b020f39c863d904c6429396db8b52420365710b3
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* Types of condition jump used by macro-fusion. */
691 enum mf_jcc_kind
692 {
693 mf_jcc_jo = 0, /* base opcode 0x70 */
694 mf_jcc_jc, /* base opcode 0x72 */
695 mf_jcc_je, /* base opcode 0x74 */
696 mf_jcc_jna, /* base opcode 0x76 */
697 mf_jcc_js, /* base opcode 0x78 */
698 mf_jcc_jp, /* base opcode 0x7a */
699 mf_jcc_jl, /* base opcode 0x7c */
700 mf_jcc_jle, /* base opcode 0x7e */
701 };
702
703 /* Types of compare flag-modifying insntructions used by macro-fusion. */
704 enum mf_cmp_kind
705 {
706 mf_cmp_test_and, /* test/cmp */
707 mf_cmp_alu_cmp, /* add/sub/cmp */
708 mf_cmp_incdec /* inc/dec */
709 };
710
711 /* The maximum padding size for fused jcc. CMP like instruction can
712 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
713 prefixes. */
714 #define MAX_FUSED_JCC_PADDING_SIZE 20
715
716 /* The maximum number of prefixes added for an instruction. */
717 static unsigned int align_branch_prefix_size = 5;
718
719 /* Optimization:
720 1. Clear the REX_W bit with register operand if possible.
721 2. Above plus use 128bit vector instruction to clear the full vector
722 register.
723 */
724 static int optimize = 0;
725
726 /* Optimization:
727 1. Clear the REX_W bit with register operand if possible.
728 2. Above plus use 128bit vector instruction to clear the full vector
729 register.
730 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
731 "testb $imm7,%r8".
732 */
733 static int optimize_for_space = 0;
734
735 /* Register prefix used for error message. */
736 static const char *register_prefix = "%";
737
738 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
739 leave, push, and pop instructions so that gcc has the same stack
740 frame as in 32 bit mode. */
741 static char stackop_size = '\0';
742
743 /* Non-zero to optimize code alignment. */
744 int optimize_align_code = 1;
745
746 /* Non-zero to quieten some warnings. */
747 static int quiet_warnings = 0;
748
749 /* CPU name. */
750 static const char *cpu_arch_name = NULL;
751 static char *cpu_sub_arch_name = NULL;
752
753 /* CPU feature flags. */
754 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
755
756 /* If we have selected a cpu we are generating instructions for. */
757 static int cpu_arch_tune_set = 0;
758
759 /* Cpu we are generating instructions for. */
760 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
761
762 /* CPU feature flags of cpu we are generating instructions for. */
763 static i386_cpu_flags cpu_arch_tune_flags;
764
765 /* CPU instruction set architecture used. */
766 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
767
768 /* CPU feature flags of instruction set architecture used. */
769 i386_cpu_flags cpu_arch_isa_flags;
770
771 /* If set, conditional jumps are not automatically promoted to handle
772 larger than a byte offset. */
773 static unsigned int no_cond_jump_promotion = 0;
774
775 /* Encode SSE instructions with VEX prefix. */
776 static unsigned int sse2avx;
777
778 /* Encode scalar AVX instructions with specific vector length. */
779 static enum
780 {
781 vex128 = 0,
782 vex256
783 } avxscalar;
784
785 /* Encode VEX WIG instructions with specific vex.w. */
786 static enum
787 {
788 vexw0 = 0,
789 vexw1
790 } vexwig;
791
792 /* Encode scalar EVEX LIG instructions with specific vector length. */
793 static enum
794 {
795 evexl128 = 0,
796 evexl256,
797 evexl512
798 } evexlig;
799
800 /* Encode EVEX WIG instructions with specific evex.w. */
801 static enum
802 {
803 evexw0 = 0,
804 evexw1
805 } evexwig;
806
807 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
808 static enum rc_type evexrcig = rne;
809
810 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
811 static symbolS *GOT_symbol;
812
813 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
814 unsigned int x86_dwarf2_return_column;
815
816 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
817 int x86_cie_data_alignment;
818
819 /* Interface to relax_segment.
820 There are 3 major relax states for 386 jump insns because the
821 different types of jumps add different sizes to frags when we're
822 figuring out what sort of jump to choose to reach a given label.
823
824 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
825 branches which are handled by md_estimate_size_before_relax() and
826 i386_generic_table_relax_frag(). */
827
828 /* Types. */
829 #define UNCOND_JUMP 0
830 #define COND_JUMP 1
831 #define COND_JUMP86 2
832 #define BRANCH_PADDING 3
833 #define BRANCH_PREFIX 4
834 #define FUSED_JCC_PADDING 5
835
836 /* Sizes. */
837 #define CODE16 1
838 #define SMALL 0
839 #define SMALL16 (SMALL | CODE16)
840 #define BIG 2
841 #define BIG16 (BIG | CODE16)
842
843 #ifndef INLINE
844 #ifdef __GNUC__
845 #define INLINE __inline__
846 #else
847 #define INLINE
848 #endif
849 #endif
850
851 #define ENCODE_RELAX_STATE(type, size) \
852 ((relax_substateT) (((type) << 2) | (size)))
853 #define TYPE_FROM_RELAX_STATE(s) \
854 ((s) >> 2)
855 #define DISP_SIZE_FROM_RELAX_STATE(s) \
856 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
857
858 /* This table is used by relax_frag to promote short jumps to long
859 ones where necessary. SMALL (short) jumps may be promoted to BIG
860 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
861 don't allow a short jump in a 32 bit code segment to be promoted to
862 a 16 bit offset jump because it's slower (requires data size
863 prefix), and doesn't work, unless the destination is in the bottom
864 64k of the code segment (The top 16 bits of eip are zeroed). */
865
866 const relax_typeS md_relax_table[] =
867 {
868 /* The fields are:
869 1) most positive reach of this state,
870 2) most negative reach of this state,
871 3) how many bytes this mode will have in the variable part of the frag
872 4) which index into the table to try if we can't fit into this one. */
873
874 /* UNCOND_JUMP states. */
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
876 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
877 /* dword jmp adds 4 bytes to frag:
878 0 extra opcode bytes, 4 displacement bytes. */
879 {0, 0, 4, 0},
880 /* word jmp adds 2 byte2 to frag:
881 0 extra opcode bytes, 2 displacement bytes. */
882 {0, 0, 2, 0},
883
884 /* COND_JUMP states. */
885 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
886 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
887 /* dword conditionals adds 5 bytes to frag:
888 1 extra opcode byte, 4 displacement bytes. */
889 {0, 0, 5, 0},
890 /* word conditionals add 3 bytes to frag:
891 1 extra opcode byte, 2 displacement bytes. */
892 {0, 0, 3, 0},
893
894 /* COND_JUMP86 states. */
895 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
896 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
897 /* dword conditionals adds 5 bytes to frag:
898 1 extra opcode byte, 4 displacement bytes. */
899 {0, 0, 5, 0},
900 /* word conditionals add 4 bytes to frag:
901 1 displacement byte and a 3 byte long branch insn. */
902 {0, 0, 4, 0}
903 };
904
905 static const arch_entry cpu_arch[] =
906 {
907 /* Do not replace the first two entries - i386_target_format()
908 relies on them being there in this order. */
909 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
910 CPU_GENERIC32_FLAGS, 0 },
911 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
912 CPU_GENERIC64_FLAGS, 0 },
913 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
914 CPU_NONE_FLAGS, 0 },
915 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
916 CPU_I186_FLAGS, 0 },
917 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
918 CPU_I286_FLAGS, 0 },
919 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
920 CPU_I386_FLAGS, 0 },
921 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
922 CPU_I486_FLAGS, 0 },
923 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
924 CPU_I586_FLAGS, 0 },
925 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
926 CPU_I686_FLAGS, 0 },
927 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
928 CPU_I586_FLAGS, 0 },
929 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
930 CPU_PENTIUMPRO_FLAGS, 0 },
931 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
932 CPU_P2_FLAGS, 0 },
933 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
934 CPU_P3_FLAGS, 0 },
935 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
936 CPU_P4_FLAGS, 0 },
937 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
938 CPU_CORE_FLAGS, 0 },
939 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
940 CPU_NOCONA_FLAGS, 0 },
941 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
942 CPU_CORE_FLAGS, 1 },
943 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
944 CPU_CORE_FLAGS, 0 },
945 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
946 CPU_CORE2_FLAGS, 1 },
947 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
948 CPU_CORE2_FLAGS, 0 },
949 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
950 CPU_COREI7_FLAGS, 0 },
951 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
952 CPU_L1OM_FLAGS, 0 },
953 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
954 CPU_K1OM_FLAGS, 0 },
955 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
956 CPU_IAMCU_FLAGS, 0 },
957 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
958 CPU_K6_FLAGS, 0 },
959 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
960 CPU_K6_2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
962 CPU_ATHLON_FLAGS, 0 },
963 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
964 CPU_K8_FLAGS, 1 },
965 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
966 CPU_K8_FLAGS, 0 },
967 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
968 CPU_K8_FLAGS, 0 },
969 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
970 CPU_AMDFAM10_FLAGS, 0 },
971 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
972 CPU_BDVER1_FLAGS, 0 },
973 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
974 CPU_BDVER2_FLAGS, 0 },
975 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
976 CPU_BDVER3_FLAGS, 0 },
977 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
978 CPU_BDVER4_FLAGS, 0 },
979 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
980 CPU_ZNVER1_FLAGS, 0 },
981 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
982 CPU_ZNVER2_FLAGS, 0 },
983 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
984 CPU_BTVER1_FLAGS, 0 },
985 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
986 CPU_BTVER2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
988 CPU_8087_FLAGS, 0 },
989 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
990 CPU_287_FLAGS, 0 },
991 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
992 CPU_387_FLAGS, 0 },
993 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
994 CPU_687_FLAGS, 0 },
995 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
996 CPU_CMOV_FLAGS, 0 },
997 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
998 CPU_FXSR_FLAGS, 0 },
999 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1000 CPU_MMX_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1002 CPU_SSE_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1004 CPU_SSE2_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1006 CPU_SSE3_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1010 CPU_SSSE3_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1012 CPU_SSE4_1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1014 CPU_SSE4_2_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1016 CPU_SSE4_2_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1018 CPU_AVX_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1020 CPU_AVX2_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512F_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512CD_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512ER_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512PF_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512DQ_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512BW_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1034 CPU_AVX512VL_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1036 CPU_VMX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1038 CPU_VMFUNC_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1040 CPU_SMX_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1042 CPU_XSAVE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1044 CPU_XSAVEOPT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1046 CPU_XSAVEC_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1048 CPU_XSAVES_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1050 CPU_AES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1052 CPU_PCLMUL_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1054 CPU_PCLMUL_FLAGS, 1 },
1055 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1056 CPU_FSGSBASE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1058 CPU_RDRND_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1060 CPU_F16C_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1062 CPU_BMI2_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1064 CPU_FMA_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1066 CPU_FMA4_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1068 CPU_XOP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1070 CPU_LWP_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1072 CPU_MOVBE_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1074 CPU_CX16_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1076 CPU_EPT_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1078 CPU_LZCNT_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1080 CPU_POPCNT_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1082 CPU_HLE_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1084 CPU_RTM_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1086 CPU_INVPCID_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1088 CPU_CLFLUSH_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1090 CPU_NOP_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1092 CPU_SYSCALL_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1094 CPU_RDTSCP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1096 CPU_3DNOW_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1098 CPU_3DNOWA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1100 CPU_PADLOCK_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1102 CPU_SVME_FLAGS, 1 },
1103 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1104 CPU_SVME_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1106 CPU_SSE4A_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1108 CPU_ABM_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1110 CPU_BMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1112 CPU_TBM_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1114 CPU_ADX_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1116 CPU_RDSEED_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1118 CPU_PRFCHW_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1120 CPU_SMAP_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1122 CPU_MPX_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1124 CPU_SHA_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1126 CPU_CLFLUSHOPT_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1128 CPU_PREFETCHWT1_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1130 CPU_SE1_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1132 CPU_CLWB_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1134 CPU_AVX512IFMA_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1136 CPU_AVX512VBMI_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1138 CPU_AVX512_4FMAPS_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1140 CPU_AVX512_4VNNIW_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1142 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1144 CPU_AVX512_VBMI2_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1146 CPU_AVX512_VNNI_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1148 CPU_AVX512_BITALG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1150 CPU_CLZERO_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1152 CPU_MWAITX_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1154 CPU_OSPKE_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1156 CPU_RDPID_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1158 CPU_PTWRITE_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1160 CPU_IBT_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1162 CPU_SHSTK_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1164 CPU_GFNI_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1166 CPU_VAES_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1168 CPU_VPCLMULQDQ_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1170 CPU_WBNOINVD_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1172 CPU_PCONFIG_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1174 CPU_WAITPKG_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1176 CPU_CLDEMOTE_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1178 CPU_MOVDIRI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1180 CPU_MOVDIR64B_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_BF16_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1186 CPU_ENQCMD_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1188 CPU_RDPRU_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1190 CPU_MCOMMIT_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1192 CPU_SEV_ES_FLAGS, 0 },
1193 };
1194
1195 static const noarch_entry cpu_noarch[] =
1196 {
1197 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1198 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1199 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1200 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1201 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1202 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1203 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1204 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1205 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1206 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1207 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1208 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1209 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1210 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1211 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1212 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1213 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1214 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1215 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1216 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1217 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1218 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1219 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1220 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1221 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1222 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1223 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1224 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1225 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1226 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1227 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1228 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1229 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1230 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1231 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1232 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1233 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1234 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1235 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1236 };
1237
1238 #ifdef I386COFF
1239 /* Like s_lcomm_internal in gas/read.c but the alignment string
1240 is allowed to be optional. */
1241
1242 static symbolS *
1243 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1244 {
1245 addressT align = 0;
1246
1247 SKIP_WHITESPACE ();
1248
1249 if (needs_align
1250 && *input_line_pointer == ',')
1251 {
1252 align = parse_align (needs_align - 1);
1253
1254 if (align == (addressT) -1)
1255 return NULL;
1256 }
1257 else
1258 {
1259 if (size >= 8)
1260 align = 3;
1261 else if (size >= 4)
1262 align = 2;
1263 else if (size >= 2)
1264 align = 1;
1265 else
1266 align = 0;
1267 }
1268
1269 bss_alloc (symbolP, size, align);
1270 return symbolP;
1271 }
1272
1273 static void
1274 pe_lcomm (int needs_align)
1275 {
1276 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1277 }
1278 #endif
1279
1280 const pseudo_typeS md_pseudo_table[] =
1281 {
1282 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1283 {"align", s_align_bytes, 0},
1284 #else
1285 {"align", s_align_ptwo, 0},
1286 #endif
1287 {"arch", set_cpu_arch, 0},
1288 #ifndef I386COFF
1289 {"bss", s_bss, 0},
1290 #else
1291 {"lcomm", pe_lcomm, 1},
1292 #endif
1293 {"ffloat", float_cons, 'f'},
1294 {"dfloat", float_cons, 'd'},
1295 {"tfloat", float_cons, 'x'},
1296 {"value", cons, 2},
1297 {"slong", signed_cons, 4},
1298 {"noopt", s_ignore, 0},
1299 {"optim", s_ignore, 0},
1300 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1301 {"code16", set_code_flag, CODE_16BIT},
1302 {"code32", set_code_flag, CODE_32BIT},
1303 #ifdef BFD64
1304 {"code64", set_code_flag, CODE_64BIT},
1305 #endif
1306 {"intel_syntax", set_intel_syntax, 1},
1307 {"att_syntax", set_intel_syntax, 0},
1308 {"intel_mnemonic", set_intel_mnemonic, 1},
1309 {"att_mnemonic", set_intel_mnemonic, 0},
1310 {"allow_index_reg", set_allow_index_reg, 1},
1311 {"disallow_index_reg", set_allow_index_reg, 0},
1312 {"sse_check", set_check, 0},
1313 {"operand_check", set_check, 1},
1314 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1315 {"largecomm", handle_large_common, 0},
1316 #else
1317 {"file", dwarf2_directive_file, 0},
1318 {"loc", dwarf2_directive_loc, 0},
1319 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1320 #endif
1321 #ifdef TE_PE
1322 {"secrel32", pe_directive_secrel, 0},
1323 #endif
1324 {0, 0, 0}
1325 };
1326
1327 /* For interface with expression (). */
1328 extern char *input_line_pointer;
1329
1330 /* Hash table for instruction mnemonic lookup. */
1331 static struct hash_control *op_hash;
1332
1333 /* Hash table for register lookup. */
1334 static struct hash_control *reg_hash;
1335 \f
1336 /* Various efficient no-op patterns for aligning code labels.
1337 Note: Don't try to assemble the instructions in the comments.
1338 0L and 0w are not legal. */
1339 static const unsigned char f32_1[] =
1340 {0x90}; /* nop */
1341 static const unsigned char f32_2[] =
1342 {0x66,0x90}; /* xchg %ax,%ax */
1343 static const unsigned char f32_3[] =
1344 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1345 static const unsigned char f32_4[] =
1346 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1347 static const unsigned char f32_6[] =
1348 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1349 static const unsigned char f32_7[] =
1350 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1351 static const unsigned char f16_3[] =
1352 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1353 static const unsigned char f16_4[] =
1354 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1355 static const unsigned char jump_disp8[] =
1356 {0xeb}; /* jmp disp8 */
1357 static const unsigned char jump32_disp32[] =
1358 {0xe9}; /* jmp disp32 */
1359 static const unsigned char jump16_disp32[] =
1360 {0x66,0xe9}; /* jmp disp32 */
1361 /* 32-bit NOPs patterns. */
1362 static const unsigned char *const f32_patt[] = {
1363 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1364 };
1365 /* 16-bit NOPs patterns. */
1366 static const unsigned char *const f16_patt[] = {
1367 f32_1, f32_2, f16_3, f16_4
1368 };
1369 /* nopl (%[re]ax) */
1370 static const unsigned char alt_3[] =
1371 {0x0f,0x1f,0x00};
1372 /* nopl 0(%[re]ax) */
1373 static const unsigned char alt_4[] =
1374 {0x0f,0x1f,0x40,0x00};
1375 /* nopl 0(%[re]ax,%[re]ax,1) */
1376 static const unsigned char alt_5[] =
1377 {0x0f,0x1f,0x44,0x00,0x00};
1378 /* nopw 0(%[re]ax,%[re]ax,1) */
1379 static const unsigned char alt_6[] =
1380 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1381 /* nopl 0L(%[re]ax) */
1382 static const unsigned char alt_7[] =
1383 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1384 /* nopl 0L(%[re]ax,%[re]ax,1) */
1385 static const unsigned char alt_8[] =
1386 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1387 /* nopw 0L(%[re]ax,%[re]ax,1) */
1388 static const unsigned char alt_9[] =
1389 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1390 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1391 static const unsigned char alt_10[] =
1392 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1393 /* data16 nopw %cs:0L(%eax,%eax,1) */
1394 static const unsigned char alt_11[] =
1395 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1396 /* 32-bit and 64-bit NOPs patterns. */
1397 static const unsigned char *const alt_patt[] = {
1398 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1399 alt_9, alt_10, alt_11
1400 };
1401
1402 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1403 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1404
1405 static void
1406 i386_output_nops (char *where, const unsigned char *const *patt,
1407 int count, int max_single_nop_size)
1408
1409 {
1410 /* Place the longer NOP first. */
1411 int last;
1412 int offset;
1413 const unsigned char *nops;
1414
1415 if (max_single_nop_size < 1)
1416 {
1417 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1418 max_single_nop_size);
1419 return;
1420 }
1421
1422 nops = patt[max_single_nop_size - 1];
1423
1424 /* Use the smaller one if the requsted one isn't available. */
1425 if (nops == NULL)
1426 {
1427 max_single_nop_size--;
1428 nops = patt[max_single_nop_size - 1];
1429 }
1430
1431 last = count % max_single_nop_size;
1432
1433 count -= last;
1434 for (offset = 0; offset < count; offset += max_single_nop_size)
1435 memcpy (where + offset, nops, max_single_nop_size);
1436
1437 if (last)
1438 {
1439 nops = patt[last - 1];
1440 if (nops == NULL)
1441 {
1442 /* Use the smaller one plus one-byte NOP if the needed one
1443 isn't available. */
1444 last--;
1445 nops = patt[last - 1];
1446 memcpy (where + offset, nops, last);
1447 where[offset + last] = *patt[0];
1448 }
1449 else
1450 memcpy (where + offset, nops, last);
1451 }
1452 }
1453
1454 static INLINE int
1455 fits_in_imm7 (offsetT num)
1456 {
1457 return (num & 0x7f) == num;
1458 }
1459
1460 static INLINE int
1461 fits_in_imm31 (offsetT num)
1462 {
1463 return (num & 0x7fffffff) == num;
1464 }
1465
1466 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1467 single NOP instruction LIMIT. */
1468
1469 void
1470 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1471 {
1472 const unsigned char *const *patt = NULL;
1473 int max_single_nop_size;
1474 /* Maximum number of NOPs before switching to jump over NOPs. */
1475 int max_number_of_nops;
1476
1477 switch (fragP->fr_type)
1478 {
1479 case rs_fill_nop:
1480 case rs_align_code:
1481 break;
1482 case rs_machine_dependent:
1483 /* Allow NOP padding for jumps and calls. */
1484 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1485 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1486 break;
1487 /* Fall through. */
1488 default:
1489 return;
1490 }
1491
1492 /* We need to decide which NOP sequence to use for 32bit and
1493 64bit. When -mtune= is used:
1494
1495 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1496 PROCESSOR_GENERIC32, f32_patt will be used.
1497 2. For the rest, alt_patt will be used.
1498
1499 When -mtune= isn't used, alt_patt will be used if
1500 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1501 be used.
1502
1503 When -march= or .arch is used, we can't use anything beyond
1504 cpu_arch_isa_flags. */
1505
1506 if (flag_code == CODE_16BIT)
1507 {
1508 patt = f16_patt;
1509 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1510 /* Limit number of NOPs to 2 in 16-bit mode. */
1511 max_number_of_nops = 2;
1512 }
1513 else
1514 {
1515 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1516 {
1517 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1518 switch (cpu_arch_tune)
1519 {
1520 case PROCESSOR_UNKNOWN:
1521 /* We use cpu_arch_isa_flags to check if we SHOULD
1522 optimize with nops. */
1523 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1524 patt = alt_patt;
1525 else
1526 patt = f32_patt;
1527 break;
1528 case PROCESSOR_PENTIUM4:
1529 case PROCESSOR_NOCONA:
1530 case PROCESSOR_CORE:
1531 case PROCESSOR_CORE2:
1532 case PROCESSOR_COREI7:
1533 case PROCESSOR_L1OM:
1534 case PROCESSOR_K1OM:
1535 case PROCESSOR_GENERIC64:
1536 case PROCESSOR_K6:
1537 case PROCESSOR_ATHLON:
1538 case PROCESSOR_K8:
1539 case PROCESSOR_AMDFAM10:
1540 case PROCESSOR_BD:
1541 case PROCESSOR_ZNVER:
1542 case PROCESSOR_BT:
1543 patt = alt_patt;
1544 break;
1545 case PROCESSOR_I386:
1546 case PROCESSOR_I486:
1547 case PROCESSOR_PENTIUM:
1548 case PROCESSOR_PENTIUMPRO:
1549 case PROCESSOR_IAMCU:
1550 case PROCESSOR_GENERIC32:
1551 patt = f32_patt;
1552 break;
1553 }
1554 }
1555 else
1556 {
1557 switch (fragP->tc_frag_data.tune)
1558 {
1559 case PROCESSOR_UNKNOWN:
1560 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1561 PROCESSOR_UNKNOWN. */
1562 abort ();
1563 break;
1564
1565 case PROCESSOR_I386:
1566 case PROCESSOR_I486:
1567 case PROCESSOR_PENTIUM:
1568 case PROCESSOR_IAMCU:
1569 case PROCESSOR_K6:
1570 case PROCESSOR_ATHLON:
1571 case PROCESSOR_K8:
1572 case PROCESSOR_AMDFAM10:
1573 case PROCESSOR_BD:
1574 case PROCESSOR_ZNVER:
1575 case PROCESSOR_BT:
1576 case PROCESSOR_GENERIC32:
1577 /* We use cpu_arch_isa_flags to check if we CAN optimize
1578 with nops. */
1579 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1580 patt = alt_patt;
1581 else
1582 patt = f32_patt;
1583 break;
1584 case PROCESSOR_PENTIUMPRO:
1585 case PROCESSOR_PENTIUM4:
1586 case PROCESSOR_NOCONA:
1587 case PROCESSOR_CORE:
1588 case PROCESSOR_CORE2:
1589 case PROCESSOR_COREI7:
1590 case PROCESSOR_L1OM:
1591 case PROCESSOR_K1OM:
1592 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1593 patt = alt_patt;
1594 else
1595 patt = f32_patt;
1596 break;
1597 case PROCESSOR_GENERIC64:
1598 patt = alt_patt;
1599 break;
1600 }
1601 }
1602
1603 if (patt == f32_patt)
1604 {
1605 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1606 /* Limit number of NOPs to 2 for older processors. */
1607 max_number_of_nops = 2;
1608 }
1609 else
1610 {
1611 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1612 /* Limit number of NOPs to 7 for newer processors. */
1613 max_number_of_nops = 7;
1614 }
1615 }
1616
1617 if (limit == 0)
1618 limit = max_single_nop_size;
1619
1620 if (fragP->fr_type == rs_fill_nop)
1621 {
1622 /* Output NOPs for .nop directive. */
1623 if (limit > max_single_nop_size)
1624 {
1625 as_bad_where (fragP->fr_file, fragP->fr_line,
1626 _("invalid single nop size: %d "
1627 "(expect within [0, %d])"),
1628 limit, max_single_nop_size);
1629 return;
1630 }
1631 }
1632 else if (fragP->fr_type != rs_machine_dependent)
1633 fragP->fr_var = count;
1634
1635 if ((count / max_single_nop_size) > max_number_of_nops)
1636 {
1637 /* Generate jump over NOPs. */
1638 offsetT disp = count - 2;
1639 if (fits_in_imm7 (disp))
1640 {
1641 /* Use "jmp disp8" if possible. */
1642 count = disp;
1643 where[0] = jump_disp8[0];
1644 where[1] = count;
1645 where += 2;
1646 }
1647 else
1648 {
1649 unsigned int size_of_jump;
1650
1651 if (flag_code == CODE_16BIT)
1652 {
1653 where[0] = jump16_disp32[0];
1654 where[1] = jump16_disp32[1];
1655 size_of_jump = 2;
1656 }
1657 else
1658 {
1659 where[0] = jump32_disp32[0];
1660 size_of_jump = 1;
1661 }
1662
1663 count -= size_of_jump + 4;
1664 if (!fits_in_imm31 (count))
1665 {
1666 as_bad_where (fragP->fr_file, fragP->fr_line,
1667 _("jump over nop padding out of range"));
1668 return;
1669 }
1670
1671 md_number_to_chars (where + size_of_jump, count, 4);
1672 where += size_of_jump + 4;
1673 }
1674 }
1675
1676 /* Generate multiple NOPs. */
1677 i386_output_nops (where, patt, count, limit);
1678 }
1679
1680 static INLINE int
1681 operand_type_all_zero (const union i386_operand_type *x)
1682 {
1683 switch (ARRAY_SIZE(x->array))
1684 {
1685 case 3:
1686 if (x->array[2])
1687 return 0;
1688 /* Fall through. */
1689 case 2:
1690 if (x->array[1])
1691 return 0;
1692 /* Fall through. */
1693 case 1:
1694 return !x->array[0];
1695 default:
1696 abort ();
1697 }
1698 }
1699
1700 static INLINE void
1701 operand_type_set (union i386_operand_type *x, unsigned int v)
1702 {
1703 switch (ARRAY_SIZE(x->array))
1704 {
1705 case 3:
1706 x->array[2] = v;
1707 /* Fall through. */
1708 case 2:
1709 x->array[1] = v;
1710 /* Fall through. */
1711 case 1:
1712 x->array[0] = v;
1713 /* Fall through. */
1714 break;
1715 default:
1716 abort ();
1717 }
1718
1719 x->bitfield.class = ClassNone;
1720 x->bitfield.instance = InstanceNone;
1721 }
1722
1723 static INLINE int
1724 operand_type_equal (const union i386_operand_type *x,
1725 const union i386_operand_type *y)
1726 {
1727 switch (ARRAY_SIZE(x->array))
1728 {
1729 case 3:
1730 if (x->array[2] != y->array[2])
1731 return 0;
1732 /* Fall through. */
1733 case 2:
1734 if (x->array[1] != y->array[1])
1735 return 0;
1736 /* Fall through. */
1737 case 1:
1738 return x->array[0] == y->array[0];
1739 break;
1740 default:
1741 abort ();
1742 }
1743 }
1744
1745 static INLINE int
1746 cpu_flags_all_zero (const union i386_cpu_flags *x)
1747 {
1748 switch (ARRAY_SIZE(x->array))
1749 {
1750 case 4:
1751 if (x->array[3])
1752 return 0;
1753 /* Fall through. */
1754 case 3:
1755 if (x->array[2])
1756 return 0;
1757 /* Fall through. */
1758 case 2:
1759 if (x->array[1])
1760 return 0;
1761 /* Fall through. */
1762 case 1:
1763 return !x->array[0];
1764 default:
1765 abort ();
1766 }
1767 }
1768
1769 static INLINE int
1770 cpu_flags_equal (const union i386_cpu_flags *x,
1771 const union i386_cpu_flags *y)
1772 {
1773 switch (ARRAY_SIZE(x->array))
1774 {
1775 case 4:
1776 if (x->array[3] != y->array[3])
1777 return 0;
1778 /* Fall through. */
1779 case 3:
1780 if (x->array[2] != y->array[2])
1781 return 0;
1782 /* Fall through. */
1783 case 2:
1784 if (x->array[1] != y->array[1])
1785 return 0;
1786 /* Fall through. */
1787 case 1:
1788 return x->array[0] == y->array[0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 }
1794
1795 static INLINE int
1796 cpu_flags_check_cpu64 (i386_cpu_flags f)
1797 {
1798 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1799 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1800 }
1801
1802 static INLINE i386_cpu_flags
1803 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 4:
1808 x.array [3] &= y.array [3];
1809 /* Fall through. */
1810 case 3:
1811 x.array [2] &= y.array [2];
1812 /* Fall through. */
1813 case 2:
1814 x.array [1] &= y.array [1];
1815 /* Fall through. */
1816 case 1:
1817 x.array [0] &= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 return x;
1823 }
1824
1825 static INLINE i386_cpu_flags
1826 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1827 {
1828 switch (ARRAY_SIZE (x.array))
1829 {
1830 case 4:
1831 x.array [3] |= y.array [3];
1832 /* Fall through. */
1833 case 3:
1834 x.array [2] |= y.array [2];
1835 /* Fall through. */
1836 case 2:
1837 x.array [1] |= y.array [1];
1838 /* Fall through. */
1839 case 1:
1840 x.array [0] |= y.array [0];
1841 break;
1842 default:
1843 abort ();
1844 }
1845 return x;
1846 }
1847
1848 static INLINE i386_cpu_flags
1849 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1850 {
1851 switch (ARRAY_SIZE (x.array))
1852 {
1853 case 4:
1854 x.array [3] &= ~y.array [3];
1855 /* Fall through. */
1856 case 3:
1857 x.array [2] &= ~y.array [2];
1858 /* Fall through. */
1859 case 2:
1860 x.array [1] &= ~y.array [1];
1861 /* Fall through. */
1862 case 1:
1863 x.array [0] &= ~y.array [0];
1864 break;
1865 default:
1866 abort ();
1867 }
1868 return x;
1869 }
1870
1871 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1872
1873 #define CPU_FLAGS_ARCH_MATCH 0x1
1874 #define CPU_FLAGS_64BIT_MATCH 0x2
1875
1876 #define CPU_FLAGS_PERFECT_MATCH \
1877 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1878
1879 /* Return CPU flags match bits. */
1880
1881 static int
1882 cpu_flags_match (const insn_template *t)
1883 {
1884 i386_cpu_flags x = t->cpu_flags;
1885 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1886
1887 x.bitfield.cpu64 = 0;
1888 x.bitfield.cpuno64 = 0;
1889
1890 if (cpu_flags_all_zero (&x))
1891 {
1892 /* This instruction is available on all archs. */
1893 match |= CPU_FLAGS_ARCH_MATCH;
1894 }
1895 else
1896 {
1897 /* This instruction is available only on some archs. */
1898 i386_cpu_flags cpu = cpu_arch_flags;
1899
1900 /* AVX512VL is no standalone feature - match it and then strip it. */
1901 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1902 return match;
1903 x.bitfield.cpuavx512vl = 0;
1904
1905 cpu = cpu_flags_and (x, cpu);
1906 if (!cpu_flags_all_zero (&cpu))
1907 {
1908 if (x.bitfield.cpuavx)
1909 {
1910 /* We need to check a few extra flags with AVX. */
1911 if (cpu.bitfield.cpuavx
1912 && (!t->opcode_modifier.sse2avx || sse2avx)
1913 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1914 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1915 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1916 match |= CPU_FLAGS_ARCH_MATCH;
1917 }
1918 else if (x.bitfield.cpuavx512f)
1919 {
1920 /* We need to check a few extra flags with AVX512F. */
1921 if (cpu.bitfield.cpuavx512f
1922 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1923 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1924 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1925 match |= CPU_FLAGS_ARCH_MATCH;
1926 }
1927 else
1928 match |= CPU_FLAGS_ARCH_MATCH;
1929 }
1930 }
1931 return match;
1932 }
1933
1934 static INLINE i386_operand_type
1935 operand_type_and (i386_operand_type x, i386_operand_type y)
1936 {
1937 if (x.bitfield.class != y.bitfield.class)
1938 x.bitfield.class = ClassNone;
1939 if (x.bitfield.instance != y.bitfield.instance)
1940 x.bitfield.instance = InstanceNone;
1941
1942 switch (ARRAY_SIZE (x.array))
1943 {
1944 case 3:
1945 x.array [2] &= y.array [2];
1946 /* Fall through. */
1947 case 2:
1948 x.array [1] &= y.array [1];
1949 /* Fall through. */
1950 case 1:
1951 x.array [0] &= y.array [0];
1952 break;
1953 default:
1954 abort ();
1955 }
1956 return x;
1957 }
1958
1959 static INLINE i386_operand_type
1960 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1961 {
1962 gas_assert (y.bitfield.class == ClassNone);
1963 gas_assert (y.bitfield.instance == InstanceNone);
1964
1965 switch (ARRAY_SIZE (x.array))
1966 {
1967 case 3:
1968 x.array [2] &= ~y.array [2];
1969 /* Fall through. */
1970 case 2:
1971 x.array [1] &= ~y.array [1];
1972 /* Fall through. */
1973 case 1:
1974 x.array [0] &= ~y.array [0];
1975 break;
1976 default:
1977 abort ();
1978 }
1979 return x;
1980 }
1981
1982 static INLINE i386_operand_type
1983 operand_type_or (i386_operand_type x, i386_operand_type y)
1984 {
1985 gas_assert (x.bitfield.class == ClassNone ||
1986 y.bitfield.class == ClassNone ||
1987 x.bitfield.class == y.bitfield.class);
1988 gas_assert (x.bitfield.instance == InstanceNone ||
1989 y.bitfield.instance == InstanceNone ||
1990 x.bitfield.instance == y.bitfield.instance);
1991
1992 switch (ARRAY_SIZE (x.array))
1993 {
1994 case 3:
1995 x.array [2] |= y.array [2];
1996 /* Fall through. */
1997 case 2:
1998 x.array [1] |= y.array [1];
1999 /* Fall through. */
2000 case 1:
2001 x.array [0] |= y.array [0];
2002 break;
2003 default:
2004 abort ();
2005 }
2006 return x;
2007 }
2008
2009 static INLINE i386_operand_type
2010 operand_type_xor (i386_operand_type x, i386_operand_type y)
2011 {
2012 gas_assert (y.bitfield.class == ClassNone);
2013 gas_assert (y.bitfield.instance == InstanceNone);
2014
2015 switch (ARRAY_SIZE (x.array))
2016 {
2017 case 3:
2018 x.array [2] ^= y.array [2];
2019 /* Fall through. */
2020 case 2:
2021 x.array [1] ^= y.array [1];
2022 /* Fall through. */
2023 case 1:
2024 x.array [0] ^= y.array [0];
2025 break;
2026 default:
2027 abort ();
2028 }
2029 return x;
2030 }
2031
2032 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2033 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2034 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2035 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2036 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2037 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2038 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2039 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2040 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2041 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2042 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2043 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2044 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2045 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2046 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2047 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2048 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2049
2050 enum operand_type
2051 {
2052 reg,
2053 imm,
2054 disp,
2055 anymem
2056 };
2057
2058 static INLINE int
2059 operand_type_check (i386_operand_type t, enum operand_type c)
2060 {
2061 switch (c)
2062 {
2063 case reg:
2064 return t.bitfield.class == Reg;
2065
2066 case imm:
2067 return (t.bitfield.imm8
2068 || t.bitfield.imm8s
2069 || t.bitfield.imm16
2070 || t.bitfield.imm32
2071 || t.bitfield.imm32s
2072 || t.bitfield.imm64);
2073
2074 case disp:
2075 return (t.bitfield.disp8
2076 || t.bitfield.disp16
2077 || t.bitfield.disp32
2078 || t.bitfield.disp32s
2079 || t.bitfield.disp64);
2080
2081 case anymem:
2082 return (t.bitfield.disp8
2083 || t.bitfield.disp16
2084 || t.bitfield.disp32
2085 || t.bitfield.disp32s
2086 || t.bitfield.disp64
2087 || t.bitfield.baseindex);
2088
2089 default:
2090 abort ();
2091 }
2092
2093 return 0;
2094 }
2095
2096 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2097 between operand GIVEN and opeand WANTED for instruction template T. */
2098
2099 static INLINE int
2100 match_operand_size (const insn_template *t, unsigned int wanted,
2101 unsigned int given)
2102 {
2103 return !((i.types[given].bitfield.byte
2104 && !t->operand_types[wanted].bitfield.byte)
2105 || (i.types[given].bitfield.word
2106 && !t->operand_types[wanted].bitfield.word)
2107 || (i.types[given].bitfield.dword
2108 && !t->operand_types[wanted].bitfield.dword)
2109 || (i.types[given].bitfield.qword
2110 && !t->operand_types[wanted].bitfield.qword)
2111 || (i.types[given].bitfield.tbyte
2112 && !t->operand_types[wanted].bitfield.tbyte));
2113 }
2114
2115 /* Return 1 if there is no conflict in SIMD register between operand
2116 GIVEN and opeand WANTED for instruction template T. */
2117
2118 static INLINE int
2119 match_simd_size (const insn_template *t, unsigned int wanted,
2120 unsigned int given)
2121 {
2122 return !((i.types[given].bitfield.xmmword
2123 && !t->operand_types[wanted].bitfield.xmmword)
2124 || (i.types[given].bitfield.ymmword
2125 && !t->operand_types[wanted].bitfield.ymmword)
2126 || (i.types[given].bitfield.zmmword
2127 && !t->operand_types[wanted].bitfield.zmmword));
2128 }
2129
2130 /* Return 1 if there is no conflict in any size between operand GIVEN
2131 and opeand WANTED for instruction template T. */
2132
2133 static INLINE int
2134 match_mem_size (const insn_template *t, unsigned int wanted,
2135 unsigned int given)
2136 {
2137 return (match_operand_size (t, wanted, given)
2138 && !((i.types[given].bitfield.unspecified
2139 && !i.broadcast
2140 && !t->operand_types[wanted].bitfield.unspecified)
2141 || (i.types[given].bitfield.fword
2142 && !t->operand_types[wanted].bitfield.fword)
2143 /* For scalar opcode templates to allow register and memory
2144 operands at the same time, some special casing is needed
2145 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2146 down-conversion vpmov*. */
2147 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2148 && t->operand_types[wanted].bitfield.byte
2149 + t->operand_types[wanted].bitfield.word
2150 + t->operand_types[wanted].bitfield.dword
2151 + t->operand_types[wanted].bitfield.qword
2152 > !!t->opcode_modifier.broadcast)
2153 ? (i.types[given].bitfield.xmmword
2154 || i.types[given].bitfield.ymmword
2155 || i.types[given].bitfield.zmmword)
2156 : !match_simd_size(t, wanted, given))));
2157 }
2158
2159 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2160 operands for instruction template T, and it has MATCH_REVERSE set if there
2161 is no size conflict on any operands for the template with operands reversed
2162 (and the template allows for reversing in the first place). */
2163
2164 #define MATCH_STRAIGHT 1
2165 #define MATCH_REVERSE 2
2166
2167 static INLINE unsigned int
2168 operand_size_match (const insn_template *t)
2169 {
2170 unsigned int j, match = MATCH_STRAIGHT;
2171
2172 /* Don't check non-absolute jump instructions. */
2173 if (t->opcode_modifier.jump
2174 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2175 return match;
2176
2177 /* Check memory and accumulator operand size. */
2178 for (j = 0; j < i.operands; j++)
2179 {
2180 if (i.types[j].bitfield.class != Reg
2181 && i.types[j].bitfield.class != RegSIMD
2182 && t->opcode_modifier.anysize)
2183 continue;
2184
2185 if (t->operand_types[j].bitfield.class == Reg
2186 && !match_operand_size (t, j, j))
2187 {
2188 match = 0;
2189 break;
2190 }
2191
2192 if (t->operand_types[j].bitfield.class == RegSIMD
2193 && !match_simd_size (t, j, j))
2194 {
2195 match = 0;
2196 break;
2197 }
2198
2199 if (t->operand_types[j].bitfield.instance == Accum
2200 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2201 {
2202 match = 0;
2203 break;
2204 }
2205
2206 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2207 {
2208 match = 0;
2209 break;
2210 }
2211 }
2212
2213 if (!t->opcode_modifier.d)
2214 {
2215 mismatch:
2216 if (!match)
2217 i.error = operand_size_mismatch;
2218 return match;
2219 }
2220
2221 /* Check reverse. */
2222 gas_assert (i.operands >= 2 && i.operands <= 3);
2223
2224 for (j = 0; j < i.operands; j++)
2225 {
2226 unsigned int given = i.operands - j - 1;
2227
2228 if (t->operand_types[j].bitfield.class == Reg
2229 && !match_operand_size (t, j, given))
2230 goto mismatch;
2231
2232 if (t->operand_types[j].bitfield.class == RegSIMD
2233 && !match_simd_size (t, j, given))
2234 goto mismatch;
2235
2236 if (t->operand_types[j].bitfield.instance == Accum
2237 && (!match_operand_size (t, j, given)
2238 || !match_simd_size (t, j, given)))
2239 goto mismatch;
2240
2241 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2242 goto mismatch;
2243 }
2244
2245 return match | MATCH_REVERSE;
2246 }
2247
2248 static INLINE int
2249 operand_type_match (i386_operand_type overlap,
2250 i386_operand_type given)
2251 {
2252 i386_operand_type temp = overlap;
2253
2254 temp.bitfield.unspecified = 0;
2255 temp.bitfield.byte = 0;
2256 temp.bitfield.word = 0;
2257 temp.bitfield.dword = 0;
2258 temp.bitfield.fword = 0;
2259 temp.bitfield.qword = 0;
2260 temp.bitfield.tbyte = 0;
2261 temp.bitfield.xmmword = 0;
2262 temp.bitfield.ymmword = 0;
2263 temp.bitfield.zmmword = 0;
2264 if (operand_type_all_zero (&temp))
2265 goto mismatch;
2266
2267 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2268 return 1;
2269
2270 mismatch:
2271 i.error = operand_type_mismatch;
2272 return 0;
2273 }
2274
2275 /* If given types g0 and g1 are registers they must be of the same type
2276 unless the expected operand type register overlap is null.
2277 Some Intel syntax memory operand size checking also happens here. */
2278
2279 static INLINE int
2280 operand_type_register_match (i386_operand_type g0,
2281 i386_operand_type t0,
2282 i386_operand_type g1,
2283 i386_operand_type t1)
2284 {
2285 if (g0.bitfield.class != Reg
2286 && g0.bitfield.class != RegSIMD
2287 && (!operand_type_check (g0, anymem)
2288 || g0.bitfield.unspecified
2289 || (t0.bitfield.class != Reg
2290 && t0.bitfield.class != RegSIMD)))
2291 return 1;
2292
2293 if (g1.bitfield.class != Reg
2294 && g1.bitfield.class != RegSIMD
2295 && (!operand_type_check (g1, anymem)
2296 || g1.bitfield.unspecified
2297 || (t1.bitfield.class != Reg
2298 && t1.bitfield.class != RegSIMD)))
2299 return 1;
2300
2301 if (g0.bitfield.byte == g1.bitfield.byte
2302 && g0.bitfield.word == g1.bitfield.word
2303 && g0.bitfield.dword == g1.bitfield.dword
2304 && g0.bitfield.qword == g1.bitfield.qword
2305 && g0.bitfield.xmmword == g1.bitfield.xmmword
2306 && g0.bitfield.ymmword == g1.bitfield.ymmword
2307 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2308 return 1;
2309
2310 if (!(t0.bitfield.byte & t1.bitfield.byte)
2311 && !(t0.bitfield.word & t1.bitfield.word)
2312 && !(t0.bitfield.dword & t1.bitfield.dword)
2313 && !(t0.bitfield.qword & t1.bitfield.qword)
2314 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2315 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2316 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2317 return 1;
2318
2319 i.error = register_type_mismatch;
2320
2321 return 0;
2322 }
2323
2324 static INLINE unsigned int
2325 register_number (const reg_entry *r)
2326 {
2327 unsigned int nr = r->reg_num;
2328
2329 if (r->reg_flags & RegRex)
2330 nr += 8;
2331
2332 if (r->reg_flags & RegVRex)
2333 nr += 16;
2334
2335 return nr;
2336 }
2337
2338 static INLINE unsigned int
2339 mode_from_disp_size (i386_operand_type t)
2340 {
2341 if (t.bitfield.disp8)
2342 return 1;
2343 else if (t.bitfield.disp16
2344 || t.bitfield.disp32
2345 || t.bitfield.disp32s)
2346 return 2;
2347 else
2348 return 0;
2349 }
2350
2351 static INLINE int
2352 fits_in_signed_byte (addressT num)
2353 {
2354 return num + 0x80 <= 0xff;
2355 }
2356
2357 static INLINE int
2358 fits_in_unsigned_byte (addressT num)
2359 {
2360 return num <= 0xff;
2361 }
2362
2363 static INLINE int
2364 fits_in_unsigned_word (addressT num)
2365 {
2366 return num <= 0xffff;
2367 }
2368
2369 static INLINE int
2370 fits_in_signed_word (addressT num)
2371 {
2372 return num + 0x8000 <= 0xffff;
2373 }
2374
2375 static INLINE int
2376 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2377 {
2378 #ifndef BFD64
2379 return 1;
2380 #else
2381 return num + 0x80000000 <= 0xffffffff;
2382 #endif
2383 } /* fits_in_signed_long() */
2384
2385 static INLINE int
2386 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2387 {
2388 #ifndef BFD64
2389 return 1;
2390 #else
2391 return num <= 0xffffffff;
2392 #endif
2393 } /* fits_in_unsigned_long() */
2394
2395 static INLINE int
2396 fits_in_disp8 (offsetT num)
2397 {
2398 int shift = i.memshift;
2399 unsigned int mask;
2400
2401 if (shift == -1)
2402 abort ();
2403
2404 mask = (1 << shift) - 1;
2405
2406 /* Return 0 if NUM isn't properly aligned. */
2407 if ((num & mask))
2408 return 0;
2409
2410 /* Check if NUM will fit in 8bit after shift. */
2411 return fits_in_signed_byte (num >> shift);
2412 }
2413
2414 static INLINE int
2415 fits_in_imm4 (offsetT num)
2416 {
2417 return (num & 0xf) == num;
2418 }
2419
2420 static i386_operand_type
2421 smallest_imm_type (offsetT num)
2422 {
2423 i386_operand_type t;
2424
2425 operand_type_set (&t, 0);
2426 t.bitfield.imm64 = 1;
2427
2428 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2429 {
2430 /* This code is disabled on the 486 because all the Imm1 forms
2431 in the opcode table are slower on the i486. They're the
2432 versions with the implicitly specified single-position
2433 displacement, which has another syntax if you really want to
2434 use that form. */
2435 t.bitfield.imm1 = 1;
2436 t.bitfield.imm8 = 1;
2437 t.bitfield.imm8s = 1;
2438 t.bitfield.imm16 = 1;
2439 t.bitfield.imm32 = 1;
2440 t.bitfield.imm32s = 1;
2441 }
2442 else if (fits_in_signed_byte (num))
2443 {
2444 t.bitfield.imm8 = 1;
2445 t.bitfield.imm8s = 1;
2446 t.bitfield.imm16 = 1;
2447 t.bitfield.imm32 = 1;
2448 t.bitfield.imm32s = 1;
2449 }
2450 else if (fits_in_unsigned_byte (num))
2451 {
2452 t.bitfield.imm8 = 1;
2453 t.bitfield.imm16 = 1;
2454 t.bitfield.imm32 = 1;
2455 t.bitfield.imm32s = 1;
2456 }
2457 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2458 {
2459 t.bitfield.imm16 = 1;
2460 t.bitfield.imm32 = 1;
2461 t.bitfield.imm32s = 1;
2462 }
2463 else if (fits_in_signed_long (num))
2464 {
2465 t.bitfield.imm32 = 1;
2466 t.bitfield.imm32s = 1;
2467 }
2468 else if (fits_in_unsigned_long (num))
2469 t.bitfield.imm32 = 1;
2470
2471 return t;
2472 }
2473
2474 static offsetT
2475 offset_in_range (offsetT val, int size)
2476 {
2477 addressT mask;
2478
2479 switch (size)
2480 {
2481 case 1: mask = ((addressT) 1 << 8) - 1; break;
2482 case 2: mask = ((addressT) 1 << 16) - 1; break;
2483 case 4: mask = ((addressT) 2 << 31) - 1; break;
2484 #ifdef BFD64
2485 case 8: mask = ((addressT) 2 << 63) - 1; break;
2486 #endif
2487 default: abort ();
2488 }
2489
2490 #ifdef BFD64
2491 /* If BFD64, sign extend val for 32bit address mode. */
2492 if (flag_code != CODE_64BIT
2493 || i.prefix[ADDR_PREFIX])
2494 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2495 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2496 #endif
2497
2498 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2499 {
2500 char buf1[40], buf2[40];
2501
2502 sprint_value (buf1, val);
2503 sprint_value (buf2, val & mask);
2504 as_warn (_("%s shortened to %s"), buf1, buf2);
2505 }
2506 return val & mask;
2507 }
2508
2509 enum PREFIX_GROUP
2510 {
2511 PREFIX_EXIST = 0,
2512 PREFIX_LOCK,
2513 PREFIX_REP,
2514 PREFIX_DS,
2515 PREFIX_OTHER
2516 };
2517
2518 /* Returns
2519 a. PREFIX_EXIST if attempting to add a prefix where one from the
2520 same class already exists.
