templates->start->name;
4754 break;
4755 default:
4756 break;
4757 }
4758 }
4759 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4760 token_start = ++l;
4761 }
4762 else
4763 break;
4764 }
4765
4766 if (!current_templates)
4767 {
4768 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4769 Check if we should swap operand or force 32bit displacement in
4770 encoding. */
4771 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4772 i.dir_encoding = dir_encoding_swap;
4773 else if (mnem_p - 3 == dot_p
4774 && dot_p[1] == 'd'
4775 && dot_p[2] == '8')
4776 i.disp_encoding = disp_encoding_8bit;
4777 else if (mnem_p - 4 == dot_p
4778 && dot_p[1] == 'd'
4779 && dot_p[2] == '3'
4780 && dot_p[3] == '2')
4781 i.disp_encoding = disp_encoding_32bit;
4782 else
4783 goto check_suffix;
4784 mnem_p = dot_p;
4785 *dot_p = '\0';
4786 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4787 }
4788
4789 if (!current_templates)
4790 {
4791 check_suffix:
4792 if (mnem_p > mnemonic)
4793 {
4794 /* See if we can get a match by trimming off a suffix. */
4795 switch (mnem_p[-1])
4796 {
4797 case WORD_MNEM_SUFFIX:
4798 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4799 i.suffix = SHORT_MNEM_SUFFIX;
4800 else
4801 /* Fall through. */
4802 case BYTE_MNEM_SUFFIX:
4803 case QWORD_MNEM_SUFFIX:
4804 i.suffix = mnem_p[-1];
4805 mnem_p[-1] = '\0';
4806 current_templates = (const templates *) hash_find (op_hash,
4807 mnemonic);
4808 break;
4809 case SHORT_MNEM_SUFFIX:
4810 case LONG_MNEM_SUFFIX:
4811 if (!intel_syntax)
4812 {
4813 i.suffix = mnem_p[-1];
4814 mnem_p[-1] = '\0';
4815 current_templates = (const templates *) hash_find (op_hash,
4816 mnemonic);
4817 }
4818 break;
4819
4820 /* Intel Syntax. */
4821 case 'd':
4822 if (intel_syntax)
4823 {
4824 if (intel_float_operand (mnemonic) == 1)
4825 i.suffix = SHORT_MNEM_SUFFIX;
4826 else
4827 i.suffix = LONG_MNEM_SUFFIX;
4828 mnem_p[-1] = '\0';
4829 current_templates = (const templates *) hash_find (op_hash,
4830 mnemonic);
4831 }
4832 break;
4833 }
4834 }
4835
4836 if (!current_templates)
4837 {
4838 as_bad (_("no such instruction: `%s'"), token_start);
4839 return NULL;
4840 }
4841 }
4842
4843 if (current_templates->start->opcode_modifier.jump == JUMP
4844 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4845 {
4846 /* Check for a branch hint. We allow ",pt" and ",pn" for
4847 predict taken and predict not taken respectively.
4848 I'm not sure that branch hints actually do anything on loop
4849 and jcxz insns (JumpByte) for current Pentium4 chips. They
4850 may work in the future and it doesn't hurt to accept them
4851 now. */
4852 if (l[0] == ',' && l[1] == 'p')
4853 {
4854 if (l[2] == 't')
4855 {
4856 if (!add_prefix (DS_PREFIX_OPCODE))
4857 return NULL;
4858 l += 3;
4859 }
4860 else if (l[2] == 'n')
4861 {
4862 if (!add_prefix (CS_PREFIX_OPCODE))
4863 return NULL;
4864 l += 3;
4865 }
4866 }
4867 }
4868 /* Any other comma loses. */
4869 if (*l == ',')
4870 {
4871 as_bad (_("invalid character %s in mnemonic"),
4872 output_invalid (*l));
4873 return NULL;
4874 }
4875
4876 /* Check if instruction is supported on specified architecture. */
4877 supported = 0;
4878 for (t = current_templates->start; t < current_templates->end; ++t)
4879 {
4880 supported |= cpu_flags_match (t);
4881 if (supported == CPU_FLAGS_PERFECT_MATCH)
4882 {
4883 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4884 as_warn (_("use .code16 to ensure correct addressing mode"));
4885
4886 return l;
4887 }
4888 }
4889
4890 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4891 as_bad (flag_code == CODE_64BIT
4892 ? _("`%s' is not supported in 64-bit mode")
4893 : _("`%s' is only supported in 64-bit mode"),
4894 current_templates->start->name);
4895 else
4896 as_bad (_("`%s' is not supported on `%s%s'"),
4897 current_templates->start->name,
4898 cpu_arch_name ? cpu_arch_name : default_arch,
4899 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4900
4901 return NULL;
4902 }
4903
4904 static char *
4905 parse_operands (char *l, const char *mnemonic)
4906 {
4907 char *token_start;
4908
4909 /* 1 if operand is pending after ','. */
4910 unsigned int expecting_operand = 0;
4911
4912 /* Non-zero if operand parens not balanced. */
4913 unsigned int paren_not_balanced;
4914
4915 while (*l != END_OF_INSN)
4916 {
4917 /* Skip optional white space before operand. */
4918 if (is_space_char (*l))
4919 ++l;
4920 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4921 {
4922 as_bad (_("invalid character %s before operand %d"),
4923 output_invalid (*l),
4924 i.operands + 1);
4925 return NULL;
4926 }
4927 token_start = l; /* After white space. */
4928 paren_not_balanced = 0;
4929 while (paren_not_balanced || *l != ',')
4930 {
4931 if (*l == END_OF_INSN)
4932 {
4933 if (paren_not_balanced)
4934 {
4935 if (!intel_syntax)
4936 as_bad (_("unbalanced parenthesis in operand %d."),
4937 i.operands + 1);
4938 else
4939 as_bad (_("unbalanced brackets in operand %d."),
4940 i.operands + 1);
4941 return NULL;
4942 }
4943 else
4944 break; /* we are done */
4945 }
4946 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4947 {
4948 as_bad (_("invalid character %s in operand %d"),
4949 output_invalid (*l),
4950 i.operands + 1);
4951 return NULL;
4952 }
4953 if (!intel_syntax)
4954 {
4955 if (*l == '(')
4956 ++paren_not_balanced;
4957 if (*l == ')')
4958 --paren_not_balanced;
4959 }
4960 else
4961 {
4962 if (*l == '[')
4963 ++paren_not_balanced;
4964 if (*l == ']')
4965 --paren_not_balanced;
4966 }
4967 l++;
4968 }
4969 if (l != token_start)
4970 { /* Yes, we've read in another operand. */
4971 unsigned int operand_ok;
4972 this_operand = i.operands++;
4973 if (i.operands > MAX_OPERANDS)
4974 {
4975 as_bad (_("spurious operands; (%d operands/instruction max)"),
4976 MAX_OPERANDS);
4977 return NULL;
4978 }
4979 i.types[this_operand].bitfield.unspecified = 1;
4980 /* Now parse operand adding info to 'i' as we go along. */
4981 END_STRING_AND_SAVE (l);
4982
4983 if (i.mem_operands > 1)
4984 {
4985 as_bad (_("too many memory references for `%s'"),
4986 mnemonic);
4987 return 0;
4988 }
4989
4990 if (intel_syntax)
4991 operand_ok =
4992 i386_intel_operand (token_start,
4993 intel_float_operand (mnemonic));
4994 else
4995 operand_ok = i386_att_operand (token_start);
4996
4997 RESTORE_END_STRING (l);
4998 if (!operand_ok)
4999 return NULL;
5000 }
5001 else
5002 {
5003 if (expecting_operand)
5004 {
5005 expecting_operand_after_comma:
5006 as_bad (_("expecting operand after ','; got nothing"));
5007 return NULL;
5008 }
5009 if (*l == ',')
5010 {
5011 as_bad (_("expecting operand before ','; got nothing"));
5012 return NULL;
5013 }
5014 }
5015
5016 /* Now *l must be either ',' or END_OF_INSN. */
5017 if (*l == ',')
5018 {
5019 if (*++l == END_OF_INSN)
5020 {
5021 /* Just skip it, if it's \n complain. */
5022 goto expecting_operand_after_comma;
5023 }
5024 expecting_operand = 1;
5025 }
5026 }
5027 return l;
5028 }
5029
5030 static void
5031 swap_2_operands (int xchg1, int xchg2)
5032 {
5033 union i386_op temp_op;
5034 i386_operand_type temp_type;
5035 unsigned int temp_flags;
5036 enum bfd_reloc_code_real temp_reloc;
5037
5038 temp_type = i.types[xchg2];
5039 i.types[xchg2] = i.types[xchg1];
5040 i.types[xchg1] = temp_type;
5041
5042 temp_flags = i.flags[xchg2];
5043 i.flags[xchg2] = i.flags[xchg1];
5044 i.flags[xchg1] = temp_flags;
5045
5046 temp_op = i.op[xchg2];
5047 i.op[xchg2] = i.op[xchg1];
5048 i.op[xchg1] = temp_op;
5049
5050 temp_reloc = i.reloc[xchg2];
5051 i.reloc[xchg2] = i.reloc[xchg1];
5052 i.reloc[xchg1] = temp_reloc;
5053
5054 if (i.mask)
5055 {
5056 if (i.mask->operand == xchg1)
5057 i.mask->operand = xchg2;
5058 else if (i.mask->operand == xchg2)
5059 i.mask->operand = xchg1;
5060 }
5061 if (i.broadcast)
5062 {
5063 if (i.broadcast->operand == xchg1)
5064 i.broadcast->operand = xchg2;
5065 else if (i.broadcast->operand == xchg2)
5066 i.broadcast->operand = xchg1;
5067 }
5068 if (i.rounding)
5069 {
5070 if (i.rounding->operand == xchg1)
5071 i.rounding->operand = xchg2;
5072 else if (i.rounding->operand == xchg2)
5073 i.rounding->operand = xchg1;
5074 }
5075 }
5076
5077 static void
5078 swap_operands (void)
5079 {
5080 switch (i.operands)
5081 {
5082 case 5:
5083 case 4:
5084 swap_2_operands (1, i.operands - 2);
5085 /* Fall through. */
5086 case 3:
5087 case 2:
5088 swap_2_operands (0, i.operands - 1);
5089 break;
5090 default:
5091 abort ();
5092 }
5093
5094 if (i.mem_operands == 2)
5095 {
5096 const seg_entry *temp_seg;
5097 temp_seg = i.seg[0];
5098 i.seg[0] = i.seg[1];
5099 i.seg[1] = temp_seg;
5100 }
5101 }
5102
5103 /* Try to ensure constant immediates are represented in the smallest
5104 opcode possible. */
5105 static void
5106 optimize_imm (void)
5107 {
5108 char guess_suffix = 0;
5109 int op;
5110
5111 if (i.suffix)
5112 guess_suffix = i.suffix;
5113 else if (i.reg_operands)
5114 {
5115 /* Figure out a suffix from the last register operand specified.
5116 We can't do this properly yet, i.e. excluding special register
5117 instances, but the following works for instructions with
5118 immediates. In any case, we can't set i.suffix yet. */
5119 for (op = i.operands; --op >= 0;)
5120 if (i.types[op].bitfield.class != Reg)
5121 continue;
5122 else if (i.types[op].bitfield.byte)
5123 {
5124 guess_suffix = BYTE_MNEM_SUFFIX;
5125 break;
5126 }
5127 else if (i.types[op].bitfield.word)
5128 {
5129 guess_suffix = WORD_MNEM_SUFFIX;
5130 break;
5131 }
5132 else if (i.types[op].bitfield.dword)
5133 {
5134 guess_suffix = LONG_MNEM_SUFFIX;
5135 break;
5136 }
5137 else if (i.types[op].bitfield.qword)
5138 {
5139 guess_suffix = QWORD_MNEM_SUFFIX;
5140 break;
5141 }
5142 }
5143 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5144 guess_suffix = WORD_MNEM_SUFFIX;
5145
5146 for (op = i.operands; --op >= 0;)
5147 if (operand_type_check (i.types[op], imm))
5148 {
5149 switch (i.op[op].imms->X_op)
5150 {
5151 case O_constant:
5152 /* If a suffix is given, this operand may be shortened. */
5153 switch (guess_suffix)
5154 {
5155 case LONG_MNEM_SUFFIX:
5156 i.types[op].bitfield.imm32 = 1;
5157 i.types[op].bitfield.imm64 = 1;
5158 break;
5159 case WORD_MNEM_SUFFIX:
5160 i.types[op].bitfield.imm16 = 1;
5161 i.types[op].bitfield.imm32 = 1;
5162 i.types[op].bitfield.imm32s = 1;
5163 i.types[op].bitfield.imm64 = 1;
5164 break;
5165 case BYTE_MNEM_SUFFIX:
5166 i.types[op].bitfield.imm8 = 1;
5167 i.types[op].bitfield.imm8s = 1;
5168 i.types[op].bitfield.imm16 = 1;
5169 i.types[op].bitfield.imm32 = 1;
5170 i.types[op].bitfield.imm32s = 1;
5171 i.types[op].bitfield.imm64 = 1;
5172 break;
5173 }
5174
5175 /* If this operand is at most 16 bits, convert it
5176 to a signed 16 bit number before trying to see
5177 whether it will fit in an even smaller size.
5178 This allows a 16-bit operand such as $0xffe0 to
5179 be recognised as within Imm8S range. */
5180 if ((i.types[op].bitfield.imm16)
5181 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5182 {
5183 i.op[op].imms->X_add_number =
5184 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5185 }
5186 #ifdef BFD64
5187 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5188 if ((i.types[op].bitfield.imm32)
5189 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5190 == 0))
5191 {
5192 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5193 ^ ((offsetT) 1 << 31))
5194 - ((offsetT) 1 << 31));
5195 }
5196 #endif
5197 i.types[op]
5198 = operand_type_or (i.types[op],
5199 smallest_imm_type (i.op[op].imms->X_add_number));
5200
5201 /* We must avoid matching of Imm32 templates when 64bit
5202 only immediate is available. */
5203 if (guess_suffix == QWORD_MNEM_SUFFIX)
5204 i.types[op].bitfield.imm32 = 0;
5205 break;
5206
5207 case O_absent:
5208 case O_register:
5209 abort ();
5210
5211 /* Symbols and expressions. */
5212 default:
5213 /* Convert symbolic operand to proper sizes for matching, but don't
5214 prevent matching a set of insns that only supports sizes other
5215 than those matching the insn suffix. */
5216 {
5217 i386_operand_type mask, allowed;
5218 const insn_template *t;
5219
5220 operand_type_set (&mask, 0);
5221 operand_type_set (&allowed, 0);
5222
5223 for (t = current_templates->start;
5224 t < current_templates->end;
5225 ++t)
5226 {
5227 allowed = operand_type_or (allowed, t->operand_types[op]);
5228 allowed = operand_type_and (allowed, anyimm);
5229 }
5230 switch (guess_suffix)
5231 {
5232 case QWORD_MNEM_SUFFIX:
5233 mask.bitfield.imm64 = 1;
5234 mask.bitfield.imm32s = 1;
5235 break;
5236 case LONG_MNEM_SUFFIX:
5237 mask.bitfield.imm32 = 1;
5238 break;
5239 case WORD_MNEM_SUFFIX:
5240 mask.bitfield.imm16 = 1;
5241 break;
5242 case BYTE_MNEM_SUFFIX:
5243 mask.bitfield.imm8 = 1;
5244 break;
5245 default:
5246 break;
5247 }
5248 allowed = operand_type_and (mask, allowed);
5249 if (!operand_type_all_zero (&allowed))
5250 i.types[op] = operand_type_and (i.types[op], mask);
5251 }
5252 break;
5253 }
5254 }
5255 }
5256
5257 /* Try to use the smallest displacement type too. */
5258 static void
5259 optimize_disp (void)
5260 {
5261 int op;
5262
5263 for (op = i.operands; --op >= 0;)
5264 if (operand_type_check (i.types[op], disp))
5265 {
5266 if (i.op[op].disps->X_op == O_constant)
5267 {
5268 offsetT op_disp = i.op[op].disps->X_add_number;
5269
5270 if (i.types[op].bitfield.disp16
5271 && (op_disp & ~(offsetT) 0xffff) == 0)
5272 {
5273 /* If this operand is at most 16 bits, convert
5274 to a signed 16 bit number and don't use 64bit
5275 displacement. */
5276 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5277 i.types[op].bitfield.disp64 = 0;
5278 }
5279 #ifdef BFD64
5280 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5281 if (i.types[op].bitfield.disp32
5282 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5283 {
5284 /* If this operand is at most 32 bits, convert
5285 to a signed 32 bit number and don't use 64bit
5286 displacement. */
5287 op_disp &= (((offsetT) 2 << 31) - 1);
5288 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5289 i.types[op].bitfield.disp64 = 0;
5290 }
5291 #endif
5292 if (!op_disp && i.types[op].bitfield.baseindex)
5293 {
5294 i.types[op].bitfield.disp8 = 0;
5295 i.types[op].bitfield.disp16 = 0;
5296 i.types[op].bitfield.disp32 = 0;
5297 i.types[op].bitfield.disp32s = 0;
5298 i.types[op].bitfield.disp64 = 0;
5299 i.op[op].disps = 0;
5300 i.disp_operands--;
5301 }
5302 else if (flag_code == CODE_64BIT)
5303 {
5304 if (fits_in_signed_long (op_disp))
5305 {
5306 i.types[op].bitfield.disp64 = 0;
5307 i.types[op].bitfield.disp32s = 1;
5308 }
5309 if (i.prefix[ADDR_PREFIX]
5310 && fits_in_unsigned_long (op_disp))
5311 i.types[op].bitfield.disp32 = 1;
5312 }
5313 if ((i.types[op].bitfield.disp32
5314 || i.types[op].bitfield.disp32s
5315 || i.types[op].bitfield.disp16)
5316 && fits_in_disp8 (op_disp))
5317 i.types[op].bitfield.disp8 = 1;
5318 }
5319 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5320 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5321 {
5322 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5323 i.op[op].disps, 0, i.reloc[op]);
5324 i.types[op].bitfield.disp8 = 0;
5325 i.types[op].bitfield.disp16 = 0;
5326 i.types[op].bitfield.disp32 = 0;
5327 i.types[op].bitfield.disp32s = 0;
5328 i.types[op].bitfield.disp64 = 0;
5329 }
5330 else
5331 /* We only support 64bit displacement on constants. */
5332 i.types[op].bitfield.disp64 = 0;
5333 }
5334 }
5335
5336 /* Return 1 if there is a match in broadcast bytes between operand
5337 GIVEN and instruction template T. */
5338
5339 static INLINE int
5340 match_broadcast_size (const insn_template *t, unsigned int given)
5341 {
5342 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5343 && i.types[given].bitfield.byte)
5344 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5345 && i.types[given].bitfield.word)
5346 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5347 && i.types[given].bitfield.dword)
5348 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5349 && i.types[given].bitfield.qword));
5350 }
5351
5352 /* Check if operands are valid for the instruction. */
5353
5354 static int
5355 check_VecOperands (const insn_template *t)
5356 {
5357 unsigned int op;
5358 i386_cpu_flags cpu;
5359
5360 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5361 any one operand are implicity requiring AVX512VL support if the actual
5362 operand size is YMMword or XMMword. Since this function runs after
5363 template matching, there's no need to check for YMMword/XMMword in
5364 the template. */
5365 cpu = cpu_flags_and (t->cpu_flags, avx512);
5366 if (!cpu_flags_all_zero (&cpu)
5367 && !t->cpu_flags.bitfield.cpuavx512vl
5368 && !cpu_arch_flags.bitfield.cpuavx512vl)
5369 {
5370 for (op = 0; op < t->operands; ++op)
5371 {
5372 if (t->operand_types[op].bitfield.zmmword
5373 && (i.types[op].bitfield.ymmword
5374 || i.types[op].bitfield.xmmword))
5375 {
5376 i.error = unsupported;
5377 return 1;
5378 }
5379 }
5380 }
5381
5382 /* Without VSIB byte, we can't have a vector register for index. */
5383 if (!t->opcode_modifier.vecsib
5384 && i.index_reg
5385 && (i.index_reg->reg_type.bitfield.xmmword
5386 || i.index_reg->reg_type.bitfield.ymmword
5387 || i.index_reg->reg_type.bitfield.zmmword))
5388 {
5389 i.error = unsupported_vector_index_register;
5390 return 1;
5391 }
5392
5393 /* Check if default mask is allowed. */
5394 if (t->opcode_modifier.nodefmask
5395 && (!i.mask || i.mask->mask->reg_num == 0))
5396 {
5397 i.error = no_default_mask;
5398 return 1;
5399 }
5400
5401 /* For VSIB byte, we need a vector register for index, and all vector
5402 registers must be distinct. */
5403 if (t->opcode_modifier.vecsib)
5404 {
5405 if (!i.index_reg
5406 || !((t->opcode_modifier.vecsib == VecSIB128
5407 && i.index_reg->reg_type.bitfield.xmmword)
5408 || (t->opcode_modifier.vecsib == VecSIB256
5409 && i.index_reg->reg_type.bitfield.ymmword)
5410 || (t->opcode_modifier.vecsib == VecSIB512
5411 && i.index_reg->reg_type.bitfield.zmmword)))
5412 {
5413 i.error = invalid_vsib_address;
5414 return 1;
5415 }
5416
5417 gas_assert (i.reg_operands == 2 || i.mask);
5418 if (i.reg_operands == 2 && !i.mask)
5419 {
5420 gas_assert (i.types[0].bitfield.class == RegSIMD);
5421 gas_assert (i.types[0].bitfield.xmmword
5422 || i.types[0].bitfield.ymmword);
5423 gas_assert (i.types[2].bitfield.class == RegSIMD);
5424 gas_assert (i.types[2].bitfield.xmmword
5425 || i.types[2].bitfield.ymmword);
5426 if (operand_check == check_none)
5427 return 0;
5428 if (register_number (i.op[0].regs)
5429 != register_number (i.index_reg)
5430 && register_number (i.op[2].regs)
5431 != register_number (i.index_reg)
5432 && register_number (i.op[0].regs)
5433 != register_number (i.op[2].regs))
5434 return 0;
5435 if (operand_check == check_error)
5436 {
5437 i.error = invalid_vector_register_set;
5438 return 1;
5439 }
5440 as_warn (_("mask, index, and destination registers should be distinct"));
5441 }
5442 else if (i.reg_operands == 1 && i.mask)
5443 {
5444 if (i.types[1].bitfield.class == RegSIMD
5445 && (i.types[1].bitfield.xmmword
5446 || i.types[1].bitfield.ymmword
5447 || i.types[1].bitfield.zmmword)
5448 && (register_number (i.op[1].regs)
5449 == register_number (i.index_reg)))
5450 {
5451 if (operand_check == check_error)
5452 {
5453 i.error = invalid_vector_register_set;
5454 return 1;
5455 }
5456 if (operand_check != check_none)
5457 as_warn (_("index and destination registers should be distinct"));
5458 }
5459 }
5460 }
5461
5462 /* Check if broadcast is supported by the instruction and is applied
5463 to the memory operand. */
5464 if (i.broadcast)
5465 {
5466 i386_operand_type type, overlap;
5467
5468 /* Check if specified broadcast is supported in this instruction,
5469 and its broadcast bytes match the memory operand. */
5470 op = i.broadcast->operand;
5471 if (!t->opcode_modifier.broadcast
5472 || !(i.flags[op] & Operand_Mem)
5473 || (!i.types[op].bitfield.unspecified
5474 && !match_broadcast_size (t, op)))
5475 {
5476 bad_broadcast:
5477 i.error = unsupported_broadcast;
5478 return 1;
5479 }
5480
5481 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5482 * i.broadcast->type);
5483 operand_type_set (&type, 0);
5484 switch (i.broadcast->bytes)
5485 {
5486 case 2:
5487 type.bitfield.word = 1;
5488 break;
5489 case 4:
5490 type.bitfield.dword = 1;
5491 break;
5492 case 8:
5493 type.bitfield.qword = 1;
5494 break;
5495 case 16:
5496 type.bitfield.xmmword = 1;
5497 break;
5498 case 32:
5499 type.bitfield.ymmword = 1;
5500 break;
5501 case 64:
5502 type.bitfield.zmmword = 1;
5503 break;
5504 default:
5505 goto bad_broadcast;
5506 }
5507
5508 overlap = operand_type_and (type, t->operand_types[op]);
5509 if (operand_type_all_zero (&overlap))
5510 goto bad_broadcast;
5511
5512 if (t->opcode_modifier.checkregsize)
5513 {
5514 unsigned int j;
5515
5516 type.bitfield.baseindex = 1;
5517 for (j = 0; j < i.operands; ++j)
5518 {
5519 if (j != op
5520 && !operand_type_register_match(i.types[j],
5521 t->operand_types[j],
5522 type,
5523 t->operand_types[op]))
5524 goto bad_broadcast;
5525 }
5526 }
5527 }
5528 /* If broadcast is supported in this instruction, we need to check if
5529 operand of one-element size isn't specified without broadcast. */
5530 else if (t->opcode_modifier.broadcast && i.mem_operands)
5531 {
5532 /* Find memory operand. */
5533 for (op = 0; op < i.operands; op++)
5534 if (i.flags[op] & Operand_Mem)
5535 break;
5536 gas_assert (op < i.operands);
5537 /* Check size of the memory operand. */
5538 if (match_broadcast_size (t, op))
5539 {
5540 i.error = broadcast_needed;
5541 return 1;
5542 }
5543 }
5544 else
5545 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5546
5547 /* Check if requested masking is supported. */
5548 if (i.mask)
5549 {
5550 switch (t->opcode_modifier.masking)
5551 {
5552 case BOTH_MASKING:
5553 break;
5554 case MERGING_MASKING:
5555 if (i.mask->zeroing)
5556 {
5557 case 0:
5558 i.error = unsupported_masking;
5559 return 1;
5560 }
5561 break;
5562 case DYNAMIC_MASKING:
5563 /* Memory destinations allow only merging masking. */
5564 if (i.mask->zeroing && i.mem_operands)
5565 {
5566 /* Find memory operand. */
5567 for (op = 0; op < i.operands; op++)
5568 if (i.flags[op] & Operand_Mem)
5569 break;
5570 gas_assert (op < i.operands);
5571 if (op == i.operands - 1)
5572 {
5573 i.error = unsupported_masking;
5574 return 1;
5575 }
5576 }
5577 break;
5578 default:
5579 abort ();
5580 }
5581 }
5582
5583 /* Check if masking is applied to dest operand. */
5584 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5585 {
5586 i.error = mask_not_on_destination;
5587 return 1;
5588 }
5589
5590 /* Check RC/SAE. */
5591 if (i.rounding)
5592 {
5593 if (!t->opcode_modifier.sae
5594 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5595 {
5596 i.error = unsupported_rc_sae;
5597 return 1;
5598 }
5599 /* If the instruction has several immediate operands and one of
5600 them is rounding, the rounding operand should be the last
5601 immediate operand. */
5602 if (i.imm_operands > 1
5603 && i.rounding->operand != (int) (i.imm_operands - 1))
5604 {
5605 i.error = rc_sae_operand_not_last_imm;
5606 return 1;
5607 }
5608 }
5609
5610 /* Check vector Disp8 operand. */
5611 if (t->opcode_modifier.disp8memshift
5612 && i.disp_encoding != disp_encoding_32bit)
5613 {
5614 if (i.broadcast)
5615 i.memshift = t->opcode_modifier.broadcast - 1;
5616 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5617 i.memshift = t->opcode_modifier.disp8memshift;
5618 else
5619 {
5620 const i386_operand_type *type = NULL;
5621
5622 i.memshift = 0;
5623 for (op = 0; op < i.operands; op++)
5624 if (i.flags[op] & Operand_Mem)
5625 {
5626 if (t->opcode_modifier.evex == EVEXLIG)
5627 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5628 else if (t->operand_types[op].bitfield.xmmword
5629 + t->operand_types[op].bitfield.ymmword
5630 + t->operand_types[op].bitfield.zmmword <= 1)
5631 type = &t->operand_types[op];
5632 else if (!i.types[op].bitfield.unspecified)
5633 type = &i.types[op];
5634 }
5635 else if (i.types[op].bitfield.class == RegSIMD
5636 && t->opcode_modifier.evex != EVEXLIG)
5637 {
5638 if (i.types[op].bitfield.zmmword)
5639 i.memshift = 6;
5640 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5641 i.memshift = 5;
5642 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5643 i.memshift = 4;
5644 }
5645
5646 if (type)
5647 {
5648 if (type->bitfield.zmmword)
5649 i.memshift = 6;
5650 else if (type->bitfield.ymmword)
5651 i.memshift = 5;
5652 else if (type->bitfield.xmmword)
5653 i.memshift = 4;
5654 }
5655
5656 /* For the check in fits_in_disp8(). */
5657 if (i.memshift == 0)
5658 i.memshift = -1;
5659 }
5660
5661 for (op = 0; op < i.operands; op++)
5662 if (operand_type_check (i.types[op], disp)
5663 && i.op[op].disps->X_op == O_constant)
5664 {
5665 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5666 {
5667 i.types[op].bitfield.disp8 = 1;
5668 return 0;
5669 }
5670 i.types[op].bitfield.disp8 = 0;
5671 }
5672 }
5673
5674 i.memshift = 0;
5675
5676 return 0;
5677 }
5678
5679 /* Check if operands are valid for the instruction. Update VEX
5680 operand types. */
5681
5682 static int
5683 VEX_check_operands (const insn_template *t)
5684 {
5685 if (i.vec_encoding == vex_encoding_evex)
5686 {
5687 /* This instruction must be encoded with EVEX prefix. */
5688 if (!is_evex_encoding (t))
5689 {
5690 i.error = unsupported;
5691 return 1;
5692 }
5693 return 0;
5694 }
5695
5696 if (!t->opcode_modifier.vex)
5697 {
5698 /* This instruction template doesn't have VEX prefix. */
5699 if (i.vec_encoding != vex_encoding_default)
5700 {
5701 i.error = unsupported;
5702 return 1;
5703 }
5704 return 0;
5705 }
5706
5707 /* Check the special Imm4 cases; must be the first operand. */
5708 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5709 {
5710 if (i.op[0].imms->X_op != O_constant
5711 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5712 {
5713 i.error = bad_imm4;
5714 return 1;
5715 }
5716
5717 /* Turn off Imm<N> so that update_imm won't complain. */
5718 operand_type_set (&i.types[0], 0);
5719 }
5720
5721 return 0;
5722 }
5723
5724 static const insn_template *
5725 match_template (char mnem_suffix)
5726 {
5727 /* Points to template once we've found it. */
5728 const insn_template *t;
5729 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5730 i386_operand_type overlap4;
5731 unsigned int found_reverse_match;
5732 i386_opcode_modifier suffix_check;
5733 i386_operand_type operand_types [MAX_OPERANDS];
5734 int addr_prefix_disp;
5735 unsigned int j, size_match, check_register;
5736 enum i386_error specific_error = 0;
5737
5738 #if MAX_OPERANDS != 5
5739 # error "MAX_OPERANDS must be 5."