2521 b. PREFIX_LOCK if lock prefix is added.
2522 c. PREFIX_REP if rep/repne prefix is added.
2523 d. PREFIX_DS if ds prefix is added.
2524 e. PREFIX_OTHER if other prefix is added.
2525 */
2526
2527 static enum PREFIX_GROUP
2528 add_prefix (unsigned int prefix)
2529 {
2530 enum PREFIX_GROUP ret = PREFIX_OTHER;
2531 unsigned int q;
2532
2533 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2534 && flag_code == CODE_64BIT)
2535 {
2536 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2537 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2538 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2539 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2540 ret = PREFIX_EXIST;
2541 q = REX_PREFIX;
2542 }
2543 else
2544 {
2545 switch (prefix)
2546 {
2547 default:
2548 abort ();
2549
2550 case DS_PREFIX_OPCODE:
2551 ret = PREFIX_DS;
2552 /* Fall through. */
2553 case CS_PREFIX_OPCODE:
2554 case ES_PREFIX_OPCODE:
2555 case FS_PREFIX_OPCODE:
2556 case GS_PREFIX_OPCODE:
2557 case SS_PREFIX_OPCODE:
2558 q = SEG_PREFIX;
2559 break;
2560
2561 case REPNE_PREFIX_OPCODE:
2562 case REPE_PREFIX_OPCODE:
2563 q = REP_PREFIX;
2564 ret = PREFIX_REP;
2565 break;
2566
2567 case LOCK_PREFIX_OPCODE:
2568 q = LOCK_PREFIX;
2569 ret = PREFIX_LOCK;
2570 break;
2571
2572 case FWAIT_OPCODE:
2573 q = WAIT_PREFIX;
2574 break;
2575
2576 case ADDR_PREFIX_OPCODE:
2577 q = ADDR_PREFIX;
2578 break;
2579
2580 case DATA_PREFIX_OPCODE:
2581 q = DATA_PREFIX;
2582 break;
2583 }
2584 if (i.prefix[q] != 0)
2585 ret = PREFIX_EXIST;
2586 }
2587
2588 if (ret)
2589 {
2590 if (!i.prefix[q])
2591 ++i.prefixes;
2592 i.prefix[q] |= prefix;
2593 }
2594 else
2595 as_bad (_("same type of prefix used twice"));
2596
2597 return ret;
2598 }
2599
2600 static void
2601 update_code_flag (int value, int check)
2602 {
2603 PRINTF_LIKE ((*as_error));
2604
2605 flag_code = (enum flag_code) value;
2606 if (flag_code == CODE_64BIT)
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 1;
2609 cpu_arch_flags.bitfield.cpuno64 = 0;
2610 }
2611 else
2612 {
2613 cpu_arch_flags.bitfield.cpu64 = 0;
2614 cpu_arch_flags.bitfield.cpuno64 = 1;
2615 }
2616 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2617 {
2618 if (check)
2619 as_error = as_fatal;
2620 else
2621 as_error = as_bad;
2622 (*as_error) (_("64bit mode not supported on `%s'."),
2623 cpu_arch_name ? cpu_arch_name : default_arch);
2624 }
2625 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2626 {
2627 if (check)
2628 as_error = as_fatal;
2629 else
2630 as_error = as_bad;
2631 (*as_error) (_("32bit mode not supported on `%s'."),
2632 cpu_arch_name ? cpu_arch_name : default_arch);
2633 }
2634 stackop_size = '\0';
2635 }
2636
2637 static void
2638 set_code_flag (int value)
2639 {
2640 update_code_flag (value, 0);
2641 }
2642
2643 static void
2644 set_16bit_gcc_code_flag (int new_code_flag)
2645 {
2646 flag_code = (enum flag_code) new_code_flag;
2647 if (flag_code != CODE_16BIT)
2648 abort ();
2649 cpu_arch_flags.bitfield.cpu64 = 0;
2650 cpu_arch_flags.bitfield.cpuno64 = 1;
2651 stackop_size = LONG_MNEM_SUFFIX;
2652 }
2653
2654 static void
2655 set_intel_syntax (int syntax_flag)
2656 {
2657 /* Find out if register prefixing is specified. */
2658 int ask_naked_reg = 0;
2659
2660 SKIP_WHITESPACE ();
2661 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2662 {
2663 char *string;
2664 int e = get_symbol_name (&string);
2665
2666 if (strcmp (string, "prefix") == 0)
2667 ask_naked_reg = 1;
2668 else if (strcmp (string, "noprefix") == 0)
2669 ask_naked_reg = -1;
2670 else
2671 as_bad (_("bad argument to syntax directive."));
2672 (void) restore_line_pointer (e);
2673 }
2674 demand_empty_rest_of_line ();
2675
2676 intel_syntax = syntax_flag;
2677
2678 if (ask_naked_reg == 0)
2679 allow_naked_reg = (intel_syntax
2680 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2681 else
2682 allow_naked_reg = (ask_naked_reg < 0);
2683
2684 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2685
2686 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2687 identifier_chars['$'] = intel_syntax ? '$' : 0;
2688 register_prefix = allow_naked_reg ? "" : "%";
2689 }
2690
2691 static void
2692 set_intel_mnemonic (int mnemonic_flag)
2693 {
2694 intel_mnemonic = mnemonic_flag;
2695 }
2696
2697 static void
2698 set_allow_index_reg (int flag)
2699 {
2700 allow_index_reg = flag;
2701 }
2702
2703 static void
2704 set_check (int what)
2705 {
2706 enum check_kind *kind;
2707 const char *str;
2708
2709 if (what)
2710 {
2711 kind = &operand_check;
2712 str = "operand";
2713 }
2714 else
2715 {
2716 kind = &sse_check;
2717 str = "sse";
2718 }
2719
2720 SKIP_WHITESPACE ();
2721
2722 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2723 {
2724 char *string;
2725 int e = get_symbol_name (&string);
2726
2727 if (strcmp (string, "none") == 0)
2728 *kind = check_none;
2729 else if (strcmp (string, "warning") == 0)
2730 *kind = check_warning;
2731 else if (strcmp (string, "error") == 0)
2732 *kind = check_error;
2733 else
2734 as_bad (_("bad argument to %s_check directive."), str);
2735 (void) restore_line_pointer (e);
2736 }
2737 else
2738 as_bad (_("missing argument for %s_check directive"), str);
2739
2740 demand_empty_rest_of_line ();
2741 }
2742
2743 static void
2744 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2745 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2746 {
2747 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2748 static const char *arch;
2749
2750 /* Intel LIOM is only supported on ELF. */
2751 if (!IS_ELF)
2752 return;
2753
2754 if (!arch)
2755 {
2756 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2757 use default_arch. */
2758 arch = cpu_arch_name;
2759 if (!arch)
2760 arch = default_arch;
2761 }
2762
2763 /* If we are targeting Intel MCU, we must enable it. */
2764 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2765 || new_flag.bitfield.cpuiamcu)
2766 return;
2767
2768 /* If we are targeting Intel L1OM, we must enable it. */
2769 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2770 || new_flag.bitfield.cpul1om)
2771 return;
2772
2773 /* If we are targeting Intel K1OM, we must enable it. */
2774 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2775 || new_flag.bitfield.cpuk1om)
2776 return;
2777
2778 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2779 #endif
2780 }
2781
2782 static void
2783 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2784 {
2785 SKIP_WHITESPACE ();
2786
2787 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2788 {
2789 char *string;
2790 int e = get_symbol_name (&string);
2791 unsigned int j;
2792 i386_cpu_flags flags;
2793
2794 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2795 {
2796 if (strcmp (string, cpu_arch[j].name) == 0)
2797 {
2798 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2799
2800 if (*string != '.')
2801 {
2802 cpu_arch_name = cpu_arch[j].name;
2803 cpu_sub_arch_name = NULL;
2804 cpu_arch_flags = cpu_arch[j].flags;
2805 if (flag_code == CODE_64BIT)
2806 {
2807 cpu_arch_flags.bitfield.cpu64 = 1;
2808 cpu_arch_flags.bitfield.cpuno64 = 0;
2809 }
2810 else
2811 {
2812 cpu_arch_flags.bitfield.cpu64 = 0;
2813 cpu_arch_flags.bitfield.cpuno64 = 1;
2814 }
2815 cpu_arch_isa = cpu_arch[j].type;
2816 cpu_arch_isa_flags = cpu_arch[j].flags;
2817 if (!cpu_arch_tune_set)
2818 {
2819 cpu_arch_tune = cpu_arch_isa;
2820 cpu_arch_tune_flags = cpu_arch_isa_flags;
2821 }
2822 break;
2823 }
2824
2825 flags = cpu_flags_or (cpu_arch_flags,
2826 cpu_arch[j].flags);
2827
2828 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2829 {
2830 if (cpu_sub_arch_name)
2831 {
2832 char *name = cpu_sub_arch_name;
2833 cpu_sub_arch_name = concat (name,
2834 cpu_arch[j].name,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 else
2844 cpu_arch_isa_flags
2845 = cpu_flags_or (cpu_arch_isa_flags,
2846 cpu_arch[j].flags);
2847 (void) restore_line_pointer (e);
2848 demand_empty_rest_of_line ();
2849 return;
2850 }
2851 }
2852
2853 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2854 {
2855 /* Disable an ISA extension. */
2856 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2857 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2858 {
2859 flags = cpu_flags_and_not (cpu_arch_flags,
2860 cpu_noarch[j].flags);
2861 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2862 {
2863 if (cpu_sub_arch_name)
2864 {
2865 char *name = cpu_sub_arch_name;
2866 cpu_sub_arch_name = concat (name, string,
2867 (const char *) NULL);
2868 free (name);
2869 }
2870 else
2871 cpu_sub_arch_name = xstrdup (string);
2872 cpu_arch_flags = flags;
2873 cpu_arch_isa_flags = flags;
2874 }
2875 (void) restore_line_pointer (e);
2876 demand_empty_rest_of_line ();
2877 return;
2878 }
2879
2880 j = ARRAY_SIZE (cpu_arch);
2881 }
2882
2883 if (j >= ARRAY_SIZE (cpu_arch))
2884 as_bad (_("no such architecture: `%s'"), string);
2885
2886 *input_line_pointer = e;
2887 }
2888 else
2889 as_bad (_("missing cpu architecture"));
2890
2891 no_cond_jump_promotion = 0;
2892 if (*input_line_pointer == ','
2893 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2894 {
2895 char *string;
2896 char e;
2897
2898 ++input_line_pointer;
2899 e = get_symbol_name (&string);
2900
2901 if (strcmp (string, "nojumps") == 0)
2902 no_cond_jump_promotion = 1;
2903 else if (strcmp (string, "jumps") == 0)
2904 ;
2905 else
2906 as_bad (_("no such architecture modifier: `%s'"), string);
2907
2908 (void) restore_line_pointer (e);
2909 }
2910
2911 demand_empty_rest_of_line ();
2912 }
2913
2914 enum bfd_architecture
2915 i386_arch (void)
2916 {
2917 if (cpu_arch_isa == PROCESSOR_L1OM)
2918 {
2919 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2920 || flag_code != CODE_64BIT)
2921 as_fatal (_("Intel L1OM is 64bit ELF only"));
2922 return bfd_arch_l1om;
2923 }
2924 else if (cpu_arch_isa == PROCESSOR_K1OM)
2925 {
2926 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2927 || flag_code != CODE_64BIT)
2928 as_fatal (_("Intel K1OM is 64bit ELF only"));
2929 return bfd_arch_k1om;
2930 }
2931 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2932 {
2933 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2934 || flag_code == CODE_64BIT)
2935 as_fatal (_("Intel MCU is 32bit ELF only"));
2936 return bfd_arch_iamcu;
2937 }
2938 else
2939 return bfd_arch_i386;
2940 }
2941
2942 unsigned long
2943 i386_mach (void)
2944 {
2945 if (!strncmp (default_arch, "x86_64", 6))
2946 {
2947 if (cpu_arch_isa == PROCESSOR_L1OM)
2948 {
2949 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2950 || default_arch[6] != '\0')
2951 as_fatal (_("Intel L1OM is 64bit ELF only"));
2952 return bfd_mach_l1om;
2953 }
2954 else if (cpu_arch_isa == PROCESSOR_K1OM)
2955 {
2956 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2957 || default_arch[6] != '\0')
2958 as_fatal (_("Intel K1OM is 64bit ELF only"));
2959 return bfd_mach_k1om;
2960 }
2961 else if (default_arch[6] == '\0')
2962 return bfd_mach_x86_64;
2963 else
2964 return bfd_mach_x64_32;
2965 }
2966 else if (!strcmp (default_arch, "i386")
2967 || !strcmp (default_arch, "iamcu"))
2968 {
2969 if (cpu_arch_isa == PROCESSOR_IAMCU)
2970 {
2971 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2972 as_fatal (_("Intel MCU is 32bit ELF only"));
2973 return bfd_mach_i386_iamcu;
2974 }
2975 else
2976 return bfd_mach_i386_i386;
2977 }
2978 else
2979 as_fatal (_("unknown architecture"));
2980 }
2981 \f
2982 void
2983 md_begin (void)
2984 {
2985 const char *hash_err;
2986
2987 /* Support pseudo prefixes like {disp32}. */
2988 lex_type ['{'] = LEX_BEGIN_NAME;
2989
2990 /* Initialize op_hash hash table. */
2991 op_hash = hash_new ();
2992
2993 {
2994 const insn_template *optab;
2995 templates *core_optab;
2996
2997 /* Setup for loop. */
2998 optab = i386_optab;
2999 core_optab = XNEW (templates);
3000 core_optab->start = optab;
3001
3002 while (1)
3003 {
3004 ++optab;
3005 if (optab->name == NULL
3006 || strcmp (optab->name, (optab - 1)->name) != 0)
3007 {
3008 /* different name --> ship out current template list;
3009 add to hash table; & begin anew. */
3010 core_optab->end = optab;
3011 hash_err = hash_insert (op_hash,
3012 (optab - 1)->name,
3013 (void *) core_optab);
3014 if (hash_err)
3015 {
3016 as_fatal (_("can't hash %s: %s"),
3017 (optab - 1)->name,
3018 hash_err);
3019 }
3020 if (optab->name == NULL)
3021 break;
3022 core_optab = XNEW (templates);
3023 core_optab->start = optab;
3024 }
3025 }
3026 }
3027
3028 /* Initialize reg_hash hash table. */
3029 reg_hash = hash_new ();
3030 {
3031 const reg_entry *regtab;
3032 unsigned int regtab_size = i386_regtab_size;
3033
3034 for (regtab = i386_regtab; regtab_size--; regtab++)
3035 {
3036 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3037 if (hash_err)
3038 as_fatal (_("can't hash %s: %s"),
3039 regtab->reg_name,
3040 hash_err);
3041 }
3042 }
3043
3044 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3045 {
3046 int c;
3047 char *p;
3048
3049 for (c = 0; c < 256; c++)
3050 {
3051 if (ISDIGIT (c))
3052 {
3053 digit_chars[c] = c;
3054 mnemonic_chars[c] = c;
3055 register_chars[c] = c;
3056 operand_chars[c] = c;
3057 }
3058 else if (ISLOWER (c))
3059 {
3060 mnemonic_chars[c] = c;
3061 register_chars[c] = c;
3062 operand_chars[c] = c;
3063 }
3064 else if (ISUPPER (c))
3065 {
3066 mnemonic_chars[c] = TOLOWER (c);
3067 register_chars[c] = mnemonic_chars[c];
3068 operand_chars[c] = c;
3069 }
3070 else if (c == '{' || c == '}')
3071 {
3072 mnemonic_chars[c] = c;
3073 operand_chars[c] = c;
3074 }
3075
3076 if (ISALPHA (c) || ISDIGIT (c))
3077 identifier_chars[c] = c;
3078 else if (c >= 128)
3079 {
3080 identifier_chars[c] = c;
3081 operand_chars[c] = c;
3082 }
3083 }
3084
3085 #ifdef LEX_AT
3086 identifier_chars['@'] = '@';
3087 #endif
3088 #ifdef LEX_QM
3089 identifier_chars['?'] = '?';
3090 operand_chars['?'] = '?';
3091 #endif
3092 digit_chars['-'] = '-';
3093 mnemonic_chars['_'] = '_';
3094 mnemonic_chars['-'] = '-';
3095 mnemonic_chars['.'] = '.';
3096 identifier_chars['_'] = '_';
3097 identifier_chars['.'] = '.';
3098
3099 for (p = operand_special_chars; *p != '\0'; p++)
3100 operand_chars[(unsigned char) *p] = *p;
3101 }
3102
3103 if (flag_code == CODE_64BIT)
3104 {
3105 #if defined (OBJ_COFF) && defined (TE_PE)
3106 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3107 ? 32 : 16);
3108 #else
3109 x86_dwarf2_return_column = 16;
3110 #endif
3111 x86_cie_data_alignment = -8;
3112 }
3113 else
3114 {
3115 x86_dwarf2_return_column = 8;
3116 x86_cie_data_alignment = -4;
3117 }
3118
3119 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3120 can be turned into BRANCH_PREFIX frag. */
3121 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3122 abort ();
3123 }
3124
3125 void
3126 i386_print_statistics (FILE *file)
3127 {
3128 hash_print_statistics (file, "i386 opcode", op_hash);
3129 hash_print_statistics (file, "i386 register", reg_hash);
3130 }
3131 \f
3132 #ifdef DEBUG386
3133
3134 /* Debugging routines for md_assemble. */
3135 static void pte (insn_template *);
3136 static void pt (i386_operand_type);
3137 static void pe (expressionS *);
3138 static void ps (symbolS *);
3139
3140 static void
3141 pi (const char *line, i386_insn *x)
3142 {
3143 unsigned int j;
3144
3145 fprintf (stdout, "%s: template ", line);
3146 pte (&x->tm);
3147 fprintf (stdout, " address: base %s index %s scale %x\n",
3148 x->base_reg ? x->base_reg->reg_name : "none",
3149 x->index_reg ? x->index_reg->reg_name : "none",
3150 x->log2_scale_factor);
3151 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3152 x->rm.mode, x->rm.reg, x->rm.regmem);
3153 fprintf (stdout, " sib: base %x index %x scale %x\n",
3154 x->sib.base, x->sib.index, x->sib.scale);
3155 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3156 (x->rex & REX_W) != 0,
3157 (x->rex & REX_R) != 0,
3158 (x->rex & REX_X) != 0,
3159 (x->rex & REX_B) != 0);
3160 for (j = 0; j < x->operands; j++)
3161 {
3162 fprintf (stdout, " #%d: ", j + 1);
3163 pt (x->types[j]);
3164 fprintf (stdout, "\n");
3165 if (x->types[j].bitfield.class == Reg
3166 || x->types[j].bitfield.class == RegMMX
3167 || x->types[j].bitfield.class == RegSIMD
3168 || x->types[j].bitfield.class == SReg
3169 || x->types[j].bitfield.class == RegCR
3170 || x->types[j].bitfield.class == RegDR
3171 || x->types[j].bitfield.class == RegTR)
3172 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3173 if (operand_type_check (x->types[j], imm))
3174 pe (x->op[j].imms);
3175 if (operand_type_check (x->types[j], disp))
3176 pe (x->op[j].disps);
3177 }
3178 }
3179
3180 static void
3181 pte (insn_template *t)
3182 {
3183 unsigned int j;
3184 fprintf (stdout, " %d operands ", t->operands);
3185 fprintf (stdout, "opcode %x ", t->base_opcode);
3186 if (t->extension_opcode != None)
3187 fprintf (stdout, "ext %x ", t->extension_opcode);
3188 if (t->opcode_modifier.d)
3189 fprintf (stdout, "D");
3190 if (t->opcode_modifier.w)
3191 fprintf (stdout, "W");
3192 fprintf (stdout, "\n");
3193 for (j = 0; j < t->operands; j++)
3194 {
3195 fprintf (stdout, " #%d type ", j + 1);
3196 pt (t->operand_types[j]);
3197 fprintf (stdout, "\n");
3198 }
3199 }
3200
3201 static void
3202 pe (expressionS *e)
3203 {
3204 fprintf (stdout, " operation %d\n", e->X_op);
3205 fprintf (stdout, " add_number %ld (%lx)\n",
3206 (long) e->X_add_number, (long) e->X_add_number);
3207 if (e->X_add_symbol)
3208 {
3209 fprintf (stdout, " add_symbol ");
3210 ps (e->X_add_symbol);
3211 fprintf (stdout, "\n");
3212 }
3213 if (e->X_op_symbol)
3214 {
3215 fprintf (stdout, " op_symbol ");
3216 ps (e->X_op_symbol);
3217 fprintf (stdout, "\n");
3218 }
3219 }
3220
3221 static void
3222 ps (symbolS *s)
3223 {
3224 fprintf (stdout, "%s type %s%s",
3225 S_GET_NAME (s),
3226 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3227 segment_name (S_GET_SEGMENT (s)));
3228 }
3229
3230 static struct type_name
3231 {
3232 i386_operand_type mask;
3233 const char *name;
3234 }
3235 const type_names[] =
3236 {
3237 { OPERAND_TYPE_REG8, "r8" },
3238 { OPERAND_TYPE_REG16, "r16" },
3239 { OPERAND_TYPE_REG32, "r32" },
3240 { OPERAND_TYPE_REG64, "r64" },
3241 { OPERAND_TYPE_ACC8, "acc8" },
3242 { OPERAND_TYPE_ACC16, "acc16" },
3243 { OPERAND_TYPE_ACC32, "acc32" },
3244 { OPERAND_TYPE_ACC64, "acc64" },
3245 { OPERAND_TYPE_IMM8, "i8" },
3246 { OPERAND_TYPE_IMM8, "i8s" },
3247 { OPERAND_TYPE_IMM16, "i16" },
3248 { OPERAND_TYPE_IMM32, "i32" },
3249 { OPERAND_TYPE_IMM32S, "i32s" },
3250 { OPERAND_TYPE_IMM64, "i64" },
3251 { OPERAND_TYPE_IMM1, "i1" },
3252 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3253 { OPERAND_TYPE_DISP8, "d8" },
3254 { OPERAND_TYPE_DISP16, "d16" },
3255 { OPERAND_TYPE_DISP32, "d32" },
3256 { OPERAND_TYPE_DISP32S, "d32s" },
3257 { OPERAND_TYPE_DISP64, "d64" },
3258 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3259 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3260 { OPERAND_TYPE_CONTROL, "control reg" },
3261 { OPERAND_TYPE_TEST, "test reg" },
3262 { OPERAND_TYPE_DEBUG, "debug reg" },
3263 { OPERAND_TYPE_FLOATREG, "FReg" },
3264 { OPERAND_TYPE_FLOATACC, "FAcc" },
3265 { OPERAND_TYPE_SREG, "SReg" },
3266 { OPERAND_TYPE_REGMMX, "rMMX" },
3267 { OPERAND_TYPE_REGXMM, "rXMM" },
3268 { OPERAND_TYPE_REGYMM, "rYMM" },
3269 { OPERAND_TYPE_REGZMM, "rZMM" },
3270 { OPERAND_TYPE_REGMASK, "Mask reg" },
3271 };
3272
3273 static void
3274 pt (i386_operand_type t)
3275 {
3276 unsigned int j;
3277 i386_operand_type a;
3278
3279 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3280 {
3281 a = operand_type_and (t, type_names[j].mask);
3282 if (operand_type_equal (&a, &type_names[j].mask))
3283 fprintf (stdout, "%s, ", type_names[j].name);
3284 }
3285 fflush (stdout);
3286 }
3287
3288 #endif /* DEBUG386 */
3289 \f
3290 static bfd_reloc_code_real_type
3291 reloc (unsigned int size,
3292 int pcrel,
3293 int sign,
3294 bfd_reloc_code_real_type other)
3295 {
3296 if (other != NO_RELOC)
3297 {
3298 reloc_howto_type *rel;
3299
3300 if (size == 8)
3301 switch (other)
3302 {
3303 case BFD_RELOC_X86_64_GOT32:
3304 return BFD_RELOC_X86_64_GOT64;
3305 break;
3306 case BFD_RELOC_X86_64_GOTPLT64:
3307 return BFD_RELOC_X86_64_GOTPLT64;
3308 break;
3309 case BFD_RELOC_X86_64_PLTOFF64:
3310 return BFD_RELOC_X86_64_PLTOFF64;
3311 break;
3312 case BFD_RELOC_X86_64_GOTPC32:
3313 other = BFD_RELOC_X86_64_GOTPC64;
3314 break;
3315 case BFD_RELOC_X86_64_GOTPCREL:
3316 other = BFD_RELOC_X86_64_GOTPCREL64;
3317 break;
3318 case BFD_RELOC_X86_64_TPOFF32:
3319 other = BFD_RELOC_X86_64_TPOFF64;
3320 break;
3321 case BFD_RELOC_X86_64_DTPOFF32:
3322 other = BFD_RELOC_X86_64_DTPOFF64;
3323 break;
3324 default:
3325 break;
3326 }
3327
3328 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3329 if (other == BFD_RELOC_SIZE32)
3330 {
3331 if (size == 8)
3332 other = BFD_RELOC_SIZE64;
3333 if (pcrel)
3334 {
3335 as_bad (_("there are no pc-relative size relocations"));
3336 return NO_RELOC;
3337 }
3338 }
3339 #endif
3340
3341 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3342 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3343 sign = -1;
3344
3345 rel = bfd_reloc_type_lookup (stdoutput, other);
3346 if (!rel)
3347 as_bad (_("unknown relocation (%u)"), other);
3348 else if (size != bfd_get_reloc_size (rel))
3349 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3350 bfd_get_reloc_size (rel),
3351 size);
3352 else if (pcrel && !rel->pc_relative)
3353 as_bad (_("non-pc-relative relocation for pc-relative field"));
3354 else if ((rel->complain_on_overflow == complain_overflow_signed
3355 && !sign)
3356 || (rel->complain_on_overflow == complain_overflow_unsigned
3357 && sign > 0))
3358 as_bad (_("relocated field and relocation type differ in signedness"));
3359 else
3360 return other;
3361 return NO_RELOC;
3362 }
3363
3364 if (pcrel)
3365 {
3366 if (!sign)
3367 as_bad (_("there are no unsigned pc-relative relocations"));
3368 switch (size)
3369 {
3370 case 1: return BFD_RELOC_8_PCREL;
3371 case 2: return BFD_RELOC_16_PCREL;
3372 case 4: return BFD_RELOC_32_PCREL;
3373 case 8: return BFD_RELOC_64_PCREL;
3374 }
3375 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3376 }
3377 else
3378 {
3379 if (sign > 0)
3380 switch (size)
3381 {
3382 case 4: return BFD_RELOC_X86_64_32S;
3383 }
3384 else
3385 switch (size)
3386 {
3387 case 1: return BFD_RELOC_8;
3388 case 2: return BFD_RELOC_16;
3389 case 4: return BFD_RELOC_32;
3390 case 8: return BFD_RELOC_64;
3391 }
3392 as_bad (_("cannot do %s %u byte relocation"),
3393 sign > 0 ? "signed" : "unsigned", size);
3394 }
3395
3396 return NO_RELOC;
3397 }
3398
3399 /* Here we decide which fixups can be adjusted to make them relative to
3400 the beginning of the section instead of the symbol. Basically we need
3401 to make sure that the dynamic relocations are done correctly, so in
3402 some cases we force the original symbol to be used. */
3403
3404 int
3405 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3406 {
3407 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3408 if (!IS_ELF)
3409 return 1;
3410
3411 /* Don't adjust pc-relative references to merge sections in 64-bit
3412 mode. */
3413 if (use_rela_relocations
3414 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3415 && fixP->fx_pcrel)
3416 return 0;
3417
3418 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3419 and changed later by validate_fix. */
3420 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3421 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3422 return 0;
3423
3424 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3425 for size relocations. */
3426 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3427 || fixP->fx_r_type == BFD_RELOC_SIZE64
3428 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3429 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3430 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3431 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3432 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3433 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3434 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3435 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3436 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3437 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3438 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3439 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3440 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3441 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3442 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3443 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3444 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3445 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3446 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3447 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3448 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3449 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3450 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3451 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3452 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3453 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3454 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3455 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3456 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3457 return 0;
3458 #endif
3459 return 1;
3460 }
3461
3462 static int
3463 intel_float_operand (const char *mnemonic)
3464 {
3465 /* Note that the value returned is meaningful only for opcodes with (memory)
3466 operands, hence the code here is free to improperly handle opcodes that
3467 have no operands (for better performance and smaller code). */
3468
3469 if (mnemonic[0] != 'f')
3470 return 0; /* non-math */
3471
3472 switch (mnemonic[1])
3473 {
3474 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3475 the fs segment override prefix not currently handled because no
3476 call path can make opcodes without operands get here */
3477 case 'i':
3478 return 2 /* integer op */;
3479 case 'l':
3480 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3481 return 3; /* fldcw/fldenv */
3482 break;
3483 case 'n':
3484 if (mnemonic[2] != 'o' /* fnop */)
3485 return 3; /* non-waiting control op */
3486 break;
3487 case 'r':
3488 if (mnemonic[2] == 's')
3489 return 3; /* frstor/frstpm */
3490 break;
3491 case 's':
3492 if (mnemonic[2] == 'a')
3493 return 3; /* fsave */
3494 if (mnemonic[2] == 't')
3495 {
3496 switch (mnemonic[3])
3497 {
3498 case 'c': /* fstcw */
3499 case 'd': /* fstdw */
3500 case 'e': /* fstenv */
3501 case 's': /* fsts[gw] */
3502 return 3;
3503 }
3504 }
3505 break;
3506 case 'x':
3507 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3508 return 0; /* fxsave/fxrstor are not really math ops */
3509 break;
3510 }
3511
3512 return 1;
3513 }
3514
3515 /* Build the VEX prefix. */
3516
3517 static void
3518 build_vex_prefix (const insn_template *t)
3519 {
3520 unsigned int register_specifier;
3521 unsigned int implied_prefix;
3522 unsigned int vector_length;
3523 unsigned int w;
3524
3525 /* Check register specifier. */
3526 if (i.vex.register_specifier)
3527 {
3528 register_specifier =
3529 ~register_number (i.vex.register_specifier) & 0xf;
3530 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3531 }
3532 else
3533 register_specifier = 0xf;
3534
3535 /* Use 2-byte VEX prefix by swapping destination and source operand
3536 if there are more than 1 register operand. */
3537 if (i.reg_operands > 1
3538 && i.vec_encoding != vex_encoding_vex3
3539 && i.dir_encoding == dir_encoding_default
3540 && i.operands == i.reg_operands
3541 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3542 && i.tm.opcode_modifier.vexopcode == VEX0F
3543 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3544 && i.rex == REX_B)
3545 {
3546 unsigned int xchg = i.operands - 1;
3547 union i386_op temp_op;
3548 i386_operand_type temp_type;
3549
3550 temp_type = i.types[xchg];
3551 i.types[xchg] = i.types[0];
3552 i.types[0] = temp_type;
3553 temp_op = i.op[xchg];
3554 i.op[xchg] = i.op[0];
3555 i.op[0] = temp_op;
3556
3557 gas_assert (i.rm.mode == 3);
3558
3559 i.rex = REX_R;
3560 xchg = i.rm.regmem;
3561 i.rm.regmem = i.rm.reg;
3562 i.rm.reg = xchg;
3563
3564 if (i.tm.opcode_modifier.d)
3565 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3566 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3567 else /* Use the next insn. */
3568 i.tm = t[1];
3569 }
3570
3571 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3572 are no memory operands and at least 3 register ones. */
3573 if (i.reg_operands >= 3
3574 && i.vec_encoding != vex_encoding_vex3
3575 && i.reg_operands == i.operands - i.imm_operands
3576 && i.tm.opcode_modifier.vex
3577 && i.tm.opcode_modifier.commutative
3578 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3579 && i.rex == REX_B
3580 && i.vex.register_specifier
3581 && !(i.vex.register_specifier->reg_flags & RegRex))
3582 {
3583 unsigned int xchg = i.operands - i.reg_operands;
3584 union i386_op temp_op;
3585 i386_operand_type temp_type;
3586
3587 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3588 gas_assert (!i.tm.opcode_modifier.sae);
3589 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3590 &i.types[i.operands - 3]));
3591 gas_assert (i.rm.mode == 3);
3592
3593 temp_type = i.types[xchg];
3594 i.types[xchg] = i.types[xchg + 1];
3595 i.types[xchg + 1] = temp_type;
3596 temp_op = i.op[xchg];
3597 i.op[xchg] = i.op[xchg + 1];
3598 i.op[xchg + 1] = temp_op;
3599
3600 i.rex = 0;
3601 xchg = i.rm.regmem | 8;
3602 i.rm.regmem = ~register_specifier & 0xf;
3603 gas_assert (!(i.rm.regmem & 8));
3604 i.vex.register_specifier += xchg - i.rm.regmem;
3605 register_specifier = ~xchg & 0xf;
3606 }
3607
3608 if (i.tm.opcode_modifier.vex == VEXScalar)
3609 vector_length = avxscalar;
3610 else if (i.tm.opcode_modifier.vex == VEX256)
3611 vector_length = 1;
3612 else
3613 {
3614 unsigned int op;
3615
3616 /* Determine vector length from the last multi-length vector
3617 operand. */
3618 vector_length = 0;
3619 for (op = t->operands; op--;)
3620 if (t->operand_types[op].bitfield.xmmword
3621 && t->operand_types[op].bitfield.ymmword
3622 && i.types[op].bitfield.ymmword)
3623 {
3624 vector_length = 1;
3625 break;
3626 }
3627 }
3628
3629 switch ((i.tm.base_opcode >> 8) & 0xff)
3630 {
3631 case 0:
3632 implied_prefix = 0;
3633 break;
3634 case DATA_PREFIX_OPCODE:
3635 implied_prefix = 1;
3636 break;
3637 case REPE_PREFIX_OPCODE:
3638 implied_prefix = 2;
3639 break;
3640 case REPNE_PREFIX_OPCODE:
3641 implied_prefix = 3;
3642 break;
3643 default:
3644 abort ();
3645 }
3646
3647 /* Check the REX.W bit and VEXW. */
3648 if (i.tm.opcode_modifier.vexw == VEXWIG)
3649 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3650 else if (i.tm.opcode_modifier.vexw)
3651 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3652 else
3653 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3654
3655 /* Use 2-byte VEX prefix if possible. */
3656 if (w == 0
3657 && i.vec_encoding != vex_encoding_vex3
3658 && i.tm.opcode_modifier.vexopcode == VEX0F
3659 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3660 {
3661 /* 2-byte VEX prefix. */
3662 unsigned int r;
3663
3664 i.vex.length = 2;
3665 i.vex.bytes[0] = 0xc5;
3666
3667 /* Check the REX.R bit. */
3668 r = (i.rex & REX_R) ? 0 : 1;
3669 i.vex.bytes[1] = (r << 7
3670 | register_specifier << 3
3671 | vector_length << 2
3672 | implied_prefix);
3673 }
3674 else
3675 {
3676 /* 3-byte VEX prefix. */
3677 unsigned int m;
3678
3679 i.vex.length = 3;
3680
3681 switch (i.tm.opcode_modifier.vexopcode)
3682 {
3683 case VEX0F:
3684 m = 0x1;
3685 i.vex.bytes[0] = 0xc4;
3686 break;
3687 case VEX0F38:
3688 m = 0x2;
3689 i.vex.bytes[0] = 0xc4;
3690 break;
3691 case VEX0F3A:
3692 m = 0x3;
3693 i.vex.bytes[0] = 0xc4;
3694 break;
3695 case XOP08:
3696 m = 0x8;
3697 i.vex.bytes[0] = 0x8f;
3698 break;
3699 case XOP09:
3700 m = 0x9;
3701 i.vex.bytes[0] = 0x8f;
3702 break;
3703 case XOP0A:
3704 m = 0xa;
3705 i.vex.bytes[0] = 0x8f;
3706 break;
3707 default:
3708 abort ();
3709 }
3710
3711 /* The high 3 bits of the second VEX byte are 1's compliment
3712 of RXB bits from REX. */
3713 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3714
3715 i.vex.bytes[2] = (w << 7
3716 | register_specifier << 3
3717 | vector_length << 2
3718 | implied_prefix);
3719 }
3720 }
3721
3722 static INLINE bfd_boolean
3723 is_evex_encoding (const insn_template *t)
3724 {
3725 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3726 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3727 || t->opcode_modifier.sae;
3728 }
3729
3730 static INLINE bfd_boolean
3731 is_any_vex_encoding (const insn_template *t)
3732 {
3733 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3734 || is_evex_encoding (t);
3735 }
3736
3737 /* Build the EVEX prefix. */
3738
3739 static void
3740 build_evex_prefix (void)
3741 {
3742 unsigned int register_specifier;
3743 unsigned int implied_prefix;
3744 unsigned int m, w;
3745 rex_byte vrex_used = 0;
3746
3747 /* Check register specifier. */
3748 if (i.vex.register_specifier)
3749 {
3750 gas_assert ((i.vrex & REX_X) == 0);
3751
3752 register_specifier = i.vex.register_specifier->reg_num;
3753 if ((i.vex.register_specifier->reg_flags & RegRex))
3754 register_specifier += 8;
3755 /* The upper 16 registers are encoded in the fourth byte of the
3756 EVEX prefix. */
3757 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3758 i.vex.bytes[3] = 0x8;
3759 register_specifier = ~register_specifier & 0xf;
3760 }
3761 else
3762 {
3763 register_specifier = 0xf;
3764
3765 /* Encode upper 16 vector index register in the fourth byte of
3766 the EVEX prefix. */
3767 if (!(i.vrex & REX_X))
3768 i.vex.bytes[3] = 0x8;
3769 else
3770 vrex_used |= REX_X;
3771 }
3772
3773 switch ((i.tm.base_opcode >> 8) & 0xff)
3774 {
3775 case 0:
3776 implied_prefix = 0;
3777 break;
3778 case DATA_PREFIX_OPCODE:
3779 implied_prefix = 1;
3780 break;
3781 case REPE_PREFIX_OPCODE:
3782 implied_prefix = 2;
3783 break;
3784 case REPNE_PREFIX_OPCODE:
3785 implied_prefix = 3;
3786 break;
3787 default:
3788 abort ();
3789 }
3790
3791 /* 4 byte EVEX prefix. */
3792 i.vex.length = 4;
3793 i.vex.bytes[0] = 0x62;
3794
3795 /* mmmm bits. */
3796 switch (i.tm.opcode_modifier.vexopcode)
3797 {
3798 case VEX0F:
3799 m = 1;
3800 break;
3801 case VEX0F38:
3802 m = 2;
3803 break;
3804 case VEX0F3A:
3805 m = 3;
3806 break;
3807 default:
3808 abort ();
3809 break;
3810 }
3811
3812 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3813 bits from REX. */
3814 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3815
3816 /* The fifth bit of the second EVEX byte is 1's compliment of the
3817 REX_R bit in VREX. */
3818 if (!(i.vrex & REX_R))
3819 i.vex.bytes[1] |= 0x10;
3820 else
3821 vrex_used |= REX_R;
3822
3823 if ((i.reg_operands + i.imm_operands) == i.operands)
3824 {
3825 /* When all operands are registers, the REX_X bit in REX is not
3826 used. We reuse it to encode the upper 16 registers, which is
3827 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3828 as 1's compliment. */
3829 if ((i.vrex & REX_B))
3830 {
3831 vrex_used |= REX_B;
3832 i.vex.bytes[1] &= ~0x40;
3833 }
3834 }
3835
3836 /* EVEX instructions shouldn't need the REX prefix. */
3837 i.vrex &= ~vrex_used;
3838 gas_assert (i.vrex == 0);
3839
3840 /* Check the REX.W bit and VEXW. */
3841 if (i.tm.opcode_modifier.vexw == VEXWIG)
3842 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3843 else if (i.tm.opcode_modifier.vexw)
3844 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3845 else
3846 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3847
3848 /* Encode the U bit. */
3849 implied_prefix |= 0x4;
3850
3851 /* The third byte of the EVEX prefix. */
3852 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3853
3854 /* The fourth byte of the EVEX prefix. */
3855 /* The zeroing-masking bit. */
3856 if (i.mask && i.mask->zeroing)
3857 i.vex.bytes[3] |= 0x80;
3858
3859 /* Don't always set the broadcast bit if there is no RC. */
3860 if (!i.rounding)
3861 {
3862 /* Encode the vector length. */
3863 unsigned int vec_length;
3864
3865 if (!i.tm.opcode_modifier.evex
3866 || i.tm.opcode_modifier.evex == EVEXDYN)
3867 {
3868 unsigned int op;
3869
3870 /* Determine vector length from the last multi-length vector
3871 operand. */
3872 vec_length = 0;
3873 for (op = i.operands; op--;)
3874 if (i.tm.operand_types[op].bitfield.xmmword
3875 + i.tm.operand_types[op].bitfield.ymmword
3876 + i.tm.operand_types[op].bitfield.zmmword > 1)
3877 {
3878 if (i.types[op].bitfield.zmmword)
3879 {
3880 i.tm.opcode_modifier.evex = EVEX512;
3881 break;
3882 }
3883 else if (i.types[op].bitfield.ymmword)
3884 {
3885 i.tm.opcode_modifier.evex = EVEX256;
3886 break;
3887 }
3888 else if (i.types[op].bitfield.xmmword)
3889 {
3890 i.tm.opcode_modifier.evex = EVEX128;
3891 break;
3892 }
3893 else if (i.broadcast && (int) op == i.broadcast->operand)
3894 {
3895 switch (i.broadcast->bytes)
3896 {
3897 case 64:
3898 i.tm.opcode_modifier.evex = EVEX512;
3899 break;
3900 case 32:
3901 i.tm.opcode_modifier.evex = EVEX256;
3902 break;
3903 case 16:
3904 i.tm.opcode_modifier.evex = EVEX128;
3905 break;
3906 default:
3907 abort ();
3908 }
3909 break;
3910 }
3911 }
3912
3913 if (op >= MAX_OPERANDS)
3914 abort ();
3915 }
3916
3917 switch (i.tm.opcode_modifier.evex)
3918 {
3919 case EVEXLIG: /* LL' is ignored */
3920 vec_length = evexlig << 5;
3921 break;
3922 case EVEX128:
3923 vec_length = 0 << 5;
3924 break;
3925 case EVEX256:
3926 vec_length = 1 << 5;
3927 break;
3928 case EVEX512:
3929 vec_length = 2 << 5;
3930 break;
3931 default:
3932 abort ();
3933 break;
3934 }
3935 i.vex.bytes[3] |= vec_length;
3936 /* Encode the broadcast bit. */
3937 if (i.broadcast)
3938 i.vex.bytes[3] |= 0x10;
3939 }
3940 else
3941 {
3942 if (i.rounding->type != saeonly)
3943 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3944 else
3945 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3946 }
3947
3948 if (i.mask && i.mask->mask)
3949 i.vex.bytes[3] |= i.mask->mask->reg_num;
3950 }
3951
3952 static void
3953 process_immext (void)
3954 {
3955 expressionS *exp;
3956
3957 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3958 which is coded in the same place as an 8-bit immediate field
3959 would be. Here we fake an 8-bit immediate operand from the
3960 opcode suffix stored in tm.extension_opcode.
3961
3962 AVX instructions also use this encoding, for some of
3963 3 argument instructions. */
3964
3965 gas_assert (i.imm_operands <= 1
3966 && (i.operands <= 2
3967 || (is_any_vex_encoding (&i.tm)
3968 && i.operands <= 4)));
3969
3970 exp = &im_expressions[i.imm_operands++];
3971 i.op[i.operands].imms = exp;
3972 i.types[i.operands] = imm8;
3973 i.operands++;
3974 exp->X_op = O_constant;
3975 exp->X_add_number = i.tm.extension_opcode;
3976 i.tm.extension_opcode = None;
3977 }
3978
3979
3980 static int
3981 check_hle (void)
3982 {
3983 switch (i.tm.opcode_modifier.hleprefixok)
3984 {
3985 default:
3986 abort ();
3987 case HLEPrefixNone:
3988 as_bad (_("invalid instruction `%s' after `%s'"),
3989 i.tm.name, i.hle_prefix);
3990 return 0;
3991 case HLEPrefixLock:
3992 if (i.prefix[LOCK_PREFIX])
3993 return 1;
3994 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3995 return 0;
3996 case HLEPrefixAny:
3997 return 1;
3998 case HLEPrefixRelease:
3999 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4000 {
4001 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4002 i.tm.name);
4003 return 0;
4004 }
4005 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4006 {
4007 as_bad (_("memory destination needed for instruction `%s'"
4008 " after `xrelease'"), i.tm.name);
4009 return 0;
4010 }
4011 return 1;
4012 }
4013 }
4014
4015 /* Try the shortest encoding by shortening operand size. */
4016
4017 static void
4018 optimize_encoding (void)
4019 {
4020 unsigned int j;
4021
4022 if (optimize_for_space
4023 && !is_any_vex_encoding (&i.tm)
4024 && i.reg_operands == 1
4025 && i.imm_operands == 1
4026 && !i.types[1].bitfield.byte
4027 && i.op[0].imms->X_op == O_constant
4028 && fits_in_imm7 (i.op[0].imms->X_add_number)
4029 && (i.tm.base_opcode == 0xa8
4030 || (i.tm.base_opcode == 0xf6
4031 && i.tm.extension_opcode == 0x0)))
4032 {
4033 /* Optimize: -Os:
4034 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4035 */
4036 unsigned int base_regnum = i.op[1].regs->reg_num;
4037 if (flag_code == CODE_64BIT || base_regnum < 4)
4038 {
4039 i.types[1].bitfield.byte = 1;
4040 /* Ignore the suffix. */
4041 i.suffix = 0;
4042 /* Convert to byte registers. */
4043 if (i.types[1].bitfield.word)
4044 j = 16;
4045 else if (i.types[1].bitfield.dword)
4046 j = 32;
4047 else
4048 j = 48;
4049 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4050 j += 8;
4051 i.op[1].regs -= j;
4052 }
4053 }
4054 else if (flag_code == CODE_64BIT
4055 && !is_any_vex_encoding (&i.tm)
4056 && ((i.types[1].bitfield.qword
4057 && i.reg_operands == 1
4058 && i.imm_operands == 1
4059 && i.op[0].imms->X_op == O_constant
4060 && ((i.tm.base_opcode == 0xb8
4061 && i.tm.extension_opcode == None
4062 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4063 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4064 && ((i.tm.base_opcode == 0x24
4065 || i.tm.base_opcode == 0xa8)
4066 || (i.tm.base_opcode == 0x80
4067 && i.tm.extension_opcode == 0x4)
4068 || ((i.tm.base_opcode == 0xf6
4069 || (i.tm.base_opcode | 1) == 0xc7)
4070 && i.tm.extension_opcode == 0x0)))
4071 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4072 && i.tm.base_opcode == 0x83
4073 && i.tm.extension_opcode == 0x4)))
4074 || (i.types[0].bitfield.qword
4075 && ((i.reg_operands == 2
4076 && i.op[0].regs == i.op[1].regs
4077 && (i.tm.base_opcode == 0x30
4078 || i.tm.base_opcode == 0x28))
4079 || (i.reg_operands == 1
4080 && i.operands == 1
4081 && i.tm.base_opcode == 0x30)))))
4082 {
4083 /* Optimize: -O:
4084 andq $imm31, %r64 -> andl $imm31, %r32
4085 andq $imm7, %r64 -> andl $imm7, %r32
4086 testq $imm31, %r64 -> testl $imm31, %r32
4087 xorq %r64, %r64 -> xorl %r32, %r32
4088 subq %r64, %r64 -> subl %r32, %r32
4089 movq $imm31, %r64 -> movl $imm31, %r32
4090 movq $imm32, %r64 -> movl $imm32, %r32
4091 */
4092 i.tm.opcode_modifier.norex64 = 1;
4093 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4094 {
4095 /* Handle
4096 movq $imm31, %r64 -> movl $imm31, %r32
4097 movq $imm32, %r64 -> movl $imm32, %r32
4098 */
4099 i.tm.operand_types[0].bitfield.imm32 = 1;
4100 i.tm.operand_types[0].bitfield.imm32s = 0;
4101 i.tm.operand_types[0].bitfield.imm64 = 0;
4102 i.types[0].bitfield.imm32 = 1;
4103 i.types[0].bitfield.imm32s = 0;
4104 i.types[0].bitfield.imm64 = 0;
4105 i.types[1].bitfield.dword = 1;
4106 i.types[1].bitfield.qword = 0;
4107 if ((i.tm.base_opcode | 1) == 0xc7)
4108 {
4109 /* Handle
4110 movq $imm31, %r64 -> movl $imm31, %r32
4111 */
4112 i.tm.base_opcode = 0xb8;
4113 i.tm.extension_opcode = None;
4114 i.tm.opcode_modifier.w = 0;
4115 i.tm.opcode_modifier.modrm = 0;
4116 }
4117 }
4118 }
4119 else if (optimize > 1
4120 && !optimize_for_space
4121 && !is_any_vex_encoding (&i.tm)
4122 && i.reg_operands == 2
4123 && i.op[0].regs == i.op[1].regs
4124 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4125 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4126 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4127 {
4128 /* Optimize: -O2:
4129 andb %rN, %rN -> testb %rN, %rN
4130 andw %rN, %rN -> testw %rN, %rN
4131 andq %rN, %rN -> testq %rN, %rN
4132 orb %rN, %rN -> testb %rN, %rN
4133 orw %rN, %rN -> testw %rN, %rN
4134 orq %rN, %rN -> testq %rN, %rN
4135
4136 and outside of 64-bit mode
4137
4138 andl %rN, %rN -> testl %rN, %rN
4139 orl %rN, %rN -> testl %rN, %rN
4140 */
4141 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4142 }
4143 else if (i.reg_operands == 3
4144 && i.op[0].regs == i.op[1].regs
4145 && !i.types[2].bitfield.xmmword
4146 && (i.tm.opcode_modifier.vex
4147 || ((!i.mask || i.mask->zeroing)
4148 && !i.rounding
4149 && is_evex_encoding (&i.tm)
4150 && (i.vec_encoding != vex_encoding_evex
4151 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4152 || i.tm.cpu_flags.bitfield.cpuavx512vl
4153 || (i.tm.operand_types[2].bitfield.zmmword
4154 && i.types[2].bitfield.ymmword))))
4155 && ((i.tm.base_opcode == 0x55
4156 || i.tm.base_opcode == 0x6655
4157 || i.tm.base_opcode == 0x66df
4158 || i.tm.base_opcode == 0x57
4159 || i.tm.base_opcode == 0x6657
4160 || i.tm.base_opcode == 0x66ef
4161 || i.tm.base_opcode == 0x66f8
4162 || i.tm.base_opcode == 0x66f9
4163 || i.tm.base_opcode == 0x66fa
4164 || i.tm.base_opcode == 0x66fb
4165 || i.tm.base_opcode == 0x42
4166 || i.tm.base_opcode == 0x6642
4167 || i.tm.base_opcode == 0x47
4168 || i.tm.base_opcode == 0x6647)
4169 && i.tm.extension_opcode == None))
4170 {
4171 /* Optimize: -O1:
4172 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4173 vpsubq and vpsubw:
4174 EVEX VOP %zmmM, %zmmM, %zmmN
4175 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4176 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4177 EVEX VOP %ymmM, %ymmM, %ymmN
4178 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4179 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4180 VEX VOP %ymmM, %ymmM, %ymmN
4181 -> VEX VOP %xmmM, %xmmM, %xmmN
4182 VOP, one of vpandn and vpxor:
4183 VEX VOP %ymmM, %ymmM, %ymmN
4184 -> VEX VOP %xmmM, %xmmM, %xmmN
4185 VOP, one of vpandnd and vpandnq:
4186 EVEX VOP %zmmM, %zmmM, %zmmN
4187 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4188 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4189 EVEX VOP %ymmM, %ymmM, %ymmN
4190 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4191 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4192 VOP, one of vpxord and vpxorq:
4193 EVEX VOP %zmmM, %zmmM, %zmmN
4194 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4195 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4196 EVEX VOP %ymmM, %ymmM, %ymmN
4197 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4198 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4199 VOP, one of kxord and kxorq:
4200 VEX VOP %kM, %kM, %kN
4201 -> VEX kxorw %kM, %kM, %kN
4202 VOP, one of kandnd and kandnq:
4203 VEX VOP %kM, %kM, %kN
4204 -> VEX kandnw %kM, %kM, %kN
4205 */
4206 if (is_evex_encoding (&i.tm))
4207 {
4208 if (i.vec_encoding != vex_encoding_evex)
4209 {
4210 i.tm.opcode_modifier.vex = VEX128;
4211 i.tm.opcode_modifier.vexw = VEXW0;
4212 i.tm.opcode_modifier.evex = 0;
4213 }
4214 else if (optimize > 1)
4215 i.tm.opcode_modifier.evex = EVEX128;
4216 else
4217 return;
4218 }
4219 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4220 {
4221 i.tm.base_opcode &= 0xff;
4222 i.tm.opcode_modifier.vexw = VEXW0;
4223 }
4224 else
4225 i.tm.opcode_modifier.vex = VEX128;
4226
4227 if (i.tm.opcode_modifier.vex)
4228 for (j = 0; j < 3; j++)
4229 {
4230 i.types[j].bitfield.xmmword = 1;
4231 i.types[j].bitfield.ymmword = 0;
4232 }
4233 }
4234 else if (i.vec_encoding != vex_encoding_evex
4235 && !i.types[0].bitfield.zmmword
4236 && !i.types[1].bitfield.zmmword
4237 && !i.mask
4238 && !i.broadcast
4239 && is_evex_encoding (&i.tm)
4240 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4241 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4242 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4243 || (i.tm.base_opcode & ~4) == 0x66db
4244 || (i.tm.base_opcode & ~4) == 0x66eb)
4245 && i.tm.extension_opcode == None)
4246 {
4247 /* Optimize: -O1:
4248 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4249 vmovdqu32 and vmovdqu64:
4250 EVEX VOP %xmmM, %xmmN
4251 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4252 EVEX VOP %ymmM, %ymmN
4253 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4254 EVEX VOP %xmmM, mem
4255 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4256 EVEX VOP %ymmM, mem
4257 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4258 EVEX VOP mem, %xmmN
4259 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4260 EVEX VOP mem, %ymmN
4261 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4262 VOP, one of vpand, vpandn, vpor, vpxor:
4263 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4264 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4265 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4266 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4267 EVEX VOP{d,q} mem, %xmmM, %xmmN
4268 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4269 EVEX VOP{d,q} mem, %ymmM, %ymmN
4270 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4271 */
4272 for (j = 0; j < i.operands; j++)
4273 if (operand_type_check (i.types[j], disp)
4274 && i.op[j].disps->X_op == O_constant)
4275 {
4276 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4277 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4278 bytes, we choose EVEX Disp8 over VEX Disp32. */
4279 int evex_disp8, vex_disp8;
4280 unsigned int memshift = i.memshift;
4281 offsetT n = i.op[j].disps->X_add_number;
4282
4283 evex_disp8 = fits_in_disp8 (n);
4284 i.memshift = 0;
4285 vex_disp8 = fits_in_disp8 (n);
4286 if (evex_disp8 != vex_disp8)
4287 {
4288 i.memshift = memshift;
4289 return;
4290 }
4291
4292 i.types[j].bitfield.disp8 = vex_disp8;
4293 break;
4294 }
4295 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4296 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4297 i.tm.opcode_modifier.vex
4298 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4299 i.tm.opcode_modifier.vexw = VEXW0;
4300 /* VPAND, VPOR, and VPXOR are commutative. */
4301 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4302 i.tm.opcode_modifier.commutative = 1;
4303 i.tm.opcode_modifier.evex = 0;
4304 i.tm.opcode_modifier.masking = 0;
4305 i.tm.opcode_modifier.broadcast = 0;
4306 i.tm.opcode_modifier.disp8memshift = 0;
4307 i.memshift = 0;
4308 if (j < i.operands)
4309 i.types[j].bitfield.disp8
4310 = fits_in_disp8 (i.op[j].disps->X_add_number);
4311 }
4312 }
4313
4314 /* This is the guts of the machine-dependent assembler. LINE points to a
4315 machine dependent instruction. This function is supposed to emit
4316 the frags/bytes it assembles to. */
4317
4318 void
4319 md_assemble (char *line)
4320 {
4321 unsigned int j;
4322 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4323 const insn_template *t;
4324
4325 /* Initialize globals. */
4326 memset (&i, '\0', sizeof (i));
4327 for (j = 0; j < MAX_OPERANDS; j++)
4328 i.reloc[j] = NO_RELOC;
4329 memset (disp_expressions, '\0', sizeof (disp_expressions));
4330 memset (im_expressions, '\0', sizeof (im_expressions));
4331 save_stack_p = save_stack;
4332
4333 /* First parse an instruction mnemonic & call i386_operand for the operands.
4334 We assume that the scrubber has arranged it so that line[0] is the valid
4335 start of a (possibly prefixed) mnemonic. */
4336
4337 line = parse_insn (line, mnemonic);
4338 if (line == NULL)
4339 return;
4340 mnem_suffix = i.suffix;
4341
4342 line = parse_operands (line, mnemonic);
4343 this_operand = -1;
4344 xfree (i.memop1_string);
4345 i.memop1_string = NULL;
4346 if (line == NULL)
4347 return;
4348
4349 /* Now we've parsed the mnemonic into a set of templates, and have the
4350 operands at hand. */
4351
4352 /* All Intel opcodes have reversed operands except for "bound", "enter",
4353 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4354 intersegment "jmp" and "call" instructions with 2 immediate operands so
4355 that the immediate segment precedes the offset, as it does when in AT&T
4356 mode. */
4357 if (intel_syntax
4358 && i.operands > 1
4359 && (strcmp (mnemonic, "bound") != 0)
4360 && (strcmp (mnemonic, "invlpga") != 0)
4361 && (strncmp (mnemonic, "monitor", 7) != 0)
4362 && (strncmp (mnemonic, "mwait", 5) != 0)
4363 && (strcmp (mnemonic, "tpause") != 0)
4364 && (strcmp (mnemonic, "umwait") != 0)
4365 && !(operand_type_check (i.types[0], imm)
4366 && operand_type_check (i.types[1], imm)))
4367 swap_operands ();
4368
4369 /* The order of the immediates should be reversed
4370 for 2 immediates extrq and insertq instructions */
4371 if (i.imm_operands == 2
4372 && (strcmp (mnemonic, "extrq") == 0
4373 || strcmp (mnemonic, "insertq") == 0))
4374 swap_2_operands (0, 1);
4375
4376 if (i.imm_operands)
4377 optimize_imm ();
4378
4379 /* Don't optimize displacement for movabs since it only takes 64bit
4380 displacement. */
4381 if (i.disp_operands
4382 && i.disp_encoding != disp_encoding_32bit
4383 && (flag_code != CODE_64BIT
4384 || strcmp (mnemonic, "movabs") != 0))
4385 optimize_disp ();
4386
4387 /* Next, we find a template that matches the given insn,
4388 making sure the overlap of the given operands types is consistent
4389 with the template operand types. */
4390
4391 if (!(t = match_template (mnem_suffix)))
4392 return;
4393
4394 if (sse_check != check_none
4395 && !i.tm.opcode_modifier.noavx
4396 && !i.tm.cpu_flags.bitfield.cpuavx
4397 && !i.tm.cpu_flags.bitfield.cpuavx512f
4398 && (i.tm.cpu_flags.bitfield.cpusse
4399 || i.tm.cpu_flags.bitfield.cpusse2
4400 || i.tm.cpu_flags.bitfield.cpusse3
4401 || i.tm.cpu_flags.bitfield.cpussse3
4402 || i.tm.cpu_flags.bitfield.cpusse4_1
4403 || i.tm.cpu_flags.bitfield.cpusse4_2
4404 || i.tm.cpu_flags.bitfield.cpusse4a
4405 || i.tm.cpu_flags.bitfield.cpupclmul
4406 || i.tm.cpu_flags.bitfield.cpuaes
4407 || i.tm.cpu_flags.bitfield.cpusha
4408 || i.tm.cpu_flags.bitfield.cpugfni))
4409 {
4410 (sse_check == check_warning
4411 ? as_warn
4412 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4413 }
4414
4415 if (i.tm.opcode_modifier.fwait)
4416 if (!add_prefix (FWAIT_OPCODE))
4417 return;
4418
4419 /* Check if REP prefix is OK. */
4420 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4421 {
4422 as_bad (_("invalid instruction `%s' after `%s'"),
4423 i.tm.name, i.rep_prefix);
4424 return;
4425 }
4426
4427 /* Check for lock without a lockable instruction. Destination operand
4428 must be memory unless it is xchg (0x86). */
4429 if (i.prefix[LOCK_PREFIX]
4430 && (!i.tm.opcode_modifier.islockable
4431 || i.mem_operands == 0
4432 || (i.tm.base_opcode != 0x86
4433 && !(i.flags[i.operands - 1] & Operand_Mem))))
4434 {
4435 as_bad (_("expecting lockable instruction after `lock'"));
4436 return;
4437 }
4438
4439 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4440 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4441 {
4442 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4443 return;
4444 }
4445
4446 /* Check if HLE prefix is OK. */
4447 if (i.hle_prefix && !check_hle ())
4448 return;
4449
4450 /* Check BND prefix. */
4451 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4452 as_bad (_("expecting valid branch instruction after `bnd'"));
4453
4454 /* Check NOTRACK prefix. */
4455 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4456 as_bad (_("expecting indirect branch instruction after `notrack'"));
4457
4458 if (i.tm.cpu_flags.bitfield.cpumpx)
4459 {
4460 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4461 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4462 else if (flag_code != CODE_16BIT
4463 ? i.prefix[ADDR_PREFIX]
4464 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4465 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4466 }
4467
4468 /* Insert BND prefix. */
4469 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4470 {
4471 if (!i.prefix[BND_PREFIX])
4472 add_prefix (BND_PREFIX_OPCODE);
4473 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4474 {
4475 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4476 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4477 }
4478 }
4479
4480 /* Check string instruction segment overrides. */
4481 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4482 {
4483 gas_assert (i.mem_operands);
4484 if (!check_string ())
4485 return;
4486 i.disp_operands = 0;
4487 }
4488
4489 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4490 optimize_encoding ();
4491
4492 if (!process_suffix ())
4493 return;
4494
4495 /* Update operand types. */
4496 for (j = 0; j < i.operands; j++)
4497 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4498
4499 /* Make still unresolved immediate matches conform to size of immediate
4500 given in i.suffix. */
4501 if (!finalize_imm ())
4502 return;
4503
4504 if (i.types[0].bitfield.imm1)
4505 i.imm_operands = 0; /* kludge for shift insns. */
4506
4507 /* We only need to check those implicit registers for instructions
4508 with 3 operands or less. */
4509 if (i.operands <= 3)
4510 for (j = 0; j < i.operands; j++)
4511 if (i.types[j].bitfield.instance != InstanceNone
4512 && !i.types[j].bitfield.xmmword)
4513 i.reg_operands--;
4514
4515 /* ImmExt should be processed after SSE2AVX. */
4516 if (!i.tm.opcode_modifier.sse2avx
4517 && i.tm.opcode_modifier.immext)
4518 process_immext ();
4519
4520 /* For insns with operands there are more diddles to do to the opcode. */
4521 if (i.operands)
4522 {
4523 if (!process_operands ())
4524 return;
4525 }
4526 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4527 {
4528 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4529 as_warn (_("translating to `%sp'"), i.tm.name);
4530 }
4531
4532 if (is_any_vex_encoding (&i.tm))
4533 {
4534 if (!cpu_arch_flags.bitfield.cpui286)
4535 {
4536 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4537 i.tm.name);
4538 return;
4539 }
4540
4541 if (i.tm.opcode_modifier.vex)
4542 build_vex_prefix (t);
4543 else
4544 build_evex_prefix ();
4545 }
4546
4547 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4548 instructions may define INT_OPCODE as well, so avoid this corner
4549 case for those instructions that use MODRM. */
4550 if (i.tm.base_opcode == INT_OPCODE
4551 && !i.tm.opcode_modifier.modrm
4552 && i.op[0].imms->X_add_number == 3)
4553 {
4554 i.tm.base_opcode = INT3_OPCODE;
4555 i.imm_operands = 0;
4556 }
4557
4558 if ((i.tm.opcode_modifier.jump == JUMP
4559 || i.tm.opcode_modifier.jump == JUMP_BYTE
4560 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4561 && i.op[0].disps->X_op == O_constant)
4562 {
4563 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4564 the absolute address given by the constant. Since ix86 jumps and
4565 calls are pc relative, we need to generate a reloc. */
4566 i.op[0].disps->X_add_symbol = &abs_symbol;
4567 i.op[0].disps->X_op = O_symbol;
4568 }
4569
4570 /* For 8 bit registers we need an empty rex prefix. Also if the
4571 instruction already has a prefix, we need to convert old
4572 registers to new ones. */
4573
4574 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4575 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4576 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4577 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4578 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4579 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4580 && i.rex != 0))
4581 {
4582 int x;
4583
4584 i.rex |= REX_OPCODE;
4585 for (x = 0; x < 2; x++)
4586 {
4587 /* Look for 8 bit operand that uses old registers. */
4588 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4589 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4590 {
4591 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4592 /* In case it is "hi" register, give up. */
4593 if (i.op[x].regs->reg_num > 3)
4594 as_bad (_("can't encode register '%s%s' in an "
4595 "instruction requiring REX prefix."),
4596 register_prefix, i.op[x].regs->reg_name);
4597
4598 /* Otherwise it is equivalent to the extended register.
4599 Since the encoding doesn't change this is merely
4600 cosmetic cleanup for debug output. */
4601
4602 i.op[x].regs = i.op[x].regs + 8;
4603 }
4604 }
4605 }
4606
4607 if (i.rex == 0 && i.rex_encoding)
4608 {
4609 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4610 that uses legacy register. If it is "hi" register, don't add
4611 the REX_OPCODE byte. */
4612 int x;
4613 for (x = 0; x < 2; x++)
4614 if (i.types[x].bitfield.class == Reg
4615 && i.types[x].bitfield.byte
4616 && (i.op[x].regs->reg_flags & RegRex64) == 0
4617 && i.op[x].regs->reg_num > 3)
4618 {
4619 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4620 i.rex_encoding = FALSE;
4621 break;
4622 }
4623
4624 if (i.rex_encoding)
4625 i.rex = REX_OPCODE;
4626 }
4627
4628 if (i.rex != 0)
4629 add_prefix (REX_OPCODE | i.rex);
4630
4631 /* We are ready to output the insn. */
4632 output_insn ();
4633
4634 last_insn.seg = now_seg;
4635
4636 if (i.tm.opcode_modifier.isprefix)
4637 {
4638 last_insn.kind = last_insn_prefix;
4639 last_insn.name = i.tm.name;
4640 last_insn.file = as_where (&last_insn.line);
4641 }
4642 else
4643 last_insn.kind = last_insn_other;
4644 }
4645
4646 static char *
4647 parse_insn (char *line, char *mnemonic)
4648 {
4649 char *l = line;
4650 char *token_start = l;
4651 char *mnem_p;
4652 int supported;
4653 const insn_template *t;
4654 char *dot_p = NULL;
4655
4656 while (1)
4657 {
4658 mnem_p = mnemonic;
4659 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4660 {
4661 if (*mnem_p == '.')
4662 dot_p = mnem_p;
4663 mnem_p++;
4664 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4665 {
4666 as_bad (_("no such instruction: `%s'"), token_start);
4667 return NULL;
4668 }
4669 l++;
4670 }
4671 if (!is_space_char (*l)
4672 && *l != END_OF_INSN
4673 && (intel_syntax
4674 || (*l != PREFIX_SEPARATOR
4675 && *l != ',')))
4676 {
4677 as_bad (_("invalid character %s in mnemonic"),
4678 output_invalid (*l));
4679 return NULL;
4680 }
4681 if (token_start == l)
4682 {
4683 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4684 as_bad (_("expecting prefix; got nothing"));
4685 else
4686 as_bad (_("expecting mnemonic; got nothing"));
4687 return NULL;
4688 }
4689
4690 /* Look up instruction (or prefix) via hash table. */
4691 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4692
4693 if (*l != END_OF_INSN
4694 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4695 && current_templates
4696 && current_templates->start->opcode_modifier.isprefix)
4697 {
4698 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4699 {
4700 as_bad ((flag_code != CODE_64BIT
4701 ? _("`%s' is only supported in 64-bit mode")
4702 : _("`%s' is not supported in 64-bit mode")),
4703 current_templates->start->name);
4704 return NULL;
4705 }
4706 /* If we are in 16-bit mode, do not allow addr16 or data16.
4707 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4708 if ((current_templates->start->opcode_modifier.size == SIZE16
4709 || current_templates->start->opcode_modifier.size == SIZE32)
4710 && flag_code != CODE_64BIT
4711 && ((current_templates->start->opcode_modifier.size == SIZE32)
4712 ^ (flag_code == CODE_16BIT)))
4713 {
4714 as_bad (_("redundant %s prefix"),
4715 current_templates->start->name);
4716 return NULL;
4717 }
4718 if (current_templates->start->opcode_length == 0)
4719 {
4720 /* Handle pseudo prefixes. */
4721 switch (current_templates->start->base_opcode)
4722 {
4723 case 0x0:
4724 /* {disp8} */
4725 i.disp_encoding = disp_encoding_8bit;
4726 break;
4727 case 0x1:
4728 /* {disp32} */
4729 i.disp_encoding = disp_encoding_32bit;
4730 break;
4731 case 0x2:
4732 /* {load} */
4733 i.dir_encoding = dir_encoding_load;
4734 break;
4735 case 0x3:
4736 /* {store} */
4737 i.dir_encoding = dir_encoding_store;
4738 break;
4739 case 0x4:
4740 /* {vex} */
4741 i.vec_encoding = vex_encoding_vex;
4742 break;
4743 case 0x5:
4744 /* {vex3} */
4745 i.vec_encoding = vex_encoding_vex3;
4746 break;
4747 case 0x6:
4748 /* {evex} */
4749 i.vec_encoding = vex_encoding_evex;
4750 break;
4751 case 0x7:
4752 /* {rex} */
4753 i.rex_encoding = TRUE;
4754 break;
4755 case 0x8:
4756 /* {nooptimize} */
4757 i.no_optimize = TRUE;
4758 break;
4759 default:
4760 abort ();
4761 }
4762 }
4763 else
4764 {
4765 /* Add prefix, checking for repeated prefixes. */
4766 switch (add_prefix (current_templates->start->base_opcode))
4767 {
4768 case PREFIX_EXIST:
4769 return NULL;
4770 case PREFIX_DS:
4771 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4772 i.notrack_prefix = current_templates->start->name;
4773 break;
4774 case PREFIX_REP:
4775 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4776 i.hle_prefix = current_templates->start->name;
4777 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4778 i.bnd_prefix = current_templates->start->name;
4779 else
4780 i.rep_prefix = current_templates->start->name;
4781 break;
4782 default:
4783 break;
4784 }
4785 }
4786 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4787 token_start = ++l;
4788 }
4789 else
4790 break;
4791 }
4792
4793 if (!current_templates)
4794 {
4795 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4796 Check if we should swap operand or force 32bit displacement in
4797 encoding. */
4798 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4799 i.dir_encoding = dir_encoding_swap;
4800 else if (mnem_p - 3 == dot_p
4801 && dot_p[1] == 'd'
4802 && dot_p[2] == '8')
4803 i.disp_encoding = disp_encoding_8bit;
4804 else if (mnem_p - 4 == dot_p
4805 && dot_p[1] == 'd'
4806 && dot_p[2] == '3'
4807 && dot_p[3] == '2')
4808 i.disp_encoding = disp_encoding_32bit;
4809 else
4810 goto check_suffix;
4811 mnem_p = dot_p;
4812 *dot_p = '\0';
4813 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4814 }
4815
4816 if (!current_templates)
4817 {
4818 check_suffix:
4819 if (mnem_p > mnemonic)
4820 {
4821 /* See if we can get a match by trimming off a suffix. */
4822 switch (mnem_p[-1])
4823 {
4824 case WORD_MNEM_SUFFIX:
4825 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4826 i.suffix = SHORT_MNEM_SUFFIX;
4827 else
4828 /* Fall through. */
4829 case BYTE_MNEM_SUFFIX:
4830 case QWORD_MNEM_SUFFIX:
4831 i.suffix = mnem_p[-1];
4832 mnem_p[-1] = '\0';
4833 current_templates = (const templates *) hash_find (op_hash,
4834 mnemonic);
4835 break;
4836 case SHORT_MNEM_SUFFIX:
4837 case LONG_MNEM_SUFFIX:
4838 if (!intel_syntax)
4839 {
4840 i.suffix = mnem_p[-1];
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846
4847 /* Intel Syntax. */
4848 case 'd':
4849 if (intel_syntax)
4850 {
4851 if (intel_float_operand (mnemonic) == 1)
4852 i.suffix = SHORT_MNEM_SUFFIX;
4853 else
4854 i.suffix = LONG_MNEM_SUFFIX;
4855 mnem_p[-1] = '\0';
4856 current_templates = (const templates *) hash_find (op_hash,
4857 mnemonic);
4858 }
4859 break;
4860 }
4861 }
4862
4863 if (!current_templates)
4864 {
4865 as_bad (_("no such instruction: `%s'"), token_start);
4866 return NULL;
4867 }
4868 }
4869
4870 if (current_templates->start->opcode_modifier.jump == JUMP
4871 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4872 {
4873 /* Check for a branch hint. We allow ",pt" and ",pn" for
4874 predict taken and predict not taken respectively.
4875 I'm not sure that branch hints actually do anything on loop
4876 and jcxz insns (JumpByte) for current Pentium4 chips. They
4877 may work in the future and it doesn't hurt to accept them
4878 now. */
4879 if (l[0] == ',' && l[1] == 'p')
4880 {
4881 if (l[2] == 't')
4882 {
4883 if (!add_prefix (DS_PREFIX_OPCODE))
4884 return NULL;
4885 l += 3;
4886 }
4887 else if (l[2] == 'n')
4888 {
4889 if (!add_prefix (CS_PREFIX_OPCODE))
4890 return NULL;
4891 l += 3;
4892 }
4893 }
4894 }
4895 /* Any other comma loses. */
4896 if (*l == ',')
4897 {
4898 as_bad (_("invalid character %s in mnemonic"),
4899 output_invalid (*l));
4900 return NULL;
4901 }
4902
4903 /* Check if instruction is supported on specified architecture. */
4904 supported = 0;
4905 for (t = current_templates->start; t < current_templates->end; ++t)
4906 {
4907 supported |= cpu_flags_match (t);
4908 if (supported == CPU_FLAGS_PERFECT_MATCH)
4909 {
4910 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4911 as_warn (_("use .code16 to ensure correct addressing mode"));
4912
4913 return l;
4914 }
4915 }
4916
4917 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4918 as_bad (flag_code == CODE_64BIT
4919 ? _("`%s' is not supported in 64-bit mode")
4920 : _("`%s' is only supported in 64-bit mode"),
4921 current_templates->start->name);
4922 else
4923 as_bad (_("`%s' is not supported on `%s%s'"),
4924 current_templates->start->name,
4925 cpu_arch_name ? cpu_arch_name : default_arch,
4926 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4927
4928 return NULL;
4929 }
4930
4931 static char *
4932 parse_operands (char *l, const char *mnemonic)
4933 {
4934 char *token_start;
4935
4936 /* 1 if operand is pending after ','. */
4937 unsigned int expecting_operand = 0;
4938
4939 /* Non-zero if operand parens not balanced. */
4940 unsigned int paren_not_balanced;
4941
4942 while (*l != END_OF_INSN)
4943 {
4944 /* Skip optional white space before operand. */
4945 if (is_space_char (*l))
4946 ++l;
4947 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4948 {
4949 as_bad (_("invalid character %s before operand %d"),
4950 output_invalid (*l),
4951 i.operands + 1);
4952 return NULL;
4953 }
4954 token_start = l; /* After white space. */
4955 paren_not_balanced = 0;
4956 while (paren_not_balanced || *l != ',')
4957 {
4958 if (*l == END_OF_INSN)
4959 {
4960 if (paren_not_balanced)
4961 {
4962 if (!intel_syntax)
4963 as_bad (_("unbalanced parenthesis in operand %d."),
4964 i.operands + 1);
4965 else
4966 as_bad (_("unbalanced brackets in operand %d."),
4967 i.operands + 1);
4968 return NULL;
4969 }
4970 else
4971 break; /* we are done */
4972 }
4973 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4974 {
4975 as_bad (_("invalid character %s in operand %d"),
4976 output_invalid (*l),
4977 i.operands + 1);
4978 return NULL;
4979 }
4980 if (!intel_syntax)
4981 {
4982 if (*l == '(')
4983 ++paren_not_balanced;
4984 if (*l == ')')
4985 --paren_not_balanced;
4986 }
4987 else
4988 {
4989 if (*l == '[')
4990 ++paren_not_balanced;
4991 if (*l == ']')
4992 --paren_not_balanced;
4993 }
4994 l++;
4995 }
4996 if (l != token_start)
4997 { /* Yes, we've read in another operand. */
4998 unsigned int operand_ok;
4999 this_operand = i.operands++;
5000 if (i.operands > MAX_OPERANDS)
5001 {
5002 as_bad (_("spurious operands; (%d operands/instruction max)"),
5003 MAX_OPERANDS);
5004 return NULL;
5005 }
5006 i.types[this_operand].bitfield.unspecified = 1;
5007 /* Now parse operand adding info to 'i' as we go along. */
5008 END_STRING_AND_SAVE (l);
5009
5010 if (i.mem_operands > 1)
5011 {
5012 as_bad (_("too many memory references for `%s'"),
5013 mnemonic);
5014 return 0;
5015 }
5016
5017 if (intel_syntax)
5018 operand_ok =
5019 i386_intel_operand (token_start,
5020 intel_float_operand (mnemonic));
5021 else
5022 operand_ok = i386_att_operand (token_start);
5023
5024 RESTORE_END_STRING (l);
5025 if (!operand_ok)
5026 return NULL;
5027 }
5028 else
5029 {
5030 if (expecting_operand)
5031 {
5032 expecting_operand_after_comma:
5033 as_bad (_("expecting operand after ','; got nothing"));
5034 return NULL;
5035 }
5036 if (*l == ',')
5037 {
5038 as_bad (_("expecting operand before ','; got nothing"));
5039 return NULL;
5040 }
5041 }
5042
5043 /* Now *l must be either ',' or END_OF_INSN. */
5044 if (*l == ',')
5045 {
5046 if (*++l == END_OF_INSN)
5047 {
5048 /* Just skip it, if it's \n complain. */
5049 goto expecting_operand_after_comma;
5050 }
5051 expecting_operand = 1;
5052 }
5053 }
5054 return l;
5055 }
5056
5057 static void
5058 swap_2_operands (int xchg1, int xchg2)
5059 {
5060 union i386_op temp_op;
5061 i386_operand_type temp_type;
5062 unsigned int temp_flags;
5063 enum bfd_reloc_code_real temp_reloc;
5064
5065 temp_type = i.types[xchg2];
5066 i.types[xchg2] = i.types[xchg1];
5067 i.types[xchg1] = temp_type;
5068
5069 temp_flags = i.flags[xchg2];
5070 i.flags[xchg2] = i.flags[xchg1];
5071 i.flags[xchg1] = temp_flags;
5072
5073 temp_op = i.op[xchg2];
5074 i.op[xchg2] = i.op[xchg1];
5075 i.op[xchg1] = temp_op;
5076
5077 temp_reloc = i.reloc[xchg2];
5078 i.reloc[xchg2] = i.reloc[xchg1];
5079 i.reloc[xchg1] = temp_reloc;
5080
5081 if (i.mask)
5082 {
5083 if (i.mask->operand == xchg1)
5084 i.mask->operand = xchg2;
5085 else if (i.mask->operand == xchg2)
5086 i.mask->operand = xchg1;
5087 }
5088 if (i.broadcast)
5089 {
5090 if (i.broadcast->operand == xchg1)
5091 i.broadcast->operand = xchg2;
5092 else if (i.broadcast->operand == xchg2)
5093 i.broadcast->operand = xchg1;
5094 }
5095 if (i.rounding)
5096 {
5097 if (i.rounding->operand == xchg1)
5098 i.rounding->operand = xchg2;
5099 else if (i.rounding->operand == xchg2)
5100 i.rounding->operand = xchg1;
5101 }
5102 }
5103
5104 static void
5105 swap_operands (void)
5106 {
5107 switch (i.operands)
5108 {
5109 case 5:
5110 case 4:
5111 swap_2_operands (1, i.operands - 2);
5112 /* Fall through. */
5113 case 3:
5114 case 2:
5115 swap_2_operands (0, i.operands - 1);
5116 break;
5117 default:
5118 abort ();
5119 }
5120
5121 if (i.mem_operands == 2)
5122 {
5123 const seg_entry *temp_seg;
5124 temp_seg = i.seg[0];
5125 i.seg[0] = i.seg[1];
5126 i.seg[1] = temp_seg;
5127 }
5128 }
5129
5130 /* Try to ensure constant immediates are represented in the smallest
5131 opcode possible. */
5132 static void
5133 optimize_imm (void)
5134 {
5135 char guess_suffix = 0;
5136 int op;
5137
5138 if (i.suffix)
5139 guess_suffix = i.suffix;
5140 else if (i.reg_operands)
5141 {
5142 /* Figure out a suffix from the last register operand specified.
5143 We can't do this properly yet, i.e. excluding special register
5144 instances, but the following works for instructions with
5145 immediates. In any case, we can't set i.suffix yet. */
5146 for (op = i.operands; --op >= 0;)
5147 if (i.types[op].bitfield.class != Reg)
5148 continue;
5149 else if (i.types[op].bitfield.byte)
5150 {
5151 guess_suffix = BYTE_MNEM_SUFFIX;
5152 break;
5153 }
5154 else if (i.types[op].bitfield.word)
5155 {
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157 break;
5158 }
5159 else if (i.types[op].bitfield.dword)
5160 {
5161 guess_suffix = LONG_MNEM_SUFFIX;
5162 break;
5163 }
5164 else if (i.types[op].bitfield.qword)
5165 {
5166 guess_suffix = QWORD_MNEM_SUFFIX;
5167 break;
5168 }
5169 }
5170 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5171 guess_suffix = WORD_MNEM_SUFFIX;
5172
5173 for (op = i.operands; --op >= 0;)
5174 if (operand_type_check (i.types[op], imm))
5175 {
5176 switch (i.op[op].imms->X_op)
5177 {
5178 case O_constant:
5179 /* If a suffix is given, this operand may be shortened. */
5180 switch (guess_suffix)
5181 {
5182 case LONG_MNEM_SUFFIX:
5183 i.types[op].bitfield.imm32 = 1;
5184 i.types[op].bitfield.imm64 = 1;
5185 break;
5186 case WORD_MNEM_SUFFIX:
5187 i.types[op].bitfield.imm16 = 1;
5188 i.types[op].bitfield.imm32 = 1;
5189 i.types[op].bitfield.imm32s = 1;
5190 i.types[op].bitfield.imm64 = 1;
5191 break;
5192 case BYTE_MNEM_SUFFIX:
5193 i.types[op].bitfield.imm8 = 1;
5194 i.types[op].bitfield.imm8s = 1;
5195 i.types[op].bitfield.imm16 = 1;
5196 i.types[op].bitfield.imm32 = 1;
5197 i.types[op].bitfield.imm32s = 1;
5198 i.types[op].bitfield.imm64 = 1;
5199 break;
5200 }
5201
5202 /* If this operand is at most 16 bits, convert it
5203 to a signed 16 bit number before trying to see
5204 whether it will fit in an even smaller size.
5205 This allows a 16-bit operand such as $0xffe0 to
5206 be recognised as within Imm8S range. */
5207 if ((i.types[op].bitfield.imm16)
5208 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5209 {
5210 i.op[op].imms->X_add_number =
5211 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5212 }
5213 #ifdef BFD64
5214 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5215 if ((i.types[op].bitfield.imm32)
5216 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5217 == 0))
5218 {
5219 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5220 ^ ((offsetT) 1 << 31))
5221 - ((offsetT) 1 << 31));
5222 }
5223 #endif
5224 i.types[op]
5225 = operand_type_or (i.types[op],
5226 smallest_imm_type (i.op[op].imms->X_add_number));
5227
5228 /* We must avoid matching of Imm32 templates when 64bit
5229 only immediate is available. */
5230 if (guess_suffix == QWORD_MNEM_SUFFIX)
5231 i.types[op].bitfield.imm32 = 0;
5232 break;
5233
5234 case O_absent:
5235 case O_register:
5236 abort ();
5237
5238 /* Symbols and expressions. */
5239 default:
5240 /* Convert symbolic operand to proper sizes for matching, but don't
5241 prevent matching a set of insns that only supports sizes other
5242 than those matching the insn suffix. */
5243 {
5244 i386_operand_type mask, allowed;
5245 const insn_template *t;
5246
5247 operand_type_set (&mask, 0);
5248 operand_type_set (&allowed, 0);
5249
5250 for (t = current_templates->start;
5251 t < current_templates->end;
5252 ++t)
5253 {
5254 allowed = operand_type_or (allowed, t->operand_types[op]);
5255 allowed = operand_type_and (allowed, anyimm);
5256 }
5257 switch (guess_suffix)
5258 {
5259 case QWORD_MNEM_SUFFIX:
5260 mask.bitfield.imm64 = 1;
5261 mask.bitfield.imm32s = 1;
5262 break;
5263 case LONG_MNEM_SUFFIX:
5264 mask.bitfield.imm32 = 1;
5265 break;
5266 case WORD_MNEM_SUFFIX:
5267 mask.bitfield.imm16 = 1;
5268 break;
5269 case BYTE_MNEM_SUFFIX:
5270 mask.bitfield.imm8 = 1;
5271 break;
5272 default:
5273 break;
5274 }
5275 allowed = operand_type_and (mask, allowed);
5276 if (!operand_type_all_zero (&allowed))
5277 i.types[op] = operand_type_and (i.types[op], mask);
5278 }
5279 break;
5280 }
5281 }
5282 }
5283
5284 /* Try to use the smallest displacement type too. */
5285 static void
5286 optimize_disp (void)
5287 {
5288 int op;
5289
5290 for (op = i.operands; --op >= 0;)
5291 if (operand_type_check (i.types[op], disp))
5292 {
5293 if (i.op[op].disps->X_op == O_constant)
5294 {
5295 offsetT op_disp = i.op[op].disps->X_add_number;
5296
5297 if (i.types[op].bitfield.disp16
5298 && (op_disp & ~(offsetT) 0xffff) == 0)
5299 {
5300 /* If this operand is at most 16 bits, convert
5301 to a signed 16 bit number and don't use 64bit
5302 displacement. */
5303 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5304 i.types[op].bitfield.disp64 = 0;
5305 }
5306 #ifdef BFD64
5307 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5308 if (i.types[op].bitfield.disp32
5309 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5310 {
5311 /* If this operand is at most 32 bits, convert
5312 to a signed 32 bit number and don't use 64bit
5313 displacement. */
5314 op_disp &= (((offsetT) 2 << 31) - 1);
5315 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5316 i.types[op].bitfield.disp64 = 0;
5317 }
5318 #endif
5319 if (!op_disp && i.types[op].bitfield.baseindex)
5320 {
5321 i.types[op].bitfield.disp8 = 0;
5322 i.types[op].bitfield.disp16 = 0;
5323 i.types[op].bitfield.disp32 = 0;
5324 i.types[op].bitfield.disp32s = 0;
5325 i.types[op].bitfield.disp64 = 0;
5326 i.op[op].disps = 0;
5327 i.disp_operands--;
5328 }
5329 else if (flag_code == CODE_64BIT)
5330 {
5331 if (fits_in_signed_long (op_disp))
5332 {
5333 i.types[op].bitfield.disp64 = 0;
5334 i.types[op].bitfield.disp32s = 1;
5335 }
5336 if (i.prefix[ADDR_PREFIX]
5337 && fits_in_unsigned_long (op_disp))
5338 i.types[op].bitfield.disp32 = 1;
5339 }
5340 if ((i.types[op].bitfield.disp32
5341 || i.types[op].bitfield.disp32s
5342 || i.types[op].bitfield.disp16)
5343 && fits_in_disp8 (op_disp))
5344 i.types[op].bitfield.disp8 = 1;
5345 }
5346 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5347 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5348 {
5349 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5350 i.op[op].disps, 0, i.reloc[op]);
5351 i.types[op].bitfield.disp8 = 0;
5352 i.types[op].bitfield.disp16 = 0;
5353 i.types[op].bitfield.disp32 = 0;
5354 i.types[op].bitfield.disp32s = 0;
5355 i.types[op].bitfield.disp64 = 0;
5356 }
5357 else
5358 /* We only support 64bit displacement on constants. */
5359 i.types[op].bitfield.disp64 = 0;
5360 }
5361 }
5362
5363 /* Return 1 if there is a match in broadcast bytes between operand
5364 GIVEN and instruction template T. */
5365
5366 static INLINE int
5367 match_broadcast_size (const insn_template *t, unsigned int given)
5368 {
5369 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5370 && i.types[given].bitfield.byte)
5371 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5372 && i.types[given].bitfield.word)
5373 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5374 && i.types[given].bitfield.dword)
5375 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5376 && i.types[given].bitfield.qword));
5377 }
5378
5379 /* Check if operands are valid for the instruction. */
5380
5381 static int
5382 check_VecOperands (const insn_template *t)
5383 {
5384 unsigned int op;
5385 i386_cpu_flags cpu;
5386
5387 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5388 any one operand are implicity requiring AVX512VL support if the actual
5389 operand size is YMMword or XMMword. Since this function runs after
5390 template matching, there's no need to check for YMMword/XMMword in
5391 the template. */
5392 cpu = cpu_flags_and (t->cpu_flags, avx512);
5393 if (!cpu_flags_all_zero (&cpu)
5394 && !t->cpu_flags.bitfield.cpuavx512vl
5395 && !cpu_arch_flags.bitfield.cpuavx512vl)
5396 {
5397 for (op = 0; op < t->operands; ++op)
5398 {
5399 if (t->operand_types[op].bitfield.zmmword
5400 && (i.types[op].bitfield.ymmword
5401 || i.types[op].bitfield.xmmword))
5402 {
5403 i.error = unsupported;
5404 return 1;
5405 }
5406 }
5407 }
5408
5409 /* Without VSIB byte, we can't have a vector register for index. */
5410 if (!t->opcode_modifier.vecsib
5411 && i.index_reg
5412 && (i.index_reg->reg_type.bitfield.xmmword
5413 || i.index_reg->reg_type.bitfield.ymmword
5414 || i.index_reg->reg_type.bitfield.zmmword))
5415 {
5416 i.error = unsupported_vector_index_register;
5417 return 1;
5418 }
5419
5420 /* Check if default mask is allowed. */
5421 if (t->opcode_modifier.nodefmask
5422 && (!i.mask || i.mask->mask->reg_num == 0))
5423 {
5424 i.error = no_default_mask;
5425 return 1;
5426 }
5427
5428 /* For VSIB byte, we need a vector register for index, and all vector
5429 registers must be distinct. */
5430 if (t->opcode_modifier.vecsib)
5431 {
5432 if (!i.index_reg
5433 || !((t->opcode_modifier.vecsib == VecSIB128
5434 && i.index_reg->reg_type.bitfield.xmmword)
5435 || (t->opcode_modifier.vecsib == VecSIB256
5436 && i.index_reg->reg_type.bitfield.ymmword)
5437 || (t->opcode_modifier.vecsib == VecSIB512
5438 && i.index_reg->reg_type.bitfield.zmmword)))
5439 {
5440 i.error = invalid_vsib_address;
5441 return 1;
5442 }
5443
5444 gas_assert (i.reg_operands == 2 || i.mask);
5445 if (i.reg_operands == 2 && !i.mask)
5446 {
5447 gas_assert (i.types[0].bitfield.class == RegSIMD);
5448 gas_assert (i.types[0].bitfield.xmmword
5449 || i.types[0].bitfield.ymmword);
5450 gas_assert (i.types[2].bitfield.class == RegSIMD);
5451 gas_assert (i.types[2].bitfield.xmmword
5452 || i.types[2].bitfield.ymmword);
5453 if (operand_check == check_none)
5454 return 0;
5455 if (register_number (i.op[0].regs)
5456 != register_number (i.index_reg)
5457 && register_number (i.op[2].regs)
5458 != register_number (i.index_reg)
5459 && register_number (i.op[0].regs)
5460 != register_number (i.op[2].regs))
5461 return 0;
5462 if (operand_check == check_error)
5463 {
5464 i.error = invalid_vector_register_set;
5465 return 1;
5466 }
5467 as_warn (_("mask, index, and destination registers should be distinct"));
5468 }
5469 else if (i.reg_operands == 1 && i.mask)
5470 {
5471 if (i.types[1].bitfield.class == RegSIMD
5472 && (i.types[1].bitfield.xmmword
5473 || i.types[1].bitfield.ymmword
5474 || i.types[1].bitfield.zmmword)
5475 && (register_number (i.op[1].regs)
5476 == register_number (i.index_reg)))
5477 {
5478 if (operand_check == check_error)
5479 {
5480 i.error = invalid_vector_register_set;
5481 return 1;
5482 }
5483 if (operand_check != check_none)
5484 as_warn (_("index and destination registers should be distinct"));
5485 }
5486 }
5487 }
5488
5489 /* Check if broadcast is supported by the instruction and is applied
5490 to the memory operand. */
5491 if (i.broadcast)
5492 {
5493 i386_operand_type type, overlap;
5494
5495 /* Check if specified broadcast is supported in this instruction,
5496 and its broadcast bytes match the memory operand. */
5497 op = i.broadcast->operand;
5498 if (!t->opcode_modifier.broadcast
5499 || !(i.flags[op] & Operand_Mem)
5500 || (!i.types[op].bitfield.unspecified
5501 && !match_broadcast_size (t, op)))
5502 {
5503 bad_broadcast:
5504 i.error = unsupported_broadcast;
5505 return 1;
5506 }
5507
5508 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5509 * i.broadcast->type);
5510 operand_type_set (&type, 0);
5511 switch (i.broadcast->bytes)
5512 {
5513 case 2:
5514 type.bitfield.word = 1;
5515 break;
5516 case 4:
5517 type.bitfield.dword = 1;
5518 break;
5519 case 8:
5520 type.bitfield.qword = 1;
5521 break;
5522 case 16:
5523 type.bitfield.xmmword = 1;
5524 break;
5525 case 32:
5526 type.bitfield.ymmword = 1;
5527 break;
5528 case 64:
5529 type.bitfield.zmmword = 1;
5530 break;
5531 default:
5532 goto bad_broadcast;
5533 }
5534
5535 overlap = operand_type_and (type, t->operand_types[op]);
5536 if (t->operand_types[op].bitfield.class == RegSIMD
5537 && t->operand_types[op].bitfield.byte
5538 + t->operand_types[op].bitfield.word
5539 + t->operand_types[op].bitfield.dword
5540 + t->operand_types[op].bitfield.qword > 1)
5541 {
5542 overlap.bitfield.xmmword = 0;
5543 overlap.bitfield.ymmword = 0;
5544 overlap.bitfield.zmmword = 0;
5545 }
5546 if (operand_type_all_zero (&overlap))
5547 goto bad_broadcast;
5548
5549 if (t->opcode_modifier.checkregsize)
5550 {
5551 unsigned int j;
5552
5553 type.bitfield.baseindex = 1;
5554 for (j = 0; j < i.operands; ++j)
5555 {
5556 if (j != op
5557 && !operand_type_register_match(i.types[j],
5558 t->operand_types[j],
5559 type,
5560 t->operand_types[op]))
5561 goto bad_broadcast;
5562 }
5563 }
5564 }
5565 /* If broadcast is supported in this instruction, we need to check if
5566 operand of one-element size isn't specified without broadcast. */
5567 else if (t->opcode_modifier.broadcast && i.mem_operands)
5568 {
5569 /* Find memory operand. */
5570 for (op = 0; op < i.operands; op++)
5571 if (i.flags[op] & Operand_Mem)
5572 break;
5573 gas_assert (op < i.operands);
5574 /* Check size of the memory operand. */
5575 if (match_broadcast_size (t, op))
5576 {
5577 i.error = broadcast_needed;
5578 return 1;
5579 }
5580 }
5581 else
5582 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5583
5584 /* Check if requested masking is supported. */
5585 if (i.mask)
5586 {
5587 switch (t->opcode_modifier.masking)
5588 {
5589 case BOTH_MASKING:
5590 break;
5591 case MERGING_MASKING:
5592 if (i.mask->zeroing)
5593 {
5594 case 0:
5595 i.error = unsupported_masking;
5596 return 1;
5597 }
5598 break;
5599 case DYNAMIC_MASKING:
5600 /* Memory destinations allow only merging masking. */
5601 if (i.mask->zeroing && i.mem_operands)
5602 {
5603 /* Find memory operand. */
5604 for (op = 0; op < i.operands; op++)
5605 if (i.flags[op] & Operand_Mem)
5606 break;
5607 gas_assert (op < i.operands);
5608 if (op == i.operands - 1)
5609 {
5610 i.error = unsupported_masking;
5611 return 1;
5612 }
5613 }
5614 break;
5615 default:
5616 abort ();
5617 }
5618 }
5619
5620 /* Check if masking is applied to dest operand. */
5621 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5622 {
5623 i.error = mask_not_on_destination;
5624 return 1;
5625 }
5626
5627 /* Check RC/SAE. */
5628 if (i.rounding)
5629 {
5630 if (!t->opcode_modifier.sae
5631 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5632 {
5633 i.error = unsupported_rc_sae;
5634 return 1;
5635 }
5636 /* If the instruction has several immediate operands and one of
5637 them is rounding, the rounding operand should be the last
5638 immediate operand. */
5639 if (i.imm_operands > 1
5640 && i.rounding->operand != (int) (i.imm_operands - 1))
5641 {
5642 i.error = rc_sae_operand_not_last_imm;
5643 return 1;
5644 }
5645 }
5646
5647 /* Check vector Disp8 operand. */
5648 if (t->opcode_modifier.disp8memshift
5649 && i.disp_encoding != disp_encoding_32bit)
5650 {
5651 if (i.broadcast)
5652 i.memshift = t->opcode_modifier.broadcast - 1;
5653 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5654 i.memshift = t->opcode_modifier.disp8memshift;
5655 else
5656 {
5657 const i386_operand_type *type = NULL;
5658
5659 i.memshift = 0;
5660 for (op = 0; op < i.operands; op++)
5661 if (i.flags[op] & Operand_Mem)
5662 {
5663 if (t->opcode_modifier.evex == EVEXLIG)
5664 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5665 else if (t->operand_types[op].bitfield.xmmword
5666 + t->operand_types[op].bitfield.ymmword
5667 + t->operand_types[op].bitfield.zmmword <= 1)
5668 type = &t->operand_types[op];
5669 else if (!i.types[op].bitfield.unspecified)
5670 type = &i.types[op];
5671 }
5672 else if (i.types[op].bitfield.class == RegSIMD
5673 && t->opcode_modifier.evex != EVEXLIG)
5674 {
5675 if (i.types[op].bitfield.zmmword)
5676 i.memshift = 6;
5677 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5678 i.memshift = 5;
5679 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5680 i.memshift = 4;
5681 }
5682
5683 if (type)
5684 {
5685 if (type->bitfield.zmmword)
5686 i.memshift = 6;
5687 else if (type->bitfield.ymmword)
5688 i.memshift = 5;
5689 else if (type->bitfield.xmmword)
5690 i.memshift = 4;
5691 }
5692
5693 /* For the check in fits_in_disp8(). */
5694 if (i.memshift == 0)
5695 i.memshift = -1;
5696 }
5697
5698 for (op = 0; op < i.operands; op++)
5699 if (operand_type_check (i.types[op], disp)
5700 && i.op[op].disps->X_op == O_constant)
5701 {
5702 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5703 {
5704 i.types[op].bitfield.disp8 = 1;
5705 return 0;
5706 }
5707 i.types[op].bitfield.disp8 = 0;
5708 }
5709 }
5710
5711 i.memshift = 0;
5712
5713 return 0;
5714 }
5715
5716 /* Check if operands are valid for the instruction. Update VEX
5717 operand types. */
5718
5719 static int
5720 VEX_check_operands (const insn_template *t)
5721 {
5722 if (i.vec_encoding == vex_encoding_evex)
5723 {
5724 /* This instruction must be encoded with EVEX prefix. */
5725 if (!is_evex_encoding (t))
5726 {
5727 i.error = unsupported;
5728 return 1;
5729 }
5730 return 0;
5731 }
5732
5733 if (!t->opcode_modifier.vex)
5734 {
5735 /* This instruction template doesn't have VEX prefix. */
5736 if (i.vec_encoding != vex_encoding_default)
5737 {
5738 i.error = unsupported;
5739 return 1;
5740 }
5741 return 0;
5742 }
5743
5744 /* Check the special Imm4 cases; must be the first operand. */
5745 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5746 {
5747 if (i.op[0].imms->X_op != O_constant
5748 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5749 {
5750 i.error = bad_imm4;
5751 return 1;
5752 }
5753
5754 /* Turn off Imm<N> so that update_imm won't complain. */
5755 operand_type_set (&i.types[0], 0);
5756 }
5757
5758 return 0;
5759 }
5760
5761 static const insn_template *
5762 match_template (char mnem_suffix)
5763 {
5764 /* Points to template once we've found it. */
5765 const insn_template *t;
5766 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5767 i386_operand_type overlap4;
5768 unsigned int found_reverse_match;
5769 i386_opcode_modifier suffix_check;
5770 i386_operand_type operand_types [MAX_OPERANDS];
5771 int addr_prefix_disp;
5772 unsigned int j, size_match, check_register;
5773 enum i386_error specific_error = 0;
5774
5775 #if MAX_OPERANDS != 5
5776 # error "MAX_OPERANDS must be 5."