5740 #endif
5741
5742 found_reverse_match = 0;
5743 addr_prefix_disp = -1;
5744
5745 /* Prepare for mnemonic suffix check. */
5746 memset (&suffix_check, 0, sizeof (suffix_check));
5747 switch (mnem_suffix)
5748 {
5749 case BYTE_MNEM_SUFFIX:
5750 suffix_check.no_bsuf = 1;
5751 break;
5752 case WORD_MNEM_SUFFIX:
5753 suffix_check.no_wsuf = 1;
5754 break;
5755 case SHORT_MNEM_SUFFIX:
5756 suffix_check.no_ssuf = 1;
5757 break;
5758 case LONG_MNEM_SUFFIX:
5759 suffix_check.no_lsuf = 1;
5760 break;
5761 case QWORD_MNEM_SUFFIX:
5762 suffix_check.no_qsuf = 1;
5763 break;
5764 default:
5765 /* NB: In Intel syntax, normally we can check for memory operand
5766 size when there is no mnemonic suffix. But jmp and call have
5767 2 different encodings with Dword memory operand size, one with
5768 No_ldSuf and the other without. i.suffix is set to
5769 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5770 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5771 suffix_check.no_ldsuf = 1;
5772 }
5773
5774 /* Must have right number of operands. */
5775 i.error = number_of_operands_mismatch;
5776
5777 for (t = current_templates->start; t < current_templates->end; t++)
5778 {
5779 addr_prefix_disp = -1;
5780 found_reverse_match = 0;
5781
5782 if (i.operands != t->operands)
5783 continue;
5784
5785 /* Check processor support. */
5786 i.error = unsupported;
5787 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5788 continue;
5789
5790 /* Check AT&T mnemonic. */
5791 i.error = unsupported_with_intel_mnemonic;
5792 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5793 continue;
5794
5795 /* Check AT&T/Intel syntax. */
5796 i.error = unsupported_syntax;
5797 if ((intel_syntax && t->opcode_modifier.attsyntax)
5798 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5799 continue;
5800
5801 /* Check Intel64/AMD64 ISA. */
5802 switch (isa64)
5803 {
5804 default:
5805 /* Default: Don't accept Intel64. */
5806 if (t->opcode_modifier.isa64 == INTEL64)
5807 continue;
5808 break;
5809 case amd64:
5810 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5811 if (t->opcode_modifier.isa64 >= INTEL64)
5812 continue;
5813 break;
5814 case intel64:
5815 /* -mintel64: Don't accept AMD64. */
5816 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5817 continue;
5818 break;
5819 }
5820
5821 /* Check the suffix. */
5822 i.error = invalid_instruction_suffix;
5823 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5824 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5825 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5826 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5827 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5828 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5829 continue;
5830
5831 size_match = operand_size_match (t);
5832 if (!size_match)
5833 continue;
5834
5835 /* This is intentionally not
5836
5837 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5838
5839 as the case of a missing * on the operand is accepted (perhaps with
5840 a warning, issued further down). */
5841 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5842 {
5843 i.error = operand_type_mismatch;
5844 continue;
5845 }
5846
5847 for (j = 0; j < MAX_OPERANDS; j++)
5848 operand_types[j] = t->operand_types[j];
5849
5850 /* In general, don't allow 64-bit operands in 32-bit mode. */
5851 if (i.suffix == QWORD_MNEM_SUFFIX
5852 && flag_code != CODE_64BIT
5853 && (intel_syntax
5854 ? (!t->opcode_modifier.ignoresize
5855 && !t->opcode_modifier.broadcast
5856 && !intel_float_operand (t->name))
5857 : intel_float_operand (t->name) != 2)
5858 && ((operand_types[0].bitfield.class != RegMMX
5859 && operand_types[0].bitfield.class != RegSIMD)
5860 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5861 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5862 && (t->base_opcode != 0x0fc7
5863 || t->extension_opcode != 1 /* cmpxchg8b */))
5864 continue;
5865
5866 /* In general, don't allow 32-bit operands on pre-386. */
5867 else if (i.suffix == LONG_MNEM_SUFFIX
5868 && !cpu_arch_flags.bitfield.cpui386
5869 && (intel_syntax
5870 ? (!t->opcode_modifier.ignoresize
5871 && !intel_float_operand (t->name))
5872 : intel_float_operand (t->name) != 2)
5873 && ((operand_types[0].bitfield.class != RegMMX
5874 && operand_types[0].bitfield.class != RegSIMD)
5875 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5876 && operand_types[t->operands > 1].bitfield.class
5877 != RegSIMD)))
5878 continue;
5879
5880 /* Do not verify operands when there are none. */
5881 else
5882 {
5883 if (!t->operands)
5884 /* We've found a match; break out of loop. */
5885 break;
5886 }
5887
5888 if (!t->opcode_modifier.jump
5889 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5890 {
5891 /* There should be only one Disp operand. */
5892 for (j = 0; j < MAX_OPERANDS; j++)
5893 if (operand_type_check (operand_types[j], disp))
5894 break;
5895 if (j < MAX_OPERANDS)
5896 {
5897 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5898
5899 addr_prefix_disp = j;
5900
5901 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5902 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5903 switch (flag_code)
5904 {
5905 case CODE_16BIT:
5906 override = !override;
5907 /* Fall through. */
5908 case CODE_32BIT:
5909 if (operand_types[j].bitfield.disp32
5910 && operand_types[j].bitfield.disp16)
5911 {
5912 operand_types[j].bitfield.disp16 = override;
5913 operand_types[j].bitfield.disp32 = !override;
5914 }
5915 operand_types[j].bitfield.disp32s = 0;
5916 operand_types[j].bitfield.disp64 = 0;
5917 break;
5918
5919 case CODE_64BIT:
5920 if (operand_types[j].bitfield.disp32s
5921 || operand_types[j].bitfield.disp64)
5922 {
5923 operand_types[j].bitfield.disp64 &= !override;
5924 operand_types[j].bitfield.disp32s &= !override;
5925 operand_types[j].bitfield.disp32 = override;
5926 }
5927 operand_types[j].bitfield.disp16 = 0;
5928 break;
5929 }
5930 }
5931 }
5932
5933 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5934 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5935 continue;
5936
5937 /* We check register size if needed. */
5938 if (t->opcode_modifier.checkregsize)
5939 {
5940 check_register = (1 << t->operands) - 1;
5941 if (i.broadcast)
5942 check_register &= ~(1 << i.broadcast->operand);
5943 }
5944 else
5945 check_register = 0;
5946
5947 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5948 switch (t->operands)
5949 {
5950 case 1:
5951 if (!operand_type_match (overlap0, i.types[0]))
5952 continue;
5953 break;
5954 case 2:
5955 /* xchg %eax, %eax is a special case. It is an alias for nop
5956 only in 32bit mode and we can use opcode 0x90. In 64bit
5957 mode, we can't use 0x90 for xchg %eax, %eax since it should
5958 zero-extend %eax to %rax. */
5959 if (flag_code == CODE_64BIT
5960 && t->base_opcode == 0x90
5961 && i.types[0].bitfield.instance == Accum
5962 && i.types[0].bitfield.dword
5963 && i.types[1].bitfield.instance == Accum
5964 && i.types[1].bitfield.dword)
5965 continue;
5966 /* xrelease mov %eax, <disp> is another special case. It must not
5967 match the accumulator-only encoding of mov. */
5968 if (flag_code != CODE_64BIT
5969 && i.hle_prefix
5970 && t->base_opcode == 0xa0
5971 && i.types[0].bitfield.instance == Accum
5972 && (i.flags[1] & Operand_Mem))
5973 continue;
5974 /* Fall through. */
5975
5976 case 3:
5977 if (!(size_match & MATCH_STRAIGHT))
5978 goto check_reverse;
5979 /* Reverse direction of operands if swapping is possible in the first
5980 place (operands need to be symmetric) and
5981 - the load form is requested, and the template is a store form,
5982 - the store form is requested, and the template is a load form,
5983 - the non-default (swapped) form is requested. */
5984 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5985 if (t->opcode_modifier.d && i.reg_operands == i.operands
5986 && !operand_type_all_zero (&overlap1))
5987 switch (i.dir_encoding)
5988 {
5989 case dir_encoding_load:
5990 if (operand_type_check (operand_types[i.operands - 1], anymem)
5991 || t->opcode_modifier.regmem)
5992 goto check_reverse;
5993 break;
5994
5995 case dir_encoding_store:
5996 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5997 && !t->opcode_modifier.regmem)
5998 goto check_reverse;
5999 break;
6000
6001 case dir_encoding_swap:
6002 goto check_reverse;
6003
6004 case dir_encoding_default:
6005 break;
6006 }
6007 /* If we want store form, we skip the current load. */
6008 if ((i.dir_encoding == dir_encoding_store
6009 || i.dir_encoding == dir_encoding_swap)
6010 && i.mem_operands == 0
6011 && t->opcode_modifier.load)
6012 continue;
6013 /* Fall through. */
6014 case 4:
6015 case 5:
6016 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6017 if (!operand_type_match (overlap0, i.types[0])
6018 || !operand_type_match (overlap1, i.types[1])
6019 || ((check_register & 3) == 3
6020 && !operand_type_register_match (i.types[0],
6021 operand_types[0],
6022 i.types[1],
6023 operand_types[1])))
6024 {
6025 /* Check if other direction is valid ... */
6026 if (!t->opcode_modifier.d)
6027 continue;
6028
6029 check_reverse:
6030 if (!(size_match & MATCH_REVERSE))
6031 continue;
6032 /* Try reversing direction of operands. */
6033 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6034 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6035 if (!operand_type_match (overlap0, i.types[0])
6036 || !operand_type_match (overlap1, i.types[i.operands - 1])
6037 || (check_register
6038 && !operand_type_register_match (i.types[0],
6039 operand_types[i.operands - 1],
6040 i.types[i.operands - 1],
6041 operand_types[0])))
6042 {
6043 /* Does not match either direction. */
6044 continue;
6045 }
6046 /* found_reverse_match holds which of D or FloatR
6047 we've found. */
6048 if (!t->opcode_modifier.d)
6049 found_reverse_match = 0;
6050 else if (operand_types[0].bitfield.tbyte)
6051 found_reverse_match = Opcode_FloatD;
6052 else if (operand_types[0].bitfield.xmmword
6053 || operand_types[i.operands - 1].bitfield.xmmword
6054 || operand_types[0].bitfield.class == RegMMX
6055 || operand_types[i.operands - 1].bitfield.class == RegMMX
6056 || is_any_vex_encoding(t))
6057 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6058 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6059 else
6060 found_reverse_match = Opcode_D;
6061 if (t->opcode_modifier.floatr)
6062 found_reverse_match |= Opcode_FloatR;
6063 }
6064 else
6065 {
6066 /* Found a forward 2 operand match here. */
6067 switch (t->operands)
6068 {
6069 case 5:
6070 overlap4 = operand_type_and (i.types[4],
6071 operand_types[4]);
6072 /* Fall through. */
6073 case 4:
6074 overlap3 = operand_type_and (i.types[3],
6075 operand_types[3]);
6076 /* Fall through. */
6077 case 3:
6078 overlap2 = operand_type_and (i.types[2],
6079 operand_types[2]);
6080 break;
6081 }
6082
6083 switch (t->operands)
6084 {
6085 case 5:
6086 if (!operand_type_match (overlap4, i.types[4])
6087 || !operand_type_register_match (i.types[3],
6088 operand_types[3],
6089 i.types[4],
6090 operand_types[4]))
6091 continue;
6092 /* Fall through. */
6093 case 4:
6094 if (!operand_type_match (overlap3, i.types[3])
6095 || ((check_register & 0xa) == 0xa
6096 && !operand_type_register_match (i.types[1],
6097 operand_types[1],
6098 i.types[3],
6099 operand_types[3]))
6100 || ((check_register & 0xc) == 0xc
6101 && !operand_type_register_match (i.types[2],
6102 operand_types[2],
6103 i.types[3],
6104 operand_types[3])))
6105 continue;
6106 /* Fall through. */
6107 case 3:
6108 /* Here we make use of the fact that there are no
6109 reverse match 3 operand instructions. */
6110 if (!operand_type_match (overlap2, i.types[2])
6111 || ((check_register & 5) == 5
6112 && !operand_type_register_match (i.types[0],
6113 operand_types[0],
6114 i.types[2],
6115 operand_types[2]))
6116 || ((check_register & 6) == 6
6117 && !operand_type_register_match (i.types[1],
6118 operand_types[1],
6119 i.types[2],
6120 operand_types[2])))
6121 continue;
6122 break;
6123 }
6124 }
6125 /* Found either forward/reverse 2, 3 or 4 operand match here:
6126 slip through to break. */
6127 }
6128
6129 /* Check if vector and VEX operands are valid. */
6130 if (check_VecOperands (t) || VEX_check_operands (t))
6131 {
6132 specific_error = i.error;
6133 continue;
6134 }
6135
6136 /* We've found a match; break out of loop. */
6137 break;
6138 }
6139
6140 if (t == current_templates->end)
6141 {
6142 /* We found no match. */
6143 const char *err_msg;
6144 switch (specific_error ? specific_error : i.error)
6145 {
6146 default:
6147 abort ();
6148 case operand_size_mismatch:
6149 err_msg = _("operand size mismatch");
6150 break;
6151 case operand_type_mismatch:
6152 err_msg = _("operand type mismatch");
6153 break;
6154 case register_type_mismatch:
6155 err_msg = _("register type mismatch");
6156 break;
6157 case number_of_operands_mismatch:
6158 err_msg = _("number of operands mismatch");
6159 break;
6160 case invalid_instruction_suffix:
6161 err_msg = _("invalid instruction suffix");
6162 break;
6163 case bad_imm4:
6164 err_msg = _("constant doesn't fit in 4 bits");
6165 break;
6166 case unsupported_with_intel_mnemonic:
6167 err_msg = _("unsupported with Intel mnemonic");
6168 break;
6169 case unsupported_syntax:
6170 err_msg = _("unsupported syntax");
6171 break;
6172 case unsupported:
6173 as_bad (_("unsupported instruction `%s'"),
6174 current_templates->start->name);
6175 return NULL;
6176 case invalid_vsib_address:
6177 err_msg = _("invalid VSIB address");
6178 break;
6179 case invalid_vector_register_set:
6180 err_msg = _("mask, index, and destination registers must be distinct");
6181 break;
6182 case unsupported_vector_index_register:
6183 err_msg = _("unsupported vector index register");
6184 break;
6185 case unsupported_broadcast:
6186 err_msg = _("unsupported broadcast");
6187 break;
6188 case broadcast_needed:
6189 err_msg = _("broadcast is needed for operand of such type");
6190 break;
6191 case unsupported_masking:
6192 err_msg = _("unsupported masking");
6193 break;
6194 case mask_not_on_destination:
6195 err_msg = _("mask not on destination operand");
6196 break;
6197 case no_default_mask:
6198 err_msg = _("default mask isn't allowed");
6199 break;
6200 case unsupported_rc_sae:
6201 err_msg = _("unsupported static rounding/sae");
6202 break;
6203 case rc_sae_operand_not_last_imm:
6204 if (intel_syntax)
6205 err_msg = _("RC/SAE operand must precede immediate operands");
6206 else
6207 err_msg = _("RC/SAE operand must follow immediate operands");
6208 break;
6209 case invalid_register_operand:
6210 err_msg = _("invalid register operand");
6211 break;
6212 }
6213 as_bad (_("%s for `%s'"), err_msg,
6214 current_templates->start->name);
6215 return NULL;
6216 }
6217
6218 if (!quiet_warnings)
6219 {
6220 if (!intel_syntax
6221 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6222 as_warn (_("indirect %s without `*'"), t->name);
6223
6224 if (t->opcode_modifier.isprefix
6225 && t->opcode_modifier.ignoresize)
6226 {
6227 /* Warn them that a data or address size prefix doesn't
6228 affect assembly of the next line of code. */
6229 as_warn (_("stand-alone `%s' prefix"), t->name);
6230 }
6231 }
6232
6233 /* Copy the template we found. */
6234 i.tm = *t;
6235
6236 if (addr_prefix_disp != -1)
6237 i.tm.operand_types[addr_prefix_disp]
6238 = operand_types[addr_prefix_disp];
6239
6240 if (found_reverse_match)
6241 {
6242 /* If we found a reverse match we must alter the opcode direction
6243 bit and clear/flip the regmem modifier one. found_reverse_match
6244 holds bits to change (different for int & float insns). */
6245
6246 i.tm.base_opcode ^= found_reverse_match;
6247
6248 i.tm.operand_types[0] = operand_types[i.operands - 1];
6249 i.tm.operand_types[i.operands - 1] = operand_types[0];
6250
6251 /* Certain SIMD insns have their load forms specified in the opcode
6252 table, and hence we need to _set_ RegMem instead of clearing it.
6253 We need to avoid setting the bit though on insns like KMOVW. */
6254 i.tm.opcode_modifier.regmem
6255 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6256 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6257 && !i.tm.opcode_modifier.regmem;
6258 }
6259
6260 return t;
6261 }
6262
6263 static int
6264 check_string (void)
6265 {
6266 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6267 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6268
6269 if (i.seg[op] != NULL && i.seg[op] != &es)
6270 {
6271 as_bad (_("`%s' operand %u must use `%ses' segment"),
6272 i.tm.name,
6273 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6274 register_prefix);
6275 return 0;
6276 }
6277
6278 /* There's only ever one segment override allowed per instruction.
6279 This instruction possibly has a legal segment override on the
6280 second operand, so copy the segment to where non-string
6281 instructions store it, allowing common code. */
6282 i.seg[op] = i.seg[1];
6283
6284 return 1;
6285 }
6286
6287 static int
6288 process_suffix (void)
6289 {
6290 /* If matched instruction specifies an explicit instruction mnemonic
6291 suffix, use it. */
6292 if (i.tm.opcode_modifier.size == SIZE16)
6293 i.suffix = WORD_MNEM_SUFFIX;
6294 else if (i.tm.opcode_modifier.size == SIZE32)
6295 i.suffix = LONG_MNEM_SUFFIX;
6296 else if (i.tm.opcode_modifier.size == SIZE64)
6297 i.suffix = QWORD_MNEM_SUFFIX;
6298 else if (i.reg_operands
6299 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6300 {
6301 unsigned int numop = i.operands;
6302
6303 /* movsx/movzx want only their source operand considered here, for the
6304 ambiguity checking below. The suffix will be replaced afterwards
6305 to represent the destination (register). */
6306 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6307 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6308 --i.operands;
6309
6310 /* If there's no instruction mnemonic suffix we try to invent one
6311 based on GPR operands. */
6312 if (!i.suffix)
6313 {
6314 /* We take i.suffix from the last register operand specified,
6315 Destination register type is more significant than source
6316 register type. crc32 in SSE4.2 prefers source register
6317 type. */
6318 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6319
6320 while (op--)
6321 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6322 || i.tm.operand_types[op].bitfield.instance == Accum)
6323 {
6324 if (i.types[op].bitfield.class != Reg)
6325 continue;
6326 if (i.types[op].bitfield.byte)
6327 i.suffix = BYTE_MNEM_SUFFIX;
6328 else if (i.types[op].bitfield.word)
6329 i.suffix = WORD_MNEM_SUFFIX;
6330 else if (i.types[op].bitfield.dword)
6331 i.suffix = LONG_MNEM_SUFFIX;
6332 else if (i.types[op].bitfield.qword)
6333 i.suffix = QWORD_MNEM_SUFFIX;
6334 else
6335 continue;
6336 break;
6337 }
6338
6339 /* As an exception, movsx/movzx silently default to a byte source
6340 in AT&T mode. */
6341 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6342 && !i.suffix && !intel_syntax)
6343 i.suffix = BYTE_MNEM_SUFFIX;
6344 }
6345 else if (i.suffix == BYTE_MNEM_SUFFIX)
6346 {
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
6349 && i.tm.opcode_modifier.no_bsuf)
6350 i.suffix = 0;
6351 else if (!check_byte_reg ())
6352 return 0;
6353 }
6354 else if (i.suffix == LONG_MNEM_SUFFIX)
6355 {
6356 if (intel_syntax
6357 && i.tm.opcode_modifier.ignoresize
6358 && i.tm.opcode_modifier.no_lsuf
6359 && !i.tm.opcode_modifier.todword
6360 && !i.tm.opcode_modifier.toqword)
6361 i.suffix = 0;
6362 else if (!check_long_reg ())
6363 return 0;
6364 }
6365 else if (i.suffix == QWORD_MNEM_SUFFIX)
6366 {
6367 if (intel_syntax
6368 && i.tm.opcode_modifier.ignoresize
6369 && i.tm.opcode_modifier.no_qsuf
6370 && !i.tm.opcode_modifier.todword
6371 && !i.tm.opcode_modifier.toqword)
6372 i.suffix = 0;
6373 else if (!check_qword_reg ())
6374 return 0;
6375 }
6376 else if (i.suffix == WORD_MNEM_SUFFIX)
6377 {
6378 if (intel_syntax
6379 && i.tm.opcode_modifier.ignoresize
6380 && i.tm.opcode_modifier.no_wsuf)
6381 i.suffix = 0;
6382 else if (!check_word_reg ())
6383 return 0;
6384 }
6385 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6386 /* Do nothing if the instruction is going to ignore the prefix. */
6387 ;
6388 else
6389 abort ();
6390
6391 /* Undo the movsx/movzx change done above. */
6392 i.operands = numop;
6393 }
6394 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6395 {
6396 i.suffix = stackop_size;
6397 if (stackop_size == LONG_MNEM_SUFFIX)
6398 {
6399 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6400 .code16gcc directive to support 16-bit mode with
6401 32-bit address. For IRET without a suffix, generate
6402 16-bit IRET (opcode 0xcf) to return from an interrupt
6403 handler. */
6404 if (i.tm.base_opcode == 0xcf)
6405 {
6406 i.suffix = WORD_MNEM_SUFFIX;
6407 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6408 }
6409 /* Warn about changed behavior for segment register push/pop. */
6410 else if ((i.tm.base_opcode | 1) == 0x07)
6411 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6412 i.tm.name);
6413 }
6414 }
6415 else if (!i.suffix
6416 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6417 || i.tm.opcode_modifier.jump == JUMP_BYTE
6418 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6419 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6420 && i.tm.extension_opcode <= 3)))
6421 {
6422 switch (flag_code)
6423 {
6424 case CODE_64BIT:
6425 if (!i.tm.opcode_modifier.no_qsuf)
6426 {
6427 i.suffix = QWORD_MNEM_SUFFIX;
6428 break;
6429 }
6430 /* Fall through. */
6431 case CODE_32BIT:
6432 if (!i.tm.opcode_modifier.no_lsuf)
6433 i.suffix = LONG_MNEM_SUFFIX;
6434 break;
6435 case CODE_16BIT:
6436 if (!i.tm.opcode_modifier.no_wsuf)
6437 i.suffix = WORD_MNEM_SUFFIX;
6438 break;
6439 }
6440 }
6441
6442 if (!i.suffix
6443 && (!i.tm.opcode_modifier.defaultsize
6444 /* Also cover lret/retf/iret in 64-bit mode. */
6445 || (flag_code == CODE_64BIT
6446 && !i.tm.opcode_modifier.no_lsuf
6447 && !i.tm.opcode_modifier.no_qsuf))
6448 && !i.tm.opcode_modifier.ignoresize
6449 /* Accept FLDENV et al without suffix. */
6450 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6451 {
6452 unsigned int suffixes, evex = 0;
6453
6454 suffixes = !i.tm.opcode_modifier.no_bsuf;
6455 if (!i.tm.opcode_modifier.no_wsuf)
6456 suffixes |= 1 << 1;
6457 if (!i.tm.opcode_modifier.no_lsuf)
6458 suffixes |= 1 << 2;
6459 if (!i.tm.opcode_modifier.no_ldsuf)
6460 suffixes |= 1 << 3;
6461 if (!i.tm.opcode_modifier.no_ssuf)
6462 suffixes |= 1 << 4;
6463 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6464 suffixes |= 1 << 5;
6465
6466 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6467 also suitable for AT&T syntax mode, it was requested that this be
6468 restricted to just Intel syntax. */
6469 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6470 {
6471 unsigned int op;
6472
6473 for (op = 0; op < i.tm.operands; ++op)
6474 {
6475 if (is_evex_encoding (&i.tm)
6476 && !cpu_arch_flags.bitfield.cpuavx512vl)
6477 {
6478 if (i.tm.operand_types[op].bitfield.ymmword)
6479 i.tm.operand_types[op].bitfield.xmmword = 0;
6480 if (i.tm.operand_types[op].bitfield.zmmword)
6481 i.tm.operand_types[op].bitfield.ymmword = 0;
6482 if (!i.tm.opcode_modifier.evex
6483 || i.tm.opcode_modifier.evex == EVEXDYN)
6484 i.tm.opcode_modifier.evex = EVEX512;
6485 }
6486
6487 if (i.tm.operand_types[op].bitfield.xmmword
6488 + i.tm.operand_types[op].bitfield.ymmword
6489 + i.tm.operand_types[op].bitfield.zmmword < 2)
6490 continue;
6491
6492 /* Any properly sized operand disambiguates the insn. */
6493 if (i.types[op].bitfield.xmmword
6494 || i.types[op].bitfield.ymmword
6495 || i.types[op].bitfield.zmmword)
6496 {
6497 suffixes &= ~(7 << 6);
6498 evex = 0;
6499 break;
6500 }
6501
6502 if ((i.flags[op] & Operand_Mem)
6503 && i.tm.operand_types[op].bitfield.unspecified)
6504 {
6505 if (i.tm.operand_types[op].bitfield.xmmword)
6506 suffixes |= 1 << 6;
6507 if (i.tm.operand_types[op].bitfield.ymmword)
6508 suffixes |= 1 << 7;
6509 if (i.tm.operand_types[op].bitfield.zmmword)
6510 suffixes |= 1 << 8;
6511 if (is_evex_encoding (&i.tm))
6512 evex = EVEX512;
6513 }
6514 }
6515 }
6516
6517 /* Are multiple suffixes / operand sizes allowed? */
6518 if (suffixes & (suffixes - 1))
6519 {
6520 if (intel_syntax
6521 && (!i.tm.opcode_modifier.defaultsize
6522 || operand_check == check_error))
6523 {
6524 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6525 return 0;
6526 }
6527 if (operand_check == check_error)
6528 {
6529 as_bad (_("no instruction mnemonic suffix given and "
6530 "no register operands; can't size `%s'"), i.tm.name);
6531 return 0;
6532 }
6533 if (operand_check == check_warning)
6534 as_warn (_("%s; using default for `%s'"),
6535 intel_syntax
6536 ? _("ambiguous operand size")
6537 : _("no instruction mnemonic suffix given and "
6538 "no register operands"),
6539 i.tm.name);
6540
6541 if (i.tm.opcode_modifier.floatmf)
6542 i.suffix = SHORT_MNEM_SUFFIX;
6543 else if ((i.tm.base_opcode | 8) == 0xfbe
6544 || (i.tm.base_opcode == 0x63
6545 && i.tm.cpu_flags.bitfield.cpu64))
6546 /* handled below */;
6547 else if (evex)
6548 i.tm.opcode_modifier.evex = evex;
6549 else if (flag_code == CODE_16BIT)
6550 i.suffix = WORD_MNEM_SUFFIX;
6551 else if (!i.tm.opcode_modifier.no_lsuf)
6552 i.suffix = LONG_MNEM_SUFFIX;
6553 else
6554 i.suffix = QWORD_MNEM_SUFFIX;
6555 }
6556 }
6557
6558 if ((i.tm.base_opcode | 8) == 0xfbe
6559 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6560 {
6561 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6562 In AT&T syntax, if there is no suffix (warned about above), the default
6563 will be byte extension. */
6564 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6565 i.tm.base_opcode |= 1;
6566
6567 /* For further processing, the suffix should represent the destination
6568 (register). This is already the case when one was used with
6569 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6570 no suffix to begin with. */
6571 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6572 {
6573 if (i.types[1].bitfield.word)
6574 i.suffix = WORD_MNEM_SUFFIX;
6575 else if (i.types[1].bitfield.qword)
6576 i.suffix = QWORD_MNEM_SUFFIX;
6577 else
6578 i.suffix = LONG_MNEM_SUFFIX;
6579
6580 i.tm.opcode_modifier.w = 0;
6581 }
6582 }
6583
6584 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6585 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6586 != (i.tm.operand_types[1].bitfield.class == Reg);
6587
6588 /* Change the opcode based on the operand size given by i.suffix. */
6589 switch (i.suffix)
6590 {
6591 /* Size floating point instruction. */
6592 case LONG_MNEM_SUFFIX:
6593 if (i.tm.opcode_modifier.floatmf)
6594 {
6595 i.tm.base_opcode ^= 4;
6596 break;
6597 }
6598 /* fall through */
6599 case WORD_MNEM_SUFFIX:
6600 case QWORD_MNEM_SUFFIX:
6601 /* It's not a byte, select word/dword operation. */
6602 if (i.tm.opcode_modifier.w)
6603 {
6604 if (i.short_form)
6605 i.tm.base_opcode |= 8;
6606 else
6607 i.tm.base_opcode |= 1;
6608 }
6609 /* fall through */
6610 case SHORT_MNEM_SUFFIX:
6611 /* Now select between word & dword operations via the operand
6612 size prefix, except for instructions that will ignore this
6613 prefix anyway. */
6614 if (i.reg_operands > 0
6615 && i.types[0].bitfield.class == Reg
6616 && i.tm.opcode_modifier.addrprefixopreg
6617 && (i.tm.operand_types[0].bitfield.instance == Accum
6618 || i.operands == 1))
6619 {
6620 /* The address size override prefix changes the size of the
6621 first operand. */
6622 if ((flag_code == CODE_32BIT
6623 && i.op[0].regs->reg_type.bitfield.word)
6624 || (flag_code != CODE_32BIT
6625 && i.op[0].regs->reg_type.bitfield.dword))
6626 if (!add_prefix (ADDR_PREFIX_OPCODE))
6627 return 0;
6628 }
6629 else if (i.suffix != QWORD_MNEM_SUFFIX
6630 && !i.tm.opcode_modifier.ignoresize
6631 && !i.tm.opcode_modifier.floatmf
6632 && !is_any_vex_encoding (&i.tm)
6633 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6634 || (flag_code == CODE_64BIT
6635 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6636 {
6637 unsigned int prefix = DATA_PREFIX_OPCODE;
6638
6639 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6640 prefix = ADDR_PREFIX_OPCODE;
6641
6642 if (!add_prefix (prefix))
6643 return 0;
6644 }
6645
6646 /* Set mode64 for an operand. */
6647 if (i.suffix == QWORD_MNEM_SUFFIX
6648 && flag_code == CODE_64BIT
6649 && !i.tm.opcode_modifier.norex64
6650 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6651 need rex64. */
6652 && ! (i.operands == 2
6653 && i.tm.base_opcode == 0x90
6654 && i.tm.extension_opcode == None
6655 && i.types[0].bitfield.instance == Accum
6656 && i.types[0].bitfield.qword
6657 && i.types[1].bitfield.instance == Accum
6658 && i.types[1].bitfield.qword))
6659 i.rex |= REX_W;
6660
6661 break;
6662 }
6663
6664 if (i.reg_operands != 0
6665 && i.operands > 1
6666 && i.tm.opcode_modifier.addrprefixopreg
6667 && i.tm.operand_types[0].bitfield.instance != Accum)
6668 {
6669 /* Check invalid register operand when the address size override
6670 prefix changes the size of register operands. */
6671 unsigned int op;
6672 enum { need_word, need_dword, need_qword } need;
6673
6674 if (flag_code == CODE_32BIT)
6675 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6676 else
6677 {
6678 if (i.prefix[ADDR_PREFIX])
6679 need = need_dword;
6680 else
6681 need = flag_code == CODE_64BIT ? need_qword : need_word;
6682 }
6683
6684 for (op = 0; op < i.operands; op++)
6685 if (i.types[op].bitfield.class == Reg
6686 && ((need == need_word
6687 && !i.op[op].regs->reg_type.bitfield.word)
6688 || (need == need_dword
6689 && !i.op[op].regs->reg_type.bitfield.dword)
6690 || (need == need_qword
6691 && !i.op[op].regs->reg_type.bitfield.qword)))
6692 {
6693 as_bad (_("invalid register operand size for `%s'"),
6694 i.tm.name);
6695 return 0;
6696 }
6697 }
6698
6699 return 1;
6700 }
6701
6702 static int
6703 check_byte_reg (void)
6704 {
6705 int op;
6706
6707 for (op = i.operands; --op >= 0;)
6708 {
6709 /* Skip non-register operands. */
6710 if (i.types[op].bitfield.class != Reg)
6711 continue;
6712
6713 /* If this is an eight bit register, it's OK. If it's the 16 or
6714 32 bit version of an eight bit register, we will just use the
6715 low portion, and that's OK too. */
6716 if (i.types[op].bitfield.byte)
6717 continue;
6718
6719 /* I/O port address operands are OK too. */
6720 if (i.tm.operand_types[op].bitfield.instance == RegD
6721 && i.tm.operand_types[op].bitfield.word)
6722 continue;
6723
6724 /* crc32 only wants its source operand checked here. */
6725 if (i.tm.base_opcode == 0xf20f38f0 && op)
6726 continue;
6727
6728 /* Any other register is bad. */
6729 if (i.types[op].bitfield.class == Reg
6730 || i.types[op].bitfield.class == RegMMX
6731 || i.types[op].bitfield.class == RegSIMD
6732 || i.types[op].bitfield.class == SReg
6733 || i.types[op].bitfield.class == RegCR
6734 || i.types[op].bitfield.class == RegDR
6735 || i.types[op].bitfield.class == RegTR)
6736 {
6737 as_bad (_("`%s%s' not allowed with `%s%c'"),
6738 register_prefix,
6739 i.op[op].regs->reg_name,
6740 i.tm.name,
6741 i.suffix);
6742 return 0;
6743 }
6744 }
6745 return 1;
6746 }
6747
6748 static int
6749 check_long_reg (void)
6750 {
6751 int op;
6752
6753 for (op = i.operands; --op >= 0;)
6754 /* Skip non-register operands. */
6755 if (i.types[op].bitfield.class != Reg)
6756 continue;
6757 /* Reject eight bit registers, except where the template requires
6758 them. (eg. movzb) */
6759 else if (i.types[op].bitfield.byte
6760 && (i.tm.operand_types[op].bitfield.class == Reg
6761 || i.tm.operand_types[op].bitfield.instance == Accum)
6762 && (i.tm.operand_types[op].bitfield.word
6763 || i.tm.operand_types[op].bitfield.dword))
6764 {
6765 as_bad (_("`%s%s' not allowed with `%s%c'"),
6766 register_prefix,
6767 i.op[op].regs->reg_name,
6768 i.tm.name,
6769 i.suffix);
6770 return 0;
6771 }
6772 /* Error if the e prefix on a general reg is missing. */
6773 else if (i.types[op].bitfield.word
6774 && (i.tm.operand_types[op].bitfield.class == Reg
6775 || i.tm.operand_types[op].bitfield.instance == Accum)
6776 && i.tm.operand_types[op].bitfield.dword)
6777 {
6778 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6779 register_prefix, i.op[op].regs->reg_name,
6780 i.suffix);
6781 return 0;
6782 }
6783 /* Warn if the r prefix on a general reg is present. */
6784 else if (i.types[op].bitfield.qword
6785 && (i.tm.operand_types[op].bitfield.class == Reg
6786 || i.tm.operand_types[op].bitfield.instance == Accum)
6787 && i.tm.operand_types[op].bitfield.dword)
6788 {
6789 if (intel_syntax
6790 && i.tm.opcode_modifier.toqword
6791 && i.types[0].bitfield.class != RegSIMD)
6792 {
6793 /* Convert to QWORD. We want REX byte. */
6794 i.suffix = QWORD_MNEM_SUFFIX;
6795 }
6796 else
6797 {
6798 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6799 register_prefix, i.op[op].regs->reg_name,
6800 i.suffix);
6801 return 0;
6802 }
6803 }
6804 return 1;
6805 }
6806
6807 static int
6808 check_qword_reg (void)
6809 {
6810 int op;
6811
6812 for (op = i.operands; --op >= 0; )
6813 /* Skip non-register operands. */
6814 if (i.types[op].bitfield.class != Reg)
6815 continue;
6816 /* Reject eight bit registers, except where the template requires
6817 them. (eg. movzb) */
6818 else if (i.types[op].bitfield.byte
6819 && (i.tm.operand_types[op].bitfield.class == Reg
6820 || i.tm.operand_types[op].bitfield.instance == Accum)
6821 && (i.tm.operand_types[op].bitfield.word
6822 || i.tm.operand_types[op].bitfield.dword))
6823 {
6824 as_bad (_("`%s%s' not allowed with `%s%c'"),
6825 register_prefix,
6826 i.op[op].regs->reg_name,
6827 i.tm.name,
6828 i.suffix);
6829 return 0;
6830 }
6831 /* Warn if the r prefix on a general reg is missing. */
6832 else if ((i.types[op].bitfield.word
6833 || i.types[op].bitfield.dword)
6834 && (i.tm.operand_types[op].bitfield.class == Reg
6835 || i.tm.operand_types[op].bitfield.instance == Accum)
6836 && i.tm.operand_types[op].bitfield.qword)
6837 {