5777 #endif
5778
5779 found_reverse_match = 0;
5780 addr_prefix_disp = -1;
5781
5782 /* Prepare for mnemonic suffix check. */
5783 memset (&suffix_check, 0, sizeof (suffix_check));
5784 switch (mnem_suffix)
5785 {
5786 case BYTE_MNEM_SUFFIX:
5787 suffix_check.no_bsuf = 1;
5788 break;
5789 case WORD_MNEM_SUFFIX:
5790 suffix_check.no_wsuf = 1;
5791 break;
5792 case SHORT_MNEM_SUFFIX:
5793 suffix_check.no_ssuf = 1;
5794 break;
5795 case LONG_MNEM_SUFFIX:
5796 suffix_check.no_lsuf = 1;
5797 break;
5798 case QWORD_MNEM_SUFFIX:
5799 suffix_check.no_qsuf = 1;
5800 break;
5801 default:
5802 /* NB: In Intel syntax, normally we can check for memory operand
5803 size when there is no mnemonic suffix. But jmp and call have
5804 2 different encodings with Dword memory operand size, one with
5805 No_ldSuf and the other without. i.suffix is set to
5806 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5807 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5808 suffix_check.no_ldsuf = 1;
5809 }
5810
5811 /* Must have right number of operands. */
5812 i.error = number_of_operands_mismatch;
5813
5814 for (t = current_templates->start; t < current_templates->end; t++)
5815 {
5816 addr_prefix_disp = -1;
5817 found_reverse_match = 0;
5818
5819 if (i.operands != t->operands)
5820 continue;
5821
5822 /* Check processor support. */
5823 i.error = unsupported;
5824 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5825 continue;
5826
5827 /* Check AT&T mnemonic. */
5828 i.error = unsupported_with_intel_mnemonic;
5829 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5830 continue;
5831
5832 /* Check AT&T/Intel syntax. */
5833 i.error = unsupported_syntax;
5834 if ((intel_syntax && t->opcode_modifier.attsyntax)
5835 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5836 continue;
5837
5838 /* Check Intel64/AMD64 ISA. */
5839 switch (isa64)
5840 {
5841 default:
5842 /* Default: Don't accept Intel64. */
5843 if (t->opcode_modifier.isa64 == INTEL64)
5844 continue;
5845 break;
5846 case amd64:
5847 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5848 if (t->opcode_modifier.isa64 >= INTEL64)
5849 continue;
5850 break;
5851 case intel64:
5852 /* -mintel64: Don't accept AMD64. */
5853 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5854 continue;
5855 break;
5856 }
5857
5858 /* Check the suffix. */
5859 i.error = invalid_instruction_suffix;
5860 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5861 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5862 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5863 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5864 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5865 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5866 continue;
5867
5868 size_match = operand_size_match (t);
5869 if (!size_match)
5870 continue;
5871
5872 /* This is intentionally not
5873
5874 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5875
5876 as the case of a missing * on the operand is accepted (perhaps with
5877 a warning, issued further down). */
5878 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5879 {
5880 i.error = operand_type_mismatch;
5881 continue;
5882 }
5883
5884 for (j = 0; j < MAX_OPERANDS; j++)
5885 operand_types[j] = t->operand_types[j];
5886
5887 /* In general, don't allow
5888 - 64-bit operands outside of 64-bit mode,
5889 - 32-bit operands on pre-386. */
5890 j = i.imm_operands + (t->operands > i.imm_operands + 1);
5891 if (((i.suffix == QWORD_MNEM_SUFFIX
5892 && flag_code != CODE_64BIT
5893 && (t->base_opcode != 0x0fc7
5894 || t->extension_opcode != 1 /* cmpxchg8b */))
5895 || (i.suffix == LONG_MNEM_SUFFIX
5896 && !cpu_arch_flags.bitfield.cpui386))
5897 && (intel_syntax
5898 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
5899 && !intel_float_operand (t->name))
5900 : intel_float_operand (t->name) != 2)
5901 && (t->operands == i.imm_operands
5902 || (operand_types[i.imm_operands].bitfield.class != RegMMX
5903 && operand_types[i.imm_operands].bitfield.class != RegSIMD
5904 && operand_types[i.imm_operands].bitfield.class != RegMask)
5905 || (operand_types[j].bitfield.class != RegMMX
5906 && operand_types[j].bitfield.class != RegSIMD
5907 && operand_types[j].bitfield.class != RegMask))
5908 && !t->opcode_modifier.vecsib)
5909 continue;
5910
5911 /* Do not verify operands when there are none. */
5912 if (!t->operands)
5913 /* We've found a match; break out of loop. */
5914 break;
5915
5916 if (!t->opcode_modifier.jump
5917 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5918 {
5919 /* There should be only one Disp operand. */
5920 for (j = 0; j < MAX_OPERANDS; j++)
5921 if (operand_type_check (operand_types[j], disp))
5922 break;
5923 if (j < MAX_OPERANDS)
5924 {
5925 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5926
5927 addr_prefix_disp = j;
5928
5929 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5930 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5931 switch (flag_code)
5932 {
5933 case CODE_16BIT:
5934 override = !override;
5935 /* Fall through. */
5936 case CODE_32BIT:
5937 if (operand_types[j].bitfield.disp32
5938 && operand_types[j].bitfield.disp16)
5939 {
5940 operand_types[j].bitfield.disp16 = override;
5941 operand_types[j].bitfield.disp32 = !override;
5942 }
5943 operand_types[j].bitfield.disp32s = 0;
5944 operand_types[j].bitfield.disp64 = 0;
5945 break;
5946
5947 case CODE_64BIT:
5948 if (operand_types[j].bitfield.disp32s
5949 || operand_types[j].bitfield.disp64)
5950 {
5951 operand_types[j].bitfield.disp64 &= !override;
5952 operand_types[j].bitfield.disp32s &= !override;
5953 operand_types[j].bitfield.disp32 = override;
5954 }
5955 operand_types[j].bitfield.disp16 = 0;
5956 break;
5957 }
5958 }
5959 }
5960
5961 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5962 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5963 continue;
5964
5965 /* We check register size if needed. */
5966 if (t->opcode_modifier.checkregsize)
5967 {
5968 check_register = (1 << t->operands) - 1;
5969 if (i.broadcast)
5970 check_register &= ~(1 << i.broadcast->operand);
5971 }
5972 else
5973 check_register = 0;
5974
5975 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5976 switch (t->operands)
5977 {
5978 case 1:
5979 if (!operand_type_match (overlap0, i.types[0]))
5980 continue;
5981 break;
5982 case 2:
5983 /* xchg %eax, %eax is a special case. It is an alias for nop
5984 only in 32bit mode and we can use opcode 0x90. In 64bit
5985 mode, we can't use 0x90 for xchg %eax, %eax since it should
5986 zero-extend %eax to %rax. */
5987 if (flag_code == CODE_64BIT
5988 && t->base_opcode == 0x90
5989 && i.types[0].bitfield.instance == Accum
5990 && i.types[0].bitfield.dword
5991 && i.types[1].bitfield.instance == Accum
5992 && i.types[1].bitfield.dword)
5993 continue;
5994 /* xrelease mov %eax, <disp> is another special case. It must not
5995 match the accumulator-only encoding of mov. */
5996 if (flag_code != CODE_64BIT
5997 && i.hle_prefix
5998 && t->base_opcode == 0xa0
5999 && i.types[0].bitfield.instance == Accum
6000 && (i.flags[1] & Operand_Mem))
6001 continue;
6002 /* Fall through. */
6003
6004 case 3:
6005 if (!(size_match & MATCH_STRAIGHT))
6006 goto check_reverse;
6007 /* Reverse direction of operands if swapping is possible in the first
6008 place (operands need to be symmetric) and
6009 - the load form is requested, and the template is a store form,
6010 - the store form is requested, and the template is a load form,
6011 - the non-default (swapped) form is requested. */
6012 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6013 if (t->opcode_modifier.d && i.reg_operands == i.operands
6014 && !operand_type_all_zero (&overlap1))
6015 switch (i.dir_encoding)
6016 {
6017 case dir_encoding_load:
6018 if (operand_type_check (operand_types[i.operands - 1], anymem)
6019 || t->opcode_modifier.regmem)
6020 goto check_reverse;
6021 break;
6022
6023 case dir_encoding_store:
6024 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6025 && !t->opcode_modifier.regmem)
6026 goto check_reverse;
6027 break;
6028
6029 case dir_encoding_swap:
6030 goto check_reverse;
6031
6032 case dir_encoding_default:
6033 break;
6034 }
6035 /* If we want store form, we skip the current load. */
6036 if ((i.dir_encoding == dir_encoding_store
6037 || i.dir_encoding == dir_encoding_swap)
6038 && i.mem_operands == 0
6039 && t->opcode_modifier.load)
6040 continue;
6041 /* Fall through. */
6042 case 4:
6043 case 5:
6044 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6045 if (!operand_type_match (overlap0, i.types[0])
6046 || !operand_type_match (overlap1, i.types[1])
6047 || ((check_register & 3) == 3
6048 && !operand_type_register_match (i.types[0],
6049 operand_types[0],
6050 i.types[1],
6051 operand_types[1])))
6052 {
6053 /* Check if other direction is valid ... */
6054 if (!t->opcode_modifier.d)
6055 continue;
6056
6057 check_reverse:
6058 if (!(size_match & MATCH_REVERSE))
6059 continue;
6060 /* Try reversing direction of operands. */
6061 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6062 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6063 if (!operand_type_match (overlap0, i.types[0])
6064 || !operand_type_match (overlap1, i.types[i.operands - 1])
6065 || (check_register
6066 && !operand_type_register_match (i.types[0],
6067 operand_types[i.operands - 1],
6068 i.types[i.operands - 1],
6069 operand_types[0])))
6070 {
6071 /* Does not match either direction. */
6072 continue;
6073 }
6074 /* found_reverse_match holds which of D or FloatR
6075 we've found. */
6076 if (!t->opcode_modifier.d)
6077 found_reverse_match = 0;
6078 else if (operand_types[0].bitfield.tbyte)
6079 found_reverse_match = Opcode_FloatD;
6080 else if (operand_types[0].bitfield.xmmword
6081 || operand_types[i.operands - 1].bitfield.xmmword
6082 || operand_types[0].bitfield.class == RegMMX
6083 || operand_types[i.operands - 1].bitfield.class == RegMMX
6084 || is_any_vex_encoding(t))
6085 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6086 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6087 else
6088 found_reverse_match = Opcode_D;
6089 if (t->opcode_modifier.floatr)
6090 found_reverse_match |= Opcode_FloatR;
6091 }
6092 else
6093 {
6094 /* Found a forward 2 operand match here. */
6095 switch (t->operands)
6096 {
6097 case 5:
6098 overlap4 = operand_type_and (i.types[4],
6099 operand_types[4]);
6100 /* Fall through. */
6101 case 4:
6102 overlap3 = operand_type_and (i.types[3],
6103 operand_types[3]);
6104 /* Fall through. */
6105 case 3:
6106 overlap2 = operand_type_and (i.types[2],
6107 operand_types[2]);
6108 break;
6109 }
6110
6111 switch (t->operands)
6112 {
6113 case 5:
6114 if (!operand_type_match (overlap4, i.types[4])
6115 || !operand_type_register_match (i.types[3],
6116 operand_types[3],
6117 i.types[4],
6118 operand_types[4]))
6119 continue;
6120 /* Fall through. */
6121 case 4:
6122 if (!operand_type_match (overlap3, i.types[3])
6123 || ((check_register & 0xa) == 0xa
6124 && !operand_type_register_match (i.types[1],
6125 operand_types[1],
6126 i.types[3],
6127 operand_types[3]))
6128 || ((check_register & 0xc) == 0xc
6129 && !operand_type_register_match (i.types[2],
6130 operand_types[2],
6131 i.types[3],
6132 operand_types[3])))
6133 continue;
6134 /* Fall through. */
6135 case 3:
6136 /* Here we make use of the fact that there are no
6137 reverse match 3 operand instructions. */
6138 if (!operand_type_match (overlap2, i.types[2])
6139 || ((check_register & 5) == 5
6140 && !operand_type_register_match (i.types[0],
6141 operand_types[0],
6142 i.types[2],
6143 operand_types[2]))
6144 || ((check_register & 6) == 6
6145 && !operand_type_register_match (i.types[1],
6146 operand_types[1],
6147 i.types[2],
6148 operand_types[2])))
6149 continue;
6150 break;
6151 }
6152 }
6153 /* Found either forward/reverse 2, 3 or 4 operand match here:
6154 slip through to break. */
6155 }
6156
6157 /* Check if vector and VEX operands are valid. */
6158 if (check_VecOperands (t) || VEX_check_operands (t))
6159 {
6160 specific_error = i.error;
6161 continue;
6162 }
6163
6164 /* We've found a match; break out of loop. */
6165 break;
6166 }
6167
6168 if (t == current_templates->end)
6169 {
6170 /* We found no match. */
6171 const char *err_msg;
6172 switch (specific_error ? specific_error : i.error)
6173 {
6174 default:
6175 abort ();
6176 case operand_size_mismatch:
6177 err_msg = _("operand size mismatch");
6178 break;
6179 case operand_type_mismatch:
6180 err_msg = _("operand type mismatch");
6181 break;
6182 case register_type_mismatch:
6183 err_msg = _("register type mismatch");
6184 break;
6185 case number_of_operands_mismatch:
6186 err_msg = _("number of operands mismatch");
6187 break;
6188 case invalid_instruction_suffix:
6189 err_msg = _("invalid instruction suffix");
6190 break;
6191 case bad_imm4:
6192 err_msg = _("constant doesn't fit in 4 bits");
6193 break;
6194 case unsupported_with_intel_mnemonic:
6195 err_msg = _("unsupported with Intel mnemonic");
6196 break;
6197 case unsupported_syntax:
6198 err_msg = _("unsupported syntax");
6199 break;
6200 case unsupported:
6201 as_bad (_("unsupported instruction `%s'"),
6202 current_templates->start->name);
6203 return NULL;
6204 case invalid_vsib_address:
6205 err_msg = _("invalid VSIB address");
6206 break;
6207 case invalid_vector_register_set:
6208 err_msg = _("mask, index, and destination registers must be distinct");
6209 break;
6210 case unsupported_vector_index_register:
6211 err_msg = _("unsupported vector index register");
6212 break;
6213 case unsupported_broadcast:
6214 err_msg = _("unsupported broadcast");
6215 break;
6216 case broadcast_needed:
6217 err_msg = _("broadcast is needed for operand of such type");
6218 break;
6219 case unsupported_masking:
6220 err_msg = _("unsupported masking");
6221 break;
6222 case mask_not_on_destination:
6223 err_msg = _("mask not on destination operand");
6224 break;
6225 case no_default_mask:
6226 err_msg = _("default mask isn't allowed");
6227 break;
6228 case unsupported_rc_sae:
6229 err_msg = _("unsupported static rounding/sae");
6230 break;
6231 case rc_sae_operand_not_last_imm:
6232 if (intel_syntax)
6233 err_msg = _("RC/SAE operand must precede immediate operands");
6234 else
6235 err_msg = _("RC/SAE operand must follow immediate operands");
6236 break;
6237 case invalid_register_operand:
6238 err_msg = _("invalid register operand");
6239 break;
6240 }
6241 as_bad (_("%s for `%s'"), err_msg,
6242 current_templates->start->name);
6243 return NULL;
6244 }
6245
6246 if (!quiet_warnings)
6247 {
6248 if (!intel_syntax
6249 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6250 as_warn (_("indirect %s without `*'"), t->name);
6251
6252 if (t->opcode_modifier.isprefix
6253 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6254 {
6255 /* Warn them that a data or address size prefix doesn't
6256 affect assembly of the next line of code. */
6257 as_warn (_("stand-alone `%s' prefix"), t->name);
6258 }
6259 }
6260
6261 /* Copy the template we found. */
6262 i.tm = *t;
6263
6264 if (addr_prefix_disp != -1)
6265 i.tm.operand_types[addr_prefix_disp]
6266 = operand_types[addr_prefix_disp];
6267
6268 if (found_reverse_match)
6269 {
6270 /* If we found a reverse match we must alter the opcode direction
6271 bit and clear/flip the regmem modifier one. found_reverse_match
6272 holds bits to change (different for int & float insns). */
6273
6274 i.tm.base_opcode ^= found_reverse_match;
6275
6276 i.tm.operand_types[0] = operand_types[i.operands - 1];
6277 i.tm.operand_types[i.operands - 1] = operand_types[0];
6278
6279 /* Certain SIMD insns have their load forms specified in the opcode
6280 table, and hence we need to _set_ RegMem instead of clearing it.
6281 We need to avoid setting the bit though on insns like KMOVW. */
6282 i.tm.opcode_modifier.regmem
6283 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6284 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6285 && !i.tm.opcode_modifier.regmem;
6286 }
6287
6288 return t;
6289 }
6290
6291 static int
6292 check_string (void)
6293 {
6294 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6295 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6296
6297 if (i.seg[op] != NULL && i.seg[op] != &es)
6298 {
6299 as_bad (_("`%s' operand %u must use `%ses' segment"),
6300 i.tm.name,
6301 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6302 register_prefix);
6303 return 0;
6304 }
6305
6306 /* There's only ever one segment override allowed per instruction.
6307 This instruction possibly has a legal segment override on the
6308 second operand, so copy the segment to where non-string
6309 instructions store it, allowing common code. */
6310 i.seg[op] = i.seg[1];
6311
6312 return 1;
6313 }
6314
6315 static int
6316 process_suffix (void)
6317 {
6318 /* If matched instruction specifies an explicit instruction mnemonic
6319 suffix, use it. */
6320 if (i.tm.opcode_modifier.size == SIZE16)
6321 i.suffix = WORD_MNEM_SUFFIX;
6322 else if (i.tm.opcode_modifier.size == SIZE32)
6323 i.suffix = LONG_MNEM_SUFFIX;
6324 else if (i.tm.opcode_modifier.size == SIZE64)
6325 i.suffix = QWORD_MNEM_SUFFIX;
6326 else if (i.reg_operands
6327 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6328 && !i.tm.opcode_modifier.addrprefixopreg)
6329 {
6330 unsigned int numop = i.operands;
6331
6332 /* movsx/movzx want only their source operand considered here, for the
6333 ambiguity checking below. The suffix will be replaced afterwards
6334 to represent the destination (register). */
6335 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6336 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6337 --i.operands;
6338
6339 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6340 if (i.tm.base_opcode == 0xf20f38f0
6341 && i.tm.operand_types[1].bitfield.qword)
6342 i.rex |= REX_W;
6343
6344 /* If there's no instruction mnemonic suffix we try to invent one
6345 based on GPR operands. */
6346 if (!i.suffix)
6347 {
6348 /* We take i.suffix from the last register operand specified,
6349 Destination register type is more significant than source
6350 register type. crc32 in SSE4.2 prefers source register
6351 type. */
6352 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6353
6354 while (op--)
6355 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6356 || i.tm.operand_types[op].bitfield.instance == Accum)
6357 {
6358 if (i.types[op].bitfield.class != Reg)
6359 continue;
6360 if (i.types[op].bitfield.byte)
6361 i.suffix = BYTE_MNEM_SUFFIX;
6362 else if (i.types[op].bitfield.word)
6363 i.suffix = WORD_MNEM_SUFFIX;
6364 else if (i.types[op].bitfield.dword)
6365 i.suffix = LONG_MNEM_SUFFIX;
6366 else if (i.types[op].bitfield.qword)
6367 i.suffix = QWORD_MNEM_SUFFIX;
6368 else
6369 continue;
6370 break;
6371 }
6372
6373 /* As an exception, movsx/movzx silently default to a byte source
6374 in AT&T mode. */
6375 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6376 && !i.suffix && !intel_syntax)
6377 i.suffix = BYTE_MNEM_SUFFIX;
6378 }
6379 else if (i.suffix == BYTE_MNEM_SUFFIX)
6380 {
6381 if (intel_syntax
6382 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6383 && i.tm.opcode_modifier.no_bsuf)
6384 i.suffix = 0;
6385 else if (!check_byte_reg ())
6386 return 0;
6387 }
6388 else if (i.suffix == LONG_MNEM_SUFFIX)
6389 {
6390 if (intel_syntax
6391 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6392 && i.tm.opcode_modifier.no_lsuf
6393 && !i.tm.opcode_modifier.todword
6394 && !i.tm.opcode_modifier.toqword)
6395 i.suffix = 0;
6396 else if (!check_long_reg ())
6397 return 0;
6398 }
6399 else if (i.suffix == QWORD_MNEM_SUFFIX)
6400 {
6401 if (intel_syntax
6402 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6403 && i.tm.opcode_modifier.no_qsuf
6404 && !i.tm.opcode_modifier.todword
6405 && !i.tm.opcode_modifier.toqword)
6406 i.suffix = 0;
6407 else if (!check_qword_reg ())
6408 return 0;
6409 }
6410 else if (i.suffix == WORD_MNEM_SUFFIX)
6411 {
6412 if (intel_syntax
6413 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6414 && i.tm.opcode_modifier.no_wsuf)
6415 i.suffix = 0;
6416 else if (!check_word_reg ())
6417 return 0;
6418 }
6419 else if (intel_syntax
6420 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6421 /* Do nothing if the instruction is going to ignore the prefix. */
6422 ;
6423 else
6424 abort ();
6425
6426 /* Undo the movsx/movzx change done above. */
6427 i.operands = numop;
6428 }
6429 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6430 && !i.suffix)
6431 {
6432 i.suffix = stackop_size;
6433 if (stackop_size == LONG_MNEM_SUFFIX)
6434 {
6435 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6436 .code16gcc directive to support 16-bit mode with
6437 32-bit address. For IRET without a suffix, generate
6438 16-bit IRET (opcode 0xcf) to return from an interrupt
6439 handler. */
6440 if (i.tm.base_opcode == 0xcf)
6441 {
6442 i.suffix = WORD_MNEM_SUFFIX;
6443 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6444 }
6445 /* Warn about changed behavior for segment register push/pop. */
6446 else if ((i.tm.base_opcode | 1) == 0x07)
6447 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6448 i.tm.name);
6449 }
6450 }
6451 else if (!i.suffix
6452 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6453 || i.tm.opcode_modifier.jump == JUMP_BYTE
6454 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6455 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6456 && i.tm.extension_opcode <= 3)))
6457 {
6458 switch (flag_code)
6459 {
6460 case CODE_64BIT:
6461 if (!i.tm.opcode_modifier.no_qsuf)
6462 {
6463 i.suffix = QWORD_MNEM_SUFFIX;
6464 break;
6465 }
6466 /* Fall through. */
6467 case CODE_32BIT:
6468 if (!i.tm.opcode_modifier.no_lsuf)
6469 i.suffix = LONG_MNEM_SUFFIX;
6470 break;
6471 case CODE_16BIT:
6472 if (!i.tm.opcode_modifier.no_wsuf)
6473 i.suffix = WORD_MNEM_SUFFIX;
6474 break;
6475 }
6476 }
6477
6478 if (!i.suffix
6479 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6480 /* Also cover lret/retf/iret in 64-bit mode. */
6481 || (flag_code == CODE_64BIT
6482 && !i.tm.opcode_modifier.no_lsuf
6483 && !i.tm.opcode_modifier.no_qsuf))
6484 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6485 /* Accept FLDENV et al without suffix. */
6486 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6487 {
6488 unsigned int suffixes, evex = 0;
6489
6490 suffixes = !i.tm.opcode_modifier.no_bsuf;
6491 if (!i.tm.opcode_modifier.no_wsuf)
6492 suffixes |= 1 << 1;
6493 if (!i.tm.opcode_modifier.no_lsuf)
6494 suffixes |= 1 << 2;
6495 if (!i.tm.opcode_modifier.no_ldsuf)
6496 suffixes |= 1 << 3;
6497 if (!i.tm.opcode_modifier.no_ssuf)
6498 suffixes |= 1 << 4;
6499 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6500 suffixes |= 1 << 5;
6501
6502 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6503 also suitable for AT&T syntax mode, it was requested that this be
6504 restricted to just Intel syntax. */
6505 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6506 {
6507 unsigned int op;
6508
6509 for (op = 0; op < i.tm.operands; ++op)
6510 {
6511 if (is_evex_encoding (&i.tm)
6512 && !cpu_arch_flags.bitfield.cpuavx512vl)
6513 {
6514 if (i.tm.operand_types[op].bitfield.ymmword)
6515 i.tm.operand_types[op].bitfield.xmmword = 0;
6516 if (i.tm.operand_types[op].bitfield.zmmword)
6517 i.tm.operand_types[op].bitfield.ymmword = 0;
6518 if (!i.tm.opcode_modifier.evex
6519 || i.tm.opcode_modifier.evex == EVEXDYN)
6520 i.tm.opcode_modifier.evex = EVEX512;
6521 }
6522
6523 if (i.tm.operand_types[op].bitfield.xmmword
6524 + i.tm.operand_types[op].bitfield.ymmword
6525 + i.tm.operand_types[op].bitfield.zmmword < 2)
6526 continue;
6527
6528 /* Any properly sized operand disambiguates the insn. */
6529 if (i.types[op].bitfield.xmmword
6530 || i.types[op].bitfield.ymmword
6531 || i.types[op].bitfield.zmmword)
6532 {
6533 suffixes &= ~(7 << 6);
6534 evex = 0;
6535 break;
6536 }
6537
6538 if ((i.flags[op] & Operand_Mem)
6539 && i.tm.operand_types[op].bitfield.unspecified)
6540 {
6541 if (i.tm.operand_types[op].bitfield.xmmword)
6542 suffixes |= 1 << 6;
6543 if (i.tm.operand_types[op].bitfield.ymmword)
6544 suffixes |= 1 << 7;
6545 if (i.tm.operand_types[op].bitfield.zmmword)
6546 suffixes |= 1 << 8;
6547 if (is_evex_encoding (&i.tm))
6548 evex = EVEX512;
6549 }
6550 }
6551 }
6552
6553 /* Are multiple suffixes / operand sizes allowed? */
6554 if (suffixes & (suffixes - 1))
6555 {
6556 if (intel_syntax
6557 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6558 || operand_check == check_error))
6559 {
6560 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6561 return 0;
6562 }
6563 if (operand_check == check_error)
6564 {
6565 as_bad (_("no instruction mnemonic suffix given and "
6566 "no register operands; can't size `%s'"), i.tm.name);
6567 return 0;
6568 }
6569 if (operand_check == check_warning)
6570 as_warn (_("%s; using default for `%s'"),
6571 intel_syntax
6572 ? _("ambiguous operand size")
6573 : _("no instruction mnemonic suffix given and "
6574 "no register operands"),
6575 i.tm.name);
6576
6577 if (i.tm.opcode_modifier.floatmf)
6578 i.suffix = SHORT_MNEM_SUFFIX;
6579 else if ((i.tm.base_opcode | 8) == 0xfbe
6580 || (i.tm.base_opcode == 0x63
6581 && i.tm.cpu_flags.bitfield.cpu64))
6582 /* handled below */;
6583 else if (evex)
6584 i.tm.opcode_modifier.evex = evex;
6585 else if (flag_code == CODE_16BIT)
6586 i.suffix = WORD_MNEM_SUFFIX;
6587 else if (!i.tm.opcode_modifier.no_lsuf)
6588 i.suffix = LONG_MNEM_SUFFIX;
6589 else
6590 i.suffix = QWORD_MNEM_SUFFIX;
6591 }
6592 }
6593
6594 if ((i.tm.base_opcode | 8) == 0xfbe
6595 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6596 {
6597 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6598 In AT&T syntax, if there is no suffix (warned about above), the default
6599 will be byte extension. */
6600 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6601 i.tm.base_opcode |= 1;
6602
6603 /* For further processing, the suffix should represent the destination
6604 (register). This is already the case when one was used with
6605 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6606 no suffix to begin with. */
6607 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6608 {
6609 if (i.types[1].bitfield.word)
6610 i.suffix = WORD_MNEM_SUFFIX;
6611 else if (i.types[1].bitfield.qword)
6612 i.suffix = QWORD_MNEM_SUFFIX;
6613 else
6614 i.suffix = LONG_MNEM_SUFFIX;
6615
6616 i.tm.opcode_modifier.w = 0;
6617 }
6618 }
6619
6620 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6621 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6622 != (i.tm.operand_types[1].bitfield.class == Reg);
6623
6624 /* Change the opcode based on the operand size given by i.suffix. */
6625 switch (i.suffix)
6626 {
6627 /* Size floating point instruction. */
6628 case LONG_MNEM_SUFFIX:
6629 if (i.tm.opcode_modifier.floatmf)
6630 {
6631 i.tm.base_opcode ^= 4;
6632 break;
6633 }
6634 /* fall through */
6635 case WORD_MNEM_SUFFIX:
6636 case QWORD_MNEM_SUFFIX:
6637 /* It's not a byte, select word/dword operation. */
6638 if (i.tm.opcode_modifier.w)
6639 {
6640 if (i.short_form)
6641 i.tm.base_opcode |= 8;
6642 else
6643 i.tm.base_opcode |= 1;
6644 }
6645 /* fall through */
6646 case SHORT_MNEM_SUFFIX:
6647 /* Now select between word & dword operations via the operand
6648 size prefix, except for instructions that will ignore this
6649 prefix anyway. */
6650 if (i.suffix != QWORD_MNEM_SUFFIX
6651 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6652 && !i.tm.opcode_modifier.floatmf
6653 && !is_any_vex_encoding (&i.tm)
6654 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6655 || (flag_code == CODE_64BIT
6656 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6657 {
6658 unsigned int prefix = DATA_PREFIX_OPCODE;
6659
6660 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6661 prefix = ADDR_PREFIX_OPCODE;
6662
6663 if (!add_prefix (prefix))
6664 return 0;
6665 }
6666
6667 /* Set mode64 for an operand. */
6668 if (i.suffix == QWORD_MNEM_SUFFIX
6669 && flag_code == CODE_64BIT
6670 && !i.tm.opcode_modifier.norex64
6671 && !i.tm.opcode_modifier.vexw
6672 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6673 need rex64. */
6674 && ! (i.operands == 2
6675 && i.tm.base_opcode == 0x90
6676 && i.tm.extension_opcode == None
6677 && i.types[0].bitfield.instance == Accum
6678 && i.types[0].bitfield.qword
6679 && i.types[1].bitfield.instance == Accum
6680 && i.types[1].bitfield.qword))
6681 i.rex |= REX_W;
6682
6683 break;
6684 }
6685
6686 if (i.tm.opcode_modifier.addrprefixopreg)
6687 {
6688 gas_assert (!i.suffix);
6689 gas_assert (i.reg_operands);
6690
6691 if (i.tm.operand_types[0].bitfield.instance == Accum
6692 || i.operands == 1)
6693 {
6694 /* The address size override prefix changes the size of the
6695 first operand. */
6696 if (flag_code == CODE_64BIT
6697 && i.op[0].regs->reg_type.bitfield.word)
6698 {
6699 as_bad (_("16-bit addressing unavailable for `%s'"),
6700 i.tm.name);
6701 return 0;
6702 }
6703
6704 if ((flag_code == CODE_32BIT
6705 ? i.op[0].regs->reg_type.bitfield.word
6706 : i.op[0].regs->reg_type.bitfield.dword)
6707 && !add_prefix (ADDR_PREFIX_OPCODE))
6708 return 0;
6709 }
6710 else
6711 {
6712 /* Check invalid register operand when the address size override
6713 prefix changes the size of register operands. */
6714 unsigned int op;
6715 enum { need_word, need_dword, need_qword } need;
6716
6717 if (flag_code == CODE_32BIT)
6718 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6719 else if (i.prefix[ADDR_PREFIX])
6720 need = need_dword;
6721 else
6722 need = flag_code == CODE_64BIT ? need_qword : need_word;
6723
6724 for (op = 0; op < i.operands; op++)
6725 {
6726 if (i.types[op].bitfield.class != Reg)
6727 continue;
6728
6729 switch (need)
6730 {
6731 case need_word:
6732 if (i.op[op].regs->reg_type.bitfield.word)
6733 continue;
6734 break;
6735 case need_dword:
6736 if (i.op[op].regs->reg_type.bitfield.dword)
6737 continue;
6738 break;
6739 case need_qword:
6740 if (i.op[op].regs->reg_type.bitfield.qword)
6741 continue;
6742 break;
6743 }
6744
6745 as_bad (_("invalid register operand size for `%s'"),
6746 i.tm.name);
6747 return 0;
6748 }
6749 }
6750 }
6751
6752 return 1;
6753 }
6754
6755 static int
6756 check_byte_reg (void)
6757 {
6758 int op;
6759
6760 for (op = i.operands; --op >= 0;)
6761 {
6762 /* Skip non-register operands. */
6763 if (i.types[op].bitfield.class != Reg)
6764 continue;
6765
6766 /* If this is an eight bit register, it's OK. If it's the 16 or
6767 32 bit version of an eight bit register, we will just use the
6768 low portion, and that's OK too. */
6769 if (i.types[op].bitfield.byte)
6770 continue;
6771
6772 /* I/O port address operands are OK too. */
6773 if (i.tm.operand_types[op].bitfield.instance == RegD
6774 && i.tm.operand_types[op].bitfield.word)
6775 continue;
6776
6777 /* crc32 only wants its source operand checked here. */
6778 if (i.tm.base_opcode == 0xf20f38f0 && op)
6779 continue;
6780
6781 /* Any other register is bad. */
6782 if (i.types[op].bitfield.class == Reg
6783 || i.types[op].bitfield.class == RegMMX
6784 || i.types[op].bitfield.class == RegSIMD
6785 || i.types[op].bitfield.class == SReg
6786 || i.types[op].bitfield.class == RegCR
6787 || i.types[op].bitfield.class == RegDR
6788 || i.types[op].bitfield.class == RegTR)
6789 {
6790 as_bad (_("`%s%s' not allowed with `%s%c'"),
6791 register_prefix,
6792 i.op[op].regs->reg_name,
6793 i.tm.name,
6794 i.suffix);
6795 return 0;
6796 }
6797 }
6798 return 1;
6799 }
6800
6801 static int
6802 check_long_reg (void)
6803 {
6804 int op;
6805
6806 for (op = i.operands; --op >= 0;)
6807 /* Skip non-register operands. */
6808 if (i.types[op].bitfield.class != Reg)
6809 continue;
6810 /* Reject eight bit registers, except where the template requires
6811 them. (eg. movzb) */
6812 else if (i.types[op].bitfield.byte
6813 && (i.tm.operand_types[op].bitfield.class == Reg
6814 || i.tm.operand_types[op].bitfield.instance == Accum)
6815 && (i.tm.operand_types[op].bitfield.word
6816 || i.tm.operand_types[op].bitfield.dword))
6817 {
6818 as_bad (_("`%s%s' not allowed with `%s%c'"),
6819 register_prefix,
6820 i.op[op].regs->reg_name,
6821 i.tm.name,
6822 i.suffix);
6823 return 0;
6824 }
6825 /* Error if the e prefix on a general reg is missing. */
6826 else if (i.types[op].bitfield.word
6827 && (i.tm.operand_types[op].bitfield.class == Reg
6828 || i.tm.operand_types[op].bitfield.instance == Accum)
6829 && i.tm.operand_types[op].bitfield.dword)
6830 {
6831 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6832 register_prefix, i.op[op].regs->reg_name,
6833 i.suffix);
6834 return 0;
6835 }
6836 /* Warn if the r prefix on a general reg is present. */
6837 else if (i.types[op].bitfield.qword
6838 && (i.tm.operand_types[op].bitfield.class == Reg
6839 || i.tm.operand_types[op].bitfield.instance == Accum)
6840 && i.tm.operand_types[op].bitfield.dword)
6841 {
6842 if (intel_syntax
6843 && i.tm.opcode_modifier.toqword
6844 && i.types[0].bitfield.class != RegSIMD)
6845 {
6846 /* Convert to QWORD. We want REX byte. */
6847 i.suffix = QWORD_MNEM_SUFFIX;
6848 }
6849 else
6850 {
6851 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6852 register_prefix, i.op[op].regs->reg_name,
6853 i.suffix);
6854 return 0;
6855 }
6856 }
6857 return 1;
6858 }
6859
6860 static int
6861 check_qword_reg (void)
6862 {
6863 int op;
6864
6865 for (op = i.operands; --op >= 0; )
6866 /* Skip non-register operands. */
6867 if (i.types[op].bitfield.class != Reg)
6868 continue;
6869 /* Reject eight bit registers, except where the template requires
6870 them. (eg. movzb) */
6871 else if (i.types[op].bitfield.byte
6872 && (i.tm.operand_types[op].bitfield.class == Reg
6873 || i.tm.operand_types[op].bitfield.instance == Accum)
6874 && (i.tm.operand_types[op].bitfield.word
6875 || i.tm.operand_types[op].bitfield.dword))
6876 {
6877 as_bad (_("`%s%s' not allowed with `%s%c'"),
6878 register_prefix,
6879 i.op[op].regs->reg_name,
6880 i.tm.name,
6881 i.suffix);
6882 return 0;
6883 }
6884 /* Warn if the r prefix on a general reg is missing. */
6885 else if ((i.types[op].bitfield.word
6886 || i.types[op].bitfield.dword)
6887 && (i.tm.operand_types[op].bitfield.class == Reg
6888 || i.tm.operand_types[op].bitfield.instance == Accum)
6889 && i.tm.operand_types[op].bitfield.qword)
6890 {
6891 /* Prohibit these changes in the 64bit mode, since the
6892 lowering is more complicated. */
6893 if (intel_syntax
6894 && i.tm.opcode_modifier.todword
6895 && i.types[0].bitfield.class != RegSIMD)
6896 {
6897 /* Convert to DWORD. We don't want REX byte. */
6898 i.suffix = LONG_MNEM_SUFFIX;
6899 }
6900 else
6901 {
6902 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6903 register_prefix, i.op[op].regs->reg_name,
6904 i.suffix);
6905 return 0;
6906 }
6907 }
6908 return 1;
6909 }
6910
6911 static int
6912 check_word_reg (void)
6913 {
6914 int op;
6915 for (op = i.operands; --op >= 0;)
6916 /* Skip non-register operands. */
6917 if (i.types[op].bitfield.class != Reg)
6918 continue;
6919 /* Reject eight bit registers, except where the template requires
6920 them. (eg. movzb) */
6921 else if (i.types[op].bitfield.byte
6922 && (i.tm.operand_types[op].bitfield.class == Reg
6923 || i.tm.operand_types[op].bitfield.instance == Accum)
6924 && (i.tm.operand_types[op].bitfield.word
6925 || i.tm.operand_types[op].bitfield.dword))
6926 {
6927 as_bad (_("`%s%s' not allowed with `%s%c'"),
6928 register_prefix,
6929 i.op[op].regs->reg_name,
6930 i.tm.name,
6931 i.suffix);
6932 return 0;
6933 }
6934 /* Error if the e or r prefix on a general reg is present. */
6935 else if ((i.types[op].bitfield.dword
6936 || i.types[op].bitfield.qword)
6937 && (i.tm.operand_types[op].bitfield.class == Reg
6938 || i.tm.operand_types[op].bitfield.instance == Accum)
6939 && i.tm.operand_types[op].bitfield.word)
6940 {
6941 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6942 register_prefix, i.op[op].regs->reg_name,
6943 i.suffix);
6944 return 0;
6945 }
6946 return 1;
6947 }
6948
6949 static int
6950 update_imm (unsigned int j)
6951 {
6952 i386_operand_type overlap = i.types[j];
6953 if ((overlap.bitfield.imm8
6954 || overlap.bitfield.imm8s
6955 || overlap.bitfield.imm16
6956 || overlap.bitfield.imm32
6957 || overlap.bitfield.imm32s
6958 || overlap.bitfield.imm64)
6959 && !operand_type_equal (&overlap, &imm8)
6960 && !operand_type_equal (&overlap, &imm8s)
6961 && !operand_type_equal (&overlap, &imm16)
6962 && !operand_type_equal (&overlap, &imm32)
6963 && !operand_type_equal (&overlap, &imm32s)
6964 && !operand_type_equal (&overlap, &imm64))
6965 {
6966 if (i.suffix)
6967 {
6968 i386_operand_type temp;
6969
6970 operand_type_set (&temp, 0);
6971 if (i.suffix == BYTE_MNEM_SUFFIX)
6972 {
6973 temp.bitfield.imm8 = overlap.bitfield.imm8;
6974 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6975 }
6976 else if (i.suffix == WORD_MNEM_SUFFIX)
6977 temp.bitfield.imm16 = overlap.bitfield.imm16;
6978 else if (i.suffix == QWORD_MNEM_SUFFIX)
6979 {
6980 temp.bitfield.imm64 = overlap.bitfield.imm64;
6981 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6982 }
6983 else
6984 temp.bitfield.imm32 = overlap.bitfield.imm32;
6985 overlap = temp;
6986 }
6987 else if (operand_type_equal (&overlap, &imm16_32_32s)
6988 || operand_type_equal (&overlap, &imm16_32)
6989 || operand_type_equal (&overlap, &imm16_32s))
6990 {
6991 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6992 overlap = imm16;
6993 else
6994 overlap = imm32s;
6995 }
6996 if (!operand_type_equal (&overlap, &imm8)
6997 && !operand_type_equal (&overlap, &imm8s)
6998 && !operand_type_equal (&overlap, &imm16)
6999 && !operand_type_equal (&overlap, &imm32)
7000 && !operand_type_equal (&overlap, &imm32s)
7001 && !operand_type_equal (&overlap, &imm64))
7002 {
7003 as_bad (_("no instruction mnemonic suffix given; "
7004 "can't determine immediate size"));
7005 return 0;
7006 }
7007 }
7008 i.types[j] = overlap;
7009
7010 return 1;
7011 }
7012
7013 static int
7014 finalize_imm (void)
7015 {
7016 unsigned int j, n;
7017
7018 /* Update the first 2 immediate operands. */
7019 n = i.operands > 2 ? 2 : i.operands;
7020 if (n)
7021 {
7022 for (j = 0; j < n; j++)
7023 if (update_imm (j) == 0)
7024 return 0;
7025
7026 /* The 3rd operand can't be immediate operand. */
7027 gas_assert (operand_type_check (i.types[2], imm) == 0);
7028 }
7029
7030 return 1;
7031 }
7032
7033 static int
7034 process_operands (void)
7035 {
7036 /* Default segment register this instruction will use for memory
7037 accesses. 0 means unknown. This is only for optimizing out
7038 unnecessary segment overrides. */
7039 const seg_entry *default_seg = 0;
7040
7041 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7042 {
7043 unsigned int dupl = i.operands;
7044 unsigned int dest = dupl - 1;
7045 unsigned int j;
7046
7047 /* The destination must be an xmm register. */
7048 gas_assert (i.reg_operands
7049 && MAX_OPERANDS > dupl
7050 && operand_type_equal (&i.types[dest], &regxmm));
7051
7052 if (i.tm.operand_types[0].bitfield.instance == Accum
7053 && i.tm.operand_types[0].bitfield.xmmword)
7054 {
7055 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7056 {
7057 /* Keep xmm0 for instructions with VEX prefix and 3
7058 sources. */
7059 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7060 i.tm.operand_types[0].bitfield.class = RegSIMD;
7061 goto duplicate;
7062 }
7063 else
7064 {
7065 /* We remove the first xmm0 and keep the number of
7066 operands unchanged, which in fact duplicates the
7067 destination. */
7068 for (j = 1; j < i.operands; j++)
7069 {
7070 i.op[j - 1] = i.op[j];
7071 i.types[j - 1] = i.types[j];
7072 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7073 i.flags[j - 1] = i.flags[j];
7074 }
7075 }
7076 }
7077 else if (i.tm.opcode_modifier.implicit1stxmm0)
7078 {
7079 gas_assert ((MAX_OPERANDS - 1) > dupl
7080 && (i.tm.opcode_modifier.vexsources
7081 == VEX3SOURCES));
7082
7083 /* Add the implicit xmm0 for instructions with VEX prefix
7084 and 3 sources. */
7085 for (j = i.operands; j > 0; j--)
7086 {
7087 i.op[j] = i.op[j - 1];
7088 i.types[j] = i.types[j - 1];
7089 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7090 i.flags[j] = i.flags[j - 1];
7091 }
7092 i.op[0].regs
7093 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7094 i.types[0] = regxmm;
7095 i.tm.operand_types[0] = regxmm;
7096
7097 i.operands += 2;
7098 i.reg_operands += 2;
7099 i.tm.operands += 2;
7100
7101 dupl++;
7102 dest++;
7103 i.op[dupl] = i.op[dest];
7104 i.types[dupl] = i.types[dest];
7105 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7106 i.flags[dupl] = i.flags[dest];
7107 }
7108 else
7109 {
7110 duplicate:
7111 i.operands++;
7112 i.reg_operands++;
7113 i.tm.operands++;
7114
7115 i.op[dupl] = i.op[dest];
7116 i.types[dupl] = i.types[dest];
7117 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7118 i.flags[dupl] = i.flags[dest];
7119 }
7120
7121 if (i.tm.opcode_modifier.immext)
7122 process_immext ();
7123 }
7124 else if (i.tm.operand_types[0].bitfield.instance == Accum
7125 && i.tm.operand_types[0].bitfield.xmmword)
7126 {
7127 unsigned int j;
7128
7129 for (j = 1; j < i.operands; j++)
7130 {
7131 i.op[j - 1] = i.op[j];
7132 i.types[j - 1] = i.types[j];
7133
7134 /* We need to adjust fields in i.tm since they are used by
7135 build_modrm_byte. */
7136 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7137
7138 i.flags[j - 1] = i.flags[j];
7139 }
7140
7141 i.operands--;
7142 i.reg_operands--;
7143 i.tm.operands--;
7144 }
7145 else if (i.tm.opcode_modifier.implicitquadgroup)
7146 {
7147 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7148
7149 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7150 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7151 regnum = register_number (i.op[1].regs);
7152 first_reg_in_group = regnum & ~3;
7153 last_reg_in_group = first_reg_in_group + 3;
7154 if (regnum != first_reg_in_group)
7155 as_warn (_("source register `%s%s' implicitly denotes"
7156 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7157 register_prefix, i.op[1].regs->reg_name,
7158 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7159 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7160 i.tm.name);
7161 }
7162 else if (i.tm.opcode_modifier.regkludge)
7163 {
7164 /* The imul $imm, %reg instruction is converted into
7165 imul $imm, %reg, %reg, and the clr %reg instruction
7166 is converted into xor %reg, %reg. */
7167
7168 unsigned int first_reg_op;
7169
7170 if (operand_type_check (i.types[0], reg))
7171 first_reg_op = 0;
7172 else
7173 first_reg_op = 1;
7174 /* Pretend we saw the extra register operand. */
7175 gas_assert (i.reg_operands == 1
7176 && i.op[first_reg_op + 1].regs == 0);
7177 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7178 i.types[first_reg_op + 1] = i.types[first_reg_op];
7179 i.operands++;
7180 i.reg_operands++;
7181 }
7182
7183 if (i.tm.opcode_modifier.modrm)
7184 {
7185 /* The opcode is completed (modulo i.tm.extension_opcode which
7186 must be put into the modrm byte). Now, we make the modrm and
7187 index base bytes based on all the info we've collected. */
7188
7189 default_seg = build_modrm_byte ();
7190 }
7191 else if (i.types[0].bitfield.class == SReg)
7192 {
7193 if (flag_code != CODE_64BIT
7194 ? i.tm.base_opcode == POP_SEG_SHORT
7195 && i.op[0].regs->reg_num == 1
7196 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7197 && i.op[0].regs->reg_num < 4)
7198 {
7199 as_bad (_("you can't `%s %s%s'"),
7200 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7201 return 0;
7202 }
7203 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7204 {
7205 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7206 i.tm.opcode_length = 2;
7207 }
7208 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7209 }
7210 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7211 {
7212 default_seg = &ds;
7213 }
7214 else if (i.tm.opcode_modifier.isstring)
7215 {
7216 /* For the string instructions that allow a segment override
7217 on one of their operands, the default segment is ds. */
7218 default_seg = &ds;
7219 }
7220 else if (i.short_form)
7221 {
7222 /* The register or float register operand is in operand
7223 0 or 1. */
7224 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7225
7226 /* Register goes in low 3 bits of opcode. */
7227 i.tm.base_opcode |= i.op[op].regs->reg_num;
7228 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7229 i.rex |= REX_B;
7230 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7231 {
7232 /* Warn about some common errors, but press on regardless.
7233 The first case can be generated by gcc (<= 2.8.1). */
7234 if (i.operands == 2)
7235 {
7236 /* Reversed arguments on faddp, fsubp, etc. */
7237 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7238 register_prefix, i.op[!intel_syntax].regs->reg_name,
7239 register_prefix, i.op[intel_syntax].regs->reg_name);
7240 }
7241 else
7242 {
7243 /* Extraneous `l' suffix on fp insn. */
7244 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7245 register_prefix, i.op[0].regs->reg_name);
7246 }
7247 }
7248 }
7249
7250 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7251 && i.tm.base_opcode == 0x8d /* lea */
7252 && !is_any_vex_encoding(&i.tm))
7253 {
7254 if (!quiet_warnings)
7255 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7256 if (optimize)
7257 {
7258 i.seg[0] = NULL;
7259 i.prefix[SEG_PREFIX] = 0;
7260 }
7261 }
7262
7263 /* If a segment was explicitly specified, and the specified segment
7264 is neither the default nor the one already recorded from a prefix,
7265 use an opcode prefix to select it. If we never figured out what
7266 the default segment is, then default_seg will be zero at this
7267 point, and the specified segment prefix will always be used. */
7268 if (i.seg[0]
7269 && i.seg[0] != default_seg
7270 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7271 {
7272 if (!add_prefix (i.seg[0]->seg_prefix))
7273 return 0;
7274 }
7275 return 1;
7276 }
7277
7278 static const seg_entry *
7279 build_modrm_byte (void)
7280 {
7281 const seg_entry *default_seg = 0;
7282 unsigned int source, dest;
7283 int vex_3_sources;
7284
7285 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7286 if (vex_3_sources)
7287 {
7288 unsigned int nds, reg_slot;
7289 expressionS *exp;
7290
7291 dest = i.operands - 1;
7292 nds = dest - 1;
7293
7294 /* There are 2 kinds of instructions:
7295 1. 5 operands: 4 register operands or 3 register operands
7296 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7297 VexW0 or VexW1. The destination must be either XMM, YMM or
7298 ZMM register.
7299 2. 4 operands: 4 register operands or 3 register operands
7300 plus 1 memory operand, with VexXDS. */
7301 gas_assert ((i.reg_operands == 4
7302 || (i.reg_operands == 3 && i.mem_operands == 1))
7303 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7304 && i.tm.opcode_modifier.vexw
7305 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7306
7307 /* If VexW1 is set, the first non-immediate operand is the source and
7308 the second non-immediate one is encoded in the immediate operand. */
7309 if (i.tm.opcode_modifier.vexw == VEXW1)
7310 {
7311 source = i.imm_operands;
7312 reg_slot = i.imm_operands + 1;
7313 }
7314 else
7315 {
7316 source = i.imm_operands + 1;
7317 reg_slot = i.imm_operands;
7318 }
7319
7320 if (i.imm_operands == 0)
7321 {
7322 /* When there is no immediate operand, generate an 8bit
7323 immediate operand to encode the first operand. */
7324 exp = &im_expressions[i.imm_operands++];
7325 i.op[i.operands].imms = exp;
7326 i.types[i.operands] = imm8;
7327 i.operands++;
7328
7329 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7330 exp->X_op = O_constant;
7331 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7332 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7333 }
7334 else
7335 {
7336 gas_assert (i.imm_operands == 1);
7337 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7338 gas_assert (!i.tm.opcode_modifier.immext);
7339
7340 /* Turn on Imm8 again so that output_imm will generate it. */
7341 i.types[0].bitfield.imm8 = 1;
7342
7343 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7344 i.op[0].imms->X_add_number
7345 |= register_number (i.op[reg_slot].regs) << 4;
7346 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7347 }
7348
7349 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7350 i.vex.register_specifier = i.op[nds].regs;
7351 }
7352 else
7353 source = dest = 0;
7354
7355 /* i.reg_operands MUST be the number of real register operands;
7356 implicit registers do not count. If there are 3 register
7357 operands, it must be a instruction with VexNDS. For a
7358 instruction with VexNDD, the destination register is encoded
7359 in VEX prefix. If there are 4 register operands, it must be
7360 a instruction with VEX prefix and 3 sources. */
7361 if (i.mem_operands == 0
7362 && ((i.reg_operands == 2
7363 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7364 || (i.reg_operands == 3
7365 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7366 || (i.reg_operands == 4 && vex_3_sources)))
7367 {
7368 switch (i.operands)
7369 {
7370 case 2:
7371 source = 0;
7372 break;
7373 case 3:
7374 /* When there are 3 operands, one of them may be immediate,
7375 which may be the first or the last operand. Otherwise,
7376 the first operand must be shift count register (cl) or it
7377 is an instruction with VexNDS. */
7378 gas_assert (i.imm_operands == 1
7379 || (i.imm_operands == 0
7380 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7381 || (i.types[0].bitfield.instance == RegC
7382 && i.types[0].bitfield.byte))));
7383 if (operand_type_check (i.types[0], imm)
7384 || (i.types[0].bitfield.instance == RegC
7385 && i.types[0].bitfield.byte))
7386 source = 1;
7387 else
7388 source = 0;
7389 break;
7390 case 4:
7391 /* When there are 4 operands, the first two must be 8bit
7392 immediate operands. The source operand will be the 3rd
7393 one.
7394
7395 For instructions with VexNDS, if the first operand
7396 an imm8, the source operand is the 2nd one. If the last
7397 operand is imm8, the source operand is the first one. */
7398 gas_assert ((i.imm_operands == 2
7399 && i.types[0].bitfield.imm8
7400 && i.types[1].bitfield.imm8)
7401 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7402 && i.imm_operands == 1
7403 && (i.types[0].bitfield.imm8
7404 || i.types[i.operands - 1].bitfield.imm8
7405 || i.rounding)));
7406 if (i.imm_operands == 2)
7407 source = 2;
7408 else
7409 {
7410 if (i.types[0].bitfield.imm8)
7411 source = 1;
7412 else
7413 source = 0;
7414 }
7415 break;
7416 case 5:
7417 if (is_evex_encoding (&i.tm))
7418 {
7419 /* For EVEX instructions, when there are 5 operands, the
7420 first one must be immediate operand. If the second one
7421 is immediate operand, the source operand is the 3th
7422 one. If the last one is immediate operand, the source
7423 operand is the 2nd one. */
7424 gas_assert (i.imm_operands == 2
7425 && i.tm.opcode_modifier.sae
7426 && operand_type_check (i.types[0], imm));
7427 if (operand_type_check (i.types[1], imm))
7428 source = 2;
7429 else if (operand_type_check (i.types[4], imm))
7430 source = 1;
7431 else
7432 abort ();
7433 }
7434 break;
7435 default:
7436 abort ();
7437 }
7438
7439 if (!vex_3_sources)
7440 {
7441 dest = source + 1;
7442
7443 /* RC/SAE operand could be between DEST and SRC. That happens
7444 when one operand is GPR and the other one is XMM/YMM/ZMM
7445 register. */
7446 if (i.rounding && i.rounding->operand == (int) dest)
7447 dest++;
7448
7449 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7450 {
7451 /* For instructions with VexNDS, the register-only source
7452 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7453 register. It is encoded in VEX prefix. */
7454
7455 i386_operand_type op;
7456 unsigned int vvvv;
7457
7458 /* Check register-only source operand when two source
7459 operands are swapped. */
7460 if (!i.tm.operand_types[source].bitfield.baseindex
7461 && i.tm.operand_types[dest].bitfield.baseindex)
7462 {
7463 vvvv = source;
7464 source = dest;
7465 }
7466 else
7467 vvvv = dest;
7468
7469 op = i.tm.operand_types[vvvv];
7470 if ((dest + 1) >= i.operands
7471 || ((op.bitfield.class != Reg
7472 || (!op.bitfield.dword && !op.bitfield.qword))
7473 && op.bitfield.class != RegSIMD
7474 && !operand_type_equal (&op, &regmask)))
7475 abort ();
7476 i.vex.register_specifier = i.op[vvvv].regs;
7477 dest++;
7478 }
7479 }
7480
7481 i.rm.mode = 3;
7482 /* One of the register operands will be encoded in the i.rm.reg
7483 field, the other in the combined i.rm.mode and i.rm.regmem
7484 fields. If no form of this instruction supports a memory
7485 destination operand, then we assume the source operand may
7486 sometimes be a memory operand and so we need to store the
7487 destination in the i.rm.reg field. */
7488 if (!i.tm.opcode_modifier.regmem
7489 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7490 {
7491 i.rm.reg = i.op[dest].regs->reg_num;
7492 i.rm.regmem = i.op[source].regs->reg_num;
7493 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7494 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7495 i.has_regmmx = TRUE;
7496 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7497 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7498 {
7499 if (i.types[dest].bitfield.zmmword
7500 || i.types[source].bitfield.zmmword)
7501 i.has_regzmm = TRUE;
7502 else if (i.types[dest].bitfield.ymmword
7503 || i.types[source].bitfield.ymmword)
7504 i.has_regymm = TRUE;
7505 else
7506 i.has_regxmm = TRUE;
7507 }
7508 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7509 i.rex |= REX_R;
7510 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7511 i.vrex |= REX_R;
7512 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7513 i.rex |= REX_B;
7514 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7515 i.vrex |= REX_B;
7516 }
7517 else
7518 {
7519 i.rm.reg = i.op[source].regs->reg_num;
7520 i.rm.regmem = i.op[dest].regs->reg_num;
7521 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7522 i.rex |= REX_B;
7523 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7524 i.vrex |= REX_B;
7525 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7526 i.rex |= REX_R;
7527 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7528 i.vrex |= REX_R;
7529 }
7530 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7531 {
7532 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7533 abort ();
7534 i.rex &= ~REX_R;
7535 add_prefix (LOCK_PREFIX_OPCODE);
7536 }
7537 }
7538 else
7539 { /* If it's not 2 reg operands... */
7540 unsigned int mem;
7541
7542 if (i.mem_operands)
7543 {
7544 unsigned int fake_zero_displacement = 0;
7545 unsigned int op;
7546
7547 for (op = 0; op < i.operands; op++)
7548 if (i.flags[op] & Operand_Mem)
7549 break;
7550 gas_assert (op < i.operands);
7551
7552 if (i.tm.opcode_modifier.vecsib)
7553 {
7554 if (i.index_reg->reg_num == RegIZ)
7555 abort ();
7556
7557 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7558 if (!i.base_reg)
7559 {
7560 i.sib.base = NO_BASE_REGISTER;
7561 i.sib.scale = i.log2_scale_factor;
7562 i.types[op].bitfield.disp8 = 0;
7563 i.types[op].bitfield.disp16 = 0;
7564 i.types[op].bitfield.disp64 = 0;
7565 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7566 {
7567 /* Must be 32 bit */
7568 i.types[op].bitfield.disp32 = 1;
7569 i.types[op].bitfield.disp32s = 0;
7570 }
7571 else
7572 {
7573 i.types[op].bitfield.disp32 = 0;
7574 i.types[op].bitfield.disp32s = 1;
7575 }
7576 }
7577 i.sib.index = i.index_reg->reg_num;
7578 if ((i.index_reg->reg_flags & RegRex) != 0)
7579 i.rex |= REX_X;
7580 if ((i.index_reg->reg_flags & RegVRex) != 0)
7581 i.vrex |= REX_X;
7582 }
7583
7584 default_seg = &ds;
7585
7586 if (i.base_reg == 0)
7587 {
7588 i.rm.mode = 0;
7589 if (!i.disp_operands)
7590 fake_zero_displacement = 1;
7591 if (i.index_reg == 0)
7592 {
7593 i386_operand_type newdisp;
7594
7595 gas_assert (!i.tm.opcode_modifier.vecsib);
7596 /* Operand is just <disp> */
7597 if (flag_code == CODE_64BIT)
7598 {
7599 /* 64bit mode overwrites the 32bit absolute
7600 addressing by RIP relative addressing and
7601 absolute addressing is encoded by one of the
7602 redundant SIB forms. */
7603 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7604 i.sib.base = NO_BASE_REGISTER;
7605 i.sib.index = NO_INDEX_REGISTER;
7606 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7607 }
7608 else if ((flag_code == CODE_16BIT)
7609 ^ (i.prefix[ADDR_PREFIX] != 0))
7610 {
7611 i.rm.regmem = NO_BASE_REGISTER_16;
7612 newdisp = disp16;
7613 }
7614 else
7615 {
7616 i.rm.regmem = NO_BASE_REGISTER;
7617 newdisp = disp32;
7618 }
7619 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7620 i.types[op] = operand_type_or (i.types[op], newdisp);
7621 }
7622 else if (!i.tm.opcode_modifier.vecsib)
7623 {
7624 /* !i.base_reg && i.index_reg */
7625 if (i.index_reg->reg_num == RegIZ)
7626 i.sib.index = NO_INDEX_REGISTER;
7627 else
7628 i.sib.index = i.index_reg->reg_num;
7629 i.sib.base = NO_BASE_REGISTER;
7630 i.sib.scale = i.log2_scale_factor;
7631 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7632 i.types[op].bitfield.disp8 = 0;
7633 i.types[op].bitfield.disp16 = 0;
7634 i.types[op].bitfield.disp64 = 0;
7635 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7636 {
7637 /* Must be 32 bit */
7638 i.types[op].bitfield.disp32 = 1;
7639 i.types[op].bitfield.disp32s = 0;
7640 }
7641 else
7642 {
7643 i.types[op].bitfield.disp32 = 0;
7644 i.types[op].bitfield.disp32s = 1;
7645 }
7646 if ((i.index_reg->reg_flags & RegRex) != 0)
7647 i.rex |= REX_X;
7648 }
7649 }
7650 /* RIP addressing for 64bit mode. */
7651 else if (i.base_reg->reg_num == RegIP)
7652 {
7653 gas_assert (!i.tm.opcode_modifier.vecsib);
7654 i.rm.regmem = NO_BASE_REGISTER;
7655 i.types[op].bitfield.disp8 = 0;
7656 i.types[op].bitfield.disp16 = 0;
7657 i.types[op].bitfield.disp32 = 0;
7658 i.types[op].bitfield.disp32s = 1;
7659 i.types[op].bitfield.disp64 = 0;
7660 i.flags[op] |= Operand_PCrel;
7661 if (! i.disp_operands)
7662 fake_zero_displacement = 1;
7663 }
7664 else if (i.base_reg->reg_type.bitfield.word)
7665 {
7666 gas_assert (!i.tm.opcode_modifier.vecsib);
7667 switch (i.base_reg->reg_num)
7668 {
7669 case 3: /* (%bx) */
7670 if (i.index_reg == 0)
7671 i.rm.regmem = 7;
7672 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7673 i.rm.regmem = i.index_reg->reg_num - 6;
7674 break;
7675 case 5: /* (%bp) */
7676 default_seg = &ss;
7677 if (i.index_reg == 0)
7678 {
7679 i.rm.regmem = 6;
7680 if (operand_type_check (i.types[op], disp) == 0)
7681 {
7682 /* fake (%bp) into 0(%bp) */
7683 i.types[op].bitfield.disp8 = 1;
7684 fake_zero_displacement = 1;
7685 }
7686 }
7687 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7688 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7689 break;
7690 default: /* (%si) -> 4 or (%di) -> 5 */
7691 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7692 }
7693 i.rm.mode = mode_from_disp_size (i.types[op]);
7694 }
7695 else /* i.base_reg and 32/64 bit mode */
7696 {
7697 if (flag_code == CODE_64BIT
7698 && operand_type_check (i.types[op], disp))
7699 {
7700 i.types[op].bitfield.disp16 = 0;
7701 i.types[op].bitfield.disp64 = 0;
7702 if (i.prefix[ADDR_PREFIX] == 0)
7703 {
7704 i.types[op].bitfield.disp32 = 0;
7705 i.types[op].bitfield.disp32s = 1;
7706 }
7707 else
7708 {
7709 i.types[op].bitfield.disp32 = 1;
7710 i.types[op].bitfield.disp32s = 0;
7711 }
7712 }
7713
7714 if (!i.tm.opcode_modifier.vecsib)
7715 i.rm.regmem = i.base_reg->reg_num;
7716 if ((i.base_reg->reg_flags & RegRex) != 0)
7717 i.rex |= REX_B;
7718 i.sib.base = i.base_reg->reg_num;
7719 /* x86-64 ignores REX prefix bit here to avoid decoder
7720 complications. */
7721 if (!(i.base_reg->reg_flags & RegRex)
7722 && (i.base_reg->reg_num == EBP_REG_NUM
7723 || i.base_reg->reg_num == ESP_REG_NUM))
7724 default_seg = &ss;
7725 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7726 {
7727 fake_zero_displacement = 1;
7728 i.types[op].bitfield.disp8 = 1;
7729 }
7730 i.sib.scale = i.log2_scale_factor;
7731 if (i.index_reg == 0)
7732 {
7733 gas_assert (!i.tm.opcode_modifier.vecsib);
7734 /* <disp>(%esp) becomes two byte modrm with no index
7735 register. We've already stored the code for esp
7736 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7737 Any base register besides %esp will not use the
7738 extra modrm byte. */
7739 i.sib.index = NO_INDEX_REGISTER;
7740 }
7741 else if (!i.tm.opcode_modifier.vecsib)
7742 {
7743 if (i.index_reg->reg_num == RegIZ)
7744 i.sib.index = NO_INDEX_REGISTER;
7745 else
7746 i.sib.index = i.index_reg->reg_num;
7747 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7748 if ((i.index_reg->reg_flags & RegRex) != 0)
7749 i.rex |= REX_X;
7750 }
7751
7752 if (i.disp_operands
7753 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7754 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7755 i.rm.mode = 0;
7756 else
7757 {
7758 if (!fake_zero_displacement
7759 && !i.disp_operands
7760 && i.disp_encoding)
7761 {
7762 fake_zero_displacement = 1;
7763 if (i.disp_encoding == disp_encoding_8bit)
7764 i.types[op].bitfield.disp8 = 1;
7765 else
7766 i.types[op].bitfield.disp32 = 1;
7767 }
7768 i.rm.mode = mode_from_disp_size (i.types[op]);
7769 }
7770 }
7771
7772 if (fake_zero_displacement)
7773 {
7774 /* Fakes a zero displacement assuming that i.types[op]
7775 holds the correct displacement size. */
7776 expressionS *exp;
7777
7778 gas_assert (i.op[op].disps == 0);
7779 exp = &disp_expressions[i.disp_operands++];
7780 i.op[op].disps = exp;
7781 exp->X_op = O_constant;
7782 exp->X_add_number = 0;
7783 exp->X_add_symbol = (symbolS *) 0;
7784 exp->X_op_symbol = (symbolS *) 0;
7785 }
7786
7787 mem = op;
7788 }
7789 else
7790 mem = ~0;
7791
7792 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7793 {
7794 if (operand_type_check (i.types[0], imm))
7795 i.vex.register_specifier = NULL;
7796 else
7797 {
7798 /* VEX.vvvv encodes one of the sources when the first
7799 operand is not an immediate. */
7800 if (i.tm.opcode_modifier.vexw == VEXW0)
7801 i.vex.register_specifier = i.op[0].regs;
7802 else
7803 i.vex.register_specifier = i.op[1].regs;
7804 }
7805
7806 /* Destination is a XMM register encoded in the ModRM.reg
7807 and VEX.R bit. */
7808 i.rm.reg = i.op[2].regs->reg_num;
7809 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7810 i.rex |= REX_R;
7811
7812 /* ModRM.rm and VEX.B encodes the other source. */
7813 if (!i.mem_operands)
7814 {
7815 i.rm.mode = 3;
7816
7817 if (i.tm.opcode_modifier.vexw == VEXW0)
7818 i.rm.regmem = i.op[1].regs->reg_num;
7819 else
7820 i.rm.regmem = i.op[0].regs->reg_num;
7821
7822 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7823 i.rex |= REX_B;
7824 }
7825 }
7826 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7827 {
7828 i.vex.register_specifier = i.op[2].regs;
7829 if (!i.mem_operands)
7830 {
7831 i.rm.mode = 3;
7832 i.rm.regmem = i.op[1].regs->reg_num;
7833 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7834 i.rex |= REX_B;
7835 }
7836 }
7837 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7838 (if any) based on i.tm.extension_opcode. Again, we must be
7839 careful to make sure that segment/control/debug/test/MMX
7840 registers are coded into the i.rm.reg field. */
7841 else if (i.reg_operands)
7842 {
7843 unsigned int op;
7844 unsigned int vex_reg = ~0;
7845
7846 for (op = 0; op < i.operands; op++)
7847 {
7848 if (i.types[op].bitfield.class == Reg
7849 || i.types[op].bitfield.class == RegBND
7850 || i.types[op].bitfield.class == RegMask
7851 || i.types[op].bitfield.class == SReg
7852 || i.types[op].bitfield.class == RegCR
7853 || i.types[op].bitfield.class == RegDR
7854 || i.types[op].bitfield.class == RegTR)
7855 break;
7856 if (i.types[op].bitfield.class == RegSIMD)
7857 {
7858 if (i.types[op].bitfield.zmmword)
7859 i.has_regzmm = TRUE;
7860 else if (i.types[op].bitfield.ymmword)
7861 i.has_regymm = TRUE;
7862 else
7863 i.has_regxmm = TRUE;
7864 break;
7865 }
7866 if (i.types[op].bitfield.class == RegMMX)
7867 {
7868 i.has_regmmx = TRUE;
7869 break;
7870 }
7871 }
7872
7873 if (vex_3_sources)
7874 op = dest;
7875 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7876 {
7877 /* For instructions with VexNDS, the register-only
7878 source operand is encoded in VEX prefix. */
7879 gas_assert (mem != (unsigned int) ~0);
7880
7881 if (op > mem)
7882 {
7883 vex_reg = op++;
7884 gas_assert (op < i.operands);
7885 }
7886 else
7887 {
7888 /* Check register-only source operand when two source
7889 operands are swapped. */
7890 if (!i.tm.operand_types[op].bitfield.baseindex
7891 && i.tm.operand_types[op + 1].bitfield.baseindex)
7892 {
7893 vex_reg = op;
7894 op += 2;
7895 gas_assert (mem == (vex_reg + 1)
7896 && op < i.operands);
7897 }
7898 else
7899 {
7900 vex_reg = op + 1;
7901 gas_assert (vex_reg < i.operands);
7902 }
7903 }
7904 }
7905 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7906 {
7907 /* For instructions with VexNDD, the register destination
7908 is encoded in VEX prefix. */
7909 if (i.mem_operands == 0)
7910 {
7911 /* There is no memory operand. */
7912 gas_assert ((op + 2) == i.operands);
7913 vex_reg = op + 1;
7914 }
7915 else
7916 {
7917 /* There are only 2 non-immediate operands. */
7918 gas_assert (op < i.imm_operands + 2
7919 && i.operands == i.imm_operands + 2);
7920 vex_reg = i.imm_operands + 1;
7921 }
7922 }
7923 else
7924 gas_assert (op < i.operands);
7925
7926 if (vex_reg != (unsigned int) ~0)
7927 {
7928 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7929
7930 if ((type->bitfield.class != Reg
7931 || (!type->bitfield.dword && !type->bitfield.qword))
7932 && type->bitfield.class != RegSIMD
7933 && !operand_type_equal (type, &regmask))
7934 abort ();
7935
7936 i.vex.register_specifier = i.op[vex_reg].regs;
7937 }
7938
7939 /* Don't set OP operand twice. */
7940 if (vex_reg != op)
7941 {
7942 /* If there is an extension opcode to put here, the
7943 register number must be put into the regmem field. */
7944 if (i.tm.extension_opcode != None)
7945 {
7946 i.rm.regmem = i.op[op].regs->reg_num;
7947 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7948 i.rex |= REX_B;
7949 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7950 i.vrex |= REX_B;
7951 }
7952 else
7953 {
7954 i.rm.reg = i.op[op].regs->reg_num;
7955 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7956 i.rex |= REX_R;
7957 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7958 i.vrex |= REX_R;
7959 }
7960 }
7961
7962 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7963 must set it to 3 to indicate this is a register operand
7964 in the regmem field. */
7965 if (!i.mem_operands)
7966 i.rm.mode = 3;
7967 }
7968
7969 /* Fill in i.rm.reg field with extension opcode (if any). */
7970 if (i.tm.extension_opcode != None)
7971 i.rm.reg = i.tm.extension_opcode;
7972 }
7973 return default_seg;
7974 }
7975
7976 static unsigned int
7977 flip_code16 (unsigned int code16)
7978 {
7979 gas_assert (i.tm.operands == 1);
7980
7981 return !(i.prefix[REX_PREFIX] & REX_W)
7982 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7983 || i.tm.operand_types[0].bitfield.disp32s
7984 : i.tm.operand_types[0].bitfield.disp16)
7985 ? CODE16 : 0;
7986 }
7987
7988 static void
7989 output_branch (void)
7990 {
7991 char *p;
7992 int size;
7993 int code16;
7994 int prefix;
7995 relax_substateT subtype;
7996 symbolS *sym;
7997 offsetT off;
7998
7999 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8000 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8001
8002 prefix = 0;
8003 if (i.prefix[DATA_PREFIX] != 0)
8004 {
8005 prefix = 1;
8006 i.prefixes -= 1;
8007 code16 ^= flip_code16(code16);
8008 }
8009 /* Pentium4 branch hints. */
8010 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8011 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8012 {
8013 prefix++;
8014 i.prefixes--;
8015 }
8016 if (i.prefix[REX_PREFIX] != 0)
8017 {
8018 prefix++;
8019 i.prefixes--;
8020 }
8021
8022 /* BND prefixed jump. */
8023 if (i.prefix[BND_PREFIX] != 0)
8024 {
8025 prefix++;
8026 i.prefixes--;
8027 }
8028
8029 if (i.prefixes != 0)
8030 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8031
8032 /* It's always a symbol; End frag & setup for relax.
8033 Make sure there is enough room in this frag for the largest
8034 instruction we may generate in md_convert_frag. This is 2
8035 bytes for the opcode and room for the prefix and largest
8036 displacement. */
8037 frag_grow (prefix + 2 + 4);
8038 /* Prefix and 1 opcode byte go in fr_fix. */
8039 p = frag_more (prefix + 1);
8040 if (i.prefix[DATA_PREFIX] != 0)
8041 *p++ = DATA_PREFIX_OPCODE;
8042 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8043 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8044 *p++ = i.prefix[SEG_PREFIX];
8045 if (i.prefix[BND_PREFIX] != 0)
8046 *p++ = BND_PREFIX_OPCODE;
8047 if (i.prefix[REX_PREFIX] != 0)
8048 *p++ = i.prefix[REX_PREFIX];
8049 *p = i.tm.base_opcode;
8050
8051 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8052 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8053 else if (cpu_arch_flags.bitfield.cpui386)
8054 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8055 else
8056 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8057 subtype |= code16;
8058
8059 sym = i.op[0].disps->X_add_symbol;
8060 off = i.op[0].disps->X_add_number;
8061
8062 if (i.op[0].disps->X_op != O_constant
8063 && i.op[0].disps->X_op != O_symbol)
8064 {
8065 /* Handle complex expressions. */
8066 sym = make_expr_symbol (i.op[0].disps);
8067 off = 0;
8068 }
8069
8070 /* 1 possible extra opcode + 4 byte displacement go in var part.
8071 Pass reloc in fr_var. */
8072 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8073 }
8074
8075 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8076 /* Return TRUE iff PLT32 relocation should be used for branching to
8077 symbol S. */
8078
8079 static bfd_boolean
8080 need_plt32_p (symbolS *s)
8081 {
8082 /* PLT32 relocation is ELF only. */
8083 if (!IS_ELF)
8084 return FALSE;
8085
8086 #ifdef TE_SOLARIS
8087 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8088 krtld support it. */
8089 return FALSE;
8090 #endif
8091
8092 /* Since there is no need to prepare for PLT branch on x86-64, we
8093 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8094 be used as a marker for 32-bit PC-relative branches. */
8095 if (!object_64bit)
8096 return FALSE;
8097
8098 /* Weak or undefined symbol need PLT32 relocation. */
8099 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8100 return TRUE;
8101
8102 /* Non-global symbol doesn't need PLT32 relocation. */
8103 if (! S_IS_EXTERNAL (s))
8104 return FALSE;
8105
8106 /* Other global symbols need PLT32 relocation. NB: Symbol with
8107 non-default visibilities are treated as normal global symbol
8108 so that PLT32 relocation can be used as a marker for 32-bit
8109 PC-relative branches. It is useful for linker relaxation. */
8110 return TRUE;
8111 }
8112 #endif
8113
8114 static void
8115 output_jump (void)
8116 {
8117 char *p;
8118 int size;
8119 fixS *fixP;
8120 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8121
8122 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8123 {
8124 /* This is a loop or jecxz type instruction. */
8125 size = 1;
8126 if (i.prefix[ADDR_PREFIX] != 0)
8127 {
8128 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8129 i.prefixes -= 1;
8130 }
8131 /* Pentium4 branch hints. */
8132 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8133 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8134 {
8135 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8136 i.prefixes--;
8137 }
8138 }
8139 else
8140 {
8141 int code16;
8142
8143 code16 = 0;
8144 if (flag_code == CODE_16BIT)
8145 code16 = CODE16;
8146
8147 if (i.prefix[DATA_PREFIX] != 0)
8148 {
8149 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8150 i.prefixes -= 1;
8151 code16 ^= flip_code16(code16);
8152 }
8153
8154 size = 4;
8155 if (code16)
8156 size = 2;
8157 }
8158
8159 /* BND prefixed jump. */
8160 if (i.prefix[BND_PREFIX] != 0)
8161 {
8162 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8163 i.prefixes -= 1;
8164 }
8165
8166 if (i.prefix[REX_PREFIX] != 0)
8167 {
8168 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8169 i.prefixes -= 1;
8170 }
8171
8172 if (i.prefixes != 0)
8173 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8174
8175 p = frag_more (i.tm.opcode_length + size);
8176 switch (i.tm.opcode_length)
8177 {
8178 case 2:
8179 *p++ = i.tm.base_opcode >> 8;
8180 /* Fall through. */
8181 case 1:
8182 *p++ = i.tm.base_opcode;
8183 break;
8184 default:
8185 abort ();
8186 }
8187
8188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8189 if (size == 4
8190 && jump_reloc == NO_RELOC
8191 && need_plt32_p (i.op[0].disps->X_add_symbol))
8192 jump_reloc = BFD_RELOC_X86_64_PLT32;
8193 #endif
8194
8195 jump_reloc = reloc (size, 1, 1, jump_reloc);
8196
8197 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8198 i.op[0].disps, 1, jump_reloc);
8199
8200 /* All jumps handled here are signed, but don't use a signed limit
8201 check for 32 and 16 bit jumps as we want to allow wrap around at
8202 4G and 64k respectively. */
8203 if (size == 1)
8204 fixP->fx_signed = 1;
8205 }
8206
8207 static void
8208 output_interseg_jump (void)
8209 {
8210 char *p;
8211 int size;
8212 int prefix;
8213 int code16;
8214
8215 code16 = 0;
8216 if (flag_code == CODE_16BIT)
8217 code16 = CODE16;
8218
8219 prefix = 0;
8220 if (i.prefix[DATA_PREFIX] != 0)
8221 {
8222 prefix = 1;
8223 i.prefixes -= 1;
8224 code16 ^= CODE16;
8225 }
8226
8227 gas_assert (!i.prefix[REX_PREFIX]);
8228
8229 size = 4;
8230 if (code16)
8231 size = 2;
8232
8233 if (i.prefixes != 0)
8234 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8235
8236 /* 1 opcode; 2 segment; offset */
8237 p = frag_more (prefix + 1 + 2 + size);
8238
8239 if (i.prefix[DATA_PREFIX] != 0)
8240 *p++ = DATA_PREFIX_OPCODE;
8241
8242 if (i.prefix[REX_PREFIX] != 0)
8243 *p++ = i.prefix[REX_PREFIX];
8244
8245 *p++ = i.tm.base_opcode;
8246 if (i.op[1].imms->X_op == O_constant)
8247 {
8248 offsetT n = i.op[1].imms->X_add_number;
8249
8250 if (size == 2
8251 && !fits_in_unsigned_word (n)
8252 && !fits_in_signed_word (n))
8253 {
8254 as_bad (_("16-bit jump out of range"));
8255 return;
8256 }
8257 md_number_to_chars (p, n, size);
8258 }
8259 else
8260 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8261 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8262 if (i.op[0].imms->X_op != O_constant)
8263 as_bad (_("can't handle non absolute segment in `%s'"),
8264 i.tm.name);
8265 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8266 }
8267
8268 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8269 void
8270 x86_cleanup (void)
8271 {
8272 char *p;
8273 asection *seg = now_seg;
8274 subsegT subseg = now_subseg;
8275 asection *sec;
8276 unsigned int alignment, align_size_1;
8277 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8278 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8279 unsigned int padding;
8280
8281 if (!IS_ELF || !x86_used_note)
8282 return;
8283
8284 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8285
8286 /* The .note.gnu.property section layout:
8287
8288 Field Length Contents
8289 ---- ---- ----
8290 n_namsz 4 4
8291 n_descsz 4 The note descriptor size
8292 n_type 4 NT_GNU_PROPERTY_TYPE_0
8293 n_name 4 "GNU"
8294 n_desc n_descsz The program property array
8295 .... .... ....
8296 */
8297
8298 /* Create the .note.gnu.property section. */
8299 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8300 bfd_set_section_flags (sec,
8301 (SEC_ALLOC
8302 | SEC_LOAD
8303 | SEC_DATA
8304 | SEC_HAS_CONTENTS
8305 | SEC_READONLY));
8306
8307 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8308 {
8309 align_size_1 = 7;
8310 alignment = 3;
8311 }
8312 else
8313 {
8314 align_size_1 = 3;
8315 alignment = 2;
8316 }
8317
8318 bfd_set_section_alignment (sec, alignment);
8319 elf_section_type (sec) = SHT_NOTE;
8320
8321 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8322 + 4-byte data */
8323 isa_1_descsz_raw = 4 + 4 + 4;
8324 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8325 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8326
8327 feature_2_descsz_raw = isa_1_descsz;
8328 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8329 + 4-byte data */
8330 feature_2_descsz_raw += 4 + 4 + 4;
8331 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8332 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8333 & ~align_size_1);
8334
8335 descsz = feature_2_descsz;
8336 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8337 p = frag_more (4 + 4 + 4 + 4 + descsz);
8338
8339 /* Write n_namsz. */
8340 md_number_to_chars (p, (valueT) 4, 4);
8341
8342 /* Write n_descsz. */
8343 md_number_to_chars (p + 4, (valueT) descsz, 4);
8344
8345 /* Write n_type. */
8346 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8347
8348 /* Write n_name. */
8349 memcpy (p + 4 * 3, "GNU", 4);
8350
8351 /* Write 4-byte type. */
8352 md_number_to_chars (p + 4 * 4,
8353 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8354
8355 /* Write 4-byte data size. */
8356 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8357
8358 /* Write 4-byte data. */
8359 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8360
8361 /* Zero out paddings. */
8362 padding = isa_1_descsz - isa_1_descsz_raw;
8363 if (padding)
8364 memset (p + 4 * 7, 0, padding);
8365
8366 /* Write 4-byte type. */
8367 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8368 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8369
8370 /* Write 4-byte data size. */
8371 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8372
8373 /* Write 4-byte data. */
8374 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8375 (valueT) x86_feature_2_used, 4);
8376
8377 /* Zero out paddings. */
8378 padding = feature_2_descsz - feature_2_descsz_raw;
8379 if (padding)
8380 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8381
8382 /* We probably can't restore the current segment, for there likely
8383 isn't one yet... */
8384 if (seg && subseg)
8385 subseg_set (seg, subseg);
8386 }
8387 #endif
8388
8389 static unsigned int
8390 encoding_length (const fragS *start_frag, offsetT start_off,
8391 const char *frag_now_ptr)
8392 {
8393 unsigned int len = 0;
8394
8395 if (start_frag != frag_now)
8396 {
8397 const fragS *fr = start_frag;
8398
8399 do {
8400 len += fr->fr_fix;
8401 fr = fr->fr_next;
8402 } while (fr && fr != frag_now);
8403 }
8404
8405 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8406 }
8407
8408 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8409 be macro-fused with conditional jumps.
8410 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8411 or is one of the following format:
8412
8413 cmp m, imm
8414 add m, imm
8415 sub m, imm
8416 test m, imm
8417 and m, imm
8418 inc m
8419 dec m
8420
8421 it is unfusible. */
8422
8423 static int
8424 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8425 {
8426 /* No RIP address. */
8427 if (i.base_reg && i.base_reg->reg_num == RegIP)
8428 return 0;
8429
8430 /* No VEX/EVEX encoding. */
8431 if (is_any_vex_encoding (&i.tm))
8432 return 0;
8433
8434 /* add, sub without add/sub m, imm. */
8435 if (i.tm.base_opcode <= 5
8436 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8437 || ((i.tm.base_opcode | 3) == 0x83
8438 && (i.tm.extension_opcode == 0x5
8439 || i.tm.extension_opcode == 0x0)))
8440 {
8441 *mf_cmp_p = mf_cmp_alu_cmp;
8442 return !(i.mem_operands && i.imm_operands);
8443 }
8444
8445 /* and without and m, imm. */
8446 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8447 || ((i.tm.base_opcode | 3) == 0x83
8448 && i.tm.extension_opcode == 0x4))
8449 {
8450 *mf_cmp_p = mf_cmp_test_and;
8451 return !(i.mem_operands && i.imm_operands);
8452 }
8453
8454 /* test without test m imm. */
8455 if ((i.tm.base_opcode | 1) == 0x85
8456 || (i.tm.base_opcode | 1) == 0xa9
8457 || ((i.tm.base_opcode | 1) == 0xf7
8458 && i.tm.extension_opcode == 0))
8459 {
8460 *mf_cmp_p = mf_cmp_test_and;
8461 return !(i.mem_operands && i.imm_operands);
8462 }
8463
8464 /* cmp without cmp m, imm. */
8465 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8466 || ((i.tm.base_opcode | 3) == 0x83
8467 && (i.tm.extension_opcode == 0x7)))
8468 {
8469 *mf_cmp_p = mf_cmp_alu_cmp;
8470 return !(i.mem_operands && i.imm_operands);
8471 }
8472
8473 /* inc, dec without inc/dec m. */
8474 if ((i.tm.cpu_flags.bitfield.cpuno64
8475 && (i.tm.base_opcode | 0xf) == 0x4f)
8476 || ((i.tm.base_opcode | 1) == 0xff
8477 && i.tm.extension_opcode <= 0x1))
8478 {
8479 *mf_cmp_p = mf_cmp_incdec;
8480 return !i.mem_operands;
8481 }
8482
8483 return 0;
8484 }
8485
8486 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8487
8488 static int
8489 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
8490 {
8491 /* NB: Don't work with COND_JUMP86 without i386. */
8492 if (!align_branch_power
8493 || now_seg == absolute_section
8494 || !cpu_arch_flags.bitfield.cpui386
8495 || !(align_branch & align_branch_fused_bit))
8496 return 0;
8497
8498 if (maybe_fused_with_jcc_p (mf_cmp_p))
8499 {
8500 if (last_insn.kind == last_insn_other
8501 || last_insn.seg != now_seg)
8502 return 1;
8503 if (flag_debug)
8504 as_warn_where (last_insn.file, last_insn.line,
8505 _("`%s` skips -malign-branch-boundary on `%s`"),
8506 last_insn.name, i.tm.name);
8507 }
8508
8509 return 0;
8510 }
8511
8512 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8513
8514 static int
8515 add_branch_prefix_frag_p (void)
8516 {
8517 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8518 to PadLock instructions since they include prefixes in opcode. */
8519 if (!align_branch_power
8520 || !align_branch_prefix_size
8521 || now_seg == absolute_section
8522 || i.tm.cpu_flags.bitfield.cpupadlock
8523 || !cpu_arch_flags.bitfield.cpui386)
8524 return 0;
8525
8526 /* Don't add prefix if it is a prefix or there is no operand in case
8527 that segment prefix is special. */
8528 if (!i.operands || i.tm.opcode_modifier.isprefix)
8529 return 0;
8530
8531 if (last_insn.kind == last_insn_other
8532 || last_insn.seg != now_seg)
8533 return 1;
8534
8535 if (flag_debug)
8536 as_warn_where (last_insn.file, last_insn.line,
8537 _("`%s` skips -malign-branch-boundary on `%s`"),
8538 last_insn.name, i.tm.name);
8539
8540 return 0;
8541 }
8542
8543 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8544
8545 static int
8546 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8547 enum mf_jcc_kind *mf_jcc_p)
8548 {
8549 int add_padding;
8550
8551 /* NB: Don't work with COND_JUMP86 without i386. */
8552 if (!align_branch_power
8553 || now_seg == absolute_section
8554 || !cpu_arch_flags.bitfield.cpui386)
8555 return 0;
8556
8557 add_padding = 0;
8558
8559 /* Check for jcc and direct jmp. */
8560 if (i.tm.opcode_modifier.jump == JUMP)
8561 {
8562 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8563 {
8564 *branch_p = align_branch_jmp;
8565 add_padding = align_branch & align_branch_jmp_bit;
8566 }
8567 else
8568 {
8569 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8570 igore the lowest bit. */
8571 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
8572 *branch_p = align_branch_jcc;
8573 if ((align_branch & align_branch_jcc_bit))
8574 add_padding = 1;
8575 }
8576 }
8577 else if (is_any_vex_encoding (&i.tm))
8578 return 0;
8579 else if ((i.tm.base_opcode | 1) == 0xc3)
8580 {
8581 /* Near ret. */
8582 *branch_p = align_branch_ret;
8583 if ((align_branch & align_branch_ret_bit))
8584 add_padding = 1;
8585 }
8586 else
8587 {
8588 /* Check for indirect jmp, direct and indirect calls. */
8589 if (i.tm.base_opcode == 0xe8)
8590 {
8591 /* Direct call. */
8592 *branch_p = align_branch_call;
8593 if ((align_branch & align_branch_call_bit))
8594 add_padding = 1;
8595 }
8596 else if (i.tm.base_opcode == 0xff
8597 && (i.tm.extension_opcode == 2
8598 || i.tm.extension_opcode == 4))
8599 {
8600 /* Indirect call and jmp. */
8601 *branch_p = align_branch_indirect;
8602 if ((align_branch & align_branch_indirect_bit))
8603 add_padding = 1;
8604 }
8605
8606 if (add_padding
8607 && i.disp_operands
8608 && tls_get_addr
8609 && (i.op[0].disps->X_op == O_symbol
8610 || (i.op[0].disps->X_op == O_subtract
8611 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8612 {
8613 symbolS *s = i.op[0].disps->X_add_symbol;
8614 /* No padding to call to global or undefined tls_get_addr. */
8615 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8616 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8617 return 0;
8618 }
8619 }
8620
8621 if (add_padding
8622 && last_insn.kind != last_insn_other
8623 && last_insn.seg == now_seg)
8624 {
8625 if (flag_debug)
8626 as_warn_where (last_insn.file, last_insn.line,
8627 _("`%s` skips -malign-branch-boundary on `%s`"),
8628 last_insn.name, i.tm.name);
8629 return 0;
8630 }
8631
8632 return add_padding;
8633 }
8634
8635 static void
8636 output_insn (void)
8637 {
8638 fragS *insn_start_frag;
8639 offsetT insn_start_off;
8640 fragS *fragP = NULL;
8641 enum align_branch_kind branch = align_branch_none;
8642 /* The initializer is arbitrary just to avoid uninitialized error.
8643 it's actually either assigned in add_branch_padding_frag_p
8644 or never be used. */
8645 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
8646
8647 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8648 if (IS_ELF && x86_used_note)
8649 {
8650 if (i.tm.cpu_flags.bitfield.cpucmov)
8651 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8652 if (i.tm.cpu_flags.bitfield.cpusse)
8653 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8654 if (i.tm.cpu_flags.bitfield.cpusse2)
8655 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8656 if (i.tm.cpu_flags.bitfield.cpusse3)
8657 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8658 if (i.tm.cpu_flags.bitfield.cpussse3)
8659 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8660 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8661 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8662 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8663 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8664 if (i.tm.cpu_flags.bitfield.cpuavx)
8665 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8666 if (i.tm.cpu_flags.bitfield.cpuavx2)
8667 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8668 if (i.tm.cpu_flags.bitfield.cpufma)
8669 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8670 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8671 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8672 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8673 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8674 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8675 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8676 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8677 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8678 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8679 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8680 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8681 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8682 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8683 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8684 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8685 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8686 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8687 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8688 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8689 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8690 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8691 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8692 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8693 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8694 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8695 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8696 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8697 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8698 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8699 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8700
8701 if (i.tm.cpu_flags.bitfield.cpu8087
8702 || i.tm.cpu_flags.bitfield.cpu287
8703 || i.tm.cpu_flags.bitfield.cpu387
8704 || i.tm.cpu_flags.bitfield.cpu687
8705 || i.tm.cpu_flags.bitfield.cpufisttp)
8706 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8707 if (i.has_regmmx
8708 || i.tm.base_opcode == 0xf77 /* emms */
8709 || i.tm.base_opcode == 0xf0e /* femms */
8710 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
8711 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
8712 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8713 if (i.has_regxmm)
8714 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8715 if (i.has_regymm)
8716 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8717 if (i.has_regzmm)
8718 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8719 if (i.tm.cpu_flags.bitfield.cpufxsr)
8720 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8721 if (i.tm.cpu_flags.bitfield.cpuxsave)
8722 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8723 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8724 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8725 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8726 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8727 }
8728 #endif
8729
8730 /* Tie dwarf2 debug info to the address at the start of the insn.