6838 /* Prohibit these changes in the 64bit mode, since the
6839 lowering is more complicated. */
6840 if (intel_syntax
6841 && i.tm.opcode_modifier.todword
6842 && i.types[0].bitfield.class != RegSIMD)
6843 {
6844 /* Convert to DWORD. We don't want REX byte. */
6845 i.suffix = LONG_MNEM_SUFFIX;
6846 }
6847 else
6848 {
6849 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6850 register_prefix, i.op[op].regs->reg_name,
6851 i.suffix);
6852 return 0;
6853 }
6854 }
6855 return 1;
6856 }
6857
6858 static int
6859 check_word_reg (void)
6860 {
6861 int op;
6862 for (op = i.operands; --op >= 0;)
6863 /* Skip non-register operands. */
6864 if (i.types[op].bitfield.class != Reg)
6865 continue;
6866 /* Reject eight bit registers, except where the template requires
6867 them. (eg. movzb) */
6868 else if (i.types[op].bitfield.byte
6869 && (i.tm.operand_types[op].bitfield.class == Reg
6870 || i.tm.operand_types[op].bitfield.instance == Accum)
6871 && (i.tm.operand_types[op].bitfield.word
6872 || i.tm.operand_types[op].bitfield.dword))
6873 {
6874 as_bad (_("`%s%s' not allowed with `%s%c'"),
6875 register_prefix,
6876 i.op[op].regs->reg_name,
6877 i.tm.name,
6878 i.suffix);
6879 return 0;
6880 }
6881 /* Error if the e or r prefix on a general reg is present. */
6882 else if ((i.types[op].bitfield.dword
6883 || i.types[op].bitfield.qword)
6884 && (i.tm.operand_types[op].bitfield.class == Reg
6885 || i.tm.operand_types[op].bitfield.instance == Accum)
6886 && i.tm.operand_types[op].bitfield.word)
6887 {
6888 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6889 register_prefix, i.op[op].regs->reg_name,
6890 i.suffix);
6891 return 0;
6892 }
6893 return 1;
6894 }
6895
6896 static int
6897 update_imm (unsigned int j)
6898 {
6899 i386_operand_type overlap = i.types[j];
6900 if ((overlap.bitfield.imm8
6901 || overlap.bitfield.imm8s
6902 || overlap.bitfield.imm16
6903 || overlap.bitfield.imm32
6904 || overlap.bitfield.imm32s
6905 || overlap.bitfield.imm64)
6906 && !operand_type_equal (&overlap, &imm8)
6907 && !operand_type_equal (&overlap, &imm8s)
6908 && !operand_type_equal (&overlap, &imm16)
6909 && !operand_type_equal (&overlap, &imm32)
6910 && !operand_type_equal (&overlap, &imm32s)
6911 && !operand_type_equal (&overlap, &imm64))
6912 {
6913 if (i.suffix)
6914 {
6915 i386_operand_type temp;
6916
6917 operand_type_set (&temp, 0);
6918 if (i.suffix == BYTE_MNEM_SUFFIX)
6919 {
6920 temp.bitfield.imm8 = overlap.bitfield.imm8;
6921 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6922 }
6923 else if (i.suffix == WORD_MNEM_SUFFIX)
6924 temp.bitfield.imm16 = overlap.bitfield.imm16;
6925 else if (i.suffix == QWORD_MNEM_SUFFIX)
6926 {
6927 temp.bitfield.imm64 = overlap.bitfield.imm64;
6928 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6929 }
6930 else
6931 temp.bitfield.imm32 = overlap.bitfield.imm32;
6932 overlap = temp;
6933 }
6934 else if (operand_type_equal (&overlap, &imm16_32_32s)
6935 || operand_type_equal (&overlap, &imm16_32)
6936 || operand_type_equal (&overlap, &imm16_32s))
6937 {
6938 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6939 overlap = imm16;
6940 else
6941 overlap = imm32s;
6942 }
6943 if (!operand_type_equal (&overlap, &imm8)
6944 && !operand_type_equal (&overlap, &imm8s)
6945 && !operand_type_equal (&overlap, &imm16)
6946 && !operand_type_equal (&overlap, &imm32)
6947 && !operand_type_equal (&overlap, &imm32s)
6948 && !operand_type_equal (&overlap, &imm64))
6949 {
6950 as_bad (_("no instruction mnemonic suffix given; "
6951 "can't determine immediate size"));
6952 return 0;
6953 }
6954 }
6955 i.types[j] = overlap;
6956
6957 return 1;
6958 }
6959
6960 static int
6961 finalize_imm (void)
6962 {
6963 unsigned int j, n;
6964
6965 /* Update the first 2 immediate operands. */
6966 n = i.operands > 2 ? 2 : i.operands;
6967 if (n)
6968 {
6969 for (j = 0; j < n; j++)
6970 if (update_imm (j) == 0)
6971 return 0;
6972
6973 /* The 3rd operand can't be immediate operand. */
6974 gas_assert (operand_type_check (i.types[2], imm) == 0);
6975 }
6976
6977 return 1;
6978 }
6979
6980 static int
6981 process_operands (void)
6982 {
6983 /* Default segment register this instruction will use for memory
6984 accesses. 0 means unknown. This is only for optimizing out
6985 unnecessary segment overrides. */
6986 const seg_entry *default_seg = 0;
6987
6988 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6989 {
6990 unsigned int dupl = i.operands;
6991 unsigned int dest = dupl - 1;
6992 unsigned int j;
6993
6994 /* The destination must be an xmm register. */
6995 gas_assert (i.reg_operands
6996 && MAX_OPERANDS > dupl
6997 && operand_type_equal (&i.types[dest], &regxmm));
6998
6999 if (i.tm.operand_types[0].bitfield.instance == Accum
7000 && i.tm.operand_types[0].bitfield.xmmword)
7001 {
7002 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7003 {
7004 /* Keep xmm0 for instructions with VEX prefix and 3
7005 sources. */
7006 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7007 i.tm.operand_types[0].bitfield.class = RegSIMD;
7008 goto duplicate;
7009 }
7010 else
7011 {
7012 /* We remove the first xmm0 and keep the number of
7013 operands unchanged, which in fact duplicates the
7014 destination. */
7015 for (j = 1; j < i.operands; j++)
7016 {
7017 i.op[j - 1] = i.op[j];
7018 i.types[j - 1] = i.types[j];
7019 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7020 i.flags[j - 1] = i.flags[j];
7021 }
7022 }
7023 }
7024 else if (i.tm.opcode_modifier.implicit1stxmm0)
7025 {
7026 gas_assert ((MAX_OPERANDS - 1) > dupl
7027 && (i.tm.opcode_modifier.vexsources
7028 == VEX3SOURCES));
7029
7030 /* Add the implicit xmm0 for instructions with VEX prefix
7031 and 3 sources. */
7032 for (j = i.operands; j > 0; j--)
7033 {
7034 i.op[j] = i.op[j - 1];
7035 i.types[j] = i.types[j - 1];
7036 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7037 i.flags[j] = i.flags[j - 1];
7038 }
7039 i.op[0].regs
7040 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7041 i.types[0] = regxmm;
7042 i.tm.operand_types[0] = regxmm;
7043
7044 i.operands += 2;
7045 i.reg_operands += 2;
7046 i.tm.operands += 2;
7047
7048 dupl++;
7049 dest++;
7050 i.op[dupl] = i.op[dest];
7051 i.types[dupl] = i.types[dest];
7052 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7053 i.flags[dupl] = i.flags[dest];
7054 }
7055 else
7056 {
7057 duplicate:
7058 i.operands++;
7059 i.reg_operands++;
7060 i.tm.operands++;
7061
7062 i.op[dupl] = i.op[dest];
7063 i.types[dupl] = i.types[dest];
7064 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7065 i.flags[dupl] = i.flags[dest];
7066 }
7067
7068 if (i.tm.opcode_modifier.immext)
7069 process_immext ();
7070 }
7071 else if (i.tm.operand_types[0].bitfield.instance == Accum
7072 && i.tm.operand_types[0].bitfield.xmmword)
7073 {
7074 unsigned int j;
7075
7076 for (j = 1; j < i.operands; j++)
7077 {
7078 i.op[j - 1] = i.op[j];
7079 i.types[j - 1] = i.types[j];
7080
7081 /* We need to adjust fields in i.tm since they are used by
7082 build_modrm_byte. */
7083 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7084
7085 i.flags[j - 1] = i.flags[j];
7086 }
7087
7088 i.operands--;
7089 i.reg_operands--;
7090 i.tm.operands--;
7091 }
7092 else if (i.tm.opcode_modifier.implicitquadgroup)
7093 {
7094 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7095
7096 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7097 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7098 regnum = register_number (i.op[1].regs);
7099 first_reg_in_group = regnum & ~3;
7100 last_reg_in_group = first_reg_in_group + 3;
7101 if (regnum != first_reg_in_group)
7102 as_warn (_("source register `%s%s' implicitly denotes"
7103 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7104 register_prefix, i.op[1].regs->reg_name,
7105 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7106 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7107 i.tm.name);
7108 }
7109 else if (i.tm.opcode_modifier.regkludge)
7110 {
7111 /* The imul $imm, %reg instruction is converted into
7112 imul $imm, %reg, %reg, and the clr %reg instruction
7113 is converted into xor %reg, %reg. */
7114
7115 unsigned int first_reg_op;
7116
7117 if (operand_type_check (i.types[0], reg))
7118 first_reg_op = 0;
7119 else
7120 first_reg_op = 1;
7121 /* Pretend we saw the extra register operand. */
7122 gas_assert (i.reg_operands == 1
7123 && i.op[first_reg_op + 1].regs == 0);
7124 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7125 i.types[first_reg_op + 1] = i.types[first_reg_op];
7126 i.operands++;
7127 i.reg_operands++;
7128 }
7129
7130 if (i.tm.opcode_modifier.modrm)
7131 {
7132 /* The opcode is completed (modulo i.tm.extension_opcode which
7133 must be put into the modrm byte). Now, we make the modrm and
7134 index base bytes based on all the info we've collected. */
7135
7136 default_seg = build_modrm_byte ();
7137 }
7138 else if (i.types[0].bitfield.class == SReg)
7139 {
7140 if (flag_code != CODE_64BIT
7141 ? i.tm.base_opcode == POP_SEG_SHORT
7142 && i.op[0].regs->reg_num == 1
7143 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7144 && i.op[0].regs->reg_num < 4)
7145 {
7146 as_bad (_("you can't `%s %s%s'"),
7147 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7148 return 0;
7149 }
7150 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7151 {
7152 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7153 i.tm.opcode_length = 2;
7154 }
7155 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7156 }
7157 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7158 {
7159 default_seg = &ds;
7160 }
7161 else if (i.tm.opcode_modifier.isstring)
7162 {
7163 /* For the string instructions that allow a segment override
7164 on one of their operands, the default segment is ds. */
7165 default_seg = &ds;
7166 }
7167 else if (i.short_form)
7168 {
7169 /* The register or float register operand is in operand
7170 0 or 1. */
7171 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7172
7173 /* Register goes in low 3 bits of opcode. */
7174 i.tm.base_opcode |= i.op[op].regs->reg_num;
7175 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7176 i.rex |= REX_B;
7177 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7178 {
7179 /* Warn about some common errors, but press on regardless.
7180 The first case can be generated by gcc (<= 2.8.1). */
7181 if (i.operands == 2)
7182 {
7183 /* Reversed arguments on faddp, fsubp, etc. */
7184 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7185 register_prefix, i.op[!intel_syntax].regs->reg_name,
7186 register_prefix, i.op[intel_syntax].regs->reg_name);
7187 }
7188 else
7189 {
7190 /* Extraneous `l' suffix on fp insn. */
7191 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7192 register_prefix, i.op[0].regs->reg_name);
7193 }
7194 }
7195 }
7196
7197 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7198 && i.tm.base_opcode == 0x8d /* lea */
7199 && !is_any_vex_encoding(&i.tm))
7200 {
7201 if (!quiet_warnings)
7202 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7203 if (optimize)
7204 {
7205 i.seg[0] = NULL;
7206 i.prefix[SEG_PREFIX] = 0;
7207 }
7208 }
7209
7210 /* If a segment was explicitly specified, and the specified segment
7211 is neither the default nor the one already recorded from a prefix,
7212 use an opcode prefix to select it. If we never figured out what
7213 the default segment is, then default_seg will be zero at this
7214 point, and the specified segment prefix will always be used. */
7215 if (i.seg[0]
7216 && i.seg[0] != default_seg
7217 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7218 {
7219 if (!add_prefix (i.seg[0]->seg_prefix))
7220 return 0;
7221 }
7222 return 1;
7223 }
7224
7225 static const seg_entry *
7226 build_modrm_byte (void)
7227 {
7228 const seg_entry *default_seg = 0;
7229 unsigned int source, dest;
7230 int vex_3_sources;
7231
7232 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7233 if (vex_3_sources)
7234 {
7235 unsigned int nds, reg_slot;
7236 expressionS *exp;
7237
7238 dest = i.operands - 1;
7239 nds = dest - 1;
7240
7241 /* There are 2 kinds of instructions:
7242 1. 5 operands: 4 register operands or 3 register operands
7243 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7244 VexW0 or VexW1. The destination must be either XMM, YMM or
7245 ZMM register.
7246 2. 4 operands: 4 register operands or 3 register operands
7247 plus 1 memory operand, with VexXDS. */
7248 gas_assert ((i.reg_operands == 4
7249 || (i.reg_operands == 3 && i.mem_operands == 1))
7250 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7251 && i.tm.opcode_modifier.vexw
7252 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7253
7254 /* If VexW1 is set, the first non-immediate operand is the source and
7255 the second non-immediate one is encoded in the immediate operand. */
7256 if (i.tm.opcode_modifier.vexw == VEXW1)
7257 {
7258 source = i.imm_operands;
7259 reg_slot = i.imm_operands + 1;
7260 }
7261 else
7262 {
7263 source = i.imm_operands + 1;
7264 reg_slot = i.imm_operands;
7265 }
7266
7267 if (i.imm_operands == 0)
7268 {
7269 /* When there is no immediate operand, generate an 8bit
7270 immediate operand to encode the first operand. */
7271 exp = &im_expressions[i.imm_operands++];
7272 i.op[i.operands].imms = exp;
7273 i.types[i.operands] = imm8;
7274 i.operands++;
7275
7276 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7277 exp->X_op = O_constant;
7278 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7279 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7280 }
7281 else
7282 {
7283 gas_assert (i.imm_operands == 1);
7284 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7285 gas_assert (!i.tm.opcode_modifier.immext);
7286
7287 /* Turn on Imm8 again so that output_imm will generate it. */
7288 i.types[0].bitfield.imm8 = 1;
7289
7290 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7291 i.op[0].imms->X_add_number
7292 |= register_number (i.op[reg_slot].regs) << 4;
7293 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7294 }
7295
7296 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7297 i.vex.register_specifier = i.op[nds].regs;
7298 }
7299 else
7300 source = dest = 0;
7301
7302 /* i.reg_operands MUST be the number of real register operands;
7303 implicit registers do not count. If there are 3 register
7304 operands, it must be a instruction with VexNDS. For a
7305 instruction with VexNDD, the destination register is encoded
7306 in VEX prefix. If there are 4 register operands, it must be
7307 a instruction with VEX prefix and 3 sources. */
7308 if (i.mem_operands == 0
7309 && ((i.reg_operands == 2
7310 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7311 || (i.reg_operands == 3
7312 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7313 || (i.reg_operands == 4 && vex_3_sources)))
7314 {
7315 switch (i.operands)
7316 {
7317 case 2:
7318 source = 0;
7319 break;
7320 case 3:
7321 /* When there are 3 operands, one of them may be immediate,
7322 which may be the first or the last operand. Otherwise,
7323 the first operand must be shift count register (cl) or it
7324 is an instruction with VexNDS. */
7325 gas_assert (i.imm_operands == 1
7326 || (i.imm_operands == 0
7327 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7328 || (i.types[0].bitfield.instance == RegC
7329 && i.types[0].bitfield.byte))));
7330 if (operand_type_check (i.types[0], imm)
7331 || (i.types[0].bitfield.instance == RegC
7332 && i.types[0].bitfield.byte))
7333 source = 1;
7334 else
7335 source = 0;
7336 break;
7337 case 4:
7338 /* When there are 4 operands, the first two must be 8bit
7339 immediate operands. The source operand will be the 3rd
7340 one.
7341
7342 For instructions with VexNDS, if the first operand
7343 an imm8, the source operand is the 2nd one. If the last
7344 operand is imm8, the source operand is the first one. */
7345 gas_assert ((i.imm_operands == 2
7346 && i.types[0].bitfield.imm8
7347 && i.types[1].bitfield.imm8)
7348 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7349 && i.imm_operands == 1
7350 && (i.types[0].bitfield.imm8
7351 || i.types[i.operands - 1].bitfield.imm8
7352 || i.rounding)));
7353 if (i.imm_operands == 2)
7354 source = 2;
7355 else
7356 {
7357 if (i.types[0].bitfield.imm8)
7358 source = 1;
7359 else
7360 source = 0;
7361 }
7362 break;
7363 case 5:
7364 if (is_evex_encoding (&i.tm))
7365 {
7366 /* For EVEX instructions, when there are 5 operands, the
7367 first one must be immediate operand. If the second one
7368 is immediate operand, the source operand is the 3th
7369 one. If the last one is immediate operand, the source
7370 operand is the 2nd one. */
7371 gas_assert (i.imm_operands == 2
7372 && i.tm.opcode_modifier.sae
7373 && operand_type_check (i.types[0], imm));
7374 if (operand_type_check (i.types[1], imm))
7375 source = 2;
7376 else if (operand_type_check (i.types[4], imm))
7377 source = 1;
7378 else
7379 abort ();
7380 }
7381 break;
7382 default:
7383 abort ();
7384 }
7385
7386 if (!vex_3_sources)
7387 {
7388 dest = source + 1;
7389
7390 /* RC/SAE operand could be between DEST and SRC. That happens
7391 when one operand is GPR and the other one is XMM/YMM/ZMM
7392 register. */
7393 if (i.rounding && i.rounding->operand == (int) dest)
7394 dest++;
7395
7396 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7397 {
7398 /* For instructions with VexNDS, the register-only source
7399 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7400 register. It is encoded in VEX prefix. */
7401
7402 i386_operand_type op;
7403 unsigned int vvvv;
7404
7405 /* Check register-only source operand when two source
7406 operands are swapped. */
7407 if (!i.tm.operand_types[source].bitfield.baseindex
7408 && i.tm.operand_types[dest].bitfield.baseindex)
7409 {
7410 vvvv = source;
7411 source = dest;
7412 }
7413 else
7414 vvvv = dest;
7415
7416 op = i.tm.operand_types[vvvv];
7417 if ((dest + 1) >= i.operands
7418 || ((op.bitfield.class != Reg
7419 || (!op.bitfield.dword && !op.bitfield.qword))
7420 && op.bitfield.class != RegSIMD
7421 && !operand_type_equal (&op, &regmask)))
7422 abort ();
7423 i.vex.register_specifier = i.op[vvvv].regs;
7424 dest++;
7425 }
7426 }
7427
7428 i.rm.mode = 3;
7429 /* One of the register operands will be encoded in the i.rm.reg
7430 field, the other in the combined i.rm.mode and i.rm.regmem
7431 fields. If no form of this instruction supports a memory
7432 destination operand, then we assume the source operand may
7433 sometimes be a memory operand and so we need to store the
7434 destination in the i.rm.reg field. */
7435 if (!i.tm.opcode_modifier.regmem
7436 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7437 {
7438 i.rm.reg = i.op[dest].regs->reg_num;
7439 i.rm.regmem = i.op[source].regs->reg_num;
7440 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7441 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7442 i.has_regmmx = TRUE;
7443 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7444 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7445 {
7446 if (i.types[dest].bitfield.zmmword
7447 || i.types[source].bitfield.zmmword)
7448 i.has_regzmm = TRUE;
7449 else if (i.types[dest].bitfield.ymmword
7450 || i.types[source].bitfield.ymmword)
7451 i.has_regymm = TRUE;
7452 else
7453 i.has_regxmm = TRUE;
7454 }
7455 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7456 i.rex |= REX_R;
7457 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7458 i.vrex |= REX_R;
7459 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7460 i.rex |= REX_B;
7461 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7462 i.vrex |= REX_B;
7463 }
7464 else
7465 {
7466 i.rm.reg = i.op[source].regs->reg_num;
7467 i.rm.regmem = i.op[dest].regs->reg_num;
7468 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7469 i.rex |= REX_B;
7470 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7471 i.vrex |= REX_B;
7472 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7473 i.rex |= REX_R;
7474 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7475 i.vrex |= REX_R;
7476 }
7477 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7478 {
7479 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7480 abort ();
7481 i.rex &= ~REX_R;
7482 add_prefix (LOCK_PREFIX_OPCODE);
7483 }
7484 }
7485 else
7486 { /* If it's not 2 reg operands... */
7487 unsigned int mem;
7488
7489 if (i.mem_operands)
7490 {
7491 unsigned int fake_zero_displacement = 0;
7492 unsigned int op;
7493
7494 for (op = 0; op < i.operands; op++)
7495 if (i.flags[op] & Operand_Mem)
7496 break;
7497 gas_assert (op < i.operands);
7498
7499 if (i.tm.opcode_modifier.vecsib)
7500 {
7501 if (i.index_reg->reg_num == RegIZ)
7502 abort ();
7503
7504 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7505 if (!i.base_reg)
7506 {
7507 i.sib.base = NO_BASE_REGISTER;
7508 i.sib.scale = i.log2_scale_factor;
7509 i.types[op].bitfield.disp8 = 0;
7510 i.types[op].bitfield.disp16 = 0;
7511 i.types[op].bitfield.disp64 = 0;
7512 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7513 {
7514 /* Must be 32 bit */
7515 i.types[op].bitfield.disp32 = 1;
7516 i.types[op].bitfield.disp32s = 0;
7517 }
7518 else
7519 {
7520 i.types[op].bitfield.disp32 = 0;
7521 i.types[op].bitfield.disp32s = 1;
7522 }
7523 }
7524 i.sib.index = i.index_reg->reg_num;
7525 if ((i.index_reg->reg_flags & RegRex) != 0)
7526 i.rex |= REX_X;
7527 if ((i.index_reg->reg_flags & RegVRex) != 0)
7528 i.vrex |= REX_X;
7529 }
7530
7531 default_seg = &ds;
7532
7533 if (i.base_reg == 0)
7534 {
7535 i.rm.mode = 0;
7536 if (!i.disp_operands)
7537 fake_zero_displacement = 1;
7538 if (i.index_reg == 0)
7539 {
7540 i386_operand_type newdisp;
7541
7542 gas_assert (!i.tm.opcode_modifier.vecsib);
7543 /* Operand is just <disp> */
7544 if (flag_code == CODE_64BIT)
7545 {
7546 /* 64bit mode overwrites the 32bit absolute
7547 addressing by RIP relative addressing and
7548 absolute addressing is encoded by one of the
7549 redundant SIB forms. */
7550 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7551 i.sib.base = NO_BASE_REGISTER;
7552 i.sib.index = NO_INDEX_REGISTER;
7553 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7554 }
7555 else if ((flag_code == CODE_16BIT)
7556 ^ (i.prefix[ADDR_PREFIX] != 0))
7557 {
7558 i.rm.regmem = NO_BASE_REGISTER_16;
7559 newdisp = disp16;
7560 }
7561 else
7562 {
7563 i.rm.regmem = NO_BASE_REGISTER;
7564 newdisp = disp32;
7565 }
7566 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7567 i.types[op] = operand_type_or (i.types[op], newdisp);
7568 }
7569 else if (!i.tm.opcode_modifier.vecsib)
7570 {
7571 /* !i.base_reg && i.index_reg */
7572 if (i.index_reg->reg_num == RegIZ)
7573 i.sib.index = NO_INDEX_REGISTER;
7574 else
7575 i.sib.index = i.index_reg->reg_num;
7576 i.sib.base = NO_BASE_REGISTER;
7577 i.sib.scale = i.log2_scale_factor;
7578 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7579 i.types[op].bitfield.disp8 = 0;
7580 i.types[op].bitfield.disp16 = 0;
7581 i.types[op].bitfield.disp64 = 0;
7582 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7583 {
7584 /* Must be 32 bit */
7585 i.types[op].bitfield.disp32 = 1;
7586 i.types[op].bitfield.disp32s = 0;
7587 }
7588 else
7589 {
7590 i.types[op].bitfield.disp32 = 0;
7591 i.types[op].bitfield.disp32s = 1;
7592 }
7593 if ((i.index_reg->reg_flags & RegRex) != 0)
7594 i.rex |= REX_X;
7595 }
7596 }
7597 /* RIP addressing for 64bit mode. */
7598 else if (i.base_reg->reg_num == RegIP)
7599 {
7600 gas_assert (!i.tm.opcode_modifier.vecsib);
7601 i.rm.regmem = NO_BASE_REGISTER;
7602 i.types[op].bitfield.disp8 = 0;
7603 i.types[op].bitfield.disp16 = 0;
7604 i.types[op].bitfield.disp32 = 0;
7605 i.types[op].bitfield.disp32s = 1;
7606 i.types[op].bitfield.disp64 = 0;
7607 i.flags[op] |= Operand_PCrel;
7608 if (! i.disp_operands)
7609 fake_zero_displacement = 1;
7610 }
7611 else if (i.base_reg->reg_type.bitfield.word)
7612 {
7613 gas_assert (!i.tm.opcode_modifier.vecsib);
7614 switch (i.base_reg->reg_num)
7615 {
7616 case 3: /* (%bx) */
7617 if (i.index_reg == 0)
7618 i.rm.regmem = 7;
7619 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7620 i.rm.regmem = i.index_reg->reg_num - 6;
7621 break;
7622 case 5: /* (%bp) */
7623 default_seg = &ss;
7624 if (i.index_reg == 0)
7625 {
7626 i.rm.regmem = 6;
7627 if (operand_type_check (i.types[op], disp) == 0)
7628 {
7629 /* fake (%bp) into 0(%bp) */
7630 i.types[op].bitfield.disp8 = 1;
7631 fake_zero_displacement = 1;
7632 }
7633 }
7634 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7635 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7636 break;
7637 default: /* (%si) -> 4 or (%di) -> 5 */
7638 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7639 }
7640 i.rm.mode = mode_from_disp_size (i.types[op]);
7641 }
7642 else /* i.base_reg and 32/64 bit mode */
7643 {
7644 if (flag_code == CODE_64BIT
7645 && operand_type_check (i.types[op], disp))
7646 {
7647 i.types[op].bitfield.disp16 = 0;
7648 i.types[op].bitfield.disp64 = 0;
7649 if (i.prefix[ADDR_PREFIX] == 0)
7650 {
7651 i.types[op].bitfield.disp32 = 0;
7652 i.types[op].bitfield.disp32s = 1;
7653 }
7654 else
7655 {
7656 i.types[op].bitfield.disp32 = 1;
7657 i.types[op].bitfield.disp32s = 0;
7658 }
7659 }
7660
7661 if (!i.tm.opcode_modifier.vecsib)
7662 i.rm.regmem = i.base_reg->reg_num;
7663 if ((i.base_reg->reg_flags & RegRex) != 0)
7664 i.rex |= REX_B;
7665 i.sib.base = i.base_reg->reg_num;
7666 /* x86-64 ignores REX prefix bit here to avoid decoder
7667 complications. */
7668 if (!(i.base_reg->reg_flags & RegRex)
7669 && (i.base_reg->reg_num == EBP_REG_NUM
7670 || i.base_reg->reg_num == ESP_REG_NUM))
7671 default_seg = &ss;
7672 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7673 {
7674 fake_zero_displacement = 1;
7675 i.types[op].bitfield.disp8 = 1;
7676 }
7677 i.sib.scale = i.log2_scale_factor;
7678 if (i.index_reg == 0)
7679 {
7680 gas_assert (!i.tm.opcode_modifier.vecsib);
7681 /* <disp>(%esp) becomes two byte modrm with no index
7682 register. We've already stored the code for esp
7683 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7684 Any base register besides %esp will not use the
7685 extra modrm byte. */
7686 i.sib.index = NO_INDEX_REGISTER;
7687 }
7688 else if (!i.tm.opcode_modifier.vecsib)
7689 {
7690 if (i.index_reg->reg_num == RegIZ)
7691 i.sib.index = NO_INDEX_REGISTER;
7692 else
7693 i.sib.index = i.index_reg->reg_num;
7694 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7695 if ((i.index_reg->reg_flags & RegRex) != 0)
7696 i.rex |= REX_X;
7697 }
7698
7699 if (i.disp_operands
7700 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7701 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7702 i.rm.mode = 0;
7703 else
7704 {
7705 if (!fake_zero_displacement
7706 && !i.disp_operands
7707 && i.disp_encoding)
7708 {
7709 fake_zero_displacement = 1;
7710 if (i.disp_encoding == disp_encoding_8bit)
7711 i.types[op].bitfield.disp8 = 1;
7712 else
7713 i.types[op].bitfield.disp32 = 1;
7714 }
7715 i.rm.mode = mode_from_disp_size (i.types[op]);
7716 }
7717 }
7718
7719 if (fake_zero_displacement)
7720 {
7721 /* Fakes a zero displacement assuming that i.types[op]
7722 holds the correct displacement size. */
7723 expressionS *exp;
7724
7725 gas_assert (i.op[op].disps == 0);
7726 exp = &disp_expressions[i.disp_operands++];
7727 i.op[op].disps = exp;
7728 exp->X_op = O_constant;
7729 exp->X_add_number = 0;
7730 exp->X_add_symbol = (symbolS *) 0;
7731 exp->X_op_symbol = (symbolS *) 0;
7732 }
7733
7734 mem = op;
7735 }
7736 else
7737 mem = ~0;
7738
7739 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7740 {
7741 if (operand_type_check (i.types[0], imm))
7742 i.vex.register_specifier = NULL;
7743 else
7744 {
7745 /* VEX.vvvv encodes one of the sources when the first
7746 operand is not an immediate. */
7747 if (i.tm.opcode_modifier.vexw == VEXW0)
7748 i.vex.register_specifier = i.op[0].regs;
7749 else
7750 i.vex.register_specifier = i.op[1].regs;
7751 }
7752
7753 /* Destination is a XMM register encoded in the ModRM.reg
7754 and VEX.R bit. */
7755 i.rm.reg = i.op[2].regs->reg_num;
7756 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7757 i.rex |= REX_R;
7758
7759 /* ModRM.rm and VEX.B encodes the other source. */
7760 if (!i.mem_operands)
7761 {
7762 i.rm.mode = 3;
7763
7764 if (i.tm.opcode_modifier.vexw == VEXW0)
7765 i.rm.regmem = i.op[1].regs->reg_num;
7766 else
7767 i.rm.regmem = i.op[0].regs->reg_num;
7768
7769 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7770 i.rex |= REX_B;
7771 }
7772 }
7773 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7774 {
7775 i.vex.register_specifier = i.op[2].regs;
7776 if (!i.mem_operands)
7777 {
7778 i.rm.mode = 3;
7779 i.rm.regmem = i.op[1].regs->reg_num;
7780 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7781 i.rex |= REX_B;
7782 }
7783 }
7784 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7785 (if any) based on i.tm.extension_opcode. Again, we must be
7786 careful to make sure that segment/control/debug/test/MMX
7787 registers are coded into the i.rm.reg field. */
7788 else if (i.reg_operands)
7789 {
7790 unsigned int op;
7791 unsigned int vex_reg = ~0;
7792
7793 for (op = 0; op < i.operands; op++)
7794 {
7795 if (i.types[op].bitfield.class == Reg
7796 || i.types[op].bitfield.class == RegBND
7797 || i.types[op].bitfield.class == RegMask
7798 || i.types[op].bitfield.class == SReg
7799 || i.types[op].bitfield.class == RegCR
7800 || i.types[op].bitfield.class == RegDR
7801 || i.types[op].bitfield.class == RegTR)
7802 break;
7803 if (i.types[op].bitfield.class == RegSIMD)
7804 {
7805 if (i.types[op].bitfield.zmmword)
7806 i.has_regzmm = TRUE;
7807 else if (i.types[op].bitfield.ymmword)
7808 i.has_regymm = TRUE;
7809 else
7810 i.has_regxmm = TRUE;
7811 break;
7812 }
7813 if (i.types[op].bitfield.class == RegMMX)
7814 {
7815 i.has_regmmx = TRUE;
7816 break;
7817 }
7818 }
7819
7820 if (vex_3_sources)
7821 op = dest;
7822 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7823 {
7824 /* For instructions with VexNDS, the register-only
7825 source operand is encoded in VEX prefix. */
7826 gas_assert (mem != (unsigned int) ~0);
7827
7828 if (op > mem)
7829 {
7830 vex_reg = op++;
7831 gas_assert (op < i.operands);
7832 }
7833 else
7834 {
7835 /* Check register-only source operand when two source
7836 operands are swapped. */
7837 if (!i.tm.operand_types[op].bitfield.baseindex
7838 && i.tm.operand_types[op + 1].bitfield.baseindex)
7839 {
7840 vex_reg = op;
7841 op += 2;
7842 gas_assert (mem == (vex_reg + 1)
7843 && op < i.operands);
7844 }
7845 else
7846 {
7847 vex_reg = op + 1;
7848 gas_assert (vex_reg < i.operands);
7849 }
7850 }
7851 }
7852 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7853 {
7854 /* For instructions with VexNDD, the register destination
7855 is encoded in VEX prefix. */
7856 if (i.mem_operands == 0)
7857 {
7858 /* There is no memory operand. */
7859 gas_assert ((op + 2) == i.operands);
7860 vex_reg = op + 1;
7861 }
7862 else
7863 {
7864 /* There are only 2 non-immediate operands. */
7865 gas_assert (op < i.imm_operands + 2
7866 && i.operands == i.imm_operands + 2);
7867 vex_reg = i.imm_operands + 1;
7868 }
7869 }
7870 else
7871 gas_assert (op < i.operands);
7872
7873 if (vex_reg != (unsigned int) ~0)
7874 {
7875 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7876
7877 if ((type->bitfield.class != Reg
7878 || (!type->bitfield.dword && !type->bitfield.qword))
7879 && type->bitfield.class != RegSIMD
7880 && !operand_type_equal (type, &regmask))
7881 abort ();
7882
7883 i.vex.register_specifier = i.op[vex_reg].regs;
7884 }
7885
7886 /* Don't set OP operand twice. */
7887 if (vex_reg != op)
7888 {
7889 /* If there is an extension opcode to put here, the
7890 register number must be put into the regmem field. */
7891 if (i.tm.extension_opcode != None)
7892 {
7893 i.rm.regmem = i.op[op].regs->reg_num;
7894 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7895 i.rex |= REX_B;
7896 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7897 i.vrex |= REX_B;
7898 }
7899 else
7900 {
7901 i.rm.reg = i.op[op].regs->reg_num;
7902 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7903 i.rex |= REX_R;
7904 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7905 i.vrex |= REX_R;
7906 }
7907 }
7908
7909 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7910 must set it to 3 to indicate this is a register operand
7911 in the regmem field. */
7912 if (!i.mem_operands)
7913 i.rm.mode = 3;
7914 }
7915
7916 /* Fill in i.rm.reg field with extension opcode (if any). */
7917 if (i.tm.extension_opcode != None)
7918 i.rm.reg = i.tm.extension_opcode;
7919 }
7920 return default_seg;
7921 }
7922
7923 static unsigned int
7924 flip_code16 (unsigned int code16)
7925 {
7926 gas_assert (i.tm.operands == 1);
7927
7928 return !(i.prefix[REX_PREFIX] & REX_W)
7929 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7930 || i.tm.operand_types[0].bitfield.disp32s
7931 : i.tm.operand_types[0].bitfield.disp16)
7932 ? CODE16 : 0;
7933 }
7934
7935 static void
7936 output_branch (void)
7937 {
7938 char *p;
7939 int size;
7940 int code16;
7941 int prefix;
7942 relax_substateT subtype;
7943 symbolS *sym;
7944 offsetT off;
7945
7946 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7947 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7948
7949 prefix = 0;
7950 if (i.prefix[DATA_PREFIX] != 0)
7951 {
7952 prefix = 1;
7953 i.prefixes -= 1;
7954 code16 ^= flip_code16(code16);
7955 }
7956 /* Pentium4 branch hints. */
7957 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7958 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7959 {
7960 prefix++;
7961 i.prefixes--;
7962 }
7963 if (i.prefix[REX_PREFIX] != 0)
7964 {
7965 prefix++;
7966 i.prefixes--;
7967 }
7968
7969 /* BND prefixed jump. */
7970 if (i.prefix[BND_PREFIX] != 0)
7971 {
7972 prefix++;
7973 i.prefixes--;
7974 }
7975
7976 if (i.prefixes != 0)
7977 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7978
7979 /* It's always a symbol; End frag & setup for relax.