8731 We can't do this after the insn has been output as the current
8732 frag may have been closed off. eg. by frag_var. */
8733 dwarf2_emit_insn (0);
8734
8735 insn_start_frag = frag_now;
8736 insn_start_off = frag_now_fix ();
8737
8738 if (add_branch_padding_frag_p (&branch, &mf_jcc))
8739 {
8740 char *p;
8741 /* Branch can be 8 bytes. Leave some room for prefixes. */
8742 unsigned int max_branch_padding_size = 14;
8743
8744 /* Align section to boundary. */
8745 record_alignment (now_seg, align_branch_power);
8746
8747 /* Make room for padding. */
8748 frag_grow (max_branch_padding_size);
8749
8750 /* Start of the padding. */
8751 p = frag_more (0);
8752
8753 fragP = frag_now;
8754
8755 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8756 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8757 NULL, 0, p);
8758
8759 fragP->tc_frag_data.mf_type = mf_jcc;
8760 fragP->tc_frag_data.branch_type = branch;
8761 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8762 }
8763
8764 /* Output jumps. */
8765 if (i.tm.opcode_modifier.jump == JUMP)
8766 output_branch ();
8767 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8768 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8769 output_jump ();
8770 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8771 output_interseg_jump ();
8772 else
8773 {
8774 /* Output normal instructions here. */
8775 char *p;
8776 unsigned char *q;
8777 unsigned int j;
8778 unsigned int prefix;
8779 enum mf_cmp_kind mf_cmp;
8780
8781 if (avoid_fence
8782 && (i.tm.base_opcode == 0xfaee8
8783 || i.tm.base_opcode == 0xfaef0
8784 || i.tm.base_opcode == 0xfaef8))
8785 {
8786 /* Encode lfence, mfence, and sfence as
8787 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8788 offsetT val = 0x240483f0ULL;
8789 p = frag_more (5);
8790 md_number_to_chars (p, val, 5);
8791 return;
8792 }
8793
8794 /* Some processors fail on LOCK prefix. This options makes
8795 assembler ignore LOCK prefix and serves as a workaround. */
8796 if (omit_lock_prefix)
8797 {
8798 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8799 return;
8800 i.prefix[LOCK_PREFIX] = 0;
8801 }
8802
8803 if (branch)
8804 /* Skip if this is a branch. */
8805 ;
8806 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
8807 {
8808 /* Make room for padding. */
8809 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8810 p = frag_more (0);
8811
8812 fragP = frag_now;
8813
8814 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8815 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8816 NULL, 0, p);
8817
8818 fragP->tc_frag_data.mf_type = mf_cmp;
8819 fragP->tc_frag_data.branch_type = align_branch_fused;
8820 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8821 }
8822 else if (add_branch_prefix_frag_p ())
8823 {
8824 unsigned int max_prefix_size = align_branch_prefix_size;
8825
8826 /* Make room for padding. */
8827 frag_grow (max_prefix_size);
8828 p = frag_more (0);
8829
8830 fragP = frag_now;
8831
8832 frag_var (rs_machine_dependent, max_prefix_size, 0,
8833 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8834 NULL, 0, p);
8835
8836 fragP->tc_frag_data.max_bytes = max_prefix_size;
8837 }
8838
8839 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8840 don't need the explicit prefix. */
8841 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8842 {
8843 switch (i.tm.opcode_length)
8844 {
8845 case 3:
8846 if (i.tm.base_opcode & 0xff000000)
8847 {
8848 prefix = (i.tm.base_opcode >> 24) & 0xff;
8849 if (!i.tm.cpu_flags.bitfield.cpupadlock
8850 || prefix != REPE_PREFIX_OPCODE
8851 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8852 add_prefix (prefix);
8853 }
8854 break;
8855 case 2:
8856 if ((i.tm.base_opcode & 0xff0000) != 0)
8857 {
8858 prefix = (i.tm.base_opcode >> 16) & 0xff;
8859 add_prefix (prefix);
8860 }
8861 break;
8862 case 1:
8863 break;
8864 case 0:
8865 /* Check for pseudo prefixes. */
8866 as_bad_where (insn_start_frag->fr_file,
8867 insn_start_frag->fr_line,
8868 _("pseudo prefix without instruction"));
8869 return;
8870 default:
8871 abort ();
8872 }
8873
8874 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8875 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8876 R_X86_64_GOTTPOFF relocation so that linker can safely
8877 perform IE->LE optimization. A dummy REX_OPCODE prefix
8878 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8879 relocation for GDesc -> IE/LE optimization. */
8880 if (x86_elf_abi == X86_64_X32_ABI
8881 && i.operands == 2
8882 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8883 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8884 && i.prefix[REX_PREFIX] == 0)
8885 add_prefix (REX_OPCODE);
8886 #endif
8887
8888 /* The prefix bytes. */
8889 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8890 if (*q)
8891 FRAG_APPEND_1_CHAR (*q);
8892 }
8893 else
8894 {
8895 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8896 if (*q)
8897 switch (j)
8898 {
8899 case REX_PREFIX:
8900 /* REX byte is encoded in VEX prefix. */
8901 break;
8902 case SEG_PREFIX:
8903 case ADDR_PREFIX:
8904 FRAG_APPEND_1_CHAR (*q);
8905 break;
8906 default:
8907 /* There should be no other prefixes for instructions
8908 with VEX prefix. */
8909 abort ();
8910 }
8911
8912 /* For EVEX instructions i.vrex should become 0 after
8913 build_evex_prefix. For VEX instructions upper 16 registers
8914 aren't available, so VREX should be 0. */
8915 if (i.vrex)
8916 abort ();
8917 /* Now the VEX prefix. */
8918 p = frag_more (i.vex.length);
8919 for (j = 0; j < i.vex.length; j++)
8920 p[j] = i.vex.bytes[j];
8921 }
8922
8923 /* Now the opcode; be careful about word order here! */
8924 if (i.tm.opcode_length == 1)
8925 {
8926 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8927 }
8928 else
8929 {
8930 switch (i.tm.opcode_length)
8931 {
8932 case 4:
8933 p = frag_more (4);
8934 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8935 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8936 break;
8937 case 3:
8938 p = frag_more (3);
8939 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8940 break;
8941 case 2:
8942 p = frag_more (2);
8943 break;
8944 default:
8945 abort ();
8946 break;
8947 }
8948
8949 /* Put out high byte first: can't use md_number_to_chars! */
8950 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8951 *p = i.tm.base_opcode & 0xff;
8952 }
8953
8954 /* Now the modrm byte and sib byte (if present). */
8955 if (i.tm.opcode_modifier.modrm)
8956 {
8957 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8958 | i.rm.reg << 3
8959 | i.rm.mode << 6));
8960 /* If i.rm.regmem == ESP (4)
8961 && i.rm.mode != (Register mode)
8962 && not 16 bit
8963 ==> need second modrm byte. */
8964 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8965 && i.rm.mode != 3
8966 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8967 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8968 | i.sib.index << 3
8969 | i.sib.scale << 6));
8970 }
8971
8972 if (i.disp_operands)
8973 output_disp (insn_start_frag, insn_start_off);
8974
8975 if (i.imm_operands)
8976 output_imm (insn_start_frag, insn_start_off);
8977
8978 /*
8979 * frag_now_fix () returning plain abs_section_offset when we're in the
8980 * absolute section, and abs_section_offset not getting updated as data
8981 * gets added to the frag breaks the logic below.
8982 */
8983 if (now_seg != absolute_section)
8984 {
8985 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8986 if (j > 15)
8987 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8988 j);
8989 else if (fragP)
8990 {
8991 /* NB: Don't add prefix with GOTPC relocation since
8992 output_disp() above depends on the fixed encoding
8993 length. Can't add prefix with TLS relocation since
8994 it breaks TLS linker optimization. */
8995 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8996 /* Prefix count on the current instruction. */
8997 unsigned int count = i.vex.length;
8998 unsigned int k;
8999 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9000 /* REX byte is encoded in VEX/EVEX prefix. */
9001 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9002 count++;
9003
9004 /* Count prefixes for extended opcode maps. */
9005 if (!i.vex.length)
9006 switch (i.tm.opcode_length)
9007 {
9008 case 3:
9009 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9010 {
9011 count++;
9012 switch ((i.tm.base_opcode >> 8) & 0xff)
9013 {
9014 case 0x38:
9015 case 0x3a:
9016 count++;
9017 break;
9018 default:
9019 break;
9020 }
9021 }
9022 break;
9023 case 2:
9024 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9025 count++;
9026 break;
9027 case 1:
9028 break;
9029 default:
9030 abort ();
9031 }
9032
9033 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9034 == BRANCH_PREFIX)
9035 {
9036 /* Set the maximum prefix size in BRANCH_PREFIX
9037 frag. */
9038 if (fragP->tc_frag_data.max_bytes > max)
9039 fragP->tc_frag_data.max_bytes = max;
9040 if (fragP->tc_frag_data.max_bytes > count)
9041 fragP->tc_frag_data.max_bytes -= count;
9042 else
9043 fragP->tc_frag_data.max_bytes = 0;
9044 }
9045 else
9046 {
9047 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9048 frag. */
9049 unsigned int max_prefix_size;
9050 if (align_branch_prefix_size > max)
9051 max_prefix_size = max;
9052 else
9053 max_prefix_size = align_branch_prefix_size;
9054 if (max_prefix_size > count)
9055 fragP->tc_frag_data.max_prefix_length
9056 = max_prefix_size - count;
9057 }
9058
9059 /* Use existing segment prefix if possible. Use CS
9060 segment prefix in 64-bit mode. In 32-bit mode, use SS
9061 segment prefix with ESP/EBP base register and use DS
9062 segment prefix without ESP/EBP base register. */
9063 if (i.prefix[SEG_PREFIX])
9064 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9065 else if (flag_code == CODE_64BIT)
9066 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9067 else if (i.base_reg
9068 && (i.base_reg->reg_num == 4
9069 || i.base_reg->reg_num == 5))
9070 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9071 else
9072 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9073 }
9074 }
9075 }
9076
9077 /* NB: Don't work with COND_JUMP86 without i386. */
9078 if (align_branch_power
9079 && now_seg != absolute_section
9080 && cpu_arch_flags.bitfield.cpui386)
9081 {
9082 /* Terminate each frag so that we can add prefix and check for
9083 fused jcc. */
9084 frag_wane (frag_now);
9085 frag_new (0);
9086 }
9087
9088 #ifdef DEBUG386
9089 if (flag_debug)
9090 {
9091 pi ("" /*line*/, &i);
9092 }
9093 #endif /* DEBUG386 */
9094 }
9095
9096 /* Return the size of the displacement operand N. */
9097
9098 static int
9099 disp_size (unsigned int n)
9100 {
9101 int size = 4;
9102
9103 if (i.types[n].bitfield.disp64)
9104 size = 8;
9105 else if (i.types[n].bitfield.disp8)
9106 size = 1;
9107 else if (i.types[n].bitfield.disp16)
9108 size = 2;
9109 return size;
9110 }
9111
9112 /* Return the size of the immediate operand N. */
9113
9114 static int
9115 imm_size (unsigned int n)
9116 {
9117 int size = 4;
9118 if (i.types[n].bitfield.imm64)
9119 size = 8;
9120 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9121 size = 1;
9122 else if (i.types[n].bitfield.imm16)
9123 size = 2;
9124 return size;
9125 }
9126
9127 static void
9128 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9129 {
9130 char *p;
9131 unsigned int n;
9132
9133 for (n = 0; n < i.operands; n++)
9134 {
9135 if (operand_type_check (i.types[n], disp))
9136 {
9137 if (i.op[n].disps->X_op == O_constant)
9138 {
9139 int size = disp_size (n);
9140 offsetT val = i.op[n].disps->X_add_number;
9141
9142 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9143 size);
9144 p = frag_more (size);
9145 md_number_to_chars (p, val, size);
9146 }
9147 else
9148 {
9149 enum bfd_reloc_code_real reloc_type;
9150 int size = disp_size (n);
9151 int sign = i.types[n].bitfield.disp32s;
9152 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9153 fixS *fixP;
9154
9155 /* We can't have 8 bit displacement here. */
9156 gas_assert (!i.types[n].bitfield.disp8);
9157
9158 /* The PC relative address is computed relative
9159 to the instruction boundary, so in case immediate
9160 fields follows, we need to adjust the value. */
9161 if (pcrel && i.imm_operands)
9162 {
9163 unsigned int n1;
9164 int sz = 0;
9165
9166 for (n1 = 0; n1 < i.operands; n1++)
9167 if (operand_type_check (i.types[n1], imm))
9168 {
9169 /* Only one immediate is allowed for PC
9170 relative address. */
9171 gas_assert (sz == 0);
9172 sz = imm_size (n1);
9173 i.op[n].disps->X_add_number -= sz;
9174 }
9175 /* We should find the immediate. */
9176 gas_assert (sz != 0);
9177 }
9178
9179 p = frag_more (size);
9180 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9181 if (GOT_symbol
9182 && GOT_symbol == i.op[n].disps->X_add_symbol
9183 && (((reloc_type == BFD_RELOC_32
9184 || reloc_type == BFD_RELOC_X86_64_32S
9185 || (reloc_type == BFD_RELOC_64
9186 && object_64bit))
9187 && (i.op[n].disps->X_op == O_symbol
9188 || (i.op[n].disps->X_op == O_add
9189 && ((symbol_get_value_expression
9190 (i.op[n].disps->X_op_symbol)->X_op)
9191 == O_subtract))))
9192 || reloc_type == BFD_RELOC_32_PCREL))
9193 {
9194 if (!object_64bit)
9195 {
9196 reloc_type = BFD_RELOC_386_GOTPC;
9197 i.has_gotpc_tls_reloc = TRUE;
9198 i.op[n].imms->X_add_number +=
9199 encoding_length (insn_start_frag, insn_start_off, p);
9200 }
9201 else if (reloc_type == BFD_RELOC_64)
9202 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9203 else
9204 /* Don't do the adjustment for x86-64, as there
9205 the pcrel addressing is relative to the _next_
9206 insn, and that is taken care of in other code. */
9207 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9208 }
9209 else if (align_branch_power)
9210 {
9211 switch (reloc_type)
9212 {
9213 case BFD_RELOC_386_TLS_GD:
9214 case BFD_RELOC_386_TLS_LDM:
9215 case BFD_RELOC_386_TLS_IE:
9216 case BFD_RELOC_386_TLS_IE_32:
9217 case BFD_RELOC_386_TLS_GOTIE:
9218 case BFD_RELOC_386_TLS_GOTDESC:
9219 case BFD_RELOC_386_TLS_DESC_CALL:
9220 case BFD_RELOC_X86_64_TLSGD:
9221 case BFD_RELOC_X86_64_TLSLD:
9222 case BFD_RELOC_X86_64_GOTTPOFF:
9223 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9224 case BFD_RELOC_X86_64_TLSDESC_CALL:
9225 i.has_gotpc_tls_reloc = TRUE;
9226 default:
9227 break;
9228 }
9229 }
9230 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9231 size, i.op[n].disps, pcrel,
9232 reloc_type);
9233 /* Check for "call/jmp *mem", "mov mem, %reg",
9234 "test %reg, mem" and "binop mem, %reg" where binop
9235 is one of adc, add, and, cmp, or, sbb, sub, xor
9236 instructions without data prefix. Always generate
9237 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9238 if (i.prefix[DATA_PREFIX] == 0
9239 && (generate_relax_relocations
9240 || (!object_64bit
9241 && i.rm.mode == 0
9242 && i.rm.regmem == 5))
9243 && (i.rm.mode == 2
9244 || (i.rm.mode == 0 && i.rm.regmem == 5))
9245 && !is_any_vex_encoding(&i.tm)
9246 && ((i.operands == 1
9247 && i.tm.base_opcode == 0xff
9248 && (i.rm.reg == 2 || i.rm.reg == 4))
9249 || (i.operands == 2
9250 && (i.tm.base_opcode == 0x8b
9251 || i.tm.base_opcode == 0x85
9252 || (i.tm.base_opcode & ~0x38) == 0x03))))
9253 {
9254 if (object_64bit)
9255 {
9256 fixP->fx_tcbit = i.rex != 0;
9257 if (i.base_reg
9258 && (i.base_reg->reg_num == RegIP))
9259 fixP->fx_tcbit2 = 1;
9260 }
9261 else
9262 fixP->fx_tcbit2 = 1;
9263 }
9264 }
9265 }
9266 }
9267 }
9268
9269 static void
9270 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9271 {
9272 char *p;
9273 unsigned int n;
9274
9275 for (n = 0; n < i.operands; n++)
9276 {
9277 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9278 if (i.rounding && (int) n == i.rounding->operand)
9279 continue;
9280
9281 if (operand_type_check (i.types[n], imm))
9282 {
9283 if (i.op[n].imms->X_op == O_constant)
9284 {
9285 int size = imm_size (n);
9286 offsetT val;
9287
9288 val = offset_in_range (i.op[n].imms->X_add_number,
9289 size);
9290 p = frag_more (size);
9291 md_number_to_chars (p, val, size);
9292 }
9293 else
9294 {
9295 /* Not absolute_section.
9296 Need a 32-bit fixup (don't support 8bit
9297 non-absolute imms). Try to support other
9298 sizes ... */
9299 enum bfd_reloc_code_real reloc_type;
9300 int size = imm_size (n);
9301 int sign;
9302
9303 if (i.types[n].bitfield.imm32s
9304 && (i.suffix == QWORD_MNEM_SUFFIX
9305 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9306 sign = 1;
9307 else
9308 sign = 0;
9309
9310 p = frag_more (size);
9311 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9312
9313 /* This is tough to explain. We end up with this one if we
9314 * have operands that look like
9315 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9316 * obtain the absolute address of the GOT, and it is strongly
9317 * preferable from a performance point of view to avoid using
9318 * a runtime relocation for this. The actual sequence of
9319 * instructions often look something like:
9320 *
9321 * call .L66
9322 * .L66:
9323 * popl %ebx
9324 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9325 *
9326 * The call and pop essentially return the absolute address
9327 * of the label .L66 and store it in %ebx. The linker itself
9328 * will ultimately change the first operand of the addl so
9329 * that %ebx points to the GOT, but to keep things simple, the
9330 * .o file must have this operand set so that it generates not
9331 * the absolute address of .L66, but the absolute address of
9332 * itself. This allows the linker itself simply treat a GOTPC
9333 * relocation as asking for a pcrel offset to the GOT to be
9334 * added in, and the addend of the relocation is stored in the
9335 * operand field for the instruction itself.
9336 *
9337 * Our job here is to fix the operand so that it would add
9338 * the correct offset so that %ebx would point to itself. The
9339 * thing that is tricky is that .-.L66 will point to the
9340 * beginning of the instruction, so we need to further modify
9341 * the operand so that it will point to itself. There are
9342 * other cases where you have something like:
9343 *
9344 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9345 *
9346 * and here no correction would be required. Internally in
9347 * the assembler we treat operands of this form as not being
9348 * pcrel since the '.' is explicitly mentioned, and I wonder
9349 * whether it would simplify matters to do it this way. Who
9350 * knows. In earlier versions of the PIC patches, the
9351 * pcrel_adjust field was used to store the correction, but
9352 * since the expression is not pcrel, I felt it would be
9353 * confusing to do it this way. */
9354
9355 if ((reloc_type == BFD_RELOC_32
9356 || reloc_type == BFD_RELOC_X86_64_32S
9357 || reloc_type == BFD_RELOC_64)
9358 && GOT_symbol
9359 && GOT_symbol == i.op[n].imms->X_add_symbol
9360 && (i.op[n].imms->X_op == O_symbol
9361 || (i.op[n].imms->X_op == O_add
9362 && ((symbol_get_value_expression
9363 (i.op[n].imms->X_op_symbol)->X_op)
9364 == O_subtract))))
9365 {
9366 if (!object_64bit)
9367 reloc_type = BFD_RELOC_386_GOTPC;
9368 else if (size == 4)
9369 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9370 else if (size == 8)
9371 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9372 i.has_gotpc_tls_reloc = TRUE;
9373 i.op[n].imms->X_add_number +=
9374 encoding_length (insn_start_frag, insn_start_off, p);
9375 }
9376 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9377 i.op[n].imms, 0, reloc_type);
9378 }
9379 }
9380 }
9381 }
9382 \f
9383 /* x86_cons_fix_new is called via the expression parsing code when a
9384 reloc is needed. We use this hook to get the correct .got reloc. */
9385 static int cons_sign = -1;
9386
9387 void
9388 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9389 expressionS *exp, bfd_reloc_code_real_type r)
9390 {
9391 r = reloc (len, 0, cons_sign, r);
9392
9393 #ifdef TE_PE
9394 if (exp->X_op == O_secrel)
9395 {
9396 exp->X_op = O_symbol;
9397 r = BFD_RELOC_32_SECREL;
9398 }
9399 #endif
9400
9401 fix_new_exp (frag, off, len, exp, 0, r);
9402 }
9403
9404 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9405 purpose of the `.dc.a' internal pseudo-op. */
9406
9407 int
9408 x86_address_bytes (void)
9409 {
9410 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9411 return 4;
9412 return stdoutput->arch_info->bits_per_address / 8;
9413 }
9414
9415 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9416 || defined (LEX_AT)
9417 # define lex_got(reloc, adjust, types) NULL
9418 #else
9419 /* Parse operands of the form
9420 <symbol>@GOTOFF+<nnn>
9421 and similar .plt or .got references.
9422
9423 If we find one, set up the correct relocation in RELOC and copy the
9424 input string, minus the `@GOTOFF' into a malloc'd buffer for
9425 parsing by the calling routine. Return this buffer, and if ADJUST
9426 is non-null set it to the length of the string we removed from the
9427 input line. Otherwise return NULL. */
9428 static char *
9429 lex_got (enum bfd_reloc_code_real *rel,
9430 int *adjust,
9431 i386_operand_type *types)
9432 {
9433 /* Some of the relocations depend on the size of what field is to
9434 be relocated. But in our callers i386_immediate and i386_displacement
9435 we don't yet know the operand size (this will be set by insn
9436 matching). Hence we record the word32 relocation here,
9437 and adjust the reloc according to the real size in reloc(). */
9438 static const struct {
9439 const char *str;
9440 int len;
9441 const enum bfd_reloc_code_real rel[2];
9442 const i386_operand_type types64;
9443 } gotrel[] = {
9444 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9445 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9446 BFD_RELOC_SIZE32 },
9447 OPERAND_TYPE_IMM32_64 },
9448 #endif
9449 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9450 BFD_RELOC_X86_64_PLTOFF64 },
9451 OPERAND_TYPE_IMM64 },
9452 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9453 BFD_RELOC_X86_64_PLT32 },
9454 OPERAND_TYPE_IMM32_32S_DISP32 },
9455 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9456 BFD_RELOC_X86_64_GOTPLT64 },
9457 OPERAND_TYPE_IMM64_DISP64 },
9458 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9459 BFD_RELOC_X86_64_GOTOFF64 },
9460 OPERAND_TYPE_IMM64_DISP64 },
9461 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9462 BFD_RELOC_X86_64_GOTPCREL },
9463 OPERAND_TYPE_IMM32_32S_DISP32 },
9464 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9465 BFD_RELOC_X86_64_TLSGD },
9466 OPERAND_TYPE_IMM32_32S_DISP32 },
9467 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9468 _dummy_first_bfd_reloc_code_real },
9469 OPERAND_TYPE_NONE },
9470 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9471 BFD_RELOC_X86_64_TLSLD },
9472 OPERAND_TYPE_IMM32_32S_DISP32 },
9473 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9474 BFD_RELOC_X86_64_GOTTPOFF },
9475 OPERAND_TYPE_IMM32_32S_DISP32 },
9476 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9477 BFD_RELOC_X86_64_TPOFF32 },
9478 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9479 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9480 _dummy_first_bfd_reloc_code_real },
9481 OPERAND_TYPE_NONE },
9482 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9483 BFD_RELOC_X86_64_DTPOFF32 },
9484 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9485 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9486 _dummy_first_bfd_reloc_code_real },
9487 OPERAND_TYPE_NONE },
9488 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9489 _dummy_first_bfd_reloc_code_real },
9490 OPERAND_TYPE_NONE },
9491 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9492 BFD_RELOC_X86_64_GOT32 },
9493 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9494 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9495 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9496 OPERAND_TYPE_IMM32_32S_DISP32 },
9497 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9498 BFD_RELOC_X86_64_TLSDESC_CALL },
9499 OPERAND_TYPE_IMM32_32S_DISP32 },
9500 };
9501 char *cp;
9502 unsigned int j;
9503
9504 #if defined (OBJ_MAYBE_ELF)
9505 if (!IS_ELF)
9506 return NULL;
9507 #endif
9508
9509 for (cp = input_line_pointer; *cp != '@'; cp++)
9510 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9511 return NULL;
9512
9513 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9514 {
9515 int len = gotrel[j].len;
9516 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9517 {
9518 if (gotrel[j].rel[object_64bit] != 0)
9519 {
9520 int first, second;
9521 char *tmpbuf, *past_reloc;
9522
9523 *rel = gotrel[j].rel[object_64bit];
9524
9525 if (types)
9526 {
9527 if (flag_code != CODE_64BIT)
9528 {
9529 types->bitfield.imm32 = 1;
9530 types->bitfield.disp32 = 1;
9531 }
9532 else
9533 *types = gotrel[j].types64;
9534 }
9535
9536 if (j != 0 && GOT_symbol == NULL)
9537 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9538
9539 /* The length of the first part of our input line. */
9540 first = cp - input_line_pointer;
9541
9542 /* The second part goes from after the reloc token until
9543 (and including) an end_of_line char or comma. */
9544 past_reloc = cp + 1 + len;
9545 cp = past_reloc;
9546 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9547 ++cp;
9548 second = cp + 1 - past_reloc;
9549
9550 /* Allocate and copy string. The trailing NUL shouldn't
9551 be necessary, but be safe. */
9552 tmpbuf = XNEWVEC (char, first + second + 2);
9553 memcpy (tmpbuf, input_line_pointer, first);
9554 if (second != 0 && *past_reloc != ' ')
9555 /* Replace the relocation token with ' ', so that
9556 errors like foo@GOTOFF1 will be detected. */
9557 tmpbuf[first++] = ' ';
9558 else
9559 /* Increment length by 1 if the relocation token is
9560 removed. */
9561 len++;
9562 if (adjust)
9563 *adjust = len;
9564 memcpy (tmpbuf + first, past_reloc, second);
9565 tmpbuf[first + second] = '\0';
9566 return tmpbuf;
9567 }
9568
9569 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9570 gotrel[j].str, 1 << (5 + object_64bit));
9571 return NULL;
9572 }
9573 }
9574
9575 /* Might be a symbol version string. Don't as_bad here. */
9576 return NULL;
9577 }
9578 #endif
9579
9580 #ifdef TE_PE
9581 #ifdef lex_got
9582 #undef lex_got
9583 #endif
9584 /* Parse operands of the form
9585 <symbol>@SECREL32+<nnn>
9586
9587 If we find one, set up the correct relocation in RELOC and copy the
9588 input string, minus the `@SECREL32' into a malloc'd buffer for
9589 parsing by the calling routine. Return this buffer, and if ADJUST
9590 is non-null set it to the length of the string we removed from the
9591 input line. Otherwise return NULL.
9592
9593 This function is copied from the ELF version above adjusted for PE targets. */
9594
9595 static char *
9596 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9597 int *adjust ATTRIBUTE_UNUSED,
9598 i386_operand_type *types)
9599 {
9600 static const struct
9601 {
9602 const char *str;
9603 int len;
9604 const enum bfd_reloc_code_real rel[2];
9605 const i386_operand_type types64;
9606 }
9607 gotrel[] =
9608 {
9609 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9610 BFD_RELOC_32_SECREL },
9611 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9612 };
9613
9614 char *cp;
9615 unsigned j;
9616
9617 for (cp = input_line_pointer; *cp != '@'; cp++)
9618 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9619 return NULL;
9620
9621 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9622 {
9623 int len = gotrel[j].len;
9624
9625 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9626 {
9627 if (gotrel[j].rel[object_64bit] != 0)
9628 {
9629 int first, second;
9630 char *tmpbuf, *past_reloc;
9631
9632 *rel = gotrel[j].rel[object_64bit];
9633 if (adjust)
9634 *adjust = len;
9635
9636 if (types)
9637 {
9638 if (flag_code != CODE_64BIT)
9639 {
9640 types->bitfield.imm32 = 1;
9641 types->bitfield.disp32 = 1;
9642 }
9643 else
9644 *types = gotrel[j].types64;
9645 }
9646
9647 /* The length of the first part of our input line. */
9648 first = cp - input_line_pointer;
9649
9650 /* The second part goes from after the reloc token until
9651 (and including) an end_of_line char or comma. */
9652 past_reloc = cp + 1 + len;
9653 cp = past_reloc;
9654 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9655 ++cp;
9656 second = cp + 1 - past_reloc;
9657
9658 /* Allocate and copy string. The trailing NUL shouldn't
9659 be necessary, but be safe. */
9660 tmpbuf = XNEWVEC (char, first + second + 2);
9661 memcpy (tmpbuf, input_line_pointer, first);
9662 if (second != 0 && *past_reloc != ' ')
9663 /* Replace the relocation token with ' ', so that
9664 errors like foo@SECLREL321 will be detected. */
9665 tmpbuf[first++] = ' ';
9666 memcpy (tmpbuf + first, past_reloc, second);
9667 tmpbuf[first + second] = '\0';
9668 return tmpbuf;
9669 }
9670
9671 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9672 gotrel[j].str, 1 << (5 + object_64bit));
9673 return NULL;
9674 }
9675 }
9676
9677 /* Might be a symbol version string. Don't as_bad here. */
9678 return NULL;
9679 }
9680
9681 #endif /* TE_PE */
9682
9683 bfd_reloc_code_real_type
9684 x86_cons (expressionS *exp, int size)
9685 {
9686 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9687
9688 intel_syntax = -intel_syntax;
9689
9690 exp->X_md = 0;
9691 if (size == 4 || (object_64bit && size == 8))
9692 {
9693 /* Handle @GOTOFF and the like in an expression. */
9694 char *save;
9695 char *gotfree_input_line;
9696 int adjust = 0;
9697
9698 save = input_line_pointer;
9699 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9700 if (gotfree_input_line)
9701 input_line_pointer = gotfree_input_line;
9702
9703 expression (exp);
9704
9705 if (gotfree_input_line)
9706 {
9707 /* expression () has merrily parsed up to the end of line,
9708 or a comma - in the wrong buffer. Transfer how far
9709 input_line_pointer has moved to the right buffer. */
9710 input_line_pointer = (save
9711 + (input_line_pointer - gotfree_input_line)
9712 + adjust);
9713 free (gotfree_input_line);
9714 if (exp->X_op == O_constant
9715 || exp->X_op == O_absent
9716 || exp->X_op == O_illegal
9717 || exp->X_op == O_register
9718 || exp->X_op == O_big)
9719 {
9720 char c = *input_line_pointer;
9721 *input_line_pointer = 0;
9722 as_bad (_("missing or invalid expression `%s'"), save);
9723 *input_line_pointer = c;
9724 }
9725 else if ((got_reloc == BFD_RELOC_386_PLT32
9726 || got_reloc == BFD_RELOC_X86_64_PLT32)
9727 && exp->X_op != O_symbol)
9728 {
9729 char c = *input_line_pointer;
9730 *input_line_pointer = 0;
9731 as_bad (_("invalid PLT expression `%s'"), save);
9732 *input_line_pointer = c;
9733 }
9734 }
9735 }
9736 else
9737 expression (exp);
9738
9739 intel_syntax = -intel_syntax;
9740
9741 if (intel_syntax)
9742 i386_intel_simplify (exp);
9743
9744 return got_reloc;
9745 }
9746
9747 static void
9748 signed_cons (int size)
9749 {
9750 if (flag_code == CODE_64BIT)
9751 cons_sign = 1;
9752 cons (size);
9753 cons_sign = -1;
9754 }
9755
9756 #ifdef TE_PE
9757 static void
9758 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9759 {
9760 expressionS exp;
9761
9762 do
9763 {
9764 expression (&exp);
9765 if (exp.X_op == O_symbol)
9766 exp.X_op = O_secrel;
9767
9768 emit_expr (&exp, 4);
9769 }
9770 while (*input_line_pointer++ == ',');
9771
9772 input_line_pointer--;
9773 demand_empty_rest_of_line ();
9774 }
9775 #endif
9776
9777 /* Handle Vector operations. */
9778
9779 static char *
9780 check_VecOperations (char *op_string, char *op_end)
9781 {
9782 const reg_entry *mask;
9783 const char *saved;
9784 char *end_op;
9785
9786 while (*op_string
9787 && (op_end == NULL || op_string < op_end))
9788 {
9789 saved = op_string;
9790 if (*op_string == '{')
9791 {
9792 op_string++;
9793
9794 /* Check broadcasts. */
9795 if (strncmp (op_string, "1to", 3) == 0)
9796 {
9797 int bcst_type;
9798
9799 if (i.broadcast)
9800 goto duplicated_vec_op;
9801
9802 op_string += 3;
9803 if (*op_string == '8')
9804 bcst_type = 8;
9805 else if (*op_string == '4')
9806 bcst_type = 4;
9807 else if (*op_string == '2')
9808 bcst_type = 2;
9809 else if (*op_string == '1'
9810 && *(op_string+1) == '6')
9811 {
9812 bcst_type = 16;
9813 op_string++;
9814 }
9815 else
9816 {
9817 as_bad (_("Unsupported broadcast: `%s'"), saved);
9818 return NULL;
9819 }
9820 op_string++;
9821
9822 broadcast_op.type = bcst_type;
9823 broadcast_op.operand = this_operand;
9824 broadcast_op.bytes = 0;
9825 i.broadcast = &broadcast_op;
9826 }
9827 /* Check masking operation. */
9828 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9829 {
9830 /* k0 can't be used for write mask. */
9831 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9832 {
9833 as_bad (_("`%s%s' can't be used for write mask"),
9834 register_prefix, mask->reg_name);
9835 return NULL;
9836 }
9837
9838 if (!i.mask)
9839 {
9840 mask_op.mask = mask;
9841 mask_op.zeroing = 0;
9842 mask_op.operand = this_operand;
9843 i.mask = &mask_op;
9844 }
9845 else
9846 {
9847 if (i.mask->mask)
9848 goto duplicated_vec_op;
9849
9850 i.mask->mask = mask;
9851
9852 /* Only "{z}" is allowed here. No need to check
9853 zeroing mask explicitly. */
9854 if (i.mask->operand != this_operand)
9855 {
9856 as_bad (_("invalid write mask `%s'"), saved);
9857 return NULL;
9858 }
9859 }
9860
9861 op_string = end_op;
9862 }
9863 /* Check zeroing-flag for masking operation. */
9864 else if (*op_string == 'z')
9865 {
9866 if (!i.mask)
9867 {
9868 mask_op.mask = NULL;
9869 mask_op.zeroing = 1;
9870 mask_op.operand = this_operand;
9871 i.mask = &mask_op;
9872 }
9873 else
9874 {
9875 if (i.mask->zeroing)
9876 {
9877 duplicated_vec_op:
9878 as_bad (_("duplicated `%s'"), saved);
9879 return NULL;
9880 }
9881
9882 i.mask->zeroing = 1;
9883
9884 /* Only "{%k}" is allowed here. No need to check mask
9885 register explicitly. */
9886 if (i.mask->operand != this_operand)
9887 {
9888 as_bad (_("invalid zeroing-masking `%s'"),
9889 saved);
9890 return NULL;
9891 }
9892 }
9893
9894 op_string++;
9895 }
9896 else
9897 goto unknown_vec_op;
9898
9899 if (*op_string != '}')
9900 {
9901 as_bad (_("missing `}' in `%s'"), saved);
9902 return NULL;
9903 }
9904 op_string++;
9905
9906 /* Strip whitespace since the addition of pseudo prefixes
9907 changed how the scrubber treats '{'. */
9908 if (is_space_char (*op_string))
9909 ++op_string;
9910
9911 continue;
9912 }
9913 unknown_vec_op:
9914 /* We don't know this one. */
9915 as_bad (_("unknown vector operation: `%s'"), saved);
9916 return NULL;
9917 }
9918
9919 if (i.mask && i.mask->zeroing && !i.mask->mask)
9920 {
9921 as_bad (_("zeroing-masking only allowed with write mask"));
9922 return NULL;
9923 }
9924
9925 return op_string;
9926 }
9927
9928 static int
9929 i386_immediate (char *imm_start)
9930 {
9931 char *save_input_line_pointer;
9932 char *gotfree_input_line;
9933 segT exp_seg = 0;
9934 expressionS *exp;
9935 i386_operand_type types;
9936
9937 operand_type_set (&types, ~0);
9938
9939 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9940 {
9941 as_bad (_("at most %d immediate operands are allowed"),
9942 MAX_IMMEDIATE_OPERANDS);
9943 return 0;
9944 }
9945
9946 exp = &im_expressions[i.imm_operands++];
9947 i.op[this_operand].imms = exp;
9948
9949 if (is_space_char (*imm_start))
9950 ++imm_start;
9951
9952 save_input_line_pointer = input_line_pointer;
9953 input_line_pointer = imm_start;
9954
9955 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9956 if (gotfree_input_line)
9957 input_line_pointer = gotfree_input_line;
9958
9959 exp_seg = expression (exp);
9960
9961 SKIP_WHITESPACE ();
9962
9963 /* Handle vector operations. */
9964 if (*input_line_pointer == '{')
9965 {
9966 input_line_pointer = check_VecOperations (input_line_pointer,
9967 NULL);
9968 if (input_line_pointer == NULL)
9969 return 0;
9970 }
9971
9972 if (*input_line_pointer)
9973 as_bad (_("junk `%s' after expression"), input_line_pointer);
9974
9975 input_line_pointer = save_input_line_pointer;
9976 if (gotfree_input_line)
9977 {
9978 free (gotfree_input_line);
9979
9980 if (exp->X_op == O_constant || exp->X_op == O_register)
9981 exp->X_op = O_illegal;
9982 }
9983
9984 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9985 }
9986
9987 static int
9988 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9989 i386_operand_type types, const char *imm_start)
9990 {
9991 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9992 {
9993 if (imm_start)
9994 as_bad (_("missing or invalid immediate expression `%s'"),
9995 imm_start);
9996 return 0;
9997 }
9998 else if (exp->X_op == O_constant)
9999 {
10000 /* Size it properly later. */
10001 i.types[this_operand].bitfield.imm64 = 1;
10002 /* If not 64bit, sign extend val. */
10003 if (flag_code != CODE_64BIT
10004 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10005 exp->X_add_number
10006 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10007 }
10008 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10009 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10010 && exp_seg != absolute_section
10011 && exp_seg != text_section
10012 && exp_seg != data_section
10013 && exp_seg != bss_section
10014 && exp_seg != undefined_section
10015 && !bfd_is_com_section (exp_seg))
10016 {
10017 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10018 return 0;
10019 }
10020 #endif
10021 else if (!intel_syntax && exp_seg == reg_section)
10022 {
10023 if (imm_start)
10024 as_bad (_("illegal immediate register operand %s"), imm_start);
10025 return 0;
10026 }
10027 else
10028 {
10029 /* This is an address. The size of the address will be
10030 determined later, depending on destination register,
10031 suffix, or the default for the section. */
10032 i.types[this_operand].bitfield.imm8 = 1;
10033 i.types[this_operand].bitfield.imm16 = 1;
10034 i.types[this_operand].bitfield.imm32 = 1;
10035 i.types[this_operand].bitfield.imm32s = 1;
10036 i.types[this_operand].bitfield.imm64 = 1;
10037 i.types[this_operand] = operand_type_and (i.types[this_operand],
10038 types);
10039 }
10040
10041 return 1;
10042 }
10043
10044 static char *
10045 i386_scale (char *scale)
10046 {
10047 offsetT val;
10048 char *save = input_line_pointer;
10049
10050 input_line_pointer = scale;
10051 val = get_absolute_expression ();
10052
10053 switch (val)
10054 {
10055 case 1:
10056 i.log2_scale_factor = 0;
10057 break;
10058 case 2:
10059 i.log2_scale_factor = 1;
10060 break;
10061 case 4:
10062 i.log2_scale_factor = 2;
10063 break;
10064 case 8:
10065 i.log2_scale_factor = 3;
10066 break;
10067 default:
10068 {
10069 char sep = *input_line_pointer;
10070
10071 *input_line_pointer = '\0';
10072 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10073 scale);
10074 *input_line_pointer = sep;
10075 input_line_pointer = save;
10076 return NULL;
10077 }
10078 }
10079 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10080 {
10081 as_warn (_("scale factor of %d without an index register"),
10082 1 << i.log2_scale_factor);
10083 i.log2_scale_factor = 0;
10084 }
10085 scale = input_line_pointer;
10086 input_line_pointer = save;
10087 return scale;
10088 }
10089
10090 static int
10091 i386_displacement (char *disp_start, char *disp_end)
10092 {
10093 expressionS *exp;
10094 segT exp_seg = 0;
10095 char *save_input_line_pointer;
10096 char *gotfree_input_line;
10097 int override;
10098 i386_operand_type bigdisp, types = anydisp;
10099 int ret;
10100
10101 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10102 {
10103 as_bad (_("at most %d displacement operands are allowed"),
10104 MAX_MEMORY_OPERANDS);
10105 return 0;
10106 }
10107
10108 operand_type_set (&bigdisp, 0);
10109 if (i.jumpabsolute
10110 || i.types[this_operand].bitfield.baseindex
10111 || (current_templates->start->opcode_modifier.jump != JUMP
10112 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10113 {
10114 i386_addressing_mode ();
10115 override = (i.prefix[ADDR_PREFIX] != 0);
10116 if (flag_code == CODE_64BIT)
10117 {
10118 if (!override)
10119 {
10120 bigdisp.bitfield.disp32s = 1;
10121 bigdisp.bitfield.disp64 = 1;
10122 }
10123 else
10124 bigdisp.bitfield.disp32 = 1;
10125 }
10126 else if ((flag_code == CODE_16BIT) ^ override)
10127 bigdisp.bitfield.disp16 = 1;
10128 else
10129 bigdisp.bitfield.disp32 = 1;
10130 }
10131 else
10132 {
10133 /* For PC-relative branches, the width of the displacement may be
10134 dependent upon data size, but is never dependent upon address size.
10135 Also make sure to not unintentionally match against a non-PC-relative
10136 branch template. */
10137 static templates aux_templates;
10138 const insn_template *t = current_templates->start;
10139 bfd_boolean has_intel64 = FALSE;
10140
10141 aux_templates.start = t;
10142 while (++t < current_templates->end)
10143 {
10144 if (t->opcode_modifier.jump
10145 != current_templates->start->opcode_modifier.jump)
10146 break;
10147 if ((t->opcode_modifier.isa64 >= INTEL64))
10148 has_intel64 = TRUE;
10149 }
10150 if (t < current_templates->end)
10151 {
10152 aux_templates.end = t;
10153 current_templates = &aux_templates;
10154 }
10155
10156 override = (i.prefix[DATA_PREFIX] != 0);
10157 if (flag_code == CODE_64BIT)
10158 {
10159 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10160 && (!intel64 || !has_intel64))
10161 bigdisp.bitfield.disp16 = 1;
10162 else
10163 bigdisp.bitfield.disp32s = 1;
10164 }
10165 else
10166 {
10167 if (!override)
10168 override = (i.suffix == (flag_code != CODE_16BIT
10169 ? WORD_MNEM_SUFFIX
10170 : LONG_MNEM_SUFFIX));
10171 bigdisp.bitfield.disp32 = 1;
10172 if ((flag_code == CODE_16BIT) ^ override)
10173 {
10174 bigdisp.bitfield.disp32 = 0;
10175 bigdisp.bitfield.disp16 = 1;
10176 }
10177 }
10178 }
10179 i.types[this_operand] = operand_type_or (i.types[this_operand],
10180 bigdisp);
10181
10182 exp = &disp_expressions[i.disp_operands];
10183 i.op[this_operand].disps = exp;
10184 i.disp_operands++;
10185 save_input_line_pointer = input_line_pointer;
10186 input_line_pointer = disp_start;
10187 END_STRING_AND_SAVE (disp_end);
10188
10189 #ifndef GCC_ASM_O_HACK
10190 #define GCC_ASM_O_HACK 0
10191 #endif
10192 #if GCC_ASM_O_HACK
10193 END_STRING_AND_SAVE (disp_end + 1);
10194 if (i.types[this_operand].bitfield.baseIndex
10195 && displacement_string_end[-1] == '+')
10196 {
10197 /* This hack is to avoid a warning when using the "o"
10198 constraint within gcc asm statements.
10199 For instance:
10200
10201 #define _set_tssldt_desc(n,addr,limit,type) \
10202 __asm__ __volatile__ ( \
10203 "movw %w2,%0\n\t" \
10204 "movw %w1,2+%0\n\t" \
10205 "rorl $16,%1\n\t" \
10206 "movb %b1,4+%0\n\t" \
10207 "movb %4,5+%0\n\t" \
10208 "movb $0,6+%0\n\t" \
10209 "movb %h1,7+%0\n\t" \
10210 "rorl $16,%1" \
10211 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10212
10213 This works great except that the output assembler ends
10214 up looking a bit weird if it turns out that there is
10215 no offset. You end up producing code that looks like:
10216
10217 #APP
10218 movw $235,(%eax)
10219 movw %dx,2+(%eax)
10220 rorl $16,%edx
10221 movb %dl,4+(%eax)
10222 movb $137,5+(%eax)
10223 movb $0,6+(%eax)
10224 movb %dh,7+(%eax)
10225 rorl $16,%edx
10226 #NO_APP
10227
10228 So here we provide the missing zero. */
10229
10230 *displacement_string_end = '0';
10231 }
10232 #endif
10233 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10234 if (gotfree_input_line)
10235 input_line_pointer = gotfree_input_line;
10236
10237 exp_seg = expression (exp);
10238
10239 SKIP_WHITESPACE ();
10240 if (*input_line_pointer)
10241 as_bad (_("junk `%s' after expression"), input_line_pointer);
10242 #if GCC_ASM_O_HACK
10243 RESTORE_END_STRING (disp_end + 1);
10244 #endif
10245 input_line_pointer = save_input_line_pointer;
10246 if (gotfree_input_line)
10247 {
10248 free (gotfree_input_line);
10249
10250 if (exp->X_op == O_constant || exp->X_op == O_register)
10251 exp->X_op = O_illegal;
10252 }
10253
10254 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10255
10256 RESTORE_END_STRING (disp_end);
10257
10258 return ret;
10259 }
10260
10261 static int
10262 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10263 i386_operand_type types, const char *disp_start)
10264 {
10265 i386_operand_type bigdisp;
10266 int ret = 1;
10267
10268 /* We do this to make sure that the section symbol is in
10269 the symbol table. We will ultimately change the relocation
10270 to be relative to the beginning of the section. */
10271 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10272 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10273 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10274 {
10275 if (exp->X_op != O_symbol)
10276 goto inv_disp;
10277
10278 if (S_IS_LOCAL (exp->X_add_symbol)
10279 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10280 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10281 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10282 exp->X_op = O_subtract;
10283 exp->X_op_symbol = GOT_symbol;
10284 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10285 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10286 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10287 i.reloc[this_operand] = BFD_RELOC_64;
10288 else
10289 i.reloc[this_operand] = BFD_RELOC_32;
10290 }
10291
10292 else if (exp->X_op == O_absent
10293 || exp->X_op == O_illegal
10294 || exp->X_op == O_big)
10295 {
10296 inv_disp:
10297 as_bad (_("missing or invalid displacement expression `%s'"),
10298 disp_start);
10299 ret = 0;
10300 }
10301
10302 else if (flag_code == CODE_64BIT
10303 && !i.prefix[ADDR_PREFIX]
10304 && exp->X_op == O_constant)
10305 {
10306 /* Since displacement is signed extended to 64bit, don't allow
10307 disp32 and turn off disp32s if they are out of range. */
10308 i.types[this_operand].bitfield.disp32 = 0;
10309 if (!fits_in_signed_long (exp->X_add_number))
10310 {
10311 i.types[this_operand].bitfield.disp32s = 0;
10312 if (i.types[this_operand].bitfield.baseindex)
10313 {
10314 as_bad (_("0x%lx out range of signed 32bit displacement"),
10315 (long) exp->X_add_number);
10316 ret = 0;
10317 }
10318 }
10319 }
10320
10321 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10322 else if (exp->X_op != O_constant
10323 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10324 && exp_seg != absolute_section
10325 && exp_seg != text_section
10326 && exp_seg != data_section
10327 && exp_seg != bss_section
10328 && exp_seg != undefined_section
10329 && !bfd_is_com_section (exp_seg))
10330 {
10331 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10332 ret = 0;
10333 }
10334 #endif
10335
10336 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10337 /* Constants get taken care of by optimize_disp(). */
10338 && exp->X_op != O_constant)
10339 i.types[this_operand].bitfield.disp8 = 1;
10340
10341 /* Check if this is a displacement only operand. */
10342 bigdisp = i.types[this_operand];
10343 bigdisp.bitfield.disp8 = 0;
10344 bigdisp.bitfield.disp16 = 0;
10345 bigdisp.bitfield.disp32 = 0;
10346 bigdisp.bitfield.disp32s = 0;
10347 bigdisp.bitfield.disp64 = 0;
10348 if (operand_type_all_zero (&bigdisp))
10349 i.types[this_operand] = operand_type_and (i.types[this_operand],
10350 types);
10351
10352 return ret;
10353 }
10354
10355 /* Return the active addressing mode, taking address override and
10356 registers forming the address into consideration. Update the
10357 address override prefix if necessary. */
10358
10359 static enum flag_code
10360 i386_addressing_mode (void)
10361 {
10362 enum flag_code addr_mode;
10363
10364 if (i.prefix[ADDR_PREFIX])
10365 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10366 else if (flag_code == CODE_16BIT
10367 && current_templates->start->cpu_flags.bitfield.cpumpx
10368 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10369 from md_assemble() by "is not a valid base/index expression"
10370 when there is a base and/or index. */
10371 && !i.types[this_operand].bitfield.baseindex)
10372 {
10373 /* MPX insn memory operands with neither base nor index must be forced
10374 to use 32-bit addressing in 16-bit mode. */
10375 addr_mode = CODE_32BIT;
10376 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10377 ++i.prefixes;
10378 gas_assert (!i.types[this_operand].bitfield.disp16);
10379 gas_assert (!i.types[this_operand].bitfield.disp32);
10380 }
10381 else
10382 {
10383 addr_mode = flag_code;
10384
10385 #if INFER_ADDR_PREFIX
10386 if (i.mem_operands == 0)
10387 {
10388 /* Infer address prefix from the first memory operand. */
10389 const reg_entry *addr_reg = i.base_reg;
10390
10391 if (addr_reg == NULL)
10392 addr_reg = i.index_reg;
10393
10394 if (addr_reg)
10395 {
10396 if (addr_reg->reg_type.bitfield.dword)
10397 addr_mode = CODE_32BIT;
10398 else if (flag_code != CODE_64BIT
10399 && addr_reg->reg_type.bitfield.word)
10400 addr_mode = CODE_16BIT;
10401
10402 if (addr_mode != flag_code)
10403 {
10404 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10405 i.prefixes += 1;
10406 /* Change the size of any displacement too. At most one
10407 of Disp16 or Disp32 is set.
10408 FIXME. There doesn't seem to be any real need for
10409 separate Disp16 and Disp32 flags. The same goes for
10410 Imm16 and Imm32. Removing them would probably clean
10411 up the code quite a lot. */
10412 if (flag_code != CODE_64BIT
10413 && (i.types[this_operand].bitfield.disp16
10414 || i.types[this_operand].bitfield.disp32))
10415 i.types[this_operand]
10416 = operand_type_xor (i.types[this_operand], disp16_32);
10417 }
10418 }
10419 }
10420 #endif
10421 }
10422
10423 return addr_mode;
10424 }
10425
10426 /* Make sure the memory operand we've been dealt is valid.
10427 Return 1 on success, 0 on a failure. */
10428
10429 static int
10430 i386_index_check (const char *operand_string)
10431 {
10432 const char *kind = "base/index";
10433 enum flag_code addr_mode = i386_addressing_mode ();
10434
10435 if (current_templates->start->opcode_modifier.isstring
10436 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10437 && (current_templates->end[-1].opcode_modifier.isstring
10438 || i.mem_operands))
10439 {
10440 /* Memory operands of string insns are special in that they only allow
10441 a single register (rDI, rSI, or rBX) as their memory address. */
10442 const reg_entry *expected_reg;
10443 static const char *di_si[][2] =
10444 {
10445 { "esi", "edi" },
10446 { "si", "di" },
10447 { "rsi", "rdi" }
10448 };
10449 static const char *bx[] = { "ebx", "bx", "rbx" };
10450
10451 kind = "string address";
10452
10453 if (current_templates->start->opcode_modifier.repprefixok)
10454 {
10455 int es_op = current_templates->end[-1].opcode_modifier.isstring
10456 - IS_STRING_ES_OP0;
10457 int op = 0;
10458
10459 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10460 || ((!i.mem_operands != !intel_syntax)
10461 && current_templates->end[-1].operand_types[1]
10462 .bitfield.baseindex))
10463 op = 1;
10464 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10465 }
10466 else
10467 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10468
10469 if (i.base_reg != expected_reg
10470 || i.index_reg
10471 || operand_type_check (i.types[this_operand], disp))
10472 {
10473 /* The second memory operand must have the same size as
10474 the first one. */
10475 if (i.mem_operands
10476 && i.base_reg
10477 && !((addr_mode == CODE_64BIT
10478 && i.base_reg->reg_type.bitfield.qword)
10479 || (addr_mode == CODE_32BIT
10480 ? i.base_reg->reg_type.bitfield.dword
10481 : i.base_reg->reg_type.bitfield.word)))
10482 goto bad_address;
10483
10484 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10485 operand_string,
10486 intel_syntax ? '[' : '(',
10487 register_prefix,
10488 expected_reg->reg_name,
10489 intel_syntax ? ']' : ')');
10490 return 1;
10491 }
10492 else
10493 return 1;
10494
10495 bad_address:
10496 as_bad (_("`%s' is not a valid %s expression"),
10497 operand_string, kind);
10498 return 0;
10499 }
10500 else
10501 {
10502 if (addr_mode != CODE_16BIT)
10503 {
10504 /* 32-bit/64-bit checks. */
10505 if ((i.base_reg
10506 && ((addr_mode == CODE_64BIT
10507 ? !i.base_reg->reg_type.bitfield.qword
10508 : !i.base_reg->reg_type.bitfield.dword)
10509 || (i.index_reg && i.base_reg->reg_num == RegIP)
10510 || i.base_reg->reg_num == RegIZ))
10511 || (i.index_reg
10512 && !i.index_reg->reg_type.bitfield.xmmword
10513 && !i.index_reg->reg_type.bitfield.ymmword
10514 && !i.index_reg->reg_type.bitfield.zmmword
10515 && ((addr_mode == CODE_64BIT
10516 ? !i.index_reg->reg_type.bitfield.qword
10517 : !i.index_reg->reg_type.bitfield.dword)
10518 || !i.index_reg->reg_type.bitfield.baseindex)))
10519 goto bad_address;
10520
10521 /* bndmk, bndldx, and bndstx have special restrictions. */
10522 if (current_templates->start->base_opcode == 0xf30f1b
10523 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10524 {
10525 /* They cannot use RIP-relative addressing. */
10526 if (i.base_reg && i.base_reg->reg_num == RegIP)
10527 {
10528 as_bad (_("`%s' cannot be used here"), operand_string);
10529 return 0;
10530 }
10531
10532 /* bndldx and bndstx ignore their scale factor. */
10533 if (current_templates->start->base_opcode != 0xf30f1b
10534 && i.log2_scale_factor)
10535 as_warn (_("register scaling is being ignored here"));
10536 }
10537 }
10538 else
10539 {
10540 /* 16-bit checks. */
10541 if ((i.base_reg
10542 && (!i.base_reg->reg_type.bitfield.word
10543 || !i.base_reg->reg_type.bitfield.baseindex))
10544 || (i.index_reg
10545 && (!i.index_reg->reg_type.bitfield.word
10546 || !i.index_reg->reg_type.bitfield.baseindex
10547 || !(i.base_reg
10548 && i.base_reg->reg_num < 6
10549 && i.index_reg->reg_num >= 6
10550 && i.log2_scale_factor == 0))))
10551 goto bad_address;
10552 }
10553 }
10554 return 1;
10555 }
10556
10557 /* Handle vector immediates. */
10558
10559 static int
10560 RC_SAE_immediate (const char *imm_start)
10561 {
10562 unsigned int match_found, j;
10563 const char *pstr = imm_start;
10564 expressionS *exp;
10565
10566 if (*pstr != '{')
10567 return 0;
10568
10569 pstr++;
10570 match_found = 0;
10571 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10572 {
10573 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10574 {
10575 if (!i.rounding)
10576 {
10577 rc_op.type = RC_NamesTable[j].type;
10578 rc_op.operand = this_operand;
10579 i.rounding = &rc_op;
10580 }
10581 else
10582 {
10583 as_bad (_("duplicated `%s'"), imm_start);
10584 return 0;
10585 }
10586 pstr += RC_NamesTable[j].len;
10587 match_found = 1;
10588 break;
10589 }
10590 }
10591 if (!match_found)
10592 return 0;
10593
10594 if (*pstr++ != '}')
10595 {
10596 as_bad (_("Missing '}': '%s'"), imm_start);
10597 return 0;
10598 }
10599 /* RC/SAE immediate string should contain nothing more. */;
10600 if (*pstr != 0)
10601 {
10602 as_bad (_("Junk after '}': '%s'"), imm_start);
10603 return 0;
10604 }
10605
10606 exp = &im_expressions[i.imm_operands++];
10607 i.op[this_operand].imms = exp;
10608
10609 exp->X_op = O_constant;
10610 exp->X_add_number = 0;
10611 exp->X_add_symbol = (symbolS *) 0;
10612 exp->X_op_symbol = (symbolS *) 0;
10613
10614 i.types[this_operand].bitfield.imm8 = 1;
10615 return 1;
10616 }
10617
10618 /* Only string instructions can have a second memory operand, so
10619 reduce current_templates to just those if it contains any. */
10620 static int
10621 maybe_adjust_templates (void)
10622 {
10623 const insn_template *t;
10624
10625 gas_assert (i.mem_operands == 1);
10626
10627 for (t = current_templates->start; t < current_templates->end; ++t)
10628 if (t->opcode_modifier.isstring)
10629 break;
10630
10631 if (t < current_templates->end)
10632 {
10633 static templates aux_templates;
10634 bfd_boolean recheck;
10635
10636 aux_templates.start = t;
10637 for (; t < current_templates->end; ++t)
10638 if (!t->opcode_modifier.isstring)
10639 break;
10640 aux_templates.end = t;
10641
10642 /* Determine whether to re-check the first memory operand. */
10643 recheck = (aux_templates.start != current_templates->start
10644 || t != current_templates->end);
10645
10646 current_templates = &aux_templates;
10647
10648 if (recheck)
10649 {
10650 i.mem_operands = 0;
10651 if (i.memop1_string != NULL
10652 && i386_index_check (i.memop1_string) == 0)
10653 return 0;
10654 i.mem_operands = 1;
10655 }
10656 }
10657
10658 return 1;
10659 }
10660
10661 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10662 on error. */
10663
10664 static int
10665 i386_att_operand (char *operand_string)
10666 {
10667 const reg_entry *r;
10668 char *end_op;
10669 char *op_string = operand_string;
10670
10671 if (is_space_char (*op_string))
10672 ++op_string;
10673
10674 /* We check for an absolute prefix (differentiating,
10675 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10676 if (*op_string == ABSOLUTE_PREFIX)
10677 {
10678 ++op_string;
10679 if (is_space_char (*op_string))
10680 ++op_string;
10681 i.jumpabsolute = TRUE;
10682 }
10683
10684 /* Check if operand is a register. */
10685 if ((r = parse_register (op_string, &end_op)) != NULL)
10686 {
10687 i386_operand_type temp;
10688
10689 /* Check for a segment override by searching for ':' after a
10690 segment register. */
10691 op_string = end_op;
10692 if (is_space_char (*op_string))
10693 ++op_string;
10694 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10695 {
10696 switch (r->reg_num)
10697 {
10698 case 0:
10699 i.seg[i.mem_operands] = &es;
10700 break;
10701 case 1:
10702 i.seg[i.mem_operands] = &cs;
10703 break;
10704 case 2:
10705 i.seg[i.mem_operands] = &ss;
10706 break;
10707 case 3:
10708 i.seg[i.mem_operands] = &ds;
10709 break;
10710 case 4:
10711 i.seg[i.mem_operands] = &fs;
10712 break;
10713 case 5:
10714 i.seg[i.mem_operands] = &gs;
10715 break;
10716 }
10717
10718 /* Skip the ':' and whitespace. */
10719 ++op_string;
10720 if (is_space_char (*op_string))
10721 ++op_string;
10722
10723 if (!is_digit_char (*op_string)
10724 && !is_identifier_char (*op_string)
10725 && *op_string != '('
10726 && *op_string != ABSOLUTE_PREFIX)
10727 {
10728 as_bad (_("bad memory operand `%s'"), op_string);
10729 return 0;
10730 }
10731 /* Handle case of %es:*foo. */
10732 if (*op_string == ABSOLUTE_PREFIX)
10733 {
10734 ++op_string;
10735 if (is_space_char (*op_string))
10736 ++op_string;
10737 i.jumpabsolute = TRUE;
10738 }
10739 goto do_memory_reference;
10740 }
10741
10742 /* Handle vector operations. */
10743 if (*op_string == '{')
10744 {
10745 op_string = check_VecOperations (op_string, NULL);
10746 if (op_string == NULL)
10747 return 0;
10748 }
10749
10750 if (*op_string)
10751 {
10752 as_bad (_("junk `%s' after register"), op_string);
10753 return 0;
10754 }
10755 temp = r->reg_type;
10756 temp.bitfield.baseindex = 0;
10757 i.types[this_operand] = operand_type_or (i.types[this_operand],
10758 temp);
10759 i.types[this_operand].bitfield.unspecified = 0;
10760 i.op[this_operand].regs = r;
10761 i.reg_operands++;
10762 }
10763 else if (*op_string == REGISTER_PREFIX)
10764 {
10765 as_bad (_("bad register name `%s'"), op_string);
10766 return 0;
10767 }
10768 else if (*op_string == IMMEDIATE_PREFIX)
10769 {
10770 ++op_string;
10771 if (i.jumpabsolute)
10772 {
10773 as_bad (_("immediate operand illegal with absolute jump"));
10774 return 0;
10775 }
10776 if (!i386_immediate (op_string))
10777 return 0;
10778 }
10779 else if (RC_SAE_immediate (operand_string))
10780 {
10781 /* If it is a RC or SAE immediate, do nothing. */
10782 ;
10783 }
10784 else if (is_digit_char (*op_string)
10785 || is_identifier_char (*op_string)
10786 || *op_string == '"'
10787 || *op_string == '(')
10788 {
10789 /* This is a memory reference of some sort. */
10790 char *base_string;
10791
10792 /* Start and end of displacement string expression (if found). */
10793 char *displacement_string_start;
10794 char *displacement_string_end;
10795 char *vop_start;
10796
10797 do_memory_reference:
10798 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10799 return 0;
10800 if ((i.mem_operands == 1
10801 && !current_templates->start->opcode_modifier.isstring)
10802 || i.mem_operands == 2)
10803 {
10804 as_bad (_("too many memory references for `%s'"),
10805 current_templates->start->name);
10806 return 0;
10807 }
10808
10809 /* Check for base index form. We detect the base index form by
10810 looking for an ')' at the end of the operand, searching
10811 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10812 after the '('. */
10813 base_string = op_string + strlen (op_string);
10814
10815 /* Handle vector operations. */
10816 vop_start = strchr (op_string, '{');
10817 if (vop_start && vop_start < base_string)
10818 {
10819 if (check_VecOperations (vop_start, base_string) == NULL)
10820 return 0;
10821 base_string = vop_start;
10822 }
10823
10824 --base_string;
10825 if (is_space_char (*base_string))
10826 --base_string;
10827
10828 /* If we only have a displacement, set-up for it to be parsed later. */
10829 displacement_string_start = op_string;
10830 displacement_string_end = base_string + 1;
10831
10832 if (*base_string == ')')
10833 {
10834 char *temp_string;
10835 unsigned int parens_balanced = 1;
10836 /* We've already checked that the number of left & right ()'s are
10837 equal, so this loop will not be infinite. */
10838 do
10839 {
10840 base_string--;
10841 if (*base_string == ')')
10842 parens_balanced++;
10843 if (*base_string == '(')
10844 parens_balanced--;
10845 }
10846 while (parens_balanced);
10847
10848 temp_string = base_string;
10849
10850 /* Skip past '(' and whitespace. */
10851 ++base_string;
10852 if (is_space_char (*base_string))
10853 ++base_string;
10854
10855 if (*base_string == ','
10856 || ((i.base_reg = parse_register (base_string, &end_op))
10857 != NULL))
10858 {
10859 displacement_string_end = temp_string;
10860
10861 i.types[this_operand].bitfield.baseindex = 1;
10862
10863 if (i.base_reg)
10864 {
10865 base_string = end_op;
10866 if (is_space_char (*base_string))
10867 ++base_string;
10868 }
10869
10870 /* There may be an index reg or scale factor here. */
10871 if (*base_string == ',')
10872 {
10873 ++base_string;
10874 if (is_space_char (*base_string))
10875 ++base_string;
10876
10877 if ((i.index_reg = parse_register (base_string, &end_op))
10878 != NULL)
10879 {
10880 base_string = end_op;
10881 if (is_space_char (*base_string))
10882 ++base_string;
10883 if (*base_string == ',')
10884 {
10885 ++base_string;
10886 if (is_space_char (*base_string))
10887 ++base_string;
10888 }
10889 else if (*base_string != ')')
10890 {
10891 as_bad (_("expecting `,' or `)' "
10892 "after index register in `%s'"),
10893 operand_string);
10894 return 0;
10895 }
10896 }
10897 else if (*base_string == REGISTER_PREFIX)
10898 {
10899 end_op = strchr (base_string, ',');
10900 if (end_op)
10901 *end_op = '\0';
10902 as_bad (_("bad register name `%s'"), base_string);
10903 return 0;
10904 }
10905
10906 /* Check for scale factor. */
10907 if (*base_string != ')')
10908 {
10909 char *end_scale = i386_scale (base_string);
10910
10911 if (!end_scale)
10912 return 0;
10913
10914 base_string = end_scale;
10915 if (is_space_char (*base_string))
10916 ++base_string;
10917 if (*base_string != ')')
10918 {
10919 as_bad (_("expecting `)' "
10920 "after scale factor in `%s'"),
10921 operand_string);
10922 return 0;
10923 }
10924 }
10925 else if (!i.index_reg)
10926 {
10927 as_bad (_("expecting index register or scale factor "
10928 "after `,'; got '%c'"),
10929 *base_string);
10930 return 0;
10931 }
10932 }
10933 else if (*base_string != ')')
10934 {
10935 as_bad (_("expecting `,' or `)' "
10936 "after base register in `%s'"),
10937 operand_string);
10938 return 0;
10939 }
10940 }
10941 else if (*base_string == REGISTER_PREFIX)
10942 {
10943 end_op = strchr (base_string, ',');
10944 if (end_op)
10945 *end_op = '\0';
10946 as_bad (_("bad register name `%s'"), base_string);
10947 return 0;
10948 }
10949 }
10950
10951 /* If there's an expression beginning the operand, parse it,
10952 assuming displacement_string_start and
10953 displacement_string_end are meaningful. */
10954 if (displacement_string_start != displacement_string_end)
10955 {
10956 if (!i386_displacement (displacement_string_start,
10957 displacement_string_end))
10958 return 0;
10959 }
10960
10961 /* Special case for (%dx) while doing input/output op. */
10962 if (i.base_reg
10963 && i.base_reg->reg_type.bitfield.instance == RegD
10964 && i.base_reg->reg_type.bitfield.word
10965 && i.index_reg == 0
10966 && i.log2_scale_factor == 0
10967 && i.seg[i.mem_operands] == 0
10968 && !operand_type_check (i.types[this_operand], disp))
10969 {
10970 i.types[this_operand] = i.base_reg->reg_type;
10971 return 1;
10972 }
10973
10974 if (i386_index_check (operand_string) == 0)
10975 return 0;
10976 i.flags[this_operand] |= Operand_Mem;
10977 if (i.mem_operands == 0)
10978 i.memop1_string = xstrdup (operand_string);
10979 i.mem_operands++;
10980 }
10981 else
10982 {
10983 /* It's not a memory operand; argh! */
10984 as_bad (_("invalid char %s beginning operand %d `%s'"),
10985 output_invalid (*op_string),
10986 this_operand + 1,
10987 op_string);
10988 return 0;
10989 }
10990 return 1; /* Normal return. */
10991 }
10992 \f
10993 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10994 that an rs_machine_dependent frag may reach. */
10995
10996 unsigned int
10997 i386_frag_max_var (fragS *frag)
10998 {
10999 /* The only relaxable frags are for jumps.
11000 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11001 gas_assert (frag->fr_type == rs_machine_dependent);
11002 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11003 }
11004
11005 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11006 static int
11007 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11008 {
11009 /* STT_GNU_IFUNC symbol must go through PLT. */
11010 if ((symbol_get_bfdsym (fr_symbol)->flags
11011 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11012 return 0;
11013
11014 if (!S_IS_EXTERNAL (fr_symbol))
11015 /* Symbol may be weak or local. */
11016 return !S_IS_WEAK (fr_symbol);
11017
11018 /* Global symbols with non-default visibility can't be preempted. */
11019 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11020 return 1;
11021
11022 if (fr_var != NO_RELOC)
11023 switch ((enum bfd_reloc_code_real) fr_var)
11024 {
11025 case BFD_RELOC_386_PLT32:
11026 case BFD_RELOC_X86_64_PLT32:
11027 /* Symbol with PLT relocation may be preempted. */
11028 return 0;
11029 default:
11030 abort ();
11031 }
11032
11033 /* Global symbols with default visibility in a shared library may be
11034 preempted by another definition. */
11035 return !shared;
11036 }
11037 #endif
11038
11039 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11040 Note also work for Skylake and Cascadelake.
11041 ---------------------------------------------------------------------
11042 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11043 | ------ | ----------- | ------- | -------- |
11044 | Jo | N | N | Y |
11045 | Jno | N | N | Y |
11046 | Jc/Jb | Y | N | Y |
11047 | Jae/Jnb | Y | N | Y |
11048 | Je/Jz | Y | Y | Y |
11049 | Jne/Jnz | Y | Y | Y |
11050 | Jna/Jbe | Y | N | Y |
11051 | Ja/Jnbe | Y | N | Y |
11052 | Js | N | N | Y |
11053 | Jns | N | N | Y |
11054 | Jp/Jpe | N | N | Y |
11055 | Jnp/Jpo | N | N | Y |
11056 | Jl/Jnge | Y | Y | Y |
11057 | Jge/Jnl | Y | Y | Y |
11058 | Jle/Jng | Y | Y | Y |
11059 | Jg/Jnle | Y | Y | Y |
11060 --------------------------------------------------------------------- */
11061 static int
11062 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11063 {
11064 if (mf_cmp == mf_cmp_alu_cmp)
11065 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11066 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11067 if (mf_cmp == mf_cmp_incdec)
11068 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11069 || mf_jcc == mf_jcc_jle);
11070 if (mf_cmp == mf_cmp_test_and)
11071 return 1;
11072 return 0;
11073 }
11074
11075 /* Return the next non-empty frag. */
11076
11077 static fragS *
11078 i386_next_non_empty_frag (fragS *fragP)
11079 {
11080 /* There may be a frag with a ".fill 0" when there is no room in
11081 the current frag for frag_grow in output_insn. */
11082 for (fragP = fragP->fr_next;
11083 (fragP != NULL
11084 && fragP->fr_type == rs_fill
11085 && fragP->fr_fix == 0);
11086 fragP = fragP->fr_next)
11087 ;
11088 return fragP;
11089 }
11090
11091 /* Return the next jcc frag after BRANCH_PADDING. */
11092
11093 static fragS *
11094 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11095 {
11096 fragS *branch_fragP;
11097 if (!pad_fragP)
11098 return NULL;
11099
11100 if (pad_fragP->fr_type == rs_machine_dependent
11101 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11102 == BRANCH_PADDING))
11103 {
11104 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11105 if (branch_fragP->fr_type != rs_machine_dependent)
11106 return NULL;
11107 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11108 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11109 pad_fragP->tc_frag_data.mf_type))
11110 return branch_fragP;
11111 }
11112
11113 return NULL;
11114 }
11115
11116 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11117
11118 static void
11119 i386_classify_machine_dependent_frag (fragS *fragP)
11120 {
11121 fragS *cmp_fragP;
11122 fragS *pad_fragP;
11123 fragS *branch_fragP;
11124 fragS *next_fragP;
11125 unsigned int max_prefix_length;
11126
11127 if (fragP->tc_frag_data.classified)
11128 return;
11129
11130 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11131 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11132 for (next_fragP = fragP;
11133 next_fragP != NULL;
11134 next_fragP = next_fragP->fr_next)
11135 {
11136 next_fragP->tc_frag_data.classified = 1;
11137 if (next_fragP->fr_type == rs_machine_dependent)
11138 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11139 {
11140 case BRANCH_PADDING:
11141 /* The BRANCH_PADDING frag must be followed by a branch
11142 frag. */
11143 branch_fragP = i386_next_non_empty_frag (next_fragP);
11144 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11145 break;
11146 case FUSED_JCC_PADDING:
11147 /* Check if this is a fused jcc:
11148 FUSED_JCC_PADDING
11149 CMP like instruction
11150 BRANCH_PADDING
11151 COND_JUMP
11152 */
11153 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11154 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11155 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11156 if (branch_fragP)
11157 {
11158 /* The BRANCH_PADDING frag is merged with the
11159 FUSED_JCC_PADDING frag. */
11160 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11161 /* CMP like instruction size. */
11162 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11163 frag_wane (pad_fragP);
11164 /* Skip to branch_fragP. */
11165 next_fragP = branch_fragP;
11166 }
11167 else if (next_fragP->tc_frag_data.max_prefix_length)
11168 {
11169 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11170 a fused jcc. */
11171 next_fragP->fr_subtype
11172 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11173 next_fragP->tc_frag_data.max_bytes
11174 = next_fragP->tc_frag_data.max_prefix_length;
11175 /* This will be updated in the BRANCH_PREFIX scan. */
11176 next_fragP->tc_frag_data.max_prefix_length = 0;
11177 }
11178 else
11179 frag_wane (next_fragP);
11180 break;
11181 }
11182 }
11183
11184 /* Stop if there is no BRANCH_PREFIX. */
11185 if (!align_branch_prefix_size)
11186 return;
11187
11188 /* Scan for BRANCH_PREFIX. */
11189 for (; fragP != NULL; fragP = fragP->fr_next)
11190 {
11191 if (fragP->fr_type != rs_machine_dependent
11192 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11193 != BRANCH_PREFIX))
11194 continue;
11195
11196 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11197 COND_JUMP_PREFIX. */
11198 max_prefix_length = 0;
11199 for (next_fragP = fragP;
11200 next_fragP != NULL;
11201 next_fragP = next_fragP->fr_next)
11202 {
11203 if (next_fragP->fr_type == rs_fill)
11204 /* Skip rs_fill frags. */
11205 continue;
11206 else if (next_fragP->fr_type != rs_machine_dependent)
11207 /* Stop for all other frags. */
11208 break;
11209
11210 /* rs_machine_dependent frags. */
11211 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11212 == BRANCH_PREFIX)
11213 {
11214 /* Count BRANCH_PREFIX frags. */
11215 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11216 {
11217 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11218 frag_wane (next_fragP);
11219 }
11220 else
11221 max_prefix_length
11222 += next_fragP->tc_frag_data.max_bytes;
11223 }
11224 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11225 == BRANCH_PADDING)
11226 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11227 == FUSED_JCC_PADDING))
11228 {
11229 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11230 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11231 break;
11232 }
11233 else
11234 /* Stop for other rs_machine_dependent frags. */
11235 break;
11236 }
11237
11238 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11239
11240 /* Skip to the next frag. */
11241 fragP = next_fragP;
11242 }
11243 }
11244
11245 /* Compute padding size for
11246
11247 FUSED_JCC_PADDING
11248 CMP like instruction
11249 BRANCH_PADDING
11250 COND_JUMP/UNCOND_JUMP
11251
11252 or
11253
11254 BRANCH_PADDING
11255 COND_JUMP/UNCOND_JUMP
11256 */
11257
11258 static int
11259 i386_branch_padding_size (fragS *fragP, offsetT address)
11260 {
11261 unsigned int offset, size, padding_size;
11262 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11263
11264 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11265 if (!address)
11266 address = fragP->fr_address;
11267 address += fragP->fr_fix;
11268
11269 /* CMP like instrunction size. */
11270 size = fragP->tc_frag_data.cmp_size;
11271
11272 /* The base size of the branch frag. */
11273 size += branch_fragP->fr_fix;
11274
11275 /* Add opcode and displacement bytes for the rs_machine_dependent
11276 branch frag. */
11277 if (branch_fragP->fr_type == rs_machine_dependent)
11278 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11279
11280 /* Check if branch is within boundary and doesn't end at the last
11281 byte. */
11282 offset = address & ((1U << align_branch_power) - 1);
11283 if ((offset + size) >= (1U << align_branch_power))
11284 /* Padding needed to avoid crossing boundary. */
11285 padding_size = (1U << align_branch_power) - offset;
11286 else
11287 /* No padding needed. */
11288 padding_size = 0;
11289
11290 /* The return value may be saved in tc_frag_data.length which is
11291 unsigned byte. */
11292 if (!fits_in_unsigned_byte (padding_size))
11293 abort ();
11294
11295 return padding_size;
11296 }
11297
11298 /* i386_generic_table_relax_frag()
11299
11300 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11301 grow/shrink padding to align branch frags. Hand others to
11302 relax_frag(). */
11303
11304 long
11305 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11306 {
11307 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11308 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11309 {
11310 long padding_size = i386_branch_padding_size (fragP, 0);
11311 long grow = padding_size - fragP->tc_frag_data.length;
11312
11313 /* When the BRANCH_PREFIX frag is used, the computed address
11314 must match the actual address and there should be no padding. */
11315 if (fragP->tc_frag_data.padding_address
11316 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11317 || padding_size))
11318 abort ();
11319
11320 /* Update the padding size. */
11321 if (grow)
11322 fragP->tc_frag_data.length = padding_size;
11323
11324 return grow;
11325 }
11326 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11327 {
11328 fragS *padding_fragP, *next_fragP;
11329 long padding_size, left_size, last_size;
11330
11331 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11332 if (!padding_fragP)
11333 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11334 return (fragP->tc_frag_data.length
11335 - fragP->tc_frag_data.last_length);
11336
11337 /* Compute the relative address of the padding frag in the very
11338 first time where the BRANCH_PREFIX frag sizes are zero. */
11339 if (!fragP->tc_frag_data.padding_address)
11340 fragP->tc_frag_data.padding_address
11341 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11342
11343 /* First update the last length from the previous interation. */
11344 left_size = fragP->tc_frag_data.prefix_length;
11345 for (next_fragP = fragP;
11346 next_fragP != padding_fragP;
11347 next_fragP = next_fragP->fr_next)
11348 if (next_fragP->fr_type == rs_machine_dependent
11349 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11350 == BRANCH_PREFIX))
11351 {
11352 if (left_size)
11353 {
11354 int max = next_fragP->tc_frag_data.max_bytes;
11355 if (max)
11356 {
11357 int size;
11358 if (max > left_size)
11359 size = left_size;
11360 else
11361 size = max;
11362 left_size -= size;
11363 next_fragP->tc_frag_data.last_length = size;
11364 }
11365 }
11366 else
11367 next_fragP->tc_frag_data.last_length = 0;
11368 }
11369
11370 /* Check the padding size for the padding frag. */
11371 padding_size = i386_branch_padding_size
11372 (padding_fragP, (fragP->fr_address
11373 + fragP->tc_frag_data.padding_address));
11374
11375 last_size = fragP->tc_frag_data.prefix_length;
11376 /* Check if there is change from the last interation. */
11377 if (padding_size == last_size)
11378 {
11379 /* Update the expected address of the padding frag. */
11380 padding_fragP->tc_frag_data.padding_address
11381 = (fragP->fr_address + padding_size
11382 + fragP->tc_frag_data.padding_address);
11383 return 0;
11384 }
11385
11386 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11387 {
11388 /* No padding if there is no sufficient room. Clear the
11389 expected address of the padding frag. */
11390 padding_fragP->tc_frag_data.padding_address = 0;
11391 padding_size = 0;
11392 }
11393 else
11394 /* Store the expected address of the padding frag. */
11395 padding_fragP->tc_frag_data.padding_address
11396 = (fragP->fr_address + padding_size
11397 + fragP->tc_frag_data.padding_address);
11398
11399 fragP->tc_frag_data.prefix_length = padding_size;
11400
11401 /* Update the length for the current interation. */
11402 left_size = padding_size;
11403 for (next_fragP = fragP;
11404 next_fragP != padding_fragP;
11405 next_fragP = next_fragP->fr_next)
11406 if (next_fragP->fr_type == rs_machine_dependent
11407 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11408 == BRANCH_PREFIX))
11409 {
11410 if (left_size)
11411 {
11412 int max = next_fragP->tc_frag_data.max_bytes;
11413 if (max)
11414 {
11415 int size;
11416 if (max > left_size)
11417 size = left_size;
11418 else
11419 size = max;
11420 left_size -= size;
11421 next_fragP->tc_frag_data.length = size;
11422 }
11423 }
11424 else
11425 next_fragP->tc_frag_data.length = 0;
11426 }
11427
11428 return (fragP->tc_frag_data.length
11429 - fragP->tc_frag_data.last_length);
11430 }
11431 return relax_frag (segment, fragP, stretch);
11432 }
11433
11434 /* md_estimate_size_before_relax()
11435
11436 Called just before relax() for rs_machine_dependent frags. The x86
11437 assembler uses these frags to handle variable size jump
11438 instructions.
11439
11440 Any symbol that is now undefined will not become defined.
11441 Return the correct fr_subtype in the frag.
11442 Return the initial "guess for variable size of frag" to caller.
11443 The guess is actually the growth beyond the fixed part. Whatever
11444 we do to grow the fixed or variable part contributes to our
11445 returned value. */
11446
11447 int
11448 md_estimate_size_before_relax (fragS *fragP, segT segment)
11449 {
11450 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11451 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11452 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11453 {
11454 i386_classify_machine_dependent_frag (fragP);
11455 return fragP->tc_frag_data.length;
11456 }
11457
11458 /* We've already got fragP->fr_subtype right; all we have to do is
11459 check for un-relaxable symbols. On an ELF system, we can't relax
11460 an externally visible symbol, because it may be overridden by a
11461 shared library. */
11462 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11463 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11464 || (IS_ELF
11465 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11466 fragP->fr_var))
11467 #endif
11468 #if defined (OBJ_COFF) && defined (TE_PE)
11469 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11470 && S_IS_WEAK (fragP->fr_symbol))
11471 #endif
11472 )
11473 {
11474 /* Symbol is undefined in this segment, or we need to keep a
11475 reloc so that weak symbols can be overridden. */
11476 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11477 enum bfd_reloc_code_real reloc_type;
11478 unsigned char *opcode;
11479 int old_fr_fix;
11480
11481 if (fragP->fr_var != NO_RELOC)
11482 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11483 else if (size == 2)
11484 reloc_type = BFD_RELOC_16_PCREL;
11485 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11486 else if (need_plt32_p (fragP->fr_symbol))
11487 reloc_type = BFD_RELOC_X86_64_PLT32;
11488 #endif
11489 else
11490 reloc_type = BFD_RELOC_32_PCREL;
11491
11492 old_fr_fix = fragP->fr_fix;
11493 opcode = (unsigned char *) fragP->fr_opcode;
11494
11495 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11496 {
11497 case UNCOND_JUMP:
11498 /* Make jmp (0xeb) a (d)word displacement jump. */
11499 opcode[0] = 0xe9;
11500 fragP->fr_fix += size;
11501 fix_new (fragP, old_fr_fix, size,
11502 fragP->fr_symbol,
11503 fragP->fr_offset, 1,
11504 reloc_type);
11505 break;
11506
11507 case COND_JUMP86:
11508 if (size == 2
11509 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11510 {
11511 /* Negate the condition, and branch past an
11512 unconditional jump. */
11513 opcode[0] ^= 1;
11514 opcode[1] = 3;
11515 /* Insert an unconditional jump. */
11516 opcode[2] = 0xe9;
11517 /* We added two extra opcode bytes, and have a two byte
11518 offset. */
11519 fragP->fr_fix += 2 + 2;
11520 fix_new (fragP, old_fr_fix + 2, 2,
11521 fragP->fr_symbol,
11522 fragP->fr_offset, 1,
11523 reloc_type);
11524 break;
11525 }
11526 /* Fall through. */
11527
11528 case COND_JUMP:
11529 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11530 {
11531 fixS *fixP;
11532
11533 fragP->fr_fix += 1;
11534 fixP = fix_new (fragP, old_fr_fix, 1,
11535 fragP->fr_symbol,
11536 fragP->fr_offset, 1,
11537 BFD_RELOC_8_PCREL);
11538 fixP->fx_signed = 1;
11539 break;
11540 }
11541
11542 /* This changes the byte-displacement jump 0x7N
11543 to the (d)word-displacement jump 0x0f,0x8N. */
11544 opcode[1] = opcode[0] + 0x10;
11545 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11546 /* We've added an opcode byte. */
11547 fragP->fr_fix += 1 + size;
11548 fix_new (fragP, old_fr_fix + 1, size,
11549 fragP->fr_symbol,
11550 fragP->fr_offset, 1,
11551 reloc_type);
11552 break;
11553
11554 default:
11555 BAD_CASE (fragP->fr_subtype);
11556 break;
11557 }
11558 frag_wane (fragP);
11559 return fragP->fr_fix - old_fr_fix;
11560 }
11561
11562 /* Guess size depending on current relax state. Initially the relax
11563 state will correspond to a short jump and we return 1, because
11564 the variable part of the frag (the branch offset) is one byte
11565 long. However, we can relax a section more than once and in that
11566 case we must either set fr_subtype back to the unrelaxed state,
11567 or return the value for the appropriate branch. */
11568 return md_relax_table[fragP->fr_subtype].rlx_length;
11569 }
11570
11571 /* Called after relax() is finished.
11572
11573 In: Address of frag.
11574 fr_type == rs_machine_dependent.
11575 fr_subtype is what the address relaxed to.
11576
11577 Out: Any fixSs and constants are set up.
11578 Caller will turn frag into a ".space 0". */
11579
11580 void
11581 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11582 fragS *fragP)
11583 {
11584 unsigned char *opcode;
11585 unsigned char *where_to_put_displacement = NULL;
11586 offsetT target_address;
11587 offsetT opcode_address;
11588 unsigned int extension = 0;
11589 offsetT displacement_from_opcode_start;
11590
11591 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11592 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11593 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11594 {
11595 /* Generate nop padding. */
11596 unsigned int size = fragP->tc_frag_data.length;
11597 if (size)
11598 {
11599 if (size > fragP->tc_frag_data.max_bytes)
11600 abort ();
11601
11602 if (flag_debug)
11603 {
11604 const char *msg;
11605 const char *branch = "branch";
11606 const char *prefix = "";
11607 fragS *padding_fragP;
11608 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11609 == BRANCH_PREFIX)
11610 {
11611 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11612 switch (fragP->tc_frag_data.default_prefix)
11613 {
11614 default:
11615 abort ();
11616 break;
11617 case CS_PREFIX_OPCODE:
11618 prefix = " cs";
11619 break;
11620 case DS_PREFIX_OPCODE:
11621 prefix = " ds";
11622 break;
11623 case ES_PREFIX_OPCODE:
11624 prefix = " es";
11625 break;
11626 case FS_PREFIX_OPCODE:
11627 prefix = " fs";
11628 break;
11629 case GS_PREFIX_OPCODE:
11630 prefix = " gs";
11631 break;
11632 case SS_PREFIX_OPCODE:
11633 prefix = " ss";
11634 break;
11635 }
11636 if (padding_fragP)
11637 msg = _("%s:%u: add %d%s at 0x%llx to align "
11638 "%s within %d-byte boundary\n");
11639 else
11640 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11641 "align %s within %d-byte boundary\n");
11642 }
11643 else
11644 {
11645 padding_fragP = fragP;
11646 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11647 "%s within %d-byte boundary\n");
11648 }
11649
11650 if (padding_fragP)
11651 switch (padding_fragP->tc_frag_data.branch_type)
11652 {
11653 case align_branch_jcc:
11654 branch = "jcc";
11655 break;
11656 case align_branch_fused:
11657 branch = "fused jcc";
11658 break;
11659 case align_branch_jmp:
11660 branch = "jmp";
11661 break;
11662 case align_branch_call:
11663 branch = "call";
11664 break;
11665 case align_branch_indirect:
11666 branch = "indiret branch";
11667 break;
11668 case align_branch_ret:
11669 branch = "ret";
11670 break;
11671 default:
11672 break;
11673 }
11674
11675 fprintf (stdout, msg,
11676 fragP->fr_file, fragP->fr_line, size, prefix,
11677 (long long) fragP->fr_address, branch,
11678 1 << align_branch_power);
11679 }
11680 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11681 memset (fragP->fr_opcode,
11682 fragP->tc_frag_data.default_prefix, size);
11683 else
11684 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11685 size, 0);
11686 fragP->fr_fix += size;
11687 }
11688 return;
11689 }
11690
11691 opcode = (unsigned char *) fragP->fr_opcode;
11692
11693 /* Address we want to reach in file space. */
11694 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11695
11696 /* Address opcode resides at in file space. */
11697 opcode_address = fragP->fr_address + fragP->fr_fix;
11698
11699 /* Displacement from opcode start to fill into instruction. */
11700 displacement_from_opcode_start = target_address - opcode_address;
11701
11702 if ((fragP->fr_subtype & BIG) == 0)
11703 {
11704 /* Don't have to change opcode. */
11705 extension = 1; /* 1 opcode + 1 displacement */
11706 where_to_put_displacement = &opcode[1];
11707 }
11708 else
11709 {
11710 if (no_cond_jump_promotion
11711 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11712 as_warn_where (fragP->fr_file, fragP->fr_line,
11713 _("long jump required"));
11714
11715 switch (fragP->fr_subtype)
11716 {
11717 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11718 extension = 4; /* 1 opcode + 4 displacement */
11719 opcode[0] = 0xe9;
11720 where_to_put_displacement = &opcode[1];
11721 break;
11722
11723 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11724 extension = 2; /* 1 opcode + 2 displacement */
11725 opcode[0] = 0xe9;
11726 where_to_put_displacement = &opcode[1];
11727 break;
11728
11729 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11730 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11731 extension = 5; /* 2 opcode + 4 displacement */
11732 opcode[1] = opcode[0] + 0x10;
11733 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11734 where_to_put_displacement = &opcode[2];
11735 break;
11736
11737 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11738 extension = 3; /* 2 opcode + 2 displacement */
11739 opcode[1] = opcode[0] + 0x10;
11740 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11741 where_to_put_displacement = &opcode[2];
11742 break;
11743
11744 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11745 extension = 4;
11746 opcode[0] ^= 1;
11747 opcode[1] = 3;
11748 opcode[2] = 0xe9;
11749 where_to_put_displacement = &opcode[3];
11750 break;
11751
11752 default:
11753 BAD_CASE (fragP->fr_subtype);
11754 break;
11755 }
11756 }
11757
11758 /* If size if less then four we are sure that the operand fits,
11759 but if it's 4, then it could be that the displacement is larger
11760 then -/+ 2GB. */
11761 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11762 && object_64bit
11763 && ((addressT) (displacement_from_opcode_start - extension
11764 + ((addressT) 1 << 31))
11765 > (((addressT) 2 << 31) - 1)))
11766 {
11767 as_bad_where (fragP->fr_file, fragP->fr_line,
11768 _("jump target out of range"));
11769 /* Make us emit 0. */
11770 displacement_from_opcode_start = extension;
11771 }
11772 /* Now put displacement after opcode. */
11773 md_number_to_chars ((char *) where_to_put_displacement,
11774 (valueT) (displacement_from_opcode_start - extension),
11775 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11776 fragP->fr_fix += extension;
11777 }
11778 \f
11779 /* Apply a fixup (fixP) to segment data, once it has been determined
11780 by our caller that we have all the info we need to fix it up.
11781
11782 Parameter valP is the pointer to the value of the bits.
11783
11784 On the 386, immediates, displacements, and data pointers are all in
11785 the same (little-endian) format, so we don't need to care about which
11786 we are handling. */
11787
11788 void
11789 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11790 {
11791 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11792 valueT value = *valP;
11793
11794 #if !defined (TE_Mach)
11795 if (fixP->fx_pcrel)
11796 {
11797 switch (fixP->fx_r_type)
11798 {
11799 default:
11800 break;
11801
11802 case BFD_RELOC_64:
11803 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11804 break;
11805 case BFD_RELOC_32:
11806 case BFD_RELOC_X86_64_32S:
11807 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11808 break;
11809 case BFD_RELOC_16:
11810 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11811 break;
11812 case BFD_RELOC_8:
11813 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11814 break;
11815 }
11816 }
11817
11818 if (fixP->fx_addsy != NULL
11819 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11820 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11821 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11822 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11823 && !use_rela_relocations)
11824 {
11825 /* This is a hack. There should be a better way to handle this.
11826 This covers for the fact that bfd_install_relocation will
11827 subtract the current location (for partial_inplace, PC relative
11828 relocations); see more below. */
11829 #ifndef OBJ_AOUT
11830 if (IS_ELF
11831 #ifdef TE_PE
11832 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11833 #endif
11834 )
11835 value += fixP->fx_where + fixP->fx_frag->fr_address;
11836 #endif
11837 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11838 if (IS_ELF)
11839 {
11840 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11841
11842 if ((sym_seg == seg
11843 || (symbol_section_p (fixP->fx_addsy)
11844 && sym_seg != absolute_section))
11845 && !generic_force_reloc (fixP))
11846 {
11847 /* Yes, we add the values in twice. This is because
11848 bfd_install_relocation subtracts them out again. I think
11849 bfd_install_relocation is broken, but I don't dare change
11850 it. FIXME. */
11851 value += fixP->fx_where + fixP->fx_frag->fr_address;
11852 }
11853 }
11854 #endif
11855 #if defined (OBJ_COFF) && defined (TE_PE)
11856 /* For some reason, the PE format does not store a
11857 section address offset for a PC relative symbol. */
11858 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11859 || S_IS_WEAK (fixP->fx_addsy))
11860 value += md_pcrel_from (fixP);
11861 #endif
11862 }
11863 #if defined (OBJ_COFF) && defined (TE_PE)
11864 if (fixP->fx_addsy != NULL
11865 && S_IS_WEAK (fixP->fx_addsy)
11866 /* PR 16858: Do not modify weak function references. */
11867 && ! fixP->fx_pcrel)
11868 {
11869 #if !defined (TE_PEP)
11870 /* For x86 PE weak function symbols are neither PC-relative
11871 nor do they set S_IS_FUNCTION. So the only reliable way
11872 to detect them is to check the flags of their containing
11873 section. */
11874 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11875 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11876 ;
11877 else
11878 #endif
11879 value -= S_GET_VALUE (fixP->fx_addsy);
11880 }
11881 #endif
11882
11883 /* Fix a few things - the dynamic linker expects certain values here,
11884 and we must not disappoint it. */
11885 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11886 if (IS_ELF && fixP->fx_addsy)
11887 switch (fixP->fx_r_type)
11888 {
11889 case BFD_RELOC_386_PLT32:
11890 case BFD_RELOC_X86_64_PLT32:
11891 /* Make the jump instruction point to the address of the operand.
11892 At runtime we merely add the offset to the actual PLT entry.
11893 NB: Subtract the offset size only for jump instructions. */
11894 if (fixP->fx_pcrel)
11895 value = -4;
11896 break;
11897
11898 case BFD_RELOC_386_TLS_GD:
11899 case BFD_RELOC_386_TLS_LDM:
11900 case BFD_RELOC_386_TLS_IE_32:
11901 case BFD_RELOC_386_TLS_IE:
11902 case BFD_RELOC_386_TLS_GOTIE:
11903 case BFD_RELOC_386_TLS_GOTDESC:
11904 case BFD_RELOC_X86_64_TLSGD:
11905 case BFD_RELOC_X86_64_TLSLD:
11906 case BFD_RELOC_X86_64_GOTTPOFF:
11907 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11908 value = 0; /* Fully resolved at runtime. No addend. */
11909 /* Fallthrough */
11910 case BFD_RELOC_386_TLS_LE:
11911 case BFD_RELOC_386_TLS_LDO_32:
11912 case BFD_RELOC_386_TLS_LE_32:
11913 case BFD_RELOC_X86_64_DTPOFF32:
11914 case BFD_RELOC_X86_64_DTPOFF64:
11915 case BFD_RELOC_X86_64_TPOFF32:
11916 case BFD_RELOC_X86_64_TPOFF64:
11917 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11918 break;
11919
11920 case BFD_RELOC_386_TLS_DESC_CALL:
11921 case BFD_RELOC_X86_64_TLSDESC_CALL:
11922 value = 0; /* Fully resolved at runtime. No addend. */
11923 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11924 fixP->fx_done = 0;
11925 return;
11926
11927 case BFD_RELOC_VTABLE_INHERIT:
11928 case BFD_RELOC_VTABLE_ENTRY:
11929 fixP->fx_done = 0;
11930 return;
11931
11932 default:
11933 break;
11934 }
11935 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11936 *valP = value;
11937 #endif /* !defined (TE_Mach) */
11938
11939 /* Are we finished with this relocation now? */
11940 if (fixP->fx_addsy == NULL)
11941 fixP->fx_done = 1;
11942 #if defined (OBJ_COFF) && defined (TE_PE)
11943 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11944 {
11945 fixP->fx_done = 0;
11946 /* Remember value for tc_gen_reloc. */
11947 fixP->fx_addnumber = value;
11948 /* Clear out the frag for now. */
11949 value = 0;
11950 }
11951 #endif
11952 else if (use_rela_relocations)
11953 {
11954 fixP->fx_no_overflow = 1;
11955 /* Remember value for tc_gen_reloc. */
11956 fixP->fx_addnumber = value;
11957 value = 0;
11958 }
11959
11960 md_number_to_chars (p, value, fixP->fx_size);
11961 }
11962 \f
11963 const char *
11964 md_atof (int type, char *litP, int *sizeP)
11965 {
11966 /* This outputs the LITTLENUMs in REVERSE order;
11967 in accord with the bigendian 386. */
11968 return ieee_md_atof (type, litP, sizeP, FALSE);
11969 }
11970 \f
11971 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11972
11973 static char *
11974 output_invalid (int c)
11975 {
11976 if (ISPRINT (c))
11977 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11978 "'%c'", c);
11979 else
11980 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11981 "(0x%x)", (unsigned char) c);
11982 return output_invalid_buf;
11983 }
11984
11985 /* REG_STRING starts *before* REGISTER_PREFIX. */
11986
11987 static const reg_entry *
11988 parse_real_register (char *reg_string, char **end_op)
11989 {
11990 char *s = reg_string;
11991 char *p;
11992 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11993 const reg_entry *r;
11994
11995 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11996 if (*s == REGISTER_PREFIX)
11997 ++s;
11998
11999 if (is_space_char (*s))
12000 ++s;
12001
12002 p = reg_name_given;
12003 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12004 {
12005 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12006 return (const reg_entry *) NULL;
12007 s++;
12008 }
12009
12010 /* For naked regs, make sure that we are not dealing with an identifier.