7980 Make sure there is enough room in this frag for the largest
7981 instruction we may generate in md_convert_frag. This is 2
7982 bytes for the opcode and room for the prefix and largest
7983 displacement. */
7984 frag_grow (prefix + 2 + 4);
7985 /* Prefix and 1 opcode byte go in fr_fix. */
7986 p = frag_more (prefix + 1);
7987 if (i.prefix[DATA_PREFIX] != 0)
7988 *p++ = DATA_PREFIX_OPCODE;
7989 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7990 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7991 *p++ = i.prefix[SEG_PREFIX];
7992 if (i.prefix[BND_PREFIX] != 0)
7993 *p++ = BND_PREFIX_OPCODE;
7994 if (i.prefix[REX_PREFIX] != 0)
7995 *p++ = i.prefix[REX_PREFIX];
7996 *p = i.tm.base_opcode;
7997
7998 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7999 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8000 else if (cpu_arch_flags.bitfield.cpui386)
8001 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8002 else
8003 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8004 subtype |= code16;
8005
8006 sym = i.op[0].disps->X_add_symbol;
8007 off = i.op[0].disps->X_add_number;
8008
8009 if (i.op[0].disps->X_op != O_constant
8010 && i.op[0].disps->X_op != O_symbol)
8011 {
8012 /* Handle complex expressions. */
8013 sym = make_expr_symbol (i.op[0].disps);
8014 off = 0;
8015 }
8016
8017 /* 1 possible extra opcode + 4 byte displacement go in var part.
8018 Pass reloc in fr_var. */
8019 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8020 }
8021
8022 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8023 /* Return TRUE iff PLT32 relocation should be used for branching to
8024 symbol S. */
8025
8026 static bfd_boolean
8027 need_plt32_p (symbolS *s)
8028 {
8029 /* PLT32 relocation is ELF only. */
8030 if (!IS_ELF)
8031 return FALSE;
8032
8033 #ifdef TE_SOLARIS
8034 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8035 krtld support it. */
8036 return FALSE;
8037 #endif
8038
8039 /* Since there is no need to prepare for PLT branch on x86-64, we
8040 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8041 be used as a marker for 32-bit PC-relative branches. */
8042 if (!object_64bit)
8043 return FALSE;
8044
8045 /* Weak or undefined symbol need PLT32 relocation. */
8046 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8047 return TRUE;
8048
8049 /* Non-global symbol doesn't need PLT32 relocation. */
8050 if (! S_IS_EXTERNAL (s))
8051 return FALSE;
8052
8053 /* Other global symbols need PLT32 relocation. NB: Symbol with
8054 non-default visibilities are treated as normal global symbol
8055 so that PLT32 relocation can be used as a marker for 32-bit
8056 PC-relative branches. It is useful for linker relaxation. */
8057 return TRUE;
8058 }
8059 #endif
8060
8061 static void
8062 output_jump (void)
8063 {
8064 char *p;
8065 int size;
8066 fixS *fixP;
8067 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8068
8069 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8070 {
8071 /* This is a loop or jecxz type instruction. */
8072 size = 1;
8073 if (i.prefix[ADDR_PREFIX] != 0)
8074 {
8075 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8076 i.prefixes -= 1;
8077 }
8078 /* Pentium4 branch hints. */
8079 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8080 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8081 {
8082 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8083 i.prefixes--;
8084 }
8085 }
8086 else
8087 {
8088 int code16;
8089
8090 code16 = 0;
8091 if (flag_code == CODE_16BIT)
8092 code16 = CODE16;
8093
8094 if (i.prefix[DATA_PREFIX] != 0)
8095 {
8096 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8097 i.prefixes -= 1;
8098 code16 ^= flip_code16(code16);
8099 }
8100
8101 size = 4;
8102 if (code16)
8103 size = 2;
8104 }
8105
8106 /* BND prefixed jump. */
8107 if (i.prefix[BND_PREFIX] != 0)
8108 {
8109 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8110 i.prefixes -= 1;
8111 }
8112
8113 if (i.prefix[REX_PREFIX] != 0)
8114 {
8115 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8116 i.prefixes -= 1;
8117 }
8118
8119 if (i.prefixes != 0)
8120 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8121
8122 p = frag_more (i.tm.opcode_length + size);
8123 switch (i.tm.opcode_length)
8124 {
8125 case 2:
8126 *p++ = i.tm.base_opcode >> 8;
8127 /* Fall through. */
8128 case 1:
8129 *p++ = i.tm.base_opcode;
8130 break;
8131 default:
8132 abort ();
8133 }
8134
8135 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8136 if (size == 4
8137 && jump_reloc == NO_RELOC
8138 && need_plt32_p (i.op[0].disps->X_add_symbol))
8139 jump_reloc = BFD_RELOC_X86_64_PLT32;
8140 #endif
8141
8142 jump_reloc = reloc (size, 1, 1, jump_reloc);
8143
8144 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8145 i.op[0].disps, 1, jump_reloc);
8146
8147 /* All jumps handled here are signed, but don't use a signed limit
8148 check for 32 and 16 bit jumps as we want to allow wrap around at
8149 4G and 64k respectively. */
8150 if (size == 1)
8151 fixP->fx_signed = 1;
8152 }
8153
8154 static void
8155 output_interseg_jump (void)
8156 {
8157 char *p;
8158 int size;
8159 int prefix;
8160 int code16;
8161
8162 code16 = 0;
8163 if (flag_code == CODE_16BIT)
8164 code16 = CODE16;
8165
8166 prefix = 0;
8167 if (i.prefix[DATA_PREFIX] != 0)
8168 {
8169 prefix = 1;
8170 i.prefixes -= 1;
8171 code16 ^= CODE16;
8172 }
8173
8174 gas_assert (!i.prefix[REX_PREFIX]);
8175
8176 size = 4;
8177 if (code16)
8178 size = 2;
8179
8180 if (i.prefixes != 0)
8181 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8182
8183 /* 1 opcode; 2 segment; offset */
8184 p = frag_more (prefix + 1 + 2 + size);
8185
8186 if (i.prefix[DATA_PREFIX] != 0)
8187 *p++ = DATA_PREFIX_OPCODE;
8188
8189 if (i.prefix[REX_PREFIX] != 0)
8190 *p++ = i.prefix[REX_PREFIX];
8191
8192 *p++ = i.tm.base_opcode;
8193 if (i.op[1].imms->X_op == O_constant)
8194 {
8195 offsetT n = i.op[1].imms->X_add_number;
8196
8197 if (size == 2
8198 && !fits_in_unsigned_word (n)
8199 && !fits_in_signed_word (n))
8200 {
8201 as_bad (_("16-bit jump out of range"));
8202 return;
8203 }
8204 md_number_to_chars (p, n, size);
8205 }
8206 else
8207 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8208 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8209 if (i.op[0].imms->X_op != O_constant)
8210 as_bad (_("can't handle non absolute segment in `%s'"),
8211 i.tm.name);
8212 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8213 }
8214
8215 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8216 void
8217 x86_cleanup (void)
8218 {
8219 char *p;
8220 asection *seg = now_seg;
8221 subsegT subseg = now_subseg;
8222 asection *sec;
8223 unsigned int alignment, align_size_1;
8224 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8225 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8226 unsigned int padding;
8227
8228 if (!IS_ELF || !x86_used_note)
8229 return;
8230
8231 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8232
8233 /* The .note.gnu.property section layout:
8234
8235 Field Length Contents
8236 ---- ---- ----
8237 n_namsz 4 4
8238 n_descsz 4 The note descriptor size
8239 n_type 4 NT_GNU_PROPERTY_TYPE_0
8240 n_name 4 "GNU"
8241 n_desc n_descsz The program property array
8242 .... .... ....
8243 */
8244
8245 /* Create the .note.gnu.property section. */
8246 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8247 bfd_set_section_flags (sec,
8248 (SEC_ALLOC
8249 | SEC_LOAD
8250 | SEC_DATA
8251 | SEC_HAS_CONTENTS
8252 | SEC_READONLY));
8253
8254 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8255 {
8256 align_size_1 = 7;
8257 alignment = 3;
8258 }
8259 else
8260 {
8261 align_size_1 = 3;
8262 alignment = 2;
8263 }
8264
8265 bfd_set_section_alignment (sec, alignment);
8266 elf_section_type (sec) = SHT_NOTE;
8267
8268 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8269 + 4-byte data */
8270 isa_1_descsz_raw = 4 + 4 + 4;
8271 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8272 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8273
8274 feature_2_descsz_raw = isa_1_descsz;
8275 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8276 + 4-byte data */
8277 feature_2_descsz_raw += 4 + 4 + 4;
8278 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8279 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8280 & ~align_size_1);
8281
8282 descsz = feature_2_descsz;
8283 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8284 p = frag_more (4 + 4 + 4 + 4 + descsz);
8285
8286 /* Write n_namsz. */
8287 md_number_to_chars (p, (valueT) 4, 4);
8288
8289 /* Write n_descsz. */
8290 md_number_to_chars (p + 4, (valueT) descsz, 4);
8291
8292 /* Write n_type. */
8293 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8294
8295 /* Write n_name. */
8296 memcpy (p + 4 * 3, "GNU", 4);
8297
8298 /* Write 4-byte type. */
8299 md_number_to_chars (p + 4 * 4,
8300 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8301
8302 /* Write 4-byte data size. */
8303 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8304
8305 /* Write 4-byte data. */
8306 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8307
8308 /* Zero out paddings. */
8309 padding = isa_1_descsz - isa_1_descsz_raw;
8310 if (padding)
8311 memset (p + 4 * 7, 0, padding);
8312
8313 /* Write 4-byte type. */
8314 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8315 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8316
8317 /* Write 4-byte data size. */
8318 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8319
8320 /* Write 4-byte data. */
8321 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8322 (valueT) x86_feature_2_used, 4);
8323
8324 /* Zero out paddings. */
8325 padding = feature_2_descsz - feature_2_descsz_raw;
8326 if (padding)
8327 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8328
8329 /* We probably can't restore the current segment, for there likely
8330 isn't one yet... */
8331 if (seg && subseg)
8332 subseg_set (seg, subseg);
8333 }
8334 #endif
8335
8336 static unsigned int
8337 encoding_length (const fragS *start_frag, offsetT start_off,
8338 const char *frag_now_ptr)
8339 {
8340 unsigned int len = 0;
8341
8342 if (start_frag != frag_now)
8343 {
8344 const fragS *fr = start_frag;
8345
8346 do {
8347 len += fr->fr_fix;
8348 fr = fr->fr_next;
8349 } while (fr && fr != frag_now);
8350 }
8351
8352 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8353 }
8354
8355 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8356 be macro-fused with conditional jumps. */
8357
8358 static int
8359 maybe_fused_with_jcc_p (void)
8360 {
8361 /* No RIP address. */
8362 if (i.base_reg && i.base_reg->reg_num == RegIP)
8363 return 0;
8364
8365 /* No VEX/EVEX encoding. */
8366 if (is_any_vex_encoding (&i.tm))
8367 return 0;
8368
8369 /* and, add, sub with destination register. */
8370 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8371 || i.tm.base_opcode <= 5
8372 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8373 || ((i.tm.base_opcode | 3) == 0x83
8374 && ((i.tm.extension_opcode | 1) == 0x5
8375 || i.tm.extension_opcode == 0x0)))
8376 return (i.types[1].bitfield.class == Reg
8377 || i.types[1].bitfield.instance == Accum);
8378
8379 /* test, cmp with any register. */
8380 if ((i.tm.base_opcode | 1) == 0x85
8381 || (i.tm.base_opcode | 1) == 0xa9
8382 || ((i.tm.base_opcode | 1) == 0xf7
8383 && i.tm.extension_opcode == 0)
8384 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8385 || ((i.tm.base_opcode | 3) == 0x83
8386 && (i.tm.extension_opcode == 0x7)))
8387 return (i.types[0].bitfield.class == Reg
8388 || i.types[0].bitfield.instance == Accum
8389 || i.types[1].bitfield.class == Reg
8390 || i.types[1].bitfield.instance == Accum);
8391
8392 /* inc, dec with any register. */
8393 if ((i.tm.cpu_flags.bitfield.cpuno64
8394 && (i.tm.base_opcode | 0xf) == 0x4f)
8395 || ((i.tm.base_opcode | 1) == 0xff
8396 && i.tm.extension_opcode <= 0x1))
8397 return (i.types[0].bitfield.class == Reg
8398 || i.types[0].bitfield.instance == Accum);
8399
8400 return 0;
8401 }
8402
8403 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8404
8405 static int
8406 add_fused_jcc_padding_frag_p (void)
8407 {
8408 /* NB: Don't work with COND_JUMP86 without i386. */
8409 if (!align_branch_power
8410 || now_seg == absolute_section
8411 || !cpu_arch_flags.bitfield.cpui386
8412 || !(align_branch & align_branch_fused_bit))
8413 return 0;
8414
8415 if (maybe_fused_with_jcc_p ())
8416 {
8417 if (last_insn.kind == last_insn_other
8418 || last_insn.seg != now_seg)
8419 return 1;
8420 if (flag_debug)
8421 as_warn_where (last_insn.file, last_insn.line,
8422 _("`%s` skips -malign-branch-boundary on `%s`"),
8423 last_insn.name, i.tm.name);
8424 }
8425
8426 return 0;
8427 }
8428
8429 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8430
8431 static int
8432 add_branch_prefix_frag_p (void)
8433 {
8434 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8435 to PadLock instructions since they include prefixes in opcode. */
8436 if (!align_branch_power
8437 || !align_branch_prefix_size
8438 || now_seg == absolute_section
8439 || i.tm.cpu_flags.bitfield.cpupadlock
8440 || !cpu_arch_flags.bitfield.cpui386)
8441 return 0;
8442
8443 /* Don't add prefix if it is a prefix or there is no operand in case
8444 that segment prefix is special. */
8445 if (!i.operands || i.tm.opcode_modifier.isprefix)
8446 return 0;
8447
8448 if (last_insn.kind == last_insn_other
8449 || last_insn.seg != now_seg)
8450 return 1;
8451
8452 if (flag_debug)
8453 as_warn_where (last_insn.file, last_insn.line,
8454 _("`%s` skips -malign-branch-boundary on `%s`"),
8455 last_insn.name, i.tm.name);
8456
8457 return 0;
8458 }
8459
8460 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8461
8462 static int
8463 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8464 {
8465 int add_padding;
8466
8467 /* NB: Don't work with COND_JUMP86 without i386. */
8468 if (!align_branch_power
8469 || now_seg == absolute_section
8470 || !cpu_arch_flags.bitfield.cpui386)
8471 return 0;
8472
8473 add_padding = 0;
8474
8475 /* Check for jcc and direct jmp. */
8476 if (i.tm.opcode_modifier.jump == JUMP)
8477 {
8478 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8479 {
8480 *branch_p = align_branch_jmp;
8481 add_padding = align_branch & align_branch_jmp_bit;
8482 }
8483 else
8484 {
8485 *branch_p = align_branch_jcc;
8486 if ((align_branch & align_branch_jcc_bit))
8487 add_padding = 1;
8488 }
8489 }
8490 else if (is_any_vex_encoding (&i.tm))
8491 return 0;
8492 else if ((i.tm.base_opcode | 1) == 0xc3)
8493 {
8494 /* Near ret. */
8495 *branch_p = align_branch_ret;
8496 if ((align_branch & align_branch_ret_bit))
8497 add_padding = 1;
8498 }
8499 else
8500 {
8501 /* Check for indirect jmp, direct and indirect calls. */
8502 if (i.tm.base_opcode == 0xe8)
8503 {
8504 /* Direct call. */
8505 *branch_p = align_branch_call;
8506 if ((align_branch & align_branch_call_bit))
8507 add_padding = 1;
8508 }
8509 else if (i.tm.base_opcode == 0xff
8510 && (i.tm.extension_opcode == 2
8511 || i.tm.extension_opcode == 4))
8512 {
8513 /* Indirect call and jmp. */
8514 *branch_p = align_branch_indirect;
8515 if ((align_branch & align_branch_indirect_bit))
8516 add_padding = 1;
8517 }
8518
8519 if (add_padding
8520 && i.disp_operands
8521 && tls_get_addr
8522 && (i.op[0].disps->X_op == O_symbol
8523 || (i.op[0].disps->X_op == O_subtract
8524 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8525 {
8526 symbolS *s = i.op[0].disps->X_add_symbol;
8527 /* No padding to call to global or undefined tls_get_addr. */
8528 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8529 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8530 return 0;
8531 }
8532 }
8533
8534 if (add_padding
8535 && last_insn.kind != last_insn_other
8536 && last_insn.seg == now_seg)
8537 {
8538 if (flag_debug)
8539 as_warn_where (last_insn.file, last_insn.line,
8540 _("`%s` skips -malign-branch-boundary on `%s`"),
8541 last_insn.name, i.tm.name);
8542 return 0;
8543 }
8544
8545 return add_padding;
8546 }
8547
8548 static void
8549 output_insn (void)
8550 {
8551 fragS *insn_start_frag;
8552 offsetT insn_start_off;
8553 fragS *fragP = NULL;
8554 enum align_branch_kind branch = align_branch_none;
8555
8556 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8557 if (IS_ELF && x86_used_note)
8558 {
8559 if (i.tm.cpu_flags.bitfield.cpucmov)
8560 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8561 if (i.tm.cpu_flags.bitfield.cpusse)
8562 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8563 if (i.tm.cpu_flags.bitfield.cpusse2)
8564 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8565 if (i.tm.cpu_flags.bitfield.cpusse3)
8566 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8567 if (i.tm.cpu_flags.bitfield.cpussse3)
8568 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8569 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8570 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8571 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8572 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8573 if (i.tm.cpu_flags.bitfield.cpuavx)
8574 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8575 if (i.tm.cpu_flags.bitfield.cpuavx2)
8576 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8577 if (i.tm.cpu_flags.bitfield.cpufma)
8578 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8579 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8580 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8581 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8582 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8583 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8584 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8585 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8586 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8587 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8588 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8589 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8590 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8591 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8592 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8593 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8594 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8595 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8596 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8597 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8598 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8599 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8600 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8601 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8602 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8603 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8604 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8605 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8606 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8607 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8608 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8609
8610 if (i.tm.cpu_flags.bitfield.cpu8087
8611 || i.tm.cpu_flags.bitfield.cpu287
8612 || i.tm.cpu_flags.bitfield.cpu387
8613 || i.tm.cpu_flags.bitfield.cpu687
8614 || i.tm.cpu_flags.bitfield.cpufisttp)
8615 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8616 if (i.has_regmmx
8617 || i.tm.base_opcode == 0xf77 /* emms */
8618 || i.tm.base_opcode == 0xf0e /* femms */)
8619 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8620 if (i.has_regxmm)
8621 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8622 if (i.has_regymm)
8623 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8624 if (i.has_regzmm)
8625 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8626 if (i.tm.cpu_flags.bitfield.cpufxsr)
8627 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8628 if (i.tm.cpu_flags.bitfield.cpuxsave)
8629 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8630 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8631 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8632 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8633 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8634 }
8635 #endif
8636
8637 /* Tie dwarf2 debug info to the address at the start of the insn.
8638 We can't do this after the insn has been output as the current
8639 frag may have been closed off. eg. by frag_var. */
8640 dwarf2_emit_insn (0);
8641
8642 insn_start_frag = frag_now;
8643 insn_start_off = frag_now_fix ();
8644
8645 if (add_branch_padding_frag_p (&branch))
8646 {
8647 char *p;
8648 /* Branch can be 8 bytes. Leave some room for prefixes. */
8649 unsigned int max_branch_padding_size = 14;
8650
8651 /* Align section to boundary. */
8652 record_alignment (now_seg, align_branch_power);
8653
8654 /* Make room for padding. */
8655 frag_grow (max_branch_padding_size);
8656
8657 /* Start of the padding. */
8658 p = frag_more (0);
8659
8660 fragP = frag_now;
8661
8662 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8663 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8664 NULL, 0, p);
8665
8666 fragP->tc_frag_data.branch_type = branch;
8667 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8668 }
8669
8670 /* Output jumps. */
8671 if (i.tm.opcode_modifier.jump == JUMP)
8672 output_branch ();
8673 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8674 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8675 output_jump ();
8676 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8677 output_interseg_jump ();
8678 else
8679 {
8680 /* Output normal instructions here. */
8681 char *p;
8682 unsigned char *q;
8683 unsigned int j;
8684 unsigned int prefix;
8685
8686 if (avoid_fence
8687 && (i.tm.base_opcode == 0xfaee8
8688 || i.tm.base_opcode == 0xfaef0
8689 || i.tm.base_opcode == 0xfaef8))
8690 {
8691 /* Encode lfence, mfence, and sfence as
8692 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8693 offsetT val = 0x240483f0ULL;
8694 p = frag_more (5);
8695 md_number_to_chars (p, val, 5);
8696 return;
8697 }
8698
8699 /* Some processors fail on LOCK prefix. This options makes
8700 assembler ignore LOCK prefix and serves as a workaround. */
8701 if (omit_lock_prefix)
8702 {
8703 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8704 return;
8705 i.prefix[LOCK_PREFIX] = 0;
8706 }
8707
8708 if (branch)
8709 /* Skip if this is a branch. */
8710 ;
8711 else if (add_fused_jcc_padding_frag_p ())
8712 {
8713 /* Make room for padding. */
8714 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8715 p = frag_more (0);
8716
8717 fragP = frag_now;
8718
8719 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8720 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8721 NULL, 0, p);
8722
8723 fragP->tc_frag_data.branch_type = align_branch_fused;
8724 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8725 }
8726 else if (add_branch_prefix_frag_p ())
8727 {
8728 unsigned int max_prefix_size = align_branch_prefix_size;
8729
8730 /* Make room for padding. */
8731 frag_grow (max_prefix_size);
8732 p = frag_more (0);
8733
8734 fragP = frag_now;
8735
8736 frag_var (rs_machine_dependent, max_prefix_size, 0,
8737 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8738 NULL, 0, p);
8739
8740 fragP->tc_frag_data.max_bytes = max_prefix_size;
8741 }
8742
8743 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8744 don't need the explicit prefix. */
8745 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8746 {
8747 switch (i.tm.opcode_length)
8748 {
8749 case 3:
8750 if (i.tm.base_opcode & 0xff000000)
8751 {
8752 prefix = (i.tm.base_opcode >> 24) & 0xff;
8753 if (!i.tm.cpu_flags.bitfield.cpupadlock
8754 || prefix != REPE_PREFIX_OPCODE
8755 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8756 add_prefix (prefix);
8757 }
8758 break;
8759 case 2:
8760 if ((i.tm.base_opcode & 0xff0000) != 0)
8761 {
8762 prefix = (i.tm.base_opcode >> 16) & 0xff;
8763 add_prefix (prefix);
8764 }
8765 break;
8766 case 1:
8767 break;
8768 case 0:
8769 /* Check for pseudo prefixes. */
8770 as_bad_where (insn_start_frag->fr_file,
8771 insn_start_frag->fr_line,
8772 _("pseudo prefix without instruction"));
8773 return;
8774 default:
8775 abort ();
8776 }
8777
8778 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8779 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8780 R_X86_64_GOTTPOFF relocation so that linker can safely
8781 perform IE->LE optimization. A dummy REX_OPCODE prefix
8782 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8783 relocation for GDesc -> IE/LE optimization. */
8784 if (x86_elf_abi == X86_64_X32_ABI
8785 && i.operands == 2
8786 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8787 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8788 && i.prefix[REX_PREFIX] == 0)
8789 add_prefix (REX_OPCODE);
8790 #endif
8791
8792 /* The prefix bytes. */
8793 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8794 if (*q)
8795 FRAG_APPEND_1_CHAR (*q);
8796 }
8797 else
8798 {
8799 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8800 if (*q)
8801 switch (j)
8802 {
8803 case REX_PREFIX:
8804 /* REX byte is encoded in VEX prefix. */
8805 break;
8806 case SEG_PREFIX:
8807 case ADDR_PREFIX:
8808 FRAG_APPEND_1_CHAR (*q);
8809 break;
8810 default:
8811 /* There should be no other prefixes for instructions
8812 with VEX prefix. */
8813 abort ();
8814 }
8815
8816 /* For EVEX instructions i.vrex should become 0 after
8817 build_evex_prefix. For VEX instructions upper 16 registers
8818 aren't available, so VREX should be 0. */
8819 if (i.vrex)
8820 abort ();
8821 /* Now the VEX prefix. */
8822 p = frag_more (i.vex.length);
8823 for (j = 0; j < i.vex.length; j++)
8824 p[j] = i.vex.bytes[j];
8825 }
8826
8827 /* Now the opcode; be careful about word order here! */
8828 if (i.tm.opcode_length == 1)
8829 {
8830 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8831 }
8832 else
8833 {
8834 switch (i.tm.opcode_length)
8835 {
8836 case 4:
8837 p = frag_more (4);
8838 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8839 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8840 break;
8841 case 3:
8842 p = frag_more (3);
8843 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8844 break;
8845 case 2:
8846 p = frag_more (2);
8847 break;
8848 default:
8849 abort ();
8850 break;
8851 }
8852
8853 /* Put out high byte first: can't use md_number_to_chars! */
8854 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8855 *p = i.tm.base_opcode & 0xff;
8856 }
8857
8858 /* Now the modrm byte and sib byte (if present). */
8859 if (i.tm.opcode_modifier.modrm)
8860 {
8861 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8862 | i.rm.reg << 3
8863 | i.rm.mode << 6));
8864 /* If i.rm.regmem == ESP (4)
8865 && i.rm.mode != (Register mode)
8866 && not 16 bit
8867 ==> need second modrm byte. */
8868 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8869 && i.rm.mode != 3
8870 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8871 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8872 | i.sib.index << 3
8873 | i.sib.scale << 6));
8874 }
8875
8876 if (i.disp_operands)
8877 output_disp (insn_start_frag, insn_start_off);
8878
8879 if (i.imm_operands)
8880 output_imm (insn_start_frag, insn_start_off);
8881
8882 /*
8883 * frag_now_fix () returning plain abs_section_offset when we're in the
8884 * absolute section, and abs_section_offset not getting updated as data
8885 * gets added to the frag breaks the logic below.
8886 */
8887 if (now_seg != absolute_section)
8888 {
8889 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8890 if (j > 15)
8891 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8892 j);
8893 else if (fragP)
8894 {
8895 /* NB: Don't add prefix with GOTPC relocation since
8896 output_disp() above depends on the fixed encoding
8897 length. Can't add prefix with TLS relocation since
8898 it breaks TLS linker optimization. */
8899 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8900 /* Prefix count on the current instruction. */
8901 unsigned int count = i.vex.length;
8902 unsigned int k;
8903 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8904 /* REX byte is encoded in VEX/EVEX prefix. */
8905 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8906 count++;
8907
8908 /* Count prefixes for extended opcode maps. */
8909 if (!i.vex.length)
8910 switch (i.tm.opcode_length)
8911 {
8912 case 3:
8913 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8914 {
8915 count++;
8916 switch ((i.tm.base_opcode >> 8) & 0xff)
8917 {
8918 case 0x38:
8919 case 0x3a:
8920 count++;
8921 break;
8922 default:
8923 break;
8924 }
8925 }
8926 break;
8927 case 2:
8928 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8929 count++;
8930 break;
8931 case 1:
8932 break;
8933 default:
8934 abort ();
8935 }
8936
8937 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8938 == BRANCH_PREFIX)
8939 {
8940 /* Set the maximum prefix size in BRANCH_PREFIX
8941 frag. */
8942 if (fragP->tc_frag_data.max_bytes > max)
8943 fragP->tc_frag_data.max_bytes = max;
8944 if (fragP->tc_frag_data.max_bytes > count)
8945 fragP->tc_frag_data.max_bytes -= count;
8946 else
8947 fragP->tc_frag_data.max_bytes = 0;
8948 }
8949 else
8950 {
8951 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8952 frag. */
8953 unsigned int max_prefix_size;
8954 if (align_branch_prefix_size > max)
8955 max_prefix_size = max;
8956 else
8957 max_prefix_size = align_branch_prefix_size;
8958 if (max_prefix_size > count)
8959 fragP->tc_frag_data.max_prefix_length
8960 = max_prefix_size - count;
8961 }
8962
8963 /* Use existing segment prefix if possible. Use CS
8964 segment prefix in 64-bit mode. In 32-bit mode, use SS
8965 segment prefix with ESP/EBP base register and use DS
8966 segment prefix without ESP/EBP base register. */
8967 if (i.prefix[SEG_PREFIX])
8968 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8969 else if (flag_code == CODE_64BIT)
8970 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8971 else if (i.base_reg
8972 && (i.base_reg->reg_num == 4
8973 || i.base_reg->reg_num == 5))
8974 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8975 else
8976 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8977 }
8978 }
8979 }
8980
8981 /* NB: Don't work with COND_JUMP86 without i386. */
8982 if (align_branch_power
8983 && now_seg != absolute_section
8984 && cpu_arch_flags.bitfield.cpui386)
8985 {
8986 /* Terminate each frag so that we can add prefix and check for
8987 fused jcc. */
8988 frag_wane (frag_now);
8989 frag_new (0);
8990 }
8991
8992 #ifdef DEBUG386
8993 if (flag_debug)
8994 {
8995 pi ("" /*line*/, &i);
8996 }
8997 #endif /* DEBUG386 */
8998 }
8999
9000 /* Return the size of the displacement operand N. */
9001
9002 static int
9003 disp_size (unsigned int n)
9004 {
9005 int size = 4;
9006
9007 if (i.types[n].bitfield.disp64)
9008 size = 8;
9009 else if (i.types[n].bitfield.disp8)
9010 size = 1;
9011 else if (i.types[n].bitfield.disp16)
9012 size = 2;
9013 return size;
9014 }
9015
9016 /* Return the size of the immediate operand N. */
9017
9018 static int
9019 imm_size (unsigned int n)
9020 {
9021 int size = 4;
9022 if (i.types[n].bitfield.imm64)
9023 size = 8;
9024 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9025 size = 1;
9026 else if (i.types[n].bitfield.imm16)
9027 size = 2;
9028 return size;
9029 }
9030
9031 static void
9032 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9033 {
9034 char *p;
9035 unsigned int n;
9036
9037 for (n = 0; n < i.operands; n++)
9038 {
9039 if (operand_type_check (i.types[n], disp))
9040 {
9041 if (i.op[n].disps->X_op == O_constant)
9042 {
9043 int size = disp_size (n);
9044 offsetT val = i.op[n].disps->X_add_number;
9045
9046 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9047 size);
9048 p = frag_more (size);
9049 md_number_to_chars (p, val, size);
9050 }
9051 else
9052 {
9053 enum bfd_reloc_code_real reloc_type;
9054 int size = disp_size (n);
9055 int sign = i.types[n].bitfield.disp32s;
9056 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9057 fixS *fixP;
9058
9059 /* We can't have 8 bit displacement here. */
9060 gas_assert (!i.types[n].bitfield.disp8);
9061
9062 /* The PC relative address is computed relative
9063 to the instruction boundary, so in case immediate
9064 fields follows, we need to adjust the value. */
9065 if (pcrel && i.imm_operands)
9066 {
9067 unsigned int n1;
9068 int sz = 0;
9069
9070 for (n1 = 0; n1 < i.operands; n1++)
9071 if (operand_type_check (i.types[n1], imm))
9072 {
9073 /* Only one immediate is allowed for PC
9074 relative address. */
9075 gas_assert (sz == 0);
9076 sz = imm_size (n1);
9077 i.op[n].disps->X_add_number -= sz;
9078 }
9079 /* We should find the immediate. */
9080 gas_assert (sz != 0);
9081 }
9082
9083 p = frag_more (size);
9084 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9085 if (GOT_symbol
9086 && GOT_symbol == i.op[n].disps->X_add_symbol
9087 && (((reloc_type == BFD_RELOC_32
9088 || reloc_type == BFD_RELOC_X86_64_32S
9089 || (reloc_type == BFD_RELOC_64
9090 && object_64bit))
9091 && (i.op[n].disps->X_op == O_symbol
9092 || (i.op[n].disps->X_op == O_add
9093 && ((symbol_get_value_expression
9094 (i.op[n].disps->X_op_symbol)->X_op)
9095 == O_subtract))))
9096 || reloc_type == BFD_RELOC_32_PCREL))
9097 {
9098 if (!object_64bit)
9099 {
9100 reloc_type = BFD_RELOC_386_GOTPC;
9101 i.has_gotpc_tls_reloc = TRUE;
9102 i.op[n].imms->X_add_number +=
9103 encoding_length (insn_start_frag, insn_start_off, p);
9104 }
9105 else if (reloc_type == BFD_RELOC_64)
9106 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9107 else
9108 /* Don't do the adjustment for x86-64, as there
9109 the pcrel addressing is relative to the _next_
9110 insn, and that is taken care of in other code. */
9111 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9112 }
9113 else if (align_branch_power)
9114 {
9115 switch (reloc_type)
9116 {
9117 case BFD_RELOC_386_TLS_GD:
9118 case BFD_RELOC_386_TLS_LDM:
9119 case BFD_RELOC_386_TLS_IE:
9120 case BFD_RELOC_386_TLS_IE_32:
9121 case BFD_RELOC_386_TLS_GOTIE:
9122 case BFD_RELOC_386_TLS_GOTDESC:
9123 case BFD_RELOC_386_TLS_DESC_CALL:
9124 case BFD_RELOC_X86_64_TLSGD:
9125 case BFD_RELOC_X86_64_TLSLD:
9126 case BFD_RELOC_X86_64_GOTTPOFF:
9127 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9128 case BFD_RELOC_X86_64_TLSDESC_CALL:
9129 i.has_gotpc_tls_reloc = TRUE;
9130 default:
9131 break;
9132 }
9133 }
9134 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9135 size, i.op[n].disps, pcrel,
9136 reloc_type);
9137 /* Check for "call/jmp *mem", "mov mem, %reg",
9138 "test %reg, mem" and "binop mem, %reg" where binop
9139 is one of adc, add, and, cmp, or, sbb, sub, xor
9140 instructions without data prefix. Always generate
9141 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9142 if (i.prefix[DATA_PREFIX] == 0
9143 && (generate_relax_relocations
9144 || (!object_64bit
9145 && i.rm.mode == 0
9146 && i.rm.regmem == 5))
9147 && (i.rm.mode == 2
9148 || (i.rm.mode == 0 && i.rm.regmem == 5))
9149 && !is_any_vex_encoding(&i.tm)
9150 && ((i.operands == 1
9151 && i.tm.base_opcode == 0xff
9152 && (i.rm.reg == 2 || i.rm.reg == 4))
9153 || (i.operands == 2
9154 && (i.tm.base_opcode == 0x8b
9155 || i.tm.base_opcode == 0x85
9156 || (i.tm.base_opcode & ~0x38) == 0x03))))
9157 {
9158 if (object_64bit)
9159 {
9160 fixP->fx_tcbit = i.rex != 0;
9161 if (i.base_reg
9162 && (i.base_reg->reg_num == RegIP))
9163 fixP->fx_tcbit2 = 1;
9164 }
9165 else
9166 fixP->fx_tcbit2 = 1;
9167 }
9168 }
9169 }
9170 }
9171 }
9172
9173 static void
9174 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9175 {
9176 char *p;
9177 unsigned int n;
9178
9179 for (n = 0; n < i.operands; n++)
9180 {
9181 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9182 if (i.rounding && (int) n == i.rounding->operand)
9183 continue;
9184
9185 if (operand_type_check (i.types[n], imm))
9186 {
9187 if (i.op[n].imms->X_op == O_constant)
9188 {
9189 int size = imm_size (n);
9190 offsetT val;
9191
9192 val = offset_in_range (i.op[n].imms->X_add_number,
9193 size);
9194 p = frag_more (size);
9195 md_number_to_chars (p, val, size);
9196 }
9197 else
9198 {
9199 /* Not absolute_section.
9200 Need a 32-bit fixup (don't support 8bit
9201 non-absolute imms). Try to support other
9202 sizes ... */
9203 enum bfd_reloc_code_real reloc_type;
9204 int size = imm_size (n);
9205 int sign;
9206
9207 if (i.types[n].bitfield.imm32s
9208 && (i.suffix == QWORD_MNEM_SUFFIX
9209 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9210 sign = 1;
9211 else
9212 sign = 0;
9213
9214 p = frag_more (size);
9215 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9216
9217 /* This is tough to explain. We end up with this one if we
9218 * have operands that look like
9219 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9220 * obtain the absolute address of the GOT, and it is strongly
9221 * preferable from a performance point of view to avoid using
9222 * a runtime relocation for this. The actual sequence of
9223 * instructions often look something like:
9224 *
9225 * call .L66
9226 * .L66:
9227 * popl %ebx
9228 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9229 *
9230 * The call and pop essentially return the absolute address
9231 * of the label .L66 and store it in %ebx. The linker itself
9232 * will ultimately change the first operand of the addl so
9233 * that %ebx points to the GOT, but to keep things simple, the
9234 * .o file must have this operand set so that it generates not
9235 * the absolute address of .L66, but the absolute address of
9236 * itself. This allows the linker itself simply treat a GOTPC
9237 * relocation as asking for a pcrel offset to the GOT to be
9238 * added in, and the addend of the relocation is stored in the
9239 * operand field for the instruction itself.
9240 *
9241 * Our job here is to fix the operand so that it would add
9242 * the correct offset so that %ebx would point to itself. The
9243 * thing that is tricky is that .-.L66 will point to the
9244 * beginning of the instruction, so we need to further modify
9245 * the operand so that it will point to itself. There are
9246 * other cases where you have something like:
9247 *
9248 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9249 *
9250 * and here no correction would be required. Internally in
9251 * the assembler we treat operands of this form as not being
9252 * pcrel since the '.' is explicitly mentioned, and I wonder
9253 * whether it would simplify matters to do it this way. Who
9254 * knows. In earlier versions of the PIC patches, the
9255 * pcrel_adjust field was used to store the correction, but
9256 * since the expression is not pcrel, I felt it would be
9257 * confusing to do it this way. */
9258
9259 if ((reloc_type == BFD_RELOC_32
9260 || reloc_type == BFD_RELOC_X86_64_32S
9261 || reloc_type == BFD_RELOC_64)
9262 && GOT_symbol
9263 && GOT_symbol == i.op[n].imms->X_add_symbol
9264 && (i.op[n].imms->X_op == O_symbol
9265 || (i.op[n].imms->X_op == O_add
9266 && ((symbol_get_value_expression
9267 (i.op[n].imms->X_op_symbol)->X_op)
9268 == O_subtract))))
9269 {
9270 if (!object_64bit)
9271 reloc_type = BFD_RELOC_386_GOTPC;
9272 else if (size == 4)
9273 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9274 else if (size == 8)
9275 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9276 i.has_gotpc_tls_reloc = TRUE;
9277 i.op[n].imms->X_add_number +=
9278 encoding_length (insn_start_frag, insn_start_off, p);
9279 }
9280 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9281 i.op[n].imms, 0, reloc_type);
9282 }
9283 }
9284 }
9285 }
9286 \f
9287 /* x86_cons_fix_new is called via the expression parsing code when a
9288 reloc is needed. We use this hook to get the correct .got reloc. */
9289 static int cons_sign = -1;
9290
9291 void
9292 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9293 expressionS *exp, bfd_reloc_code_real_type r)
9294 {
9295 r = reloc (len, 0, cons_sign, r);
9296
9297 #ifdef TE_PE
9298 if (exp->X_op == O_secrel)
9299 {
9300 exp->X_op = O_symbol;
9301 r = BFD_RELOC_32_SECREL;
9302 }
9303 #endif
9304
9305 fix_new_exp (frag, off, len, exp, 0, r);
9306 }
9307
9308 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9309 purpose of the `.dc.a' internal pseudo-op. */
9310
9311 int
9312 x86_address_bytes (void)
9313 {
9314 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9315 return 4;
9316 return stdoutput->arch_info->bits_per_address / 8;
9317 }
9318
9319 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9320 || defined (LEX_AT)
9321 # define lex_got(reloc, adjust, types) NULL
9322 #else
9323 /* Parse operands of the form
9324 <symbol>@GOTOFF+<nnn>
9325 and similar .plt or .got references.
9326
9327 If we find one, set up the correct relocation in RELOC and copy the
9328 input string, minus the `@GOTOFF' into a malloc'd buffer for
9329 parsing by the calling routine. Return this buffer, and if ADJUST
9330 is non-null set it to the length of the string we removed from the
9331 input line. Otherwise return NULL. */
9332 static char *
9333 lex_got (enum bfd_reloc_code_real *rel,
9334 int *adjust,
9335 i386_operand_type *types)
9336 {
9337 /* Some of the relocations depend on the size of what field is to
9338 be relocated. But in our callers i386_immediate and i386_displacement
9339 we don't yet know the operand size (this will be set by insn
9340 matching). Hence we record the word32 relocation here,
9341 and adjust the reloc according to the real size in reloc(). */
9342 static const struct {
9343 const char *str;
9344 int len;
9345 const enum bfd_reloc_code_real rel[2];
9346 const i386_operand_type types64;
9347 } gotrel[] = {
9348 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9349 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9350 BFD_RELOC_SIZE32 },
9351 OPERAND_TYPE_IMM32_64 },
9352 #endif
9353 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9354 BFD_RELOC_X86_64_PLTOFF64 },
9355 OPERAND_TYPE_IMM64 },
9356 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9357 BFD_RELOC_X86_64_PLT32 },
9358 OPERAND_TYPE_IMM32_32S_DISP32 },
9359 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9360 BFD_RELOC_X86_64_GOTPLT64 },
9361 OPERAND_TYPE_IMM64_DISP64 },
9362 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9363 BFD_RELOC_X86_64_GOTOFF64 },
9364 OPERAND_TYPE_IMM64_DISP64 },
9365 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9366 BFD_RELOC_X86_64_GOTPCREL },
9367 OPERAND_TYPE_IMM32_32S_DISP32 },
9368 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9369 BFD_RELOC_X86_64_TLSGD },
9370 OPERAND_TYPE_IMM32_32S_DISP32 },
9371 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9372 _dummy_first_bfd_reloc_code_real },
9373 OPERAND_TYPE_NONE },
9374 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9375 BFD_RELOC_X86_64_TLSLD },
9376 OPERAND_TYPE_IMM32_32S_DISP32 },
9377 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9378 BFD_RELOC_X86_64_GOTTPOFF },
9379 OPERAND_TYPE_IMM32_32S_DISP32 },
9380 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9381 BFD_RELOC_X86_64_TPOFF32 },
9382 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9383 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9384 _dummy_first_bfd_reloc_code_real },
9385 OPERAND_TYPE_NONE },
9386 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9387 BFD_RELOC_X86_64_DTPOFF32 },
9388 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9389 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9390 _dummy_first_bfd_reloc_code_real },
9391 OPERAND_TYPE_NONE },
9392 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9393 _dummy_first_bfd_reloc_code_real },
9394 OPERAND_TYPE_NONE },
9395 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9396 BFD_RELOC_X86_64_GOT32 },
9397 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9398 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9399 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9400 OPERAND_TYPE_IMM32_32S_DISP32 },
9401 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9402 BFD_RELOC_X86_64_TLSDESC_CALL },
9403 OPERAND_TYPE_IMM32_32S_DISP32 },
9404 };
9405 char *cp;
9406 unsigned int j;
9407
9408 #if defined (OBJ_MAYBE_ELF)
9409 if (!IS_ELF)
9410 return NULL;
9411 #endif
9412
9413 for (cp = input_line_pointer; *cp != '@'; cp++)
9414 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9415 return NULL;
9416
9417 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9418 {
9419 int len = gotrel[j].len;
9420 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9421 {
9422 if (gotrel[j].rel[object_64bit] != 0)
9423 {
9424 int first, second;
9425 char *tmpbuf, *past_reloc;
9426
9427 *rel = gotrel[j].rel[object_64bit];
9428
9429 if (types)
9430 {
9431 if (flag_code != CODE_64BIT)
9432 {
9433 types->bitfield.imm32 = 1;
9434 types->bitfield.disp32 = 1;
9435 }
9436 else
9437 *types = gotrel[j].types64;
9438 }
9439
9440 if (j != 0 && GOT_symbol == NULL)
9441 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9442
9443 /* The length of the first part of our input line. */
9444 first = cp - input_line_pointer;
9445
9446 /* The second part goes from after the reloc token until
9447 (and including) an end_of_line char or comma. */
9448 past_reloc = cp + 1 + len;
9449 cp = past_reloc;
9450 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9451 ++cp;
9452 second = cp + 1 - past_reloc;
9453
9454 /* Allocate and copy string. The trailing NUL shouldn't
9455 be necessary, but be safe. */
9456 tmpbuf = XNEWVEC (char, first + second + 2);
9457 memcpy (tmpbuf, input_line_pointer, first);
9458 if (second != 0 && *past_reloc != ' ')
9459 /* Replace the relocation token with ' ', so that
9460 errors like foo@GOTOFF1 will be detected. */
9461 tmpbuf[first++] = ' ';
9462 else
9463 /* Increment length by 1 if the relocation token is
9464 removed. */
9465 len++;
9466 if (adjust)
9467 *adjust = len;
9468 memcpy (tmpbuf + first, past_reloc, second);
9469 tmpbuf[first + second] = '\0';
9470 return tmpbuf;
9471 }
9472
9473 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9474 gotrel[j].str, 1 << (5 + object_64bit));
9475 return NULL;
9476 }
9477 }
9478
9479 /* Might be a symbol version string. Don't as_bad here. */
9480 return NULL;
9481 }
9482 #endif
9483
9484 #ifdef TE_PE
9485 #ifdef lex_got
9486 #undef lex_got
9487 #endif
9488 /* Parse operands of the form
9489 <symbol>@SECREL32+<nnn>
9490
9491 If we find one, set up the correct relocation in RELOC and copy the
9492 input string, minus the `@SECREL32' into a malloc'd buffer for
9493 parsing by the calling routine. Return this buffer, and if ADJUST
9494 is non-null set it to the length of the string we removed from the
9495 input line. Otherwise return NULL.
9496
9497 This function is copied from the ELF version above adjusted for PE targets. */
9498
9499 static char *
9500 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9501 int *adjust ATTRIBUTE_UNUSED,
9502 i386_operand_type *types)
9503 {
9504 static const struct
9505 {
9506 const char *str;
9507 int len;
9508 const enum bfd_reloc_code_real rel[2];
9509 const i386_operand_type types64;
9510 }
9511 gotrel[] =
9512 {
9513 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9514 BFD_RELOC_32_SECREL },
9515 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9516 };
9517
9518 char *cp;
9519 unsigned j;
9520
9521 for (cp = input_line_pointer; *cp != '@'; cp++)
9522 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9523 return NULL;
9524
9525 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9526 {
9527 int len = gotrel[j].len;
9528
9529 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9530 {
9531 if (gotrel[j].rel[object_64bit] != 0)
9532 {
9533 int first, second;
9534 char *tmpbuf, *past_reloc;
9535
9536 *rel = gotrel[j].rel[object_64bit];
9537 if (adjust)
9538 *adjust = len;
9539
9540 if (types)
9541 {
9542 if (flag_code != CODE_64BIT)
9543 {
9544 types->bitfield.imm32 = 1;
9545 types->bitfield.disp32 = 1;
9546 }
9547 else
9548 *types = gotrel[j].types64;
9549 }
9550
9551 /* The length of the first part of our input line. */
9552 first = cp - input_line_pointer;
9553
9554 /* The second part goes from after the reloc token until
9555 (and including) an end_of_line char or comma. */
9556 past_reloc = cp + 1 + len;
9557 cp = past_reloc;
9558 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9559 ++cp;
9560 second = cp + 1 - past_reloc;
9561
9562 /* Allocate and copy string. The trailing NUL shouldn't
9563 be necessary, but be safe. */
9564 tmpbuf = XNEWVEC (char, first + second + 2);
9565 memcpy (tmpbuf, input_line_pointer, first);
9566 if (second != 0 && *past_reloc != ' ')
9567 /* Replace the relocation token with ' ', so that
9568 errors like foo@SECLREL321 will be detected. */
9569 tmpbuf[first++] = ' ';
9570 memcpy (tmpbuf + first, past_reloc, second);
9571 tmpbuf[first + second] = '\0';
9572 return tmpbuf;
9573 }
9574
9575 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9576 gotrel[j].str, 1 << (5 + object_64bit));
9577 return NULL;
9578 }
9579 }
9580
9581 /* Might be a symbol version string. Don't as_bad here. */
9582 return NULL;
9583 }
9584
9585 #endif /* TE_PE */
9586
9587 bfd_reloc_code_real_type
9588 x86_cons (expressionS *exp, int size)
9589 {
9590 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9591
9592 intel_syntax = -intel_syntax;
9593
9594 exp->X_md = 0;
9595 if (size == 4 || (object_64bit && size == 8))
9596 {
9597 /* Handle @GOTOFF and the like in an expression. */
9598 char *save;
9599 char *gotfree_input_line;
9600 int adjust = 0;
9601
9602 save = input_line_pointer;
9603 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9604 if (gotfree_input_line)
9605 input_line_pointer = gotfree_input_line;
9606
9607 expression (exp);
9608
9609 if (gotfree_input_line)
9610 {
9611 /* expression () has merrily parsed up to the end of line,
9612 or a comma - in the wrong buffer. Transfer how far
9613 input_line_pointer has moved to the right buffer. */
9614 input_line_pointer = (save
9615 + (input_line_pointer - gotfree_input_line)
9616 + adjust);
9617 free (gotfree_input_line);
9618 if (exp->X_op == O_constant
9619 || exp->X_op == O_absent
9620 || exp->X_op == O_illegal
9621 || exp->X_op == O_register
9622 || exp->X_op == O_big)
9623 {
9624 char c = *input_line_pointer;
9625 *input_line_pointer = 0;
9626 as_bad (_("missing or invalid expression `%s'"), save);
9627 *input_line_pointer = c;
9628 }
9629 else if ((got_reloc == BFD_RELOC_386_PLT32
9630 || got_reloc == BFD_RELOC_X86_64_PLT32)
9631 && exp->X_op != O_symbol)
9632 {
9633 char c = *input_line_pointer;
9634 *input_line_pointer = 0;
9635 as_bad (_("invalid PLT expression `%s'"), save);
9636 *input_line_pointer = c;
9637 }
9638 }
9639 }
9640 else
9641 expression (exp);
9642
9643 intel_syntax = -intel_syntax;
9644
9645 if (intel_syntax)
9646 i386_intel_simplify (exp);
9647
9648 return got_reloc;
9649 }
9650
9651 static void
9652 signed_cons (int size)
9653 {
9654 if (flag_code == CODE_64BIT)
9655 cons_sign = 1;
9656 cons (size);
9657 cons_sign = -1;
9658 }
9659
9660 #ifdef TE_PE
9661 static void
9662 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9663 {
9664 expressionS exp;
9665
9666 do
9667 {
9668 expression (&exp);
9669 if (exp.X_op == O_symbol)
9670 exp.X_op = O_secrel;
9671
9672 emit_expr (&exp, 4);
9673 }
9674 while (*input_line_pointer++ == ',');
9675
9676 input_line_pointer--;
9677 demand_empty_rest_of_line ();
9678 }
9679 #endif
9680
9681 /* Handle Vector operations. */
9682
9683 static char *
9684 check_VecOperations (char *op_string, char *op_end)
9685 {
9686 const reg_entry *mask;
9687 const char *saved;
9688 char *end_op;
9689
9690 while (*op_string
9691 && (op_end == NULL || op_string < op_end))
9692 {
9693 saved = op_string;
9694 if (*op_string == '{')
9695 {
9696 op_string++;
9697
9698 /* Check broadcasts. */
9699 if (strncmp (op_string, "1to", 3) == 0)
9700 {
9701 int bcst_type;
9702
9703 if (i.broadcast)
9704 goto duplicated_vec_op;
9705
9706 op_string += 3;
9707 if (*op_string == '8')
9708 bcst_type = 8;
9709 else if (*op_string == '4')
9710 bcst_type = 4;
9711 else if (*op_string == '2')
9712 bcst_type = 2;
9713 else if (*op_string == '1'
9714 && *(op_string+1) == '6')
9715 {
9716 bcst_type = 16;
9717 op_string++;
9718 }
9719 else
9720 {
9721 as_bad (_("Unsupported broadcast: `%s'"), saved);
9722 return NULL;
9723 }
9724 op_string++;
9725
9726 broadcast_op.type = bcst_type;
9727 broadcast_op.operand = this_operand;
9728 broadcast_op.bytes = 0;
9729 i.broadcast = &broadcast_op;
9730 }
9731 /* Check masking operation. */
9732 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9733 {
9734 /* k0 can't be used for write mask. */
9735 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9736 {
9737 as_bad (_("`%s%s' can't be used for write mask"),
9738 register_prefix, mask->reg_name);
9739 return NULL;
9740 }
9741
9742 if (!i.mask)
9743 {
9744 mask_op.mask = mask;
9745 mask_op.zeroing = 0;
9746 mask_op.operand = this_operand;
9747 i.mask = &mask_op;
9748 }
9749 else
9750 {
9751 if (i.mask->mask)
9752 goto duplicated_vec_op;
9753
9754 i.mask->mask = mask;
9755
9756 /* Only "{z}" is allowed here. No need to check
9757 zeroing mask explicitly. */
9758 if (i.mask->operand != this_operand)
9759 {
9760 as_bad (_("invalid write mask `%s'"), saved);
9761 return NULL;
9762 }
9763 }
9764
9765 op_string = end_op;
9766 }
9767 /* Check zeroing-flag for masking operation. */
9768 else if (*op_string == 'z')
9769 {
9770 if (!i.mask)
9771 {
9772 mask_op.mask = NULL;
9773 mask_op.zeroing = 1;
9774 mask_op.operand = this_operand;
9775 i.mask = &mask_op;
9776 }
9777 else
9778 {
9779 if (i.mask->zeroing)
9780 {
9781 duplicated_vec_op:
9782 as_bad (_("duplicated `%s'"), saved);
9783 return NULL;
9784 }
9785
9786 i.mask->zeroing = 1;
9787
9788 /* Only "{%k}" is allowed here. No need to check mask
9789 register explicitly. */
9790 if (i.mask->operand != this_operand)
9791 {
9792 as_bad (_("invalid zeroing-masking `%s'"),
9793 saved);
9794 return NULL;
9795 }
9796 }
9797
9798 op_string++;
9799 }
9800 else
9801 goto unknown_vec_op;
9802
9803 if (*op_string != '}')
9804 {
9805 as_bad (_("missing `}' in `%s'"), saved);
9806 return NULL;
9807 }
9808 op_string++;
9809
9810 /* Strip whitespace since the addition of pseudo prefixes
9811 changed how the scrubber treats '{'. */
9812 if (is_space_char (*op_string))
9813 ++op_string;
9814
9815 continue;
9816 }
9817 unknown_vec_op:
9818 /* We don't know this one. */
9819 as_bad (_("unknown vector operation: `%s'"), saved);
9820 return NULL;
9821 }
9822
9823 if (i.mask && i.mask->zeroing && !i.mask->mask)
9824 {
9825 as_bad (_("zeroing-masking only allowed with write mask"));
9826 return NULL;
9827 }
9828
9829 return op_string;
9830 }
9831
9832 static int
9833 i386_immediate (char *imm_start)
9834 {
9835 char *save_input_line_pointer;
9836 char *gotfree_input_line;
9837 segT exp_seg = 0;
9838 expressionS *exp;
9839 i386_operand_type types;
9840
9841 operand_type_set (&types, ~0);
9842
9843 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9844 {
9845 as_bad (_("at most %d immediate operands are allowed"),
9846 MAX_IMMEDIATE_OPERANDS);
9847 return 0;
9848 }
9849
9850 exp = &im_expressions[i.imm_operands++];
9851 i.op[this_operand].imms = exp;
9852
9853 if (is_space_char (*imm_start))
9854 ++imm_start;
9855
9856 save_input_line_pointer = input_line_pointer;
9857 input_line_pointer = imm_start;
9858
9859 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9860 if (gotfree_input_line)
9861 input_line_pointer = gotfree_input_line;
9862
9863 exp_seg = expression (exp);
9864
9865 SKIP_WHITESPACE ();
9866
9867 /* Handle vector operations. */
9868 if (*input_line_pointer == '{')
9869 {
9870 input_line_pointer = check_VecOperations (input_line_pointer,
9871 NULL);
9872 if (input_line_pointer == NULL)
9873 return 0;
9874 }
9875
9876 if (*input_line_pointer)
9877 as_bad (_("junk `%s' after expression"), input_line_pointer);
9878
9879 input_line_pointer = save_input_line_pointer;
9880 if (gotfree_input_line)
9881 {
9882 free (gotfree_input_line);
9883
9884 if (exp->X_op == O_constant || exp->X_op == O_register)
9885 exp->X_op = O_illegal;
9886 }
9887
9888 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9889 }
9890
9891 static int
9892 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9893 i386_operand_type types, const char *imm_start)
9894 {
9895 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9896 {
9897 if (imm_start)
9898 as_bad (_("missing or invalid immediate expression `%s'"),
9899 imm_start);
9900 return 0;
9901 }
9902 else if (exp->X_op == O_constant)
9903 {
9904 /* Size it properly later. */
9905 i.types[this_operand].bitfield.imm64 = 1;
9906 /* If not 64bit, sign extend val. */
9907 if (flag_code != CODE_64BIT
9908 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9909 exp->X_add_number
9910 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9911 }
9912 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9913 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9914 && exp_seg != absolute_section
9915 && exp_seg != text_section
9916 && exp_seg != data_section
9917 && exp_seg != bss_section
9918 && exp_seg != undefined_section
9919 && !bfd_is_com_section (exp_seg))
9920 {
9921 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9922 return 0;
9923 }
9924 #endif
9925 else if (!intel_syntax && exp_seg == reg_section)
9926 {
9927 if (imm_start)
9928 as_bad (_("illegal immediate register operand %s"), imm_start);
9929 return 0;
9930 }
9931 else
9932 {
9933 /* This is an address. The size of the address will be
9934 determined later, depending on destination register,
9935 suffix, or the default for the section. */
9936 i.types[this_operand].bitfield.imm8 = 1;
9937 i.types[this_operand].bitfield.imm16 = 1;
9938 i.types[this_operand].bitfield.imm32 = 1;
9939 i.types[this_operand].bitfield.imm32s = 1;
9940 i.types[this_operand].bitfield.imm64 = 1;
9941 i.types[this_operand] = operand_type_and (i.types[this_operand],
9942 types);
9943 }
9944
9945 return 1;
9946 }
9947
9948 static char *
9949 i386_scale (char *scale)
9950 {
9951 offsetT val;
9952 char *save = input_line_pointer;
9953
9954 input_line_pointer = scale;
9955 val = get_absolute_expression ();
9956
9957 switch (val)
9958 {
9959 case 1:
9960 i.log2_scale_factor = 0;
9961 break;
9962 case 2:
9963 i.log2_scale_factor = 1;
9964 break;
9965 case 4:
9966 i.log2_scale_factor = 2;
9967 break;
9968 case 8:
9969 i.log2_scale_factor = 3;
9970 break;
9971 default:
9972 {
9973 char sep = *input_line_pointer;
9974
9975 *input_line_pointer = '\0';
9976 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9977 scale);
9978 *input_line_pointer = sep;
9979 input_line_pointer = save;
9980 return NULL;
9981 }
9982 }
9983 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9984 {
9985 as_warn (_("scale factor of %d without an index register"),
9986 1 << i.log2_scale_factor);
9987 i.log2_scale_factor = 0;
9988 }
9989 scale = input_line_pointer;
9990 input_line_pointer = save;
9991 return scale;
9992 }
9993
9994 static int
9995 i386_displacement (char *disp_start, char *disp_end)
9996 {
9997 expressionS *exp;
9998 segT exp_seg = 0;
9999 char *save_input_line_pointer;
10000 char *gotfree_input_line;
10001 int override;
10002 i386_operand_type bigdisp, types = anydisp;
10003 int ret;
10004
10005 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10006 {
10007 as_bad (_("at most %d displacement operands are allowed"),
10008 MAX_MEMORY_OPERANDS);
10009 return 0;
10010 }
10011
10012 operand_type_set (&bigdisp, 0);
10013 if (i.jumpabsolute
10014 || i.types[this_operand].bitfield.baseindex
10015 || (current_templates->start->opcode_modifier.jump != JUMP
10016 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10017 {
10018 i386_addressing_mode ();
10019 override = (i.prefix[ADDR_PREFIX] != 0);
10020 if (flag_code == CODE_64BIT)
10021 {
10022 if (!override)
10023 {
10024 bigdisp.bitfield.disp32s = 1;
10025 bigdisp.bitfield.disp64 = 1;
10026 }
10027 else
10028 bigdisp.bitfield.disp32 = 1;
10029 }
10030 else if ((flag_code == CODE_16BIT) ^ override)
10031 bigdisp.bitfield.disp16 = 1;
10032 else
10033 bigdisp.bitfield.disp32 = 1;
10034 }
10035 else
10036 {
10037 /* For PC-relative branches, the width of the displacement may be
10038 dependent upon data size, but is never dependent upon address size.
10039 Also make sure to not unintentionally match against a non-PC-relative
10040 branch template. */
10041 static templates aux_templates;
10042 const insn_template *t = current_templates->start;
10043 bfd_boolean has_intel64 = FALSE;
10044
10045 aux_templates.start = t;
10046 while (++t < current_templates->end)
10047 {
10048 if (t->opcode_modifier.jump
10049 != current_templates->start->opcode_modifier.jump)
10050 break;
10051 if ((t->opcode_modifier.isa64 >= INTEL64))
10052 has_intel64 = TRUE;
10053 }
10054 if (t < current_templates->end)
10055 {
10056 aux_templates.end = t;
10057 current_templates = &aux_templates;
10058 }
10059
10060 override = (i.prefix[DATA_PREFIX] != 0);
10061 if (flag_code == CODE_64BIT)
10062 {
10063 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10064 && (!intel64 || !has_intel64))
10065 bigdisp.bitfield.disp16 = 1;
10066 else
10067 bigdisp.bitfield.disp32s = 1;
10068 }
10069 else
10070 {
10071 if (!override)
10072 override = (i.suffix == (flag_code != CODE_16BIT
10073 ? WORD_MNEM_SUFFIX
10074 : LONG_MNEM_SUFFIX));
10075 bigdisp.bitfield.disp32 = 1;
10076 if ((flag_code == CODE_16BIT) ^ override)
10077 {
10078 bigdisp.bitfield.disp32 = 0;
10079 bigdisp.bitfield.disp16 = 1;
10080 }
10081 }
10082 }
10083 i.types[this_operand] = operand_type_or (i.types[this_operand],
10084 bigdisp);
10085
10086 exp = &disp_expressions[i.disp_operands];
10087 i.op[this_operand].disps = exp;
10088 i.disp_operands++;
10089 save_input_line_pointer = input_line_pointer;
10090 input_line_pointer = disp_start;
10091 END_STRING_AND_SAVE (disp_end);
10092
10093 #ifndef GCC_ASM_O_HACK
10094 #define GCC_ASM_O_HACK 0
10095 #endif
10096 #if GCC_ASM_O_HACK
10097 END_STRING_AND_SAVE (disp_end + 1);
10098 if (i.types[this_operand].bitfield.baseIndex
10099 && displacement_string_end[-1] == '+')
10100 {
10101 /* This hack is to avoid a warning when using the "o"
10102 constraint within gcc asm statements.