12011 This prevents confusing an identifier like `eax_var' with register
12012 `eax'. */
12013 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12014 return (const reg_entry *) NULL;
12015
12016 *end_op = s;
12017
12018 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
12019
12020 /* Handle floating point regs, allowing spaces in the (i) part. */
12021 if (r == i386_regtab /* %st is first entry of table */)
12022 {
12023 if (!cpu_arch_flags.bitfield.cpu8087
12024 && !cpu_arch_flags.bitfield.cpu287
12025 && !cpu_arch_flags.bitfield.cpu387)
12026 return (const reg_entry *) NULL;
12027
12028 if (is_space_char (*s))
12029 ++s;
12030 if (*s == '(')
12031 {
12032 ++s;
12033 if (is_space_char (*s))
12034 ++s;
12035 if (*s >= '0' && *s <= '7')
12036 {
12037 int fpr = *s - '0';
12038 ++s;
12039 if (is_space_char (*s))
12040 ++s;
12041 if (*s == ')')
12042 {
12043 *end_op = s + 1;
12044 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
12045 know (r);
12046 return r + fpr;
12047 }
12048 }
12049 /* We have "%st(" then garbage. */
12050 return (const reg_entry *) NULL;
12051 }
12052 }
12053
12054 if (r == NULL || allow_pseudo_reg)
12055 return r;
12056
12057 if (operand_type_all_zero (&r->reg_type))
12058 return (const reg_entry *) NULL;
12059
12060 if ((r->reg_type.bitfield.dword
12061 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12062 || r->reg_type.bitfield.class == RegCR
12063 || r->reg_type.bitfield.class == RegDR
12064 || r->reg_type.bitfield.class == RegTR)
12065 && !cpu_arch_flags.bitfield.cpui386)
12066 return (const reg_entry *) NULL;
12067
12068 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12069 return (const reg_entry *) NULL;
12070
12071 if (!cpu_arch_flags.bitfield.cpuavx512f)
12072 {
12073 if (r->reg_type.bitfield.zmmword
12074 || r->reg_type.bitfield.class == RegMask)
12075 return (const reg_entry *) NULL;
12076
12077 if (!cpu_arch_flags.bitfield.cpuavx)
12078 {
12079 if (r->reg_type.bitfield.ymmword)
12080 return (const reg_entry *) NULL;
12081
12082 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12083 return (const reg_entry *) NULL;
12084 }
12085 }
12086
12087 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12088 return (const reg_entry *) NULL;
12089
12090 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12091 if (!allow_index_reg && r->reg_num == RegIZ)
12092 return (const reg_entry *) NULL;
12093
12094 /* Upper 16 vector registers are only available with VREX in 64bit
12095 mode, and require EVEX encoding. */
12096 if (r->reg_flags & RegVRex)
12097 {
12098 if (!cpu_arch_flags.bitfield.cpuavx512f
12099 || flag_code != CODE_64BIT)
12100 return (const reg_entry *) NULL;
12101
12102 i.vec_encoding = vex_encoding_evex;
12103 }
12104
12105 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12106 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12107 && flag_code != CODE_64BIT)
12108 return (const reg_entry *) NULL;
12109
12110 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12111 && !intel_syntax)
12112 return (const reg_entry *) NULL;
12113
12114 return r;
12115 }
12116
12117 /* REG_STRING starts *before* REGISTER_PREFIX. */
12118
12119 static const reg_entry *
12120 parse_register (char *reg_string, char **end_op)
12121 {
12122 const reg_entry *r;
12123
12124 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12125 r = parse_real_register (reg_string, end_op);
12126 else
12127 r = NULL;
12128 if (!r)
12129 {
12130 char *save = input_line_pointer;
12131 char c;
12132 symbolS *symbolP;
12133
12134 input_line_pointer = reg_string;
12135 c = get_symbol_name (&reg_string);
12136 symbolP = symbol_find (reg_string);
12137 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12138 {
12139 const expressionS *e = symbol_get_value_expression (symbolP);
12140
12141 know (e->X_op == O_register);
12142 know (e->X_add_number >= 0
12143 && (valueT) e->X_add_number < i386_regtab_size);
12144 r = i386_regtab + e->X_add_number;
12145 if ((r->reg_flags & RegVRex))
12146 i.vec_encoding = vex_encoding_evex;
12147 *end_op = input_line_pointer;
12148 }
12149 *input_line_pointer = c;
12150 input_line_pointer = save;
12151 }
12152 return r;
12153 }
12154
12155 int
12156 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12157 {
12158 const reg_entry *r;
12159 char *end = input_line_pointer;
12160
12161 *end = *nextcharP;
12162 r = parse_register (name, &input_line_pointer);
12163 if (r && end <= input_line_pointer)
12164 {
12165 *nextcharP = *input_line_pointer;
12166 *input_line_pointer = 0;
12167 e->X_op = O_register;
12168 e->X_add_number = r - i386_regtab;
12169 return 1;
12170 }
12171 input_line_pointer = end;
12172 *end = 0;
12173 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12174 }
12175
12176 void
12177 md_operand (expressionS *e)
12178 {
12179 char *end;
12180 const reg_entry *r;
12181
12182 switch (*input_line_pointer)
12183 {
12184 case REGISTER_PREFIX:
12185 r = parse_real_register (input_line_pointer, &end);
12186 if (r)
12187 {
12188 e->X_op = O_register;
12189 e->X_add_number = r - i386_regtab;
12190 input_line_pointer = end;
12191 }
12192 break;
12193
12194 case '[':
12195 gas_assert (intel_syntax);
12196 end = input_line_pointer++;
12197 expression (e);
12198 if (*input_line_pointer == ']')
12199 {
12200 ++input_line_pointer;
12201 e->X_op_symbol = make_expr_symbol (e);
12202 e->X_add_symbol = NULL;
12203 e->X_add_number = 0;
12204 e->X_op = O_index;
12205 }
12206 else
12207 {
12208 e->X_op = O_absent;
12209 input_line_pointer = end;
12210 }
12211 break;
12212 }
12213 }
12214
12215 \f
12216 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12217 const char *md_shortopts = "kVQ:sqnO::";
12218 #else
12219 const char *md_shortopts = "qnO::";
12220 #endif
12221
12222 #define OPTION_32 (OPTION_MD_BASE + 0)
12223 #define OPTION_64 (OPTION_MD_BASE + 1)
12224 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12225 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12226 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12227 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12228 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12229 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12230 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12231 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12232 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12233 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12234 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12235 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12236 #define OPTION_X32 (OPTION_MD_BASE + 14)
12237 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12238 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12239 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12240 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12241 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12242 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12243 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12244 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12245 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12246 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12247 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12248 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12249 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12250 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12251 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12252 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12253
12254 struct option md_longopts[] =
12255 {
12256 {"32", no_argument, NULL, OPTION_32},
12257 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12258 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12259 {"64", no_argument, NULL, OPTION_64},
12260 #endif
12261 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12262 {"x32", no_argument, NULL, OPTION_X32},
12263 {"mshared", no_argument, NULL, OPTION_MSHARED},
12264 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12265 #endif
12266 {"divide", no_argument, NULL, OPTION_DIVIDE},
12267 {"march", required_argument, NULL, OPTION_MARCH},
12268 {"mtune", required_argument, NULL, OPTION_MTUNE},
12269 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12270 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12271 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12272 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12273 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12274 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12275 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12276 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12277 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12278 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12279 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12280 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12281 # if defined (TE_PE) || defined (TE_PEP)
12282 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12283 #endif
12284 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12285 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12286 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12287 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12288 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12289 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12290 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12291 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12292 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12293 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12294 {NULL, no_argument, NULL, 0}
12295 };
12296 size_t md_longopts_size = sizeof (md_longopts);
12297
12298 int
12299 md_parse_option (int c, const char *arg)
12300 {
12301 unsigned int j;
12302 char *arch, *next, *saved, *type;
12303
12304 switch (c)
12305 {
12306 case 'n':
12307 optimize_align_code = 0;
12308 break;
12309
12310 case 'q':
12311 quiet_warnings = 1;
12312 break;
12313
12314 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12315 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12316 should be emitted or not. FIXME: Not implemented. */
12317 case 'Q':
12318 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12319 return 0;
12320 break;
12321
12322 /* -V: SVR4 argument to print version ID. */
12323 case 'V':
12324 print_version_id ();
12325 break;
12326
12327 /* -k: Ignore for FreeBSD compatibility. */
12328 case 'k':
12329 break;
12330
12331 case 's':
12332 /* -s: On i386 Solaris, this tells the native assembler to use
12333 .stab instead of .stab.excl. We always use .stab anyhow. */
12334 break;
12335
12336 case OPTION_MSHARED:
12337 shared = 1;
12338 break;
12339
12340 case OPTION_X86_USED_NOTE:
12341 if (strcasecmp (arg, "yes") == 0)
12342 x86_used_note = 1;
12343 else if (strcasecmp (arg, "no") == 0)
12344 x86_used_note = 0;
12345 else
12346 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12347 break;
12348
12349
12350 #endif
12351 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12352 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12353 case OPTION_64:
12354 {
12355 const char **list, **l;
12356
12357 list = bfd_target_list ();
12358 for (l = list; *l != NULL; l++)
12359 if (CONST_STRNEQ (*l, "elf64-x86-64")
12360 || strcmp (*l, "coff-x86-64") == 0
12361 || strcmp (*l, "pe-x86-64") == 0
12362 || strcmp (*l, "pei-x86-64") == 0
12363 || strcmp (*l, "mach-o-x86-64") == 0)
12364 {
12365 default_arch = "x86_64";
12366 break;
12367 }
12368 if (*l == NULL)
12369 as_fatal (_("no compiled in support for x86_64"));
12370 free (list);
12371 }
12372 break;
12373 #endif
12374
12375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12376 case OPTION_X32:
12377 if (IS_ELF)
12378 {
12379 const char **list, **l;
12380
12381 list = bfd_target_list ();
12382 for (l = list; *l != NULL; l++)
12383 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12384 {
12385 default_arch = "x86_64:32";
12386 break;
12387 }
12388 if (*l == NULL)
12389 as_fatal (_("no compiled in support for 32bit x86_64"));
12390 free (list);
12391 }
12392 else
12393 as_fatal (_("32bit x86_64 is only supported for ELF"));
12394 break;
12395 #endif
12396
12397 case OPTION_32:
12398 default_arch = "i386";
12399 break;
12400
12401 case OPTION_DIVIDE:
12402 #ifdef SVR4_COMMENT_CHARS
12403 {
12404 char *n, *t;
12405 const char *s;
12406
12407 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12408 t = n;
12409 for (s = i386_comment_chars; *s != '\0'; s++)
12410 if (*s != '/')
12411 *t++ = *s;
12412 *t = '\0';
12413 i386_comment_chars = n;
12414 }
12415 #endif
12416 break;
12417
12418 case OPTION_MARCH:
12419 saved = xstrdup (arg);
12420 arch = saved;
12421 /* Allow -march=+nosse. */
12422 if (*arch == '+')
12423 arch++;
12424 do
12425 {
12426 if (*arch == '.')
12427 as_fatal (_("invalid -march= option: `%s'"), arg);
12428 next = strchr (arch, '+');
12429 if (next)
12430 *next++ = '\0';
12431 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12432 {
12433 if (strcmp (arch, cpu_arch [j].name) == 0)
12434 {
12435 /* Processor. */
12436 if (! cpu_arch[j].flags.bitfield.cpui386)
12437 continue;
12438
12439 cpu_arch_name = cpu_arch[j].name;
12440 cpu_sub_arch_name = NULL;
12441 cpu_arch_flags = cpu_arch[j].flags;
12442 cpu_arch_isa = cpu_arch[j].type;
12443 cpu_arch_isa_flags = cpu_arch[j].flags;
12444 if (!cpu_arch_tune_set)
12445 {
12446 cpu_arch_tune = cpu_arch_isa;
12447 cpu_arch_tune_flags = cpu_arch_isa_flags;
12448 }
12449 break;
12450 }
12451 else if (*cpu_arch [j].name == '.'
12452 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12453 {
12454 /* ISA extension. */
12455 i386_cpu_flags flags;
12456
12457 flags = cpu_flags_or (cpu_arch_flags,
12458 cpu_arch[j].flags);
12459
12460 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12461 {
12462 if (cpu_sub_arch_name)
12463 {
12464 char *name = cpu_sub_arch_name;
12465 cpu_sub_arch_name = concat (name,
12466 cpu_arch[j].name,
12467 (const char *) NULL);
12468 free (name);
12469 }
12470 else
12471 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12472 cpu_arch_flags = flags;
12473 cpu_arch_isa_flags = flags;
12474 }
12475 else
12476 cpu_arch_isa_flags
12477 = cpu_flags_or (cpu_arch_isa_flags,
12478 cpu_arch[j].flags);
12479 break;
12480 }
12481 }
12482
12483 if (j >= ARRAY_SIZE (cpu_arch))
12484 {
12485 /* Disable an ISA extension. */
12486 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12487 if (strcmp (arch, cpu_noarch [j].name) == 0)
12488 {
12489 i386_cpu_flags flags;
12490
12491 flags = cpu_flags_and_not (cpu_arch_flags,
12492 cpu_noarch[j].flags);
12493 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12494 {
12495 if (cpu_sub_arch_name)
12496 {
12497 char *name = cpu_sub_arch_name;
12498 cpu_sub_arch_name = concat (arch,
12499 (const char *) NULL);
12500 free (name);
12501 }
12502 else
12503 cpu_sub_arch_name = xstrdup (arch);
12504 cpu_arch_flags = flags;
12505 cpu_arch_isa_flags = flags;
12506 }
12507 break;
12508 }
12509
12510 if (j >= ARRAY_SIZE (cpu_noarch))
12511 j = ARRAY_SIZE (cpu_arch);
12512 }
12513
12514 if (j >= ARRAY_SIZE (cpu_arch))
12515 as_fatal (_("invalid -march= option: `%s'"), arg);
12516
12517 arch = next;
12518 }
12519 while (next != NULL);
12520 free (saved);
12521 break;
12522
12523 case OPTION_MTUNE:
12524 if (*arg == '.')
12525 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12526 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12527 {
12528 if (strcmp (arg, cpu_arch [j].name) == 0)
12529 {
12530 cpu_arch_tune_set = 1;
12531 cpu_arch_tune = cpu_arch [j].type;
12532 cpu_arch_tune_flags = cpu_arch[j].flags;
12533 break;
12534 }
12535 }
12536 if (j >= ARRAY_SIZE (cpu_arch))
12537 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12538 break;
12539
12540 case OPTION_MMNEMONIC:
12541 if (strcasecmp (arg, "att") == 0)
12542 intel_mnemonic = 0;
12543 else if (strcasecmp (arg, "intel") == 0)
12544 intel_mnemonic = 1;
12545 else
12546 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12547 break;
12548
12549 case OPTION_MSYNTAX:
12550 if (strcasecmp (arg, "att") == 0)
12551 intel_syntax = 0;
12552 else if (strcasecmp (arg, "intel") == 0)
12553 intel_syntax = 1;
12554 else
12555 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12556 break;
12557
12558 case OPTION_MINDEX_REG:
12559 allow_index_reg = 1;
12560 break;
12561
12562 case OPTION_MNAKED_REG:
12563 allow_naked_reg = 1;
12564 break;
12565
12566 case OPTION_MSSE2AVX:
12567 sse2avx = 1;
12568 break;
12569
12570 case OPTION_MSSE_CHECK:
12571 if (strcasecmp (arg, "error") == 0)
12572 sse_check = check_error;
12573 else if (strcasecmp (arg, "warning") == 0)
12574 sse_check = check_warning;
12575 else if (strcasecmp (arg, "none") == 0)
12576 sse_check = check_none;
12577 else
12578 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12579 break;
12580
12581 case OPTION_MOPERAND_CHECK:
12582 if (strcasecmp (arg, "error") == 0)
12583 operand_check = check_error;
12584 else if (strcasecmp (arg, "warning") == 0)
12585 operand_check = check_warning;
12586 else if (strcasecmp (arg, "none") == 0)
12587 operand_check = check_none;
12588 else
12589 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12590 break;
12591
12592 case OPTION_MAVXSCALAR:
12593 if (strcasecmp (arg, "128") == 0)
12594 avxscalar = vex128;
12595 else if (strcasecmp (arg, "256") == 0)
12596 avxscalar = vex256;
12597 else
12598 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12599 break;
12600
12601 case OPTION_MVEXWIG:
12602 if (strcmp (arg, "0") == 0)
12603 vexwig = vexw0;
12604 else if (strcmp (arg, "1") == 0)
12605 vexwig = vexw1;
12606 else
12607 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12608 break;
12609
12610 case OPTION_MADD_BND_PREFIX:
12611 add_bnd_prefix = 1;
12612 break;
12613
12614 case OPTION_MEVEXLIG:
12615 if (strcmp (arg, "128") == 0)
12616 evexlig = evexl128;
12617 else if (strcmp (arg, "256") == 0)
12618 evexlig = evexl256;
12619 else if (strcmp (arg, "512") == 0)
12620 evexlig = evexl512;
12621 else
12622 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12623 break;
12624
12625 case OPTION_MEVEXRCIG:
12626 if (strcmp (arg, "rne") == 0)
12627 evexrcig = rne;
12628 else if (strcmp (arg, "rd") == 0)
12629 evexrcig = rd;
12630 else if (strcmp (arg, "ru") == 0)
12631 evexrcig = ru;
12632 else if (strcmp (arg, "rz") == 0)
12633 evexrcig = rz;
12634 else
12635 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12636 break;
12637
12638 case OPTION_MEVEXWIG:
12639 if (strcmp (arg, "0") == 0)
12640 evexwig = evexw0;
12641 else if (strcmp (arg, "1") == 0)
12642 evexwig = evexw1;
12643 else
12644 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12645 break;
12646
12647 # if defined (TE_PE) || defined (TE_PEP)
12648 case OPTION_MBIG_OBJ:
12649 use_big_obj = 1;
12650 break;
12651 #endif
12652
12653 case OPTION_MOMIT_LOCK_PREFIX:
12654 if (strcasecmp (arg, "yes") == 0)
12655 omit_lock_prefix = 1;
12656 else if (strcasecmp (arg, "no") == 0)
12657 omit_lock_prefix = 0;
12658 else
12659 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12660 break;
12661
12662 case OPTION_MFENCE_AS_LOCK_ADD:
12663 if (strcasecmp (arg, "yes") == 0)
12664 avoid_fence = 1;
12665 else if (strcasecmp (arg, "no") == 0)
12666 avoid_fence = 0;
12667 else
12668 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12669 break;
12670
12671 case OPTION_MRELAX_RELOCATIONS:
12672 if (strcasecmp (arg, "yes") == 0)
12673 generate_relax_relocations = 1;
12674 else if (strcasecmp (arg, "no") == 0)
12675 generate_relax_relocations = 0;
12676 else
12677 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12678 break;
12679
12680 case OPTION_MALIGN_BRANCH_BOUNDARY:
12681 {
12682 char *end;
12683 long int align = strtoul (arg, &end, 0);
12684 if (*end == '\0')
12685 {
12686 if (align == 0)
12687 {
12688 align_branch_power = 0;
12689 break;
12690 }
12691 else if (align >= 16)
12692 {
12693 int align_power;
12694 for (align_power = 0;
12695 (align & 1) == 0;
12696 align >>= 1, align_power++)
12697 continue;
12698 /* Limit alignment power to 31. */
12699 if (align == 1 && align_power < 32)
12700 {
12701 align_branch_power = align_power;
12702 break;
12703 }
12704 }
12705 }
12706 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12707 }
12708 break;
12709
12710 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12711 {
12712 char *end;
12713 int align = strtoul (arg, &end, 0);
12714 /* Some processors only support 5 prefixes. */
12715 if (*end == '\0' && align >= 0 && align < 6)
12716 {
12717 align_branch_prefix_size = align;
12718 break;
12719 }
12720 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12721 arg);
12722 }
12723 break;
12724
12725 case OPTION_MALIGN_BRANCH:
12726 align_branch = 0;
12727 saved = xstrdup (arg);
12728 type = saved;
12729 do
12730 {
12731 next = strchr (type, '+');
12732 if (next)
12733 *next++ = '\0';
12734 if (strcasecmp (type, "jcc") == 0)
12735 align_branch |= align_branch_jcc_bit;
12736 else if (strcasecmp (type, "fused") == 0)
12737 align_branch |= align_branch_fused_bit;
12738 else if (strcasecmp (type, "jmp") == 0)
12739 align_branch |= align_branch_jmp_bit;
12740 else if (strcasecmp (type, "call") == 0)
12741 align_branch |= align_branch_call_bit;
12742 else if (strcasecmp (type, "ret") == 0)
12743 align_branch |= align_branch_ret_bit;
12744 else if (strcasecmp (type, "indirect") == 0)
12745 align_branch |= align_branch_indirect_bit;
12746 else
12747 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12748 type = next;
12749 }
12750 while (next != NULL);
12751 free (saved);
12752 break;
12753
12754 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12755 align_branch_power = 5;
12756 align_branch_prefix_size = 5;
12757 align_branch = (align_branch_jcc_bit
12758 | align_branch_fused_bit
12759 | align_branch_jmp_bit);
12760 break;
12761
12762 case OPTION_MAMD64:
12763 isa64 = amd64;
12764 break;
12765
12766 case OPTION_MINTEL64:
12767 isa64 = intel64;
12768 break;
12769
12770 case 'O':
12771 if (arg == NULL)
12772 {
12773 optimize = 1;
12774 /* Turn off -Os. */
12775 optimize_for_space = 0;
12776 }
12777 else if (*arg == 's')
12778 {
12779 optimize_for_space = 1;
12780 /* Turn on all encoding optimizations. */
12781 optimize = INT_MAX;
12782 }
12783 else
12784 {
12785 optimize = atoi (arg);
12786 /* Turn off -Os. */
12787 optimize_for_space = 0;
12788 }
12789 break;
12790
12791 default:
12792 return 0;
12793 }
12794 return 1;
12795 }
12796
12797 #define MESSAGE_TEMPLATE \
12798 " "
12799
12800 static char *
12801 output_message (FILE *stream, char *p, char *message, char *start,
12802 int *left_p, const char *name, int len)
12803 {
12804 int size = sizeof (MESSAGE_TEMPLATE);
12805 int left = *left_p;
12806
12807 /* Reserve 2 spaces for ", " or ",\0" */
12808 left -= len + 2;
12809
12810 /* Check if there is any room. */
12811 if (left >= 0)
12812 {
12813 if (p != start)
12814 {
12815 *p++ = ',';
12816 *p++ = ' ';
12817 }
12818 p = mempcpy (p, name, len);
12819 }
12820 else
12821 {
12822 /* Output the current message now and start a new one. */
12823 *p++ = ',';
12824 *p = '\0';
12825 fprintf (stream, "%s\n", message);
12826 p = start;
12827 left = size - (start - message) - len - 2;
12828
12829 gas_assert (left >= 0);
12830
12831 p = mempcpy (p, name, len);
12832 }
12833
12834 *left_p = left;
12835 return p;
12836 }
12837
12838 static void
12839 show_arch (FILE *stream, int ext, int check)
12840 {
12841 static char message[] = MESSAGE_TEMPLATE;
12842 char *start = message + 27;
12843 char *p;
12844 int size = sizeof (MESSAGE_TEMPLATE);
12845 int left;
12846 const char *name;
12847 int len;
12848 unsigned int j;
12849
12850 p = start;
12851 left = size - (start - message);
12852 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12853 {
12854 /* Should it be skipped? */
12855 if (cpu_arch [j].skip)
12856 continue;
12857
12858 name = cpu_arch [j].name;
12859 len = cpu_arch [j].len;
12860 if (*name == '.')
12861 {
12862 /* It is an extension. Skip if we aren't asked to show it. */
12863 if (ext)
12864 {
12865 name++;
12866 len--;
12867 }
12868 else
12869 continue;
12870 }
12871 else if (ext)
12872 {
12873 /* It is an processor. Skip if we show only extension. */
12874 continue;
12875 }
12876 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12877 {
12878 /* It is an impossible processor - skip. */
12879 continue;
12880 }
12881
12882 p = output_message (stream, p, message, start, &left, name, len);
12883 }
12884
12885 /* Display disabled extensions. */
12886 if (ext)
12887 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12888 {
12889 name = cpu_noarch [j].name;
12890 len = cpu_noarch [j].len;
12891 p = output_message (stream, p, message, start, &left, name,
12892 len);
12893 }
12894
12895 *p = '\0';
12896 fprintf (stream, "%s\n", message);
12897 }
12898
12899 void
12900 md_show_usage (FILE *stream)
12901 {
12902 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12903 fprintf (stream, _("\
12904 -Qy, -Qn ignored\n\
12905 -V print assembler version number\n\
12906 -k ignored\n"));
12907 #endif
12908 fprintf (stream, _("\
12909 -n Do not optimize code alignment\n\
12910 -q quieten some warnings\n"));
12911 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12912 fprintf (stream, _("\
12913 -s ignored\n"));
12914 #endif
12915 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12916 || defined (TE_PE) || defined (TE_PEP))
12917 fprintf (stream, _("\
12918 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12919 #endif
12920 #ifdef SVR4_COMMENT_CHARS
12921 fprintf (stream, _("\
12922 --divide do not treat `/' as a comment character\n"));
12923 #else
12924 fprintf (stream, _("\
12925 --divide ignored\n"));
12926 #endif
12927 fprintf (stream, _("\
12928 -march=CPU[,+EXTENSION...]\n\
12929 generate code for CPU and EXTENSION, CPU is one of:\n"));
12930 show_arch (stream, 0, 1);
12931 fprintf (stream, _("\
12932 EXTENSION is combination of:\n"));
12933 show_arch (stream, 1, 0);
12934 fprintf (stream, _("\
12935 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12936 show_arch (stream, 0, 0);
12937 fprintf (stream, _("\
12938 -msse2avx encode SSE instructions with VEX prefix\n"));
12939 fprintf (stream, _("\
12940 -msse-check=[none|error|warning] (default: warning)\n\
12941 check SSE instructions\n"));
12942 fprintf (stream, _("\
12943 -moperand-check=[none|error|warning] (default: warning)\n\
12944 check operand combinations for validity\n"));
12945 fprintf (stream, _("\
12946 -mavxscalar=[128|256] (default: 128)\n\
12947 encode scalar AVX instructions with specific vector\n\
12948 length\n"));
12949 fprintf (stream, _("\
12950 -mvexwig=[0|1] (default: 0)\n\
12951 encode VEX instructions with specific VEX.W value\n\
12952 for VEX.W bit ignored instructions\n"));
12953 fprintf (stream, _("\
12954 -mevexlig=[128|256|512] (default: 128)\n\
12955 encode scalar EVEX instructions with specific vector\n\
12956 length\n"));
12957 fprintf (stream, _("\
12958 -mevexwig=[0|1] (default: 0)\n\
12959 encode EVEX instructions with specific EVEX.W value\n\
12960 for EVEX.W bit ignored instructions\n"));
12961 fprintf (stream, _("\
12962 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12963 encode EVEX instructions with specific EVEX.RC value\n\
12964 for SAE-only ignored instructions\n"));
12965 fprintf (stream, _("\
12966 -mmnemonic=[att|intel] "));
12967 if (SYSV386_COMPAT)
12968 fprintf (stream, _("(default: att)\n"));
12969 else
12970 fprintf (stream, _("(default: intel)\n"));
12971 fprintf (stream, _("\
12972 use AT&T/Intel mnemonic\n"));
12973 fprintf (stream, _("\
12974 -msyntax=[att|intel] (default: att)\n\
12975 use AT&T/Intel syntax\n"));
12976 fprintf (stream, _("\
12977 -mindex-reg support pseudo index registers\n"));
12978 fprintf (stream, _("\
12979 -mnaked-reg don't require `%%' prefix for registers\n"));
12980 fprintf (stream, _("\
12981 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12982 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12983 fprintf (stream, _("\
12984 -mshared disable branch optimization for shared code\n"));
12985 fprintf (stream, _("\
12986 -mx86-used-note=[no|yes] "));
12987 if (DEFAULT_X86_USED_NOTE)
12988 fprintf (stream, _("(default: yes)\n"));
12989 else
12990 fprintf (stream, _("(default: no)\n"));
12991 fprintf (stream, _("\
12992 generate x86 used ISA and feature properties\n"));
12993 #endif
12994 #if defined (TE_PE) || defined (TE_PEP)
12995 fprintf (stream, _("\
12996 -mbig-obj generate big object files\n"));
12997 #endif
12998 fprintf (stream, _("\
12999 -momit-lock-prefix=[no|yes] (default: no)\n\
13000 strip all lock prefixes\n"));
13001 fprintf (stream, _("\
13002 -mfence-as-lock-add=[no|yes] (default: no)\n\
13003 encode lfence, mfence and sfence as\n\
13004 lock addl $0x0, (%%{re}sp)\n"));
13005 fprintf (stream, _("\
13006 -mrelax-relocations=[no|yes] "));
13007 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13008 fprintf (stream, _("(default: yes)\n"));
13009 else
13010 fprintf (stream, _("(default: no)\n"));
13011 fprintf (stream, _("\
13012 generate relax relocations\n"));
13013 fprintf (stream, _("\
13014 -malign-branch-boundary=NUM (default: 0)\n\
13015 align branches within NUM byte boundary\n"));
13016 fprintf (stream, _("\
13017 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13018 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13019 indirect\n\
13020 specify types of branches to align\n"));
13021 fprintf (stream, _("\
13022 -malign-branch-prefix-size=NUM (default: 5)\n\
13023 align branches with NUM prefixes per instruction\n"));
13024 fprintf (stream, _("\
13025 -mbranches-within-32B-boundaries\n\
13026 align branches within 32 byte boundary\n"));
13027 fprintf (stream, _("\
13028 -mamd64 accept only AMD64 ISA [default]\n"));
13029 fprintf (stream, _("\
13030 -mintel64 accept only Intel64 ISA\n"));
13031 }
13032
13033 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13034 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13035 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13036
13037 /* Pick the target format to use. */
13038
13039 const char *
13040 i386_target_format (void)
13041 {
13042 if (!strncmp (default_arch, "x86_64", 6))
13043 {
13044 update_code_flag (CODE_64BIT, 1);
13045 if (default_arch[6] == '\0')
13046 x86_elf_abi = X86_64_ABI;
13047 else
13048 x86_elf_abi = X86_64_X32_ABI;
13049 }
13050 else if (!strcmp (default_arch, "i386"))
13051 update_code_flag (CODE_32BIT, 1);
13052 else if (!strcmp (default_arch, "iamcu"))
13053 {
13054 update_code_flag (CODE_32BIT, 1);
13055 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13056 {
13057 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13058 cpu_arch_name = "iamcu";
13059 cpu_sub_arch_name = NULL;
13060 cpu_arch_flags = iamcu_flags;
13061 cpu_arch_isa = PROCESSOR_IAMCU;
13062 cpu_arch_isa_flags = iamcu_flags;
13063 if (!cpu_arch_tune_set)
13064 {
13065 cpu_arch_tune = cpu_arch_isa;
13066 cpu_arch_tune_flags = cpu_arch_isa_flags;
13067 }
13068 }
13069 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13070 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13071 cpu_arch_name);
13072 }
13073 else
13074 as_fatal (_("unknown architecture"));
13075
13076 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13077 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13078 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13079 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13080
13081 switch (OUTPUT_FLAVOR)
13082 {
13083 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13084 case bfd_target_aout_flavour:
13085 return AOUT_TARGET_FORMAT;
13086 #endif
13087 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13088 # if defined (TE_PE) || defined (TE_PEP)
13089 case bfd_target_coff_flavour:
13090 if (flag_code == CODE_64BIT)
13091 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13092 else
13093 return "pe-i386";
13094 # elif defined (TE_GO32)
13095 case bfd_target_coff_flavour:
13096 return "coff-go32";
13097 # else
13098 case bfd_target_coff_flavour:
13099 return "coff-i386";
13100 # endif
13101 #endif
13102 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13103 case bfd_target_elf_flavour:
13104 {
13105 const char *format;
13106
13107 switch (x86_elf_abi)
13108 {
13109 default:
13110 format = ELF_TARGET_FORMAT;
13111 #ifndef TE_SOLARIS
13112 tls_get_addr = "___tls_get_addr";
13113 #endif
13114 break;
13115 case X86_64_ABI:
13116 use_rela_relocations = 1;
13117 object_64bit = 1;
13118 #ifndef TE_SOLARIS
13119 tls_get_addr = "__tls_get_addr";
13120 #endif
13121 format = ELF_TARGET_FORMAT64;
13122 break;
13123 case X86_64_X32_ABI:
13124 use_rela_relocations = 1;
13125 object_64bit = 1;
13126 #ifndef TE_SOLARIS
13127 tls_get_addr = "__tls_get_addr";
13128 #endif
13129 disallow_64bit_reloc = 1;
13130 format = ELF_TARGET_FORMAT32;
13131 break;
13132 }
13133 if (cpu_arch_isa == PROCESSOR_L1OM)
13134 {
13135 if (x86_elf_abi != X86_64_ABI)
13136 as_fatal (_("Intel L1OM is 64bit only"));
13137 return ELF_TARGET_L1OM_FORMAT;
13138 }
13139 else if (cpu_arch_isa == PROCESSOR_K1OM)
13140 {
13141 if (x86_elf_abi != X86_64_ABI)
13142 as_fatal (_("Intel K1OM is 64bit only"));
13143 return ELF_TARGET_K1OM_FORMAT;
13144 }
13145 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13146 {
13147 if (x86_elf_abi != I386_ABI)
13148 as_fatal (_("Intel MCU is 32bit only"));
13149 return ELF_TARGET_IAMCU_FORMAT;
13150 }
13151 else
13152 return format;
13153 }
13154 #endif
13155 #if defined (OBJ_MACH_O)
13156 case bfd_target_mach_o_flavour:
13157 if (flag_code == CODE_64BIT)
13158 {
13159 use_rela_relocations = 1;
13160 object_64bit = 1;
13161 return "mach-o-x86-64";
13162 }
13163 else
13164 return "mach-o-i386";
13165 #endif
13166 default:
13167 abort ();
13168 return NULL;
13169 }
13170 }
13171
13172 #endif /* OBJ_MAYBE_ more than one */
13173 \f
13174 symbolS *
13175 md_undefined_symbol (char *name)
13176 {
13177 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13178 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13179 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13180 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13181 {
13182 if (!GOT_symbol)
13183 {
13184 if (symbol_find (name))
13185 as_bad (_("GOT already in symbol table"));
13186 GOT_symbol = symbol_new (name, undefined_section,
13187 (valueT) 0, &zero_address_frag);
13188 };
13189 return GOT_symbol;
13190 }
13191 return 0;
13192 }
13193
13194 /* Round up a section size to the appropriate boundary. */
13195
13196 valueT
13197 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13198 {
13199 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13200 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13201 {
13202 /* For a.out, force the section size to be aligned. If we don't do
13203 this, BFD will align it for us, but it will not write out the
13204 final bytes of the section. This may be a bug in BFD, but it is
13205 easier to fix it here since that is how the other a.out targets
13206 work. */
13207 int align;
13208
13209 align = bfd_section_alignment (segment);
13210 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13211 }
13212 #endif
13213
13214 return size;
13215 }
13216
13217 /* On the i386, PC-relative offsets are relative to the start of the
13218 next instruction. That is, the address of the offset, plus its
13219 size, since the offset is always the last part of the insn. */
13220
13221 long
13222 md_pcrel_from (fixS *fixP)
13223 {
13224 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13225 }
13226
13227 #ifndef I386COFF
13228
13229 static void
13230 s_bss (int ignore ATTRIBUTE_UNUSED)
13231 {
13232 int temp;
13233
13234 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13235 if (IS_ELF)
13236 obj_elf_section_change_hook ();
13237 #endif
13238 temp = get_absolute_expression ();
13239 subseg_set (bss_section, (subsegT) temp);
13240 demand_empty_rest_of_line ();
13241 }
13242
13243 #endif
13244
13245 /* Remember constant directive. */
13246
13247 void
13248 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13249 {
13250 if (last_insn.kind != last_insn_directive
13251 && (bfd_section_flags (now_seg) & SEC_CODE))
13252 {
13253 last_insn.seg = now_seg;
13254 last_insn.kind = last_insn_directive;
13255 last_insn.name = "constant directive";
13256 last_insn.file = as_where (&last_insn.line);
13257 }
13258 }
13259
13260 void
13261 i386_validate_fix (fixS *fixp)
13262 {
13263 if (fixp->fx_subsy)
13264 {
13265 if (fixp->fx_subsy == GOT_symbol)
13266 {
13267 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13268 {
13269 if (!object_64bit)
13270 abort ();
13271 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13272 if (fixp->fx_tcbit2)
13273 fixp->fx_r_type = (fixp->fx_tcbit
13274 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13275 : BFD_RELOC_X86_64_GOTPCRELX);
13276 else
13277 #endif
13278 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13279 }
13280 else
13281 {
13282 if (!object_64bit)
13283 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13284 else
13285 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13286 }
13287 fixp->fx_subsy = 0;
13288 }
13289 }
13290 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13291 else if (!object_64bit)
13292 {
13293 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13294 && fixp->fx_tcbit2)
13295 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13296 }
13297 #endif
13298 }
13299
13300 arelent *
13301 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13302 {
13303 arelent *rel;
13304 bfd_reloc_code_real_type code;
13305
13306 switch (fixp->fx_r_type)
13307 {
13308 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13309 case BFD_RELOC_SIZE32:
13310 case BFD_RELOC_SIZE64:
13311 if (S_IS_DEFINED (fixp->fx_addsy)
13312 && !S_IS_EXTERNAL (fixp->fx_addsy))
13313 {
13314 /* Resolve size relocation against local symbol to size of
13315 the symbol plus addend. */
13316 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13317 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13318 && !fits_in_unsigned_long (value))
13319 as_bad_where (fixp->fx_file, fixp->fx_line,
13320 _("symbol size computation overflow"));
13321 fixp->fx_addsy = NULL;
13322 fixp->fx_subsy = NULL;
13323 md_apply_fix (fixp, (valueT *) &value, NULL);
13324 return NULL;
13325 }
13326 #endif
13327 /* Fall through. */
13328
13329 case BFD_RELOC_X86_64_PLT32:
13330 case BFD_RELOC_X86_64_GOT32:
13331 case BFD_RELOC_X86_64_GOTPCREL:
13332 case BFD_RELOC_X86_64_GOTPCRELX:
13333 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13334 case BFD_RELOC_386_PLT32:
13335 case BFD_RELOC_386_GOT32:
13336 case BFD_RELOC_386_GOT32X:
13337 case BFD_RELOC_386_GOTOFF:
13338 case BFD_RELOC_386_GOTPC:
13339 case BFD_RELOC_386_TLS_GD:
13340 case BFD_RELOC_386_TLS_LDM:
13341 case BFD_RELOC_386_TLS_LDO_32:
13342 case BFD_RELOC_386_TLS_IE_32:
13343 case BFD_RELOC_386_TLS_IE:
13344 case BFD_RELOC_386_TLS_GOTIE:
13345 case BFD_RELOC_386_TLS_LE_32:
13346 case BFD_RELOC_386_TLS_LE:
13347 case BFD_RELOC_386_TLS_GOTDESC:
13348 case BFD_RELOC_386_TLS_DESC_CALL:
13349 case BFD_RELOC_X86_64_TLSGD:
13350 case BFD_RELOC_X86_64_TLSLD:
13351 case BFD_RELOC_X86_64_DTPOFF32:
13352 case BFD_RELOC_X86_64_DTPOFF64:
13353 case BFD_RELOC_X86_64_GOTTPOFF:
13354 case BFD_RELOC_X86_64_TPOFF32:
13355 case BFD_RELOC_X86_64_TPOFF64:
13356 case BFD_RELOC_X86_64_GOTOFF64:
13357 case BFD_RELOC_X86_64_GOTPC32:
13358 case BFD_RELOC_X86_64_GOT64:
13359 case BFD_RELOC_X86_64_GOTPCREL64:
13360 case BFD_RELOC_X86_64_GOTPC64:
13361 case BFD_RELOC_X86_64_GOTPLT64:
13362 case BFD_RELOC_X86_64_PLTOFF64:
13363 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13364 case BFD_RELOC_X86_64_TLSDESC_CALL:
13365 case BFD_RELOC_RVA:
13366 case BFD_RELOC_VTABLE_ENTRY:
13367 case BFD_RELOC_VTABLE_INHERIT:
13368 #ifdef TE_PE
13369 case BFD_RELOC_32_SECREL:
13370 #endif
13371 code = fixp->fx_r_type;
13372 break;
13373 case BFD_RELOC_X86_64_32S:
13374 if (!fixp->fx_pcrel)
13375 {
13376 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13377 code = fixp->fx_r_type;
13378 break;
13379 }
13380 /* Fall through. */
13381 default:
13382 if (fixp->fx_pcrel)
13383 {
13384 switch (fixp->fx_size)
13385 {
13386 default:
13387 as_bad_where (fixp->fx_file, fixp->fx_line,
13388 _("can not do %d byte pc-relative relocation"),
13389 fixp->fx_size);
13390 code = BFD_RELOC_32_PCREL;
13391 break;
13392 case 1: code = BFD_RELOC_8_PCREL; break;
13393 case 2: code = BFD_RELOC_16_PCREL; break;
13394 case 4: code = BFD_RELOC_32_PCREL; break;
13395 #ifdef BFD64
13396 case 8: code = BFD_RELOC_64_PCREL; break;
13397 #endif
13398 }
13399 }
13400 else
13401 {
13402 switch (fixp->fx_size)
13403 {
13404 default:
13405 as_bad_where (fixp->fx_file, fixp->fx_line,
13406 _("can not do %d byte relocation"),
13407 fixp->fx_size);
13408 code = BFD_RELOC_32;
13409 break;
13410 case 1: code = BFD_RELOC_8; break;
13411 case 2: code = BFD_RELOC_16; break;
13412 case 4: code = BFD_RELOC_32; break;
13413 #ifdef BFD64
13414 case 8: code = BFD_RELOC_64; break;
13415 #endif
13416 }
13417 }
13418 break;
13419 }
13420
13421 if ((code == BFD_RELOC_32
13422 || code == BFD_RELOC_32_PCREL
13423 || code == BFD_RELOC_X86_64_32S)
13424 && GOT_symbol
13425 && fixp->fx_addsy == GOT_symbol)
13426 {
13427 if (!object_64bit)
13428 code = BFD_RELOC_386_GOTPC;
13429 else
13430 code = BFD_RELOC_X86_64_GOTPC32;
13431 }
13432 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13433 && GOT_symbol
13434 && fixp->fx_addsy == GOT_symbol)
13435 {
13436 code = BFD_RELOC_X86_64_GOTPC64;
13437 }
13438
13439 rel = XNEW (arelent);
13440 rel->sym_ptr_ptr = XNEW (asymbol *);
13441 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13442
13443 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13444
13445 if (!use_rela_relocations)
13446 {
13447 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13448 vtable entry to be used in the relocation's section offset. */
13449 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13450 rel->address = fixp->fx_offset;
13451 #if defined (OBJ_COFF) && defined (TE_PE)
13452 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13453 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13454 else
13455 #endif
13456 rel->addend = 0;
13457 }
13458 /* Use the rela in 64bit mode. */
13459 else
13460 {
13461 if (disallow_64bit_reloc)
13462 switch (code)
13463 {
13464 case BFD_RELOC_X86_64_DTPOFF64:
13465 case BFD_RELOC_X86_64_TPOFF64:
13466 case BFD_RELOC_64_PCREL:
13467 case BFD_RELOC_X86_64_GOTOFF64:
13468 case BFD_RELOC_X86_64_GOT64:
13469 case BFD_RELOC_X86_64_GOTPCREL64:
13470 case BFD_RELOC_X86_64_GOTPC64:
13471 case BFD_RELOC_X86_64_GOTPLT64:
13472 case BFD_RELOC_X86_64_PLTOFF64:
13473 as_bad_where (fixp->fx_file, fixp->fx_line,
13474 _("cannot represent relocation type %s in x32 mode"),
13475 bfd_get_reloc_code_name (code));
13476 break;
13477 default:
13478 break;
13479 }
13480
13481 if (!fixp->fx_pcrel)
13482 rel->addend = fixp->fx_offset;
13483 else
13484 switch (code)
13485 {
13486 case BFD_RELOC_X86_64_PLT32:
13487 case BFD_RELOC_X86_64_GOT32:
13488 case BFD_RELOC_X86_64_GOTPCREL:
13489 case BFD_RELOC_X86_64_GOTPCRELX:
13490 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13491 case BFD_RELOC_X86_64_TLSGD:
13492 case BFD_RELOC_X86_64_TLSLD:
13493 case BFD_RELOC_X86_64_GOTTPOFF:
13494 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13495 case BFD_RELOC_X86_64_TLSDESC_CALL:
13496 rel->addend = fixp->fx_offset - fixp->fx_size;
13497 break;
13498 default:
13499 rel->addend = (section->vma
13500 - fixp->fx_size
13501 + fixp->fx_addnumber
13502 + md_pcrel_from (fixp));
13503 break;
13504 }
13505 }
13506
13507 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13508 if (rel->howto == NULL)
13509 {
13510 as_bad_where (fixp->fx_file, fixp->fx_line,
13511 _("cannot represent relocation type %s"),
13512 bfd_get_reloc_code_name (code));
13513 /* Set howto to a garbage value so that we can keep going. */
13514 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13515 gas_assert (rel->howto != NULL);
13516 }
13517
13518 return rel;
13519 }
13520
13521 #include "tc-i386-intel.c"
13522
13523 void
13524 tc_x86_parse_to_dw2regnum (expressionS *exp)
13525 {
13526 int saved_naked_reg;
13527 char saved_register_dot;
13528
13529 saved_naked_reg = allow_naked_reg;
13530 allow_naked_reg = 1;
13531 saved_register_dot = register_chars['.'];
13532 register_chars['.'] = '.';
13533 allow_pseudo_reg = 1;
13534 expression_and_evaluate (exp);
13535 allow_pseudo_reg = 0;
13536 register_chars['.'] = saved_register_dot;
13537 allow_naked_reg = saved_naked_reg;
13538
13539 if (exp->X_op == O_register && exp->X_add_number >= 0)
13540 {
13541 if ((addressT) exp->X_add_number < i386_regtab_size)
13542 {
13543 exp->X_op = O_constant;
13544 exp->X_add_number = i386_regtab[exp->X_add_number]
13545 .dw2_regnum[flag_code >> 1];
13546 }
13547 else
13548 exp->X_op = O_illegal;
13549 }
13550 }
13551
13552 void
13553 tc_x86_frame_initial_instructions (void)
13554 {
13555 static unsigned int sp_regno[2];
13556
13557 if (!sp_regno[flag_code >> 1])
13558 {
13559 char *saved_input = input_line_pointer;
13560 char sp[][4] = {"esp", "rsp"};
13561 expressionS exp;
13562
13563 input_line_pointer = sp[flag_code >> 1];
13564 tc_x86_parse_to_dw2regnum (&exp);
13565 gas_assert (exp.X_op == O_constant);
13566 sp_regno[flag_code >> 1] = exp.X_add_number;
13567 input_line_pointer = saved_input;
13568 }
13569
13570 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13571 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13572 }
13573
13574 int
13575 x86_dwarf2_addr_size (void)
13576 {
13577 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13578 if (x86_elf_abi == X86_64_X32_ABI)
13579 return 4;
13580 #endif
13581 return bfd_arch_bits_per_address (stdoutput) / 8;
13582 }
13583
13584 int
13585 i386_elf_section_type (const char *str, size_t len)
13586 {
13587 if (flag_code == CODE_64BIT
13588 && len == sizeof ("unwind") - 1
13589 && strncmp (str, "unwind", 6) == 0)
13590 return SHT_X86_64_UNWIND;
13591
13592 return -1;
13593 }
13594
13595 #ifdef TE_SOLARIS
13596 void
13597 i386_solaris_fix_up_eh_frame (segT sec)
13598 {
13599 if (flag_code == CODE_64BIT)
13600 elf_section_type (sec) = SHT_X86_64_UNWIND;
13601 }
13602 #endif
13603
13604 #ifdef TE_PE
13605 void
13606 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13607 {
13608 expressionS exp;
13609
13610 exp.X_op = O_secrel;
13611 exp.X_add_symbol = symbol;
13612 exp.X_add_number = 0;
13613 emit_expr (&exp, size);
13614 }
13615 #endif
13616
13617 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13618 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13619
13620 bfd_vma
13621 x86_64_section_letter (int letter, const char **ptr_msg)
13622 {
13623 if (flag_code == CODE_64BIT)
13624 {
13625 if (letter == 'l')
13626 return SHF_X86_64_LARGE;
13627
13628 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13629 }
13630 else
13631 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13632 return -1;
13633 }
13634
13635 bfd_vma
13636 x86_64_section_word (char *str, size_t len)
13637 {
13638 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13639 return SHF_X86_64_LARGE;
13640
13641 return -1;
13642 }
13643
13644 static void
13645 handle_large_common (int small ATTRIBUTE_UNUSED)
13646 {
13647 if (flag_code != CODE_64BIT)
13648 {
13649 s_comm_internal (0, elf_common_parse);
13650 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13651 }
13652 else
13653 {
13654 static segT lbss_section;
13655 asection *saved_com_section_ptr = elf_com_section_ptr;
13656 asection *saved_bss_section = bss_section;
13657
13658 if (lbss_section == NULL)
13659 {
13660 flagword applicable;
13661 segT seg = now_seg;
13662 subsegT subseg = now_subseg;
13663
13664 /* The .lbss section is for local .largecomm symbols. */
13665 lbss_section = subseg_new (".lbss", 0);
13666 applicable = bfd_applicable_section_flags (stdoutput);
13667 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13668 seg_info (lbss_section)->bss = 1;
13669
13670 subseg_set (seg, subseg);
13671 }
13672
13673 elf_com_section_ptr = &_bfd_elf_large_com_section;
13674 bss_section = lbss_section;
13675
13676 s_comm_internal (0, elf_common_parse);
13677
13678 elf_com_section_ptr = saved_com_section_ptr;
13679 bss_section = saved_bss_section;
13680 }
13681 }
13682 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.467336 seconds and 3 git commands to generate.