10103 For instance:
10104
10105 #define _set_tssldt_desc(n,addr,limit,type) \
10106 __asm__ __volatile__ ( \
10107 "movw %w2,%0\n\t" \
10108 "movw %w1,2+%0\n\t" \
10109 "rorl $16,%1\n\t" \
10110 "movb %b1,4+%0\n\t" \
10111 "movb %4,5+%0\n\t" \
10112 "movb $0,6+%0\n\t" \
10113 "movb %h1,7+%0\n\t" \
10114 "rorl $16,%1" \
10115 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10116
10117 This works great except that the output assembler ends
10118 up looking a bit weird if it turns out that there is
10119 no offset. You end up producing code that looks like:
10120
10121 #APP
10122 movw $235,(%eax)
10123 movw %dx,2+(%eax)
10124 rorl $16,%edx
10125 movb %dl,4+(%eax)
10126 movb $137,5+(%eax)
10127 movb $0,6+(%eax)
10128 movb %dh,7+(%eax)
10129 rorl $16,%edx
10130 #NO_APP
10131
10132 So here we provide the missing zero. */
10133
10134 *displacement_string_end = '0';
10135 }
10136 #endif
10137 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10138 if (gotfree_input_line)
10139 input_line_pointer = gotfree_input_line;
10140
10141 exp_seg = expression (exp);
10142
10143 SKIP_WHITESPACE ();
10144 if (*input_line_pointer)
10145 as_bad (_("junk `%s' after expression"), input_line_pointer);
10146 #if GCC_ASM_O_HACK
10147 RESTORE_END_STRING (disp_end + 1);
10148 #endif
10149 input_line_pointer = save_input_line_pointer;
10150 if (gotfree_input_line)
10151 {
10152 free (gotfree_input_line);
10153
10154 if (exp->X_op == O_constant || exp->X_op == O_register)
10155 exp->X_op = O_illegal;
10156 }
10157
10158 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10159
10160 RESTORE_END_STRING (disp_end);
10161
10162 return ret;
10163 }
10164
10165 static int
10166 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10167 i386_operand_type types, const char *disp_start)
10168 {
10169 i386_operand_type bigdisp;
10170 int ret = 1;
10171
10172 /* We do this to make sure that the section symbol is in
10173 the symbol table. We will ultimately change the relocation
10174 to be relative to the beginning of the section. */
10175 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10176 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10177 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10178 {
10179 if (exp->X_op != O_symbol)
10180 goto inv_disp;
10181
10182 if (S_IS_LOCAL (exp->X_add_symbol)
10183 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10184 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10185 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10186 exp->X_op = O_subtract;
10187 exp->X_op_symbol = GOT_symbol;
10188 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10189 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10190 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10191 i.reloc[this_operand] = BFD_RELOC_64;
10192 else
10193 i.reloc[this_operand] = BFD_RELOC_32;
10194 }
10195
10196 else if (exp->X_op == O_absent
10197 || exp->X_op == O_illegal
10198 || exp->X_op == O_big)
10199 {
10200 inv_disp:
10201 as_bad (_("missing or invalid displacement expression `%s'"),
10202 disp_start);
10203 ret = 0;
10204 }
10205
10206 else if (flag_code == CODE_64BIT
10207 && !i.prefix[ADDR_PREFIX]
10208 && exp->X_op == O_constant)
10209 {
10210 /* Since displacement is signed extended to 64bit, don't allow
10211 disp32 and turn off disp32s if they are out of range. */
10212 i.types[this_operand].bitfield.disp32 = 0;
10213 if (!fits_in_signed_long (exp->X_add_number))
10214 {
10215 i.types[this_operand].bitfield.disp32s = 0;
10216 if (i.types[this_operand].bitfield.baseindex)
10217 {
10218 as_bad (_("0x%lx out range of signed 32bit displacement"),
10219 (long) exp->X_add_number);
10220 ret = 0;
10221 }
10222 }
10223 }
10224
10225 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10226 else if (exp->X_op != O_constant
10227 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10228 && exp_seg != absolute_section
10229 && exp_seg != text_section
10230 && exp_seg != data_section
10231 && exp_seg != bss_section
10232 && exp_seg != undefined_section
10233 && !bfd_is_com_section (exp_seg))
10234 {
10235 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10236 ret = 0;
10237 }
10238 #endif
10239
10240 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10241 /* Constants get taken care of by optimize_disp(). */
10242 && exp->X_op != O_constant)
10243 i.types[this_operand].bitfield.disp8 = 1;
10244
10245 /* Check if this is a displacement only operand. */
10246 bigdisp = i.types[this_operand];
10247 bigdisp.bitfield.disp8 = 0;
10248 bigdisp.bitfield.disp16 = 0;
10249 bigdisp.bitfield.disp32 = 0;
10250 bigdisp.bitfield.disp32s = 0;
10251 bigdisp.bitfield.disp64 = 0;
10252 if (operand_type_all_zero (&bigdisp))
10253 i.types[this_operand] = operand_type_and (i.types[this_operand],
10254 types);
10255
10256 return ret;
10257 }
10258
10259 /* Return the active addressing mode, taking address override and
10260 registers forming the address into consideration. Update the
10261 address override prefix if necessary. */
10262
10263 static enum flag_code
10264 i386_addressing_mode (void)
10265 {
10266 enum flag_code addr_mode;
10267
10268 if (i.prefix[ADDR_PREFIX])
10269 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10270 else
10271 {
10272 addr_mode = flag_code;
10273
10274 #if INFER_ADDR_PREFIX
10275 if (i.mem_operands == 0)
10276 {
10277 /* Infer address prefix from the first memory operand. */
10278 const reg_entry *addr_reg = i.base_reg;
10279
10280 if (addr_reg == NULL)
10281 addr_reg = i.index_reg;
10282
10283 if (addr_reg)
10284 {
10285 if (addr_reg->reg_type.bitfield.dword)
10286 addr_mode = CODE_32BIT;
10287 else if (flag_code != CODE_64BIT
10288 && addr_reg->reg_type.bitfield.word)
10289 addr_mode = CODE_16BIT;
10290
10291 if (addr_mode != flag_code)
10292 {
10293 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10294 i.prefixes += 1;
10295 /* Change the size of any displacement too. At most one
10296 of Disp16 or Disp32 is set.
10297 FIXME. There doesn't seem to be any real need for
10298 separate Disp16 and Disp32 flags. The same goes for
10299 Imm16 and Imm32. Removing them would probably clean
10300 up the code quite a lot. */
10301 if (flag_code != CODE_64BIT
10302 && (i.types[this_operand].bitfield.disp16
10303 || i.types[this_operand].bitfield.disp32))
10304 i.types[this_operand]
10305 = operand_type_xor (i.types[this_operand], disp16_32);
10306 }
10307 }
10308 }
10309 #endif
10310 }
10311
10312 return addr_mode;
10313 }
10314
10315 /* Make sure the memory operand we've been dealt is valid.
10316 Return 1 on success, 0 on a failure. */
10317
10318 static int
10319 i386_index_check (const char *operand_string)
10320 {
10321 const char *kind = "base/index";
10322 enum flag_code addr_mode = i386_addressing_mode ();
10323
10324 if (current_templates->start->opcode_modifier.isstring
10325 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10326 && (current_templates->end[-1].opcode_modifier.isstring
10327 || i.mem_operands))
10328 {
10329 /* Memory operands of string insns are special in that they only allow
10330 a single register (rDI, rSI, or rBX) as their memory address. */
10331 const reg_entry *expected_reg;
10332 static const char *di_si[][2] =
10333 {
10334 { "esi", "edi" },
10335 { "si", "di" },
10336 { "rsi", "rdi" }
10337 };
10338 static const char *bx[] = { "ebx", "bx", "rbx" };
10339
10340 kind = "string address";
10341
10342 if (current_templates->start->opcode_modifier.repprefixok)
10343 {
10344 int es_op = current_templates->end[-1].opcode_modifier.isstring
10345 - IS_STRING_ES_OP0;
10346 int op = 0;
10347
10348 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10349 || ((!i.mem_operands != !intel_syntax)
10350 && current_templates->end[-1].operand_types[1]
10351 .bitfield.baseindex))
10352 op = 1;
10353 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10354 }
10355 else
10356 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10357
10358 if (i.base_reg != expected_reg
10359 || i.index_reg
10360 || operand_type_check (i.types[this_operand], disp))
10361 {
10362 /* The second memory operand must have the same size as
10363 the first one. */
10364 if (i.mem_operands
10365 && i.base_reg
10366 && !((addr_mode == CODE_64BIT
10367 && i.base_reg->reg_type.bitfield.qword)
10368 || (addr_mode == CODE_32BIT
10369 ? i.base_reg->reg_type.bitfield.dword
10370 : i.base_reg->reg_type.bitfield.word)))
10371 goto bad_address;
10372
10373 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10374 operand_string,
10375 intel_syntax ? '[' : '(',
10376 register_prefix,
10377 expected_reg->reg_name,
10378 intel_syntax ? ']' : ')');
10379 return 1;
10380 }
10381 else
10382 return 1;
10383
10384 bad_address:
10385 as_bad (_("`%s' is not a valid %s expression"),
10386 operand_string, kind);
10387 return 0;
10388 }
10389 else
10390 {
10391 if (addr_mode != CODE_16BIT)
10392 {
10393 /* 32-bit/64-bit checks. */
10394 if ((i.base_reg
10395 && ((addr_mode == CODE_64BIT
10396 ? !i.base_reg->reg_type.bitfield.qword
10397 : !i.base_reg->reg_type.bitfield.dword)
10398 || (i.index_reg && i.base_reg->reg_num == RegIP)
10399 || i.base_reg->reg_num == RegIZ))
10400 || (i.index_reg
10401 && !i.index_reg->reg_type.bitfield.xmmword
10402 && !i.index_reg->reg_type.bitfield.ymmword
10403 && !i.index_reg->reg_type.bitfield.zmmword
10404 && ((addr_mode == CODE_64BIT
10405 ? !i.index_reg->reg_type.bitfield.qword
10406 : !i.index_reg->reg_type.bitfield.dword)
10407 || !i.index_reg->reg_type.bitfield.baseindex)))
10408 goto bad_address;
10409
10410 /* bndmk, bndldx, and bndstx have special restrictions. */
10411 if (current_templates->start->base_opcode == 0xf30f1b
10412 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10413 {
10414 /* They cannot use RIP-relative addressing. */
10415 if (i.base_reg && i.base_reg->reg_num == RegIP)
10416 {
10417 as_bad (_("`%s' cannot be used here"), operand_string);
10418 return 0;
10419 }
10420
10421 /* bndldx and bndstx ignore their scale factor. */
10422 if (current_templates->start->base_opcode != 0xf30f1b
10423 && i.log2_scale_factor)
10424 as_warn (_("register scaling is being ignored here"));
10425 }
10426 }
10427 else
10428 {
10429 /* 16-bit checks. */
10430 if ((i.base_reg
10431 && (!i.base_reg->reg_type.bitfield.word
10432 || !i.base_reg->reg_type.bitfield.baseindex))
10433 || (i.index_reg
10434 && (!i.index_reg->reg_type.bitfield.word
10435 || !i.index_reg->reg_type.bitfield.baseindex
10436 || !(i.base_reg
10437 && i.base_reg->reg_num < 6
10438 && i.index_reg->reg_num >= 6
10439 && i.log2_scale_factor == 0))))
10440 goto bad_address;
10441 }
10442 }
10443 return 1;
10444 }
10445
10446 /* Handle vector immediates. */
10447
10448 static int
10449 RC_SAE_immediate (const char *imm_start)
10450 {
10451 unsigned int match_found, j;
10452 const char *pstr = imm_start;
10453 expressionS *exp;
10454
10455 if (*pstr != '{')
10456 return 0;
10457
10458 pstr++;
10459 match_found = 0;
10460 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10461 {
10462 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10463 {
10464 if (!i.rounding)
10465 {
10466 rc_op.type = RC_NamesTable[j].type;
10467 rc_op.operand = this_operand;
10468 i.rounding = &rc_op;
10469 }
10470 else
10471 {
10472 as_bad (_("duplicated `%s'"), imm_start);
10473 return 0;
10474 }
10475 pstr += RC_NamesTable[j].len;
10476 match_found = 1;
10477 break;
10478 }
10479 }
10480 if (!match_found)
10481 return 0;
10482
10483 if (*pstr++ != '}')
10484 {
10485 as_bad (_("Missing '}': '%s'"), imm_start);
10486 return 0;
10487 }
10488 /* RC/SAE immediate string should contain nothing more. */;
10489 if (*pstr != 0)
10490 {
10491 as_bad (_("Junk after '}': '%s'"), imm_start);
10492 return 0;
10493 }
10494
10495 exp = &im_expressions[i.imm_operands++];
10496 i.op[this_operand].imms = exp;
10497
10498 exp->X_op = O_constant;
10499 exp->X_add_number = 0;
10500 exp->X_add_symbol = (symbolS *) 0;
10501 exp->X_op_symbol = (symbolS *) 0;
10502
10503 i.types[this_operand].bitfield.imm8 = 1;
10504 return 1;
10505 }
10506
10507 /* Only string instructions can have a second memory operand, so
10508 reduce current_templates to just those if it contains any. */
10509 static int
10510 maybe_adjust_templates (void)
10511 {
10512 const insn_template *t;
10513
10514 gas_assert (i.mem_operands == 1);
10515
10516 for (t = current_templates->start; t < current_templates->end; ++t)
10517 if (t->opcode_modifier.isstring)
10518 break;
10519
10520 if (t < current_templates->end)
10521 {
10522 static templates aux_templates;
10523 bfd_boolean recheck;
10524
10525 aux_templates.start = t;
10526 for (; t < current_templates->end; ++t)
10527 if (!t->opcode_modifier.isstring)
10528 break;
10529 aux_templates.end = t;
10530
10531 /* Determine whether to re-check the first memory operand. */
10532 recheck = (aux_templates.start != current_templates->start
10533 || t != current_templates->end);
10534
10535 current_templates = &aux_templates;
10536
10537 if (recheck)
10538 {
10539 i.mem_operands = 0;
10540 if (i.memop1_string != NULL
10541 && i386_index_check (i.memop1_string) == 0)
10542 return 0;
10543 i.mem_operands = 1;
10544 }
10545 }
10546
10547 return 1;
10548 }
10549
10550 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10551 on error. */
10552
10553 static int
10554 i386_att_operand (char *operand_string)
10555 {
10556 const reg_entry *r;
10557 char *end_op;
10558 char *op_string = operand_string;
10559
10560 if (is_space_char (*op_string))
10561 ++op_string;
10562
10563 /* We check for an absolute prefix (differentiating,
10564 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10565 if (*op_string == ABSOLUTE_PREFIX)
10566 {
10567 ++op_string;
10568 if (is_space_char (*op_string))
10569 ++op_string;
10570 i.jumpabsolute = TRUE;
10571 }
10572
10573 /* Check if operand is a register. */
10574 if ((r = parse_register (op_string, &end_op)) != NULL)
10575 {
10576 i386_operand_type temp;
10577
10578 /* Check for a segment override by searching for ':' after a
10579 segment register. */
10580 op_string = end_op;
10581 if (is_space_char (*op_string))
10582 ++op_string;
10583 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10584 {
10585 switch (r->reg_num)
10586 {
10587 case 0:
10588 i.seg[i.mem_operands] = &es;
10589 break;
10590 case 1:
10591 i.seg[i.mem_operands] = &cs;
10592 break;
10593 case 2:
10594 i.seg[i.mem_operands] = &ss;
10595 break;
10596 case 3:
10597 i.seg[i.mem_operands] = &ds;
10598 break;
10599 case 4:
10600 i.seg[i.mem_operands] = &fs;
10601 break;
10602 case 5:
10603 i.seg[i.mem_operands] = &gs;
10604 break;
10605 }
10606
10607 /* Skip the ':' and whitespace. */
10608 ++op_string;
10609 if (is_space_char (*op_string))
10610 ++op_string;
10611
10612 if (!is_digit_char (*op_string)
10613 && !is_identifier_char (*op_string)
10614 && *op_string != '('
10615 && *op_string != ABSOLUTE_PREFIX)
10616 {
10617 as_bad (_("bad memory operand `%s'"), op_string);
10618 return 0;
10619 }
10620 /* Handle case of %es:*foo. */
10621 if (*op_string == ABSOLUTE_PREFIX)
10622 {
10623 ++op_string;
10624 if (is_space_char (*op_string))
10625 ++op_string;
10626 i.jumpabsolute = TRUE;
10627 }
10628 goto do_memory_reference;
10629 }
10630
10631 /* Handle vector operations. */
10632 if (*op_string == '{')
10633 {
10634 op_string = check_VecOperations (op_string, NULL);
10635 if (op_string == NULL)
10636 return 0;
10637 }
10638
10639 if (*op_string)
10640 {
10641 as_bad (_("junk `%s' after register"), op_string);
10642 return 0;
10643 }
10644 temp = r->reg_type;
10645 temp.bitfield.baseindex = 0;
10646 i.types[this_operand] = operand_type_or (i.types[this_operand],
10647 temp);
10648 i.types[this_operand].bitfield.unspecified = 0;
10649 i.op[this_operand].regs = r;
10650 i.reg_operands++;
10651 }
10652 else if (*op_string == REGISTER_PREFIX)
10653 {
10654 as_bad (_("bad register name `%s'"), op_string);
10655 return 0;
10656 }
10657 else if (*op_string == IMMEDIATE_PREFIX)
10658 {
10659 ++op_string;
10660 if (i.jumpabsolute)
10661 {
10662 as_bad (_("immediate operand illegal with absolute jump"));
10663 return 0;
10664 }
10665 if (!i386_immediate (op_string))
10666 return 0;
10667 }
10668 else if (RC_SAE_immediate (operand_string))
10669 {
10670 /* If it is a RC or SAE immediate, do nothing. */
10671 ;
10672 }
10673 else if (is_digit_char (*op_string)
10674 || is_identifier_char (*op_string)
10675 || *op_string == '"'
10676 || *op_string == '(')
10677 {
10678 /* This is a memory reference of some sort. */
10679 char *base_string;
10680
10681 /* Start and end of displacement string expression (if found). */
10682 char *displacement_string_start;
10683 char *displacement_string_end;
10684 char *vop_start;
10685
10686 do_memory_reference:
10687 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10688 return 0;
10689 if ((i.mem_operands == 1
10690 && !current_templates->start->opcode_modifier.isstring)
10691 || i.mem_operands == 2)
10692 {
10693 as_bad (_("too many memory references for `%s'"),
10694 current_templates->start->name);
10695 return 0;
10696 }
10697
10698 /* Check for base index form. We detect the base index form by
10699 looking for an ')' at the end of the operand, searching
10700 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10701 after the '('. */
10702 base_string = op_string + strlen (op_string);
10703
10704 /* Handle vector operations. */
10705 vop_start = strchr (op_string, '{');
10706 if (vop_start && vop_start < base_string)
10707 {
10708 if (check_VecOperations (vop_start, base_string) == NULL)
10709 return 0;
10710 base_string = vop_start;
10711 }
10712
10713 --base_string;
10714 if (is_space_char (*base_string))
10715 --base_string;
10716
10717 /* If we only have a displacement, set-up for it to be parsed later. */
10718 displacement_string_start = op_string;
10719 displacement_string_end = base_string + 1;
10720
10721 if (*base_string == ')')
10722 {
10723 char *temp_string;
10724 unsigned int parens_balanced = 1;
10725 /* We've already checked that the number of left & right ()'s are
10726 equal, so this loop will not be infinite. */
10727 do
10728 {
10729 base_string--;
10730 if (*base_string == ')')
10731 parens_balanced++;
10732 if (*base_string == '(')
10733 parens_balanced--;
10734 }
10735 while (parens_balanced);
10736
10737 temp_string = base_string;
10738
10739 /* Skip past '(' and whitespace. */
10740 ++base_string;
10741 if (is_space_char (*base_string))
10742 ++base_string;
10743
10744 if (*base_string == ','
10745 || ((i.base_reg = parse_register (base_string, &end_op))
10746 != NULL))
10747 {
10748 displacement_string_end = temp_string;
10749
10750 i.types[this_operand].bitfield.baseindex = 1;
10751
10752 if (i.base_reg)
10753 {
10754 base_string = end_op;
10755 if (is_space_char (*base_string))
10756 ++base_string;
10757 }
10758
10759 /* There may be an index reg or scale factor here. */
10760 if (*base_string == ',')
10761 {
10762 ++base_string;
10763 if (is_space_char (*base_string))
10764 ++base_string;
10765
10766 if ((i.index_reg = parse_register (base_string, &end_op))
10767 != NULL)
10768 {
10769 base_string = end_op;
10770 if (is_space_char (*base_string))
10771 ++base_string;
10772 if (*base_string == ',')
10773 {
10774 ++base_string;
10775 if (is_space_char (*base_string))
10776 ++base_string;
10777 }
10778 else if (*base_string != ')')
10779 {
10780 as_bad (_("expecting `,' or `)' "
10781 "after index register in `%s'"),
10782 operand_string);
10783 return 0;
10784 }
10785 }
10786 else if (*base_string == REGISTER_PREFIX)
10787 {
10788 end_op = strchr (base_string, ',');
10789 if (end_op)
10790 *end_op = '\0';
10791 as_bad (_("bad register name `%s'"), base_string);
10792 return 0;
10793 }
10794
10795 /* Check for scale factor. */
10796 if (*base_string != ')')
10797 {
10798 char *end_scale = i386_scale (base_string);
10799
10800 if (!end_scale)
10801 return 0;
10802
10803 base_string = end_scale;
10804 if (is_space_char (*base_string))
10805 ++base_string;
10806 if (*base_string != ')')
10807 {
10808 as_bad (_("expecting `)' "
10809 "after scale factor in `%s'"),
10810 operand_string);
10811 return 0;
10812 }
10813 }
10814 else if (!i.index_reg)
10815 {
10816 as_bad (_("expecting index register or scale factor "
10817 "after `,'; got '%c'"),
10818 *base_string);
10819 return 0;
10820 }
10821 }
10822 else if (*base_string != ')')
10823 {
10824 as_bad (_("expecting `,' or `)' "
10825 "after base register in `%s'"),
10826 operand_string);
10827 return 0;
10828 }
10829 }
10830 else if (*base_string == REGISTER_PREFIX)
10831 {
10832 end_op = strchr (base_string, ',');
10833 if (end_op)
10834 *end_op = '\0';
10835 as_bad (_("bad register name `%s'"), base_string);
10836 return 0;
10837 }
10838 }
10839
10840 /* If there's an expression beginning the operand, parse it,
10841 assuming displacement_string_start and
10842 displacement_string_end are meaningful. */
10843 if (displacement_string_start != displacement_string_end)
10844 {
10845 if (!i386_displacement (displacement_string_start,
10846 displacement_string_end))
10847 return 0;
10848 }
10849
10850 /* Special case for (%dx) while doing input/output op. */
10851 if (i.base_reg
10852 && i.base_reg->reg_type.bitfield.instance == RegD
10853 && i.base_reg->reg_type.bitfield.word
10854 && i.index_reg == 0
10855 && i.log2_scale_factor == 0
10856 && i.seg[i.mem_operands] == 0
10857 && !operand_type_check (i.types[this_operand], disp))
10858 {
10859 i.types[this_operand] = i.base_reg->reg_type;
10860 return 1;
10861 }
10862
10863 if (i386_index_check (operand_string) == 0)
10864 return 0;
10865 i.flags[this_operand] |= Operand_Mem;
10866 if (i.mem_operands == 0)
10867 i.memop1_string = xstrdup (operand_string);
10868 i.mem_operands++;
10869 }
10870 else
10871 {
10872 /* It's not a memory operand; argh! */
10873 as_bad (_("invalid char %s beginning operand %d `%s'"),
10874 output_invalid (*op_string),
10875 this_operand + 1,
10876 op_string);
10877 return 0;
10878 }
10879 return 1; /* Normal return. */
10880 }
10881 \f
10882 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10883 that an rs_machine_dependent frag may reach. */
10884
10885 unsigned int
10886 i386_frag_max_var (fragS *frag)
10887 {
10888 /* The only relaxable frags are for jumps.
10889 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10890 gas_assert (frag->fr_type == rs_machine_dependent);
10891 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10892 }
10893
10894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10895 static int
10896 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10897 {
10898 /* STT_GNU_IFUNC symbol must go through PLT. */
10899 if ((symbol_get_bfdsym (fr_symbol)->flags
10900 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10901 return 0;
10902
10903 if (!S_IS_EXTERNAL (fr_symbol))
10904 /* Symbol may be weak or local. */
10905 return !S_IS_WEAK (fr_symbol);
10906
10907 /* Global symbols with non-default visibility can't be preempted. */
10908 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10909 return 1;
10910
10911 if (fr_var != NO_RELOC)
10912 switch ((enum bfd_reloc_code_real) fr_var)
10913 {
10914 case BFD_RELOC_386_PLT32:
10915 case BFD_RELOC_X86_64_PLT32:
10916 /* Symbol with PLT relocation may be preempted. */
10917 return 0;
10918 default:
10919 abort ();
10920 }
10921
10922 /* Global symbols with default visibility in a shared library may be
10923 preempted by another definition. */
10924 return !shared;
10925 }
10926 #endif
10927
10928 /* Return the next non-empty frag. */
10929
10930 static fragS *
10931 i386_next_non_empty_frag (fragS *fragP)
10932 {
10933 /* There may be a frag with a ".fill 0" when there is no room in
10934 the current frag for frag_grow in output_insn. */
10935 for (fragP = fragP->fr_next;
10936 (fragP != NULL
10937 && fragP->fr_type == rs_fill
10938 && fragP->fr_fix == 0);
10939 fragP = fragP->fr_next)
10940 ;
10941 return fragP;
10942 }
10943
10944 /* Return the next jcc frag after BRANCH_PADDING. */
10945
10946 static fragS *
10947 i386_next_jcc_frag (fragS *fragP)
10948 {
10949 if (!fragP)
10950 return NULL;
10951
10952 if (fragP->fr_type == rs_machine_dependent
10953 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10954 == BRANCH_PADDING))
10955 {
10956 fragP = i386_next_non_empty_frag (fragP);
10957 if (fragP->fr_type != rs_machine_dependent)
10958 return NULL;
10959 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10960 return fragP;
10961 }
10962
10963 return NULL;
10964 }
10965
10966 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10967
10968 static void
10969 i386_classify_machine_dependent_frag (fragS *fragP)
10970 {
10971 fragS *cmp_fragP;
10972 fragS *pad_fragP;
10973 fragS *branch_fragP;
10974 fragS *next_fragP;
10975 unsigned int max_prefix_length;
10976
10977 if (fragP->tc_frag_data.classified)
10978 return;
10979
10980 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10981 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10982 for (next_fragP = fragP;
10983 next_fragP != NULL;
10984 next_fragP = next_fragP->fr_next)
10985 {
10986 next_fragP->tc_frag_data.classified = 1;
10987 if (next_fragP->fr_type == rs_machine_dependent)
10988 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10989 {
10990 case BRANCH_PADDING:
10991 /* The BRANCH_PADDING frag must be followed by a branch
10992 frag. */
10993 branch_fragP = i386_next_non_empty_frag (next_fragP);
10994 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10995 break;
10996 case FUSED_JCC_PADDING:
10997 /* Check if this is a fused jcc:
10998 FUSED_JCC_PADDING
10999 CMP like instruction
11000 BRANCH_PADDING
11001 COND_JUMP
11002 */
11003 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11004 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11005 branch_fragP = i386_next_jcc_frag (pad_fragP);
11006 if (branch_fragP)
11007 {
11008 /* The BRANCH_PADDING frag is merged with the
11009 FUSED_JCC_PADDING frag. */
11010 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11011 /* CMP like instruction size. */
11012 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11013 frag_wane (pad_fragP);
11014 /* Skip to branch_fragP. */
11015 next_fragP = branch_fragP;
11016 }
11017 else if (next_fragP->tc_frag_data.max_prefix_length)
11018 {
11019 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11020 a fused jcc. */
11021 next_fragP->fr_subtype
11022 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11023 next_fragP->tc_frag_data.max_bytes
11024 = next_fragP->tc_frag_data.max_prefix_length;
11025 /* This will be updated in the BRANCH_PREFIX scan. */
11026 next_fragP->tc_frag_data.max_prefix_length = 0;
11027 }
11028 else
11029 frag_wane (next_fragP);
11030 break;
11031 }
11032 }
11033
11034 /* Stop if there is no BRANCH_PREFIX. */
11035 if (!align_branch_prefix_size)
11036 return;
11037
11038 /* Scan for BRANCH_PREFIX. */
11039 for (; fragP != NULL; fragP = fragP->fr_next)
11040 {
11041 if (fragP->fr_type != rs_machine_dependent
11042 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11043 != BRANCH_PREFIX))
11044 continue;
11045
11046 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11047 COND_JUMP_PREFIX. */
11048 max_prefix_length = 0;
11049 for (next_fragP = fragP;
11050 next_fragP != NULL;
11051 next_fragP = next_fragP->fr_next)
11052 {
11053 if (next_fragP->fr_type == rs_fill)
11054 /* Skip rs_fill frags. */
11055 continue;
11056 else if (next_fragP->fr_type != rs_machine_dependent)
11057 /* Stop for all other frags. */
11058 break;
11059
11060 /* rs_machine_dependent frags. */
11061 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11062 == BRANCH_PREFIX)
11063 {
11064 /* Count BRANCH_PREFIX frags. */
11065 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11066 {
11067 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11068 frag_wane (next_fragP);
11069 }
11070 else
11071 max_prefix_length
11072 += next_fragP->tc_frag_data.max_bytes;
11073 }
11074 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11075 == BRANCH_PADDING)
11076 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11077 == FUSED_JCC_PADDING))
11078 {
11079 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11080 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11081 break;
11082 }
11083 else
11084 /* Stop for other rs_machine_dependent frags. */
11085 break;
11086 }
11087
11088 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11089
11090 /* Skip to the next frag. */
11091 fragP = next_fragP;
11092 }
11093 }
11094
11095 /* Compute padding size for
11096
11097 FUSED_JCC_PADDING
11098 CMP like instruction
11099 BRANCH_PADDING
11100 COND_JUMP/UNCOND_JUMP
11101
11102 or
11103
11104 BRANCH_PADDING
11105 COND_JUMP/UNCOND_JUMP
11106 */
11107
11108 static int
11109 i386_branch_padding_size (fragS *fragP, offsetT address)
11110 {
11111 unsigned int offset, size, padding_size;
11112 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11113
11114 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11115 if (!address)
11116 address = fragP->fr_address;
11117 address += fragP->fr_fix;
11118
11119 /* CMP like instrunction size. */
11120 size = fragP->tc_frag_data.cmp_size;
11121
11122 /* The base size of the branch frag. */
11123 size += branch_fragP->fr_fix;
11124
11125 /* Add opcode and displacement bytes for the rs_machine_dependent
11126 branch frag. */
11127 if (branch_fragP->fr_type == rs_machine_dependent)
11128 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11129
11130 /* Check if branch is within boundary and doesn't end at the last
11131 byte. */
11132 offset = address & ((1U << align_branch_power) - 1);
11133 if ((offset + size) >= (1U << align_branch_power))
11134 /* Padding needed to avoid crossing boundary. */
11135 padding_size = (1U << align_branch_power) - offset;
11136 else
11137 /* No padding needed. */
11138 padding_size = 0;
11139
11140 /* The return value may be saved in tc_frag_data.length which is
11141 unsigned byte. */
11142 if (!fits_in_unsigned_byte (padding_size))
11143 abort ();
11144
11145 return padding_size;
11146 }
11147
11148 /* i386_generic_table_relax_frag()
11149
11150 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11151 grow/shrink padding to align branch frags. Hand others to
11152 relax_frag(). */
11153
11154 long
11155 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11156 {
11157 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11158 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11159 {
11160 long padding_size = i386_branch_padding_size (fragP, 0);
11161 long grow = padding_size - fragP->tc_frag_data.length;
11162
11163 /* When the BRANCH_PREFIX frag is used, the computed address
11164 must match the actual address and there should be no padding. */
11165 if (fragP->tc_frag_data.padding_address
11166 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11167 || padding_size))
11168 abort ();
11169
11170 /* Update the padding size. */
11171 if (grow)
11172 fragP->tc_frag_data.length = padding_size;
11173
11174 return grow;
11175 }
11176 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11177 {
11178 fragS *padding_fragP, *next_fragP;
11179 long padding_size, left_size, last_size;
11180
11181 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11182 if (!padding_fragP)
11183 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11184 return (fragP->tc_frag_data.length
11185 - fragP->tc_frag_data.last_length);
11186
11187 /* Compute the relative address of the padding frag in the very
11188 first time where the BRANCH_PREFIX frag sizes are zero. */
11189 if (!fragP->tc_frag_data.padding_address)
11190 fragP->tc_frag_data.padding_address
11191 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11192
11193 /* First update the last length from the previous interation. */
11194 left_size = fragP->tc_frag_data.prefix_length;
11195 for (next_fragP = fragP;
11196 next_fragP != padding_fragP;
11197 next_fragP = next_fragP->fr_next)
11198 if (next_fragP->fr_type == rs_machine_dependent
11199 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11200 == BRANCH_PREFIX))
11201 {
11202 if (left_size)
11203 {
11204 int max = next_fragP->tc_frag_data.max_bytes;
11205 if (max)
11206 {
11207 int size;
11208 if (max > left_size)
11209 size = left_size;
11210 else
11211 size = max;
11212 left_size -= size;
11213 next_fragP->tc_frag_data.last_length = size;
11214 }
11215 }
11216 else
11217 next_fragP->tc_frag_data.last_length = 0;
11218 }
11219
11220 /* Check the padding size for the padding frag. */
11221 padding_size = i386_branch_padding_size
11222 (padding_fragP, (fragP->fr_address
11223 + fragP->tc_frag_data.padding_address));
11224
11225 last_size = fragP->tc_frag_data.prefix_length;
11226 /* Check if there is change from the last interation. */
11227 if (padding_size == last_size)
11228 {
11229 /* Update the expected address of the padding frag. */
11230 padding_fragP->tc_frag_data.padding_address
11231 = (fragP->fr_address + padding_size
11232 + fragP->tc_frag_data.padding_address);
11233 return 0;
11234 }
11235
11236 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11237 {
11238 /* No padding if there is no sufficient room. Clear the
11239 expected address of the padding frag. */
11240 padding_fragP->tc_frag_data.padding_address = 0;
11241 padding_size = 0;
11242 }
11243 else
11244 /* Store the expected address of the padding frag. */
11245 padding_fragP->tc_frag_data.padding_address
11246 = (fragP->fr_address + padding_size
11247 + fragP->tc_frag_data.padding_address);
11248
11249 fragP->tc_frag_data.prefix_length = padding_size;
11250
11251 /* Update the length for the current interation. */
11252 left_size = padding_size;
11253 for (next_fragP = fragP;
11254 next_fragP != padding_fragP;
11255 next_fragP = next_fragP->fr_next)
11256 if (next_fragP->fr_type == rs_machine_dependent
11257 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11258 == BRANCH_PREFIX))
11259 {
11260 if (left_size)
11261 {
11262 int max = next_fragP->tc_frag_data.max_bytes;
11263 if (max)
11264 {
11265 int size;
11266 if (max > left_size)
11267 size = left_size;
11268 else
11269 size = max;
11270 left_size -= size;
11271 next_fragP->tc_frag_data.length = size;
11272 }
11273 }
11274 else
11275 next_fragP->tc_frag_data.length = 0;
11276 }
11277
11278 return (fragP->tc_frag_data.length
11279 - fragP->tc_frag_data.last_length);
11280 }
11281 return relax_frag (segment, fragP, stretch);
11282 }
11283
11284 /* md_estimate_size_before_relax()
11285
11286 Called just before relax() for rs_machine_dependent frags. The x86
11287 assembler uses these frags to handle variable size jump
11288 instructions.
11289
11290 Any symbol that is now undefined will not become defined.
11291 Return the correct fr_subtype in the frag.
11292 Return the initial "guess for variable size of frag" to caller.
11293 The guess is actually the growth beyond the fixed part. Whatever
11294 we do to grow the fixed or variable part contributes to our
11295 returned value. */
11296
11297 int
11298 md_estimate_size_before_relax (fragS *fragP, segT segment)
11299 {
11300 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11301 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11302 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11303 {
11304 i386_classify_machine_dependent_frag (fragP);
11305 return fragP->tc_frag_data.length;
11306 }
11307
11308 /* We've already got fragP->fr_subtype right; all we have to do is
11309 check for un-relaxable symbols. On an ELF system, we can't relax
11310 an externally visible symbol, because it may be overridden by a
11311 shared library. */
11312 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11313 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11314 || (IS_ELF
11315 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11316 fragP->fr_var))
11317 #endif
11318 #if defined (OBJ_COFF) && defined (TE_PE)
11319 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11320 && S_IS_WEAK (fragP->fr_symbol))
11321 #endif
11322 )
11323 {
11324 /* Symbol is undefined in this segment, or we need to keep a
11325 reloc so that weak symbols can be overridden. */
11326 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11327 enum bfd_reloc_code_real reloc_type;
11328 unsigned char *opcode;
11329 int old_fr_fix;
11330
11331 if (fragP->fr_var != NO_RELOC)
11332 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11333 else if (size == 2)
11334 reloc_type = BFD_RELOC_16_PCREL;
11335 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11336 else if (need_plt32_p (fragP->fr_symbol))
11337 reloc_type = BFD_RELOC_X86_64_PLT32;
11338 #endif
11339 else
11340 reloc_type = BFD_RELOC_32_PCREL;
11341
11342 old_fr_fix = fragP->fr_fix;
11343 opcode = (unsigned char *) fragP->fr_opcode;
11344
11345 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11346 {
11347 case UNCOND_JUMP:
11348 /* Make jmp (0xeb) a (d)word displacement jump. */
11349 opcode[0] = 0xe9;
11350 fragP->fr_fix += size;
11351 fix_new (fragP, old_fr_fix, size,
11352 fragP->fr_symbol,
11353 fragP->fr_offset, 1,
11354 reloc_type);
11355 break;
11356
11357 case COND_JUMP86:
11358 if (size == 2
11359 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11360 {
11361 /* Negate the condition, and branch past an
11362 unconditional jump. */
11363 opcode[0] ^= 1;
11364 opcode[1] = 3;
11365 /* Insert an unconditional jump. */
11366 opcode[2] = 0xe9;
11367 /* We added two extra opcode bytes, and have a two byte
11368 offset. */
11369 fragP->fr_fix += 2 + 2;
11370 fix_new (fragP, old_fr_fix + 2, 2,
11371 fragP->fr_symbol,
11372 fragP->fr_offset, 1,
11373 reloc_type);
11374 break;
11375 }
11376 /* Fall through. */
11377
11378 case COND_JUMP:
11379 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11380 {
11381 fixS *fixP;
11382
11383 fragP->fr_fix += 1;
11384 fixP = fix_new (fragP, old_fr_fix, 1,
11385 fragP->fr_symbol,
11386 fragP->fr_offset, 1,
11387 BFD_RELOC_8_PCREL);
11388 fixP->fx_signed = 1;
11389 break;
11390 }
11391
11392 /* This changes the byte-displacement jump 0x7N
11393 to the (d)word-displacement jump 0x0f,0x8N. */
11394 opcode[1] = opcode[0] + 0x10;
11395 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11396 /* We've added an opcode byte. */
11397 fragP->fr_fix += 1 + size;
11398 fix_new (fragP, old_fr_fix + 1, size,
11399 fragP->fr_symbol,
11400 fragP->fr_offset, 1,
11401 reloc_type);
11402 break;
11403
11404 default:
11405 BAD_CASE (fragP->fr_subtype);
11406 break;
11407 }
11408 frag_wane (fragP);
11409 return fragP->fr_fix - old_fr_fix;
11410 }
11411
11412 /* Guess size depending on current relax state. Initially the relax
11413 state will correspond to a short jump and we return 1, because
11414 the variable part of the frag (the branch offset) is one byte
11415 long. However, we can relax a section more than once and in that
11416 case we must either set fr_subtype back to the unrelaxed state,
11417 or return the value for the appropriate branch. */
11418 return md_relax_table[fragP->fr_subtype].rlx_length;
11419 }
11420
11421 /* Called after relax() is finished.
11422
11423 In: Address of frag.
11424 fr_type == rs_machine_dependent.
11425 fr_subtype is what the address relaxed to.
11426
11427 Out: Any fixSs and constants are set up.
11428 Caller will turn frag into a ".space 0". */
11429
11430 void
11431 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11432 fragS *fragP)
11433 {
11434 unsigned char *opcode;
11435 unsigned char *where_to_put_displacement = NULL;
11436 offsetT target_address;
11437 offsetT opcode_address;
11438 unsigned int extension = 0;
11439 offsetT displacement_from_opcode_start;
11440
11441 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11442 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11443 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11444 {
11445 /* Generate nop padding. */
11446 unsigned int size = fragP->tc_frag_data.length;
11447 if (size)
11448 {
11449 if (size > fragP->tc_frag_data.max_bytes)
11450 abort ();
11451
11452 if (flag_debug)
11453 {
11454 const char *msg;
11455 const char *branch = "branch";
11456 const char *prefix = "";
11457 fragS *padding_fragP;
11458 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11459 == BRANCH_PREFIX)
11460 {
11461 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11462 switch (fragP->tc_frag_data.default_prefix)
11463 {
11464 default:
11465 abort ();
11466 break;
11467 case CS_PREFIX_OPCODE:
11468 prefix = " cs";
11469 break;
11470 case DS_PREFIX_OPCODE:
11471 prefix = " ds";
11472 break;
11473 case ES_PREFIX_OPCODE:
11474 prefix = " es";
11475 break;
11476 case FS_PREFIX_OPCODE:
11477 prefix = " fs";
11478 break;
11479 case GS_PREFIX_OPCODE:
11480 prefix = " gs";
11481 break;
11482 case SS_PREFIX_OPCODE:
11483 prefix = " ss";
11484 break;
11485 }
11486 if (padding_fragP)
11487 msg = _("%s:%u: add %d%s at 0x%llx to align "
11488 "%s within %d-byte boundary\n");
11489 else
11490 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11491 "align %s within %d-byte boundary\n");
11492 }
11493 else
11494 {
11495 padding_fragP = fragP;
11496 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11497 "%s within %d-byte boundary\n");
11498 }
11499
11500 if (padding_fragP)
11501 switch (padding_fragP->tc_frag_data.branch_type)
11502 {
11503 case align_branch_jcc:
11504 branch = "jcc";
11505 break;
11506 case align_branch_fused:
11507 branch = "fused jcc";
11508 break;
11509 case align_branch_jmp:
11510 branch = "jmp";
11511 break;
11512 case align_branch_call:
11513 branch = "call";
11514 break;
11515 case align_branch_indirect:
11516 branch = "indiret branch";
11517 break;
11518 case align_branch_ret:
11519 branch = "ret";
11520 break;
11521 default:
11522 break;
11523 }
11524
11525 fprintf (stdout, msg,
11526 fragP->fr_file, fragP->fr_line, size, prefix,
11527 (long long) fragP->fr_address, branch,
11528 1 << align_branch_power);
11529 }
11530 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11531 memset (fragP->fr_opcode,
11532 fragP->tc_frag_data.default_prefix, size);
11533 else
11534 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11535 size, 0);
11536 fragP->fr_fix += size;
11537 }
11538 return;
11539 }
11540
11541 opcode = (unsigned char *) fragP->fr_opcode;
11542
11543 /* Address we want to reach in file space. */
11544 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11545
11546 /* Address opcode resides at in file space. */
11547 opcode_address = fragP->fr_address + fragP->fr_fix;
11548
11549 /* Displacement from opcode start to fill into instruction. */
11550 displacement_from_opcode_start = target_address - opcode_address;
11551
11552 if ((fragP->fr_subtype & BIG) == 0)
11553 {
11554 /* Don't have to change opcode. */
11555 extension = 1; /* 1 opcode + 1 displacement */
11556 where_to_put_displacement = &opcode[1];
11557 }
11558 else
11559 {
11560 if (no_cond_jump_promotion
11561 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11562 as_warn_where (fragP->fr_file, fragP->fr_line,
11563 _("long jump required"));
11564
11565 switch (fragP->fr_subtype)
11566 {
11567 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11568 extension = 4; /* 1 opcode + 4 displacement */
11569 opcode[0] = 0xe9;
11570 where_to_put_displacement = &opcode[1];
11571 break;
11572
11573 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11574 extension = 2; /* 1 opcode + 2 displacement */
11575 opcode[0] = 0xe9;
11576 where_to_put_displacement = &opcode[1];
11577 break;
11578
11579 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11580 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11581 extension = 5; /* 2 opcode + 4 displacement */
11582 opcode[1] = opcode[0] + 0x10;
11583 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11584 where_to_put_displacement = &opcode[2];
11585 break;
11586
11587 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11588 extension = 3; /* 2 opcode + 2 displacement */
11589 opcode[1] = opcode[0] + 0x10;
11590 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11591 where_to_put_displacement = &opcode[2];
11592 break;
11593
11594 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11595 extension = 4;
11596 opcode[0] ^= 1;
11597 opcode[1] = 3;
11598 opcode[2] = 0xe9;
11599 where_to_put_displacement = &opcode[3];
11600 break;
11601
11602 default:
11603 BAD_CASE (fragP->fr_subtype);
11604 break;
11605 }
11606 }
11607
11608 /* If size if less then four we are sure that the operand fits,
11609 but if it's 4, then it could be that the displacement is larger
11610 then -/+ 2GB. */
11611 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11612 && object_64bit
11613 && ((addressT) (displacement_from_opcode_start - extension
11614 + ((addressT) 1 << 31))
11615 > (((addressT) 2 << 31) - 1)))
11616 {
11617 as_bad_where (fragP->fr_file, fragP->fr_line,
11618 _("jump target out of range"));
11619 /* Make us emit 0. */
11620 displacement_from_opcode_start = extension;
11621 }
11622 /* Now put displacement after opcode. */
11623 md_number_to_chars ((char *) where_to_put_displacement,
11624 (valueT) (displacement_from_opcode_start - extension),
11625 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11626 fragP->fr_fix += extension;
11627 }
11628 \f
11629 /* Apply a fixup (fixP) to segment data, once it has been determined
11630 by our caller that we have all the info we need to fix it up.
11631
11632 Parameter valP is the pointer to the value of the bits.
11633
11634 On the 386, immediates, displacements, and data pointers are all in
11635 the same (little-endian) format, so we don't need to care about which
11636 we are handling. */
11637
11638 void
11639 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11640 {
11641 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11642 valueT value = *valP;
11643
11644 #if !defined (TE_Mach)
11645 if (fixP->fx_pcrel)
11646 {
11647 switch (fixP->fx_r_type)
11648 {
11649 default:
11650 break;
11651
11652 case BFD_RELOC_64:
11653 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11654 break;
11655 case BFD_RELOC_32:
11656 case BFD_RELOC_X86_64_32S:
11657 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11658 break;
11659 case BFD_RELOC_16:
11660 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11661 break;
11662 case BFD_RELOC_8:
11663 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11664 break;
11665 }
11666 }
11667
11668 if (fixP->fx_addsy != NULL
11669 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11670 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11671 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11672 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11673 && !use_rela_relocations)
11674 {
11675 /* This is a hack. There should be a better way to handle this.
11676 This covers for the fact that bfd_install_relocation will
11677 subtract the current location (for partial_inplace, PC relative
11678 relocations); see more below. */
11679 #ifndef OBJ_AOUT
11680 if (IS_ELF
11681 #ifdef TE_PE
11682 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11683 #endif
11684 )
11685 value += fixP->fx_where + fixP->fx_frag->fr_address;
11686 #endif
11687 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11688 if (IS_ELF)
11689 {
11690 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11691
11692 if ((sym_seg == seg
11693 || (symbol_section_p (fixP->fx_addsy)
11694 && sym_seg != absolute_section))
11695 && !generic_force_reloc (fixP))
11696 {
11697 /* Yes, we add the values in twice. This is because
11698 bfd_install_relocation subtracts them out again. I think
11699 bfd_install_relocation is broken, but I don't dare change
11700 it. FIXME. */
11701 value += fixP->fx_where + fixP->fx_frag->fr_address;
11702 }
11703 }
11704 #endif
11705 #if defined (OBJ_COFF) && defined (TE_PE)
11706 /* For some reason, the PE format does not store a
11707 section address offset for a PC relative symbol. */
11708 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11709 || S_IS_WEAK (fixP->fx_addsy))
11710 value += md_pcrel_from (fixP);
11711 #endif
11712 }
11713 #if defined (OBJ_COFF) && defined (TE_PE)
11714 if (fixP->fx_addsy != NULL
11715 && S_IS_WEAK (fixP->fx_addsy)
11716 /* PR 16858: Do not modify weak function references. */
11717 && ! fixP->fx_pcrel)
11718 {
11719 #if !defined (TE_PEP)
11720 /* For x86 PE weak function symbols are neither PC-relative
11721 nor do they set S_IS_FUNCTION. So the only reliable way
11722 to detect them is to check the flags of their containing
11723 section. */
11724 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11725 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11726 ;
11727 else
11728 #endif
11729 value -= S_GET_VALUE (fixP->fx_addsy);
11730 }
11731 #endif
11732
11733 /* Fix a few things - the dynamic linker expects certain values here,
11734 and we must not disappoint it. */
11735 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11736 if (IS_ELF && fixP->fx_addsy)
11737 switch (fixP->fx_r_type)
11738 {
11739 case BFD_RELOC_386_PLT32:
11740 case BFD_RELOC_X86_64_PLT32:
11741 /* Make the jump instruction point to the address of the operand.
11742 At runtime we merely add the offset to the actual PLT entry.
11743 NB: Subtract the offset size only for jump instructions. */
11744 if (fixP->fx_pcrel)
11745 value = -4;
11746 break;
11747
11748 case BFD_RELOC_386_TLS_GD:
11749 case BFD_RELOC_386_TLS_LDM:
11750 case BFD_RELOC_386_TLS_IE_32:
11751 case BFD_RELOC_386_TLS_IE:
11752 case BFD_RELOC_386_TLS_GOTIE:
11753 case BFD_RELOC_386_TLS_GOTDESC:
11754 case BFD_RELOC_X86_64_TLSGD:
11755 case BFD_RELOC_X86_64_TLSLD:
11756 case BFD_RELOC_X86_64_GOTTPOFF:
11757 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11758 value = 0; /* Fully resolved at runtime. No addend. */
11759 /* Fallthrough */
11760 case BFD_RELOC_386_TLS_LE:
11761 case BFD_RELOC_386_TLS_LDO_32:
11762 case BFD_RELOC_386_TLS_LE_32:
11763 case BFD_RELOC_X86_64_DTPOFF32:
11764 case BFD_RELOC_X86_64_DTPOFF64:
11765 case BFD_RELOC_X86_64_TPOFF32:
11766 case BFD_RELOC_X86_64_TPOFF64:
11767 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11768 break;
11769
11770 case BFD_RELOC_386_TLS_DESC_CALL:
11771 case BFD_RELOC_X86_64_TLSDESC_CALL:
11772 value = 0; /* Fully resolved at runtime. No addend. */
11773 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11774 fixP->fx_done = 0;
11775 return;
11776
11777 case BFD_RELOC_VTABLE_INHERIT:
11778 case BFD_RELOC_VTABLE_ENTRY:
11779 fixP->fx_done = 0;
11780 return;
11781
11782 default:
11783 break;
11784 }
11785 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11786 *valP = value;
11787 #endif /* !defined (TE_Mach) */
11788
11789 /* Are we finished with this relocation now? */
11790 if (fixP->fx_addsy == NULL)
11791 fixP->fx_done = 1;
11792 #if defined (OBJ_COFF) && defined (TE_PE)
11793 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11794 {
11795 fixP->fx_done = 0;
11796 /* Remember value for tc_gen_reloc. */
11797 fixP->fx_addnumber = value;
11798 /* Clear out the frag for now. */
11799 value = 0;
11800 }
11801 #endif
11802 else if (use_rela_relocations)
11803 {
11804 fixP->fx_no_overflow = 1;
11805 /* Remember value for tc_gen_reloc. */
11806 fixP->fx_addnumber = value;
11807 value = 0;
11808 }
11809
11810 md_number_to_chars (p, value, fixP->fx_size);
11811 }
11812 \f
11813 const char *
11814 md_atof (int type, char *litP, int *sizeP)
11815 {
11816 /* This outputs the LITTLENUMs in REVERSE order;
11817 in accord with the bigendian 386. */
11818 return ieee_md_atof (type, litP, sizeP, FALSE);
11819 }
11820 \f
11821 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11822
11823 static char *
11824 output_invalid (int c)
11825 {
11826 if (ISPRINT (c))
11827 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11828 "'%c'", c);
11829 else
11830 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11831 "(0x%x)", (unsigned char) c);
11832 return output_invalid_buf;
11833 }
11834
11835 /* REG_STRING starts *before* REGISTER_PREFIX. */
11836
11837 static const reg_entry *
11838 parse_real_register (char *reg_string, char **end_op)
11839 {
11840 char *s = reg_string;
11841 char *p;
11842 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11843 const reg_entry *r;
11844
11845 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11846 if (*s == REGISTER_PREFIX)
11847 ++s;
11848
11849 if (is_space_char (*s))
11850 ++s;
11851
11852 p = reg_name_given;
11853 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11854 {
11855 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11856 return (const reg_entry *) NULL;
11857 s++;
11858 }
11859
11860 /* For naked regs, make sure that we are not dealing with an identifier.
11861 This prevents confusing an identifier like `eax_var' with register
11862 `eax'. */
11863 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11864 return (const reg_entry *) NULL;
11865
11866 *end_op = s;
11867
11868 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11869
11870 /* Handle floating point regs, allowing spaces in the (i) part. */
11871 if (r == i386_regtab /* %st is first entry of table */)
11872 {
11873 if (!cpu_arch_flags.bitfield.cpu8087
11874 && !cpu_arch_flags.bitfield.cpu287
11875 && !cpu_arch_flags.bitfield.cpu387)
11876 return (const reg_entry *) NULL;
11877
11878 if (is_space_char (*s))
11879 ++s;
11880 if (*s == '(')
11881 {
11882 ++s;
11883 if (is_space_char (*s))
11884 ++s;
11885 if (*s >= '0' && *s <= '7')
11886 {
11887 int fpr = *s - '0';
11888 ++s;
11889 if (is_space_char (*s))
11890 ++s;
11891 if (*s == ')')
11892 {
11893 *end_op = s + 1;
11894 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11895 know (r);
11896 return r + fpr;
11897 }
11898 }
11899 /* We have "%st(" then garbage. */
11900 return (const reg_entry *) NULL;
11901 }
11902 }
11903
11904 if (r == NULL || allow_pseudo_reg)
11905 return r;
11906
11907 if (operand_type_all_zero (&r->reg_type))
11908 return (const reg_entry *) NULL;
11909
11910 if ((r->reg_type.bitfield.dword
11911 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11912 || r->reg_type.bitfield.class == RegCR
11913 || r->reg_type.bitfield.class == RegDR
11914 || r->reg_type.bitfield.class == RegTR)
11915 && !cpu_arch_flags.bitfield.cpui386)
11916 return (const reg_entry *) NULL;
11917
11918 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11919 return (const reg_entry *) NULL;
11920
11921 if (!cpu_arch_flags.bitfield.cpuavx512f)
11922 {
11923 if (r->reg_type.bitfield.zmmword
11924 || r->reg_type.bitfield.class == RegMask)
11925 return (const reg_entry *) NULL;
11926
11927 if (!cpu_arch_flags.bitfield.cpuavx)
11928 {
11929 if (r->reg_type.bitfield.ymmword)
11930 return (const reg_entry *) NULL;
11931
11932 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11933 return (const reg_entry *) NULL;
11934 }
11935 }
11936
11937 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11938 return (const reg_entry *) NULL;
11939
11940 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11941 if (!allow_index_reg && r->reg_num == RegIZ)
11942 return (const reg_entry *) NULL;
11943
11944 /* Upper 16 vector registers are only available with VREX in 64bit
11945 mode, and require EVEX encoding. */
11946 if (r->reg_flags & RegVRex)
11947 {
11948 if (!cpu_arch_flags.bitfield.cpuavx512f
11949 || flag_code != CODE_64BIT)
11950 return (const reg_entry *) NULL;
11951
11952 i.vec_encoding = vex_encoding_evex;
11953 }
11954
11955 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11956 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11957 && flag_code != CODE_64BIT)
11958 return (const reg_entry *) NULL;
11959
11960 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11961 && !intel_syntax)
11962 return (const reg_entry *) NULL;
11963
11964 return r;
11965 }
11966
11967 /* REG_STRING starts *before* REGISTER_PREFIX. */
11968
11969 static const reg_entry *
11970 parse_register (char *reg_string, char **end_op)
11971 {
11972 const reg_entry *r;
11973
11974 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11975 r = parse_real_register (reg_string, end_op);
11976 else
11977 r = NULL;
11978 if (!r)
11979 {
11980 char *save = input_line_pointer;
11981 char c;
11982 symbolS *symbolP;
11983
11984 input_line_pointer = reg_string;
11985 c = get_symbol_name (&reg_string);
11986 symbolP = symbol_find (reg_string);
11987 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11988 {
11989 const expressionS *e = symbol_get_value_expression (symbolP);
11990
11991 know (e->X_op == O_register);
11992 know (e->X_add_number >= 0
11993 && (valueT) e->X_add_number < i386_regtab_size);
11994 r = i386_regtab + e->X_add_number;
11995 if ((r->reg_flags & RegVRex))
11996 i.vec_encoding = vex_encoding_evex;
11997 *end_op = input_line_pointer;
11998 }
11999 *input_line_pointer = c;
12000 input_line_pointer = save;
12001 }
12002 return r;
12003 }
12004
12005 int
12006 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12007 {
12008 const reg_entry *r;
12009 char *end = input_line_pointer;
12010
12011 *end = *nextcharP;
12012 r = parse_register (name, &input_line_pointer);
12013 if (r && end <= input_line_pointer)
12014 {
12015 *nextcharP = *input_line_pointer;
12016 *input_line_pointer = 0;
12017 e->X_op = O_register;
12018 e->X_add_number = r - i386_regtab;
12019 return 1;
12020 }
12021 input_line_pointer = end;
12022 *end = 0;
12023 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12024 }
12025
12026 void
12027 md_operand (expressionS *e)
12028 {
12029 char *end;
12030 const reg_entry *r;
12031
12032 switch (*input_line_pointer)
12033 {
12034 case REGISTER_PREFIX:
12035 r = parse_real_register (input_line_pointer, &end);
12036 if (r)
12037 {
12038 e->X_op = O_register;
12039 e->X_add_number = r - i386_regtab;
12040 input_line_pointer = end;
12041 }
12042 break;
12043
12044 case '[':
12045 gas_assert (intel_syntax);
12046 end = input_line_pointer++;
12047 expression (e);
12048 if (*input_line_pointer == ']')
12049 {
12050 ++input_line_pointer;
12051 e->X_op_symbol = make_expr_symbol (e);
12052 e->X_add_symbol = NULL;
12053 e->X_add_number = 0;
12054 e->X_op = O_index;
12055 }
12056 else
12057 {
12058 e->X_op = O_absent;
12059 input_line_pointer = end;
12060 }
12061 break;
12062 }
12063 }
12064
12065 \f
12066 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12067 const char *md_shortopts = "kVQ:sqnO::";
12068 #else
12069 const char *md_shortopts = "qnO::";
12070 #endif
12071
12072 #define OPTION_32 (OPTION_MD_BASE + 0)
12073 #define OPTION_64 (OPTION_MD_BASE + 1)
12074 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12075 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12076 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12077 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12078 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12079 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12080 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12081 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12082 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12083 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12084 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12085 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12086 #define OPTION_X32 (OPTION_MD_BASE + 14)
12087 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12088 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12089 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12090 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12091 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12092 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12093 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12094 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12095 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12096 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12097 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12098 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12099 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12100 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12101 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12102 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12103
12104 struct option md_longopts[] =
12105 {
12106 {"32", no_argument, NULL, OPTION_32},
12107 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12108 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12109 {"64", no_argument, NULL, OPTION_64},
12110 #endif
12111 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12112 {"x32", no_argument, NULL, OPTION_X32},
12113 {"mshared", no_argument, NULL, OPTION_MSHARED},
12114 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12115 #endif
12116 {"divide", no_argument, NULL, OPTION_DIVIDE},
12117 {"march", required_argument, NULL, OPTION_MARCH},
12118 {"mtune", required_argument, NULL, OPTION_MTUNE},
12119 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12120 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12121 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12122 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12123 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12124 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12125 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12126 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12127 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12128 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12129 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12130 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12131 # if defined (TE_PE) || defined (TE_PEP)
12132 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12133 #endif
12134 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12135 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12136 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12137 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12138 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12139 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12140 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12141 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12142 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12143 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12144 {NULL, no_argument, NULL, 0}
12145 };
12146 size_t md_longopts_size = sizeof (md_longopts);
12147
12148 int
12149 md_parse_option (int c, const char *arg)
12150 {
12151 unsigned int j;
12152 char *arch, *next, *saved, *type;
12153
12154 switch (c)
12155 {
12156 case 'n':
12157 optimize_align_code = 0;
12158 break;
12159
12160 case 'q':
12161 quiet_warnings = 1;
12162 break;
12163
12164 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12165 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12166 should be emitted or not. FIXME: Not implemented. */
12167 case 'Q':
12168 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12169 return 0;
12170 break;
12171
12172 /* -V: SVR4 argument to print version ID. */
12173 case 'V':
12174 print_version_id ();
12175 break;
12176
12177 /* -k: Ignore for FreeBSD compatibility. */
12178 case 'k':
12179 break;
12180
12181 case 's':
12182 /* -s: On i386 Solaris, this tells the native assembler to use
12183 .stab instead of .stab.excl. We always use .stab anyhow. */
12184 break;
12185
12186 case OPTION_MSHARED:
12187 shared = 1;
12188 break;
12189
12190 case OPTION_X86_USED_NOTE:
12191 if (strcasecmp (arg, "yes") == 0)
12192 x86_used_note = 1;
12193 else if (strcasecmp (arg, "no") == 0)
12194 x86_used_note = 0;
12195 else
12196 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12197 break;
12198
12199
12200 #endif
12201 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12202 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12203 case OPTION_64:
12204 {
12205 const char **list, **l;
12206
12207 list = bfd_target_list ();
12208 for (l = list; *l != NULL; l++)
12209 if (CONST_STRNEQ (*l, "elf64-x86-64")
12210 || strcmp (*l, "coff-x86-64") == 0
12211 || strcmp (*l, "pe-x86-64") == 0
12212 || strcmp (*l, "pei-x86-64") == 0
12213 || strcmp (*l, "mach-o-x86-64") == 0)
12214 {
12215 default_arch = "x86_64";
12216 break;
12217 }
12218 if (*l == NULL)
12219 as_fatal (_("no compiled in support for x86_64"));
12220 free (list);
12221 }
12222 break;
12223 #endif
12224
12225 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12226 case OPTION_X32:
12227 if (IS_ELF)
12228 {
12229 const char **list, **l;
12230
12231 list = bfd_target_list ();
12232 for (l = list; *l != NULL; l++)
12233 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12234 {
12235 default_arch = "x86_64:32";
12236 break;
12237 }
12238 if (*l == NULL)
12239 as_fatal (_("no compiled in support for 32bit x86_64"));
12240 free (list);
12241 }
12242 else
12243 as_fatal (_("32bit x86_64 is only supported for ELF"));
12244 break;
12245 #endif
12246
12247 case OPTION_32:
12248 default_arch = "i386";
12249 break;
12250
12251 case OPTION_DIVIDE:
12252 #ifdef SVR4_COMMENT_CHARS
12253 {
12254 char *n, *t;
12255 const char *s;
12256
12257 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12258 t = n;
12259 for (s = i386_comment_chars; *s != '\0'; s++)
12260 if (*s != '/')
12261 *t++ = *s;
12262 *t = '\0';
12263 i386_comment_chars = n;
12264 }
12265 #endif
12266 break;
12267
12268 case OPTION_MARCH:
12269 saved = xstrdup (arg);
12270 arch = saved;
12271 /* Allow -march=+nosse. */
12272 if (*arch == '+')
12273 arch++;
12274 do
12275 {
12276 if (*arch == '.')
12277 as_fatal (_("invalid -march= option: `%s'"), arg);
12278 next = strchr (arch, '+');
12279 if (next)
12280 *next++ = '\0';
12281 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12282 {
12283 if (strcmp (arch, cpu_arch [j].name) == 0)
12284 {
12285 /* Processor. */
12286 if (! cpu_arch[j].flags.bitfield.cpui386)
12287 continue;
12288
12289 cpu_arch_name = cpu_arch[j].name;
12290 cpu_sub_arch_name = NULL;
12291 cpu_arch_flags = cpu_arch[j].flags;
12292 cpu_arch_isa = cpu_arch[j].type;
12293 cpu_arch_isa_flags = cpu_arch[j].flags;
12294 if (!cpu_arch_tune_set)
12295 {
12296 cpu_arch_tune = cpu_arch_isa;
12297 cpu_arch_tune_flags = cpu_arch_isa_flags;
12298 }
12299 break;
12300 }
12301 else if (*cpu_arch [j].name == '.'
12302 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12303 {
12304 /* ISA extension. */
12305 i386_cpu_flags flags;
12306
12307 flags = cpu_flags_or (cpu_arch_flags,
12308 cpu_arch[j].flags);
12309
12310 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12311 {
12312 if (cpu_sub_arch_name)
12313 {
12314 char *name = cpu_sub_arch_name;
12315 cpu_sub_arch_name = concat (name,
12316 cpu_arch[j].name,
12317 (const char *) NULL);
12318 free (name);
12319 }
12320 else
12321 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12322 cpu_arch_flags = flags;
12323 cpu_arch_isa_flags = flags;
12324 }
12325 else
12326 cpu_arch_isa_flags
12327 = cpu_flags_or (cpu_arch_isa_flags,
12328 cpu_arch[j].flags);
12329 break;
12330 }
12331 }
12332
12333 if (j >= ARRAY_SIZE (cpu_arch))
12334 {
12335 /* Disable an ISA extension. */
12336 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12337 if (strcmp (arch, cpu_noarch [j].name) == 0)
12338 {
12339 i386_cpu_flags flags;
12340
12341 flags = cpu_flags_and_not (cpu_arch_flags,
12342 cpu_noarch[j].flags);
12343 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12344 {
12345 if (cpu_sub_arch_name)
12346 {
12347 char *name = cpu_sub_arch_name;
12348 cpu_sub_arch_name = concat (arch,
12349 (const char *) NULL);
12350 free (name);
12351 }
12352 else
12353 cpu_sub_arch_name = xstrdup (arch);
12354 cpu_arch_flags = flags;
12355 cpu_arch_isa_flags = flags;
12356 }
12357 break;
12358 }
12359
12360 if (j >= ARRAY_SIZE (cpu_noarch))
12361 j = ARRAY_SIZE (cpu_arch);
12362 }
12363
12364 if (j >= ARRAY_SIZE (cpu_arch))
12365 as_fatal (_("invalid -march= option: `%s'"), arg);
12366
12367 arch = next;
12368 }
12369 while (next != NULL);
12370 free (saved);
12371 break;
12372
12373 case OPTION_MTUNE:
12374 if (*arg == '.')
12375 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12376 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12377 {
12378 if (strcmp (arg, cpu_arch [j].name) == 0)
12379 {
12380 cpu_arch_tune_set = 1;
12381 cpu_arch_tune = cpu_arch [j].type;
12382 cpu_arch_tune_flags = cpu_arch[j].flags;
12383 break;
12384 }
12385 }
12386 if (j >= ARRAY_SIZE (cpu_arch))
12387 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12388 break;
12389
12390 case OPTION_MMNEMONIC:
12391 if (strcasecmp (arg, "att") == 0)
12392 intel_mnemonic = 0;
12393 else if (strcasecmp (arg, "intel") == 0)
12394 intel_mnemonic = 1;
12395 else
12396 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12397 break;
12398
12399 case OPTION_MSYNTAX:
12400 if (strcasecmp (arg, "att") == 0)
12401 intel_syntax = 0;
12402 else if (strcasecmp (arg, "intel") == 0)
12403 intel_syntax = 1;
12404 else
12405 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12406 break;
12407
12408 case OPTION_MINDEX_REG:
12409 allow_index_reg = 1;
12410 break;
12411
12412 case OPTION_MNAKED_REG:
12413 allow_naked_reg = 1;
12414 break;
12415
12416 case OPTION_MSSE2AVX:
12417 sse2avx = 1;
12418 break;
12419
12420 case OPTION_MSSE_CHECK:
12421 if (strcasecmp (arg, "error") == 0)
12422 sse_check = check_error;
12423 else if (strcasecmp (arg, "warning") == 0)
12424 sse_check = check_warning;
12425 else if (strcasecmp (arg, "none") == 0)
12426 sse_check = check_none;
12427 else
12428 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12429 break;
12430
12431 case OPTION_MOPERAND_CHECK:
12432 if (strcasecmp (arg, "error") == 0)
12433 operand_check = check_error;
12434 else if (strcasecmp (arg, "warning") == 0)
12435 operand_check = check_warning;
12436 else if (strcasecmp (arg, "none") == 0)
12437 operand_check = check_none;
12438 else
12439 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12440 break;
12441
12442 case OPTION_MAVXSCALAR:
12443 if (strcasecmp (arg, "128") == 0)
12444 avxscalar = vex128;
12445 else if (strcasecmp (arg, "256") == 0)
12446 avxscalar = vex256;
12447 else
12448 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12449 break;
12450
12451 case OPTION_MVEXWIG:
12452 if (strcmp (arg, "0") == 0)
12453 vexwig = vexw0;
12454 else if (strcmp (arg, "1") == 0)
12455 vexwig = vexw1;
12456 else
12457 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12458 break;
12459
12460 case OPTION_MADD_BND_PREFIX:
12461 add_bnd_prefix = 1;
12462 break;
12463
12464 case OPTION_MEVEXLIG:
12465 if (strcmp (arg, "128") == 0)
12466 evexlig = evexl128;
12467 else if (strcmp (arg, "256") == 0)
12468 evexlig = evexl256;
12469 else if (strcmp (arg, "512") == 0)
12470 evexlig = evexl512;
12471 else
12472 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12473 break;
12474
12475 case OPTION_MEVEXRCIG:
12476 if (strcmp (arg, "rne") == 0)
12477 evexrcig = rne;
12478 else if (strcmp (arg, "rd") == 0)
12479 evexrcig = rd;
12480 else if (strcmp (arg, "ru") == 0)
12481 evexrcig = ru;
12482 else if (strcmp (arg, "rz") == 0)
12483 evexrcig = rz;
12484 else
12485 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12486 break;
12487
12488 case OPTION_MEVEXWIG:
12489 if (strcmp (arg, "0") == 0)
12490 evexwig = evexw0;
12491 else if (strcmp (arg, "1") == 0)
12492 evexwig = evexw1;
12493 else
12494 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12495 break;
12496
12497 # if defined (TE_PE) || defined (TE_PEP)
12498 case OPTION_MBIG_OBJ:
12499 use_big_obj = 1;
12500 break;
12501 #endif
12502
12503 case OPTION_MOMIT_LOCK_PREFIX:
12504 if (strcasecmp (arg, "yes") == 0)
12505 omit_lock_prefix = 1;
12506 else if (strcasecmp (arg, "no") == 0)
12507 omit_lock_prefix = 0;
12508 else
12509 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12510 break;
12511
12512 case OPTION_MFENCE_AS_LOCK_ADD:
12513 if (strcasecmp (arg, "yes") == 0)
12514 avoid_fence = 1;
12515 else if (strcasecmp (arg, "no") == 0)
12516 avoid_fence = 0;
12517 else
12518 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12519 break;
12520
12521 case OPTION_MRELAX_RELOCATIONS:
12522 if (strcasecmp (arg, "yes") == 0)
12523 generate_relax_relocations = 1;
12524 else if (strcasecmp (arg, "no") == 0)
12525 generate_relax_relocations = 0;
12526 else
12527 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12528 break;
12529
12530 case OPTION_MALIGN_BRANCH_BOUNDARY:
12531 {
12532 char *end;
12533 long int align = strtoul (arg, &end, 0);
12534 if (*end == '\0')
12535 {
12536 if (align == 0)
12537 {
12538 align_branch_power = 0;
12539 break;
12540 }
12541 else if (align >= 16)
12542 {
12543 int align_power;
12544 for (align_power = 0;
12545 (align & 1) == 0;
12546 align >>= 1, align_power++)
12547 continue;
12548 /* Limit alignment power to 31. */
12549 if (align == 1 && align_power < 32)
12550 {
12551 align_branch_power = align_power;
12552 break;
12553 }
12554 }
12555 }
12556 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12557 }
12558 break;
12559
12560 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12561 {
12562 char *end;
12563 int align = strtoul (arg, &end, 0);
12564 /* Some processors only support 5 prefixes. */
12565 if (*end == '\0' && align >= 0 && align < 6)
12566 {
12567 align_branch_prefix_size = align;
12568 break;
12569 }
12570 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12571 arg);
12572 }
12573 break;
12574
12575 case OPTION_MALIGN_BRANCH:
12576 align_branch = 0;
12577 saved = xstrdup (arg);
12578 type = saved;
12579 do
12580 {
12581 next = strchr (type, '+');
12582 if (next)
12583 *next++ = '\0';
12584 if (strcasecmp (type, "jcc") == 0)
12585 align_branch |= align_branch_jcc_bit;
12586 else if (strcasecmp (type, "fused") == 0)
12587 align_branch |= align_branch_fused_bit;
12588 else if (strcasecmp (type, "jmp") == 0)
12589 align_branch |= align_branch_jmp_bit;
12590 else if (strcasecmp (type, "call") == 0)
12591 align_branch |= align_branch_call_bit;
12592 else if (strcasecmp (type, "ret") == 0)
12593 align_branch |= align_branch_ret_bit;
12594 else if (strcasecmp (type, "indirect") == 0)
12595 align_branch |= align_branch_indirect_bit;
12596 else
12597 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12598 type = next;
12599 }
12600 while (next != NULL);
12601 free (saved);
12602 break;
12603
12604 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12605 align_branch_power = 5;
12606 align_branch_prefix_size = 5;
12607 align_branch = (align_branch_jcc_bit
12608 | align_branch_fused_bit
12609 | align_branch_jmp_bit);
12610 break;
12611
12612 case OPTION_MAMD64:
12613 isa64 = amd64;
12614 break;
12615
12616 case OPTION_MINTEL64:
12617 isa64 = intel64;
12618 break;
12619
12620 case 'O':
12621 if (arg == NULL)
12622 {
12623 optimize = 1;
12624 /* Turn off -Os. */
12625 optimize_for_space = 0;
12626 }
12627 else if (*arg == 's')
12628 {
12629 optimize_for_space = 1;
12630 /* Turn on all encoding optimizations. */
12631 optimize = INT_MAX;
12632 }
12633 else
12634 {
12635 optimize = atoi (arg);
12636 /* Turn off -Os. */
12637 optimize_for_space = 0;
12638 }
12639 break;
12640
12641 default:
12642 return 0;
12643 }
12644 return 1;
12645 }
12646
12647 #define MESSAGE_TEMPLATE \
12648 " "
12649
12650 static char *
12651 output_message (FILE *stream, char *p, char *message, char *start,
12652 int *left_p, const char *name, int len)
12653 {
12654 int size = sizeof (MESSAGE_TEMPLATE);
12655 int left = *left_p;
12656
12657 /* Reserve 2 spaces for ", " or ",\0" */
12658 left -= len + 2;
12659
12660 /* Check if there is any room. */
12661 if (left >= 0)
12662 {
12663 if (p != start)
12664 {
12665 *p++ = ',';
12666 *p++ = ' ';
12667 }
12668 p = mempcpy (p, name, len);
12669 }
12670 else
12671 {
12672 /* Output the current message now and start a new one. */
12673 *p++ = ',';
12674 *p = '\0';
12675 fprintf (stream, "%s\n", message);
12676 p = start;
12677 left = size - (start - message) - len - 2;
12678
12679 gas_assert (left >= 0);
12680
12681 p = mempcpy (p, name, len);
12682 }
12683
12684 *left_p = left;
12685 return p;
12686 }
12687
12688 static void
12689 show_arch (FILE *stream, int ext, int check)
12690 {
12691 static char message[] = MESSAGE_TEMPLATE;
12692 char *start = message + 27;
12693 char *p;
12694 int size = sizeof (MESSAGE_TEMPLATE);
12695 int left;
12696 const char *name;
12697 int len;
12698 unsigned int j;
12699
12700 p = start;
12701 left = size - (start - message);
12702 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12703 {
12704 /* Should it be skipped? */
12705 if (cpu_arch [j].skip)
12706 continue;
12707
12708 name = cpu_arch [j].name;
12709 len = cpu_arch [j].len;
12710 if (*name == '.')
12711 {
12712 /* It is an extension. Skip if we aren't asked to show it. */
12713 if (ext)
12714 {
12715 name++;
12716 len--;
12717 }
12718 else
12719 continue;
12720 }
12721 else if (ext)
12722 {
12723 /* It is an processor. Skip if we show only extension. */
12724 continue;
12725 }
12726 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12727 {
12728 /* It is an impossible processor - skip. */
12729 continue;
12730 }
12731
12732 p = output_message (stream, p, message, start, &left, name, len);
12733 }
12734
12735 /* Display disabled extensions. */
12736 if (ext)
12737 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12738 {
12739 name = cpu_noarch [j].name;
12740 len = cpu_noarch [j].len;
12741 p = output_message (stream, p, message, start, &left, name,
12742 len);
12743 }
12744
12745 *p = '\0';
12746 fprintf (stream, "%s\n", message);
12747 }
12748
12749 void
12750 md_show_usage (FILE *stream)
12751 {
12752 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12753 fprintf (stream, _("\
12754 -Qy, -Qn ignored\n\
12755 -V print assembler version number\n\
12756 -k ignored\n"));
12757 #endif
12758 fprintf (stream, _("\
12759 -n Do not optimize code alignment\n\
12760 -q quieten some warnings\n"));
12761 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12762 fprintf (stream, _("\
12763 -s ignored\n"));
12764 #endif
12765 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12766 || defined (TE_PE) || defined (TE_PEP))
12767 fprintf (stream, _("\
12768 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12769 #endif
12770 #ifdef SVR4_COMMENT_CHARS
12771 fprintf (stream, _("\
12772 --divide do not treat `/' as a comment character\n"));
12773 #else
12774 fprintf (stream, _("\
12775 --divide ignored\n"));
12776 #endif
12777 fprintf (stream, _("\
12778 -march=CPU[,+EXTENSION...]\n\
12779 generate code for CPU and EXTENSION, CPU is one of:\n"));
12780 show_arch (stream, 0, 1);
12781 fprintf (stream, _("\
12782 EXTENSION is combination of:\n"));
12783 show_arch (stream, 1, 0);
12784 fprintf (stream, _("\
12785 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12786 show_arch (stream, 0, 0);
12787 fprintf (stream, _("\
12788 -msse2avx encode SSE instructions with VEX prefix\n"));
12789 fprintf (stream, _("\
12790 -msse-check=[none|error|warning] (default: warning)\n\
12791 check SSE instructions\n"));
12792 fprintf (stream, _("\
12793 -moperand-check=[none|error|warning] (default: warning)\n\
12794 check operand combinations for validity\n"));
12795 fprintf (stream, _("\
12796 -mavxscalar=[128|256] (default: 128)\n\
12797 encode scalar AVX instructions with specific vector\n\
12798 length\n"));
12799 fprintf (stream, _("\
12800 -mvexwig=[0|1] (default: 0)\n\
12801 encode VEX instructions with specific VEX.W value\n\
12802 for VEX.W bit ignored instructions\n"));
12803 fprintf (stream, _("\
12804 -mevexlig=[128|256|512] (default: 128)\n\
12805 encode scalar EVEX instructions with specific vector\n\
12806 length\n"));
12807 fprintf (stream, _("\
12808 -mevexwig=[0|1] (default: 0)\n\
12809 encode EVEX instructions with specific EVEX.W value\n\
12810 for EVEX.W bit ignored instructions\n"));
12811 fprintf (stream, _("\
12812 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12813 encode EVEX instructions with specific EVEX.RC value\n\
12814 for SAE-only ignored instructions\n"));
12815 fprintf (stream, _("\
12816 -mmnemonic=[att|intel] "));
12817 if (SYSV386_COMPAT)
12818 fprintf (stream, _("(default: att)\n"));
12819 else
12820 fprintf (stream, _("(default: intel)\n"));
12821 fprintf (stream, _("\
12822 use AT&T/Intel mnemonic\n"));
12823 fprintf (stream, _("\
12824 -msyntax=[att|intel] (default: att)\n\
12825 use AT&T/Intel syntax\n"));
12826 fprintf (stream, _("\
12827 -mindex-reg support pseudo index registers\n"));
12828 fprintf (stream, _("\
12829 -mnaked-reg don't require `%%' prefix for registers\n"));
12830 fprintf (stream, _("\
12831 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12832 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12833 fprintf (stream, _("\
12834 -mshared disable branch optimization for shared code\n"));
12835 fprintf (stream, _("\
12836 -mx86-used-note=[no|yes] "));
12837 if (DEFAULT_X86_USED_NOTE)
12838 fprintf (stream, _("(default: yes)\n"));
12839 else
12840 fprintf (stream, _("(default: no)\n"));
12841 fprintf (stream, _("\
12842 generate x86 used ISA and feature properties\n"));
12843 #endif
12844 #if defined (TE_PE) || defined (TE_PEP)
12845 fprintf (stream, _("\
12846 -mbig-obj generate big object files\n"));
12847 #endif
12848 fprintf (stream, _("\
12849 -momit-lock-prefix=[no|yes] (default: no)\n\
12850 strip all lock prefixes\n"));
12851 fprintf (stream, _("\
12852 -mfence-as-lock-add=[no|yes] (default: no)\n\
12853 encode lfence, mfence and sfence as\n\
12854 lock addl $0x0, (%%{re}sp)\n"));
12855 fprintf (stream, _("\
12856 -mrelax-relocations=[no|yes] "));
12857 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12858 fprintf (stream, _("(default: yes)\n"));
12859 else
12860 fprintf (stream, _("(default: no)\n"));
12861 fprintf (stream, _("\
12862 generate relax relocations\n"));
12863 fprintf (stream, _("\
12864 -malign-branch-boundary=NUM (default: 0)\n\
12865 align branches within NUM byte boundary\n"));
12866 fprintf (stream, _("\
12867 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12868 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12869 indirect\n\
12870 specify types of branches to align\n"));
12871 fprintf (stream, _("\
12872 -malign-branch-prefix-size=NUM (default: 5)\n\
12873 align branches with NUM prefixes per instruction\n"));
12874 fprintf (stream, _("\
12875 -mbranches-within-32B-boundaries\n\
12876 align branches within 32 byte boundary\n"));
12877 fprintf (stream, _("\
12878 -mamd64 accept only AMD64 ISA [default]\n"));
12879 fprintf (stream, _("\
12880 -mintel64 accept only Intel64 ISA\n"));
12881 }
12882
12883 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12884 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12885 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12886
12887 /* Pick the target format to use. */
12888
12889 const char *
12890 i386_target_format (void)
12891 {
12892 if (!strncmp (default_arch, "x86_64", 6))
12893 {
12894 update_code_flag (CODE_64BIT, 1);
12895 if (default_arch[6] == '\0')
12896 x86_elf_abi = X86_64_ABI;
12897 else
12898 x86_elf_abi = X86_64_X32_ABI;
12899 }
12900 else if (!strcmp (default_arch, "i386"))
12901 update_code_flag (CODE_32BIT, 1);
12902 else if (!strcmp (default_arch, "iamcu"))
12903 {
12904 update_code_flag (CODE_32BIT, 1);
12905 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12906 {
12907 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12908 cpu_arch_name = "iamcu";
12909 cpu_sub_arch_name = NULL;
12910 cpu_arch_flags = iamcu_flags;
12911 cpu_arch_isa = PROCESSOR_IAMCU;
12912 cpu_arch_isa_flags = iamcu_flags;
12913 if (!cpu_arch_tune_set)
12914 {
12915 cpu_arch_tune = cpu_arch_isa;
12916 cpu_arch_tune_flags = cpu_arch_isa_flags;
12917 }
12918 }
12919 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12920 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12921 cpu_arch_name);
12922 }
12923 else
12924 as_fatal (_("unknown architecture"));
12925
12926 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12927 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12928 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12929 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12930
12931 switch (OUTPUT_FLAVOR)
12932 {
12933 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12934 case bfd_target_aout_flavour:
12935 return AOUT_TARGET_FORMAT;
12936 #endif
12937 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12938 # if defined (TE_PE) || defined (TE_PEP)
12939 case bfd_target_coff_flavour:
12940 if (flag_code == CODE_64BIT)
12941 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12942 else
12943 return "pe-i386";
12944 # elif defined (TE_GO32)
12945 case bfd_target_coff_flavour:
12946 return "coff-go32";
12947 # else
12948 case bfd_target_coff_flavour:
12949 return "coff-i386";
12950 # endif
12951 #endif
12952 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12953 case bfd_target_elf_flavour:
12954 {
12955 const char *format;
12956
12957 switch (x86_elf_abi)
12958 {
12959 default:
12960 format = ELF_TARGET_FORMAT;
12961 #ifndef TE_SOLARIS
12962 tls_get_addr = "___tls_get_addr";
12963 #endif
12964 break;
12965 case X86_64_ABI:
12966 use_rela_relocations = 1;
12967 object_64bit = 1;
12968 #ifndef TE_SOLARIS
12969 tls_get_addr = "__tls_get_addr";
12970 #endif
12971 format = ELF_TARGET_FORMAT64;
12972 break;
12973 case X86_64_X32_ABI:
12974 use_rela_relocations = 1;
12975 object_64bit = 1;
12976 #ifndef TE_SOLARIS
12977 tls_get_addr = "__tls_get_addr";
12978 #endif
12979 disallow_64bit_reloc = 1;
12980 format = ELF_TARGET_FORMAT32;
12981 break;
12982 }
12983 if (cpu_arch_isa == PROCESSOR_L1OM)
12984 {
12985 if (x86_elf_abi != X86_64_ABI)
12986 as_fatal (_("Intel L1OM is 64bit only"));
12987 return ELF_TARGET_L1OM_FORMAT;
12988 }
12989 else if (cpu_arch_isa == PROCESSOR_K1OM)
12990 {
12991 if (x86_elf_abi != X86_64_ABI)
12992 as_fatal (_("Intel K1OM is 64bit only"));
12993 return ELF_TARGET_K1OM_FORMAT;
12994 }
12995 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12996 {
12997 if (x86_elf_abi != I386_ABI)
12998 as_fatal (_("Intel MCU is 32bit only"));
12999 return ELF_TARGET_IAMCU_FORMAT;
13000 }
13001 else
13002 return format;
13003 }
13004 #endif
13005 #if defined (OBJ_MACH_O)
13006 case bfd_target_mach_o_flavour:
13007 if (flag_code == CODE_64BIT)
13008 {
13009 use_rela_relocations = 1;
13010 object_64bit = 1;
13011 return "mach-o-x86-64";
13012 }
13013 else
13014 return "mach-o-i386";
13015 #endif
13016 default:
13017 abort ();
13018 return NULL;
13019 }
13020 }
13021
13022 #endif /* OBJ_MAYBE_ more than one */
13023 \f
13024 symbolS *
13025 md_undefined_symbol (char *name)
13026 {
13027 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13028 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13029 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13030 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13031 {
13032 if (!GOT_symbol)
13033 {
13034 if (symbol_find (name))
13035 as_bad (_("GOT already in symbol table"));
13036 GOT_symbol = symbol_new (name, undefined_section,
13037 (valueT) 0, &zero_address_frag);
13038 };
13039 return GOT_symbol;
13040 }
13041 return 0;
13042 }
13043
13044 /* Round up a section size to the appropriate boundary. */
13045
13046 valueT
13047 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13048 {
13049 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13050 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13051 {
13052 /* For a.out, force the section size to be aligned. If we don't do
13053 this, BFD will align it for us, but it will not write out the
13054 final bytes of the section. This may be a bug in BFD, but it is
13055 easier to fix it here since that is how the other a.out targets
13056 work. */
13057 int align;
13058
13059 align = bfd_section_alignment (segment);
13060 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13061 }
13062 #endif
13063
13064 return size;
13065 }
13066
13067 /* On the i386, PC-relative offsets are relative to the start of the
13068 next instruction. That is, the address of the offset, plus its
13069 size, since the offset is always the last part of the insn. */
13070
13071 long
13072 md_pcrel_from (fixS *fixP)
13073 {
13074 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13075 }
13076
13077 #ifndef I386COFF
13078
13079 static void
13080 s_bss (int ignore ATTRIBUTE_UNUSED)
13081 {
13082 int temp;
13083
13084 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13085 if (IS_ELF)
13086 obj_elf_section_change_hook ();
13087 #endif
13088 temp = get_absolute_expression ();
13089 subseg_set (bss_section, (subsegT) temp);
13090 demand_empty_rest_of_line ();
13091 }
13092
13093 #endif
13094
13095 /* Remember constant directive. */
13096
13097 void
13098 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13099 {
13100 if (last_insn.kind != last_insn_directive
13101 && (bfd_section_flags (now_seg) & SEC_CODE))
13102 {
13103 last_insn.seg = now_seg;
13104 last_insn.kind = last_insn_directive;
13105 last_insn.name = "constant directive";
13106 last_insn.file = as_where (&last_insn.line);
13107 }
13108 }
13109
13110 void
13111 i386_validate_fix (fixS *fixp)
13112 {
13113 if (fixp->fx_subsy)
13114 {
13115 if (fixp->fx_subsy == GOT_symbol)
13116 {
13117 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13118 {
13119 if (!object_64bit)
13120 abort ();
13121 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13122 if (fixp->fx_tcbit2)
13123 fixp->fx_r_type = (fixp->fx_tcbit
13124 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13125 : BFD_RELOC_X86_64_GOTPCRELX);
13126 else
13127 #endif
13128 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13129 }
13130 else
13131 {
13132 if (!object_64bit)
13133 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13134 else
13135 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13136 }
13137 fixp->fx_subsy = 0;
13138 }
13139 }
13140 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13141 else if (!object_64bit)
13142 {
13143 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13144 && fixp->fx_tcbit2)
13145 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13146 }
13147 #endif
13148 }
13149
13150 arelent *
13151 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13152 {
13153 arelent *rel;
13154 bfd_reloc_code_real_type code;
13155
13156 switch (fixp->fx_r_type)
13157 {
13158 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13159 case BFD_RELOC_SIZE32:
13160 case BFD_RELOC_SIZE64:
13161 if (S_IS_DEFINED (fixp->fx_addsy)
13162 && !S_IS_EXTERNAL (fixp->fx_addsy))
13163 {
13164 /* Resolve size relocation against local symbol to size of
13165 the symbol plus addend. */
13166 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13167 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13168 && !fits_in_unsigned_long (value))
13169 as_bad_where (fixp->fx_file, fixp->fx_line,
13170 _("symbol size computation overflow"));
13171 fixp->fx_addsy = NULL;
13172 fixp->fx_subsy = NULL;
13173 md_apply_fix (fixp, (valueT *) &value, NULL);
13174 return NULL;
13175 }
13176 #endif
13177 /* Fall through. */
13178
13179 case BFD_RELOC_X86_64_PLT32:
13180 case BFD_RELOC_X86_64_GOT32:
13181 case BFD_RELOC_X86_64_GOTPCREL:
13182 case BFD_RELOC_X86_64_GOTPCRELX:
13183 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13184 case BFD_RELOC_386_PLT32:
13185 case BFD_RELOC_386_GOT32:
13186 case BFD_RELOC_386_GOT32X:
13187 case BFD_RELOC_386_GOTOFF:
13188 case BFD_RELOC_386_GOTPC:
13189 case BFD_RELOC_386_TLS_GD:
13190 case BFD_RELOC_386_TLS_LDM:
13191 case BFD_RELOC_386_TLS_LDO_32:
13192 case BFD_RELOC_386_TLS_IE_32:
13193 case BFD_RELOC_386_TLS_IE:
13194 case BFD_RELOC_386_TLS_GOTIE:
13195 case BFD_RELOC_386_TLS_LE_32:
13196 case BFD_RELOC_386_TLS_LE:
13197 case BFD_RELOC_386_TLS_GOTDESC:
13198 case BFD_RELOC_386_TLS_DESC_CALL:
13199 case BFD_RELOC_X86_64_TLSGD:
13200 case BFD_RELOC_X86_64_TLSLD:
13201 case BFD_RELOC_X86_64_DTPOFF32:
13202 case BFD_RELOC_X86_64_DTPOFF64:
13203 case BFD_RELOC_X86_64_GOTTPOFF:
13204 case BFD_RELOC_X86_64_TPOFF32:
13205 case BFD_RELOC_X86_64_TPOFF64:
13206 case BFD_RELOC_X86_64_GOTOFF64:
13207 case BFD_RELOC_X86_64_GOTPC32:
13208 case BFD_RELOC_X86_64_GOT64:
13209 case BFD_RELOC_X86_64_GOTPCREL64:
13210 case BFD_RELOC_X86_64_GOTPC64:
13211 case BFD_RELOC_X86_64_GOTPLT64:
13212 case BFD_RELOC_X86_64_PLTOFF64:
13213 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13214 case BFD_RELOC_X86_64_TLSDESC_CALL:
13215 case BFD_RELOC_RVA:
13216 case BFD_RELOC_VTABLE_ENTRY:
13217 case BFD_RELOC_VTABLE_INHERIT:
13218 #ifdef TE_PE
13219 case BFD_RELOC_32_SECREL:
13220 #endif
13221 code = fixp->fx_r_type;
13222 break;
13223 case BFD_RELOC_X86_64_32S:
13224 if (!fixp->fx_pcrel)
13225 {
13226 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13227 code = fixp->fx_r_type;
13228 break;
13229 }
13230 /* Fall through. */
13231 default:
13232 if (fixp->fx_pcrel)
13233 {
13234 switch (fixp->fx_size)
13235 {
13236 default:
13237 as_bad_where (fixp->fx_file, fixp->fx_line,
13238 _("can not do %d byte pc-relative relocation"),
13239 fixp->fx_size);
13240 code = BFD_RELOC_32_PCREL;
13241 break;
13242 case 1: code = BFD_RELOC_8_PCREL; break;
13243 case 2: code = BFD_RELOC_16_PCREL; break;
13244 case 4: code = BFD_RELOC_32_PCREL; break;
13245 #ifdef BFD64
13246 case 8: code = BFD_RELOC_64_PCREL; break;
13247 #endif
13248 }
13249 }
13250 else
13251 {
13252 switch (fixp->fx_size)
13253 {
13254 default:
13255 as_bad_where (fixp->fx_file, fixp->fx_line,
13256 _("can not do %d byte relocation"),
13257 fixp->fx_size);
13258 code = BFD_RELOC_32;
13259 break;
13260 case 1: code = BFD_RELOC_8; break;
13261 case 2: code = BFD_RELOC_16; break;
13262 case 4: code = BFD_RELOC_32; break;
13263 #ifdef BFD64
13264 case 8: code = BFD_RELOC_64; break;
13265 #endif
13266 }
13267 }
13268 break;
13269 }
13270
13271 if ((code == BFD_RELOC_32
13272 || code == BFD_RELOC_32_PCREL
13273 || code == BFD_RELOC_X86_64_32S)
13274 && GOT_symbol
13275 && fixp->fx_addsy == GOT_symbol)
13276 {
13277 if (!object_64bit)
13278 code = BFD_RELOC_386_GOTPC;
13279 else
13280 code = BFD_RELOC_X86_64_GOTPC32;
13281 }
13282 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13283 && GOT_symbol
13284 && fixp->fx_addsy == GOT_symbol)
13285 {
13286 code = BFD_RELOC_X86_64_GOTPC64;
13287 }
13288
13289 rel = XNEW (arelent);
13290 rel->sym_ptr_ptr = XNEW (asymbol *);
13291 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13292
13293 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13294
13295 if (!use_rela_relocations)
13296 {
13297 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13298 vtable entry to be used in the relocation's section offset. */
13299 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13300 rel->address = fixp->fx_offset;
13301 #if defined (OBJ_COFF) && defined (TE_PE)
13302 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13303 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13304 else
13305 #endif
13306 rel->addend = 0;
13307 }
13308 /* Use the rela in 64bit mode. */
13309 else
13310 {
13311 if (disallow_64bit_reloc)
13312 switch (code)
13313 {
13314 case BFD_RELOC_X86_64_DTPOFF64:
13315 case BFD_RELOC_X86_64_TPOFF64:
13316 case BFD_RELOC_64_PCREL:
13317 case BFD_RELOC_X86_64_GOTOFF64:
13318 case BFD_RELOC_X86_64_GOT64:
13319 case BFD_RELOC_X86_64_GOTPCREL64:
13320 case BFD_RELOC_X86_64_GOTPC64:
13321 case BFD_RELOC_X86_64_GOTPLT64:
13322 case BFD_RELOC_X86_64_PLTOFF64:
13323 as_bad_where (fixp->fx_file, fixp->fx_line,
13324 _("cannot represent relocation type %s in x32 mode"),
13325 bfd_get_reloc_code_name (code));
13326 break;
13327 default:
13328 break;
13329 }
13330
13331 if (!fixp->fx_pcrel)
13332 rel->addend = fixp->fx_offset;
13333 else
13334 switch (code)
13335 {
13336 case BFD_RELOC_X86_64_PLT32:
13337 case BFD_RELOC_X86_64_GOT32:
13338 case BFD_RELOC_X86_64_GOTPCREL:
13339 case BFD_RELOC_X86_64_GOTPCRELX:
13340 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13341 case BFD_RELOC_X86_64_TLSGD:
13342 case BFD_RELOC_X86_64_TLSLD:
13343 case BFD_RELOC_X86_64_GOTTPOFF:
13344 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13345 case BFD_RELOC_X86_64_TLSDESC_CALL:
13346 rel->addend = fixp->fx_offset - fixp->fx_size;
13347 break;
13348 default:
13349 rel->addend = (section->vma
13350 - fixp->fx_size
13351 + fixp->fx_addnumber
13352 + md_pcrel_from (fixp));
13353 break;
13354 }
13355 }
13356
13357 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13358 if (rel->howto == NULL)
13359 {
13360 as_bad_where (fixp->fx_file, fixp->fx_line,
13361 _("cannot represent relocation type %s"),
13362 bfd_get_reloc_code_name (code));
13363 /* Set howto to a garbage value so that we can keep going. */
13364 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13365 gas_assert (rel->howto != NULL);
13366 }
13367
13368 return rel;
13369 }
13370
13371 #include "tc-i386-intel.c"
13372
13373 void
13374 tc_x86_parse_to_dw2regnum (expressionS *exp)
13375 {
13376 int saved_naked_reg;
13377 char saved_register_dot;
13378
13379 saved_naked_reg = allow_naked_reg;
13380 allow_naked_reg = 1;
13381 saved_register_dot = register_chars['.'];
13382 register_chars['.'] = '.';
13383 allow_pseudo_reg = 1;
13384 expression_and_evaluate (exp);
13385 allow_pseudo_reg = 0;
13386 register_chars['.'] = saved_register_dot;
13387 allow_naked_reg = saved_naked_reg;
13388
13389 if (exp->X_op == O_register && exp->X_add_number >= 0)
13390 {
13391 if ((addressT) exp->X_add_number < i386_regtab_size)
13392 {
13393 exp->X_op = O_constant;
13394 exp->X_add_number = i386_regtab[exp->X_add_number]
13395 .dw2_regnum[flag_code >> 1];
13396 }
13397 else
13398 exp->X_op = O_illegal;
13399 }
13400 }
13401
13402 void
13403 tc_x86_frame_initial_instructions (void)
13404 {
13405 static unsigned int sp_regno[2];
13406
13407 if (!sp_regno[flag_code >> 1])
13408 {
13409 char *saved_input = input_line_pointer;
13410 char sp[][4] = {"esp", "rsp"};
13411 expressionS exp;
13412
13413 input_line_pointer = sp[flag_code >> 1];
13414 tc_x86_parse_to_dw2regnum (&exp);
13415 gas_assert (exp.X_op == O_constant);
13416 sp_regno[flag_code >> 1] = exp.X_add_number;
13417 input_line_pointer = saved_input;
13418 }
13419
13420 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13421 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13422 }
13423
13424 int
13425 x86_dwarf2_addr_size (void)
13426 {
13427 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13428 if (x86_elf_abi == X86_64_X32_ABI)
13429 return 4;
13430 #endif
13431 return bfd_arch_bits_per_address (stdoutput) / 8;
13432 }
13433
13434 int
13435 i386_elf_section_type (const char *str, size_t len)
13436 {
13437 if (flag_code == CODE_64BIT
13438 && len == sizeof ("unwind") - 1
13439 && strncmp (str, "unwind", 6) == 0)
13440 return SHT_X86_64_UNWIND;
13441
13442 return -1;
13443 }
13444
13445 #ifdef TE_SOLARIS
13446 void
13447 i386_solaris_fix_up_eh_frame (segT sec)
13448 {
13449 if (flag_code == CODE_64BIT)
13450 elf_section_type (sec) = SHT_X86_64_UNWIND;
13451 }
13452 #endif
13453
13454 #ifdef TE_PE
13455 void
13456 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13457 {
13458 expressionS exp;
13459
13460 exp.X_op = O_secrel;
13461 exp.X_add_symbol = symbol;
13462 exp.X_add_number = 0;
13463 emit_expr (&exp, size);
13464 }
13465 #endif
13466
13467 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13468 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13469
13470 bfd_vma
13471 x86_64_section_letter (int letter, const char **ptr_msg)
13472 {
13473 if (flag_code == CODE_64BIT)
13474 {
13475 if (letter == 'l')
13476 return SHF_X86_64_LARGE;
13477
13478 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13479 }
13480 else
13481 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13482 return -1;
13483 }
13484
13485 bfd_vma
13486 x86_64_section_word (char *str, size_t len)
13487 {
13488 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13489 return SHF_X86_64_LARGE;
13490
13491 return -1;
13492 }
13493
13494 static void
13495 handle_large_common (int small ATTRIBUTE_UNUSED)
13496 {
13497 if (flag_code != CODE_64BIT)
13498 {
13499 s_comm_internal (0, elf_common_parse);
13500 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13501 }
13502 else
13503 {
13504 static segT lbss_section;
13505 asection *saved_com_section_ptr = elf_com_section_ptr;
13506 asection *saved_bss_section = bss_section;
13507
13508 if (lbss_section == NULL)
13509 {
13510 flagword applicable;
13511 segT seg = now_seg;
13512 subsegT subseg = now_subseg;
13513
13514 /* The .lbss section is for local .largecomm symbols. */
13515 lbss_section = subseg_new (".lbss", 0);
13516 applicable = bfd_applicable_section_flags (stdoutput);
13517 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13518 seg_info (lbss_section)->bss = 1;
13519
13520 subseg_set (seg, subseg);
13521 }
13522
13523 elf_com_section_ptr = &_bfd_elf_large_com_section;
13524 bss_section = lbss_section;
13525
13526 s_comm_internal (0, elf_common_parse);
13527
13528 elf_com_section_ptr = saved_com_section_ptr;
13529 bss_section = saved_bss_section;
13530 }
13531 }
13532 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.608091 seconds and 4 git commands to generate.